combine: Tweak change_zero_ext
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
107
108 /* Number of attempts to combine instructions in this function. */
109
110 static int combine_attempts;
111
112 /* Number of attempts that got as far as substitution in this function. */
113
114 static int combine_merges;
115
116 /* Number of instructions combined with added SETs in this function. */
117
118 static int combine_extras;
119
120 /* Number of instructions combined in this function. */
121
122 static int combine_successes;
123
124 /* Totals over entire compilation. */
125
126 static int total_attempts, total_merges, total_extras, total_successes;
127
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
134
135 static rtx_insn *i2mod;
136
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
138
139 static rtx i2mod_old_rhs;
140
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
142
143 static rtx i2mod_new_rhs;
144 \f
145 struct reg_stat_type {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx_insn *last_death;
148
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx_insn *last_set;
151
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
157
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
160
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
164
165 Therefore, we maintain the following fields:
166
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
175
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
180
181 (The next two parameters are out of date).
182
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
194
195 /* Record last value assigned to (hard or pseudo) register n. */
196
197 rtx last_set_value;
198
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
201
202 int last_set_table_tick;
203
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
206
207 int last_set_label;
208
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
213
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
217
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
221
222 char last_set_invalid;
223
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
228
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
233
234 If an entry is zero, it means that we don't know anything special. */
235
236 unsigned char sign_bit_copies;
237
238 unsigned HOST_WIDE_INT nonzero_bits;
239
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
243
244 int truncation_label;
245
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
250
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
252 };
253
254
255 static vec<reg_stat_type> reg_stat;
256
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259 but during combine_split_insns new pseudos can be created. As we don't have
260 updated DF information in that case, it is hard to initialize the array
261 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
262 so instead of growing the arrays, just assume all newly created pseudos
263 during combine might be set multiple times. */
264
265 static unsigned int reg_n_sets_max;
266
267 /* Record the luid of the last insn that invalidated memory
268 (anything that writes memory, and subroutine calls, but not pushes). */
269
270 static int mem_last_set;
271
272 /* Record the luid of the last CALL_INSN
273 so we can tell whether a potential combination crosses any calls. */
274
275 static int last_call_luid;
276
277 /* When `subst' is called, this is the insn that is being modified
278 (by combining in a previous insn). The PATTERN of this insn
279 is still the old pattern partially modified and it should not be
280 looked at, but this may be used to examine the successors of the insn
281 to judge whether a simplification is valid. */
282
283 static rtx_insn *subst_insn;
284
285 /* This is the lowest LUID that `subst' is currently dealing with.
286 get_last_value will not return a value if the register was set at or
287 after this LUID. If not for this mechanism, we could get confused if
288 I2 or I1 in try_combine were an insn that used the old value of a register
289 to obtain a new value. In that case, we might erroneously get the
290 new value of the register when we wanted the old one. */
291
292 static int subst_low_luid;
293
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295 must consider all these registers to be always live. */
296
297 static HARD_REG_SET newpat_used_regs;
298
299 /* This is an insn to which a LOG_LINKS entry has been added. If this
300 insn is the earlier than I2 or I3, combine should rescan starting at
301 that location. */
302
303 static rtx_insn *added_links_insn;
304
305 /* Basic block in which we are performing combines. */
306 static basic_block this_basic_block;
307 static bool optimize_this_for_speed_p;
308
309 \f
310 /* Length of the currently allocated uid_insn_cost array. */
311
312 static int max_uid_known;
313
314 /* The following array records the insn_rtx_cost for every insn
315 in the instruction stream. */
316
317 static int *uid_insn_cost;
318
319 /* The following array records the LOG_LINKS for every insn in the
320 instruction stream as struct insn_link pointers. */
321
322 struct insn_link {
323 rtx_insn *insn;
324 unsigned int regno;
325 struct insn_link *next;
326 };
327
328 static struct insn_link **uid_log_links;
329
330 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
331 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
332
333 #define FOR_EACH_LOG_LINK(L, INSN) \
334 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
335
336 /* Links for LOG_LINKS are allocated from this obstack. */
337
338 static struct obstack insn_link_obstack;
339
340 /* Allocate a link. */
341
342 static inline struct insn_link *
343 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
344 {
345 struct insn_link *l
346 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
347 sizeof (struct insn_link));
348 l->insn = insn;
349 l->regno = regno;
350 l->next = next;
351 return l;
352 }
353
354 /* Incremented for each basic block. */
355
356 static int label_tick;
357
358 /* Reset to label_tick for each extended basic block in scanning order. */
359
360 static int label_tick_ebb_start;
361
362 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
363 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
364
365 static machine_mode nonzero_bits_mode;
366
367 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
368 be safely used. It is zero while computing them and after combine has
369 completed. This former test prevents propagating values based on
370 previously set values, which can be incorrect if a variable is modified
371 in a loop. */
372
373 static int nonzero_sign_valid;
374
375 \f
376 /* Record one modification to rtl structure
377 to be undone by storing old_contents into *where. */
378
379 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
380
381 struct undo
382 {
383 struct undo *next;
384 enum undo_kind kind;
385 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
386 union { rtx *r; int *i; struct insn_link **l; } where;
387 };
388
389 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
390 num_undo says how many are currently recorded.
391
392 other_insn is nonzero if we have modified some other insn in the process
393 of working on subst_insn. It must be verified too. */
394
395 struct undobuf
396 {
397 struct undo *undos;
398 struct undo *frees;
399 rtx_insn *other_insn;
400 };
401
402 static struct undobuf undobuf;
403
404 /* Number of times the pseudo being substituted for
405 was found and replaced. */
406
407 static int n_occurrences;
408
409 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
410 machine_mode,
411 unsigned HOST_WIDE_INT,
412 unsigned HOST_WIDE_INT *);
413 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
414 machine_mode,
415 unsigned int, unsigned int *);
416 static void do_SUBST (rtx *, rtx);
417 static void do_SUBST_INT (int *, int);
418 static void init_reg_last (void);
419 static void setup_incoming_promotions (rtx_insn *);
420 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
421 static int cant_combine_insn_p (rtx_insn *);
422 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
423 rtx_insn *, rtx_insn *, rtx *, rtx *);
424 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
425 static int contains_muldiv (rtx);
426 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
427 int *, rtx_insn *);
428 static void undo_all (void);
429 static void undo_commit (void);
430 static rtx *find_split_point (rtx *, rtx_insn *, bool);
431 static rtx subst (rtx, rtx, rtx, int, int, int);
432 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
433 static rtx simplify_if_then_else (rtx);
434 static rtx simplify_set (rtx);
435 static rtx simplify_logical (rtx);
436 static rtx expand_compound_operation (rtx);
437 static const_rtx expand_field_assignment (const_rtx);
438 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
439 rtx, unsigned HOST_WIDE_INT, int, int, int);
440 static rtx extract_left_shift (rtx, int);
441 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
442 unsigned HOST_WIDE_INT *);
443 static rtx canon_reg_for_combine (rtx, rtx);
444 static rtx force_to_mode (rtx, machine_mode,
445 unsigned HOST_WIDE_INT, int);
446 static rtx if_then_else_cond (rtx, rtx *, rtx *);
447 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
448 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
449 static rtx make_field_assignment (rtx);
450 static rtx apply_distributive_law (rtx);
451 static rtx distribute_and_simplify_rtx (rtx, int);
452 static rtx simplify_and_const_int_1 (machine_mode, rtx,
453 unsigned HOST_WIDE_INT);
454 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
455 unsigned HOST_WIDE_INT);
456 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
457 HOST_WIDE_INT, machine_mode, int *);
458 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
459 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
460 int);
461 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
462 static rtx gen_lowpart_for_combine (machine_mode, rtx);
463 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
464 rtx, rtx *);
465 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
466 static void update_table_tick (rtx);
467 static void record_value_for_reg (rtx, rtx_insn *, rtx);
468 static void check_promoted_subreg (rtx_insn *, rtx);
469 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
470 static void record_dead_and_set_regs (rtx_insn *);
471 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
472 static rtx get_last_value (const_rtx);
473 static int use_crosses_set_p (const_rtx, int);
474 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
475 static int reg_dead_at_p (rtx, rtx_insn *);
476 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
477 static int reg_bitfield_target_p (rtx, rtx);
478 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
479 static void distribute_links (struct insn_link *);
480 static void mark_used_regs_combine (rtx);
481 static void record_promoted_value (rtx_insn *, rtx);
482 static bool unmentioned_reg_p (rtx, rtx);
483 static void record_truncated_values (rtx *, void *);
484 static bool reg_truncated_to_mode (machine_mode, const_rtx);
485 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
486 \f
487
488 /* It is not safe to use ordinary gen_lowpart in combine.
489 See comments in gen_lowpart_for_combine. */
490 #undef RTL_HOOKS_GEN_LOWPART
491 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
492
493 /* Our implementation of gen_lowpart never emits a new pseudo. */
494 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
495 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
496
497 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
498 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
499
500 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
501 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
502
503 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
504 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
505
506 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
507
508 \f
509 /* Convenience wrapper for the canonicalize_comparison target hook.
510 Target hooks cannot use enum rtx_code. */
511 static inline void
512 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
513 bool op0_preserve_value)
514 {
515 int code_int = (int)*code;
516 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
517 *code = (enum rtx_code)code_int;
518 }
519
520 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
521 PATTERN can not be split. Otherwise, it returns an insn sequence.
522 This is a wrapper around split_insns which ensures that the
523 reg_stat vector is made larger if the splitter creates a new
524 register. */
525
526 static rtx_insn *
527 combine_split_insns (rtx pattern, rtx_insn *insn)
528 {
529 rtx_insn *ret;
530 unsigned int nregs;
531
532 ret = split_insns (pattern, insn);
533 nregs = max_reg_num ();
534 if (nregs > reg_stat.length ())
535 reg_stat.safe_grow_cleared (nregs);
536 return ret;
537 }
538
539 /* This is used by find_single_use to locate an rtx in LOC that
540 contains exactly one use of DEST, which is typically either a REG
541 or CC0. It returns a pointer to the innermost rtx expression
542 containing DEST. Appearances of DEST that are being used to
543 totally replace it are not counted. */
544
545 static rtx *
546 find_single_use_1 (rtx dest, rtx *loc)
547 {
548 rtx x = *loc;
549 enum rtx_code code = GET_CODE (x);
550 rtx *result = NULL;
551 rtx *this_result;
552 int i;
553 const char *fmt;
554
555 switch (code)
556 {
557 case CONST:
558 case LABEL_REF:
559 case SYMBOL_REF:
560 CASE_CONST_ANY:
561 case CLOBBER:
562 return 0;
563
564 case SET:
565 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
566 of a REG that occupies all of the REG, the insn uses DEST if
567 it is mentioned in the destination or the source. Otherwise, we
568 need just check the source. */
569 if (GET_CODE (SET_DEST (x)) != CC0
570 && GET_CODE (SET_DEST (x)) != PC
571 && !REG_P (SET_DEST (x))
572 && ! (GET_CODE (SET_DEST (x)) == SUBREG
573 && REG_P (SUBREG_REG (SET_DEST (x)))
574 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
575 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
576 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
577 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
578 break;
579
580 return find_single_use_1 (dest, &SET_SRC (x));
581
582 case MEM:
583 case SUBREG:
584 return find_single_use_1 (dest, &XEXP (x, 0));
585
586 default:
587 break;
588 }
589
590 /* If it wasn't one of the common cases above, check each expression and
591 vector of this code. Look for a unique usage of DEST. */
592
593 fmt = GET_RTX_FORMAT (code);
594 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
595 {
596 if (fmt[i] == 'e')
597 {
598 if (dest == XEXP (x, i)
599 || (REG_P (dest) && REG_P (XEXP (x, i))
600 && REGNO (dest) == REGNO (XEXP (x, i))))
601 this_result = loc;
602 else
603 this_result = find_single_use_1 (dest, &XEXP (x, i));
604
605 if (result == NULL)
606 result = this_result;
607 else if (this_result)
608 /* Duplicate usage. */
609 return NULL;
610 }
611 else if (fmt[i] == 'E')
612 {
613 int j;
614
615 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
616 {
617 if (XVECEXP (x, i, j) == dest
618 || (REG_P (dest)
619 && REG_P (XVECEXP (x, i, j))
620 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
621 this_result = loc;
622 else
623 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
624
625 if (result == NULL)
626 result = this_result;
627 else if (this_result)
628 return NULL;
629 }
630 }
631 }
632
633 return result;
634 }
635
636
637 /* See if DEST, produced in INSN, is used only a single time in the
638 sequel. If so, return a pointer to the innermost rtx expression in which
639 it is used.
