re PR rtl-optimization/71724 (ICE: Segmentation fault, deep recursion between combine...
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
107
108 /* Number of attempts to combine instructions in this function. */
109
110 static int combine_attempts;
111
112 /* Number of attempts that got as far as substitution in this function. */
113
114 static int combine_merges;
115
116 /* Number of instructions combined with added SETs in this function. */
117
118 static int combine_extras;
119
120 /* Number of instructions combined in this function. */
121
122 static int combine_successes;
123
124 /* Totals over entire compilation. */
125
126 static int total_attempts, total_merges, total_extras, total_successes;
127
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
134
135 static rtx_insn *i2mod;
136
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
138
139 static rtx i2mod_old_rhs;
140
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
142
143 static rtx i2mod_new_rhs;
144 \f
145 struct reg_stat_type {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx_insn *last_death;
148
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx_insn *last_set;
151
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
157
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
160
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
164
165 Therefore, we maintain the following fields:
166
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
175
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
180
181 (The next two parameters are out of date).
182
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
194
195 /* Record last value assigned to (hard or pseudo) register n. */
196
197 rtx last_set_value;
198
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
201
202 int last_set_table_tick;
203
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
206
207 int last_set_label;
208
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
213
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
217
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
221
222 char last_set_invalid;
223
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
228
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
233
234 If an entry is zero, it means that we don't know anything special. */
235
236 unsigned char sign_bit_copies;
237
238 unsigned HOST_WIDE_INT nonzero_bits;
239
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
243
244 int truncation_label;
245
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
250
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
252 };
253
254
255 static vec<reg_stat_type> reg_stat;
256
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259 but during combine_split_insns new pseudos can be created. As we don't have
260 updated DF information in that case, it is hard to initialize the array
261 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
262 so instead of growing the arrays, just assume all newly created pseudos
263 during combine might be set multiple times. */
264
265 static unsigned int reg_n_sets_max;
266
267 /* Record the luid of the last insn that invalidated memory
268 (anything that writes memory, and subroutine calls, but not pushes). */
269
270 static int mem_last_set;
271
272 /* Record the luid of the last CALL_INSN
273 so we can tell whether a potential combination crosses any calls. */
274
275 static int last_call_luid;
276
277 /* When `subst' is called, this is the insn that is being modified
278 (by combining in a previous insn). The PATTERN of this insn
279 is still the old pattern partially modified and it should not be
280 looked at, but this may be used to examine the successors of the insn
281 to judge whether a simplification is valid. */
282
283 static rtx_insn *subst_insn;
284
285 /* This is the lowest LUID that `subst' is currently dealing with.
286 get_last_value will not return a value if the register was set at or
287 after this LUID. If not for this mechanism, we could get confused if
288 I2 or I1 in try_combine were an insn that used the old value of a register
289 to obtain a new value. In that case, we might erroneously get the
290 new value of the register when we wanted the old one. */
291
292 static int subst_low_luid;
293
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295 must consider all these registers to be always live. */
296
297 static HARD_REG_SET newpat_used_regs;
298
299 /* This is an insn to which a LOG_LINKS entry has been added. If this
300 insn is the earlier than I2 or I3, combine should rescan starting at
301 that location. */
302
303 static rtx_insn *added_links_insn;
304
305 /* Basic block in which we are performing combines. */
306 static basic_block this_basic_block;
307 static bool optimize_this_for_speed_p;
308
309 \f
310 /* Length of the currently allocated uid_insn_cost array. */
311
312 static int max_uid_known;
313
314 /* The following array records the insn_rtx_cost for every insn
315 in the instruction stream. */
316
317 static int *uid_insn_cost;
318
319 /* The following array records the LOG_LINKS for every insn in the
320 instruction stream as struct insn_link pointers. */
321
322 struct insn_link {
323 rtx_insn *insn;
324 unsigned int regno;
325 struct insn_link *next;
326 };
327
328 static struct insn_link **uid_log_links;
329
330 static inline int
331 insn_uid_check (const_rtx insn)
332 {
333 int uid = INSN_UID (insn);
334 gcc_checking_assert (uid <= max_uid_known);
335 return uid;
336 }
337
338 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
339 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
340
341 #define FOR_EACH_LOG_LINK(L, INSN) \
342 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
343
344 /* Links for LOG_LINKS are allocated from this obstack. */
345
346 static struct obstack insn_link_obstack;
347
348 /* Allocate a link. */
349
350 static inline struct insn_link *
351 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
352 {
353 struct insn_link *l
354 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
355 sizeof (struct insn_link));
356 l->insn = insn;
357 l->regno = regno;
358 l->next = next;
359 return l;
360 }
361
362 /* Incremented for each basic block. */
363
364 static int label_tick;
365
366 /* Reset to label_tick for each extended basic block in scanning order. */
367
368 static int label_tick_ebb_start;
369
370 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
371 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
372
373 static machine_mode nonzero_bits_mode;
374
375 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
376 be safely used. It is zero while computing them and after combine has
377 completed. This former test prevents propagating values based on
378 previously set values, which can be incorrect if a variable is modified
379 in a loop. */
380
381 static int nonzero_sign_valid;
382
383 \f
384 /* Record one modification to rtl structure
385 to be undone by storing old_contents into *where. */
386
387 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
388
389 struct undo
390 {
391 struct undo *next;
392 enum undo_kind kind;
393 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
394 union { rtx *r; int *i; struct insn_link **l; } where;
395 };
396
397 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
398 num_undo says how many are currently recorded.
399
400 other_insn is nonzero if we have modified some other insn in the process
401 of working on subst_insn. It must be verified too. */
402
403 struct undobuf
404 {
405 struct undo *undos;
406 struct undo *frees;
407 rtx_insn *other_insn;
408 };
409
410 static struct undobuf undobuf;
411
412 /* Number of times the pseudo being substituted for
413 was found and replaced. */
414
415 static int n_occurrences;
416
417 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
418 machine_mode,
419 unsigned HOST_WIDE_INT,
420 unsigned HOST_WIDE_INT *);
421 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
422 machine_mode,
423 unsigned int, unsigned int *);
424 static void do_SUBST (rtx *, rtx);
425 static void do_SUBST_INT (int *, int);
426 static void init_reg_last (void);
427 static void setup_incoming_promotions (rtx_insn *);
428 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
429 static int cant_combine_insn_p (rtx_insn *);
430 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
431 rtx_insn *, rtx_insn *, rtx *, rtx *);
432 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
433 static int contains_muldiv (rtx);
434 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
435 int *, rtx_insn *);
436 static void undo_all (void);
437 static void undo_commit (void);
438 static rtx *find_split_point (rtx *, rtx_insn *, bool);
439 static rtx subst (rtx, rtx, rtx, int, int, int);
440 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
441 static rtx simplify_if_then_else (rtx);
442 static rtx simplify_set (rtx);
443 static rtx simplify_logical (rtx);
444 static rtx expand_compound_operation (rtx);
445 static const_rtx expand_field_assignment (const_rtx);
446 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
447 rtx, unsigned HOST_WIDE_INT, int, int, int);
448 static rtx extract_left_shift (rtx, int);
449 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
450 unsigned HOST_WIDE_INT *);
451 static rtx canon_reg_for_combine (rtx, rtx);
452 static rtx force_to_mode (rtx, machine_mode,
453 unsigned HOST_WIDE_INT, int);
454 static rtx if_then_else_cond (rtx, rtx *, rtx *);
455 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
456 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
457 static rtx make_field_assignment (rtx);
458 static rtx apply_distributive_law (rtx);
459 static rtx distribute_and_simplify_rtx (rtx, int);
460 static rtx simplify_and_const_int_1 (machine_mode, rtx,
461 unsigned HOST_WIDE_INT);
462 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
463 unsigned HOST_WIDE_INT);
464 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
465 HOST_WIDE_INT, machine_mode, int *);
466 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
467 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
468 int);
469 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
470 static rtx gen_lowpart_for_combine (machine_mode, rtx);
471 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
472 rtx, rtx *);
473 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
474 static void update_table_tick (rtx);
475 static void record_value_for_reg (rtx, rtx_insn *, rtx);
476 static void check_promoted_subreg (rtx_insn *, rtx);
477 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
478 static void record_dead_and_set_regs (rtx_insn *);
479 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
480 static rtx get_last_value (const_rtx);
481 static int use_crosses_set_p (const_rtx, int);
482 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
483 static int reg_dead_at_p (rtx, rtx_insn *);
484 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
485 static int reg_bitfield_target_p (rtx, rtx);
486 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
487 static void distribute_links (struct insn_link *);
488 static void mark_used_regs_combine (rtx);
489 static void record_promoted_value (rtx_insn *, rtx);
490 static bool unmentioned_reg_p (rtx, rtx);
491 static void record_truncated_values (rtx *, void *);
492 static bool reg_truncated_to_mode (machine_mode, const_rtx);
493 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
494 \f
495
496 /* It is not safe to use ordinary gen_lowpart in combine.
497 See comments in gen_lowpart_for_combine. */
498 #undef RTL_HOOKS_GEN_LOWPART
499 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
500
501 /* Our implementation of gen_lowpart never emits a new pseudo. */
502 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
503 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
504
505 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
506 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
507
508 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
509 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
510
511 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
512 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
513
514 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
515
516 \f
517 /* Convenience wrapper for the canonicalize_comparison target hook.
518 Target hooks cannot use enum rtx_code. */
519 static inline void
520 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
521 bool op0_preserve_value)
522 {
523 int code_int = (int)*code;
524 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
525 *code = (enum rtx_code)code_int;
526 }
527
528 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
529 PATTERN can not be split. Otherwise, it returns an insn sequence.
530 This is a wrapper around split_insns which ensures that the
531 reg_stat vector is made larger if the splitter creates a new
532 register. */
533
534 static rtx_insn *
535 combine_split_insns (rtx pattern, rtx_insn *insn)
536 {
537 rtx_insn *ret;
538 unsigned int nregs;
539
540 ret = split_insns (pattern, insn);
541 nregs = max_reg_num ();
542 if (nregs > reg_stat.length ())
543 reg_stat.safe_grow_cleared (nregs);
544 return ret;
545 }
546
547 /* This is used by find_single_use to locate an rtx in LOC that
548 contains exactly one use of DEST, which is typically either a REG
549 or CC0. It returns a pointer to the innermost rtx expression
550 containing DEST. Appearances of DEST that are being used to
551 totally replace it are not counted. */
552
553 static rtx *
554 find_single_use_1 (rtx dest, rtx *loc)
555 {
556 rtx x = *loc;
557 enum rtx_code code = GET_CODE (x);
558 rtx *result = NULL;
559 rtx *this_result;
560 int i;
561 const char *fmt;
562
563 switch (code)
564 {
565 case CONST:
566 case LABEL_REF:
567 case SYMBOL_REF:
568 CASE_CONST_ANY:
569 case CLOBBER:
570 return 0;
571
572 case SET:
573 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
574 of a REG that occupies all of the REG, the insn uses DEST if
575 it is mentioned in the destination or the source. Otherwise, we
576 need just check the source. */
577 if (GET_CODE (SET_DEST (x)) != CC0
578 && GET_CODE (SET_DEST (x)) != PC
579 && !REG_P (SET_DEST (x))
580 && ! (GET_CODE (SET_DEST (x)) == SUBREG
581 && REG_P (SUBREG_REG (SET_DEST (x)))
582 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
583 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
584 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
585 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
586 break;
587
588 return find_single_use_1 (dest, &SET_SRC (x));
589
590 case MEM:
591 case SUBREG:
592 return find_single_use_1 (dest, &XEXP (x, 0));
593
594 default:
595 break;
596 }
597
598 /* If it wasn't one of the common cases above, check each expression and
599 vector of this code. Look for a unique usage of DEST. */
600
601 fmt = GET_RTX_FORMAT (code);
602 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
603 {
604 if (fmt[i] == 'e')
605 {
606 if (dest == XEXP (x, i)
607 || (REG_P (dest) && REG_P (XEXP (x, i))
608 && REGNO (dest) == REGNO (XEXP (x, i))))
609 this_result = loc;
610 else
611 this_result = find_single_use_1 (dest, &XEXP (x, i));
612
613 if (result == NULL)
614 result = this_result;
615 else if (this_result)
616 /* Duplicate usage. */
617 return NULL;
618 }
619 else if (fmt[i] == 'E')
620 {
621 int j;
622
623 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
624 {
625 if (XVECEXP (x, i, j) == dest
626 || (REG_P (dest)
627 && REG_P (XVECEXP (x, i, j))
628 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
629 this_result = loc;
630 else
631 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
632
633 if (result == NULL)
634 result = this_result;
635 else if (this_result)
636 return NULL;
637 }
638 }
639 }
640
641 return result;
642 }
643
644
645 /* See if DEST, produced in INSN, is used only a single time in the
646 sequel. If so, return a pointer to the innermost rtx expression in which
647 it is used.
648
649 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
650
651 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
652 care about REG_DEAD notes or LOG_LINKS.
653
654 Otherwise, we find the single use by finding an insn that has a
655 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
656 only referenced once in that insn, we know that it must be the first
657 and last insn referencing DEST. */
658
659 static rtx *
660 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
661 {
662 basic_block bb;
663 rtx_insn *next;
664 rtx *result;
665 struct insn_link *link;
666
667 if (dest == cc0_rtx)
668 {
669 next = NEXT_INSN (insn);
670 if (next == 0
671 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
672 return 0;
673
674 result = find_single_use_1 (dest, &PATTERN (next));
675 if (result && ploc)
676 *ploc = next;
677 return result;
678 }
679
680 if (!REG_P (dest))
681 return 0;
682
683 bb = BLOCK_FOR_INSN (insn);
684 for (next = NEXT_INSN (insn);
685 next && BLOCK_FOR_INSN (next) == bb;
686 next = NEXT_INSN (next))
687 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
688 {
689 FOR_EACH_LOG_LINK (link, next)
690 if (link->insn == insn && link->regno == REGNO (dest))
691 break;
692
693 if (link)
694 {
695 result = find_single_use_1 (dest, &PATTERN (next));
696 if (ploc)
697 *ploc = next;
698 return result;
699 }
700 }
701
702 return 0;
703 }
704 \f
705 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
706 insn. The substitution can be undone by undo_all. If INTO is already
707 set to NEWVAL, do not record this change. Because computing NEWVAL might
708 also call SUBST, we have to compute it before we put anything into
709 the undo table. */
710
711 static void
712 do_SUBST (rtx *into, rtx newval)
713 {
714 struct undo *buf;
715 rtx oldval = *into;
716
717 if (oldval == newval)
718 return;
719
720 /* We'd like to catch as many invalid transformations here as
721 possible. Unfortunately, there are way too many mode changes
722 that are perfectly valid, so we'd waste too much effort for
723 little gain doing the checks here. Focus on catching invalid
724 transformations involving integer constants. */
725 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
726 && CONST_INT_P (newval))
727 {
728 /* Sanity check that we're replacing oldval with a CONST_INT
729 that is a valid sign-extension for the original mode. */
730 gcc_assert (INTVAL (newval)
731 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
732
733 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
734 CONST_INT is not valid, because after the replacement, the
735 original mode would be gone. Unfortunately, we can't tell
736 when do_SUBST is called to replace the operand thereof, so we
737 perform this test on oldval instead, checking whether an
738 invalid replacement took place before we got here. */
739 gcc_assert (!(GET_CODE (oldval) == SUBREG
740 && CONST_INT_P (SUBREG_REG (oldval))));
741 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
742 && CONST_INT_P (XEXP (oldval, 0))));
743 }
744
745 if (undobuf.frees)
746 buf = undobuf.frees, undobuf.frees = buf->next;
747 else
748 buf = XNEW (struct undo);
749
750 buf->kind = UNDO_RTX;
751 buf->where.r = into;
752 buf->old_contents.r = oldval;
753 *into = newval;
754
755 buf->next = undobuf.undos, undobuf.undos = buf;
756 }
757
758 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
759
760 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
761 for the value of a HOST_WIDE_INT value (including CONST_INT) is
762 not safe. */
763
764 static void
765 do_SUBST_INT (int *into, int newval)
766 {
767 struct undo *buf;
768 int oldval = *into;
769
770 if (oldval == newval)
771 return;
772
773 if (undobuf.frees)
774 buf = undobuf.frees, undobuf.frees = buf->next;
775 else
776 buf = XNEW (struct undo);
777
778 buf->kind = UNDO_INT;
779 buf->where.i = into;
780 buf->old_contents.i = oldval;
781 *into = newval;
782
783 buf->next = undobuf.undos, undobuf.undos = buf;
784 }
785
786 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
787
788 /* Similar to SUBST, but just substitute the mode. This is used when
789 changing the mode of a pseudo-register, so that any other
790 references to the entry in the regno_reg_rtx array will change as
791 well. */
792
793 static void
794 do_SUBST_MODE (rtx *into, machine_mode newval)
795 {
796 struct undo *buf;
797 machine_mode oldval = GET_MODE (*into);
798
799 if (oldval == newval)
800 return;
801
802 if (undobuf.frees)
803 buf = undobuf.frees, undobuf.frees = buf->next;
804 else
805 buf = XNEW (struct undo);
806
807 buf->kind = UNDO_MODE;
808 buf->where.r = into;
809 buf->old_contents.m = oldval;
810 adjust_reg_mode (*into, newval);
811
812 buf->next = undobuf.undos, undobuf.undos = buf;
813 }
814
815 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
816
817 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
818
819 static void
820 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
821 {
822 struct undo *buf;
823 struct insn_link * oldval = *into;
824
825 if (oldval == newval)
826 return;
827
828 if (undobuf.frees)
829 buf = undobuf.frees, undobuf.frees = buf->next;
830 else
831 buf = XNEW (struct undo);
832
833 buf->kind = UNDO_LINKS;
834 buf->where.l = into;
835 buf->old_contents.l = oldval;
836 *into = newval;
837
838 buf->next = undobuf.undos, undobuf.undos = buf;
839 }
840
841 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
842 \f
843 /* Subroutine of try_combine. Determine whether the replacement patterns
844 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
845 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
846 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
847 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
848 of all the instructions can be estimated and the replacements are more
849 expensive than the original sequence. */
850
851 static bool
852 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
853 rtx newpat, rtx newi2pat, rtx newotherpat)
854 {
855 int i0_cost, i1_cost, i2_cost, i3_cost;
856 int new_i2_cost, new_i3_cost;
857 int old_cost, new_cost;
858
859 /* Lookup the original insn_rtx_costs. */
860 i2_cost = INSN_COST (i2);
861 i3_cost = INSN_COST (i3);
862
863 if (i1)
864 {
865 i1_cost = INSN_COST (i1);
866 if (i0)
867 {
868 i0_cost = INSN_COST (i0);
869 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
870 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
871 }
872 else
873 {
874 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
875 ? i1_cost + i2_cost + i3_cost : 0);
876 i0_cost = 0;
877 }
878 }
879 else
880 {
881 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
882 i1_cost = i0_cost = 0;
883 }
884
885 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
886 correct that. */
887 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
888 old_cost -= i1_cost;
889
890
891 /* Calculate the replacement insn_rtx_costs. */
892 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
893 if (newi2pat)
894 {
895 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
896 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
897 ? new_i2_cost + new_i3_cost : 0;
898 }
899 else
900 {
901 new_cost = new_i3_cost;
902 new_i2_cost = 0;
903 }
904
905 if (undobuf.other_insn)
906 {
907 int old_other_cost, new_other_cost;
908
909 old_other_cost = INSN_COST (undobuf.other_insn);
910 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
911 if (old_other_cost > 0 && new_other_cost > 0)
912 {
913 old_cost += old_other_cost;
914 new_cost += new_other_cost;
915 }
916 else
917 old_cost = 0;
918 }
919
920 /* Disallow this combination if both new_cost and old_cost are greater than
921 zero, and new_cost is greater than old cost. */
922 int reject = old_cost > 0 && new_cost > old_cost;
923
924 if (dump_file)
925 {
926 fprintf (dump_file, "%s combination of insns ",
927 reject ? "rejecting" : "allowing");
928 if (i0)
929 fprintf (dump_file, "%d, ", INSN_UID (i0));
930 if (i1 && INSN_UID (i1) != INSN_UID (i2))
931 fprintf (dump_file, "%d, ", INSN_UID (i1));
932 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
933
934 fprintf (dump_file, "original costs ");
935 if (i0)
936 fprintf (dump_file, "%d + ", i0_cost);
937 if (i1 && INSN_UID (i1) != INSN_UID (i2))
938 fprintf (dump_file, "%d + ", i1_cost);
939 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
940
941 if (newi2pat)
942 fprintf (dump_file, "replacement costs %d + %d = %d\n",
943 new_i2_cost, new_i3_cost, new_cost);
944 else
945 fprintf (dump_file, "replacement cost %d\n", new_cost);
946 }
947
948 if (reject)
949 return false;
950
951 /* Update the uid_insn_cost array with the replacement costs. */
952 INSN_COST (i2) = new_i2_cost;
953 INSN_COST (i3) = new_i3_cost;
954 if (i1)
955 {
956 INSN_COST (i1) = 0;
957 if (i0)
958 INSN_COST (i0) = 0;
959 }
960
961 return true;
962 }
963
964
965 /* Delete any insns that copy a register to itself. */
966
967 static void
968 delete_noop_moves (void)
969 {
970 rtx_insn *insn, *next;
971 basic_block bb;
972
973 FOR_EACH_BB_FN (bb, cfun)
974 {
975 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
976 {
977 next = NEXT_INSN (insn);
978 if (INSN_P (insn) && noop_move_p (insn))
979 {
980 if (dump_file)
981 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
982
983 delete_insn_and_edges (insn);
984 }
985 }
986 }
987 }
988
989 \f
990 /* Return false if we do not want to (or cannot) combine DEF. */
991 static bool
992 can_combine_def_p (df_ref def)
993 {
994 /* Do not consider if it is pre/post modification in MEM. */
995 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
996 return false;
997
998 unsigned int regno = DF_REF_REGNO (def);
999
1000 /* Do not combine frame pointer adjustments. */
1001 if ((regno == FRAME_POINTER_REGNUM
1002 && (!reload_completed || frame_pointer_needed))
1003 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1004 && regno == HARD_FRAME_POINTER_REGNUM
1005 && (!reload_completed || frame_pointer_needed))
1006 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1007 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1008 return false;
1009
1010 return true;
1011 }
1012
1013 /* Return false if we do not want to (or cannot) combine USE. */
1014 static bool
1015 can_combine_use_p (df_ref use)
1016 {
1017 /* Do not consider the usage of the stack pointer by function call. */
1018 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1019 return false;
1020
1021 return true;
1022 }
1023
1024 /* Fill in log links field for all insns. */
1025
1026 static void
1027 create_log_links (void)
1028 {
1029 basic_block bb;
1030 rtx_insn **next_use;
1031 rtx_insn *insn;
1032 df_ref def, use;
1033
1034 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1035
1036 /* Pass through each block from the end, recording the uses of each
1037 register and establishing log links when def is encountered.
1038 Note that we do not clear next_use array in order to save time,
1039 so we have to test whether the use is in the same basic block as def.
1040
1041 There are a few cases below when we do not consider the definition or
1042 usage -- these are taken from original flow.c did. Don't ask me why it is
1043 done this way; I don't know and if it works, I don't want to know. */
1044
1045 FOR_EACH_BB_FN (bb, cfun)
1046 {
1047 FOR_BB_INSNS_REVERSE (bb, insn)
1048 {
1049 if (!NONDEBUG_INSN_P (insn))
1050 continue;
1051
1052 /* Log links are created only once. */
1053 gcc_assert (!LOG_LINKS (insn));
1054
1055 FOR_EACH_INSN_DEF (def, insn)
1056 {
1057 unsigned int regno = DF_REF_REGNO (def);
1058 rtx_insn *use_insn;
1059
1060 if (!next_use[regno])
1061 continue;
1062
1063 if (!can_combine_def_p (def))
1064 continue;
1065
1066 use_insn = next_use[regno];
1067 next_use[regno] = NULL;
1068
1069 if (BLOCK_FOR_INSN (use_insn) != bb)
1070 continue;
1071
1072 /* flow.c claimed:
1073
1074 We don't build a LOG_LINK for hard registers contained
1075 in ASM_OPERANDs. If these registers get replaced,
1076 we might wind up changing the semantics of the insn,
1077 even if reload can make what appear to be valid
1078 assignments later. */
1079 if (regno < FIRST_PSEUDO_REGISTER
1080 && asm_noperands (PATTERN (use_insn)) >= 0)
1081 continue;
1082
1083 /* Don't add duplicate links between instructions. */
1084 struct insn_link *links;
1085 FOR_EACH_LOG_LINK (links, use_insn)
1086 if (insn == links->insn && regno == links->regno)
1087 break;
1088
1089 if (!links)
1090 LOG_LINKS (use_insn)
1091 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1092 }
1093
1094 FOR_EACH_INSN_USE (use, insn)
1095 if (can_combine_use_p (use))
1096 next_use[DF_REF_REGNO (use)] = insn;
1097 }
1098 }
1099
1100 free (next_use);
1101 }
1102
1103 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1104 true if we found a LOG_LINK that proves that A feeds B. This only works
1105 if there are no instructions between A and B which could have a link
1106 depending on A, since in that case we would not record a link for B.
1107 We also check the implicit dependency created by a cc0 setter/user
1108 pair. */
1109
1110 static bool
1111 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1112 {
1113 struct insn_link *links;
1114 FOR_EACH_LOG_LINK (links, b)
1115 if (links->insn == a)
1116 return true;
1117 if (HAVE_cc0 && sets_cc0_p (a))
1118 return true;
1119 return false;
1120 }
1121 \f
1122 /* Main entry point for combiner. F is the first insn of the function.
1123 NREGS is the first unused pseudo-reg number.
1124
1125 Return nonzero if the combiner has turned an indirect jump
1126 instruction into a direct jump. */
1127 static int
1128 combine_instructions (rtx_insn *f, unsigned int nregs)
1129 {
1130 rtx_insn *insn, *next;
1131 rtx_insn *prev;
1132 struct insn_link *links, *nextlinks;
1133 rtx_insn *first;
1134 basic_block last_bb;
1135
1136 int new_direct_jump_p = 0;
1137
1138 for (first = f; first && !NONDEBUG_INSN_P (first); )
1139 first = NEXT_INSN (first);
1140 if (!first)
1141 return 0;
1142
1143 combine_attempts = 0;
1144 combine_merges = 0;
1145 combine_extras = 0;
1146 combine_successes = 0;
1147
1148 rtl_hooks = combine_rtl_hooks;
1149
1150 reg_stat.safe_grow_cleared (nregs);
1151
1152 init_recog_no_volatile ();
1153
1154 /* Allocate array for insn info. */
1155 max_uid_known = get_max_uid ();
1156 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1157 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1158 gcc_obstack_init (&insn_link_obstack);
1159
1160 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1161
1162 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1163 problems when, for example, we have j <<= 1 in a loop. */
1164
1165 nonzero_sign_valid = 0;
1166 label_tick = label_tick_ebb_start = 1;
1167
1168 /* Scan all SETs and see if we can deduce anything about what
1169 bits are known to be zero for some registers and how many copies
1170 of the sign bit are known to exist for those registers.
1171
1172 Also set any known values so that we can use it while searching
1173 for what bits are known to be set. */
1174
1175 setup_incoming_promotions (first);
1176 /* Allow the entry block and the first block to fall into the same EBB.
1177 Conceptually the incoming promotions are assigned to the entry block. */
1178 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1179
1180 create_log_links ();
1181 FOR_EACH_BB_FN (this_basic_block, cfun)
1182 {
1183 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1184 last_call_luid = 0;
1185 mem_last_set = -1;
1186
1187 label_tick++;
1188 if (!single_pred_p (this_basic_block)
1189 || single_pred (this_basic_block) != last_bb)
1190 label_tick_ebb_start = label_tick;
1191 last_bb = this_basic_block;
1192
1193 FOR_BB_INSNS (this_basic_block, insn)
1194 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1195 {
1196 rtx links;
1197
1198 subst_low_luid = DF_INSN_LUID (insn);
1199 subst_insn = insn;
1200
1201 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1202 insn);
1203 record_dead_and_set_regs (insn);
1204
1205 if (AUTO_INC_DEC)
1206 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1207 if (REG_NOTE_KIND (links) == REG_INC)
1208 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1209 insn);
1210
1211 /* Record the current insn_rtx_cost of this instruction. */
1212 if (NONJUMP_INSN_P (insn))
1213 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1214 optimize_this_for_speed_p);
1215 if (dump_file)
1216 fprintf (dump_file, "insn_cost %d: %d\n",
1217 INSN_UID (insn), INSN_COST (insn));
1218 }
1219 }
1220
1221 nonzero_sign_valid = 1;
1222
1223 /* Now scan all the insns in forward order. */
1224 label_tick = label_tick_ebb_start = 1;
1225 init_reg_last ();
1226 setup_incoming_promotions (first);
1227 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1228 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1229
1230 FOR_EACH_BB_FN (this_basic_block, cfun)
1231 {
1232 rtx_insn *last_combined_insn = NULL;
1233 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1234 last_call_luid = 0;
1235 mem_last_set = -1;
1236
1237 label_tick++;
1238 if (!single_pred_p (this_basic_block)
1239 || single_pred (this_basic_block) != last_bb)
1240 label_tick_ebb_start = label_tick;
1241 last_bb = this_basic_block;
1242
1243 rtl_profile_for_bb (this_basic_block);
1244 for (insn = BB_HEAD (this_basic_block);
1245 insn != NEXT_INSN (BB_END (this_basic_block));
1246 insn = next ? next : NEXT_INSN (insn))
1247 {
1248 next = 0;
1249 if (!NONDEBUG_INSN_P (insn))
1250 continue;
1251
1252 while (last_combined_insn
1253 && last_combined_insn->deleted ())
1254 last_combined_insn = PREV_INSN (last_combined_insn);
1255 if (last_combined_insn == NULL_RTX
1256 || BARRIER_P (last_combined_insn)
1257 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1258 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1259 last_combined_insn = insn;
1260
1261 /* See if we know about function return values before this
1262 insn based upon SUBREG flags. */
1263 check_promoted_subreg (insn, PATTERN (insn));
1264
1265 /* See if we can find hardregs and subreg of pseudos in
1266 narrower modes. This could help turning TRUNCATEs
1267 into SUBREGs. */
1268 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1269
1270 /* Try this insn with each insn it links back to. */
1271
1272 FOR_EACH_LOG_LINK (links, insn)
1273 if ((next = try_combine (insn, links->insn, NULL,
1274 NULL, &new_direct_jump_p,
1275 last_combined_insn)) != 0)
1276 {
1277 statistics_counter_event (cfun, "two-insn combine", 1);
1278 goto retry;
1279 }
1280
1281 /* Try each sequence of three linked insns ending with this one. */
1282
1283 if (max_combine >= 3)
1284 FOR_EACH_LOG_LINK (links, insn)
1285 {
1286 rtx_insn *link = links->insn;
1287
1288 /* If the linked insn has been replaced by a note, then there
1289 is no point in pursuing this chain any further. */
1290 if (NOTE_P (link))
1291 continue;
1292
1293 FOR_EACH_LOG_LINK (nextlinks, link)
1294 if ((next = try_combine (insn, link, nextlinks->insn,
1295 NULL, &new_direct_jump_p,
1296 last_combined_insn)) != 0)
1297 {
1298 statistics_counter_event (cfun, "three-insn combine", 1);
1299 goto retry;
1300 }
1301 }
1302
1303 /* Try to combine a jump insn that uses CC0
1304 with a preceding insn that sets CC0, and maybe with its
1305 logical predecessor as well.
1306 This is how we make decrement-and-branch insns.
1307 We need this special code because data flow connections
1308 via CC0 do not get entered in LOG_LINKS. */
1309
1310 if (HAVE_cc0
1311 && JUMP_P (insn)
1312 && (prev = prev_nonnote_insn (insn)) != 0
1313 && NONJUMP_INSN_P (prev)
1314 && sets_cc0_p (PATTERN (prev)))
1315 {
1316 if ((next = try_combine (insn, prev, NULL, NULL,
1317 &new_direct_jump_p,
1318 last_combined_insn)) != 0)
1319 goto retry;
1320
1321 FOR_EACH_LOG_LINK (nextlinks, prev)
1322 if ((next = try_combine (insn, prev, nextlinks->insn,
1323 NULL, &new_direct_jump_p,
1324 last_combined_insn)) != 0)
1325 goto retry;
1326 }
1327
1328 /* Do the same for an insn that explicitly references CC0. */
1329 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1330 && (prev = prev_nonnote_insn (insn)) != 0
1331 && NONJUMP_INSN_P (prev)
1332 && sets_cc0_p (PATTERN (prev))
1333 && GET_CODE (PATTERN (insn)) == SET
1334 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1335 {
1336 if ((next = try_combine (insn, prev, NULL, NULL,
1337 &new_direct_jump_p,
1338 last_combined_insn)) != 0)
1339 goto retry;
1340
1341 FOR_EACH_LOG_LINK (nextlinks, prev)
1342 if ((next = try_combine (insn, prev, nextlinks->insn,
1343 NULL, &new_direct_jump_p,
1344 last_combined_insn)) != 0)
1345 goto retry;
1346 }
1347
1348 /* Finally, see if any of the insns that this insn links to
1349 explicitly references CC0. If so, try this insn, that insn,
1350 and its predecessor if it sets CC0. */
1351 if (HAVE_cc0)
1352 {
1353 FOR_EACH_LOG_LINK (links, insn)
1354 if (NONJUMP_INSN_P (links->insn)
1355 && GET_CODE (PATTERN (links->insn)) == SET
1356 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1357 && (prev = prev_nonnote_insn (links->insn)) != 0
1358 && NONJUMP_INSN_P (prev)
1359 && sets_cc0_p (PATTERN (prev))
1360 && (next = try_combine (insn, links->insn,
1361 prev, NULL, &new_direct_jump_p,
1362 last_combined_insn)) != 0)
1363 goto retry;
1364 }
1365
1366 /* Try combining an insn with two different insns whose results it
1367 uses. */
1368 if (max_combine >= 3)
1369 FOR_EACH_LOG_LINK (links, insn)
1370 for (nextlinks = links->next; nextlinks;
1371 nextlinks = nextlinks->next)
1372 if ((next = try_combine (insn, links->insn,
1373 nextlinks->insn, NULL,
1374 &new_direct_jump_p,
1375 last_combined_insn)) != 0)
1376
1377 {
1378 statistics_counter_event (cfun, "three-insn combine", 1);
1379 goto retry;
1380 }
1381
1382 /* Try four-instruction combinations. */
1383 if (max_combine >= 4)
1384 FOR_EACH_LOG_LINK (links, insn)
1385 {
1386 struct insn_link *next1;
1387 rtx_insn *link = links->insn;
1388
1389 /* If the linked insn has been replaced by a note, then there
1390 is no point in pursuing this chain any further. */
1391 if (NOTE_P (link))
1392 continue;
1393
1394 FOR_EACH_LOG_LINK (next1, link)
1395 {
1396 rtx_insn *link1 = next1->insn;
1397 if (NOTE_P (link1))
1398 continue;
1399 /* I0 -> I1 -> I2 -> I3. */
1400 FOR_EACH_LOG_LINK (nextlinks, link1)
1401 if ((next = try_combine (insn, link, link1,
1402 nextlinks->insn,
1403 &new_direct_jump_p,
1404 last_combined_insn)) != 0)
1405 {
1406 statistics_counter_event (cfun, "four-insn combine", 1);
1407 goto retry;
1408 }
1409 /* I0, I1 -> I2, I2 -> I3. */
1410 for (nextlinks = next1->next; nextlinks;
1411 nextlinks = nextlinks->next)
1412 if ((next = try_combine (insn, link, link1,
1413 nextlinks->insn,
1414 &new_direct_jump_p,
1415 last_combined_insn)) != 0)
1416 {
1417 statistics_counter_event (cfun, "four-insn combine", 1);
1418 goto retry;
1419 }
1420 }
1421
1422 for (next1 = links->next; next1; next1 = next1->next)
1423 {
1424 rtx_insn *link1 = next1->insn;
1425 if (NOTE_P (link1))
1426 continue;
1427 /* I0 -> I2; I1, I2 -> I3. */
1428 FOR_EACH_LOG_LINK (nextlinks, link)
1429 if ((next = try_combine (insn, link, link1,
1430 nextlinks->insn,
1431 &new_direct_jump_p,
1432 last_combined_insn)) != 0)
1433 {
1434 statistics_counter_event (cfun, "four-insn combine", 1);
1435 goto retry;
1436 }
1437 /* I0 -> I1; I1, I2 -> I3. */
1438 FOR_EACH_LOG_LINK (nextlinks, link1)
1439 if ((next = try_combine (insn, link, link1,
1440 nextlinks->insn,
1441 &new_direct_jump_p,
1442 last_combined_insn)) != 0)
1443 {
1444 statistics_counter_event (cfun, "four-insn combine", 1);
1445 goto retry;
1446 }
1447 }
1448 }
1449
1450 /* Try this insn with each REG_EQUAL note it links back to. */
1451 FOR_EACH_LOG_LINK (links, insn)
1452 {
1453 rtx set, note;
1454 rtx_insn *temp = links->insn;
1455 if ((set = single_set (temp)) != 0
1456 && (note = find_reg_equal_equiv_note (temp)) != 0
1457 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1458 /* Avoid using a register that may already been marked
1459 dead by an earlier instruction. */
1460 && ! unmentioned_reg_p (note, SET_SRC (set))
1461 && (GET_MODE (note) == VOIDmode
1462 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1463 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1464 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1465 || (GET_MODE (XEXP (SET_DEST (set), 0))
1466 == GET_MODE (note))))))
1467 {
1468 /* Temporarily replace the set's source with the
1469 contents of the REG_EQUAL note. The insn will
1470 be deleted or recognized by try_combine. */
1471 rtx orig_src = SET_SRC (set);
1472 rtx orig_dest = SET_DEST (set);
1473 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1474 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1475 SET_SRC (set) = note;
1476 i2mod = temp;
1477 i2mod_old_rhs = copy_rtx (orig_src);
1478 i2mod_new_rhs = copy_rtx (note);
1479 next = try_combine (insn, i2mod, NULL, NULL,
1480 &new_direct_jump_p,
1481 last_combined_insn);
1482 i2mod = NULL;
1483 if (next)
1484 {
1485 statistics_counter_event (cfun, "insn-with-note combine", 1);
1486 goto retry;
1487 }
1488 SET_SRC (set) = orig_src;
1489 SET_DEST (set) = orig_dest;
1490 }
1491 }
1492
1493 if (!NOTE_P (insn))
1494 record_dead_and_set_regs (insn);
1495
1496 retry:
1497 ;
1498 }
1499 }
1500
1501 default_rtl_profile ();
1502 clear_bb_flags ();
1503 new_direct_jump_p |= purge_all_dead_edges ();
1504 delete_noop_moves ();
1505
1506 /* Clean up. */
1507 obstack_free (&insn_link_obstack, NULL);
1508 free (uid_log_links);
1509 free (uid_insn_cost);
1510 reg_stat.release ();
1511
1512 {
1513 struct undo *undo, *next;
1514 for (undo = undobuf.frees; undo; undo = next)
1515 {
1516 next = undo->next;
1517 free (undo);
1518 }
1519 undobuf.frees = 0;
1520 }
1521
1522 total_attempts += combine_attempts;
1523 total_merges += combine_merges;
1524 total_extras += combine_extras;
1525 total_successes += combine_successes;
1526
1527 nonzero_sign_valid = 0;
1528 rtl_hooks = general_rtl_hooks;
1529
1530 /* Make recognizer allow volatile MEMs again. */
1531 init_recog ();
1532
1533 return new_direct_jump_p;
1534 }
1535
1536 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1537
1538 static void
1539 init_reg_last (void)
1540 {
1541 unsigned int i;
1542 reg_stat_type *p;
1543
1544 FOR_EACH_VEC_ELT (reg_stat, i, p)
1545 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1546 }
1547 \f
1548 /* Set up any promoted values for incoming argument registers. */
1549
1550 static void
1551 setup_incoming_promotions (rtx_insn *first)
1552 {
1553 tree arg;
1554 bool strictly_local = false;
1555
1556 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1557 arg = DECL_CHAIN (arg))
1558 {
1559 rtx x, reg = DECL_INCOMING_RTL (arg);
1560 int uns1, uns3;
1561 machine_mode mode1, mode2, mode3, mode4;
1562
1563 /* Only continue if the incoming argument is in a register. */
1564 if (!REG_P (reg))
1565 continue;
1566
1567 /* Determine, if possible, whether all call sites of the current
1568 function lie within the current compilation unit. (This does
1569 take into account the exporting of a function via taking its
1570 address, and so forth.) */
1571 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1572
1573 /* The mode and signedness of the argument before any promotions happen
1574 (equal to the mode of the pseudo holding it at that stage). */
1575 mode1 = TYPE_MODE (TREE_TYPE (arg));
1576 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1577
1578 /* The mode and signedness of the argument after any source language and
1579 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1580 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1581 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1582
1583 /* The mode and signedness of the argument as it is actually passed,
1584 see assign_parm_setup_reg in function.c. */
1585 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1586 TREE_TYPE (cfun->decl), 0);
1587
1588 /* The mode of the register in which the argument is being passed. */
1589 mode4 = GET_MODE (reg);
1590
1591 /* Eliminate sign extensions in the callee when:
1592 (a) A mode promotion has occurred; */
1593 if (mode1 == mode3)
1594 continue;
1595 /* (b) The mode of the register is the same as the mode of
1596 the argument as it is passed; */
1597 if (mode3 != mode4)
1598 continue;
1599 /* (c) There's no language level extension; */
1600 if (mode1 == mode2)
1601 ;
1602 /* (c.1) All callers are from the current compilation unit. If that's
1603 the case we don't have to rely on an ABI, we only have to know
1604 what we're generating right now, and we know that we will do the
1605 mode1 to mode2 promotion with the given sign. */
1606 else if (!strictly_local)
1607 continue;
1608 /* (c.2) The combination of the two promotions is useful. This is
1609 true when the signs match, or if the first promotion is unsigned.
1610 In the later case, (sign_extend (zero_extend x)) is the same as
1611 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1612 else if (uns1)
1613 uns3 = true;
1614 else if (uns3)
1615 continue;
1616
1617 /* Record that the value was promoted from mode1 to mode3,
1618 so that any sign extension at the head of the current
1619 function may be eliminated. */
1620 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1621 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1622 record_value_for_reg (reg, first, x);
1623 }
1624 }
1625
1626 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1627 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1628 because some machines (maybe most) will actually do the sign-extension and
1629 this is the conservative approach.
1630
1631 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1632 kludge. */
1633
1634 static rtx
1635 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1636 {
1637 if (GET_MODE_PRECISION (mode) < prec
1638 && CONST_INT_P (src)
1639 && INTVAL (src) > 0
1640 && val_signbit_known_set_p (mode, INTVAL (src)))
1641 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1642
1643 return src;
1644 }
1645
1646 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1647 and SET. */
1648
1649 static void
1650 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1651 rtx x)
1652 {
1653 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1654 unsigned HOST_WIDE_INT bits = 0;
1655 rtx reg_equal = NULL, src = SET_SRC (set);
1656 unsigned int num = 0;
1657
1658 if (reg_equal_note)
1659 reg_equal = XEXP (reg_equal_note, 0);
1660
1661 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1662 {
1663 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1664 if (reg_equal)
1665 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1666 }
1667
1668 /* Don't call nonzero_bits if it cannot change anything. */
1669 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1670 {
1671 bits = nonzero_bits (src, nonzero_bits_mode);
1672 if (reg_equal && bits)
1673 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1674 rsp->nonzero_bits |= bits;
1675 }
1676
1677 /* Don't call num_sign_bit_copies if it cannot change anything. */
1678 if (rsp->sign_bit_copies != 1)
1679 {
1680 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1681 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1682 {
1683 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1684 if (num == 0 || numeq > num)
1685 num = numeq;
1686 }
1687 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1688 rsp->sign_bit_copies = num;
1689 }
1690 }
1691
1692 /* Called via note_stores. If X is a pseudo that is narrower than
1693 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1694
1695 If we are setting only a portion of X and we can't figure out what
1696 portion, assume all bits will be used since we don't know what will
1697 be happening.
1698
1699 Similarly, set how many bits of X are known to be copies of the sign bit
1700 at all locations in the function. This is the smallest number implied
1701 by any set of X. */
1702
1703 static void
1704 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1705 {
1706 rtx_insn *insn = (rtx_insn *) data;
1707
1708 if (REG_P (x)
1709 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1710 /* If this register is undefined at the start of the file, we can't
1711 say what its contents were. */
1712 && ! REGNO_REG_SET_P
1713 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1714 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1715 {
1716 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1717
1718 if (set == 0 || GET_CODE (set) == CLOBBER)
1719 {
1720 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1721 rsp->sign_bit_copies = 1;
1722 return;
1723 }
1724
1725 /* If this register is being initialized using itself, and the
1726 register is uninitialized in this basic block, and there are
1727 no LOG_LINKS which set the register, then part of the
1728 register is uninitialized. In that case we can't assume
1729 anything about the number of nonzero bits.
1730
1731 ??? We could do better if we checked this in
1732 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1733 could avoid making assumptions about the insn which initially
1734 sets the register, while still using the information in other
1735 insns. We would have to be careful to check every insn
1736 involved in the combination. */
1737
1738 if (insn
1739 && reg_referenced_p (x, PATTERN (insn))
1740 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1741 REGNO (x)))
1742 {
1743 struct insn_link *link;
1744
1745 FOR_EACH_LOG_LINK (link, insn)
1746 if (dead_or_set_p (link->insn, x))
1747 break;
1748 if (!link)
1749 {
1750 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1751 rsp->sign_bit_copies = 1;
1752 return;
1753 }
1754 }
1755
1756 /* If this is a complex assignment, see if we can convert it into a
1757 simple assignment. */
1758 set = expand_field_assignment (set);
1759
1760 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1761 set what we know about X. */
1762
1763 if (SET_DEST (set) == x
1764 || (paradoxical_subreg_p (SET_DEST (set))
1765 && SUBREG_REG (SET_DEST (set)) == x))
1766 update_rsp_from_reg_equal (rsp, insn, set, x);
1767 else
1768 {
1769 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1770 rsp->sign_bit_copies = 1;
1771 }
1772 }
1773 }
1774 \f
1775 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1776 optionally insns that were previously combined into I3 or that will be
1777 combined into the merger of INSN and I3. The order is PRED, PRED2,
1778 INSN, SUCC, SUCC2, I3.
1779
1780 Return 0 if the combination is not allowed for any reason.
1781
1782 If the combination is allowed, *PDEST will be set to the single
1783 destination of INSN and *PSRC to the single source, and this function
1784 will return 1. */
1785
1786 static int
1787 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1788 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1789 rtx *pdest, rtx *psrc)
1790 {
1791 int i;
1792 const_rtx set = 0;
1793 rtx src, dest;
1794 rtx_insn *p;
1795 rtx link;
1796 bool all_adjacent = true;
1797 int (*is_volatile_p) (const_rtx);
1798
1799 if (succ)
1800 {
1801 if (succ2)
1802 {
1803 if (next_active_insn (succ2) != i3)
1804 all_adjacent = false;
1805 if (next_active_insn (succ) != succ2)
1806 all_adjacent = false;
1807 }
1808 else if (next_active_insn (succ) != i3)
1809 all_adjacent = false;
1810 if (next_active_insn (insn) != succ)
1811 all_adjacent = false;
1812 }
1813 else if (next_active_insn (insn) != i3)
1814 all_adjacent = false;
1815
1816 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1817 or a PARALLEL consisting of such a SET and CLOBBERs.
1818
1819 If INSN has CLOBBER parallel parts, ignore them for our processing.
1820 By definition, these happen during the execution of the insn. When it
1821 is merged with another insn, all bets are off. If they are, in fact,
1822 needed and aren't also supplied in I3, they may be added by
1823 recog_for_combine. Otherwise, it won't match.
1824
1825 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1826 note.
1827
1828 Get the source and destination of INSN. If more than one, can't
1829 combine. */
1830
1831 if (GET_CODE (PATTERN (insn)) == SET)
1832 set = PATTERN (insn);
1833 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1834 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1835 {
1836 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1837 {
1838 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1839
1840 switch (GET_CODE (elt))
1841 {
1842 /* This is important to combine floating point insns
1843 for the SH4 port. */
1844 case USE:
1845 /* Combining an isolated USE doesn't make sense.
1846 We depend here on combinable_i3pat to reject them. */
1847 /* The code below this loop only verifies that the inputs of
1848 the SET in INSN do not change. We call reg_set_between_p
1849 to verify that the REG in the USE does not change between
1850 I3 and INSN.
1851 If the USE in INSN was for a pseudo register, the matching
1852 insn pattern will likely match any register; combining this
1853 with any other USE would only be safe if we knew that the
1854 used registers have identical values, or if there was
1855 something to tell them apart, e.g. different modes. For
1856 now, we forgo such complicated tests and simply disallow
1857 combining of USES of pseudo registers with any other USE. */
1858 if (REG_P (XEXP (elt, 0))
1859 && GET_CODE (PATTERN (i3)) == PARALLEL)
1860 {
1861 rtx i3pat = PATTERN (i3);
1862 int i = XVECLEN (i3pat, 0) - 1;
1863 unsigned int regno = REGNO (XEXP (elt, 0));
1864
1865 do
1866 {
1867 rtx i3elt = XVECEXP (i3pat, 0, i);
1868
1869 if (GET_CODE (i3elt) == USE
1870 && REG_P (XEXP (i3elt, 0))
1871 && (REGNO (XEXP (i3elt, 0)) == regno
1872 ? reg_set_between_p (XEXP (elt, 0),
1873 PREV_INSN (insn), i3)
1874 : regno >= FIRST_PSEUDO_REGISTER))
1875 return 0;
1876 }
1877 while (--i >= 0);
1878 }
1879 break;
1880
1881 /* We can ignore CLOBBERs. */
1882 case CLOBBER:
1883 break;
1884
1885 case SET:
1886 /* Ignore SETs whose result isn't used but not those that
1887 have side-effects. */
1888 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1889 && insn_nothrow_p (insn)
1890 && !side_effects_p (elt))
1891 break;
1892
1893 /* If we have already found a SET, this is a second one and
1894 so we cannot combine with this insn. */
1895 if (set)
1896 return 0;
1897
1898 set = elt;
1899 break;
1900
1901 default:
1902 /* Anything else means we can't combine. */
1903 return 0;
1904 }
1905 }
1906
1907 if (set == 0
1908 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1909 so don't do anything with it. */
1910 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1911 return 0;
1912 }
1913 else
1914 return 0;
1915
1916 if (set == 0)
1917 return 0;
1918
1919 /* The simplification in expand_field_assignment may call back to
1920 get_last_value, so set safe guard here. */
1921 subst_low_luid = DF_INSN_LUID (insn);
1922
1923 set = expand_field_assignment (set);
1924 src = SET_SRC (set), dest = SET_DEST (set);
1925
1926 /* Do not eliminate user-specified register if it is in an
1927 asm input because we may break the register asm usage defined
1928 in GCC manual if allow to do so.
1929 Be aware that this may cover more cases than we expect but this
1930 should be harmless. */
1931 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1932 && extract_asm_operands (PATTERN (i3)))
1933 return 0;
1934
1935 /* Don't eliminate a store in the stack pointer. */
1936 if (dest == stack_pointer_rtx
1937 /* Don't combine with an insn that sets a register to itself if it has
1938 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1939 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1940 /* Can't merge an ASM_OPERANDS. */
1941 || GET_CODE (src) == ASM_OPERANDS
1942 /* Can't merge a function call. */
1943 || GET_CODE (src) == CALL
1944 /* Don't eliminate a function call argument. */
1945 || (CALL_P (i3)
1946 && (find_reg_fusage (i3, USE, dest)
1947 || (REG_P (dest)
1948 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1949 && global_regs[REGNO (dest)])))
1950 /* Don't substitute into an incremented register. */
1951 || FIND_REG_INC_NOTE (i3, dest)
1952 || (succ && FIND_REG_INC_NOTE (succ, dest))
1953 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1954 /* Don't substitute into a non-local goto, this confuses CFG. */
1955 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1956 /* Make sure that DEST is not used after SUCC but before I3. */
1957 || (!all_adjacent
1958 && ((succ2
1959 && (reg_used_between_p (dest, succ2, i3)
1960 || reg_used_between_p (dest, succ, succ2)))
1961 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1962 /* Make sure that the value that is to be substituted for the register
1963 does not use any registers whose values alter in between. However,
1964 If the insns are adjacent, a use can't cross a set even though we
1965 think it might (this can happen for a sequence of insns each setting
1966 the same destination; last_set of that register might point to
1967 a NOTE). If INSN has a REG_EQUIV note, the register is always
1968 equivalent to the memory so the substitution is valid even if there
1969 are intervening stores. Also, don't move a volatile asm or
1970 UNSPEC_VOLATILE across any other insns. */
1971 || (! all_adjacent
1972 && (((!MEM_P (src)
1973 || ! find_reg_note (insn, REG_EQUIV, src))
1974 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1975 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1976 || GET_CODE (src) == UNSPEC_VOLATILE))
1977 /* Don't combine across a CALL_INSN, because that would possibly
1978 change whether the life span of some REGs crosses calls or not,
1979 and it is a pain to update that information.
1980 Exception: if source is a constant, moving it later can't hurt.
1981 Accept that as a special case. */
1982 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1983 return 0;
1984
1985 /* DEST must either be a REG or CC0. */
1986 if (REG_P (dest))
1987 {
1988 /* If register alignment is being enforced for multi-word items in all
1989 cases except for parameters, it is possible to have a register copy
1990 insn referencing a hard register that is not allowed to contain the
1991 mode being copied and which would not be valid as an operand of most
1992 insns. Eliminate this problem by not combining with such an insn.
1993
1994 Also, on some machines we don't want to extend the life of a hard
1995 register. */
1996
1997 if (REG_P (src)
1998 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1999 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
2000 /* Don't extend the life of a hard register unless it is
2001 user variable (if we have few registers) or it can't
2002 fit into the desired register (meaning something special
2003 is going on).
2004 Also avoid substituting a return register into I3, because
2005 reload can't handle a conflict with constraints of other
2006 inputs. */
2007 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2008 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
2009 return 0;
2010 }
2011 else if (GET_CODE (dest) != CC0)
2012 return 0;
2013
2014
2015 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2016 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2017 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2018 {
2019 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2020
2021 /* If the clobber represents an earlyclobber operand, we must not
2022 substitute an expression containing the clobbered register.
2023 As we do not analyze the constraint strings here, we have to
2024 make the conservative assumption. However, if the register is
2025 a fixed hard reg, the clobber cannot represent any operand;
2026 we leave it up to the machine description to either accept or
2027 reject use-and-clobber patterns. */
2028 if (!REG_P (reg)
2029 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2030 || !fixed_regs[REGNO (reg)])
2031 if (reg_overlap_mentioned_p (reg, src))
2032 return 0;
2033 }
2034
2035 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2036 or not), reject, unless nothing volatile comes between it and I3 */
2037
2038 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2039 {
2040 /* Make sure neither succ nor succ2 contains a volatile reference. */
2041 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2042 return 0;
2043 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2044 return 0;
2045 /* We'll check insns between INSN and I3 below. */
2046 }
2047
2048 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2049 to be an explicit register variable, and was chosen for a reason. */
2050
2051 if (GET_CODE (src) == ASM_OPERANDS
2052 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2053 return 0;
2054
2055 /* If INSN contains volatile references (specifically volatile MEMs),
2056 we cannot combine across any other volatile references.
