Merge from transactional-memory branch.
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "diagnostic-core.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
101 #include "output.h"
102 #include "params.h"
103 #include "timevar.h"
104 #include "tree-pass.h"
105 #include "df.h"
106 #include "cgraph.h"
107 #include "obstack.h"
108
109 /* Number of attempts to combine instructions in this function. */
110
111 static int combine_attempts;
112
113 /* Number of attempts that got as far as substitution in this function. */
114
115 static int combine_merges;
116
117 /* Number of instructions combined with added SETs in this function. */
118
119 static int combine_extras;
120
121 /* Number of instructions combined in this function. */
122
123 static int combine_successes;
124
125 /* Totals over entire compilation. */
126
127 static int total_attempts, total_merges, total_extras, total_successes;
128
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
135
136 static rtx i2mod;
137
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139
140 static rtx i2mod_old_rhs;
141
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143
144 static rtx i2mod_new_rhs;
145 \f
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
152
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
158
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
161
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
165
166 Therefore, we maintain the following fields:
167
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
176
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
181
182 (The next two parameters are out of date).
183
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
195
196 /* Record last value assigned to (hard or pseudo) register n. */
197
198 rtx last_set_value;
199
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
202
203 int last_set_table_tick;
204
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
207
208 int last_set_label;
209
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
214
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
222
223 char last_set_invalid;
224
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
229
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
234
235 If an entry is zero, it means that we don't know anything special. */
236
237 unsigned char sign_bit_copies;
238
239 unsigned HOST_WIDE_INT nonzero_bits;
240
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
244
245 int truncation_label;
246
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
251
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
254
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
257
258 static VEC(reg_stat_type,heap) *reg_stat;
259
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
262
263 static int mem_last_set;
264
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
267
268 static int last_call_luid;
269
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
275
276 static rtx subst_insn;
277
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
284
285 static int subst_low_luid;
286
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
289
290 static HARD_REG_SET newpat_used_regs;
291
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
295
296 static rtx added_links_insn;
297
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
301
302 \f
303 /* Length of the currently allocated uid_insn_cost array. */
304
305 static int max_uid_known;
306
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
309
310 static int *uid_insn_cost;
311
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as struct insn_link pointers. */
314
315 struct insn_link {
316 rtx insn;
317 struct insn_link *next;
318 };
319
320 static struct insn_link **uid_log_links;
321
322 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
323 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
324
325 #define FOR_EACH_LOG_LINK(L, INSN) \
326 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
327
328 /* Links for LOG_LINKS are allocated from this obstack. */
329
330 static struct obstack insn_link_obstack;
331
332 /* Allocate a link. */
333
334 static inline struct insn_link *
335 alloc_insn_link (rtx insn, struct insn_link *next)
336 {
337 struct insn_link *l
338 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
339 sizeof (struct insn_link));
340 l->insn = insn;
341 l->next = next;
342 return l;
343 }
344
345 /* Incremented for each basic block. */
346
347 static int label_tick;
348
349 /* Reset to label_tick for each extended basic block in scanning order. */
350
351 static int label_tick_ebb_start;
352
353 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
354 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
355
356 static enum machine_mode nonzero_bits_mode;
357
358 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
359 be safely used. It is zero while computing them and after combine has
360 completed. This former test prevents propagating values based on
361 previously set values, which can be incorrect if a variable is modified
362 in a loop. */
363
364 static int nonzero_sign_valid;
365
366 \f
367 /* Record one modification to rtl structure
368 to be undone by storing old_contents into *where. */
369
370 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE };
371
372 struct undo
373 {
374 struct undo *next;
375 enum undo_kind kind;
376 union { rtx r; int i; enum machine_mode m; } old_contents;
377 union { rtx *r; int *i; } where;
378 };
379
380 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
381 num_undo says how many are currently recorded.
382
383 other_insn is nonzero if we have modified some other insn in the process
384 of working on subst_insn. It must be verified too. */
385
386 struct undobuf
387 {
388 struct undo *undos;
389 struct undo *frees;
390 rtx other_insn;
391 };
392
393 static struct undobuf undobuf;
394
395 /* Number of times the pseudo being substituted for
396 was found and replaced. */
397
398 static int n_occurrences;
399
400 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
401 enum machine_mode,
402 unsigned HOST_WIDE_INT,
403 unsigned HOST_WIDE_INT *);
404 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
405 enum machine_mode,
406 unsigned int, unsigned int *);
407 static void do_SUBST (rtx *, rtx);
408 static void do_SUBST_INT (int *, int);
409 static void init_reg_last (void);
410 static void setup_incoming_promotions (rtx);
411 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
412 static int cant_combine_insn_p (rtx);
413 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
414 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
415 static int contains_muldiv (rtx);
416 static rtx try_combine (rtx, rtx, rtx, rtx, int *, rtx);
417 static void undo_all (void);
418 static void undo_commit (void);
419 static rtx *find_split_point (rtx *, rtx, bool);
420 static rtx subst (rtx, rtx, rtx, int, int, int);
421 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
422 static rtx simplify_if_then_else (rtx);
423 static rtx simplify_set (rtx);
424 static rtx simplify_logical (rtx);
425 static rtx expand_compound_operation (rtx);
426 static const_rtx expand_field_assignment (const_rtx);
427 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
428 rtx, unsigned HOST_WIDE_INT, int, int, int);
429 static rtx extract_left_shift (rtx, int);
430 static rtx make_compound_operation (rtx, enum rtx_code);
431 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
432 unsigned HOST_WIDE_INT *);
433 static rtx canon_reg_for_combine (rtx, rtx);
434 static rtx force_to_mode (rtx, enum machine_mode,
435 unsigned HOST_WIDE_INT, int);
436 static rtx if_then_else_cond (rtx, rtx *, rtx *);
437 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
438 static int rtx_equal_for_field_assignment_p (rtx, rtx);
439 static rtx make_field_assignment (rtx);
440 static rtx apply_distributive_law (rtx);
441 static rtx distribute_and_simplify_rtx (rtx, int);
442 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
443 unsigned HOST_WIDE_INT);
444 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
445 unsigned HOST_WIDE_INT);
446 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
447 HOST_WIDE_INT, enum machine_mode, int *);
448 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
449 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
450 int);
451 static int recog_for_combine (rtx *, rtx, rtx *);
452 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
453 static enum rtx_code simplify_compare_const (enum rtx_code, rtx, rtx *);
454 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
455 static void update_table_tick (rtx);
456 static void record_value_for_reg (rtx, rtx, rtx);
457 static void check_promoted_subreg (rtx, rtx);
458 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
459 static void record_dead_and_set_regs (rtx);
460 static int get_last_value_validate (rtx *, rtx, int, int);
461 static rtx get_last_value (const_rtx);
462 static int use_crosses_set_p (const_rtx, int);
463 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
464 static int reg_dead_at_p (rtx, rtx);
465 static void move_deaths (rtx, rtx, int, rtx, rtx *);
466 static int reg_bitfield_target_p (rtx, rtx);
467 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
468 static void distribute_links (struct insn_link *);
469 static void mark_used_regs_combine (rtx);
470 static void record_promoted_value (rtx, rtx);
471 static int unmentioned_reg_p_1 (rtx *, void *);
472 static bool unmentioned_reg_p (rtx, rtx);
473 static int record_truncated_value (rtx *, void *);
474 static void record_truncated_values (rtx *, void *);
475 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
476 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
477 \f
478
479 /* It is not safe to use ordinary gen_lowpart in combine.
480 See comments in gen_lowpart_for_combine. */
481 #undef RTL_HOOKS_GEN_LOWPART
482 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
483
484 /* Our implementation of gen_lowpart never emits a new pseudo. */
485 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
486 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
487
488 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
489 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
490
491 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
492 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
493
494 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
495 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
496
497 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
498
499 \f
500 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
501 PATTERN can not be split. Otherwise, it returns an insn sequence.
502 This is a wrapper around split_insns which ensures that the
503 reg_stat vector is made larger if the splitter creates a new
504 register. */
505
506 static rtx
507 combine_split_insns (rtx pattern, rtx insn)
508 {
509 rtx ret;
510 unsigned int nregs;
511
512 ret = split_insns (pattern, insn);
513 nregs = max_reg_num ();
514 if (nregs > VEC_length (reg_stat_type, reg_stat))
515 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
516 return ret;
517 }
518
519 /* This is used by find_single_use to locate an rtx in LOC that
520 contains exactly one use of DEST, which is typically either a REG
521 or CC0. It returns a pointer to the innermost rtx expression
522 containing DEST. Appearances of DEST that are being used to
523 totally replace it are not counted. */
524
525 static rtx *
526 find_single_use_1 (rtx dest, rtx *loc)
527 {
528 rtx x = *loc;
529 enum rtx_code code = GET_CODE (x);
530 rtx *result = NULL;
531 rtx *this_result;
532 int i;
533 const char *fmt;
534
535 switch (code)
536 {
537 case CONST_INT:
538 case CONST:
539 case LABEL_REF:
540 case SYMBOL_REF:
541 case CONST_DOUBLE:
542 case CONST_VECTOR:
543 case CLOBBER:
544 return 0;
545
546 case SET:
547 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
548 of a REG that occupies all of the REG, the insn uses DEST if
549 it is mentioned in the destination or the source. Otherwise, we
550 need just check the source. */
551 if (GET_CODE (SET_DEST (x)) != CC0
552 && GET_CODE (SET_DEST (x)) != PC
553 && !REG_P (SET_DEST (x))
554 && ! (GET_CODE (SET_DEST (x)) == SUBREG
555 && REG_P (SUBREG_REG (SET_DEST (x)))
556 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
557 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
558 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
559 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
560 break;
561
562 return find_single_use_1 (dest, &SET_SRC (x));
563
564 case MEM:
565 case SUBREG:
566 return find_single_use_1 (dest, &XEXP (x, 0));
567
568 default:
569 break;
570 }
571
572 /* If it wasn't one of the common cases above, check each expression and
573 vector of this code. Look for a unique usage of DEST. */
574
575 fmt = GET_RTX_FORMAT (code);
576 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
577 {
578 if (fmt[i] == 'e')
579 {
580 if (dest == XEXP (x, i)
581 || (REG_P (dest) && REG_P (XEXP (x, i))
582 && REGNO (dest) == REGNO (XEXP (x, i))))
583 this_result = loc;
584 else
585 this_result = find_single_use_1 (dest, &XEXP (x, i));
586
587 if (result == NULL)
588 result = this_result;
589 else if (this_result)
590 /* Duplicate usage. */
591 return NULL;
592 }
593 else if (fmt[i] == 'E')
594 {
595 int j;
596
597 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
598 {
599 if (XVECEXP (x, i, j) == dest
600 || (REG_P (dest)
601 && REG_P (XVECEXP (x, i, j))
602 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
603 this_result = loc;
604 else
605 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
606
607 if (result == NULL)
608 result = this_result;
609 else if (this_result)
610 return NULL;
611 }
612 }
613 }
614
615 return result;
616 }
617
618
619 /* See if DEST, produced in INSN, is used only a single time in the
620 sequel. If so, return a pointer to the innermost rtx expression in which
621 it is used.
622
623 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
624
625 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
626 care about REG_DEAD notes or LOG_LINKS.
627
628 Otherwise, we find the single use by finding an insn that has a
629 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
630 only referenced once in that insn, we know that it must be the first
631 and last insn referencing DEST. */
632
633 static rtx *
634 find_single_use (rtx dest, rtx insn, rtx *ploc)
635 {
636 basic_block bb;
637 rtx next;
638 rtx *result;
639 struct insn_link *link;
640
641 #ifdef HAVE_cc0
642 if (dest == cc0_rtx)
643 {
644 next = NEXT_INSN (insn);
645 if (next == 0
646 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
647 return 0;
648
649 result = find_single_use_1 (dest, &PATTERN (next));
650 if (result && ploc)
651 *ploc = next;
652 return result;
653 }
654 #endif
655
656 if (!REG_P (dest))
657 return 0;
658
659 bb = BLOCK_FOR_INSN (insn);
660 for (next = NEXT_INSN (insn);
661 next && BLOCK_FOR_INSN (next) == bb;
662 next = NEXT_INSN (next))
663 if (INSN_P (next) && dead_or_set_p (next, dest))
664 {
665 FOR_EACH_LOG_LINK (link, next)
666 if (link->insn == insn)
667 break;
668
669 if (link)
670 {
671 result = find_single_use_1 (dest, &PATTERN (next));
672 if (ploc)
673 *ploc = next;
674 return result;
675 }
676 }
677
678 return 0;
679 }
680 \f
681 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
682 insn. The substitution can be undone by undo_all. If INTO is already
683 set to NEWVAL, do not record this change. Because computing NEWVAL might
684 also call SUBST, we have to compute it before we put anything into
685 the undo table. */
686
687 static void
688 do_SUBST (rtx *into, rtx newval)
689 {
690 struct undo *buf;
691 rtx oldval = *into;
692
693 if (oldval == newval)
694 return;
695
696 /* We'd like to catch as many invalid transformations here as
697 possible. Unfortunately, there are way too many mode changes
698 that are perfectly valid, so we'd waste too much effort for
699 little gain doing the checks here. Focus on catching invalid
700 transformations involving integer constants. */
701 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
702 && CONST_INT_P (newval))
703 {
704 /* Sanity check that we're replacing oldval with a CONST_INT
705 that is a valid sign-extension for the original mode. */
706 gcc_assert (INTVAL (newval)
707 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
708
709 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
710 CONST_INT is not valid, because after the replacement, the
711 original mode would be gone. Unfortunately, we can't tell
712 when do_SUBST is called to replace the operand thereof, so we
713 perform this test on oldval instead, checking whether an
714 invalid replacement took place before we got here. */
715 gcc_assert (!(GET_CODE (oldval) == SUBREG
716 && CONST_INT_P (SUBREG_REG (oldval))));
717 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
718 && CONST_INT_P (XEXP (oldval, 0))));
719 }
720
721 if (undobuf.frees)
722 buf = undobuf.frees, undobuf.frees = buf->next;
723 else
724 buf = XNEW (struct undo);
725
726 buf->kind = UNDO_RTX;
727 buf->where.r = into;
728 buf->old_contents.r = oldval;
729 *into = newval;
730
731 buf->next = undobuf.undos, undobuf.undos = buf;
732 }
733
734 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
735
736 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
737 for the value of a HOST_WIDE_INT value (including CONST_INT) is
738 not safe. */
739
740 static void
741 do_SUBST_INT (int *into, int newval)
742 {
743 struct undo *buf;
744 int oldval = *into;
745
746 if (oldval == newval)
747 return;
748
749 if (undobuf.frees)
750 buf = undobuf.frees, undobuf.frees = buf->next;
751 else
752 buf = XNEW (struct undo);
753
754 buf->kind = UNDO_INT;
755 buf->where.i = into;
756 buf->old_contents.i = oldval;
757 *into = newval;
758
759 buf->next = undobuf.undos, undobuf.undos = buf;
760 }
761
762 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
763
764 /* Similar to SUBST, but just substitute the mode. This is used when
765 changing the mode of a pseudo-register, so that any other
766 references to the entry in the regno_reg_rtx array will change as
767 well. */
768
769 static void
770 do_SUBST_MODE (rtx *into, enum machine_mode newval)
771 {
772 struct undo *buf;
773 enum machine_mode oldval = GET_MODE (*into);
774
775 if (oldval == newval)
776 return;
777
778 if (undobuf.frees)
779 buf = undobuf.frees, undobuf.frees = buf->next;
780 else
781 buf = XNEW (struct undo);
782
783 buf->kind = UNDO_MODE;
784 buf->where.r = into;
785 buf->old_contents.m = oldval;
786 adjust_reg_mode (*into, newval);
787
788 buf->next = undobuf.undos, undobuf.undos = buf;
789 }
790
791 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
792 \f
793 /* Subroutine of try_combine. Determine whether the replacement patterns
794 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
795 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
796 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
797 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
798 of all the instructions can be estimated and the replacements are more
799 expensive than the original sequence. */
800
801 static bool
802 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
803 rtx newi2pat, rtx newotherpat)
804 {
805 int i0_cost, i1_cost, i2_cost, i3_cost;
806 int new_i2_cost, new_i3_cost;
807 int old_cost, new_cost;
808
809 /* Lookup the original insn_rtx_costs. */
810 i2_cost = INSN_COST (i2);
811 i3_cost = INSN_COST (i3);
812
813 if (i1)
814 {
815 i1_cost = INSN_COST (i1);
816 if (i0)
817 {
818 i0_cost = INSN_COST (i0);
819 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
820 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
821 }
822 else
823 {
824 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
825 ? i1_cost + i2_cost + i3_cost : 0);
826 i0_cost = 0;
827 }
828 }
829 else
830 {
831 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
832 i1_cost = i0_cost = 0;
833 }
834
835 /* Calculate the replacement insn_rtx_costs. */
836 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
837 if (newi2pat)
838 {
839 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
840 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
841 ? new_i2_cost + new_i3_cost : 0;
842 }
843 else
844 {
845 new_cost = new_i3_cost;
846 new_i2_cost = 0;
847 }
848
849 if (undobuf.other_insn)
850 {
851 int old_other_cost, new_other_cost;
852
853 old_other_cost = INSN_COST (undobuf.other_insn);
854 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
855 if (old_other_cost > 0 && new_other_cost > 0)
856 {
857 old_cost += old_other_cost;
858 new_cost += new_other_cost;
859 }
860 else
861 old_cost = 0;
862 }
863
864 /* Disallow this combination if both new_cost and old_cost are greater than
865 zero, and new_cost is greater than old cost. */
866 if (old_cost > 0 && new_cost > old_cost)
867 {
868 if (dump_file)
869 {
870 if (i0)
871 {
872 fprintf (dump_file,
873 "rejecting combination of insns %d, %d, %d and %d\n",
874 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
875 INSN_UID (i3));
876 fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
877 i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
878 }
879 else if (i1)
880 {
881 fprintf (dump_file,
882 "rejecting combination of insns %d, %d and %d\n",
883 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
884 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
885 i1_cost, i2_cost, i3_cost, old_cost);
886 }
887 else
888 {
889 fprintf (dump_file,
890 "rejecting combination of insns %d and %d\n",
891 INSN_UID (i2), INSN_UID (i3));
892 fprintf (dump_file, "original costs %d + %d = %d\n",
893 i2_cost, i3_cost, old_cost);
894 }
895
896 if (newi2pat)
897 {
898 fprintf (dump_file, "replacement costs %d + %d = %d\n",
899 new_i2_cost, new_i3_cost, new_cost);
900 }
901 else
902 fprintf (dump_file, "replacement cost %d\n", new_cost);
903 }
904
905 return false;
906 }
907
908 /* Update the uid_insn_cost array with the replacement costs. */
909 INSN_COST (i2) = new_i2_cost;
910 INSN_COST (i3) = new_i3_cost;
911 if (i1)
912 {
913 INSN_COST (i1) = 0;
914 if (i0)
915 INSN_COST (i0) = 0;
916 }
917
918 return true;
919 }
920
921
922 /* Delete any insns that copy a register to itself. */
923
924 static void
925 delete_noop_moves (void)
926 {
927 rtx insn, next;
928 basic_block bb;
929
930 FOR_EACH_BB (bb)
931 {
932 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
933 {
934 next = NEXT_INSN (insn);
935 if (INSN_P (insn) && noop_move_p (insn))
936 {
937 if (dump_file)
938 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
939
940 delete_insn_and_edges (insn);
941 }
942 }
943 }
944 }
945
946 \f
947 /* Fill in log links field for all insns. */
948
949 static void
950 create_log_links (void)
951 {
952 basic_block bb;
953 rtx *next_use, insn;
954 df_ref *def_vec, *use_vec;
955
956 next_use = XCNEWVEC (rtx, max_reg_num ());
957
958 /* Pass through each block from the end, recording the uses of each
959 register and establishing log links when def is encountered.
960 Note that we do not clear next_use array in order to save time,
961 so we have to test whether the use is in the same basic block as def.
962
963 There are a few cases below when we do not consider the definition or
964 usage -- these are taken from original flow.c did. Don't ask me why it is
965 done this way; I don't know and if it works, I don't want to know. */
966
967 FOR_EACH_BB (bb)
968 {
969 FOR_BB_INSNS_REVERSE (bb, insn)
970 {
971 if (!NONDEBUG_INSN_P (insn))
972 continue;
973
974 /* Log links are created only once. */
975 gcc_assert (!LOG_LINKS (insn));
976
977 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
978 {
979 df_ref def = *def_vec;
980 int regno = DF_REF_REGNO (def);
981 rtx use_insn;
982
983 if (!next_use[regno])
984 continue;
985
986 /* Do not consider if it is pre/post modification in MEM. */
987 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
988 continue;
989
990 /* Do not make the log link for frame pointer. */
991 if ((regno == FRAME_POINTER_REGNUM
992 && (! reload_completed || frame_pointer_needed))
993 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
994 || (regno == HARD_FRAME_POINTER_REGNUM
995 && (! reload_completed || frame_pointer_needed))
996 #endif
997 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
998 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
999 #endif
1000 )
1001 continue;
1002
1003 use_insn = next_use[regno];
1004 if (BLOCK_FOR_INSN (use_insn) == bb)
1005 {
1006 /* flow.c claimed:
1007
1008 We don't build a LOG_LINK for hard registers contained
1009 in ASM_OPERANDs. If these registers get replaced,
1010 we might wind up changing the semantics of the insn,
1011 even if reload can make what appear to be valid
1012 assignments later. */
1013 if (regno >= FIRST_PSEUDO_REGISTER
1014 || asm_noperands (PATTERN (use_insn)) < 0)
1015 {
1016 /* Don't add duplicate links between instructions. */
1017 struct insn_link *links;
1018 FOR_EACH_LOG_LINK (links, use_insn)
1019 if (insn == links->insn)
1020 break;
1021
1022 if (!links)
1023 LOG_LINKS (use_insn)
1024 = alloc_insn_link (insn, LOG_LINKS (use_insn));
1025 }
1026 }
1027 next_use[regno] = NULL_RTX;
1028 }
1029
1030 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1031 {
1032 df_ref use = *use_vec;
1033 int regno = DF_REF_REGNO (use);
1034
1035 /* Do not consider the usage of the stack pointer
1036 by function call. */
1037 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1038 continue;
1039
1040 next_use[regno] = insn;
1041 }
1042 }
1043 }
1044
1045 free (next_use);
1046 }
1047
1048 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1049 true if we found a LOG_LINK that proves that A feeds B. This only works
1050 if there are no instructions between A and B which could have a link
1051 depending on A, since in that case we would not record a link for B.
1052 We also check the implicit dependency created by a cc0 setter/user
1053 pair. */
1054
1055 static bool
1056 insn_a_feeds_b (rtx a, rtx b)
1057 {
1058 struct insn_link *links;
1059 FOR_EACH_LOG_LINK (links, b)
1060 if (links->insn == a)
1061 return true;
1062 #ifdef HAVE_cc0
1063 if (sets_cc0_p (a))
1064 return true;
1065 #endif
1066 return false;
1067 }
1068 \f
1069 /* Main entry point for combiner. F is the first insn of the function.
1070 NREGS is the first unused pseudo-reg number.
1071
1072 Return nonzero if the combiner has turned an indirect jump
1073 instruction into a direct jump. */
1074 static int
1075 combine_instructions (rtx f, unsigned int nregs)
1076 {
1077 rtx insn, next;
1078 #ifdef HAVE_cc0
1079 rtx prev;
1080 #endif
1081 struct insn_link *links, *nextlinks;
1082 rtx first;
1083 basic_block last_bb;
1084
1085 int new_direct_jump_p = 0;
1086
1087 for (first = f; first && !INSN_P (first); )
1088 first = NEXT_INSN (first);
1089 if (!first)
1090 return 0;
1091
1092 combine_attempts = 0;
1093 combine_merges = 0;
1094 combine_extras = 0;
1095 combine_successes = 0;
1096
1097 rtl_hooks = combine_rtl_hooks;
1098
1099 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1100
1101 init_recog_no_volatile ();
1102
1103 /* Allocate array for insn info. */
1104 max_uid_known = get_max_uid ();
1105 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1106 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1107 gcc_obstack_init (&insn_link_obstack);
1108
1109 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1110
1111 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1112 problems when, for example, we have j <<= 1 in a loop. */
1113
1114 nonzero_sign_valid = 0;
1115 label_tick = label_tick_ebb_start = 1;
1116
1117 /* Scan all SETs and see if we can deduce anything about what
1118 bits are known to be zero for some registers and how many copies
1119 of the sign bit are known to exist for those registers.
1120
1121 Also set any known values so that we can use it while searching
1122 for what bits are known to be set. */
1123
1124 setup_incoming_promotions (first);
1125 /* Allow the entry block and the first block to fall into the same EBB.
1126 Conceptually the incoming promotions are assigned to the entry block. */
1127 last_bb = ENTRY_BLOCK_PTR;
1128
1129 create_log_links ();
1130 FOR_EACH_BB (this_basic_block)
1131 {
1132 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1133 last_call_luid = 0;
1134 mem_last_set = -1;
1135
1136 label_tick++;
1137 if (!single_pred_p (this_basic_block)
1138 || single_pred (this_basic_block) != last_bb)
1139 label_tick_ebb_start = label_tick;
1140 last_bb = this_basic_block;
1141
1142 FOR_BB_INSNS (this_basic_block, insn)
1143 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1144 {
1145 #ifdef AUTO_INC_DEC
1146 rtx links;
1147 #endif
1148
1149 subst_low_luid = DF_INSN_LUID (insn);
1150 subst_insn = insn;
1151
1152 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1153 insn);
1154 record_dead_and_set_regs (insn);
1155
1156 #ifdef AUTO_INC_DEC
1157 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1158 if (REG_NOTE_KIND (links) == REG_INC)
1159 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1160 insn);
1161 #endif
1162
1163 /* Record the current insn_rtx_cost of this instruction. */
1164 if (NONJUMP_INSN_P (insn))
1165 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1166 optimize_this_for_speed_p);
1167 if (dump_file)
1168 fprintf(dump_file, "insn_cost %d: %d\n",
1169 INSN_UID (insn), INSN_COST (insn));
1170 }
1171 }
1172
1173 nonzero_sign_valid = 1;
1174
1175 /* Now scan all the insns in forward order. */
1176 label_tick = label_tick_ebb_start = 1;
1177 init_reg_last ();
1178 setup_incoming_promotions (first);
1179 last_bb = ENTRY_BLOCK_PTR;
1180
1181 FOR_EACH_BB (this_basic_block)
1182 {
1183 rtx last_combined_insn = NULL_RTX;
1184 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1185 last_call_luid = 0;
1186 mem_last_set = -1;
1187
1188 label_tick++;
1189 if (!single_pred_p (this_basic_block)
1190 || single_pred (this_basic_block) != last_bb)
1191 label_tick_ebb_start = label_tick;
1192 last_bb = this_basic_block;
1193
1194 rtl_profile_for_bb (this_basic_block);
1195 for (insn = BB_HEAD (this_basic_block);
1196 insn != NEXT_INSN (BB_END (this_basic_block));
1197 insn = next ? next : NEXT_INSN (insn))
1198 {
1199 next = 0;
1200 if (NONDEBUG_INSN_P (insn))
1201 {
1202 while (last_combined_insn
1203 && INSN_DELETED_P (last_combined_insn))
1204 last_combined_insn = PREV_INSN (last_combined_insn);
1205 if (last_combined_insn == NULL_RTX
1206 || BARRIER_P (last_combined_insn)
1207 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1208 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1209 last_combined_insn = insn;
1210
1211 /* See if we know about function return values before this
1212 insn based upon SUBREG flags. */
1213 check_promoted_subreg (insn, PATTERN (insn));
1214
1215 /* See if we can find hardregs and subreg of pseudos in
1216 narrower modes. This could help turning TRUNCATEs
1217 into SUBREGs. */
1218 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1219
1220 /* Try this insn with each insn it links back to. */
1221
1222 FOR_EACH_LOG_LINK (links, insn)
1223 if ((next = try_combine (insn, links->insn, NULL_RTX,
1224 NULL_RTX, &new_direct_jump_p,
1225 last_combined_insn)) != 0)
1226 goto retry;
1227
1228 /* Try each sequence of three linked insns ending with this one. */
1229
1230 FOR_EACH_LOG_LINK (links, insn)
1231 {
1232 rtx link = links->insn;
1233
1234 /* If the linked insn has been replaced by a note, then there
1235 is no point in pursuing this chain any further. */
1236 if (NOTE_P (link))
1237 continue;
1238
1239 FOR_EACH_LOG_LINK (nextlinks, link)
1240 if ((next = try_combine (insn, link, nextlinks->insn,
1241 NULL_RTX, &new_direct_jump_p,
1242 last_combined_insn)) != 0)
1243 goto retry;
1244 }
1245
1246 #ifdef HAVE_cc0
1247 /* Try to combine a jump insn that uses CC0
1248 with a preceding insn that sets CC0, and maybe with its
1249 logical predecessor as well.
1250 This is how we make decrement-and-branch insns.
1251 We need this special code because data flow connections
1252 via CC0 do not get entered in LOG_LINKS. */
1253
1254 if (JUMP_P (insn)
1255 && (prev = prev_nonnote_insn (insn)) != 0
1256 && NONJUMP_INSN_P (prev)
1257 && sets_cc0_p (PATTERN (prev)))
1258 {
1259 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1260 &new_direct_jump_p,
1261 last_combined_insn)) != 0)
1262 goto retry;
1263
1264 FOR_EACH_LOG_LINK (nextlinks, prev)
1265 if ((next = try_combine (insn, prev, nextlinks->insn,
1266 NULL_RTX, &new_direct_jump_p,
1267 last_combined_insn)) != 0)
1268 goto retry;
1269 }
1270
1271 /* Do the same for an insn that explicitly references CC0. */
1272 if (NONJUMP_INSN_P (insn)
1273 && (prev = prev_nonnote_insn (insn)) != 0
1274 && NONJUMP_INSN_P (prev)
1275 && sets_cc0_p (PATTERN (prev))
1276 && GET_CODE (PATTERN (insn)) == SET
1277 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1278 {
1279 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1280 &new_direct_jump_p,
1281 last_combined_insn)) != 0)
1282 goto retry;
1283
1284 FOR_EACH_LOG_LINK (nextlinks, prev)
1285 if ((next = try_combine (insn, prev, nextlinks->insn,
1286 NULL_RTX, &new_direct_jump_p,
1287 last_combined_insn)) != 0)
1288 goto retry;
1289 }
1290
1291 /* Finally, see if any of the insns that this insn links to
1292 explicitly references CC0. If so, try this insn, that insn,
1293 and its predecessor if it sets CC0. */
1294 FOR_EACH_LOG_LINK (links, insn)
1295 if (NONJUMP_INSN_P (links->insn)
1296 && GET_CODE (PATTERN (links->insn)) == SET
1297 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1298 && (prev = prev_nonnote_insn (links->insn)) != 0
1299 && NONJUMP_INSN_P (prev)
1300 && sets_cc0_p (PATTERN (prev))
1301 && (next = try_combine (insn, links->insn,
1302 prev, NULL_RTX, &new_direct_jump_p,
1303 last_combined_insn)) != 0)
1304 goto retry;
1305 #endif
1306
1307 /* Try combining an insn with two different insns whose results it
1308 uses. */
1309 FOR_EACH_LOG_LINK (links, insn)
1310 for (nextlinks = links->next; nextlinks;
1311 nextlinks = nextlinks->next)
1312 if ((next = try_combine (insn, links->insn,
1313 nextlinks->insn, NULL_RTX,
1314 &new_direct_jump_p,
1315 last_combined_insn)) != 0)
1316 goto retry;
1317
1318 /* Try four-instruction combinations. */
1319 FOR_EACH_LOG_LINK (links, insn)
1320 {
1321 struct insn_link *next1;
1322 rtx link = links->insn;
1323
1324 /* If the linked insn has been replaced by a note, then there
1325 is no point in pursuing this chain any further. */
1326 if (NOTE_P (link))
1327 continue;
1328
1329 FOR_EACH_LOG_LINK (next1, link)
1330 {
1331 rtx link1 = next1->insn;
1332 if (NOTE_P (link1))
1333 continue;
1334 /* I0 -> I1 -> I2 -> I3. */
1335 FOR_EACH_LOG_LINK (nextlinks, link1)
1336 if ((next = try_combine (insn, link, link1,
1337 nextlinks->insn,
1338 &new_direct_jump_p,
1339 last_combined_insn)) != 0)
1340 goto retry;
1341 /* I0, I1 -> I2, I2 -> I3. */
1342 for (nextlinks = next1->next; nextlinks;
1343 nextlinks = nextlinks->next)
1344 if ((next = try_combine (insn, link, link1,
1345 nextlinks->insn,
1346 &new_direct_jump_p,
1347 last_combined_insn)) != 0)
1348 goto retry;
1349 }
1350
1351 for (next1 = links->next; next1; next1 = next1->next)
1352 {
1353 rtx link1 = next1->insn;
1354 if (NOTE_P (link1))
1355 continue;
1356 /* I0 -> I2; I1, I2 -> I3. */
1357 FOR_EACH_LOG_LINK (nextlinks, link)
1358 if ((next = try_combine (insn, link, link1,
1359 nextlinks->insn,
1360 &new_direct_jump_p,
1361 last_combined_insn)) != 0)
1362 goto retry;
1363 /* I0 -> I1; I1, I2 -> I3. */
1364 FOR_EACH_LOG_LINK (nextlinks, link1)
1365 if ((next = try_combine (insn, link, link1,
1366 nextlinks->insn,
1367 &new_direct_jump_p,
1368 last_combined_insn)) != 0)
1369 goto retry;
1370 }
1371 }
1372
1373 /* Try this insn with each REG_EQUAL note it links back to. */
1374 FOR_EACH_LOG_LINK (links, insn)
1375 {
1376 rtx set, note;
1377 rtx temp = links->insn;
1378 if ((set = single_set (temp)) != 0
1379 && (note = find_reg_equal_equiv_note (temp)) != 0
1380 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1381 /* Avoid using a register that may already been marked
1382 dead by an earlier instruction. */
1383 && ! unmentioned_reg_p (note, SET_SRC (set))
1384 && (GET_MODE (note) == VOIDmode
1385 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1386 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1387 {
1388 /* Temporarily replace the set's source with the
1389 contents of the REG_EQUAL note. The insn will
1390 be deleted or recognized by try_combine. */
1391 rtx orig = SET_SRC (set);
1392 SET_SRC (set) = note;
1393 i2mod = temp;
1394 i2mod_old_rhs = copy_rtx (orig);
1395 i2mod_new_rhs = copy_rtx (note);
1396 next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1397 &new_direct_jump_p,
1398 last_combined_insn);
1399 i2mod = NULL_RTX;
1400 if (next)
1401 goto retry;
1402 SET_SRC (set) = orig;
1403 }
1404 }
1405
1406 if (!NOTE_P (insn))
1407 record_dead_and_set_regs (insn);
1408
1409 retry:
1410 ;
1411 }
1412 }
1413 }
1414
1415 default_rtl_profile ();
1416 clear_bb_flags ();
1417 new_direct_jump_p |= purge_all_dead_edges ();
1418 delete_noop_moves ();
1419
1420 /* Clean up. */
1421 obstack_free (&insn_link_obstack, NULL);
1422 free (uid_log_links);
1423 free (uid_insn_cost);
1424 VEC_free (reg_stat_type, heap, reg_stat);
1425
1426 {
1427 struct undo *undo, *next;
1428 for (undo = undobuf.frees; undo; undo = next)
1429 {
1430 next = undo->next;
1431 free (undo);
1432 }
1433 undobuf.frees = 0;
1434 }
1435
1436 total_attempts += combine_attempts;
1437 total_merges += combine_merges;
1438 total_extras += combine_extras;
1439 total_successes += combine_successes;
1440
1441 nonzero_sign_valid = 0;
1442 rtl_hooks = general_rtl_hooks;
1443
1444 /* Make recognizer allow volatile MEMs again. */
1445 init_recog ();
1446
1447 return new_direct_jump_p;
1448 }
1449
1450 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1451
1452 static void
1453 init_reg_last (void)
1454 {
1455 unsigned int i;
1456 reg_stat_type *p;
1457
1458 FOR_EACH_VEC_ELT (reg_stat_type, reg_stat, i, p)
1459 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1460 }
1461 \f
1462 /* Set up any promoted values for incoming argument registers. */
1463
1464 static void
1465 setup_incoming_promotions (rtx first)
1466 {
1467 tree arg;
1468 bool strictly_local = false;
1469
1470 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1471 arg = DECL_CHAIN (arg))
1472 {
1473 rtx x, reg = DECL_INCOMING_RTL (arg);
1474 int uns1, uns3;
1475 enum machine_mode mode1, mode2, mode3, mode4;
1476
1477 /* Only continue if the incoming argument is in a register. */
1478 if (!REG_P (reg))
1479 continue;
1480
1481 /* Determine, if possible, whether all call sites of the current
1482 function lie within the current compilation unit. (This does
1483 take into account the exporting of a function via taking its
1484 address, and so forth.) */
1485 strictly_local = cgraph_local_info (current_function_decl)->local;
1486
1487 /* The mode and signedness of the argument before any promotions happen
1488 (equal to the mode of the pseudo holding it at that stage). */
1489 mode1 = TYPE_MODE (TREE_TYPE (arg));
1490 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1491
1492 /* The mode and signedness of the argument after any source language and
1493 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1494 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1495 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1496
1497 /* The mode and signedness of the argument as it is actually passed,
1498 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1499 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1500 TREE_TYPE (cfun->decl), 0);
1501
1502 /* The mode of the register in which the argument is being passed. */
1503 mode4 = GET_MODE (reg);
1504
1505 /* Eliminate sign extensions in the callee when:
1506 (a) A mode promotion has occurred; */
1507 if (mode1 == mode3)
1508 continue;
1509 /* (b) The mode of the register is the same as the mode of
1510 the argument as it is passed; */
1511 if (mode3 != mode4)
1512 continue;
1513 /* (c) There's no language level extension; */
1514 if (mode1 == mode2)
1515 ;
1516 /* (c.1) All callers are from the current compilation unit. If that's
1517 the case we don't have to rely on an ABI, we only have to know
1518 what we're generating right now, and we know that we will do the
1519 mode1 to mode2 promotion with the given sign. */
1520 else if (!strictly_local)
1521 continue;
1522 /* (c.2) The combination of the two promotions is useful. This is
1523 true when the signs match, or if the first promotion is unsigned.
1524 In the later case, (sign_extend (zero_extend x)) is the same as
1525 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1526 else if (uns1)
1527 uns3 = true;
1528 else if (uns3)
1529 continue;
1530
1531 /* Record that the value was promoted from mode1 to mode3,
1532 so that any sign extension at the head of the current
1533 function may be eliminated. */
1534 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1535 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1536 record_value_for_reg (reg, first, x);
1537 }
1538 }
1539
1540 /* Called via note_stores. If X is a pseudo that is narrower than
1541 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1542
1543 If we are setting only a portion of X and we can't figure out what
1544 portion, assume all bits will be used since we don't know what will
1545 be happening.
1546
1547 Similarly, set how many bits of X are known to be copies of the sign bit
1548 at all locations in the function. This is the smallest number implied
1549 by any set of X. */
1550
1551 static void
1552 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1553 {
1554 rtx insn = (rtx) data;
1555 unsigned int num;
1556
1557 if (REG_P (x)
1558 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1559 /* If this register is undefined at the start of the file, we can't
1560 say what its contents were. */
1561 && ! REGNO_REG_SET_P
1562 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1563 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1564 {
1565 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1566
1567 if (set == 0 || GET_CODE (set) == CLOBBER)
1568 {
1569 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1570 rsp->sign_bit_copies = 1;
1571 return;
1572 }
1573
1574 /* If this register is being initialized using itself, and the
1575 register is uninitialized in this basic block, and there are
1576 no LOG_LINKS which set the register, then part of the
1577 register is uninitialized. In that case we can't assume
1578 anything about the number of nonzero bits.
1579
1580 ??? We could do better if we checked this in
1581 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1582 could avoid making assumptions about the insn which initially
1583 sets the register, while still using the information in other
1584 insns. We would have to be careful to check every insn
1585 involved in the combination. */
1586
1587 if (insn
1588 && reg_referenced_p (x, PATTERN (insn))
1589 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1590 REGNO (x)))
1591 {
1592 struct insn_link *link;
1593
1594 FOR_EACH_LOG_LINK (link, insn)
1595 if (dead_or_set_p (link->insn, x))
1596 break;
1597 if (!link)
1598 {
1599 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1600 rsp->sign_bit_copies = 1;
1601 return;
1602 }
1603 }
1604
1605 /* If this is a complex assignment, see if we can convert it into a
1606 simple assignment. */
1607 set = expand_field_assignment (set);
1608
1609 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1610 set what we know about X. */
1611
1612 if (SET_DEST (set) == x
1613 || (paradoxical_subreg_p (SET_DEST (set))
1614 && SUBREG_REG (SET_DEST (set)) == x))
1615 {
1616 rtx src = SET_SRC (set);
1617
1618 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1619 /* If X is narrower than a word and SRC is a non-negative
1620 constant that would appear negative in the mode of X,
1621 sign-extend it for use in reg_stat[].nonzero_bits because some
1622 machines (maybe most) will actually do the sign-extension
1623 and this is the conservative approach.
1624
1625 ??? For 2.5, try to tighten up the MD files in this regard
1626 instead of this kludge. */
1627
1628 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
1629 && CONST_INT_P (src)
1630 && INTVAL (src) > 0
1631 && val_signbit_known_set_p (GET_MODE (x), INTVAL (src)))
1632 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (GET_MODE (x)));
1633 #endif
1634
1635 /* Don't call nonzero_bits if it cannot change anything. */
1636 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1637 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1638 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1639 if (rsp->sign_bit_copies == 0
1640 || rsp->sign_bit_copies > num)
1641 rsp->sign_bit_copies = num;
1642 }
1643 else
1644 {
1645 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1646 rsp->sign_bit_copies = 1;
1647 }
1648 }
1649 }
1650 \f
1651 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1652 optionally insns that were previously combined into I3 or that will be
1653 combined into the merger of INSN and I3. The order is PRED, PRED2,
1654 INSN, SUCC, SUCC2, I3.
1655
1656 Return 0 if the combination is not allowed for any reason.
1657
1658 If the combination is allowed, *PDEST will be set to the single
1659 destination of INSN and *PSRC to the single source, and this function
1660 will return 1. */
1661
1662 static int
1663 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1664 rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1665 rtx *pdest, rtx *psrc)
1666 {
1667 int i;
1668 const_rtx set = 0;
1669 rtx src, dest;
1670 rtx p;
1671 #ifdef AUTO_INC_DEC
1672 rtx link;
1673 #endif
1674 bool all_adjacent = true;
1675
1676 if (succ)
1677 {
1678 if (succ2)
1679 {
1680 if (next_active_insn (succ2) != i3)
1681 all_adjacent = false;
1682 if (next_active_insn (succ) != succ2)
1683 all_adjacent = false;
1684 }
1685 else if (next_active_insn (succ) != i3)
1686 all_adjacent = false;
1687 if (next_active_insn (insn) != succ)
1688 all_adjacent = false;
1689 }
1690 else if (next_active_insn (insn) != i3)
1691 all_adjacent = false;
1692
1693 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1694 or a PARALLEL consisting of such a SET and CLOBBERs.
1695
1696 If INSN has CLOBBER parallel parts, ignore them for our processing.
1697 By definition, these happen during the execution of the insn. When it
1698 is merged with another insn, all bets are off. If they are, in fact,
1699 needed and aren't also supplied in I3, they may be added by
1700 recog_for_combine. Otherwise, it won't match.
1701
1702 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1703 note.
1704
1705 Get the source and destination of INSN. If more than one, can't
1706 combine. */
1707
1708 if (GET_CODE (PATTERN (insn)) == SET)
1709 set = PATTERN (insn);
1710 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1711 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1712 {
1713 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1714 {
1715 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1716
1717 switch (GET_CODE (elt))
1718 {
1719 /* This is important to combine floating point insns
1720 for the SH4 port. */
1721 case USE:
1722 /* Combining an isolated USE doesn't make sense.
1723 We depend here on combinable_i3pat to reject them. */
1724 /* The code below this loop only verifies that the inputs of
1725 the SET in INSN do not change. We call reg_set_between_p
1726 to verify that the REG in the USE does not change between
1727 I3 and INSN.
1728 If the USE in INSN was for a pseudo register, the matching
1729 insn pattern will likely match any register; combining this
1730 with any other USE would only be safe if we knew that the
1731 used registers have identical values, or if there was
1732 something to tell them apart, e.g. different modes. For
1733 now, we forgo such complicated tests and simply disallow
1734 combining of USES of pseudo registers with any other USE. */
1735 if (REG_P (XEXP (elt, 0))
1736 && GET_CODE (PATTERN (i3)) == PARALLEL)
1737 {
1738 rtx i3pat = PATTERN (i3);
1739 int i = XVECLEN (i3pat, 0) - 1;
1740 unsigned int regno = REGNO (XEXP (elt, 0));
1741
1742 do
1743 {
1744 rtx i3elt = XVECEXP (i3pat, 0, i);
1745
1746 if (GET_CODE (i3elt) == USE
1747 && REG_P (XEXP (i3elt, 0))
1748 && (REGNO (XEXP (i3elt, 0)) == regno
1749 ? reg_set_between_p (XEXP (elt, 0),
1750 PREV_INSN (insn), i3)
1751 : regno >= FIRST_PSEUDO_REGISTER))
1752 return 0;
1753 }
1754 while (--i >= 0);
1755 }
1756 break;
1757
1758 /* We can ignore CLOBBERs. */
1759 case CLOBBER:
1760 break;
1761
1762 case SET:
1763 /* Ignore SETs whose result isn't used but not those that
1764 have side-effects. */
1765 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1766 && insn_nothrow_p (insn)
1767 && !side_effects_p (elt))
1768 break;
1769
1770 /* If we have already found a SET, this is a second one and
1771 so we cannot combine with this insn. */
1772 if (set)
1773 return 0;
1774
1775 set = elt;
1776 break;
1777
1778 default:
1779 /* Anything else means we can't combine. */
1780 return 0;
1781 }
1782 }
1783
1784 if (set == 0
1785 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1786 so don't do anything with it. */
1787 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1788 return 0;
1789 }
1790 else
1791 return 0;
1792
1793 if (set == 0)
1794 return 0;
1795
1796 set = expand_field_assignment (set);
1797 src = SET_SRC (set), dest = SET_DEST (set);
1798
1799 /* Don't eliminate a store in the stack pointer. */
1800 if (dest == stack_pointer_rtx
1801 /* Don't combine with an insn that sets a register to itself if it has
1802 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1803 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1804 /* Can't merge an ASM_OPERANDS. */
1805 || GET_CODE (src) == ASM_OPERANDS
1806 /* Can't merge a function call. */
1807 || GET_CODE (src) == CALL
1808 /* Don't eliminate a function call argument. */
1809 || (CALL_P (i3)
1810 && (find_reg_fusage (i3, USE, dest)
1811 || (REG_P (dest)
1812 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1813 && global_regs[REGNO (dest)])))
1814 /* Don't substitute into an incremented register. */
1815 || FIND_REG_INC_NOTE (i3, dest)
1816 || (succ && FIND_REG_INC_NOTE (succ, dest))
1817 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1818 /* Don't substitute into a non-local goto, this confuses CFG. */
1819 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1820 /* Make sure that DEST is not used after SUCC but before I3. */
1821 || (!all_adjacent
1822 && ((succ2
1823 && (reg_used_between_p (dest, succ2, i3)
1824 || reg_used_between_p (dest, succ, succ2)))
1825 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1826 /* Make sure that the value that is to be substituted for the register
1827 does not use any registers whose values alter in between. However,
1828 If the insns are adjacent, a use can't cross a set even though we
1829 think it might (this can happen for a sequence of insns each setting
1830 the same destination; last_set of that register might point to
1831 a NOTE). If INSN has a REG_EQUIV note, the register is always
1832 equivalent to the memory so the substitution is valid even if there
1833 are intervening stores. Also, don't move a volatile asm or
1834 UNSPEC_VOLATILE across any other insns. */
1835 || (! all_adjacent
1836 && (((!MEM_P (src)
1837 || ! find_reg_note (insn, REG_EQUIV, src))
1838 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1839 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1840 || GET_CODE (src) == UNSPEC_VOLATILE))
1841 /* Don't combine across a CALL_INSN, because that would possibly
1842 change whether the life span of some REGs crosses calls or not,
1843 and it is a pain to update that information.
1844 Exception: if source is a constant, moving it later can't hurt.
1845 Accept that as a special case. */
1846 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1847 return 0;
1848
1849 /* DEST must either be a REG or CC0. */
1850 if (REG_P (dest))
1851 {
1852 /* If register alignment is being enforced for multi-word items in all
1853 cases except for parameters, it is possible to have a register copy
1854 insn referencing a hard register that is not allowed to contain the
1855 mode being copied and which would not be valid as an operand of most
1856 insns. Eliminate this problem by not combining with such an insn.
1857
1858 Also, on some machines we don't want to extend the life of a hard
1859 register. */
1860
1861 if (REG_P (src)
1862 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1863 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1864 /* Don't extend the life of a hard register unless it is
1865 user variable (if we have few registers) or it can't
1866 fit into the desired register (meaning something special
1867 is going on).
1868 Also avoid substituting a return register into I3, because
1869 reload can't handle a conflict with constraints of other
1870 inputs. */
1871 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1872 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1873 return 0;
1874 }
1875 else if (GET_CODE (dest) != CC0)
1876 return 0;
1877
1878
1879 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1880 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1881 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1882 {
1883 /* Don't substitute for a register intended as a clobberable
1884 operand. */
1885 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1886 if (rtx_equal_p (reg, dest))
1887 return 0;
1888
1889 /* If the clobber represents an earlyclobber operand, we must not
1890 substitute an expression containing the clobbered register.
1891 As we do not analyze the constraint strings here, we have to
1892 make the conservative assumption. However, if the register is
1893 a fixed hard reg, the clobber cannot represent any operand;
1894 we leave it up to the machine description to either accept or
1895 reject use-and-clobber patterns. */
1896 if (!REG_P (reg)
1897 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1898 || !fixed_regs[REGNO (reg)])
1899 if (reg_overlap_mentioned_p (reg, src))
1900 return 0;
1901 }
1902
1903 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1904 or not), reject, unless nothing volatile comes between it and I3 */
1905
1906 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1907 {
1908 /* Make sure neither succ nor succ2 contains a volatile reference. */
1909 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1910 return 0;
1911 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1912 return 0;
1913 /* We'll check insns between INSN and I3 below. */
1914 }
1915
1916 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1917 to be an explicit register variable, and was chosen for a reason. */
1918
1919 if (GET_CODE (src) == ASM_OPERANDS
1920 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1921 return 0;
1922
1923 /* If there are any volatile insns between INSN and I3, reject, because
1924 they might affect machine state. */
1925
1926 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1927 if (INSN_P (p) && p != succ && p != succ2 && volatile_insn_p (PATTERN (p)))
1928 return 0;
1929
1930 /* If INSN contains an autoincrement or autodecrement, make sure that
1931 register is not used between there and I3, and not already used in
1932 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1933 Also insist that I3 not be a jump; if it were one
1934 and the incremented register were spilled, we would lose. */
1935
1936 #ifdef AUTO_INC_DEC
1937 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1938 if (REG_NOTE_KIND (link) == REG_INC
1939 && (JUMP_P (i3)
1940 || reg_used_between_p (XEXP (link, 0), insn, i3)
1941 || (pred != NULL_RTX
1942 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1943 || (pred2 != NULL_RTX
1944 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1945 || (succ != NULL_RTX
1946 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1947 || (succ2 != NULL_RTX
1948 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1949 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1950 return 0;
1951 #endif
1952
1953 #ifdef HAVE_cc0
1954 /* Don't combine an insn that follows a CC0-setting insn.
1955 An insn that uses CC0 must not be separated from the one that sets it.
1956 We do, however, allow I2 to follow a CC0-setting insn if that insn
1957 is passed as I1; in that case it will be deleted also.
1958 We also allow combining in this case if all the insns are adjacent
1959 because that would leave the two CC0 insns adjacent as well.
1960 It would be more logical to test whether CC0 occurs inside I1 or I2,
1961 but that would be much slower, and this ought to be equivalent. */
1962
1963 p = prev_nonnote_insn (insn);
1964 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1965 && ! all_adjacent)
1966 return 0;
1967 #endif
1968
1969 /* If we get here, we have passed all the tests and the combination is
1970 to be allowed. */
1971
1972 *pdest = dest;
1973 *psrc = src;
1974
1975 return 1;
1976 }
1977 \f
1978 /* LOC is the location within I3 that contains its pattern or the component
1979 of a PARALLEL of the pattern. We validate that it is valid for combining.