640
641 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
642
643 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
644 care about REG_DEAD notes or LOG_LINKS.
645
646 Otherwise, we find the single use by finding an insn that has a
647 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
648 only referenced once in that insn, we know that it must be the first
649 and last insn referencing DEST. */
650
651 static rtx *
652 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
653 {
654 basic_block bb;
655 rtx_insn *next;
656 rtx *result;
657 struct insn_link *link;
658
659 if (dest == cc0_rtx)
660 {
661 next = NEXT_INSN (insn);
662 if (next == 0
663 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
664 return 0;
665
666 result = find_single_use_1 (dest, &PATTERN (next));
667 if (result && ploc)
668 *ploc = next;
669 return result;
670 }
671
672 if (!REG_P (dest))
673 return 0;
674
675 bb = BLOCK_FOR_INSN (insn);
676 for (next = NEXT_INSN (insn);
677 next && BLOCK_FOR_INSN (next) == bb;
678 next = NEXT_INSN (next))
679 if (INSN_P (next) && dead_or_set_p (next, dest))
680 {
681 FOR_EACH_LOG_LINK (link, next)
682 if (link->insn == insn && link->regno == REGNO (dest))
683 break;
684
685 if (link)
686 {
687 result = find_single_use_1 (dest, &PATTERN (next));
688 if (ploc)
689 *ploc = next;
690 return result;
691 }
692 }
693
694 return 0;
695 }
696 \f
697 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
698 insn. The substitution can be undone by undo_all. If INTO is already
699 set to NEWVAL, do not record this change. Because computing NEWVAL might
700 also call SUBST, we have to compute it before we put anything into
701 the undo table. */
702
703 static void
704 do_SUBST (rtx *into, rtx newval)
705 {
706 struct undo *buf;
707 rtx oldval = *into;
708
709 if (oldval == newval)
710 return;
711
712 /* We'd like to catch as many invalid transformations here as
713 possible. Unfortunately, there are way too many mode changes
714 that are perfectly valid, so we'd waste too much effort for
715 little gain doing the checks here. Focus on catching invalid
716 transformations involving integer constants. */
717 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
718 && CONST_INT_P (newval))
719 {
720 /* Sanity check that we're replacing oldval with a CONST_INT
721 that is a valid sign-extension for the original mode. */
722 gcc_assert (INTVAL (newval)
723 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
724
725 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
726 CONST_INT is not valid, because after the replacement, the
727 original mode would be gone. Unfortunately, we can't tell
728 when do_SUBST is called to replace the operand thereof, so we
729 perform this test on oldval instead, checking whether an
730 invalid replacement took place before we got here. */
731 gcc_assert (!(GET_CODE (oldval) == SUBREG
732 && CONST_INT_P (SUBREG_REG (oldval))));
733 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
734 && CONST_INT_P (XEXP (oldval, 0))));
735 }
736
737 if (undobuf.frees)
738 buf = undobuf.frees, undobuf.frees = buf->next;
739 else
740 buf = XNEW (struct undo);
741
742 buf->kind = UNDO_RTX;
743 buf->where.r = into;
744 buf->old_contents.r = oldval;
745 *into = newval;
746
747 buf->next = undobuf.undos, undobuf.undos = buf;
748 }
749
750 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
751
752 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
753 for the value of a HOST_WIDE_INT value (including CONST_INT) is
754 not safe. */
755
756 static void
757 do_SUBST_INT (int *into, int newval)
758 {
759 struct undo *buf;
760 int oldval = *into;
761
762 if (oldval == newval)
763 return;
764
765 if (undobuf.frees)
766 buf = undobuf.frees, undobuf.frees = buf->next;
767 else
768 buf = XNEW (struct undo);
769
770 buf->kind = UNDO_INT;
771 buf->where.i = into;
772 buf->old_contents.i = oldval;
773 *into = newval;
774
775 buf->next = undobuf.undos, undobuf.undos = buf;
776 }
777
778 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
779
780 /* Similar to SUBST, but just substitute the mode. This is used when
781 changing the mode of a pseudo-register, so that any other
782 references to the entry in the regno_reg_rtx array will change as
783 well. */
784
785 static void
786 do_SUBST_MODE (rtx *into, machine_mode newval)
787 {
788 struct undo *buf;
789 machine_mode oldval = GET_MODE (*into);
790
791 if (oldval == newval)
792 return;
793
794 if (undobuf.frees)
795 buf = undobuf.frees, undobuf.frees = buf->next;
796 else
797 buf = XNEW (struct undo);
798
799 buf->kind = UNDO_MODE;
800 buf->where.r = into;
801 buf->old_contents.m = oldval;
802 adjust_reg_mode (*into, newval);
803
804 buf->next = undobuf.undos, undobuf.undos = buf;
805 }
806
807 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
808
809 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
810
811 static void
812 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
813 {
814 struct undo *buf;
815 struct insn_link * oldval = *into;
816
817 if (oldval == newval)
818 return;
819
820 if (undobuf.frees)
821 buf = undobuf.frees, undobuf.frees = buf->next;
822 else
823 buf = XNEW (struct undo);
824
825 buf->kind = UNDO_LINKS;
826 buf->where.l = into;
827 buf->old_contents.l = oldval;
828 *into = newval;
829
830 buf->next = undobuf.undos, undobuf.undos = buf;
831 }
832
833 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
834 \f
835 /* Subroutine of try_combine. Determine whether the replacement patterns
836 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
837 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
838 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
839 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
840 of all the instructions can be estimated and the replacements are more
841 expensive than the original sequence. */
842
843 static bool
844 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
845 rtx newpat, rtx newi2pat, rtx newotherpat)
846 {
847 int i0_cost, i1_cost, i2_cost, i3_cost;
848 int new_i2_cost, new_i3_cost;
849 int old_cost, new_cost;
850
851 /* Lookup the original insn_rtx_costs. */
852 i2_cost = INSN_COST (i2);
853 i3_cost = INSN_COST (i3);
854
855 if (i1)
856 {
857 i1_cost = INSN_COST (i1);
858 if (i0)
859 {
860 i0_cost = INSN_COST (i0);
861 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
862 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
863 }
864 else
865 {
866 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
867 ? i1_cost + i2_cost + i3_cost : 0);
868 i0_cost = 0;
869 }
870 }
871 else
872 {
873 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
874 i1_cost = i0_cost = 0;
875 }
876
877 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
878 correct that. */
879 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
880 old_cost -= i1_cost;
881
882
883 /* Calculate the replacement insn_rtx_costs. */
884 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
885 if (newi2pat)
886 {
887 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
888 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
889 ? new_i2_cost + new_i3_cost : 0;
890 }
891 else
892 {
893 new_cost = new_i3_cost;
894 new_i2_cost = 0;
895 }
896
897 if (undobuf.other_insn)
898 {
899 int old_other_cost, new_other_cost;
900
901 old_other_cost = INSN_COST (undobuf.other_insn);
902 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
903 if (old_other_cost > 0 && new_other_cost > 0)
904 {
905 old_cost += old_other_cost;
906 new_cost += new_other_cost;
907 }
908 else
909 old_cost = 0;
910 }
911
912 /* Disallow this combination if both new_cost and old_cost are greater than
913 zero, and new_cost is greater than old cost. */
914 int reject = old_cost > 0 && new_cost > old_cost;
915
916 if (dump_file)
917 {
918 fprintf (dump_file, "%s combination of insns ",
919 reject ? "rejecting" : "allowing");
920 if (i0)
921 fprintf (dump_file, "%d, ", INSN_UID (i0));
922 if (i1 && INSN_UID (i1) != INSN_UID (i2))
923 fprintf (dump_file, "%d, ", INSN_UID (i1));
924 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
925
926 fprintf (dump_file, "original costs ");
927 if (i0)
928 fprintf (dump_file, "%d + ", i0_cost);
929 if (i1 && INSN_UID (i1) != INSN_UID (i2))
930 fprintf (dump_file, "%d + ", i1_cost);
931 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
932
933 if (newi2pat)
934 fprintf (dump_file, "replacement costs %d + %d = %d\n",
935 new_i2_cost, new_i3_cost, new_cost);
936 else
937 fprintf (dump_file, "replacement cost %d\n", new_cost);
938 }
939
940 if (reject)
941 return false;
942
943 /* Update the uid_insn_cost array with the replacement costs. */
944 INSN_COST (i2) = new_i2_cost;
945 INSN_COST (i3) = new_i3_cost;
946 if (i1)
947 {
948 INSN_COST (i1) = 0;
949 if (i0)
950 INSN_COST (i0) = 0;
951 }
952
953 return true;
954 }
955
956
957 /* Delete any insns that copy a register to itself. */
958
959 static void
960 delete_noop_moves (void)
961 {
962 rtx_insn *insn, *next;
963 basic_block bb;
964
965 FOR_EACH_BB_FN (bb, cfun)
966 {
967 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
968 {
969 next = NEXT_INSN (insn);
970 if (INSN_P (insn) && noop_move_p (insn))
971 {
972 if (dump_file)
973 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
974
975 delete_insn_and_edges (insn);
976 }
977 }
978 }
979 }
980
981 \f
982 /* Return false if we do not want to (or cannot) combine DEF. */
983 static bool
984 can_combine_def_p (df_ref def)
985 {
986 /* Do not consider if it is pre/post modification in MEM. */
987 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
988 return false;
989
990 unsigned int regno = DF_REF_REGNO (def);
991
992 /* Do not combine frame pointer adjustments. */
993 if ((regno == FRAME_POINTER_REGNUM
994 && (!reload_completed || frame_pointer_needed))
995 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
996 && regno == HARD_FRAME_POINTER_REGNUM
997 && (!reload_completed || frame_pointer_needed))
998 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
999 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1000 return false;
1001
1002 return true;
1003 }
1004
1005 /* Return false if we do not want to (or cannot) combine USE. */
1006 static bool
1007 can_combine_use_p (df_ref use)
1008 {
1009 /* Do not consider the usage of the stack pointer by function call. */
1010 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1011 return false;
1012
1013 return true;
1014 }
1015
1016 /* Fill in log links field for all insns. */
1017
1018 static void
1019 create_log_links (void)
1020 {
1021 basic_block bb;
1022 rtx_insn **next_use;
1023 rtx_insn *insn;
1024 df_ref def, use;
1025
1026 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1027
1028 /* Pass through each block from the end, recording the uses of each
1029 register and establishing log links when def is encountered.
1030 Note that we do not clear next_use array in order to save time,
1031 so we have to test whether the use is in the same basic block as def.
1032
1033 There are a few cases below when we do not consider the definition or
1034 usage -- these are taken from original flow.c did. Don't ask me why it is
1035 done this way; I don't know and if it works, I don't want to know. */
1036
1037 FOR_EACH_BB_FN (bb, cfun)
1038 {
1039 FOR_BB_INSNS_REVERSE (bb, insn)
1040 {
1041 if (!NONDEBUG_INSN_P (insn))
1042 continue;
1043
1044 /* Log links are created only once. */
1045 gcc_assert (!LOG_LINKS (insn));
1046
1047 FOR_EACH_INSN_DEF (def, insn)
1048 {
1049 unsigned int regno = DF_REF_REGNO (def);
1050 rtx_insn *use_insn;
1051
1052 if (!next_use[regno])
1053 continue;
1054
1055 if (!can_combine_def_p (def))
1056 continue;
1057
1058 use_insn = next_use[regno];
1059 next_use[regno] = NULL;
1060
1061 if (BLOCK_FOR_INSN (use_insn) != bb)
1062 continue;
1063
1064 /* flow.c claimed:
1065
1066 We don't build a LOG_LINK for hard registers contained
1067 in ASM_OPERANDs. If these registers get replaced,
1068 we might wind up changing the semantics of the insn,
1069 even if reload can make what appear to be valid
1070 assignments later. */
1071 if (regno < FIRST_PSEUDO_REGISTER
1072 && asm_noperands (PATTERN (use_insn)) >= 0)
1073 continue;
1074
1075 /* Don't add duplicate links between instructions. */
1076 struct insn_link *links;
1077 FOR_EACH_LOG_LINK (links, use_insn)
1078 if (insn == links->insn && regno == links->regno)
1079 break;
1080
1081 if (!links)
1082 LOG_LINKS (use_insn)
1083 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1084 }
1085
1086 FOR_EACH_INSN_USE (use, insn)
1087 if (can_combine_use_p (use))
1088 next_use[DF_REF_REGNO (use)] = insn;
1089 }
1090 }
1091
1092 free (next_use);
1093 }
1094
1095 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1096 true if we found a LOG_LINK that proves that A feeds B. This only works
1097 if there are no instructions between A and B which could have a link
1098 depending on A, since in that case we would not record a link for B.