2057 Even if INSN doesn't contain volatile references, any intervening
2058 volatile insn might affect machine state. */
2059
2060 is_volatile_p = volatile_refs_p (PATTERN (insn))
2061 ? volatile_refs_p
2062 : volatile_insn_p;
2063
2064 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2065 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2066 return 0;
2067
2068 /* If INSN contains an autoincrement or autodecrement, make sure that
2069 register is not used between there and I3, and not already used in
2070 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2071 Also insist that I3 not be a jump; if it were one
2072 and the incremented register were spilled, we would lose. */
2073
2074 if (AUTO_INC_DEC)
2075 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2076 if (REG_NOTE_KIND (link) == REG_INC
2077 && (JUMP_P (i3)
2078 || reg_used_between_p (XEXP (link, 0), insn, i3)
2079 || (pred != NULL_RTX
2080 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2081 || (pred2 != NULL_RTX
2082 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2083 || (succ != NULL_RTX
2084 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2085 || (succ2 != NULL_RTX
2086 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2087 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2088 return 0;
2089
2090 /* Don't combine an insn that follows a CC0-setting insn.
2091 An insn that uses CC0 must not be separated from the one that sets it.
2092 We do, however, allow I2 to follow a CC0-setting insn if that insn
2093 is passed as I1; in that case it will be deleted also.
2094 We also allow combining in this case if all the insns are adjacent
2095 because that would leave the two CC0 insns adjacent as well.
2096 It would be more logical to test whether CC0 occurs inside I1 or I2,
2097 but that would be much slower, and this ought to be equivalent. */
2098
2099 if (HAVE_cc0)
2100 {
2101 p = prev_nonnote_insn (insn);
2102 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2103 && ! all_adjacent)
2104 return 0;
2105 }
2106
2107 /* If we get here, we have passed all the tests and the combination is
2108 to be allowed. */
2109
2110 *pdest = dest;
2111 *psrc = src;
2112
2113 return 1;
2114 }
2115 \f
2116 /* LOC is the location within I3 that contains its pattern or the component
2117 of a PARALLEL of the pattern. We validate that it is valid for combining.
2118
2119 One problem is if I3 modifies its output, as opposed to replacing it
2120 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2121 doing so would produce an insn that is not equivalent to the original insns.
2122
2123 Consider:
2124
2125 (set (reg:DI 101) (reg:DI 100))
2126 (set (subreg:SI (reg:DI 101) 0) <foo>)
2127
2128 This is NOT equivalent to:
2129
2130 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2131 (set (reg:DI 101) (reg:DI 100))])
2132
2133 Not only does this modify 100 (in which case it might still be valid
2134 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2135
2136 We can also run into a problem if I2 sets a register that I1
2137 uses and I1 gets directly substituted into I3 (not via I2). In that
2138 case, we would be getting the wrong value of I2DEST into I3, so we
2139 must reject the combination. This case occurs when I2 and I1 both
2140 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2141 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2142 of a SET must prevent combination from occurring. The same situation
2143 can occur for I0, in which case I0_NOT_IN_SRC is set.
2144
2145 Before doing the above check, we first try to expand a field assignment
2146 into a set of logical operations.
2147
2148 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2149 we place a register that is both set and used within I3. If more than one
2150 such register is detected, we fail.
2151
2152 Return 1 if the combination is valid, zero otherwise. */
2153
2154 static int
2155 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2156 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2157 {
2158 rtx x = *loc;
2159
2160 if (GET_CODE (x) == SET)
2161 {
2162 rtx set = x ;
2163 rtx dest = SET_DEST (set);
2164 rtx src = SET_SRC (set);
2165 rtx inner_dest = dest;
2166 rtx subdest;
2167
2168 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2169 || GET_CODE (inner_dest) == SUBREG
2170 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2171 inner_dest = XEXP (inner_dest, 0);
2172
2173 /* Check for the case where I3 modifies its output, as discussed
2174 above. We don't want to prevent pseudos from being combined
2175 into the address of a MEM, so only prevent the combination if
2176 i1 or i2 set the same MEM. */
2177 if ((inner_dest != dest &&
2178 (!MEM_P (inner_dest)
2179 || rtx_equal_p (i2dest, inner_dest)
2180 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2181 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2182 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2183 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2184 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2185
2186 /* This is the same test done in can_combine_p except we can't test
2187 all_adjacent; we don't have to, since this instruction will stay
2188 in place, thus we are not considering increasing the lifetime of
2189 INNER_DEST.
2190
2191 Also, if this insn sets a function argument, combining it with
2192 something that might need a spill could clobber a previous
2193 function argument; the all_adjacent test in can_combine_p also
2194 checks this; here, we do a more specific test for this case. */
2195
2196 || (REG_P (inner_dest)
2197 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2198 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2199 GET_MODE (inner_dest))))
2200 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2201 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2202 return 0;
2203
2204 /* If DEST is used in I3, it is being killed in this insn, so
2205 record that for later. We have to consider paradoxical
2206 subregs here, since they kill the whole register, but we
2207 ignore partial subregs, STRICT_LOW_PART, etc.
2208 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2209 STACK_POINTER_REGNUM, since these are always considered to be
2210 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2211 subdest = dest;
2212 if (GET_CODE (subdest) == SUBREG
2213 && (GET_MODE_SIZE (GET_MODE (subdest))
2214 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2215 subdest = SUBREG_REG (subdest);
2216 if (pi3dest_killed
2217 && REG_P (subdest)
2218 && reg_referenced_p (subdest, PATTERN (i3))
2219 && REGNO (subdest) != FRAME_POINTER_REGNUM
2220 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2221 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2222 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2223 || (REGNO (subdest) != ARG_POINTER_REGNUM
2224 || ! fixed_regs [REGNO (subdest)]))
2225 && REGNO (subdest) != STACK_POINTER_REGNUM)
2226 {
2227 if (*pi3dest_killed)
2228 return 0;
2229
2230 *pi3dest_killed = subdest;
2231 }
2232 }
2233
2234 else if (GET_CODE (x) == PARALLEL)
2235 {
2236 int i;
2237
2238 for (i = 0; i < XVECLEN (x, 0); i++)
2239 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2240 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2241 return 0;
2242 }
2243
2244 return 1;
2245 }
2246 \f
2247 /* Return 1 if X is an arithmetic expression that contains a multiplication
2248 and division. We don't count multiplications by powers of two here. */
2249
2250 static int
2251 contains_muldiv (rtx x)
2252 {
2253 switch (GET_CODE (x))
2254 {
2255 case MOD: case DIV: case UMOD: case UDIV:
2256 return 1;
2257
2258 case MULT:
2259 return ! (CONST_INT_P (XEXP (x, 1))
2260 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2261 default:
2262 if (BINARY_P (x))
2263 return contains_muldiv (XEXP (x, 0))
2264 || contains_muldiv (XEXP (x, 1));
2265
2266 if (UNARY_P (x))
2267 return contains_muldiv (XEXP (x, 0));
2268
2269 return 0;
2270 }
2271 }
2272 \f
2273 /* Determine whether INSN can be used in a combination. Return nonzero if
2274 not. This is used in try_combine to detect early some cases where we
2275 can't perform combinations. */
2276
2277 static int
2278 cant_combine_insn_p (rtx_insn *insn)
2279 {
2280 rtx set;
2281 rtx src, dest;
2282
2283 /* If this isn't really an insn, we can't do anything.
2284 This can occur when flow deletes an insn that it has merged into an
2285 auto-increment address. */
2286 if (!NONDEBUG_INSN_P (insn))
2287 return 1;
2288
2289 /* Never combine loads and stores involving hard regs that are likely
2290 to be spilled. The register allocator can usually handle such
2291 reg-reg moves by tying. If we allow the combiner to make
2292 substitutions of likely-spilled regs, reload might die.
2293 As an exception, we allow combinations involving fixed regs; these are
2294 not available to the register allocator so there's no risk involved. */
2295
2296 set = single_set (insn);
2297 if (! set)
2298 return 0;
2299 src = SET_SRC (set);
2300 dest = SET_DEST (set);
2301 if (GET_CODE (src) == SUBREG)
2302 src = SUBREG_REG (src);
2303 if (GET_CODE (dest) == SUBREG)
2304 dest = SUBREG_REG (dest);
2305 if (REG_P (src) && REG_P (dest)
2306 && ((HARD_REGISTER_P (src)
2307 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2308 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2309 || (HARD_REGISTER_P (dest)
2310 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2311 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2312 return 1;
2313
2314 return 0;
2315 }
2316
2317 struct likely_spilled_retval_info
2318 {
2319 unsigned regno, nregs;
2320 unsigned mask;
2321 };
2322
2323 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2324 hard registers that are known to be written to / clobbered in full. */
2325 static void
2326 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2327 {
2328 struct likely_spilled_retval_info *const info =
2329 (struct likely_spilled_retval_info *) data;
2330 unsigned regno, nregs;
2331 unsigned new_mask;
2332
2333 if (!REG_P (XEXP (set, 0)))
2334 return;
2335 regno = REGNO (x);
2336 if (regno >= info->regno + info->nregs)
2337 return;
2338 nregs = REG_NREGS (x);
2339 if (regno + nregs <= info->regno)
2340 return;
2341 new_mask = (2U << (nregs - 1)) - 1;
2342 if (regno < info->regno)
2343 new_mask >>= info->regno - regno;
2344 else
2345 new_mask <<= regno - info->regno;
2346 info->mask &= ~new_mask;
2347 }
2348
2349 /* Return nonzero iff part of the return value is live during INSN, and
2350 it is likely spilled. This can happen when more than one insn is needed
2351 to copy the return value, e.g. when we consider to combine into the
2352 second copy insn for a complex value. */
2353
2354 static int
2355 likely_spilled_retval_p (rtx_insn *insn)
2356 {
2357 rtx_insn *use = BB_END (this_basic_block);
2358 rtx reg;
2359 rtx_insn *p;
2360 unsigned regno, nregs;
2361 /* We assume here that no machine mode needs more than
2362 32 hard registers when the value overlaps with a register
2363 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2364 unsigned mask;
2365 struct likely_spilled_retval_info info;
2366
2367 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2368 return 0;
2369 reg = XEXP (PATTERN (use), 0);
2370 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2371 return 0;
2372 regno = REGNO (reg);
2373 nregs = REG_NREGS (reg);
2374 if (nregs == 1)
2375 return 0;
2376 mask = (2U << (nregs - 1)) - 1;
2377
2378 /* Disregard parts of the return value that are set later. */
2379 info.regno = regno;
2380 info.nregs = nregs;
2381 info.mask = mask;
2382 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2383 if (INSN_P (p))
2384 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2385 mask = info.mask;
2386
2387 /* Check if any of the (probably) live return value registers is
2388 likely spilled. */
2389 nregs --;
2390 do
2391 {
2392 if ((mask & 1 << nregs)
2393 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2394 return 1;
2395 } while (nregs--);
2396 return 0;
2397 }
2398
2399 /* Adjust INSN after we made a change to its destination.
2400
2401 Changing the destination can invalidate notes that say something about
2402 the results of the insn and a LOG_LINK pointing to the insn. */
2403
2404 static void
2405 adjust_for_new_dest (rtx_insn *insn)
2406 {
2407 /* For notes, be conservative and simply remove them. */
2408 remove_reg_equal_equiv_notes (insn);
2409
2410 /* The new insn will have a destination that was previously the destination
2411 of an insn just above it. Call distribute_links to make a LOG_LINK from
2412 the next use of that destination. */
2413
2414 rtx set = single_set (insn);
2415 gcc_assert (set);
2416
2417 rtx reg = SET_DEST (set);
2418
2419 while (GET_CODE (reg) == ZERO_EXTRACT
2420 || GET_CODE (reg) == STRICT_LOW_PART
2421 || GET_CODE (reg) == SUBREG)
2422 reg = XEXP (reg, 0);
2423 gcc_assert (REG_P (reg));
2424
2425 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2426
2427 df_insn_rescan (insn);
2428 }
2429
2430 /* Return TRUE if combine can reuse reg X in mode MODE.
2431 ADDED_SETS is nonzero if the original set is still required. */
2432 static bool
2433 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2434 {
2435 unsigned int regno;
2436
2437 if (!REG_P (x))
2438 return false;
2439
2440 regno = REGNO (x);
2441 /* Allow hard registers if the new mode is legal, and occupies no more
2442 registers than the old mode. */
2443 if (regno < FIRST_PSEUDO_REGISTER)
2444 return (HARD_REGNO_MODE_OK (regno, mode)
2445 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2446
2447 /* Or a pseudo that is only used once. */
2448 return (regno < reg_n_sets_max
2449 && REG_N_SETS (regno) == 1
2450 && !added_sets
2451 && !REG_USERVAR_P (x));
2452 }
2453
2454
2455 /* Check whether X, the destination of a set, refers to part of
2456 the register specified by REG. */
2457
2458 static bool
2459 reg_subword_p (rtx x, rtx reg)
2460 {
2461 /* Check that reg is an integer mode register. */
2462 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2463 return false;
2464
2465 if (GET_CODE (x) == STRICT_LOW_PART
2466 || GET_CODE (x) == ZERO_EXTRACT)
2467 x = XEXP (x, 0);
2468
2469 return GET_CODE (x) == SUBREG
2470 && SUBREG_REG (x) == reg
2471 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2472 }
2473
2474 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2475 Note that the INSN should be deleted *after* removing dead edges, so
2476 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2477 but not for a (set (pc) (label_ref FOO)). */
2478
2479 static void
2480 update_cfg_for_uncondjump (rtx_insn *insn)
2481 {
2482 basic_block bb = BLOCK_FOR_INSN (insn);
2483 gcc_assert (BB_END (bb) == insn);
2484
2485 purge_dead_edges (bb);
2486
2487 delete_insn (insn);
2488 if (EDGE_COUNT (bb->succs) == 1)
2489 {
2490 rtx_insn *insn;
2491
2492 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2493
2494 /* Remove barriers from the footer if there are any. */
2495 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2496 if (BARRIER_P (insn))
2497 {
2498 if (PREV_INSN (insn))
2499 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2500 else
2501 BB_FOOTER (bb) = NEXT_INSN (insn);
2502 if (NEXT_INSN (insn))
2503 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2504 }
2505 else if (LABEL_P (insn))
2506 break;
2507 }
2508 }
2509
2510 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2511 by an arbitrary number of CLOBBERs. */
2512 static bool
2513 is_parallel_of_n_reg_sets (rtx pat, int n)
2514 {
2515 if (GET_CODE (pat) != PARALLEL)
2516 return false;
2517
2518 int len = XVECLEN (pat, 0);
2519 if (len < n)
2520 return false;
2521
2522 int i;
2523 for (i = 0; i < n; i++)
2524 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2525 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2526 return false;
2527 for ( ; i < len; i++)
2528 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2529 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2530 return false;
2531
2532 return true;
2533 }
2534
2535 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2536 CLOBBERs), can be split into individual SETs in that order, without
2537 changing semantics. */
2538 static bool
2539 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2540 {
2541 if (!insn_nothrow_p (insn))
2542 return false;
2543
2544 rtx pat = PATTERN (insn);
2545
2546 int i, j;
2547 for (i = 0; i < n; i++)
2548 {
2549 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2550 return false;
2551
2552 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2553
2554 for (j = i + 1; j < n; j++)
2555 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2556 return false;
2557 }
2558
2559 return true;
2560 }
2561
2562 /* Try to combine the insns I0, I1 and I2 into I3.
2563 Here I0, I1 and I2 appear earlier than I3.
2564 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2565 I3.
2566
2567 If we are combining more than two insns and the resulting insn is not
2568 recognized, try splitting it into two insns. If that happens, I2 and I3
2569 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2570 Otherwise, I0, I1 and I2 are pseudo-deleted.
2571
2572 Return 0 if the combination does not work. Then nothing is changed.
2573 If we did the combination, return the insn at which combine should
2574 resume scanning.
2575
2576 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2577 new direct jump instruction.
2578
2579 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2580 been I3 passed to an earlier try_combine within the same basic
2581 block. */
2582
2583 static rtx_insn *
2584 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2585 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2586 {
2587 /* New patterns for I3 and I2, respectively. */
2588 rtx newpat, newi2pat = 0;
2589 rtvec newpat_vec_with_clobbers = 0;
2590 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2591 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2592 dead. */
2593 int added_sets_0, added_sets_1, added_sets_2;
2594 /* Total number of SETs to put into I3. */
2595 int total_sets;
2596 /* Nonzero if I2's or I1's body now appears in I3. */
2597 int i2_is_used = 0, i1_is_used = 0;
2598 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2599 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2600 /* Contains I3 if the destination of I3 is used in its source, which means
2601 that the old life of I3 is being killed. If that usage is placed into
2602 I2 and not in I3, a REG_DEAD note must be made. */
2603 rtx i3dest_killed = 0;
2604 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2605 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2606 /* Copy of SET_SRC of I1 and I0, if needed. */
2607 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2608 /* Set if I2DEST was reused as a scratch register. */
2609 bool i2scratch = false;
2610 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2611 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2612 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2613 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2614 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2615 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2616 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2617 /* Notes that must be added to REG_NOTES in I3 and I2. */
2618 rtx new_i3_notes, new_i2_notes;
2619 /* Notes that we substituted I3 into I2 instead of the normal case. */
2620 int i3_subst_into_i2 = 0;
2621 /* Notes that I1, I2 or I3 is a MULT operation. */
2622 int have_mult = 0;
2623 int swap_i2i3 = 0;
2624 int changed_i3_dest = 0;
2625
2626 int maxreg;
2627 rtx_insn *temp_insn;
2628 rtx temp_expr;
2629 struct insn_link *link;
2630 rtx other_pat = 0;
2631 rtx new_other_notes;
2632 int i;
2633
2634 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2635 never be). */
2636 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2637 return 0;
2638
2639 /* Only try four-insn combinations when there's high likelihood of
2640 success. Look for simple insns, such as loads of constants or
2641 binary operations involving a constant. */
2642 if (i0)
2643 {
2644 int i;
2645 int ngood = 0;
2646 int nshift = 0;
2647 rtx set0, set3;
2648
2649 if (!flag_expensive_optimizations)
2650 return 0;
2651
2652 for (i = 0; i < 4; i++)
2653 {
2654 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2655 rtx set = single_set (insn);
2656 rtx src;
2657 if (!set)
2658 continue;
2659 src = SET_SRC (set);
2660 if (CONSTANT_P (src))
2661 {
2662 ngood += 2;
2663 break;
2664 }
2665 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2666 ngood++;
2667 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2668 || GET_CODE (src) == LSHIFTRT)
2669 nshift++;
2670 }
2671
2672 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2673 are likely manipulating its value. Ideally we'll be able to combine
2674 all four insns into a bitfield insertion of some kind.
2675
2676 Note the source in I0 might be inside a sign/zero extension and the
2677 memory modes in I0 and I3 might be different. So extract the address
2678 from the destination of I3 and search for it in the source of I0.
2679
2680 In the event that there's a match but the source/dest do not actually
2681 refer to the same memory, the worst that happens is we try some
2682 combinations that we wouldn't have otherwise. */
2683 if ((set0 = single_set (i0))
2684 /* Ensure the source of SET0 is a MEM, possibly buried inside
2685 an extension. */
2686 && (GET_CODE (SET_SRC (set0)) == MEM
2687 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2688 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2689 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2690 && (set3 = single_set (i3))
2691 /* Ensure the destination of SET3 is a MEM. */
2692 && GET_CODE (SET_DEST (set3)) == MEM
2693 /* Would it be better to extract the base address for the MEM
2694 in SET3 and look for that? I don't have cases where it matters
2695 but I could envision such cases. */
2696 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2697 ngood += 2;
2698
2699 if (ngood < 2 && nshift < 2)
2700 return 0;
2701 }
2702
2703 /* Exit early if one of the insns involved can't be used for
2704 combinations. */
2705 if (CALL_P (i2)
2706 || (i1 && CALL_P (i1))
2707 || (i0 && CALL_P (i0))
2708 || cant_combine_insn_p (i3)
2709 || cant_combine_insn_p (i2)
2710 || (i1 && cant_combine_insn_p (i1))
2711 || (i0 && cant_combine_insn_p (i0))
2712 || likely_spilled_retval_p (i3))
2713 return 0;
2714
2715 combine_attempts++;
2716 undobuf.other_insn = 0;
2717
2718 /* Reset the hard register usage information. */
2719 CLEAR_HARD_REG_SET (newpat_used_regs);
2720
2721 if (dump_file && (dump_flags & TDF_DETAILS))
2722 {
2723 if (i0)
2724 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2725 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2726 else if (i1)
2727 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2728 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2729 else
2730 fprintf (dump_file, "\nTrying %d -> %d:\n",
2731 INSN_UID (i2), INSN_UID (i3));
2732 }
2733
2734 /* If multiple insns feed into one of I2 or I3, they can be in any
2735 order. To simplify the code below, reorder them in sequence. */
2736 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2737 std::swap (i0, i2);
2738 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2739 std::swap (i0, i1);
2740 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2741 std::swap (i1, i2);
2742
2743 added_links_insn = 0;
2744
2745 /* First check for one important special case that the code below will
2746 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2747 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2748 we may be able to replace that destination with the destination of I3.
2749 This occurs in the common code where we compute both a quotient and
2750 remainder into a structure, in which case we want to do the computation
2751 directly into the structure to avoid register-register copies.
2752
2753 Note that this case handles both multiple sets in I2 and also cases
2754 where I2 has a number of CLOBBERs inside the PARALLEL.
2755
2756 We make very conservative checks below and only try to handle the
2757 most common cases of this. For example, we only handle the case
2758 where I2 and I3 are adjacent to avoid making difficult register
2759 usage tests. */
2760
2761 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2762 && REG_P (SET_SRC (PATTERN (i3)))
2763 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2764 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2765 && GET_CODE (PATTERN (i2)) == PARALLEL
2766 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2767 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2768 below would need to check what is inside (and reg_overlap_mentioned_p
2769 doesn't support those codes anyway). Don't allow those destinations;
2770 the resulting insn isn't likely to be recognized anyway. */
2771 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2772 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2773 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2774 SET_DEST (PATTERN (i3)))
2775 && next_active_insn (i2) == i3)
2776 {
2777 rtx p2 = PATTERN (i2);
2778
2779 /* Make sure that the destination of I3,
2780 which we are going to substitute into one output of I2,
2781 is not used within another output of I2. We must avoid making this:
2782 (parallel [(set (mem (reg 69)) ...)
2783 (set (reg 69) ...)])
2784 which is not well-defined as to order of actions.
2785 (Besides, reload can't handle output reloads for this.)
2786
2787 The problem can also happen if the dest of I3 is a memory ref,
2788 if another dest in I2 is an indirect memory ref.
2789
2790 Neither can this PARALLEL be an asm. We do not allow combining
2791 that usually (see can_combine_p), so do not here either. */
2792 bool ok = true;
2793 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2794 {
2795 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2796 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2797 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2798 SET_DEST (XVECEXP (p2, 0, i))))
2799 ok = false;
2800 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2801 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2802 ok = false;
2803 }
2804
2805 if (ok)
2806 for (i = 0; i < XVECLEN (p2, 0); i++)
2807 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2808 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2809 {
2810 combine_merges++;
2811
2812 subst_insn = i3;
2813 subst_low_luid = DF_INSN_LUID (i2);
2814
2815 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2816 i2src = SET_SRC (XVECEXP (p2, 0, i));
2817 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2818 i2dest_killed = dead_or_set_p (i2, i2dest);
2819
2820 /* Replace the dest in I2 with our dest and make the resulting
2821 insn the new pattern for I3. Then skip to where we validate
2822 the pattern. Everything was set up above. */
2823 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2824 newpat = p2;
2825 i3_subst_into_i2 = 1;
2826 goto validate_replacement;
2827 }
2828 }
2829
2830 /* If I2 is setting a pseudo to a constant and I3 is setting some
2831 sub-part of it to another constant, merge them by making a new
2832 constant. */
2833 if (i1 == 0
2834 && (temp_expr = single_set (i2)) != 0
2835 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2836 && GET_CODE (PATTERN (i3)) == SET
2837 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2838 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2839 {
2840 rtx dest = SET_DEST (PATTERN (i3));
2841 int offset = -1;
2842 int width = 0;
2843
2844 if (GET_CODE (dest) == ZERO_EXTRACT)
2845 {
2846 if (CONST_INT_P (XEXP (dest, 1))
2847 && CONST_INT_P (XEXP (dest, 2)))
2848 {
2849 width = INTVAL (XEXP (dest, 1));
2850 offset = INTVAL (XEXP (dest, 2));
2851 dest = XEXP (dest, 0);
2852 if (BITS_BIG_ENDIAN)
2853 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2854 }
2855 }
2856 else
2857 {
2858 if (GET_CODE (dest) == STRICT_LOW_PART)
2859 dest = XEXP (dest, 0);
2860 width = GET_MODE_PRECISION (GET_MODE (dest));
2861 offset = 0;
2862 }
2863
2864 if (offset >= 0)
2865 {
2866 /* If this is the low part, we're done. */
2867 if (subreg_lowpart_p (dest))
2868 ;
2869 /* Handle the case where inner is twice the size of outer. */
2870 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2871 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2872 offset += GET_MODE_PRECISION (GET_MODE (dest));
2873 /* Otherwise give up for now. */
2874 else
2875 offset = -1;
2876 }
2877
2878 if (offset >= 0)
2879 {
2880 rtx inner = SET_SRC (PATTERN (i3));
2881 rtx outer = SET_SRC (temp_expr);
2882
2883 wide_int o
2884 = wi::insert (rtx_mode_t (outer, GET_MODE (SET_DEST (temp_expr))),
2885 rtx_mode_t (inner, GET_MODE (dest)),
2886 offset, width);
2887
2888 combine_merges++;
2889 subst_insn = i3;
2890 subst_low_luid = DF_INSN_LUID (i2);
2891 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2892 i2dest = SET_DEST (temp_expr);
2893 i2dest_killed = dead_or_set_p (i2, i2dest);
2894
2895 /* Replace the source in I2 with the new constant and make the
2896 resulting insn the new pattern for I3. Then skip to where we
2897 validate the pattern. Everything was set up above. */
2898 SUBST (SET_SRC (temp_expr),
2899 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2900
2901 newpat = PATTERN (i2);
2902
2903 /* The dest of I3 has been replaced with the dest of I2. */
2904 changed_i3_dest = 1;
2905 goto validate_replacement;
2906 }
2907 }
2908
2909 /* If we have no I1 and I2 looks like:
2910 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2911 (set Y OP)])
2912 make up a dummy I1 that is
2913 (set Y OP)
2914 and change I2 to be
2915 (set (reg:CC X) (compare:CC Y (const_int 0)))
2916
2917 (We can ignore any trailing CLOBBERs.)
2918
2919 This undoes a previous combination and allows us to match a branch-and-
2920 decrement insn. */
2921
2922 if (!HAVE_cc0 && i1 == 0
2923 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2924 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2925 == MODE_CC)
2926 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2927 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2928 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2929 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2930 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2931 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2932 {
2933 /* We make I1 with the same INSN_UID as I2. This gives it
2934 the same DF_INSN_LUID for value tracking. Our fake I1 will
2935 never appear in the insn stream so giving it the same INSN_UID
2936 as I2 will not cause a problem. */
2937
2938 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2939 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2940 -1, NULL_RTX);
2941 INSN_UID (i1) = INSN_UID (i2);
2942
2943 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2944 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2945 SET_DEST (PATTERN (i1)));
2946 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2947 SUBST_LINK (LOG_LINKS (i2),
2948 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2949 }
2950
2951 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2952 make those two SETs separate I1 and I2 insns, and make an I0 that is
2953 the original I1. */
2954 if (!HAVE_cc0 && i0 == 0
2955 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2956 && can_split_parallel_of_n_reg_sets (i2, 2)
2957 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2958 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2959 {
2960 /* If there is no I1, there is no I0 either. */
2961 i0 = i1;
2962
2963 /* We make I1 with the same INSN_UID as I2. This gives it
2964 the same DF_INSN_LUID for value tracking. Our fake I1 will
2965 never appear in the insn stream so giving it the same INSN_UID
2966 as I2 will not cause a problem. */
2967
2968 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2969 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2970 -1, NULL_RTX);
2971 INSN_UID (i1) = INSN_UID (i2);
2972
2973 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2974 }
2975
2976 /* Verify that I2 and I1 are valid for combining. */
2977 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2978 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2979 &i1dest, &i1src))
2980 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2981 &i0dest, &i0src)))
2982 {
2983 undo_all ();
2984 return 0;
2985 }
2986
2987 /* Record whether I2DEST is used in I2SRC and similarly for the other
2988 cases. Knowing this will help in register status updating below. */
2989 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2990 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2991 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2992 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2993 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2994 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2995 i2dest_killed = dead_or_set_p (i2, i2dest);
2996 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2997 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2998
2999 /* For the earlier insns, determine which of the subsequent ones they
3000 feed. */
3001 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3002 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3003 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3004 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3005 && reg_overlap_mentioned_p (i0dest, i2src))));
3006
3007 /* Ensure that I3's pattern can be the destination of combines. */
3008 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3009 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3010 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3011 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3012 &i3dest_killed))
3013 {
3014 undo_all ();
3015 return 0;
3016 }
3017
3018 /* See if any of the insns is a MULT operation. Unless one is, we will
3019 reject a combination that is, since it must be slower. Be conservative
3020 here. */
3021 if (GET_CODE (i2src) == MULT
3022 || (i1 != 0 && GET_CODE (i1src) == MULT)
3023 || (i0 != 0 && GET_CODE (i0src) == MULT)
3024 || (GET_CODE (PATTERN (i3)) == SET
3025 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3026 have_mult = 1;
3027
3028 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3029 We used to do this EXCEPT in one case: I3 has a post-inc in an
3030 output operand. However, that exception can give rise to insns like
3031 mov r3,(r3)+
3032 which is a famous insn on the PDP-11 where the value of r3 used as the
3033 source was model-dependent. Avoid this sort of thing. */
3034
3035 #if 0
3036 if (!(GET_CODE (PATTERN (i3)) == SET
3037 && REG_P (SET_SRC (PATTERN (i3)))
3038 && MEM_P (SET_DEST (PATTERN (i3)))
3039 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3040 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3041 /* It's not the exception. */
3042 #endif
3043 if (AUTO_INC_DEC)
3044 {
3045 rtx link;
3046 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3047 if (REG_NOTE_KIND (link) == REG_INC
3048 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3049 || (i1 != 0
3050 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3051 {
3052 undo_all ();
3053 return 0;
3054 }
3055 }
3056
3057 /* See if the SETs in I1 or I2 need to be kept around in the merged
3058 instruction: whenever the value set there is still needed past I3.
3059 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3060
3061 For the SET in I1, we have two cases: if I1 and I2 independently feed
3062 into I3, the set in I1 needs to be kept around unless I1DEST dies
3063 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3064 in I1 needs to be kept around unless I1DEST dies or is set in either
3065 I2 or I3. The same considerations apply to I0. */
3066
3067 added_sets_2 = !dead_or_set_p (i3, i2dest);
3068
3069 if (i1)
3070 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3071 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3072 else
3073 added_sets_1 = 0;
3074
3075 if (i0)
3076 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3077 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3078 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3079 && dead_or_set_p (i2, i0dest)));
3080 else
3081 added_sets_0 = 0;
3082
3083 /* We are about to copy insns for the case where they need to be kept
3084 around. Check that they can be copied in the merged instruction. */
3085
3086 if (targetm.cannot_copy_insn_p
3087 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3088 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3089 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3090 {
3091 undo_all ();
3092 return 0;
3093 }
3094
3095 /* If the set in I2 needs to be kept around, we must make a copy of
3096 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3097 PATTERN (I2), we are only substituting for the original I1DEST, not into
3098 an already-substituted copy. This also prevents making self-referential
3099 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3100 I2DEST. */
3101
3102 if (added_sets_2)
3103 {
3104 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3105 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3106 else
3107 i2pat = copy_rtx (PATTERN (i2));
3108 }
3109
3110 if (added_sets_1)
3111 {
3112 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3113 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3114 else
3115 i1pat = copy_rtx (PATTERN (i1));
3116 }
3117
3118 if (added_sets_0)
3119 {
3120 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3121 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3122 else
3123 i0pat = copy_rtx (PATTERN (i0));
3124 }
3125
3126 combine_merges++;
3127
3128 /* Substitute in the latest insn for the regs set by the earlier ones. */
3129
3130 maxreg = max_reg_num ();
3131
3132 subst_insn = i3;
3133
3134 /* Many machines that don't use CC0 have insns that can both perform an
3135 arithmetic operation and set the condition code. These operations will
3136 be represented as a PARALLEL with the first element of the vector
3137 being a COMPARE of an arithmetic operation with the constant zero.
3138 The second element of the vector will set some pseudo to the result
3139 of the same arithmetic operation. If we simplify the COMPARE, we won't
3140 match such a pattern and so will generate an extra insn. Here we test
3141 for this case, where both the comparison and the operation result are
3142 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3143 I2SRC. Later we will make the PARALLEL that contains I2. */
3144
3145 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3146 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3147 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3148 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3149 {
3150 rtx newpat_dest;
3151 rtx *cc_use_loc = NULL;
3152 rtx_insn *cc_use_insn = NULL;
3153 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3154 machine_mode compare_mode, orig_compare_mode;
3155 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3156
3157 newpat = PATTERN (i3);
3158 newpat_dest = SET_DEST (newpat);
3159 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3160
3161 if (undobuf.other_insn == 0
3162 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3163 &cc_use_insn)))
3164 {
3165 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3166 compare_code = simplify_compare_const (compare_code,
3167 GET_MODE (i2dest), op0, &op1);
3168 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3169 }
3170
3171 /* Do the rest only if op1 is const0_rtx, which may be the
3172 result of simplification. */
3173 if (op1 == const0_rtx)
3174 {
3175 /* If a single use of the CC is found, prepare to modify it
3176 when SELECT_CC_MODE returns a new CC-class mode, or when
3177 the above simplify_compare_const() returned a new comparison
3178 operator. undobuf.other_insn is assigned the CC use insn
3179 when modifying it. */
3180 if (cc_use_loc)
3181 {
3182 #ifdef SELECT_CC_MODE
3183 machine_mode new_mode
3184 = SELECT_CC_MODE (compare_code, op0, op1);
3185 if (new_mode != orig_compare_mode
3186 && can_change_dest_mode (SET_DEST (newpat),
3187 added_sets_2, new_mode))
3188 {
3189 unsigned int regno = REGNO (newpat_dest);
3190 compare_mode = new_mode;
3191 if (regno < FIRST_PSEUDO_REGISTER)
3192 newpat_dest = gen_rtx_REG (compare_mode, regno);
3193 else
3194 {
3195 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3196 newpat_dest = regno_reg_rtx[regno];
3197 }
3198 }
3199 #endif
3200 /* Cases for modifying the CC-using comparison. */
3201 if (compare_code != orig_compare_code
3202 /* ??? Do we need to verify the zero rtx? */
3203 && XEXP (*cc_use_loc, 1) == const0_rtx)
3204 {
3205 /* Replace cc_use_loc with entire new RTX. */
3206 SUBST (*cc_use_loc,
3207 gen_rtx_fmt_ee (compare_code, compare_mode,
3208 newpat_dest, const0_rtx));
3209 undobuf.other_insn = cc_use_insn;
3210 }
3211 else if (compare_mode != orig_compare_mode)
3212 {
3213 /* Just replace the CC reg with a new mode. */
3214 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3215 undobuf.other_insn = cc_use_insn;
3216 }
3217 }
3218
3219 /* Now we modify the current newpat:
3220 First, SET_DEST(newpat) is updated if the CC mode has been
3221 altered. For targets without SELECT_CC_MODE, this should be
3222 optimized away. */
3223 if (compare_mode != orig_compare_mode)
3224 SUBST (SET_DEST (newpat), newpat_dest);
3225 /* This is always done to propagate i2src into newpat. */
3226 SUBST (SET_SRC (newpat),
3227 gen_rtx_COMPARE (compare_mode, op0, op1));
3228 /* Create new version of i2pat if needed; the below PARALLEL
3229 creation needs this to work correctly. */
3230 if (! rtx_equal_p (i2src, op0))
3231 i2pat = gen_rtx_SET (i2dest, op0);
3232 i2_is_used = 1;
3233 }
3234 }
3235
3236 if (i2_is_used == 0)
3237 {
3238 /* It is possible that the source of I2 or I1 may be performing
3239 an unneeded operation, such as a ZERO_EXTEND of something
3240 that is known to have the high part zero. Handle that case
3241 by letting subst look at the inner insns.
3242
3243 Another way to do this would be to have a function that tries
3244 to simplify a single insn instead of merging two or more
3245 insns. We don't do this because of the potential of infinite
3246 loops and because of the potential extra memory required.
3247 However, doing it the way we are is a bit of a kludge and
3248 doesn't catch all cases.
3249
3250 But only do this if -fexpensive-optimizations since it slows
3251 things down and doesn't usually win.
3252
3253 This is not done in the COMPARE case above because the
3254 unmodified I2PAT is used in the PARALLEL and so a pattern
3255 with a modified I2SRC would not match. */
3256
3257 if (flag_expensive_optimizations)
3258 {
3259 /* Pass pc_rtx so no substitutions are done, just
3260 simplifications. */
3261 if (i1)
3262 {
3263 subst_low_luid = DF_INSN_LUID (i1);
3264 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3265 }
3266
3267 subst_low_luid = DF_INSN_LUID (i2);
3268 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3269 }
3270
3271 n_occurrences = 0; /* `subst' counts here */
3272 subst_low_luid = DF_INSN_LUID (i2);
3273
3274 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3275 copy of I2SRC each time we substitute it, in order to avoid creating
3276 self-referential RTL when we will be substituting I1SRC for I1DEST
3277 later. Likewise if I0 feeds into I2, either directly or indirectly
3278 through I1, and I0DEST is in I0SRC. */
3279 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3280 (i1_feeds_i2_n && i1dest_in_i1src)
3281 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3282 && i0dest_in_i0src));
3283 substed_i2 = 1;
3284
3285 /* Record whether I2's body now appears within I3's body. */
3286 i2_is_used = n_occurrences;
3287 }
3288
3289 /* If we already got a failure, don't try to do more. Otherwise, try to
3290 substitute I1 if we have it. */
3291
3292 if (i1 && GET_CODE (newpat) != CLOBBER)
3293 {
3294 /* Check that an autoincrement side-effect on I1 has not been lost.
3295 This happens if I1DEST is mentioned in I2 and dies there, and
3296 has disappeared from the new pattern. */
3297 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3298 && i1_feeds_i2_n
3299 && dead_or_set_p (i2, i1dest)
3300 && !reg_overlap_mentioned_p (i1dest, newpat))
3301 /* Before we can do this substitution, we must redo the test done
3302 above (see detailed comments there) that ensures I1DEST isn't
3303 mentioned in any SETs in NEWPAT that are field assignments. */
3304 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3305 0, 0, 0))
3306 {
3307 undo_all ();
3308 return 0;
3309 }
3310
3311 n_occurrences = 0;
3312 subst_low_luid = DF_INSN_LUID (i1);
3313
3314 /* If the following substitution will modify I1SRC, make a copy of it
3315 for the case where it is substituted for I1DEST in I2PAT later. */
3316 if (added_sets_2 && i1_feeds_i2_n)
3317 i1src_copy = copy_rtx (i1src);
3318
3319 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3320 copy of I1SRC each time we substitute it, in order to avoid creating
3321 self-referential RTL when we will be substituting I0SRC for I0DEST
3322 later. */
3323 newpat = subst (newpat, i1dest, i1src, 0, 0,
3324 i0_feeds_i1_n && i0dest_in_i0src);
3325 substed_i1 = 1;
3326
3327 /* Record whether I1's body now appears within I3's body. */
3328 i1_is_used = n_occurrences;
3329 }
3330
3331 /* Likewise for I0 if we have it. */
3332
3333 if (i0 && GET_CODE (newpat) != CLOBBER)
3334 {
3335 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3336 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3337 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3338 && !reg_overlap_mentioned_p (i0dest, newpat))
3339 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3340 0, 0, 0))
3341 {
3342 undo_all ();
3343 return 0;
3344 }
3345
3346 /* If the following substitution will modify I0SRC, make a copy of it
3347 for the case where it is substituted for I0DEST in I1PAT later. */
3348 if (added_sets_1 && i0_feeds_i1_n)
3349 i0src_copy = copy_rtx (i0src);
3350 /* And a copy for I0DEST in I2PAT substitution. */
3351 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3352 || (i0_feeds_i2_n)))
3353 i0src_copy2 = copy_rtx (i0src);
3354
3355 n_occurrences = 0;
3356 subst_low_luid = DF_INSN_LUID (i0);
3357 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3358 substed_i0 = 1;
3359 }
3360
3361 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3362 to count all the ways that I2SRC and I1SRC can be used. */
3363 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3364 && i2_is_used + added_sets_2 > 1)
3365 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3366 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3367 > 1))
3368 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3369 && (n_occurrences + added_sets_0
3370 + (added_sets_1 && i0_feeds_i1_n)
3371 + (added_sets_2 && i0_feeds_i2_n)
3372 > 1))
3373 /* Fail if we tried to make a new register. */
3374 || max_reg_num () != maxreg
3375 /* Fail if we couldn't do something and have a CLOBBER. */
3376 || GET_CODE (newpat) == CLOBBER
3377 /* Fail if this new pattern is a MULT and we didn't have one before
3378 at the outer level. */
3379 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3380 && ! have_mult))
3381 {
3382 undo_all ();
3383 return 0;
3384 }
3385
3386 /* If the actions of the earlier insns must be kept
3387 in addition to substituting them into the latest one,
3388 we must make a new PARALLEL for the latest insn
3389 to hold additional the SETs. */
3390
3391 if (added_sets_0 || added_sets_1 || added_sets_2)
3392 {
3393 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3394 combine_extras++;
3395
3396 if (GET_CODE (newpat) == PARALLEL)
3397 {
3398 rtvec old = XVEC (newpat, 0);
3399 total_sets = XVECLEN (newpat, 0) + extra_sets;
3400 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3401 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3402 sizeof (old->elem[0]) * old->num_elem);
3403 }
3404 else
3405 {
3406 rtx old = newpat;
3407 total_sets = 1 + extra_sets;
3408 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3409 XVECEXP (newpat, 0, 0) = old;
3410 }
3411
3412 if (added_sets_0)
3413 XVECEXP (newpat, 0, --total_sets) = i0pat;
3414
3415 if (added_sets_1)
3416 {
3417 rtx t = i1pat;
3418 if (i0_feeds_i1_n)
3419 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3420
3421 XVECEXP (newpat, 0, --total_sets) = t;
3422 }
3423 if (added_sets_2)
3424 {
3425 rtx t = i2pat;
3426 if (i1_feeds_i2_n)
3427 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3428 i0_feeds_i1_n && i0dest_in_i0src);
3429 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3430 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3431
3432 XVECEXP (newpat, 0, --total_sets) = t;
3433 }
3434 }
3435
3436 validate_replacement:
3437
3438 /* Note which hard regs this insn has as inputs. */
3439 mark_used_regs_combine (newpat);
3440
3441 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3442 consider splitting this pattern, we might need these clobbers. */
3443 if (i1 && GET_CODE (newpat) == PARALLEL
3444 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3445 {
3446 int len = XVECLEN (newpat, 0);
3447
3448 newpat_vec_with_clobbers = rtvec_alloc (len);
3449 for (i = 0; i < len; i++)
3450 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3451 }
3452
3453 /* We have recognized nothing yet. */
3454 insn_code_number = -1;
3455
3456 /* See if this is a PARALLEL of two SETs where one SET's destination is
3457 a register that is unused and this isn't marked as an instruction that
3458 might trap in an EH region. In that case, we just need the other SET.
3459 We prefer this over the PARALLEL.
3460
3461 This can occur when simplifying a divmod insn. We *must* test for this
3462 case here because the code below that splits two independent SETs doesn't
3463 handle this case correctly when it updates the register status.
3464
3465 It's pointless doing this if we originally had two sets, one from
3466 i3, and one from i2. Combining then splitting the parallel results
3467 in the original i2 again plus an invalid insn (which we delete).
3468 The net effect is only to move instructions around, which makes
3469 debug info less accurate. */
3470
3471 if (!(added_sets_2 && i1 == 0)
3472 && is_parallel_of_n_reg_sets (newpat, 2)
3473 && asm_noperands (newpat) < 0)
3474 {
3475 rtx set0 = XVECEXP (newpat, 0, 0);
3476 rtx set1 = XVECEXP (newpat, 0, 1);
3477 rtx oldpat = newpat;
3478
3479 if (((REG_P (SET_DEST (set1))
3480 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3481 || (GET_CODE (SET_DEST (set1)) == SUBREG
3482 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3483 && insn_nothrow_p (i3)
3484 && !side_effects_p (SET_SRC (set1)))
3485 {
3486 newpat = set0;
3487 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3488 }
3489
3490 else if (((REG_P (SET_DEST (set0))
3491 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3492 || (GET_CODE (SET_DEST (set0)) == SUBREG
3493 && find_reg_note (i3, REG_UNUSED,
3494 SUBREG_REG (SET_DEST (set0)))))
3495 && insn_nothrow_p (i3)
3496 && !side_effects_p (SET_SRC (set0)))
3497 {
3498 newpat = set1;
3499 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3500
3501 if (insn_code_number >= 0)
3502 changed_i3_dest = 1;
3503 }
3504
3505 if (insn_code_number < 0)
3506 newpat = oldpat;
3507 }
3508
3509 /* Is the result of combination a valid instruction? */
3510 if (insn_code_number < 0)
3511 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3512
3513 /* If we were combining three insns and the result is a simple SET
3514 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3515 insns. There are two ways to do this. It can be split using a
3516 machine-specific method (like when you have an addition of a large
3517 constant) or by combine in the function find_split_point. */
3518
3519 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3520 && asm_noperands (newpat) < 0)
3521 {
3522 rtx parallel, *split;
3523 rtx_insn *m_split_insn;
3524
3525 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3526 use I2DEST as a scratch register will help. In the latter case,
3527 convert I2DEST to the mode of the source of NEWPAT if we can. */
3528
3529 m_split_insn = combine_split_insns (newpat, i3);
3530
3531 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3532 inputs of NEWPAT. */
3533
3534 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3535 possible to try that as a scratch reg. This would require adding
3536 more code to make it work though. */
3537
3538 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3539 {
3540 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3541
3542 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3543 (temporarily, until we are committed to this instruction
3544 combination) does not work: for example, any call to nonzero_bits
3545 on the register (from a splitter in the MD file, for example)
3546 will get the old information, which is invalid.
3547
3548 Since nowadays we can create registers during combine just fine,
3549 we should just create a new one here, not reuse i2dest. */
3550
3551 /* First try to split using the original register as a
3552 scratch register. */
3553 parallel = gen_rtx_PARALLEL (VOIDmode,
3554 gen_rtvec (2, newpat,
3555 gen_rtx_CLOBBER (VOIDmode,
3556 i2dest)));
3557 m_split_insn = combine_split_insns (parallel, i3);
3558
3559 /* If that didn't work, try changing the mode of I2DEST if
3560 we can. */
3561 if (m_split_insn == 0
3562 && new_mode != GET_MODE (i2dest)
3563 && new_mode != VOIDmode
3564 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3565 {
3566 machine_mode old_mode = GET_MODE (i2dest);
3567 rtx ni2dest;
3568
3569 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3570 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3571 else
3572 {
3573 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3574 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3575 }
3576
3577 parallel = (gen_rtx_PARALLEL
3578 (VOIDmode,
3579 gen_rtvec (2, newpat,
3580 gen_rtx_CLOBBER (VOIDmode,
3581 ni2dest))));
3582 m_split_insn = combine_split_insns (parallel, i3);
3583
3584 if (m_split_insn == 0
3585 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3586 {
3587 struct undo *buf;
3588
3589 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3590 buf = undobuf.undos;
3591 undobuf.undos = buf->next;
3592 buf->next = undobuf.frees;
3593 undobuf.frees = buf;
3594 }
3595 }
3596
3597 i2scratch = m_split_insn != 0;
3598 }
3599
3600 /* If recog_for_combine has discarded clobbers, try to use them
3601 again for the split. */
3602 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3603 {
3604 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3605 m_split_insn = combine_split_insns (parallel, i3);
3606 }
3607
3608 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3609 {
3610 rtx m_split_pat = PATTERN (m_split_insn);
3611 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3612 if (insn_code_number >= 0)
3613 newpat = m_split_pat;
3614 }
3615 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3616 && (next_nonnote_nondebug_insn (i2) == i3
3617 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3618 {
3619 rtx i2set, i3set;
3620 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3621 newi2pat = PATTERN (m_split_insn);
3622
3623 i3set = single_set (NEXT_INSN (m_split_insn));
3624 i2set = single_set (m_split_insn);
3625
3626 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3627
3628 /* If I2 or I3 has multiple SETs, we won't know how to track
3629 register status, so don't use these insns. If I2's destination
3630 is used between I2 and I3, we also can't use these insns. */
3631
3632 if (i2_code_number >= 0 && i2set && i3set
3633 && (next_nonnote_nondebug_insn (i2) == i3
3634 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3635 insn_code_number = recog_for_combine (&newi3pat, i3,
3636 &new_i3_notes);
3637 if (insn_code_number >= 0)
3638 newpat = newi3pat;
3639
3640 /* It is possible that both insns now set the destination of I3.
3641 If so, we must show an extra use of it. */
3642
3643 if (insn_code_number >= 0)
3644 {
3645 rtx new_i3_dest = SET_DEST (i3set);
3646 rtx new_i2_dest = SET_DEST (i2set);
3647
3648 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3649 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3650 || GET_CODE (new_i3_dest) == SUBREG)
3651 new_i3_dest = XEXP (new_i3_dest, 0);
3652
3653 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3654 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3655 || GET_CODE (new_i2_dest) == SUBREG)
3656 new_i2_dest = XEXP (new_i2_dest, 0);
3657
3658 if (REG_P (new_i3_dest)
3659 && REG_P (new_i2_dest)
3660 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3661 && REGNO (new_i2_dest) < reg_n_sets_max)
3662 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3663 }
3664 }
3665
3666 /* If we can split it and use I2DEST, go ahead and see if that
3667 helps things be recognized. Verify that none of the registers
3668 are set between I2 and I3. */
3669 if (insn_code_number < 0
3670 && (split = find_split_point (&newpat, i3, false)) != 0
3671 && (!HAVE_cc0 || REG_P (i2dest))
3672 /* We need I2DEST in the proper mode. If it is a hard register
3673 or the only use of a pseudo, we can change its mode.
3674 Make sure we don't change a hard register to have a mode that
3675 isn't valid for it, or change the number of registers. */
3676 && (GET_MODE (*split) == GET_MODE (i2dest)
3677 || GET_MODE (*split) == VOIDmode
3678 || can_change_dest_mode (i2dest, added_sets_2,
3679 GET_MODE (*split)))
3680 && (next_nonnote_nondebug_insn (i2) == i3
3681 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3682 /* We can't overwrite I2DEST if its value is still used by
3683 NEWPAT. */
3684 && ! reg_referenced_p (i2dest, newpat))
3685 {
3686 rtx newdest = i2dest;
3687 enum rtx_code split_code = GET_CODE (*split);
3688 machine_mode split_mode = GET_MODE (*split);
3689 bool subst_done = false;
3690 newi2pat = NULL_RTX;
3691
3692 i2scratch = true;
3693
3694 /* *SPLIT may be part of I2SRC, so make sure we have the
3695 original expression around for later debug processing.
3696 We should not need I2SRC any more in other cases. */
3697 if (MAY_HAVE_DEBUG_INSNS)
3698 i2src = copy_rtx (i2src);
3699 else
3700 i2src = NULL;
3701
3702 /* Get NEWDEST as a register in the proper mode. We have already
3703 validated that we can do this. */
3704 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3705 {
3706 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3707 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3708 else
3709 {
3710 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3711 newdest = regno_reg_rtx[REGNO (i2dest)];
3712 }
3713 }
3714
3715 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3716 an ASHIFT. This can occur if it was inside a PLUS and hence
3717 appeared to be a memory address. This is a kludge. */
3718 if (split_code == MULT
3719 && CONST_INT_P (XEXP (*split, 1))
3720 && INTVAL (XEXP (*split, 1)) > 0
3721 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3722 {
3723 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3724 XEXP (*split, 0), GEN_INT (i)));
3725 /* Update split_code because we may not have a multiply
3726 anymore. */
3727 split_code = GET_CODE (*split);
3728 }
3729
3730 /* Similarly for (plus (mult FOO (const_int pow2))). */
3731 if (split_code == PLUS
3732 && GET_CODE (XEXP (*split, 0)) == MULT
3733 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3734 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3735 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3736 {
3737 rtx nsplit = XEXP (*split, 0);
3738 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3739 XEXP (nsplit, 0), GEN_INT (i)));
3740 /* Update split_code because we may not have a multiply
3741 anymore. */
3742 split_code = GET_CODE (*split);
3743 }
3744
3745 #ifdef INSN_SCHEDULING
3746 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3747 be written as a ZERO_EXTEND. */
3748 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3749 {
3750 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3751 what it really is. */
3752 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3753 == SIGN_EXTEND)
3754 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3755 SUBREG_REG (*split)));
3756 else
3757 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3758 SUBREG_REG (*split)));
3759 }
3760 #endif
3761
3762 /* Attempt to split binary operators using arithmetic identities. */
3763 if (BINARY_P (SET_SRC (newpat))
3764 && split_mode == GET_MODE (SET_SRC (newpat))
3765 && ! side_effects_p (SET_SRC (newpat)))
3766 {
3767 rtx setsrc = SET_SRC (newpat);
3768 machine_mode mode = GET_MODE (setsrc);
3769 enum rtx_code code = GET_CODE (setsrc);
3770 rtx src_op0 = XEXP (setsrc, 0);
3771 rtx src_op1 = XEXP (setsrc, 1);
3772
3773 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3774 if (rtx_equal_p (src_op0, src_op1))
3775 {
3776 newi2pat = gen_rtx_SET (newdest, src_op0);
3777 SUBST (XEXP (setsrc, 0), newdest);
3778 SUBST (XEXP (setsrc, 1), newdest);
3779 subst_done = true;
3780 }
3781 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3782 else if ((code == PLUS || code == MULT)
3783 && GET_CODE (src_op0) == code
3784 && GET_CODE (XEXP (src_op0, 0)) == code
3785 && (INTEGRAL_MODE_P (mode)
3786 || (FLOAT_MODE_P (mode)
3787 && flag_unsafe_math_optimizations)))
3788 {
3789 rtx p = XEXP (XEXP (src_op0, 0), 0);
3790 rtx q = XEXP (XEXP (src_op0, 0), 1);
3791 rtx r = XEXP (src_op0, 1);
3792 rtx s = src_op1;
3793
3794 /* Split both "((X op Y) op X) op Y" and
3795 "((X op Y) op Y) op X" as "T op T" where T is
3796 "X op Y". */
3797 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3798 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3799 {
3800 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3801 SUBST (XEXP (setsrc, 0), newdest);
3802 SUBST (XEXP (setsrc, 1), newdest);
3803 subst_done = true;
3804 }
3805 /* Split "((X op X) op Y) op Y)" as "T op T" where
3806 T is "X op Y". */
3807 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3808 {
3809 rtx tmp = simplify_gen_binary (code, mode, p, r);
3810 newi2pat = gen_rtx_SET (newdest, tmp);
3811 SUBST (XEXP (setsrc, 0), newdest);
3812 SUBST (XEXP (setsrc, 1), newdest);
3813 subst_done = true;
3814 }
3815 }
3816 }
3817
3818 if (!subst_done)
3819 {
3820 newi2pat = gen_rtx_SET (newdest, *split);
3821 SUBST (*split, newdest);
3822 }
3823
3824 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3825
3826 /* recog_for_combine might have added CLOBBERs to newi2pat.