1980
1981 One problem is if I3 modifies its output, as opposed to replacing it
1982 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
1983 doing so would produce an insn that is not equivalent to the original insns.
1984
1985 Consider:
1986
1987 (set (reg:DI 101) (reg:DI 100))
1988 (set (subreg:SI (reg:DI 101) 0) <foo>)
1989
1990 This is NOT equivalent to:
1991
1992 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1993 (set (reg:DI 101) (reg:DI 100))])
1994
1995 Not only does this modify 100 (in which case it might still be valid
1996 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1997
1998 We can also run into a problem if I2 sets a register that I1
1999 uses and I1 gets directly substituted into I3 (not via I2). In that
2000 case, we would be getting the wrong value of I2DEST into I3, so we
2001 must reject the combination. This case occurs when I2 and I1 both
2002 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2003 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2004 of a SET must prevent combination from occurring. The same situation
2005 can occur for I0, in which case I0_NOT_IN_SRC is set.
2006
2007 Before doing the above check, we first try to expand a field assignment
2008 into a set of logical operations.
2009
2010 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2011 we place a register that is both set and used within I3. If more than one
2012 such register is detected, we fail.
2013
2014 Return 1 if the combination is valid, zero otherwise. */
2015
2016 static int
2017 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2018 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2019 {
2020 rtx x = *loc;
2021
2022 if (GET_CODE (x) == SET)
2023 {
2024 rtx set = x ;
2025 rtx dest = SET_DEST (set);
2026 rtx src = SET_SRC (set);
2027 rtx inner_dest = dest;
2028 rtx subdest;
2029
2030 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2031 || GET_CODE (inner_dest) == SUBREG
2032 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2033 inner_dest = XEXP (inner_dest, 0);
2034
2035 /* Check for the case where I3 modifies its output, as discussed
2036 above. We don't want to prevent pseudos from being combined
2037 into the address of a MEM, so only prevent the combination if
2038 i1 or i2 set the same MEM. */
2039 if ((inner_dest != dest &&
2040 (!MEM_P (inner_dest)
2041 || rtx_equal_p (i2dest, inner_dest)
2042 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2043 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2044 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2045 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2046 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2047
2048 /* This is the same test done in can_combine_p except we can't test
2049 all_adjacent; we don't have to, since this instruction will stay
2050 in place, thus we are not considering increasing the lifetime of
2051 INNER_DEST.
2052
2053 Also, if this insn sets a function argument, combining it with
2054 something that might need a spill could clobber a previous
2055 function argument; the all_adjacent test in can_combine_p also
2056 checks this; here, we do a more specific test for this case. */
2057
2058 || (REG_P (inner_dest)
2059 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2060 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2061 GET_MODE (inner_dest))))
2062 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2063 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2064 return 0;
2065
2066 /* If DEST is used in I3, it is being killed in this insn, so
2067 record that for later. We have to consider paradoxical
2068 subregs here, since they kill the whole register, but we
2069 ignore partial subregs, STRICT_LOW_PART, etc.
2070 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2071 STACK_POINTER_REGNUM, since these are always considered to be
2072 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2073 subdest = dest;
2074 if (GET_CODE (subdest) == SUBREG
2075 && (GET_MODE_SIZE (GET_MODE (subdest))
2076 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2077 subdest = SUBREG_REG (subdest);
2078 if (pi3dest_killed
2079 && REG_P (subdest)
2080 && reg_referenced_p (subdest, PATTERN (i3))
2081 && REGNO (subdest) != FRAME_POINTER_REGNUM
2082 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2083 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2084 #endif
2085 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2086 && (REGNO (subdest) != ARG_POINTER_REGNUM
2087 || ! fixed_regs [REGNO (subdest)])
2088 #endif
2089 && REGNO (subdest) != STACK_POINTER_REGNUM)
2090 {
2091 if (*pi3dest_killed)
2092 return 0;
2093
2094 *pi3dest_killed = subdest;
2095 }
2096 }
2097
2098 else if (GET_CODE (x) == PARALLEL)
2099 {
2100 int i;
2101
2102 for (i = 0; i < XVECLEN (x, 0); i++)
2103 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2104 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2105 return 0;
2106 }
2107
2108 return 1;
2109 }
2110 \f
2111 /* Return 1 if X is an arithmetic expression that contains a multiplication
2112 and division. We don't count multiplications by powers of two here. */
2113
2114 static int
2115 contains_muldiv (rtx x)
2116 {
2117 switch (GET_CODE (x))
2118 {
2119 case MOD: case DIV: case UMOD: case UDIV:
2120 return 1;
2121
2122 case MULT:
2123 return ! (CONST_INT_P (XEXP (x, 1))
2124 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2125 default:
2126 if (BINARY_P (x))
2127 return contains_muldiv (XEXP (x, 0))
2128 || contains_muldiv (XEXP (x, 1));
2129
2130 if (UNARY_P (x))
2131 return contains_muldiv (XEXP (x, 0));
2132
2133 return 0;
2134 }
2135 }
2136 \f
2137 /* Determine whether INSN can be used in a combination. Return nonzero if
2138 not. This is used in try_combine to detect early some cases where we
2139 can't perform combinations. */
2140
2141 static int
2142 cant_combine_insn_p (rtx insn)
2143 {
2144 rtx set;
2145 rtx src, dest;
2146
2147 /* If this isn't really an insn, we can't do anything.
2148 This can occur when flow deletes an insn that it has merged into an
2149 auto-increment address. */
2150 if (! INSN_P (insn))
2151 return 1;
2152
2153 /* Never combine loads and stores involving hard regs that are likely
2154 to be spilled. The register allocator can usually handle such
2155 reg-reg moves by tying. If we allow the combiner to make
2156 substitutions of likely-spilled regs, reload might die.
2157 As an exception, we allow combinations involving fixed regs; these are
2158 not available to the register allocator so there's no risk involved. */
2159
2160 set = single_set (insn);
2161 if (! set)
2162 return 0;
2163 src = SET_SRC (set);
2164 dest = SET_DEST (set);
2165 if (GET_CODE (src) == SUBREG)
2166 src = SUBREG_REG (src);
2167 if (GET_CODE (dest) == SUBREG)
2168 dest = SUBREG_REG (dest);
2169 if (REG_P (src) && REG_P (dest)
2170 && ((HARD_REGISTER_P (src)
2171 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2172 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2173 || (HARD_REGISTER_P (dest)
2174 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2175 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2176 return 1;
2177
2178 return 0;
2179 }
2180
2181 struct likely_spilled_retval_info
2182 {
2183 unsigned regno, nregs;
2184 unsigned mask;
2185 };
2186
2187 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2188 hard registers that are known to be written to / clobbered in full. */
2189 static void
2190 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2191 {
2192 struct likely_spilled_retval_info *const info =
2193 (struct likely_spilled_retval_info *) data;
2194 unsigned regno, nregs;
2195 unsigned new_mask;
2196
2197 if (!REG_P (XEXP (set, 0)))
2198 return;
2199 regno = REGNO (x);
2200 if (regno >= info->regno + info->nregs)
2201 return;
2202 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2203 if (regno + nregs <= info->regno)
2204 return;
2205 new_mask = (2U << (nregs - 1)) - 1;
2206 if (regno < info->regno)
2207 new_mask >>= info->regno - regno;
2208 else
2209 new_mask <<= regno - info->regno;
2210 info->mask &= ~new_mask;
2211 }
2212
2213 /* Return nonzero iff part of the return value is live during INSN, and
2214 it is likely spilled. This can happen when more than one insn is needed
2215 to copy the return value, e.g. when we consider to combine into the
2216 second copy insn for a complex value. */
2217
2218 static int
2219 likely_spilled_retval_p (rtx insn)
2220 {
2221 rtx use = BB_END (this_basic_block);
2222 rtx reg, p;
2223 unsigned regno, nregs;
2224 /* We assume here that no machine mode needs more than
2225 32 hard registers when the value overlaps with a register
2226 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2227 unsigned mask;
2228 struct likely_spilled_retval_info info;
2229
2230 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2231 return 0;
2232 reg = XEXP (PATTERN (use), 0);
2233 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2234 return 0;
2235 regno = REGNO (reg);
2236 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2237 if (nregs == 1)
2238 return 0;
2239 mask = (2U << (nregs - 1)) - 1;
2240
2241 /* Disregard parts of the return value that are set later. */
2242 info.regno = regno;
2243 info.nregs = nregs;
2244 info.mask = mask;
2245 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2246 if (INSN_P (p))
2247 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2248 mask = info.mask;
2249
2250 /* Check if any of the (probably) live return value registers is
2251 likely spilled. */
2252 nregs --;
2253 do
2254 {
2255 if ((mask & 1 << nregs)
2256 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2257 return 1;
2258 } while (nregs--);
2259 return 0;
2260 }
2261
2262 /* Adjust INSN after we made a change to its destination.
2263
2264 Changing the destination can invalidate notes that say something about
2265 the results of the insn and a LOG_LINK pointing to the insn. */
2266
2267 static void
2268 adjust_for_new_dest (rtx insn)
2269 {
2270 /* For notes, be conservative and simply remove them. */
2271 remove_reg_equal_equiv_notes (insn);
2272
2273 /* The new insn will have a destination that was previously the destination
2274 of an insn just above it. Call distribute_links to make a LOG_LINK from
2275 the next use of that destination. */
2276 distribute_links (alloc_insn_link (insn, NULL));
2277
2278 df_insn_rescan (insn);
2279 }
2280
2281 /* Return TRUE if combine can reuse reg X in mode MODE.
2282 ADDED_SETS is nonzero if the original set is still required. */
2283 static bool
2284 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2285 {
2286 unsigned int regno;
2287
2288 if (!REG_P(x))
2289 return false;
2290
2291 regno = REGNO (x);
2292 /* Allow hard registers if the new mode is legal, and occupies no more
2293 registers than the old mode. */
2294 if (regno < FIRST_PSEUDO_REGISTER)
2295 return (HARD_REGNO_MODE_OK (regno, mode)
2296 && (hard_regno_nregs[regno][GET_MODE (x)]
2297 >= hard_regno_nregs[regno][mode]));
2298
2299 /* Or a pseudo that is only used once. */
2300 return (REG_N_SETS (regno) == 1 && !added_sets
2301 && !REG_USERVAR_P (x));
2302 }
2303
2304
2305 /* Check whether X, the destination of a set, refers to part of
2306 the register specified by REG. */
2307
2308 static bool
2309 reg_subword_p (rtx x, rtx reg)
2310 {
2311 /* Check that reg is an integer mode register. */
2312 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2313 return false;
2314
2315 if (GET_CODE (x) == STRICT_LOW_PART
2316 || GET_CODE (x) == ZERO_EXTRACT)
2317 x = XEXP (x, 0);
2318
2319 return GET_CODE (x) == SUBREG
2320 && SUBREG_REG (x) == reg
2321 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2322 }
2323
2324 #ifdef AUTO_INC_DEC
2325 /* Replace auto-increment addressing modes with explicit operations to access
2326 the same addresses without modifying the corresponding registers. */
2327
2328 static rtx
2329 cleanup_auto_inc_dec (rtx src, enum machine_mode mem_mode)
2330 {
2331 rtx x = src;
2332 const RTX_CODE code = GET_CODE (x);
2333 int i;
2334 const char *fmt;
2335
2336 switch (code)
2337 {
2338 case REG:
2339 case CONST_INT:
2340 case CONST_DOUBLE:
2341 case CONST_FIXED:
2342 case CONST_VECTOR:
2343 case SYMBOL_REF:
2344 case CODE_LABEL:
2345 case PC:
2346 case CC0:
2347 case SCRATCH:
2348 /* SCRATCH must be shared because they represent distinct values. */
2349 return x;
2350 case CLOBBER:
2351 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2352 return x;
2353 break;
2354
2355 case CONST:
2356 if (shared_const_p (x))
2357 return x;
2358 break;
2359
2360 case MEM:
2361 mem_mode = GET_MODE (x);
2362 break;
2363
2364 case PRE_INC:
2365 case PRE_DEC:
2366 gcc_assert (mem_mode != VOIDmode && mem_mode != BLKmode);
2367 return gen_rtx_PLUS (GET_MODE (x),
2368 cleanup_auto_inc_dec (XEXP (x, 0), mem_mode),
2369 GEN_INT (code == PRE_INC
2370 ? GET_MODE_SIZE (mem_mode)
2371 : -GET_MODE_SIZE (mem_mode)));
2372
2373 case POST_INC:
2374 case POST_DEC:
2375 case PRE_MODIFY:
2376 case POST_MODIFY:
2377 return cleanup_auto_inc_dec (code == PRE_MODIFY
2378 ? XEXP (x, 1) : XEXP (x, 0),
2379 mem_mode);
2380
2381 default:
2382 break;
2383 }
2384
2385 /* Copy the various flags, fields, and other information. We assume
2386 that all fields need copying, and then clear the fields that should
2387 not be copied. That is the sensible default behavior, and forces
2388 us to explicitly document why we are *not* copying a flag. */
2389 x = shallow_copy_rtx (x);
2390
2391 /* We do not copy the USED flag, which is used as a mark bit during
2392 walks over the RTL. */
2393 RTX_FLAG (x, used) = 0;
2394
2395 /* We do not copy FRAME_RELATED for INSNs. */
2396 if (INSN_P (x))
2397 RTX_FLAG (x, frame_related) = 0;
2398
2399 fmt = GET_RTX_FORMAT (code);
2400 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2401 if (fmt[i] == 'e')
2402 XEXP (x, i) = cleanup_auto_inc_dec (XEXP (x, i), mem_mode);
2403 else if (fmt[i] == 'E' || fmt[i] == 'V')
2404 {
2405 int j;
2406 XVEC (x, i) = rtvec_alloc (XVECLEN (x, i));
2407 for (j = 0; j < XVECLEN (x, i); j++)
2408 XVECEXP (x, i, j)
2409 = cleanup_auto_inc_dec (XVECEXP (src, i, j), mem_mode);
2410 }
2411
2412 return x;
2413 }
2414 #endif
2415
2416 /* Auxiliary data structure for propagate_for_debug_stmt. */
2417
2418 struct rtx_subst_pair
2419 {
2420 rtx to;
2421 bool adjusted;
2422 };
2423
2424 /* DATA points to an rtx_subst_pair. Return the value that should be
2425 substituted. */
2426
2427 static rtx
2428 propagate_for_debug_subst (rtx from, const_rtx old_rtx, void *data)
2429 {
2430 struct rtx_subst_pair *pair = (struct rtx_subst_pair *)data;
2431
2432 if (!rtx_equal_p (from, old_rtx))
2433 return NULL_RTX;
2434 if (!pair->adjusted)
2435 {
2436 pair->adjusted = true;
2437 #ifdef AUTO_INC_DEC
2438 pair->to = cleanup_auto_inc_dec (pair->to, VOIDmode);
2439 #else
2440 pair->to = copy_rtx (pair->to);
2441 #endif
2442 pair->to = make_compound_operation (pair->to, SET);
2443 return pair->to;
2444 }
2445 return copy_rtx (pair->to);
2446 }
2447
2448 /* Replace all the occurrences of DEST with SRC in DEBUG_INSNs between INSN
2449 and LAST, not including INSN, but including LAST. Also stop at the end
2450 of THIS_BASIC_BLOCK. */
2451
2452 static void
2453 propagate_for_debug (rtx insn, rtx last, rtx dest, rtx src)
2454 {
2455 rtx next, loc, end = NEXT_INSN (BB_END (this_basic_block));
2456
2457 struct rtx_subst_pair p;
2458 p.to = src;
2459 p.adjusted = false;
2460
2461 next = NEXT_INSN (insn);
2462 last = NEXT_INSN (last);
2463 while (next != last && next != end)
2464 {
2465 insn = next;
2466 next = NEXT_INSN (insn);
2467 if (DEBUG_INSN_P (insn))
2468 {
2469 loc = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
2470 dest, propagate_for_debug_subst, &p);
2471 if (loc == INSN_VAR_LOCATION_LOC (insn))
2472 continue;
2473 INSN_VAR_LOCATION_LOC (insn) = loc;
2474 df_insn_rescan (insn);
2475 }
2476 }
2477 }
2478
2479 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2480 Note that the INSN should be deleted *after* removing dead edges, so
2481 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2482 but not for a (set (pc) (label_ref FOO)). */
2483
2484 static void
2485 update_cfg_for_uncondjump (rtx insn)
2486 {
2487 basic_block bb = BLOCK_FOR_INSN (insn);
2488 gcc_assert (BB_END (bb) == insn);
2489
2490 purge_dead_edges (bb);
2491
2492 delete_insn (insn);
2493 if (EDGE_COUNT (bb->succs) == 1)
2494 {
2495 rtx insn;
2496
2497 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2498
2499 /* Remove barriers from the footer if there are any. */
2500 for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
2501 if (BARRIER_P (insn))
2502 {
2503 if (PREV_INSN (insn))
2504 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2505 else
2506 bb->il.rtl->footer = NEXT_INSN (insn);
2507 if (NEXT_INSN (insn))
2508 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2509 }
2510 else if (LABEL_P (insn))
2511 break;
2512 }
2513 }
2514
2515 /* Try to combine the insns I0, I1 and I2 into I3.
2516 Here I0, I1 and I2 appear earlier than I3.
2517 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2518 I3.
2519
2520 If we are combining more than two insns and the resulting insn is not
2521 recognized, try splitting it into two insns. If that happens, I2 and I3
2522 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2523 Otherwise, I0, I1 and I2 are pseudo-deleted.
2524
2525 Return 0 if the combination does not work. Then nothing is changed.
2526 If we did the combination, return the insn at which combine should
2527 resume scanning.
2528
2529 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2530 new direct jump instruction.
2531
2532 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2533 been I3 passed to an earlier try_combine within the same basic
2534 block. */
2535
2536 static rtx
2537 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p,
2538 rtx last_combined_insn)
2539 {
2540 /* New patterns for I3 and I2, respectively. */
2541 rtx newpat, newi2pat = 0;
2542 rtvec newpat_vec_with_clobbers = 0;
2543 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2544 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2545 dead. */
2546 int added_sets_0, added_sets_1, added_sets_2;
2547 /* Total number of SETs to put into I3. */
2548 int total_sets;
2549 /* Nonzero if I2's or I1's body now appears in I3. */
2550 int i2_is_used = 0, i1_is_used = 0;
2551 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2552 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2553 /* Contains I3 if the destination of I3 is used in its source, which means
2554 that the old life of I3 is being killed. If that usage is placed into
2555 I2 and not in I3, a REG_DEAD note must be made. */
2556 rtx i3dest_killed = 0;
2557 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2558 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2559 /* Copy of SET_SRC of I1, if needed. */
2560 rtx i1src_copy = 0;
2561 /* Set if I2DEST was reused as a scratch register. */
2562 bool i2scratch = false;
2563 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2564 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2565 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2566 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2567 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2568 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2569 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2570 /* Notes that must be added to REG_NOTES in I3 and I2. */
2571 rtx new_i3_notes, new_i2_notes;
2572 /* Notes that we substituted I3 into I2 instead of the normal case. */
2573 int i3_subst_into_i2 = 0;
2574 /* Notes that I1, I2 or I3 is a MULT operation. */
2575 int have_mult = 0;
2576 int swap_i2i3 = 0;
2577 int changed_i3_dest = 0;
2578
2579 int maxreg;
2580 rtx temp;
2581 struct insn_link *link;
2582 rtx other_pat = 0;
2583 rtx new_other_notes;
2584 int i;
2585
2586 /* Only try four-insn combinations when there's high likelihood of
2587 success. Look for simple insns, such as loads of constants or
2588 binary operations involving a constant. */
2589 if (i0)
2590 {
2591 int i;
2592 int ngood = 0;
2593 int nshift = 0;
2594
2595 if (!flag_expensive_optimizations)
2596 return 0;
2597
2598 for (i = 0; i < 4; i++)
2599 {
2600 rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2601 rtx set = single_set (insn);
2602 rtx src;
2603 if (!set)
2604 continue;
2605 src = SET_SRC (set);
2606 if (CONSTANT_P (src))
2607 {
2608 ngood += 2;
2609 break;
2610 }
2611 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2612 ngood++;
2613 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2614 || GET_CODE (src) == LSHIFTRT)
2615 nshift++;
2616 }
2617 if (ngood < 2 && nshift < 2)
2618 return 0;
2619 }
2620
2621 /* Exit early if one of the insns involved can't be used for
2622 combinations. */
2623 if (cant_combine_insn_p (i3)
2624 || cant_combine_insn_p (i2)
2625 || (i1 && cant_combine_insn_p (i1))
2626 || (i0 && cant_combine_insn_p (i0))
2627 || likely_spilled_retval_p (i3))
2628 return 0;
2629
2630 combine_attempts++;
2631 undobuf.other_insn = 0;
2632
2633 /* Reset the hard register usage information. */
2634 CLEAR_HARD_REG_SET (newpat_used_regs);
2635
2636 if (dump_file && (dump_flags & TDF_DETAILS))
2637 {
2638 if (i0)
2639 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2640 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2641 else if (i1)
2642 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2643 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2644 else
2645 fprintf (dump_file, "\nTrying %d -> %d:\n",
2646 INSN_UID (i2), INSN_UID (i3));
2647 }
2648
2649 /* If multiple insns feed into one of I2 or I3, they can be in any
2650 order. To simplify the code below, reorder them in sequence. */
2651 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2652 temp = i2, i2 = i0, i0 = temp;
2653 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2654 temp = i1, i1 = i0, i0 = temp;
2655 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2656 temp = i1, i1 = i2, i2 = temp;
2657
2658 added_links_insn = 0;
2659
2660 /* First check for one important special case that the code below will
2661 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2662 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2663 we may be able to replace that destination with the destination of I3.
2664 This occurs in the common code where we compute both a quotient and
2665 remainder into a structure, in which case we want to do the computation
2666 directly into the structure to avoid register-register copies.
2667
2668 Note that this case handles both multiple sets in I2 and also cases
2669 where I2 has a number of CLOBBERs inside the PARALLEL.
2670
2671 We make very conservative checks below and only try to handle the
2672 most common cases of this. For example, we only handle the case
2673 where I2 and I3 are adjacent to avoid making difficult register
2674 usage tests. */
2675
2676 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2677 && REG_P (SET_SRC (PATTERN (i3)))
2678 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2679 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2680 && GET_CODE (PATTERN (i2)) == PARALLEL
2681 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2682 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2683 below would need to check what is inside (and reg_overlap_mentioned_p
2684 doesn't support those codes anyway). Don't allow those destinations;
2685 the resulting insn isn't likely to be recognized anyway. */
2686 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2687 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2688 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2689 SET_DEST (PATTERN (i3)))
2690 && next_active_insn (i2) == i3)
2691 {
2692 rtx p2 = PATTERN (i2);
2693
2694 /* Make sure that the destination of I3,
2695 which we are going to substitute into one output of I2,
2696 is not used within another output of I2. We must avoid making this:
2697 (parallel [(set (mem (reg 69)) ...)
2698 (set (reg 69) ...)])
2699 which is not well-defined as to order of actions.
2700 (Besides, reload can't handle output reloads for this.)
2701
2702 The problem can also happen if the dest of I3 is a memory ref,
2703 if another dest in I2 is an indirect memory ref. */
2704 for (i = 0; i < XVECLEN (p2, 0); i++)
2705 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2706 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2707 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2708 SET_DEST (XVECEXP (p2, 0, i))))
2709 break;
2710
2711 if (i == XVECLEN (p2, 0))
2712 for (i = 0; i < XVECLEN (p2, 0); i++)
2713 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2714 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2715 {
2716 combine_merges++;
2717
2718 subst_insn = i3;
2719 subst_low_luid = DF_INSN_LUID (i2);
2720
2721 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2722 i2src = SET_SRC (XVECEXP (p2, 0, i));
2723 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2724 i2dest_killed = dead_or_set_p (i2, i2dest);
2725
2726 /* Replace the dest in I2 with our dest and make the resulting
2727 insn the new pattern for I3. Then skip to where we validate
2728 the pattern. Everything was set up above. */
2729 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2730 newpat = p2;
2731 i3_subst_into_i2 = 1;
2732 goto validate_replacement;
2733 }
2734 }
2735
2736 /* If I2 is setting a pseudo to a constant and I3 is setting some
2737 sub-part of it to another constant, merge them by making a new
2738 constant. */
2739 if (i1 == 0
2740 && (temp = single_set (i2)) != 0
2741 && (CONST_INT_P (SET_SRC (temp))
2742 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2743 && GET_CODE (PATTERN (i3)) == SET
2744 && (CONST_INT_P (SET_SRC (PATTERN (i3)))
2745 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2746 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2747 {
2748 rtx dest = SET_DEST (PATTERN (i3));
2749 int offset = -1;
2750 int width = 0;
2751
2752 if (GET_CODE (dest) == ZERO_EXTRACT)
2753 {
2754 if (CONST_INT_P (XEXP (dest, 1))
2755 && CONST_INT_P (XEXP (dest, 2)))
2756 {
2757 width = INTVAL (XEXP (dest, 1));
2758 offset = INTVAL (XEXP (dest, 2));
2759 dest = XEXP (dest, 0);
2760 if (BITS_BIG_ENDIAN)
2761 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2762 }
2763 }
2764 else
2765 {
2766 if (GET_CODE (dest) == STRICT_LOW_PART)
2767 dest = XEXP (dest, 0);
2768 width = GET_MODE_PRECISION (GET_MODE (dest));
2769 offset = 0;
2770 }
2771
2772 if (offset >= 0)
2773 {
2774 /* If this is the low part, we're done. */
2775 if (subreg_lowpart_p (dest))
2776 ;
2777 /* Handle the case where inner is twice the size of outer. */
2778 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2779 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2780 offset += GET_MODE_PRECISION (GET_MODE (dest));
2781 /* Otherwise give up for now. */
2782 else
2783 offset = -1;
2784 }
2785
2786 if (offset >= 0
2787 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2788 <= HOST_BITS_PER_DOUBLE_INT))
2789 {
2790 double_int m, o, i;
2791 rtx inner = SET_SRC (PATTERN (i3));
2792 rtx outer = SET_SRC (temp);
2793
2794 o = rtx_to_double_int (outer);
2795 i = rtx_to_double_int (inner);
2796
2797 m = double_int_mask (width);
2798 i = double_int_and (i, m);
2799 m = double_int_lshift (m, offset, HOST_BITS_PER_DOUBLE_INT, false);
2800 i = double_int_lshift (i, offset, HOST_BITS_PER_DOUBLE_INT, false);
2801 o = double_int_ior (double_int_and_not (o, m), i);
2802
2803 combine_merges++;
2804 subst_insn = i3;
2805 subst_low_luid = DF_INSN_LUID (i2);
2806 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2807 i2dest = SET_DEST (temp);
2808 i2dest_killed = dead_or_set_p (i2, i2dest);
2809
2810 /* Replace the source in I2 with the new constant and make the
2811 resulting insn the new pattern for I3. Then skip to where we
2812 validate the pattern. Everything was set up above. */
2813 SUBST (SET_SRC (temp),
2814 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2815
2816 newpat = PATTERN (i2);
2817
2818 /* The dest of I3 has been replaced with the dest of I2. */
2819 changed_i3_dest = 1;
2820 goto validate_replacement;
2821 }
2822 }
2823
2824 #ifndef HAVE_cc0
2825 /* If we have no I1 and I2 looks like:
2826 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2827 (set Y OP)])
2828 make up a dummy I1 that is
2829 (set Y OP)
2830 and change I2 to be
2831 (set (reg:CC X) (compare:CC Y (const_int 0)))
2832
2833 (We can ignore any trailing CLOBBERs.)
2834
2835 This undoes a previous combination and allows us to match a branch-and-
2836 decrement insn. */
2837
2838 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2839 && XVECLEN (PATTERN (i2), 0) >= 2
2840 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2841 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2842 == MODE_CC)
2843 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2844 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2845 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2846 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2847 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2848 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2849 {
2850 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2851 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2852 break;
2853
2854 if (i == 1)
2855 {
2856 /* We make I1 with the same INSN_UID as I2. This gives it
2857 the same DF_INSN_LUID for value tracking. Our fake I1 will
2858 never appear in the insn stream so giving it the same INSN_UID
2859 as I2 will not cause a problem. */
2860
2861 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2862 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2863 INSN_LOCATOR (i2), -1, NULL_RTX);
2864
2865 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2866 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2867 SET_DEST (PATTERN (i1)));
2868 }
2869 }
2870 #endif
2871
2872 /* Verify that I2 and I1 are valid for combining. */
2873 if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2874 || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2875 &i1dest, &i1src))
2876 || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2877 &i0dest, &i0src)))
2878 {
2879 undo_all ();
2880 return 0;
2881 }
2882
2883 /* Record whether I2DEST is used in I2SRC and similarly for the other
2884 cases. Knowing this will help in register status updating below. */
2885 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2886 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2887 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2888 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2889 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2890 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2891 i2dest_killed = dead_or_set_p (i2, i2dest);
2892 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2893 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2894
2895 /* For the earlier insns, determine which of the subsequent ones they
2896 feed. */
2897 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2898 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2899 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2900 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2901 && reg_overlap_mentioned_p (i0dest, i2src))));
2902
2903 /* Ensure that I3's pattern can be the destination of combines. */
2904 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2905 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2906 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2907 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2908 &i3dest_killed))
2909 {
2910 undo_all ();
2911 return 0;
2912 }
2913
2914 /* See if any of the insns is a MULT operation. Unless one is, we will
2915 reject a combination that is, since it must be slower. Be conservative
2916 here. */
2917 if (GET_CODE (i2src) == MULT
2918 || (i1 != 0 && GET_CODE (i1src) == MULT)
2919 || (i0 != 0 && GET_CODE (i0src) == MULT)
2920 || (GET_CODE (PATTERN (i3)) == SET
2921 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2922 have_mult = 1;
2923
2924 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2925 We used to do this EXCEPT in one case: I3 has a post-inc in an
2926 output operand. However, that exception can give rise to insns like
2927 mov r3,(r3)+
2928 which is a famous insn on the PDP-11 where the value of r3 used as the
2929 source was model-dependent. Avoid this sort of thing. */
2930
2931 #if 0
2932 if (!(GET_CODE (PATTERN (i3)) == SET
2933 && REG_P (SET_SRC (PATTERN (i3)))
2934 && MEM_P (SET_DEST (PATTERN (i3)))
2935 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2936 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2937 /* It's not the exception. */
2938 #endif
2939 #ifdef AUTO_INC_DEC
2940 {
2941 rtx link;
2942 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2943 if (REG_NOTE_KIND (link) == REG_INC
2944 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2945 || (i1 != 0
2946 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2947 {
2948 undo_all ();
2949 return 0;
2950 }
2951 }
2952 #endif
2953
2954 /* See if the SETs in I1 or I2 need to be kept around in the merged
2955 instruction: whenever the value set there is still needed past I3.
2956 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2957
2958 For the SET in I1, we have two cases: If I1 and I2 independently
2959 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2960 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2961 in I1 needs to be kept around unless I1DEST dies or is set in either
2962 I2 or I3. The same consideration applies to I0. */
2963
2964 added_sets_2 = !dead_or_set_p (i3, i2dest);
2965
2966 if (i1)
2967 added_sets_1 = !(dead_or_set_p (i3, i1dest)
2968 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
2969 else
2970 added_sets_1 = 0;
2971
2972 if (i0)
2973 added_sets_0 = !(dead_or_set_p (i3, i0dest)
2974 || (i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
2975 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)));
2976 else
2977 added_sets_0 = 0;
2978
2979 /* We are about to copy insns for the case where they need to be kept
2980 around. Check that they can be copied in the merged instruction. */
2981
2982 if (targetm.cannot_copy_insn_p
2983 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
2984 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
2985 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
2986 {
2987 undo_all ();
2988 return 0;
2989 }
2990
2991 /* If the set in I2 needs to be kept around, we must make a copy of
2992 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2993 PATTERN (I2), we are only substituting for the original I1DEST, not into
2994 an already-substituted copy. This also prevents making self-referential
2995 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2996 I2DEST. */
2997
2998 if (added_sets_2)
2999 {
3000 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3001 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
3002 else
3003 i2pat = copy_rtx (PATTERN (i2));
3004 }
3005
3006 if (added_sets_1)
3007 {
3008 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3009 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
3010 else
3011 i1pat = copy_rtx (PATTERN (i1));
3012 }
3013
3014 if (added_sets_0)
3015 {
3016 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3017 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
3018 else
3019 i0pat = copy_rtx (PATTERN (i0));
3020 }
3021
3022 combine_merges++;
3023
3024 /* Substitute in the latest insn for the regs set by the earlier ones. */
3025
3026 maxreg = max_reg_num ();
3027
3028 subst_insn = i3;
3029
3030 #ifndef HAVE_cc0
3031 /* Many machines that don't use CC0 have insns that can both perform an
3032 arithmetic operation and set the condition code. These operations will
3033 be represented as a PARALLEL with the first element of the vector
3034 being a COMPARE of an arithmetic operation with the constant zero.
3035 The second element of the vector will set some pseudo to the result
3036 of the same arithmetic operation. If we simplify the COMPARE, we won't
3037 match such a pattern and so will generate an extra insn. Here we test
3038 for this case, where both the comparison and the operation result are
3039 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3040 I2SRC. Later we will make the PARALLEL that contains I2. */
3041
3042 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3043 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3044 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3045 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3046 {
3047 rtx newpat_dest;
3048 rtx *cc_use_loc = NULL, cc_use_insn = NULL_RTX;
3049 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3050 enum machine_mode compare_mode, orig_compare_mode;
3051 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3052
3053 newpat = PATTERN (i3);
3054 newpat_dest = SET_DEST (newpat);
3055 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3056
3057 if (undobuf.other_insn == 0
3058 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3059 &cc_use_insn)))
3060 {
3061 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3062 compare_code = simplify_compare_const (compare_code,
3063 op0, &op1);
3064 #ifdef CANONICALIZE_COMPARISON
3065 CANONICALIZE_COMPARISON (compare_code, op0, op1);
3066 #endif
3067 }
3068
3069 /* Do the rest only if op1 is const0_rtx, which may be the
3070 result of simplification. */
3071 if (op1 == const0_rtx)
3072 {
3073 /* If a single use of the CC is found, prepare to modify it
3074 when SELECT_CC_MODE returns a new CC-class mode, or when
3075 the above simplify_compare_const() returned a new comparison
3076 operator. undobuf.other_insn is assigned the CC use insn
3077 when modifying it. */
3078 if (cc_use_loc)
3079 {
3080 #ifdef SELECT_CC_MODE
3081 enum machine_mode new_mode
3082 = SELECT_CC_MODE (compare_code, op0, op1);
3083 if (new_mode != orig_compare_mode
3084 && can_change_dest_mode (SET_DEST (newpat),
3085 added_sets_2, new_mode))
3086 {
3087 unsigned int regno = REGNO (newpat_dest);
3088 compare_mode = new_mode;
3089 if (regno < FIRST_PSEUDO_REGISTER)
3090 newpat_dest = gen_rtx_REG (compare_mode, regno);
3091 else
3092 {
3093 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3094 newpat_dest = regno_reg_rtx[regno];
3095 }
3096 }
3097 #endif
3098 /* Cases for modifying the CC-using comparison. */
3099 if (compare_code != orig_compare_code
3100 /* ??? Do we need to verify the zero rtx? */
3101 && XEXP (*cc_use_loc, 1) == const0_rtx)
3102 {
3103 /* Replace cc_use_loc with entire new RTX. */
3104 SUBST (*cc_use_loc,
3105 gen_rtx_fmt_ee (compare_code, compare_mode,
3106 newpat_dest, const0_rtx));
3107 undobuf.other_insn = cc_use_insn;
3108 }
3109 else if (compare_mode != orig_compare_mode)
3110 {
3111 /* Just replace the CC reg with a new mode. */
3112 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3113 undobuf.other_insn = cc_use_insn;
3114 }
3115 }
3116
3117 /* Now we modify the current newpat:
3118 First, SET_DEST(newpat) is updated if the CC mode has been
3119 altered. For targets without SELECT_CC_MODE, this should be
3120 optimized away. */
3121 if (compare_mode != orig_compare_mode)
3122 SUBST (SET_DEST (newpat), newpat_dest);
3123 /* This is always done to propagate i2src into newpat. */
3124 SUBST (SET_SRC (newpat),
3125 gen_rtx_COMPARE (compare_mode, op0, op1));
3126 /* Create new version of i2pat if needed; the below PARALLEL
3127 creation needs this to work correctly. */
3128 if (! rtx_equal_p (i2src, op0))
3129 i2pat = gen_rtx_SET (VOIDmode, i2dest, op0);
3130 i2_is_used = 1;
3131 }
3132 }
3133 #endif
3134
3135 if (i2_is_used == 0)
3136 {
3137 /* It is possible that the source of I2 or I1 may be performing
3138 an unneeded operation, such as a ZERO_EXTEND of something
3139 that is known to have the high part zero. Handle that case
3140 by letting subst look at the inner insns.
3141
3142 Another way to do this would be to have a function that tries
3143 to simplify a single insn instead of merging two or more
3144 insns. We don't do this because of the potential of infinite
3145 loops and because of the potential extra memory required.
3146 However, doing it the way we are is a bit of a kludge and
3147 doesn't catch all cases.
3148
3149 But only do this if -fexpensive-optimizations since it slows
3150 things down and doesn't usually win.
3151
3152 This is not done in the COMPARE case above because the
3153 unmodified I2PAT is used in the PARALLEL and so a pattern
3154 with a modified I2SRC would not match. */
3155
3156 if (flag_expensive_optimizations)
3157 {
3158 /* Pass pc_rtx so no substitutions are done, just
3159 simplifications. */
3160 if (i1)
3161 {
3162 subst_low_luid = DF_INSN_LUID (i1);
3163 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3164 }
3165
3166 subst_low_luid = DF_INSN_LUID (i2);
3167 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3168 }
3169
3170 n_occurrences = 0; /* `subst' counts here */
3171 subst_low_luid = DF_INSN_LUID (i2);
3172
3173 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3174 copy of I2SRC each time we substitute it, in order to avoid creating
3175 self-referential RTL when we will be substituting I1SRC for I1DEST
3176 later. Likewise if I0 feeds into I2, either directly or indirectly
3177 through I1, and I0DEST is in I0SRC. */
3178 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3179 (i1_feeds_i2_n && i1dest_in_i1src)
3180 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3181 && i0dest_in_i0src));
3182 substed_i2 = 1;
3183
3184 /* Record whether I2's body now appears within I3's body. */
3185 i2_is_used = n_occurrences;
3186 }
3187
3188 /* If we already got a failure, don't try to do more. Otherwise, try to
3189 substitute I1 if we have it. */
3190
3191 if (i1 && GET_CODE (newpat) != CLOBBER)
3192 {
3193 /* Check that an autoincrement side-effect on I1 has not been lost.
3194 This happens if I1DEST is mentioned in I2 and dies there, and
3195 has disappeared from the new pattern. */
3196 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3197 && i1_feeds_i2_n
3198 && dead_or_set_p (i2, i1dest)
3199 && !reg_overlap_mentioned_p (i1dest, newpat))
3200 /* Before we can do this substitution, we must redo the test done
3201 above (see detailed comments there) that ensures I1DEST isn't
3202 mentioned in any SETs in NEWPAT that are field assignments. */
3203 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3204 0, 0, 0))
3205 {
3206 undo_all ();
3207 return 0;
3208 }
3209
3210 n_occurrences = 0;
3211 subst_low_luid = DF_INSN_LUID (i1);
3212
3213 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3214 copy of I1SRC each time we substitute it, in order to avoid creating
3215 self-referential RTL when we will be substituting I0SRC for I0DEST
3216 later. */
3217 newpat = subst (newpat, i1dest, i1src, 0, 0,
3218 i0_feeds_i1_n && i0dest_in_i0src);
3219 substed_i1 = 1;
3220
3221 /* Record whether I1's body now appears within I3's body. */
3222 i1_is_used = n_occurrences;
3223 }
3224
3225 /* Likewise for I0 if we have it. */
3226
3227 if (i0 && GET_CODE (newpat) != CLOBBER)
3228 {
3229 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3230 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3231 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3232 && !reg_overlap_mentioned_p (i0dest, newpat))
3233 || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3234 0, 0, 0))
3235 {
3236 undo_all ();
3237 return 0;
3238 }
3239
3240 /* If the following substitution will modify I1SRC, make a copy of it
3241 for the case where it is substituted for I1DEST in I2PAT later. */
3242 if (i0_feeds_i1_n && added_sets_2 && i1_feeds_i2_n)
3243 i1src_copy = copy_rtx (i1src);
3244
3245 n_occurrences = 0;
3246 subst_low_luid = DF_INSN_LUID (i0);
3247 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3248 substed_i0 = 1;
3249 }
3250
3251 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3252 to count all the ways that I2SRC and I1SRC can be used. */
3253 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3254 && i2_is_used + added_sets_2 > 1)
3255 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3256 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3257 > 1))
3258 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3259 && (n_occurrences + added_sets_0
3260 + (added_sets_1 && i0_feeds_i1_n)
3261 + (added_sets_2 && i0_feeds_i2_n)
3262 > 1))
3263 /* Fail if we tried to make a new register. */
3264 || max_reg_num () != maxreg
3265 /* Fail if we couldn't do something and have a CLOBBER. */
3266 || GET_CODE (newpat) == CLOBBER
3267 /* Fail if this new pattern is a MULT and we didn't have one before
3268 at the outer level. */
3269 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3270 && ! have_mult))
3271 {
3272 undo_all ();
3273 return 0;
3274 }
3275
3276 /* If the actions of the earlier insns must be kept
3277 in addition to substituting them into the latest one,
3278 we must make a new PARALLEL for the latest insn
3279 to hold additional the SETs. */
3280
3281 if (added_sets_0 || added_sets_1 || added_sets_2)
3282 {
3283 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3284 combine_extras++;
3285
3286 if (GET_CODE (newpat) == PARALLEL)
3287 {
3288 rtvec old = XVEC (newpat, 0);
3289 total_sets = XVECLEN (newpat, 0) + extra_sets;
3290 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3291 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3292 sizeof (old->elem[0]) * old->num_elem);
3293 }
3294 else
3295 {
3296 rtx old = newpat;
3297 total_sets = 1 + extra_sets;
3298 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3299 XVECEXP (newpat, 0, 0) = old;
3300 }
3301
3302 if (added_sets_0)
3303 XVECEXP (newpat, 0, --total_sets) = i0pat;
3304
3305 if (added_sets_1)
3306 {
3307 rtx t = i1pat;
3308 if (i0_feeds_i1_n)
3309 t = subst (t, i0dest, i0src, 0, 0, 0);
3310
3311 XVECEXP (newpat, 0, --total_sets) = t;
3312 }
3313 if (added_sets_2)
3314 {
3315 rtx t = i2pat;
3316 if (i1_feeds_i2_n)
3317 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3318 i0_feeds_i1_n && i0dest_in_i0src);
3319 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3320 t = subst (t, i0dest, i0src, 0, 0, 0);
3321
3322 XVECEXP (newpat, 0, --total_sets) = t;
3323 }
3324 }
3325
3326 validate_replacement:
3327
3328 /* Note which hard regs this insn has as inputs. */
3329 mark_used_regs_combine (newpat);
3330
3331 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3332 consider splitting this pattern, we might need these clobbers. */
3333 if (i1 && GET_CODE (newpat) == PARALLEL
3334 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3335 {
3336 int len = XVECLEN (newpat, 0);
3337
3338 newpat_vec_with_clobbers = rtvec_alloc (len);
3339 for (i = 0; i < len; i++)
3340 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3341 }
3342
3343 /* Is the result of combination a valid instruction? */
3344 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3345
3346 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3347 the second SET's destination is a register that is unused and isn't
3348 marked as an instruction that might trap in an EH region. In that case,
3349 we just need the first SET. This can occur when simplifying a divmod
3350 insn. We *must* test for this case here because the code below that
3351 splits two independent SETs doesn't handle this case correctly when it
3352 updates the register status.
3353
3354 It's pointless doing this if we originally had two sets, one from
3355 i3, and one from i2. Combining then splitting the parallel results
3356 in the original i2 again plus an invalid insn (which we delete).
3357 The net effect is only to move instructions around, which makes
3358 debug info less accurate.
3359
3360 Also check the case where the first SET's destination is unused.
3361 That would not cause incorrect code, but does cause an unneeded
3362 insn to remain. */
3363
3364 if (insn_code_number < 0
3365 && !(added_sets_2 && i1 == 0)
3366 && GET_CODE (newpat) == PARALLEL
3367 && XVECLEN (newpat, 0) == 2
3368 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3369 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3370 && asm_noperands (newpat) < 0)
3371 {
3372 rtx set0 = XVECEXP (newpat, 0, 0);
3373 rtx set1 = XVECEXP (newpat, 0, 1);
3374
3375 if (((REG_P (SET_DEST (set1))
3376 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3377 || (GET_CODE (SET_DEST (set1)) == SUBREG
3378 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3379 && insn_nothrow_p (i3)
3380 && !side_effects_p (SET_SRC (set1)))
3381 {
3382 newpat = set0;
3383 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3384 }
3385
3386 else if (((REG_P (SET_DEST (set0))
3387 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3388 || (GET_CODE (SET_DEST (set0)) == SUBREG
3389 && find_reg_note (i3, REG_UNUSED,
3390 SUBREG_REG (SET_DEST (set0)))))
3391 && insn_nothrow_p (i3)
3392 && !side_effects_p (SET_SRC (set0)))
3393 {
3394 newpat = set1;
3395 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3396
3397 if (insn_code_number >= 0)
3398 changed_i3_dest = 1;
3399 }
3400 }
3401
3402 /* If we were combining three insns and the result is a simple SET
3403 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3404 insns. There are two ways to do this. It can be split using a
3405 machine-specific method (like when you have an addition of a large
3406 constant) or by combine in the function find_split_point. */
3407
3408 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3409 && asm_noperands (newpat) < 0)
3410 {
3411 rtx parallel, m_split, *split;
3412
3413 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3414 use I2DEST as a scratch register will help. In the latter case,
3415 convert I2DEST to the mode of the source of NEWPAT if we can. */
3416
3417 m_split = combine_split_insns (newpat, i3);
3418
3419 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3420 inputs of NEWPAT. */
3421
3422 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3423 possible to try that as a scratch reg. This would require adding
3424 more code to make it work though. */
3425
3426 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3427 {
3428 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3429
3430 /* First try to split using the original register as a
3431 scratch register. */
3432 parallel = gen_rtx_PARALLEL (VOIDmode,
3433 gen_rtvec (2, newpat,
3434 gen_rtx_CLOBBER (VOIDmode,
3435 i2dest)));
3436 m_split = combine_split_insns (parallel, i3);
3437
3438 /* If that didn't work, try changing the mode of I2DEST if
3439 we can. */
3440 if (m_split == 0
3441 && new_mode != GET_MODE (i2dest)
3442 && new_mode != VOIDmode
3443 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3444 {
3445 enum machine_mode old_mode = GET_MODE (i2dest);
3446 rtx ni2dest;
3447
3448 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3449 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3450 else
3451 {
3452 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3453 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3454 }
3455
3456 parallel = (gen_rtx_PARALLEL
3457 (VOIDmode,
3458 gen_rtvec (2, newpat,
3459 gen_rtx_CLOBBER (VOIDmode,
3460 ni2dest))));
3461 m_split = combine_split_insns (parallel, i3);
3462
3463 if (m_split == 0
3464 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3465 {
3466 struct undo *buf;
3467
3468 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3469 buf = undobuf.undos;
3470 undobuf.undos = buf->next;
3471 buf->next = undobuf.frees;
3472 undobuf.frees = buf;
3473 }
3474 }
3475
3476 i2scratch = m_split != 0;
3477 }
3478
3479 /* If recog_for_combine has discarded clobbers, try to use them
3480 again for the split. */
3481 if (m_split == 0 && newpat_vec_with_clobbers)
3482 {
3483 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3484 m_split = combine_split_insns (parallel, i3);
3485 }
3486
3487 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3488 {
3489 m_split = PATTERN (m_split);
3490 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3491 if (insn_code_number >= 0)
3492 newpat = m_split;
3493 }
3494 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3495 && (next_nonnote_nondebug_insn (i2) == i3
3496 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3497 {
3498 rtx i2set, i3set;
3499 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3500 newi2pat = PATTERN (m_split);
3501
3502 i3set = single_set (NEXT_INSN (m_split));
3503 i2set = single_set (m_split);
3504
3505 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3506
3507 /* If I2 or I3 has multiple SETs, we won't know how to track
3508 register status, so don't use these insns. If I2's destination
3509 is used between I2 and I3, we also can't use these insns. */
3510
3511 if (i2_code_number >= 0 && i2set && i3set
3512 && (next_nonnote_nondebug_insn (i2) == i3
3513 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3514 insn_code_number = recog_for_combine (&newi3pat, i3,
3515 &new_i3_notes);
3516 if (insn_code_number >= 0)
3517 newpat = newi3pat;
3518
3519 /* It is possible that both insns now set the destination of I3.
3520 If so, we must show an extra use of it. */
3521
3522 if (insn_code_number >= 0)
3523 {
3524 rtx new_i3_dest = SET_DEST (i3set);
3525 rtx new_i2_dest = SET_DEST (i2set);
3526
3527 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3528 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3529 || GET_CODE (new_i3_dest) == SUBREG)
3530 new_i3_dest = XEXP (new_i3_dest, 0);
3531
3532 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3533 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3534 || GET_CODE (new_i2_dest) == SUBREG)
3535 new_i2_dest = XEXP (new_i2_dest, 0);
3536
3537 if (REG_P (new_i3_dest)
3538 && REG_P (new_i2_dest)
3539 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3540 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3541 }
3542 }
3543
3544 /* If we can split it and use I2DEST, go ahead and see if that
3545 helps things be recognized. Verify that none of the registers
3546 are set between I2 and I3. */
3547 if (insn_code_number < 0
3548 && (split = find_split_point (&newpat, i3, false)) != 0
3549 #ifdef HAVE_cc0
3550 && REG_P (i2dest)
3551 #endif
3552 /* We need I2DEST in the proper mode. If it is a hard register
3553 or the only use of a pseudo, we can change its mode.
3554 Make sure we don't change a hard register to have a mode that
3555 isn't valid for it, or change the number of registers. */
3556 && (GET_MODE (*split) == GET_MODE (i2dest)
3557 || GET_MODE (*split) == VOIDmode
3558 || can_change_dest_mode (i2dest, added_sets_2,
3559 GET_MODE (*split)))
3560 && (next_nonnote_nondebug_insn (i2) == i3
3561 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3562 /* We can't overwrite I2DEST if its value is still used by
3563 NEWPAT. */
3564 && ! reg_referenced_p (i2dest, newpat))
3565 {
3566 rtx newdest = i2dest;
3567 enum rtx_code split_code = GET_CODE (*split);
3568 enum machine_mode split_mode = GET_MODE (*split);
3569 bool subst_done = false;
3570 newi2pat = NULL_RTX;
3571
3572 i2scratch = true;
3573
3574 /* *SPLIT may be part of I2SRC, so make sure we have the
3575 original expression around for later debug processing.