1099 We also check the implicit dependency created by a cc0 setter/user
1100 pair. */
1101
1102 static bool
1103 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1104 {
1105 struct insn_link *links;
1106 FOR_EACH_LOG_LINK (links, b)
1107 if (links->insn == a)
1108 return true;
1109 if (HAVE_cc0 && sets_cc0_p (a))
1110 return true;
1111 return false;
1112 }
1113 \f
1114 /* Main entry point for combiner. F is the first insn of the function.
1115 NREGS is the first unused pseudo-reg number.
1116
1117 Return nonzero if the combiner has turned an indirect jump
1118 instruction into a direct jump. */
1119 static int
1120 combine_instructions (rtx_insn *f, unsigned int nregs)
1121 {
1122 rtx_insn *insn, *next;
1123 rtx_insn *prev;
1124 struct insn_link *links, *nextlinks;
1125 rtx_insn *first;
1126 basic_block last_bb;
1127
1128 int new_direct_jump_p = 0;
1129
1130 for (first = f; first && !INSN_P (first); )
1131 first = NEXT_INSN (first);
1132 if (!first)
1133 return 0;
1134
1135 combine_attempts = 0;
1136 combine_merges = 0;
1137 combine_extras = 0;
1138 combine_successes = 0;
1139
1140 rtl_hooks = combine_rtl_hooks;
1141
1142 reg_stat.safe_grow_cleared (nregs);
1143
1144 init_recog_no_volatile ();
1145
1146 /* Allocate array for insn info. */
1147 max_uid_known = get_max_uid ();
1148 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1149 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1150 gcc_obstack_init (&insn_link_obstack);
1151
1152 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1153
1154 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1155 problems when, for example, we have j <<= 1 in a loop. */
1156
1157 nonzero_sign_valid = 0;
1158 label_tick = label_tick_ebb_start = 1;
1159
1160 /* Scan all SETs and see if we can deduce anything about what
1161 bits are known to be zero for some registers and how many copies
1162 of the sign bit are known to exist for those registers.
1163
1164 Also set any known values so that we can use it while searching
1165 for what bits are known to be set. */
1166
1167 setup_incoming_promotions (first);
1168 /* Allow the entry block and the first block to fall into the same EBB.
1169 Conceptually the incoming promotions are assigned to the entry block. */
1170 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1171
1172 create_log_links ();
1173 FOR_EACH_BB_FN (this_basic_block, cfun)
1174 {
1175 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1176 last_call_luid = 0;
1177 mem_last_set = -1;
1178
1179 label_tick++;
1180 if (!single_pred_p (this_basic_block)
1181 || single_pred (this_basic_block) != last_bb)
1182 label_tick_ebb_start = label_tick;
1183 last_bb = this_basic_block;
1184
1185 FOR_BB_INSNS (this_basic_block, insn)
1186 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1187 {
1188 rtx links;
1189
1190 subst_low_luid = DF_INSN_LUID (insn);
1191 subst_insn = insn;
1192
1193 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1194 insn);
1195 record_dead_and_set_regs (insn);
1196
1197 if (AUTO_INC_DEC)
1198 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1199 if (REG_NOTE_KIND (links) == REG_INC)
1200 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1201 insn);
1202
1203 /* Record the current insn_rtx_cost of this instruction. */
1204 if (NONJUMP_INSN_P (insn))
1205 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1206 optimize_this_for_speed_p);
1207 if (dump_file)
1208 fprintf (dump_file, "insn_cost %d: %d\n",
1209 INSN_UID (insn), INSN_COST (insn));
1210 }
1211 }
1212
1213 nonzero_sign_valid = 1;
1214
1215 /* Now scan all the insns in forward order. */
1216 label_tick = label_tick_ebb_start = 1;
1217 init_reg_last ();
1218 setup_incoming_promotions (first);
1219 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1220 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1221
1222 FOR_EACH_BB_FN (this_basic_block, cfun)
1223 {
1224 rtx_insn *last_combined_insn = NULL;
1225 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1226 last_call_luid = 0;
1227 mem_last_set = -1;
1228
1229 label_tick++;
1230 if (!single_pred_p (this_basic_block)
1231 || single_pred (this_basic_block) != last_bb)
1232 label_tick_ebb_start = label_tick;
1233 last_bb = this_basic_block;
1234
1235 rtl_profile_for_bb (this_basic_block);
1236 for (insn = BB_HEAD (this_basic_block);
1237 insn != NEXT_INSN (BB_END (this_basic_block));
1238 insn = next ? next : NEXT_INSN (insn))
1239 {
1240 next = 0;
1241 if (!NONDEBUG_INSN_P (insn))
1242 continue;
1243
1244 while (last_combined_insn
1245 && last_combined_insn->deleted ())
1246 last_combined_insn = PREV_INSN (last_combined_insn);
1247 if (last_combined_insn == NULL_RTX
1248 || BARRIER_P (last_combined_insn)
1249 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1250 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1251 last_combined_insn = insn;
1252
1253 /* See if we know about function return values before this
1254 insn based upon SUBREG flags. */
1255 check_promoted_subreg (insn, PATTERN (insn));
1256
1257 /* See if we can find hardregs and subreg of pseudos in
1258 narrower modes. This could help turning TRUNCATEs
1259 into SUBREGs. */
1260 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1261
1262 /* Try this insn with each insn it links back to. */
1263
1264 FOR_EACH_LOG_LINK (links, insn)
1265 if ((next = try_combine (insn, links->insn, NULL,
1266 NULL, &new_direct_jump_p,
1267 last_combined_insn)) != 0)
1268 {
1269 statistics_counter_event (cfun, "two-insn combine", 1);
1270 goto retry;
1271 }
1272
1273 /* Try each sequence of three linked insns ending with this one. */
1274
1275 if (max_combine >= 3)
1276 FOR_EACH_LOG_LINK (links, insn)
1277 {
1278 rtx_insn *link = links->insn;
1279
1280 /* If the linked insn has been replaced by a note, then there
1281 is no point in pursuing this chain any further. */
1282 if (NOTE_P (link))
1283 continue;
1284
1285 FOR_EACH_LOG_LINK (nextlinks, link)
1286 if ((next = try_combine (insn, link, nextlinks->insn,
1287 NULL, &new_direct_jump_p,
1288 last_combined_insn)) != 0)
1289 {
1290 statistics_counter_event (cfun, "three-insn combine", 1);
1291 goto retry;
1292 }
1293 }
1294
1295 /* Try to combine a jump insn that uses CC0
1296 with a preceding insn that sets CC0, and maybe with its
1297 logical predecessor as well.
1298 This is how we make decrement-and-branch insns.
1299 We need this special code because data flow connections
1300 via CC0 do not get entered in LOG_LINKS. */
1301
1302 if (HAVE_cc0
1303 && JUMP_P (insn)
1304 && (prev = prev_nonnote_insn (insn)) != 0
1305 && NONJUMP_INSN_P (prev)
1306 && sets_cc0_p (PATTERN (prev)))
1307 {
1308 if ((next = try_combine (insn, prev, NULL, NULL,
1309 &new_direct_jump_p,
1310 last_combined_insn)) != 0)
1311 goto retry;
1312
1313 FOR_EACH_LOG_LINK (nextlinks, prev)
1314 if ((next = try_combine (insn, prev, nextlinks->insn,
1315 NULL, &new_direct_jump_p,
1316 last_combined_insn)) != 0)
1317 goto retry;
1318 }
1319
1320 /* Do the same for an insn that explicitly references CC0. */
1321 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1322 && (prev = prev_nonnote_insn (insn)) != 0
1323 && NONJUMP_INSN_P (prev)
1324 && sets_cc0_p (PATTERN (prev))
1325 && GET_CODE (PATTERN (insn)) == SET
1326 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1327 {
1328 if ((next = try_combine (insn, prev, NULL, NULL,
1329 &new_direct_jump_p,
1330 last_combined_insn)) != 0)
1331 goto retry;
1332
1333 FOR_EACH_LOG_LINK (nextlinks, prev)
1334 if ((next = try_combine (insn, prev, nextlinks->insn,
1335 NULL, &new_direct_jump_p,
1336 last_combined_insn)) != 0)
1337 goto retry;
1338 }
1339
1340 /* Finally, see if any of the insns that this insn links to
1341 explicitly references CC0. If so, try this insn, that insn,
1342 and its predecessor if it sets CC0. */
1343 if (HAVE_cc0)
1344 {
1345 FOR_EACH_LOG_LINK (links, insn)
1346 if (NONJUMP_INSN_P (links->insn)
1347 && GET_CODE (PATTERN (links->insn)) == SET
1348 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1349 && (prev = prev_nonnote_insn (links->insn)) != 0
1350 && NONJUMP_INSN_P (prev)
1351 && sets_cc0_p (PATTERN (prev))
1352 && (next = try_combine (insn, links->insn,
1353 prev, NULL, &new_direct_jump_p,
1354 last_combined_insn)) != 0)
1355 goto retry;
1356 }
1357
1358 /* Try combining an insn with two different insns whose results it
1359 uses. */
1360 if (max_combine >= 3)
1361 FOR_EACH_LOG_LINK (links, insn)
1362 for (nextlinks = links->next; nextlinks;
1363 nextlinks = nextlinks->next)
1364 if ((next = try_combine (insn, links->insn,
1365 nextlinks->insn, NULL,
1366 &new_direct_jump_p,
1367 last_combined_insn)) != 0)
1368
1369 {
1370 statistics_counter_event (cfun, "three-insn combine", 1);
1371 goto retry;
1372 }
1373
1374 /* Try four-instruction combinations. */
1375 if (max_combine >= 4)
1376 FOR_EACH_LOG_LINK (links, insn)
1377 {
1378 struct insn_link *next1;
1379 rtx_insn *link = links->insn;
1380
1381 /* If the linked insn has been replaced by a note, then there
1382 is no point in pursuing this chain any further. */
1383 if (NOTE_P (link))
1384 continue;
1385
1386 FOR_EACH_LOG_LINK (next1, link)
1387 {
1388 rtx_insn *link1 = next1->insn;
1389 if (NOTE_P (link1))
1390 continue;
1391 /* I0 -> I1 -> I2 -> I3. */
1392 FOR_EACH_LOG_LINK (nextlinks, link1)
1393 if ((next = try_combine (insn, link, link1,
1394 nextlinks->insn,
1395 &new_direct_jump_p,
1396 last_combined_insn)) != 0)
1397 {
1398 statistics_counter_event (cfun, "four-insn combine", 1);
1399 goto retry;
1400 }
1401 /* I0, I1 -> I2, I2 -> I3. */
1402 for (nextlinks = next1->next; nextlinks;
1403 nextlinks = nextlinks->next)
1404 if ((next = try_combine (insn, link, link1,
1405 nextlinks->insn,
1406 &new_direct_jump_p,
1407 last_combined_insn)) != 0)
1408 {
1409 statistics_counter_event (cfun, "four-insn combine", 1);
1410 goto retry;
1411 }
1412 }
1413
1414 for (next1 = links->next; next1; next1 = next1->next)
1415 {
1416 rtx_insn *link1 = next1->insn;
1417 if (NOTE_P (link1))
1418 continue;
1419 /* I0 -> I2; I1, I2 -> I3. */
1420 FOR_EACH_LOG_LINK (nextlinks, link)
1421 if ((next = try_combine (insn, link, link1,
1422 nextlinks->insn,
1423 &new_direct_jump_p,
1424 last_combined_insn)) != 0)
1425 {
1426 statistics_counter_event (cfun, "four-insn combine", 1);
1427 goto retry;
1428 }
1429 /* I0 -> I1; I1, I2 -> I3. */
1430 FOR_EACH_LOG_LINK (nextlinks, link1)
1431 if ((next = try_combine (insn, link, link1,
1432 nextlinks->insn,
1433 &new_direct_jump_p,
1434 last_combined_insn)) != 0)
1435 {
1436 statistics_counter_event (cfun, "four-insn combine", 1);
1437 goto retry;
1438 }
1439 }
1440 }
1441
1442 /* Try this insn with each REG_EQUAL note it links back to. */
1443 FOR_EACH_LOG_LINK (links, insn)
1444 {
1445 rtx set, note;
1446 rtx_insn *temp = links->insn;
1447 if ((set = single_set (temp)) != 0
1448 && (note = find_reg_equal_equiv_note (temp)) != 0
1449 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1450 /* Avoid using a register that may already been marked
1451 dead by an earlier instruction. */
1452 && ! unmentioned_reg_p (note, SET_SRC (set))
1453 && (GET_MODE (note) == VOIDmode
1454 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1455 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1456 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1457 || (GET_MODE (XEXP (SET_DEST (set), 0))
1458 == GET_MODE (note))))))
1459 {
1460 /* Temporarily replace the set's source with the
1461 contents of the REG_EQUAL note. The insn will
1462 be deleted or recognized by try_combine. */
1463 rtx orig_src = SET_SRC (set);
1464 rtx orig_dest = SET_DEST (set);
1465 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1466 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1467 SET_SRC (set) = note;
1468 i2mod = temp;
1469 i2mod_old_rhs = copy_rtx (orig_src);
1470 i2mod_new_rhs = copy_rtx (note);
1471 next = try_combine (insn, i2mod, NULL, NULL,
1472 &new_direct_jump_p,
1473 last_combined_insn);
1474 i2mod = NULL;
1475 if (next)
1476 {
1477 statistics_counter_event (cfun, "insn-with-note combine", 1);
1478 goto retry;
1479 }
1480 SET_SRC (set) = orig_src;
1481 SET_DEST (set) = orig_dest;
1482 }
1483 }
1484
1485 if (!NOTE_P (insn))
1486 record_dead_and_set_regs (insn);
1487
1488 retry:
1489 ;
1490 }
1491 }
1492
1493 default_rtl_profile ();
1494 clear_bb_flags ();
1495 new_direct_jump_p |= purge_all_dead_edges ();
1496 delete_noop_moves ();
1497
1498 /* Clean up. */
1499 obstack_free (&insn_link_obstack, NULL);
1500 free (uid_log_links);
1501 free (uid_insn_cost);
1502 reg_stat.release ();
1503
1504 {
1505 struct undo *undo, *next;
1506 for (undo = undobuf.frees; undo; undo = next)
1507 {
1508 next = undo->next;
1509 free (undo);
1510 }
1511 undobuf.frees = 0;
1512 }
1513
1514 total_attempts += combine_attempts;
1515 total_merges += combine_merges;
1516 total_extras += combine_extras;
1517 total_successes += combine_successes;
1518
1519 nonzero_sign_valid = 0;
1520 rtl_hooks = general_rtl_hooks;
1521
1522 /* Make recognizer allow volatile MEMs again. */
1523 init_recog ();
1524
1525 return new_direct_jump_p;