3827 Make sure NEWPAT does not depend on the clobbered regs. */
3828 if (GET_CODE (newi2pat) == PARALLEL)
3829 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3830 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3831 {
3832 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3833 if (reg_overlap_mentioned_p (reg, newpat))
3834 {
3835 undo_all ();
3836 return 0;
3837 }
3838 }
3839
3840 /* If the split point was a MULT and we didn't have one before,
3841 don't use one now. */
3842 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3843 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3844 }
3845 }
3846
3847 /* Check for a case where we loaded from memory in a narrow mode and
3848 then sign extended it, but we need both registers. In that case,
3849 we have a PARALLEL with both loads from the same memory location.
3850 We can split this into a load from memory followed by a register-register
3851 copy. This saves at least one insn, more if register allocation can
3852 eliminate the copy.
3853
3854 We cannot do this if the destination of the first assignment is a
3855 condition code register or cc0. We eliminate this case by making sure
3856 the SET_DEST and SET_SRC have the same mode.
3857
3858 We cannot do this if the destination of the second assignment is
3859 a register that we have already assumed is zero-extended. Similarly
3860 for a SUBREG of such a register. */
3861
3862 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3863 && GET_CODE (newpat) == PARALLEL
3864 && XVECLEN (newpat, 0) == 2
3865 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3866 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3867 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3868 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3869 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3870 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3871 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3872 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3873 DF_INSN_LUID (i2))
3874 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3875 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3876 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3877 (REG_P (temp_expr)
3878 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3879 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3880 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3881 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3882 != GET_MODE_MASK (word_mode))))
3883 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3884 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3885 (REG_P (temp_expr)
3886 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3887 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3888 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3889 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3890 != GET_MODE_MASK (word_mode)))))
3891 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3892 SET_SRC (XVECEXP (newpat, 0, 1)))
3893 && ! find_reg_note (i3, REG_UNUSED,
3894 SET_DEST (XVECEXP (newpat, 0, 0))))
3895 {
3896 rtx ni2dest;
3897
3898 newi2pat = XVECEXP (newpat, 0, 0);
3899 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3900 newpat = XVECEXP (newpat, 0, 1);
3901 SUBST (SET_SRC (newpat),
3902 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3903 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3904
3905 if (i2_code_number >= 0)
3906 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3907
3908 if (insn_code_number >= 0)
3909 swap_i2i3 = 1;
3910 }
3911
3912 /* Similarly, check for a case where we have a PARALLEL of two independent
3913 SETs but we started with three insns. In this case, we can do the sets
3914 as two separate insns. This case occurs when some SET allows two
3915 other insns to combine, but the destination of that SET is still live.
3916
3917 Also do this if we started with two insns and (at least) one of the
3918 resulting sets is a noop; this noop will be deleted later. */
3919
3920 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3921 && GET_CODE (newpat) == PARALLEL
3922 && XVECLEN (newpat, 0) == 2
3923 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3924 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3925 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3926 || set_noop_p (XVECEXP (newpat, 0, 1)))
3927 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3928 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3929 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3930 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3931 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3932 XVECEXP (newpat, 0, 0))
3933 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3934 XVECEXP (newpat, 0, 1))
3935 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3936 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3937 {
3938 rtx set0 = XVECEXP (newpat, 0, 0);
3939 rtx set1 = XVECEXP (newpat, 0, 1);
3940
3941 /* Normally, it doesn't matter which of the two is done first,
3942 but the one that references cc0 can't be the second, and
3943 one which uses any regs/memory set in between i2 and i3 can't
3944 be first. The PARALLEL might also have been pre-existing in i3,
3945 so we need to make sure that we won't wrongly hoist a SET to i2
3946 that would conflict with a death note present in there. */
3947 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3948 && !(REG_P (SET_DEST (set1))
3949 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3950 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3951 && find_reg_note (i2, REG_DEAD,
3952 SUBREG_REG (SET_DEST (set1))))
3953 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3954 /* If I3 is a jump, ensure that set0 is a jump so that
3955 we do not create invalid RTL. */
3956 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3957 )
3958 {
3959 newi2pat = set1;
3960 newpat = set0;
3961 }
3962 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3963 && !(REG_P (SET_DEST (set0))
3964 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3965 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3966 && find_reg_note (i2, REG_DEAD,
3967 SUBREG_REG (SET_DEST (set0))))
3968 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3969 /* If I3 is a jump, ensure that set1 is a jump so that
3970 we do not create invalid RTL. */
3971 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3972 )
3973 {
3974 newi2pat = set0;
3975 newpat = set1;
3976 }
3977 else
3978 {
3979 undo_all ();
3980 return 0;
3981 }
3982
3983 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3984
3985 if (i2_code_number >= 0)
3986 {
3987 /* recog_for_combine might have added CLOBBERs to newi2pat.
3988 Make sure NEWPAT does not depend on the clobbered regs. */
3989 if (GET_CODE (newi2pat) == PARALLEL)
3990 {
3991 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3992 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3993 {
3994 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3995 if (reg_overlap_mentioned_p (reg, newpat))
3996 {
3997 undo_all ();
3998 return 0;
3999 }
4000 }
4001 }
4002
4003 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4004 }
4005 }
4006
4007 /* If it still isn't recognized, fail and change things back the way they
4008 were. */
4009 if ((insn_code_number < 0
4010 /* Is the result a reasonable ASM_OPERANDS? */
4011 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4012 {
4013 undo_all ();
4014 return 0;
4015 }
4016
4017 /* If we had to change another insn, make sure it is valid also. */
4018 if (undobuf.other_insn)
4019 {
4020 CLEAR_HARD_REG_SET (newpat_used_regs);
4021
4022 other_pat = PATTERN (undobuf.other_insn);
4023 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4024 &new_other_notes);
4025
4026 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4027 {
4028 undo_all ();
4029 return 0;
4030 }
4031 }
4032
4033 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4034 they are adjacent to each other or not. */
4035 if (HAVE_cc0)
4036 {
4037 rtx_insn *p = prev_nonnote_insn (i3);
4038 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4039 && sets_cc0_p (newi2pat))
4040 {
4041 undo_all ();
4042 return 0;
4043 }
4044 }
4045
4046 /* Only allow this combination if insn_rtx_costs reports that the
4047 replacement instructions are cheaper than the originals. */
4048 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4049 {
4050 undo_all ();
4051 return 0;
4052 }
4053
4054 if (MAY_HAVE_DEBUG_INSNS)
4055 {
4056 struct undo *undo;
4057
4058 for (undo = undobuf.undos; undo; undo = undo->next)
4059 if (undo->kind == UNDO_MODE)
4060 {
4061 rtx reg = *undo->where.r;
4062 machine_mode new_mode = GET_MODE (reg);
4063 machine_mode old_mode = undo->old_contents.m;
4064
4065 /* Temporarily revert mode back. */
4066 adjust_reg_mode (reg, old_mode);
4067
4068 if (reg == i2dest && i2scratch)
4069 {
4070 /* If we used i2dest as a scratch register with a
4071 different mode, substitute it for the original
4072 i2src while its original mode is temporarily
4073 restored, and then clear i2scratch so that we don't
4074 do it again later. */
4075 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4076 this_basic_block);
4077 i2scratch = false;
4078 /* Put back the new mode. */
4079 adjust_reg_mode (reg, new_mode);
4080 }
4081 else
4082 {
4083 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4084 rtx_insn *first, *last;
4085
4086 if (reg == i2dest)
4087 {
4088 first = i2;
4089 last = last_combined_insn;
4090 }
4091 else
4092 {
4093 first = i3;
4094 last = undobuf.other_insn;
4095 gcc_assert (last);
4096 if (DF_INSN_LUID (last)
4097 < DF_INSN_LUID (last_combined_insn))
4098 last = last_combined_insn;
4099 }
4100
4101 /* We're dealing with a reg that changed mode but not
4102 meaning, so we want to turn it into a subreg for
4103 the new mode. However, because of REG sharing and
4104 because its mode had already changed, we have to do
4105 it in two steps. First, replace any debug uses of
4106 reg, with its original mode temporarily restored,
4107 with this copy we have created; then, replace the
4108 copy with the SUBREG of the original shared reg,
4109 once again changed to the new mode. */
4110 propagate_for_debug (first, last, reg, tempreg,
4111 this_basic_block);
4112 adjust_reg_mode (reg, new_mode);
4113 propagate_for_debug (first, last, tempreg,
4114 lowpart_subreg (old_mode, reg, new_mode),
4115 this_basic_block);
4116 }
4117 }
4118 }
4119
4120 /* If we will be able to accept this, we have made a
4121 change to the destination of I3. This requires us to
4122 do a few adjustments. */
4123
4124 if (changed_i3_dest)
4125 {
4126 PATTERN (i3) = newpat;
4127 adjust_for_new_dest (i3);
4128 }
4129
4130 /* We now know that we can do this combination. Merge the insns and
4131 update the status of registers and LOG_LINKS. */
4132
4133 if (undobuf.other_insn)
4134 {
4135 rtx note, next;
4136
4137 PATTERN (undobuf.other_insn) = other_pat;
4138
4139 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4140 ensure that they are still valid. Then add any non-duplicate
4141 notes added by recog_for_combine. */
4142 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4143 {
4144 next = XEXP (note, 1);
4145
4146 if ((REG_NOTE_KIND (note) == REG_DEAD
4147 && !reg_referenced_p (XEXP (note, 0),
4148 PATTERN (undobuf.other_insn)))
4149 ||(REG_NOTE_KIND (note) == REG_UNUSED
4150 && !reg_set_p (XEXP (note, 0),
4151 PATTERN (undobuf.other_insn))))
4152 remove_note (undobuf.other_insn, note);
4153 }
4154
4155 distribute_notes (new_other_notes, undobuf.other_insn,
4156 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4157 NULL_RTX);
4158 }
4159
4160 if (swap_i2i3)
4161 {
4162 rtx_insn *insn;
4163 struct insn_link *link;
4164 rtx ni2dest;
4165
4166 /* I3 now uses what used to be its destination and which is now
4167 I2's destination. This requires us to do a few adjustments. */
4168 PATTERN (i3) = newpat;
4169 adjust_for_new_dest (i3);
4170
4171 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4172 so we still will.
4173
4174 However, some later insn might be using I2's dest and have
4175 a LOG_LINK pointing at I3. We must remove this link.
4176 The simplest way to remove the link is to point it at I1,
4177 which we know will be a NOTE. */
4178
4179 /* newi2pat is usually a SET here; however, recog_for_combine might
4180 have added some clobbers. */
4181 if (GET_CODE (newi2pat) == PARALLEL)
4182 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4183 else
4184 ni2dest = SET_DEST (newi2pat);
4185
4186 for (insn = NEXT_INSN (i3);
4187 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4188 || insn != BB_HEAD (this_basic_block->next_bb));
4189 insn = NEXT_INSN (insn))
4190 {
4191 if (NONDEBUG_INSN_P (insn)
4192 && reg_referenced_p (ni2dest, PATTERN (insn)))
4193 {
4194 FOR_EACH_LOG_LINK (link, insn)
4195 if (link->insn == i3)
4196 link->insn = i1;
4197
4198 break;
4199 }
4200 }
4201 }
4202
4203 {
4204 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4205 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4206 rtx midnotes = 0;
4207 int from_luid;
4208 /* Compute which registers we expect to eliminate. newi2pat may be setting
4209 either i3dest or i2dest, so we must check it. */
4210 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4211 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4212 || !i2dest_killed
4213 ? 0 : i2dest);
4214 /* For i1, we need to compute both local elimination and global
4215 elimination information with respect to newi2pat because i1dest
4216 may be the same as i3dest, in which case newi2pat may be setting
4217 i1dest. Global information is used when distributing REG_DEAD
4218 note for i2 and i3, in which case it does matter if newi2pat sets
4219 i1dest or not.
4220
4221 Local information is used when distributing REG_DEAD note for i1,
4222 in which case it doesn't matter if newi2pat sets i1dest or not.
4223 See PR62151, if we have four insns combination:
4224 i0: r0 <- i0src
4225 i1: r1 <- i1src (using r0)
4226 REG_DEAD (r0)
4227 i2: r0 <- i2src (using r1)
4228 i3: r3 <- i3src (using r0)
4229 ix: using r0
4230 From i1's point of view, r0 is eliminated, no matter if it is set
4231 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4232 should be discarded.
4233
4234 Note local information only affects cases in forms like "I1->I2->I3",
4235 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4236 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4237 i0dest anyway. */
4238 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4239 || !i1dest_killed
4240 ? 0 : i1dest);
4241 rtx elim_i1 = (local_elim_i1 == 0
4242 || (newi2pat && reg_set_p (i1dest, newi2pat))
4243 ? 0 : i1dest);
4244 /* Same case as i1. */
4245 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4246 ? 0 : i0dest);
4247 rtx elim_i0 = (local_elim_i0 == 0
4248 || (newi2pat && reg_set_p (i0dest, newi2pat))
4249 ? 0 : i0dest);
4250
4251 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4252 clear them. */
4253 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4254 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4255 if (i1)
4256 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4257 if (i0)
4258 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4259
4260 /* Ensure that we do not have something that should not be shared but
4261 occurs multiple times in the new insns. Check this by first
4262 resetting all the `used' flags and then copying anything is shared. */
4263
4264 reset_used_flags (i3notes);
4265 reset_used_flags (i2notes);
4266 reset_used_flags (i1notes);
4267 reset_used_flags (i0notes);
4268 reset_used_flags (newpat);
4269 reset_used_flags (newi2pat);
4270 if (undobuf.other_insn)
4271 reset_used_flags (PATTERN (undobuf.other_insn));
4272
4273 i3notes = copy_rtx_if_shared (i3notes);
4274 i2notes = copy_rtx_if_shared (i2notes);
4275 i1notes = copy_rtx_if_shared (i1notes);
4276 i0notes = copy_rtx_if_shared (i0notes);
4277 newpat = copy_rtx_if_shared (newpat);
4278 newi2pat = copy_rtx_if_shared (newi2pat);
4279 if (undobuf.other_insn)
4280 reset_used_flags (PATTERN (undobuf.other_insn));
4281
4282 INSN_CODE (i3) = insn_code_number;
4283 PATTERN (i3) = newpat;
4284
4285 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4286 {
4287 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4288
4289 reset_used_flags (call_usage);
4290 call_usage = copy_rtx (call_usage);
4291
4292 if (substed_i2)
4293 {
4294 /* I2SRC must still be meaningful at this point. Some splitting
4295 operations can invalidate I2SRC, but those operations do not
4296 apply to calls. */
4297 gcc_assert (i2src);
4298 replace_rtx (call_usage, i2dest, i2src);
4299 }
4300
4301 if (substed_i1)
4302 replace_rtx (call_usage, i1dest, i1src);
4303 if (substed_i0)
4304 replace_rtx (call_usage, i0dest, i0src);
4305
4306 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4307 }
4308
4309 if (undobuf.other_insn)
4310 INSN_CODE (undobuf.other_insn) = other_code_number;
4311
4312 /* We had one special case above where I2 had more than one set and
4313 we replaced a destination of one of those sets with the destination
4314 of I3. In that case, we have to update LOG_LINKS of insns later
4315 in this basic block. Note that this (expensive) case is rare.
4316
4317 Also, in this case, we must pretend that all REG_NOTEs for I2
4318 actually came from I3, so that REG_UNUSED notes from I2 will be
4319 properly handled. */
4320
4321 if (i3_subst_into_i2)
4322 {
4323 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4324 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4325 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4326 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4327 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4328 && ! find_reg_note (i2, REG_UNUSED,
4329 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4330 for (temp_insn = NEXT_INSN (i2);
4331 temp_insn
4332 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4333 || BB_HEAD (this_basic_block) != temp_insn);
4334 temp_insn = NEXT_INSN (temp_insn))
4335 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4336 FOR_EACH_LOG_LINK (link, temp_insn)
4337 if (link->insn == i2)
4338 link->insn = i3;
4339
4340 if (i3notes)
4341 {
4342 rtx link = i3notes;
4343 while (XEXP (link, 1))
4344 link = XEXP (link, 1);
4345 XEXP (link, 1) = i2notes;
4346 }
4347 else
4348 i3notes = i2notes;
4349 i2notes = 0;
4350 }
4351
4352 LOG_LINKS (i3) = NULL;
4353 REG_NOTES (i3) = 0;
4354 LOG_LINKS (i2) = NULL;
4355 REG_NOTES (i2) = 0;
4356
4357 if (newi2pat)
4358 {
4359 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4360 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4361 this_basic_block);
4362 INSN_CODE (i2) = i2_code_number;
4363 PATTERN (i2) = newi2pat;
4364 }
4365 else
4366 {
4367 if (MAY_HAVE_DEBUG_INSNS && i2src)
4368 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4369 this_basic_block);
4370 SET_INSN_DELETED (i2);
4371 }
4372
4373 if (i1)
4374 {
4375 LOG_LINKS (i1) = NULL;
4376 REG_NOTES (i1) = 0;
4377 if (MAY_HAVE_DEBUG_INSNS)
4378 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4379 this_basic_block);
4380 SET_INSN_DELETED (i1);
4381 }
4382
4383 if (i0)
4384 {
4385 LOG_LINKS (i0) = NULL;
4386 REG_NOTES (i0) = 0;
4387 if (MAY_HAVE_DEBUG_INSNS)
4388 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4389 this_basic_block);
4390 SET_INSN_DELETED (i0);
4391 }
4392
4393 /* Get death notes for everything that is now used in either I3 or
4394 I2 and used to die in a previous insn. If we built two new
4395 patterns, move from I1 to I2 then I2 to I3 so that we get the
4396 proper movement on registers that I2 modifies. */
4397
4398 if (i0)
4399 from_luid = DF_INSN_LUID (i0);
4400 else if (i1)
4401 from_luid = DF_INSN_LUID (i1);
4402 else
4403 from_luid = DF_INSN_LUID (i2);
4404 if (newi2pat)
4405 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4406 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4407
4408 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4409 if (i3notes)
4410 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4411 elim_i2, elim_i1, elim_i0);
4412 if (i2notes)
4413 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4414 elim_i2, elim_i1, elim_i0);
4415 if (i1notes)
4416 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4417 elim_i2, local_elim_i1, local_elim_i0);
4418 if (i0notes)
4419 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4420 elim_i2, elim_i1, local_elim_i0);
4421 if (midnotes)
4422 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4423 elim_i2, elim_i1, elim_i0);
4424
4425 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4426 know these are REG_UNUSED and want them to go to the desired insn,
4427 so we always pass it as i3. */
4428
4429 if (newi2pat && new_i2_notes)
4430 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4431 NULL_RTX);
4432
4433 if (new_i3_notes)
4434 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4435 NULL_RTX);
4436
4437 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4438 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4439 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4440 in that case, it might delete I2. Similarly for I2 and I1.
4441 Show an additional death due to the REG_DEAD note we make here. If
4442 we discard it in distribute_notes, we will decrement it again. */
4443
4444 if (i3dest_killed)
4445 {
4446 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4447 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4448 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4449 elim_i1, elim_i0);
4450 else
4451 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4452 elim_i2, elim_i1, elim_i0);
4453 }
4454
4455 if (i2dest_in_i2src)
4456 {
4457 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4458 if (newi2pat && reg_set_p (i2dest, newi2pat))
4459 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4460 NULL_RTX, NULL_RTX);
4461 else
4462 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4463 NULL_RTX, NULL_RTX, NULL_RTX);
4464 }
4465
4466 if (i1dest_in_i1src)
4467 {
4468 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4469 if (newi2pat && reg_set_p (i1dest, newi2pat))
4470 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4471 NULL_RTX, NULL_RTX);
4472 else
4473 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4474 NULL_RTX, NULL_RTX, NULL_RTX);
4475 }
4476
4477 if (i0dest_in_i0src)
4478 {
4479 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4480 if (newi2pat && reg_set_p (i0dest, newi2pat))
4481 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4482 NULL_RTX, NULL_RTX);
4483 else
4484 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4485 NULL_RTX, NULL_RTX, NULL_RTX);
4486 }
4487
4488 distribute_links (i3links);
4489 distribute_links (i2links);
4490 distribute_links (i1links);
4491 distribute_links (i0links);
4492
4493 if (REG_P (i2dest))
4494 {
4495 struct insn_link *link;
4496 rtx_insn *i2_insn = 0;
4497 rtx i2_val = 0, set;
4498
4499 /* The insn that used to set this register doesn't exist, and
4500 this life of the register may not exist either. See if one of
4501 I3's links points to an insn that sets I2DEST. If it does,
4502 that is now the last known value for I2DEST. If we don't update
4503 this and I2 set the register to a value that depended on its old
4504 contents, we will get confused. If this insn is used, thing
4505 will be set correctly in combine_instructions. */
4506 FOR_EACH_LOG_LINK (link, i3)
4507 if ((set = single_set (link->insn)) != 0
4508 && rtx_equal_p (i2dest, SET_DEST (set)))
4509 i2_insn = link->insn, i2_val = SET_SRC (set);
4510
4511 record_value_for_reg (i2dest, i2_insn, i2_val);
4512
4513 /* If the reg formerly set in I2 died only once and that was in I3,
4514 zero its use count so it won't make `reload' do any work. */
4515 if (! added_sets_2
4516 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4517 && ! i2dest_in_i2src
4518 && REGNO (i2dest) < reg_n_sets_max)
4519 INC_REG_N_SETS (REGNO (i2dest), -1);
4520 }
4521
4522 if (i1 && REG_P (i1dest))
4523 {
4524 struct insn_link *link;
4525 rtx_insn *i1_insn = 0;
4526 rtx i1_val = 0, set;
4527
4528 FOR_EACH_LOG_LINK (link, i3)
4529 if ((set = single_set (link->insn)) != 0
4530 && rtx_equal_p (i1dest, SET_DEST (set)))
4531 i1_insn = link->insn, i1_val = SET_SRC (set);
4532
4533 record_value_for_reg (i1dest, i1_insn, i1_val);
4534
4535 if (! added_sets_1
4536 && ! i1dest_in_i1src
4537 && REGNO (i1dest) < reg_n_sets_max)
4538 INC_REG_N_SETS (REGNO (i1dest), -1);
4539 }
4540
4541 if (i0 && REG_P (i0dest))
4542 {
4543 struct insn_link *link;
4544 rtx_insn *i0_insn = 0;
4545 rtx i0_val = 0, set;
4546
4547 FOR_EACH_LOG_LINK (link, i3)
4548 if ((set = single_set (link->insn)) != 0
4549 && rtx_equal_p (i0dest, SET_DEST (set)))
4550 i0_insn = link->insn, i0_val = SET_SRC (set);
4551
4552 record_value_for_reg (i0dest, i0_insn, i0_val);
4553
4554 if (! added_sets_0
4555 && ! i0dest_in_i0src
4556 && REGNO (i0dest) < reg_n_sets_max)
4557 INC_REG_N_SETS (REGNO (i0dest), -1);
4558 }
4559
4560 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4561 been made to this insn. The order is important, because newi2pat
4562 can affect nonzero_bits of newpat. */
4563 if (newi2pat)
4564 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4565 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4566 }
4567
4568 if (undobuf.other_insn != NULL_RTX)
4569 {
4570 if (dump_file)
4571 {
4572 fprintf (dump_file, "modifying other_insn ");
4573 dump_insn_slim (dump_file, undobuf.other_insn);
4574 }
4575 df_insn_rescan (undobuf.other_insn);
4576 }
4577
4578 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4579 {
4580 if (dump_file)
4581 {
4582 fprintf (dump_file, "modifying insn i0 ");
4583 dump_insn_slim (dump_file, i0);
4584 }
4585 df_insn_rescan (i0);
4586 }
4587
4588 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4589 {
4590 if (dump_file)
4591 {
4592 fprintf (dump_file, "modifying insn i1 ");
4593 dump_insn_slim (dump_file, i1);
4594 }
4595 df_insn_rescan (i1);
4596 }
4597
4598 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4599 {
4600 if (dump_file)
4601 {
4602 fprintf (dump_file, "modifying insn i2 ");
4603 dump_insn_slim (dump_file, i2);
4604 }
4605 df_insn_rescan (i2);
4606 }
4607
4608 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4609 {
4610 if (dump_file)
4611 {
4612 fprintf (dump_file, "modifying insn i3 ");
4613 dump_insn_slim (dump_file, i3);
4614 }
4615 df_insn_rescan (i3);
4616 }
4617
4618 /* Set new_direct_jump_p if a new return or simple jump instruction
4619 has been created. Adjust the CFG accordingly. */
4620 if (returnjump_p (i3) || any_uncondjump_p (i3))
4621 {
4622 *new_direct_jump_p = 1;
4623 mark_jump_label (PATTERN (i3), i3, 0);
4624 update_cfg_for_uncondjump (i3);
4625 }
4626
4627 if (undobuf.other_insn != NULL_RTX
4628 && (returnjump_p (undobuf.other_insn)
4629 || any_uncondjump_p (undobuf.other_insn)))
4630 {
4631 *new_direct_jump_p = 1;
4632 update_cfg_for_uncondjump (undobuf.other_insn);
4633 }
4634
4635 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4636 && XEXP (PATTERN (i3), 0) == const1_rtx)
4637 {
4638 basic_block bb = BLOCK_FOR_INSN (i3);
4639 gcc_assert (bb);
4640 remove_edge (split_block (bb, i3));
4641 emit_barrier_after_bb (bb);
4642 *new_direct_jump_p = 1;
4643 }
4644
4645 if (undobuf.other_insn
4646 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4647 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4648 {
4649 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4650 gcc_assert (bb);
4651 remove_edge (split_block (bb, undobuf.other_insn));
4652 emit_barrier_after_bb (bb);
4653 *new_direct_jump_p = 1;
4654 }
4655
4656 /* A noop might also need cleaning up of CFG, if it comes from the
4657 simplification of a jump. */
4658 if (JUMP_P (i3)
4659 && GET_CODE (newpat) == SET
4660 && SET_SRC (newpat) == pc_rtx
4661 && SET_DEST (newpat) == pc_rtx)
4662 {
4663 *new_direct_jump_p = 1;
4664 update_cfg_for_uncondjump (i3);
4665 }
4666
4667 if (undobuf.other_insn != NULL_RTX
4668 && JUMP_P (undobuf.other_insn)
4669 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4670 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4671 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4672 {
4673 *new_direct_jump_p = 1;
4674 update_cfg_for_uncondjump (undobuf.other_insn);
4675 }
4676
4677 combine_successes++;
4678 undo_commit ();
4679
4680 if (added_links_insn
4681 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4682 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4683 return added_links_insn;
4684 else
4685 return newi2pat ? i2 : i3;
4686 }
4687 \f
4688 /* Get a marker for undoing to the current state. */
4689
4690 static void *
4691 get_undo_marker (void)
4692 {
4693 return undobuf.undos;
4694 }
4695
4696 /* Undo the modifications up to the marker. */
4697
4698 static void
4699 undo_to_marker (void *marker)
4700 {
4701 struct undo *undo, *next;
4702
4703 for (undo = undobuf.undos; undo != marker; undo = next)
4704 {
4705 gcc_assert (undo);
4706
4707 next = undo->next;
4708 switch (undo->kind)
4709 {
4710 case UNDO_RTX:
4711 *undo->where.r = undo->old_contents.r;
4712 break;
4713 case UNDO_INT:
4714 *undo->where.i = undo->old_contents.i;
4715 break;
4716 case UNDO_MODE:
4717 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4718 break;
4719 case UNDO_LINKS:
4720 *undo->where.l = undo->old_contents.l;
4721 break;
4722 default:
4723 gcc_unreachable ();
4724 }
4725
4726 undo->next = undobuf.frees;
4727 undobuf.frees = undo;
4728 }
4729
4730 undobuf.undos = (struct undo *) marker;
4731 }
4732
4733 /* Undo all the modifications recorded in undobuf. */
4734
4735 static void
4736 undo_all (void)
4737 {
4738 undo_to_marker (0);
4739 }
4740
4741 /* We've committed to accepting the changes we made. Move all
4742 of the undos to the free list. */
4743
4744 static void
4745 undo_commit (void)
4746 {
4747 struct undo *undo, *next;
4748
4749 for (undo = undobuf.undos; undo; undo = next)
4750 {
4751 next = undo->next;
4752 undo->next = undobuf.frees;
4753 undobuf.frees = undo;
4754 }
4755 undobuf.undos = 0;
4756 }
4757 \f
4758 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4759 where we have an arithmetic expression and return that point. LOC will
4760 be inside INSN.
4761
4762 try_combine will call this function to see if an insn can be split into
4763 two insns. */
4764
4765 static rtx *
4766 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4767 {
4768 rtx x = *loc;
4769 enum rtx_code code = GET_CODE (x);
4770 rtx *split;
4771 unsigned HOST_WIDE_INT len = 0;
4772 HOST_WIDE_INT pos = 0;
4773 int unsignedp = 0;
4774 rtx inner = NULL_RTX;
4775
4776 /* First special-case some codes. */
4777 switch (code)
4778 {
4779 case SUBREG:
4780 #ifdef INSN_SCHEDULING
4781 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4782 point. */
4783 if (MEM_P (SUBREG_REG (x)))
4784 return loc;
4785 #endif
4786 return find_split_point (&SUBREG_REG (x), insn, false);
4787
4788 case MEM:
4789 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4790 using LO_SUM and HIGH. */
4791 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4792 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4793 {
4794 machine_mode address_mode = get_address_mode (x);
4795
4796 SUBST (XEXP (x, 0),
4797 gen_rtx_LO_SUM (address_mode,
4798 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4799 XEXP (x, 0)));
4800 return &XEXP (XEXP (x, 0), 0);
4801 }
4802
4803 /* If we have a PLUS whose second operand is a constant and the
4804 address is not valid, perhaps will can split it up using
4805 the machine-specific way to split large constants. We use
4806 the first pseudo-reg (one of the virtual regs) as a placeholder;
4807 it will not remain in the result. */
4808 if (GET_CODE (XEXP (x, 0)) == PLUS
4809 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4810 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4811 MEM_ADDR_SPACE (x)))
4812 {
4813 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4814 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4815 subst_insn);
4816
4817 /* This should have produced two insns, each of which sets our
4818 placeholder. If the source of the second is a valid address,
4819 we can make put both sources together and make a split point
4820 in the middle. */
4821
4822 if (seq
4823 && NEXT_INSN (seq) != NULL_RTX
4824 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4825 && NONJUMP_INSN_P (seq)
4826 && GET_CODE (PATTERN (seq)) == SET
4827 && SET_DEST (PATTERN (seq)) == reg
4828 && ! reg_mentioned_p (reg,
4829 SET_SRC (PATTERN (seq)))
4830 && NONJUMP_INSN_P (NEXT_INSN (seq))
4831 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4832 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4833 && memory_address_addr_space_p
4834 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4835 MEM_ADDR_SPACE (x)))
4836 {
4837 rtx src1 = SET_SRC (PATTERN (seq));
4838 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4839
4840 /* Replace the placeholder in SRC2 with SRC1. If we can
4841 find where in SRC2 it was placed, that can become our
4842 split point and we can replace this address with SRC2.
4843 Just try two obvious places. */
4844
4845 src2 = replace_rtx (src2, reg, src1);
4846 split = 0;
4847 if (XEXP (src2, 0) == src1)
4848 split = &XEXP (src2, 0);
4849 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4850 && XEXP (XEXP (src2, 0), 0) == src1)
4851 split = &XEXP (XEXP (src2, 0), 0);
4852
4853 if (split)
4854 {
4855 SUBST (XEXP (x, 0), src2);
4856 return split;
4857 }
4858 }
4859
4860 /* If that didn't work, perhaps the first operand is complex and
4861 needs to be computed separately, so make a split point there.
4862 This will occur on machines that just support REG + CONST
4863 and have a constant moved through some previous computation. */
4864
4865 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4866 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4867 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4868 return &XEXP (XEXP (x, 0), 0);
4869 }
4870
4871 /* If we have a PLUS whose first operand is complex, try computing it
4872 separately by making a split there. */
4873 if (GET_CODE (XEXP (x, 0)) == PLUS
4874 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4875 MEM_ADDR_SPACE (x))
4876 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4877 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4878 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4879 return &XEXP (XEXP (x, 0), 0);
4880 break;
4881
4882 case SET:
4883 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4884 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4885 we need to put the operand into a register. So split at that
4886 point. */
4887
4888 if (SET_DEST (x) == cc0_rtx
4889 && GET_CODE (SET_SRC (x)) != COMPARE
4890 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4891 && !OBJECT_P (SET_SRC (x))
4892 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4893 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4894 return &SET_SRC (x);
4895
4896 /* See if we can split SET_SRC as it stands. */
4897 split = find_split_point (&SET_SRC (x), insn, true);
4898 if (split && split != &SET_SRC (x))
4899 return split;
4900
4901 /* See if we can split SET_DEST as it stands. */
4902 split = find_split_point (&SET_DEST (x), insn, false);
4903 if (split && split != &SET_DEST (x))
4904 return split;
4905
4906 /* See if this is a bitfield assignment with everything constant. If
4907 so, this is an IOR of an AND, so split it into that. */
4908 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4909 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4910 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4911 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4912 && CONST_INT_P (SET_SRC (x))
4913 && ((INTVAL (XEXP (SET_DEST (x), 1))
4914 + INTVAL (XEXP (SET_DEST (x), 2)))
4915 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4916 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4917 {
4918 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4919 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4920 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4921 rtx dest = XEXP (SET_DEST (x), 0);
4922 machine_mode mode = GET_MODE (dest);
4923 unsigned HOST_WIDE_INT mask
4924 = (HOST_WIDE_INT_1U << len) - 1;
4925 rtx or_mask;
4926
4927 if (BITS_BIG_ENDIAN)
4928 pos = GET_MODE_PRECISION (mode) - len - pos;
4929
4930 or_mask = gen_int_mode (src << pos, mode);
4931 if (src == mask)
4932 SUBST (SET_SRC (x),
4933 simplify_gen_binary (IOR, mode, dest, or_mask));
4934 else
4935 {
4936 rtx negmask = gen_int_mode (~(mask << pos), mode);
4937 SUBST (SET_SRC (x),
4938 simplify_gen_binary (IOR, mode,
4939 simplify_gen_binary (AND, mode,
4940 dest, negmask),
4941 or_mask));
4942 }
4943
4944 SUBST (SET_DEST (x), dest);
4945
4946 split = find_split_point (&SET_SRC (x), insn, true);
4947 if (split && split != &SET_SRC (x))
4948 return split;
4949 }
4950
4951 /* Otherwise, see if this is an operation that we can split into two.
4952 If so, try to split that. */
4953 code = GET_CODE (SET_SRC (x));
4954
4955 switch (code)
4956 {
4957 case AND:
4958 /* If we are AND'ing with a large constant that is only a single
4959 bit and the result is only being used in a context where we
4960 need to know if it is zero or nonzero, replace it with a bit
4961 extraction. This will avoid the large constant, which might
4962 have taken more than one insn to make. If the constant were
4963 not a valid argument to the AND but took only one insn to make,
4964 this is no worse, but if it took more than one insn, it will
4965 be better. */
4966
4967 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4968 && REG_P (XEXP (SET_SRC (x), 0))
4969 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4970 && REG_P (SET_DEST (x))
4971 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4972 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4973 && XEXP (*split, 0) == SET_DEST (x)
4974 && XEXP (*split, 1) == const0_rtx)
4975 {
4976 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4977 XEXP (SET_SRC (x), 0),
4978 pos, NULL_RTX, 1, 1, 0, 0);
4979 if (extraction != 0)
4980 {
4981 SUBST (SET_SRC (x), extraction);
4982 return find_split_point (loc, insn, false);
4983 }
4984 }
4985 break;
4986
4987 case NE:
4988 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4989 is known to be on, this can be converted into a NEG of a shift. */
4990 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4991 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4992 && 1 <= (pos = exact_log2
4993 (nonzero_bits (XEXP (SET_SRC (x), 0),
4994 GET_MODE (XEXP (SET_SRC (x), 0))))))
4995 {
4996 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4997
4998 SUBST (SET_SRC (x),
4999 gen_rtx_NEG (mode,
5000 gen_rtx_LSHIFTRT (mode,
5001 XEXP (SET_SRC (x), 0),
5002 GEN_INT (pos))));
5003
5004 split = find_split_point (&SET_SRC (x), insn, true);
5005 if (split && split != &SET_SRC (x))
5006 return split;
5007 }
5008 break;
5009
5010 case SIGN_EXTEND:
5011 inner = XEXP (SET_SRC (x), 0);
5012
5013 /* We can't optimize if either mode is a partial integer
5014 mode as we don't know how many bits are significant
5015 in those modes. */
5016 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
5017 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5018 break;
5019
5020 pos = 0;
5021 len = GET_MODE_PRECISION (GET_MODE (inner));
5022 unsignedp = 0;
5023 break;
5024
5025 case SIGN_EXTRACT:
5026 case ZERO_EXTRACT:
5027 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5028 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5029 {
5030 inner = XEXP (SET_SRC (x), 0);
5031 len = INTVAL (XEXP (SET_SRC (x), 1));
5032 pos = INTVAL (XEXP (SET_SRC (x), 2));
5033
5034 if (BITS_BIG_ENDIAN)
5035 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
5036 unsignedp = (code == ZERO_EXTRACT);
5037 }
5038 break;
5039
5040 default:
5041 break;
5042 }
5043
5044 if (len && pos >= 0
5045 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
5046 {
5047 machine_mode mode = GET_MODE (SET_SRC (x));
5048
5049 /* For unsigned, we have a choice of a shift followed by an
5050 AND or two shifts. Use two shifts for field sizes where the
5051 constant might be too large. We assume here that we can
5052 always at least get 8-bit constants in an AND insn, which is
5053 true for every current RISC. */
5054
5055 if (unsignedp && len <= 8)
5056 {
5057 unsigned HOST_WIDE_INT mask
5058 = (HOST_WIDE_INT_1U << len) - 1;
5059 SUBST (SET_SRC (x),
5060 gen_rtx_AND (mode,
5061 gen_rtx_LSHIFTRT
5062 (mode, gen_lowpart (mode, inner),
5063 GEN_INT (pos)),
5064 gen_int_mode (mask, mode)));
5065
5066 split = find_split_point (&SET_SRC (x), insn, true);
5067 if (split && split != &SET_SRC (x))
5068 return split;
5069 }
5070 else
5071 {
5072 SUBST (SET_SRC (x),
5073 gen_rtx_fmt_ee
5074 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5075 gen_rtx_ASHIFT (mode,
5076 gen_lowpart (mode, inner),
5077 GEN_INT (GET_MODE_PRECISION (mode)
5078 - len - pos)),
5079 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5080
5081 split = find_split_point (&SET_SRC (x), insn, true);
5082 if (split && split != &SET_SRC (x))
5083 return split;
5084 }
5085 }
5086
5087 /* See if this is a simple operation with a constant as the second
5088 operand. It might be that this constant is out of range and hence
5089 could be used as a split point. */
5090 if (BINARY_P (SET_SRC (x))
5091 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5092 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5093 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5094 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5095 return &XEXP (SET_SRC (x), 1);
5096
5097 /* Finally, see if this is a simple operation with its first operand
5098 not in a register. The operation might require this operand in a
5099 register, so return it as a split point. We can always do this
5100 because if the first operand were another operation, we would have
5101 already found it as a split point. */
5102 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5103 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5104 return &XEXP (SET_SRC (x), 0);
5105
5106 return 0;
5107
5108 case AND:
5109 case IOR:
5110 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5111 it is better to write this as (not (ior A B)) so we can split it.
5112 Similarly for IOR. */
5113 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5114 {
5115 SUBST (*loc,
5116 gen_rtx_NOT (GET_MODE (x),
5117 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5118 GET_MODE (x),
5119 XEXP (XEXP (x, 0), 0),
5120 XEXP (XEXP (x, 1), 0))));
5121 return find_split_point (loc, insn, set_src);
5122 }
5123
5124 /* Many RISC machines have a large set of logical insns. If the
5125 second operand is a NOT, put it first so we will try to split the
5126 other operand first. */
5127 if (GET_CODE (XEXP (x, 1)) == NOT)
5128 {
5129 rtx tem = XEXP (x, 0);
5130 SUBST (XEXP (x, 0), XEXP (x, 1));
5131 SUBST (XEXP (x, 1), tem);
5132 }
5133 break;
5134
5135 case PLUS:
5136 case MINUS:
5137 /* Canonicalization can produce (minus A (mult B C)), where C is a
5138 constant. It may be better to try splitting (plus (mult B -C) A)
5139 instead if this isn't a multiply by a power of two. */
5140 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5141 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5142 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5143 {
5144 machine_mode mode = GET_MODE (x);
5145 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5146 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5147 SUBST (*loc, gen_rtx_PLUS (mode,
5148 gen_rtx_MULT (mode,
5149 XEXP (XEXP (x, 1), 0),
5150 gen_int_mode (other_int,
5151 mode)),
5152 XEXP (x, 0)));
5153 return find_split_point (loc, insn, set_src);
5154 }
5155
5156 /* Split at a multiply-accumulate instruction. However if this is
5157 the SET_SRC, we likely do not have such an instruction and it's
5158 worthless to try this split. */
5159 if (!set_src
5160 && (GET_CODE (XEXP (x, 0)) == MULT
5161 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5162 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5163 return loc;
5164
5165 default:
5166 break;
5167 }
5168
5169 /* Otherwise, select our actions depending on our rtx class. */
5170 switch (GET_RTX_CLASS (code))
5171 {
5172 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5173 case RTX_TERNARY:
5174 split = find_split_point (&XEXP (x, 2), insn, false);
5175 if (split)
5176 return split;
5177 /* fall through */
5178 case RTX_BIN_ARITH:
5179 case RTX_COMM_ARITH:
5180 case RTX_COMPARE:
5181 case RTX_COMM_COMPARE:
5182 split = find_split_point (&XEXP (x, 1), insn, false);
5183 if (split)
5184 return split;
5185 /* fall through */
5186 case RTX_UNARY:
5187 /* Some machines have (and (shift ...) ...) insns. If X is not
5188 an AND, but XEXP (X, 0) is, use it as our split point. */
5189 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5190 return &XEXP (x, 0);
5191
5192 split = find_split_point (&XEXP (x, 0), insn, false);
5193 if (split)
5194 return split;
5195 return loc;
5196
5197 default:
5198 /* Otherwise, we don't have a split point. */
5199 return 0;
5200 }
5201 }
5202 \f
5203 /* Throughout X, replace FROM with TO, and return the result.
5204 The result is TO if X is FROM;
5205 otherwise the result is X, but its contents may have been modified.
5206 If they were modified, a record was made in undobuf so that
5207 undo_all will (among other things) return X to its original state.
5208
5209 If the number of changes necessary is too much to record to undo,
5210 the excess changes are not made, so the result is invalid.
5211 The changes already made can still be undone.
5212 undobuf.num_undo is incremented for such changes, so by testing that
5213 the caller can tell whether the result is valid.
5214
5215 `n_occurrences' is incremented each time FROM is replaced.
5216
5217 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5218
5219 IN_COND is nonzero if we are at the top level of a condition.
5220
5221 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5222 by copying if `n_occurrences' is nonzero. */
5223
5224 static rtx
5225 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5226 {
5227 enum rtx_code code = GET_CODE (x);
5228 machine_mode op0_mode = VOIDmode;
5229 const char *fmt;
5230 int len, i;
5231 rtx new_rtx;
5232
5233 /* Two expressions are equal if they are identical copies of a shared
5234 RTX or if they are both registers with the same register number
5235 and mode. */
5236
5237 #define COMBINE_RTX_EQUAL_P(X,Y) \
5238 ((X) == (Y) \
5239 || (REG_P (X) && REG_P (Y) \
5240 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5241
5242 /* Do not substitute into clobbers of regs -- this will never result in
5243 valid RTL. */
5244 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5245 return x;
5246
5247 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5248 {
5249 n_occurrences++;
5250 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5251 }
5252
5253 /* If X and FROM are the same register but different modes, they
5254 will not have been seen as equal above. However, the log links code
5255 will make a LOG_LINKS entry for that case. If we do nothing, we
5256 will try to rerecognize our original insn and, when it succeeds,
5257 we will delete the feeding insn, which is incorrect.
5258
5259 So force this insn not to match in this (rare) case. */
5260 if (! in_dest && code == REG && REG_P (from)
5261 && reg_overlap_mentioned_p (x, from))
5262 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5263
5264 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5265 of which may contain things that can be combined. */
5266 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5267 return x;
5268
5269 /* It is possible to have a subexpression appear twice in the insn.
5270 Suppose that FROM is a register that appears within TO.
5271 Then, after that subexpression has been scanned once by `subst',
5272 the second time it is scanned, TO may be found. If we were
5273 to scan TO here, we would find FROM within it and create a
5274 self-referent rtl structure which is completely wrong. */
5275 if (COMBINE_RTX_EQUAL_P (x, to))
5276 return to;
5277
5278 /* Parallel asm_operands need special attention because all of the
5279 inputs are shared across the arms. Furthermore, unsharing the
5280 rtl results in recognition failures. Failure to handle this case
5281 specially can result in circular rtl.
5282
5283 Solve this by doing a normal pass across the first entry of the
5284 parallel, and only processing the SET_DESTs of the subsequent
5285 entries. Ug. */
5286
5287 if (code == PARALLEL
5288 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5289 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5290 {
5291 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5292
5293 /* If this substitution failed, this whole thing fails. */
5294 if (GET_CODE (new_rtx) == CLOBBER
5295 && XEXP (new_rtx, 0) == const0_rtx)
5296 return new_rtx;
5297
5298 SUBST (XVECEXP (x, 0, 0), new_rtx);
5299
5300 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5301 {
5302 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5303
5304 if (!REG_P (dest)
5305 && GET_CODE (dest) != CC0
5306 && GET_CODE (dest) != PC)
5307 {
5308 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5309
5310 /* If this substitution failed, this whole thing fails. */
5311 if (GET_CODE (new_rtx) == CLOBBER
5312 && XEXP (new_rtx, 0) == const0_rtx)
5313 return new_rtx;
5314
5315 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5316 }
5317 }
5318 }
5319 else
5320 {
5321 len = GET_RTX_LENGTH (code);
5322 fmt = GET_RTX_FORMAT (code);
5323
5324 /* We don't need to process a SET_DEST that is a register, CC0,
5325 or PC, so set up to skip this common case. All other cases
5326 where we want to suppress replacing something inside a
5327 SET_SRC are handled via the IN_DEST operand. */
5328 if (code == SET
5329 && (REG_P (SET_DEST (x))
5330 || GET_CODE (SET_DEST (x)) == CC0
5331 || GET_CODE (SET_DEST (x)) == PC))
5332 fmt = "ie";
5333
5334 /* Trying to simplify the operands of a widening MULT is not likely
5335 to create RTL matching a machine insn. */
5336 if (code == MULT
5337 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5338 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5339 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5340 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5341 && REG_P (XEXP (XEXP (x, 0), 0))
5342 && REG_P (XEXP (XEXP (x, 1), 0))
5343 && from == to)
5344 return x;
5345
5346
5347 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5348 constant. */
5349 if (fmt[0] == 'e')
5350 op0_mode = GET_MODE (XEXP (x, 0));
5351
5352 for (i = 0; i < len; i++)
5353 {
5354 if (fmt[i] == 'E')
5355 {
5356 int j;
5357 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5358 {
5359 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5360 {
5361 new_rtx = (unique_copy && n_occurrences
5362 ? copy_rtx (to) : to);
5363 n_occurrences++;
5364 }
5365 else
5366 {
5367 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5368 unique_copy);
5369
5370 /* If this substitution failed, this whole thing
5371 fails. */
5372 if (GET_CODE (new_rtx) == CLOBBER
5373 && XEXP (new_rtx, 0) == const0_rtx)
5374 return new_rtx;
5375 }
5376
5377 SUBST (XVECEXP (x, i, j), new_rtx);
5378 }
5379 }
5380 else if (fmt[i] == 'e')
5381 {
5382 /* If this is a register being set, ignore it. */
5383 new_rtx = XEXP (x, i);
5384 if (in_dest
5385 && i == 0
5386 && (((code == SUBREG || code == ZERO_EXTRACT)
5387 && REG_P (new_rtx))
5388 || code == STRICT_LOW_PART))
5389 ;
5390
5391 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5392 {
5393 /* In general, don't install a subreg involving two
5394 modes not tieable. It can worsen register
5395 allocation, and can even make invalid reload
5396 insns, since the reg inside may need to be copied
5397 from in the outside mode, and that may be invalid
5398 if it is an fp reg copied in integer mode.
5399
5400 We allow two exceptions to this: It is valid if
5401 it is inside another SUBREG and the mode of that
5402 SUBREG and the mode of the inside of TO is
5403 tieable and it is valid if X is a SET that copies
5404 FROM to CC0. */
5405
5406 if (GET_CODE (to) == SUBREG
5407 && ! MODES_TIEABLE_P (GET_MODE (to),
5408 GET_MODE (SUBREG_REG (to)))
5409 && ! (code == SUBREG
5410 && MODES_TIEABLE_P (GET_MODE (x),
5411 GET_MODE (SUBREG_REG (to))))
5412 && (!HAVE_cc0
5413 || (! (code == SET
5414 && i == 1
5415 && XEXP (x, 0) == cc0_rtx))))
5416 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5417
5418 if (code == SUBREG
5419 && REG_P (to)
5420 && REGNO (to) < FIRST_PSEUDO_REGISTER
5421 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5422 SUBREG_BYTE (x),
5423 GET_MODE (x)) < 0)
5424 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5425
5426 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5427 n_occurrences++;
5428 }
5429 else
5430 /* If we are in a SET_DEST, suppress most cases unless we
5431 have gone inside a MEM, in which case we want to
5432 simplify the address. We assume here that things that
5433 are actually part of the destination have their inner
5434 parts in the first expression. This is true for SUBREG,
5435 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5436 things aside from REG and MEM that should appear in a
5437 SET_DEST. */
5438 new_rtx = subst (XEXP (x, i), from, to,
5439 (((in_dest
5440 && (code == SUBREG || code == STRICT_LOW_PART
5441 || code == ZERO_EXTRACT))
5442 || code == SET)
5443 && i == 0),
5444 code == IF_THEN_ELSE && i == 0,
5445 unique_copy);
5446
5447 /* If we found that we will have to reject this combination,
5448 indicate that by returning the CLOBBER ourselves, rather than
5449 an expression containing it. This will speed things up as
5450 well as prevent accidents where two CLOBBERs are considered
5451 to be equal, thus producing an incorrect simplification. */
5452
5453 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5454 return new_rtx;
5455
5456 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5457 {
5458 machine_mode mode = GET_MODE (x);
5459
5460 x = simplify_subreg (GET_MODE (x), new_rtx,
5461 GET_MODE (SUBREG_REG (x)),
5462 SUBREG_BYTE (x));
5463 if (! x)
5464 x = gen_rtx_CLOBBER (mode, const0_rtx);
5465 }
5466 else if (CONST_SCALAR_INT_P (new_rtx)
5467 && GET_CODE (x) == ZERO_EXTEND)
5468 {
5469 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5470 new_rtx, GET_MODE (XEXP (x, 0)));
5471 gcc_assert (x);
5472 }
5473 else
5474 SUBST (XEXP (x, i), new_rtx);
5475 }
5476 }
5477 }
5478
5479 /* Check if we are loading something from the constant pool via float
5480 extension; in this case we would undo compress_float_constant
5481 optimization and degenerate constant load to an immediate value. */
5482 if (GET_CODE (x) == FLOAT_EXTEND
5483 && MEM_P (XEXP (x, 0))
5484 && MEM_READONLY_P (XEXP (x, 0)))
5485 {
5486 rtx tmp = avoid_constant_pool_reference (x);
5487 if (x != tmp)
5488 return x;
5489 }
5490
5491 /* Try to simplify X. If the simplification changed the code, it is likely
5492 that further simplification will help, so loop, but limit the number
5493 of repetitions that will be performed. */
5494
5495 for (i = 0; i < 4; i++)
5496 {
5497 /* If X is sufficiently simple, don't bother trying to do anything
5498 with it. */
5499 if (code != CONST_INT && code != REG && code != CLOBBER)
5500 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5501
5502 if (GET_CODE (x) == code)
5503 break;
5504
5505 code = GET_CODE (x);
5506
5507 /* We no longer know the original mode of operand 0 since we
5508 have changed the form of X) */
5509 op0_mode = VOIDmode;
5510 }
5511
5512 return x;
5513 }
5514 \f
5515 /* If X is a commutative operation whose operands are not in the canonical
5516 order, use substitutions to swap them. */
5517
5518 static void
5519 maybe_swap_commutative_operands (rtx x)
5520 {
5521 if (COMMUTATIVE_ARITH_P (x)
5522 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5523 {
5524 rtx temp = XEXP (x, 0);
5525 SUBST (XEXP (x, 0), XEXP (x, 1));
5526 SUBST (XEXP (x, 1), temp);
5527 }
5528 }
5529
5530 /* Simplify X, a piece of RTL. We just operate on the expression at the
5531 outer level; call `subst' to simplify recursively. Return the new
5532 expression.
5533
5534 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5535 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5536 of a condition. */
5537
5538 static rtx
5539 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5540 int in_cond)
5541 {
5542 enum rtx_code code = GET_CODE (x);
5543 machine_mode mode = GET_MODE (x);
5544 rtx temp;
5545 int i;
5546
5547 /* If this is a commutative operation, put a constant last and a complex
5548 expression first. We don't need to do this for comparisons here. */
5549 maybe_swap_commutative_operands (x);
5550
5551 /* Try to fold this expression in case we have constants that weren't
5552 present before. */
5553 temp = 0;
5554 switch (GET_RTX_CLASS (code))
5555 {
5556 case RTX_UNARY:
5557 if (op0_mode == VOIDmode)
5558 op0_mode = GET_MODE (XEXP (x, 0));
5559 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5560 break;
5561 case RTX_COMPARE:
5562 case RTX_COMM_COMPARE:
5563 {
5564 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5565 if (cmp_mode == VOIDmode)
5566 {
5567 cmp_mode = GET_MODE (XEXP (x, 1));
5568 if (cmp_mode == VOIDmode)
5569 cmp_mode = op0_mode;
5570 }
5571 temp = simplify_relational_operation (code, mode, cmp_mode,
5572 XEXP (x, 0), XEXP (x, 1));
5573 }
5574 break;
5575 case RTX_COMM_ARITH:
5576 case RTX_BIN_ARITH:
5577 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5578 break;
5579 case RTX_BITFIELD_OPS:
5580 case RTX_TERNARY:
5581 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5582 XEXP (x, 1), XEXP (x, 2));
5583 break;
5584 default:
5585 break;
5586 }
5587
5588 if (temp)
5589 {
5590 x = temp;
5591 code = GET_CODE (temp);
5592 op0_mode = VOIDmode;
5593 mode = GET_MODE (temp);
5594 }
5595
5596 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5597 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5598 things. Check for cases where both arms are testing the same
5599 condition.