3576 We should not need I2SRC any more in other cases. */
3577 if (MAY_HAVE_DEBUG_INSNS)
3578 i2src = copy_rtx (i2src);
3579 else
3580 i2src = NULL;
3581
3582 /* Get NEWDEST as a register in the proper mode. We have already
3583 validated that we can do this. */
3584 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3585 {
3586 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3587 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3588 else
3589 {
3590 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3591 newdest = regno_reg_rtx[REGNO (i2dest)];
3592 }
3593 }
3594
3595 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3596 an ASHIFT. This can occur if it was inside a PLUS and hence
3597 appeared to be a memory address. This is a kludge. */
3598 if (split_code == MULT
3599 && CONST_INT_P (XEXP (*split, 1))
3600 && INTVAL (XEXP (*split, 1)) > 0
3601 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3602 {
3603 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3604 XEXP (*split, 0), GEN_INT (i)));
3605 /* Update split_code because we may not have a multiply
3606 anymore. */
3607 split_code = GET_CODE (*split);
3608 }
3609
3610 #ifdef INSN_SCHEDULING
3611 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3612 be written as a ZERO_EXTEND. */
3613 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3614 {
3615 #ifdef LOAD_EXTEND_OP
3616 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3617 what it really is. */
3618 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3619 == SIGN_EXTEND)
3620 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3621 SUBREG_REG (*split)));
3622 else
3623 #endif
3624 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3625 SUBREG_REG (*split)));
3626 }
3627 #endif
3628
3629 /* Attempt to split binary operators using arithmetic identities. */
3630 if (BINARY_P (SET_SRC (newpat))
3631 && split_mode == GET_MODE (SET_SRC (newpat))
3632 && ! side_effects_p (SET_SRC (newpat)))
3633 {
3634 rtx setsrc = SET_SRC (newpat);
3635 enum machine_mode mode = GET_MODE (setsrc);
3636 enum rtx_code code = GET_CODE (setsrc);
3637 rtx src_op0 = XEXP (setsrc, 0);
3638 rtx src_op1 = XEXP (setsrc, 1);
3639
3640 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3641 if (rtx_equal_p (src_op0, src_op1))
3642 {
3643 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3644 SUBST (XEXP (setsrc, 0), newdest);
3645 SUBST (XEXP (setsrc, 1), newdest);
3646 subst_done = true;
3647 }
3648 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3649 else if ((code == PLUS || code == MULT)
3650 && GET_CODE (src_op0) == code
3651 && GET_CODE (XEXP (src_op0, 0)) == code
3652 && (INTEGRAL_MODE_P (mode)
3653 || (FLOAT_MODE_P (mode)
3654 && flag_unsafe_math_optimizations)))
3655 {
3656 rtx p = XEXP (XEXP (src_op0, 0), 0);
3657 rtx q = XEXP (XEXP (src_op0, 0), 1);
3658 rtx r = XEXP (src_op0, 1);
3659 rtx s = src_op1;
3660
3661 /* Split both "((X op Y) op X) op Y" and
3662 "((X op Y) op Y) op X" as "T op T" where T is
3663 "X op Y". */
3664 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3665 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3666 {
3667 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3668 XEXP (src_op0, 0));
3669 SUBST (XEXP (setsrc, 0), newdest);
3670 SUBST (XEXP (setsrc, 1), newdest);
3671 subst_done = true;
3672 }
3673 /* Split "((X op X) op Y) op Y)" as "T op T" where
3674 T is "X op Y". */
3675 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3676 {
3677 rtx tmp = simplify_gen_binary (code, mode, p, r);
3678 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3679 SUBST (XEXP (setsrc, 0), newdest);
3680 SUBST (XEXP (setsrc, 1), newdest);
3681 subst_done = true;
3682 }
3683 }
3684 }
3685
3686 if (!subst_done)
3687 {
3688 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3689 SUBST (*split, newdest);
3690 }
3691
3692 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3693
3694 /* recog_for_combine might have added CLOBBERs to newi2pat.
3695 Make sure NEWPAT does not depend on the clobbered regs. */
3696 if (GET_CODE (newi2pat) == PARALLEL)
3697 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3698 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3699 {
3700 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3701 if (reg_overlap_mentioned_p (reg, newpat))
3702 {
3703 undo_all ();
3704 return 0;
3705 }
3706 }
3707
3708 /* If the split point was a MULT and we didn't have one before,
3709 don't use one now. */
3710 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3711 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3712 }
3713 }
3714
3715 /* Check for a case where we loaded from memory in a narrow mode and
3716 then sign extended it, but we need both registers. In that case,
3717 we have a PARALLEL with both loads from the same memory location.
3718 We can split this into a load from memory followed by a register-register
3719 copy. This saves at least one insn, more if register allocation can
3720 eliminate the copy.
3721
3722 We cannot do this if the destination of the first assignment is a
3723 condition code register or cc0. We eliminate this case by making sure
3724 the SET_DEST and SET_SRC have the same mode.
3725
3726 We cannot do this if the destination of the second assignment is
3727 a register that we have already assumed is zero-extended. Similarly
3728 for a SUBREG of such a register. */
3729
3730 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3731 && GET_CODE (newpat) == PARALLEL
3732 && XVECLEN (newpat, 0) == 2
3733 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3734 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3735 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3736 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3737 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3738 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3739 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3740 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3741 DF_INSN_LUID (i2))
3742 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3743 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3744 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3745 (REG_P (temp)
3746 && VEC_index (reg_stat_type, reg_stat,
3747 REGNO (temp))->nonzero_bits != 0
3748 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3749 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3750 && (VEC_index (reg_stat_type, reg_stat,
3751 REGNO (temp))->nonzero_bits
3752 != GET_MODE_MASK (word_mode))))
3753 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3754 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3755 (REG_P (temp)
3756 && VEC_index (reg_stat_type, reg_stat,
3757 REGNO (temp))->nonzero_bits != 0
3758 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3759 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3760 && (VEC_index (reg_stat_type, reg_stat,
3761 REGNO (temp))->nonzero_bits
3762 != GET_MODE_MASK (word_mode)))))
3763 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3764 SET_SRC (XVECEXP (newpat, 0, 1)))
3765 && ! find_reg_note (i3, REG_UNUSED,
3766 SET_DEST (XVECEXP (newpat, 0, 0))))
3767 {
3768 rtx ni2dest;
3769
3770 newi2pat = XVECEXP (newpat, 0, 0);
3771 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3772 newpat = XVECEXP (newpat, 0, 1);
3773 SUBST (SET_SRC (newpat),
3774 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3775 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3776
3777 if (i2_code_number >= 0)
3778 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3779
3780 if (insn_code_number >= 0)
3781 swap_i2i3 = 1;
3782 }
3783
3784 /* Similarly, check for a case where we have a PARALLEL of two independent
3785 SETs but we started with three insns. In this case, we can do the sets
3786 as two separate insns. This case occurs when some SET allows two
3787 other insns to combine, but the destination of that SET is still live. */
3788
3789 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3790 && GET_CODE (newpat) == PARALLEL
3791 && XVECLEN (newpat, 0) == 2
3792 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3793 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3794 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3795 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3796 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3797 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3798 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3799 XVECEXP (newpat, 0, 0))
3800 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3801 XVECEXP (newpat, 0, 1))
3802 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3803 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3804 {
3805 /* Normally, it doesn't matter which of the two is done first,
3806 but the one that references cc0 can't be the second, and
3807 one which uses any regs/memory set in between i2 and i3 can't
3808 be first. */
3809 if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3810 DF_INSN_LUID (i2))
3811 #ifdef HAVE_cc0
3812 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3813 #endif
3814 )
3815 {
3816 newi2pat = XVECEXP (newpat, 0, 1);
3817 newpat = XVECEXP (newpat, 0, 0);
3818 }
3819 else if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 0)),
3820 DF_INSN_LUID (i2))
3821 #ifdef HAVE_cc0
3822 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1))
3823 #endif
3824 )
3825 {
3826 newi2pat = XVECEXP (newpat, 0, 0);
3827 newpat = XVECEXP (newpat, 0, 1);
3828 }
3829 else
3830 {
3831 undo_all ();
3832 return 0;
3833 }
3834
3835 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3836
3837 if (i2_code_number >= 0)
3838 {
3839 /* recog_for_combine might have added CLOBBERs to newi2pat.
3840 Make sure NEWPAT does not depend on the clobbered regs. */
3841 if (GET_CODE (newi2pat) == PARALLEL)
3842 {
3843 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3844 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3845 {
3846 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3847 if (reg_overlap_mentioned_p (reg, newpat))
3848 {
3849 undo_all ();
3850 return 0;
3851 }
3852 }
3853 }
3854
3855 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3856 }
3857 }
3858
3859 /* If it still isn't recognized, fail and change things back the way they
3860 were. */
3861 if ((insn_code_number < 0
3862 /* Is the result a reasonable ASM_OPERANDS? */
3863 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3864 {
3865 undo_all ();
3866 return 0;
3867 }
3868
3869 /* If we had to change another insn, make sure it is valid also. */
3870 if (undobuf.other_insn)
3871 {
3872 CLEAR_HARD_REG_SET (newpat_used_regs);
3873
3874 other_pat = PATTERN (undobuf.other_insn);
3875 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3876 &new_other_notes);
3877
3878 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3879 {
3880 undo_all ();
3881 return 0;
3882 }
3883 }
3884
3885 #ifdef HAVE_cc0
3886 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3887 they are adjacent to each other or not. */
3888 {
3889 rtx p = prev_nonnote_insn (i3);
3890 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3891 && sets_cc0_p (newi2pat))
3892 {
3893 undo_all ();
3894 return 0;
3895 }
3896 }
3897 #endif
3898
3899 /* Only allow this combination if insn_rtx_costs reports that the
3900 replacement instructions are cheaper than the originals. */
3901 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3902 {
3903 undo_all ();
3904 return 0;
3905 }
3906
3907 if (MAY_HAVE_DEBUG_INSNS)
3908 {
3909 struct undo *undo;
3910
3911 for (undo = undobuf.undos; undo; undo = undo->next)
3912 if (undo->kind == UNDO_MODE)
3913 {
3914 rtx reg = *undo->where.r;
3915 enum machine_mode new_mode = GET_MODE (reg);
3916 enum machine_mode old_mode = undo->old_contents.m;
3917
3918 /* Temporarily revert mode back. */
3919 adjust_reg_mode (reg, old_mode);
3920
3921 if (reg == i2dest && i2scratch)
3922 {
3923 /* If we used i2dest as a scratch register with a
3924 different mode, substitute it for the original
3925 i2src while its original mode is temporarily
3926 restored, and then clear i2scratch so that we don't
3927 do it again later. */
3928 propagate_for_debug (i2, last_combined_insn, reg, i2src);
3929 i2scratch = false;
3930 /* Put back the new mode. */
3931 adjust_reg_mode (reg, new_mode);
3932 }
3933 else
3934 {
3935 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3936 rtx first, last;
3937
3938 if (reg == i2dest)
3939 {
3940 first = i2;
3941 last = last_combined_insn;
3942 }
3943 else
3944 {
3945 first = i3;
3946 last = undobuf.other_insn;
3947 gcc_assert (last);
3948 if (DF_INSN_LUID (last)
3949 < DF_INSN_LUID (last_combined_insn))
3950 last = last_combined_insn;
3951 }
3952
3953 /* We're dealing with a reg that changed mode but not
3954 meaning, so we want to turn it into a subreg for
3955 the new mode. However, because of REG sharing and
3956 because its mode had already changed, we have to do
3957 it in two steps. First, replace any debug uses of
3958 reg, with its original mode temporarily restored,
3959 with this copy we have created; then, replace the
3960 copy with the SUBREG of the original shared reg,
3961 once again changed to the new mode. */
3962 propagate_for_debug (first, last, reg, tempreg);
3963 adjust_reg_mode (reg, new_mode);
3964 propagate_for_debug (first, last, tempreg,
3965 lowpart_subreg (old_mode, reg, new_mode));
3966 }
3967 }
3968 }
3969
3970 /* If we will be able to accept this, we have made a
3971 change to the destination of I3. This requires us to
3972 do a few adjustments. */
3973
3974 if (changed_i3_dest)
3975 {
3976 PATTERN (i3) = newpat;
3977 adjust_for_new_dest (i3);
3978 }
3979
3980 /* We now know that we can do this combination. Merge the insns and
3981 update the status of registers and LOG_LINKS. */
3982
3983 if (undobuf.other_insn)
3984 {
3985 rtx note, next;
3986
3987 PATTERN (undobuf.other_insn) = other_pat;
3988
3989 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3990 are still valid. Then add any non-duplicate notes added by
3991 recog_for_combine. */
3992 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3993 {
3994 next = XEXP (note, 1);
3995
3996 if (REG_NOTE_KIND (note) == REG_UNUSED
3997 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3998 remove_note (undobuf.other_insn, note);
3999 }
4000
4001 distribute_notes (new_other_notes, undobuf.other_insn,
4002 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
4003 NULL_RTX);
4004 }
4005
4006 if (swap_i2i3)
4007 {
4008 rtx insn;
4009 struct insn_link *link;
4010 rtx ni2dest;
4011
4012 /* I3 now uses what used to be its destination and which is now
4013 I2's destination. This requires us to do a few adjustments. */
4014 PATTERN (i3) = newpat;
4015 adjust_for_new_dest (i3);
4016
4017 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4018 so we still will.
4019
4020 However, some later insn might be using I2's dest and have
4021 a LOG_LINK pointing at I3. We must remove this link.
4022 The simplest way to remove the link is to point it at I1,
4023 which we know will be a NOTE. */
4024
4025 /* newi2pat is usually a SET here; however, recog_for_combine might
4026 have added some clobbers. */
4027 if (GET_CODE (newi2pat) == PARALLEL)
4028 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4029 else
4030 ni2dest = SET_DEST (newi2pat);
4031
4032 for (insn = NEXT_INSN (i3);
4033 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4034 || insn != BB_HEAD (this_basic_block->next_bb));
4035 insn = NEXT_INSN (insn))
4036 {
4037 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4038 {
4039 FOR_EACH_LOG_LINK (link, insn)
4040 if (link->insn == i3)
4041 link->insn = i1;
4042
4043 break;
4044 }
4045 }
4046 }
4047
4048 {
4049 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4050 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4051 rtx midnotes = 0;
4052 int from_luid;
4053 /* Compute which registers we expect to eliminate. newi2pat may be setting
4054 either i3dest or i2dest, so we must check it. Also, i1dest may be the
4055 same as i3dest, in which case newi2pat may be setting i1dest. */
4056 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4057 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4058 || !i2dest_killed
4059 ? 0 : i2dest);
4060 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4061 || (newi2pat && reg_set_p (i1dest, newi2pat))
4062 || !i1dest_killed
4063 ? 0 : i1dest);
4064 rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
4065 || (newi2pat && reg_set_p (i0dest, newi2pat))
4066 || !i0dest_killed
4067 ? 0 : i0dest);
4068
4069 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4070 clear them. */
4071 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4072 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4073 if (i1)
4074 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4075 if (i0)
4076 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4077
4078 /* Ensure that we do not have something that should not be shared but
4079 occurs multiple times in the new insns. Check this by first
4080 resetting all the `used' flags and then copying anything is shared. */
4081
4082 reset_used_flags (i3notes);
4083 reset_used_flags (i2notes);
4084 reset_used_flags (i1notes);
4085 reset_used_flags (i0notes);
4086 reset_used_flags (newpat);
4087 reset_used_flags (newi2pat);
4088 if (undobuf.other_insn)
4089 reset_used_flags (PATTERN (undobuf.other_insn));
4090
4091 i3notes = copy_rtx_if_shared (i3notes);
4092 i2notes = copy_rtx_if_shared (i2notes);
4093 i1notes = copy_rtx_if_shared (i1notes);
4094 i0notes = copy_rtx_if_shared (i0notes);
4095 newpat = copy_rtx_if_shared (newpat);
4096 newi2pat = copy_rtx_if_shared (newi2pat);
4097 if (undobuf.other_insn)
4098 reset_used_flags (PATTERN (undobuf.other_insn));
4099
4100 INSN_CODE (i3) = insn_code_number;
4101 PATTERN (i3) = newpat;
4102
4103 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4104 {
4105 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4106
4107 reset_used_flags (call_usage);
4108 call_usage = copy_rtx (call_usage);
4109
4110 if (substed_i2)
4111 {
4112 /* I2SRC must still be meaningful at this point. Some splitting
4113 operations can invalidate I2SRC, but those operations do not
4114 apply to calls. */
4115 gcc_assert (i2src);
4116 replace_rtx (call_usage, i2dest, i2src);
4117 }
4118
4119 if (substed_i1)
4120 replace_rtx (call_usage, i1dest, i1src);
4121 if (substed_i0)
4122 replace_rtx (call_usage, i0dest, i0src);
4123
4124 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4125 }
4126
4127 if (undobuf.other_insn)
4128 INSN_CODE (undobuf.other_insn) = other_code_number;
4129
4130 /* We had one special case above where I2 had more than one set and
4131 we replaced a destination of one of those sets with the destination
4132 of I3. In that case, we have to update LOG_LINKS of insns later
4133 in this basic block. Note that this (expensive) case is rare.
4134
4135 Also, in this case, we must pretend that all REG_NOTEs for I2
4136 actually came from I3, so that REG_UNUSED notes from I2 will be
4137 properly handled. */
4138
4139 if (i3_subst_into_i2)
4140 {
4141 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4142 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4143 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4144 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4145 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4146 && ! find_reg_note (i2, REG_UNUSED,
4147 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4148 for (temp = NEXT_INSN (i2);
4149 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4150 || BB_HEAD (this_basic_block) != temp);
4151 temp = NEXT_INSN (temp))
4152 if (temp != i3 && INSN_P (temp))
4153 FOR_EACH_LOG_LINK (link, temp)
4154 if (link->insn == i2)
4155 link->insn = i3;
4156
4157 if (i3notes)
4158 {
4159 rtx link = i3notes;
4160 while (XEXP (link, 1))
4161 link = XEXP (link, 1);
4162 XEXP (link, 1) = i2notes;
4163 }
4164 else
4165 i3notes = i2notes;
4166 i2notes = 0;
4167 }
4168
4169 LOG_LINKS (i3) = NULL;
4170 REG_NOTES (i3) = 0;
4171 LOG_LINKS (i2) = NULL;
4172 REG_NOTES (i2) = 0;
4173
4174 if (newi2pat)
4175 {
4176 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4177 propagate_for_debug (i2, last_combined_insn, i2dest, i2src);
4178 INSN_CODE (i2) = i2_code_number;
4179 PATTERN (i2) = newi2pat;
4180 }
4181 else
4182 {
4183 if (MAY_HAVE_DEBUG_INSNS && i2src)
4184 propagate_for_debug (i2, last_combined_insn, i2dest, i2src);
4185 SET_INSN_DELETED (i2);
4186 }
4187
4188 if (i1)
4189 {
4190 LOG_LINKS (i1) = NULL;
4191 REG_NOTES (i1) = 0;
4192 if (MAY_HAVE_DEBUG_INSNS)
4193 propagate_for_debug (i1, last_combined_insn, i1dest, i1src);
4194 SET_INSN_DELETED (i1);
4195 }
4196
4197 if (i0)
4198 {
4199 LOG_LINKS (i0) = NULL;
4200 REG_NOTES (i0) = 0;
4201 if (MAY_HAVE_DEBUG_INSNS)
4202 propagate_for_debug (i0, last_combined_insn, i0dest, i0src);
4203 SET_INSN_DELETED (i0);
4204 }
4205
4206 /* Get death notes for everything that is now used in either I3 or
4207 I2 and used to die in a previous insn. If we built two new
4208 patterns, move from I1 to I2 then I2 to I3 so that we get the
4209 proper movement on registers that I2 modifies. */
4210
4211 if (i0)
4212 from_luid = DF_INSN_LUID (i0);
4213 else if (i1)
4214 from_luid = DF_INSN_LUID (i1);
4215 else
4216 from_luid = DF_INSN_LUID (i2);
4217 if (newi2pat)
4218 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4219 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4220
4221 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4222 if (i3notes)
4223 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4224 elim_i2, elim_i1, elim_i0);
4225 if (i2notes)
4226 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4227 elim_i2, elim_i1, elim_i0);
4228 if (i1notes)
4229 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4230 elim_i2, elim_i1, elim_i0);
4231 if (i0notes)
4232 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4233 elim_i2, elim_i1, elim_i0);
4234 if (midnotes)
4235 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4236 elim_i2, elim_i1, elim_i0);
4237
4238 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4239 know these are REG_UNUSED and want them to go to the desired insn,
4240 so we always pass it as i3. */
4241
4242 if (newi2pat && new_i2_notes)
4243 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4244 NULL_RTX);
4245
4246 if (new_i3_notes)
4247 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4248 NULL_RTX);
4249
4250 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4251 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4252 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4253 in that case, it might delete I2. Similarly for I2 and I1.
4254 Show an additional death due to the REG_DEAD note we make here. If
4255 we discard it in distribute_notes, we will decrement it again. */
4256
4257 if (i3dest_killed)
4258 {
4259 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4260 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4261 NULL_RTX),
4262 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1, elim_i0);
4263 else
4264 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4265 NULL_RTX),
4266 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4267 elim_i2, elim_i1, elim_i0);
4268 }
4269
4270 if (i2dest_in_i2src)
4271 {
4272 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4273 if (newi2pat && reg_set_p (i2dest, newi2pat))
4274 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4275 NULL_RTX, NULL_RTX);
4276 else
4277 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4278 NULL_RTX, NULL_RTX, NULL_RTX);
4279 }
4280
4281 if (i1dest_in_i1src)
4282 {
4283 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4284 if (newi2pat && reg_set_p (i1dest, newi2pat))
4285 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4286 NULL_RTX, NULL_RTX);
4287 else
4288 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4289 NULL_RTX, NULL_RTX, NULL_RTX);
4290 }
4291
4292 if (i0dest_in_i0src)
4293 {
4294 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4295 if (newi2pat && reg_set_p (i0dest, newi2pat))
4296 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4297 NULL_RTX, NULL_RTX);
4298 else
4299 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4300 NULL_RTX, NULL_RTX, NULL_RTX);
4301 }
4302
4303 distribute_links (i3links);
4304 distribute_links (i2links);
4305 distribute_links (i1links);
4306 distribute_links (i0links);
4307
4308 if (REG_P (i2dest))
4309 {
4310 struct insn_link *link;
4311 rtx i2_insn = 0, i2_val = 0, set;
4312
4313 /* The insn that used to set this register doesn't exist, and
4314 this life of the register may not exist either. See if one of
4315 I3's links points to an insn that sets I2DEST. If it does,
4316 that is now the last known value for I2DEST. If we don't update
4317 this and I2 set the register to a value that depended on its old
4318 contents, we will get confused. If this insn is used, thing
4319 will be set correctly in combine_instructions. */
4320 FOR_EACH_LOG_LINK (link, i3)
4321 if ((set = single_set (link->insn)) != 0
4322 && rtx_equal_p (i2dest, SET_DEST (set)))
4323 i2_insn = link->insn, i2_val = SET_SRC (set);
4324
4325 record_value_for_reg (i2dest, i2_insn, i2_val);
4326
4327 /* If the reg formerly set in I2 died only once and that was in I3,
4328 zero its use count so it won't make `reload' do any work. */
4329 if (! added_sets_2
4330 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4331 && ! i2dest_in_i2src)
4332 INC_REG_N_SETS (REGNO (i2dest), -1);
4333 }
4334
4335 if (i1 && REG_P (i1dest))
4336 {
4337 struct insn_link *link;
4338 rtx i1_insn = 0, i1_val = 0, set;
4339
4340 FOR_EACH_LOG_LINK (link, i3)
4341 if ((set = single_set (link->insn)) != 0
4342 && rtx_equal_p (i1dest, SET_DEST (set)))
4343 i1_insn = link->insn, i1_val = SET_SRC (set);
4344
4345 record_value_for_reg (i1dest, i1_insn, i1_val);
4346
4347 if (! added_sets_1 && ! i1dest_in_i1src)
4348 INC_REG_N_SETS (REGNO (i1dest), -1);
4349 }
4350
4351 if (i0 && REG_P (i0dest))
4352 {
4353 struct insn_link *link;
4354 rtx i0_insn = 0, i0_val = 0, set;
4355
4356 FOR_EACH_LOG_LINK (link, i3)
4357 if ((set = single_set (link->insn)) != 0
4358 && rtx_equal_p (i0dest, SET_DEST (set)))
4359 i0_insn = link->insn, i0_val = SET_SRC (set);
4360
4361 record_value_for_reg (i0dest, i0_insn, i0_val);
4362
4363 if (! added_sets_0 && ! i0dest_in_i0src)
4364 INC_REG_N_SETS (REGNO (i0dest), -1);
4365 }
4366
4367 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4368 been made to this insn. The order of
4369 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
4370 can affect nonzero_bits of newpat */
4371 if (newi2pat)
4372 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4373 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4374 }
4375
4376 if (undobuf.other_insn != NULL_RTX)
4377 {
4378 if (dump_file)
4379 {
4380 fprintf (dump_file, "modifying other_insn ");
4381 dump_insn_slim (dump_file, undobuf.other_insn);
4382 }
4383 df_insn_rescan (undobuf.other_insn);
4384 }
4385
4386 if (i0 && !(NOTE_P(i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4387 {
4388 if (dump_file)
4389 {
4390 fprintf (dump_file, "modifying insn i1 ");
4391 dump_insn_slim (dump_file, i0);
4392 }
4393 df_insn_rescan (i0);
4394 }
4395
4396 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4397 {
4398 if (dump_file)
4399 {
4400 fprintf (dump_file, "modifying insn i1 ");
4401 dump_insn_slim (dump_file, i1);
4402 }
4403 df_insn_rescan (i1);
4404 }
4405
4406 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4407 {
4408 if (dump_file)
4409 {
4410 fprintf (dump_file, "modifying insn i2 ");
4411 dump_insn_slim (dump_file, i2);
4412 }
4413 df_insn_rescan (i2);
4414 }
4415
4416 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4417 {
4418 if (dump_file)
4419 {
4420 fprintf (dump_file, "modifying insn i3 ");
4421 dump_insn_slim (dump_file, i3);
4422 }
4423 df_insn_rescan (i3);
4424 }
4425
4426 /* Set new_direct_jump_p if a new return or simple jump instruction
4427 has been created. Adjust the CFG accordingly. */
4428
4429 if (returnjump_p (i3) || any_uncondjump_p (i3))
4430 {
4431 *new_direct_jump_p = 1;
4432 mark_jump_label (PATTERN (i3), i3, 0);
4433 update_cfg_for_uncondjump (i3);
4434 }
4435
4436 if (undobuf.other_insn != NULL_RTX
4437 && (returnjump_p (undobuf.other_insn)
4438 || any_uncondjump_p (undobuf.other_insn)))
4439 {
4440 *new_direct_jump_p = 1;
4441 update_cfg_for_uncondjump (undobuf.other_insn);
4442 }
4443
4444 /* A noop might also need cleaning up of CFG, if it comes from the
4445 simplification of a jump. */
4446 if (JUMP_P (i3)
4447 && GET_CODE (newpat) == SET
4448 && SET_SRC (newpat) == pc_rtx
4449 && SET_DEST (newpat) == pc_rtx)
4450 {
4451 *new_direct_jump_p = 1;
4452 update_cfg_for_uncondjump (i3);
4453 }
4454
4455 if (undobuf.other_insn != NULL_RTX
4456 && JUMP_P (undobuf.other_insn)
4457 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4458 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4459 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4460 {
4461 *new_direct_jump_p = 1;
4462 update_cfg_for_uncondjump (undobuf.other_insn);
4463 }
4464
4465 combine_successes++;
4466 undo_commit ();
4467
4468 if (added_links_insn
4469 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4470 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4471 return added_links_insn;
4472 else
4473 return newi2pat ? i2 : i3;
4474 }
4475 \f
4476 /* Undo all the modifications recorded in undobuf. */
4477
4478 static void
4479 undo_all (void)
4480 {
4481 struct undo *undo, *next;
4482
4483 for (undo = undobuf.undos; undo; undo = next)
4484 {
4485 next = undo->next;
4486 switch (undo->kind)
4487 {
4488 case UNDO_RTX:
4489 *undo->where.r = undo->old_contents.r;
4490 break;
4491 case UNDO_INT:
4492 *undo->where.i = undo->old_contents.i;
4493 break;
4494 case UNDO_MODE:
4495 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4496 break;
4497 default:
4498 gcc_unreachable ();
4499 }
4500
4501 undo->next = undobuf.frees;
4502 undobuf.frees = undo;
4503 }
4504
4505 undobuf.undos = 0;
4506 }
4507
4508 /* We've committed to accepting the changes we made. Move all
4509 of the undos to the free list. */
4510
4511 static void
4512 undo_commit (void)
4513 {
4514 struct undo *undo, *next;
4515
4516 for (undo = undobuf.undos; undo; undo = next)
4517 {
4518 next = undo->next;
4519 undo->next = undobuf.frees;
4520 undobuf.frees = undo;
4521 }
4522 undobuf.undos = 0;
4523 }
4524 \f
4525 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4526 where we have an arithmetic expression and return that point. LOC will
4527 be inside INSN.
4528
4529 try_combine will call this function to see if an insn can be split into
4530 two insns. */
4531
4532 static rtx *
4533 find_split_point (rtx *loc, rtx insn, bool set_src)
4534 {
4535 rtx x = *loc;
4536 enum rtx_code code = GET_CODE (x);
4537 rtx *split;
4538 unsigned HOST_WIDE_INT len = 0;
4539 HOST_WIDE_INT pos = 0;
4540 int unsignedp = 0;
4541 rtx inner = NULL_RTX;
4542
4543 /* First special-case some codes. */
4544 switch (code)
4545 {
4546 case SUBREG:
4547 #ifdef INSN_SCHEDULING
4548 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4549 point. */
4550 if (MEM_P (SUBREG_REG (x)))
4551 return loc;
4552 #endif
4553 return find_split_point (&SUBREG_REG (x), insn, false);
4554
4555 case MEM:
4556 #ifdef HAVE_lo_sum
4557 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4558 using LO_SUM and HIGH. */
4559 if (GET_CODE (XEXP (x, 0)) == CONST
4560 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4561 {
4562 enum machine_mode address_mode
4563 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
4564
4565 SUBST (XEXP (x, 0),
4566 gen_rtx_LO_SUM (address_mode,
4567 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4568 XEXP (x, 0)));
4569 return &XEXP (XEXP (x, 0), 0);
4570 }
4571 #endif
4572
4573 /* If we have a PLUS whose second operand is a constant and the
4574 address is not valid, perhaps will can split it up using
4575 the machine-specific way to split large constants. We use
4576 the first pseudo-reg (one of the virtual regs) as a placeholder;
4577 it will not remain in the result. */
4578 if (GET_CODE (XEXP (x, 0)) == PLUS
4579 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4580 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4581 MEM_ADDR_SPACE (x)))
4582 {
4583 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4584 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4585 XEXP (x, 0)),
4586 subst_insn);
4587
4588 /* This should have produced two insns, each of which sets our
4589 placeholder. If the source of the second is a valid address,
4590 we can make put both sources together and make a split point
4591 in the middle. */
4592
4593 if (seq
4594 && NEXT_INSN (seq) != NULL_RTX
4595 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4596 && NONJUMP_INSN_P (seq)
4597 && GET_CODE (PATTERN (seq)) == SET
4598 && SET_DEST (PATTERN (seq)) == reg
4599 && ! reg_mentioned_p (reg,
4600 SET_SRC (PATTERN (seq)))
4601 && NONJUMP_INSN_P (NEXT_INSN (seq))
4602 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4603 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4604 && memory_address_addr_space_p
4605 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4606 MEM_ADDR_SPACE (x)))
4607 {
4608 rtx src1 = SET_SRC (PATTERN (seq));
4609 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4610
4611 /* Replace the placeholder in SRC2 with SRC1. If we can
4612 find where in SRC2 it was placed, that can become our
4613 split point and we can replace this address with SRC2.
4614 Just try two obvious places. */
4615
4616 src2 = replace_rtx (src2, reg, src1);
4617 split = 0;
4618 if (XEXP (src2, 0) == src1)
4619 split = &XEXP (src2, 0);
4620 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4621 && XEXP (XEXP (src2, 0), 0) == src1)
4622 split = &XEXP (XEXP (src2, 0), 0);
4623
4624 if (split)
4625 {
4626 SUBST (XEXP (x, 0), src2);
4627 return split;
4628 }
4629 }
4630
4631 /* If that didn't work, perhaps the first operand is complex and
4632 needs to be computed separately, so make a split point there.
4633 This will occur on machines that just support REG + CONST
4634 and have a constant moved through some previous computation. */
4635
4636 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4637 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4638 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4639 return &XEXP (XEXP (x, 0), 0);
4640 }
4641
4642 /* If we have a PLUS whose first operand is complex, try computing it
4643 separately by making a split there. */
4644 if (GET_CODE (XEXP (x, 0)) == PLUS
4645 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4646 MEM_ADDR_SPACE (x))
4647 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4648 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4649 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4650 return &XEXP (XEXP (x, 0), 0);
4651 break;
4652
4653 case SET:
4654 #ifdef HAVE_cc0
4655 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4656 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4657 we need to put the operand into a register. So split at that
4658 point. */
4659
4660 if (SET_DEST (x) == cc0_rtx
4661 && GET_CODE (SET_SRC (x)) != COMPARE
4662 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4663 && !OBJECT_P (SET_SRC (x))
4664 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4665 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4666 return &SET_SRC (x);
4667 #endif
4668
4669 /* See if we can split SET_SRC as it stands. */
4670 split = find_split_point (&SET_SRC (x), insn, true);
4671 if (split && split != &SET_SRC (x))
4672 return split;
4673
4674 /* See if we can split SET_DEST as it stands. */
4675 split = find_split_point (&SET_DEST (x), insn, false);
4676 if (split && split != &SET_DEST (x))
4677 return split;
4678
4679 /* See if this is a bitfield assignment with everything constant. If
4680 so, this is an IOR of an AND, so split it into that. */
4681 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4682 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4683 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4684 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4685 && CONST_INT_P (SET_SRC (x))
4686 && ((INTVAL (XEXP (SET_DEST (x), 1))
4687 + INTVAL (XEXP (SET_DEST (x), 2)))
4688 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4689 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4690 {
4691 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4692 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4693 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4694 rtx dest = XEXP (SET_DEST (x), 0);
4695 enum machine_mode mode = GET_MODE (dest);
4696 unsigned HOST_WIDE_INT mask
4697 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4698 rtx or_mask;
4699
4700 if (BITS_BIG_ENDIAN)
4701 pos = GET_MODE_PRECISION (mode) - len - pos;
4702
4703 or_mask = gen_int_mode (src << pos, mode);
4704 if (src == mask)
4705 SUBST (SET_SRC (x),
4706 simplify_gen_binary (IOR, mode, dest, or_mask));
4707 else
4708 {
4709 rtx negmask = gen_int_mode (~(mask << pos), mode);
4710 SUBST (SET_SRC (x),
4711 simplify_gen_binary (IOR, mode,
4712 simplify_gen_binary (AND, mode,
4713 dest, negmask),
4714 or_mask));
4715 }
4716
4717 SUBST (SET_DEST (x), dest);
4718
4719 split = find_split_point (&SET_SRC (x), insn, true);
4720 if (split && split != &SET_SRC (x))
4721 return split;
4722 }
4723
4724 /* Otherwise, see if this is an operation that we can split into two.
4725 If so, try to split that. */
4726 code = GET_CODE (SET_SRC (x));
4727
4728 switch (code)
4729 {
4730 case AND:
4731 /* If we are AND'ing with a large constant that is only a single
4732 bit and the result is only being used in a context where we
4733 need to know if it is zero or nonzero, replace it with a bit
4734 extraction. This will avoid the large constant, which might
4735 have taken more than one insn to make. If the constant were
4736 not a valid argument to the AND but took only one insn to make,
4737 this is no worse, but if it took more than one insn, it will
4738 be better. */
4739
4740 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4741 && REG_P (XEXP (SET_SRC (x), 0))
4742 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4743 && REG_P (SET_DEST (x))
4744 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4745 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4746 && XEXP (*split, 0) == SET_DEST (x)
4747 && XEXP (*split, 1) == const0_rtx)
4748 {
4749 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4750 XEXP (SET_SRC (x), 0),
4751 pos, NULL_RTX, 1, 1, 0, 0);
4752 if (extraction != 0)
4753 {
4754 SUBST (SET_SRC (x), extraction);
4755 return find_split_point (loc, insn, false);
4756 }
4757 }
4758 break;
4759
4760 case NE:
4761 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4762 is known to be on, this can be converted into a NEG of a shift. */
4763 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4764 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4765 && 1 <= (pos = exact_log2
4766 (nonzero_bits (XEXP (SET_SRC (x), 0),
4767 GET_MODE (XEXP (SET_SRC (x), 0))))))
4768 {
4769 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4770
4771 SUBST (SET_SRC (x),
4772 gen_rtx_NEG (mode,
4773 gen_rtx_LSHIFTRT (mode,
4774 XEXP (SET_SRC (x), 0),
4775 GEN_INT (pos))));
4776
4777 split = find_split_point (&SET_SRC (x), insn, true);
4778 if (split && split != &SET_SRC (x))
4779 return split;
4780 }
4781 break;
4782
4783 case SIGN_EXTEND:
4784 inner = XEXP (SET_SRC (x), 0);
4785
4786 /* We can't optimize if either mode is a partial integer
4787 mode as we don't know how many bits are significant
4788 in those modes. */
4789 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4790 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4791 break;
4792
4793 pos = 0;
4794 len = GET_MODE_PRECISION (GET_MODE (inner));
4795 unsignedp = 0;
4796 break;
4797
4798 case SIGN_EXTRACT:
4799 case ZERO_EXTRACT:
4800 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4801 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4802 {
4803 inner = XEXP (SET_SRC (x), 0);
4804 len = INTVAL (XEXP (SET_SRC (x), 1));
4805 pos = INTVAL (XEXP (SET_SRC (x), 2));
4806
4807 if (BITS_BIG_ENDIAN)
4808 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4809 unsignedp = (code == ZERO_EXTRACT);
4810 }
4811 break;
4812
4813 default:
4814 break;
4815 }
4816
4817 if (len && pos >= 0
4818 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
4819 {
4820 enum machine_mode mode = GET_MODE (SET_SRC (x));
4821
4822 /* For unsigned, we have a choice of a shift followed by an
4823 AND or two shifts. Use two shifts for field sizes where the
4824 constant might be too large. We assume here that we can
4825 always at least get 8-bit constants in an AND insn, which is
4826 true for every current RISC. */
4827
4828 if (unsignedp && len <= 8)
4829 {
4830 SUBST (SET_SRC (x),
4831 gen_rtx_AND (mode,
4832 gen_rtx_LSHIFTRT
4833 (mode, gen_lowpart (mode, inner),
4834 GEN_INT (pos)),
4835 GEN_INT (((unsigned HOST_WIDE_INT) 1 << len)
4836 - 1)));
4837
4838 split = find_split_point (&SET_SRC (x), insn, true);
4839 if (split && split != &SET_SRC (x))
4840 return split;
4841 }
4842 else
4843 {
4844 SUBST (SET_SRC (x),
4845 gen_rtx_fmt_ee
4846 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4847 gen_rtx_ASHIFT (mode,
4848 gen_lowpart (mode, inner),
4849 GEN_INT (GET_MODE_PRECISION (mode)
4850 - len - pos)),
4851 GEN_INT (GET_MODE_PRECISION (mode) - len)));
4852
4853 split = find_split_point (&SET_SRC (x), insn, true);
4854 if (split && split != &SET_SRC (x))
4855 return split;
4856 }
4857 }
4858
4859 /* See if this is a simple operation with a constant as the second
4860 operand. It might be that this constant is out of range and hence
4861 could be used as a split point. */
4862 if (BINARY_P (SET_SRC (x))
4863 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4864 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4865 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4866 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4867 return &XEXP (SET_SRC (x), 1);
4868
4869 /* Finally, see if this is a simple operation with its first operand
4870 not in a register. The operation might require this operand in a
4871 register, so return it as a split point. We can always do this
4872 because if the first operand were another operation, we would have
4873 already found it as a split point. */
4874 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4875 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4876 return &XEXP (SET_SRC (x), 0);
4877
4878 return 0;
4879
4880 case AND:
4881 case IOR:
4882 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4883 it is better to write this as (not (ior A B)) so we can split it.
4884 Similarly for IOR. */
4885 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4886 {
4887 SUBST (*loc,
4888 gen_rtx_NOT (GET_MODE (x),
4889 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4890 GET_MODE (x),
4891 XEXP (XEXP (x, 0), 0),
4892 XEXP (XEXP (x, 1), 0))));
4893 return find_split_point (loc, insn, set_src);
4894 }
4895
4896 /* Many RISC machines have a large set of logical insns. If the
4897 second operand is a NOT, put it first so we will try to split the
4898 other operand first. */
4899 if (GET_CODE (XEXP (x, 1)) == NOT)
4900 {
4901 rtx tem = XEXP (x, 0);
4902 SUBST (XEXP (x, 0), XEXP (x, 1));
4903 SUBST (XEXP (x, 1), tem);
4904 }
4905 break;
4906
4907 case PLUS:
4908 case MINUS:
4909 /* Canonicalization can produce (minus A (mult B C)), where C is a
4910 constant. It may be better to try splitting (plus (mult B -C) A)
4911 instead if this isn't a multiply by a power of two. */
4912 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4913 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4914 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4915 {
4916 enum machine_mode mode = GET_MODE (x);
4917 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4918 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4919 SUBST (*loc, gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
4920 XEXP (XEXP (x, 1), 0),
4921 GEN_INT (other_int)),
4922 XEXP (x, 0)));
4923 return find_split_point (loc, insn, set_src);
4924 }
4925
4926 /* Split at a multiply-accumulate instruction. However if this is
4927 the SET_SRC, we likely do not have such an instruction and it's
4928 worthless to try this split. */
4929 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4930 return loc;
4931
4932 default:
4933 break;
4934 }
4935
4936 /* Otherwise, select our actions depending on our rtx class. */
4937 switch (GET_RTX_CLASS (code))
4938 {
4939 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4940 case RTX_TERNARY:
4941 split = find_split_point (&XEXP (x, 2), insn, false);
4942 if (split)
4943 return split;
4944 /* ... fall through ... */
4945 case RTX_BIN_ARITH:
4946 case RTX_COMM_ARITH:
4947 case RTX_COMPARE:
4948 case RTX_COMM_COMPARE:
4949 split = find_split_point (&XEXP (x, 1), insn, false);
4950 if (split)
4951 return split;
4952 /* ... fall through ... */
4953 case RTX_UNARY:
4954 /* Some machines have (and (shift ...) ...) insns. If X is not
4955 an AND, but XEXP (X, 0) is, use it as our split point. */
4956 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4957 return &XEXP (x, 0);
4958
4959 split = find_split_point (&XEXP (x, 0), insn, false);
4960 if (split)
4961 return split;
4962 return loc;
4963
4964 default:
4965 /* Otherwise, we don't have a split point. */
4966 return 0;
4967 }
4968 }
4969 \f
4970 /* Throughout X, replace FROM with TO, and return the result.
4971 The result is TO if X is FROM;
4972 otherwise the result is X, but its contents may have been modified.
4973 If they were modified, a record was made in undobuf so that
4974 undo_all will (among other things) return X to its original state.
4975
4976 If the number of changes necessary is too much to record to undo,
4977 the excess changes are not made, so the result is invalid.
4978 The changes already made can still be undone.
4979 undobuf.num_undo is incremented for such changes, so by testing that
4980 the caller can tell whether the result is valid.
4981
4982 `n_occurrences' is incremented each time FROM is replaced.
4983
4984 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4985
4986 IN_COND is nonzero if we are at the top level of a condition.
4987
4988 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4989 by copying if `n_occurrences' is nonzero. */
4990
4991 static rtx
4992 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
4993 {
4994 enum rtx_code code = GET_CODE (x);
4995 enum machine_mode op0_mode = VOIDmode;
4996 const char *fmt;
4997 int len, i;
4998 rtx new_rtx;
4999
5000 /* Two expressions are equal if they are identical copies of a shared
5001 RTX or if they are both registers with the same register number
5002 and mode. */
5003
5004 #define COMBINE_RTX_EQUAL_P(X,Y) \
5005 ((X) == (Y) \
5006 || (REG_P (X) && REG_P (Y) \
5007 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5008
5009 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5010 {
5011 n_occurrences++;
5012 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5013 }
5014
5015 /* If X and FROM are the same register but different modes, they
5016 will not have been seen as equal above. However, the log links code
5017 will make a LOG_LINKS entry for that case. If we do nothing, we
5018 will try to rerecognize our original insn and, when it succeeds,
5019 we will delete the feeding insn, which is incorrect.
5020
5021 So force this insn not to match in this (rare) case. */
5022 if (! in_dest && code == REG && REG_P (from)
5023 && reg_overlap_mentioned_p (x, from))
5024 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5025
5026 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5027 of which may contain things that can be combined. */
5028 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5029 return x;
5030
5031 /* It is possible to have a subexpression appear twice in the insn.
5032 Suppose that FROM is a register that appears within TO.
5033 Then, after that subexpression has been scanned once by `subst',
5034 the second time it is scanned, TO may be found. If we were
5035 to scan TO here, we would find FROM within it and create a
5036 self-referent rtl structure which is completely wrong. */
5037 if (COMBINE_RTX_EQUAL_P (x, to))
5038 return to;
5039
5040 /* Parallel asm_operands need special attention because all of the
5041 inputs are shared across the arms. Furthermore, unsharing the
5042 rtl results in recognition failures. Failure to handle this case
5043 specially can result in circular rtl.
5044
5045 Solve this by doing a normal pass across the first entry of the
5046 parallel, and only processing the SET_DESTs of the subsequent
5047 entries. Ug. */
5048
5049 if (code == PARALLEL
5050 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5051 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5052 {
5053 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5054
5055 /* If this substitution failed, this whole thing fails. */
5056 if (GET_CODE (new_rtx) == CLOBBER
5057 && XEXP (new_rtx, 0) == const0_rtx)
5058 return new_rtx;
5059
5060 SUBST (XVECEXP (x, 0, 0), new_rtx);
5061
5062 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5063 {
5064 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5065
5066 if (!REG_P (dest)
5067 && GET_CODE (dest) != CC0
5068 && GET_CODE (dest) != PC)
5069 {
5070 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5071
5072 /* If this substitution failed, this whole thing fails. */
5073 if (GET_CODE (new_rtx) == CLOBBER
5074 && XEXP (new_rtx, 0) == const0_rtx)
5075 return new_rtx;
5076
5077 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5078 }
5079 }
5080 }
5081 else
5082 {
5083 len = GET_RTX_LENGTH (code);
5084 fmt = GET_RTX_FORMAT (code);
5085
5086 /* We don't need to process a SET_DEST that is a register, CC0,
5087 or PC, so set up to skip this common case. All other cases
5088 where we want to suppress replacing something inside a
5089 SET_SRC are handled via the IN_DEST operand. */
5090 if (code == SET
5091 && (REG_P (SET_DEST (x))
5092 || GET_CODE (SET_DEST (x)) == CC0
5093 || GET_CODE (SET_DEST (x)) == PC))
5094 fmt = "ie";
5095
5096 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5097 constant. */
5098 if (fmt[0] == 'e')
5099 op0_mode = GET_MODE (XEXP (x, 0));
5100
5101 for (i = 0; i < len; i++)
5102 {
5103 if (fmt[i] == 'E')
5104 {
5105 int j;
5106 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5107 {
5108 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5109 {
5110 new_rtx = (unique_copy && n_occurrences
5111 ? copy_rtx (to) : to);
5112 n_occurrences++;
5113 }
5114 else
5115 {
5116 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5117 unique_copy);
5118
5119 /* If this substitution failed, this whole thing
5120 fails. */
5121 if (GET_CODE (new_rtx) == CLOBBER
5122 && XEXP (new_rtx, 0) == const0_rtx)
5123 return new_rtx;
5124 }
5125
5126 SUBST (XVECEXP (x, i, j), new_rtx);
5127 }
5128 }
5129 else if (fmt[i] == 'e')
5130 {
5131 /* If this is a register being set, ignore it. */
5132 new_rtx = XEXP (x, i);
5133 if (in_dest
5134 && i == 0
5135 && (((code == SUBREG || code == ZERO_EXTRACT)
5136 && REG_P (new_rtx))
5137 || code == STRICT_LOW_PART))
5138 ;
5139
5140 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5141 {
5142 /* In general, don't install a subreg involving two
5143 modes not tieable. It can worsen register
5144 allocation, and can even make invalid reload
5145 insns, since the reg inside may need to be copied
5146 from in the outside mode, and that may be invalid
5147 if it is an fp reg copied in integer mode.
5148
5149 We allow two exceptions to this: It is valid if
5150 it is inside another SUBREG and the mode of that
5151 SUBREG and the mode of the inside of TO is
5152 tieable and it is valid if X is a SET that copies
5153 FROM to CC0. */
5154
5155 if (GET_CODE (to) == SUBREG
5156 && ! MODES_TIEABLE_P (GET_MODE (to),
5157 GET_MODE (SUBREG_REG (to)))
5158 && ! (code == SUBREG
5159 && MODES_TIEABLE_P (GET_MODE (x),
5160 GET_MODE (SUBREG_REG (to))))
5161 #ifdef HAVE_cc0
5162 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5163 #endif
5164 )
5165 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5166
5167 #ifdef CANNOT_CHANGE_MODE_CLASS
5168 if (code == SUBREG
5169 && REG_P (to)
5170 && REGNO (to) < FIRST_PSEUDO_REGISTER
5171 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5172 GET_MODE (to),
5173 GET_MODE (x)))
5174 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5175 #endif
5176
5177 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5178 n_occurrences++;
5179 }
5180 else
5181 /* If we are in a SET_DEST, suppress most cases unless we
5182 have gone inside a MEM, in which case we want to
5183 simplify the address. We assume here that things that
5184 are actually part of the destination have their inner
5185 parts in the first expression. This is true for SUBREG,
5186 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5187 things aside from REG and MEM that should appear in a
5188 SET_DEST. */
5189 new_rtx = subst (XEXP (x, i), from, to,
5190 (((in_dest
5191 && (code == SUBREG || code == STRICT_LOW_PART
5192 || code == ZERO_EXTRACT))
5193 || code == SET)
5194 && i == 0),
5195 code == IF_THEN_ELSE && i == 0,
5196 unique_copy);
5197
5198 /* If we found that we will have to reject this combination,
5199 indicate that by returning the CLOBBER ourselves, rather than
5200 an expression containing it. This will speed things up as
5201 well as prevent accidents where two CLOBBERs are considered
5202 to be equal, thus producing an incorrect simplification. */
5203
5204 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5205 return new_rtx;
5206
5207 if (GET_CODE (x) == SUBREG
5208 && (CONST_INT_P (new_rtx)
5209 || GET_CODE (new_rtx) == CONST_DOUBLE))
5210 {
5211 enum machine_mode mode = GET_MODE (x);
5212
5213 x = simplify_subreg (GET_MODE (x), new_rtx,
5214 GET_MODE (SUBREG_REG (x)),
5215 SUBREG_BYTE (x));
5216 if (! x)
5217 x = gen_rtx_CLOBBER (mode, const0_rtx);
5218 }
5219 else if (CONST_INT_P (new_rtx)
5220 && GET_CODE (x) == ZERO_EXTEND)
5221 {
5222 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5223 new_rtx, GET_MODE (XEXP (x, 0)));
5224 gcc_assert (x);
5225 }
5226 else
5227 SUBST (XEXP (x, i), new_rtx);
5228 }
5229 }
5230 }
5231
5232 /* Check if we are loading something from the constant pool via float
5233 extension; in this case we would undo compress_float_constant
5234 optimization and degenerate constant load to an immediate value. */
5235 if (GET_CODE (x) == FLOAT_EXTEND
5236 && MEM_P (XEXP (x, 0))
5237 && MEM_READONLY_P (XEXP (x, 0)))
5238 {
5239 rtx tmp = avoid_constant_pool_reference (x);
5240 if (x != tmp)
5241 return x;
5242 }
5243
5244 /* Try to simplify X. If the simplification changed the code, it is likely
5245 that further simplification will help, so loop, but limit the number
5246 of repetitions that will be performed. */
5247
5248 for (i = 0; i < 4; i++)
5249 {
5250 /* If X is sufficiently simple, don't bother trying to do anything
5251 with it. */
5252 if (code != CONST_INT && code != REG && code != CLOBBER)
5253 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5254
5255 if (GET_CODE (x) == code)
5256 break;
5257
5258 code = GET_CODE (x);
5259
5260 /* We no longer know the original mode of operand 0 since we
5261 have changed the form of X) */
5262 op0_mode = VOIDmode;
5263 }
5264
5265 return x;
5266 }
5267 \f
5268 /* Simplify X, a piece of RTL. We just operate on the expression at the
5269 outer level; call `subst' to simplify recursively. Return the new
5270 expression.
5271
5272 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5273 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5274 of a condition. */
5275
5276 static rtx
5277 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest,
5278 int in_cond)
5279 {
5280 enum rtx_code code = GET_CODE (x);
5281 enum machine_mode mode = GET_MODE (x);
5282 rtx temp;
5283 int i;
5284
5285 /* If this is a commutative operation, put a constant last and a complex
5286 expression first. We don't need to do this for comparisons here. */
5287 if (COMMUTATIVE_ARITH_P (x)
5288 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5289 {
5290 temp = XEXP (x, 0);
5291 SUBST (XEXP (x, 0), XEXP (x, 1));
5292 SUBST (XEXP (x, 1), temp);
5293 }
5294
5295 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5296 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5297 things. Check for cases where both arms are testing the same
5298 condition.