1526 }
1527
1528 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1529
1530 static void
1531 init_reg_last (void)
1532 {
1533 unsigned int i;
1534 reg_stat_type *p;
1535
1536 FOR_EACH_VEC_ELT (reg_stat, i, p)
1537 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1538 }
1539 \f
1540 /* Set up any promoted values for incoming argument registers. */
1541
1542 static void
1543 setup_incoming_promotions (rtx_insn *first)
1544 {
1545 tree arg;
1546 bool strictly_local = false;
1547
1548 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1549 arg = DECL_CHAIN (arg))
1550 {
1551 rtx x, reg = DECL_INCOMING_RTL (arg);
1552 int uns1, uns3;
1553 machine_mode mode1, mode2, mode3, mode4;
1554
1555 /* Only continue if the incoming argument is in a register. */
1556 if (!REG_P (reg))
1557 continue;
1558
1559 /* Determine, if possible, whether all call sites of the current
1560 function lie within the current compilation unit. (This does
1561 take into account the exporting of a function via taking its
1562 address, and so forth.) */
1563 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1564
1565 /* The mode and signedness of the argument before any promotions happen
1566 (equal to the mode of the pseudo holding it at that stage). */
1567 mode1 = TYPE_MODE (TREE_TYPE (arg));
1568 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1569
1570 /* The mode and signedness of the argument after any source language and
1571 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1572 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1573 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1574
1575 /* The mode and signedness of the argument as it is actually passed,
1576 see assign_parm_setup_reg in function.c. */
1577 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1578 TREE_TYPE (cfun->decl), 0);
1579
1580 /* The mode of the register in which the argument is being passed. */
1581 mode4 = GET_MODE (reg);
1582
1583 /* Eliminate sign extensions in the callee when:
1584 (a) A mode promotion has occurred; */
1585 if (mode1 == mode3)
1586 continue;
1587 /* (b) The mode of the register is the same as the mode of
1588 the argument as it is passed; */
1589 if (mode3 != mode4)
1590 continue;
1591 /* (c) There's no language level extension; */
1592 if (mode1 == mode2)
1593 ;
1594 /* (c.1) All callers are from the current compilation unit. If that's
1595 the case we don't have to rely on an ABI, we only have to know
1596 what we're generating right now, and we know that we will do the
1597 mode1 to mode2 promotion with the given sign. */
1598 else if (!strictly_local)
1599 continue;
1600 /* (c.2) The combination of the two promotions is useful. This is
1601 true when the signs match, or if the first promotion is unsigned.
1602 In the later case, (sign_extend (zero_extend x)) is the same as
1603 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1604 else if (uns1)
1605 uns3 = true;
1606 else if (uns3)
1607 continue;
1608
1609 /* Record that the value was promoted from mode1 to mode3,
1610 so that any sign extension at the head of the current
1611 function may be eliminated. */
1612 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1613 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1614 record_value_for_reg (reg, first, x);
1615 }
1616 }
1617
1618 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1619 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1620 because some machines (maybe most) will actually do the sign-extension and
1621 this is the conservative approach.
1622
1623 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1624 kludge. */
1625
1626 static rtx
1627 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1628 {
1629 if (GET_MODE_PRECISION (mode) < prec
1630 && CONST_INT_P (src)
1631 && INTVAL (src) > 0
1632 && val_signbit_known_set_p (mode, INTVAL (src)))
1633 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1634
1635 return src;
1636 }
1637
1638 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1639 and SET. */
1640
1641 static void
1642 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1643 rtx x)
1644 {
1645 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1646 unsigned HOST_WIDE_INT bits = 0;
1647 rtx reg_equal = NULL, src = SET_SRC (set);
1648 unsigned int num = 0;
1649
1650 if (reg_equal_note)
1651 reg_equal = XEXP (reg_equal_note, 0);
1652
1653 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1654 {
1655 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1656 if (reg_equal)
1657 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1658 }
1659
1660 /* Don't call nonzero_bits if it cannot change anything. */
1661 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1662 {
1663 bits = nonzero_bits (src, nonzero_bits_mode);
1664 if (reg_equal && bits)
1665 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1666 rsp->nonzero_bits |= bits;
1667 }
1668
1669 /* Don't call num_sign_bit_copies if it cannot change anything. */
1670 if (rsp->sign_bit_copies != 1)
1671 {
1672 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1673 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1674 {
1675 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1676 if (num == 0 || numeq > num)
1677 num = numeq;
1678 }
1679 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1680 rsp->sign_bit_copies = num;
1681 }
1682 }
1683
1684 /* Called via note_stores. If X is a pseudo that is narrower than
1685 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1686
1687 If we are setting only a portion of X and we can't figure out what
1688 portion, assume all bits will be used since we don't know what will
1689 be happening.
1690
1691 Similarly, set how many bits of X are known to be copies of the sign bit
1692 at all locations in the function. This is the smallest number implied
1693 by any set of X. */
1694
1695 static void
1696 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1697 {
1698 rtx_insn *insn = (rtx_insn *) data;
1699
1700 if (REG_P (x)
1701 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1702 /* If this register is undefined at the start of the file, we can't
1703 say what its contents were. */
1704 && ! REGNO_REG_SET_P
1705 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1706 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1707 {
1708 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1709
1710 if (set == 0 || GET_CODE (set) == CLOBBER)
1711 {
1712 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1713 rsp->sign_bit_copies = 1;
1714 return;
1715 }
1716
1717 /* If this register is being initialized using itself, and the
1718 register is uninitialized in this basic block, and there are
1719 no LOG_LINKS which set the register, then part of the
1720 register is uninitialized. In that case we can't assume
1721 anything about the number of nonzero bits.
1722
1723 ??? We could do better if we checked this in
1724 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1725 could avoid making assumptions about the insn which initially
1726 sets the register, while still using the information in other
1727 insns. We would have to be careful to check every insn
1728 involved in the combination. */
1729
1730 if (insn
1731 && reg_referenced_p (x, PATTERN (insn))
1732 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1733 REGNO (x)))
1734 {
1735 struct insn_link *link;
1736
1737 FOR_EACH_LOG_LINK (link, insn)
1738 if (dead_or_set_p (link->insn, x))
1739 break;
1740 if (!link)
1741 {
1742 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1743 rsp->sign_bit_copies = 1;
1744 return;
1745 }
1746 }
1747
1748 /* If this is a complex assignment, see if we can convert it into a
1749 simple assignment. */
1750 set = expand_field_assignment (set);
1751
1752 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1753 set what we know about X. */
1754
1755 if (SET_DEST (set) == x
1756 || (paradoxical_subreg_p (SET_DEST (set))
1757 && SUBREG_REG (SET_DEST (set)) == x))
1758 update_rsp_from_reg_equal (rsp, insn, set, x);
1759 else
1760 {
1761 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1762 rsp->sign_bit_copies = 1;
1763 }
1764 }
1765 }
1766 \f
1767 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1768 optionally insns that were previously combined into I3 or that will be
1769 combined into the merger of INSN and I3. The order is PRED, PRED2,
1770 INSN, SUCC, SUCC2, I3.
1771
1772 Return 0 if the combination is not allowed for any reason.
1773
1774 If the combination is allowed, *PDEST will be set to the single
1775 destination of INSN and *PSRC to the single source, and this function
1776 will return 1. */
1777
1778 static int
1779 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1780 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1781 rtx *pdest, rtx *psrc)
1782 {
1783 int i;
1784 const_rtx set = 0;
1785 rtx src, dest;
1786 rtx_insn *p;
1787 rtx link;
1788 bool all_adjacent = true;
1789 int (*is_volatile_p) (const_rtx);
1790
1791 if (succ)
1792 {
1793 if (succ2)
1794 {
1795 if (next_active_insn (succ2) != i3)
1796 all_adjacent = false;
1797 if (next_active_insn (succ) != succ2)
1798 all_adjacent = false;
1799 }
1800 else if (next_active_insn (succ) != i3)
1801 all_adjacent = false;
1802 if (next_active_insn (insn) != succ)
1803 all_adjacent = false;
1804 }
1805 else if (next_active_insn (insn) != i3)
1806 all_adjacent = false;
1807
1808 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1809 or a PARALLEL consisting of such a SET and CLOBBERs.
1810
1811 If INSN has CLOBBER parallel parts, ignore them for our processing.
1812 By definition, these happen during the execution of the insn. When it
1813 is merged with another insn, all bets are off. If they are, in fact,
1814 needed and aren't also supplied in I3, they may be added by
1815 recog_for_combine. Otherwise, it won't match.
1816
1817 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1818 note.
1819
1820 Get the source and destination of INSN. If more than one, can't
1821 combine. */
1822
1823 if (GET_CODE (PATTERN (insn)) == SET)
1824 set = PATTERN (insn);
1825 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1826 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1827 {
1828 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1829 {
1830 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1831
1832 switch (GET_CODE (elt))
1833 {
1834 /* This is important to combine floating point insns
1835 for the SH4 port. */
1836 case USE:
1837 /* Combining an isolated USE doesn't make sense.
1838 We depend here on combinable_i3pat to reject them. */
1839 /* The code below this loop only verifies that the inputs of
1840 the SET in INSN do not change. We call reg_set_between_p
1841 to verify that the REG in the USE does not change between
1842 I3 and INSN.
1843 If the USE in INSN was for a pseudo register, the matching
1844 insn pattern will likely match any register; combining this
1845 with any other USE would only be safe if we knew that the
1846 used registers have identical values, or if there was
1847 something to tell them apart, e.g. different modes. For
1848 now, we forgo such complicated tests and simply disallow
1849 combining of USES of pseudo registers with any other USE. */
1850 if (REG_P (XEXP (elt, 0))
1851 && GET_CODE (PATTERN (i3)) == PARALLEL)
1852 {
1853 rtx i3pat = PATTERN (i3);
1854 int i = XVECLEN (i3pat, 0) - 1;
1855 unsigned int regno = REGNO (XEXP (elt, 0));
1856
1857 do
1858 {
1859 rtx i3elt = XVECEXP (i3pat, 0, i);
1860
1861 if (GET_CODE (i3elt) == USE
1862 && REG_P (XEXP (i3elt, 0))
1863 && (REGNO (XEXP (i3elt, 0)) == regno
1864 ? reg_set_between_p (XEXP (elt, 0),
1865 PREV_INSN (insn), i3)
1866 : regno >= FIRST_PSEUDO_REGISTER))
1867 return 0;
1868 }
1869 while (--i >= 0);
1870 }
1871 break;
1872
1873 /* We can ignore CLOBBERs. */
1874 case CLOBBER:
1875 break;
1876
1877 case SET:
1878 /* Ignore SETs whose result isn't used but not those that
1879 have side-effects. */
1880 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1881 && insn_nothrow_p (insn)
1882 && !side_effects_p (elt))
1883 break;
1884
1885 /* If we have already found a SET, this is a second one and
1886 so we cannot combine with this insn. */
1887 if (set)
1888 return 0;
1889
1890 set = elt;
1891 break;
1892
1893 default:
1894 /* Anything else means we can't combine. */
1895 return 0;
1896 }
1897 }
1898
1899 if (set == 0
1900 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1901 so don't do anything with it. */
1902 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1903 return 0;
1904 }
1905 else
1906 return 0;
1907
1908 if (set == 0)
1909 return 0;
1910
1911 /* The simplification in expand_field_assignment may call back to
1912 get_last_value, so set safe guard here. */
1913 subst_low_luid = DF_INSN_LUID (insn);
1914
1915 set = expand_field_assignment (set);
1916 src = SET_SRC (set), dest = SET_DEST (set);
1917
1918 /* Do not eliminate user-specified register if it is in an
1919 asm input because we may break the register asm usage defined
1920 in GCC manual if allow to do so.