5600
5601 Don't do anything if all operands are very simple. */
5602
5603 if ((BINARY_P (x)
5604 && ((!OBJECT_P (XEXP (x, 0))
5605 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5606 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5607 || (!OBJECT_P (XEXP (x, 1))
5608 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5609 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5610 || (UNARY_P (x)
5611 && (!OBJECT_P (XEXP (x, 0))
5612 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5613 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5614 {
5615 rtx cond, true_rtx, false_rtx;
5616
5617 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5618 if (cond != 0
5619 /* If everything is a comparison, what we have is highly unlikely
5620 to be simpler, so don't use it. */
5621 && ! (COMPARISON_P (x)
5622 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5623 {
5624 rtx cop1 = const0_rtx;
5625 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5626
5627 if (cond_code == NE && COMPARISON_P (cond))
5628 return x;
5629
5630 /* Simplify the alternative arms; this may collapse the true and
5631 false arms to store-flag values. Be careful to use copy_rtx
5632 here since true_rtx or false_rtx might share RTL with x as a
5633 result of the if_then_else_cond call above. */
5634 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5635 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5636
5637 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5638 is unlikely to be simpler. */
5639 if (general_operand (true_rtx, VOIDmode)
5640 && general_operand (false_rtx, VOIDmode))
5641 {
5642 enum rtx_code reversed;
5643
5644 /* Restarting if we generate a store-flag expression will cause
5645 us to loop. Just drop through in this case. */
5646
5647 /* If the result values are STORE_FLAG_VALUE and zero, we can
5648 just make the comparison operation. */
5649 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5650 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5651 cond, cop1);
5652 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5653 && ((reversed = reversed_comparison_code_parts
5654 (cond_code, cond, cop1, NULL))
5655 != UNKNOWN))
5656 x = simplify_gen_relational (reversed, mode, VOIDmode,
5657 cond, cop1);
5658
5659 /* Likewise, we can make the negate of a comparison operation
5660 if the result values are - STORE_FLAG_VALUE and zero. */
5661 else if (CONST_INT_P (true_rtx)
5662 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5663 && false_rtx == const0_rtx)
5664 x = simplify_gen_unary (NEG, mode,
5665 simplify_gen_relational (cond_code,
5666 mode, VOIDmode,
5667 cond, cop1),
5668 mode);
5669 else if (CONST_INT_P (false_rtx)
5670 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5671 && true_rtx == const0_rtx
5672 && ((reversed = reversed_comparison_code_parts
5673 (cond_code, cond, cop1, NULL))
5674 != UNKNOWN))
5675 x = simplify_gen_unary (NEG, mode,
5676 simplify_gen_relational (reversed,
5677 mode, VOIDmode,
5678 cond, cop1),
5679 mode);
5680 else
5681 return gen_rtx_IF_THEN_ELSE (mode,
5682 simplify_gen_relational (cond_code,
5683 mode,
5684 VOIDmode,
5685 cond,
5686 cop1),
5687 true_rtx, false_rtx);
5688
5689 code = GET_CODE (x);
5690 op0_mode = VOIDmode;
5691 }
5692 }
5693 }
5694
5695 /* First see if we can apply the inverse distributive law. */
5696 if (code == PLUS || code == MINUS
5697 || code == AND || code == IOR || code == XOR)
5698 {
5699 x = apply_distributive_law (x);
5700 code = GET_CODE (x);
5701 op0_mode = VOIDmode;
5702 }
5703
5704 /* If CODE is an associative operation not otherwise handled, see if we
5705 can associate some operands. This can win if they are constants or
5706 if they are logically related (i.e. (a & b) & a). */
5707 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5708 || code == AND || code == IOR || code == XOR
5709 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5710 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5711 || (flag_associative_math && FLOAT_MODE_P (mode))))
5712 {
5713 if (GET_CODE (XEXP (x, 0)) == code)
5714 {
5715 rtx other = XEXP (XEXP (x, 0), 0);
5716 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5717 rtx inner_op1 = XEXP (x, 1);
5718 rtx inner;
5719
5720 /* Make sure we pass the constant operand if any as the second
5721 one if this is a commutative operation. */
5722 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5723 std::swap (inner_op0, inner_op1);
5724 inner = simplify_binary_operation (code == MINUS ? PLUS
5725 : code == DIV ? MULT
5726 : code,
5727 mode, inner_op0, inner_op1);
5728
5729 /* For commutative operations, try the other pair if that one
5730 didn't simplify. */
5731 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5732 {
5733 other = XEXP (XEXP (x, 0), 1);
5734 inner = simplify_binary_operation (code, mode,
5735 XEXP (XEXP (x, 0), 0),
5736 XEXP (x, 1));
5737 }
5738
5739 if (inner)
5740 return simplify_gen_binary (code, mode, other, inner);
5741 }
5742 }
5743
5744 /* A little bit of algebraic simplification here. */
5745 switch (code)
5746 {
5747 case MEM:
5748 /* Ensure that our address has any ASHIFTs converted to MULT in case
5749 address-recognizing predicates are called later. */
5750 temp = make_compound_operation (XEXP (x, 0), MEM);
5751 SUBST (XEXP (x, 0), temp);
5752 break;
5753
5754 case SUBREG:
5755 if (op0_mode == VOIDmode)
5756 op0_mode = GET_MODE (SUBREG_REG (x));
5757
5758 /* See if this can be moved to simplify_subreg. */
5759 if (CONSTANT_P (SUBREG_REG (x))
5760 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5761 /* Don't call gen_lowpart if the inner mode
5762 is VOIDmode and we cannot simplify it, as SUBREG without
5763 inner mode is invalid. */
5764 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5765 || gen_lowpart_common (mode, SUBREG_REG (x))))
5766 return gen_lowpart (mode, SUBREG_REG (x));
5767
5768 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5769 break;
5770 {
5771 rtx temp;
5772 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5773 SUBREG_BYTE (x));
5774 if (temp)
5775 return temp;
5776
5777 /* If op is known to have all lower bits zero, the result is zero. */
5778 if (!in_dest
5779 && SCALAR_INT_MODE_P (mode)
5780 && SCALAR_INT_MODE_P (op0_mode)
5781 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5782 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5783 && HWI_COMPUTABLE_MODE_P (op0_mode)
5784 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5785 & GET_MODE_MASK (mode)) == 0)
5786 return CONST0_RTX (mode);
5787 }
5788
5789 /* Don't change the mode of the MEM if that would change the meaning
5790 of the address. */
5791 if (MEM_P (SUBREG_REG (x))
5792 && (MEM_VOLATILE_P (SUBREG_REG (x))
5793 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5794 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5795 return gen_rtx_CLOBBER (mode, const0_rtx);
5796
5797 /* Note that we cannot do any narrowing for non-constants since
5798 we might have been counting on using the fact that some bits were
5799 zero. We now do this in the SET. */
5800
5801 break;
5802
5803 case NEG:
5804 temp = expand_compound_operation (XEXP (x, 0));
5805
5806 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5807 replaced by (lshiftrt X C). This will convert
5808 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5809
5810 if (GET_CODE (temp) == ASHIFTRT
5811 && CONST_INT_P (XEXP (temp, 1))
5812 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5813 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5814 INTVAL (XEXP (temp, 1)));
5815
5816 /* If X has only a single bit that might be nonzero, say, bit I, convert
5817 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5818 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5819 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5820 or a SUBREG of one since we'd be making the expression more
5821 complex if it was just a register. */
5822
5823 if (!REG_P (temp)
5824 && ! (GET_CODE (temp) == SUBREG
5825 && REG_P (SUBREG_REG (temp)))
5826 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5827 {
5828 rtx temp1 = simplify_shift_const
5829 (NULL_RTX, ASHIFTRT, mode,
5830 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5831 GET_MODE_PRECISION (mode) - 1 - i),
5832 GET_MODE_PRECISION (mode) - 1 - i);
5833
5834 /* If all we did was surround TEMP with the two shifts, we
5835 haven't improved anything, so don't use it. Otherwise,
5836 we are better off with TEMP1. */
5837 if (GET_CODE (temp1) != ASHIFTRT
5838 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5839 || XEXP (XEXP (temp1, 0), 0) != temp)
5840 return temp1;
5841 }
5842 break;
5843
5844 case TRUNCATE:
5845 /* We can't handle truncation to a partial integer mode here
5846 because we don't know the real bitsize of the partial
5847 integer mode. */
5848 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5849 break;
5850
5851 if (HWI_COMPUTABLE_MODE_P (mode))
5852 SUBST (XEXP (x, 0),
5853 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5854 GET_MODE_MASK (mode), 0));
5855
5856 /* We can truncate a constant value and return it. */
5857 if (CONST_INT_P (XEXP (x, 0)))
5858 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5859
5860 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5861 whose value is a comparison can be replaced with a subreg if
5862 STORE_FLAG_VALUE permits. */
5863 if (HWI_COMPUTABLE_MODE_P (mode)
5864 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5865 && (temp = get_last_value (XEXP (x, 0)))
5866 && COMPARISON_P (temp))
5867 return gen_lowpart (mode, XEXP (x, 0));
5868 break;
5869
5870 case CONST:
5871 /* (const (const X)) can become (const X). Do it this way rather than
5872 returning the inner CONST since CONST can be shared with a
5873 REG_EQUAL note. */
5874 if (GET_CODE (XEXP (x, 0)) == CONST)
5875 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5876 break;
5877
5878 case LO_SUM:
5879 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5880 can add in an offset. find_split_point will split this address up
5881 again if it doesn't match. */
5882 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5883 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5884 return XEXP (x, 1);
5885 break;
5886
5887 case PLUS:
5888 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5889 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5890 bit-field and can be replaced by either a sign_extend or a
5891 sign_extract. The `and' may be a zero_extend and the two
5892 <c>, -<c> constants may be reversed. */
5893 if (GET_CODE (XEXP (x, 0)) == XOR
5894 && CONST_INT_P (XEXP (x, 1))
5895 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5896 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5897 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5898 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5899 && HWI_COMPUTABLE_MODE_P (mode)
5900 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5901 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5902 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5903 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
5904 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5905 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5906 == (unsigned int) i + 1))))
5907 return simplify_shift_const
5908 (NULL_RTX, ASHIFTRT, mode,
5909 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5910 XEXP (XEXP (XEXP (x, 0), 0), 0),
5911 GET_MODE_PRECISION (mode) - (i + 1)),
5912 GET_MODE_PRECISION (mode) - (i + 1));
5913
5914 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5915 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5916 the bitsize of the mode - 1. This allows simplification of
5917 "a = (b & 8) == 0;" */
5918 if (XEXP (x, 1) == constm1_rtx
5919 && !REG_P (XEXP (x, 0))
5920 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5921 && REG_P (SUBREG_REG (XEXP (x, 0))))
5922 && nonzero_bits (XEXP (x, 0), mode) == 1)
5923 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5924 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5925 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5926 GET_MODE_PRECISION (mode) - 1),
5927 GET_MODE_PRECISION (mode) - 1);
5928
5929 /* If we are adding two things that have no bits in common, convert
5930 the addition into an IOR. This will often be further simplified,
5931 for example in cases like ((a & 1) + (a & 2)), which can
5932 become a & 3. */
5933
5934 if (HWI_COMPUTABLE_MODE_P (mode)
5935 && (nonzero_bits (XEXP (x, 0), mode)
5936 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5937 {
5938 /* Try to simplify the expression further. */
5939 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5940 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5941
5942 /* If we could, great. If not, do not go ahead with the IOR
5943 replacement, since PLUS appears in many special purpose
5944 address arithmetic instructions. */
5945 if (GET_CODE (temp) != CLOBBER
5946 && (GET_CODE (temp) != IOR
5947 || ((XEXP (temp, 0) != XEXP (x, 0)
5948 || XEXP (temp, 1) != XEXP (x, 1))
5949 && (XEXP (temp, 0) != XEXP (x, 1)
5950 || XEXP (temp, 1) != XEXP (x, 0)))))
5951 return temp;
5952 }
5953
5954 /* Canonicalize x + x into x << 1. */
5955 if (GET_MODE_CLASS (mode) == MODE_INT
5956 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
5957 && !side_effects_p (XEXP (x, 0)))
5958 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
5959
5960 break;
5961
5962 case MINUS:
5963 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5964 (and <foo> (const_int pow2-1)) */
5965 if (GET_CODE (XEXP (x, 1)) == AND
5966 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5967 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
5968 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5969 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5970 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5971 break;
5972
5973 case MULT:
5974 /* If we have (mult (plus A B) C), apply the distributive law and then
5975 the inverse distributive law to see if things simplify. This
5976 occurs mostly in addresses, often when unrolling loops. */
5977
5978 if (GET_CODE (XEXP (x, 0)) == PLUS)
5979 {
5980 rtx result = distribute_and_simplify_rtx (x, 0);
5981 if (result)
5982 return result;
5983 }
5984
5985 /* Try simplify a*(b/c) as (a*b)/c. */
5986 if (FLOAT_MODE_P (mode) && flag_associative_math
5987 && GET_CODE (XEXP (x, 0)) == DIV)
5988 {
5989 rtx tem = simplify_binary_operation (MULT, mode,
5990 XEXP (XEXP (x, 0), 0),
5991 XEXP (x, 1));
5992 if (tem)
5993 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5994 }
5995 break;
5996
5997 case UDIV:
5998 /* If this is a divide by a power of two, treat it as a shift if
5999 its first operand is a shift. */
6000 if (CONST_INT_P (XEXP (x, 1))
6001 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6002 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6003 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6004 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6005 || GET_CODE (XEXP (x, 0)) == ROTATE
6006 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6007 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
6008 break;
6009
6010 case EQ: case NE:
6011 case GT: case GTU: case GE: case GEU:
6012 case LT: case LTU: case LE: case LEU:
6013 case UNEQ: case LTGT:
6014 case UNGT: case UNGE:
6015 case UNLT: case UNLE:
6016 case UNORDERED: case ORDERED:
6017 /* If the first operand is a condition code, we can't do anything
6018 with it. */
6019 if (GET_CODE (XEXP (x, 0)) == COMPARE
6020 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6021 && ! CC0_P (XEXP (x, 0))))
6022 {
6023 rtx op0 = XEXP (x, 0);
6024 rtx op1 = XEXP (x, 1);
6025 enum rtx_code new_code;
6026
6027 if (GET_CODE (op0) == COMPARE)
6028 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6029
6030 /* Simplify our comparison, if possible. */
6031 new_code = simplify_comparison (code, &op0, &op1);
6032
6033 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6034 if only the low-order bit is possibly nonzero in X (such as when
6035 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6036 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6037 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6038 (plus X 1).
6039
6040 Remove any ZERO_EXTRACT we made when thinking this was a
6041 comparison. It may now be simpler to use, e.g., an AND. If a
6042 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6043 the call to make_compound_operation in the SET case.
6044
6045 Don't apply these optimizations if the caller would
6046 prefer a comparison rather than a value.
6047 E.g., for the condition in an IF_THEN_ELSE most targets need
6048 an explicit comparison. */
6049
6050 if (in_cond)
6051 ;
6052
6053 else if (STORE_FLAG_VALUE == 1
6054 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6055 && op1 == const0_rtx
6056 && mode == GET_MODE (op0)
6057 && nonzero_bits (op0, mode) == 1)
6058 return gen_lowpart (mode,
6059 expand_compound_operation (op0));
6060
6061 else if (STORE_FLAG_VALUE == 1
6062 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6063 && op1 == const0_rtx
6064 && mode == GET_MODE (op0)
6065 && (num_sign_bit_copies (op0, mode)
6066 == GET_MODE_PRECISION (mode)))
6067 {
6068 op0 = expand_compound_operation (op0);
6069 return simplify_gen_unary (NEG, mode,
6070 gen_lowpart (mode, op0),
6071 mode);
6072 }
6073
6074 else if (STORE_FLAG_VALUE == 1
6075 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6076 && op1 == const0_rtx
6077 && mode == GET_MODE (op0)
6078 && nonzero_bits (op0, mode) == 1)
6079 {
6080 op0 = expand_compound_operation (op0);
6081 return simplify_gen_binary (XOR, mode,
6082 gen_lowpart (mode, op0),
6083 const1_rtx);
6084 }
6085
6086 else if (STORE_FLAG_VALUE == 1
6087 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6088 && op1 == const0_rtx
6089 && mode == GET_MODE (op0)
6090 && (num_sign_bit_copies (op0, mode)
6091 == GET_MODE_PRECISION (mode)))
6092 {
6093 op0 = expand_compound_operation (op0);
6094 return plus_constant (mode, gen_lowpart (mode, op0), 1);
6095 }
6096
6097 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6098 those above. */
6099 if (in_cond)
6100 ;
6101
6102 else if (STORE_FLAG_VALUE == -1
6103 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6104 && op1 == const0_rtx
6105 && mode == GET_MODE (op0)
6106 && (num_sign_bit_copies (op0, mode)
6107 == GET_MODE_PRECISION (mode)))
6108 return gen_lowpart (mode,
6109 expand_compound_operation (op0));
6110
6111 else if (STORE_FLAG_VALUE == -1
6112 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6113 && op1 == const0_rtx
6114 && mode == GET_MODE (op0)
6115 && nonzero_bits (op0, mode) == 1)
6116 {
6117 op0 = expand_compound_operation (op0);
6118 return simplify_gen_unary (NEG, mode,
6119 gen_lowpart (mode, op0),
6120 mode);
6121 }
6122
6123 else if (STORE_FLAG_VALUE == -1
6124 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6125 && op1 == const0_rtx
6126 && mode == GET_MODE (op0)
6127 && (num_sign_bit_copies (op0, mode)
6128 == GET_MODE_PRECISION (mode)))
6129 {
6130 op0 = expand_compound_operation (op0);
6131 return simplify_gen_unary (NOT, mode,
6132 gen_lowpart (mode, op0),
6133 mode);
6134 }
6135
6136 /* If X is 0/1, (eq X 0) is X-1. */
6137 else if (STORE_FLAG_VALUE == -1
6138 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6139 && op1 == const0_rtx
6140 && mode == GET_MODE (op0)
6141 && nonzero_bits (op0, mode) == 1)
6142 {
6143 op0 = expand_compound_operation (op0);
6144 return plus_constant (mode, gen_lowpart (mode, op0), -1);
6145 }
6146
6147 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6148 one bit that might be nonzero, we can convert (ne x 0) to
6149 (ashift x c) where C puts the bit in the sign bit. Remove any
6150 AND with STORE_FLAG_VALUE when we are done, since we are only
6151 going to test the sign bit. */
6152 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6153 && HWI_COMPUTABLE_MODE_P (mode)
6154 && val_signbit_p (mode, STORE_FLAG_VALUE)
6155 && op1 == const0_rtx
6156 && mode == GET_MODE (op0)
6157 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6158 {
6159 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6160 expand_compound_operation (op0),
6161 GET_MODE_PRECISION (mode) - 1 - i);
6162 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6163 return XEXP (x, 0);
6164 else
6165 return x;
6166 }
6167
6168 /* If the code changed, return a whole new comparison.
6169 We also need to avoid using SUBST in cases where
6170 simplify_comparison has widened a comparison with a CONST_INT,
6171 since in that case the wider CONST_INT may fail the sanity
6172 checks in do_SUBST. */
6173 if (new_code != code
6174 || (CONST_INT_P (op1)
6175 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6176 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6177 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6178
6179 /* Otherwise, keep this operation, but maybe change its operands.
6180 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6181 SUBST (XEXP (x, 0), op0);
6182 SUBST (XEXP (x, 1), op1);
6183 }
6184 break;
6185
6186 case IF_THEN_ELSE:
6187 return simplify_if_then_else (x);
6188
6189 case ZERO_EXTRACT:
6190 case SIGN_EXTRACT:
6191 case ZERO_EXTEND:
6192 case SIGN_EXTEND:
6193 /* If we are processing SET_DEST, we are done. */
6194 if (in_dest)
6195 return x;
6196
6197 return expand_compound_operation (x);
6198
6199 case SET:
6200 return simplify_set (x);
6201
6202 case AND:
6203 case IOR:
6204 return simplify_logical (x);
6205
6206 case ASHIFT:
6207 case LSHIFTRT:
6208 case ASHIFTRT:
6209 case ROTATE:
6210 case ROTATERT:
6211 /* If this is a shift by a constant amount, simplify it. */
6212 if (CONST_INT_P (XEXP (x, 1)))
6213 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6214 INTVAL (XEXP (x, 1)));
6215
6216 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6217 SUBST (XEXP (x, 1),
6218 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6219 (HOST_WIDE_INT_1U
6220 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6221 - 1,
6222 0));
6223 break;
6224
6225 default:
6226 break;
6227 }
6228
6229 return x;
6230 }
6231 \f
6232 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6233
6234 static rtx
6235 simplify_if_then_else (rtx x)
6236 {
6237 machine_mode mode = GET_MODE (x);
6238 rtx cond = XEXP (x, 0);
6239 rtx true_rtx = XEXP (x, 1);
6240 rtx false_rtx = XEXP (x, 2);
6241 enum rtx_code true_code = GET_CODE (cond);
6242 int comparison_p = COMPARISON_P (cond);
6243 rtx temp;
6244 int i;
6245 enum rtx_code false_code;
6246 rtx reversed;
6247
6248 /* Simplify storing of the truth value. */
6249 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6250 return simplify_gen_relational (true_code, mode, VOIDmode,
6251 XEXP (cond, 0), XEXP (cond, 1));
6252
6253 /* Also when the truth value has to be reversed. */
6254 if (comparison_p
6255 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6256 && (reversed = reversed_comparison (cond, mode)))
6257 return reversed;
6258
6259 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6260 in it is being compared against certain values. Get the true and false
6261 comparisons and see if that says anything about the value of each arm. */
6262
6263 if (comparison_p
6264 && ((false_code = reversed_comparison_code (cond, NULL))
6265 != UNKNOWN)
6266 && REG_P (XEXP (cond, 0)))
6267 {
6268 HOST_WIDE_INT nzb;
6269 rtx from = XEXP (cond, 0);
6270 rtx true_val = XEXP (cond, 1);
6271 rtx false_val = true_val;
6272 int swapped = 0;
6273
6274 /* If FALSE_CODE is EQ, swap the codes and arms. */
6275
6276 if (false_code == EQ)
6277 {
6278 swapped = 1, true_code = EQ, false_code = NE;
6279 std::swap (true_rtx, false_rtx);
6280 }
6281
6282 /* If we are comparing against zero and the expression being tested has
6283 only a single bit that might be nonzero, that is its value when it is
6284 not equal to zero. Similarly if it is known to be -1 or 0. */
6285
6286 if (true_code == EQ && true_val == const0_rtx
6287 && pow2p_hwi (nzb = nonzero_bits (from, GET_MODE (from))))
6288 {
6289 false_code = EQ;
6290 false_val = gen_int_mode (nzb, GET_MODE (from));
6291 }
6292 else if (true_code == EQ && true_val == const0_rtx
6293 && (num_sign_bit_copies (from, GET_MODE (from))
6294 == GET_MODE_PRECISION (GET_MODE (from))))
6295 {
6296 false_code = EQ;
6297 false_val = constm1_rtx;
6298 }
6299
6300 /* Now simplify an arm if we know the value of the register in the
6301 branch and it is used in the arm. Be careful due to the potential
6302 of locally-shared RTL. */
6303
6304 if (reg_mentioned_p (from, true_rtx))
6305 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6306 from, true_val),
6307 pc_rtx, pc_rtx, 0, 0, 0);
6308 if (reg_mentioned_p (from, false_rtx))
6309 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6310 from, false_val),
6311 pc_rtx, pc_rtx, 0, 0, 0);
6312
6313 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6314 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6315
6316 true_rtx = XEXP (x, 1);
6317 false_rtx = XEXP (x, 2);
6318 true_code = GET_CODE (cond);
6319 }
6320
6321 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6322 reversed, do so to avoid needing two sets of patterns for
6323 subtract-and-branch insns. Similarly if we have a constant in the true
6324 arm, the false arm is the same as the first operand of the comparison, or
6325 the false arm is more complicated than the true arm. */
6326
6327 if (comparison_p
6328 && reversed_comparison_code (cond, NULL) != UNKNOWN
6329 && (true_rtx == pc_rtx
6330 || (CONSTANT_P (true_rtx)
6331 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6332 || true_rtx == const0_rtx
6333 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6334 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6335 && !OBJECT_P (false_rtx))
6336 || reg_mentioned_p (true_rtx, false_rtx)
6337 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6338 {
6339 true_code = reversed_comparison_code (cond, NULL);
6340 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6341 SUBST (XEXP (x, 1), false_rtx);
6342 SUBST (XEXP (x, 2), true_rtx);
6343
6344 std::swap (true_rtx, false_rtx);
6345 cond = XEXP (x, 0);
6346
6347 /* It is possible that the conditional has been simplified out. */
6348 true_code = GET_CODE (cond);
6349 comparison_p = COMPARISON_P (cond);
6350 }
6351
6352 /* If the two arms are identical, we don't need the comparison. */
6353
6354 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6355 return true_rtx;
6356
6357 /* Convert a == b ? b : a to "a". */
6358 if (true_code == EQ && ! side_effects_p (cond)
6359 && !HONOR_NANS (mode)
6360 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6361 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6362 return false_rtx;
6363 else if (true_code == NE && ! side_effects_p (cond)
6364 && !HONOR_NANS (mode)
6365 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6366 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6367 return true_rtx;
6368
6369 /* Look for cases where we have (abs x) or (neg (abs X)). */
6370
6371 if (GET_MODE_CLASS (mode) == MODE_INT
6372 && comparison_p
6373 && XEXP (cond, 1) == const0_rtx
6374 && GET_CODE (false_rtx) == NEG
6375 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6376 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6377 && ! side_effects_p (true_rtx))
6378 switch (true_code)
6379 {
6380 case GT:
6381 case GE:
6382 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6383 case LT:
6384 case LE:
6385 return
6386 simplify_gen_unary (NEG, mode,
6387 simplify_gen_unary (ABS, mode, true_rtx, mode),
6388 mode);
6389 default:
6390 break;
6391 }
6392
6393 /* Look for MIN or MAX. */
6394
6395 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6396 && comparison_p
6397 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6398 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6399 && ! side_effects_p (cond))
6400 switch (true_code)
6401 {
6402 case GE:
6403 case GT:
6404 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6405 case LE:
6406 case LT:
6407 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6408 case GEU:
6409 case GTU:
6410 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6411 case LEU:
6412 case LTU:
6413 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6414 default:
6415 break;
6416 }
6417
6418 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6419 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6420 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6421 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6422 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6423 neither 1 or -1, but it isn't worth checking for. */
6424
6425 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6426 && comparison_p
6427 && GET_MODE_CLASS (mode) == MODE_INT
6428 && ! side_effects_p (x))
6429 {
6430 rtx t = make_compound_operation (true_rtx, SET);
6431 rtx f = make_compound_operation (false_rtx, SET);
6432 rtx cond_op0 = XEXP (cond, 0);
6433 rtx cond_op1 = XEXP (cond, 1);
6434 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6435 machine_mode m = mode;
6436 rtx z = 0, c1 = NULL_RTX;
6437
6438 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6439 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6440 || GET_CODE (t) == ASHIFT
6441 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6442 && rtx_equal_p (XEXP (t, 0), f))
6443 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6444
6445 /* If an identity-zero op is commutative, check whether there
6446 would be a match if we swapped the operands. */
6447 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6448 || GET_CODE (t) == XOR)
6449 && rtx_equal_p (XEXP (t, 1), f))
6450 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6451 else if (GET_CODE (t) == SIGN_EXTEND
6452 && (GET_CODE (XEXP (t, 0)) == PLUS
6453 || GET_CODE (XEXP (t, 0)) == MINUS
6454 || GET_CODE (XEXP (t, 0)) == IOR
6455 || GET_CODE (XEXP (t, 0)) == XOR
6456 || GET_CODE (XEXP (t, 0)) == ASHIFT
6457 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6458 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6459 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6460 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6461 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6462 && (num_sign_bit_copies (f, GET_MODE (f))
6463 > (unsigned int)
6464 (GET_MODE_PRECISION (mode)
6465 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6466 {
6467 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6468 extend_op = SIGN_EXTEND;
6469 m = GET_MODE (XEXP (t, 0));
6470 }
6471 else if (GET_CODE (t) == SIGN_EXTEND
6472 && (GET_CODE (XEXP (t, 0)) == PLUS
6473 || GET_CODE (XEXP (t, 0)) == IOR
6474 || GET_CODE (XEXP (t, 0)) == XOR)
6475 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6476 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6477 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6478 && (num_sign_bit_copies (f, GET_MODE (f))
6479 > (unsigned int)
6480 (GET_MODE_PRECISION (mode)
6481 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6482 {
6483 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6484 extend_op = SIGN_EXTEND;
6485 m = GET_MODE (XEXP (t, 0));
6486 }
6487 else if (GET_CODE (t) == ZERO_EXTEND
6488 && (GET_CODE (XEXP (t, 0)) == PLUS
6489 || GET_CODE (XEXP (t, 0)) == MINUS
6490 || GET_CODE (XEXP (t, 0)) == IOR
6491 || GET_CODE (XEXP (t, 0)) == XOR
6492 || GET_CODE (XEXP (t, 0)) == ASHIFT
6493 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6494 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6495 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6496 && HWI_COMPUTABLE_MODE_P (mode)
6497 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6498 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6499 && ((nonzero_bits (f, GET_MODE (f))
6500 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6501 == 0))
6502 {
6503 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6504 extend_op = ZERO_EXTEND;
6505 m = GET_MODE (XEXP (t, 0));
6506 }
6507 else if (GET_CODE (t) == ZERO_EXTEND
6508 && (GET_CODE (XEXP (t, 0)) == PLUS
6509 || GET_CODE (XEXP (t, 0)) == IOR
6510 || GET_CODE (XEXP (t, 0)) == XOR)
6511 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6512 && HWI_COMPUTABLE_MODE_P (mode)
6513 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6514 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6515 && ((nonzero_bits (f, GET_MODE (f))
6516 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6517 == 0))
6518 {
6519 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6520 extend_op = ZERO_EXTEND;
6521 m = GET_MODE (XEXP (t, 0));
6522 }
6523
6524 if (z)
6525 {
6526 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6527 cond_op0, cond_op1),
6528 pc_rtx, pc_rtx, 0, 0, 0);
6529 temp = simplify_gen_binary (MULT, m, temp,
6530 simplify_gen_binary (MULT, m, c1,
6531 const_true_rtx));
6532 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6533 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6534
6535 if (extend_op != UNKNOWN)
6536 temp = simplify_gen_unary (extend_op, mode, temp, m);
6537
6538 return temp;
6539 }
6540 }
6541
6542 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6543 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6544 negation of a single bit, we can convert this operation to a shift. We
6545 can actually do this more generally, but it doesn't seem worth it. */
6546
6547 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6548 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6549 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6550 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6551 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6552 == GET_MODE_PRECISION (mode))
6553 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6554 return
6555 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6556 gen_lowpart (mode, XEXP (cond, 0)), i);
6557
6558 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6559 non-zero bit in A is C1. */
6560 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6561 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6562 && INTEGRAL_MODE_P (GET_MODE (XEXP (cond, 0)))
6563 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6564 == nonzero_bits (XEXP (cond, 0), GET_MODE (XEXP (cond, 0)))
6565 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6566 {
6567 rtx val = XEXP (cond, 0);
6568 enum machine_mode val_mode = GET_MODE (val);
6569 if (val_mode == mode)
6570 return val;
6571 else if (GET_MODE_PRECISION (val_mode) < GET_MODE_PRECISION (mode))
6572 return simplify_gen_unary (ZERO_EXTEND, mode, val, val_mode);
6573 }
6574
6575 return x;
6576 }
6577 \f
6578 /* Simplify X, a SET expression. Return the new expression. */
6579
6580 static rtx
6581 simplify_set (rtx x)
6582 {
6583 rtx src = SET_SRC (x);
6584 rtx dest = SET_DEST (x);
6585 machine_mode mode
6586 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6587 rtx_insn *other_insn;
6588 rtx *cc_use;
6589
6590 /* (set (pc) (return)) gets written as (return). */
6591 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6592 return src;
6593
6594 /* Now that we know for sure which bits of SRC we are using, see if we can
6595 simplify the expression for the object knowing that we only need the
6596 low-order bits. */
6597
6598 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6599 {
6600 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6601 SUBST (SET_SRC (x), src);
6602 }
6603
6604 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6605 the comparison result and try to simplify it unless we already have used
6606 undobuf.other_insn. */
6607 if ((GET_MODE_CLASS (mode) == MODE_CC
6608 || GET_CODE (src) == COMPARE
6609 || CC0_P (dest))
6610 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6611 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6612 && COMPARISON_P (*cc_use)
6613 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6614 {
6615 enum rtx_code old_code = GET_CODE (*cc_use);
6616 enum rtx_code new_code;
6617 rtx op0, op1, tmp;
6618 int other_changed = 0;
6619 rtx inner_compare = NULL_RTX;
6620 machine_mode compare_mode = GET_MODE (dest);
6621
6622 if (GET_CODE (src) == COMPARE)
6623 {
6624 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6625 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6626 {
6627 inner_compare = op0;
6628 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6629 }
6630 }
6631 else
6632 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6633
6634 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6635 op0, op1);
6636 if (!tmp)
6637 new_code = old_code;
6638 else if (!CONSTANT_P (tmp))
6639 {
6640 new_code = GET_CODE (tmp);
6641 op0 = XEXP (tmp, 0);
6642 op1 = XEXP (tmp, 1);
6643 }
6644 else
6645 {
6646 rtx pat = PATTERN (other_insn);
6647 undobuf.other_insn = other_insn;
6648 SUBST (*cc_use, tmp);
6649
6650 /* Attempt to simplify CC user. */
6651 if (GET_CODE (pat) == SET)
6652 {
6653 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6654 if (new_rtx != NULL_RTX)
6655 SUBST (SET_SRC (pat), new_rtx);
6656 }
6657
6658 /* Convert X into a no-op move. */
6659 SUBST (SET_DEST (x), pc_rtx);
6660 SUBST (SET_SRC (x), pc_rtx);
6661 return x;
6662 }
6663
6664 /* Simplify our comparison, if possible. */
6665 new_code = simplify_comparison (new_code, &op0, &op1);
6666
6667 #ifdef SELECT_CC_MODE
6668 /* If this machine has CC modes other than CCmode, check to see if we
6669 need to use a different CC mode here. */
6670 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6671 compare_mode = GET_MODE (op0);
6672 else if (inner_compare
6673 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6674 && new_code == old_code
6675 && op0 == XEXP (inner_compare, 0)
6676 && op1 == XEXP (inner_compare, 1))
6677 compare_mode = GET_MODE (inner_compare);
6678 else
6679 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6680
6681 /* If the mode changed, we have to change SET_DEST, the mode in the
6682 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6683 a hard register, just build new versions with the proper mode. If it
6684 is a pseudo, we lose unless it is only time we set the pseudo, in
6685 which case we can safely change its mode. */
6686 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6687 {
6688 if (can_change_dest_mode (dest, 0, compare_mode))
6689 {
6690 unsigned int regno = REGNO (dest);
6691 rtx new_dest;
6692
6693 if (regno < FIRST_PSEUDO_REGISTER)
6694 new_dest = gen_rtx_REG (compare_mode, regno);
6695 else
6696 {
6697 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6698 new_dest = regno_reg_rtx[regno];
6699 }
6700
6701 SUBST (SET_DEST (x), new_dest);
6702 SUBST (XEXP (*cc_use, 0), new_dest);
6703 other_changed = 1;
6704
6705 dest = new_dest;
6706 }
6707 }
6708 #endif /* SELECT_CC_MODE */
6709
6710 /* If the code changed, we have to build a new comparison in
6711 undobuf.other_insn. */
6712 if (new_code != old_code)
6713 {
6714 int other_changed_previously = other_changed;
6715 unsigned HOST_WIDE_INT mask;
6716 rtx old_cc_use = *cc_use;
6717
6718 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6719 dest, const0_rtx));
6720 other_changed = 1;
6721
6722 /* If the only change we made was to change an EQ into an NE or
6723 vice versa, OP0 has only one bit that might be nonzero, and OP1
6724 is zero, check if changing the user of the condition code will
6725 produce a valid insn. If it won't, we can keep the original code
6726 in that insn by surrounding our operation with an XOR. */
6727
6728 if (((old_code == NE && new_code == EQ)
6729 || (old_code == EQ && new_code == NE))
6730 && ! other_changed_previously && op1 == const0_rtx
6731 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6732 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6733 {
6734 rtx pat = PATTERN (other_insn), note = 0;
6735
6736 if ((recog_for_combine (&pat, other_insn, &note) < 0
6737 && ! check_asm_operands (pat)))
6738 {
6739 *cc_use = old_cc_use;
6740 other_changed = 0;
6741
6742 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6743 gen_int_mode (mask,
6744 GET_MODE (op0)));
6745 }
6746 }
6747 }
6748
6749 if (other_changed)
6750 undobuf.other_insn = other_insn;
6751
6752 /* Don't generate a compare of a CC with 0, just use that CC. */
6753 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6754 {
6755 SUBST (SET_SRC (x), op0);
6756 src = SET_SRC (x);
6757 }
6758 /* Otherwise, if we didn't previously have the same COMPARE we
6759 want, create it from scratch. */
6760 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6761 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6762 {
6763 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6764 src = SET_SRC (x);
6765 }
6766 }
6767 else
6768 {
6769 /* Get SET_SRC in a form where we have placed back any
6770 compound expressions. Then do the checks below. */
6771 src = make_compound_operation (src, SET);
6772 SUBST (SET_SRC (x), src);
6773 }
6774
6775 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6776 and X being a REG or (subreg (reg)), we may be able to convert this to
6777 (set (subreg:m2 x) (op)).
6778
6779 We can always do this if M1 is narrower than M2 because that means that
6780 we only care about the low bits of the result.
6781
6782 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6783 perform a narrower operation than requested since the high-order bits will
6784 be undefined. On machine where it is defined, this transformation is safe
6785 as long as M1 and M2 have the same number of words. */
6786
6787 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6788 && !OBJECT_P (SUBREG_REG (src))
6789 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6790 / UNITS_PER_WORD)
6791 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6792 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6793 && (WORD_REGISTER_OPERATIONS
6794 || (GET_MODE_SIZE (GET_MODE (src))
6795 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
6796 #ifdef CANNOT_CHANGE_MODE_CLASS
6797 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6798 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6799 GET_MODE (SUBREG_REG (src)),
6800 GET_MODE (src)))
6801 #endif
6802 && (REG_P (dest)
6803 || (GET_CODE (dest) == SUBREG
6804 && REG_P (SUBREG_REG (dest)))))
6805 {
6806 SUBST (SET_DEST (x),
6807 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6808 dest));
6809 SUBST (SET_SRC (x), SUBREG_REG (src));
6810
6811 src = SET_SRC (x), dest = SET_DEST (x);
6812 }
6813
6814 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6815 in SRC. */
6816 if (dest == cc0_rtx
6817 && GET_CODE (src) == SUBREG
6818 && subreg_lowpart_p (src)
6819 && (GET_MODE_PRECISION (GET_MODE (src))
6820 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6821 {
6822 rtx inner = SUBREG_REG (src);
6823 machine_mode inner_mode = GET_MODE (inner);
6824
6825 /* Here we make sure that we don't have a sign bit on. */
6826 if (val_signbit_known_clear_p (GET_MODE (src),
6827 nonzero_bits (inner, inner_mode)))
6828 {
6829 SUBST (SET_SRC (x), inner);
6830 src = SET_SRC (x);
6831 }
6832 }
6833
6834 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6835 would require a paradoxical subreg. Replace the subreg with a
6836 zero_extend to avoid the reload that would otherwise be required. */
6837
6838 enum rtx_code extend_op;
6839 if (paradoxical_subreg_p (src)
6840 && MEM_P (SUBREG_REG (src))
6841 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
6842 {
6843 SUBST (SET_SRC (x),
6844 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
6845
6846 src = SET_SRC (x);
6847 }
6848
6849 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6850 are comparing an item known to be 0 or -1 against 0, use a logical
6851 operation instead. Check for one of the arms being an IOR of the other
6852 arm with some value. We compute three terms to be IOR'ed together. In
6853 practice, at most two will be nonzero. Then we do the IOR's. */
6854
6855 if (GET_CODE (dest) != PC
6856 && GET_CODE (src) == IF_THEN_ELSE
6857 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6858 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6859 && XEXP (XEXP (src, 0), 1) == const0_rtx
6860 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6861 && (!HAVE_conditional_move
6862 || ! can_conditionally_move_p (GET_MODE (src)))
6863 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6864 GET_MODE (XEXP (XEXP (src, 0), 0)))
6865 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6866 && ! side_effects_p (src))
6867 {
6868 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6869 ? XEXP (src, 1) : XEXP (src, 2));
6870 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6871 ? XEXP (src, 2) : XEXP (src, 1));
6872 rtx term1 = const0_rtx, term2, term3;
6873
6874 if (GET_CODE (true_rtx) == IOR
6875 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6876 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6877 else if (GET_CODE (true_rtx) == IOR
6878 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6879 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6880 else if (GET_CODE (false_rtx) == IOR
6881 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6882 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6883 else if (GET_CODE (false_rtx) == IOR
6884 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6885 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6886
6887 term2 = simplify_gen_binary (AND, GET_MODE (src),
6888 XEXP (XEXP (src, 0), 0), true_rtx);
6889 term3 = simplify_gen_binary (AND, GET_MODE (src),
6890 simplify_gen_unary (NOT, GET_MODE (src),
6891 XEXP (XEXP (src, 0), 0),
6892 GET_MODE (src)),
6893 false_rtx);
6894
6895 SUBST (SET_SRC (x),
6896 simplify_gen_binary (IOR, GET_MODE (src),
6897 simplify_gen_binary (IOR, GET_MODE (src),
6898 term1, term2),
6899 term3));
6900
6901 src = SET_SRC (x);
6902 }
6903
6904 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6905 whole thing fail. */
6906 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6907 return src;
6908 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6909 return dest;
6910 else
6911 /* Convert this into a field assignment operation, if possible. */
6912 return make_field_assignment (x);
6913 }
6914 \f
6915 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6916 result. */
6917
6918 static rtx
6919 simplify_logical (rtx x)
6920 {
6921 machine_mode mode = GET_MODE (x);
6922 rtx op0 = XEXP (x, 0);
6923 rtx op1 = XEXP (x, 1);
6924
6925 switch (GET_CODE (x))
6926 {
6927 case AND:
6928 /* We can call simplify_and_const_int only if we don't lose
6929 any (sign) bits when converting INTVAL (op1) to
6930 "unsigned HOST_WIDE_INT". */
6931 if (CONST_INT_P (op1)
6932 && (HWI_COMPUTABLE_MODE_P (mode)
6933 || INTVAL (op1) > 0))
6934 {
6935 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6936 if (GET_CODE (x) != AND)
6937 return x;
6938
6939 op0 = XEXP (x, 0);
6940 op1 = XEXP (x, 1);
6941 }
6942
6943 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6944 apply the distributive law and then the inverse distributive
6945 law to see if things simplify. */
6946 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6947 {
6948 rtx result = distribute_and_simplify_rtx (x, 0);
6949 if (result)
6950 return result;
6951 }
6952 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6953 {
6954 rtx result = distribute_and_simplify_rtx (x, 1);
6955 if (result)
6956 return result;
6957 }
6958 break;
6959
6960 case IOR:
6961 /* If we have (ior (and A B) C), apply the distributive law and then
6962 the inverse distributive law to see if things simplify. */
6963
6964 if (GET_CODE (op0) == AND)
6965 {
6966 rtx result = distribute_and_simplify_rtx (x, 0);
6967 if (result)
6968 return result;
6969 }
6970
6971 if (GET_CODE (op1) == AND)
6972 {
6973 rtx result = distribute_and_simplify_rtx (x, 1);
6974 if (result)
6975 return result;
6976 }
6977 break;
6978
6979 default:
6980 gcc_unreachable ();
6981 }
6982
6983 return x;
6984 }
6985 \f
6986 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6987 operations" because they can be replaced with two more basic operations.
6988 ZERO_EXTEND is also considered "compound" because it can be replaced with
6989 an AND operation, which is simpler, though only one operation.
6990
6991 The function expand_compound_operation is called with an rtx expression
6992 and will convert it to the appropriate shifts and AND operations,
6993 simplifying at each stage.
6994
6995 The function make_compound_operation is called to convert an expression
6996 consisting of shifts and ANDs into the equivalent compound expression.
6997 It is the inverse of this function, loosely speaking. */
6998
6999 static rtx
7000 expand_compound_operation (rtx x)
7001 {
7002 unsigned HOST_WIDE_INT pos = 0, len;
7003 int unsignedp = 0;
7004 unsigned int modewidth;
7005 rtx tem;
7006
7007 switch (GET_CODE (x))
7008 {
7009 case ZERO_EXTEND:
7010 unsignedp = 1;
7011 /* FALLTHRU */
7012 case SIGN_EXTEND:
7013 /* We can't necessarily use a const_int for a multiword mode;
7014 it depends on implicitly extending the value.
7015 Since we don't know the right way to extend it,
7016 we can't tell whether the implicit way is right.
7017
7018 Even for a mode that is no wider than a const_int,
7019 we can't win, because we need to sign extend one of its bits through
7020 the rest of it, and we don't know which bit. */
7021 if (CONST_INT_P (XEXP (x, 0)))
7022 return x;
7023
7024 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7025 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7026 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7027 reloaded. If not for that, MEM's would very rarely be safe.
7028
7029 Reject MODEs bigger than a word, because we might not be able
7030 to reference a two-register group starting with an arbitrary register
7031 (and currently gen_lowpart might crash for a SUBREG). */
7032
7033 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
7034 return x;
7035
7036 /* Reject MODEs that aren't scalar integers because turning vector
7037 or complex modes into shifts causes problems. */
7038
7039 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7040 return x;
7041
7042 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
7043 /* If the inner object has VOIDmode (the only way this can happen
7044 is if it is an ASM_OPERANDS), we can't do anything since we don't
7045 know how much masking to do. */
7046 if (len == 0)
7047 return x;
7048
7049 break;
7050
7051 case ZERO_EXTRACT:
7052 unsignedp = 1;
7053
7054 /* fall through */
7055
7056 case SIGN_EXTRACT:
7057 /* If the operand is a CLOBBER, just return it. */
7058 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7059 return XEXP (x, 0);
7060
7061 if (!CONST_INT_P (XEXP (x, 1))
7062 || !CONST_INT_P (XEXP (x, 2))
7063 || GET_MODE (XEXP (x, 0)) == VOIDmode)
7064 return x;
7065
7066 /* Reject MODEs that aren't scalar integers because turning vector
7067 or complex modes into shifts causes problems. */
7068
7069 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7070 return x;
7071
7072 len = INTVAL (XEXP (x, 1));
7073 pos = INTVAL (XEXP (x, 2));
7074
7075 /* This should stay within the object being extracted, fail otherwise. */
7076 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
7077 return x;
7078
7079 if (BITS_BIG_ENDIAN)
7080 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7081
7082 break;
7083
7084 default:
7085 return x;
7086 }
7087 /* Convert sign extension to zero extension, if we know that the high
7088 bit is not set, as this is easier to optimize. It will be converted
7089 back to cheaper alternative in make_extraction. */
7090 if (GET_CODE (x) == SIGN_EXTEND
7091 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7092 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7093 & ~(((unsigned HOST_WIDE_INT)
7094 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7095 >> 1))
7096 == 0)))
7097 {
7098 machine_mode mode = GET_MODE (x);
7099 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7100 rtx temp2 = expand_compound_operation (temp);
7101
7102 /* Make sure this is a profitable operation. */
7103 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7104 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7105 return temp2;
7106 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7107 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7108 return temp;
7109 else
7110 return x;
7111 }
7112
7113 /* We can optimize some special cases of ZERO_EXTEND. */
7114 if (GET_CODE (x) == ZERO_EXTEND)
7115 {
7116 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7117 know that the last value didn't have any inappropriate bits
7118 set. */
7119 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7120 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7121 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7122 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7123 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7124 return XEXP (XEXP (x, 0), 0);
7125
7126 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7127 if (GET_CODE (XEXP (x, 0)) == SUBREG
7128 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7129 && subreg_lowpart_p (XEXP (x, 0))
7130 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7131 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7132 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7133 return SUBREG_REG (XEXP (x, 0));
7134
7135 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7136 is a comparison and STORE_FLAG_VALUE permits. This is like
7137 the first case, but it works even when GET_MODE (x) is larger
7138 than HOST_WIDE_INT. */
7139 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7140 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7141 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7142 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7143 <= HOST_BITS_PER_WIDE_INT)
7144 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7145 return XEXP (XEXP (x, 0), 0);
7146
7147 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7148 if (GET_CODE (XEXP (x, 0)) == SUBREG
7149 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7150 && subreg_lowpart_p (XEXP (x, 0))
7151 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7152 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7153 <= HOST_BITS_PER_WIDE_INT)
7154 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7155 return SUBREG_REG (XEXP (x, 0));
7156
7157 }
7158
7159 /* If we reach here, we want to return a pair of shifts. The inner
7160 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7161 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7162 logical depending on the value of UNSIGNEDP.
7163
7164 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7165 converted into an AND of a shift.
7166
7167 We must check for the case where the left shift would have a negative
7168 count. This can happen in a case like (x >> 31) & 255 on machines
7169 that can't shift by a constant. On those machines, we would first
7170 combine the shift with the AND to produce a variable-position
7171 extraction. Then the constant of 31 would be substituted in
7172 to produce such a position. */
7173
7174 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7175 if (modewidth >= pos + len)
7176 {
7177 machine_mode mode = GET_MODE (x);
7178 tem = gen_lowpart (mode, XEXP (x, 0));
7179 if (!tem || GET_CODE (tem) == CLOBBER)
7180 return x;
7181 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7182 tem, modewidth - pos - len);
7183 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7184 mode, tem, modewidth - len);
7185 }
7186 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7187 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7188 simplify_shift_const (NULL_RTX, LSHIFTRT,
7189 GET_MODE (x),
7190 XEXP (x, 0), pos),
7191 (HOST_WIDE_INT_1U << len) - 1);
7192 else
7193 /* Any other cases we can't handle. */
7194 return x;
7195
7196 /* If we couldn't do this for some reason, return the original
7197 expression. */
7198 if (GET_CODE (tem) == CLOBBER)
7199 return x;
7200
7201 return tem;
7202 }
7203 \f
7204 /* X is a SET which contains an assignment of one object into
7205 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7206 or certain SUBREGS). If possible, convert it into a series of
7207 logical operations.
7208
7209 We half-heartedly support variable positions, but do not at all
7210 support variable lengths. */
7211
7212 static const_rtx
7213 expand_field_assignment (const_rtx x)
7214 {
7215 rtx inner;
7216 rtx pos; /* Always counts from low bit. */
7217 int len;
7218 rtx mask, cleared, masked;
7219 machine_mode compute_mode;
7220
7221 /* Loop until we find something we can't simplify. */
7222 while (1)
7223 {
7224 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7225 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7226 {
7227 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7228 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7229 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7230 }
7231 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7232 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7233 {
7234 inner = XEXP (SET_DEST (x), 0);
7235 len = INTVAL (XEXP (SET_DEST (x), 1));
7236 pos = XEXP (SET_DEST (x), 2);
7237
7238 /* A constant position should stay within the width of INNER. */
7239 if (CONST_INT_P (pos)
7240 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7241 break;
7242
7243 if (BITS_BIG_ENDIAN)
7244 {
7245 if (CONST_INT_P (pos))
7246 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7247 - INTVAL (pos));
7248 else if (GET_CODE (pos) == MINUS
7249 && CONST_INT_P (XEXP (pos, 1))
7250 && (INTVAL (XEXP (pos, 1))
7251 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7252 /* If position is ADJUST - X, new position is X. */
7253 pos = XEXP (pos, 0);
7254 else
7255 {
7256 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7257 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7258 gen_int_mode (prec - len,
7259 GET_MODE (pos)),
7260 pos);
7261 }
7262 }
7263 }
7264
7265 /* A SUBREG between two modes that occupy the same numbers of words
7266 can be done by moving the SUBREG to the source. */
7267 else if (GET_CODE (SET_DEST (x)) == SUBREG
7268 /* We need SUBREGs to compute nonzero_bits properly. */
7269 && nonzero_sign_valid
7270 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7271 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7272 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7273 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7274 {
7275 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7276 gen_lowpart
7277 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7278 SET_SRC (x)));
7279 continue;
7280 }
7281 else
7282 break;
7283
7284 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7285 inner = SUBREG_REG (inner);
7286
7287 compute_mode = GET_MODE (inner);
7288
7289 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7290 if (! SCALAR_INT_MODE_P (compute_mode))
7291 {
7292 machine_mode imode;
7293
7294 /* Don't do anything for vector or complex integral types. */
7295 if (! FLOAT_MODE_P (compute_mode))
7296 break;
7297
7298 /* Try to find an integral mode to pun with. */
7299 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7300 if (imode == BLKmode)
7301 break;
7302
7303 compute_mode = imode;
7304 inner = gen_lowpart (imode, inner);
7305 }
7306
7307 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7308 if (len >= HOST_BITS_PER_WIDE_INT)
7309 break;
7310
7311 /* Don't try to compute in too wide unsupported modes. */
7312 if (!targetm.scalar_mode_supported_p (compute_mode))
7313 break;
7314
7315 /* Now compute the equivalent expression. Make a copy of INNER
7316 for the SET_DEST in case it is a MEM into which we will substitute;
7317 we don't want shared RTL in that case. */
7318 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7319 compute_mode);
7320 cleared = simplify_gen_binary (AND, compute_mode,
7321 simplify_gen_unary (NOT, compute_mode,
7322 simplify_gen_binary (ASHIFT,
7323 compute_mode,
7324 mask, pos),
7325 compute_mode),
7326 inner);
7327 masked = simplify_gen_binary (ASHIFT, compute_mode,
7328 simplify_gen_binary (
7329 AND, compute_mode,
7330 gen_lowpart (compute_mode, SET_SRC (x)),
7331 mask),
7332 pos);
7333
7334 x = gen_rtx_SET (copy_rtx (inner),
7335 simplify_gen_binary (IOR, compute_mode,
7336 cleared, masked));
7337 }
7338
7339 return x;
7340 }
7341 \f
7342 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7343 it is an RTX that represents the (variable) starting position; otherwise,
7344 POS is the (constant) starting bit position. Both are counted from the LSB.
7345
7346 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7347
7348 IN_DEST is nonzero if this is a reference in the destination of a SET.
7349 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7350 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7351 be used.
7352
7353 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7354 ZERO_EXTRACT should be built even for bits starting at bit 0.
7355
7356 MODE is the desired mode of the result (if IN_DEST == 0).
7357
7358 The result is an RTX for the extraction or NULL_RTX if the target
7359 can't handle it. */
7360
7361 static rtx
7362 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7363 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7364 int in_dest, int in_compare)
7365 {
7366 /* This mode describes the size of the storage area
7367 to fetch the overall value from. Within that, we
7368 ignore the POS lowest bits, etc. */
7369 machine_mode is_mode = GET_MODE (inner);
7370 machine_mode inner_mode;
7371 machine_mode wanted_inner_mode;
7372 machine_mode wanted_inner_reg_mode = word_mode;
7373 machine_mode pos_mode = word_mode;
7374 machine_mode extraction_mode = word_mode;
7375 machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7376 rtx new_rtx = 0;
7377 rtx orig_pos_rtx = pos_rtx;
7378 HOST_WIDE_INT orig_pos;
7379
7380 if (pos_rtx && CONST_INT_P (pos_rtx))
7381 pos = INTVAL (pos_rtx), pos_rtx = 0;
7382
7383 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7384 {
7385 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7386 consider just the QI as the memory to extract from.