5299
5300 Don't do anything if all operands are very simple. */
5301
5302 if ((BINARY_P (x)
5303 && ((!OBJECT_P (XEXP (x, 0))
5304 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5305 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5306 || (!OBJECT_P (XEXP (x, 1))
5307 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5308 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5309 || (UNARY_P (x)
5310 && (!OBJECT_P (XEXP (x, 0))
5311 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5312 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5313 {
5314 rtx cond, true_rtx, false_rtx;
5315
5316 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5317 if (cond != 0
5318 /* If everything is a comparison, what we have is highly unlikely
5319 to be simpler, so don't use it. */
5320 && ! (COMPARISON_P (x)
5321 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5322 {
5323 rtx cop1 = const0_rtx;
5324 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5325
5326 if (cond_code == NE && COMPARISON_P (cond))
5327 return x;
5328
5329 /* Simplify the alternative arms; this may collapse the true and
5330 false arms to store-flag values. Be careful to use copy_rtx
5331 here since true_rtx or false_rtx might share RTL with x as a
5332 result of the if_then_else_cond call above. */
5333 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5334 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5335
5336 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5337 is unlikely to be simpler. */
5338 if (general_operand (true_rtx, VOIDmode)
5339 && general_operand (false_rtx, VOIDmode))
5340 {
5341 enum rtx_code reversed;
5342
5343 /* Restarting if we generate a store-flag expression will cause
5344 us to loop. Just drop through in this case. */
5345
5346 /* If the result values are STORE_FLAG_VALUE and zero, we can
5347 just make the comparison operation. */
5348 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5349 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5350 cond, cop1);
5351 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5352 && ((reversed = reversed_comparison_code_parts
5353 (cond_code, cond, cop1, NULL))
5354 != UNKNOWN))
5355 x = simplify_gen_relational (reversed, mode, VOIDmode,
5356 cond, cop1);
5357
5358 /* Likewise, we can make the negate of a comparison operation
5359 if the result values are - STORE_FLAG_VALUE and zero. */
5360 else if (CONST_INT_P (true_rtx)
5361 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5362 && false_rtx == const0_rtx)
5363 x = simplify_gen_unary (NEG, mode,
5364 simplify_gen_relational (cond_code,
5365 mode, VOIDmode,
5366 cond, cop1),
5367 mode);
5368 else if (CONST_INT_P (false_rtx)
5369 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5370 && true_rtx == const0_rtx
5371 && ((reversed = reversed_comparison_code_parts
5372 (cond_code, cond, cop1, NULL))
5373 != UNKNOWN))
5374 x = simplify_gen_unary (NEG, mode,
5375 simplify_gen_relational (reversed,
5376 mode, VOIDmode,
5377 cond, cop1),
5378 mode);
5379 else
5380 return gen_rtx_IF_THEN_ELSE (mode,
5381 simplify_gen_relational (cond_code,
5382 mode,
5383 VOIDmode,
5384 cond,
5385 cop1),
5386 true_rtx, false_rtx);
5387
5388 code = GET_CODE (x);
5389 op0_mode = VOIDmode;
5390 }
5391 }
5392 }
5393
5394 /* Try to fold this expression in case we have constants that weren't
5395 present before. */
5396 temp = 0;
5397 switch (GET_RTX_CLASS (code))
5398 {
5399 case RTX_UNARY:
5400 if (op0_mode == VOIDmode)
5401 op0_mode = GET_MODE (XEXP (x, 0));
5402 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5403 break;
5404 case RTX_COMPARE:
5405 case RTX_COMM_COMPARE:
5406 {
5407 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5408 if (cmp_mode == VOIDmode)
5409 {
5410 cmp_mode = GET_MODE (XEXP (x, 1));
5411 if (cmp_mode == VOIDmode)
5412 cmp_mode = op0_mode;
5413 }
5414 temp = simplify_relational_operation (code, mode, cmp_mode,
5415 XEXP (x, 0), XEXP (x, 1));
5416 }
5417 break;
5418 case RTX_COMM_ARITH:
5419 case RTX_BIN_ARITH:
5420 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5421 break;
5422 case RTX_BITFIELD_OPS:
5423 case RTX_TERNARY:
5424 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5425 XEXP (x, 1), XEXP (x, 2));
5426 break;
5427 default:
5428 break;
5429 }
5430
5431 if (temp)
5432 {
5433 x = temp;
5434 code = GET_CODE (temp);
5435 op0_mode = VOIDmode;
5436 mode = GET_MODE (temp);
5437 }
5438
5439 /* First see if we can apply the inverse distributive law. */
5440 if (code == PLUS || code == MINUS
5441 || code == AND || code == IOR || code == XOR)
5442 {
5443 x = apply_distributive_law (x);
5444 code = GET_CODE (x);
5445 op0_mode = VOIDmode;
5446 }
5447
5448 /* If CODE is an associative operation not otherwise handled, see if we
5449 can associate some operands. This can win if they are constants or
5450 if they are logically related (i.e. (a & b) & a). */
5451 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5452 || code == AND || code == IOR || code == XOR
5453 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5454 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5455 || (flag_associative_math && FLOAT_MODE_P (mode))))
5456 {
5457 if (GET_CODE (XEXP (x, 0)) == code)
5458 {
5459 rtx other = XEXP (XEXP (x, 0), 0);
5460 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5461 rtx inner_op1 = XEXP (x, 1);
5462 rtx inner;
5463
5464 /* Make sure we pass the constant operand if any as the second
5465 one if this is a commutative operation. */
5466 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5467 {
5468 rtx tem = inner_op0;
5469 inner_op0 = inner_op1;
5470 inner_op1 = tem;
5471 }
5472 inner = simplify_binary_operation (code == MINUS ? PLUS
5473 : code == DIV ? MULT
5474 : code,
5475 mode, inner_op0, inner_op1);
5476
5477 /* For commutative operations, try the other pair if that one
5478 didn't simplify. */
5479 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5480 {
5481 other = XEXP (XEXP (x, 0), 1);
5482 inner = simplify_binary_operation (code, mode,
5483 XEXP (XEXP (x, 0), 0),
5484 XEXP (x, 1));
5485 }
5486
5487 if (inner)
5488 return simplify_gen_binary (code, mode, other, inner);
5489 }
5490 }
5491
5492 /* A little bit of algebraic simplification here. */
5493 switch (code)
5494 {
5495 case MEM:
5496 /* Ensure that our address has any ASHIFTs converted to MULT in case
5497 address-recognizing predicates are called later. */
5498 temp = make_compound_operation (XEXP (x, 0), MEM);
5499 SUBST (XEXP (x, 0), temp);
5500 break;
5501
5502 case SUBREG:
5503 if (op0_mode == VOIDmode)
5504 op0_mode = GET_MODE (SUBREG_REG (x));
5505
5506 /* See if this can be moved to simplify_subreg. */
5507 if (CONSTANT_P (SUBREG_REG (x))
5508 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5509 /* Don't call gen_lowpart if the inner mode
5510 is VOIDmode and we cannot simplify it, as SUBREG without
5511 inner mode is invalid. */
5512 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5513 || gen_lowpart_common (mode, SUBREG_REG (x))))
5514 return gen_lowpart (mode, SUBREG_REG (x));
5515
5516 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5517 break;
5518 {
5519 rtx temp;
5520 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5521 SUBREG_BYTE (x));
5522 if (temp)
5523 return temp;
5524 }
5525
5526 /* Don't change the mode of the MEM if that would change the meaning
5527 of the address. */
5528 if (MEM_P (SUBREG_REG (x))
5529 && (MEM_VOLATILE_P (SUBREG_REG (x))
5530 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
5531 return gen_rtx_CLOBBER (mode, const0_rtx);
5532
5533 /* Note that we cannot do any narrowing for non-constants since
5534 we might have been counting on using the fact that some bits were
5535 zero. We now do this in the SET. */
5536
5537 break;
5538
5539 case NEG:
5540 temp = expand_compound_operation (XEXP (x, 0));
5541
5542 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5543 replaced by (lshiftrt X C). This will convert
5544 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5545
5546 if (GET_CODE (temp) == ASHIFTRT
5547 && CONST_INT_P (XEXP (temp, 1))
5548 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5549 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5550 INTVAL (XEXP (temp, 1)));
5551
5552 /* If X has only a single bit that might be nonzero, say, bit I, convert
5553 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5554 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5555 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5556 or a SUBREG of one since we'd be making the expression more
5557 complex if it was just a register. */
5558
5559 if (!REG_P (temp)
5560 && ! (GET_CODE (temp) == SUBREG
5561 && REG_P (SUBREG_REG (temp)))
5562 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5563 {
5564 rtx temp1 = simplify_shift_const
5565 (NULL_RTX, ASHIFTRT, mode,
5566 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5567 GET_MODE_PRECISION (mode) - 1 - i),
5568 GET_MODE_PRECISION (mode) - 1 - i);
5569
5570 /* If all we did was surround TEMP with the two shifts, we
5571 haven't improved anything, so don't use it. Otherwise,
5572 we are better off with TEMP1. */
5573 if (GET_CODE (temp1) != ASHIFTRT
5574 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5575 || XEXP (XEXP (temp1, 0), 0) != temp)
5576 return temp1;
5577 }
5578 break;
5579
5580 case TRUNCATE:
5581 /* We can't handle truncation to a partial integer mode here
5582 because we don't know the real bitsize of the partial
5583 integer mode. */
5584 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5585 break;
5586
5587 if (HWI_COMPUTABLE_MODE_P (mode))
5588 SUBST (XEXP (x, 0),
5589 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5590 GET_MODE_MASK (mode), 0));
5591
5592 /* We can truncate a constant value and return it. */
5593 if (CONST_INT_P (XEXP (x, 0)))
5594 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5595
5596 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5597 whose value is a comparison can be replaced with a subreg if
5598 STORE_FLAG_VALUE permits. */
5599 if (HWI_COMPUTABLE_MODE_P (mode)
5600 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5601 && (temp = get_last_value (XEXP (x, 0)))
5602 && COMPARISON_P (temp))
5603 return gen_lowpart (mode, XEXP (x, 0));
5604 break;
5605
5606 case CONST:
5607 /* (const (const X)) can become (const X). Do it this way rather than
5608 returning the inner CONST since CONST can be shared with a
5609 REG_EQUAL note. */
5610 if (GET_CODE (XEXP (x, 0)) == CONST)
5611 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5612 break;
5613
5614 #ifdef HAVE_lo_sum
5615 case LO_SUM:
5616 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5617 can add in an offset. find_split_point will split this address up
5618 again if it doesn't match. */
5619 if (GET_CODE (XEXP (x, 0)) == HIGH
5620 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5621 return XEXP (x, 1);
5622 break;
5623 #endif
5624
5625 case PLUS:
5626 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5627 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5628 bit-field and can be replaced by either a sign_extend or a
5629 sign_extract. The `and' may be a zero_extend and the two
5630 <c>, -<c> constants may be reversed. */
5631 if (GET_CODE (XEXP (x, 0)) == XOR
5632 && CONST_INT_P (XEXP (x, 1))
5633 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5634 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5635 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5636 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5637 && HWI_COMPUTABLE_MODE_P (mode)
5638 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5639 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5640 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5641 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5642 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5643 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5644 == (unsigned int) i + 1))))
5645 return simplify_shift_const
5646 (NULL_RTX, ASHIFTRT, mode,
5647 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5648 XEXP (XEXP (XEXP (x, 0), 0), 0),
5649 GET_MODE_PRECISION (mode) - (i + 1)),
5650 GET_MODE_PRECISION (mode) - (i + 1));
5651
5652 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5653 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5654 the bitsize of the mode - 1. This allows simplification of
5655 "a = (b & 8) == 0;" */
5656 if (XEXP (x, 1) == constm1_rtx
5657 && !REG_P (XEXP (x, 0))
5658 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5659 && REG_P (SUBREG_REG (XEXP (x, 0))))
5660 && nonzero_bits (XEXP (x, 0), mode) == 1)
5661 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5662 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5663 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5664 GET_MODE_PRECISION (mode) - 1),
5665 GET_MODE_PRECISION (mode) - 1);
5666
5667 /* If we are adding two things that have no bits in common, convert
5668 the addition into an IOR. This will often be further simplified,
5669 for example in cases like ((a & 1) + (a & 2)), which can
5670 become a & 3. */
5671
5672 if (HWI_COMPUTABLE_MODE_P (mode)
5673 && (nonzero_bits (XEXP (x, 0), mode)
5674 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5675 {
5676 /* Try to simplify the expression further. */
5677 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5678 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5679
5680 /* If we could, great. If not, do not go ahead with the IOR
5681 replacement, since PLUS appears in many special purpose
5682 address arithmetic instructions. */
5683 if (GET_CODE (temp) != CLOBBER
5684 && (GET_CODE (temp) != IOR
5685 || ((XEXP (temp, 0) != XEXP (x, 0)
5686 || XEXP (temp, 1) != XEXP (x, 1))
5687 && (XEXP (temp, 0) != XEXP (x, 1)
5688 || XEXP (temp, 1) != XEXP (x, 0)))))
5689 return temp;
5690 }
5691 break;
5692
5693 case MINUS:
5694 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5695 (and <foo> (const_int pow2-1)) */
5696 if (GET_CODE (XEXP (x, 1)) == AND
5697 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5698 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5699 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5700 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5701 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5702 break;
5703
5704 case MULT:
5705 /* If we have (mult (plus A B) C), apply the distributive law and then
5706 the inverse distributive law to see if things simplify. This
5707 occurs mostly in addresses, often when unrolling loops. */
5708
5709 if (GET_CODE (XEXP (x, 0)) == PLUS)
5710 {
5711 rtx result = distribute_and_simplify_rtx (x, 0);
5712 if (result)
5713 return result;
5714 }
5715
5716 /* Try simplify a*(b/c) as (a*b)/c. */
5717 if (FLOAT_MODE_P (mode) && flag_associative_math
5718 && GET_CODE (XEXP (x, 0)) == DIV)
5719 {
5720 rtx tem = simplify_binary_operation (MULT, mode,
5721 XEXP (XEXP (x, 0), 0),
5722 XEXP (x, 1));
5723 if (tem)
5724 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5725 }
5726 break;
5727
5728 case UDIV:
5729 /* If this is a divide by a power of two, treat it as a shift if
5730 its first operand is a shift. */
5731 if (CONST_INT_P (XEXP (x, 1))
5732 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5733 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5734 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5735 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5736 || GET_CODE (XEXP (x, 0)) == ROTATE
5737 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5738 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5739 break;
5740
5741 case EQ: case NE:
5742 case GT: case GTU: case GE: case GEU:
5743 case LT: case LTU: case LE: case LEU:
5744 case UNEQ: case LTGT:
5745 case UNGT: case UNGE:
5746 case UNLT: case UNLE:
5747 case UNORDERED: case ORDERED:
5748 /* If the first operand is a condition code, we can't do anything
5749 with it. */
5750 if (GET_CODE (XEXP (x, 0)) == COMPARE
5751 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5752 && ! CC0_P (XEXP (x, 0))))
5753 {
5754 rtx op0 = XEXP (x, 0);
5755 rtx op1 = XEXP (x, 1);
5756 enum rtx_code new_code;
5757
5758 if (GET_CODE (op0) == COMPARE)
5759 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5760
5761 /* Simplify our comparison, if possible. */
5762 new_code = simplify_comparison (code, &op0, &op1);
5763
5764 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5765 if only the low-order bit is possibly nonzero in X (such as when
5766 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5767 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5768 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5769 (plus X 1).
5770
5771 Remove any ZERO_EXTRACT we made when thinking this was a
5772 comparison. It may now be simpler to use, e.g., an AND. If a
5773 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5774 the call to make_compound_operation in the SET case.
5775
5776 Don't apply these optimizations if the caller would
5777 prefer a comparison rather than a value.
5778 E.g., for the condition in an IF_THEN_ELSE most targets need
5779 an explicit comparison. */
5780
5781 if (in_cond)
5782 ;
5783
5784 else if (STORE_FLAG_VALUE == 1
5785 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5786 && op1 == const0_rtx
5787 && mode == GET_MODE (op0)
5788 && nonzero_bits (op0, mode) == 1)
5789 return gen_lowpart (mode,
5790 expand_compound_operation (op0));
5791
5792 else if (STORE_FLAG_VALUE == 1
5793 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5794 && op1 == const0_rtx
5795 && mode == GET_MODE (op0)
5796 && (num_sign_bit_copies (op0, mode)
5797 == GET_MODE_PRECISION (mode)))
5798 {
5799 op0 = expand_compound_operation (op0);
5800 return simplify_gen_unary (NEG, mode,
5801 gen_lowpart (mode, op0),
5802 mode);
5803 }
5804
5805 else if (STORE_FLAG_VALUE == 1
5806 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5807 && op1 == const0_rtx
5808 && mode == GET_MODE (op0)
5809 && nonzero_bits (op0, mode) == 1)
5810 {
5811 op0 = expand_compound_operation (op0);
5812 return simplify_gen_binary (XOR, mode,
5813 gen_lowpart (mode, op0),
5814 const1_rtx);
5815 }
5816
5817 else if (STORE_FLAG_VALUE == 1
5818 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5819 && op1 == const0_rtx
5820 && mode == GET_MODE (op0)
5821 && (num_sign_bit_copies (op0, mode)
5822 == GET_MODE_PRECISION (mode)))
5823 {
5824 op0 = expand_compound_operation (op0);
5825 return plus_constant (gen_lowpart (mode, op0), 1);
5826 }
5827
5828 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5829 those above. */
5830 if (in_cond)
5831 ;
5832
5833 else if (STORE_FLAG_VALUE == -1
5834 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5835 && op1 == const0_rtx
5836 && (num_sign_bit_copies (op0, mode)
5837 == GET_MODE_PRECISION (mode)))
5838 return gen_lowpart (mode,
5839 expand_compound_operation (op0));
5840
5841 else if (STORE_FLAG_VALUE == -1
5842 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5843 && op1 == const0_rtx
5844 && mode == GET_MODE (op0)
5845 && nonzero_bits (op0, mode) == 1)
5846 {
5847 op0 = expand_compound_operation (op0);
5848 return simplify_gen_unary (NEG, mode,
5849 gen_lowpart (mode, op0),
5850 mode);
5851 }
5852
5853 else if (STORE_FLAG_VALUE == -1
5854 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5855 && op1 == const0_rtx
5856 && mode == GET_MODE (op0)
5857 && (num_sign_bit_copies (op0, mode)
5858 == GET_MODE_PRECISION (mode)))
5859 {
5860 op0 = expand_compound_operation (op0);
5861 return simplify_gen_unary (NOT, mode,
5862 gen_lowpart (mode, op0),
5863 mode);
5864 }
5865
5866 /* If X is 0/1, (eq X 0) is X-1. */
5867 else if (STORE_FLAG_VALUE == -1
5868 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5869 && op1 == const0_rtx
5870 && mode == GET_MODE (op0)
5871 && nonzero_bits (op0, mode) == 1)
5872 {
5873 op0 = expand_compound_operation (op0);
5874 return plus_constant (gen_lowpart (mode, op0), -1);
5875 }
5876
5877 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5878 one bit that might be nonzero, we can convert (ne x 0) to
5879 (ashift x c) where C puts the bit in the sign bit. Remove any
5880 AND with STORE_FLAG_VALUE when we are done, since we are only
5881 going to test the sign bit. */
5882 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5883 && HWI_COMPUTABLE_MODE_P (mode)
5884 && val_signbit_p (mode, STORE_FLAG_VALUE)
5885 && op1 == const0_rtx
5886 && mode == GET_MODE (op0)
5887 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5888 {
5889 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5890 expand_compound_operation (op0),
5891 GET_MODE_PRECISION (mode) - 1 - i);
5892 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5893 return XEXP (x, 0);
5894 else
5895 return x;
5896 }
5897
5898 /* If the code changed, return a whole new comparison. */
5899 if (new_code != code)
5900 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5901
5902 /* Otherwise, keep this operation, but maybe change its operands.
5903 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5904 SUBST (XEXP (x, 0), op0);
5905 SUBST (XEXP (x, 1), op1);
5906 }
5907 break;
5908
5909 case IF_THEN_ELSE:
5910 return simplify_if_then_else (x);
5911
5912 case ZERO_EXTRACT:
5913 case SIGN_EXTRACT:
5914 case ZERO_EXTEND:
5915 case SIGN_EXTEND:
5916 /* If we are processing SET_DEST, we are done. */
5917 if (in_dest)
5918 return x;
5919
5920 return expand_compound_operation (x);
5921
5922 case SET:
5923 return simplify_set (x);
5924
5925 case AND:
5926 case IOR:
5927 return simplify_logical (x);
5928
5929 case ASHIFT:
5930 case LSHIFTRT:
5931 case ASHIFTRT:
5932 case ROTATE:
5933 case ROTATERT:
5934 /* If this is a shift by a constant amount, simplify it. */
5935 if (CONST_INT_P (XEXP (x, 1)))
5936 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5937 INTVAL (XEXP (x, 1)));
5938
5939 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5940 SUBST (XEXP (x, 1),
5941 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5942 ((unsigned HOST_WIDE_INT) 1
5943 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5944 - 1,
5945 0));
5946 break;
5947
5948 default:
5949 break;
5950 }
5951
5952 return x;
5953 }
5954 \f
5955 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5956
5957 static rtx
5958 simplify_if_then_else (rtx x)
5959 {
5960 enum machine_mode mode = GET_MODE (x);
5961 rtx cond = XEXP (x, 0);
5962 rtx true_rtx = XEXP (x, 1);
5963 rtx false_rtx = XEXP (x, 2);
5964 enum rtx_code true_code = GET_CODE (cond);
5965 int comparison_p = COMPARISON_P (cond);
5966 rtx temp;
5967 int i;
5968 enum rtx_code false_code;
5969 rtx reversed;
5970
5971 /* Simplify storing of the truth value. */
5972 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5973 return simplify_gen_relational (true_code, mode, VOIDmode,
5974 XEXP (cond, 0), XEXP (cond, 1));
5975
5976 /* Also when the truth value has to be reversed. */
5977 if (comparison_p
5978 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5979 && (reversed = reversed_comparison (cond, mode)))
5980 return reversed;
5981
5982 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5983 in it is being compared against certain values. Get the true and false
5984 comparisons and see if that says anything about the value of each arm. */
5985
5986 if (comparison_p
5987 && ((false_code = reversed_comparison_code (cond, NULL))
5988 != UNKNOWN)
5989 && REG_P (XEXP (cond, 0)))
5990 {
5991 HOST_WIDE_INT nzb;
5992 rtx from = XEXP (cond, 0);
5993 rtx true_val = XEXP (cond, 1);
5994 rtx false_val = true_val;
5995 int swapped = 0;
5996
5997 /* If FALSE_CODE is EQ, swap the codes and arms. */
5998
5999 if (false_code == EQ)
6000 {
6001 swapped = 1, true_code = EQ, false_code = NE;
6002 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
6003 }
6004
6005 /* If we are comparing against zero and the expression being tested has
6006 only a single bit that might be nonzero, that is its value when it is
6007 not equal to zero. Similarly if it is known to be -1 or 0. */
6008
6009 if (true_code == EQ && true_val == const0_rtx
6010 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
6011 {
6012 false_code = EQ;
6013 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
6014 }
6015 else if (true_code == EQ && true_val == const0_rtx
6016 && (num_sign_bit_copies (from, GET_MODE (from))
6017 == GET_MODE_PRECISION (GET_MODE (from))))
6018 {
6019 false_code = EQ;
6020 false_val = constm1_rtx;
6021 }
6022
6023 /* Now simplify an arm if we know the value of the register in the
6024 branch and it is used in the arm. Be careful due to the potential
6025 of locally-shared RTL. */
6026
6027 if (reg_mentioned_p (from, true_rtx))
6028 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6029 from, true_val),
6030 pc_rtx, pc_rtx, 0, 0, 0);
6031 if (reg_mentioned_p (from, false_rtx))
6032 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6033 from, false_val),
6034 pc_rtx, pc_rtx, 0, 0, 0);
6035
6036 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6037 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6038
6039 true_rtx = XEXP (x, 1);
6040 false_rtx = XEXP (x, 2);
6041 true_code = GET_CODE (cond);
6042 }
6043
6044 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6045 reversed, do so to avoid needing two sets of patterns for
6046 subtract-and-branch insns. Similarly if we have a constant in the true
6047 arm, the false arm is the same as the first operand of the comparison, or
6048 the false arm is more complicated than the true arm. */
6049
6050 if (comparison_p
6051 && reversed_comparison_code (cond, NULL) != UNKNOWN
6052 && (true_rtx == pc_rtx
6053 || (CONSTANT_P (true_rtx)
6054 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6055 || true_rtx == const0_rtx
6056 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6057 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6058 && !OBJECT_P (false_rtx))
6059 || reg_mentioned_p (true_rtx, false_rtx)
6060 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6061 {
6062 true_code = reversed_comparison_code (cond, NULL);
6063 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6064 SUBST (XEXP (x, 1), false_rtx);
6065 SUBST (XEXP (x, 2), true_rtx);
6066
6067 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
6068 cond = XEXP (x, 0);
6069
6070 /* It is possible that the conditional has been simplified out. */
6071 true_code = GET_CODE (cond);
6072 comparison_p = COMPARISON_P (cond);
6073 }
6074
6075 /* If the two arms are identical, we don't need the comparison. */
6076
6077 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6078 return true_rtx;
6079
6080 /* Convert a == b ? b : a to "a". */
6081 if (true_code == EQ && ! side_effects_p (cond)
6082 && !HONOR_NANS (mode)
6083 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6084 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6085 return false_rtx;
6086 else if (true_code == NE && ! side_effects_p (cond)
6087 && !HONOR_NANS (mode)
6088 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6089 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6090 return true_rtx;
6091
6092 /* Look for cases where we have (abs x) or (neg (abs X)). */
6093
6094 if (GET_MODE_CLASS (mode) == MODE_INT
6095 && comparison_p
6096 && XEXP (cond, 1) == const0_rtx
6097 && GET_CODE (false_rtx) == NEG
6098 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6099 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6100 && ! side_effects_p (true_rtx))
6101 switch (true_code)
6102 {
6103 case GT:
6104 case GE:
6105 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6106 case LT:
6107 case LE:
6108 return
6109 simplify_gen_unary (NEG, mode,
6110 simplify_gen_unary (ABS, mode, true_rtx, mode),
6111 mode);
6112 default:
6113 break;
6114 }
6115
6116 /* Look for MIN or MAX. */
6117
6118 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6119 && comparison_p
6120 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6121 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6122 && ! side_effects_p (cond))
6123 switch (true_code)
6124 {
6125 case GE:
6126 case GT:
6127 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6128 case LE:
6129 case LT:
6130 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6131 case GEU:
6132 case GTU:
6133 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6134 case LEU:
6135 case LTU:
6136 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6137 default:
6138 break;
6139 }
6140
6141 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6142 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6143 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6144 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6145 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6146 neither 1 or -1, but it isn't worth checking for. */
6147
6148 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6149 && comparison_p
6150 && GET_MODE_CLASS (mode) == MODE_INT
6151 && ! side_effects_p (x))
6152 {
6153 rtx t = make_compound_operation (true_rtx, SET);
6154 rtx f = make_compound_operation (false_rtx, SET);
6155 rtx cond_op0 = XEXP (cond, 0);
6156 rtx cond_op1 = XEXP (cond, 1);
6157 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6158 enum machine_mode m = mode;
6159 rtx z = 0, c1 = NULL_RTX;
6160
6161 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6162 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6163 || GET_CODE (t) == ASHIFT
6164 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6165 && rtx_equal_p (XEXP (t, 0), f))
6166 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6167
6168 /* If an identity-zero op is commutative, check whether there
6169 would be a match if we swapped the operands. */
6170 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6171 || GET_CODE (t) == XOR)
6172 && rtx_equal_p (XEXP (t, 1), f))
6173 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6174 else if (GET_CODE (t) == SIGN_EXTEND
6175 && (GET_CODE (XEXP (t, 0)) == PLUS
6176 || GET_CODE (XEXP (t, 0)) == MINUS
6177 || GET_CODE (XEXP (t, 0)) == IOR
6178 || GET_CODE (XEXP (t, 0)) == XOR
6179 || GET_CODE (XEXP (t, 0)) == ASHIFT
6180 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6181 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6182 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6183 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6184 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6185 && (num_sign_bit_copies (f, GET_MODE (f))
6186 > (unsigned int)
6187 (GET_MODE_PRECISION (mode)
6188 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6189 {
6190 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6191 extend_op = SIGN_EXTEND;
6192 m = GET_MODE (XEXP (t, 0));
6193 }
6194 else if (GET_CODE (t) == SIGN_EXTEND
6195 && (GET_CODE (XEXP (t, 0)) == PLUS
6196 || GET_CODE (XEXP (t, 0)) == IOR
6197 || GET_CODE (XEXP (t, 0)) == XOR)
6198 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6199 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6200 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6201 && (num_sign_bit_copies (f, GET_MODE (f))
6202 > (unsigned int)
6203 (GET_MODE_PRECISION (mode)
6204 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6205 {
6206 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6207 extend_op = SIGN_EXTEND;
6208 m = GET_MODE (XEXP (t, 0));
6209 }
6210 else if (GET_CODE (t) == ZERO_EXTEND
6211 && (GET_CODE (XEXP (t, 0)) == PLUS
6212 || GET_CODE (XEXP (t, 0)) == MINUS
6213 || GET_CODE (XEXP (t, 0)) == IOR
6214 || GET_CODE (XEXP (t, 0)) == XOR
6215 || GET_CODE (XEXP (t, 0)) == ASHIFT
6216 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6217 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6218 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6219 && HWI_COMPUTABLE_MODE_P (mode)
6220 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6221 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6222 && ((nonzero_bits (f, GET_MODE (f))
6223 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6224 == 0))
6225 {
6226 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6227 extend_op = ZERO_EXTEND;
6228 m = GET_MODE (XEXP (t, 0));
6229 }
6230 else if (GET_CODE (t) == ZERO_EXTEND
6231 && (GET_CODE (XEXP (t, 0)) == PLUS
6232 || GET_CODE (XEXP (t, 0)) == IOR
6233 || GET_CODE (XEXP (t, 0)) == XOR)
6234 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6235 && HWI_COMPUTABLE_MODE_P (mode)
6236 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6237 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6238 && ((nonzero_bits (f, GET_MODE (f))
6239 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6240 == 0))
6241 {
6242 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6243 extend_op = ZERO_EXTEND;
6244 m = GET_MODE (XEXP (t, 0));
6245 }
6246
6247 if (z)
6248 {
6249 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6250 cond_op0, cond_op1),
6251 pc_rtx, pc_rtx, 0, 0, 0);
6252 temp = simplify_gen_binary (MULT, m, temp,
6253 simplify_gen_binary (MULT, m, c1,
6254 const_true_rtx));
6255 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6256 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6257
6258 if (extend_op != UNKNOWN)
6259 temp = simplify_gen_unary (extend_op, mode, temp, m);
6260
6261 return temp;
6262 }
6263 }
6264
6265 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6266 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6267 negation of a single bit, we can convert this operation to a shift. We
6268 can actually do this more generally, but it doesn't seem worth it. */
6269
6270 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6271 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6272 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6273 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6274 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6275 == GET_MODE_PRECISION (mode))
6276 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6277 return
6278 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6279 gen_lowpart (mode, XEXP (cond, 0)), i);
6280
6281 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6282 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6283 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6284 && GET_MODE (XEXP (cond, 0)) == mode
6285 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6286 == nonzero_bits (XEXP (cond, 0), mode)
6287 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6288 return XEXP (cond, 0);
6289
6290 return x;
6291 }
6292 \f
6293 /* Simplify X, a SET expression. Return the new expression. */
6294
6295 static rtx
6296 simplify_set (rtx x)
6297 {
6298 rtx src = SET_SRC (x);
6299 rtx dest = SET_DEST (x);
6300 enum machine_mode mode
6301 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6302 rtx other_insn;
6303 rtx *cc_use;
6304
6305 /* (set (pc) (return)) gets written as (return). */
6306 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6307 return src;
6308
6309 /* Now that we know for sure which bits of SRC we are using, see if we can
6310 simplify the expression for the object knowing that we only need the
6311 low-order bits. */
6312
6313 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6314 {
6315 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6316 SUBST (SET_SRC (x), src);
6317 }
6318
6319 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6320 the comparison result and try to simplify it unless we already have used
6321 undobuf.other_insn. */
6322 if ((GET_MODE_CLASS (mode) == MODE_CC
6323 || GET_CODE (src) == COMPARE
6324 || CC0_P (dest))
6325 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6326 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6327 && COMPARISON_P (*cc_use)
6328 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6329 {
6330 enum rtx_code old_code = GET_CODE (*cc_use);
6331 enum rtx_code new_code;
6332 rtx op0, op1, tmp;
6333 int other_changed = 0;
6334 rtx inner_compare = NULL_RTX;
6335 enum machine_mode compare_mode = GET_MODE (dest);
6336
6337 if (GET_CODE (src) == COMPARE)
6338 {
6339 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6340 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6341 {
6342 inner_compare = op0;
6343 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6344 }
6345 }
6346 else
6347 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6348
6349 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6350 op0, op1);
6351 if (!tmp)
6352 new_code = old_code;
6353 else if (!CONSTANT_P (tmp))
6354 {
6355 new_code = GET_CODE (tmp);
6356 op0 = XEXP (tmp, 0);
6357 op1 = XEXP (tmp, 1);
6358 }
6359 else
6360 {
6361 rtx pat = PATTERN (other_insn);
6362 undobuf.other_insn = other_insn;
6363 SUBST (*cc_use, tmp);
6364
6365 /* Attempt to simplify CC user. */
6366 if (GET_CODE (pat) == SET)
6367 {
6368 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6369 if (new_rtx != NULL_RTX)
6370 SUBST (SET_SRC (pat), new_rtx);
6371 }
6372
6373 /* Convert X into a no-op move. */
6374 SUBST (SET_DEST (x), pc_rtx);
6375 SUBST (SET_SRC (x), pc_rtx);
6376 return x;
6377 }
6378
6379 /* Simplify our comparison, if possible. */
6380 new_code = simplify_comparison (new_code, &op0, &op1);
6381
6382 #ifdef SELECT_CC_MODE
6383 /* If this machine has CC modes other than CCmode, check to see if we
6384 need to use a different CC mode here. */
6385 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6386 compare_mode = GET_MODE (op0);
6387 else if (inner_compare
6388 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6389 && new_code == old_code
6390 && op0 == XEXP (inner_compare, 0)
6391 && op1 == XEXP (inner_compare, 1))
6392 compare_mode = GET_MODE (inner_compare);
6393 else
6394 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6395
6396 #ifndef HAVE_cc0
6397 /* If the mode changed, we have to change SET_DEST, the mode in the
6398 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6399 a hard register, just build new versions with the proper mode. If it
6400 is a pseudo, we lose unless it is only time we set the pseudo, in
6401 which case we can safely change its mode. */
6402 if (compare_mode != GET_MODE (dest))
6403 {
6404 if (can_change_dest_mode (dest, 0, compare_mode))
6405 {
6406 unsigned int regno = REGNO (dest);
6407 rtx new_dest;
6408
6409 if (regno < FIRST_PSEUDO_REGISTER)
6410 new_dest = gen_rtx_REG (compare_mode, regno);
6411 else
6412 {
6413 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6414 new_dest = regno_reg_rtx[regno];
6415 }
6416
6417 SUBST (SET_DEST (x), new_dest);
6418 SUBST (XEXP (*cc_use, 0), new_dest);
6419 other_changed = 1;
6420
6421 dest = new_dest;
6422 }
6423 }
6424 #endif /* cc0 */
6425 #endif /* SELECT_CC_MODE */
6426
6427 /* If the code changed, we have to build a new comparison in
6428 undobuf.other_insn. */
6429 if (new_code != old_code)
6430 {
6431 int other_changed_previously = other_changed;
6432 unsigned HOST_WIDE_INT mask;
6433 rtx old_cc_use = *cc_use;
6434
6435 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6436 dest, const0_rtx));
6437 other_changed = 1;
6438
6439 /* If the only change we made was to change an EQ into an NE or
6440 vice versa, OP0 has only one bit that might be nonzero, and OP1
6441 is zero, check if changing the user of the condition code will
6442 produce a valid insn. If it won't, we can keep the original code
6443 in that insn by surrounding our operation with an XOR. */
6444
6445 if (((old_code == NE && new_code == EQ)
6446 || (old_code == EQ && new_code == NE))
6447 && ! other_changed_previously && op1 == const0_rtx
6448 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6449 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6450 {
6451 rtx pat = PATTERN (other_insn), note = 0;
6452
6453 if ((recog_for_combine (&pat, other_insn, &note) < 0
6454 && ! check_asm_operands (pat)))
6455 {
6456 *cc_use = old_cc_use;
6457 other_changed = 0;
6458
6459 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
6460 op0, GEN_INT (mask));
6461 }
6462 }
6463 }
6464
6465 if (other_changed)
6466 undobuf.other_insn = other_insn;
6467
6468 /* Otherwise, if we didn't previously have a COMPARE in the
6469 correct mode, we need one. */
6470 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6471 {
6472 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6473 src = SET_SRC (x);
6474 }
6475 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6476 {
6477 SUBST (SET_SRC (x), op0);
6478 src = SET_SRC (x);
6479 }
6480 /* Otherwise, update the COMPARE if needed. */
6481 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6482 {
6483 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6484 src = SET_SRC (x);
6485 }
6486 }
6487 else
6488 {
6489 /* Get SET_SRC in a form where we have placed back any
6490 compound expressions. Then do the checks below. */
6491 src = make_compound_operation (src, SET);
6492 SUBST (SET_SRC (x), src);
6493 }
6494
6495 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6496 and X being a REG or (subreg (reg)), we may be able to convert this to
6497 (set (subreg:m2 x) (op)).
6498
6499 We can always do this if M1 is narrower than M2 because that means that
6500 we only care about the low bits of the result.
6501
6502 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6503 perform a narrower operation than requested since the high-order bits will
6504 be undefined. On machine where it is defined, this transformation is safe
6505 as long as M1 and M2 have the same number of words. */
6506
6507 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6508 && !OBJECT_P (SUBREG_REG (src))
6509 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6510 / UNITS_PER_WORD)
6511 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6512 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6513 #ifndef WORD_REGISTER_OPERATIONS
6514 && (GET_MODE_SIZE (GET_MODE (src))
6515 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6516 #endif
6517 #ifdef CANNOT_CHANGE_MODE_CLASS
6518 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6519 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6520 GET_MODE (SUBREG_REG (src)),
6521 GET_MODE (src)))
6522 #endif
6523 && (REG_P (dest)
6524 || (GET_CODE (dest) == SUBREG
6525 && REG_P (SUBREG_REG (dest)))))
6526 {
6527 SUBST (SET_DEST (x),
6528 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6529 dest));
6530 SUBST (SET_SRC (x), SUBREG_REG (src));
6531
6532 src = SET_SRC (x), dest = SET_DEST (x);
6533 }
6534
6535 #ifdef HAVE_cc0
6536 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6537 in SRC. */
6538 if (dest == cc0_rtx
6539 && GET_CODE (src) == SUBREG
6540 && subreg_lowpart_p (src)
6541 && (GET_MODE_PRECISION (GET_MODE (src))
6542 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6543 {
6544 rtx inner = SUBREG_REG (src);
6545 enum machine_mode inner_mode = GET_MODE (inner);
6546
6547 /* Here we make sure that we don't have a sign bit on. */
6548 if (val_signbit_known_clear_p (GET_MODE (src),
6549 nonzero_bits (inner, inner_mode)))
6550 {
6551 SUBST (SET_SRC (x), inner);
6552 src = SET_SRC (x);
6553 }
6554 }
6555 #endif
6556
6557 #ifdef LOAD_EXTEND_OP
6558 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6559 would require a paradoxical subreg. Replace the subreg with a
6560 zero_extend to avoid the reload that would otherwise be required. */
6561
6562 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6563 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6564 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6565 && SUBREG_BYTE (src) == 0
6566 && paradoxical_subreg_p (src)
6567 && MEM_P (SUBREG_REG (src)))
6568 {
6569 SUBST (SET_SRC (x),
6570 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6571 GET_MODE (src), SUBREG_REG (src)));
6572
6573 src = SET_SRC (x);
6574 }
6575 #endif
6576
6577 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6578 are comparing an item known to be 0 or -1 against 0, use a logical
6579 operation instead. Check for one of the arms being an IOR of the other
6580 arm with some value. We compute three terms to be IOR'ed together. In
6581 practice, at most two will be nonzero. Then we do the IOR's. */
6582
6583 if (GET_CODE (dest) != PC
6584 && GET_CODE (src) == IF_THEN_ELSE
6585 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6586 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6587 && XEXP (XEXP (src, 0), 1) == const0_rtx
6588 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6589 #ifdef HAVE_conditional_move
6590 && ! can_conditionally_move_p (GET_MODE (src))
6591 #endif
6592 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6593 GET_MODE (XEXP (XEXP (src, 0), 0)))
6594 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6595 && ! side_effects_p (src))
6596 {
6597 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6598 ? XEXP (src, 1) : XEXP (src, 2));
6599 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6600 ? XEXP (src, 2) : XEXP (src, 1));
6601 rtx term1 = const0_rtx, term2, term3;
6602
6603 if (GET_CODE (true_rtx) == IOR
6604 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6605 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6606 else if (GET_CODE (true_rtx) == IOR
6607 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6608 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6609 else if (GET_CODE (false_rtx) == IOR
6610 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6611 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6612 else if (GET_CODE (false_rtx) == IOR
6613 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6614 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6615
6616 term2 = simplify_gen_binary (AND, GET_MODE (src),
6617 XEXP (XEXP (src, 0), 0), true_rtx);
6618 term3 = simplify_gen_binary (AND, GET_MODE (src),
6619 simplify_gen_unary (NOT, GET_MODE (src),
6620 XEXP (XEXP (src, 0), 0),
6621 GET_MODE (src)),
6622 false_rtx);
6623
6624 SUBST (SET_SRC (x),
6625 simplify_gen_binary (IOR, GET_MODE (src),
6626 simplify_gen_binary (IOR, GET_MODE (src),
6627 term1, term2),
6628 term3));
6629
6630 src = SET_SRC (x);
6631 }
6632
6633 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6634 whole thing fail. */
6635 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6636 return src;
6637 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6638 return dest;
6639 else
6640 /* Convert this into a field assignment operation, if possible. */
6641 return make_field_assignment (x);
6642 }
6643 \f
6644 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6645 result. */
6646
6647 static rtx
6648 simplify_logical (rtx x)
6649 {
6650 enum machine_mode mode = GET_MODE (x);
6651 rtx op0 = XEXP (x, 0);
6652 rtx op1 = XEXP (x, 1);
6653
6654 switch (GET_CODE (x))
6655 {
6656 case AND:
6657 /* We can call simplify_and_const_int only if we don't lose
6658 any (sign) bits when converting INTVAL (op1) to
6659 "unsigned HOST_WIDE_INT". */
6660 if (CONST_INT_P (op1)
6661 && (HWI_COMPUTABLE_MODE_P (mode)
6662 || INTVAL (op1) > 0))
6663 {
6664 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6665 if (GET_CODE (x) != AND)
6666 return x;
6667
6668 op0 = XEXP (x, 0);
6669 op1 = XEXP (x, 1);
6670 }
6671
6672 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6673 apply the distributive law and then the inverse distributive
6674 law to see if things simplify. */
6675 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6676 {
6677 rtx result = distribute_and_simplify_rtx (x, 0);
6678 if (result)
6679 return result;
6680 }
6681 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6682 {
6683 rtx result = distribute_and_simplify_rtx (x, 1);
6684 if (result)
6685 return result;
6686 }
6687 break;
6688
6689 case IOR:
6690 /* If we have (ior (and A B) C), apply the distributive law and then
6691 the inverse distributive law to see if things simplify. */
6692
6693 if (GET_CODE (op0) == AND)
6694 {
6695 rtx result = distribute_and_simplify_rtx (x, 0);
6696 if (result)
6697 return result;
6698 }
6699
6700 if (GET_CODE (op1) == AND)
6701 {
6702 rtx result = distribute_and_simplify_rtx (x, 1);
6703 if (result)
6704 return result;
6705 }
6706 break;
6707
6708 default:
6709 gcc_unreachable ();
6710 }
6711
6712 return x;
6713 }
6714 \f
6715 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6716 operations" because they can be replaced with two more basic operations.
6717 ZERO_EXTEND is also considered "compound" because it can be replaced with
6718 an AND operation, which is simpler, though only one operation.
6719
6720 The function expand_compound_operation is called with an rtx expression
6721 and will convert it to the appropriate shifts and AND operations,
6722 simplifying at each stage.
6723
6724 The function make_compound_operation is called to convert an expression
6725 consisting of shifts and ANDs into the equivalent compound expression.
6726 It is the inverse of this function, loosely speaking. */
6727
6728 static rtx
6729 expand_compound_operation (rtx x)
6730 {
6731 unsigned HOST_WIDE_INT pos = 0, len;
6732 int unsignedp = 0;
6733 unsigned int modewidth;
6734 rtx tem;
6735
6736 switch (GET_CODE (x))
6737 {
6738 case ZERO_EXTEND:
6739 unsignedp = 1;
6740 case SIGN_EXTEND:
6741 /* We can't necessarily use a const_int for a multiword mode;
6742 it depends on implicitly extending the value.
6743 Since we don't know the right way to extend it,
6744 we can't tell whether the implicit way is right.
6745
6746 Even for a mode that is no wider than a const_int,
6747 we can't win, because we need to sign extend one of its bits through
6748 the rest of it, and we don't know which bit. */
6749 if (CONST_INT_P (XEXP (x, 0)))
6750 return x;
6751
6752 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6753 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6754 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6755 reloaded. If not for that, MEM's would very rarely be safe.
6756
6757 Reject MODEs bigger than a word, because we might not be able
6758 to reference a two-register group starting with an arbitrary register
6759 (and currently gen_lowpart might crash for a SUBREG). */
6760
6761 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6762 return x;
6763
6764 /* Reject MODEs that aren't scalar integers because turning vector
6765 or complex modes into shifts causes problems. */
6766
6767 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6768 return x;
6769
6770 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6771 /* If the inner object has VOIDmode (the only way this can happen
6772 is if it is an ASM_OPERANDS), we can't do anything since we don't
6773 know how much masking to do. */
6774 if (len == 0)
6775 return x;
6776
6777 break;
6778
6779 case ZERO_EXTRACT:
6780 unsignedp = 1;
6781
6782 /* ... fall through ... */
6783
6784 case SIGN_EXTRACT:
6785 /* If the operand is a CLOBBER, just return it. */
6786 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6787 return XEXP (x, 0);
6788
6789 if (!CONST_INT_P (XEXP (x, 1))
6790 || !CONST_INT_P (XEXP (x, 2))
6791 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6792 return x;
6793
6794 /* Reject MODEs that aren't scalar integers because turning vector
6795 or complex modes into shifts causes problems. */
6796
6797 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6798 return x;
6799
6800 len = INTVAL (XEXP (x, 1));
6801 pos = INTVAL (XEXP (x, 2));
6802
6803 /* This should stay within the object being extracted, fail otherwise. */
6804 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
6805 return x;
6806
6807 if (BITS_BIG_ENDIAN)
6808 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
6809
6810 break;
6811
6812 default:
6813 return x;
6814 }
6815 /* Convert sign extension to zero extension, if we know that the high
6816 bit is not set, as this is easier to optimize. It will be converted
6817 back to cheaper alternative in make_extraction. */
6818 if (GET_CODE (x) == SIGN_EXTEND
6819 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6820 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6821 & ~(((unsigned HOST_WIDE_INT)
6822 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6823 >> 1))
6824 == 0)))
6825 {
6826 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6827 rtx temp2 = expand_compound_operation (temp);
6828
6829 /* Make sure this is a profitable operation. */
6830 if (set_src_cost (x, optimize_this_for_speed_p)
6831 > set_src_cost (temp2, optimize_this_for_speed_p))
6832 return temp2;
6833 else if (set_src_cost (x, optimize_this_for_speed_p)
6834 > set_src_cost (temp, optimize_this_for_speed_p))
6835 return temp;
6836 else
6837 return x;
6838 }
6839
6840 /* We can optimize some special cases of ZERO_EXTEND. */
6841 if (GET_CODE (x) == ZERO_EXTEND)
6842 {
6843 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6844 know that the last value didn't have any inappropriate bits
6845 set. */
6846 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6847 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6848 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6849 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6850 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6851 return XEXP (XEXP (x, 0), 0);
6852
6853 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6854 if (GET_CODE (XEXP (x, 0)) == SUBREG
6855 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6856 && subreg_lowpart_p (XEXP (x, 0))
6857 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6858 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6859 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6860 return SUBREG_REG (XEXP (x, 0));
6861
6862 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6863 is a comparison and STORE_FLAG_VALUE permits. This is like
6864 the first case, but it works even when GET_MODE (x) is larger
6865 than HOST_WIDE_INT. */
6866 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6867 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6868 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6869 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6870 <= HOST_BITS_PER_WIDE_INT)
6871 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6872 return XEXP (XEXP (x, 0), 0);
6873
6874 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6875 if (GET_CODE (XEXP (x, 0)) == SUBREG
6876 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6877 && subreg_lowpart_p (XEXP (x, 0))
6878 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6879 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6880 <= HOST_BITS_PER_WIDE_INT)
6881 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6882 return SUBREG_REG (XEXP (x, 0));
6883
6884 }
6885
6886 /* If we reach here, we want to return a pair of shifts. The inner
6887 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6888 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6889 logical depending on the value of UNSIGNEDP.
6890
6891 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6892 converted into an AND of a shift.
6893
6894 We must check for the case where the left shift would have a negative
6895 count. This can happen in a case like (x >> 31) & 255 on machines
6896 that can't shift by a constant. On those machines, we would first
6897 combine the shift with the AND to produce a variable-position
6898 extraction. Then the constant of 31 would be substituted in
6899 to produce such a position. */
6900
6901 modewidth = GET_MODE_PRECISION (GET_MODE (x));
6902 if (modewidth >= pos + len)
6903 {
6904 enum machine_mode mode = GET_MODE (x);
6905 tem = gen_lowpart (mode, XEXP (x, 0));
6906 if (!tem || GET_CODE (tem) == CLOBBER)
6907 return x;
6908 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6909 tem, modewidth - pos - len);
6910 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6911 mode, tem, modewidth - len);
6912 }
6913 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6914 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6915 simplify_shift_const (NULL_RTX, LSHIFTRT,
6916 GET_MODE (x),
6917 XEXP (x, 0), pos),
6918 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
6919 else
6920 /* Any other cases we can't handle. */
6921 return x;
6922
6923 /* If we couldn't do this for some reason, return the original
6924 expression. */
6925 if (GET_CODE (tem) == CLOBBER)
6926 return x;
6927
6928 return tem;
6929 }
6930 \f
6931 /* X is a SET which contains an assignment of one object into
6932 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6933 or certain SUBREGS). If possible, convert it into a series of
6934 logical operations.