1921 Be aware that this may cover more cases than we expect but this
1922 should be harmless. */
1923 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1924 && extract_asm_operands (PATTERN (i3)))
1925 return 0;
1926
1927 /* Don't eliminate a store in the stack pointer. */
1928 if (dest == stack_pointer_rtx
1929 /* Don't combine with an insn that sets a register to itself if it has
1930 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1931 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1932 /* Can't merge an ASM_OPERANDS. */
1933 || GET_CODE (src) == ASM_OPERANDS
1934 /* Can't merge a function call. */
1935 || GET_CODE (src) == CALL
1936 /* Don't eliminate a function call argument. */
1937 || (CALL_P (i3)
1938 && (find_reg_fusage (i3, USE, dest)
1939 || (REG_P (dest)
1940 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1941 && global_regs[REGNO (dest)])))
1942 /* Don't substitute into an incremented register. */
1943 || FIND_REG_INC_NOTE (i3, dest)
1944 || (succ && FIND_REG_INC_NOTE (succ, dest))
1945 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1946 /* Don't substitute into a non-local goto, this confuses CFG. */
1947 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1948 /* Make sure that DEST is not used after SUCC but before I3. */
1949 || (!all_adjacent
1950 && ((succ2
1951 && (reg_used_between_p (dest, succ2, i3)
1952 || reg_used_between_p (dest, succ, succ2)))
1953 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1954 /* Make sure that the value that is to be substituted for the register
1955 does not use any registers whose values alter in between. However,
1956 If the insns are adjacent, a use can't cross a set even though we
1957 think it might (this can happen for a sequence of insns each setting
1958 the same destination; last_set of that register might point to
1959 a NOTE). If INSN has a REG_EQUIV note, the register is always
1960 equivalent to the memory so the substitution is valid even if there
1961 are intervening stores. Also, don't move a volatile asm or
1962 UNSPEC_VOLATILE across any other insns. */
1963 || (! all_adjacent
1964 && (((!MEM_P (src)
1965 || ! find_reg_note (insn, REG_EQUIV, src))
1966 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1967 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1968 || GET_CODE (src) == UNSPEC_VOLATILE))
1969 /* Don't combine across a CALL_INSN, because that would possibly
1970 change whether the life span of some REGs crosses calls or not,
1971 and it is a pain to update that information.
1972 Exception: if source is a constant, moving it later can't hurt.
1973 Accept that as a special case. */
1974 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1975 return 0;
1976
1977 /* DEST must either be a REG or CC0. */
1978 if (REG_P (dest))
1979 {
1980 /* If register alignment is being enforced for multi-word items in all
1981 cases except for parameters, it is possible to have a register copy
1982 insn referencing a hard register that is not allowed to contain the
1983 mode being copied and which would not be valid as an operand of most
1984 insns. Eliminate this problem by not combining with such an insn.
1985
1986 Also, on some machines we don't want to extend the life of a hard
1987 register. */
1988
1989 if (REG_P (src)
1990 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1991 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1992 /* Don't extend the life of a hard register unless it is
1993 user variable (if we have few registers) or it can't
1994 fit into the desired register (meaning something special
1995 is going on).
1996 Also avoid substituting a return register into I3, because
1997 reload can't handle a conflict with constraints of other
1998 inputs. */
1999 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2000 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
2001 return 0;
2002 }
2003 else if (GET_CODE (dest) != CC0)
2004 return 0;
2005
2006
2007 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2008 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2009 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2010 {
2011 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2012
2013 /* If the clobber represents an earlyclobber operand, we must not
2014 substitute an expression containing the clobbered register.
2015 As we do not analyze the constraint strings here, we have to
2016 make the conservative assumption. However, if the register is
2017 a fixed hard reg, the clobber cannot represent any operand;
2018 we leave it up to the machine description to either accept or
2019 reject use-and-clobber patterns. */
2020 if (!REG_P (reg)
2021 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2022 || !fixed_regs[REGNO (reg)])
2023 if (reg_overlap_mentioned_p (reg, src))
2024 return 0;
2025 }
2026
2027 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2028 or not), reject, unless nothing volatile comes between it and I3 */
2029
2030 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2031 {
2032 /* Make sure neither succ nor succ2 contains a volatile reference. */
2033 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2034 return 0;
2035 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2036 return 0;
2037 /* We'll check insns between INSN and I3 below. */
2038 }
2039
2040 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2041 to be an explicit register variable, and was chosen for a reason. */
2042
2043 if (GET_CODE (src) == ASM_OPERANDS
2044 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2045 return 0;
2046
2047 /* If INSN contains volatile references (specifically volatile MEMs),
2048 we cannot combine across any other volatile references.
2049 Even if INSN doesn't contain volatile references, any intervening
2050 volatile insn might affect machine state. */
2051
2052 is_volatile_p = volatile_refs_p (PATTERN (insn))
2053 ? volatile_refs_p
2054 : volatile_insn_p;
2055
2056 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2057 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2058 return 0;
2059
2060 /* If INSN contains an autoincrement or autodecrement, make sure that
2061 register is not used between there and I3, and not already used in
2062 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2063 Also insist that I3 not be a jump; if it were one
2064 and the incremented register were spilled, we would lose. */
2065
2066 if (AUTO_INC_DEC)
2067 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2068 if (REG_NOTE_KIND (link) == REG_INC
2069 && (JUMP_P (i3)
2070 || reg_used_between_p (XEXP (link, 0), insn, i3)
2071 || (pred != NULL_RTX
2072 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2073 || (pred2 != NULL_RTX
2074 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2075 || (succ != NULL_RTX
2076 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2077 || (succ2 != NULL_RTX
2078 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2079 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2080 return 0;
2081
2082 /* Don't combine an insn that follows a CC0-setting insn.
2083 An insn that uses CC0 must not be separated from the one that sets it.
2084 We do, however, allow I2 to follow a CC0-setting insn if that insn
2085 is passed as I1; in that case it will be deleted also.
2086 We also allow combining in this case if all the insns are adjacent
2087 because that would leave the two CC0 insns adjacent as well.
2088 It would be more logical to test whether CC0 occurs inside I1 or I2,
2089 but that would be much slower, and this ought to be equivalent. */
2090
2091 if (HAVE_cc0)
2092 {
2093 p = prev_nonnote_insn (insn);
2094 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2095 && ! all_adjacent)
2096 return 0;
2097 }
2098
2099 /* If we get here, we have passed all the tests and the combination is
2100 to be allowed. */
2101
2102 *pdest = dest;
2103 *psrc = src;
2104
2105 return 1;
2106 }
2107 \f
2108 /* LOC is the location within I3 that contains its pattern or the component
2109 of a PARALLEL of the pattern. We validate that it is valid for combining.
2110
2111 One problem is if I3 modifies its output, as opposed to replacing it
2112 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2113 doing so would produce an insn that is not equivalent to the original insns.
2114
2115 Consider:
2116
2117 (set (reg:DI 101) (reg:DI 100))
2118 (set (subreg:SI (reg:DI 101) 0) <foo>)
2119
2120 This is NOT equivalent to:
2121
2122 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2123 (set (reg:DI 101) (reg:DI 100))])
2124
2125 Not only does this modify 100 (in which case it might still be valid
2126 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2127
2128 We can also run into a problem if I2 sets a register that I1
2129 uses and I1 gets directly substituted into I3 (not via I2). In that
2130 case, we would be getting the wrong value of I2DEST into I3, so we
2131 must reject the combination. This case occurs when I2 and I1 both
2132 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2133 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2134 of a SET must prevent combination from occurring. The same situation
2135 can occur for I0, in which case I0_NOT_IN_SRC is set.
2136
2137 Before doing the above check, we first try to expand a field assignment
2138 into a set of logical operations.
2139
2140 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2141 we place a register that is both set and used within I3. If more than one
2142 such register is detected, we fail.
2143
2144 Return 1 if the combination is valid, zero otherwise. */
2145
2146 static int
2147 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2148 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2149 {
2150 rtx x = *loc;
2151
2152 if (GET_CODE (x) == SET)
2153 {
2154 rtx set = x ;
2155 rtx dest = SET_DEST (set);
2156 rtx src = SET_SRC (set);
2157 rtx inner_dest = dest;
2158 rtx subdest;
2159
2160 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2161 || GET_CODE (inner_dest) == SUBREG
2162 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2163 inner_dest = XEXP (inner_dest, 0);
2164
2165 /* Check for the case where I3 modifies its output, as discussed
2166 above. We don't want to prevent pseudos from being combined
2167 into the address of a MEM, so only prevent the combination if
2168 i1 or i2 set the same MEM. */
2169 if ((inner_dest != dest &&
2170 (!MEM_P (inner_dest)
2171 || rtx_equal_p (i2dest, inner_dest)
2172 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2173 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2174 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2175 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2176 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2177
2178 /* This is the same test done in can_combine_p except we can't test
2179 all_adjacent; we don't have to, since this instruction will stay
2180 in place, thus we are not considering increasing the lifetime of
2181 INNER_DEST.
2182
2183 Also, if this insn sets a function argument, combining it with
2184 something that might need a spill could clobber a previous
2185 function argument; the all_adjacent test in can_combine_p also
2186 checks this; here, we do a more specific test for this case. */
2187
2188 || (REG_P (inner_dest)
2189 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2190 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2191 GET_MODE (inner_dest))))
2192 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2193 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2194 return 0;
2195
2196 /* If DEST is used in I3, it is being killed in this insn, so
2197 record that for later. We have to consider paradoxical
2198 subregs here, since they kill the whole register, but we
2199 ignore partial subregs, STRICT_LOW_PART, etc.
2200 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2201 STACK_POINTER_REGNUM, since these are always considered to be
2202 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2203 subdest = dest;
2204 if (GET_CODE (subdest) == SUBREG
2205 && (GET_MODE_SIZE (GET_MODE (subdest))
2206 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2207 subdest = SUBREG_REG (subdest);
2208 if (pi3dest_killed
2209 && REG_P (subdest)
2210 && reg_referenced_p (subdest, PATTERN (i3))
2211 && REGNO (subdest) != FRAME_POINTER_REGNUM
2212 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2213 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2214 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2215 || (REGNO (subdest) != ARG_POINTER_REGNUM
2216 || ! fixed_regs [REGNO (subdest)]))
2217 && REGNO (subdest) != STACK_POINTER_REGNUM)
2218 {
2219 if (*pi3dest_killed)
2220 return 0;
2221
2222 *pi3dest_killed = subdest;
2223 }
2224 }
2225
2226 else if (GET_CODE (x) == PARALLEL)
2227 {
2228 int i;
2229
2230 for (i = 0; i < XVECLEN (x, 0); i++)
2231 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2232 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2233 return 0;
2234 }
2235
2236 return 1;
2237 }
2238 \f
2239 /* Return 1 if X is an arithmetic expression that contains a multiplication
2240 and division. We don't count multiplications by powers of two here. */
2241
2242 static int
2243 contains_muldiv (rtx x)
2244 {
2245 switch (GET_CODE (x))
2246 {
2247 case MOD: case DIV: case UMOD: case UDIV:
2248 return 1;
2249
2250 case MULT:
2251 return ! (CONST_INT_P (XEXP (x, 1))
2252 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2253 default:
2254 if (BINARY_P (x))
2255 return contains_muldiv (XEXP (x, 0))
2256 || contains_muldiv (XEXP (x, 1));
2257
2258 if (UNARY_P (x))
2259 return contains_muldiv (XEXP (x, 0));
2260
2261 return 0;
2262 }
2263 }
2264 \f
2265 /* Determine whether INSN can be used in a combination. Return nonzero if
2266 not. This is used in try_combine to detect early some cases where we
2267 can't perform combinations. */
2268
2269 static int
2270 cant_combine_insn_p (rtx_insn *insn)
2271 {
2272 rtx set;
2273 rtx src, dest;
2274
2275 /* If this isn't really an insn, we can't do anything.