7387 The subreg adds or removes high bits; its mode is
7388 irrelevant to the meaning of this extraction,
7389 since POS and LEN count from the lsb. */
7390 if (MEM_P (SUBREG_REG (inner)))
7391 is_mode = GET_MODE (SUBREG_REG (inner));
7392 inner = SUBREG_REG (inner);
7393 }
7394 else if (GET_CODE (inner) == ASHIFT
7395 && CONST_INT_P (XEXP (inner, 1))
7396 && pos_rtx == 0 && pos == 0
7397 && len > UINTVAL (XEXP (inner, 1)))
7398 {
7399 /* We're extracting the least significant bits of an rtx
7400 (ashift X (const_int C)), where LEN > C. Extract the
7401 least significant (LEN - C) bits of X, giving an rtx
7402 whose mode is MODE, then shift it left C times. */
7403 new_rtx = make_extraction (mode, XEXP (inner, 0),
7404 0, 0, len - INTVAL (XEXP (inner, 1)),
7405 unsignedp, in_dest, in_compare);
7406 if (new_rtx != 0)
7407 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7408 }
7409 else if (GET_CODE (inner) == TRUNCATE)
7410 inner = XEXP (inner, 0);
7411
7412 inner_mode = GET_MODE (inner);
7413
7414 /* See if this can be done without an extraction. We never can if the
7415 width of the field is not the same as that of some integer mode. For
7416 registers, we can only avoid the extraction if the position is at the
7417 low-order bit and this is either not in the destination or we have the
7418 appropriate STRICT_LOW_PART operation available.
7419
7420 For MEM, we can avoid an extract if the field starts on an appropriate
7421 boundary and we can change the mode of the memory reference. */
7422
7423 if (tmode != BLKmode
7424 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7425 && !MEM_P (inner)
7426 && (pos == 0 || REG_P (inner))
7427 && (inner_mode == tmode
7428 || !REG_P (inner)
7429 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7430 || reg_truncated_to_mode (tmode, inner))
7431 && (! in_dest
7432 || (REG_P (inner)
7433 && have_insn_for (STRICT_LOW_PART, tmode))))
7434 || (MEM_P (inner) && pos_rtx == 0
7435 && (pos
7436 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7437 : BITS_PER_UNIT)) == 0
7438 /* We can't do this if we are widening INNER_MODE (it
7439 may not be aligned, for one thing). */
7440 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7441 && (inner_mode == tmode
7442 || (! mode_dependent_address_p (XEXP (inner, 0),
7443 MEM_ADDR_SPACE (inner))
7444 && ! MEM_VOLATILE_P (inner))))))
7445 {
7446 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7447 field. If the original and current mode are the same, we need not
7448 adjust the offset. Otherwise, we do if bytes big endian.
7449
7450 If INNER is not a MEM, get a piece consisting of just the field
7451 of interest (in this case POS % BITS_PER_WORD must be 0). */
7452
7453 if (MEM_P (inner))
7454 {
7455 HOST_WIDE_INT offset;
7456
7457 /* POS counts from lsb, but make OFFSET count in memory order. */
7458 if (BYTES_BIG_ENDIAN)
7459 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7460 else
7461 offset = pos / BITS_PER_UNIT;
7462
7463 new_rtx = adjust_address_nv (inner, tmode, offset);
7464 }
7465 else if (REG_P (inner))
7466 {
7467 if (tmode != inner_mode)
7468 {
7469 /* We can't call gen_lowpart in a DEST since we
7470 always want a SUBREG (see below) and it would sometimes
7471 return a new hard register. */
7472 if (pos || in_dest)
7473 {
7474 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7475
7476 if (WORDS_BIG_ENDIAN
7477 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7478 final_word = ((GET_MODE_SIZE (inner_mode)
7479 - GET_MODE_SIZE (tmode))
7480 / UNITS_PER_WORD) - final_word;
7481
7482 final_word *= UNITS_PER_WORD;
7483 if (BYTES_BIG_ENDIAN &&
7484 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7485 final_word += (GET_MODE_SIZE (inner_mode)
7486 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7487
7488 /* Avoid creating invalid subregs, for example when
7489 simplifying (x>>32)&255. */
7490 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7491 return NULL_RTX;
7492
7493 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7494 }
7495 else
7496 new_rtx = gen_lowpart (tmode, inner);
7497 }
7498 else
7499 new_rtx = inner;
7500 }
7501 else
7502 new_rtx = force_to_mode (inner, tmode,
7503 len >= HOST_BITS_PER_WIDE_INT
7504 ? HOST_WIDE_INT_M1U
7505 : (HOST_WIDE_INT_1U << len) - 1, 0);
7506
7507 /* If this extraction is going into the destination of a SET,
7508 make a STRICT_LOW_PART unless we made a MEM. */
7509
7510 if (in_dest)
7511 return (MEM_P (new_rtx) ? new_rtx
7512 : (GET_CODE (new_rtx) != SUBREG
7513 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7514 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7515
7516 if (mode == tmode)
7517 return new_rtx;
7518
7519 if (CONST_SCALAR_INT_P (new_rtx))
7520 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7521 mode, new_rtx, tmode);
7522
7523 /* If we know that no extraneous bits are set, and that the high
7524 bit is not set, convert the extraction to the cheaper of
7525 sign and zero extension, that are equivalent in these cases. */
7526 if (flag_expensive_optimizations
7527 && (HWI_COMPUTABLE_MODE_P (tmode)
7528 && ((nonzero_bits (new_rtx, tmode)
7529 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7530 == 0)))
7531 {
7532 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7533 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7534
7535 /* Prefer ZERO_EXTENSION, since it gives more information to
7536 backends. */
7537 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7538 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7539 return temp;
7540 return temp1;
7541 }
7542
7543 /* Otherwise, sign- or zero-extend unless we already are in the
7544 proper mode. */
7545
7546 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7547 mode, new_rtx));
7548 }
7549
7550 /* Unless this is a COMPARE or we have a funny memory reference,
7551 don't do anything with zero-extending field extracts starting at
7552 the low-order bit since they are simple AND operations. */
7553 if (pos_rtx == 0 && pos == 0 && ! in_dest
7554 && ! in_compare && unsignedp)
7555 return 0;
7556
7557 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7558 if the position is not a constant and the length is not 1. In all
7559 other cases, we would only be going outside our object in cases when
7560 an original shift would have been undefined. */
7561 if (MEM_P (inner)
7562 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7563 || (pos_rtx != 0 && len != 1)))
7564 return 0;
7565
7566 enum extraction_pattern pattern = (in_dest ? EP_insv
7567 : unsignedp ? EP_extzv : EP_extv);
7568
7569 /* If INNER is not from memory, we want it to have the mode of a register
7570 extraction pattern's structure operand, or word_mode if there is no
7571 such pattern. The same applies to extraction_mode and pos_mode
7572 and their respective operands.
7573
7574 For memory, assume that the desired extraction_mode and pos_mode
7575 are the same as for a register operation, since at present we don't
7576 have named patterns for aligned memory structures. */
7577 struct extraction_insn insn;
7578 if (get_best_reg_extraction_insn (&insn, pattern,
7579 GET_MODE_BITSIZE (inner_mode), mode))
7580 {
7581 wanted_inner_reg_mode = insn.struct_mode;
7582 pos_mode = insn.pos_mode;
7583 extraction_mode = insn.field_mode;
7584 }
7585
7586 /* Never narrow an object, since that might not be safe. */
7587
7588 if (mode != VOIDmode
7589 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7590 extraction_mode = mode;
7591
7592 if (!MEM_P (inner))
7593 wanted_inner_mode = wanted_inner_reg_mode;
7594 else
7595 {
7596 /* Be careful not to go beyond the extracted object and maintain the
7597 natural alignment of the memory. */
7598 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7599 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7600 > GET_MODE_BITSIZE (wanted_inner_mode))
7601 {
7602 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7603 gcc_assert (wanted_inner_mode != VOIDmode);
7604 }
7605 }
7606
7607 orig_pos = pos;
7608
7609 if (BITS_BIG_ENDIAN)
7610 {
7611 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7612 BITS_BIG_ENDIAN style. If position is constant, compute new
7613 position. Otherwise, build subtraction.
7614 Note that POS is relative to the mode of the original argument.
7615 If it's a MEM we need to recompute POS relative to that.
7616 However, if we're extracting from (or inserting into) a register,
7617 we want to recompute POS relative to wanted_inner_mode. */
7618 int width = (MEM_P (inner)
7619 ? GET_MODE_BITSIZE (is_mode)
7620 : GET_MODE_BITSIZE (wanted_inner_mode));
7621
7622 if (pos_rtx == 0)
7623 pos = width - len - pos;
7624 else
7625 pos_rtx
7626 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7627 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7628 pos_rtx);
7629 /* POS may be less than 0 now, but we check for that below.
7630 Note that it can only be less than 0 if !MEM_P (inner). */
7631 }
7632
7633 /* If INNER has a wider mode, and this is a constant extraction, try to
7634 make it smaller and adjust the byte to point to the byte containing
7635 the value. */
7636 if (wanted_inner_mode != VOIDmode
7637 && inner_mode != wanted_inner_mode
7638 && ! pos_rtx
7639 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7640 && MEM_P (inner)
7641 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7642 && ! MEM_VOLATILE_P (inner))
7643 {
7644 int offset = 0;
7645
7646 /* The computations below will be correct if the machine is big
7647 endian in both bits and bytes or little endian in bits and bytes.
7648 If it is mixed, we must adjust. */
7649
7650 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7651 adjust OFFSET to compensate. */
7652 if (BYTES_BIG_ENDIAN
7653 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7654 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7655
7656 /* We can now move to the desired byte. */
7657 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7658 * GET_MODE_SIZE (wanted_inner_mode);
7659 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7660
7661 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7662 && is_mode != wanted_inner_mode)
7663 offset = (GET_MODE_SIZE (is_mode)
7664 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7665
7666 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7667 }
7668
7669 /* If INNER is not memory, get it into the proper mode. If we are changing
7670 its mode, POS must be a constant and smaller than the size of the new
7671 mode. */
7672 else if (!MEM_P (inner))
7673 {
7674 /* On the LHS, don't create paradoxical subregs implicitely truncating
7675 the register unless TRULY_NOOP_TRUNCATION. */
7676 if (in_dest
7677 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7678 wanted_inner_mode))
7679 return NULL_RTX;
7680
7681 if (GET_MODE (inner) != wanted_inner_mode
7682 && (pos_rtx != 0
7683 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7684 return NULL_RTX;
7685
7686 if (orig_pos < 0)
7687 return NULL_RTX;
7688
7689 inner = force_to_mode (inner, wanted_inner_mode,
7690 pos_rtx
7691 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7692 ? HOST_WIDE_INT_M1U
7693 : (((HOST_WIDE_INT_1U << len) - 1)
7694 << orig_pos),
7695 0);
7696 }
7697
7698 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7699 have to zero extend. Otherwise, we can just use a SUBREG. */
7700 if (pos_rtx != 0
7701 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7702 {
7703 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7704 GET_MODE (pos_rtx));
7705
7706 /* If we know that no extraneous bits are set, and that the high
7707 bit is not set, convert extraction to cheaper one - either
7708 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7709 cases. */
7710 if (flag_expensive_optimizations
7711 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7712 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7713 & ~(((unsigned HOST_WIDE_INT)
7714 GET_MODE_MASK (GET_MODE (pos_rtx)))
7715 >> 1))
7716 == 0)))
7717 {
7718 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7719 GET_MODE (pos_rtx));
7720
7721 /* Prefer ZERO_EXTENSION, since it gives more information to
7722 backends. */
7723 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7724 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7725 temp = temp1;
7726 }
7727 pos_rtx = temp;
7728 }
7729
7730 /* Make POS_RTX unless we already have it and it is correct. If we don't
7731 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7732 be a CONST_INT. */
7733 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7734 pos_rtx = orig_pos_rtx;
7735
7736 else if (pos_rtx == 0)
7737 pos_rtx = GEN_INT (pos);
7738
7739 /* Make the required operation. See if we can use existing rtx. */
7740 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7741 extraction_mode, inner, GEN_INT (len), pos_rtx);
7742 if (! in_dest)
7743 new_rtx = gen_lowpart (mode, new_rtx);
7744
7745 return new_rtx;
7746 }
7747 \f
7748 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7749 with any other operations in X. Return X without that shift if so. */
7750
7751 static rtx
7752 extract_left_shift (rtx x, int count)
7753 {
7754 enum rtx_code code = GET_CODE (x);
7755 machine_mode mode = GET_MODE (x);
7756 rtx tem;
7757
7758 switch (code)
7759 {
7760 case ASHIFT:
7761 /* This is the shift itself. If it is wide enough, we will return
7762 either the value being shifted if the shift count is equal to
7763 COUNT or a shift for the difference. */
7764 if (CONST_INT_P (XEXP (x, 1))
7765 && INTVAL (XEXP (x, 1)) >= count)
7766 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7767 INTVAL (XEXP (x, 1)) - count);
7768 break;
7769
7770 case NEG: case NOT:
7771 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7772 return simplify_gen_unary (code, mode, tem, mode);
7773
7774 break;
7775
7776 case PLUS: case IOR: case XOR: case AND:
7777 /* If we can safely shift this constant and we find the inner shift,
7778 make a new operation. */
7779 if (CONST_INT_P (XEXP (x, 1))
7780 && (UINTVAL (XEXP (x, 1))
7781 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7782 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7783 {
7784 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7785 return simplify_gen_binary (code, mode, tem,
7786 gen_int_mode (val, mode));
7787 }
7788 break;
7789
7790 default:
7791 break;
7792 }
7793
7794 return 0;
7795 }
7796 \f
7797 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7798 level of the expression and MODE is its mode. IN_CODE is as for
7799 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7800 that should be used when recursing on operands of *X_PTR.
7801
7802 There are two possible actions:
7803
7804 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7805 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7806
7807 - Return a new rtx, which the caller returns directly. */
7808
7809 static rtx
7810 make_compound_operation_int (machine_mode mode, rtx *x_ptr,
7811 enum rtx_code in_code,
7812 enum rtx_code *next_code_ptr)
7813 {
7814 rtx x = *x_ptr;
7815 enum rtx_code next_code = *next_code_ptr;
7816 enum rtx_code code = GET_CODE (x);
7817 int mode_width = GET_MODE_PRECISION (mode);
7818 rtx rhs, lhs;
7819 rtx new_rtx = 0;
7820 int i;
7821 rtx tem;
7822 bool equality_comparison = false;
7823
7824 if (in_code == EQ)
7825 {
7826 equality_comparison = true;
7827 in_code = COMPARE;
7828 }
7829
7830 /* Process depending on the code of this operation. If NEW is set
7831 nonzero, it will be returned. */
7832
7833 switch (code)
7834 {
7835 case ASHIFT:
7836 /* Convert shifts by constants into multiplications if inside
7837 an address. */
7838 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7839 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7840 && INTVAL (XEXP (x, 1)) >= 0)
7841 {
7842 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7843 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7844
7845 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7846 if (GET_CODE (new_rtx) == NEG)
7847 {
7848 new_rtx = XEXP (new_rtx, 0);
7849 multval = -multval;
7850 }
7851 multval = trunc_int_for_mode (multval, mode);
7852 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7853 }
7854 break;
7855
7856 case PLUS:
7857 lhs = XEXP (x, 0);
7858 rhs = XEXP (x, 1);
7859 lhs = make_compound_operation (lhs, next_code);
7860 rhs = make_compound_operation (rhs, next_code);
7861 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
7862 {
7863 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7864 XEXP (lhs, 1));
7865 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7866 }
7867 else if (GET_CODE (lhs) == MULT
7868 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7869 {
7870 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7871 simplify_gen_unary (NEG, mode,
7872 XEXP (lhs, 1),
7873 mode));
7874 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7875 }
7876 else
7877 {
7878 SUBST (XEXP (x, 0), lhs);
7879 SUBST (XEXP (x, 1), rhs);
7880 }
7881 maybe_swap_commutative_operands (x);
7882 return x;
7883
7884 case MINUS:
7885 lhs = XEXP (x, 0);
7886 rhs = XEXP (x, 1);
7887 lhs = make_compound_operation (lhs, next_code);
7888 rhs = make_compound_operation (rhs, next_code);
7889 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
7890 {
7891 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7892 XEXP (rhs, 1));
7893 return simplify_gen_binary (PLUS, mode, tem, lhs);
7894 }
7895 else if (GET_CODE (rhs) == MULT
7896 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7897 {
7898 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7899 simplify_gen_unary (NEG, mode,
7900 XEXP (rhs, 1),
7901 mode));
7902 return simplify_gen_binary (PLUS, mode, tem, lhs);
7903 }
7904 else
7905 {
7906 SUBST (XEXP (x, 0), lhs);
7907 SUBST (XEXP (x, 1), rhs);
7908 return x;
7909 }
7910
7911 case AND:
7912 /* If the second operand is not a constant, we can't do anything
7913 with it. */
7914 if (!CONST_INT_P (XEXP (x, 1)))
7915 break;
7916
7917 /* If the constant is a power of two minus one and the first operand
7918 is a logical right shift, make an extraction. */
7919 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7920 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7921 {
7922 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7923 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7924 0, in_code == COMPARE);
7925 }
7926
7927 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7928 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7929 && subreg_lowpart_p (XEXP (x, 0))
7930 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7931 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7932 {
7933 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
7934 machine_mode inner_mode = GET_MODE (inner_x0);
7935 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
7936 new_rtx = make_extraction (inner_mode, new_rtx, 0,
7937 XEXP (inner_x0, 1),
7938 i, 1, 0, in_code == COMPARE);
7939
7940 if (new_rtx)
7941 {
7942 /* If we narrowed the mode when dropping the subreg, then
7943 we must zero-extend to keep the semantics of the AND. */
7944 if (GET_MODE_SIZE (inner_mode) >= GET_MODE_SIZE (mode))
7945 ;
7946 else if (SCALAR_INT_MODE_P (inner_mode))
7947 new_rtx = simplify_gen_unary (ZERO_EXTEND, mode,
7948 new_rtx, inner_mode);
7949 else
7950 new_rtx = NULL;
7951 }
7952
7953 /* If that didn't give anything, see if the AND simplifies on
7954 its own. */
7955 if (!new_rtx && i >= 0)
7956 {
7957 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7958 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
7959 0, in_code == COMPARE);
7960 }
7961 }
7962 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7963 else if ((GET_CODE (XEXP (x, 0)) == XOR
7964 || GET_CODE (XEXP (x, 0)) == IOR)
7965 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7966 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7967 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7968 {
7969 /* Apply the distributive law, and then try to make extractions. */
7970 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7971 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7972 XEXP (x, 1)),
7973 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7974 XEXP (x, 1)));
7975 new_rtx = make_compound_operation (new_rtx, in_code);
7976 }
7977
7978 /* If we are have (and (rotate X C) M) and C is larger than the number
7979 of bits in M, this is an extraction. */
7980
7981 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7982 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7983 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7984 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7985 {
7986 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7987 new_rtx = make_extraction (mode, new_rtx,
7988 (GET_MODE_PRECISION (mode)
7989 - INTVAL (XEXP (XEXP (x, 0), 1))),
7990 NULL_RTX, i, 1, 0, in_code == COMPARE);
7991 }
7992
7993 /* On machines without logical shifts, if the operand of the AND is
7994 a logical shift and our mask turns off all the propagated sign
7995 bits, we can replace the logical shift with an arithmetic shift. */
7996 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7997 && !have_insn_for (LSHIFTRT, mode)
7998 && have_insn_for (ASHIFTRT, mode)
7999 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8000 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8001 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8002 && mode_width <= HOST_BITS_PER_WIDE_INT)
8003 {
8004 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8005
8006 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8007 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8008 SUBST (XEXP (x, 0),
8009 gen_rtx_ASHIFTRT (mode,
8010 make_compound_operation
8011 (XEXP (XEXP (x, 0), 0), next_code),
8012 XEXP (XEXP (x, 0), 1)));
8013 }
8014
8015 /* If the constant is one less than a power of two, this might be
8016 representable by an extraction even if no shift is present.
8017 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8018 we are in a COMPARE. */
8019 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8020 new_rtx = make_extraction (mode,
8021 make_compound_operation (XEXP (x, 0),
8022 next_code),
8023 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8024
8025 /* If we are in a comparison and this is an AND with a power of two,
8026 convert this into the appropriate bit extract. */
8027 else if (in_code == COMPARE
8028 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8029 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8030 new_rtx = make_extraction (mode,
8031 make_compound_operation (XEXP (x, 0),
8032 next_code),
8033 i, NULL_RTX, 1, 1, 0, 1);
8034
8035 /* If the one operand is a paradoxical subreg of a register or memory and
8036 the constant (limited to the smaller mode) has only zero bits where
8037 the sub expression has known zero bits, this can be expressed as
8038 a zero_extend. */
8039 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8040 {
8041 rtx sub;
8042
8043 sub = XEXP (XEXP (x, 0), 0);
8044 machine_mode sub_mode = GET_MODE (sub);
8045 if ((REG_P (sub) || MEM_P (sub))
8046 && GET_MODE_PRECISION (sub_mode) < mode_width)
8047 {
8048 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8049 unsigned HOST_WIDE_INT mask;
8050
8051 /* original AND constant with all the known zero bits set */
8052 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8053 if ((mask & mode_mask) == mode_mask)
8054 {
8055 new_rtx = make_compound_operation (sub, next_code);
8056 new_rtx = make_extraction (mode, new_rtx, 0, 0,
8057 GET_MODE_PRECISION (sub_mode),
8058 1, 0, in_code == COMPARE);
8059 }
8060 }
8061 }
8062
8063 break;
8064
8065 case LSHIFTRT:
8066 /* If the sign bit is known to be zero, replace this with an
8067 arithmetic shift. */
8068 if (have_insn_for (ASHIFTRT, mode)
8069 && ! have_insn_for (LSHIFTRT, mode)
8070 && mode_width <= HOST_BITS_PER_WIDE_INT
8071 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8072 {
8073 new_rtx = gen_rtx_ASHIFTRT (mode,
8074 make_compound_operation (XEXP (x, 0),
8075 next_code),
8076 XEXP (x, 1));
8077 break;
8078 }
8079
8080 /* fall through */
8081
8082 case ASHIFTRT:
8083 lhs = XEXP (x, 0);
8084 rhs = XEXP (x, 1);
8085
8086 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8087 this is a SIGN_EXTRACT. */
8088 if (CONST_INT_P (rhs)
8089 && GET_CODE (lhs) == ASHIFT
8090 && CONST_INT_P (XEXP (lhs, 1))
8091 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8092 && INTVAL (XEXP (lhs, 1)) >= 0
8093 && INTVAL (rhs) < mode_width)
8094 {
8095 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8096 new_rtx = make_extraction (mode, new_rtx,
8097 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8098 NULL_RTX, mode_width - INTVAL (rhs),
8099 code == LSHIFTRT, 0, in_code == COMPARE);
8100 break;
8101 }
8102
8103 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8104 If so, try to merge the shifts into a SIGN_EXTEND. We could
8105 also do this for some cases of SIGN_EXTRACT, but it doesn't
8106 seem worth the effort; the case checked for occurs on Alpha. */
8107
8108 if (!OBJECT_P (lhs)
8109 && ! (GET_CODE (lhs) == SUBREG
8110 && (OBJECT_P (SUBREG_REG (lhs))))
8111 && CONST_INT_P (rhs)
8112 && INTVAL (rhs) >= 0
8113 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8114 && INTVAL (rhs) < mode_width
8115 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8116 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8117 0, NULL_RTX, mode_width - INTVAL (rhs),
8118 code == LSHIFTRT, 0, in_code == COMPARE);
8119
8120 break;
8121
8122 case SUBREG:
8123 /* Call ourselves recursively on the inner expression. If we are
8124 narrowing the object and it has a different RTL code from
8125 what it originally did, do this SUBREG as a force_to_mode. */
8126 {
8127 rtx inner = SUBREG_REG (x), simplified;
8128 enum rtx_code subreg_code = in_code;
8129
8130 /* If the SUBREG is masking of a logical right shift,
8131 make an extraction. */
8132 if (GET_CODE (inner) == LSHIFTRT
8133 && CONST_INT_P (XEXP (inner, 1))
8134 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8135 && (UINTVAL (XEXP (inner, 1))
8136 < GET_MODE_PRECISION (GET_MODE (inner)))
8137 && subreg_lowpart_p (x))
8138 {
8139 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8140 int width = GET_MODE_PRECISION (GET_MODE (inner))
8141 - INTVAL (XEXP (inner, 1));
8142 if (width > mode_width)
8143 width = mode_width;
8144 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8145 width, 1, 0, in_code == COMPARE);
8146 break;
8147 }
8148
8149 /* If in_code is COMPARE, it isn't always safe to pass it through
8150 to the recursive make_compound_operation call. */
8151 if (subreg_code == COMPARE
8152 && (!subreg_lowpart_p (x)
8153 || GET_CODE (inner) == SUBREG
8154 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8155 is (const_int 0), rather than
8156 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
8157 || (GET_CODE (inner) == AND
8158 && CONST_INT_P (XEXP (inner, 1))
8159 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8160 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8161 >= GET_MODE_BITSIZE (mode))))
8162 subreg_code = SET;
8163
8164 tem = make_compound_operation (inner, subreg_code);
8165
8166 simplified
8167 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8168 if (simplified)
8169 tem = simplified;
8170
8171 if (GET_CODE (tem) != GET_CODE (inner)
8172 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8173 && subreg_lowpart_p (x))
8174 {
8175 rtx newer
8176 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8177
8178 /* If we have something other than a SUBREG, we might have
8179 done an expansion, so rerun ourselves. */
8180 if (GET_CODE (newer) != SUBREG)
8181 newer = make_compound_operation (newer, in_code);
8182
8183 /* force_to_mode can expand compounds. If it just re-expanded the
8184 compound, use gen_lowpart to convert to the desired mode. */
8185 if (rtx_equal_p (newer, x)
8186 /* Likewise if it re-expanded the compound only partially.
8187 This happens for SUBREG of ZERO_EXTRACT if they extract
8188 the same number of bits. */
8189 || (GET_CODE (newer) == SUBREG
8190 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8191 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8192 && GET_CODE (inner) == AND
8193 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8194 return gen_lowpart (GET_MODE (x), tem);
8195
8196 return newer;
8197 }
8198
8199 if (simplified)
8200 return tem;
8201 }
8202 break;
8203
8204 default:
8205 break;
8206 }
8207
8208 if (new_rtx)
8209 *x_ptr = gen_lowpart (mode, new_rtx);
8210 *next_code_ptr = next_code;
8211 return NULL_RTX;
8212 }
8213
8214 /* Look at the expression rooted at X. Look for expressions
8215 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8216 Form these expressions.
8217
8218 Return the new rtx, usually just X.
8219
8220 Also, for machines like the VAX that don't have logical shift insns,
8221 try to convert logical to arithmetic shift operations in cases where
8222 they are equivalent. This undoes the canonicalizations to logical
8223 shifts done elsewhere.
8224
8225 We try, as much as possible, to re-use rtl expressions to save memory.
8226
8227 IN_CODE says what kind of expression we are processing. Normally, it is
8228 SET. In a memory address it is MEM. When processing the arguments of
8229 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8230 precisely it is an equality comparison against zero. */
8231
8232 rtx
8233 make_compound_operation (rtx x, enum rtx_code in_code)
8234 {
8235 enum rtx_code code = GET_CODE (x);
8236 const char *fmt;
8237 int i, j;
8238 enum rtx_code next_code;
8239 rtx new_rtx, tem;
8240
8241 /* Select the code to be used in recursive calls. Once we are inside an
8242 address, we stay there. If we have a comparison, set to COMPARE,
8243 but once inside, go back to our default of SET. */
8244
8245 next_code = (code == MEM ? MEM
8246 : ((code == COMPARE || COMPARISON_P (x))
8247 && XEXP (x, 1) == const0_rtx) ? COMPARE
8248 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8249
8250 if (SCALAR_INT_MODE_P (GET_MODE (x)))
8251 {
8252 rtx new_rtx = make_compound_operation_int (GET_MODE (x), &x,
8253 in_code, &next_code);
8254 if (new_rtx)
8255 return new_rtx;
8256 code = GET_CODE (x);
8257 }
8258
8259 /* Now recursively process each operand of this operation. We need to
8260 handle ZERO_EXTEND specially so that we don't lose track of the
8261 inner mode. */
8262 if (code == ZERO_EXTEND)
8263 {
8264 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8265 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8266 new_rtx, GET_MODE (XEXP (x, 0)));
8267 if (tem)
8268 return tem;
8269 SUBST (XEXP (x, 0), new_rtx);
8270 return x;
8271 }
8272
8273 fmt = GET_RTX_FORMAT (code);
8274 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8275 if (fmt[i] == 'e')
8276 {
8277 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8278 SUBST (XEXP (x, i), new_rtx);
8279 }
8280 else if (fmt[i] == 'E')
8281 for (j = 0; j < XVECLEN (x, i); j++)
8282 {
8283 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8284 SUBST (XVECEXP (x, i, j), new_rtx);
8285 }
8286
8287 maybe_swap_commutative_operands (x);
8288 return x;
8289 }
8290 \f
8291 /* Given M see if it is a value that would select a field of bits
8292 within an item, but not the entire word. Return -1 if not.
8293 Otherwise, return the starting position of the field, where 0 is the
8294 low-order bit.
8295
8296 *PLEN is set to the length of the field. */
8297
8298 static int
8299 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8300 {
8301 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8302 int pos = m ? ctz_hwi (m) : -1;
8303 int len = 0;
8304
8305 if (pos >= 0)
8306 /* Now shift off the low-order zero bits and see if we have a
8307 power of two minus 1. */
8308 len = exact_log2 ((m >> pos) + 1);
8309
8310 if (len <= 0)
8311 pos = -1;
8312
8313 *plen = len;
8314 return pos;
8315 }
8316 \f
8317 /* If X refers to a register that equals REG in value, replace these
8318 references with REG. */
8319 static rtx
8320 canon_reg_for_combine (rtx x, rtx reg)
8321 {
8322 rtx op0, op1, op2;
8323 const char *fmt;
8324 int i;
8325 bool copied;
8326
8327 enum rtx_code code = GET_CODE (x);
8328 switch (GET_RTX_CLASS (code))
8329 {
8330 case RTX_UNARY:
8331 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8332 if (op0 != XEXP (x, 0))
8333 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8334 GET_MODE (reg));
8335 break;
8336
8337 case RTX_BIN_ARITH:
8338 case RTX_COMM_ARITH:
8339 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8340 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8341 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8342 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8343 break;
8344
8345 case RTX_COMPARE:
8346 case RTX_COMM_COMPARE:
8347 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8348 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8349 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8350 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8351 GET_MODE (op0), op0, op1);
8352 break;
8353
8354 case RTX_TERNARY:
8355 case RTX_BITFIELD_OPS:
8356 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8357 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8358 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8359 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8360 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8361 GET_MODE (op0), op0, op1, op2);
8362 /* FALLTHRU */
8363
8364 case RTX_OBJ:
8365 if (REG_P (x))
8366 {
8367 if (rtx_equal_p (get_last_value (reg), x)
8368 || rtx_equal_p (reg, get_last_value (x)))
8369 return reg;
8370 else
8371 break;
8372 }
8373
8374 /* fall through */
8375
8376 default:
8377 fmt = GET_RTX_FORMAT (code);
8378 copied = false;
8379 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8380 if (fmt[i] == 'e')
8381 {
8382 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8383 if (op != XEXP (x, i))
8384 {
8385 if (!copied)
8386 {
8387 copied = true;
8388 x = copy_rtx (x);
8389 }
8390 XEXP (x, i) = op;
8391 }
8392 }
8393 else if (fmt[i] == 'E')
8394 {
8395 int j;
8396 for (j = 0; j < XVECLEN (x, i); j++)
8397 {
8398 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8399 if (op != XVECEXP (x, i, j))
8400 {
8401 if (!copied)
8402 {
8403 copied = true;
8404 x = copy_rtx (x);
8405 }
8406 XVECEXP (x, i, j) = op;
8407 }
8408 }
8409 }
8410
8411 break;
8412 }
8413
8414 return x;
8415 }
8416
8417 /* Return X converted to MODE. If the value is already truncated to
8418 MODE we can just return a subreg even though in the general case we
8419 would need an explicit truncation. */
8420
8421 static rtx
8422 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8423 {
8424 if (!CONST_INT_P (x)
8425 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8426 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8427 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8428 {
8429 /* Bit-cast X into an integer mode. */
8430 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8431 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8432 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8433 x, GET_MODE (x));
8434 }
8435
8436 return gen_lowpart (mode, x);
8437 }
8438
8439 /* See if X can be simplified knowing that we will only refer to it in
8440 MODE and will only refer to those bits that are nonzero in MASK.
8441 If other bits are being computed or if masking operations are done
8442 that select a superset of the bits in MASK, they can sometimes be
8443 ignored.
8444
8445 Return a possibly simplified expression, but always convert X to
8446 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8447
8448 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8449 are all off in X. This is used when X will be complemented, by either
8450 NOT, NEG, or XOR. */
8451
8452 static rtx
8453 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8454 int just_select)
8455 {
8456 enum rtx_code code = GET_CODE (x);
8457 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8458 machine_mode op_mode;
8459 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8460 rtx op0, op1, temp;
8461
8462 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8463 code below will do the wrong thing since the mode of such an
8464 expression is VOIDmode.
8465
8466 Also do nothing if X is a CLOBBER; this can happen if X was
8467 the return value from a call to gen_lowpart. */
8468 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8469 return x;
8470
8471 /* We want to perform the operation in its present mode unless we know
8472 that the operation is valid in MODE, in which case we do the operation
8473 in MODE. */
8474 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8475 && have_insn_for (code, mode))
8476 ? mode : GET_MODE (x));
8477
8478 /* It is not valid to do a right-shift in a narrower mode
8479 than the one it came in with. */
8480 if ((code == LSHIFTRT || code == ASHIFTRT)
8481 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8482 op_mode = GET_MODE (x);
8483
8484 /* Truncate MASK to fit OP_MODE. */
8485 if (op_mode)
8486 mask &= GET_MODE_MASK (op_mode);
8487
8488 /* When we have an arithmetic operation, or a shift whose count we
8489 do not know, we need to assume that all bits up to the highest-order
8490 bit in MASK will be needed. This is how we form such a mask. */
8491 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8492 fuller_mask = HOST_WIDE_INT_M1U;
8493 else
8494 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8495 - 1);
8496
8497 /* Determine what bits of X are guaranteed to be (non)zero. */
8498 nonzero = nonzero_bits (x, mode);
8499
8500 /* If none of the bits in X are needed, return a zero. */
8501 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8502 x = const0_rtx;
8503
8504 /* If X is a CONST_INT, return a new one. Do this here since the
8505 test below will fail. */
8506 if (CONST_INT_P (x))
8507 {
8508 if (SCALAR_INT_MODE_P (mode))
8509 return gen_int_mode (INTVAL (x) & mask, mode);
8510 else
8511 {
8512 x = GEN_INT (INTVAL (x) & mask);
8513 return gen_lowpart_common (mode, x);
8514 }
8515 }
8516
8517 /* If X is narrower than MODE and we want all the bits in X's mode, just
8518 get X in the proper mode. */
8519 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8520 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8521 return gen_lowpart (mode, x);
8522
8523 /* We can ignore the effect of a SUBREG if it narrows the mode or
8524 if the constant masks to zero all the bits the mode doesn't have. */
8525 if (GET_CODE (x) == SUBREG
8526 && subreg_lowpart_p (x)
8527 && ((GET_MODE_SIZE (GET_MODE (x))
8528 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8529 || (0 == (mask
8530 & GET_MODE_MASK (GET_MODE (x))
8531 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8532 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8533
8534 /* The arithmetic simplifications here only work for scalar integer modes. */
8535 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8536 return gen_lowpart_or_truncate (mode, x);
8537
8538 switch (code)
8539 {
8540 case CLOBBER:
8541 /* If X is a (clobber (const_int)), return it since we know we are
8542 generating something that won't match. */
8543 return x;
8544
8545 case SIGN_EXTEND:
8546 case ZERO_EXTEND:
8547 case ZERO_EXTRACT:
8548 case SIGN_EXTRACT:
8549 x = expand_compound_operation (x);
8550 if (GET_CODE (x) != code)
8551 return force_to_mode (x, mode, mask, next_select);
8552 break;
8553
8554 case TRUNCATE:
8555 /* Similarly for a truncate. */
8556 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8557
8558 case AND:
8559 /* If this is an AND with a constant, convert it into an AND
8560 whose constant is the AND of that constant with MASK. If it
8561 remains an AND of MASK, delete it since it is redundant. */
8562
8563 if (CONST_INT_P (XEXP (x, 1)))
8564 {
8565 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8566 mask & INTVAL (XEXP (x, 1)));
8567
8568 /* If X is still an AND, see if it is an AND with a mask that
8569 is just some low-order bits. If so, and it is MASK, we don't
8570 need it. */
8571
8572 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8573 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8574 == mask))
8575 x = XEXP (x, 0);
8576
8577 /* If it remains an AND, try making another AND with the bits
8578 in the mode mask that aren't in MASK turned on. If the
8579 constant in the AND is wide enough, this might make a
8580 cheaper constant. */
8581
8582 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8583 && GET_MODE_MASK (GET_MODE (x)) != mask
8584 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8585 {
8586 unsigned HOST_WIDE_INT cval
8587 = UINTVAL (XEXP (x, 1))
8588 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8589 rtx y;
8590
8591 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8592 gen_int_mode (cval, GET_MODE (x)));
8593 if (set_src_cost (y, GET_MODE (x), optimize_this_for_speed_p)
8594 < set_src_cost (x, GET_MODE (x), optimize_this_for_speed_p))
8595 x = y;
8596 }
8597
8598 break;
8599 }
8600
8601 goto binop;
8602
8603 case PLUS:
8604 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8605 low-order bits (as in an alignment operation) and FOO is already
8606 aligned to that boundary, mask C1 to that boundary as well.
8607 This may eliminate that PLUS and, later, the AND. */
8608
8609 {
8610 unsigned int width = GET_MODE_PRECISION (mode);
8611 unsigned HOST_WIDE_INT smask = mask;
8612
8613 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8614 number, sign extend it. */
8615
8616 if (width < HOST_BITS_PER_WIDE_INT
8617 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8618 smask |= HOST_WIDE_INT_M1U << width;
8619
8620 if (CONST_INT_P (XEXP (x, 1))
8621 && pow2p_hwi (- smask)
8622 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8623 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8624 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8625 (INTVAL (XEXP (x, 1)) & smask)),
8626 mode, smask, next_select);
8627 }
8628
8629 /* fall through */
8630
8631 case MULT:
8632 /* Substituting into the operands of a widening MULT is not likely to
8633 create RTL matching a machine insn. */
8634 if (code == MULT
8635 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8636 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8637 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8638 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8639 && REG_P (XEXP (XEXP (x, 0), 0))
8640 && REG_P (XEXP (XEXP (x, 1), 0)))
8641 return gen_lowpart_or_truncate (mode, x);
8642
8643 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8644 most significant bit in MASK since carries from those bits will
8645 affect the bits we are interested in. */
8646 mask = fuller_mask;
8647 goto binop;
8648
8649 case MINUS:
8650 /* If X is (minus C Y) where C's least set bit is larger than any bit
8651 in the mask, then we may replace with (neg Y). */
8652 if (CONST_INT_P (XEXP (x, 0))
8653 && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8654 {
8655 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8656 GET_MODE (x));
8657 return force_to_mode (x, mode, mask, next_select);
8658 }
8659
8660 /* Similarly, if C contains every bit in the fuller_mask, then we may
8661 replace with (not Y). */
8662 if (CONST_INT_P (XEXP (x, 0))
8663 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8664 {
8665 x = simplify_gen_unary (NOT, GET_MODE (x),
8666 XEXP (x, 1), GET_MODE (x));
8667 return force_to_mode (x, mode, mask, next_select);
8668 }
8669
8670 mask = fuller_mask;
8671 goto binop;
8672
8673 case IOR:
8674 case XOR:
8675 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8676 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8677 operation which may be a bitfield extraction. Ensure that the
8678 constant we form is not wider than the mode of X. */
8679
8680 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8681 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8682 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8683 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8684 && CONST_INT_P (XEXP (x, 1))
8685 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8686 + floor_log2 (INTVAL (XEXP (x, 1))))
8687 < GET_MODE_PRECISION (GET_MODE (x)))
8688 && (UINTVAL (XEXP (x, 1))
8689 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8690 {
8691 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8692 << INTVAL (XEXP (XEXP (x, 0), 1)),
8693 GET_MODE (x));
8694 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8695 XEXP (XEXP (x, 0), 0), temp);
8696 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8697 XEXP (XEXP (x, 0), 1));
8698 return force_to_mode (x, mode, mask, next_select);
8699 }
8700
8701 binop:
8702 /* For most binary operations, just propagate into the operation and
8703 change the mode if we have an operation of that mode. */
8704
8705 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8706 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8707
8708 /* If we ended up truncating both operands, truncate the result of the
8709 operation instead. */
8710 if (GET_CODE (op0) == TRUNCATE
8711 && GET_CODE (op1) == TRUNCATE)
8712 {
8713 op0 = XEXP (op0, 0);
8714 op1 = XEXP (op1, 0);
8715 }
8716
8717 op0 = gen_lowpart_or_truncate (op_mode, op0);
8718 op1 = gen_lowpart_or_truncate (op_mode, op1);
8719
8720 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8721 x = simplify_gen_binary (code, op_mode, op0, op1);
8722 break;
8723
8724 case ASHIFT:
8725 /* For left shifts, do the same, but just for the first operand.
8726 However, we cannot do anything with shifts where we cannot
8727 guarantee that the counts are smaller than the size of the mode
8728 because such a count will have a different meaning in a
8729 wider mode. */
8730
8731 if (! (CONST_INT_P (XEXP (x, 1))
8732 && INTVAL (XEXP (x, 1)) >= 0
8733 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8734 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8735 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8736 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8737 break;
8738
8739 /* If the shift count is a constant and we can do arithmetic in
8740 the mode of the shift, refine which bits we need. Otherwise, use the
8741 conservative form of the mask. */
8742 if (CONST_INT_P (XEXP (x, 1))
8743 && INTVAL (XEXP (x, 1)) >= 0
8744 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8745 && HWI_COMPUTABLE_MODE_P (op_mode))
8746 mask >>= INTVAL (XEXP (x, 1));
8747 else
8748 mask = fuller_mask;
8749
8750 op0 = gen_lowpart_or_truncate (op_mode,
8751 force_to_mode (XEXP (x, 0), op_mode,
8752 mask, next_select));
8753
8754 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8755 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8756 break;
8757
8758 case LSHIFTRT:
8759 /* Here we can only do something if the shift count is a constant,
8760 this shift constant is valid for the host, and we can do arithmetic
8761 in OP_MODE. */
8762
8763 if (CONST_INT_P (XEXP (x, 1))
8764 && INTVAL (XEXP (x, 1)) >= 0
8765 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8766 && HWI_COMPUTABLE_MODE_P (op_mode))
8767 {
8768 rtx inner = XEXP (x, 0);
8769 unsigned HOST_WIDE_INT inner_mask;
8770
8771 /* Select the mask of the bits we need for the shift operand. */
8772 inner_mask = mask << INTVAL (XEXP (x, 1));
8773
8774 /* We can only change the mode of the shift if we can do arithmetic
8775 in the mode of the shift and INNER_MASK is no wider than the
8776 width of X's mode. */
8777 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8778 op_mode = GET_MODE (x);
8779
8780 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8781
8782 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8783 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8784 }
8785
8786 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8787 shift and AND produces only copies of the sign bit (C2 is one less
8788 than a power of two), we can do this with just a shift. */
8789
8790 if (GET_CODE (x) == LSHIFTRT
8791 && CONST_INT_P (XEXP (x, 1))
8792 /* The shift puts one of the sign bit copies in the least significant
8793 bit. */
8794 && ((INTVAL (XEXP (x, 1))
8795 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8796 >= GET_MODE_PRECISION (GET_MODE (x)))
8797 && pow2p_hwi (mask + 1)
8798 /* Number of bits left after the shift must be more than the mask
8799 needs. */
8800 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8801 <= GET_MODE_PRECISION (GET_MODE (x)))
8802 /* Must be more sign bit copies than the mask needs. */
8803 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8804 >= exact_log2 (mask + 1)))
8805 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8806 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8807 - exact_log2 (mask + 1)));
8808
8809 goto shiftrt;
8810
8811 case ASHIFTRT:
8812 /* If we are just looking for the sign bit, we don't need this shift at
8813 all, even if it has a variable count. */
8814 if (val_signbit_p (GET_MODE (x), mask))
8815 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8816
8817 /* If this is a shift by a constant, get a mask that contains those bits
8818 that are not copies of the sign bit. We then have two cases: If
8819 MASK only includes those bits, this can be a logical shift, which may
8820 allow simplifications. If MASK is a single-bit field not within
8821 those bits, we are requesting a copy of the sign bit and hence can
8822 shift the sign bit to the appropriate location. */
8823
8824 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8825 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8826 {
8827 int i;
8828
8829 /* If the considered data is wider than HOST_WIDE_INT, we can't
8830 represent a mask for all its bits in a single scalar.
8831 But we only care about the lower bits, so calculate these. */
8832
8833 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8834 {
8835 nonzero = HOST_WIDE_INT_M1U;
8836
8837 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8838 is the number of bits a full-width mask would have set.
8839 We need only shift if these are fewer than nonzero can
8840 hold. If not, we must keep all bits set in nonzero. */
8841
8842 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8843 < HOST_BITS_PER_WIDE_INT)
8844 nonzero >>= INTVAL (XEXP (x, 1))
8845 + HOST_BITS_PER_WIDE_INT
8846 - GET_MODE_PRECISION (GET_MODE (x)) ;
8847 }
8848 else
8849 {
8850 nonzero = GET_MODE_MASK (GET_MODE (x));
8851 nonzero >>= INTVAL (XEXP (x, 1));
8852 }
8853
8854 if ((mask & ~nonzero) == 0)
8855 {
8856 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8857 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8858 if (GET_CODE (x) != ASHIFTRT)
8859 return force_to_mode (x, mode, mask, next_select);
8860 }
8861
8862 else if ((i = exact_log2 (mask)) >= 0)
8863 {
8864 x = simplify_shift_const
8865 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8866 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8867
8868 if (GET_CODE (x) != ASHIFTRT)
8869 return force_to_mode (x, mode, mask, next_select);
8870 }
8871 }
8872
8873 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8874 even if the shift count isn't a constant. */
8875 if (mask == 1)
8876 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8877 XEXP (x, 0), XEXP (x, 1));
8878
8879 shiftrt:
8880
8881 /* If this is a zero- or sign-extension operation that just affects bits
8882 we don't care about, remove it. Be sure the call above returned
8883 something that is still a shift. */
8884
8885 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8886 && CONST_INT_P (XEXP (x, 1))
8887 && INTVAL (XEXP (x, 1)) >= 0
8888 && (INTVAL (XEXP (x, 1))
8889 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8890 && GET_CODE (XEXP (x, 0)) == ASHIFT
8891 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8892 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8893 next_select);
8894
8895 break;
8896
8897 case ROTATE:
8898 case ROTATERT:
8899 /* If the shift count is constant and we can do computations
8900 in the mode of X, compute where the bits we care about are.
8901 Otherwise, we can't do anything. Don't change the mode of
8902 the shift or propagate MODE into the shift, though. */
8903 if (CONST_INT_P (XEXP (x, 1))
8904 && INTVAL (XEXP (x, 1)) >= 0)
8905 {
8906 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8907 GET_MODE (x),
8908 gen_int_mode (mask, GET_MODE (x)),
8909 XEXP (x, 1));
8910 if (temp && CONST_INT_P (temp))
8911 x = simplify_gen_binary (code, GET_MODE (x),
8912 force_to_mode (XEXP (x, 0), GET_MODE (x),
8913 INTVAL (temp), next_select),
8914 XEXP (x, 1));
8915 }
8916 break;
8917
8918 case NEG:
8919 /* If we just want the low-order bit, the NEG isn't needed since it
8920 won't change the low-order bit. */
8921 if (mask == 1)
8922 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8923
8924 /* We need any bits less significant than the most significant bit in
8925 MASK since carries from those bits will affect the bits we are
8926 interested in. */
8927 mask = fuller_mask;
8928 goto unop;
8929
8930 case NOT:
8931 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8932 same as the XOR case above. Ensure that the constant we form is not
8933 wider than the mode of X. */
8934
8935 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8936 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8937 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8938 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8939 < GET_MODE_PRECISION (GET_MODE (x)))
8940 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8941 {
8942 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8943 GET_MODE (x));
8944 temp = simplify_gen_binary (XOR, GET_MODE (x),
8945 XEXP (XEXP (x, 0), 0), temp);
8946 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8947 temp, XEXP (XEXP (x, 0), 1));
8948
8949 return force_to_mode (x, mode, mask, next_select);
8950 }
8951
8952 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8953 use the full mask inside the NOT. */
8954 mask = fuller_mask;
8955
8956 unop:
8957 op0 = gen_lowpart_or_truncate (op_mode,
8958 force_to_mode (XEXP (x, 0), mode, mask,
8959 next_select));
8960 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8961 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8962 break;
8963
8964 case NE:
8965 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8966 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8967 which is equal to STORE_FLAG_VALUE. */
8968 if ((mask & ~STORE_FLAG_VALUE) == 0
8969 && XEXP (x, 1) == const0_rtx
8970 && GET_MODE (XEXP (x, 0)) == mode
8971 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
8972 && (nonzero_bits (XEXP (x, 0), mode)
8973 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8974 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8975
8976 break;
8977
8978 case IF_THEN_ELSE:
8979 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8980 written in a narrower mode. We play it safe and do not do so. */
8981
8982 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8983 force_to_mode (XEXP (x, 1), mode,
8984 mask, next_select));
8985 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8986 force_to_mode (XEXP (x, 2), mode,
8987 mask, next_select));
8988 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
8989 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
8990 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
8991 op0, op1);
8992 break;
8993
8994 default:
8995 break;
8996 }
8997
8998 /* Ensure we return a value of the proper mode. */
8999 return gen_lowpart_or_truncate (mode, x);
9000 }
9001 \f
9002 /* Return nonzero if X is an expression that has one of two values depending on
9003 whether some other value is zero or nonzero. In that case, we return the
9004 value that is being tested, *PTRUE is set to the value if the rtx being
9005 returned has a nonzero value, and *PFALSE is set to the other alternative.
9006
9007 If we return zero, we set *PTRUE and *PFALSE to X. */
9008
9009 static rtx
9010 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9011 {
9012 machine_mode mode = GET_MODE (x);
9013 enum rtx_code code = GET_CODE (x);
9014 rtx cond0, cond1, true0, true1, false0, false1;
9015 unsigned HOST_WIDE_INT nz;
9016
9017 /* If we are comparing a value against zero, we are done. */
9018 if ((code == NE || code == EQ)
9019 && XEXP (x, 1) == const0_rtx)
9020 {
9021 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9022 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9023 return XEXP (x, 0);
9024 }
9025
9026 /* If this is a unary operation whose operand has one of two values, apply
9027 our opcode to compute those values. */
9028 else if (UNARY_P (x)
9029 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9030 {
9031 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9032 *pfalse = simplify_gen_unary (code, mode, false0,
9033 GET_MODE (XEXP (x, 0)));
9034 return cond0;
9035 }
9036
9037 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9038 make can't possibly match and would suppress other optimizations. */
9039 else if (code == COMPARE)
9040 ;
9041
9042 /* If this is a binary operation, see if either side has only one of two
9043 values. If either one does or if both do and they are conditional on
9044 the same value, compute the new true and false values. */
9045 else if (BINARY_P (x))
9046 {
9047 rtx op0 = XEXP (x, 0);
9048 rtx op1 = XEXP (x, 1);
9049 cond0 = if_then_else_cond (op0, &true0, &false0);
9050 cond1 = if_then_else_cond (op1, &true1, &false1);
9051
9052 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9053 && (REG_P (op0) || REG_P (op1)))
9054 {
9055 /* Try to enable a simplification by undoing work done by
9056 if_then_else_cond if it converted a REG into something more
9057 complex. */
9058 if (REG_P (op0))
9059 {
9060 cond0 = 0;
9061 true0 = false0 = op0;
9062 }
9063 else
9064 {
9065 cond1 = 0;
9066 true1 = false1 = op1;
9067 }
9068 }
9069
9070 if ((cond0 != 0 || cond1 != 0)
9071 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9072 {
9073 /* If if_then_else_cond returned zero, then true/false are the
9074 same rtl. We must copy one of them to prevent invalid rtl
9075 sharing. */
9076 if (cond0 == 0)
9077 true0 = copy_rtx (true0);
9078 else if (cond1 == 0)
9079 true1 = copy_rtx (true1);
9080
9081 if (COMPARISON_P (x))
9082 {
9083 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9084 true0, true1);
9085 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9086 false0, false1);
9087 }
9088 else
9089 {
9090 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9091 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9092 }
9093
9094 return cond0 ? cond0 : cond1;
9095 }
9096
9097 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9098 operands is zero when the other is nonzero, and vice-versa,
9099 and STORE_FLAG_VALUE is 1 or -1. */
9100
9101 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9102 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9103 || code == UMAX)
9104 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9105 {
9106 rtx op0 = XEXP (XEXP (x, 0), 1);
9107 rtx op1 = XEXP (XEXP (x, 1), 1);
9108
9109 cond0 = XEXP (XEXP (x, 0), 0);
9110 cond1 = XEXP (XEXP (x, 1), 0);
9111
9112 if (COMPARISON_P (cond0)
9113 && COMPARISON_P (cond1)
9114 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9115 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9116 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9117 || ((swap_condition (GET_CODE (cond0))
9118 == reversed_comparison_code (cond1, NULL))
9119 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9120 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9121 && ! side_effects_p (x))
9122 {
9123 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9124 *pfalse = simplify_gen_binary (MULT, mode,
9125 (code == MINUS
9126 ? simplify_gen_unary (NEG, mode,
9127 op1, mode)
9128 : op1),
9129 const_true_rtx);
9130 return cond0;
9131 }
9132 }
9133
9134 /* Similarly for MULT, AND and UMIN, except that for these the result
9135 is always zero. */
9136 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9137 && (code == MULT || code == AND || code == UMIN)
9138 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9139 {
9140 cond0 = XEXP (XEXP (x, 0), 0);
9141 cond1 = XEXP (XEXP (x, 1), 0);
9142
9143 if (COMPARISON_P (cond0)
9144 && COMPARISON_P (cond1)
9145 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9146 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9147 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9148 || ((swap_condition (GET_CODE (cond0))
9149 == reversed_comparison_code (cond1, NULL))
9150 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9151 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9152 && ! side_effects_p (x))
9153 {
9154 *ptrue = *pfalse = const0_rtx;
9155 return cond0;
9156 }
9157 }
9158 }
9159
9160 else if (code == IF_THEN_ELSE)
9161 {
9162 /* If we have IF_THEN_ELSE already, extract the condition and
9163 canonicalize it if it is NE or EQ. */
9164 cond0 = XEXP (x, 0);
9165 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9166 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9167 return XEXP (cond0, 0);
9168 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9169 {
9170 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9171 return XEXP (cond0, 0);
9172 }
9173 else
9174 return cond0;
9175 }
9176
9177 /* If X is a SUBREG, we can narrow both the true and false values
9178 if the inner expression, if there is a condition. */
9179 else if (code == SUBREG
9180 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9181 &true0, &false0)))
9182 {
9183 true0 = simplify_gen_subreg (mode, true0,
9184 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9185 false0 = simplify_gen_subreg (mode, false0,
9186 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9187 if (true0 && false0)
9188 {
9189 *ptrue = true0;
9190 *pfalse = false0;
9191 return cond0;
9192 }
9193 }
9194
9195 /* If X is a constant, this isn't special and will cause confusions
9196 if we treat it as such. Likewise if it is equivalent to a constant. */
9197 else if (CONSTANT_P (x)
9198 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9199 ;
9200
9201 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9202 will be least confusing to the rest of the compiler. */
9203 else if (mode == BImode)
9204 {
9205 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9206 return x;
9207 }
9208
9209 /* If X is known to be either 0 or -1, those are the true and
9210 false values when testing X. */
9211 else if (x == constm1_rtx || x == const0_rtx
9212 || (mode != VOIDmode && mode != BLKmode
9213 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9214 {
9215 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9216 return x;
9217 }
9218
9219 /* Likewise for 0 or a single bit. */
9220 else if (HWI_COMPUTABLE_MODE_P (mode)
9221 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9222 {
9223 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9224 return x;
9225 }
9226
9227 /* Otherwise fail; show no condition with true and false values the same. */
9228 *ptrue = *pfalse = x;
9229 return 0;
9230 }
9231 \f
9232 /* Return the value of expression X given the fact that condition COND
9233 is known to be true when applied to REG as its first operand and VAL
9234 as its second. X is known to not be shared and so can be modified in
9235 place.