6935
6936 We half-heartedly support variable positions, but do not at all
6937 support variable lengths. */
6938
6939 static const_rtx
6940 expand_field_assignment (const_rtx x)
6941 {
6942 rtx inner;
6943 rtx pos; /* Always counts from low bit. */
6944 int len;
6945 rtx mask, cleared, masked;
6946 enum machine_mode compute_mode;
6947
6948 /* Loop until we find something we can't simplify. */
6949 while (1)
6950 {
6951 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6952 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6953 {
6954 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6955 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
6956 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6957 }
6958 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6959 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6960 {
6961 inner = XEXP (SET_DEST (x), 0);
6962 len = INTVAL (XEXP (SET_DEST (x), 1));
6963 pos = XEXP (SET_DEST (x), 2);
6964
6965 /* A constant position should stay within the width of INNER. */
6966 if (CONST_INT_P (pos)
6967 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
6968 break;
6969
6970 if (BITS_BIG_ENDIAN)
6971 {
6972 if (CONST_INT_P (pos))
6973 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
6974 - INTVAL (pos));
6975 else if (GET_CODE (pos) == MINUS
6976 && CONST_INT_P (XEXP (pos, 1))
6977 && (INTVAL (XEXP (pos, 1))
6978 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
6979 /* If position is ADJUST - X, new position is X. */
6980 pos = XEXP (pos, 0);
6981 else
6982 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6983 GEN_INT (GET_MODE_PRECISION (
6984 GET_MODE (inner))
6985 - len),
6986 pos);
6987 }
6988 }
6989
6990 /* A SUBREG between two modes that occupy the same numbers of words
6991 can be done by moving the SUBREG to the source. */
6992 else if (GET_CODE (SET_DEST (x)) == SUBREG
6993 /* We need SUBREGs to compute nonzero_bits properly. */
6994 && nonzero_sign_valid
6995 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6996 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6997 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6998 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6999 {
7000 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
7001 gen_lowpart
7002 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7003 SET_SRC (x)));
7004 continue;
7005 }
7006 else
7007 break;
7008
7009 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7010 inner = SUBREG_REG (inner);
7011
7012 compute_mode = GET_MODE (inner);
7013
7014 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7015 if (! SCALAR_INT_MODE_P (compute_mode))
7016 {
7017 enum machine_mode imode;
7018
7019 /* Don't do anything for vector or complex integral types. */
7020 if (! FLOAT_MODE_P (compute_mode))
7021 break;
7022
7023 /* Try to find an integral mode to pun with. */
7024 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7025 if (imode == BLKmode)
7026 break;
7027
7028 compute_mode = imode;
7029 inner = gen_lowpart (imode, inner);
7030 }
7031
7032 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7033 if (len >= HOST_BITS_PER_WIDE_INT)
7034 break;
7035
7036 /* Now compute the equivalent expression. Make a copy of INNER
7037 for the SET_DEST in case it is a MEM into which we will substitute;
7038 we don't want shared RTL in that case. */
7039 mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << len) - 1);
7040 cleared = simplify_gen_binary (AND, compute_mode,
7041 simplify_gen_unary (NOT, compute_mode,
7042 simplify_gen_binary (ASHIFT,
7043 compute_mode,
7044 mask, pos),
7045 compute_mode),
7046 inner);
7047 masked = simplify_gen_binary (ASHIFT, compute_mode,
7048 simplify_gen_binary (
7049 AND, compute_mode,
7050 gen_lowpart (compute_mode, SET_SRC (x)),
7051 mask),
7052 pos);
7053
7054 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
7055 simplify_gen_binary (IOR, compute_mode,
7056 cleared, masked));
7057 }
7058
7059 return x;
7060 }
7061 \f
7062 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7063 it is an RTX that represents a variable starting position; otherwise,
7064 POS is the (constant) starting bit position (counted from the LSB).
7065
7066 UNSIGNEDP is nonzero for an unsigned reference and zero for a
7067 signed reference.
7068
7069 IN_DEST is nonzero if this is a reference in the destination of a
7070 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7071 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7072 be used.
7073
7074 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7075 ZERO_EXTRACT should be built even for bits starting at bit 0.
7076
7077 MODE is the desired mode of the result (if IN_DEST == 0).
7078
7079 The result is an RTX for the extraction or NULL_RTX if the target
7080 can't handle it. */
7081
7082 static rtx
7083 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7084 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7085 int in_dest, int in_compare)
7086 {
7087 /* This mode describes the size of the storage area
7088 to fetch the overall value from. Within that, we
7089 ignore the POS lowest bits, etc. */
7090 enum machine_mode is_mode = GET_MODE (inner);
7091 enum machine_mode inner_mode;
7092 enum machine_mode wanted_inner_mode;
7093 enum machine_mode wanted_inner_reg_mode = word_mode;
7094 enum machine_mode pos_mode = word_mode;
7095 enum machine_mode extraction_mode = word_mode;
7096 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7097 rtx new_rtx = 0;
7098 rtx orig_pos_rtx = pos_rtx;
7099 HOST_WIDE_INT orig_pos;
7100
7101 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7102 {
7103 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7104 consider just the QI as the memory to extract from.
7105 The subreg adds or removes high bits; its mode is
7106 irrelevant to the meaning of this extraction,
7107 since POS and LEN count from the lsb. */
7108 if (MEM_P (SUBREG_REG (inner)))
7109 is_mode = GET_MODE (SUBREG_REG (inner));
7110 inner = SUBREG_REG (inner);
7111 }
7112 else if (GET_CODE (inner) == ASHIFT
7113 && CONST_INT_P (XEXP (inner, 1))
7114 && pos_rtx == 0 && pos == 0
7115 && len > UINTVAL (XEXP (inner, 1)))
7116 {
7117 /* We're extracting the least significant bits of an rtx
7118 (ashift X (const_int C)), where LEN > C. Extract the
7119 least significant (LEN - C) bits of X, giving an rtx
7120 whose mode is MODE, then shift it left C times. */
7121 new_rtx = make_extraction (mode, XEXP (inner, 0),
7122 0, 0, len - INTVAL (XEXP (inner, 1)),
7123 unsignedp, in_dest, in_compare);
7124 if (new_rtx != 0)
7125 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7126 }
7127
7128 inner_mode = GET_MODE (inner);
7129
7130 if (pos_rtx && CONST_INT_P (pos_rtx))
7131 pos = INTVAL (pos_rtx), pos_rtx = 0;
7132
7133 /* See if this can be done without an extraction. We never can if the
7134 width of the field is not the same as that of some integer mode. For
7135 registers, we can only avoid the extraction if the position is at the
7136 low-order bit and this is either not in the destination or we have the
7137 appropriate STRICT_LOW_PART operation available.
7138
7139 For MEM, we can avoid an extract if the field starts on an appropriate
7140 boundary and we can change the mode of the memory reference. */
7141
7142 if (tmode != BLKmode
7143 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7144 && !MEM_P (inner)
7145 && (inner_mode == tmode
7146 || !REG_P (inner)
7147 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7148 || reg_truncated_to_mode (tmode, inner))
7149 && (! in_dest
7150 || (REG_P (inner)
7151 && have_insn_for (STRICT_LOW_PART, tmode))))
7152 || (MEM_P (inner) && pos_rtx == 0
7153 && (pos
7154 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7155 : BITS_PER_UNIT)) == 0
7156 /* We can't do this if we are widening INNER_MODE (it
7157 may not be aligned, for one thing). */
7158 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7159 && (inner_mode == tmode
7160 || (! mode_dependent_address_p (XEXP (inner, 0))
7161 && ! MEM_VOLATILE_P (inner))))))
7162 {
7163 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7164 field. If the original and current mode are the same, we need not
7165 adjust the offset. Otherwise, we do if bytes big endian.
7166
7167 If INNER is not a MEM, get a piece consisting of just the field
7168 of interest (in this case POS % BITS_PER_WORD must be 0). */
7169
7170 if (MEM_P (inner))
7171 {
7172 HOST_WIDE_INT offset;
7173
7174 /* POS counts from lsb, but make OFFSET count in memory order. */
7175 if (BYTES_BIG_ENDIAN)
7176 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7177 else
7178 offset = pos / BITS_PER_UNIT;
7179
7180 new_rtx = adjust_address_nv (inner, tmode, offset);
7181 }
7182 else if (REG_P (inner))
7183 {
7184 if (tmode != inner_mode)
7185 {
7186 /* We can't call gen_lowpart in a DEST since we
7187 always want a SUBREG (see below) and it would sometimes
7188 return a new hard register. */
7189 if (pos || in_dest)
7190 {
7191 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7192
7193 if (WORDS_BIG_ENDIAN
7194 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7195 final_word = ((GET_MODE_SIZE (inner_mode)
7196 - GET_MODE_SIZE (tmode))
7197 / UNITS_PER_WORD) - final_word;
7198
7199 final_word *= UNITS_PER_WORD;
7200 if (BYTES_BIG_ENDIAN &&
7201 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7202 final_word += (GET_MODE_SIZE (inner_mode)
7203 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7204
7205 /* Avoid creating invalid subregs, for example when
7206 simplifying (x>>32)&255. */
7207 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7208 return NULL_RTX;
7209
7210 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7211 }
7212 else
7213 new_rtx = gen_lowpart (tmode, inner);
7214 }
7215 else
7216 new_rtx = inner;
7217 }
7218 else
7219 new_rtx = force_to_mode (inner, tmode,
7220 len >= HOST_BITS_PER_WIDE_INT
7221 ? ~(unsigned HOST_WIDE_INT) 0
7222 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7223 0);
7224
7225 /* If this extraction is going into the destination of a SET,
7226 make a STRICT_LOW_PART unless we made a MEM. */
7227
7228 if (in_dest)
7229 return (MEM_P (new_rtx) ? new_rtx
7230 : (GET_CODE (new_rtx) != SUBREG
7231 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7232 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7233
7234 if (mode == tmode)
7235 return new_rtx;
7236
7237 if (CONST_INT_P (new_rtx)
7238 || GET_CODE (new_rtx) == CONST_DOUBLE)
7239 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7240 mode, new_rtx, tmode);
7241
7242 /* If we know that no extraneous bits are set, and that the high
7243 bit is not set, convert the extraction to the cheaper of
7244 sign and zero extension, that are equivalent in these cases. */
7245 if (flag_expensive_optimizations
7246 && (HWI_COMPUTABLE_MODE_P (tmode)
7247 && ((nonzero_bits (new_rtx, tmode)
7248 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7249 == 0)))
7250 {
7251 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7252 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7253
7254 /* Prefer ZERO_EXTENSION, since it gives more information to
7255 backends. */
7256 if (set_src_cost (temp, optimize_this_for_speed_p)
7257 <= set_src_cost (temp1, optimize_this_for_speed_p))
7258 return temp;
7259 return temp1;
7260 }
7261
7262 /* Otherwise, sign- or zero-extend unless we already are in the
7263 proper mode. */
7264
7265 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7266 mode, new_rtx));
7267 }
7268
7269 /* Unless this is a COMPARE or we have a funny memory reference,
7270 don't do anything with zero-extending field extracts starting at
7271 the low-order bit since they are simple AND operations. */
7272 if (pos_rtx == 0 && pos == 0 && ! in_dest
7273 && ! in_compare && unsignedp)
7274 return 0;
7275
7276 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7277 if the position is not a constant and the length is not 1. In all
7278 other cases, we would only be going outside our object in cases when
7279 an original shift would have been undefined. */
7280 if (MEM_P (inner)
7281 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7282 || (pos_rtx != 0 && len != 1)))
7283 return 0;
7284
7285 /* Get the mode to use should INNER not be a MEM, the mode for the position,
7286 and the mode for the result. */
7287 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
7288 {
7289 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
7290 pos_mode = mode_for_extraction (EP_insv, 2);
7291 extraction_mode = mode_for_extraction (EP_insv, 3);
7292 }
7293
7294 if (! in_dest && unsignedp
7295 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
7296 {
7297 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
7298 pos_mode = mode_for_extraction (EP_extzv, 3);
7299 extraction_mode = mode_for_extraction (EP_extzv, 0);
7300 }
7301
7302 if (! in_dest && ! unsignedp
7303 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
7304 {
7305 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
7306 pos_mode = mode_for_extraction (EP_extv, 3);
7307 extraction_mode = mode_for_extraction (EP_extv, 0);
7308 }
7309
7310 /* Never narrow an object, since that might not be safe. */
7311
7312 if (mode != VOIDmode
7313 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7314 extraction_mode = mode;
7315
7316 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
7317 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7318 pos_mode = GET_MODE (pos_rtx);
7319
7320 /* If this is not from memory, the desired mode is the preferred mode
7321 for an extraction pattern's first input operand, or word_mode if there
7322 is none. */
7323 if (!MEM_P (inner))
7324 wanted_inner_mode = wanted_inner_reg_mode;
7325 else
7326 {
7327 /* Be careful not to go beyond the extracted object and maintain the
7328 natural alignment of the memory. */
7329 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7330 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7331 > GET_MODE_BITSIZE (wanted_inner_mode))
7332 {
7333 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7334 gcc_assert (wanted_inner_mode != VOIDmode);
7335 }
7336
7337 /* If we have to change the mode of memory and cannot, the desired mode
7338 is EXTRACTION_MODE. */
7339 if (inner_mode != wanted_inner_mode
7340 && (mode_dependent_address_p (XEXP (inner, 0))
7341 || MEM_VOLATILE_P (inner)
7342 || pos_rtx))
7343 wanted_inner_mode = extraction_mode;
7344 }
7345
7346 orig_pos = pos;
7347
7348 if (BITS_BIG_ENDIAN)
7349 {
7350 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7351 BITS_BIG_ENDIAN style. If position is constant, compute new
7352 position. Otherwise, build subtraction.
7353 Note that POS is relative to the mode of the original argument.
7354 If it's a MEM we need to recompute POS relative to that.
7355 However, if we're extracting from (or inserting into) a register,
7356 we want to recompute POS relative to wanted_inner_mode. */
7357 int width = (MEM_P (inner)
7358 ? GET_MODE_BITSIZE (is_mode)
7359 : GET_MODE_BITSIZE (wanted_inner_mode));
7360
7361 if (pos_rtx == 0)
7362 pos = width - len - pos;
7363 else
7364 pos_rtx
7365 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
7366 /* POS may be less than 0 now, but we check for that below.
7367 Note that it can only be less than 0 if !MEM_P (inner). */
7368 }
7369
7370 /* If INNER has a wider mode, and this is a constant extraction, try to
7371 make it smaller and adjust the byte to point to the byte containing
7372 the value. */
7373 if (wanted_inner_mode != VOIDmode
7374 && inner_mode != wanted_inner_mode
7375 && ! pos_rtx
7376 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7377 && MEM_P (inner)
7378 && ! mode_dependent_address_p (XEXP (inner, 0))
7379 && ! MEM_VOLATILE_P (inner))
7380 {
7381 int offset = 0;
7382
7383 /* The computations below will be correct if the machine is big
7384 endian in both bits and bytes or little endian in bits and bytes.
7385 If it is mixed, we must adjust. */
7386
7387 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7388 adjust OFFSET to compensate. */
7389 if (BYTES_BIG_ENDIAN
7390 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7391 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7392
7393 /* We can now move to the desired byte. */
7394 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7395 * GET_MODE_SIZE (wanted_inner_mode);
7396 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7397
7398 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7399 && is_mode != wanted_inner_mode)
7400 offset = (GET_MODE_SIZE (is_mode)
7401 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7402
7403 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7404 }
7405
7406 /* If INNER is not memory, get it into the proper mode. If we are changing
7407 its mode, POS must be a constant and smaller than the size of the new
7408 mode. */
7409 else if (!MEM_P (inner))
7410 {
7411 /* On the LHS, don't create paradoxical subregs implicitely truncating
7412 the register unless TRULY_NOOP_TRUNCATION. */
7413 if (in_dest
7414 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7415 wanted_inner_mode))
7416 return NULL_RTX;
7417
7418 if (GET_MODE (inner) != wanted_inner_mode
7419 && (pos_rtx != 0
7420 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7421 return NULL_RTX;
7422
7423 if (orig_pos < 0)
7424 return NULL_RTX;
7425
7426 inner = force_to_mode (inner, wanted_inner_mode,
7427 pos_rtx
7428 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7429 ? ~(unsigned HOST_WIDE_INT) 0
7430 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7431 << orig_pos),
7432 0);
7433 }
7434
7435 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7436 have to zero extend. Otherwise, we can just use a SUBREG. */
7437 if (pos_rtx != 0
7438 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7439 {
7440 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
7441
7442 /* If we know that no extraneous bits are set, and that the high
7443 bit is not set, convert extraction to cheaper one - either
7444 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7445 cases. */
7446 if (flag_expensive_optimizations
7447 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7448 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7449 & ~(((unsigned HOST_WIDE_INT)
7450 GET_MODE_MASK (GET_MODE (pos_rtx)))
7451 >> 1))
7452 == 0)))
7453 {
7454 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
7455
7456 /* Prefer ZERO_EXTENSION, since it gives more information to
7457 backends. */
7458 if (set_src_cost (temp1, optimize_this_for_speed_p)
7459 < set_src_cost (temp, optimize_this_for_speed_p))
7460 temp = temp1;
7461 }
7462 pos_rtx = temp;
7463 }
7464 else if (pos_rtx != 0
7465 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7466 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
7467
7468 /* Make POS_RTX unless we already have it and it is correct. If we don't
7469 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7470 be a CONST_INT. */
7471 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7472 pos_rtx = orig_pos_rtx;
7473
7474 else if (pos_rtx == 0)
7475 pos_rtx = GEN_INT (pos);
7476
7477 /* Make the required operation. See if we can use existing rtx. */
7478 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7479 extraction_mode, inner, GEN_INT (len), pos_rtx);
7480 if (! in_dest)
7481 new_rtx = gen_lowpart (mode, new_rtx);
7482
7483 return new_rtx;
7484 }
7485 \f
7486 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7487 with any other operations in X. Return X without that shift if so. */
7488
7489 static rtx
7490 extract_left_shift (rtx x, int count)
7491 {
7492 enum rtx_code code = GET_CODE (x);
7493 enum machine_mode mode = GET_MODE (x);
7494 rtx tem;
7495
7496 switch (code)
7497 {
7498 case ASHIFT:
7499 /* This is the shift itself. If it is wide enough, we will return
7500 either the value being shifted if the shift count is equal to
7501 COUNT or a shift for the difference. */
7502 if (CONST_INT_P (XEXP (x, 1))
7503 && INTVAL (XEXP (x, 1)) >= count)
7504 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7505 INTVAL (XEXP (x, 1)) - count);
7506 break;
7507
7508 case NEG: case NOT:
7509 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7510 return simplify_gen_unary (code, mode, tem, mode);
7511
7512 break;
7513
7514 case PLUS: case IOR: case XOR: case AND:
7515 /* If we can safely shift this constant and we find the inner shift,
7516 make a new operation. */
7517 if (CONST_INT_P (XEXP (x, 1))
7518 && (UINTVAL (XEXP (x, 1))
7519 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7520 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7521 return simplify_gen_binary (code, mode, tem,
7522 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7523
7524 break;
7525
7526 default:
7527 break;
7528 }
7529
7530 return 0;
7531 }
7532 \f
7533 /* Look at the expression rooted at X. Look for expressions
7534 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7535 Form these expressions.
7536
7537 Return the new rtx, usually just X.
7538
7539 Also, for machines like the VAX that don't have logical shift insns,
7540 try to convert logical to arithmetic shift operations in cases where
7541 they are equivalent. This undoes the canonicalizations to logical
7542 shifts done elsewhere.
7543
7544 We try, as much as possible, to re-use rtl expressions to save memory.
7545
7546 IN_CODE says what kind of expression we are processing. Normally, it is
7547 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7548 being kludges), it is MEM. When processing the arguments of a comparison
7549 or a COMPARE against zero, it is COMPARE. */
7550
7551 static rtx
7552 make_compound_operation (rtx x, enum rtx_code in_code)
7553 {
7554 enum rtx_code code = GET_CODE (x);
7555 enum machine_mode mode = GET_MODE (x);
7556 int mode_width = GET_MODE_PRECISION (mode);
7557 rtx rhs, lhs;
7558 enum rtx_code next_code;
7559 int i, j;
7560 rtx new_rtx = 0;
7561 rtx tem;
7562 const char *fmt;
7563
7564 /* Select the code to be used in recursive calls. Once we are inside an
7565 address, we stay there. If we have a comparison, set to COMPARE,
7566 but once inside, go back to our default of SET. */
7567
7568 next_code = (code == MEM ? MEM
7569 : ((code == PLUS || code == MINUS)
7570 && SCALAR_INT_MODE_P (mode)) ? MEM
7571 : ((code == COMPARE || COMPARISON_P (x))
7572 && XEXP (x, 1) == const0_rtx) ? COMPARE
7573 : in_code == COMPARE ? SET : in_code);
7574
7575 /* Process depending on the code of this operation. If NEW is set
7576 nonzero, it will be returned. */
7577
7578 switch (code)
7579 {
7580 case ASHIFT:
7581 /* Convert shifts by constants into multiplications if inside
7582 an address. */
7583 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7584 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7585 && INTVAL (XEXP (x, 1)) >= 0
7586 && SCALAR_INT_MODE_P (mode))
7587 {
7588 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7589 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7590
7591 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7592 if (GET_CODE (new_rtx) == NEG)
7593 {
7594 new_rtx = XEXP (new_rtx, 0);
7595 multval = -multval;
7596 }
7597 multval = trunc_int_for_mode (multval, mode);
7598 new_rtx = gen_rtx_MULT (mode, new_rtx, GEN_INT (multval));
7599 }
7600 break;
7601
7602 case PLUS:
7603 lhs = XEXP (x, 0);
7604 rhs = XEXP (x, 1);
7605 lhs = make_compound_operation (lhs, next_code);
7606 rhs = make_compound_operation (rhs, next_code);
7607 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7608 && SCALAR_INT_MODE_P (mode))
7609 {
7610 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7611 XEXP (lhs, 1));
7612 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7613 }
7614 else if (GET_CODE (lhs) == MULT
7615 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7616 {
7617 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7618 simplify_gen_unary (NEG, mode,
7619 XEXP (lhs, 1),
7620 mode));
7621 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7622 }
7623 else
7624 {
7625 SUBST (XEXP (x, 0), lhs);
7626 SUBST (XEXP (x, 1), rhs);
7627 goto maybe_swap;
7628 }
7629 x = gen_lowpart (mode, new_rtx);
7630 goto maybe_swap;
7631
7632 case MINUS:
7633 lhs = XEXP (x, 0);
7634 rhs = XEXP (x, 1);
7635 lhs = make_compound_operation (lhs, next_code);
7636 rhs = make_compound_operation (rhs, next_code);
7637 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7638 && SCALAR_INT_MODE_P (mode))
7639 {
7640 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7641 XEXP (rhs, 1));
7642 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7643 }
7644 else if (GET_CODE (rhs) == MULT
7645 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7646 {
7647 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7648 simplify_gen_unary (NEG, mode,
7649 XEXP (rhs, 1),
7650 mode));
7651 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7652 }
7653 else
7654 {
7655 SUBST (XEXP (x, 0), lhs);
7656 SUBST (XEXP (x, 1), rhs);
7657 return x;
7658 }
7659 return gen_lowpart (mode, new_rtx);
7660
7661 case AND:
7662 /* If the second operand is not a constant, we can't do anything
7663 with it. */
7664 if (!CONST_INT_P (XEXP (x, 1)))
7665 break;
7666
7667 /* If the constant is a power of two minus one and the first operand
7668 is a logical right shift, make an extraction. */
7669 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7670 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7671 {
7672 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7673 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7674 0, in_code == COMPARE);
7675 }
7676
7677 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7678 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7679 && subreg_lowpart_p (XEXP (x, 0))
7680 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7681 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7682 {
7683 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7684 next_code);
7685 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7686 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7687 0, in_code == COMPARE);
7688 }
7689 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7690 else if ((GET_CODE (XEXP (x, 0)) == XOR
7691 || GET_CODE (XEXP (x, 0)) == IOR)
7692 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7693 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7694 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7695 {
7696 /* Apply the distributive law, and then try to make extractions. */
7697 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7698 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7699 XEXP (x, 1)),
7700 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7701 XEXP (x, 1)));
7702 new_rtx = make_compound_operation (new_rtx, in_code);
7703 }
7704
7705 /* If we are have (and (rotate X C) M) and C is larger than the number
7706 of bits in M, this is an extraction. */
7707
7708 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7709 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7710 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7711 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7712 {
7713 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7714 new_rtx = make_extraction (mode, new_rtx,
7715 (GET_MODE_PRECISION (mode)
7716 - INTVAL (XEXP (XEXP (x, 0), 1))),
7717 NULL_RTX, i, 1, 0, in_code == COMPARE);
7718 }
7719
7720 /* On machines without logical shifts, if the operand of the AND is
7721 a logical shift and our mask turns off all the propagated sign
7722 bits, we can replace the logical shift with an arithmetic shift. */
7723 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7724 && !have_insn_for (LSHIFTRT, mode)
7725 && have_insn_for (ASHIFTRT, mode)
7726 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7727 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7728 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7729 && mode_width <= HOST_BITS_PER_WIDE_INT)
7730 {
7731 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7732
7733 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7734 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7735 SUBST (XEXP (x, 0),
7736 gen_rtx_ASHIFTRT (mode,
7737 make_compound_operation
7738 (XEXP (XEXP (x, 0), 0), next_code),
7739 XEXP (XEXP (x, 0), 1)));
7740 }
7741
7742 /* If the constant is one less than a power of two, this might be
7743 representable by an extraction even if no shift is present.
7744 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7745 we are in a COMPARE. */
7746 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7747 new_rtx = make_extraction (mode,
7748 make_compound_operation (XEXP (x, 0),
7749 next_code),
7750 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7751
7752 /* If we are in a comparison and this is an AND with a power of two,
7753 convert this into the appropriate bit extract. */
7754 else if (in_code == COMPARE
7755 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7756 new_rtx = make_extraction (mode,
7757 make_compound_operation (XEXP (x, 0),
7758 next_code),
7759 i, NULL_RTX, 1, 1, 0, 1);
7760
7761 break;
7762
7763 case LSHIFTRT:
7764 /* If the sign bit is known to be zero, replace this with an
7765 arithmetic shift. */
7766 if (have_insn_for (ASHIFTRT, mode)
7767 && ! have_insn_for (LSHIFTRT, mode)
7768 && mode_width <= HOST_BITS_PER_WIDE_INT
7769 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7770 {
7771 new_rtx = gen_rtx_ASHIFTRT (mode,
7772 make_compound_operation (XEXP (x, 0),
7773 next_code),
7774 XEXP (x, 1));
7775 break;
7776 }
7777
7778 /* ... fall through ... */
7779
7780 case ASHIFTRT:
7781 lhs = XEXP (x, 0);
7782 rhs = XEXP (x, 1);
7783
7784 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7785 this is a SIGN_EXTRACT. */
7786 if (CONST_INT_P (rhs)
7787 && GET_CODE (lhs) == ASHIFT
7788 && CONST_INT_P (XEXP (lhs, 1))
7789 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7790 && INTVAL (XEXP (lhs, 1)) >= 0
7791 && INTVAL (rhs) < mode_width)
7792 {
7793 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7794 new_rtx = make_extraction (mode, new_rtx,
7795 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7796 NULL_RTX, mode_width - INTVAL (rhs),
7797 code == LSHIFTRT, 0, in_code == COMPARE);
7798 break;
7799 }
7800
7801 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7802 If so, try to merge the shifts into a SIGN_EXTEND. We could
7803 also do this for some cases of SIGN_EXTRACT, but it doesn't
7804 seem worth the effort; the case checked for occurs on Alpha. */
7805
7806 if (!OBJECT_P (lhs)
7807 && ! (GET_CODE (lhs) == SUBREG
7808 && (OBJECT_P (SUBREG_REG (lhs))))
7809 && CONST_INT_P (rhs)
7810 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7811 && INTVAL (rhs) < mode_width
7812 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7813 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7814 0, NULL_RTX, mode_width - INTVAL (rhs),
7815 code == LSHIFTRT, 0, in_code == COMPARE);
7816
7817 break;
7818
7819 case SUBREG:
7820 /* Call ourselves recursively on the inner expression. If we are
7821 narrowing the object and it has a different RTL code from
7822 what it originally did, do this SUBREG as a force_to_mode. */
7823 {
7824 rtx inner = SUBREG_REG (x), simplified;
7825
7826 tem = make_compound_operation (inner, in_code);
7827
7828 simplified
7829 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7830 if (simplified)
7831 tem = simplified;
7832
7833 if (GET_CODE (tem) != GET_CODE (inner)
7834 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7835 && subreg_lowpart_p (x))
7836 {
7837 rtx newer
7838 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
7839
7840 /* If we have something other than a SUBREG, we might have
7841 done an expansion, so rerun ourselves. */
7842 if (GET_CODE (newer) != SUBREG)
7843 newer = make_compound_operation (newer, in_code);
7844
7845 /* force_to_mode can expand compounds. If it just re-expanded the
7846 compound, use gen_lowpart to convert to the desired mode. */
7847 if (rtx_equal_p (newer, x)
7848 /* Likewise if it re-expanded the compound only partially.
7849 This happens for SUBREG of ZERO_EXTRACT if they extract
7850 the same number of bits. */
7851 || (GET_CODE (newer) == SUBREG
7852 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7853 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7854 && GET_CODE (inner) == AND
7855 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7856 return gen_lowpart (GET_MODE (x), tem);
7857
7858 return newer;
7859 }
7860
7861 if (simplified)
7862 return tem;
7863 }
7864 break;
7865
7866 default:
7867 break;
7868 }
7869
7870 if (new_rtx)
7871 {
7872 x = gen_lowpart (mode, new_rtx);
7873 code = GET_CODE (x);
7874 }
7875
7876 /* Now recursively process each operand of this operation. We need to
7877 handle ZERO_EXTEND specially so that we don't lose track of the
7878 inner mode. */
7879 if (GET_CODE (x) == ZERO_EXTEND)
7880 {
7881 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7882 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
7883 new_rtx, GET_MODE (XEXP (x, 0)));
7884 if (tem)
7885 return tem;
7886 SUBST (XEXP (x, 0), new_rtx);
7887 return x;
7888 }
7889
7890 fmt = GET_RTX_FORMAT (code);
7891 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7892 if (fmt[i] == 'e')
7893 {
7894 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7895 SUBST (XEXP (x, i), new_rtx);
7896 }
7897 else if (fmt[i] == 'E')
7898 for (j = 0; j < XVECLEN (x, i); j++)
7899 {
7900 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7901 SUBST (XVECEXP (x, i, j), new_rtx);
7902 }
7903
7904 maybe_swap:
7905 /* If this is a commutative operation, the changes to the operands
7906 may have made it noncanonical. */
7907 if (COMMUTATIVE_ARITH_P (x)
7908 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7909 {
7910 tem = XEXP (x, 0);
7911 SUBST (XEXP (x, 0), XEXP (x, 1));
7912 SUBST (XEXP (x, 1), tem);
7913 }
7914
7915 return x;
7916 }
7917 \f
7918 /* Given M see if it is a value that would select a field of bits
7919 within an item, but not the entire word. Return -1 if not.
7920 Otherwise, return the starting position of the field, where 0 is the
7921 low-order bit.
7922
7923 *PLEN is set to the length of the field. */
7924
7925 static int
7926 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7927 {
7928 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7929 int pos = m ? ctz_hwi (m) : -1;
7930 int len = 0;
7931
7932 if (pos >= 0)
7933 /* Now shift off the low-order zero bits and see if we have a
7934 power of two minus 1. */
7935 len = exact_log2 ((m >> pos) + 1);
7936
7937 if (len <= 0)
7938 pos = -1;
7939
7940 *plen = len;
7941 return pos;
7942 }
7943 \f
7944 /* If X refers to a register that equals REG in value, replace these
7945 references with REG. */
7946 static rtx
7947 canon_reg_for_combine (rtx x, rtx reg)
7948 {
7949 rtx op0, op1, op2;
7950 const char *fmt;
7951 int i;
7952 bool copied;
7953
7954 enum rtx_code code = GET_CODE (x);
7955 switch (GET_RTX_CLASS (code))
7956 {
7957 case RTX_UNARY:
7958 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7959 if (op0 != XEXP (x, 0))
7960 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7961 GET_MODE (reg));
7962 break;
7963
7964 case RTX_BIN_ARITH:
7965 case RTX_COMM_ARITH:
7966 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7967 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7968 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7969 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7970 break;
7971
7972 case RTX_COMPARE:
7973 case RTX_COMM_COMPARE:
7974 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7975 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7976 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7977 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7978 GET_MODE (op0), op0, op1);
7979 break;
7980
7981 case RTX_TERNARY:
7982 case RTX_BITFIELD_OPS:
7983 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7984 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7985 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7986 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7987 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7988 GET_MODE (op0), op0, op1, op2);
7989
7990 case RTX_OBJ:
7991 if (REG_P (x))
7992 {
7993 if (rtx_equal_p (get_last_value (reg), x)
7994 || rtx_equal_p (reg, get_last_value (x)))
7995 return reg;
7996 else
7997 break;
7998 }
7999
8000 /* fall through */
8001
8002 default:
8003 fmt = GET_RTX_FORMAT (code);
8004 copied = false;
8005 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8006 if (fmt[i] == 'e')
8007 {
8008 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8009 if (op != XEXP (x, i))
8010 {
8011 if (!copied)
8012 {
8013 copied = true;
8014 x = copy_rtx (x);
8015 }
8016 XEXP (x, i) = op;
8017 }
8018 }
8019 else if (fmt[i] == 'E')
8020 {
8021 int j;
8022 for (j = 0; j < XVECLEN (x, i); j++)
8023 {
8024 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8025 if (op != XVECEXP (x, i, j))
8026 {
8027 if (!copied)
8028 {
8029 copied = true;
8030 x = copy_rtx (x);
8031 }
8032 XVECEXP (x, i, j) = op;
8033 }
8034 }
8035 }
8036
8037 break;
8038 }
8039
8040 return x;
8041 }
8042
8043 /* Return X converted to MODE. If the value is already truncated to
8044 MODE we can just return a subreg even though in the general case we
8045 would need an explicit truncation. */
8046
8047 static rtx
8048 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
8049 {
8050 if (!CONST_INT_P (x)
8051 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8052 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8053 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8054 {
8055 /* Bit-cast X into an integer mode. */
8056 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8057 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8058 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8059 x, GET_MODE (x));
8060 }
8061
8062 return gen_lowpart (mode, x);
8063 }
8064
8065 /* See if X can be simplified knowing that we will only refer to it in
8066 MODE and will only refer to those bits that are nonzero in MASK.
8067 If other bits are being computed or if masking operations are done
8068 that select a superset of the bits in MASK, they can sometimes be
8069 ignored.
8070
8071 Return a possibly simplified expression, but always convert X to
8072 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8073
8074 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8075 are all off in X. This is used when X will be complemented, by either
8076 NOT, NEG, or XOR. */
8077
8078 static rtx
8079 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
8080 int just_select)
8081 {
8082 enum rtx_code code = GET_CODE (x);
8083 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8084 enum machine_mode op_mode;
8085 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8086 rtx op0, op1, temp;
8087
8088 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8089 code below will do the wrong thing since the mode of such an
8090 expression is VOIDmode.
8091
8092 Also do nothing if X is a CLOBBER; this can happen if X was
8093 the return value from a call to gen_lowpart. */
8094 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8095 return x;
8096
8097 /* We want to perform the operation is its present mode unless we know
8098 that the operation is valid in MODE, in which case we do the operation
8099 in MODE. */
8100 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8101 && have_insn_for (code, mode))
8102 ? mode : GET_MODE (x));
8103
8104 /* It is not valid to do a right-shift in a narrower mode
8105 than the one it came in with. */
8106 if ((code == LSHIFTRT || code == ASHIFTRT)
8107 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8108 op_mode = GET_MODE (x);
8109
8110 /* Truncate MASK to fit OP_MODE. */
8111 if (op_mode)
8112 mask &= GET_MODE_MASK (op_mode);
8113
8114 /* When we have an arithmetic operation, or a shift whose count we
8115 do not know, we need to assume that all bits up to the highest-order
8116 bit in MASK will be needed. This is how we form such a mask. */
8117 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8118 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8119 else
8120 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8121 - 1);
8122
8123 /* Determine what bits of X are guaranteed to be (non)zero. */
8124 nonzero = nonzero_bits (x, mode);
8125
8126 /* If none of the bits in X are needed, return a zero. */
8127 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8128 x = const0_rtx;
8129
8130 /* If X is a CONST_INT, return a new one. Do this here since the
8131 test below will fail. */
8132 if (CONST_INT_P (x))
8133 {
8134 if (SCALAR_INT_MODE_P (mode))
8135 return gen_int_mode (INTVAL (x) & mask, mode);
8136 else
8137 {
8138 x = GEN_INT (INTVAL (x) & mask);
8139 return gen_lowpart_common (mode, x);
8140 }
8141 }
8142
8143 /* If X is narrower than MODE and we want all the bits in X's mode, just
8144 get X in the proper mode. */
8145 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8146 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8147 return gen_lowpart (mode, x);
8148
8149 /* We can ignore the effect of a SUBREG if it narrows the mode or
8150 if the constant masks to zero all the bits the mode doesn't have. */
8151 if (GET_CODE (x) == SUBREG
8152 && subreg_lowpart_p (x)
8153 && ((GET_MODE_SIZE (GET_MODE (x))
8154 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8155 || (0 == (mask
8156 & GET_MODE_MASK (GET_MODE (x))
8157 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8158 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8159
8160 /* The arithmetic simplifications here only work for scalar integer modes. */
8161 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8162 return gen_lowpart_or_truncate (mode, x);
8163
8164 switch (code)
8165 {
8166 case CLOBBER:
8167 /* If X is a (clobber (const_int)), return it since we know we are
8168 generating something that won't match. */
8169 return x;
8170
8171 case SIGN_EXTEND:
8172 case ZERO_EXTEND:
8173 case ZERO_EXTRACT:
8174 case SIGN_EXTRACT:
8175 x = expand_compound_operation (x);
8176 if (GET_CODE (x) != code)
8177 return force_to_mode (x, mode, mask, next_select);
8178 break;
8179
8180 case TRUNCATE:
8181 /* Similarly for a truncate. */
8182 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8183
8184 case AND:
8185 /* If this is an AND with a constant, convert it into an AND
8186 whose constant is the AND of that constant with MASK. If it
8187 remains an AND of MASK, delete it since it is redundant. */
8188
8189 if (CONST_INT_P (XEXP (x, 1)))
8190 {
8191 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8192 mask & INTVAL (XEXP (x, 1)));
8193
8194 /* If X is still an AND, see if it is an AND with a mask that
8195 is just some low-order bits. If so, and it is MASK, we don't
8196 need it. */
8197
8198 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8199 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8200 == mask))
8201 x = XEXP (x, 0);
8202
8203 /* If it remains an AND, try making another AND with the bits
8204 in the mode mask that aren't in MASK turned on. If the
8205 constant in the AND is wide enough, this might make a
8206 cheaper constant. */
8207
8208 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8209 && GET_MODE_MASK (GET_MODE (x)) != mask
8210 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8211 {
8212 unsigned HOST_WIDE_INT cval
8213 = UINTVAL (XEXP (x, 1))
8214 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8215 int width = GET_MODE_PRECISION (GET_MODE (x));
8216 rtx y;
8217
8218 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
8219 number, sign extend it. */
8220 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8221 && (cval & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8222 cval |= (unsigned HOST_WIDE_INT) -1 << width;
8223
8224 y = simplify_gen_binary (AND, GET_MODE (x),
8225 XEXP (x, 0), GEN_INT (cval));
8226 if (set_src_cost (y, optimize_this_for_speed_p)
8227 < set_src_cost (x, optimize_this_for_speed_p))
8228 x = y;
8229 }
8230
8231 break;
8232 }
8233
8234 goto binop;
8235
8236 case PLUS:
8237 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8238 low-order bits (as in an alignment operation) and FOO is already
8239 aligned to that boundary, mask C1 to that boundary as well.
8240 This may eliminate that PLUS and, later, the AND. */
8241
8242 {
8243 unsigned int width = GET_MODE_PRECISION (mode);
8244 unsigned HOST_WIDE_INT smask = mask;
8245
8246 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8247 number, sign extend it. */
8248
8249 if (width < HOST_BITS_PER_WIDE_INT
8250 && (smask & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8251 smask |= (unsigned HOST_WIDE_INT) (-1) << width;
8252
8253 if (CONST_INT_P (XEXP (x, 1))
8254 && exact_log2 (- smask) >= 0
8255 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8256 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8257 return force_to_mode (plus_constant (XEXP (x, 0),
8258 (INTVAL (XEXP (x, 1)) & smask)),
8259 mode, smask, next_select);
8260 }
8261
8262 /* ... fall through ... */
8263
8264 case MULT:
8265 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8266 most significant bit in MASK since carries from those bits will
8267 affect the bits we are interested in. */
8268 mask = fuller_mask;
8269 goto binop;
8270
8271 case MINUS:
8272 /* If X is (minus C Y) where C's least set bit is larger than any bit
8273 in the mask, then we may replace with (neg Y). */
8274 if (CONST_INT_P (XEXP (x, 0))
8275 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
8276 & -INTVAL (XEXP (x, 0))))
8277 > mask))
8278 {
8279 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8280 GET_MODE (x));
8281 return force_to_mode (x, mode, mask, next_select);
8282 }
8283
8284 /* Similarly, if C contains every bit in the fuller_mask, then we may
8285 replace with (not Y). */
8286 if (CONST_INT_P (XEXP (x, 0))
8287 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8288 {
8289 x = simplify_gen_unary (NOT, GET_MODE (x),
8290 XEXP (x, 1), GET_MODE (x));
8291 return force_to_mode (x, mode, mask, next_select);
8292 }
8293
8294 mask = fuller_mask;
8295 goto binop;
8296
8297 case IOR:
8298 case XOR:
8299 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8300 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8301 operation which may be a bitfield extraction. Ensure that the
8302 constant we form is not wider than the mode of X. */
8303
8304 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8305 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8306 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8307 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8308 && CONST_INT_P (XEXP (x, 1))
8309 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8310 + floor_log2 (INTVAL (XEXP (x, 1))))
8311 < GET_MODE_PRECISION (GET_MODE (x)))
8312 && (UINTVAL (XEXP (x, 1))
8313 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8314 {
8315 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
8316 << INTVAL (XEXP (XEXP (x, 0), 1)));
8317 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8318 XEXP (XEXP (x, 0), 0), temp);
8319 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8320 XEXP (XEXP (x, 0), 1));
8321 return force_to_mode (x, mode, mask, next_select);
8322 }
8323
8324 binop:
8325 /* For most binary operations, just propagate into the operation and
8326 change the mode if we have an operation of that mode. */
8327
8328 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8329 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8330
8331 /* If we ended up truncating both operands, truncate the result of the
8332 operation instead. */
8333 if (GET_CODE (op0) == TRUNCATE
8334 && GET_CODE (op1) == TRUNCATE)
8335 {
8336 op0 = XEXP (op0, 0);
8337 op1 = XEXP (op1, 0);
8338 }
8339
8340 op0 = gen_lowpart_or_truncate (op_mode, op0);
8341 op1 = gen_lowpart_or_truncate (op_mode, op1);
8342
8343 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8344 x = simplify_gen_binary (code, op_mode, op0, op1);
8345 break;
8346
8347 case ASHIFT:
8348 /* For left shifts, do the same, but just for the first operand.
8349 However, we cannot do anything with shifts where we cannot
8350 guarantee that the counts are smaller than the size of the mode
8351 because such a count will have a different meaning in a
8352 wider mode. */
8353
8354 if (! (CONST_INT_P (XEXP (x, 1))
8355 && INTVAL (XEXP (x, 1)) >= 0
8356 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8357 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8358 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8359 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8360 break;
8361
8362 /* If the shift count is a constant and we can do arithmetic in
8363 the mode of the shift, refine which bits we need. Otherwise, use the
8364 conservative form of the mask. */
8365 if (CONST_INT_P (XEXP (x, 1))
8366 && INTVAL (XEXP (x, 1)) >= 0
8367 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8368 && HWI_COMPUTABLE_MODE_P (op_mode))
8369 mask >>= INTVAL (XEXP (x, 1));
8370 else
8371 mask = fuller_mask;
8372
8373 op0 = gen_lowpart_or_truncate (op_mode,
8374 force_to_mode (XEXP (x, 0), op_mode,
8375 mask, next_select));
8376
8377 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8378 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8379 break;
8380
8381 case LSHIFTRT:
8382 /* Here we can only do something if the shift count is a constant,
8383 this shift constant is valid for the host, and we can do arithmetic
8384 in OP_MODE. */
8385
8386 if (CONST_INT_P (XEXP (x, 1))
8387 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8388 && HWI_COMPUTABLE_MODE_P (op_mode))
8389 {
8390 rtx inner = XEXP (x, 0);
8391 unsigned HOST_WIDE_INT inner_mask;
8392
8393 /* Select the mask of the bits we need for the shift operand. */
8394 inner_mask = mask << INTVAL (XEXP (x, 1));
8395
8396 /* We can only change the mode of the shift if we can do arithmetic
8397 in the mode of the shift and INNER_MASK is no wider than the
8398 width of X's mode. */
8399 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8400 op_mode = GET_MODE (x);
8401
8402 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8403
8404 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8405 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8406 }
8407
8408 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8409 shift and AND produces only copies of the sign bit (C2 is one less
8410 than a power of two), we can do this with just a shift. */
8411
8412 if (GET_CODE (x) == LSHIFTRT
8413 && CONST_INT_P (XEXP (x, 1))
8414 /* The shift puts one of the sign bit copies in the least significant
8415 bit. */
8416 && ((INTVAL (XEXP (x, 1))
8417 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8418 >= GET_MODE_PRECISION (GET_MODE (x)))
8419 && exact_log2 (mask + 1) >= 0
8420 /* Number of bits left after the shift must be more than the mask
8421 needs. */
8422 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8423 <= GET_MODE_PRECISION (GET_MODE (x)))
8424 /* Must be more sign bit copies than the mask needs. */
8425 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8426 >= exact_log2 (mask + 1)))
8427 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8428 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8429 - exact_log2 (mask + 1)));
8430
8431 goto shiftrt;
8432
8433 case ASHIFTRT:
8434 /* If we are just looking for the sign bit, we don't need this shift at
8435 all, even if it has a variable count. */
8436 if (val_signbit_p (GET_MODE (x), mask))
8437 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8438
8439 /* If this is a shift by a constant, get a mask that contains those bits
8440 that are not copies of the sign bit. We then have two cases: If
8441 MASK only includes those bits, this can be a logical shift, which may
8442 allow simplifications. If MASK is a single-bit field not within
8443 those bits, we are requesting a copy of the sign bit and hence can
8444 shift the sign bit to the appropriate location. */
8445
8446 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8447 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8448 {
8449 int i;
8450
8451 /* If the considered data is wider than HOST_WIDE_INT, we can't
8452 represent a mask for all its bits in a single scalar.
8453 But we only care about the lower bits, so calculate these. */
8454
8455 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8456 {
8457 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8458
8459 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8460 is the number of bits a full-width mask would have set.
8461 We need only shift if these are fewer than nonzero can
8462 hold. If not, we must keep all bits set in nonzero. */
8463
8464 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8465 < HOST_BITS_PER_WIDE_INT)
8466 nonzero >>= INTVAL (XEXP (x, 1))
8467 + HOST_BITS_PER_WIDE_INT
8468 - GET_MODE_PRECISION (GET_MODE (x)) ;
8469 }
8470 else
8471 {
8472 nonzero = GET_MODE_MASK (GET_MODE (x));
8473 nonzero >>= INTVAL (XEXP (x, 1));
8474 }
8475
8476 if ((mask & ~nonzero) == 0)
8477 {
8478 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8479 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8480 if (GET_CODE (x) != ASHIFTRT)
8481 return force_to_mode (x, mode, mask, next_select);
8482 }
8483
8484 else if ((i = exact_log2 (mask)) >= 0)
8485 {
8486 x = simplify_shift_const
8487 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8488 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8489
8490 if (GET_CODE (x) != ASHIFTRT)
8491 return force_to_mode (x, mode, mask, next_select);
8492 }
8493 }
8494
8495 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8496 even if the shift count isn't a constant. */
8497 if (mask == 1)
8498 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8499 XEXP (x, 0), XEXP (x, 1));
8500
8501 shiftrt:
8502
8503 /* If this is a zero- or sign-extension operation that just affects bits
8504 we don't care about, remove it. Be sure the call above returned
8505 something that is still a shift. */
8506
8507 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8508 && CONST_INT_P (XEXP (x, 1))
8509 && INTVAL (XEXP (x, 1)) >= 0
8510 && (INTVAL (XEXP (x, 1))
8511 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8512 && GET_CODE (XEXP (x, 0)) == ASHIFT
8513 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8514 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8515 next_select);
8516
8517 break;
8518
8519 case ROTATE:
8520 case ROTATERT:
8521 /* If the shift count is constant and we can do computations
8522 in the mode of X, compute where the bits we care about are.
8523 Otherwise, we can't do anything. Don't change the mode of
8524 the shift or propagate MODE into the shift, though. */
8525 if (CONST_INT_P (XEXP (x, 1))
8526 && INTVAL (XEXP (x, 1)) >= 0)
8527 {
8528 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8529 GET_MODE (x), GEN_INT (mask),
8530 XEXP (x, 1));
8531 if (temp && CONST_INT_P (temp))
8532 SUBST (XEXP (x, 0),
8533 force_to_mode (XEXP (x, 0), GET_MODE (x),
8534 INTVAL (temp), next_select));
8535 }
8536 break;
8537
8538 case NEG:
8539 /* If we just want the low-order bit, the NEG isn't needed since it
8540 won't change the low-order bit. */
8541 if (mask == 1)
8542 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8543
8544 /* We need any bits less significant than the most significant bit in
8545 MASK since carries from those bits will affect the bits we are
8546 interested in. */
8547 mask = fuller_mask;
8548 goto unop;
8549
8550 case NOT:
8551 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8552 same as the XOR case above. Ensure that the constant we form is not
8553 wider than the mode of X. */
8554
8555 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8556 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8557 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8558 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8559 < GET_MODE_PRECISION (GET_MODE (x)))
8560 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8561 {
8562 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8563 GET_MODE (x));
8564 temp = simplify_gen_binary (XOR, GET_MODE (x),
8565 XEXP (XEXP (x, 0), 0), temp);
8566 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8567 temp, XEXP (XEXP (x, 0), 1));
8568
8569 return force_to_mode (x, mode, mask, next_select);
8570 }
8571
8572 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8573 use the full mask inside the NOT. */
8574 mask = fuller_mask;
8575
8576 unop:
8577 op0 = gen_lowpart_or_truncate (op_mode,
8578 force_to_mode (XEXP (x, 0), mode, mask,
8579 next_select));
8580 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8581 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8582 break;
8583
8584 case NE:
8585 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8586 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8587 which is equal to STORE_FLAG_VALUE. */
8588 if ((mask & ~STORE_FLAG_VALUE) == 0
8589 && XEXP (x, 1) == const0_rtx
8590 && GET_MODE (XEXP (x, 0)) == mode
8591 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8592 && (nonzero_bits (XEXP (x, 0), mode)
8593 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8594 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8595
8596 break;
8597
8598 case IF_THEN_ELSE:
8599 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8600 written in a narrower mode. We play it safe and do not do so. */
8601
8602 SUBST (XEXP (x, 1),
8603 gen_lowpart_or_truncate (GET_MODE (x),
8604 force_to_mode (XEXP (x, 1), mode,
8605 mask, next_select)));
8606 SUBST (XEXP (x, 2),
8607 gen_lowpart_or_truncate (GET_MODE (x),
8608 force_to_mode (XEXP (x, 2), mode,
8609 mask, next_select)));
8610 break;
8611
8612 default:
8613 break;
8614 }
8615
8616 /* Ensure we return a value of the proper mode. */
8617 return gen_lowpart_or_truncate (mode, x);
8618 }
8619 \f
8620 /* Return nonzero if X is an expression that has one of two values depending on
8621 whether some other value is zero or nonzero. In that case, we return the
8622 value that is being tested, *PTRUE is set to the value if the rtx being
8623 returned has a nonzero value, and *PFALSE is set to the other alternative.