2276 This can occur when flow deletes an insn that it has merged into an
2277 auto-increment address. */
2278 if (! INSN_P (insn))
2279 return 1;
2280
2281 /* Never combine loads and stores involving hard regs that are likely
2282 to be spilled. The register allocator can usually handle such
2283 reg-reg moves by tying. If we allow the combiner to make
2284 substitutions of likely-spilled regs, reload might die.
2285 As an exception, we allow combinations involving fixed regs; these are
2286 not available to the register allocator so there's no risk involved. */
2287
2288 set = single_set (insn);
2289 if (! set)
2290 return 0;
2291 src = SET_SRC (set);
2292 dest = SET_DEST (set);
2293 if (GET_CODE (src) == SUBREG)
2294 src = SUBREG_REG (src);
2295 if (GET_CODE (dest) == SUBREG)
2296 dest = SUBREG_REG (dest);
2297 if (REG_P (src) && REG_P (dest)
2298 && ((HARD_REGISTER_P (src)
2299 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2300 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2301 || (HARD_REGISTER_P (dest)
2302 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2303 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2304 return 1;
2305
2306 return 0;
2307 }
2308
2309 struct likely_spilled_retval_info
2310 {
2311 unsigned regno, nregs;
2312 unsigned mask;
2313 };
2314
2315 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2316 hard registers that are known to be written to / clobbered in full. */
2317 static void
2318 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2319 {
2320 struct likely_spilled_retval_info *const info =
2321 (struct likely_spilled_retval_info *) data;
2322 unsigned regno, nregs;
2323 unsigned new_mask;
2324
2325 if (!REG_P (XEXP (set, 0)))
2326 return;
2327 regno = REGNO (x);
2328 if (regno >= info->regno + info->nregs)
2329 return;
2330 nregs = REG_NREGS (x);
2331 if (regno + nregs <= info->regno)
2332 return;
2333 new_mask = (2U << (nregs - 1)) - 1;
2334 if (regno < info->regno)
2335 new_mask >>= info->regno - regno;
2336 else
2337 new_mask <<= regno - info->regno;
2338 info->mask &= ~new_mask;
2339 }
2340
2341 /* Return nonzero iff part of the return value is live during INSN, and
2342 it is likely spilled. This can happen when more than one insn is needed
2343 to copy the return value, e.g. when we consider to combine into the
2344 second copy insn for a complex value. */
2345
2346 static int
2347 likely_spilled_retval_p (rtx_insn *insn)
2348 {
2349 rtx_insn *use = BB_END (this_basic_block);
2350 rtx reg;
2351 rtx_insn *p;
2352 unsigned regno, nregs;
2353 /* We assume here that no machine mode needs more than
2354 32 hard registers when the value overlaps with a register
2355 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2356 unsigned mask;
2357 struct likely_spilled_retval_info info;
2358
2359 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2360 return 0;
2361 reg = XEXP (PATTERN (use), 0);
2362 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2363 return 0;
2364 regno = REGNO (reg);
2365 nregs = REG_NREGS (reg);
2366 if (nregs == 1)
2367 return 0;
2368 mask = (2U << (nregs - 1)) - 1;
2369
2370 /* Disregard parts of the return value that are set later. */
2371 info.regno = regno;
2372 info.nregs = nregs;
2373 info.mask = mask;
2374 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2375 if (INSN_P (p))
2376 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2377 mask = info.mask;
2378
2379 /* Check if any of the (probably) live return value registers is
2380 likely spilled. */
2381 nregs --;
2382 do
2383 {
2384 if ((mask & 1 << nregs)
2385 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2386 return 1;
2387 } while (nregs--);
2388 return 0;
2389 }
2390
2391 /* Adjust INSN after we made a change to its destination.
2392
2393 Changing the destination can invalidate notes that say something about
2394 the results of the insn and a LOG_LINK pointing to the insn. */
2395
2396 static void
2397 adjust_for_new_dest (rtx_insn *insn)
2398 {
2399 /* For notes, be conservative and simply remove them. */
2400 remove_reg_equal_equiv_notes (insn);
2401
2402 /* The new insn will have a destination that was previously the destination
2403 of an insn just above it. Call distribute_links to make a LOG_LINK from
2404 the next use of that destination. */
2405
2406 rtx set = single_set (insn);
2407 gcc_assert (set);
2408
2409 rtx reg = SET_DEST (set);
2410
2411 while (GET_CODE (reg) == ZERO_EXTRACT
2412 || GET_CODE (reg) == STRICT_LOW_PART
2413 || GET_CODE (reg) == SUBREG)
2414 reg = XEXP (reg, 0);
2415 gcc_assert (REG_P (reg));
2416
2417 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2418
2419 df_insn_rescan (insn);
2420 }
2421
2422 /* Return TRUE if combine can reuse reg X in mode MODE.
2423 ADDED_SETS is nonzero if the original set is still required. */
2424 static bool
2425 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2426 {
2427 unsigned int regno;
2428
2429 if (!REG_P (x))
2430 return false;
2431
2432 regno = REGNO (x);
2433 /* Allow hard registers if the new mode is legal, and occupies no more
2434 registers than the old mode. */
2435 if (regno < FIRST_PSEUDO_REGISTER)
2436 return (HARD_REGNO_MODE_OK (regno, mode)
2437 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2438
2439 /* Or a pseudo that is only used once. */
2440 return (regno < reg_n_sets_max
2441 && REG_N_SETS (regno) == 1
2442 && !added_sets
2443 && !REG_USERVAR_P (x));
2444 }
2445
2446
2447 /* Check whether X, the destination of a set, refers to part of
2448 the register specified by REG. */
2449
2450 static bool
2451 reg_subword_p (rtx x, rtx reg)
2452 {
2453 /* Check that reg is an integer mode register. */
2454 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2455 return false;
2456
2457 if (GET_CODE (x) == STRICT_LOW_PART
2458 || GET_CODE (x) == ZERO_EXTRACT)
2459 x = XEXP (x, 0);
2460
2461 return GET_CODE (x) == SUBREG
2462 && SUBREG_REG (x) == reg
2463 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2464 }
2465
2466 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2467 Note that the INSN should be deleted *after* removing dead edges, so
2468 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2469 but not for a (set (pc) (label_ref FOO)). */
2470
2471 static void
2472 update_cfg_for_uncondjump (rtx_insn *insn)
2473 {
2474 basic_block bb = BLOCK_FOR_INSN (insn);
2475 gcc_assert (BB_END (bb) == insn);
2476
2477 purge_dead_edges (bb);
2478
2479 delete_insn (insn);
2480 if (EDGE_COUNT (bb->succs) == 1)
2481 {
2482 rtx_insn *insn;
2483
2484 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2485
2486 /* Remove barriers from the footer if there are any. */
2487 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2488 if (BARRIER_P (insn))
2489 {
2490 if (PREV_INSN (insn))
2491 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2492 else
2493 BB_FOOTER (bb) = NEXT_INSN (insn);
2494 if (NEXT_INSN (insn))
2495 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2496 }
2497 else if (LABEL_P (insn))
2498 break;
2499 }
2500 }
2501
2502 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2503 by an arbitrary number of CLOBBERs. */
2504 static bool
2505 is_parallel_of_n_reg_sets (rtx pat, int n)
2506 {
2507 if (GET_CODE (pat) != PARALLEL)
2508 return false;
2509
2510 int len = XVECLEN (pat, 0);
2511 if (len < n)
2512 return false;
2513
2514 int i;
2515 for (i = 0; i < n; i++)
2516 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2517 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2518 return false;
2519 for ( ; i < len; i++)
2520 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2521 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2522 return false;
2523
2524 return true;
2525 }
2526
2527 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2528 CLOBBERs), can be split into individual SETs in that order, without
2529 changing semantics. */
2530 static bool
2531 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2532 {
2533 if (!insn_nothrow_p (insn))
2534 return false;
2535
2536 rtx pat = PATTERN (insn);
2537
2538 int i, j;
2539 for (i = 0; i < n; i++)
2540 {
2541 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2542 return false;
2543
2544 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2545
2546 for (j = i + 1; j < n; j++)
2547 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2548 return false;
2549 }
2550
2551 return true;
2552 }
2553
2554 /* Try to combine the insns I0, I1 and I2 into I3.
2555 Here I0, I1 and I2 appear earlier than I3.
2556 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2557 I3.
2558
2559 If we are combining more than two insns and the resulting insn is not
2560 recognized, try splitting it into two insns. If that happens, I2 and I3
2561 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2562 Otherwise, I0, I1 and I2 are pseudo-deleted.
2563
2564 Return 0 if the combination does not work. Then nothing is changed.
2565 If we did the combination, return the insn at which combine should
2566 resume scanning.
2567
2568 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2569 new direct jump instruction.
2570
2571 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2572 been I3 passed to an earlier try_combine within the same basic
2573 block. */
2574
2575 static rtx_insn *
2576 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2577 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2578 {
2579 /* New patterns for I3 and I2, respectively. */
2580 rtx newpat, newi2pat = 0;
2581 rtvec newpat_vec_with_clobbers = 0;
2582 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2583 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2584 dead. */
2585 int added_sets_0, added_sets_1, added_sets_2;
2586 /* Total number of SETs to put into I3. */
2587 int total_sets;
2588 /* Nonzero if I2's or I1's body now appears in I3. */
2589 int i2_is_used = 0, i1_is_used = 0;
2590 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2591 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2592 /* Contains I3 if the destination of I3 is used in its source, which means
2593 that the old life of I3 is being killed. If that usage is placed into
2594 I2 and not in I3, a REG_DEAD note must be made. */
2595 rtx i3dest_killed = 0;
2596 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2597 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2598 /* Copy of SET_SRC of I1 and I0, if needed. */
2599 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2600 /* Set if I2DEST was reused as a scratch register. */
2601 bool i2scratch = false;
2602 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2603 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2604 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2605 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2606 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2607 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2608 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2609 /* Notes that must be added to REG_NOTES in I3 and I2. */
2610 rtx new_i3_notes, new_i2_notes;
2611 /* Notes that we substituted I3 into I2 instead of the normal case. */
2612 int i3_subst_into_i2 = 0;
2613 /* Notes that I1, I2 or I3 is a MULT operation. */
2614 int have_mult = 0;
2615 int swap_i2i3 = 0;
2616 int changed_i3_dest = 0;
2617
2618 int maxreg;
2619 rtx_insn *temp_insn;
2620 rtx temp_expr;
2621 struct insn_link *link;
2622 rtx other_pat = 0;
2623 rtx new_other_notes;
2624 int i;
2625
2626 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2627 never be). */
2628 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2629 return 0;
2630
2631 /* Only try four-insn combinations when there's high likelihood of
2632 success. Look for simple insns, such as loads of constants or
2633 binary operations involving a constant. */
2634 if (i0)
2635 {
2636 int i;
2637 int ngood = 0;
2638 int nshift = 0;
2639 rtx set0, set3;
2640
2641 if (!flag_expensive_optimizations)
2642 return 0;
2643
2644 for (i = 0; i < 4; i++)
2645 {
2646 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2647 rtx set = single_set (insn);
2648 rtx src;
2649 if (!set)
2650 continue;
2651 src = SET_SRC (set);
2652 if (CONSTANT_P (src))
2653 {
2654 ngood += 2;
2655 break;
2656 }
2657 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2658 ngood++;
2659 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2660 || GET_CODE (src) == LSHIFTRT)
2661 nshift++;
2662 }
2663
2664 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2665 are likely manipulating its value. Ideally we'll be able to combine
2666 all four insns into a bitfield insertion of some kind.
2667
2668 Note the source in I0 might be inside a sign/zero extension and the
2669 memory modes in I0 and I3 might be different. So extract the address
2670 from the destination of I3 and search for it in the source of I0.