9236
9237 We only handle the simplest cases, and specifically those cases that
9238 arise with IF_THEN_ELSE expressions. */
9239
9240 static rtx
9241 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9242 {
9243 enum rtx_code code = GET_CODE (x);
9244 const char *fmt;
9245 int i, j;
9246
9247 if (side_effects_p (x))
9248 return x;
9249
9250 /* If either operand of the condition is a floating point value,
9251 then we have to avoid collapsing an EQ comparison. */
9252 if (cond == EQ
9253 && rtx_equal_p (x, reg)
9254 && ! FLOAT_MODE_P (GET_MODE (x))
9255 && ! FLOAT_MODE_P (GET_MODE (val)))
9256 return val;
9257
9258 if (cond == UNEQ && rtx_equal_p (x, reg))
9259 return val;
9260
9261 /* If X is (abs REG) and we know something about REG's relationship
9262 with zero, we may be able to simplify this. */
9263
9264 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9265 switch (cond)
9266 {
9267 case GE: case GT: case EQ:
9268 return XEXP (x, 0);
9269 case LT: case LE:
9270 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9271 XEXP (x, 0),
9272 GET_MODE (XEXP (x, 0)));
9273 default:
9274 break;
9275 }
9276
9277 /* The only other cases we handle are MIN, MAX, and comparisons if the
9278 operands are the same as REG and VAL. */
9279
9280 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9281 {
9282 if (rtx_equal_p (XEXP (x, 0), val))
9283 {
9284 std::swap (val, reg);
9285 cond = swap_condition (cond);
9286 }
9287
9288 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9289 {
9290 if (COMPARISON_P (x))
9291 {
9292 if (comparison_dominates_p (cond, code))
9293 return const_true_rtx;
9294
9295 code = reversed_comparison_code (x, NULL);
9296 if (code != UNKNOWN
9297 && comparison_dominates_p (cond, code))
9298 return const0_rtx;
9299 else
9300 return x;
9301 }
9302 else if (code == SMAX || code == SMIN
9303 || code == UMIN || code == UMAX)
9304 {
9305 int unsignedp = (code == UMIN || code == UMAX);
9306
9307 /* Do not reverse the condition when it is NE or EQ.
9308 This is because we cannot conclude anything about
9309 the value of 'SMAX (x, y)' when x is not equal to y,
9310 but we can when x equals y. */
9311 if ((code == SMAX || code == UMAX)
9312 && ! (cond == EQ || cond == NE))
9313 cond = reverse_condition (cond);
9314
9315 switch (cond)
9316 {
9317 case GE: case GT:
9318 return unsignedp ? x : XEXP (x, 1);
9319 case LE: case LT:
9320 return unsignedp ? x : XEXP (x, 0);
9321 case GEU: case GTU:
9322 return unsignedp ? XEXP (x, 1) : x;
9323 case LEU: case LTU:
9324 return unsignedp ? XEXP (x, 0) : x;
9325 default:
9326 break;
9327 }
9328 }
9329 }
9330 }
9331 else if (code == SUBREG)
9332 {
9333 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9334 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9335
9336 if (SUBREG_REG (x) != r)
9337 {
9338 /* We must simplify subreg here, before we lose track of the
9339 original inner_mode. */
9340 new_rtx = simplify_subreg (GET_MODE (x), r,
9341 inner_mode, SUBREG_BYTE (x));
9342 if (new_rtx)
9343 return new_rtx;
9344 else
9345 SUBST (SUBREG_REG (x), r);
9346 }
9347
9348 return x;
9349 }
9350 /* We don't have to handle SIGN_EXTEND here, because even in the
9351 case of replacing something with a modeless CONST_INT, a
9352 CONST_INT is already (supposed to be) a valid sign extension for
9353 its narrower mode, which implies it's already properly
9354 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9355 story is different. */
9356 else if (code == ZERO_EXTEND)
9357 {
9358 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9359 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9360
9361 if (XEXP (x, 0) != r)
9362 {
9363 /* We must simplify the zero_extend here, before we lose
9364 track of the original inner_mode. */
9365 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9366 r, inner_mode);
9367 if (new_rtx)
9368 return new_rtx;
9369 else
9370 SUBST (XEXP (x, 0), r);
9371 }
9372
9373 return x;
9374 }
9375
9376 fmt = GET_RTX_FORMAT (code);
9377 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9378 {
9379 if (fmt[i] == 'e')
9380 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9381 else if (fmt[i] == 'E')
9382 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9383 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9384 cond, reg, val));
9385 }
9386
9387 return x;
9388 }
9389 \f
9390 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9391 assignment as a field assignment. */
9392
9393 static int
9394 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9395 {
9396 if (widen_x && GET_MODE (x) != GET_MODE (y))
9397 {
9398 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9399 return 0;
9400 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9401 return 0;
9402 /* For big endian, adjust the memory offset. */
9403 if (BYTES_BIG_ENDIAN)
9404 x = adjust_address_nv (x, GET_MODE (y),
9405 -subreg_lowpart_offset (GET_MODE (x),
9406 GET_MODE (y)));
9407 else
9408 x = adjust_address_nv (x, GET_MODE (y), 0);
9409 }
9410
9411 if (x == y || rtx_equal_p (x, y))
9412 return 1;
9413
9414 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9415 return 0;
9416
9417 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9418 Note that all SUBREGs of MEM are paradoxical; otherwise they
9419 would have been rewritten. */
9420 if (MEM_P (x) && GET_CODE (y) == SUBREG
9421 && MEM_P (SUBREG_REG (y))
9422 && rtx_equal_p (SUBREG_REG (y),
9423 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9424 return 1;
9425
9426 if (MEM_P (y) && GET_CODE (x) == SUBREG
9427 && MEM_P (SUBREG_REG (x))
9428 && rtx_equal_p (SUBREG_REG (x),
9429 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9430 return 1;
9431
9432 /* We used to see if get_last_value of X and Y were the same but that's
9433 not correct. In one direction, we'll cause the assignment to have
9434 the wrong destination and in the case, we'll import a register into this
9435 insn that might have already have been dead. So fail if none of the
9436 above cases are true. */
9437 return 0;
9438 }
9439 \f
9440 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9441 Return that assignment if so.
9442
9443 We only handle the most common cases. */
9444
9445 static rtx
9446 make_field_assignment (rtx x)
9447 {
9448 rtx dest = SET_DEST (x);
9449 rtx src = SET_SRC (x);
9450 rtx assign;
9451 rtx rhs, lhs;
9452 HOST_WIDE_INT c1;
9453 HOST_WIDE_INT pos;
9454 unsigned HOST_WIDE_INT len;
9455 rtx other;
9456 machine_mode mode;
9457
9458 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9459 a clear of a one-bit field. We will have changed it to
9460 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9461 for a SUBREG. */
9462
9463 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9464 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9465 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9466 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9467 {
9468 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9469 1, 1, 1, 0);
9470 if (assign != 0)
9471 return gen_rtx_SET (assign, const0_rtx);
9472 return x;
9473 }
9474
9475 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9476 && subreg_lowpart_p (XEXP (src, 0))
9477 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9478 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9479 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9480 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9481 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9482 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9483 {
9484 assign = make_extraction (VOIDmode, dest, 0,
9485 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9486 1, 1, 1, 0);
9487 if (assign != 0)
9488 return gen_rtx_SET (assign, const0_rtx);
9489 return x;
9490 }
9491
9492 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9493 one-bit field. */
9494 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9495 && XEXP (XEXP (src, 0), 0) == const1_rtx
9496 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9497 {
9498 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9499 1, 1, 1, 0);
9500 if (assign != 0)
9501 return gen_rtx_SET (assign, const1_rtx);
9502 return x;
9503 }
9504
9505 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9506 SRC is an AND with all bits of that field set, then we can discard
9507 the AND. */
9508 if (GET_CODE (dest) == ZERO_EXTRACT
9509 && CONST_INT_P (XEXP (dest, 1))
9510 && GET_CODE (src) == AND
9511 && CONST_INT_P (XEXP (src, 1)))
9512 {
9513 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9514 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9515 unsigned HOST_WIDE_INT ze_mask;
9516
9517 if (width >= HOST_BITS_PER_WIDE_INT)
9518 ze_mask = -1;
9519 else
9520 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9521
9522 /* Complete overlap. We can remove the source AND. */
9523 if ((and_mask & ze_mask) == ze_mask)
9524 return gen_rtx_SET (dest, XEXP (src, 0));
9525
9526 /* Partial overlap. We can reduce the source AND. */
9527 if ((and_mask & ze_mask) != and_mask)
9528 {
9529 mode = GET_MODE (src);
9530 src = gen_rtx_AND (mode, XEXP (src, 0),
9531 gen_int_mode (and_mask & ze_mask, mode));
9532 return gen_rtx_SET (dest, src);
9533 }
9534 }
9535
9536 /* The other case we handle is assignments into a constant-position
9537 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9538 a mask that has all one bits except for a group of zero bits and
9539 OTHER is known to have zeros where C1 has ones, this is such an
9540 assignment. Compute the position and length from C1. Shift OTHER
9541 to the appropriate position, force it to the required mode, and
9542 make the extraction. Check for the AND in both operands. */
9543
9544 /* One or more SUBREGs might obscure the constant-position field
9545 assignment. The first one we are likely to encounter is an outer
9546 narrowing SUBREG, which we can just strip for the purposes of
9547 identifying the constant-field assignment. */
9548 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9549 src = SUBREG_REG (src);
9550
9551 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9552 return x;
9553
9554 rhs = expand_compound_operation (XEXP (src, 0));
9555 lhs = expand_compound_operation (XEXP (src, 1));
9556
9557 if (GET_CODE (rhs) == AND
9558 && CONST_INT_P (XEXP (rhs, 1))
9559 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9560 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9561 /* The second SUBREG that might get in the way is a paradoxical
9562 SUBREG around the first operand of the AND. We want to
9563 pretend the operand is as wide as the destination here. We
9564 do this by adjusting the MEM to wider mode for the sole
9565 purpose of the call to rtx_equal_for_field_assignment_p. Also
9566 note this trick only works for MEMs. */
9567 else if (GET_CODE (rhs) == AND
9568 && paradoxical_subreg_p (XEXP (rhs, 0))
9569 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9570 && CONST_INT_P (XEXP (rhs, 1))
9571 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9572 dest, true))
9573 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9574 else if (GET_CODE (lhs) == AND
9575 && CONST_INT_P (XEXP (lhs, 1))
9576 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9577 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9578 /* The second SUBREG that might get in the way is a paradoxical
9579 SUBREG around the first operand of the AND. We want to
9580 pretend the operand is as wide as the destination here. We
9581 do this by adjusting the MEM to wider mode for the sole
9582 purpose of the call to rtx_equal_for_field_assignment_p. Also
9583 note this trick only works for MEMs. */
9584 else if (GET_CODE (lhs) == AND
9585 && paradoxical_subreg_p (XEXP (lhs, 0))
9586 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9587 && CONST_INT_P (XEXP (lhs, 1))
9588 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9589 dest, true))
9590 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9591 else
9592 return x;
9593
9594 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9595 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9596 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9597 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9598 return x;
9599
9600 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9601 if (assign == 0)
9602 return x;
9603
9604 /* The mode to use for the source is the mode of the assignment, or of
9605 what is inside a possible STRICT_LOW_PART. */
9606 mode = (GET_CODE (assign) == STRICT_LOW_PART
9607 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9608
9609 /* Shift OTHER right POS places and make it the source, restricting it
9610 to the proper length and mode. */
9611
9612 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9613 GET_MODE (src),
9614 other, pos),
9615 dest);
9616 src = force_to_mode (src, mode,
9617 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9618 ? HOST_WIDE_INT_M1U
9619 : (HOST_WIDE_INT_1U << len) - 1,
9620 0);
9621
9622 /* If SRC is masked by an AND that does not make a difference in
9623 the value being stored, strip it. */
9624 if (GET_CODE (assign) == ZERO_EXTRACT
9625 && CONST_INT_P (XEXP (assign, 1))
9626 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9627 && GET_CODE (src) == AND
9628 && CONST_INT_P (XEXP (src, 1))
9629 && UINTVAL (XEXP (src, 1))
9630 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9631 src = XEXP (src, 0);
9632
9633 return gen_rtx_SET (assign, src);
9634 }
9635 \f
9636 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9637 if so. */
9638
9639 static rtx
9640 apply_distributive_law (rtx x)
9641 {
9642 enum rtx_code code = GET_CODE (x);
9643 enum rtx_code inner_code;
9644 rtx lhs, rhs, other;
9645 rtx tem;
9646
9647 /* Distributivity is not true for floating point as it can change the
9648 value. So we don't do it unless -funsafe-math-optimizations. */
9649 if (FLOAT_MODE_P (GET_MODE (x))
9650 && ! flag_unsafe_math_optimizations)
9651 return x;
9652
9653 /* The outer operation can only be one of the following: */
9654 if (code != IOR && code != AND && code != XOR
9655 && code != PLUS && code != MINUS)
9656 return x;
9657
9658 lhs = XEXP (x, 0);
9659 rhs = XEXP (x, 1);
9660
9661 /* If either operand is a primitive we can't do anything, so get out
9662 fast. */
9663 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9664 return x;
9665
9666 lhs = expand_compound_operation (lhs);
9667 rhs = expand_compound_operation (rhs);
9668 inner_code = GET_CODE (lhs);
9669 if (inner_code != GET_CODE (rhs))
9670 return x;
9671
9672 /* See if the inner and outer operations distribute. */
9673 switch (inner_code)
9674 {
9675 case LSHIFTRT:
9676 case ASHIFTRT:
9677 case AND:
9678 case IOR:
9679 /* These all distribute except over PLUS. */
9680 if (code == PLUS || code == MINUS)
9681 return x;
9682 break;
9683
9684 case MULT:
9685 if (code != PLUS && code != MINUS)
9686 return x;
9687 break;
9688
9689 case ASHIFT:
9690 /* This is also a multiply, so it distributes over everything. */
9691 break;
9692
9693 /* This used to handle SUBREG, but this turned out to be counter-
9694 productive, since (subreg (op ...)) usually is not handled by
9695 insn patterns, and this "optimization" therefore transformed
9696 recognizable patterns into unrecognizable ones. Therefore the
9697 SUBREG case was removed from here.
9698
9699 It is possible that distributing SUBREG over arithmetic operations
9700 leads to an intermediate result than can then be optimized further,
9701 e.g. by moving the outer SUBREG to the other side of a SET as done
9702 in simplify_set. This seems to have been the original intent of
9703 handling SUBREGs here.
9704
9705 However, with current GCC this does not appear to actually happen,
9706 at least on major platforms. If some case is found where removing
9707 the SUBREG case here prevents follow-on optimizations, distributing
9708 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9709
9710 default:
9711 return x;
9712 }
9713
9714 /* Set LHS and RHS to the inner operands (A and B in the example
9715 above) and set OTHER to the common operand (C in the example).
9716 There is only one way to do this unless the inner operation is
9717 commutative. */
9718 if (COMMUTATIVE_ARITH_P (lhs)
9719 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9720 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9721 else if (COMMUTATIVE_ARITH_P (lhs)
9722 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9723 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9724 else if (COMMUTATIVE_ARITH_P (lhs)
9725 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9726 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9727 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9728 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9729 else
9730 return x;
9731
9732 /* Form the new inner operation, seeing if it simplifies first. */
9733 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9734
9735 /* There is one exception to the general way of distributing:
9736 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9737 if (code == XOR && inner_code == IOR)
9738 {
9739 inner_code = AND;
9740 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9741 }
9742
9743 /* We may be able to continuing distributing the result, so call
9744 ourselves recursively on the inner operation before forming the
9745 outer operation, which we return. */
9746 return simplify_gen_binary (inner_code, GET_MODE (x),
9747 apply_distributive_law (tem), other);
9748 }
9749
9750 /* See if X is of the form (* (+ A B) C), and if so convert to
9751 (+ (* A C) (* B C)) and try to simplify.
9752
9753 Most of the time, this results in no change. However, if some of
9754 the operands are the same or inverses of each other, simplifications
9755 will result.
9756
9757 For example, (and (ior A B) (not B)) can occur as the result of
9758 expanding a bit field assignment. When we apply the distributive
9759 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9760 which then simplifies to (and (A (not B))).
9761
9762 Note that no checks happen on the validity of applying the inverse
9763 distributive law. This is pointless since we can do it in the
9764 few places where this routine is called.
9765
9766 N is the index of the term that is decomposed (the arithmetic operation,
9767 i.e. (+ A B) in the first example above). !N is the index of the term that
9768 is distributed, i.e. of C in the first example above. */
9769 static rtx
9770 distribute_and_simplify_rtx (rtx x, int n)
9771 {
9772 machine_mode mode;
9773 enum rtx_code outer_code, inner_code;
9774 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9775
9776 /* Distributivity is not true for floating point as it can change the
9777 value. So we don't do it unless -funsafe-math-optimizations. */
9778 if (FLOAT_MODE_P (GET_MODE (x))
9779 && ! flag_unsafe_math_optimizations)
9780 return NULL_RTX;
9781
9782 decomposed = XEXP (x, n);
9783 if (!ARITHMETIC_P (decomposed))
9784 return NULL_RTX;
9785
9786 mode = GET_MODE (x);
9787 outer_code = GET_CODE (x);
9788 distributed = XEXP (x, !n);
9789
9790 inner_code = GET_CODE (decomposed);
9791 inner_op0 = XEXP (decomposed, 0);
9792 inner_op1 = XEXP (decomposed, 1);
9793
9794 /* Special case (and (xor B C) (not A)), which is equivalent to
9795 (xor (ior A B) (ior A C)) */
9796 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9797 {
9798 distributed = XEXP (distributed, 0);
9799 outer_code = IOR;
9800 }
9801
9802 if (n == 0)
9803 {
9804 /* Distribute the second term. */
9805 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9806 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9807 }
9808 else
9809 {
9810 /* Distribute the first term. */
9811 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9812 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9813 }
9814
9815 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9816 new_op0, new_op1));
9817 if (GET_CODE (tmp) != outer_code
9818 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9819 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9820 return tmp;
9821
9822 return NULL_RTX;
9823 }
9824 \f
9825 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9826 in MODE. Return an equivalent form, if different from (and VAROP
9827 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9828
9829 static rtx
9830 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9831 unsigned HOST_WIDE_INT constop)
9832 {
9833 unsigned HOST_WIDE_INT nonzero;
9834 unsigned HOST_WIDE_INT orig_constop;
9835 rtx orig_varop;
9836 int i;
9837
9838 orig_varop = varop;
9839 orig_constop = constop;
9840 if (GET_CODE (varop) == CLOBBER)
9841 return NULL_RTX;
9842
9843 /* Simplify VAROP knowing that we will be only looking at some of the
9844 bits in it.
9845
9846 Note by passing in CONSTOP, we guarantee that the bits not set in
9847 CONSTOP are not significant and will never be examined. We must
9848 ensure that is the case by explicitly masking out those bits
9849 before returning. */
9850 varop = force_to_mode (varop, mode, constop, 0);
9851
9852 /* If VAROP is a CLOBBER, we will fail so return it. */
9853 if (GET_CODE (varop) == CLOBBER)
9854 return varop;
9855
9856 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9857 to VAROP and return the new constant. */
9858 if (CONST_INT_P (varop))
9859 return gen_int_mode (INTVAL (varop) & constop, mode);
9860
9861 /* See what bits may be nonzero in VAROP. Unlike the general case of
9862 a call to nonzero_bits, here we don't care about bits outside
9863 MODE. */
9864
9865 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9866
9867 /* Turn off all bits in the constant that are known to already be zero.
9868 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9869 which is tested below. */
9870
9871 constop &= nonzero;
9872
9873 /* If we don't have any bits left, return zero. */
9874 if (constop == 0)
9875 return const0_rtx;
9876
9877 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9878 a power of two, we can replace this with an ASHIFT. */
9879 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9880 && (i = exact_log2 (constop)) >= 0)
9881 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9882
9883 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9884 or XOR, then try to apply the distributive law. This may eliminate
9885 operations if either branch can be simplified because of the AND.
9886 It may also make some cases more complex, but those cases probably
9887 won't match a pattern either with or without this. */
9888
9889 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9890 return
9891 gen_lowpart
9892 (mode,
9893 apply_distributive_law
9894 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9895 simplify_and_const_int (NULL_RTX,
9896 GET_MODE (varop),
9897 XEXP (varop, 0),
9898 constop),
9899 simplify_and_const_int (NULL_RTX,
9900 GET_MODE (varop),
9901 XEXP (varop, 1),
9902 constop))));
9903
9904 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9905 the AND and see if one of the operands simplifies to zero. If so, we
9906 may eliminate it. */
9907
9908 if (GET_CODE (varop) == PLUS
9909 && pow2p_hwi (constop + 1))
9910 {
9911 rtx o0, o1;
9912
9913 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9914 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9915 if (o0 == const0_rtx)
9916 return o1;
9917 if (o1 == const0_rtx)
9918 return o0;
9919 }
9920
9921 /* Make a SUBREG if necessary. If we can't make it, fail. */
9922 varop = gen_lowpart (mode, varop);
9923 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9924 return NULL_RTX;
9925
9926 /* If we are only masking insignificant bits, return VAROP. */
9927 if (constop == nonzero)
9928 return varop;
9929
9930 if (varop == orig_varop && constop == orig_constop)
9931 return NULL_RTX;
9932
9933 /* Otherwise, return an AND. */
9934 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9935 }
9936
9937
9938 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9939 in MODE.
9940
9941 Return an equivalent form, if different from X. Otherwise, return X. If
9942 X is zero, we are to always construct the equivalent form. */
9943
9944 static rtx
9945 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9946 unsigned HOST_WIDE_INT constop)
9947 {
9948 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9949 if (tem)
9950 return tem;
9951
9952 if (!x)
9953 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9954 gen_int_mode (constop, mode));
9955 if (GET_MODE (x) != mode)
9956 x = gen_lowpart (mode, x);
9957 return x;
9958 }
9959 \f
9960 /* Given a REG, X, compute which bits in X can be nonzero.
9961 We don't care about bits outside of those defined in MODE.
9962
9963 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9964 a shift, AND, or zero_extract, we can do better. */
9965
9966 static rtx
9967 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9968 const_rtx known_x ATTRIBUTE_UNUSED,
9969 machine_mode known_mode ATTRIBUTE_UNUSED,
9970 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9971 unsigned HOST_WIDE_INT *nonzero)
9972 {
9973 rtx tem;
9974 reg_stat_type *rsp;
9975
9976 /* If X is a register whose nonzero bits value is current, use it.
9977 Otherwise, if X is a register whose value we can find, use that
9978 value. Otherwise, use the previously-computed global nonzero bits
9979 for this register. */
9980
9981 rsp = &reg_stat[REGNO (x)];
9982 if (rsp->last_set_value != 0
9983 && (rsp->last_set_mode == mode
9984 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9985 && GET_MODE_CLASS (mode) == MODE_INT))
9986 && ((rsp->last_set_label >= label_tick_ebb_start
9987 && rsp->last_set_label < label_tick)
9988 || (rsp->last_set_label == label_tick
9989 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9990 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9991 && REGNO (x) < reg_n_sets_max
9992 && REG_N_SETS (REGNO (x)) == 1
9993 && !REGNO_REG_SET_P
9994 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9995 REGNO (x)))))
9996 {
9997 /* Note that, even if the precision of last_set_mode is lower than that
9998 of mode, record_value_for_reg invoked nonzero_bits on the register
9999 with nonzero_bits_mode (because last_set_mode is necessarily integral
10000 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10001 are all valid, hence in mode too since nonzero_bits_mode is defined
10002 to the largest HWI_COMPUTABLE_MODE_P mode. */
10003 *nonzero &= rsp->last_set_nonzero_bits;
10004 return NULL;
10005 }
10006
10007 tem = get_last_value (x);
10008 if (tem)
10009 {
10010 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10011 tem = sign_extend_short_imm (tem, GET_MODE (x),
10012 GET_MODE_PRECISION (mode));
10013
10014 return tem;
10015 }
10016
10017 if (nonzero_sign_valid && rsp->nonzero_bits)
10018 {
10019 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10020
10021 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
10022 /* We don't know anything about the upper bits. */
10023 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
10024
10025 *nonzero &= mask;
10026 }
10027
10028 return NULL;
10029 }
10030
10031 /* Return the number of bits at the high-order end of X that are known to
10032 be equal to the sign bit. X will be used in mode MODE; if MODE is
10033 VOIDmode, X will be used in its own mode. The returned value will always
10034 be between 1 and the number of bits in MODE. */
10035
10036 static rtx
10037 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
10038 const_rtx known_x ATTRIBUTE_UNUSED,
10039 machine_mode known_mode
10040 ATTRIBUTE_UNUSED,
10041 unsigned int known_ret ATTRIBUTE_UNUSED,
10042 unsigned int *result)
10043 {
10044 rtx tem;
10045 reg_stat_type *rsp;
10046
10047 rsp = &reg_stat[REGNO (x)];
10048 if (rsp->last_set_value != 0
10049 && rsp->last_set_mode == mode
10050 && ((rsp->last_set_label >= label_tick_ebb_start
10051 && rsp->last_set_label < label_tick)
10052 || (rsp->last_set_label == label_tick
10053 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10054 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10055 && REGNO (x) < reg_n_sets_max
10056 && REG_N_SETS (REGNO (x)) == 1
10057 && !REGNO_REG_SET_P
10058 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10059 REGNO (x)))))
10060 {
10061 *result = rsp->last_set_sign_bit_copies;
10062 return NULL;
10063 }
10064
10065 tem = get_last_value (x);
10066 if (tem != 0)
10067 return tem;
10068
10069 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10070 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
10071 *result = rsp->sign_bit_copies;
10072
10073 return NULL;
10074 }
10075 \f
10076 /* Return the number of "extended" bits there are in X, when interpreted
10077 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10078 unsigned quantities, this is the number of high-order zero bits.
10079 For signed quantities, this is the number of copies of the sign bit
10080 minus 1. In both case, this function returns the number of "spare"
10081 bits. For example, if two quantities for which this function returns
10082 at least 1 are added, the addition is known not to overflow.
10083
10084 This function will always return 0 unless called during combine, which
10085 implies that it must be called from a define_split. */
10086
10087 unsigned int
10088 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10089 {
10090 if (nonzero_sign_valid == 0)
10091 return 0;
10092
10093 return (unsignedp
10094 ? (HWI_COMPUTABLE_MODE_P (mode)
10095 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
10096 - floor_log2 (nonzero_bits (x, mode)))
10097 : 0)
10098 : num_sign_bit_copies (x, mode) - 1);
10099 }
10100
10101 /* This function is called from `simplify_shift_const' to merge two
10102 outer operations. Specifically, we have already found that we need
10103 to perform operation *POP0 with constant *PCONST0 at the outermost
10104 position. We would now like to also perform OP1 with constant CONST1
10105 (with *POP0 being done last).
10106
10107 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10108 the resulting operation. *PCOMP_P is set to 1 if we would need to
10109 complement the innermost operand, otherwise it is unchanged.
10110
10111 MODE is the mode in which the operation will be done. No bits outside
10112 the width of this mode matter. It is assumed that the width of this mode
10113 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10114
10115 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10116 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10117 result is simply *PCONST0.
10118
10119 If the resulting operation cannot be expressed as one operation, we
10120 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10121
10122 static int
10123 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10124 {
10125 enum rtx_code op0 = *pop0;
10126 HOST_WIDE_INT const0 = *pconst0;
10127
10128 const0 &= GET_MODE_MASK (mode);
10129 const1 &= GET_MODE_MASK (mode);
10130
10131 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10132 if (op0 == AND)
10133 const1 &= const0;
10134
10135 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10136 if OP0 is SET. */
10137
10138 if (op1 == UNKNOWN || op0 == SET)
10139 return 1;
10140
10141 else if (op0 == UNKNOWN)
10142 op0 = op1, const0 = const1;
10143
10144 else if (op0 == op1)
10145 {
10146 switch (op0)
10147 {
10148 case AND:
10149 const0 &= const1;
10150 break;
10151 case IOR:
10152 const0 |= const1;
10153 break;
10154 case XOR:
10155 const0 ^= const1;
10156 break;
10157 case PLUS:
10158 const0 += const1;
10159 break;
10160 case NEG:
10161 op0 = UNKNOWN;
10162 break;
10163 default:
10164 break;
10165 }
10166 }
10167
10168 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10169 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10170 return 0;
10171
10172 /* If the two constants aren't the same, we can't do anything. The
10173 remaining six cases can all be done. */
10174 else if (const0 != const1)
10175 return 0;
10176
10177 else
10178 switch (op0)
10179 {
10180 case IOR:
10181 if (op1 == AND)
10182 /* (a & b) | b == b */
10183 op0 = SET;
10184 else /* op1 == XOR */
10185 /* (a ^ b) | b == a | b */
10186 {;}
10187 break;
10188
10189 case XOR:
10190 if (op1 == AND)
10191 /* (a & b) ^ b == (~a) & b */
10192 op0 = AND, *pcomp_p = 1;
10193 else /* op1 == IOR */
10194 /* (a | b) ^ b == a & ~b */
10195 op0 = AND, const0 = ~const0;
10196 break;
10197
10198 case AND:
10199 if (op1 == IOR)
10200 /* (a | b) & b == b */
10201 op0 = SET;
10202 else /* op1 == XOR */
10203 /* (a ^ b) & b) == (~a) & b */
10204 *pcomp_p = 1;
10205 break;
10206 default:
10207 break;
10208 }
10209
10210 /* Check for NO-OP cases. */
10211 const0 &= GET_MODE_MASK (mode);
10212 if (const0 == 0
10213 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10214 op0 = UNKNOWN;
10215 else if (const0 == 0 && op0 == AND)
10216 op0 = SET;
10217 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10218 && op0 == AND)
10219 op0 = UNKNOWN;
10220
10221 *pop0 = op0;
10222
10223 /* ??? Slightly redundant with the above mask, but not entirely.
10224 Moving this above means we'd have to sign-extend the mode mask
10225 for the final test. */
10226 if (op0 != UNKNOWN && op0 != NEG)
10227 *pconst0 = trunc_int_for_mode (const0, mode);
10228
10229 return 1;
10230 }
10231 \f
10232 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10233 the shift in. The original shift operation CODE is performed on OP in
10234 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10235 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10236 result of the shift is subject to operation OUTER_CODE with operand
10237 OUTER_CONST. */
10238
10239 static machine_mode
10240 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10241 machine_mode orig_mode, machine_mode mode,
10242 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10243 {
10244 if (orig_mode == mode)
10245 return mode;
10246 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10247
10248 /* In general we can't perform in wider mode for right shift and rotate. */
10249 switch (code)
10250 {
10251 case ASHIFTRT:
10252 /* We can still widen if the bits brought in from the left are identical
10253 to the sign bit of ORIG_MODE. */
10254 if (num_sign_bit_copies (op, mode)
10255 > (unsigned) (GET_MODE_PRECISION (mode)
10256 - GET_MODE_PRECISION (orig_mode)))
10257 return mode;
10258 return orig_mode;
10259
10260 case LSHIFTRT:
10261 /* Similarly here but with zero bits. */
10262 if (HWI_COMPUTABLE_MODE_P (mode)
10263 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10264 return mode;
10265
10266 /* We can also widen if the bits brought in will be masked off. This
10267 operation is performed in ORIG_MODE. */
10268 if (outer_code == AND)
10269 {
10270 int care_bits = low_bitmask_len (orig_mode, outer_const);
10271
10272 if (care_bits >= 0
10273 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10274 return mode;
10275 }
10276 /* fall through */
10277
10278 case ROTATE:
10279 return orig_mode;
10280
10281 case ROTATERT:
10282 gcc_unreachable ();
10283
10284 default:
10285 return mode;
10286 }
10287 }
10288
10289 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10290 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10291 if we cannot simplify it. Otherwise, return a simplified value.
10292
10293 The shift is normally computed in the widest mode we find in VAROP, as
10294 long as it isn't a different number of words than RESULT_MODE. Exceptions
10295 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10296
10297 static rtx
10298 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10299 rtx varop, int orig_count)
10300 {
10301 enum rtx_code orig_code = code;
10302 rtx orig_varop = varop;
10303 int count;
10304 machine_mode mode = result_mode;
10305 machine_mode shift_mode, tmode;
10306 unsigned int mode_words
10307 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10308 /* We form (outer_op (code varop count) (outer_const)). */
10309 enum rtx_code outer_op = UNKNOWN;
10310 HOST_WIDE_INT outer_const = 0;
10311 int complement_p = 0;
10312 rtx new_rtx, x;
10313
10314 /* Make sure and truncate the "natural" shift on the way in. We don't
10315 want to do this inside the loop as it makes it more difficult to
10316 combine shifts. */
10317 if (SHIFT_COUNT_TRUNCATED)
10318 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10319
10320 /* If we were given an invalid count, don't do anything except exactly
10321 what was requested. */
10322
10323 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10324 return NULL_RTX;
10325
10326 count = orig_count;
10327
10328 /* Unless one of the branches of the `if' in this loop does a `continue',
10329 we will `break' the loop after the `if'. */
10330
10331 while (count != 0)
10332 {
10333 /* If we have an operand of (clobber (const_int 0)), fail. */
10334 if (GET_CODE (varop) == CLOBBER)
10335 return NULL_RTX;
10336
10337 /* Convert ROTATERT to ROTATE. */
10338 if (code == ROTATERT)
10339 {
10340 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10341 code = ROTATE;
10342 count = bitsize - count;
10343 }
10344
10345 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10346 mode, outer_op, outer_const);
10347 machine_mode shift_unit_mode = GET_MODE_INNER (shift_mode);
10348
10349 /* Handle cases where the count is greater than the size of the mode
10350 minus 1. For ASHIFT, use the size minus one as the count (this can
10351 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10352 take the count modulo the size. For other shifts, the result is
10353 zero.
10354
10355 Since these shifts are being produced by the compiler by combining
10356 multiple operations, each of which are defined, we know what the
10357 result is supposed to be. */
10358
10359 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10360 {
10361 if (code == ASHIFTRT)
10362 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10363 else if (code == ROTATE || code == ROTATERT)
10364 count %= GET_MODE_PRECISION (shift_unit_mode);
10365 else
10366 {
10367 /* We can't simply return zero because there may be an
10368 outer op. */
10369 varop = const0_rtx;
10370 count = 0;
10371 break;
10372 }
10373 }
10374
10375 /* If we discovered we had to complement VAROP, leave. Making a NOT
10376 here would cause an infinite loop. */
10377 if (complement_p)
10378 break;
10379
10380 if (shift_mode == shift_unit_mode)
10381 {
10382 /* An arithmetic right shift of a quantity known to be -1 or 0
10383 is a no-op. */
10384 if (code == ASHIFTRT
10385 && (num_sign_bit_copies (varop, shift_unit_mode)
10386 == GET_MODE_PRECISION (shift_unit_mode)))
10387 {
10388 count = 0;
10389 break;
10390 }
10391
10392 /* If we are doing an arithmetic right shift and discarding all but
10393 the sign bit copies, this is equivalent to doing a shift by the
10394 bitsize minus one. Convert it into that shift because it will
10395 often allow other simplifications. */
10396
10397 if (code == ASHIFTRT
10398 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10399 >= GET_MODE_PRECISION (shift_unit_mode)))
10400 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10401
10402 /* We simplify the tests below and elsewhere by converting
10403 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10404 `make_compound_operation' will convert it to an ASHIFTRT for
10405 those machines (such as VAX) that don't have an LSHIFTRT. */
10406 if (code == ASHIFTRT
10407 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10408 && val_signbit_known_clear_p (shift_unit_mode,
10409 nonzero_bits (varop,
10410 shift_unit_mode)))
10411 code = LSHIFTRT;
10412
10413 if (((code == LSHIFTRT
10414 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10415 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10416 || (code == ASHIFT
10417 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10418 && !((nonzero_bits (varop, shift_unit_mode) << count)
10419 & GET_MODE_MASK (shift_unit_mode))))
10420 && !side_effects_p (varop))
10421 varop = const0_rtx;
10422 }
10423
10424 switch (GET_CODE (varop))
10425 {
10426 case SIGN_EXTEND:
10427 case ZERO_EXTEND:
10428 case SIGN_EXTRACT:
10429 case ZERO_EXTRACT:
10430 new_rtx = expand_compound_operation (varop);
10431 if (new_rtx != varop)
10432 {
10433 varop = new_rtx;
10434 continue;
10435 }
10436 break;
10437
10438 case MEM:
10439 /* The following rules apply only to scalars. */
10440 if (shift_mode != shift_unit_mode)
10441 break;
10442
10443 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10444 minus the width of a smaller mode, we can do this with a
10445 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10446 if ((code == ASHIFTRT || code == LSHIFTRT)
10447 && ! mode_dependent_address_p (XEXP (varop, 0),
10448 MEM_ADDR_SPACE (varop))
10449 && ! MEM_VOLATILE_P (varop)
10450 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10451 MODE_INT, 1)) != BLKmode)
10452 {
10453 new_rtx = adjust_address_nv (varop, tmode,
10454 BYTES_BIG_ENDIAN ? 0
10455 : count / BITS_PER_UNIT);
10456
10457 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10458 : ZERO_EXTEND, mode, new_rtx);
10459 count = 0;
10460 continue;
10461 }
10462 break;
10463
10464 case SUBREG:
10465 /* The following rules apply only to scalars. */
10466 if (shift_mode != shift_unit_mode)
10467 break;
10468
10469 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10470 the same number of words as what we've seen so far. Then store
10471 the widest mode in MODE. */
10472 if (subreg_lowpart_p (varop)
10473 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10474 > GET_MODE_SIZE (GET_MODE (varop)))
10475 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10476 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10477 == mode_words
10478 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10479 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10480 {
10481 varop = SUBREG_REG (varop);
10482 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10483 mode = GET_MODE (varop);
10484 continue;
10485 }
10486 break;
10487
10488 case MULT:
10489 /* Some machines use MULT instead of ASHIFT because MULT
10490 is cheaper. But it is still better on those machines to
10491 merge two shifts into one. */
10492 if (CONST_INT_P (XEXP (varop, 1))
10493 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10494 {
10495 varop
10496 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10497 XEXP (varop, 0),
10498 GEN_INT (exact_log2 (
10499 UINTVAL (XEXP (varop, 1)))));
10500 continue;
10501 }
10502 break;
10503
10504 case UDIV:
10505 /* Similar, for when divides are cheaper. */
10506 if (CONST_INT_P (XEXP (varop, 1))
10507 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10508 {
10509 varop
10510 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10511 XEXP (varop, 0),
10512 GEN_INT (exact_log2 (
10513 UINTVAL (XEXP (varop, 1)))));
10514 continue;
10515 }
10516 break;
10517
10518 case ASHIFTRT:
10519 /* If we are extracting just the sign bit of an arithmetic
10520 right shift, that shift is not needed. However, the sign
10521 bit of a wider mode may be different from what would be
10522 interpreted as the sign bit in a narrower mode, so, if
10523 the result is narrower, don't discard the shift. */
10524 if (code == LSHIFTRT
10525 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10526 && (GET_MODE_UNIT_BITSIZE (result_mode)
10527 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10528 {
10529 varop = XEXP (varop, 0);
10530 continue;
10531 }
10532
10533 /* fall through */
10534
10535 case LSHIFTRT:
10536 case ASHIFT:
10537 case ROTATE:
10538 /* The following rules apply only to scalars. */
10539 if (shift_mode != shift_unit_mode)
10540 break;
10541
10542 /* Here we have two nested shifts. The result is usually the
10543 AND of a new shift with a mask. We compute the result below. */
10544 if (CONST_INT_P (XEXP (varop, 1))
10545 && INTVAL (XEXP (varop, 1)) >= 0
10546 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10547 && HWI_COMPUTABLE_MODE_P (result_mode)
10548 && HWI_COMPUTABLE_MODE_P (mode))
10549 {
10550 enum rtx_code first_code = GET_CODE (varop);
10551 unsigned int first_count = INTVAL (XEXP (varop, 1));
10552 unsigned HOST_WIDE_INT mask;
10553 rtx mask_rtx;
10554
10555 /* We have one common special case. We can't do any merging if
10556 the inner code is an ASHIFTRT of a smaller mode. However, if
10557 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10558 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10559 we can convert it to
10560 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10561 This simplifies certain SIGN_EXTEND operations. */
10562 if (code == ASHIFT && first_code == ASHIFTRT
10563 && count == (GET_MODE_PRECISION (result_mode)
10564 - GET_MODE_PRECISION (GET_MODE (varop))))
10565 {
10566 /* C3 has the low-order C1 bits zero. */
10567
10568 mask = GET_MODE_MASK (mode)
10569 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10570
10571 varop = simplify_and_const_int (NULL_RTX, result_mode,
10572 XEXP (varop, 0), mask);
10573 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10574 varop, count);
10575 count = first_count;
10576 code = ASHIFTRT;
10577 continue;
10578 }
10579
10580 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10581 than C1 high-order bits equal to the sign bit, we can convert
10582 this to either an ASHIFT or an ASHIFTRT depending on the
10583 two counts.
10584
10585 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10586
10587 if (code == ASHIFTRT && first_code == ASHIFT
10588 && GET_MODE (varop) == shift_mode
10589 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10590 > first_count))
10591 {
10592 varop = XEXP (varop, 0);
10593 count -= first_count;
10594 if (count < 0)
10595 {
10596 count = -count;
10597 code = ASHIFT;
10598 }
10599
10600 continue;
10601 }
10602
10603 /* There are some cases we can't do. If CODE is ASHIFTRT,
10604 we can only do this if FIRST_CODE is also ASHIFTRT.
10605
10606 We can't do the case when CODE is ROTATE and FIRST_CODE is
10607 ASHIFTRT.
10608
10609 If the mode of this shift is not the mode of the outer shift,
10610 we can't do this if either shift is a right shift or ROTATE.
10611
10612 Finally, we can't do any of these if the mode is too wide
10613 unless the codes are the same.
10614
10615 Handle the case where the shift codes are the same
10616 first. */
10617
10618 if (code == first_code)
10619 {
10620 if (GET_MODE (varop) != result_mode
10621 && (code == ASHIFTRT || code == LSHIFTRT
10622 || code == ROTATE))
10623 break;
10624
10625 count += first_count;
10626 varop = XEXP (varop, 0);
10627 continue;
10628 }
10629
10630 if (code == ASHIFTRT
10631 || (code == ROTATE && first_code == ASHIFTRT)
10632 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10633 || (GET_MODE (varop) != result_mode
10634 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10635 || first_code == ROTATE
10636 || code == ROTATE)))
10637 break;
10638
10639 /* To compute the mask to apply after the shift, shift the
10640 nonzero bits of the inner shift the same way the
10641 outer shift will. */
10642
10643 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10644 result_mode);
10645
10646 mask_rtx
10647 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10648 GEN_INT (count));
10649
10650 /* Give up if we can't compute an outer operation to use. */
10651 if (mask_rtx == 0
10652 || !CONST_INT_P (mask_rtx)
10653 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10654 INTVAL (mask_rtx),
10655 result_mode, &complement_p))
10656 break;
10657
10658 /* If the shifts are in the same direction, we add the
10659 counts. Otherwise, we subtract them. */
10660 if ((code == ASHIFTRT || code == LSHIFTRT)
10661 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10662 count += first_count;
10663 else
10664 count -= first_count;
10665
10666 /* If COUNT is positive, the new shift is usually CODE,
10667 except for the two exceptions below, in which case it is
10668 FIRST_CODE. If the count is negative, FIRST_CODE should
10669 always be used */
10670 if (count > 0
10671 && ((first_code == ROTATE && code == ASHIFT)
10672 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10673 code = first_code;
10674 else if (count < 0)
10675 code = first_code, count = -count;
10676
10677 varop = XEXP (varop, 0);
10678 continue;
10679 }
10680
10681 /* If we have (A << B << C) for any shift, we can convert this to
10682 (A << C << B). This wins if A is a constant. Only try this if
10683 B is not a constant. */
10684
10685 else if (GET_CODE (varop) == code
10686 && CONST_INT_P (XEXP (varop, 0))
10687 && !CONST_INT_P (XEXP (varop, 1)))
10688 {
10689 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10690 sure the result will be masked. See PR70222. */
10691 if (code == LSHIFTRT
10692 && mode != result_mode
10693 && !merge_outer_ops (&outer_op, &outer_const, AND,
10694 GET_MODE_MASK (result_mode)
10695 >> orig_count, result_mode,
10696 &complement_p))
10697 break;
10698 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10699 up outer sign extension (often left and right shift) is
10700 hardly more efficient than the original. See PR70429. */
10701 if (code == ASHIFTRT && mode != result_mode)
10702 break;
10703
10704 rtx new_rtx = simplify_const_binary_operation (code, mode,
10705 XEXP (varop, 0),
10706 GEN_INT (count));
10707 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10708 count = 0;
10709 continue;
10710 }
10711 break;
10712
10713 case NOT:
10714 /* The following rules apply only to scalars. */
10715 if (shift_mode != shift_unit_mode)
10716 break;
10717
10718 /* Make this fit the case below. */
10719 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10720 continue;
10721
10722 case IOR:
10723 case AND:
10724 case XOR:
10725 /* The following rules apply only to scalars. */
10726 if (shift_mode != shift_unit_mode)
10727 break;
10728
10729 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10730 with C the size of VAROP - 1 and the shift is logical if
10731 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10732 we have an (le X 0) operation. If we have an arithmetic shift
10733 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10734 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10735
10736 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10737 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10738 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10739 && (code == LSHIFTRT || code == ASHIFTRT)
10740 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10741 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10742 {
10743 count = 0;
10744 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10745 const0_rtx);
10746
10747 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10748 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10749
10750 continue;
10751 }
10752
10753 /* If we have (shift (logical)), move the logical to the outside
10754 to allow it to possibly combine with another logical and the
10755 shift to combine with another shift. This also canonicalizes to
10756 what a ZERO_EXTRACT looks like. Also, some machines have
10757 (and (shift)) insns. */
10758
10759 if (CONST_INT_P (XEXP (varop, 1))
10760 /* We can't do this if we have (ashiftrt (xor)) and the
10761 constant has its sign bit set in shift_mode with shift_mode
10762 wider than result_mode. */
10763 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10764 && result_mode != shift_mode
10765 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10766 shift_mode))
10767 && (new_rtx = simplify_const_binary_operation
10768 (code, result_mode,
10769 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10770 GEN_INT (count))) != 0
10771 && CONST_INT_P (new_rtx)
10772 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10773 INTVAL (new_rtx), result_mode, &complement_p))
10774 {
10775 varop = XEXP (varop, 0);
10776 continue;
10777 }
10778
10779 /* If we can't do that, try to simplify the shift in each arm of the
10780 logical expression, make a new logical expression, and apply
10781 the inverse distributive law. This also can't be done for
10782 (ashiftrt (xor)) where we've widened the shift and the constant
10783 changes the sign bit. */
10784 if (CONST_INT_P (XEXP (varop, 1))
10785 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10786 && result_mode != shift_mode
10787 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10788 shift_mode)))
10789 {
10790 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10791 XEXP (varop, 0), count);
10792 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10793 XEXP (varop, 1), count);
10794
10795 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10796 lhs, rhs);
10797 varop = apply_distributive_law (varop);
10798
10799 count = 0;
10800 continue;
10801 }
10802 break;
10803
10804 case EQ:
10805 /* The following rules apply only to scalars. */
10806 if (shift_mode != shift_unit_mode)
10807 break;
10808
10809 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10810 says that the sign bit can be tested, FOO has mode MODE, C is
10811 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10812 that may be nonzero. */
10813 if (code == LSHIFTRT
10814 && XEXP (varop, 1) == const0_rtx
10815 && GET_MODE (XEXP (varop, 0)) == result_mode
10816 && count == (GET_MODE_PRECISION (result_mode) - 1)
10817 && HWI_COMPUTABLE_MODE_P (result_mode)
10818 && STORE_FLAG_VALUE == -1
10819 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10820 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10821 &complement_p))
10822 {
10823 varop = XEXP (varop, 0);
10824 count = 0;
10825 continue;
10826 }
10827 break;
10828
10829 case NEG:
10830 /* The following rules apply only to scalars. */
10831 if (shift_mode != shift_unit_mode)
10832 break;
10833
10834 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10835 than the number of bits in the mode is equivalent to A. */
10836 if (code == LSHIFTRT
10837 && count == (GET_MODE_PRECISION (result_mode) - 1)
10838 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10839 {
10840 varop = XEXP (varop, 0);
10841 count = 0;
10842 continue;
10843 }
10844
10845 /* NEG commutes with ASHIFT since it is multiplication. Move the
10846 NEG outside to allow shifts to combine. */
10847 if (code == ASHIFT
10848 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10849 &complement_p))
10850 {
10851 varop = XEXP (varop, 0);
10852 continue;
10853 }
10854 break;
10855
10856 case PLUS:
10857 /* The following rules apply only to scalars. */
10858 if (shift_mode != shift_unit_mode)
10859 break;
10860
10861 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10862 is one less than the number of bits in the mode is
10863 equivalent to (xor A 1). */
10864 if (code == LSHIFTRT
10865 && count == (GET_MODE_PRECISION (result_mode) - 1)
10866 && XEXP (varop, 1) == constm1_rtx
10867 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10868 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10869 &complement_p))
10870 {
10871 count = 0;
10872 varop = XEXP (varop, 0);
10873 continue;
10874 }
10875
10876 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10877 that might be nonzero in BAR are those being shifted out and those
10878 bits are known zero in FOO, we can replace the PLUS with FOO.
10879 Similarly in the other operand order. This code occurs when
10880 we are computing the size of a variable-size array. */
10881
10882 if ((code == ASHIFTRT || code == LSHIFTRT)
10883 && count < HOST_BITS_PER_WIDE_INT
10884 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10885 && (nonzero_bits (XEXP (varop, 1), result_mode)
10886 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10887 {
10888 varop = XEXP (varop, 0);
10889 continue;
10890 }
10891 else if ((code == ASHIFTRT || code == LSHIFTRT)
10892 && count < HOST_BITS_PER_WIDE_INT
10893 && HWI_COMPUTABLE_MODE_P (result_mode)
10894 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10895 >> count)
10896 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10897 & nonzero_bits (XEXP (varop, 1),
10898 result_mode)))
10899 {
10900 varop = XEXP (varop, 1);
10901 continue;
10902 }
10903
10904 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10905 if (code == ASHIFT
10906 && CONST_INT_P (XEXP (varop, 1))
10907 && (new_rtx = simplify_const_binary_operation
10908 (ASHIFT, result_mode,
10909 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10910 GEN_INT (count))) != 0
10911 && CONST_INT_P (new_rtx)
10912 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10913 INTVAL (new_rtx), result_mode, &complement_p))
10914 {
10915 varop = XEXP (varop, 0);
10916 continue;
10917 }
10918
10919 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10920 signbit', and attempt to change the PLUS to an XOR and move it to
10921 the outer operation as is done above in the AND/IOR/XOR case
10922 leg for shift(logical). See details in logical handling above
10923 for reasoning in doing so. */
10924 if (code == LSHIFTRT
10925 && CONST_INT_P (XEXP (varop, 1))
10926 && mode_signbit_p (result_mode, XEXP (varop, 1))
10927 && (new_rtx = simplify_const_binary_operation
10928 (code, result_mode,
10929 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10930 GEN_INT (count))) != 0
10931 && CONST_INT_P (new_rtx)
10932 && merge_outer_ops (&outer_op, &outer_const, XOR,
10933 INTVAL (new_rtx), result_mode, &complement_p))
10934 {
10935 varop = XEXP (varop, 0);
10936 continue;
10937 }
10938
10939 break;
10940
10941 case MINUS:
10942 /* The following rules apply only to scalars. */
10943 if (shift_mode != shift_unit_mode)
10944 break;
10945
10946 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10947 with C the size of VAROP - 1 and the shift is logical if
10948 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10949 we have a (gt X 0) operation. If the shift is arithmetic with
10950 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10951 we have a (neg (gt X 0)) operation. */
10952
10953 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10954 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10955 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10956 && (code == LSHIFTRT || code == ASHIFTRT)
10957 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10958 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10959 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10960 {
10961 count = 0;
10962 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10963 const0_rtx);
10964
10965 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10966 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10967
10968 continue;
10969 }
10970 break;
10971
10972 case TRUNCATE:
10973 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10974 if the truncate does not affect the value. */
10975 if (code == LSHIFTRT
10976 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10977 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10978 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10979 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
10980 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
10981 {
10982 rtx varop_inner = XEXP (varop, 0);
10983
10984 varop_inner
10985 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10986 XEXP (varop_inner, 0),
10987 GEN_INT
10988 (count + INTVAL (XEXP (varop_inner, 1))));
10989 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10990 count = 0;
10991 continue;
10992 }
10993 break;
10994
10995 default:
10996 break;
10997 }
10998
10999 break;
11000 }
11001
11002 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
11003 outer_op, outer_const);
11004
11005 /* We have now finished analyzing the shift. The result should be
11006 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11007 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11008 to the result of the shift. OUTER_CONST is the relevant constant,
11009 but we must turn off all bits turned off in the shift. */
11010
11011 if (outer_op == UNKNOWN
11012 && orig_code == code && orig_count == count
11013 && varop == orig_varop
11014 && shift_mode == GET_MODE (varop))
11015 return NULL_RTX;
11016
11017 /* Make a SUBREG if necessary. If we can't make it, fail. */
11018 varop = gen_lowpart (shift_mode, varop);
11019 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11020 return NULL_RTX;
11021
11022 /* If we have an outer operation and we just made a shift, it is
11023 possible that we could have simplified the shift were it not
11024 for the outer operation. So try to do the simplification
11025 recursively. */
11026
11027 if (outer_op != UNKNOWN)
11028 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11029 else
11030 x = NULL_RTX;
11031
11032 if (x == NULL_RTX)
11033 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
11034
11035 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11036 turn off all the bits that the shift would have turned off. */
11037 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11038 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
11039 GET_MODE_MASK (result_mode) >> orig_count);
11040
11041 /* Do the remainder of the processing in RESULT_MODE. */
11042 x = gen_lowpart_or_truncate (result_mode, x);
11043
11044 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11045 operation. */
11046 if (complement_p)
11047 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11048
11049 if (outer_op != UNKNOWN)
11050 {
11051 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11052 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
11053 outer_const = trunc_int_for_mode (outer_const, result_mode);
11054
11055 if (outer_op == AND)
11056 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
11057 else if (outer_op == SET)
11058 {
11059 /* This means that we have determined that the result is
11060 equivalent to a constant. This should be rare. */
11061 if (!side_effects_p (x))
11062 x = GEN_INT (outer_const);
11063 }
11064 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11065 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
11066 else
11067 x = simplify_gen_binary (outer_op, result_mode, x,
11068 GEN_INT (outer_const));
11069 }
11070
11071 return x;
11072 }
11073
11074 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11075 The result of the shift is RESULT_MODE. If we cannot simplify it,
11076 return X or, if it is NULL, synthesize the expression with
11077 simplify_gen_binary. Otherwise, return a simplified value.