8624
8625 If we return zero, we set *PTRUE and *PFALSE to X. */
8626
8627 static rtx
8628 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8629 {
8630 enum machine_mode mode = GET_MODE (x);
8631 enum rtx_code code = GET_CODE (x);
8632 rtx cond0, cond1, true0, true1, false0, false1;
8633 unsigned HOST_WIDE_INT nz;
8634
8635 /* If we are comparing a value against zero, we are done. */
8636 if ((code == NE || code == EQ)
8637 && XEXP (x, 1) == const0_rtx)
8638 {
8639 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8640 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8641 return XEXP (x, 0);
8642 }
8643
8644 /* If this is a unary operation whose operand has one of two values, apply
8645 our opcode to compute those values. */
8646 else if (UNARY_P (x)
8647 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8648 {
8649 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8650 *pfalse = simplify_gen_unary (code, mode, false0,
8651 GET_MODE (XEXP (x, 0)));
8652 return cond0;
8653 }
8654
8655 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8656 make can't possibly match and would suppress other optimizations. */
8657 else if (code == COMPARE)
8658 ;
8659
8660 /* If this is a binary operation, see if either side has only one of two
8661 values. If either one does or if both do and they are conditional on
8662 the same value, compute the new true and false values. */
8663 else if (BINARY_P (x))
8664 {
8665 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8666 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8667
8668 if ((cond0 != 0 || cond1 != 0)
8669 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8670 {
8671 /* If if_then_else_cond returned zero, then true/false are the
8672 same rtl. We must copy one of them to prevent invalid rtl
8673 sharing. */
8674 if (cond0 == 0)
8675 true0 = copy_rtx (true0);
8676 else if (cond1 == 0)
8677 true1 = copy_rtx (true1);
8678
8679 if (COMPARISON_P (x))
8680 {
8681 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8682 true0, true1);
8683 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8684 false0, false1);
8685 }
8686 else
8687 {
8688 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8689 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8690 }
8691
8692 return cond0 ? cond0 : cond1;
8693 }
8694
8695 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8696 operands is zero when the other is nonzero, and vice-versa,
8697 and STORE_FLAG_VALUE is 1 or -1. */
8698
8699 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8700 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8701 || code == UMAX)
8702 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8703 {
8704 rtx op0 = XEXP (XEXP (x, 0), 1);
8705 rtx op1 = XEXP (XEXP (x, 1), 1);
8706
8707 cond0 = XEXP (XEXP (x, 0), 0);
8708 cond1 = XEXP (XEXP (x, 1), 0);
8709
8710 if (COMPARISON_P (cond0)
8711 && COMPARISON_P (cond1)
8712 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8713 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8714 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8715 || ((swap_condition (GET_CODE (cond0))
8716 == reversed_comparison_code (cond1, NULL))
8717 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8718 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8719 && ! side_effects_p (x))
8720 {
8721 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8722 *pfalse = simplify_gen_binary (MULT, mode,
8723 (code == MINUS
8724 ? simplify_gen_unary (NEG, mode,
8725 op1, mode)
8726 : op1),
8727 const_true_rtx);
8728 return cond0;
8729 }
8730 }
8731
8732 /* Similarly for MULT, AND and UMIN, except that for these the result
8733 is always zero. */
8734 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8735 && (code == MULT || code == AND || code == UMIN)
8736 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8737 {
8738 cond0 = XEXP (XEXP (x, 0), 0);
8739 cond1 = XEXP (XEXP (x, 1), 0);
8740
8741 if (COMPARISON_P (cond0)
8742 && COMPARISON_P (cond1)
8743 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8744 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8745 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8746 || ((swap_condition (GET_CODE (cond0))
8747 == reversed_comparison_code (cond1, NULL))
8748 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8749 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8750 && ! side_effects_p (x))
8751 {
8752 *ptrue = *pfalse = const0_rtx;
8753 return cond0;
8754 }
8755 }
8756 }
8757
8758 else if (code == IF_THEN_ELSE)
8759 {
8760 /* If we have IF_THEN_ELSE already, extract the condition and
8761 canonicalize it if it is NE or EQ. */
8762 cond0 = XEXP (x, 0);
8763 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8764 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8765 return XEXP (cond0, 0);
8766 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8767 {
8768 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8769 return XEXP (cond0, 0);
8770 }
8771 else
8772 return cond0;
8773 }
8774
8775 /* If X is a SUBREG, we can narrow both the true and false values
8776 if the inner expression, if there is a condition. */
8777 else if (code == SUBREG
8778 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8779 &true0, &false0)))
8780 {
8781 true0 = simplify_gen_subreg (mode, true0,
8782 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8783 false0 = simplify_gen_subreg (mode, false0,
8784 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8785 if (true0 && false0)
8786 {
8787 *ptrue = true0;
8788 *pfalse = false0;
8789 return cond0;
8790 }
8791 }
8792
8793 /* If X is a constant, this isn't special and will cause confusions
8794 if we treat it as such. Likewise if it is equivalent to a constant. */
8795 else if (CONSTANT_P (x)
8796 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8797 ;
8798
8799 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8800 will be least confusing to the rest of the compiler. */
8801 else if (mode == BImode)
8802 {
8803 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8804 return x;
8805 }
8806
8807 /* If X is known to be either 0 or -1, those are the true and
8808 false values when testing X. */
8809 else if (x == constm1_rtx || x == const0_rtx
8810 || (mode != VOIDmode
8811 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
8812 {
8813 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8814 return x;
8815 }
8816
8817 /* Likewise for 0 or a single bit. */
8818 else if (HWI_COMPUTABLE_MODE_P (mode)
8819 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8820 {
8821 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8822 return x;
8823 }
8824
8825 /* Otherwise fail; show no condition with true and false values the same. */
8826 *ptrue = *pfalse = x;
8827 return 0;
8828 }
8829 \f
8830 /* Return the value of expression X given the fact that condition COND
8831 is known to be true when applied to REG as its first operand and VAL
8832 as its second. X is known to not be shared and so can be modified in
8833 place.
8834
8835 We only handle the simplest cases, and specifically those cases that
8836 arise with IF_THEN_ELSE expressions. */
8837
8838 static rtx
8839 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8840 {
8841 enum rtx_code code = GET_CODE (x);
8842 rtx temp;
8843 const char *fmt;
8844 int i, j;
8845
8846 if (side_effects_p (x))
8847 return x;
8848
8849 /* If either operand of the condition is a floating point value,
8850 then we have to avoid collapsing an EQ comparison. */
8851 if (cond == EQ
8852 && rtx_equal_p (x, reg)
8853 && ! FLOAT_MODE_P (GET_MODE (x))
8854 && ! FLOAT_MODE_P (GET_MODE (val)))
8855 return val;
8856
8857 if (cond == UNEQ && rtx_equal_p (x, reg))
8858 return val;
8859
8860 /* If X is (abs REG) and we know something about REG's relationship
8861 with zero, we may be able to simplify this. */
8862
8863 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8864 switch (cond)
8865 {
8866 case GE: case GT: case EQ:
8867 return XEXP (x, 0);
8868 case LT: case LE:
8869 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8870 XEXP (x, 0),
8871 GET_MODE (XEXP (x, 0)));
8872 default:
8873 break;
8874 }
8875
8876 /* The only other cases we handle are MIN, MAX, and comparisons if the
8877 operands are the same as REG and VAL. */
8878
8879 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8880 {
8881 if (rtx_equal_p (XEXP (x, 0), val))
8882 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8883
8884 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8885 {
8886 if (COMPARISON_P (x))
8887 {
8888 if (comparison_dominates_p (cond, code))
8889 return const_true_rtx;
8890
8891 code = reversed_comparison_code (x, NULL);
8892 if (code != UNKNOWN
8893 && comparison_dominates_p (cond, code))
8894 return const0_rtx;
8895 else
8896 return x;
8897 }
8898 else if (code == SMAX || code == SMIN
8899 || code == UMIN || code == UMAX)
8900 {
8901 int unsignedp = (code == UMIN || code == UMAX);
8902
8903 /* Do not reverse the condition when it is NE or EQ.
8904 This is because we cannot conclude anything about
8905 the value of 'SMAX (x, y)' when x is not equal to y,
8906 but we can when x equals y. */
8907 if ((code == SMAX || code == UMAX)
8908 && ! (cond == EQ || cond == NE))
8909 cond = reverse_condition (cond);
8910
8911 switch (cond)
8912 {
8913 case GE: case GT:
8914 return unsignedp ? x : XEXP (x, 1);
8915 case LE: case LT:
8916 return unsignedp ? x : XEXP (x, 0);
8917 case GEU: case GTU:
8918 return unsignedp ? XEXP (x, 1) : x;
8919 case LEU: case LTU:
8920 return unsignedp ? XEXP (x, 0) : x;
8921 default:
8922 break;
8923 }
8924 }
8925 }
8926 }
8927 else if (code == SUBREG)
8928 {
8929 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8930 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8931
8932 if (SUBREG_REG (x) != r)
8933 {
8934 /* We must simplify subreg here, before we lose track of the
8935 original inner_mode. */
8936 new_rtx = simplify_subreg (GET_MODE (x), r,
8937 inner_mode, SUBREG_BYTE (x));
8938 if (new_rtx)
8939 return new_rtx;
8940 else
8941 SUBST (SUBREG_REG (x), r);
8942 }
8943
8944 return x;
8945 }
8946 /* We don't have to handle SIGN_EXTEND here, because even in the
8947 case of replacing something with a modeless CONST_INT, a
8948 CONST_INT is already (supposed to be) a valid sign extension for
8949 its narrower mode, which implies it's already properly
8950 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8951 story is different. */
8952 else if (code == ZERO_EXTEND)
8953 {
8954 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8955 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8956
8957 if (XEXP (x, 0) != r)
8958 {
8959 /* We must simplify the zero_extend here, before we lose
8960 track of the original inner_mode. */
8961 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8962 r, inner_mode);
8963 if (new_rtx)
8964 return new_rtx;
8965 else
8966 SUBST (XEXP (x, 0), r);
8967 }
8968
8969 return x;
8970 }
8971
8972 fmt = GET_RTX_FORMAT (code);
8973 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8974 {
8975 if (fmt[i] == 'e')
8976 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8977 else if (fmt[i] == 'E')
8978 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8979 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8980 cond, reg, val));
8981 }
8982
8983 return x;
8984 }
8985 \f
8986 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8987 assignment as a field assignment. */
8988
8989 static int
8990 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8991 {
8992 if (x == y || rtx_equal_p (x, y))
8993 return 1;
8994
8995 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8996 return 0;
8997
8998 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8999 Note that all SUBREGs of MEM are paradoxical; otherwise they
9000 would have been rewritten. */
9001 if (MEM_P (x) && GET_CODE (y) == SUBREG
9002 && MEM_P (SUBREG_REG (y))
9003 && rtx_equal_p (SUBREG_REG (y),
9004 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9005 return 1;
9006
9007 if (MEM_P (y) && GET_CODE (x) == SUBREG
9008 && MEM_P (SUBREG_REG (x))
9009 && rtx_equal_p (SUBREG_REG (x),
9010 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9011 return 1;
9012
9013 /* We used to see if get_last_value of X and Y were the same but that's
9014 not correct. In one direction, we'll cause the assignment to have
9015 the wrong destination and in the case, we'll import a register into this
9016 insn that might have already have been dead. So fail if none of the
9017 above cases are true. */
9018 return 0;
9019 }
9020 \f
9021 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9022 Return that assignment if so.
9023
9024 We only handle the most common cases. */
9025
9026 static rtx
9027 make_field_assignment (rtx x)
9028 {
9029 rtx dest = SET_DEST (x);
9030 rtx src = SET_SRC (x);
9031 rtx assign;
9032 rtx rhs, lhs;
9033 HOST_WIDE_INT c1;
9034 HOST_WIDE_INT pos;
9035 unsigned HOST_WIDE_INT len;
9036 rtx other;
9037 enum machine_mode mode;
9038
9039 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9040 a clear of a one-bit field. We will have changed it to
9041 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9042 for a SUBREG. */
9043
9044 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9045 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9046 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9047 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9048 {
9049 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9050 1, 1, 1, 0);
9051 if (assign != 0)
9052 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
9053 return x;
9054 }
9055
9056 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9057 && subreg_lowpart_p (XEXP (src, 0))
9058 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9059 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9060 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9061 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9062 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9063 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9064 {
9065 assign = make_extraction (VOIDmode, dest, 0,
9066 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9067 1, 1, 1, 0);
9068 if (assign != 0)
9069 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
9070 return x;
9071 }
9072
9073 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9074 one-bit field. */
9075 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9076 && XEXP (XEXP (src, 0), 0) == const1_rtx
9077 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9078 {
9079 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9080 1, 1, 1, 0);
9081 if (assign != 0)
9082 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
9083 return x;
9084 }
9085
9086 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9087 SRC is an AND with all bits of that field set, then we can discard
9088 the AND. */
9089 if (GET_CODE (dest) == ZERO_EXTRACT
9090 && CONST_INT_P (XEXP (dest, 1))
9091 && GET_CODE (src) == AND
9092 && CONST_INT_P (XEXP (src, 1)))
9093 {
9094 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9095 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9096 unsigned HOST_WIDE_INT ze_mask;
9097
9098 if (width >= HOST_BITS_PER_WIDE_INT)
9099 ze_mask = -1;
9100 else
9101 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9102
9103 /* Complete overlap. We can remove the source AND. */
9104 if ((and_mask & ze_mask) == ze_mask)
9105 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
9106
9107 /* Partial overlap. We can reduce the source AND. */
9108 if ((and_mask & ze_mask) != and_mask)
9109 {
9110 mode = GET_MODE (src);
9111 src = gen_rtx_AND (mode, XEXP (src, 0),
9112 gen_int_mode (and_mask & ze_mask, mode));
9113 return gen_rtx_SET (VOIDmode, dest, src);
9114 }
9115 }
9116
9117 /* The other case we handle is assignments into a constant-position
9118 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9119 a mask that has all one bits except for a group of zero bits and
9120 OTHER is known to have zeros where C1 has ones, this is such an
9121 assignment. Compute the position and length from C1. Shift OTHER
9122 to the appropriate position, force it to the required mode, and
9123 make the extraction. Check for the AND in both operands. */
9124
9125 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9126 return x;
9127
9128 rhs = expand_compound_operation (XEXP (src, 0));
9129 lhs = expand_compound_operation (XEXP (src, 1));
9130
9131 if (GET_CODE (rhs) == AND
9132 && CONST_INT_P (XEXP (rhs, 1))
9133 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9134 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9135 else if (GET_CODE (lhs) == AND
9136 && CONST_INT_P (XEXP (lhs, 1))
9137 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9138 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9139 else
9140 return x;
9141
9142 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9143 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9144 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9145 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9146 return x;
9147
9148 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9149 if (assign == 0)
9150 return x;
9151
9152 /* The mode to use for the source is the mode of the assignment, or of
9153 what is inside a possible STRICT_LOW_PART. */
9154 mode = (GET_CODE (assign) == STRICT_LOW_PART
9155 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9156
9157 /* Shift OTHER right POS places and make it the source, restricting it
9158 to the proper length and mode. */
9159
9160 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9161 GET_MODE (src),
9162 other, pos),
9163 dest);
9164 src = force_to_mode (src, mode,
9165 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9166 ? ~(unsigned HOST_WIDE_INT) 0
9167 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9168 0);
9169
9170 /* If SRC is masked by an AND that does not make a difference in
9171 the value being stored, strip it. */
9172 if (GET_CODE (assign) == ZERO_EXTRACT
9173 && CONST_INT_P (XEXP (assign, 1))
9174 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9175 && GET_CODE (src) == AND
9176 && CONST_INT_P (XEXP (src, 1))
9177 && UINTVAL (XEXP (src, 1))
9178 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9179 src = XEXP (src, 0);
9180
9181 return gen_rtx_SET (VOIDmode, assign, src);
9182 }
9183 \f
9184 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9185 if so. */
9186
9187 static rtx
9188 apply_distributive_law (rtx x)
9189 {
9190 enum rtx_code code = GET_CODE (x);
9191 enum rtx_code inner_code;
9192 rtx lhs, rhs, other;
9193 rtx tem;
9194
9195 /* Distributivity is not true for floating point as it can change the
9196 value. So we don't do it unless -funsafe-math-optimizations. */
9197 if (FLOAT_MODE_P (GET_MODE (x))
9198 && ! flag_unsafe_math_optimizations)
9199 return x;
9200
9201 /* The outer operation can only be one of the following: */
9202 if (code != IOR && code != AND && code != XOR
9203 && code != PLUS && code != MINUS)
9204 return x;
9205
9206 lhs = XEXP (x, 0);
9207 rhs = XEXP (x, 1);
9208
9209 /* If either operand is a primitive we can't do anything, so get out
9210 fast. */
9211 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9212 return x;
9213
9214 lhs = expand_compound_operation (lhs);
9215 rhs = expand_compound_operation (rhs);
9216 inner_code = GET_CODE (lhs);
9217 if (inner_code != GET_CODE (rhs))
9218 return x;
9219
9220 /* See if the inner and outer operations distribute. */
9221 switch (inner_code)
9222 {
9223 case LSHIFTRT:
9224 case ASHIFTRT:
9225 case AND:
9226 case IOR:
9227 /* These all distribute except over PLUS. */
9228 if (code == PLUS || code == MINUS)
9229 return x;
9230 break;
9231
9232 case MULT:
9233 if (code != PLUS && code != MINUS)
9234 return x;
9235 break;
9236
9237 case ASHIFT:
9238 /* This is also a multiply, so it distributes over everything. */
9239 break;
9240
9241 case SUBREG:
9242 /* Non-paradoxical SUBREGs distributes over all operations,
9243 provided the inner modes and byte offsets are the same, this
9244 is an extraction of a low-order part, we don't convert an fp
9245 operation to int or vice versa, this is not a vector mode,
9246 and we would not be converting a single-word operation into a
9247 multi-word operation. The latter test is not required, but
9248 it prevents generating unneeded multi-word operations. Some
9249 of the previous tests are redundant given the latter test,
9250 but are retained because they are required for correctness.
9251
9252 We produce the result slightly differently in this case. */
9253
9254 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
9255 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
9256 || ! subreg_lowpart_p (lhs)
9257 || (GET_MODE_CLASS (GET_MODE (lhs))
9258 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
9259 || paradoxical_subreg_p (lhs)
9260 || VECTOR_MODE_P (GET_MODE (lhs))
9261 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
9262 /* Result might need to be truncated. Don't change mode if
9263 explicit truncation is needed. */
9264 || !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (x),
9265 GET_MODE (SUBREG_REG (lhs))))
9266 return x;
9267
9268 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
9269 SUBREG_REG (lhs), SUBREG_REG (rhs));
9270 return gen_lowpart (GET_MODE (x), tem);
9271
9272 default:
9273 return x;
9274 }
9275
9276 /* Set LHS and RHS to the inner operands (A and B in the example
9277 above) and set OTHER to the common operand (C in the example).
9278 There is only one way to do this unless the inner operation is
9279 commutative. */
9280 if (COMMUTATIVE_ARITH_P (lhs)
9281 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9282 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9283 else if (COMMUTATIVE_ARITH_P (lhs)
9284 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9285 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9286 else if (COMMUTATIVE_ARITH_P (lhs)
9287 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9288 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9289 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9290 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9291 else
9292 return x;
9293
9294 /* Form the new inner operation, seeing if it simplifies first. */
9295 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9296
9297 /* There is one exception to the general way of distributing:
9298 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9299 if (code == XOR && inner_code == IOR)
9300 {
9301 inner_code = AND;
9302 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9303 }
9304
9305 /* We may be able to continuing distributing the result, so call
9306 ourselves recursively on the inner operation before forming the
9307 outer operation, which we return. */
9308 return simplify_gen_binary (inner_code, GET_MODE (x),
9309 apply_distributive_law (tem), other);
9310 }
9311
9312 /* See if X is of the form (* (+ A B) C), and if so convert to
9313 (+ (* A C) (* B C)) and try to simplify.
9314
9315 Most of the time, this results in no change. However, if some of
9316 the operands are the same or inverses of each other, simplifications
9317 will result.
9318
9319 For example, (and (ior A B) (not B)) can occur as the result of
9320 expanding a bit field assignment. When we apply the distributive
9321 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9322 which then simplifies to (and (A (not B))).
9323
9324 Note that no checks happen on the validity of applying the inverse
9325 distributive law. This is pointless since we can do it in the
9326 few places where this routine is called.
9327
9328 N is the index of the term that is decomposed (the arithmetic operation,
9329 i.e. (+ A B) in the first example above). !N is the index of the term that
9330 is distributed, i.e. of C in the first example above. */
9331 static rtx
9332 distribute_and_simplify_rtx (rtx x, int n)
9333 {
9334 enum machine_mode mode;
9335 enum rtx_code outer_code, inner_code;
9336 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9337
9338 /* Distributivity is not true for floating point as it can change the
9339 value. So we don't do it unless -funsafe-math-optimizations. */
9340 if (FLOAT_MODE_P (GET_MODE (x))
9341 && ! flag_unsafe_math_optimizations)
9342 return NULL_RTX;
9343
9344 decomposed = XEXP (x, n);
9345 if (!ARITHMETIC_P (decomposed))
9346 return NULL_RTX;
9347
9348 mode = GET_MODE (x);
9349 outer_code = GET_CODE (x);
9350 distributed = XEXP (x, !n);
9351
9352 inner_code = GET_CODE (decomposed);
9353 inner_op0 = XEXP (decomposed, 0);
9354 inner_op1 = XEXP (decomposed, 1);
9355
9356 /* Special case (and (xor B C) (not A)), which is equivalent to
9357 (xor (ior A B) (ior A C)) */
9358 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9359 {
9360 distributed = XEXP (distributed, 0);
9361 outer_code = IOR;
9362 }
9363
9364 if (n == 0)
9365 {
9366 /* Distribute the second term. */
9367 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9368 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9369 }
9370 else
9371 {
9372 /* Distribute the first term. */
9373 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9374 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9375 }
9376
9377 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9378 new_op0, new_op1));
9379 if (GET_CODE (tmp) != outer_code
9380 && (set_src_cost (tmp, optimize_this_for_speed_p)
9381 < set_src_cost (x, optimize_this_for_speed_p)))
9382 return tmp;
9383
9384 return NULL_RTX;
9385 }
9386 \f
9387 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9388 in MODE. Return an equivalent form, if different from (and VAROP
9389 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9390
9391 static rtx
9392 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9393 unsigned HOST_WIDE_INT constop)
9394 {
9395 unsigned HOST_WIDE_INT nonzero;
9396 unsigned HOST_WIDE_INT orig_constop;
9397 rtx orig_varop;
9398 int i;
9399
9400 orig_varop = varop;
9401 orig_constop = constop;
9402 if (GET_CODE (varop) == CLOBBER)
9403 return NULL_RTX;
9404
9405 /* Simplify VAROP knowing that we will be only looking at some of the
9406 bits in it.
9407
9408 Note by passing in CONSTOP, we guarantee that the bits not set in
9409 CONSTOP are not significant and will never be examined. We must
9410 ensure that is the case by explicitly masking out those bits
9411 before returning. */
9412 varop = force_to_mode (varop, mode, constop, 0);
9413
9414 /* If VAROP is a CLOBBER, we will fail so return it. */
9415 if (GET_CODE (varop) == CLOBBER)
9416 return varop;
9417
9418 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9419 to VAROP and return the new constant. */
9420 if (CONST_INT_P (varop))
9421 return gen_int_mode (INTVAL (varop) & constop, mode);
9422
9423 /* See what bits may be nonzero in VAROP. Unlike the general case of
9424 a call to nonzero_bits, here we don't care about bits outside
9425 MODE. */
9426
9427 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9428
9429 /* Turn off all bits in the constant that are known to already be zero.
9430 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9431 which is tested below. */
9432
9433 constop &= nonzero;
9434
9435 /* If we don't have any bits left, return zero. */
9436 if (constop == 0)
9437 return const0_rtx;
9438
9439 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9440 a power of two, we can replace this with an ASHIFT. */
9441 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9442 && (i = exact_log2 (constop)) >= 0)
9443 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9444
9445 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9446 or XOR, then try to apply the distributive law. This may eliminate
9447 operations if either branch can be simplified because of the AND.
9448 It may also make some cases more complex, but those cases probably
9449 won't match a pattern either with or without this. */
9450
9451 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9452 return
9453 gen_lowpart
9454 (mode,
9455 apply_distributive_law
9456 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9457 simplify_and_const_int (NULL_RTX,
9458 GET_MODE (varop),
9459 XEXP (varop, 0),
9460 constop),
9461 simplify_and_const_int (NULL_RTX,
9462 GET_MODE (varop),
9463 XEXP (varop, 1),
9464 constop))));
9465
9466 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9467 the AND and see if one of the operands simplifies to zero. If so, we
9468 may eliminate it. */
9469
9470 if (GET_CODE (varop) == PLUS
9471 && exact_log2 (constop + 1) >= 0)
9472 {
9473 rtx o0, o1;
9474
9475 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9476 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9477 if (o0 == const0_rtx)
9478 return o1;
9479 if (o1 == const0_rtx)
9480 return o0;
9481 }
9482
9483 /* Make a SUBREG if necessary. If we can't make it, fail. */
9484 varop = gen_lowpart (mode, varop);
9485 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9486 return NULL_RTX;
9487
9488 /* If we are only masking insignificant bits, return VAROP. */
9489 if (constop == nonzero)
9490 return varop;
9491
9492 if (varop == orig_varop && constop == orig_constop)
9493 return NULL_RTX;
9494
9495 /* Otherwise, return an AND. */
9496 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9497 }
9498
9499
9500 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9501 in MODE.
9502
9503 Return an equivalent form, if different from X. Otherwise, return X. If
9504 X is zero, we are to always construct the equivalent form. */
9505
9506 static rtx
9507 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9508 unsigned HOST_WIDE_INT constop)
9509 {
9510 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9511 if (tem)
9512 return tem;
9513
9514 if (!x)
9515 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9516 gen_int_mode (constop, mode));
9517 if (GET_MODE (x) != mode)
9518 x = gen_lowpart (mode, x);
9519 return x;
9520 }
9521 \f
9522 /* Given a REG, X, compute which bits in X can be nonzero.
9523 We don't care about bits outside of those defined in MODE.
9524
9525 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9526 a shift, AND, or zero_extract, we can do better. */
9527
9528 static rtx
9529 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9530 const_rtx known_x ATTRIBUTE_UNUSED,
9531 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9532 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9533 unsigned HOST_WIDE_INT *nonzero)
9534 {
9535 rtx tem;
9536 reg_stat_type *rsp;
9537
9538 /* If X is a register whose nonzero bits value is current, use it.
9539 Otherwise, if X is a register whose value we can find, use that
9540 value. Otherwise, use the previously-computed global nonzero bits
9541 for this register. */
9542
9543 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9544 if (rsp->last_set_value != 0
9545 && (rsp->last_set_mode == mode
9546 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9547 && GET_MODE_CLASS (mode) == MODE_INT))
9548 && ((rsp->last_set_label >= label_tick_ebb_start
9549 && rsp->last_set_label < label_tick)
9550 || (rsp->last_set_label == label_tick
9551 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9552 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9553 && REG_N_SETS (REGNO (x)) == 1
9554 && !REGNO_REG_SET_P
9555 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9556 {
9557 *nonzero &= rsp->last_set_nonzero_bits;
9558 return NULL;
9559 }
9560
9561 tem = get_last_value (x);
9562
9563 if (tem)
9564 {
9565 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9566 /* If X is narrower than MODE and TEM is a non-negative
9567 constant that would appear negative in the mode of X,
9568 sign-extend it for use in reg_nonzero_bits because some
9569 machines (maybe most) will actually do the sign-extension
9570 and this is the conservative approach.
9571
9572 ??? For 2.5, try to tighten up the MD files in this regard
9573 instead of this kludge. */
9574
9575 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode)
9576 && CONST_INT_P (tem)
9577 && INTVAL (tem) > 0
9578 && val_signbit_known_set_p (GET_MODE (x), INTVAL (tem)))
9579 tem = GEN_INT (INTVAL (tem) | ~GET_MODE_MASK (GET_MODE (x)));
9580 #endif
9581 return tem;
9582 }
9583 else if (nonzero_sign_valid && rsp->nonzero_bits)
9584 {
9585 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9586
9587 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9588 /* We don't know anything about the upper bits. */
9589 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9590 *nonzero &= mask;
9591 }
9592
9593 return NULL;
9594 }
9595
9596 /* Return the number of bits at the high-order end of X that are known to
9597 be equal to the sign bit. X will be used in mode MODE; if MODE is
9598 VOIDmode, X will be used in its own mode. The returned value will always
9599 be between 1 and the number of bits in MODE. */
9600
9601 static rtx
9602 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9603 const_rtx known_x ATTRIBUTE_UNUSED,
9604 enum machine_mode known_mode
9605 ATTRIBUTE_UNUSED,
9606 unsigned int known_ret ATTRIBUTE_UNUSED,
9607 unsigned int *result)
9608 {
9609 rtx tem;
9610 reg_stat_type *rsp;
9611
9612 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9613 if (rsp->last_set_value != 0
9614 && rsp->last_set_mode == mode
9615 && ((rsp->last_set_label >= label_tick_ebb_start
9616 && rsp->last_set_label < label_tick)
9617 || (rsp->last_set_label == label_tick
9618 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9619 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9620 && REG_N_SETS (REGNO (x)) == 1
9621 && !REGNO_REG_SET_P
9622 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9623 {
9624 *result = rsp->last_set_sign_bit_copies;
9625 return NULL;
9626 }
9627
9628 tem = get_last_value (x);
9629 if (tem != 0)
9630 return tem;
9631
9632 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9633 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9634 *result = rsp->sign_bit_copies;
9635
9636 return NULL;
9637 }
9638 \f
9639 /* Return the number of "extended" bits there are in X, when interpreted
9640 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9641 unsigned quantities, this is the number of high-order zero bits.
9642 For signed quantities, this is the number of copies of the sign bit
9643 minus 1. In both case, this function returns the number of "spare"
9644 bits. For example, if two quantities for which this function returns
9645 at least 1 are added, the addition is known not to overflow.
9646
9647 This function will always return 0 unless called during combine, which
9648 implies that it must be called from a define_split. */
9649
9650 unsigned int
9651 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9652 {
9653 if (nonzero_sign_valid == 0)
9654 return 0;
9655
9656 return (unsignedp
9657 ? (HWI_COMPUTABLE_MODE_P (mode)
9658 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9659 - floor_log2 (nonzero_bits (x, mode)))
9660 : 0)
9661 : num_sign_bit_copies (x, mode) - 1);
9662 }
9663 \f
9664 /* This function is called from `simplify_shift_const' to merge two
9665 outer operations. Specifically, we have already found that we need
9666 to perform operation *POP0 with constant *PCONST0 at the outermost
9667 position. We would now like to also perform OP1 with constant CONST1
9668 (with *POP0 being done last).
9669
9670 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9671 the resulting operation. *PCOMP_P is set to 1 if we would need to
9672 complement the innermost operand, otherwise it is unchanged.
9673
9674 MODE is the mode in which the operation will be done. No bits outside
9675 the width of this mode matter. It is assumed that the width of this mode
9676 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9677
9678 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9679 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9680 result is simply *PCONST0.
9681
9682 If the resulting operation cannot be expressed as one operation, we
9683 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9684
9685 static int
9686 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9687 {
9688 enum rtx_code op0 = *pop0;
9689 HOST_WIDE_INT const0 = *pconst0;
9690
9691 const0 &= GET_MODE_MASK (mode);
9692 const1 &= GET_MODE_MASK (mode);
9693
9694 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9695 if (op0 == AND)
9696 const1 &= const0;
9697
9698 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9699 if OP0 is SET. */
9700
9701 if (op1 == UNKNOWN || op0 == SET)
9702 return 1;
9703
9704 else if (op0 == UNKNOWN)
9705 op0 = op1, const0 = const1;
9706
9707 else if (op0 == op1)
9708 {
9709 switch (op0)
9710 {
9711 case AND:
9712 const0 &= const1;
9713 break;
9714 case IOR:
9715 const0 |= const1;
9716 break;
9717 case XOR:
9718 const0 ^= const1;
9719 break;
9720 case PLUS:
9721 const0 += const1;
9722 break;
9723 case NEG:
9724 op0 = UNKNOWN;
9725 break;
9726 default:
9727 break;
9728 }
9729 }
9730
9731 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9732 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9733 return 0;
9734
9735 /* If the two constants aren't the same, we can't do anything. The
9736 remaining six cases can all be done. */
9737 else if (const0 != const1)
9738 return 0;
9739
9740 else
9741 switch (op0)
9742 {
9743 case IOR:
9744 if (op1 == AND)
9745 /* (a & b) | b == b */
9746 op0 = SET;
9747 else /* op1 == XOR */
9748 /* (a ^ b) | b == a | b */
9749 {;}
9750 break;
9751
9752 case XOR:
9753 if (op1 == AND)
9754 /* (a & b) ^ b == (~a) & b */
9755 op0 = AND, *pcomp_p = 1;
9756 else /* op1 == IOR */
9757 /* (a | b) ^ b == a & ~b */
9758 op0 = AND, const0 = ~const0;
9759 break;
9760
9761 case AND:
9762 if (op1 == IOR)
9763 /* (a | b) & b == b */
9764 op0 = SET;
9765 else /* op1 == XOR */
9766 /* (a ^ b) & b) == (~a) & b */
9767 *pcomp_p = 1;
9768 break;
9769 default:
9770 break;
9771 }
9772
9773 /* Check for NO-OP cases. */
9774 const0 &= GET_MODE_MASK (mode);
9775 if (const0 == 0
9776 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9777 op0 = UNKNOWN;
9778 else if (const0 == 0 && op0 == AND)
9779 op0 = SET;
9780 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9781 && op0 == AND)
9782 op0 = UNKNOWN;
9783
9784 *pop0 = op0;
9785
9786 /* ??? Slightly redundant with the above mask, but not entirely.
9787 Moving this above means we'd have to sign-extend the mode mask
9788 for the final test. */
9789 if (op0 != UNKNOWN && op0 != NEG)
9790 *pconst0 = trunc_int_for_mode (const0, mode);
9791
9792 return 1;
9793 }
9794 \f
9795 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9796 the shift in. The original shift operation CODE is performed on OP in
9797 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9798 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9799 result of the shift is subject to operation OUTER_CODE with operand
9800 OUTER_CONST. */
9801
9802 static enum machine_mode
9803 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9804 enum machine_mode orig_mode, enum machine_mode mode,
9805 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9806 {
9807 if (orig_mode == mode)
9808 return mode;
9809 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
9810
9811 /* In general we can't perform in wider mode for right shift and rotate. */
9812 switch (code)
9813 {
9814 case ASHIFTRT:
9815 /* We can still widen if the bits brought in from the left are identical
9816 to the sign bit of ORIG_MODE. */
9817 if (num_sign_bit_copies (op, mode)
9818 > (unsigned) (GET_MODE_PRECISION (mode)
9819 - GET_MODE_PRECISION (orig_mode)))
9820 return mode;
9821 return orig_mode;
9822
9823 case LSHIFTRT:
9824 /* Similarly here but with zero bits. */
9825 if (HWI_COMPUTABLE_MODE_P (mode)
9826 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9827 return mode;
9828
9829 /* We can also widen if the bits brought in will be masked off. This
9830 operation is performed in ORIG_MODE. */
9831 if (outer_code == AND)
9832 {
9833 int care_bits = low_bitmask_len (orig_mode, outer_const);
9834
9835 if (care_bits >= 0
9836 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
9837 return mode;
9838 }
9839 /* fall through */
9840
9841 case ROTATE:
9842 return orig_mode;
9843
9844 case ROTATERT:
9845 gcc_unreachable ();
9846
9847 default:
9848 return mode;
9849 }
9850 }
9851
9852 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
9853 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
9854 if we cannot simplify it. Otherwise, return a simplified value.
9855
9856 The shift is normally computed in the widest mode we find in VAROP, as
9857 long as it isn't a different number of words than RESULT_MODE. Exceptions
9858 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9859
9860 static rtx
9861 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9862 rtx varop, int orig_count)
9863 {
9864 enum rtx_code orig_code = code;
9865 rtx orig_varop = varop;
9866 int count;
9867 enum machine_mode mode = result_mode;
9868 enum machine_mode shift_mode, tmode;
9869 unsigned int mode_words
9870 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9871 /* We form (outer_op (code varop count) (outer_const)). */
9872 enum rtx_code outer_op = UNKNOWN;
9873 HOST_WIDE_INT outer_const = 0;
9874 int complement_p = 0;
9875 rtx new_rtx, x;
9876
9877 /* Make sure and truncate the "natural" shift on the way in. We don't
9878 want to do this inside the loop as it makes it more difficult to
9879 combine shifts. */
9880 if (SHIFT_COUNT_TRUNCATED)
9881 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9882
9883 /* If we were given an invalid count, don't do anything except exactly
9884 what was requested. */
9885
9886 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
9887 return NULL_RTX;
9888
9889 count = orig_count;
9890
9891 /* Unless one of the branches of the `if' in this loop does a `continue',
9892 we will `break' the loop after the `if'. */
9893
9894 while (count != 0)
9895 {
9896 /* If we have an operand of (clobber (const_int 0)), fail. */
9897 if (GET_CODE (varop) == CLOBBER)
9898 return NULL_RTX;
9899
9900 /* Convert ROTATERT to ROTATE. */
9901 if (code == ROTATERT)
9902 {
9903 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
9904 code = ROTATE;
9905 if (VECTOR_MODE_P (result_mode))
9906 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9907 else
9908 count = bitsize - count;
9909 }
9910
9911 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9912 mode, outer_op, outer_const);
9913
9914 /* Handle cases where the count is greater than the size of the mode
9915 minus 1. For ASHIFT, use the size minus one as the count (this can
9916 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9917 take the count modulo the size. For other shifts, the result is
9918 zero.
9919
9920 Since these shifts are being produced by the compiler by combining
9921 multiple operations, each of which are defined, we know what the
9922 result is supposed to be. */
9923
9924 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
9925 {
9926 if (code == ASHIFTRT)
9927 count = GET_MODE_PRECISION (shift_mode) - 1;
9928 else if (code == ROTATE || code == ROTATERT)
9929 count %= GET_MODE_PRECISION (shift_mode);
9930 else
9931 {
9932 /* We can't simply return zero because there may be an
9933 outer op. */
9934 varop = const0_rtx;
9935 count = 0;
9936 break;
9937 }
9938 }
9939
9940 /* If we discovered we had to complement VAROP, leave. Making a NOT
9941 here would cause an infinite loop. */
9942 if (complement_p)
9943 break;
9944
9945 /* An arithmetic right shift of a quantity known to be -1 or 0
9946 is a no-op. */
9947 if (code == ASHIFTRT
9948 && (num_sign_bit_copies (varop, shift_mode)
9949 == GET_MODE_PRECISION (shift_mode)))
9950 {
9951 count = 0;
9952 break;
9953 }
9954
9955 /* If we are doing an arithmetic right shift and discarding all but
9956 the sign bit copies, this is equivalent to doing a shift by the
9957 bitsize minus one. Convert it into that shift because it will often
9958 allow other simplifications. */
9959
9960 if (code == ASHIFTRT
9961 && (count + num_sign_bit_copies (varop, shift_mode)
9962 >= GET_MODE_PRECISION (shift_mode)))
9963 count = GET_MODE_PRECISION (shift_mode) - 1;
9964
9965 /* We simplify the tests below and elsewhere by converting
9966 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9967 `make_compound_operation' will convert it to an ASHIFTRT for
9968 those machines (such as VAX) that don't have an LSHIFTRT. */
9969 if (code == ASHIFTRT
9970 && val_signbit_known_clear_p (shift_mode,
9971 nonzero_bits (varop, shift_mode)))
9972 code = LSHIFTRT;
9973
9974 if (((code == LSHIFTRT
9975 && HWI_COMPUTABLE_MODE_P (shift_mode)
9976 && !(nonzero_bits (varop, shift_mode) >> count))
9977 || (code == ASHIFT
9978 && HWI_COMPUTABLE_MODE_P (shift_mode)
9979 && !((nonzero_bits (varop, shift_mode) << count)
9980 & GET_MODE_MASK (shift_mode))))
9981 && !side_effects_p (varop))
9982 varop = const0_rtx;
9983
9984 switch (GET_CODE (varop))
9985 {
9986 case SIGN_EXTEND:
9987 case ZERO_EXTEND:
9988 case SIGN_EXTRACT:
9989 case ZERO_EXTRACT:
9990 new_rtx = expand_compound_operation (varop);
9991 if (new_rtx != varop)
9992 {
9993 varop = new_rtx;
9994 continue;
9995 }
9996 break;
9997
9998 case MEM:
9999 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10000 minus the width of a smaller mode, we can do this with a
10001 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10002 if ((code == ASHIFTRT || code == LSHIFTRT)
10003 && ! mode_dependent_address_p (XEXP (varop, 0))
10004 && ! MEM_VOLATILE_P (varop)
10005 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10006 MODE_INT, 1)) != BLKmode)
10007 {
10008 new_rtx = adjust_address_nv (varop, tmode,
10009 BYTES_BIG_ENDIAN ? 0
10010 : count / BITS_PER_UNIT);
10011
10012 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10013 : ZERO_EXTEND, mode, new_rtx);
10014 count = 0;
10015 continue;
10016 }
10017 break;
10018
10019 case SUBREG:
10020 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10021 the same number of words as what we've seen so far. Then store
10022 the widest mode in MODE. */
10023 if (subreg_lowpart_p (varop)
10024 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10025 > GET_MODE_SIZE (GET_MODE (varop)))
10026 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10027 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10028 == mode_words
10029 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10030 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10031 {
10032 varop = SUBREG_REG (varop);
10033 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10034 mode = GET_MODE (varop);
10035 continue;
10036 }
10037 break;
10038
10039 case MULT:
10040 /* Some machines use MULT instead of ASHIFT because MULT
10041 is cheaper. But it is still better on those machines to
10042 merge two shifts into one. */
10043 if (CONST_INT_P (XEXP (varop, 1))
10044 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10045 {
10046 varop
10047 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10048 XEXP (varop, 0),
10049 GEN_INT (exact_log2 (
10050 UINTVAL (XEXP (varop, 1)))));
10051 continue;
10052 }
10053 break;
10054
10055 case UDIV:
10056 /* Similar, for when divides are cheaper. */
10057 if (CONST_INT_P (XEXP (varop, 1))
10058 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10059 {
10060 varop
10061 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10062 XEXP (varop, 0),
10063 GEN_INT (exact_log2 (
10064 UINTVAL (XEXP (varop, 1)))));
10065 continue;
10066 }
10067 break;
10068
10069 case ASHIFTRT:
10070 /* If we are extracting just the sign bit of an arithmetic
10071 right shift, that shift is not needed. However, the sign
10072 bit of a wider mode may be different from what would be
10073 interpreted as the sign bit in a narrower mode, so, if
10074 the result is narrower, don't discard the shift. */
10075 if (code == LSHIFTRT
10076 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10077 && (GET_MODE_BITSIZE (result_mode)
10078 >= GET_MODE_BITSIZE (GET_MODE (varop))))
10079 {
10080 varop = XEXP (varop, 0);
10081 continue;
10082 }
10083
10084 /* ... fall through ... */
10085
10086 case LSHIFTRT:
10087 case ASHIFT:
10088 case ROTATE:
10089 /* Here we have two nested shifts. The result is usually the
10090 AND of a new shift with a mask. We compute the result below. */
10091 if (CONST_INT_P (XEXP (varop, 1))
10092 && INTVAL (XEXP (varop, 1)) >= 0
10093 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10094 && HWI_COMPUTABLE_MODE_P (result_mode)
10095 && HWI_COMPUTABLE_MODE_P (mode)
10096 && !VECTOR_MODE_P (result_mode))
10097 {
10098 enum rtx_code first_code = GET_CODE (varop);
10099 unsigned int first_count = INTVAL (XEXP (varop, 1));
10100 unsigned HOST_WIDE_INT mask;
10101 rtx mask_rtx;
10102
10103 /* We have one common special case. We can't do any merging if
10104 the inner code is an ASHIFTRT of a smaller mode. However, if
10105 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10106 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10107 we can convert it to
10108 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10109 This simplifies certain SIGN_EXTEND operations. */
10110 if (code == ASHIFT && first_code == ASHIFTRT
10111 && count == (GET_MODE_PRECISION (result_mode)
10112 - GET_MODE_PRECISION (GET_MODE (varop))))
10113 {
10114 /* C3 has the low-order C1 bits zero. */
10115
10116 mask = GET_MODE_MASK (mode)
10117 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10118
10119 varop = simplify_and_const_int (NULL_RTX, result_mode,
10120 XEXP (varop, 0), mask);
10121 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10122 varop, count);
10123 count = first_count;
10124 code = ASHIFTRT;
10125 continue;
10126 }
10127
10128 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10129 than C1 high-order bits equal to the sign bit, we can convert
10130 this to either an ASHIFT or an ASHIFTRT depending on the
10131 two counts.
10132
10133 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10134
10135 if (code == ASHIFTRT && first_code == ASHIFT
10136 && GET_MODE (varop) == shift_mode
10137 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10138 > first_count))
10139 {
10140 varop = XEXP (varop, 0);
10141 count -= first_count;
10142 if (count < 0)
10143 {
10144 count = -count;
10145 code = ASHIFT;
10146 }
10147
10148 continue;
10149 }
10150
10151 /* There are some cases we can't do. If CODE is ASHIFTRT,
10152 we can only do this if FIRST_CODE is also ASHIFTRT.
10153
10154 We can't do the case when CODE is ROTATE and FIRST_CODE is
10155 ASHIFTRT.
10156
10157 If the mode of this shift is not the mode of the outer shift,
10158 we can't do this if either shift is a right shift or ROTATE.
10159
10160 Finally, we can't do any of these if the mode is too wide
10161 unless the codes are the same.
10162
10163 Handle the case where the shift codes are the same
10164 first. */
10165
10166 if (code == first_code)
10167 {
10168 if (GET_MODE (varop) != result_mode
10169 && (code == ASHIFTRT || code == LSHIFTRT
10170 || code == ROTATE))
10171 break;
10172
10173 count += first_count;
10174 varop = XEXP (varop, 0);
10175 continue;
10176 }
10177
10178 if (code == ASHIFTRT
10179 || (code == ROTATE && first_code == ASHIFTRT)
10180 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10181 || (GET_MODE (varop) != result_mode
10182 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10183 || first_code == ROTATE
10184 || code == ROTATE)))
10185 break;
10186
10187 /* To compute the mask to apply after the shift, shift the
10188 nonzero bits of the inner shift the same way the
10189 outer shift will. */
10190
10191 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
10192
10193 mask_rtx
10194 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10195 GEN_INT (count));
10196
10197 /* Give up if we can't compute an outer operation to use. */
10198 if (mask_rtx == 0
10199 || !CONST_INT_P (mask_rtx)
10200 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10201 INTVAL (mask_rtx),
10202 result_mode, &complement_p))
10203 break;
10204
10205 /* If the shifts are in the same direction, we add the
10206 counts. Otherwise, we subtract them. */
10207 if ((code == ASHIFTRT || code == LSHIFTRT)
10208 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10209 count += first_count;
10210 else
10211 count -= first_count;
10212
10213 /* If COUNT is positive, the new shift is usually CODE,
10214 except for the two exceptions below, in which case it is
10215 FIRST_CODE. If the count is negative, FIRST_CODE should
10216 always be used */
10217 if (count > 0
10218 && ((first_code == ROTATE && code == ASHIFT)
10219 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10220 code = first_code;
10221 else if (count < 0)
10222 code = first_code, count = -count;
10223
10224 varop = XEXP (varop, 0);
10225 continue;
10226 }
10227
10228 /* If we have (A << B << C) for any shift, we can convert this to
10229 (A << C << B). This wins if A is a constant. Only try this if
10230 B is not a constant. */
10231
10232 else if (GET_CODE (varop) == code
10233 && CONST_INT_P (XEXP (varop, 0))
10234 && !CONST_INT_P (XEXP (varop, 1)))
10235 {
10236 rtx new_rtx = simplify_const_binary_operation (code, mode,
10237 XEXP (varop, 0),
10238 GEN_INT (count));
10239 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10240 count = 0;
10241 continue;
10242 }
10243 break;
10244
10245 case NOT:
10246 if (VECTOR_MODE_P (mode))
10247 break;
10248
10249 /* Make this fit the case below. */
10250 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
10251 GEN_INT (GET_MODE_MASK (mode)));
10252 continue;
10253
10254 case IOR:
10255 case AND:
10256 case XOR:
10257 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10258 with C the size of VAROP - 1 and the shift is logical if
10259 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10260 we have an (le X 0) operation. If we have an arithmetic shift
10261 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10262 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10263
10264 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10265 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10266 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10267 && (code == LSHIFTRT || code == ASHIFTRT)
10268 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10269 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10270 {
10271 count = 0;
10272 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10273 const0_rtx);
10274
10275 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10276 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10277
10278 continue;
10279 }
10280
10281 /* If we have (shift (logical)), move the logical to the outside
10282 to allow it to possibly combine with another logical and the
10283 shift to combine with another shift. This also canonicalizes to
10284 what a ZERO_EXTRACT looks like. Also, some machines have
10285 (and (shift)) insns. */
10286
10287 if (CONST_INT_P (XEXP (varop, 1))
10288 /* We can't do this if we have (ashiftrt (xor)) and the
10289 constant has its sign bit set in shift_mode. */
10290 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10291 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10292 shift_mode))
10293 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10294 XEXP (varop, 1),
10295 GEN_INT (count))) != 0
10296 && CONST_INT_P (new_rtx)
10297 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10298 INTVAL (new_rtx), result_mode, &complement_p))
10299 {
10300 varop = XEXP (varop, 0);
10301 continue;
10302 }
10303
10304 /* If we can't do that, try to simplify the shift in each arm of the
10305 logical expression, make a new logical expression, and apply
10306 the inverse distributive law. This also can't be done
10307 for some (ashiftrt (xor)). */
10308 if (CONST_INT_P (XEXP (varop, 1))
10309 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10310 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10311 shift_mode)))
10312 {
10313 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10314 XEXP (varop, 0), count);
10315 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10316 XEXP (varop, 1), count);
10317
10318 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10319 lhs, rhs);
10320 varop = apply_distributive_law (varop);
10321
10322 count = 0;
10323 continue;
10324 }
10325 break;
10326
10327 case EQ:
10328 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10329 says that the sign bit can be tested, FOO has mode MODE, C is
10330 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10331 that may be nonzero. */
10332 if (code == LSHIFTRT
10333 && XEXP (varop, 1) == const0_rtx
10334 && GET_MODE (XEXP (varop, 0)) == result_mode
10335 && count == (GET_MODE_PRECISION (result_mode) - 1)
10336 && HWI_COMPUTABLE_MODE_P (result_mode)
10337 && STORE_FLAG_VALUE == -1
10338 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10339 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10340 &complement_p))
10341 {
10342 varop = XEXP (varop, 0);
10343 count = 0;
10344 continue;
10345 }
10346 break;
10347
10348 case NEG:
10349 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10350 than the number of bits in the mode is equivalent to A. */
10351 if (code == LSHIFTRT
10352 && count == (GET_MODE_PRECISION (result_mode) - 1)
10353 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10354 {
10355 varop = XEXP (varop, 0);
10356 count = 0;
10357 continue;
10358 }
10359
10360 /* NEG commutes with ASHIFT since it is multiplication. Move the
10361 NEG outside to allow shifts to combine. */
10362 if (code == ASHIFT
10363 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10364 &complement_p))
10365 {
10366 varop = XEXP (varop, 0);
10367 continue;
10368 }
10369 break;
10370
10371 case PLUS:
10372 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10373 is one less than the number of bits in the mode is
10374 equivalent to (xor A 1). */
10375 if (code == LSHIFTRT
10376 && count == (GET_MODE_PRECISION (result_mode) - 1)
10377 && XEXP (varop, 1) == constm1_rtx
10378 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10379 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10380 &complement_p))
10381 {
10382 count = 0;
10383 varop = XEXP (varop, 0);
10384 continue;
10385 }
10386
10387 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10388 that might be nonzero in BAR are those being shifted out and those
10389 bits are known zero in FOO, we can replace the PLUS with FOO.