2671
2672 In the event that there's a match but the source/dest do not actually
2673 refer to the same memory, the worst that happens is we try some
2674 combinations that we wouldn't have otherwise. */
2675 if ((set0 = single_set (i0))
2676 /* Ensure the source of SET0 is a MEM, possibly buried inside
2677 an extension. */
2678 && (GET_CODE (SET_SRC (set0)) == MEM
2679 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2680 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2681 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2682 && (set3 = single_set (i3))
2683 /* Ensure the destination of SET3 is a MEM. */
2684 && GET_CODE (SET_DEST (set3)) == MEM
2685 /* Would it be better to extract the base address for the MEM
2686 in SET3 and look for that? I don't have cases where it matters
2687 but I could envision such cases. */
2688 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2689 ngood += 2;
2690
2691 if (ngood < 2 && nshift < 2)
2692 return 0;
2693 }
2694
2695 /* Exit early if one of the insns involved can't be used for
2696 combinations. */
2697 if (CALL_P (i2)
2698 || (i1 && CALL_P (i1))
2699 || (i0 && CALL_P (i0))
2700 || cant_combine_insn_p (i3)
2701 || cant_combine_insn_p (i2)
2702 || (i1 && cant_combine_insn_p (i1))
2703 || (i0 && cant_combine_insn_p (i0))
2704 || likely_spilled_retval_p (i3))
2705 return 0;
2706
2707 combine_attempts++;
2708 undobuf.other_insn = 0;
2709
2710 /* Reset the hard register usage information. */
2711 CLEAR_HARD_REG_SET (newpat_used_regs);
2712
2713 if (dump_file && (dump_flags & TDF_DETAILS))
2714 {
2715 if (i0)
2716 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2717 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2718 else if (i1)
2719 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2720 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2721 else
2722 fprintf (dump_file, "\nTrying %d -> %d:\n",
2723 INSN_UID (i2), INSN_UID (i3));
2724 }
2725
2726 /* If multiple insns feed into one of I2 or I3, they can be in any
2727 order. To simplify the code below, reorder them in sequence. */
2728 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2729 std::swap (i0, i2);
2730 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2731 std::swap (i0, i1);
2732 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2733 std::swap (i1, i2);
2734
2735 added_links_insn = 0;
2736
2737 /* First check for one important special case that the code below will
2738 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2739 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2740 we may be able to replace that destination with the destination of I3.
2741 This occurs in the common code where we compute both a quotient and
2742 remainder into a structure, in which case we want to do the computation
2743 directly into the structure to avoid register-register copies.
2744
2745 Note that this case handles both multiple sets in I2 and also cases
2746 where I2 has a number of CLOBBERs inside the PARALLEL.
2747
2748 We make very conservative checks below and only try to handle the
2749 most common cases of this. For example, we only handle the case
2750 where I2 and I3 are adjacent to avoid making difficult register
2751 usage tests. */
2752
2753 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2754 && REG_P (SET_SRC (PATTERN (i3)))
2755 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2756 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2757 && GET_CODE (PATTERN (i2)) == PARALLEL
2758 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2759 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2760 below would need to check what is inside (and reg_overlap_mentioned_p
2761 doesn't support those codes anyway). Don't allow those destinations;
2762 the resulting insn isn't likely to be recognized anyway. */
2763 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2764 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2765 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2766 SET_DEST (PATTERN (i3)))
2767 && next_active_insn (i2) == i3)
2768 {
2769 rtx p2 = PATTERN (i2);
2770
2771 /* Make sure that the destination of I3,
2772 which we are going to substitute into one output of I2,
2773 is not used within another output of I2. We must avoid making this:
2774 (parallel [(set (mem (reg 69)) ...)
2775 (set (reg 69) ...)])
2776 which is not well-defined as to order of actions.
2777 (Besides, reload can't handle output reloads for this.)
2778
2779 The problem can also happen if the dest of I3 is a memory ref,
2780 if another dest in I2 is an indirect memory ref. */
2781 for (i = 0; i < XVECLEN (p2, 0); i++)
2782 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2783 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2784 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2785 SET_DEST (XVECEXP (p2, 0, i))))
2786 break;
2787
2788 /* Make sure this PARALLEL is not an asm. We do not allow combining
2789 that usually (see can_combine_p), so do not here either. */
2790 for (i = 0; i < XVECLEN (p2, 0); i++)
2791 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2792 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2793 break;
2794
2795 if (i == XVECLEN (p2, 0))
2796 for (i = 0; i < XVECLEN (p2, 0); i++)
2797 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2798 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2799 {
2800 combine_merges++;
2801
2802 subst_insn = i3;
2803 subst_low_luid = DF_INSN_LUID (i2);
2804
2805 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2806 i2src = SET_SRC (XVECEXP (p2, 0, i));
2807 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2808 i2dest_killed = dead_or_set_p (i2, i2dest);
2809
2810 /* Replace the dest in I2 with our dest and make the resulting
2811 insn the new pattern for I3. Then skip to where we validate
2812 the pattern. Everything was set up above. */
2813 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2814 newpat = p2;
2815 i3_subst_into_i2 = 1;
2816 goto validate_replacement;
2817 }
2818 }
2819
2820 /* If I2 is setting a pseudo to a constant and I3 is setting some
2821 sub-part of it to another constant, merge them by making a new
2822 constant. */
2823 if (i1 == 0
2824 && (temp_expr = single_set (i2)) != 0
2825 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2826 && GET_CODE (PATTERN (i3)) == SET
2827 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2828 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2829 {
2830 rtx dest = SET_DEST (PATTERN (i3));
2831 int offset = -1;
2832 int width = 0;
2833
2834 if (GET_CODE (dest) == ZERO_EXTRACT)
2835 {
2836 if (CONST_INT_P (XEXP (dest, 1))
2837 && CONST_INT_P (XEXP (dest, 2)))
2838 {
2839 width = INTVAL (XEXP (dest, 1));
2840 offset = INTVAL (XEXP (dest, 2));
2841 dest = XEXP (dest, 0);
2842 if (BITS_BIG_ENDIAN)
2843 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2844 }
2845 }
2846 else
2847 {
2848 if (GET_CODE (dest) == STRICT_LOW_PART)
2849 dest = XEXP (dest, 0);
2850 width = GET_MODE_PRECISION (GET_MODE (dest));
2851 offset = 0;
2852 }
2853
2854 if (offset >= 0)
2855 {
2856 /* If this is the low part, we're done. */
2857 if (subreg_lowpart_p (dest))
2858 ;
2859 /* Handle the case where inner is twice the size of outer. */
2860 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2861 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2862 offset += GET_MODE_PRECISION (GET_MODE (dest));
2863 /* Otherwise give up for now. */
2864 else
2865 offset = -1;
2866 }
2867
2868 if (offset >= 0)
2869 {
2870 rtx inner = SET_SRC (PATTERN (i3));
2871 rtx outer = SET_SRC (temp_expr);
2872
2873 wide_int o
2874 = wi::insert (rtx_mode_t (outer, GET_MODE (SET_DEST (temp_expr))),
2875 rtx_mode_t (inner, GET_MODE (dest)),
2876 offset, width);
2877
2878 combine_merges++;
2879 subst_insn = i3;
2880 subst_low_luid = DF_INSN_LUID (i2);
2881 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2882 i2dest = SET_DEST (temp_expr);
2883 i2dest_killed = dead_or_set_p (i2, i2dest);
2884
2885 /* Replace the source in I2 with the new constant and make the
2886 resulting insn the new pattern for I3. Then skip to where we
2887 validate the pattern. Everything was set up above. */
2888 SUBST (SET_SRC (temp_expr),
2889 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2890
2891 newpat = PATTERN (i2);
2892
2893 /* The dest of I3 has been replaced with the dest of I2. */
2894 changed_i3_dest = 1;
2895 goto validate_replacement;
2896 }
2897 }
2898
2899 /* If we have no I1 and I2 looks like:
2900 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2901 (set Y OP)])
2902 make up a dummy I1 that is
2903 (set Y OP)
2904 and change I2 to be
2905 (set (reg:CC X) (compare:CC Y (const_int 0)))
2906
2907 (We can ignore any trailing CLOBBERs.)
2908
2909 This undoes a previous combination and allows us to match a branch-and-
2910 decrement insn. */
2911
2912 if (!HAVE_cc0 && i1 == 0
2913 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2914 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2915 == MODE_CC)
2916 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2917 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2918 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2919 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2920 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2921 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2922 {
2923 /* We make I1 with the same INSN_UID as I2. This gives it
2924 the same DF_INSN_LUID for value tracking. Our fake I1 will
2925 never appear in the insn stream so giving it the same INSN_UID
2926 as I2 will not cause a problem. */
2927
2928 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2929 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2930 -1, NULL_RTX);
2931 INSN_UID (i1) = INSN_UID (i2);
2932
2933 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2934 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2935 SET_DEST (PATTERN (i1)));
2936 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2937 SUBST_LINK (LOG_LINKS (i2),
2938 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2939 }
2940
2941 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2942 make those two SETs separate I1 and I2 insns, and make an I0 that is
2943 the original I1. */
2944 if (!HAVE_cc0 && i0 == 0
2945 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2946 && can_split_parallel_of_n_reg_sets (i2, 2)
2947 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2948 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2949 {
2950 /* If there is no I1, there is no I0 either. */
2951 i0 = i1;
2952
2953 /* We make I1 with the same INSN_UID as I2. This gives it
2954 the same DF_INSN_LUID for value tracking. Our fake I1 will
2955 never appear in the insn stream so giving it the same INSN_UID
2956 as I2 will not cause a problem. */
2957
2958 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2959 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2960 -1, NULL_RTX);
2961 INSN_UID (i1) = INSN_UID (i2);
2962
2963 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2964 }
2965
2966 /* Verify that I2 and I1 are valid for combining. */
2967 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2968 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2969 &i1dest, &i1src))
2970 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2971 &i0dest, &i0src)))
2972 {
2973 undo_all ();
2974 return 0;
2975 }
2976
2977 /* Record whether I2DEST is used in I2SRC and similarly for the other
2978 cases. Knowing this will help in register status updating below. */
2979 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2980 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2981 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2982 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2983 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2984 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2985 i2dest_killed = dead_or_set_p (i2, i2dest);
2986 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2987 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2988
2989 /* For the earlier insns, determine which of the subsequent ones they
2990 feed. */
2991 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2992 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2993 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2994 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2995 && reg_overlap_mentioned_p (i0dest, i2src))));
2996
2997 /* Ensure that I3's pattern can be the destination of combines. */
2998 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2999 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3000 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3001 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3002 &i3dest_killed))
3003 {
3004 undo_all ();
3005 return 0;
3006 }
3007
3008 /* See if any of the insns is a MULT operation. Unless one is, we will
3009 reject a combination that is, since it must be slower. Be conservative
3010 here. */
3011 if (GET_CODE (i2src) == MULT
3012 || (i1 != 0 && GET_CODE (i1src) == MULT)
3013 || (i0 != 0 && GET_CODE (i0src) == MULT)
3014 || (GET_CODE (PATTERN (i3)) == SET
3015 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3016 have_mult = 1;
3017
3018 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3019 We used to do this EXCEPT in one case: I3 has a post-inc in an
3020 output operand. However, that exception can give rise to insns like
3021 mov r3,(r3)+
3022 which is a famous insn on the PDP-11 where the value of r3 used as the
3023 source was model-dependent. Avoid this sort of thing. */
3024
3025 #if 0
3026 if (!(GET_CODE (PATTERN (i3)) == SET
3027 && REG_P (SET_SRC (PATTERN (i3)))
3028 && MEM_P (SET_DEST (PATTERN (i3)))
3029 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3030 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3031 /* It's not the exception. */
3032 #endif
3033 if (AUTO_INC_DEC)
3034 {
3035 rtx link;
3036 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3037 if (REG_NOTE_KIND (link) == REG_INC
3038 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3039 || (i1 != 0
3040 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3041 {
3042 undo_all ();
3043 return 0;
3044 }
3045 }
3046
3047 /* See if the SETs in I1 or I2 need to be kept around in the merged
3048 instruction: whenever the value set there is still needed past I3.