11078
11079 The shift is normally computed in the widest mode we find in VAROP, as
11080 long as it isn't a different number of words than RESULT_MODE. Exceptions
11081 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11082
11083 static rtx
11084 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11085 rtx varop, int count)
11086 {
11087 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11088 if (tem)
11089 return tem;
11090
11091 if (!x)
11092 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
11093 if (GET_MODE (x) != result_mode)
11094 x = gen_lowpart (result_mode, x);
11095 return x;
11096 }
11097
11098 \f
11099 /* A subroutine of recog_for_combine. See there for arguments and
11100 return value. */
11101
11102 static int
11103 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11104 {
11105 rtx pat = *pnewpat;
11106 rtx pat_without_clobbers;
11107 int insn_code_number;
11108 int num_clobbers_to_add = 0;
11109 int i;
11110 rtx notes = NULL_RTX;
11111 rtx old_notes, old_pat;
11112 int old_icode;
11113
11114 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11115 we use to indicate that something didn't match. If we find such a
11116 thing, force rejection. */
11117 if (GET_CODE (pat) == PARALLEL)
11118 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11119 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11120 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11121 return -1;
11122
11123 old_pat = PATTERN (insn);
11124 old_notes = REG_NOTES (insn);
11125 PATTERN (insn) = pat;
11126 REG_NOTES (insn) = NULL_RTX;
11127
11128 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11129 if (dump_file && (dump_flags & TDF_DETAILS))
11130 {
11131 if (insn_code_number < 0)
11132 fputs ("Failed to match this instruction:\n", dump_file);
11133 else
11134 fputs ("Successfully matched this instruction:\n", dump_file);
11135 print_rtl_single (dump_file, pat);
11136 }
11137
11138 /* If it isn't, there is the possibility that we previously had an insn
11139 that clobbered some register as a side effect, but the combined
11140 insn doesn't need to do that. So try once more without the clobbers
11141 unless this represents an ASM insn. */
11142
11143 if (insn_code_number < 0 && ! check_asm_operands (pat)
11144 && GET_CODE (pat) == PARALLEL)
11145 {
11146 int pos;
11147
11148 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11149 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11150 {
11151 if (i != pos)
11152 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11153 pos++;
11154 }
11155
11156 SUBST_INT (XVECLEN (pat, 0), pos);
11157
11158 if (pos == 1)
11159 pat = XVECEXP (pat, 0, 0);
11160
11161 PATTERN (insn) = pat;
11162 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11163 if (dump_file && (dump_flags & TDF_DETAILS))
11164 {
11165 if (insn_code_number < 0)
11166 fputs ("Failed to match this instruction:\n", dump_file);
11167 else
11168 fputs ("Successfully matched this instruction:\n", dump_file);
11169 print_rtl_single (dump_file, pat);
11170 }
11171 }
11172
11173 pat_without_clobbers = pat;
11174
11175 PATTERN (insn) = old_pat;
11176 REG_NOTES (insn) = old_notes;
11177
11178 /* Recognize all noop sets, these will be killed by followup pass. */
11179 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11180 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11181
11182 /* If we had any clobbers to add, make a new pattern than contains
11183 them. Then check to make sure that all of them are dead. */
11184 if (num_clobbers_to_add)
11185 {
11186 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11187 rtvec_alloc (GET_CODE (pat) == PARALLEL
11188 ? (XVECLEN (pat, 0)
11189 + num_clobbers_to_add)
11190 : num_clobbers_to_add + 1));
11191
11192 if (GET_CODE (pat) == PARALLEL)
11193 for (i = 0; i < XVECLEN (pat, 0); i++)
11194 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11195 else
11196 XVECEXP (newpat, 0, 0) = pat;
11197
11198 add_clobbers (newpat, insn_code_number);
11199
11200 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11201 i < XVECLEN (newpat, 0); i++)
11202 {
11203 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11204 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11205 return -1;
11206 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11207 {
11208 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11209 notes = alloc_reg_note (REG_UNUSED,
11210 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11211 }
11212 }
11213 pat = newpat;
11214 }
11215
11216 if (insn_code_number >= 0
11217 && insn_code_number != NOOP_MOVE_INSN_CODE)
11218 {
11219 old_pat = PATTERN (insn);
11220 old_notes = REG_NOTES (insn);
11221 old_icode = INSN_CODE (insn);
11222 PATTERN (insn) = pat;
11223 REG_NOTES (insn) = notes;
11224 INSN_CODE (insn) = insn_code_number;
11225
11226 /* Allow targets to reject combined insn. */
11227 if (!targetm.legitimate_combined_insn (insn))
11228 {
11229 if (dump_file && (dump_flags & TDF_DETAILS))
11230 fputs ("Instruction not appropriate for target.",
11231 dump_file);
11232
11233 /* Callers expect recog_for_combine to strip
11234 clobbers from the pattern on failure. */
11235 pat = pat_without_clobbers;
11236 notes = NULL_RTX;
11237
11238 insn_code_number = -1;
11239 }
11240
11241 PATTERN (insn) = old_pat;
11242 REG_NOTES (insn) = old_notes;
11243 INSN_CODE (insn) = old_icode;
11244 }
11245
11246 *pnewpat = pat;
11247 *pnotes = notes;
11248
11249 return insn_code_number;
11250 }
11251
11252 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11253 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11254 Return whether anything was so changed. */
11255
11256 static bool
11257 change_zero_ext (rtx pat)
11258 {
11259 bool changed = false;
11260 rtx *src = &SET_SRC (pat);
11261
11262 subrtx_ptr_iterator::array_type array;
11263 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11264 {
11265 rtx x = **iter;
11266 machine_mode mode = GET_MODE (x);
11267 int size;
11268
11269 if (GET_CODE (x) == ZERO_EXTRACT
11270 && CONST_INT_P (XEXP (x, 1))
11271 && CONST_INT_P (XEXP (x, 2))
11272 && GET_MODE (XEXP (x, 0)) != VOIDmode
11273 && GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
11274 <= GET_MODE_PRECISION (mode))
11275 {
11276 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
11277
11278 size = INTVAL (XEXP (x, 1));
11279
11280 int start = INTVAL (XEXP (x, 2));
11281 if (BITS_BIG_ENDIAN)
11282 start = GET_MODE_PRECISION (inner_mode) - size - start;
11283
11284 if (start)
11285 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0), GEN_INT (start));
11286 else
11287 x = XEXP (x, 0);
11288 if (mode != inner_mode)
11289 x = gen_lowpart_SUBREG (mode, x);
11290 }
11291 else if (GET_CODE (x) == ZERO_EXTEND
11292 && SCALAR_INT_MODE_P (mode)
11293 && GET_CODE (XEXP (x, 0)) == SUBREG
11294 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11295 && !paradoxical_subreg_p (XEXP (x, 0))
11296 && subreg_lowpart_p (XEXP (x, 0)))
11297 {
11298 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11299 x = SUBREG_REG (XEXP (x, 0));
11300 if (GET_MODE (x) != mode)
11301 x = gen_lowpart_SUBREG (mode, x);
11302 }
11303 else if (GET_CODE (x) == ZERO_EXTEND
11304 && SCALAR_INT_MODE_P (mode)
11305 && REG_P (XEXP (x, 0))
11306 && HARD_REGISTER_P (XEXP (x, 0))
11307 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11308 {
11309 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11310 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11311 }
11312 else
11313 continue;
11314
11315 if (!(GET_CODE (x) == LSHIFTRT
11316 && CONST_INT_P (XEXP (x, 1))
11317 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11318 {
11319 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11320 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11321 }
11322
11323 SUBST (**iter, x);
11324 changed = true;
11325 }
11326
11327 if (changed)
11328 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11329 maybe_swap_commutative_operands (**iter);
11330
11331 rtx *dst = &SET_DEST (pat);
11332 if (GET_CODE (*dst) == ZERO_EXTRACT
11333 && REG_P (XEXP (*dst, 0))
11334 && CONST_INT_P (XEXP (*dst, 1))
11335 && CONST_INT_P (XEXP (*dst, 2)))
11336 {
11337 rtx reg = XEXP (*dst, 0);
11338 int width = INTVAL (XEXP (*dst, 1));
11339 int offset = INTVAL (XEXP (*dst, 2));
11340 machine_mode mode = GET_MODE (reg);
11341 int reg_width = GET_MODE_PRECISION (mode);
11342 if (BITS_BIG_ENDIAN)
11343 offset = reg_width - width - offset;
11344
11345 rtx x, y, z, w;
11346 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11347 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11348 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11349 if (offset)
11350 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11351 else
11352 y = SET_SRC (pat);
11353 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11354 w = gen_rtx_IOR (mode, x, z);
11355 SUBST (SET_DEST (pat), reg);
11356 SUBST (SET_SRC (pat), w);
11357
11358 changed = true;
11359 }
11360
11361 return changed;
11362 }
11363
11364 /* Like recog, but we receive the address of a pointer to a new pattern.
11365 We try to match the rtx that the pointer points to.
11366 If that fails, we may try to modify or replace the pattern,
11367 storing the replacement into the same pointer object.
11368
11369 Modifications include deletion or addition of CLOBBERs. If the
11370 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11371 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11372 (and undo if that fails).
11373
11374 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11375 the CLOBBERs are placed.
11376
11377 The value is the final insn code from the pattern ultimately matched,
11378 or -1. */
11379
11380 static int
11381 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11382 {
11383 rtx pat = *pnewpat;
11384 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11385 if (insn_code_number >= 0 || check_asm_operands (pat))
11386 return insn_code_number;
11387
11388 void *marker = get_undo_marker ();
11389 bool changed = false;
11390
11391 if (GET_CODE (pat) == SET)
11392 changed = change_zero_ext (pat);
11393 else if (GET_CODE (pat) == PARALLEL)
11394 {
11395 int i;
11396 for (i = 0; i < XVECLEN (pat, 0); i++)
11397 {
11398 rtx set = XVECEXP (pat, 0, i);
11399 if (GET_CODE (set) == SET)
11400 changed |= change_zero_ext (set);
11401 }
11402 }
11403
11404 if (changed)
11405 {
11406 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11407
11408 if (insn_code_number < 0)
11409 undo_to_marker (marker);
11410 }
11411
11412 return insn_code_number;
11413 }
11414 \f
11415 /* Like gen_lowpart_general but for use by combine. In combine it
11416 is not possible to create any new pseudoregs. However, it is
11417 safe to create invalid memory addresses, because combine will
11418 try to recognize them and all they will do is make the combine
11419 attempt fail.
11420
11421 If for some reason this cannot do its job, an rtx
11422 (clobber (const_int 0)) is returned.
11423 An insn containing that will not be recognized. */
11424
11425 static rtx
11426 gen_lowpart_for_combine (machine_mode omode, rtx x)
11427 {
11428 machine_mode imode = GET_MODE (x);
11429 unsigned int osize = GET_MODE_SIZE (omode);
11430 unsigned int isize = GET_MODE_SIZE (imode);
11431 rtx result;
11432
11433 if (omode == imode)
11434 return x;
11435
11436 /* We can only support MODE being wider than a word if X is a
11437 constant integer or has a mode the same size. */
11438 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11439 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11440 goto fail;
11441
11442 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11443 won't know what to do. So we will strip off the SUBREG here and
11444 process normally. */
11445 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11446 {
11447 x = SUBREG_REG (x);
11448
11449 /* For use in case we fall down into the address adjustments
11450 further below, we need to adjust the known mode and size of
11451 x; imode and isize, since we just adjusted x. */
11452 imode = GET_MODE (x);
11453
11454 if (imode == omode)
11455 return x;
11456
11457 isize = GET_MODE_SIZE (imode);
11458 }
11459
11460 result = gen_lowpart_common (omode, x);
11461
11462 if (result)
11463 return result;
11464
11465 if (MEM_P (x))
11466 {
11467 int offset = 0;
11468
11469 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11470 address. */
11471 if (MEM_VOLATILE_P (x)
11472 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11473 goto fail;
11474
11475 /* If we want to refer to something bigger than the original memref,
11476 generate a paradoxical subreg instead. That will force a reload
11477 of the original memref X. */
11478 if (isize < osize)
11479 return gen_rtx_SUBREG (omode, x, 0);
11480
11481 if (WORDS_BIG_ENDIAN)
11482 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11483
11484 /* Adjust the address so that the address-after-the-data is
11485 unchanged. */
11486 if (BYTES_BIG_ENDIAN)
11487 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11488
11489 return adjust_address_nv (x, omode, offset);
11490 }
11491
11492 /* If X is a comparison operator, rewrite it in a new mode. This
11493 probably won't match, but may allow further simplifications. */
11494 else if (COMPARISON_P (x))
11495 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11496
11497 /* If we couldn't simplify X any other way, just enclose it in a
11498 SUBREG. Normally, this SUBREG won't match, but some patterns may
11499 include an explicit SUBREG or we may simplify it further in combine. */
11500 else
11501 {
11502 rtx res;
11503
11504 if (imode == VOIDmode)
11505 {
11506 imode = int_mode_for_mode (omode);
11507 x = gen_lowpart_common (imode, x);
11508 if (x == NULL)
11509 goto fail;
11510 }
11511 res = lowpart_subreg (omode, x, imode);
11512 if (res)
11513 return res;
11514 }
11515
11516 fail:
11517 return gen_rtx_CLOBBER (omode, const0_rtx);
11518 }
11519 \f
11520 /* Try to simplify a comparison between OP0 and a constant OP1,
11521 where CODE is the comparison code that will be tested, into a
11522 (CODE OP0 const0_rtx) form.
11523
11524 The result is a possibly different comparison code to use.
11525 *POP1 may be updated. */
11526
11527 static enum rtx_code
11528 simplify_compare_const (enum rtx_code code, machine_mode mode,
11529 rtx op0, rtx *pop1)
11530 {
11531 unsigned int mode_width = GET_MODE_PRECISION (mode);
11532 HOST_WIDE_INT const_op = INTVAL (*pop1);
11533
11534 /* Get the constant we are comparing against and turn off all bits
11535 not on in our mode. */
11536 if (mode != VOIDmode)
11537 const_op = trunc_int_for_mode (const_op, mode);
11538
11539 /* If we are comparing against a constant power of two and the value
11540 being compared can only have that single bit nonzero (e.g., it was
11541 `and'ed with that bit), we can replace this with a comparison
11542 with zero. */
11543 if (const_op
11544 && (code == EQ || code == NE || code == GE || code == GEU
11545 || code == LT || code == LTU)
11546 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11547 && pow2p_hwi (const_op & GET_MODE_MASK (mode))
11548 && (nonzero_bits (op0, mode)
11549 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11550 {
11551 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11552 const_op = 0;
11553 }
11554
11555 /* Similarly, if we are comparing a value known to be either -1 or
11556 0 with -1, change it to the opposite comparison against zero. */
11557 if (const_op == -1
11558 && (code == EQ || code == NE || code == GT || code == LE
11559 || code == GEU || code == LTU)
11560 && num_sign_bit_copies (op0, mode) == mode_width)
11561 {
11562 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11563 const_op = 0;
11564 }
11565
11566 /* Do some canonicalizations based on the comparison code. We prefer
11567 comparisons against zero and then prefer equality comparisons.
11568 If we can reduce the size of a constant, we will do that too. */
11569 switch (code)
11570 {
11571 case LT:
11572 /* < C is equivalent to <= (C - 1) */
11573 if (const_op > 0)
11574 {
11575 const_op -= 1;
11576 code = LE;
11577 /* ... fall through to LE case below. */
11578 gcc_fallthrough ();
11579 }
11580 else
11581 break;
11582
11583 case LE:
11584 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11585 if (const_op < 0)
11586 {
11587 const_op += 1;
11588 code = LT;
11589 }
11590
11591 /* If we are doing a <= 0 comparison on a value known to have
11592 a zero sign bit, we can replace this with == 0. */
11593 else if (const_op == 0
11594 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11595 && (nonzero_bits (op0, mode)
11596 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11597 == 0)
11598 code = EQ;
11599 break;
11600
11601 case GE:
11602 /* >= C is equivalent to > (C - 1). */
11603 if (const_op > 0)
11604 {
11605 const_op -= 1;
11606 code = GT;
11607 /* ... fall through to GT below. */
11608 gcc_fallthrough ();
11609 }
11610 else
11611 break;
11612
11613 case GT:
11614 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11615 if (const_op < 0)
11616 {
11617 const_op += 1;
11618 code = GE;
11619 }
11620
11621 /* If we are doing a > 0 comparison on a value known to have
11622 a zero sign bit, we can replace this with != 0. */
11623 else if (const_op == 0
11624 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11625 && (nonzero_bits (op0, mode)
11626 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11627 == 0)
11628 code = NE;
11629 break;
11630
11631 case LTU:
11632 /* < C is equivalent to <= (C - 1). */
11633 if (const_op > 0)
11634 {
11635 const_op -= 1;
11636 code = LEU;
11637 /* ... fall through ... */
11638 }
11639 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11640 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11641 && (unsigned HOST_WIDE_INT) const_op
11642 == HOST_WIDE_INT_1U << (mode_width - 1))
11643 {
11644 const_op = 0;
11645 code = GE;
11646 break;
11647 }
11648 else
11649 break;
11650
11651 case LEU:
11652 /* unsigned <= 0 is equivalent to == 0 */
11653 if (const_op == 0)
11654 code = EQ;
11655 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11656 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11657 && (unsigned HOST_WIDE_INT) const_op
11658 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11659 {
11660 const_op = 0;
11661 code = GE;
11662 }
11663 break;
11664
11665 case GEU:
11666 /* >= C is equivalent to > (C - 1). */
11667 if (const_op > 1)
11668 {
11669 const_op -= 1;
11670 code = GTU;
11671 /* ... fall through ... */
11672 }
11673
11674 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11675 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11676 && (unsigned HOST_WIDE_INT) const_op
11677 == HOST_WIDE_INT_1U << (mode_width - 1))
11678 {
11679 const_op = 0;
11680 code = LT;
11681 break;
11682 }
11683 else
11684 break;
11685
11686 case GTU:
11687 /* unsigned > 0 is equivalent to != 0 */
11688 if (const_op == 0)
11689 code = NE;
11690 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11691 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11692 && (unsigned HOST_WIDE_INT) const_op
11693 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11694 {
11695 const_op = 0;
11696 code = LT;
11697 }
11698 break;
11699
11700 default:
11701 break;
11702 }
11703
11704 *pop1 = GEN_INT (const_op);
11705 return code;
11706 }
11707 \f
11708 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11709 comparison code that will be tested.
11710
11711 The result is a possibly different comparison code to use. *POP0 and
11712 *POP1 may be updated.
11713
11714 It is possible that we might detect that a comparison is either always
11715 true or always false. However, we do not perform general constant
11716 folding in combine, so this knowledge isn't useful. Such tautologies
11717 should have been detected earlier. Hence we ignore all such cases. */
11718
11719 static enum rtx_code
11720 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11721 {
11722 rtx op0 = *pop0;
11723 rtx op1 = *pop1;
11724 rtx tem, tem1;
11725 int i;
11726 machine_mode mode, tmode;
11727
11728 /* Try a few ways of applying the same transformation to both operands. */
11729 while (1)
11730 {
11731 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11732 so check specially. */
11733 if (!WORD_REGISTER_OPERATIONS
11734 && code != GTU && code != GEU && code != LTU && code != LEU
11735 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11736 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11737 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11738 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11739 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11740 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11741 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11742 && CONST_INT_P (XEXP (op0, 1))
11743 && XEXP (op0, 1) == XEXP (op1, 1)
11744 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11745 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11746 && (INTVAL (XEXP (op0, 1))
11747 == (GET_MODE_PRECISION (GET_MODE (op0))
11748 - (GET_MODE_PRECISION
11749 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11750 {
11751 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11752 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11753 }
11754
11755 /* If both operands are the same constant shift, see if we can ignore the
11756 shift. We can if the shift is a rotate or if the bits shifted out of
11757 this shift are known to be zero for both inputs and if the type of
11758 comparison is compatible with the shift. */
11759 if (GET_CODE (op0) == GET_CODE (op1)
11760 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11761 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11762 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11763 && (code != GT && code != LT && code != GE && code != LE))
11764 || (GET_CODE (op0) == ASHIFTRT
11765 && (code != GTU && code != LTU
11766 && code != GEU && code != LEU)))
11767 && CONST_INT_P (XEXP (op0, 1))
11768 && INTVAL (XEXP (op0, 1)) >= 0
11769 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11770 && XEXP (op0, 1) == XEXP (op1, 1))
11771 {
11772 machine_mode mode = GET_MODE (op0);
11773 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11774 int shift_count = INTVAL (XEXP (op0, 1));
11775
11776 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11777 mask &= (mask >> shift_count) << shift_count;
11778 else if (GET_CODE (op0) == ASHIFT)
11779 mask = (mask & (mask << shift_count)) >> shift_count;
11780
11781 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11782 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11783 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11784 else
11785 break;
11786 }
11787
11788 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11789 SUBREGs are of the same mode, and, in both cases, the AND would
11790 be redundant if the comparison was done in the narrower mode,
11791 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11792 and the operand's possibly nonzero bits are 0xffffff01; in that case
11793 if we only care about QImode, we don't need the AND). This case
11794 occurs if the output mode of an scc insn is not SImode and
11795 STORE_FLAG_VALUE == 1 (e.g., the 386).
11796
11797 Similarly, check for a case where the AND's are ZERO_EXTEND
11798 operations from some narrower mode even though a SUBREG is not
11799 present. */
11800
11801 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11802 && CONST_INT_P (XEXP (op0, 1))
11803 && CONST_INT_P (XEXP (op1, 1)))
11804 {
11805 rtx inner_op0 = XEXP (op0, 0);
11806 rtx inner_op1 = XEXP (op1, 0);
11807 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11808 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11809 int changed = 0;
11810
11811 if (paradoxical_subreg_p (inner_op0)
11812 && GET_CODE (inner_op1) == SUBREG
11813 && (GET_MODE (SUBREG_REG (inner_op0))
11814 == GET_MODE (SUBREG_REG (inner_op1)))
11815 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11816 <= HOST_BITS_PER_WIDE_INT)
11817 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11818 GET_MODE (SUBREG_REG (inner_op0)))))
11819 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11820 GET_MODE (SUBREG_REG (inner_op1))))))
11821 {
11822 op0 = SUBREG_REG (inner_op0);
11823 op1 = SUBREG_REG (inner_op1);
11824
11825 /* The resulting comparison is always unsigned since we masked
11826 off the original sign bit. */
11827 code = unsigned_condition (code);
11828
11829 changed = 1;
11830 }
11831
11832 else if (c0 == c1)
11833 for (tmode = GET_CLASS_NARROWEST_MODE
11834 (GET_MODE_CLASS (GET_MODE (op0)));
11835 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11836 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11837 {
11838 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
11839 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
11840 code = unsigned_condition (code);
11841 changed = 1;
11842 break;
11843 }
11844
11845 if (! changed)
11846 break;
11847 }
11848
11849 /* If both operands are NOT, we can strip off the outer operation
11850 and adjust the comparison code for swapped operands; similarly for
11851 NEG, except that this must be an equality comparison. */
11852 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11853 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11854 && (code == EQ || code == NE)))
11855 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11856
11857 else
11858 break;
11859 }
11860
11861 /* If the first operand is a constant, swap the operands and adjust the
11862 comparison code appropriately, but don't do this if the second operand
11863 is already a constant integer. */
11864 if (swap_commutative_operands_p (op0, op1))
11865 {
11866 std::swap (op0, op1);
11867 code = swap_condition (code);
11868 }
11869
11870 /* We now enter a loop during which we will try to simplify the comparison.
11871 For the most part, we only are concerned with comparisons with zero,
11872 but some things may really be comparisons with zero but not start
11873 out looking that way. */
11874
11875 while (CONST_INT_P (op1))
11876 {
11877 machine_mode mode = GET_MODE (op0);
11878 unsigned int mode_width = GET_MODE_PRECISION (mode);
11879 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11880 int equality_comparison_p;
11881 int sign_bit_comparison_p;
11882 int unsigned_comparison_p;
11883 HOST_WIDE_INT const_op;
11884
11885 /* We only want to handle integral modes. This catches VOIDmode,
11886 CCmode, and the floating-point modes. An exception is that we
11887 can handle VOIDmode if OP0 is a COMPARE or a comparison
11888 operation. */
11889
11890 if (GET_MODE_CLASS (mode) != MODE_INT
11891 && ! (mode == VOIDmode
11892 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11893 break;
11894
11895 /* Try to simplify the compare to constant, possibly changing the
11896 comparison op, and/or changing op1 to zero. */
11897 code = simplify_compare_const (code, mode, op0, &op1);
11898 const_op = INTVAL (op1);
11899
11900 /* Compute some predicates to simplify code below. */
11901
11902 equality_comparison_p = (code == EQ || code == NE);
11903 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11904 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11905 || code == GEU);
11906
11907 /* If this is a sign bit comparison and we can do arithmetic in
11908 MODE, say that we will only be needing the sign bit of OP0. */
11909 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11910 op0 = force_to_mode (op0, mode,
11911 HOST_WIDE_INT_1U
11912 << (GET_MODE_PRECISION (mode) - 1),
11913 0);
11914
11915 /* Now try cases based on the opcode of OP0. If none of the cases
11916 does a "continue", we exit this loop immediately after the
11917 switch. */
11918
11919 switch (GET_CODE (op0))
11920 {
11921 case ZERO_EXTRACT:
11922 /* If we are extracting a single bit from a variable position in
11923 a constant that has only a single bit set and are comparing it
11924 with zero, we can convert this into an equality comparison
11925 between the position and the location of the single bit. */
11926 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11927 have already reduced the shift count modulo the word size. */
11928 if (!SHIFT_COUNT_TRUNCATED
11929 && CONST_INT_P (XEXP (op0, 0))
11930 && XEXP (op0, 1) == const1_rtx
11931 && equality_comparison_p && const_op == 0
11932 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11933 {
11934 if (BITS_BIG_ENDIAN)
11935 i = BITS_PER_WORD - 1 - i;
11936
11937 op0 = XEXP (op0, 2);
11938 op1 = GEN_INT (i);
11939 const_op = i;
11940
11941 /* Result is nonzero iff shift count is equal to I. */
11942 code = reverse_condition (code);
11943 continue;
11944 }
11945
11946 /* fall through */
11947
11948 case SIGN_EXTRACT:
11949 tem = expand_compound_operation (op0);
11950 if (tem != op0)
11951 {
11952 op0 = tem;
11953 continue;
11954 }
11955 break;
11956
11957 case NOT:
11958 /* If testing for equality, we can take the NOT of the constant. */
11959 if (equality_comparison_p
11960 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11961 {
11962 op0 = XEXP (op0, 0);
11963 op1 = tem;
11964 continue;
11965 }
11966
11967 /* If just looking at the sign bit, reverse the sense of the
11968 comparison. */
11969 if (sign_bit_comparison_p)
11970 {
11971 op0 = XEXP (op0, 0);
11972 code = (code == GE ? LT : GE);
11973 continue;
11974 }
11975 break;
11976
11977 case NEG:
11978 /* If testing for equality, we can take the NEG of the constant. */
11979 if (equality_comparison_p
11980 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11981 {
11982 op0 = XEXP (op0, 0);
11983 op1 = tem;
11984 continue;
11985 }
11986
11987 /* The remaining cases only apply to comparisons with zero. */
11988 if (const_op != 0)
11989 break;
11990
11991 /* When X is ABS or is known positive,
11992 (neg X) is < 0 if and only if X != 0. */
11993
11994 if (sign_bit_comparison_p
11995 && (GET_CODE (XEXP (op0, 0)) == ABS
11996 || (mode_width <= HOST_BITS_PER_WIDE_INT
11997 && (nonzero_bits (XEXP (op0, 0), mode)
11998 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11999 == 0)))
12000 {
12001 op0 = XEXP (op0, 0);
12002 code = (code == LT ? NE : EQ);
12003 continue;
12004 }
12005
12006 /* If we have NEG of something whose two high-order bits are the
12007 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12008 if (num_sign_bit_copies (op0, mode) >= 2)
12009 {
12010 op0 = XEXP (op0, 0);
12011 code = swap_condition (code);
12012 continue;
12013 }
12014 break;
12015
12016 case ROTATE:
12017 /* If we are testing equality and our count is a constant, we
12018 can perform the inverse operation on our RHS. */
12019 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12020 && (tem = simplify_binary_operation (ROTATERT, mode,
12021 op1, XEXP (op0, 1))) != 0)
12022 {
12023 op0 = XEXP (op0, 0);
12024 op1 = tem;
12025 continue;
12026 }
12027
12028 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12029 a particular bit. Convert it to an AND of a constant of that
12030 bit. This will be converted into a ZERO_EXTRACT. */
12031 if (const_op == 0 && sign_bit_comparison_p
12032 && CONST_INT_P (XEXP (op0, 1))
12033 && mode_width <= HOST_BITS_PER_WIDE_INT)
12034 {
12035 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12036 (HOST_WIDE_INT_1U
12037 << (mode_width - 1
12038 - INTVAL (XEXP (op0, 1)))));
12039 code = (code == LT ? NE : EQ);
12040 continue;
12041 }
12042
12043 /* Fall through. */
12044
12045 case ABS:
12046 /* ABS is ignorable inside an equality comparison with zero. */
12047 if (const_op == 0 && equality_comparison_p)
12048 {
12049 op0 = XEXP (op0, 0);
12050 continue;
12051 }
12052 break;
12053
12054 case SIGN_EXTEND:
12055 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12056 (compare FOO CONST) if CONST fits in FOO's mode and we
12057 are either testing inequality or have an unsigned
12058 comparison with ZERO_EXTEND or a signed comparison with
12059 SIGN_EXTEND. But don't do it if we don't have a compare
12060 insn of the given mode, since we'd have to revert it
12061 later on, and then we wouldn't know whether to sign- or
12062 zero-extend. */
12063 mode = GET_MODE (XEXP (op0, 0));
12064 if (GET_MODE_CLASS (mode) == MODE_INT
12065 && ! unsigned_comparison_p
12066 && HWI_COMPUTABLE_MODE_P (mode)
12067 && trunc_int_for_mode (const_op, mode) == const_op
12068 && have_insn_for (COMPARE, mode))
12069 {
12070 op0 = XEXP (op0, 0);
12071 continue;
12072 }
12073 break;
12074
12075 case SUBREG:
12076 /* Check for the case where we are comparing A - C1 with C2, that is
12077
12078 (subreg:MODE (plus (A) (-C1))) op (C2)
12079
12080 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12081 comparison in the wider mode. One of the following two conditions
12082 must be true in order for this to be valid:
12083
12084 1. The mode extension results in the same bit pattern being added
12085 on both sides and the comparison is equality or unsigned. As
12086 C2 has been truncated to fit in MODE, the pattern can only be
12087 all 0s or all 1s.
12088
12089 2. The mode extension results in the sign bit being copied on
12090 each side.
12091
12092 The difficulty here is that we have predicates for A but not for
12093 (A - C1) so we need to check that C1 is within proper bounds so
12094 as to perturbate A as little as possible. */
12095
12096 if (mode_width <= HOST_BITS_PER_WIDE_INT
12097 && subreg_lowpart_p (op0)
12098 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
12099 && GET_CODE (SUBREG_REG (op0)) == PLUS
12100 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12101 {
12102 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
12103 rtx a = XEXP (SUBREG_REG (op0), 0);
12104 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12105
12106 if ((c1 > 0
12107 && (unsigned HOST_WIDE_INT) c1
12108 < HOST_WIDE_INT_1U << (mode_width - 1)
12109 && (equality_comparison_p || unsigned_comparison_p)
12110 /* (A - C1) zero-extends if it is positive and sign-extends
12111 if it is negative, C2 both zero- and sign-extends. */
12112 && ((0 == (nonzero_bits (a, inner_mode)
12113 & ~GET_MODE_MASK (mode))
12114 && const_op >= 0)
12115 /* (A - C1) sign-extends if it is positive and 1-extends
12116 if it is negative, C2 both sign- and 1-extends. */
12117 || (num_sign_bit_copies (a, inner_mode)
12118 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12119 - mode_width)
12120 && const_op < 0)))
12121 || ((unsigned HOST_WIDE_INT) c1
12122 < HOST_WIDE_INT_1U << (mode_width - 2)
12123 /* (A - C1) always sign-extends, like C2. */
12124 && num_sign_bit_copies (a, inner_mode)
12125 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12126 - (mode_width - 1))))
12127 {
12128 op0 = SUBREG_REG (op0);
12129 continue;
12130 }
12131 }
12132
12133 /* If the inner mode is narrower and we are extracting the low part,
12134 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12135 if (subreg_lowpart_p (op0)
12136 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
12137 ;
12138 else if (subreg_lowpart_p (op0)
12139 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12140 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12141 && (code == NE || code == EQ)
12142 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12143 <= HOST_BITS_PER_WIDE_INT)
12144 && !paradoxical_subreg_p (op0)
12145 && (nonzero_bits (SUBREG_REG (op0),
12146 GET_MODE (SUBREG_REG (op0)))
12147 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12148 {
12149 /* Remove outer subregs that don't do anything. */
12150 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12151
12152 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12153 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12154 {
12155 op0 = SUBREG_REG (op0);
12156 op1 = tem;
12157 continue;
12158 }
12159 break;
12160 }
12161 else
12162 break;
12163
12164 /* FALLTHROUGH */
12165
12166 case ZERO_EXTEND:
12167 mode = GET_MODE (XEXP (op0, 0));
12168 if (GET_MODE_CLASS (mode) == MODE_INT
12169 && (unsigned_comparison_p || equality_comparison_p)
12170 && HWI_COMPUTABLE_MODE_P (mode)
12171 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12172 && const_op >= 0
12173 && have_insn_for (COMPARE, mode))
12174 {
12175 op0 = XEXP (op0, 0);
12176 continue;
12177 }
12178 break;
12179
12180 case PLUS:
12181 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12182 this for equality comparisons due to pathological cases involving
12183 overflows. */
12184 if (equality_comparison_p
12185 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12186 op1, XEXP (op0, 1))))
12187 {
12188 op0 = XEXP (op0, 0);
12189 op1 = tem;
12190 continue;
12191 }
12192
12193 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12194 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12195 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12196 {
12197 op0 = XEXP (XEXP (op0, 0), 0);
12198 code = (code == LT ? EQ : NE);
12199 continue;
12200 }
12201 break;
12202
12203 case MINUS:
12204 /* We used to optimize signed comparisons against zero, but that
12205 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12206 arrive here as equality comparisons, or (GEU, LTU) are
12207 optimized away. No need to special-case them. */
12208
12209 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12210 (eq B (minus A C)), whichever simplifies. We can only do
12211 this for equality comparisons due to pathological cases involving
12212 overflows. */
12213 if (equality_comparison_p
12214 && 0 != (tem = simplify_binary_operation (PLUS, mode,
12215 XEXP (op0, 1), op1)))
12216 {
12217 op0 = XEXP (op0, 0);
12218 op1 = tem;
12219 continue;
12220 }
12221
12222 if (equality_comparison_p
12223 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12224 XEXP (op0, 0), op1)))
12225 {
12226 op0 = XEXP (op0, 1);
12227 op1 = tem;
12228 continue;
12229 }
12230
12231 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12232 of bits in X minus 1, is one iff X > 0. */
12233 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12234 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12235 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12236 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12237 {
12238 op0 = XEXP (op0, 1);
12239 code = (code == GE ? LE : GT);
12240 continue;
12241 }
12242 break;
12243
12244 case XOR:
12245 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12246 if C is zero or B is a constant. */
12247 if (equality_comparison_p
12248 && 0 != (tem = simplify_binary_operation (XOR, mode,
12249 XEXP (op0, 1), op1)))
12250 {
12251 op0 = XEXP (op0, 0);
12252 op1 = tem;
12253 continue;
12254 }
12255 break;
12256
12257 case EQ: case NE:
12258 case UNEQ: case LTGT:
12259 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
12260 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
12261 case UNORDERED: case ORDERED:
12262 /* We can't do anything if OP0 is a condition code value, rather
12263 than an actual data value. */
12264 if (const_op != 0
12265 || CC0_P (XEXP (op0, 0))
12266 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12267 break;
12268
12269 /* Get the two operands being compared. */
12270 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12271 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12272 else
12273 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12274
12275 /* Check for the cases where we simply want the result of the
12276 earlier test or the opposite of that result. */
12277 if (code == NE || code == EQ
12278 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
12279 && (code == LT || code == GE)))
12280 {
12281 enum rtx_code new_code;
12282 if (code == LT || code == NE)
12283 new_code = GET_CODE (op0);
12284 else
12285 new_code = reversed_comparison_code (op0, NULL);
12286
12287 if (new_code != UNKNOWN)
12288 {
12289 code = new_code;
12290 op0 = tem;
12291 op1 = tem1;
12292 continue;
12293 }
12294 }
12295 break;
12296
12297 case IOR:
12298 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12299 iff X <= 0. */
12300 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12301 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12302 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12303 {
12304 op0 = XEXP (op0, 1);
12305 code = (code == GE ? GT : LE);
12306 continue;
12307 }
12308 break;
12309
12310 case AND:
12311 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12312 will be converted to a ZERO_EXTRACT later. */
12313 if (const_op == 0 && equality_comparison_p
12314 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12315 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12316 {
12317 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12318 XEXP (XEXP (op0, 0), 1));
12319 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12320 continue;
12321 }
12322
12323 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12324 zero and X is a comparison and C1 and C2 describe only bits set
12325 in STORE_FLAG_VALUE, we can compare with X. */
12326 if (const_op == 0 && equality_comparison_p
12327 && mode_width <= HOST_BITS_PER_WIDE_INT
12328 && CONST_INT_P (XEXP (op0, 1))
12329 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12330 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12331 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12332 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12333 {
12334 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12335 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12336 if ((~STORE_FLAG_VALUE & mask) == 0
12337 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12338 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12339 && COMPARISON_P (tem))))
12340 {
12341 op0 = XEXP (XEXP (op0, 0), 0);
12342 continue;
12343 }
12344 }
12345
12346 /* If we are doing an equality comparison of an AND of a bit equal
12347 to the sign bit, replace this with a LT or GE comparison of
12348 the underlying value. */
12349 if (equality_comparison_p
12350 && const_op == 0
12351 && CONST_INT_P (XEXP (op0, 1))
12352 && mode_width <= HOST_BITS_PER_WIDE_INT
12353 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12354 == HOST_WIDE_INT_1U << (mode_width - 1)))
12355 {
12356 op0 = XEXP (op0, 0);
12357 code = (code == EQ ? GE : LT);
12358 continue;
12359 }
12360
12361 /* If this AND operation is really a ZERO_EXTEND from a narrower
12362 mode, the constant fits within that mode, and this is either an
12363 equality or unsigned comparison, try to do this comparison in
12364 the narrower mode.
12365
12366 Note that in:
12367
12368 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12369 -> (ne:DI (reg:SI 4) (const_int 0))
12370
12371 unless TRULY_NOOP_TRUNCATION allows it or the register is
12372 known to hold a value of the required mode the
12373 transformation is invalid. */
12374 if ((equality_comparison_p || unsigned_comparison_p)
12375 && CONST_INT_P (XEXP (op0, 1))
12376 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12377 & GET_MODE_MASK (mode))
12378 + 1)) >= 0
12379 && const_op >> i == 0
12380 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
12381 {
12382 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12383 continue;
12384 }
12385
12386 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12387 fits in both M1 and M2 and the SUBREG is either paradoxical
12388 or represents the low part, permute the SUBREG and the AND
12389 and try again. */
12390 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12391 && CONST_INT_P (XEXP (op0, 1)))
12392 {
12393 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12394 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12395 /* Require an integral mode, to avoid creating something like
12396 (AND:SF ...). */
12397 if (SCALAR_INT_MODE_P (tmode)
12398 /* It is unsafe to commute the AND into the SUBREG if the
12399 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12400 not defined. As originally written the upper bits
12401 have a defined value due to the AND operation.
12402 However, if we commute the AND inside the SUBREG then
12403 they no longer have defined values and the meaning of
12404 the code has been changed.
12405 Also C1 should not change value in the smaller mode,
12406 see PR67028 (a positive C1 can become negative in the
12407 smaller mode, so that the AND does no longer mask the
12408 upper bits). */
12409 && ((WORD_REGISTER_OPERATIONS
12410 && mode_width > GET_MODE_PRECISION (tmode)
12411 && mode_width <= BITS_PER_WORD
12412 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12413 || (mode_width <= GET_MODE_PRECISION (tmode)
12414 && subreg_lowpart_p (XEXP (op0, 0))))
12415 && mode_width <= HOST_BITS_PER_WIDE_INT
12416 && HWI_COMPUTABLE_MODE_P (tmode)
12417 && (c1 & ~mask) == 0
12418 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12419 && c1 != mask
12420 && c1 != GET_MODE_MASK (tmode))
12421 {
12422 op0 = simplify_gen_binary (AND, tmode,
12423 SUBREG_REG (XEXP (op0, 0)),
12424 gen_int_mode (c1, tmode));
12425 op0 = gen_lowpart (mode, op0);
12426 continue;
12427 }
12428 }
12429
12430 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12431 if (const_op == 0 && equality_comparison_p
12432 && XEXP (op0, 1) == const1_rtx
12433 && GET_CODE (XEXP (op0, 0)) == NOT)
12434 {
12435 op0 = simplify_and_const_int (NULL_RTX, mode,
12436 XEXP (XEXP (op0, 0), 0), 1);
12437 code = (code == NE ? EQ : NE);
12438 continue;
12439 }
12440
12441 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12442 (eq (and (lshiftrt X) 1) 0).
12443 Also handle the case where (not X) is expressed using xor. */
12444 if (const_op == 0 && equality_comparison_p
12445 && XEXP (op0, 1) == const1_rtx
12446 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12447 {
12448 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12449 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12450
12451 if (GET_CODE (shift_op) == NOT
12452 || (GET_CODE (shift_op) == XOR
12453 && CONST_INT_P (XEXP (shift_op, 1))
12454 && CONST_INT_P (shift_count)
12455 && HWI_COMPUTABLE_MODE_P (mode)
12456 && (UINTVAL (XEXP (shift_op, 1))
12457 == HOST_WIDE_INT_1U
12458 << INTVAL (shift_count))))
12459 {
12460 op0
12461 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12462 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12463 code = (code == NE ? EQ : NE);
12464 continue;
12465 }
12466 }
12467 break;
12468
12469 case ASHIFT:
12470 /* If we have (compare (ashift FOO N) (const_int C)) and
12471 the high order N bits of FOO (N+1 if an inequality comparison)
12472 are known to be zero, we can do this by comparing FOO with C
12473 shifted right N bits so long as the low-order N bits of C are
12474 zero. */
12475 if (CONST_INT_P (XEXP (op0, 1))
12476 && INTVAL (XEXP (op0, 1)) >= 0
12477 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12478 < HOST_BITS_PER_WIDE_INT)
12479 && (((unsigned HOST_WIDE_INT) const_op
12480 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12481 - 1)) == 0)
12482 && mode_width <= HOST_BITS_PER_WIDE_INT
12483 && (nonzero_bits (XEXP (op0, 0), mode)
12484 & ~(mask >> (INTVAL (XEXP (op0, 1))
12485 + ! equality_comparison_p))) == 0)
12486 {
12487 /* We must perform a logical shift, not an arithmetic one,
12488 as we want the top N bits of C to be zero. */
12489 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12490
12491 temp >>= INTVAL (XEXP (op0, 1));
12492 op1 = gen_int_mode (temp, mode);
12493 op0 = XEXP (op0, 0);
12494 continue;
12495 }
12496
12497 /* If we are doing a sign bit comparison, it means we are testing
12498 a particular bit. Convert it to the appropriate AND. */
12499 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12500 && mode_width <= HOST_BITS_PER_WIDE_INT)
12501 {
12502 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12503 (HOST_WIDE_INT_1U
12504 << (mode_width - 1
12505 - INTVAL (XEXP (op0, 1)))));
12506 code = (code == LT ? NE : EQ);
12507 continue;
12508 }
12509
12510 /* If this an equality comparison with zero and we are shifting
12511 the low bit to the sign bit, we can convert this to an AND of the
12512 low-order bit. */
12513 if (const_op == 0 && equality_comparison_p
12514 && CONST_INT_P (XEXP (op0, 1))
12515 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12516 {
12517 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12518 continue;
12519 }
12520 break;
12521
12522 case ASHIFTRT:
12523 /* If this is an equality comparison with zero, we can do this
12524 as a logical shift, which might be much simpler. */
12525 if (equality_comparison_p && const_op == 0
12526 && CONST_INT_P (XEXP (op0, 1)))
12527 {
12528 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12529 XEXP (op0, 0),
12530 INTVAL (XEXP (op0, 1)));
12531 continue;
12532 }
12533
12534 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12535 do the comparison in a narrower mode. */
12536 if (! unsigned_comparison_p
12537 && CONST_INT_P (XEXP (op0, 1))
12538 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12539 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12540 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12541 MODE_INT, 1)) != BLKmode
12542 && (((unsigned HOST_WIDE_INT) const_op
12543 + (GET_MODE_MASK (tmode) >> 1) + 1)
12544 <= GET_MODE_MASK (tmode)))
12545 {
12546 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12547 continue;
12548 }
12549
12550 /* Likewise if OP0 is a PLUS of a sign extension with a
12551 constant, which is usually represented with the PLUS
12552 between the shifts. */
12553 if (! unsigned_comparison_p
12554 && CONST_INT_P (XEXP (op0, 1))
12555 && GET_CODE (XEXP (op0, 0)) == PLUS
12556 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12557 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12558 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12559 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12560 MODE_INT, 1)) != BLKmode
12561 && (((unsigned HOST_WIDE_INT) const_op
12562 + (GET_MODE_MASK (tmode) >> 1) + 1)
12563 <= GET_MODE_MASK (tmode)))
12564 {
12565 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12566 rtx add_const = XEXP (XEXP (op0, 0), 1);
12567 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12568 add_const, XEXP (op0, 1));
12569
12570 op0 = simplify_gen_binary (PLUS, tmode,
12571 gen_lowpart (tmode, inner),
12572 new_const);
12573 continue;
12574 }
12575
12576 /* FALLTHROUGH */
12577 case LSHIFTRT:
12578 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12579 the low order N bits of FOO are known to be zero, we can do this
12580 by comparing FOO with C shifted left N bits so long as no
12581 overflow occurs. Even if the low order N bits of FOO aren't known
12582 to be zero, if the comparison is >= or < we can use the same
12583 optimization and for > or <= by setting all the low
12584 order N bits in the comparison constant. */
12585 if (CONST_INT_P (XEXP (op0, 1))
12586 && INTVAL (XEXP (op0, 1)) > 0
12587 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12588 && mode_width <= HOST_BITS_PER_WIDE_INT
12589 && (((unsigned HOST_WIDE_INT) const_op
12590 + (GET_CODE (op0) != LSHIFTRT
12591 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12592 + 1)
12593 : 0))
12594 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12595 {
12596 unsigned HOST_WIDE_INT low_bits
12597 = (nonzero_bits (XEXP (op0, 0), mode)
12598 & ((HOST_WIDE_INT_1U
12599 << INTVAL (XEXP (op0, 1))) - 1));
12600 if (low_bits == 0 || !equality_comparison_p)
12601 {
12602 /* If the shift was logical, then we must make the condition
12603 unsigned. */
12604 if (GET_CODE (op0) == LSHIFTRT)
12605 code = unsigned_condition (code);
12606
12607 const_op = (unsigned HOST_WIDE_INT) const_op
12608 << INTVAL (XEXP (op0, 1));
12609 if (low_bits != 0
12610 && (code == GT || code == GTU
12611 || code == LE || code == LEU))
12612 const_op
12613 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12614 op1 = GEN_INT (const_op);
12615 op0 = XEXP (op0, 0);
12616 continue;
12617 }
12618 }
12619
12620 /* If we are using this shift to extract just the sign bit, we
12621 can replace this with an LT or GE comparison. */
12622 if (const_op == 0
12623 && (equality_comparison_p || sign_bit_comparison_p)
12624 && CONST_INT_P (XEXP (op0, 1))
12625 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12626 {
12627 op0 = XEXP (op0, 0);
12628 code = (code == NE || code == GT ? LT : GE);
12629 continue;
12630 }
12631 break;
12632
12633 default:
12634 break;
12635 }
12636
12637 break;
12638 }
12639
12640 /* Now make any compound operations involved in this comparison. Then,
12641 check for an outmost SUBREG on OP0 that is not doing anything or is
12642 paradoxical. The latter transformation must only be performed when
12643 it is known that the "extra" bits will be the same in op0 and op1 or
12644 that they don't matter. There are three cases to consider:
12645
12646 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12647 care bits and we can assume they have any convenient value. So
12648 making the transformation is safe.
12649
12650 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12651 In this case the upper bits of op0 are undefined. We should not make
12652 the simplification in that case as we do not know the contents of
12653 those bits.
12654
12655 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12656 In that case we know those bits are zeros or ones. We must also be
12657 sure that they are the same as the upper bits of op1.
12658
12659 We can never remove a SUBREG for a non-equality comparison because
12660 the sign bit is in a different place in the underlying object. */
12661
12662 rtx_code op0_mco_code = SET;
12663 if (op1 == const0_rtx)
12664 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12665
12666 op0 = make_compound_operation (op0, op0_mco_code);
12667 op1 = make_compound_operation (op1, SET);
12668
12669 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12670 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12671 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12672 && (code == NE || code == EQ))
12673 {
12674 if (paradoxical_subreg_p (op0))
12675 {
12676 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12677 implemented. */
12678 if (REG_P (SUBREG_REG (op0)))
12679 {
12680 op0 = SUBREG_REG (op0);
12681 op1 = gen_lowpart (GET_MODE (op0), op1);
12682 }
12683 }
12684 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12685 <= HOST_BITS_PER_WIDE_INT)
12686 && (nonzero_bits (SUBREG_REG (op0),
12687 GET_MODE (SUBREG_REG (op0)))
12688 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12689 {
12690 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12691
12692 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12693 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12694 op0 = SUBREG_REG (op0), op1 = tem;
12695 }
12696 }
12697
12698 /* We now do the opposite procedure: Some machines don't have compare
12699 insns in all modes. If OP0's mode is an integer mode smaller than a
12700 word and we can't do a compare in that mode, see if there is a larger
12701 mode for which we can do the compare. There are a number of cases in
12702 which we can use the wider mode. */
12703
12704 mode = GET_MODE (op0);
12705 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12706 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12707 && ! have_insn_for (COMPARE, mode))
12708 for (tmode = GET_MODE_WIDER_MODE (mode);
12709 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12710 tmode = GET_MODE_WIDER_MODE (tmode))
12711 if (have_insn_for (COMPARE, tmode))
12712 {
12713 int zero_extended;
12714
12715 /* If this is a test for negative, we can make an explicit
12716 test of the sign bit. Test this first so we can use
12717 a paradoxical subreg to extend OP0. */
12718
12719 if (op1 == const0_rtx && (code == LT || code == GE)
12720 && HWI_COMPUTABLE_MODE_P (mode))
12721 {
12722 unsigned HOST_WIDE_INT sign
12723 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12724 op0 = simplify_gen_binary (AND, tmode,
12725 gen_lowpart (tmode, op0),
12726 gen_int_mode (sign, tmode));
12727 code = (code == LT) ? NE : EQ;
12728 break;
12729 }
12730
12731 /* If the only nonzero bits in OP0 and OP1 are those in the
12732 narrower mode and this is an equality or unsigned comparison,
12733 we can use the wider mode. Similarly for sign-extended
12734 values, in which case it is true for all comparisons. */
12735 zero_extended = ((code == EQ || code == NE
12736 || code == GEU || code == GTU
12737 || code == LEU || code == LTU)
12738 && (nonzero_bits (op0, tmode)
12739 & ~GET_MODE_MASK (mode)) == 0
12740 && ((CONST_INT_P (op1)
12741 || (nonzero_bits (op1, tmode)
12742 & ~GET_MODE_MASK (mode)) == 0)));
12743
12744 if (zero_extended
12745 || ((num_sign_bit_copies (op0, tmode)
12746 > (unsigned int) (GET_MODE_PRECISION (tmode)
12747 - GET_MODE_PRECISION (mode)))
12748 && (num_sign_bit_copies (op1, tmode)
12749 > (unsigned int) (GET_MODE_PRECISION (tmode)
12750 - GET_MODE_PRECISION (mode)))))
12751 {
12752 /* If OP0 is an AND and we don't have an AND in MODE either,
12753 make a new AND in the proper mode. */
12754 if (GET_CODE (op0) == AND
12755 && !have_insn_for (AND, mode))
12756 op0 = simplify_gen_binary (AND, tmode,
12757 gen_lowpart (tmode,
12758 XEXP (op0, 0)),
12759 gen_lowpart (tmode,
12760 XEXP (op0, 1)));
12761 else
12762 {
12763 if (zero_extended)
12764 {
12765 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12766 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12767 }
12768 else
12769 {
12770 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12771 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12772 }
12773 break;
12774 }
12775 }
12776 }
12777
12778 /* We may have changed the comparison operands. Re-canonicalize. */
12779 if (swap_commutative_operands_p (op0, op1))
12780 {
12781 std::swap (op0, op1);
12782 code = swap_condition (code);
12783 }
12784
12785 /* If this machine only supports a subset of valid comparisons, see if we
12786 can convert an unsupported one into a supported one. */
12787 target_canonicalize_comparison (&code, &op0, &op1, 0);
12788
12789 *pop0 = op0;
12790 *pop1 = op1;
12791
12792 return code;
12793 }
12794 \f
12795 /* Utility function for record_value_for_reg. Count number of
12796 rtxs in X. */
12797 static int
12798 count_rtxs (rtx x)
12799 {
12800 enum rtx_code code = GET_CODE (x);
12801 const char *fmt;
12802 int i, j, ret = 1;
12803
12804 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12805 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12806 {
12807 rtx x0 = XEXP (x, 0);
12808 rtx x1 = XEXP (x, 1);
12809
12810 if (x0 == x1)
12811 return 1 + 2 * count_rtxs (x0);
12812
12813 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12814 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12815 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12816 return 2 + 2 * count_rtxs (x0)
12817 + count_rtxs (x == XEXP (x1, 0)
12818 ? XEXP (x1, 1) : XEXP (x1, 0));
12819
12820 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12821 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12822 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12823 return 2 + 2 * count_rtxs (x1)
12824 + count_rtxs (x == XEXP (x0, 0)
12825 ? XEXP (x0, 1) : XEXP (x0, 0));
12826 }
12827
12828 fmt = GET_RTX_FORMAT (code);
12829 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12830 if (fmt[i] == 'e')
12831 ret += count_rtxs (XEXP (x, i));
12832 else if (fmt[i] == 'E')
12833 for (j = 0; j < XVECLEN (x, i); j++)
12834 ret += count_rtxs (XVECEXP (x, i, j));
12835
12836 return ret;
12837 }
12838 \f
12839 /* Utility function for following routine. Called when X is part of a value
12840 being stored into last_set_value. Sets last_set_table_tick
12841 for each register mentioned. Similar to mention_regs in cse.c */
12842
12843 static void
12844 update_table_tick (rtx x)
12845 {
12846 enum rtx_code code = GET_CODE (x);
12847 const char *fmt = GET_RTX_FORMAT (code);
12848 int i, j;
12849
12850 if (code == REG)
12851 {
12852 unsigned int regno = REGNO (x);
12853 unsigned int endregno = END_REGNO (x);
12854 unsigned int r;
12855
12856 for (r = regno; r < endregno; r++)
12857 {
12858 reg_stat_type *rsp = &reg_stat[r];
12859 rsp->last_set_table_tick = label_tick;
12860 }
12861
12862 return;
12863 }
12864
12865 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12866 if (fmt[i] == 'e')
12867 {
12868 /* Check for identical subexpressions. If x contains
12869 identical subexpression we only have to traverse one of
12870 them. */
12871 if (i == 0 && ARITHMETIC_P (x))
12872 {
12873 /* Note that at this point x1 has already been
12874 processed. */
12875 rtx x0 = XEXP (x, 0);
12876 rtx x1 = XEXP (x, 1);
12877
12878 /* If x0 and x1 are identical then there is no need to
12879 process x0. */
12880 if (x0 == x1)
12881 break;
12882
12883 /* If x0 is identical to a subexpression of x1 then while
12884 processing x1, x0 has already been processed. Thus we
12885 are done with x. */
12886 if (ARITHMETIC_P (x1)
12887 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12888 break;
12889
12890 /* If x1 is identical to a subexpression of x0 then we
12891 still have to process the rest of x0. */
12892 if (ARITHMETIC_P (x0)
12893 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12894 {
12895 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12896 break;
12897 }
12898 }
12899
12900 update_table_tick (XEXP (x, i));
12901 }
12902 else if (fmt[i] == 'E')
12903 for (j = 0; j < XVECLEN (x, i); j++)
12904 update_table_tick (XVECEXP (x, i, j));
12905 }
12906
12907 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12908 are saying that the register is clobbered and we no longer know its
12909 value. If INSN is zero, don't update reg_stat[].last_set; this is
12910 only permitted with VALUE also zero and is used to invalidate the
12911 register. */
12912
12913 static void
12914 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12915 {
12916 unsigned int regno = REGNO (reg);
12917 unsigned int endregno = END_REGNO (reg);
12918 unsigned int i;
12919 reg_stat_type *rsp;
12920
12921 /* If VALUE contains REG and we have a previous value for REG, substitute
12922 the previous value. */
12923 if (value && insn && reg_overlap_mentioned_p (reg, value))
12924 {
12925 rtx tem;
12926
12927 /* Set things up so get_last_value is allowed to see anything set up to
12928 our insn. */
12929 subst_low_luid = DF_INSN_LUID (insn);
12930 tem = get_last_value (reg);
12931
12932 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12933 it isn't going to be useful and will take a lot of time to process,
12934 so just use the CLOBBER. */
12935
12936 if (tem)
12937 {
12938 if (ARITHMETIC_P (tem)
12939 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12940 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12941 tem = XEXP (tem, 0);
12942 else if (count_occurrences (value, reg, 1) >= 2)
12943 {
12944 /* If there are two or more occurrences of REG in VALUE,
12945 prevent the value from growing too much. */
12946 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12947 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12948 }
12949
12950 value = replace_rtx (copy_rtx (value), reg, tem);
12951 }
12952 }
12953
12954 /* For each register modified, show we don't know its value, that
12955 we don't know about its bitwise content, that its value has been
12956 updated, and that we don't know the location of the death of the
12957 register. */
12958 for (i = regno; i < endregno; i++)
12959 {
12960 rsp = &reg_stat[i];
12961
12962 if (insn)
12963 rsp->last_set = insn;
12964
12965 rsp->last_set_value = 0;
12966 rsp->last_set_mode = VOIDmode;
12967 rsp->last_set_nonzero_bits = 0;
12968 rsp->last_set_sign_bit_copies = 0;
12969 rsp->last_death = 0;
12970 rsp->truncated_to_mode = VOIDmode;
12971 }
12972
12973 /* Mark registers that are being referenced in this value. */
12974 if (value)
12975 update_table_tick (value);
12976
12977 /* Now update the status of each register being set.