10390 Similarly in the other operand order. This code occurs when
10391 we are computing the size of a variable-size array. */
10392
10393 if ((code == ASHIFTRT || code == LSHIFTRT)
10394 && count < HOST_BITS_PER_WIDE_INT
10395 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10396 && (nonzero_bits (XEXP (varop, 1), result_mode)
10397 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10398 {
10399 varop = XEXP (varop, 0);
10400 continue;
10401 }
10402 else if ((code == ASHIFTRT || code == LSHIFTRT)
10403 && count < HOST_BITS_PER_WIDE_INT
10404 && HWI_COMPUTABLE_MODE_P (result_mode)
10405 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10406 >> count)
10407 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10408 & nonzero_bits (XEXP (varop, 1),
10409 result_mode)))
10410 {
10411 varop = XEXP (varop, 1);
10412 continue;
10413 }
10414
10415 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10416 if (code == ASHIFT
10417 && CONST_INT_P (XEXP (varop, 1))
10418 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10419 XEXP (varop, 1),
10420 GEN_INT (count))) != 0
10421 && CONST_INT_P (new_rtx)
10422 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10423 INTVAL (new_rtx), result_mode, &complement_p))
10424 {
10425 varop = XEXP (varop, 0);
10426 continue;
10427 }
10428
10429 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10430 signbit', and attempt to change the PLUS to an XOR and move it to
10431 the outer operation as is done above in the AND/IOR/XOR case
10432 leg for shift(logical). See details in logical handling above
10433 for reasoning in doing so. */
10434 if (code == LSHIFTRT
10435 && CONST_INT_P (XEXP (varop, 1))
10436 && mode_signbit_p (result_mode, XEXP (varop, 1))
10437 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10438 XEXP (varop, 1),
10439 GEN_INT (count))) != 0
10440 && CONST_INT_P (new_rtx)
10441 && merge_outer_ops (&outer_op, &outer_const, XOR,
10442 INTVAL (new_rtx), result_mode, &complement_p))
10443 {
10444 varop = XEXP (varop, 0);
10445 continue;
10446 }
10447
10448 break;
10449
10450 case MINUS:
10451 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10452 with C the size of VAROP - 1 and the shift is logical if
10453 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10454 we have a (gt X 0) operation. If the shift is arithmetic with
10455 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10456 we have a (neg (gt X 0)) operation. */
10457
10458 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10459 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10460 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10461 && (code == LSHIFTRT || code == ASHIFTRT)
10462 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10463 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10464 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10465 {
10466 count = 0;
10467 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10468 const0_rtx);
10469
10470 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10471 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10472
10473 continue;
10474 }
10475 break;
10476
10477 case TRUNCATE:
10478 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10479 if the truncate does not affect the value. */
10480 if (code == LSHIFTRT
10481 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10482 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10483 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10484 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10485 - GET_MODE_PRECISION (GET_MODE (varop)))))
10486 {
10487 rtx varop_inner = XEXP (varop, 0);
10488
10489 varop_inner
10490 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10491 XEXP (varop_inner, 0),
10492 GEN_INT
10493 (count + INTVAL (XEXP (varop_inner, 1))));
10494 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10495 count = 0;
10496 continue;
10497 }
10498 break;
10499
10500 default:
10501 break;
10502 }
10503
10504 break;
10505 }
10506
10507 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10508 outer_op, outer_const);
10509
10510 /* We have now finished analyzing the shift. The result should be
10511 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10512 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10513 to the result of the shift. OUTER_CONST is the relevant constant,
10514 but we must turn off all bits turned off in the shift. */
10515
10516 if (outer_op == UNKNOWN
10517 && orig_code == code && orig_count == count
10518 && varop == orig_varop
10519 && shift_mode == GET_MODE (varop))
10520 return NULL_RTX;
10521
10522 /* Make a SUBREG if necessary. If we can't make it, fail. */
10523 varop = gen_lowpart (shift_mode, varop);
10524 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10525 return NULL_RTX;
10526
10527 /* If we have an outer operation and we just made a shift, it is
10528 possible that we could have simplified the shift were it not
10529 for the outer operation. So try to do the simplification
10530 recursively. */
10531
10532 if (outer_op != UNKNOWN)
10533 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10534 else
10535 x = NULL_RTX;
10536
10537 if (x == NULL_RTX)
10538 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10539
10540 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10541 turn off all the bits that the shift would have turned off. */
10542 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10543 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10544 GET_MODE_MASK (result_mode) >> orig_count);
10545
10546 /* Do the remainder of the processing in RESULT_MODE. */
10547 x = gen_lowpart_or_truncate (result_mode, x);
10548
10549 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10550 operation. */
10551 if (complement_p)
10552 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10553
10554 if (outer_op != UNKNOWN)
10555 {
10556 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10557 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10558 outer_const = trunc_int_for_mode (outer_const, result_mode);
10559
10560 if (outer_op == AND)
10561 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10562 else if (outer_op == SET)
10563 {
10564 /* This means that we have determined that the result is
10565 equivalent to a constant. This should be rare. */
10566 if (!side_effects_p (x))
10567 x = GEN_INT (outer_const);
10568 }
10569 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10570 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10571 else
10572 x = simplify_gen_binary (outer_op, result_mode, x,
10573 GEN_INT (outer_const));
10574 }
10575
10576 return x;
10577 }
10578
10579 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10580 The result of the shift is RESULT_MODE. If we cannot simplify it,
10581 return X or, if it is NULL, synthesize the expression with
10582 simplify_gen_binary. Otherwise, return a simplified value.
10583
10584 The shift is normally computed in the widest mode we find in VAROP, as
10585 long as it isn't a different number of words than RESULT_MODE. Exceptions
10586 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10587
10588 static rtx
10589 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10590 rtx varop, int count)
10591 {
10592 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10593 if (tem)
10594 return tem;
10595
10596 if (!x)
10597 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10598 if (GET_MODE (x) != result_mode)
10599 x = gen_lowpart (result_mode, x);
10600 return x;
10601 }
10602
10603 \f
10604 /* Like recog, but we receive the address of a pointer to a new pattern.
10605 We try to match the rtx that the pointer points to.
10606 If that fails, we may try to modify or replace the pattern,
10607 storing the replacement into the same pointer object.
10608
10609 Modifications include deletion or addition of CLOBBERs.
10610
10611 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10612 the CLOBBERs are placed.
10613
10614 The value is the final insn code from the pattern ultimately matched,
10615 or -1. */
10616
10617 static int
10618 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10619 {
10620 rtx pat = *pnewpat;
10621 int insn_code_number;
10622 int num_clobbers_to_add = 0;
10623 int i;
10624 rtx notes = 0;
10625 rtx old_notes, old_pat;
10626
10627 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10628 we use to indicate that something didn't match. If we find such a
10629 thing, force rejection. */
10630 if (GET_CODE (pat) == PARALLEL)
10631 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10632 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10633 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10634 return -1;
10635
10636 old_pat = PATTERN (insn);
10637 old_notes = REG_NOTES (insn);
10638 PATTERN (insn) = pat;
10639 REG_NOTES (insn) = 0;
10640
10641 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10642 if (dump_file && (dump_flags & TDF_DETAILS))
10643 {
10644 if (insn_code_number < 0)
10645 fputs ("Failed to match this instruction:\n", dump_file);
10646 else
10647 fputs ("Successfully matched this instruction:\n", dump_file);
10648 print_rtl_single (dump_file, pat);
10649 }
10650
10651 /* If it isn't, there is the possibility that we previously had an insn
10652 that clobbered some register as a side effect, but the combined
10653 insn doesn't need to do that. So try once more without the clobbers
10654 unless this represents an ASM insn. */
10655
10656 if (insn_code_number < 0 && ! check_asm_operands (pat)
10657 && GET_CODE (pat) == PARALLEL)
10658 {
10659 int pos;
10660
10661 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10662 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10663 {
10664 if (i != pos)
10665 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10666 pos++;
10667 }
10668
10669 SUBST_INT (XVECLEN (pat, 0), pos);
10670
10671 if (pos == 1)
10672 pat = XVECEXP (pat, 0, 0);
10673
10674 PATTERN (insn) = pat;
10675 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10676 if (dump_file && (dump_flags & TDF_DETAILS))
10677 {
10678 if (insn_code_number < 0)
10679 fputs ("Failed to match this instruction:\n", dump_file);
10680 else
10681 fputs ("Successfully matched this instruction:\n", dump_file);
10682 print_rtl_single (dump_file, pat);
10683 }
10684 }
10685 PATTERN (insn) = old_pat;
10686 REG_NOTES (insn) = old_notes;
10687
10688 /* Recognize all noop sets, these will be killed by followup pass. */
10689 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10690 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10691
10692 /* If we had any clobbers to add, make a new pattern than contains
10693 them. Then check to make sure that all of them are dead. */
10694 if (num_clobbers_to_add)
10695 {
10696 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10697 rtvec_alloc (GET_CODE (pat) == PARALLEL
10698 ? (XVECLEN (pat, 0)
10699 + num_clobbers_to_add)
10700 : num_clobbers_to_add + 1));
10701
10702 if (GET_CODE (pat) == PARALLEL)
10703 for (i = 0; i < XVECLEN (pat, 0); i++)
10704 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10705 else
10706 XVECEXP (newpat, 0, 0) = pat;
10707
10708 add_clobbers (newpat, insn_code_number);
10709
10710 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10711 i < XVECLEN (newpat, 0); i++)
10712 {
10713 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10714 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10715 return -1;
10716 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10717 {
10718 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10719 notes = alloc_reg_note (REG_UNUSED,
10720 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10721 }
10722 }
10723 pat = newpat;
10724 }
10725
10726 *pnewpat = pat;
10727 *pnotes = notes;
10728
10729 return insn_code_number;
10730 }
10731 \f
10732 /* Like gen_lowpart_general but for use by combine. In combine it
10733 is not possible to create any new pseudoregs. However, it is
10734 safe to create invalid memory addresses, because combine will
10735 try to recognize them and all they will do is make the combine
10736 attempt fail.
10737
10738 If for some reason this cannot do its job, an rtx
10739 (clobber (const_int 0)) is returned.
10740 An insn containing that will not be recognized. */
10741
10742 static rtx
10743 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10744 {
10745 enum machine_mode imode = GET_MODE (x);
10746 unsigned int osize = GET_MODE_SIZE (omode);
10747 unsigned int isize = GET_MODE_SIZE (imode);
10748 rtx result;
10749
10750 if (omode == imode)
10751 return x;
10752
10753 /* Return identity if this is a CONST or symbolic reference. */
10754 if (omode == Pmode
10755 && (GET_CODE (x) == CONST
10756 || GET_CODE (x) == SYMBOL_REF
10757 || GET_CODE (x) == LABEL_REF))
10758 return x;
10759
10760 /* We can only support MODE being wider than a word if X is a
10761 constant integer or has a mode the same size. */
10762 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10763 && ! ((imode == VOIDmode
10764 && (CONST_INT_P (x)
10765 || GET_CODE (x) == CONST_DOUBLE))
10766 || isize == osize))
10767 goto fail;
10768
10769 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10770 won't know what to do. So we will strip off the SUBREG here and
10771 process normally. */
10772 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10773 {
10774 x = SUBREG_REG (x);
10775
10776 /* For use in case we fall down into the address adjustments
10777 further below, we need to adjust the known mode and size of
10778 x; imode and isize, since we just adjusted x. */
10779 imode = GET_MODE (x);
10780
10781 if (imode == omode)
10782 return x;
10783
10784 isize = GET_MODE_SIZE (imode);
10785 }
10786
10787 result = gen_lowpart_common (omode, x);
10788
10789 if (result)
10790 return result;
10791
10792 if (MEM_P (x))
10793 {
10794 int offset = 0;
10795
10796 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10797 address. */
10798 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10799 goto fail;
10800
10801 /* If we want to refer to something bigger than the original memref,
10802 generate a paradoxical subreg instead. That will force a reload
10803 of the original memref X. */
10804 if (isize < osize)
10805 return gen_rtx_SUBREG (omode, x, 0);
10806
10807 if (WORDS_BIG_ENDIAN)
10808 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10809
10810 /* Adjust the address so that the address-after-the-data is
10811 unchanged. */
10812 if (BYTES_BIG_ENDIAN)
10813 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10814
10815 return adjust_address_nv (x, omode, offset);
10816 }
10817
10818 /* If X is a comparison operator, rewrite it in a new mode. This
10819 probably won't match, but may allow further simplifications. */
10820 else if (COMPARISON_P (x))
10821 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10822
10823 /* If we couldn't simplify X any other way, just enclose it in a
10824 SUBREG. Normally, this SUBREG won't match, but some patterns may
10825 include an explicit SUBREG or we may simplify it further in combine. */
10826 else
10827 {
10828 int offset = 0;
10829 rtx res;
10830
10831 offset = subreg_lowpart_offset (omode, imode);
10832 if (imode == VOIDmode)
10833 {
10834 imode = int_mode_for_mode (omode);
10835 x = gen_lowpart_common (imode, x);
10836 if (x == NULL)
10837 goto fail;
10838 }
10839 res = simplify_gen_subreg (omode, x, imode, offset);
10840 if (res)
10841 return res;
10842 }
10843
10844 fail:
10845 return gen_rtx_CLOBBER (omode, const0_rtx);
10846 }
10847 \f
10848 /* Try to simplify a comparison between OP0 and a constant OP1,
10849 where CODE is the comparison code that will be tested, into a
10850 (CODE OP0 const0_rtx) form.
10851
10852 The result is a possibly different comparison code to use.
10853 *POP1 may be updated. */
10854
10855 static enum rtx_code
10856 simplify_compare_const (enum rtx_code code, rtx op0, rtx *pop1)
10857 {
10858 enum machine_mode mode = GET_MODE (op0);
10859 unsigned int mode_width = GET_MODE_PRECISION (mode);
10860 HOST_WIDE_INT const_op = INTVAL (*pop1);
10861
10862 /* Get the constant we are comparing against and turn off all bits
10863 not on in our mode. */
10864 if (mode != VOIDmode)
10865 const_op = trunc_int_for_mode (const_op, mode);
10866
10867 /* If we are comparing against a constant power of two and the value
10868 being compared can only have that single bit nonzero (e.g., it was
10869 `and'ed with that bit), we can replace this with a comparison
10870 with zero. */
10871 if (const_op
10872 && (code == EQ || code == NE || code == GE || code == GEU
10873 || code == LT || code == LTU)
10874 && mode_width <= HOST_BITS_PER_WIDE_INT
10875 && exact_log2 (const_op) >= 0
10876 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10877 {
10878 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10879 const_op = 0;
10880 }
10881
10882 /* Similarly, if we are comparing a value known to be either -1 or
10883 0 with -1, change it to the opposite comparison against zero. */
10884 if (const_op == -1
10885 && (code == EQ || code == NE || code == GT || code == LE
10886 || code == GEU || code == LTU)
10887 && num_sign_bit_copies (op0, mode) == mode_width)
10888 {
10889 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10890 const_op = 0;
10891 }
10892
10893 /* Do some canonicalizations based on the comparison code. We prefer
10894 comparisons against zero and then prefer equality comparisons.
10895 If we can reduce the size of a constant, we will do that too. */
10896 switch (code)
10897 {
10898 case LT:
10899 /* < C is equivalent to <= (C - 1) */
10900 if (const_op > 0)
10901 {
10902 const_op -= 1;
10903 code = LE;
10904 /* ... fall through to LE case below. */
10905 }
10906 else
10907 break;
10908
10909 case LE:
10910 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10911 if (const_op < 0)
10912 {
10913 const_op += 1;
10914 code = LT;
10915 }
10916
10917 /* If we are doing a <= 0 comparison on a value known to have
10918 a zero sign bit, we can replace this with == 0. */
10919 else if (const_op == 0
10920 && mode_width <= HOST_BITS_PER_WIDE_INT
10921 && (nonzero_bits (op0, mode)
10922 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10923 == 0)
10924 code = EQ;
10925 break;
10926
10927 case GE:
10928 /* >= C is equivalent to > (C - 1). */
10929 if (const_op > 0)
10930 {
10931 const_op -= 1;
10932 code = GT;
10933 /* ... fall through to GT below. */
10934 }
10935 else
10936 break;
10937
10938 case GT:
10939 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10940 if (const_op < 0)
10941 {
10942 const_op += 1;
10943 code = GE;
10944 }
10945
10946 /* If we are doing a > 0 comparison on a value known to have
10947 a zero sign bit, we can replace this with != 0. */
10948 else if (const_op == 0
10949 && mode_width <= HOST_BITS_PER_WIDE_INT
10950 && (nonzero_bits (op0, mode)
10951 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10952 == 0)
10953 code = NE;
10954 break;
10955
10956 case LTU:
10957 /* < C is equivalent to <= (C - 1). */
10958 if (const_op > 0)
10959 {
10960 const_op -= 1;
10961 code = LEU;
10962 /* ... fall through ... */
10963 }
10964 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10965 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10966 && (unsigned HOST_WIDE_INT) const_op
10967 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
10968 {
10969 const_op = 0;
10970 code = GE;
10971 break;
10972 }
10973 else
10974 break;
10975
10976 case LEU:
10977 /* unsigned <= 0 is equivalent to == 0 */
10978 if (const_op == 0)
10979 code = EQ;
10980 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10981 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10982 && (unsigned HOST_WIDE_INT) const_op
10983 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
10984 {
10985 const_op = 0;
10986 code = GE;
10987 }
10988 break;
10989
10990 case GEU:
10991 /* >= C is equivalent to > (C - 1). */
10992 if (const_op > 1)
10993 {
10994 const_op -= 1;
10995 code = GTU;
10996 /* ... fall through ... */
10997 }
10998
10999 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11000 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11001 && (unsigned HOST_WIDE_INT) const_op
11002 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11003 {
11004 const_op = 0;
11005 code = LT;
11006 break;
11007 }
11008 else
11009 break;
11010
11011 case GTU:
11012 /* unsigned > 0 is equivalent to != 0 */
11013 if (const_op == 0)
11014 code = NE;
11015 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11016 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11017 && (unsigned HOST_WIDE_INT) const_op
11018 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11019 {
11020 const_op = 0;
11021 code = LT;
11022 }
11023 break;
11024
11025 default:
11026 break;
11027 }
11028
11029 *pop1 = GEN_INT (const_op);
11030 return code;
11031 }
11032 \f
11033 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11034 comparison code that will be tested.
11035
11036 The result is a possibly different comparison code to use. *POP0 and
11037 *POP1 may be updated.
11038
11039 It is possible that we might detect that a comparison is either always
11040 true or always false. However, we do not perform general constant
11041 folding in combine, so this knowledge isn't useful. Such tautologies
11042 should have been detected earlier. Hence we ignore all such cases. */
11043
11044 static enum rtx_code
11045 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11046 {
11047 rtx op0 = *pop0;
11048 rtx op1 = *pop1;
11049 rtx tem, tem1;
11050 int i;
11051 enum machine_mode mode, tmode;
11052
11053 /* Try a few ways of applying the same transformation to both operands. */
11054 while (1)
11055 {
11056 #ifndef WORD_REGISTER_OPERATIONS
11057 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11058 so check specially. */
11059 if (code != GTU && code != GEU && code != LTU && code != LEU
11060 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11061 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11062 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11063 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11064 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11065 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11066 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11067 && CONST_INT_P (XEXP (op0, 1))
11068 && XEXP (op0, 1) == XEXP (op1, 1)
11069 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11070 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11071 && (INTVAL (XEXP (op0, 1))
11072 == (GET_MODE_PRECISION (GET_MODE (op0))
11073 - (GET_MODE_PRECISION
11074 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11075 {
11076 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11077 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11078 }
11079 #endif
11080
11081 /* If both operands are the same constant shift, see if we can ignore the
11082 shift. We can if the shift is a rotate or if the bits shifted out of
11083 this shift are known to be zero for both inputs and if the type of
11084 comparison is compatible with the shift. */
11085 if (GET_CODE (op0) == GET_CODE (op1)
11086 && HWI_COMPUTABLE_MODE_P (GET_MODE(op0))
11087 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11088 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11089 && (code != GT && code != LT && code != GE && code != LE))
11090 || (GET_CODE (op0) == ASHIFTRT
11091 && (code != GTU && code != LTU
11092 && code != GEU && code != LEU)))
11093 && CONST_INT_P (XEXP (op0, 1))
11094 && INTVAL (XEXP (op0, 1)) >= 0
11095 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11096 && XEXP (op0, 1) == XEXP (op1, 1))
11097 {
11098 enum machine_mode mode = GET_MODE (op0);
11099 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11100 int shift_count = INTVAL (XEXP (op0, 1));
11101
11102 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11103 mask &= (mask >> shift_count) << shift_count;
11104 else if (GET_CODE (op0) == ASHIFT)
11105 mask = (mask & (mask << shift_count)) >> shift_count;
11106
11107 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11108 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11109 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11110 else
11111 break;
11112 }
11113
11114 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11115 SUBREGs are of the same mode, and, in both cases, the AND would
11116 be redundant if the comparison was done in the narrower mode,
11117 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11118 and the operand's possibly nonzero bits are 0xffffff01; in that case
11119 if we only care about QImode, we don't need the AND). This case
11120 occurs if the output mode of an scc insn is not SImode and
11121 STORE_FLAG_VALUE == 1 (e.g., the 386).
11122
11123 Similarly, check for a case where the AND's are ZERO_EXTEND
11124 operations from some narrower mode even though a SUBREG is not
11125 present. */
11126
11127 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11128 && CONST_INT_P (XEXP (op0, 1))
11129 && CONST_INT_P (XEXP (op1, 1)))
11130 {
11131 rtx inner_op0 = XEXP (op0, 0);
11132 rtx inner_op1 = XEXP (op1, 0);
11133 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11134 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11135 int changed = 0;
11136
11137 if (paradoxical_subreg_p (inner_op0)
11138 && GET_CODE (inner_op1) == SUBREG
11139 && (GET_MODE (SUBREG_REG (inner_op0))
11140 == GET_MODE (SUBREG_REG (inner_op1)))
11141 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11142 <= HOST_BITS_PER_WIDE_INT)
11143 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11144 GET_MODE (SUBREG_REG (inner_op0)))))
11145 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11146 GET_MODE (SUBREG_REG (inner_op1))))))
11147 {
11148 op0 = SUBREG_REG (inner_op0);
11149 op1 = SUBREG_REG (inner_op1);
11150
11151 /* The resulting comparison is always unsigned since we masked
11152 off the original sign bit. */
11153 code = unsigned_condition (code);
11154
11155 changed = 1;
11156 }
11157
11158 else if (c0 == c1)
11159 for (tmode = GET_CLASS_NARROWEST_MODE
11160 (GET_MODE_CLASS (GET_MODE (op0)));
11161 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11162 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11163 {
11164 op0 = gen_lowpart (tmode, inner_op0);
11165 op1 = gen_lowpart (tmode, inner_op1);
11166 code = unsigned_condition (code);
11167 changed = 1;
11168 break;
11169 }
11170
11171 if (! changed)
11172 break;
11173 }
11174
11175 /* If both operands are NOT, we can strip off the outer operation
11176 and adjust the comparison code for swapped operands; similarly for
11177 NEG, except that this must be an equality comparison. */
11178 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11179 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11180 && (code == EQ || code == NE)))
11181 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11182
11183 else
11184 break;
11185 }
11186
11187 /* If the first operand is a constant, swap the operands and adjust the
11188 comparison code appropriately, but don't do this if the second operand
11189 is already a constant integer. */
11190 if (swap_commutative_operands_p (op0, op1))
11191 {
11192 tem = op0, op0 = op1, op1 = tem;
11193 code = swap_condition (code);
11194 }
11195
11196 /* We now enter a loop during which we will try to simplify the comparison.
11197 For the most part, we only are concerned with comparisons with zero,
11198 but some things may really be comparisons with zero but not start
11199 out looking that way. */
11200
11201 while (CONST_INT_P (op1))
11202 {
11203 enum machine_mode mode = GET_MODE (op0);
11204 unsigned int mode_width = GET_MODE_PRECISION (mode);
11205 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11206 int equality_comparison_p;
11207 int sign_bit_comparison_p;
11208 int unsigned_comparison_p;
11209 HOST_WIDE_INT const_op;
11210
11211 /* We only want to handle integral modes. This catches VOIDmode,
11212 CCmode, and the floating-point modes. An exception is that we
11213 can handle VOIDmode if OP0 is a COMPARE or a comparison
11214 operation. */
11215
11216 if (GET_MODE_CLASS (mode) != MODE_INT
11217 && ! (mode == VOIDmode
11218 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11219 break;
11220
11221 /* Try to simplify the compare to constant, possibly changing the
11222 comparison op, and/or changing op1 to zero. */
11223 code = simplify_compare_const (code, op0, &op1);
11224 const_op = INTVAL (op1);
11225
11226 /* Compute some predicates to simplify code below. */
11227
11228 equality_comparison_p = (code == EQ || code == NE);
11229 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11230 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11231 || code == GEU);
11232
11233 /* If this is a sign bit comparison and we can do arithmetic in
11234 MODE, say that we will only be needing the sign bit of OP0. */
11235 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11236 op0 = force_to_mode (op0, mode,
11237 (unsigned HOST_WIDE_INT) 1
11238 << (GET_MODE_PRECISION (mode) - 1),
11239 0);
11240
11241 /* Now try cases based on the opcode of OP0. If none of the cases
11242 does a "continue", we exit this loop immediately after the
11243 switch. */
11244
11245 switch (GET_CODE (op0))
11246 {
11247 case ZERO_EXTRACT:
11248 /* If we are extracting a single bit from a variable position in
11249 a constant that has only a single bit set and are comparing it
11250 with zero, we can convert this into an equality comparison
11251 between the position and the location of the single bit. */
11252 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11253 have already reduced the shift count modulo the word size. */
11254 if (!SHIFT_COUNT_TRUNCATED
11255 && CONST_INT_P (XEXP (op0, 0))
11256 && XEXP (op0, 1) == const1_rtx
11257 && equality_comparison_p && const_op == 0
11258 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11259 {
11260 if (BITS_BIG_ENDIAN)
11261 {
11262 enum machine_mode new_mode
11263 = mode_for_extraction (EP_extzv, 1);
11264 if (new_mode == MAX_MACHINE_MODE)
11265 i = BITS_PER_WORD - 1 - i;
11266 else
11267 {
11268 mode = new_mode;
11269 i = (GET_MODE_PRECISION (mode) - 1 - i);
11270 }
11271 }
11272
11273 op0 = XEXP (op0, 2);
11274 op1 = GEN_INT (i);
11275 const_op = i;
11276
11277 /* Result is nonzero iff shift count is equal to I. */
11278 code = reverse_condition (code);
11279 continue;
11280 }
11281
11282 /* ... fall through ... */
11283
11284 case SIGN_EXTRACT:
11285 tem = expand_compound_operation (op0);
11286 if (tem != op0)
11287 {
11288 op0 = tem;
11289 continue;
11290 }
11291 break;
11292
11293 case NOT:
11294 /* If testing for equality, we can take the NOT of the constant. */
11295 if (equality_comparison_p
11296 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11297 {
11298 op0 = XEXP (op0, 0);
11299 op1 = tem;
11300 continue;
11301 }
11302
11303 /* If just looking at the sign bit, reverse the sense of the
11304 comparison. */
11305 if (sign_bit_comparison_p)
11306 {
11307 op0 = XEXP (op0, 0);
11308 code = (code == GE ? LT : GE);
11309 continue;
11310 }
11311 break;
11312
11313 case NEG:
11314 /* If testing for equality, we can take the NEG of the constant. */
11315 if (equality_comparison_p
11316 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11317 {
11318 op0 = XEXP (op0, 0);
11319 op1 = tem;
11320 continue;
11321 }
11322
11323 /* The remaining cases only apply to comparisons with zero. */
11324 if (const_op != 0)
11325 break;
11326
11327 /* When X is ABS or is known positive,
11328 (neg X) is < 0 if and only if X != 0. */
11329
11330 if (sign_bit_comparison_p
11331 && (GET_CODE (XEXP (op0, 0)) == ABS
11332 || (mode_width <= HOST_BITS_PER_WIDE_INT
11333 && (nonzero_bits (XEXP (op0, 0), mode)
11334 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11335 == 0)))
11336 {
11337 op0 = XEXP (op0, 0);
11338 code = (code == LT ? NE : EQ);
11339 continue;
11340 }
11341
11342 /* If we have NEG of something whose two high-order bits are the
11343 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11344 if (num_sign_bit_copies (op0, mode) >= 2)
11345 {
11346 op0 = XEXP (op0, 0);
11347 code = swap_condition (code);
11348 continue;
11349 }
11350 break;
11351
11352 case ROTATE:
11353 /* If we are testing equality and our count is a constant, we
11354 can perform the inverse operation on our RHS. */
11355 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11356 && (tem = simplify_binary_operation (ROTATERT, mode,
11357 op1, XEXP (op0, 1))) != 0)
11358 {
11359 op0 = XEXP (op0, 0);
11360 op1 = tem;
11361 continue;
11362 }
11363
11364 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11365 a particular bit. Convert it to an AND of a constant of that
11366 bit. This will be converted into a ZERO_EXTRACT. */
11367 if (const_op == 0 && sign_bit_comparison_p
11368 && CONST_INT_P (XEXP (op0, 1))
11369 && mode_width <= HOST_BITS_PER_WIDE_INT)
11370 {
11371 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11372 ((unsigned HOST_WIDE_INT) 1
11373 << (mode_width - 1
11374 - INTVAL (XEXP (op0, 1)))));
11375 code = (code == LT ? NE : EQ);
11376 continue;
11377 }
11378
11379 /* Fall through. */
11380
11381 case ABS:
11382 /* ABS is ignorable inside an equality comparison with zero. */
11383 if (const_op == 0 && equality_comparison_p)
11384 {
11385 op0 = XEXP (op0, 0);
11386 continue;
11387 }
11388 break;
11389
11390 case SIGN_EXTEND:
11391 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11392 (compare FOO CONST) if CONST fits in FOO's mode and we
11393 are either testing inequality or have an unsigned
11394 comparison with ZERO_EXTEND or a signed comparison with
11395 SIGN_EXTEND. But don't do it if we don't have a compare
11396 insn of the given mode, since we'd have to revert it
11397 later on, and then we wouldn't know whether to sign- or
11398 zero-extend. */
11399 mode = GET_MODE (XEXP (op0, 0));
11400 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11401 && ! unsigned_comparison_p
11402 && val_signbit_known_clear_p (mode, const_op)
11403 && have_insn_for (COMPARE, mode))
11404 {
11405 op0 = XEXP (op0, 0);
11406 continue;
11407 }
11408 break;
11409
11410 case SUBREG:
11411 /* Check for the case where we are comparing A - C1 with C2, that is
11412
11413 (subreg:MODE (plus (A) (-C1))) op (C2)
11414
11415 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11416 comparison in the wider mode. One of the following two conditions
11417 must be true in order for this to be valid:
11418
11419 1. The mode extension results in the same bit pattern being added
11420 on both sides and the comparison is equality or unsigned. As
11421 C2 has been truncated to fit in MODE, the pattern can only be
11422 all 0s or all 1s.
11423
11424 2. The mode extension results in the sign bit being copied on
11425 each side.
11426
11427 The difficulty here is that we have predicates for A but not for
11428 (A - C1) so we need to check that C1 is within proper bounds so
11429 as to perturbate A as little as possible. */
11430
11431 if (mode_width <= HOST_BITS_PER_WIDE_INT
11432 && subreg_lowpart_p (op0)
11433 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11434 && GET_CODE (SUBREG_REG (op0)) == PLUS
11435 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11436 {
11437 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11438 rtx a = XEXP (SUBREG_REG (op0), 0);
11439 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11440
11441 if ((c1 > 0
11442 && (unsigned HOST_WIDE_INT) c1
11443 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11444 && (equality_comparison_p || unsigned_comparison_p)
11445 /* (A - C1) zero-extends if it is positive and sign-extends
11446 if it is negative, C2 both zero- and sign-extends. */
11447 && ((0 == (nonzero_bits (a, inner_mode)
11448 & ~GET_MODE_MASK (mode))
11449 && const_op >= 0)
11450 /* (A - C1) sign-extends if it is positive and 1-extends
11451 if it is negative, C2 both sign- and 1-extends. */
11452 || (num_sign_bit_copies (a, inner_mode)
11453 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11454 - mode_width)
11455 && const_op < 0)))
11456 || ((unsigned HOST_WIDE_INT) c1
11457 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11458 /* (A - C1) always sign-extends, like C2. */
11459 && num_sign_bit_copies (a, inner_mode)
11460 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11461 - (mode_width - 1))))
11462 {
11463 op0 = SUBREG_REG (op0);
11464 continue;
11465 }
11466 }
11467
11468 /* If the inner mode is narrower and we are extracting the low part,
11469 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11470 if (subreg_lowpart_p (op0)
11471 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11472 /* Fall through */ ;
11473 else
11474 break;
11475
11476 /* ... fall through ... */
11477
11478 case ZERO_EXTEND:
11479 mode = GET_MODE (XEXP (op0, 0));
11480 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11481 && (unsigned_comparison_p || equality_comparison_p)
11482 && HWI_COMPUTABLE_MODE_P (mode)
11483 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
11484 && have_insn_for (COMPARE, mode))
11485 {
11486 op0 = XEXP (op0, 0);
11487 continue;
11488 }
11489 break;
11490
11491 case PLUS:
11492 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11493 this for equality comparisons due to pathological cases involving
11494 overflows. */
11495 if (equality_comparison_p
11496 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11497 op1, XEXP (op0, 1))))
11498 {
11499 op0 = XEXP (op0, 0);
11500 op1 = tem;
11501 continue;
11502 }
11503
11504 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11505 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11506 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11507 {
11508 op0 = XEXP (XEXP (op0, 0), 0);
11509 code = (code == LT ? EQ : NE);
11510 continue;
11511 }
11512 break;
11513
11514 case MINUS:
11515 /* We used to optimize signed comparisons against zero, but that
11516 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11517 arrive here as equality comparisons, or (GEU, LTU) are
11518 optimized away. No need to special-case them. */
11519
11520 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11521 (eq B (minus A C)), whichever simplifies. We can only do
11522 this for equality comparisons due to pathological cases involving
11523 overflows. */
11524 if (equality_comparison_p
11525 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11526 XEXP (op0, 1), op1)))
11527 {
11528 op0 = XEXP (op0, 0);
11529 op1 = tem;
11530 continue;
11531 }
11532
11533 if (equality_comparison_p
11534 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11535 XEXP (op0, 0), op1)))
11536 {
11537 op0 = XEXP (op0, 1);
11538 op1 = tem;
11539 continue;
11540 }
11541
11542 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11543 of bits in X minus 1, is one iff X > 0. */
11544 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11545 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11546 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11547 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11548 {
11549 op0 = XEXP (op0, 1);
11550 code = (code == GE ? LE : GT);
11551 continue;
11552 }
11553 break;
11554
11555 case XOR:
11556 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11557 if C is zero or B is a constant. */
11558 if (equality_comparison_p
11559 && 0 != (tem = simplify_binary_operation (XOR, mode,
11560 XEXP (op0, 1), op1)))
11561 {
11562 op0 = XEXP (op0, 0);
11563 op1 = tem;
11564 continue;
11565 }
11566 break;
11567
11568 case EQ: case NE:
11569 case UNEQ: case LTGT:
11570 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11571 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11572 case UNORDERED: case ORDERED:
11573 /* We can't do anything if OP0 is a condition code value, rather
11574 than an actual data value. */
11575 if (const_op != 0
11576 || CC0_P (XEXP (op0, 0))
11577 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11578 break;
11579
11580 /* Get the two operands being compared. */
11581 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11582 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11583 else
11584 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11585
11586 /* Check for the cases where we simply want the result of the
11587 earlier test or the opposite of that result. */
11588 if (code == NE || code == EQ
11589 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11590 && (code == LT || code == GE)))
11591 {
11592 enum rtx_code new_code;
11593 if (code == LT || code == NE)
11594 new_code = GET_CODE (op0);
11595 else
11596 new_code = reversed_comparison_code (op0, NULL);
11597
11598 if (new_code != UNKNOWN)
11599 {
11600 code = new_code;
11601 op0 = tem;
11602 op1 = tem1;
11603 continue;
11604 }
11605 }
11606 break;
11607
11608 case IOR:
11609 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11610 iff X <= 0. */
11611 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11612 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11613 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11614 {
11615 op0 = XEXP (op0, 1);
11616 code = (code == GE ? GT : LE);
11617 continue;
11618 }
11619 break;
11620
11621 case AND:
11622 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11623 will be converted to a ZERO_EXTRACT later. */
11624 if (const_op == 0 && equality_comparison_p
11625 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11626 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11627 {
11628 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11629 XEXP (XEXP (op0, 0), 1));
11630 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11631 continue;
11632 }
11633
11634 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11635 zero and X is a comparison and C1 and C2 describe only bits set
11636 in STORE_FLAG_VALUE, we can compare with X. */
11637 if (const_op == 0 && equality_comparison_p
11638 && mode_width <= HOST_BITS_PER_WIDE_INT
11639 && CONST_INT_P (XEXP (op0, 1))
11640 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11641 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11642 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11643 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11644 {
11645 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11646 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11647 if ((~STORE_FLAG_VALUE & mask) == 0
11648 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11649 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11650 && COMPARISON_P (tem))))
11651 {
11652 op0 = XEXP (XEXP (op0, 0), 0);
11653 continue;
11654 }
11655 }
11656
11657 /* If we are doing an equality comparison of an AND of a bit equal
11658 to the sign bit, replace this with a LT or GE comparison of
11659 the underlying value. */
11660 if (equality_comparison_p
11661 && const_op == 0
11662 && CONST_INT_P (XEXP (op0, 1))
11663 && mode_width <= HOST_BITS_PER_WIDE_INT
11664 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11665 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11666 {
11667 op0 = XEXP (op0, 0);
11668 code = (code == EQ ? GE : LT);
11669 continue;
11670 }
11671
11672 /* If this AND operation is really a ZERO_EXTEND from a narrower
11673 mode, the constant fits within that mode, and this is either an
11674 equality or unsigned comparison, try to do this comparison in
11675 the narrower mode.
11676
11677 Note that in:
11678
11679 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11680 -> (ne:DI (reg:SI 4) (const_int 0))
11681
11682 unless TRULY_NOOP_TRUNCATION allows it or the register is
11683 known to hold a value of the required mode the
11684 transformation is invalid. */
11685 if ((equality_comparison_p || unsigned_comparison_p)
11686 && CONST_INT_P (XEXP (op0, 1))
11687 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
11688 & GET_MODE_MASK (mode))
11689 + 1)) >= 0
11690 && const_op >> i == 0
11691 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11692 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode, GET_MODE (op0))
11693 || (REG_P (XEXP (op0, 0))
11694 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11695 {
11696 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11697 continue;
11698 }
11699
11700 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11701 fits in both M1 and M2 and the SUBREG is either paradoxical
11702 or represents the low part, permute the SUBREG and the AND
11703 and try again. */
11704 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11705 {
11706 unsigned HOST_WIDE_INT c1;
11707 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11708 /* Require an integral mode, to avoid creating something like
11709 (AND:SF ...). */
11710 if (SCALAR_INT_MODE_P (tmode)
11711 /* It is unsafe to commute the AND into the SUBREG if the
11712 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11713 not defined. As originally written the upper bits
11714 have a defined value due to the AND operation.
11715 However, if we commute the AND inside the SUBREG then
11716 they no longer have defined values and the meaning of
11717 the code has been changed. */
11718 && (0
11719 #ifdef WORD_REGISTER_OPERATIONS
11720 || (mode_width > GET_MODE_PRECISION (tmode)
11721 && mode_width <= BITS_PER_WORD)
11722 #endif
11723 || (mode_width <= GET_MODE_PRECISION (tmode)
11724 && subreg_lowpart_p (XEXP (op0, 0))))
11725 && CONST_INT_P (XEXP (op0, 1))
11726 && mode_width <= HOST_BITS_PER_WIDE_INT
11727 && HWI_COMPUTABLE_MODE_P (tmode)
11728 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11729 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11730 && c1 != mask
11731 && c1 != GET_MODE_MASK (tmode))
11732 {
11733 op0 = simplify_gen_binary (AND, tmode,
11734 SUBREG_REG (XEXP (op0, 0)),
11735 gen_int_mode (c1, tmode));
11736 op0 = gen_lowpart (mode, op0);
11737 continue;
11738 }
11739 }
11740
11741 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11742 if (const_op == 0 && equality_comparison_p
11743 && XEXP (op0, 1) == const1_rtx
11744 && GET_CODE (XEXP (op0, 0)) == NOT)
11745 {
11746 op0 = simplify_and_const_int (NULL_RTX, mode,
11747 XEXP (XEXP (op0, 0), 0), 1);
11748 code = (code == NE ? EQ : NE);
11749 continue;
11750 }
11751
11752 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11753 (eq (and (lshiftrt X) 1) 0).
11754 Also handle the case where (not X) is expressed using xor. */
11755 if (const_op == 0 && equality_comparison_p
11756 && XEXP (op0, 1) == const1_rtx
11757 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11758 {
11759 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11760 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11761
11762 if (GET_CODE (shift_op) == NOT
11763 || (GET_CODE (shift_op) == XOR
11764 && CONST_INT_P (XEXP (shift_op, 1))
11765 && CONST_INT_P (shift_count)
11766 && HWI_COMPUTABLE_MODE_P (mode)
11767 && (UINTVAL (XEXP (shift_op, 1))
11768 == (unsigned HOST_WIDE_INT) 1
11769 << INTVAL (shift_count))))
11770 {
11771 op0
11772 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
11773 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11774 code = (code == NE ? EQ : NE);
11775 continue;
11776 }
11777 }
11778 break;
11779
11780 case ASHIFT:
11781 /* If we have (compare (ashift FOO N) (const_int C)) and
11782 the high order N bits of FOO (N+1 if an inequality comparison)
11783 are known to be zero, we can do this by comparing FOO with C
11784 shifted right N bits so long as the low-order N bits of C are
11785 zero. */
11786 if (CONST_INT_P (XEXP (op0, 1))
11787 && INTVAL (XEXP (op0, 1)) >= 0
11788 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11789 < HOST_BITS_PER_WIDE_INT)
11790 && (((unsigned HOST_WIDE_INT) const_op
11791 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
11792 - 1)) == 0)
11793 && mode_width <= HOST_BITS_PER_WIDE_INT
11794 && (nonzero_bits (XEXP (op0, 0), mode)
11795 & ~(mask >> (INTVAL (XEXP (op0, 1))
11796 + ! equality_comparison_p))) == 0)
11797 {
11798 /* We must perform a logical shift, not an arithmetic one,
11799 as we want the top N bits of C to be zero. */
11800 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11801
11802 temp >>= INTVAL (XEXP (op0, 1));
11803 op1 = gen_int_mode (temp, mode);
11804 op0 = XEXP (op0, 0);
11805 continue;
11806 }
11807
11808 /* If we are doing a sign bit comparison, it means we are testing
11809 a particular bit. Convert it to the appropriate AND. */
11810 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11811 && mode_width <= HOST_BITS_PER_WIDE_INT)
11812 {
11813 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11814 ((unsigned HOST_WIDE_INT) 1
11815 << (mode_width - 1
11816 - INTVAL (XEXP (op0, 1)))));
11817 code = (code == LT ? NE : EQ);
11818 continue;
11819 }
11820
11821 /* If this an equality comparison with zero and we are shifting
11822 the low bit to the sign bit, we can convert this to an AND of the
11823 low-order bit. */
11824 if (const_op == 0 && equality_comparison_p
11825 && CONST_INT_P (XEXP (op0, 1))
11826 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11827 {
11828 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
11829 continue;
11830 }
11831 break;
11832
11833 case ASHIFTRT:
11834 /* If this is an equality comparison with zero, we can do this
11835 as a logical shift, which might be much simpler. */
11836 if (equality_comparison_p && const_op == 0
11837 && CONST_INT_P (XEXP (op0, 1)))
11838 {
11839 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11840 XEXP (op0, 0),
11841 INTVAL (XEXP (op0, 1)));
11842 continue;
11843 }
11844
11845 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11846 do the comparison in a narrower mode. */
11847 if (! unsigned_comparison_p
11848 && CONST_INT_P (XEXP (op0, 1))
11849 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11850 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11851 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11852 MODE_INT, 1)) != BLKmode
11853 && (((unsigned HOST_WIDE_INT) const_op
11854 + (GET_MODE_MASK (tmode) >> 1) + 1)
11855 <= GET_MODE_MASK (tmode)))
11856 {
11857 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11858 continue;
11859 }
11860
11861 /* Likewise if OP0 is a PLUS of a sign extension with a
11862 constant, which is usually represented with the PLUS
11863 between the shifts. */
11864 if (! unsigned_comparison_p
11865 && CONST_INT_P (XEXP (op0, 1))
11866 && GET_CODE (XEXP (op0, 0)) == PLUS
11867 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11868 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11869 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11870 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11871 MODE_INT, 1)) != BLKmode
11872 && (((unsigned HOST_WIDE_INT) const_op
11873 + (GET_MODE_MASK (tmode) >> 1) + 1)
11874 <= GET_MODE_MASK (tmode)))
11875 {
11876 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11877 rtx add_const = XEXP (XEXP (op0, 0), 1);
11878 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11879 add_const, XEXP (op0, 1));
11880
11881 op0 = simplify_gen_binary (PLUS, tmode,
11882 gen_lowpart (tmode, inner),
11883 new_const);
11884 continue;
11885 }
11886
11887 /* ... fall through ... */
11888 case LSHIFTRT:
11889 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11890 the low order N bits of FOO are known to be zero, we can do this
11891 by comparing FOO with C shifted left N bits so long as no
11892 overflow occurs. Even if the low order N bits of FOO aren't known
11893 to be zero, if the comparison is >= or < we can use the same
11894 optimization and for > or <= by setting all the low
11895 order N bits in the comparison constant. */
11896 if (CONST_INT_P (XEXP (op0, 1))
11897 && INTVAL (XEXP (op0, 1)) > 0
11898 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11899 && mode_width <= HOST_BITS_PER_WIDE_INT
11900 && (((unsigned HOST_WIDE_INT) const_op
11901 + (GET_CODE (op0) != LSHIFTRT
11902 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11903 + 1)
11904 : 0))
11905 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11906 {
11907 unsigned HOST_WIDE_INT low_bits
11908 = (nonzero_bits (XEXP (op0, 0), mode)
11909 & (((unsigned HOST_WIDE_INT) 1
11910 << INTVAL (XEXP (op0, 1))) - 1));
11911 if (low_bits == 0 || !equality_comparison_p)
11912 {
11913 /* If the shift was logical, then we must make the condition
11914 unsigned. */
11915 if (GET_CODE (op0) == LSHIFTRT)
11916 code = unsigned_condition (code);
11917
11918 const_op <<= INTVAL (XEXP (op0, 1));
11919 if (low_bits != 0
11920 && (code == GT || code == GTU
11921 || code == LE || code == LEU))
11922 const_op
11923 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
11924 op1 = GEN_INT (const_op);
11925 op0 = XEXP (op0, 0);
11926 continue;
11927 }
11928 }
11929
11930 /* If we are using this shift to extract just the sign bit, we
11931 can replace this with an LT or GE comparison. */
11932 if (const_op == 0
11933 && (equality_comparison_p || sign_bit_comparison_p)
11934 && CONST_INT_P (XEXP (op0, 1))
11935 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11936 {
11937 op0 = XEXP (op0, 0);
11938 code = (code == NE || code == GT ? LT : GE);
11939 continue;
11940 }
11941 break;
11942
11943 default:
11944 break;
11945 }
11946
11947 break;
11948 }
11949
11950 /* Now make any compound operations involved in this comparison. Then,
11951 check for an outmost SUBREG on OP0 that is not doing anything or is
11952 paradoxical. The latter transformation must only be performed when
11953 it is known that the "extra" bits will be the same in op0 and op1 or
11954 that they don't matter. There are three cases to consider:
11955
11956 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11957 care bits and we can assume they have any convenient value. So
11958 making the transformation is safe.
11959
11960 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11961 In this case the upper bits of op0 are undefined. We should not make
11962 the simplification in that case as we do not know the contents of
11963 those bits.
11964
11965 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11966 UNKNOWN. In that case we know those bits are zeros or ones. We must
11967 also be sure that they are the same as the upper bits of op1.
11968
11969 We can never remove a SUBREG for a non-equality comparison because
11970 the sign bit is in a different place in the underlying object. */
11971
11972 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11973 op1 = make_compound_operation (op1, SET);
11974
11975 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11976 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11977 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11978 && (code == NE || code == EQ))
11979 {
11980 if (paradoxical_subreg_p (op0))
11981 {
11982 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11983 implemented. */
11984 if (REG_P (SUBREG_REG (op0)))
11985 {
11986 op0 = SUBREG_REG (op0);
11987 op1 = gen_lowpart (GET_MODE (op0), op1);
11988 }
11989 }
11990 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
11991 <= HOST_BITS_PER_WIDE_INT)
11992 && (nonzero_bits (SUBREG_REG (op0),
11993 GET_MODE (SUBREG_REG (op0)))
11994 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11995 {
11996 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11997
11998 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11999 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12000 op0 = SUBREG_REG (op0), op1 = tem;
12001 }
12002 }
12003
12004 /* We now do the opposite procedure: Some machines don't have compare
12005 insns in all modes. If OP0's mode is an integer mode smaller than a
12006 word and we can't do a compare in that mode, see if there is a larger
12007 mode for which we can do the compare. There are a number of cases in
12008 which we can use the wider mode. */
12009
12010 mode = GET_MODE (op0);
12011 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12012 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12013 && ! have_insn_for (COMPARE, mode))
12014 for (tmode = GET_MODE_WIDER_MODE (mode);
12015 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12016 tmode = GET_MODE_WIDER_MODE (tmode))
12017 if (have_insn_for (COMPARE, tmode))
12018 {
12019 int zero_extended;
12020
12021 /* If this is a test for negative, we can make an explicit
12022 test of the sign bit. Test this first so we can use
12023 a paradoxical subreg to extend OP0. */
12024
12025 if (op1 == const0_rtx && (code == LT || code == GE)
12026 && HWI_COMPUTABLE_MODE_P (mode))
12027 {
12028 op0 = simplify_gen_binary (AND, tmode,
12029 gen_lowpart (tmode, op0),
12030 GEN_INT ((unsigned HOST_WIDE_INT) 1
12031 << (GET_MODE_BITSIZE (mode)
12032 - 1)));
12033 code = (code == LT) ? NE : EQ;
12034 break;
12035 }
12036
12037 /* If the only nonzero bits in OP0 and OP1 are those in the
12038 narrower mode and this is an equality or unsigned comparison,
12039 we can use the wider mode. Similarly for sign-extended
12040 values, in which case it is true for all comparisons. */
12041 zero_extended = ((code == EQ || code == NE
12042 || code == GEU || code == GTU
12043 || code == LEU || code == LTU)
12044 && (nonzero_bits (op0, tmode)
12045 & ~GET_MODE_MASK (mode)) == 0
12046 && ((CONST_INT_P (op1)
12047 || (nonzero_bits (op1, tmode)
12048 & ~GET_MODE_MASK (mode)) == 0)));
12049
12050 if (zero_extended
12051 || ((num_sign_bit_copies (op0, tmode)
12052 > (unsigned int) (GET_MODE_PRECISION (tmode)
12053 - GET_MODE_PRECISION (mode)))
12054 && (num_sign_bit_copies (op1, tmode)
12055 > (unsigned int) (GET_MODE_PRECISION (tmode)
12056 - GET_MODE_PRECISION (mode)))))
12057 {
12058 /* If OP0 is an AND and we don't have an AND in MODE either,
12059 make a new AND in the proper mode. */
12060 if (GET_CODE (op0) == AND
12061 && !have_insn_for (AND, mode))
12062 op0 = simplify_gen_binary (AND, tmode,
12063 gen_lowpart (tmode,
12064 XEXP (op0, 0)),
12065 gen_lowpart (tmode,
12066 XEXP (op0, 1)));
12067 else
12068 {
12069 if (zero_extended)
12070 {
12071 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12072 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12073 }
12074 else
12075 {
12076 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12077 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12078 }
12079 break;
12080 }
12081 }
12082 }
12083
12084 #ifdef CANONICALIZE_COMPARISON
12085 /* If this machine only supports a subset of valid comparisons, see if we
12086 can convert an unsupported one into a supported one. */
12087 CANONICALIZE_COMPARISON (code, op0, op1);
12088 #endif
12089
12090 *pop0 = op0;
12091 *pop1 = op1;
12092
12093 return code;
12094 }
12095 \f
12096 /* Utility function for record_value_for_reg. Count number of
12097 rtxs in X. */
12098 static int
12099 count_rtxs (rtx x)
12100 {
12101 enum rtx_code code = GET_CODE (x);
12102 const char *fmt;
12103 int i, j, ret = 1;
12104
12105 if (GET_RTX_CLASS (code) == '2'
12106 || GET_RTX_CLASS (code) == 'c')
12107 {
12108 rtx x0 = XEXP (x, 0);
12109 rtx x1 = XEXP (x, 1);
12110
12111 if (x0 == x1)
12112 return 1 + 2 * count_rtxs (x0);
12113
12114 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
12115 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
12116 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12117 return 2 + 2 * count_rtxs (x0)
12118 + count_rtxs (x == XEXP (x1, 0)
12119 ? XEXP (x1, 1) : XEXP (x1, 0));
12120
12121 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
12122 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
12123 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12124 return 2 + 2 * count_rtxs (x1)
12125 + count_rtxs (x == XEXP (x0, 0)
12126 ? XEXP (x0, 1) : XEXP (x0, 0));
12127 }
12128
12129 fmt = GET_RTX_FORMAT (code);
12130 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12131 if (fmt[i] == 'e')
12132 ret += count_rtxs (XEXP (x, i));
12133 else if (fmt[i] == 'E')
12134 for (j = 0; j < XVECLEN (x, i); j++)
12135 ret += count_rtxs (XVECEXP (x, i, j));
12136
12137 return ret;
12138 }
12139 \f
12140 /* Utility function for following routine. Called when X is part of a value
12141 being stored into last_set_value. Sets last_set_table_tick
12142 for each register mentioned. Similar to mention_regs in cse.c */
12143
12144 static void
12145 update_table_tick (rtx x)
12146 {
12147 enum rtx_code code = GET_CODE (x);
12148 const char *fmt = GET_RTX_FORMAT (code);
12149 int i, j;
12150
12151 if (code == REG)
12152 {
12153 unsigned int regno = REGNO (x);
12154 unsigned int endregno = END_REGNO (x);
12155 unsigned int r;
12156
12157 for (r = regno; r < endregno; r++)
12158 {
12159 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
12160 rsp->last_set_table_tick = label_tick;
12161 }
12162
12163 return;
12164 }
12165
12166 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12167 if (fmt[i] == 'e')
12168 {
12169 /* Check for identical subexpressions. If x contains
12170 identical subexpression we only have to traverse one of
12171 them. */
12172 if (i == 0 && ARITHMETIC_P (x))
12173 {
12174 /* Note that at this point x1 has already been
12175 processed. */
12176 rtx x0 = XEXP (x, 0);
12177 rtx x1 = XEXP (x, 1);
12178
12179 /* If x0 and x1 are identical then there is no need to
12180 process x0. */
12181 if (x0 == x1)
12182 break;
12183
12184 /* If x0 is identical to a subexpression of x1 then while
12185 processing x1, x0 has already been processed. Thus we
12186 are done with x. */
12187 if (ARITHMETIC_P (x1)
12188 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12189 break;
12190
12191 /* If x1 is identical to a subexpression of x0 then we
12192 still have to process the rest of x0. */
12193 if (ARITHMETIC_P (x0)
12194 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12195 {
12196 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12197 break;
12198 }
12199 }
12200
12201 update_table_tick (XEXP (x, i));
12202 }
12203 else if (fmt[i] == 'E')
12204 for (j = 0; j < XVECLEN (x, i); j++)
12205 update_table_tick (XVECEXP (x, i, j));
12206 }
12207
12208 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12209 are saying that the register is clobbered and we no longer know its
12210 value. If INSN is zero, don't update reg_stat[].last_set; this is
12211 only permitted with VALUE also zero and is used to invalidate the
12212 register. */
12213
12214 static void
12215 record_value_for_reg (rtx reg, rtx insn, rtx value)
12216 {
12217 unsigned int regno = REGNO (reg);
12218 unsigned int endregno = END_REGNO (reg);
12219 unsigned int i;
12220 reg_stat_type *rsp;
12221
12222 /* If VALUE contains REG and we have a previous value for REG, substitute
12223 the previous value. */
12224 if (value && insn && reg_overlap_mentioned_p (reg, value))
12225 {
12226 rtx tem;
12227
12228 /* Set things up so get_last_value is allowed to see anything set up to
12229 our insn. */
12230 subst_low_luid = DF_INSN_LUID (insn);
12231 tem = get_last_value (reg);
12232
12233 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12234 it isn't going to be useful and will take a lot of time to process,
12235 so just use the CLOBBER. */
12236
12237 if (tem)
12238 {
12239 if (ARITHMETIC_P (tem)
12240 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12241 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12242 tem = XEXP (tem, 0);
12243 else if (count_occurrences (value, reg, 1) >= 2)
12244 {
12245 /* If there are two or more occurrences of REG in VALUE,
12246 prevent the value from growing too much. */
12247 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12248 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12249 }
12250
12251 value = replace_rtx (copy_rtx (value), reg, tem);
12252 }
12253 }
12254
12255 /* For each register modified, show we don't know its value, that
12256 we don't know about its bitwise content, that its value has been
12257 updated, and that we don't know the location of the death of the
12258 register. */
12259 for (i = regno; i < endregno; i++)
12260 {
12261 rsp = VEC_index (reg_stat_type, reg_stat, i);
12262
12263 if (insn)
12264 rsp->last_set = insn;
12265
12266 rsp->last_set_value = 0;
12267 rsp->last_set_mode = VOIDmode;
12268 rsp->last_set_nonzero_bits = 0;
12269 rsp->last_set_sign_bit_copies = 0;
12270 rsp->last_death = 0;
12271 rsp->truncated_to_mode = VOIDmode;
12272 }
12273
12274 /* Mark registers that are being referenced in this value. */
12275 if (value)
12276 update_table_tick (value);
12277
12278 /* Now update the status of each register being set.