12978 If someone is using this register in this block, set this register
12979 to invalid since we will get confused between the two lives in this
12980 basic block. This makes using this register always invalid. In cse, we
12981 scan the table to invalidate all entries using this register, but this
12982 is too much work for us. */
12983
12984 for (i = regno; i < endregno; i++)
12985 {
12986 rsp = &reg_stat[i];
12987 rsp->last_set_label = label_tick;
12988 if (!insn
12989 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12990 rsp->last_set_invalid = 1;
12991 else
12992 rsp->last_set_invalid = 0;
12993 }
12994
12995 /* The value being assigned might refer to X (like in "x++;"). In that
12996 case, we must replace it with (clobber (const_int 0)) to prevent
12997 infinite loops. */
12998 rsp = &reg_stat[regno];
12999 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13000 {
13001 value = copy_rtx (value);
13002 if (!get_last_value_validate (&value, insn, label_tick, 1))
13003 value = 0;
13004 }
13005
13006 /* For the main register being modified, update the value, the mode, the
13007 nonzero bits, and the number of sign bit copies. */
13008
13009 rsp->last_set_value = value;
13010
13011 if (value)
13012 {
13013 machine_mode mode = GET_MODE (reg);
13014 subst_low_luid = DF_INSN_LUID (insn);
13015 rsp->last_set_mode = mode;
13016 if (GET_MODE_CLASS (mode) == MODE_INT
13017 && HWI_COMPUTABLE_MODE_P (mode))
13018 mode = nonzero_bits_mode;
13019 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13020 rsp->last_set_sign_bit_copies
13021 = num_sign_bit_copies (value, GET_MODE (reg));
13022 }
13023 }
13024
13025 /* Called via note_stores from record_dead_and_set_regs to handle one
13026 SET or CLOBBER in an insn. DATA is the instruction in which the
13027 set is occurring. */
13028
13029 static void
13030 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13031 {
13032 rtx_insn *record_dead_insn = (rtx_insn *) data;
13033
13034 if (GET_CODE (dest) == SUBREG)
13035 dest = SUBREG_REG (dest);
13036
13037 if (!record_dead_insn)
13038 {
13039 if (REG_P (dest))
13040 record_value_for_reg (dest, NULL, NULL_RTX);
13041 return;
13042 }
13043
13044 if (REG_P (dest))
13045 {
13046 /* If we are setting the whole register, we know its value. Otherwise
13047 show that we don't know the value. We can handle SUBREG in
13048 some cases. */
13049 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13050 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13051 else if (GET_CODE (setter) == SET
13052 && GET_CODE (SET_DEST (setter)) == SUBREG
13053 && SUBREG_REG (SET_DEST (setter)) == dest
13054 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
13055 && subreg_lowpart_p (SET_DEST (setter)))
13056 record_value_for_reg (dest, record_dead_insn,
13057 gen_lowpart (GET_MODE (dest),
13058 SET_SRC (setter)));
13059 else
13060 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13061 }
13062 else if (MEM_P (dest)
13063 /* Ignore pushes, they clobber nothing. */
13064 && ! push_operand (dest, GET_MODE (dest)))
13065 mem_last_set = DF_INSN_LUID (record_dead_insn);
13066 }
13067
13068 /* Update the records of when each REG was most recently set or killed
13069 for the things done by INSN. This is the last thing done in processing
13070 INSN in the combiner loop.
13071
13072 We update reg_stat[], in particular fields last_set, last_set_value,
13073 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13074 last_death, and also the similar information mem_last_set (which insn
13075 most recently modified memory) and last_call_luid (which insn was the
13076 most recent subroutine call). */
13077
13078 static void
13079 record_dead_and_set_regs (rtx_insn *insn)
13080 {
13081 rtx link;
13082 unsigned int i;
13083
13084 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13085 {
13086 if (REG_NOTE_KIND (link) == REG_DEAD
13087 && REG_P (XEXP (link, 0)))
13088 {
13089 unsigned int regno = REGNO (XEXP (link, 0));
13090 unsigned int endregno = END_REGNO (XEXP (link, 0));
13091
13092 for (i = regno; i < endregno; i++)
13093 {
13094 reg_stat_type *rsp;
13095
13096 rsp = &reg_stat[i];
13097 rsp->last_death = insn;
13098 }
13099 }
13100 else if (REG_NOTE_KIND (link) == REG_INC)
13101 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13102 }
13103
13104 if (CALL_P (insn))
13105 {
13106 hard_reg_set_iterator hrsi;
13107 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13108 {
13109 reg_stat_type *rsp;
13110
13111 rsp = &reg_stat[i];
13112 rsp->last_set_invalid = 1;
13113 rsp->last_set = insn;
13114 rsp->last_set_value = 0;
13115 rsp->last_set_mode = VOIDmode;
13116 rsp->last_set_nonzero_bits = 0;
13117 rsp->last_set_sign_bit_copies = 0;
13118 rsp->last_death = 0;
13119 rsp->truncated_to_mode = VOIDmode;
13120 }
13121
13122 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13123
13124 /* We can't combine into a call pattern. Remember, though, that
13125 the return value register is set at this LUID. We could
13126 still replace a register with the return value from the
13127 wrong subroutine call! */
13128 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13129 }
13130 else
13131 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13132 }
13133
13134 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13135 register present in the SUBREG, so for each such SUBREG go back and
13136 adjust nonzero and sign bit information of the registers that are
13137 known to have some zero/sign bits set.
13138
13139 This is needed because when combine blows the SUBREGs away, the
13140 information on zero/sign bits is lost and further combines can be
13141 missed because of that. */
13142
13143 static void
13144 record_promoted_value (rtx_insn *insn, rtx subreg)
13145 {
13146 struct insn_link *links;
13147 rtx set;
13148 unsigned int regno = REGNO (SUBREG_REG (subreg));
13149 machine_mode mode = GET_MODE (subreg);
13150
13151 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
13152 return;
13153
13154 for (links = LOG_LINKS (insn); links;)
13155 {
13156 reg_stat_type *rsp;
13157
13158 insn = links->insn;
13159 set = single_set (insn);
13160
13161 if (! set || !REG_P (SET_DEST (set))
13162 || REGNO (SET_DEST (set)) != regno
13163 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13164 {
13165 links = links->next;
13166 continue;
13167 }
13168
13169 rsp = &reg_stat[regno];
13170 if (rsp->last_set == insn)
13171 {
13172 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13173 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13174 }
13175
13176 if (REG_P (SET_SRC (set)))
13177 {
13178 regno = REGNO (SET_SRC (set));
13179 links = LOG_LINKS (insn);
13180 }
13181 else
13182 break;
13183 }
13184 }
13185
13186 /* Check if X, a register, is known to contain a value already
13187 truncated to MODE. In this case we can use a subreg to refer to
13188 the truncated value even though in the generic case we would need
13189 an explicit truncation. */
13190
13191 static bool
13192 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13193 {
13194 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13195 machine_mode truncated = rsp->truncated_to_mode;
13196
13197 if (truncated == 0
13198 || rsp->truncation_label < label_tick_ebb_start)
13199 return false;
13200 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
13201 return true;
13202 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13203 return true;
13204 return false;
13205 }
13206
13207 /* If X is a hard reg or a subreg record the mode that the register is
13208 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
13209 to turn a truncate into a subreg using this information. Return true
13210 if traversing X is complete. */
13211
13212 static bool
13213 record_truncated_value (rtx x)
13214 {
13215 machine_mode truncated_mode;
13216 reg_stat_type *rsp;
13217
13218 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13219 {
13220 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13221 truncated_mode = GET_MODE (x);
13222
13223 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
13224 return true;
13225
13226 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13227 return true;
13228
13229 x = SUBREG_REG (x);
13230 }
13231 /* ??? For hard-regs we now record everything. We might be able to
13232 optimize this using last_set_mode. */
13233 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13234 truncated_mode = GET_MODE (x);
13235 else
13236 return false;
13237
13238 rsp = &reg_stat[REGNO (x)];
13239 if (rsp->truncated_to_mode == 0
13240 || rsp->truncation_label < label_tick_ebb_start
13241 || (GET_MODE_SIZE (truncated_mode)
13242 < GET_MODE_SIZE (rsp->truncated_to_mode)))
13243 {
13244 rsp->truncated_to_mode = truncated_mode;
13245 rsp->truncation_label = label_tick;
13246 }
13247
13248 return true;
13249 }
13250
13251 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13252 the modes they are used in. This can help truning TRUNCATEs into
13253 SUBREGs. */
13254
13255 static void
13256 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13257 {
13258 subrtx_var_iterator::array_type array;
13259 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13260 if (record_truncated_value (*iter))
13261 iter.skip_subrtxes ();
13262 }
13263
13264 /* Scan X for promoted SUBREGs. For each one found,
13265 note what it implies to the registers used in it. */
13266
13267 static void
13268 check_promoted_subreg (rtx_insn *insn, rtx x)
13269 {
13270 if (GET_CODE (x) == SUBREG
13271 && SUBREG_PROMOTED_VAR_P (x)
13272 && REG_P (SUBREG_REG (x)))
13273 record_promoted_value (insn, x);
13274 else
13275 {
13276 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13277 int i, j;
13278
13279 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13280 switch (format[i])
13281 {
13282 case 'e':
13283 check_promoted_subreg (insn, XEXP (x, i));
13284 break;
13285 case 'V':
13286 case 'E':
13287 if (XVEC (x, i) != 0)
13288 for (j = 0; j < XVECLEN (x, i); j++)
13289 check_promoted_subreg (insn, XVECEXP (x, i, j));
13290 break;
13291 }
13292 }
13293 }
13294 \f
13295 /* Verify that all the registers and memory references mentioned in *LOC are
13296 still valid. *LOC was part of a value set in INSN when label_tick was
13297 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13298 the invalid references with (clobber (const_int 0)) and return 1. This
13299 replacement is useful because we often can get useful information about
13300 the form of a value (e.g., if it was produced by a shift that always
13301 produces -1 or 0) even though we don't know exactly what registers it
13302 was produced from. */
13303
13304 static int
13305 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13306 {
13307 rtx x = *loc;
13308 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13309 int len = GET_RTX_LENGTH (GET_CODE (x));
13310 int i, j;
13311
13312 if (REG_P (x))
13313 {
13314 unsigned int regno = REGNO (x);
13315 unsigned int endregno = END_REGNO (x);
13316 unsigned int j;
13317
13318 for (j = regno; j < endregno; j++)
13319 {
13320 reg_stat_type *rsp = &reg_stat[j];
13321 if (rsp->last_set_invalid
13322 /* If this is a pseudo-register that was only set once and not
13323 live at the beginning of the function, it is always valid. */
13324 || (! (regno >= FIRST_PSEUDO_REGISTER
13325 && regno < reg_n_sets_max
13326 && REG_N_SETS (regno) == 1
13327 && (!REGNO_REG_SET_P
13328 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13329 regno)))
13330 && rsp->last_set_label > tick))
13331 {
13332 if (replace)
13333 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13334 return replace;
13335 }
13336 }
13337
13338 return 1;
13339 }
13340 /* If this is a memory reference, make sure that there were no stores after
13341 it that might have clobbered the value. We don't have alias info, so we
13342 assume any store invalidates it. Moreover, we only have local UIDs, so
13343 we also assume that there were stores in the intervening basic blocks. */
13344 else if (MEM_P (x) && !MEM_READONLY_P (x)
13345 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13346 {
13347 if (replace)
13348 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13349 return replace;
13350 }
13351
13352 for (i = 0; i < len; i++)
13353 {
13354 if (fmt[i] == 'e')
13355 {
13356 /* Check for identical subexpressions. If x contains
13357 identical subexpression we only have to traverse one of
13358 them. */
13359 if (i == 1 && ARITHMETIC_P (x))
13360 {
13361 /* Note that at this point x0 has already been checked
13362 and found valid. */
13363 rtx x0 = XEXP (x, 0);
13364 rtx x1 = XEXP (x, 1);
13365
13366 /* If x0 and x1 are identical then x is also valid. */
13367 if (x0 == x1)
13368 return 1;
13369
13370 /* If x1 is identical to a subexpression of x0 then
13371 while checking x0, x1 has already been checked. Thus
13372 it is valid and so as x. */
13373 if (ARITHMETIC_P (x0)
13374 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13375 return 1;
13376
13377 /* If x0 is identical to a subexpression of x1 then x is
13378 valid iff the rest of x1 is valid. */
13379 if (ARITHMETIC_P (x1)
13380 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13381 return
13382 get_last_value_validate (&XEXP (x1,
13383 x0 == XEXP (x1, 0) ? 1 : 0),
13384 insn, tick, replace);
13385 }
13386
13387 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13388 replace) == 0)
13389 return 0;
13390 }
13391 else if (fmt[i] == 'E')
13392 for (j = 0; j < XVECLEN (x, i); j++)
13393 if (get_last_value_validate (&XVECEXP (x, i, j),
13394 insn, tick, replace) == 0)
13395 return 0;
13396 }
13397
13398 /* If we haven't found a reason for it to be invalid, it is valid. */
13399 return 1;
13400 }
13401
13402 /* Get the last value assigned to X, if known. Some registers
13403 in the value may be replaced with (clobber (const_int 0)) if their value
13404 is known longer known reliably. */
13405
13406 static rtx
13407 get_last_value (const_rtx x)
13408 {
13409 unsigned int regno;
13410 rtx value;
13411 reg_stat_type *rsp;
13412
13413 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13414 then convert it to the desired mode. If this is a paradoxical SUBREG,
13415 we cannot predict what values the "extra" bits might have. */
13416 if (GET_CODE (x) == SUBREG
13417 && subreg_lowpart_p (x)
13418 && !paradoxical_subreg_p (x)
13419 && (value = get_last_value (SUBREG_REG (x))) != 0)
13420 return gen_lowpart (GET_MODE (x), value);
13421
13422 if (!REG_P (x))
13423 return 0;
13424
13425 regno = REGNO (x);
13426 rsp = &reg_stat[regno];
13427 value = rsp->last_set_value;
13428
13429 /* If we don't have a value, or if it isn't for this basic block and
13430 it's either a hard register, set more than once, or it's a live
13431 at the beginning of the function, return 0.
13432
13433 Because if it's not live at the beginning of the function then the reg
13434 is always set before being used (is never used without being set).
13435 And, if it's set only once, and it's always set before use, then all
13436 uses must have the same last value, even if it's not from this basic
13437 block. */
13438
13439 if (value == 0
13440 || (rsp->last_set_label < label_tick_ebb_start
13441 && (regno < FIRST_PSEUDO_REGISTER
13442 || regno >= reg_n_sets_max
13443 || REG_N_SETS (regno) != 1
13444 || REGNO_REG_SET_P
13445 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13446 return 0;
13447
13448 /* If the value was set in a later insn than the ones we are processing,
13449 we can't use it even if the register was only set once. */
13450 if (rsp->last_set_label == label_tick
13451 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13452 return 0;
13453
13454 /* If fewer bits were set than what we are asked for now, we cannot use
13455 the value. */
13456 if (GET_MODE_PRECISION (rsp->last_set_mode)
13457 < GET_MODE_PRECISION (GET_MODE (x)))
13458 return 0;
13459
13460 /* If the value has all its registers valid, return it. */
13461 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13462 return value;
13463
13464 /* Otherwise, make a copy and replace any invalid register with
13465 (clobber (const_int 0)). If that fails for some reason, return 0. */
13466
13467 value = copy_rtx (value);
13468 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13469 return value;
13470
13471 return 0;
13472 }
13473 \f
13474 /* Return nonzero if expression X refers to a REG or to memory
13475 that is set in an instruction more recent than FROM_LUID. */
13476
13477 static int
13478 use_crosses_set_p (const_rtx x, int from_luid)
13479 {
13480 const char *fmt;
13481 int i;
13482 enum rtx_code code = GET_CODE (x);
13483
13484 if (code == REG)
13485 {
13486 unsigned int regno = REGNO (x);
13487 unsigned endreg = END_REGNO (x);
13488
13489 #ifdef PUSH_ROUNDING
13490 /* Don't allow uses of the stack pointer to be moved,
13491 because we don't know whether the move crosses a push insn. */
13492 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13493 return 1;
13494 #endif
13495 for (; regno < endreg; regno++)
13496 {
13497 reg_stat_type *rsp = &reg_stat[regno];
13498 if (rsp->last_set
13499 && rsp->last_set_label == label_tick
13500 && DF_INSN_LUID (rsp->last_set) > from_luid)
13501 return 1;
13502 }
13503 return 0;
13504 }
13505
13506 if (code == MEM && mem_last_set > from_luid)
13507 return 1;
13508
13509 fmt = GET_RTX_FORMAT (code);
13510
13511 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13512 {
13513 if (fmt[i] == 'E')
13514 {
13515 int j;
13516 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13517 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13518 return 1;
13519 }
13520 else if (fmt[i] == 'e'
13521 && use_crosses_set_p (XEXP (x, i), from_luid))
13522 return 1;
13523 }
13524 return 0;
13525 }
13526 \f
13527 /* Define three variables used for communication between the following
13528 routines. */
13529
13530 static unsigned int reg_dead_regno, reg_dead_endregno;
13531 static int reg_dead_flag;
13532
13533 /* Function called via note_stores from reg_dead_at_p.
13534
13535 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13536 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13537
13538 static void
13539 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13540 {
13541 unsigned int regno, endregno;
13542
13543 if (!REG_P (dest))
13544 return;
13545
13546 regno = REGNO (dest);
13547 endregno = END_REGNO (dest);
13548 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13549 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13550 }
13551
13552 /* Return nonzero if REG is known to be dead at INSN.
13553
13554 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13555 referencing REG, it is dead. If we hit a SET referencing REG, it is
13556 live. Otherwise, see if it is live or dead at the start of the basic
13557 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13558 must be assumed to be always live. */
13559
13560 static int
13561 reg_dead_at_p (rtx reg, rtx_insn *insn)
13562 {
13563 basic_block block;
13564 unsigned int i;
13565
13566 /* Set variables for reg_dead_at_p_1. */
13567 reg_dead_regno = REGNO (reg);
13568 reg_dead_endregno = END_REGNO (reg);
13569
13570 reg_dead_flag = 0;
13571
13572 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13573 we allow the machine description to decide whether use-and-clobber
13574 patterns are OK. */
13575 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13576 {
13577 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13578 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13579 return 0;
13580 }
13581
13582 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13583 beginning of basic block. */
13584 block = BLOCK_FOR_INSN (insn);
13585 for (;;)
13586 {
13587 if (INSN_P (insn))
13588 {
13589 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13590 return 1;
13591
13592 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13593 if (reg_dead_flag)
13594 return reg_dead_flag == 1 ? 1 : 0;
13595
13596 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13597 return 1;
13598 }
13599
13600 if (insn == BB_HEAD (block))
13601 break;
13602
13603 insn = PREV_INSN (insn);
13604 }
13605
13606 /* Look at live-in sets for the basic block that we were in. */
13607 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13608 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13609 return 0;
13610
13611 return 1;
13612 }
13613 \f
13614 /* Note hard registers in X that are used. */
13615
13616 static void
13617 mark_used_regs_combine (rtx x)
13618 {
13619 RTX_CODE code = GET_CODE (x);
13620 unsigned int regno;
13621 int i;
13622
13623 switch (code)
13624 {
13625 case LABEL_REF:
13626 case SYMBOL_REF:
13627 case CONST:
13628 CASE_CONST_ANY:
13629 case PC:
13630 case ADDR_VEC:
13631 case ADDR_DIFF_VEC:
13632 case ASM_INPUT:
13633 /* CC0 must die in the insn after it is set, so we don't need to take
13634 special note of it here. */
13635 case CC0:
13636 return;
13637
13638 case CLOBBER:
13639 /* If we are clobbering a MEM, mark any hard registers inside the
13640 address as used. */
13641 if (MEM_P (XEXP (x, 0)))
13642 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13643 return;
13644
13645 case REG:
13646 regno = REGNO (x);
13647 /* A hard reg in a wide mode may really be multiple registers.
13648 If so, mark all of them just like the first. */
13649 if (regno < FIRST_PSEUDO_REGISTER)
13650 {
13651 /* None of this applies to the stack, frame or arg pointers. */
13652 if (regno == STACK_POINTER_REGNUM
13653 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13654 && regno == HARD_FRAME_POINTER_REGNUM)
13655 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13656 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13657 || regno == FRAME_POINTER_REGNUM)
13658 return;
13659
13660 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13661 }
13662 return;
13663
13664 case SET:
13665 {
13666 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13667 the address. */
13668 rtx testreg = SET_DEST (x);
13669
13670 while (GET_CODE (testreg) == SUBREG
13671 || GET_CODE (testreg) == ZERO_EXTRACT
13672 || GET_CODE (testreg) == STRICT_LOW_PART)
13673 testreg = XEXP (testreg, 0);
13674
13675 if (MEM_P (testreg))
13676 mark_used_regs_combine (XEXP (testreg, 0));
13677
13678 mark_used_regs_combine (SET_SRC (x));
13679 }
13680 return;
13681
13682 default:
13683 break;
13684 }
13685
13686 /* Recursively scan the operands of this expression. */
13687
13688 {
13689 const char *fmt = GET_RTX_FORMAT (code);
13690
13691 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13692 {
13693 if (fmt[i] == 'e')
13694 mark_used_regs_combine (XEXP (x, i));
13695 else if (fmt[i] == 'E')
13696 {
13697 int j;
13698
13699 for (j = 0; j < XVECLEN (x, i); j++)
13700 mark_used_regs_combine (XVECEXP (x, i, j));
13701 }
13702 }
13703 }
13704 }
13705 \f
13706 /* Remove register number REGNO from the dead registers list of INSN.
13707
13708 Return the note used to record the death, if there was one. */
13709
13710 rtx
13711 remove_death (unsigned int regno, rtx_insn *insn)
13712 {
13713 rtx note = find_regno_note (insn, REG_DEAD, regno);
13714
13715 if (note)
13716 remove_note (insn, note);
13717
13718 return note;
13719 }
13720
13721 /* For each register (hardware or pseudo) used within expression X, if its
13722 death is in an instruction with luid between FROM_LUID (inclusive) and
13723 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13724 list headed by PNOTES.
13725
13726 That said, don't move registers killed by maybe_kill_insn.
13727
13728 This is done when X is being merged by combination into TO_INSN. These
13729 notes will then be distributed as needed. */
13730
13731 static void
13732 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13733 rtx *pnotes)
13734 {
13735 const char *fmt;
13736 int len, i;
13737 enum rtx_code code = GET_CODE (x);
13738
13739 if (code == REG)
13740 {
13741 unsigned int regno = REGNO (x);
13742 rtx_insn *where_dead = reg_stat[regno].last_death;
13743
13744 /* Don't move the register if it gets killed in between from and to. */
13745 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13746 && ! reg_referenced_p (x, maybe_kill_insn))
13747 return;
13748
13749 if (where_dead
13750 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13751 && DF_INSN_LUID (where_dead) >= from_luid
13752 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13753 {
13754 rtx note = remove_death (regno, where_dead);
13755
13756 /* It is possible for the call above to return 0. This can occur
13757 when last_death points to I2 or I1 that we combined with.
13758 In that case make a new note.
13759
13760 We must also check for the case where X is a hard register
13761 and NOTE is a death note for a range of hard registers
13762 including X. In that case, we must put REG_DEAD notes for
13763 the remaining registers in place of NOTE. */
13764
13765 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13766 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13767 > GET_MODE_SIZE (GET_MODE (x))))
13768 {
13769 unsigned int deadregno = REGNO (XEXP (note, 0));
13770 unsigned int deadend = END_REGNO (XEXP (note, 0));
13771 unsigned int ourend = END_REGNO (x);
13772 unsigned int i;
13773
13774 for (i = deadregno; i < deadend; i++)
13775 if (i < regno || i >= ourend)
13776 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13777 }
13778
13779 /* If we didn't find any note, or if we found a REG_DEAD note that
13780 covers only part of the given reg, and we have a multi-reg hard
13781 register, then to be safe we must check for REG_DEAD notes
13782 for each register other than the first. They could have
13783 their own REG_DEAD notes lying around. */
13784 else if ((note == 0
13785 || (note != 0
13786 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13787 < GET_MODE_SIZE (GET_MODE (x)))))
13788 && regno < FIRST_PSEUDO_REGISTER
13789 && REG_NREGS (x) > 1)
13790 {
13791 unsigned int ourend = END_REGNO (x);
13792 unsigned int i, offset;
13793 rtx oldnotes = 0;
13794
13795 if (note)
13796 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13797 else
13798 offset = 1;
13799
13800 for (i = regno + offset; i < ourend; i++)
13801 move_deaths (regno_reg_rtx[i],
13802 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13803 }
13804
13805 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13806 {
13807 XEXP (note, 1) = *pnotes;
13808 *pnotes = note;
13809 }
13810 else
13811 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13812 }
13813
13814 return;
13815 }
13816
13817 else if (GET_CODE (x) == SET)
13818 {
13819 rtx dest = SET_DEST (x);
13820
13821 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13822
13823 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13824 that accesses one word of a multi-word item, some
13825 piece of everything register in the expression is used by
13826 this insn, so remove any old death. */
13827 /* ??? So why do we test for equality of the sizes? */
13828
13829 if (GET_CODE (dest) == ZERO_EXTRACT
13830 || GET_CODE (dest) == STRICT_LOW_PART
13831 || (GET_CODE (dest) == SUBREG
13832 && (((GET_MODE_SIZE (GET_MODE (dest))
13833 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13834 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13835 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13836 {
13837 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13838 return;
13839 }
13840
13841 /* If this is some other SUBREG, we know it replaces the entire
13842 value, so use that as the destination. */
13843 if (GET_CODE (dest) == SUBREG)
13844 dest = SUBREG_REG (dest);
13845
13846 /* If this is a MEM, adjust deaths of anything used in the address.
13847 For a REG (the only other possibility), the entire value is
13848 being replaced so the old value is not used in this insn. */
13849
13850 if (MEM_P (dest))
13851 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13852 to_insn, pnotes);
13853 return;
13854 }
13855
13856 else if (GET_CODE (x) == CLOBBER)
13857 return;
13858
13859 len = GET_RTX_LENGTH (code);
13860 fmt = GET_RTX_FORMAT (code);
13861
13862 for (i = 0; i < len; i++)
13863 {
13864 if (fmt[i] == 'E')
13865 {
13866 int j;
13867 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13868 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13869 to_insn, pnotes);
13870 }
13871 else if (fmt[i] == 'e')
13872 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13873 }
13874 }
13875 \f
13876 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13877 pattern of an insn. X must be a REG. */
13878
13879 static int
13880 reg_bitfield_target_p (rtx x, rtx body)
13881 {
13882 int i;
13883
13884 if (GET_CODE (body) == SET)
13885 {
13886 rtx dest = SET_DEST (body);
13887 rtx target;
13888 unsigned int regno, tregno, endregno, endtregno;
13889
13890 if (GET_CODE (dest) == ZERO_EXTRACT)
13891 target = XEXP (dest, 0);
13892 else if (GET_CODE (dest) == STRICT_LOW_PART)
13893 target = SUBREG_REG (XEXP (dest, 0));
13894 else
13895 return 0;
13896
13897 if (GET_CODE (target) == SUBREG)
13898 target = SUBREG_REG (target);
13899
13900 if (!REG_P (target))
13901 return 0;
13902
13903 tregno = REGNO (target), regno = REGNO (x);
13904 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13905 return target == x;
13906
13907 endtregno = end_hard_regno (GET_MODE (target), tregno);
13908 endregno = end_hard_regno (GET_MODE (x), regno);
13909
13910 return endregno > tregno && regno < endtregno;
13911 }
13912
13913 else if (GET_CODE (body) == PARALLEL)
13914 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13915 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13916 return 1;
13917
13918 return 0;
13919 }
13920 \f
13921 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13922 as appropriate. I3 and I2 are the insns resulting from the combination
13923 insns including FROM (I2 may be zero).
13924
13925 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13926 not need REG_DEAD notes because they are being substituted for. This
13927 saves searching in the most common cases.
13928
13929 Each note in the list is either ignored or placed on some insns, depending
13930 on the type of note. */
13931
13932 static void
13933 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13934 rtx elim_i2, rtx elim_i1, rtx elim_i0)
13935 {
13936 rtx note, next_note;
13937 rtx tem_note;
13938 rtx_insn *tem_insn;
13939
13940 for (note = notes; note; note = next_note)
13941 {
13942 rtx_insn *place = 0, *place2 = 0;
13943
13944 next_note = XEXP (note, 1);
13945 switch (REG_NOTE_KIND (note))
13946 {
13947 case REG_BR_PROB:
13948 case REG_BR_PRED:
13949 /* Doesn't matter much where we put this, as long as it's somewhere.
13950 It is preferable to keep these notes on branches, which is most
13951 likely to be i3. */
13952 place = i3;
13953 break;
13954
13955 case REG_NON_LOCAL_GOTO:
13956 if (JUMP_P (i3))
13957 place = i3;
13958 else
13959 {
13960 gcc_assert (i2 && JUMP_P (i2));
13961 place = i2;
13962 }
13963 break;
13964
13965 case REG_EH_REGION:
13966 /* These notes must remain with the call or trapping instruction. */
13967 if (CALL_P (i3))
13968 place = i3;
13969 else if (i2 && CALL_P (i2))
13970 place = i2;
13971 else
13972 {
13973 gcc_assert (cfun->can_throw_non_call_exceptions);
13974 if (may_trap_p (i3))
13975 place = i3;
13976 else if (i2 && may_trap_p (i2))
13977 place = i2;
13978 /* ??? Otherwise assume we've combined things such that we
13979 can now prove that the instructions can't trap. Drop the
13980 note in this case. */
13981 }
13982 break;
13983
13984 case REG_ARGS_SIZE:
13985 /* ??? How to distribute between i3-i1. Assume i3 contains the
13986 entire adjustment. Assert i3 contains at least some adjust. */
13987 if (!noop_move_p (i3))
13988 {
13989 int old_size, args_size = INTVAL (XEXP (note, 0));
13990 /* fixup_args_size_notes looks at REG_NORETURN note,
13991 so ensure the note is placed there first. */
13992 if (CALL_P (i3))
13993 {
13994 rtx *np;
13995 for (np = &next_note; *np; np = &XEXP (*np, 1))
13996 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13997 {
13998 rtx n = *np;
13999 *np = XEXP (n, 1);
14000 XEXP (n, 1) = REG_NOTES (i3);
14001 REG_NOTES (i3) = n;
14002 break;
14003 }
14004 }
14005 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14006 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14007 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14008 gcc_assert (old_size != args_size
14009 || (CALL_P (i3)
14010 && !ACCUMULATE_OUTGOING_ARGS
14011 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14012 }
14013 break;
14014
14015 case REG_NORETURN:
14016 case REG_SETJMP:
14017 case REG_TM:
14018 case REG_CALL_DECL:
14019 /* These notes must remain with the call. It should not be
14020 possible for both I2 and I3 to be a call. */
14021 if (CALL_P (i3))
14022 place = i3;
14023 else
14024 {
14025 gcc_assert (i2 && CALL_P (i2));
14026 place = i2;
14027 }
14028 break;
14029
14030 case REG_UNUSED:
14031 /* Any clobbers for i3 may still exist, and so we must process
14032 REG_UNUSED notes from that insn.
14033
14034 Any clobbers from i2 or i1 can only exist if they were added by
14035 recog_for_combine. In that case, recog_for_combine created the
14036 necessary REG_UNUSED notes. Trying to keep any original
14037 REG_UNUSED notes from these insns can cause incorrect output
14038 if it is for the same register as the original i3 dest.
14039 In that case, we will notice that the register is set in i3,
14040 and then add a REG_UNUSED note for the destination of i3, which
14041 is wrong. However, it is possible to have REG_UNUSED notes from
14042 i2 or i1 for register which were both used and clobbered, so
14043 we keep notes from i2 or i1 if they will turn into REG_DEAD
14044 notes. */
14045
14046 /* If this register is set or clobbered in I3, put the note there
14047 unless there is one already. */
14048 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14049 {
14050 if (from_insn != i3)
14051 break;
14052
14053 if (! (REG_P (XEXP (note, 0))
14054 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14055 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14056 place = i3;
14057 }
14058 /* Otherwise, if this register is used by I3, then this register
14059 now dies here, so we must put a REG_DEAD note here unless there
14060 is one already. */
14061 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14062 && ! (REG_P (XEXP (note, 0))
14063 ? find_regno_note (i3, REG_DEAD,
14064 REGNO (XEXP (note, 0)))
14065 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14066 {
14067 PUT_REG_NOTE_KIND (note, REG_DEAD);
14068 place = i3;
14069 }
14070 break;
14071
14072 case REG_EQUAL:
14073 case REG_EQUIV:
14074 case REG_NOALIAS:
14075 /* These notes say something about results of an insn. We can
14076 only support them if they used to be on I3 in which case they
14077 remain on I3. Otherwise they are ignored.
14078
14079 If the note refers to an expression that is not a constant, we
14080 must also ignore the note since we cannot tell whether the
14081 equivalence is still true. It might be possible to do
14082 slightly better than this (we only have a problem if I2DEST
14083 or I1DEST is present in the expression), but it doesn't
14084 seem worth the trouble. */
14085
14086 if (from_insn == i3
14087 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14088 place = i3;
14089 break;
14090
14091 case REG_INC:
14092 /* These notes say something about how a register is used. They must
14093 be present on any use of the register in I2 or I3. */
14094 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14095 place = i3;
14096
14097 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14098 {
14099 if (place)
14100 place2 = i2;
14101 else
14102 place = i2;
14103 }
14104 break;
14105
14106 case REG_LABEL_TARGET:
14107 case REG_LABEL_OPERAND:
14108 /* This can show up in several ways -- either directly in the
14109 pattern, or hidden off in the constant pool with (or without?)
14110 a REG_EQUAL note. */
14111 /* ??? Ignore the without-reg_equal-note problem for now. */
14112 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14113 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14114 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14115 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14116 place = i3;
14117
14118 if (i2
14119 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14120 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14121 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14122 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14123 {
14124 if (place)
14125 place2 = i2;
14126 else
14127 place = i2;
14128 }
14129
14130 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14131 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14132 there. */
14133 if (place && JUMP_P (place)
14134 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14135 && (JUMP_LABEL (place) == NULL
14136 || JUMP_LABEL (place) == XEXP (note, 0)))
14137 {
14138 rtx label = JUMP_LABEL (place);
14139
14140 if (!label)
14141 JUMP_LABEL (place) = XEXP (note, 0);
14142 else if (LABEL_P (label))
14143 LABEL_NUSES (label)--;
14144 }
14145
14146 if (place2 && JUMP_P (place2)
14147 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14148 && (JUMP_LABEL (place2) == NULL
14149 || JUMP_LABEL (place2) == XEXP (note, 0)))
14150 {
14151 rtx label = JUMP_LABEL (place2);
14152
14153 if (!label)
14154 JUMP_LABEL (place2) = XEXP (note, 0);
14155 else if (LABEL_P (label))
14156 LABEL_NUSES (label)--;
14157 place2 = 0;
14158 }
14159 break;
14160
14161 case REG_NONNEG:
14162 /* This note says something about the value of a register prior
14163 to the execution of an insn. It is too much trouble to see
14164 if the note is still correct in all situations. It is better
14165 to simply delete it. */
14166 break;
14167
14168 case REG_DEAD:
14169 /* If we replaced the right hand side of FROM_INSN with a
14170 REG_EQUAL note, the original use of the dying register
14171 will not have been combined into I3 and I2. In such cases,
14172 FROM_INSN is guaranteed to be the first of the combined
14173 instructions, so we simply need to search back before
14174 FROM_INSN for the previous use or set of this register,
14175 then alter the notes there appropriately.
14176
14177 If the register is used as an input in I3, it dies there.
14178 Similarly for I2, if it is nonzero and adjacent to I3.
14179
14180 If the register is not used as an input in either I3 or I2
14181 and it is not one of the registers we were supposed to eliminate,
14182 there are two possibilities. We might have a non-adjacent I2
14183 or we might have somehow eliminated an additional register
14184 from a computation. For example, we might have had A & B where
14185 we discover that B will always be zero. In this case we will
14186 eliminate the reference to A.
14187
14188 In both cases, we must search to see if we can find a previous
14189 use of A and put the death note there. */
14190
14191 if (from_insn
14192 && from_insn == i2mod
14193 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14194 tem_insn = from_insn;
14195 else
14196 {
14197 if (from_insn
14198 && CALL_P (from_insn)
14199 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14200 place = from_insn;
14201 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14202 place = i3;
14203 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14204 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14205 place = i2;
14206 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14207 && !(i2mod
14208 && reg_overlap_mentioned_p (XEXP (note, 0),
14209 i2mod_old_rhs)))
14210 || rtx_equal_p (XEXP (note, 0), elim_i1)
14211 || rtx_equal_p (XEXP (note, 0), elim_i0))
14212 break;
14213 tem_insn = i3;
14214 /* If the new I2 sets the same register that is marked dead
14215 in the note, we do not know where to put the note.
14216 Give up. */
14217 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14218 break;
14219 }
14220
14221 if (place == 0)
14222 {
14223 basic_block bb = this_basic_block;
14224
14225 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14226 {
14227 if (!NONDEBUG_INSN_P (tem_insn))
14228 {
14229 if (tem_insn == BB_HEAD (bb))
14230 break;
14231 continue;
14232 }
14233
14234 /* If the register is being set at TEM_INSN, see if that is all
14235 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14236 into a REG_UNUSED note instead. Don't delete sets to
14237 global register vars. */
14238 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14239 || !global_regs[REGNO (XEXP (note, 0))])
14240 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14241 {
14242 rtx set = single_set (tem_insn);
14243 rtx inner_dest = 0;
14244 rtx_insn *cc0_setter = NULL;
14245
14246 if (set != 0)
14247 for (inner_dest = SET_DEST (set);
14248 (GET_CODE (inner_dest) == STRICT_LOW_PART
14249 || GET_CODE (inner_dest) == SUBREG
14250 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14251 inner_dest = XEXP (inner_dest, 0))
14252 ;
14253
14254 /* Verify that it was the set, and not a clobber that
14255 modified the register.
14256
14257 CC0 targets must be careful to maintain setter/user
14258 pairs. If we cannot delete the setter due to side
14259 effects, mark the user with an UNUSED note instead
14260 of deleting it. */
14261
14262 if (set != 0 && ! side_effects_p (SET_SRC (set))
14263 && rtx_equal_p (XEXP (note, 0), inner_dest)
14264 && (!HAVE_cc0
14265 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14266 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14267 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14268 {
14269 /* Move the notes and links of TEM_INSN elsewhere.
14270 This might delete other dead insns recursively.
14271 First set the pattern to something that won't use
14272 any register. */
14273 rtx old_notes = REG_NOTES (tem_insn);
14274
14275 PATTERN (tem_insn) = pc_rtx;
14276 REG_NOTES (tem_insn) = NULL;
14277
14278 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14279 NULL_RTX, NULL_RTX, NULL_RTX);
14280 distribute_links (LOG_LINKS (tem_insn));
14281
14282 SET_INSN_DELETED (tem_insn);
14283 if (tem_insn == i2)
14284 i2 = NULL;
14285
14286 /* Delete the setter too. */
14287 if (cc0_setter)
14288 {
14289 PATTERN (cc0_setter) = pc_rtx;
14290 old_notes = REG_NOTES (cc0_setter);
14291 REG_NOTES (cc0_setter) = NULL;
14292
14293 distribute_notes (old_notes, cc0_setter,
14294 cc0_setter, NULL,
14295 NULL_RTX, NULL_RTX, NULL_RTX);
14296 distribute_links (LOG_LINKS (cc0_setter));
14297
14298 SET_INSN_DELETED (cc0_setter);
14299 if (cc0_setter == i2)
14300 i2 = NULL;
14301 }
14302 }
14303 else
14304 {
14305 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14306
14307 /* If there isn't already a REG_UNUSED note, put one
14308 here. Do not place a REG_DEAD note, even if
14309 the register is also used here; that would not
14310 match the algorithm used in lifetime analysis
14311 and can cause the consistency check in the
14312 scheduler to fail. */
14313 if (! find_regno_note (tem_insn, REG_UNUSED,
14314 REGNO (XEXP (note, 0))))
14315 place = tem_insn;
14316 break;
14317 }
14318 }
14319 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14320 || (CALL_P (tem_insn)
14321 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14322 {
14323 place = tem_insn;
14324
14325 /* If we are doing a 3->2 combination, and we have a
14326 register which formerly died in i3 and was not used
14327 by i2, which now no longer dies in i3 and is used in
14328 i2 but does not die in i2, and place is between i2
14329 and i3, then we may need to move a link from place to
14330 i2. */
14331 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14332 && from_insn
14333 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14334 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14335 {
14336 struct insn_link *links = LOG_LINKS (place);
14337 LOG_LINKS (place) = NULL;
14338 distribute_links (links);
14339 }
14340 break;
14341 }
14342
14343 if (tem_insn == BB_HEAD (bb))
14344 break;
14345 }
14346
14347 }
14348
14349 /* If the register is set or already dead at PLACE, we needn't do
14350 anything with this note if it is still a REG_DEAD note.
14351 We check here if it is set at all, not if is it totally replaced,
14352 which is what `dead_or_set_p' checks, so also check for it being
14353 set partially. */
14354
14355 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14356 {
14357 unsigned int regno = REGNO (XEXP (note, 0));
14358 reg_stat_type *rsp = &reg_stat[regno];
14359
14360 if (dead_or_set_p (place, XEXP (note, 0))
14361 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14362 {
14363 /* Unless the register previously died in PLACE, clear
14364 last_death. [I no longer understand why this is
14365 being done.] */
14366 if (rsp->last_death != place)
14367 rsp->last_death = 0;
14368 place = 0;
14369 }
14370 else
14371 rsp->last_death = place;
14372
14373 /* If this is a death note for a hard reg that is occupying
14374 multiple registers, ensure that we are still using all
14375 parts of the object. If we find a piece of the object
14376 that is unused, we must arrange for an appropriate REG_DEAD
14377 note to be added for it. However, we can't just emit a USE
14378 and tag the note to it, since the register might actually
14379 be dead; so we recourse, and the recursive call then finds
14380 the previous insn that used this register. */
14381
14382 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14383 {
14384 unsigned int endregno = END_REGNO (XEXP (note, 0));
14385 bool all_used = true;
14386 unsigned int i;
14387
14388 for (i = regno; i < endregno; i++)
14389 if ((! refers_to_regno_p (i, PATTERN (place))
14390 && ! find_regno_fusage (place, USE, i))
14391 || dead_or_set_regno_p (place, i))
14392 {
14393 all_used = false;
14394 break;
14395 }
14396
14397 if (! all_used)
14398 {
14399 /* Put only REG_DEAD notes for pieces that are
14400 not already dead or set. */
14401
14402 for (i = regno; i < endregno;
14403 i += hard_regno_nregs[i][reg_raw_mode[i]])
14404 {
14405 rtx piece = regno_reg_rtx[i];
14406 basic_block bb = this_basic_block;
14407
14408 if (! dead_or_set_p (place, piece)
14409 && ! reg_bitfield_target_p (piece,
14410 PATTERN (place)))
14411 {
14412 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14413 NULL_RTX);
14414
14415 distribute_notes (new_note, place, place,
14416 NULL, NULL_RTX, NULL_RTX,
14417 NULL_RTX);
14418 }
14419 else if (! refers_to_regno_p (i, PATTERN (place))
14420 && ! find_regno_fusage (place, USE, i))
14421 for (tem_insn = PREV_INSN (place); ;
14422 tem_insn = PREV_INSN (tem_insn))
14423 {
14424 if (!NONDEBUG_INSN_P (tem_insn))
14425 {
14426 if (tem_insn == BB_HEAD (bb))
14427 break;
14428 continue;
14429 }
14430 if (dead_or_set_p (tem_insn, piece)
14431 || reg_bitfield_target_p (piece,
14432 PATTERN (tem_insn)))
14433 {
14434 add_reg_note (tem_insn, REG_UNUSED, piece);
14435 break;
14436 }
14437 }
14438 }
14439
14440 place = 0;
14441 }
14442 }
14443 }
14444 break;
14445
14446 default:
14447 /* Any other notes should not be present at this point in the
14448 compilation. */
14449 gcc_unreachable ();
14450 }
14451
14452 if (place)
14453 {
14454 XEXP (note, 1) = REG_NOTES (place);
14455 REG_NOTES (place) = note;
14456 }
14457
14458 if (place2)
14459 add_shallow_copy_of_reg_note (place2, note);
14460 }
14461 }
14462 \f
14463 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14464 I3, I2, and I1 to new locations. This is also called to add a link
14465 pointing at I3 when I3's destination is changed. */
14466
14467 static void
14468 distribute_links (struct insn_link *links)
14469 {
14470 struct insn_link *link, *next_link;
14471
14472 for (link = links; link; link = next_link)
14473 {
14474 rtx_insn *place = 0;
14475 rtx_insn *insn;
14476 rtx set, reg;
14477
14478 next_link = link->next;
14479
14480 /* If the insn that this link points to is a NOTE, ignore it. */
14481 if (NOTE_P (link->insn))
14482 continue;
14483
14484 set = 0;
14485 rtx pat = PATTERN (link->insn);
14486 if (GET_CODE (pat) == SET)
14487 set = pat;
14488 else if (GET_CODE (pat) == PARALLEL)
14489 {
14490 int i;
14491 for (i = 0; i < XVECLEN (pat, 0); i++)
14492 {
14493 set = XVECEXP (pat, 0, i);
14494 if (GET_CODE (set) != SET)
14495 continue;
14496
14497 reg = SET_DEST (set);
14498 while (GET_CODE (reg) == ZERO_EXTRACT
14499 || GET_CODE (reg) == STRICT_LOW_PART
14500 || GET_CODE (reg) == SUBREG)
14501 reg = XEXP (reg, 0);
14502
14503 if (!REG_P (reg))
14504 continue;
14505
14506 if (REGNO (reg) == link->regno)
14507 break;
14508 }
14509 if (i == XVECLEN (pat, 0))
14510 continue;
14511 }
14512 else
14513 continue;
14514
14515 reg = SET_DEST (set);
14516
14517 while (GET_CODE (reg) == ZERO_EXTRACT
14518 || GET_CODE (reg) == STRICT_LOW_PART
14519 || GET_CODE (reg) == SUBREG)
14520 reg = XEXP (reg, 0);
14521
14522 /* A LOG_LINK is defined as being placed on the first insn that uses
14523 a register and points to the insn that sets the register. Start
14524 searching at the next insn after the target of the link and stop
14525 when we reach a set of the register or the end of the basic block.
14526
14527 Note that this correctly handles the link that used to point from
14528 I3 to I2. Also note that not much searching is typically done here
14529 since most links don't point very far away. */
14530
14531 for (insn = NEXT_INSN (link->insn);
14532 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14533 || BB_HEAD (this_basic_block->next_bb) != insn));
14534 insn = NEXT_INSN (insn))
14535 if (DEBUG_INSN_P (insn))
14536 continue;
14537 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14538 {
14539 if (reg_referenced_p (reg, PATTERN (insn)))
14540 place = insn;
14541 break;
14542 }
14543 else if (CALL_P (insn)
14544 && find_reg_fusage (insn, USE, reg))
14545 {
14546 place = insn;
14547 break;
14548 }
14549 else if (INSN_P (insn) && reg_set_p (reg, insn))
14550 break;
14551
14552 /* If we found a place to put the link, place it there unless there
14553 is already a link to the same insn as LINK at that point. */
14554
14555 if (place)
14556 {
14557 struct insn_link *link2;
14558
14559 FOR_EACH_LOG_LINK (link2, place)
14560 if (link2->insn == link->insn && link2->regno == link->regno)
14561 break;
14562
14563 if (link2 == NULL)
14564 {
14565 link->next = LOG_LINKS (place);
14566 LOG_LINKS (place) = link;
14567
14568 /* Set added_links_insn to the earliest insn we added a
14569 link to. */
14570 if (added_links_insn == 0
14571 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14572 added_links_insn = place;
14573 }
14574 }
14575 }
14576 }
14577 \f
14578 /* Check for any register or memory mentioned in EQUIV that is not
14579 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14580 of EXPR where some registers may have been replaced by constants. */
14581
14582 static bool
14583 unmentioned_reg_p (rtx equiv, rtx expr)
14584 {
14585 subrtx_iterator::array_type array;
14586 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14587 {
14588 const_rtx x = *iter;
14589 if ((REG_P (x) || MEM_P (x))
14590 && !reg_mentioned_p (x, expr))
14591 return true;
14592 }
14593 return false;
14594 }
14595 \f
14596 DEBUG_FUNCTION void
14597 dump_combine_stats (FILE *file)
14598 {
14599 fprintf
14600 (file,
14601 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14602 combine_attempts, combine_merges, combine_extras, combine_successes);
14603 }
14604
14605 void
14606 dump_combine_total_stats (FILE *file)
14607 {
14608 fprintf
14609 (file,
14610 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14611 total_attempts, total_merges, total_extras, total_successes);
14612 }
14613 \f
14614 /* Try combining insns through substitution. */
14615 static unsigned int
14616 rest_of_handle_combine (void)
14617 {
14618 int rebuild_jump_labels_after_combine;
14619
14620 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14621 df_note_add_problem ();
14622 df_analyze ();
14623
14624 regstat_init_n_sets_and_refs ();
14625 reg_n_sets_max = max_reg_num ();
14626
14627 rebuild_jump_labels_after_combine
14628 = combine_instructions (get_insns (), max_reg_num ());
14629
14630 /* Combining insns may have turned an indirect jump into a
14631 direct jump. Rebuild the JUMP_LABEL fields of jumping
14632 instructions. */
14633 if (rebuild_jump_labels_after_combine)
14634 {
14635 if (dom_info_available_p (CDI_DOMINATORS))
14636 free_dominance_info (CDI_DOMINATORS);
14637 timevar_push (TV_JUMP);
14638 rebuild_jump_labels (get_insns ());
14639 cleanup_cfg (0);
14640 timevar_pop (TV_JUMP);
14641 }
14642
14643 regstat_free_n_sets_and_refs ();
14644 return 0;
14645 }
14646
14647 namespace {
14648
14649 const pass_data pass_data_combine =
14650 {
14651 RTL_PASS, /* type */
14652 "combine", /* name */
14653 OPTGROUP_NONE, /* optinfo_flags */
14654 TV_COMBINE, /* tv_id */
14655 PROP_cfglayout, /* properties_required */
14656 0, /* properties_provided */
14657 0, /* properties_destroyed */
14658 0, /* todo_flags_start */
14659 TODO_df_finish, /* todo_flags_finish */
14660 };
14661
14662 class pass_combine : public rtl_opt_pass
14663 {
14664 public:
14665 pass_combine (gcc::context *ctxt)
14666 : rtl_opt_pass (pass_data_combine, ctxt)
14667 {}
14668
14669 /* opt_pass methods: */
14670 virtual bool gate (function *) { return (optimize > 0); }
14671 virtual unsigned int execute (function *)
14672 {
14673 return rest_of_handle_combine ();
14674 }
14675
14676 }; // class pass_combine
14677
14678 } // anon namespace
14679
14680 rtl_opt_pass *
14681 make_pass_combine (gcc::context *ctxt)
14682 {
14683 return new pass_combine (ctxt);
14684 }