12279 If someone is using this register in this block, set this register
12280 to invalid since we will get confused between the two lives in this
12281 basic block. This makes using this register always invalid. In cse, we
12282 scan the table to invalidate all entries using this register, but this
12283 is too much work for us. */
12284
12285 for (i = regno; i < endregno; i++)
12286 {
12287 rsp = VEC_index (reg_stat_type, reg_stat, i);
12288 rsp->last_set_label = label_tick;
12289 if (!insn
12290 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12291 rsp->last_set_invalid = 1;
12292 else
12293 rsp->last_set_invalid = 0;
12294 }
12295
12296 /* The value being assigned might refer to X (like in "x++;"). In that
12297 case, we must replace it with (clobber (const_int 0)) to prevent
12298 infinite loops. */
12299 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12300 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12301 {
12302 value = copy_rtx (value);
12303 if (!get_last_value_validate (&value, insn, label_tick, 1))
12304 value = 0;
12305 }
12306
12307 /* For the main register being modified, update the value, the mode, the
12308 nonzero bits, and the number of sign bit copies. */
12309
12310 rsp->last_set_value = value;
12311
12312 if (value)
12313 {
12314 enum machine_mode mode = GET_MODE (reg);
12315 subst_low_luid = DF_INSN_LUID (insn);
12316 rsp->last_set_mode = mode;
12317 if (GET_MODE_CLASS (mode) == MODE_INT
12318 && HWI_COMPUTABLE_MODE_P (mode))
12319 mode = nonzero_bits_mode;
12320 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12321 rsp->last_set_sign_bit_copies
12322 = num_sign_bit_copies (value, GET_MODE (reg));
12323 }
12324 }
12325
12326 /* Called via note_stores from record_dead_and_set_regs to handle one
12327 SET or CLOBBER in an insn. DATA is the instruction in which the
12328 set is occurring. */
12329
12330 static void
12331 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12332 {
12333 rtx record_dead_insn = (rtx) data;
12334
12335 if (GET_CODE (dest) == SUBREG)
12336 dest = SUBREG_REG (dest);
12337
12338 if (!record_dead_insn)
12339 {
12340 if (REG_P (dest))
12341 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12342 return;
12343 }
12344
12345 if (REG_P (dest))
12346 {
12347 /* If we are setting the whole register, we know its value. Otherwise
12348 show that we don't know the value. We can handle SUBREG in
12349 some cases. */
12350 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12351 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12352 else if (GET_CODE (setter) == SET
12353 && GET_CODE (SET_DEST (setter)) == SUBREG
12354 && SUBREG_REG (SET_DEST (setter)) == dest
12355 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12356 && subreg_lowpart_p (SET_DEST (setter)))
12357 record_value_for_reg (dest, record_dead_insn,
12358 gen_lowpart (GET_MODE (dest),
12359 SET_SRC (setter)));
12360 else
12361 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12362 }
12363 else if (MEM_P (dest)
12364 /* Ignore pushes, they clobber nothing. */
12365 && ! push_operand (dest, GET_MODE (dest)))
12366 mem_last_set = DF_INSN_LUID (record_dead_insn);
12367 }
12368
12369 /* Update the records of when each REG was most recently set or killed
12370 for the things done by INSN. This is the last thing done in processing
12371 INSN in the combiner loop.
12372
12373 We update reg_stat[], in particular fields last_set, last_set_value,
12374 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12375 last_death, and also the similar information mem_last_set (which insn
12376 most recently modified memory) and last_call_luid (which insn was the
12377 most recent subroutine call). */
12378
12379 static void
12380 record_dead_and_set_regs (rtx insn)
12381 {
12382 rtx link;
12383 unsigned int i;
12384
12385 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12386 {
12387 if (REG_NOTE_KIND (link) == REG_DEAD
12388 && REG_P (XEXP (link, 0)))
12389 {
12390 unsigned int regno = REGNO (XEXP (link, 0));
12391 unsigned int endregno = END_REGNO (XEXP (link, 0));
12392
12393 for (i = regno; i < endregno; i++)
12394 {
12395 reg_stat_type *rsp;
12396
12397 rsp = VEC_index (reg_stat_type, reg_stat, i);
12398 rsp->last_death = insn;
12399 }
12400 }
12401 else if (REG_NOTE_KIND (link) == REG_INC)
12402 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12403 }
12404
12405 if (CALL_P (insn))
12406 {
12407 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
12408 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
12409 {
12410 reg_stat_type *rsp;
12411
12412 rsp = VEC_index (reg_stat_type, reg_stat, i);
12413 rsp->last_set_invalid = 1;
12414 rsp->last_set = insn;
12415 rsp->last_set_value = 0;
12416 rsp->last_set_mode = VOIDmode;
12417 rsp->last_set_nonzero_bits = 0;
12418 rsp->last_set_sign_bit_copies = 0;
12419 rsp->last_death = 0;
12420 rsp->truncated_to_mode = VOIDmode;
12421 }
12422
12423 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12424
12425 /* We can't combine into a call pattern. Remember, though, that
12426 the return value register is set at this LUID. We could
12427 still replace a register with the return value from the
12428 wrong subroutine call! */
12429 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12430 }
12431 else
12432 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12433 }
12434
12435 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12436 register present in the SUBREG, so for each such SUBREG go back and
12437 adjust nonzero and sign bit information of the registers that are
12438 known to have some zero/sign bits set.
12439
12440 This is needed because when combine blows the SUBREGs away, the
12441 information on zero/sign bits is lost and further combines can be
12442 missed because of that. */
12443
12444 static void
12445 record_promoted_value (rtx insn, rtx subreg)
12446 {
12447 struct insn_link *links;
12448 rtx set;
12449 unsigned int regno = REGNO (SUBREG_REG (subreg));
12450 enum machine_mode mode = GET_MODE (subreg);
12451
12452 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12453 return;
12454
12455 for (links = LOG_LINKS (insn); links;)
12456 {
12457 reg_stat_type *rsp;
12458
12459 insn = links->insn;
12460 set = single_set (insn);
12461
12462 if (! set || !REG_P (SET_DEST (set))
12463 || REGNO (SET_DEST (set)) != regno
12464 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12465 {
12466 links = links->next;
12467 continue;
12468 }
12469
12470 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12471 if (rsp->last_set == insn)
12472 {
12473 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12474 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12475 }
12476
12477 if (REG_P (SET_SRC (set)))
12478 {
12479 regno = REGNO (SET_SRC (set));
12480 links = LOG_LINKS (insn);
12481 }
12482 else
12483 break;
12484 }
12485 }
12486
12487 /* Check if X, a register, is known to contain a value already
12488 truncated to MODE. In this case we can use a subreg to refer to
12489 the truncated value even though in the generic case we would need
12490 an explicit truncation. */
12491
12492 static bool
12493 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12494 {
12495 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12496 enum machine_mode truncated = rsp->truncated_to_mode;
12497
12498 if (truncated == 0
12499 || rsp->truncation_label < label_tick_ebb_start)
12500 return false;
12501 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12502 return true;
12503 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12504 return true;
12505 return false;
12506 }
12507
12508 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12509 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12510 might be able to turn a truncate into a subreg using this information.
12511 Return -1 if traversing *P is complete or 0 otherwise. */
12512
12513 static int
12514 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12515 {
12516 rtx x = *p;
12517 enum machine_mode truncated_mode;
12518 reg_stat_type *rsp;
12519
12520 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12521 {
12522 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12523 truncated_mode = GET_MODE (x);
12524
12525 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12526 return -1;
12527
12528 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12529 return -1;
12530
12531 x = SUBREG_REG (x);
12532 }
12533 /* ??? For hard-regs we now record everything. We might be able to
12534 optimize this using last_set_mode. */
12535 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12536 truncated_mode = GET_MODE (x);
12537 else
12538 return 0;
12539
12540 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12541 if (rsp->truncated_to_mode == 0
12542 || rsp->truncation_label < label_tick_ebb_start
12543 || (GET_MODE_SIZE (truncated_mode)
12544 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12545 {
12546 rsp->truncated_to_mode = truncated_mode;
12547 rsp->truncation_label = label_tick;
12548 }
12549
12550 return -1;
12551 }
12552
12553 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12554 the modes they are used in. This can help truning TRUNCATEs into
12555 SUBREGs. */
12556
12557 static void
12558 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12559 {
12560 for_each_rtx (x, record_truncated_value, NULL);
12561 }
12562
12563 /* Scan X for promoted SUBREGs. For each one found,
12564 note what it implies to the registers used in it. */
12565
12566 static void
12567 check_promoted_subreg (rtx insn, rtx x)
12568 {
12569 if (GET_CODE (x) == SUBREG
12570 && SUBREG_PROMOTED_VAR_P (x)
12571 && REG_P (SUBREG_REG (x)))
12572 record_promoted_value (insn, x);
12573 else
12574 {
12575 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12576 int i, j;
12577
12578 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12579 switch (format[i])
12580 {
12581 case 'e':
12582 check_promoted_subreg (insn, XEXP (x, i));
12583 break;
12584 case 'V':
12585 case 'E':
12586 if (XVEC (x, i) != 0)
12587 for (j = 0; j < XVECLEN (x, i); j++)
12588 check_promoted_subreg (insn, XVECEXP (x, i, j));
12589 break;
12590 }
12591 }
12592 }
12593 \f
12594 /* Verify that all the registers and memory references mentioned in *LOC are
12595 still valid. *LOC was part of a value set in INSN when label_tick was
12596 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12597 the invalid references with (clobber (const_int 0)) and return 1. This
12598 replacement is useful because we often can get useful information about
12599 the form of a value (e.g., if it was produced by a shift that always
12600 produces -1 or 0) even though we don't know exactly what registers it
12601 was produced from. */
12602
12603 static int
12604 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12605 {
12606 rtx x = *loc;
12607 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12608 int len = GET_RTX_LENGTH (GET_CODE (x));
12609 int i, j;
12610
12611 if (REG_P (x))
12612 {
12613 unsigned int regno = REGNO (x);
12614 unsigned int endregno = END_REGNO (x);
12615 unsigned int j;
12616
12617 for (j = regno; j < endregno; j++)
12618 {
12619 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
12620 if (rsp->last_set_invalid
12621 /* If this is a pseudo-register that was only set once and not
12622 live at the beginning of the function, it is always valid. */
12623 || (! (regno >= FIRST_PSEUDO_REGISTER
12624 && REG_N_SETS (regno) == 1
12625 && (!REGNO_REG_SET_P
12626 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12627 && rsp->last_set_label > tick))
12628 {
12629 if (replace)
12630 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12631 return replace;
12632 }
12633 }
12634
12635 return 1;
12636 }
12637 /* If this is a memory reference, make sure that there were no stores after
12638 it that might have clobbered the value. We don't have alias info, so we
12639 assume any store invalidates it. Moreover, we only have local UIDs, so
12640 we also assume that there were stores in the intervening basic blocks. */
12641 else if (MEM_P (x) && !MEM_READONLY_P (x)
12642 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12643 {
12644 if (replace)
12645 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12646 return replace;
12647 }
12648
12649 for (i = 0; i < len; i++)
12650 {
12651 if (fmt[i] == 'e')
12652 {
12653 /* Check for identical subexpressions. If x contains
12654 identical subexpression we only have to traverse one of
12655 them. */
12656 if (i == 1 && ARITHMETIC_P (x))
12657 {
12658 /* Note that at this point x0 has already been checked
12659 and found valid. */
12660 rtx x0 = XEXP (x, 0);
12661 rtx x1 = XEXP (x, 1);
12662
12663 /* If x0 and x1 are identical then x is also valid. */
12664 if (x0 == x1)
12665 return 1;
12666
12667 /* If x1 is identical to a subexpression of x0 then
12668 while checking x0, x1 has already been checked. Thus
12669 it is valid and so as x. */
12670 if (ARITHMETIC_P (x0)
12671 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12672 return 1;
12673
12674 /* If x0 is identical to a subexpression of x1 then x is
12675 valid iff the rest of x1 is valid. */
12676 if (ARITHMETIC_P (x1)
12677 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12678 return
12679 get_last_value_validate (&XEXP (x1,
12680 x0 == XEXP (x1, 0) ? 1 : 0),
12681 insn, tick, replace);
12682 }
12683
12684 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12685 replace) == 0)
12686 return 0;
12687 }
12688 else if (fmt[i] == 'E')
12689 for (j = 0; j < XVECLEN (x, i); j++)
12690 if (get_last_value_validate (&XVECEXP (x, i, j),
12691 insn, tick, replace) == 0)
12692 return 0;
12693 }
12694
12695 /* If we haven't found a reason for it to be invalid, it is valid. */
12696 return 1;
12697 }
12698
12699 /* Get the last value assigned to X, if known. Some registers
12700 in the value may be replaced with (clobber (const_int 0)) if their value
12701 is known longer known reliably. */
12702
12703 static rtx
12704 get_last_value (const_rtx x)
12705 {
12706 unsigned int regno;
12707 rtx value;
12708 reg_stat_type *rsp;
12709
12710 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12711 then convert it to the desired mode. If this is a paradoxical SUBREG,
12712 we cannot predict what values the "extra" bits might have. */
12713 if (GET_CODE (x) == SUBREG
12714 && subreg_lowpart_p (x)
12715 && !paradoxical_subreg_p (x)
12716 && (value = get_last_value (SUBREG_REG (x))) != 0)
12717 return gen_lowpart (GET_MODE (x), value);
12718
12719 if (!REG_P (x))
12720 return 0;
12721
12722 regno = REGNO (x);
12723 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12724 value = rsp->last_set_value;
12725
12726 /* If we don't have a value, or if it isn't for this basic block and
12727 it's either a hard register, set more than once, or it's a live
12728 at the beginning of the function, return 0.
12729
12730 Because if it's not live at the beginning of the function then the reg
12731 is always set before being used (is never used without being set).
12732 And, if it's set only once, and it's always set before use, then all
12733 uses must have the same last value, even if it's not from this basic
12734 block. */
12735
12736 if (value == 0
12737 || (rsp->last_set_label < label_tick_ebb_start
12738 && (regno < FIRST_PSEUDO_REGISTER
12739 || REG_N_SETS (regno) != 1
12740 || REGNO_REG_SET_P
12741 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12742 return 0;
12743
12744 /* If the value was set in a later insn than the ones we are processing,
12745 we can't use it even if the register was only set once. */
12746 if (rsp->last_set_label == label_tick
12747 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12748 return 0;
12749
12750 /* If the value has all its registers valid, return it. */
12751 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12752 return value;
12753
12754 /* Otherwise, make a copy and replace any invalid register with
12755 (clobber (const_int 0)). If that fails for some reason, return 0. */
12756
12757 value = copy_rtx (value);
12758 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12759 return value;
12760
12761 return 0;
12762 }
12763 \f
12764 /* Return nonzero if expression X refers to a REG or to memory
12765 that is set in an instruction more recent than FROM_LUID. */
12766
12767 static int
12768 use_crosses_set_p (const_rtx x, int from_luid)
12769 {
12770 const char *fmt;
12771 int i;
12772 enum rtx_code code = GET_CODE (x);
12773
12774 if (code == REG)
12775 {
12776 unsigned int regno = REGNO (x);
12777 unsigned endreg = END_REGNO (x);
12778
12779 #ifdef PUSH_ROUNDING
12780 /* Don't allow uses of the stack pointer to be moved,
12781 because we don't know whether the move crosses a push insn. */
12782 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12783 return 1;
12784 #endif
12785 for (; regno < endreg; regno++)
12786 {
12787 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12788 if (rsp->last_set
12789 && rsp->last_set_label == label_tick
12790 && DF_INSN_LUID (rsp->last_set) > from_luid)
12791 return 1;
12792 }
12793 return 0;
12794 }
12795
12796 if (code == MEM && mem_last_set > from_luid)
12797 return 1;
12798
12799 fmt = GET_RTX_FORMAT (code);
12800
12801 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12802 {
12803 if (fmt[i] == 'E')
12804 {
12805 int j;
12806 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12807 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12808 return 1;
12809 }
12810 else if (fmt[i] == 'e'
12811 && use_crosses_set_p (XEXP (x, i), from_luid))
12812 return 1;
12813 }
12814 return 0;
12815 }
12816 \f
12817 /* Define three variables used for communication between the following
12818 routines. */
12819
12820 static unsigned int reg_dead_regno, reg_dead_endregno;
12821 static int reg_dead_flag;
12822
12823 /* Function called via note_stores from reg_dead_at_p.
12824
12825 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12826 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12827
12828 static void
12829 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12830 {
12831 unsigned int regno, endregno;
12832
12833 if (!REG_P (dest))
12834 return;
12835
12836 regno = REGNO (dest);
12837 endregno = END_REGNO (dest);
12838 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12839 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12840 }
12841
12842 /* Return nonzero if REG is known to be dead at INSN.
12843
12844 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12845 referencing REG, it is dead. If we hit a SET referencing REG, it is
12846 live. Otherwise, see if it is live or dead at the start of the basic
12847 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12848 must be assumed to be always live. */
12849
12850 static int
12851 reg_dead_at_p (rtx reg, rtx insn)
12852 {
12853 basic_block block;
12854 unsigned int i;
12855
12856 /* Set variables for reg_dead_at_p_1. */
12857 reg_dead_regno = REGNO (reg);
12858 reg_dead_endregno = END_REGNO (reg);
12859
12860 reg_dead_flag = 0;
12861
12862 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12863 we allow the machine description to decide whether use-and-clobber
12864 patterns are OK. */
12865 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12866 {
12867 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12868 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12869 return 0;
12870 }
12871
12872 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12873 beginning of basic block. */
12874 block = BLOCK_FOR_INSN (insn);
12875 for (;;)
12876 {
12877 if (INSN_P (insn))
12878 {
12879 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12880 if (reg_dead_flag)
12881 return reg_dead_flag == 1 ? 1 : 0;
12882
12883 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12884 return 1;
12885 }
12886
12887 if (insn == BB_HEAD (block))
12888 break;
12889
12890 insn = PREV_INSN (insn);
12891 }
12892
12893 /* Look at live-in sets for the basic block that we were in. */
12894 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12895 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12896 return 0;
12897
12898 return 1;
12899 }
12900 \f
12901 /* Note hard registers in X that are used. */
12902
12903 static void
12904 mark_used_regs_combine (rtx x)
12905 {
12906 RTX_CODE code = GET_CODE (x);
12907 unsigned int regno;
12908 int i;
12909
12910 switch (code)
12911 {
12912 case LABEL_REF:
12913 case SYMBOL_REF:
12914 case CONST_INT:
12915 case CONST:
12916 case CONST_DOUBLE:
12917 case CONST_VECTOR:
12918 case PC:
12919 case ADDR_VEC:
12920 case ADDR_DIFF_VEC:
12921 case ASM_INPUT:
12922 #ifdef HAVE_cc0
12923 /* CC0 must die in the insn after it is set, so we don't need to take
12924 special note of it here. */
12925 case CC0:
12926 #endif
12927 return;
12928
12929 case CLOBBER:
12930 /* If we are clobbering a MEM, mark any hard registers inside the
12931 address as used. */
12932 if (MEM_P (XEXP (x, 0)))
12933 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12934 return;
12935
12936 case REG:
12937 regno = REGNO (x);
12938 /* A hard reg in a wide mode may really be multiple registers.
12939 If so, mark all of them just like the first. */
12940 if (regno < FIRST_PSEUDO_REGISTER)
12941 {
12942 /* None of this applies to the stack, frame or arg pointers. */
12943 if (regno == STACK_POINTER_REGNUM
12944 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12945 || regno == HARD_FRAME_POINTER_REGNUM
12946 #endif
12947 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12948 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12949 #endif
12950 || regno == FRAME_POINTER_REGNUM)
12951 return;
12952
12953 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12954 }
12955 return;
12956
12957 case SET:
12958 {
12959 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12960 the address. */
12961 rtx testreg = SET_DEST (x);
12962
12963 while (GET_CODE (testreg) == SUBREG
12964 || GET_CODE (testreg) == ZERO_EXTRACT
12965 || GET_CODE (testreg) == STRICT_LOW_PART)
12966 testreg = XEXP (testreg, 0);
12967
12968 if (MEM_P (testreg))
12969 mark_used_regs_combine (XEXP (testreg, 0));
12970
12971 mark_used_regs_combine (SET_SRC (x));
12972 }
12973 return;
12974
12975 default:
12976 break;
12977 }
12978
12979 /* Recursively scan the operands of this expression. */
12980
12981 {
12982 const char *fmt = GET_RTX_FORMAT (code);
12983
12984 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12985 {
12986 if (fmt[i] == 'e')
12987 mark_used_regs_combine (XEXP (x, i));
12988 else if (fmt[i] == 'E')
12989 {
12990 int j;
12991
12992 for (j = 0; j < XVECLEN (x, i); j++)
12993 mark_used_regs_combine (XVECEXP (x, i, j));
12994 }
12995 }
12996 }
12997 }
12998 \f
12999 /* Remove register number REGNO from the dead registers list of INSN.
13000
13001 Return the note used to record the death, if there was one. */
13002
13003 rtx
13004 remove_death (unsigned int regno, rtx insn)
13005 {
13006 rtx note = find_regno_note (insn, REG_DEAD, regno);
13007
13008 if (note)
13009 remove_note (insn, note);
13010
13011 return note;
13012 }
13013
13014 /* For each register (hardware or pseudo) used within expression X, if its
13015 death is in an instruction with luid between FROM_LUID (inclusive) and
13016 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13017 list headed by PNOTES.
13018
13019 That said, don't move registers killed by maybe_kill_insn.
13020
13021 This is done when X is being merged by combination into TO_INSN. These
13022 notes will then be distributed as needed. */
13023
13024 static void
13025 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
13026 rtx *pnotes)
13027 {
13028 const char *fmt;
13029 int len, i;
13030 enum rtx_code code = GET_CODE (x);
13031
13032 if (code == REG)
13033 {
13034 unsigned int regno = REGNO (x);
13035 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
13036
13037 /* Don't move the register if it gets killed in between from and to. */
13038 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13039 && ! reg_referenced_p (x, maybe_kill_insn))
13040 return;
13041
13042 if (where_dead
13043 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13044 && DF_INSN_LUID (where_dead) >= from_luid
13045 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13046 {
13047 rtx note = remove_death (regno, where_dead);
13048
13049 /* It is possible for the call above to return 0. This can occur
13050 when last_death points to I2 or I1 that we combined with.
13051 In that case make a new note.
13052
13053 We must also check for the case where X is a hard register
13054 and NOTE is a death note for a range of hard registers
13055 including X. In that case, we must put REG_DEAD notes for
13056 the remaining registers in place of NOTE. */
13057
13058 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13059 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13060 > GET_MODE_SIZE (GET_MODE (x))))
13061 {
13062 unsigned int deadregno = REGNO (XEXP (note, 0));
13063 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
13064 unsigned int ourend = END_HARD_REGNO (x);
13065 unsigned int i;
13066
13067 for (i = deadregno; i < deadend; i++)
13068 if (i < regno || i >= ourend)
13069 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13070 }
13071
13072 /* If we didn't find any note, or if we found a REG_DEAD note that
13073 covers only part of the given reg, and we have a multi-reg hard
13074 register, then to be safe we must check for REG_DEAD notes
13075 for each register other than the first. They could have
13076 their own REG_DEAD notes lying around. */
13077 else if ((note == 0
13078 || (note != 0
13079 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13080 < GET_MODE_SIZE (GET_MODE (x)))))
13081 && regno < FIRST_PSEUDO_REGISTER
13082 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
13083 {
13084 unsigned int ourend = END_HARD_REGNO (x);
13085 unsigned int i, offset;
13086 rtx oldnotes = 0;
13087
13088 if (note)
13089 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13090 else
13091 offset = 1;
13092
13093 for (i = regno + offset; i < ourend; i++)
13094 move_deaths (regno_reg_rtx[i],
13095 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13096 }
13097
13098 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13099 {
13100 XEXP (note, 1) = *pnotes;
13101 *pnotes = note;
13102 }
13103 else
13104 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13105 }
13106
13107 return;
13108 }
13109
13110 else if (GET_CODE (x) == SET)
13111 {
13112 rtx dest = SET_DEST (x);
13113
13114 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13115
13116 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13117 that accesses one word of a multi-word item, some
13118 piece of everything register in the expression is used by
13119 this insn, so remove any old death. */
13120 /* ??? So why do we test for equality of the sizes? */
13121
13122 if (GET_CODE (dest) == ZERO_EXTRACT
13123 || GET_CODE (dest) == STRICT_LOW_PART
13124 || (GET_CODE (dest) == SUBREG
13125 && (((GET_MODE_SIZE (GET_MODE (dest))
13126 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13127 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13128 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13129 {
13130 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13131 return;
13132 }
13133
13134 /* If this is some other SUBREG, we know it replaces the entire
13135 value, so use that as the destination. */
13136 if (GET_CODE (dest) == SUBREG)
13137 dest = SUBREG_REG (dest);
13138
13139 /* If this is a MEM, adjust deaths of anything used in the address.
13140 For a REG (the only other possibility), the entire value is
13141 being replaced so the old value is not used in this insn. */
13142
13143 if (MEM_P (dest))
13144 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13145 to_insn, pnotes);
13146 return;
13147 }
13148
13149 else if (GET_CODE (x) == CLOBBER)
13150 return;
13151
13152 len = GET_RTX_LENGTH (code);
13153 fmt = GET_RTX_FORMAT (code);
13154
13155 for (i = 0; i < len; i++)
13156 {
13157 if (fmt[i] == 'E')
13158 {
13159 int j;
13160 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13161 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13162 to_insn, pnotes);
13163 }
13164 else if (fmt[i] == 'e')
13165 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13166 }
13167 }
13168 \f
13169 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13170 pattern of an insn. X must be a REG. */
13171
13172 static int
13173 reg_bitfield_target_p (rtx x, rtx body)
13174 {
13175 int i;
13176
13177 if (GET_CODE (body) == SET)
13178 {
13179 rtx dest = SET_DEST (body);
13180 rtx target;
13181 unsigned int regno, tregno, endregno, endtregno;
13182
13183 if (GET_CODE (dest) == ZERO_EXTRACT)
13184 target = XEXP (dest, 0);
13185 else if (GET_CODE (dest) == STRICT_LOW_PART)
13186 target = SUBREG_REG (XEXP (dest, 0));
13187 else
13188 return 0;
13189
13190 if (GET_CODE (target) == SUBREG)
13191 target = SUBREG_REG (target);
13192
13193 if (!REG_P (target))
13194 return 0;
13195
13196 tregno = REGNO (target), regno = REGNO (x);
13197 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13198 return target == x;
13199
13200 endtregno = end_hard_regno (GET_MODE (target), tregno);
13201 endregno = end_hard_regno (GET_MODE (x), regno);
13202
13203 return endregno > tregno && regno < endtregno;
13204 }
13205
13206 else if (GET_CODE (body) == PARALLEL)
13207 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13208 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13209 return 1;
13210
13211 return 0;
13212 }
13213 \f
13214 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13215 as appropriate. I3 and I2 are the insns resulting from the combination
13216 insns including FROM (I2 may be zero).
13217
13218 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13219 not need REG_DEAD notes because they are being substituted for. This
13220 saves searching in the most common cases.
13221
13222 Each note in the list is either ignored or placed on some insns, depending
13223 on the type of note. */
13224
13225 static void
13226 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13227 rtx elim_i1, rtx elim_i0)
13228 {
13229 rtx note, next_note;
13230 rtx tem;
13231
13232 for (note = notes; note; note = next_note)
13233 {
13234 rtx place = 0, place2 = 0;
13235
13236 next_note = XEXP (note, 1);
13237 switch (REG_NOTE_KIND (note))
13238 {
13239 case REG_BR_PROB:
13240 case REG_BR_PRED:
13241 /* Doesn't matter much where we put this, as long as it's somewhere.
13242 It is preferable to keep these notes on branches, which is most
13243 likely to be i3. */
13244 place = i3;
13245 break;
13246
13247 case REG_NON_LOCAL_GOTO:
13248 if (JUMP_P (i3))
13249 place = i3;
13250 else
13251 {
13252 gcc_assert (i2 && JUMP_P (i2));
13253 place = i2;
13254 }
13255 break;
13256
13257 case REG_EH_REGION:
13258 /* These notes must remain with the call or trapping instruction. */
13259 if (CALL_P (i3))
13260 place = i3;
13261 else if (i2 && CALL_P (i2))
13262 place = i2;
13263 else
13264 {
13265 gcc_assert (cfun->can_throw_non_call_exceptions);
13266 if (may_trap_p (i3))
13267 place = i3;
13268 else if (i2 && may_trap_p (i2))
13269 place = i2;
13270 /* ??? Otherwise assume we've combined things such that we
13271 can now prove that the instructions can't trap. Drop the
13272 note in this case. */
13273 }
13274 break;
13275
13276 case REG_ARGS_SIZE:
13277 /* ??? How to distribute between i3-i1. Assume i3 contains the
13278 entire adjustment. Assert i3 contains at least some adjust. */
13279 if (!noop_move_p (i3))
13280 {
13281 int old_size, args_size = INTVAL (XEXP (note, 0));
13282 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13283 gcc_assert (old_size != args_size);
13284 }
13285 break;
13286
13287 case REG_NORETURN:
13288 case REG_SETJMP:
13289 case REG_TM:
13290 /* These notes must remain with the call. It should not be
13291 possible for both I2 and I3 to be a call. */
13292 if (CALL_P (i3))
13293 place = i3;
13294 else
13295 {
13296 gcc_assert (i2 && CALL_P (i2));
13297 place = i2;
13298 }
13299 break;
13300
13301 case REG_UNUSED:
13302 /* Any clobbers for i3 may still exist, and so we must process
13303 REG_UNUSED notes from that insn.
13304
13305 Any clobbers from i2 or i1 can only exist if they were added by
13306 recog_for_combine. In that case, recog_for_combine created the
13307 necessary REG_UNUSED notes. Trying to keep any original
13308 REG_UNUSED notes from these insns can cause incorrect output
13309 if it is for the same register as the original i3 dest.
13310 In that case, we will notice that the register is set in i3,
13311 and then add a REG_UNUSED note for the destination of i3, which
13312 is wrong. However, it is possible to have REG_UNUSED notes from
13313 i2 or i1 for register which were both used and clobbered, so
13314 we keep notes from i2 or i1 if they will turn into REG_DEAD
13315 notes. */
13316
13317 /* If this register is set or clobbered in I3, put the note there
13318 unless there is one already. */
13319 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13320 {
13321 if (from_insn != i3)
13322 break;
13323
13324 if (! (REG_P (XEXP (note, 0))
13325 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13326 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13327 place = i3;
13328 }
13329 /* Otherwise, if this register is used by I3, then this register
13330 now dies here, so we must put a REG_DEAD note here unless there
13331 is one already. */
13332 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13333 && ! (REG_P (XEXP (note, 0))
13334 ? find_regno_note (i3, REG_DEAD,
13335 REGNO (XEXP (note, 0)))
13336 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13337 {
13338 PUT_REG_NOTE_KIND (note, REG_DEAD);
13339 place = i3;
13340 }
13341 break;
13342
13343 case REG_EQUAL:
13344 case REG_EQUIV:
13345 case REG_NOALIAS:
13346 /* These notes say something about results of an insn. We can
13347 only support them if they used to be on I3 in which case they
13348 remain on I3. Otherwise they are ignored.
13349
13350 If the note refers to an expression that is not a constant, we
13351 must also ignore the note since we cannot tell whether the
13352 equivalence is still true. It might be possible to do
13353 slightly better than this (we only have a problem if I2DEST
13354 or I1DEST is present in the expression), but it doesn't
13355 seem worth the trouble. */
13356
13357 if (from_insn == i3
13358 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13359 place = i3;
13360 break;
13361
13362 case REG_INC:
13363 /* These notes say something about how a register is used. They must
13364 be present on any use of the register in I2 or I3. */
13365 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13366 place = i3;
13367
13368 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13369 {
13370 if (place)
13371 place2 = i2;
13372 else
13373 place = i2;
13374 }
13375 break;
13376
13377 case REG_LABEL_TARGET:
13378 case REG_LABEL_OPERAND:
13379 /* This can show up in several ways -- either directly in the
13380 pattern, or hidden off in the constant pool with (or without?)
13381 a REG_EQUAL note. */
13382 /* ??? Ignore the without-reg_equal-note problem for now. */
13383 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13384 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13385 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13386 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13387 place = i3;
13388
13389 if (i2
13390 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13391 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13392 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13393 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13394 {
13395 if (place)
13396 place2 = i2;
13397 else
13398 place = i2;
13399 }
13400
13401 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13402 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13403 there. */
13404 if (place && JUMP_P (place)
13405 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13406 && (JUMP_LABEL (place) == NULL
13407 || JUMP_LABEL (place) == XEXP (note, 0)))
13408 {
13409 rtx label = JUMP_LABEL (place);
13410
13411 if (!label)
13412 JUMP_LABEL (place) = XEXP (note, 0);
13413 else if (LABEL_P (label))
13414 LABEL_NUSES (label)--;
13415 }
13416
13417 if (place2 && JUMP_P (place2)
13418 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13419 && (JUMP_LABEL (place2) == NULL
13420 || JUMP_LABEL (place2) == XEXP (note, 0)))
13421 {
13422 rtx label = JUMP_LABEL (place2);
13423
13424 if (!label)
13425 JUMP_LABEL (place2) = XEXP (note, 0);
13426 else if (LABEL_P (label))
13427 LABEL_NUSES (label)--;
13428 place2 = 0;
13429 }
13430 break;
13431
13432 case REG_NONNEG:
13433 /* This note says something about the value of a register prior
13434 to the execution of an insn. It is too much trouble to see
13435 if the note is still correct in all situations. It is better
13436 to simply delete it. */
13437 break;
13438
13439 case REG_DEAD:
13440 /* If we replaced the right hand side of FROM_INSN with a
13441 REG_EQUAL note, the original use of the dying register
13442 will not have been combined into I3 and I2. In such cases,
13443 FROM_INSN is guaranteed to be the first of the combined
13444 instructions, so we simply need to search back before
13445 FROM_INSN for the previous use or set of this register,
13446 then alter the notes there appropriately.
13447
13448 If the register is used as an input in I3, it dies there.
13449 Similarly for I2, if it is nonzero and adjacent to I3.
13450
13451 If the register is not used as an input in either I3 or I2
13452 and it is not one of the registers we were supposed to eliminate,
13453 there are two possibilities. We might have a non-adjacent I2
13454 or we might have somehow eliminated an additional register
13455 from a computation. For example, we might have had A & B where
13456 we discover that B will always be zero. In this case we will
13457 eliminate the reference to A.
13458
13459 In both cases, we must search to see if we can find a previous
13460 use of A and put the death note there. */
13461
13462 if (from_insn
13463 && from_insn == i2mod
13464 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13465 tem = from_insn;
13466 else
13467 {
13468 if (from_insn
13469 && CALL_P (from_insn)
13470 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13471 place = from_insn;
13472 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13473 place = i3;
13474 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13475 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13476 place = i2;
13477 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13478 && !(i2mod
13479 && reg_overlap_mentioned_p (XEXP (note, 0),
13480 i2mod_old_rhs)))
13481 || rtx_equal_p (XEXP (note, 0), elim_i1)
13482 || rtx_equal_p (XEXP (note, 0), elim_i0))
13483 break;
13484 tem = i3;
13485 }
13486
13487 if (place == 0)
13488 {
13489 basic_block bb = this_basic_block;
13490
13491 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13492 {
13493 if (!NONDEBUG_INSN_P (tem))
13494 {
13495 if (tem == BB_HEAD (bb))
13496 break;
13497 continue;
13498 }
13499
13500 /* If the register is being set at TEM, see if that is all
13501 TEM is doing. If so, delete TEM. Otherwise, make this
13502 into a REG_UNUSED note instead. Don't delete sets to
13503 global register vars. */
13504 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13505 || !global_regs[REGNO (XEXP (note, 0))])
13506 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13507 {
13508 rtx set = single_set (tem);
13509 rtx inner_dest = 0;
13510 #ifdef HAVE_cc0
13511 rtx cc0_setter = NULL_RTX;
13512 #endif
13513
13514 if (set != 0)
13515 for (inner_dest = SET_DEST (set);
13516 (GET_CODE (inner_dest) == STRICT_LOW_PART
13517 || GET_CODE (inner_dest) == SUBREG
13518 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13519 inner_dest = XEXP (inner_dest, 0))
13520 ;
13521
13522 /* Verify that it was the set, and not a clobber that
13523 modified the register.
13524
13525 CC0 targets must be careful to maintain setter/user
13526 pairs. If we cannot delete the setter due to side
13527 effects, mark the user with an UNUSED note instead
13528 of deleting it. */
13529
13530 if (set != 0 && ! side_effects_p (SET_SRC (set))
13531 && rtx_equal_p (XEXP (note, 0), inner_dest)
13532 #ifdef HAVE_cc0
13533 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13534 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13535 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13536 #endif
13537 )
13538 {
13539 /* Move the notes and links of TEM elsewhere.
13540 This might delete other dead insns recursively.
13541 First set the pattern to something that won't use
13542 any register. */
13543 rtx old_notes = REG_NOTES (tem);
13544
13545 PATTERN (tem) = pc_rtx;
13546 REG_NOTES (tem) = NULL;
13547
13548 distribute_notes (old_notes, tem, tem, NULL_RTX,
13549 NULL_RTX, NULL_RTX, NULL_RTX);
13550 distribute_links (LOG_LINKS (tem));
13551
13552 SET_INSN_DELETED (tem);
13553 if (tem == i2)
13554 i2 = NULL_RTX;
13555
13556 #ifdef HAVE_cc0
13557 /* Delete the setter too. */
13558 if (cc0_setter)
13559 {
13560 PATTERN (cc0_setter) = pc_rtx;
13561 old_notes = REG_NOTES (cc0_setter);
13562 REG_NOTES (cc0_setter) = NULL;
13563
13564 distribute_notes (old_notes, cc0_setter,
13565 cc0_setter, NULL_RTX,
13566 NULL_RTX, NULL_RTX, NULL_RTX);
13567 distribute_links (LOG_LINKS (cc0_setter));
13568
13569 SET_INSN_DELETED (cc0_setter);
13570 if (cc0_setter == i2)
13571 i2 = NULL_RTX;
13572 }
13573 #endif
13574 }
13575 else
13576 {
13577 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13578
13579 /* If there isn't already a REG_UNUSED note, put one
13580 here. Do not place a REG_DEAD note, even if
13581 the register is also used here; that would not
13582 match the algorithm used in lifetime analysis
13583 and can cause the consistency check in the
13584 scheduler to fail. */
13585 if (! find_regno_note (tem, REG_UNUSED,
13586 REGNO (XEXP (note, 0))))
13587 place = tem;
13588 break;
13589 }
13590 }
13591 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13592 || (CALL_P (tem)
13593 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13594 {
13595 place = tem;
13596
13597 /* If we are doing a 3->2 combination, and we have a
13598 register which formerly died in i3 and was not used
13599 by i2, which now no longer dies in i3 and is used in
13600 i2 but does not die in i2, and place is between i2
13601 and i3, then we may need to move a link from place to
13602 i2. */
13603 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13604 && from_insn
13605 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13606 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13607 {
13608 struct insn_link *links = LOG_LINKS (place);
13609 LOG_LINKS (place) = NULL;
13610 distribute_links (links);
13611 }
13612 break;
13613 }
13614
13615 if (tem == BB_HEAD (bb))
13616 break;
13617 }
13618
13619 }
13620
13621 /* If the register is set or already dead at PLACE, we needn't do
13622 anything with this note if it is still a REG_DEAD note.
13623 We check here if it is set at all, not if is it totally replaced,
13624 which is what `dead_or_set_p' checks, so also check for it being
13625 set partially. */
13626
13627 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13628 {
13629 unsigned int regno = REGNO (XEXP (note, 0));
13630 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
13631
13632 if (dead_or_set_p (place, XEXP (note, 0))
13633 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13634 {
13635 /* Unless the register previously died in PLACE, clear
13636 last_death. [I no longer understand why this is
13637 being done.] */
13638 if (rsp->last_death != place)
13639 rsp->last_death = 0;
13640 place = 0;
13641 }
13642 else
13643 rsp->last_death = place;
13644
13645 /* If this is a death note for a hard reg that is occupying
13646 multiple registers, ensure that we are still using all
13647 parts of the object. If we find a piece of the object
13648 that is unused, we must arrange for an appropriate REG_DEAD
13649 note to be added for it. However, we can't just emit a USE
13650 and tag the note to it, since the register might actually
13651 be dead; so we recourse, and the recursive call then finds
13652 the previous insn that used this register. */
13653
13654 if (place && regno < FIRST_PSEUDO_REGISTER
13655 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13656 {
13657 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13658 int all_used = 1;
13659 unsigned int i;
13660
13661 for (i = regno; i < endregno; i++)
13662 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13663 && ! find_regno_fusage (place, USE, i))
13664 || dead_or_set_regno_p (place, i))
13665 all_used = 0;
13666
13667 if (! all_used)
13668 {
13669 /* Put only REG_DEAD notes for pieces that are
13670 not already dead or set. */
13671
13672 for (i = regno; i < endregno;
13673 i += hard_regno_nregs[i][reg_raw_mode[i]])
13674 {
13675 rtx piece = regno_reg_rtx[i];
13676 basic_block bb = this_basic_block;
13677
13678 if (! dead_or_set_p (place, piece)
13679 && ! reg_bitfield_target_p (piece,
13680 PATTERN (place)))
13681 {
13682 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13683 NULL_RTX);
13684
13685 distribute_notes (new_note, place, place,
13686 NULL_RTX, NULL_RTX, NULL_RTX,
13687 NULL_RTX);
13688 }
13689 else if (! refers_to_regno_p (i, i + 1,
13690 PATTERN (place), 0)
13691 && ! find_regno_fusage (place, USE, i))
13692 for (tem = PREV_INSN (place); ;
13693 tem = PREV_INSN (tem))
13694 {
13695 if (!NONDEBUG_INSN_P (tem))
13696 {
13697 if (tem == BB_HEAD (bb))
13698 break;
13699 continue;
13700 }
13701 if (dead_or_set_p (tem, piece)
13702 || reg_bitfield_target_p (piece,
13703 PATTERN (tem)))
13704 {
13705 add_reg_note (tem, REG_UNUSED, piece);
13706 break;
13707 }
13708 }
13709
13710 }
13711
13712 place = 0;
13713 }
13714 }
13715 }
13716 break;
13717
13718 default:
13719 /* Any other notes should not be present at this point in the
13720 compilation. */
13721 gcc_unreachable ();
13722 }
13723
13724 if (place)
13725 {
13726 XEXP (note, 1) = REG_NOTES (place);
13727 REG_NOTES (place) = note;
13728 }
13729
13730 if (place2)
13731 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13732 }
13733 }
13734 \f
13735 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13736 I3, I2, and I1 to new locations. This is also called to add a link
13737 pointing at I3 when I3's destination is changed. */
13738
13739 static void
13740 distribute_links (struct insn_link *links)
13741 {
13742 struct insn_link *link, *next_link;
13743
13744 for (link = links; link; link = next_link)
13745 {
13746 rtx place = 0;
13747 rtx insn;
13748 rtx set, reg;
13749
13750 next_link = link->next;
13751
13752 /* If the insn that this link points to is a NOTE or isn't a single
13753 set, ignore it. In the latter case, it isn't clear what we
13754 can do other than ignore the link, since we can't tell which
13755 register it was for. Such links wouldn't be used by combine
13756 anyway.
13757
13758 It is not possible for the destination of the target of the link to
13759 have been changed by combine. The only potential of this is if we
13760 replace I3, I2, and I1 by I3 and I2. But in that case the
13761 destination of I2 also remains unchanged. */
13762
13763 if (NOTE_P (link->insn)
13764 || (set = single_set (link->insn)) == 0)
13765 continue;
13766
13767 reg = SET_DEST (set);
13768 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13769 || GET_CODE (reg) == STRICT_LOW_PART)
13770 reg = XEXP (reg, 0);
13771
13772 /* A LOG_LINK is defined as being placed on the first insn that uses
13773 a register and points to the insn that sets the register. Start
13774 searching at the next insn after the target of the link and stop
13775 when we reach a set of the register or the end of the basic block.
13776
13777 Note that this correctly handles the link that used to point from
13778 I3 to I2. Also note that not much searching is typically done here
13779 since most links don't point very far away. */
13780
13781 for (insn = NEXT_INSN (link->insn);
13782 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13783 || BB_HEAD (this_basic_block->next_bb) != insn));
13784 insn = NEXT_INSN (insn))
13785 if (DEBUG_INSN_P (insn))
13786 continue;
13787 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13788 {
13789 if (reg_referenced_p (reg, PATTERN (insn)))
13790 place = insn;
13791 break;
13792 }
13793 else if (CALL_P (insn)
13794 && find_reg_fusage (insn, USE, reg))
13795 {
13796 place = insn;
13797 break;
13798 }
13799 else if (INSN_P (insn) && reg_set_p (reg, insn))
13800 break;
13801
13802 /* If we found a place to put the link, place it there unless there
13803 is already a link to the same insn as LINK at that point. */
13804
13805 if (place)
13806 {
13807 struct insn_link *link2;
13808
13809 FOR_EACH_LOG_LINK (link2, place)
13810 if (link2->insn == link->insn)
13811 break;
13812
13813 if (link2 == NULL)
13814 {
13815 link->next = LOG_LINKS (place);
13816 LOG_LINKS (place) = link;
13817
13818 /* Set added_links_insn to the earliest insn we added a
13819 link to. */
13820 if (added_links_insn == 0
13821 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13822 added_links_insn = place;
13823 }
13824 }
13825 }
13826 }
13827 \f
13828 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13829 Check whether the expression pointer to by LOC is a register or
13830 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13831 Otherwise return zero. */
13832
13833 static int
13834 unmentioned_reg_p_1 (rtx *loc, void *expr)
13835 {
13836 rtx x = *loc;
13837
13838 if (x != NULL_RTX
13839 && (REG_P (x) || MEM_P (x))
13840 && ! reg_mentioned_p (x, (rtx) expr))
13841 return 1;
13842 return 0;
13843 }
13844
13845 /* Check for any register or memory mentioned in EQUIV that is not
13846 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13847 of EXPR where some registers may have been replaced by constants. */
13848
13849 static bool
13850 unmentioned_reg_p (rtx equiv, rtx expr)
13851 {
13852 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13853 }
13854 \f
13855 void
13856 dump_combine_stats (FILE *file)
13857 {
13858 fprintf
13859 (file,
13860 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13861 combine_attempts, combine_merges, combine_extras, combine_successes);
13862 }
13863
13864 void
13865 dump_combine_total_stats (FILE *file)
13866 {
13867 fprintf
13868 (file,
13869 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13870 total_attempts, total_merges, total_extras, total_successes);
13871 }
13872 \f
13873 static bool
13874 gate_handle_combine (void)
13875 {
13876 return (optimize > 0);
13877 }
13878
13879 /* Try combining insns through substitution. */
13880 static unsigned int
13881 rest_of_handle_combine (void)
13882 {
13883 int rebuild_jump_labels_after_combine;
13884
13885 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13886 df_note_add_problem ();
13887 df_analyze ();
13888
13889 regstat_init_n_sets_and_refs ();
13890
13891 rebuild_jump_labels_after_combine
13892 = combine_instructions (get_insns (), max_reg_num ());
13893
13894 /* Combining insns may have turned an indirect jump into a
13895 direct jump. Rebuild the JUMP_LABEL fields of jumping
13896 instructions. */
13897 if (rebuild_jump_labels_after_combine)
13898 {
13899 timevar_push (TV_JUMP);
13900 rebuild_jump_labels (get_insns ());
13901 cleanup_cfg (0);
13902 timevar_pop (TV_JUMP);
13903 }
13904
13905 regstat_free_n_sets_and_refs ();
13906 return 0;
13907 }
13908
13909 struct rtl_opt_pass pass_combine =
13910 {
13911 {
13912 RTL_PASS,
13913 "combine", /* name */
13914 gate_handle_combine, /* gate */
13915 rest_of_handle_combine, /* execute */
13916 NULL, /* sub */
13917 NULL, /* next */
13918 0, /* static_pass_number */
13919 TV_COMBINE, /* tv_id */
13920 PROP_cfglayout, /* properties_required */
13921 0, /* properties_provided */
13922 0, /* properties_destroyed */
13923 0, /* todo_flags_start */
13924 TODO_df_finish | TODO_verify_rtl_sharing |
13925 TODO_ggc_collect, /* todo_flags_finish */
13926 }
13927 };