3049 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3050
3051 For the SET in I1, we have two cases: if I1 and I2 independently feed
3052 into I3, the set in I1 needs to be kept around unless I1DEST dies
3053 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3054 in I1 needs to be kept around unless I1DEST dies or is set in either
3055 I2 or I3. The same considerations apply to I0. */
3056
3057 added_sets_2 = !dead_or_set_p (i3, i2dest);
3058
3059 if (i1)
3060 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3061 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3062 else
3063 added_sets_1 = 0;
3064
3065 if (i0)
3066 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3067 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3068 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3069 && dead_or_set_p (i2, i0dest)));
3070 else
3071 added_sets_0 = 0;
3072
3073 /* We are about to copy insns for the case where they need to be kept
3074 around. Check that they can be copied in the merged instruction. */
3075
3076 if (targetm.cannot_copy_insn_p
3077 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3078 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3079 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3080 {
3081 undo_all ();
3082 return 0;
3083 }
3084
3085 /* If the set in I2 needs to be kept around, we must make a copy of
3086 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3087 PATTERN (I2), we are only substituting for the original I1DEST, not into
3088 an already-substituted copy. This also prevents making self-referential
3089 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3090 I2DEST. */
3091
3092 if (added_sets_2)
3093 {
3094 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3095 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3096 else
3097 i2pat = copy_rtx (PATTERN (i2));
3098 }
3099
3100 if (added_sets_1)
3101 {
3102 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3103 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3104 else
3105 i1pat = copy_rtx (PATTERN (i1));
3106 }
3107
3108 if (added_sets_0)
3109 {
3110 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3111 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3112 else
3113 i0pat = copy_rtx (PATTERN (i0));
3114 }
3115
3116 combine_merges++;
3117
3118 /* Substitute in the latest insn for the regs set by the earlier ones. */
3119
3120 maxreg = max_reg_num ();
3121
3122 subst_insn = i3;
3123
3124 /* Many machines that don't use CC0 have insns that can both perform an
3125 arithmetic operation and set the condition code. These operations will
3126 be represented as a PARALLEL with the first element of the vector
3127 being a COMPARE of an arithmetic operation with the constant zero.
3128 The second element of the vector will set some pseudo to the result
3129 of the same arithmetic operation. If we simplify the COMPARE, we won't
3130 match such a pattern and so will generate an extra insn. Here we test
3131 for this case, where both the comparison and the operation result are
3132 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3133 I2SRC. Later we will make the PARALLEL that contains I2. */
3134
3135 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3136 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3137 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3138 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3139 {
3140 rtx newpat_dest;
3141 rtx *cc_use_loc = NULL;
3142 rtx_insn *cc_use_insn = NULL;
3143 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3144 machine_mode compare_mode, orig_compare_mode;
3145 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3146
3147 newpat = PATTERN (i3);
3148 newpat_dest = SET_DEST (newpat);
3149 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3150
3151 if (undobuf.other_insn == 0
3152 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3153 &cc_use_insn)))
3154 {
3155 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3156 compare_code = simplify_compare_const (compare_code,
3157 GET_MODE (i2dest), op0, &op1);
3158 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3159 }
3160
3161 /* Do the rest only if op1 is const0_rtx, which may be the
3162 result of simplification. */
3163 if (op1 == const0_rtx)
3164 {
3165 /* If a single use of the CC is found, prepare to modify it
3166 when SELECT_CC_MODE returns a new CC-class mode, or when
3167 the above simplify_compare_const() returned a new comparison
3168 operator. undobuf.other_insn is assigned the CC use insn
3169 when modifying it. */
3170 if (cc_use_loc)
3171 {
3172 #ifdef SELECT_CC_MODE
3173 machine_mode new_mode
3174 = SELECT_CC_MODE (compare_code, op0, op1);
3175 if (new_mode != orig_compare_mode
3176 && can_change_dest_mode (SET_DEST (newpat),
3177 added_sets_2, new_mode))
3178 {
3179 unsigned int regno = REGNO (newpat_dest);
3180 compare_mode = new_mode;
3181 if (regno < FIRST_PSEUDO_REGISTER)
3182 newpat_dest = gen_rtx_REG (compare_mode, regno);
3183 else
3184 {
3185 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3186 newpat_dest = regno_reg_rtx[regno];
3187 }
3188 }
3189 #endif
3190 /* Cases for modifying the CC-using comparison. */
3191 if (compare_code != orig_compare_code
3192 /* ??? Do we need to verify the zero rtx? */
3193 && XEXP (*cc_use_loc, 1) == const0_rtx)
3194 {
3195 /* Replace cc_use_loc with entire new RTX. */
3196 SUBST (*cc_use_loc,
3197 gen_rtx_fmt_ee (compare_code, compare_mode,
3198 newpat_dest, const0_rtx));
3199 undobuf.other_insn = cc_use_insn;
3200 }
3201 else if (compare_mode != orig_compare_mode)
3202 {
3203 /* Just replace the CC reg with a new mode. */
3204 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3205 undobuf.other_insn = cc_use_insn;
3206 }
3207 }
3208
3209 /* Now we modify the current newpat:
3210 First, SET_DEST(newpat) is updated if the CC mode has been
3211 altered. For targets without SELECT_CC_MODE, this should be
3212 optimized away. */
3213 if (compare_mode != orig_compare_mode)
3214 SUBST (SET_DEST (newpat), newpat_dest);
3215 /* This is always done to propagate i2src into newpat. */
3216 SUBST (SET_SRC (newpat),
3217 gen_rtx_COMPARE (compare_mode, op0, op1));
3218 /* Create new version of i2pat if needed; the below PARALLEL
3219 creation needs this to work correctly. */
3220 if (! rtx_equal_p (i2src, op0))
3221 i2pat = gen_rtx_SET (i2dest, op0);
3222 i2_is_used = 1;
3223 }
3224 }
3225
3226 if (i2_is_used == 0)
3227 {
3228 /* It is possible that the source of I2 or I1 may be performing
3229 an unneeded operation, such as a ZERO_EXTEND of something
3230 that is known to have the high part zero. Handle that case
3231 by letting subst look at the inner insns.
3232
3233 Another way to do this would be to have a function that tries
3234 to simplify a single insn instead of merging two or more
3235 insns. We don't do this because of the potential of infinite
3236 loops and because of the potential extra memory required.
3237 However, doing it the way we are is a bit of a kludge and
3238 doesn't catch all cases.
3239
3240 But only do this if -fexpensive-optimizations since it slows
3241 things down and doesn't usually win.
3242
3243 This is not done in the COMPARE case above because the
3244 unmodified I2PAT is used in the PARALLEL and so a pattern
3245 with a modified I2SRC would not match. */
3246
3247 if (flag_expensive_optimizations)
3248 {
3249 /* Pass pc_rtx so no substitutions are done, just
3250 simplifications. */
3251 if (i1)
3252 {
3253 subst_low_luid = DF_INSN_LUID (i1);
3254 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3255 }
3256
3257 subst_low_luid = DF_INSN_LUID (i2);
3258 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3259 }
3260
3261 n_occurrences = 0; /* `subst' counts here */
3262 subst_low_luid = DF_INSN_LUID (i2);
3263
3264 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3265 copy of I2SRC each time we substitute it, in order to avoid creating
3266 self-referential RTL when we will be substituting I1SRC for I1DEST
3267 later. Likewise if I0 feeds into I2, either directly or indirectly
3268 through I1, and I0DEST is in I0SRC. */
3269 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3270 (i1_feeds_i2_n && i1dest_in_i1src)
3271 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3272 && i0dest_in_i0src));
3273 substed_i2 = 1;
3274
3275 /* Record whether I2's body now appears within I3's body. */
3276 i2_is_used = n_occurrences;
3277 }
3278
3279 /* If we already got a failure, don't try to do more. Otherwise, try to
3280 substitute I1 if we have it. */
3281
3282 if (i1 && GET_CODE (newpat) != CLOBBER)
3283 {
3284 /* Check that an autoincrement side-effect on I1 has not been lost.
3285 This happens if I1DEST is mentioned in I2 and dies there, and
3286 has disappeared from the new pattern. */
3287 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3288 && i1_feeds_i2_n
3289 && dead_or_set_p (i2, i1dest)
3290 && !reg_overlap_mentioned_p (i1dest, newpat))
3291 /* Before we can do this substitution, we must redo the test done
3292 above (see detailed comments there) that ensures I1DEST isn't
3293 mentioned in any SETs in NEWPAT that are field assignments. */
3294 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3295 0, 0, 0))
3296 {
3297 undo_all ();
3298 return 0;
3299 }
3300
3301 n_occurrences = 0;
3302 subst_low_luid = DF_INSN_LUID (i1);
3303
3304 /* If the following substitution will modify I1SRC, make a copy of it
3305 for the case where it is substituted for I1DEST in I2PAT later. */
3306 if (added_sets_2 && i1_feeds_i2_n)
3307 i1src_copy = copy_rtx (i1src);
3308
3309 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3310 copy of I1SRC each time we substitute it, in order to avoid creating
3311 self-referential RTL when we will be substituting I0SRC for I0DEST
3312 later. */
3313 newpat = subst (newpat, i1dest, i1src, 0, 0,
3314 i0_feeds_i1_n && i0dest_in_i0src);
3315 substed_i1 = 1;
3316
3317 /* Record whether I1's body now appears within I3's body. */
3318 i1_is_used = n_occurrences;
3319 }
3320
3321 /* Likewise for I0 if we have it. */
3322
3323 if (i0 && GET_CODE (newpat) != CLOBBER)
3324 {
3325 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3326 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3327 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3328 && !reg_overlap_mentioned_p (i0dest, newpat))
3329 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3330 0, 0, 0))
3331 {
3332 undo_all ();
3333 return 0;
3334 }
3335
3336 /* If the following substitution will modify I0SRC, make a copy of it
3337 for the case where it is substituted for I0DEST in I1PAT later. */
3338 if (added_sets_1 && i0_feeds_i1_n)
3339 i0src_copy = copy_rtx (i0src);
3340 /* And a copy for I0DEST in I2PAT substitution. */
3341 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3342 || (i0_feeds_i2_n)))
3343 i0src_copy2 = copy_rtx (i0src);
3344
3345 n_occurrences = 0;
3346 subst_low_luid = DF_INSN_LUID (i0);
3347 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3348 substed_i0 = 1;
3349 }
3350
3351 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3352 to count all the ways that I2SRC and I1SRC can be used. */
3353 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3354 && i2_is_used + added_sets_2 > 1)
3355 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3356 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3357 > 1))
3358 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3359 && (n_occurrences + added_sets_0
3360 + (added_sets_1 && i0_feeds_i1_n)
3361 + (added_sets_2 && i0_feeds_i2_n)
3362 > 1))
3363 /* Fail if we tried to make a new register. */
3364 || max_reg_num () != maxreg
3365 /* Fail if we couldn't do something and have a CLOBBER. */
3366 || GET_CODE (newpat) == CLOBBER
3367 /* Fail if this new pattern is a MULT and we didn't have one before
3368 at the outer level. */
3369 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3370 && ! have_mult))
3371 {
3372 undo_all ();
3373 return 0;
3374 }
3375
3376 /* If the actions of the earlier insns must be kept
3377 in addition to substituting them into the latest one,
3378 we must make a new PARALLEL for the latest insn
3379 to hold additional the SETs. */
3380
3381 if (added_sets_0 || added_sets_1 || added_sets_2)
3382 {
3383 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3384 combine_extras++;
3385
3386 if (GET_CODE (newpat) == PARALLEL)
3387 {
3388 rtvec old = XVEC (newpat, 0);
3389 total_sets = XVECLEN (newpat, 0) + extra_sets;
3390 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3391 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3392 sizeof (old->elem[0]) * old->num_elem);
3393 }
3394 else
3395 {
3396 rtx old = newpat;
3397 total_sets = 1 + extra_sets;
3398 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3399 XVECEXP (newpat, 0, 0) = old;
3400 }
3401
3402 if (added_sets_0)
3403 XVECEXP (newpat, 0, --total_sets) = i0pat;
3404
3405 if (added_sets_1)
3406 {
3407 rtx t = i1pat;
3408 if (i0_feeds_i1_n)
3409 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3410
3411 XVECEXP (newpat, 0, --total_sets) = t;
3412 }
3413 if (added_sets_2)
3414 {
3415 rtx t = i2pat;
3416 if (i1_feeds_i2_n)
3417 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3418 i0_feeds_i1_n && i0dest_in_i0src);
3419 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3420 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3421
3422 XVECEXP (newpat, 0, --total_sets) = t;
3423 }
3424 }
3425
3426 validate_replacement:
3427
3428 /* Note which hard regs this insn has as inputs. */
3429 mark_used_regs_combine (newpat);
3430
3431 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3432 consider splitting this pattern, we might need these clobbers. */
3433 if (i1 && GET_CODE (newpat) == PARALLEL
3434 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3435 {
3436 int len = XVECLEN (newpat, 0);
3437
3438 newpat_vec_with_clobbers = rtvec_alloc (len);
3439 for (i = 0; i < len; i++)
3440 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3441 }
3442
3443 /* We have recognized nothing yet. */
3444 insn_code_number = -1;
3445
3446 /* See if this is a PARALLEL of two SETs where one SET's destination is
3447 a register that is unused and this isn't marked as an instruction that
3448 might trap in an EH region. In that case, we just need the other SET.
3449 We prefer this over the PARALLEL.
3450
3451 This can occur when simplifying a divmod insn. We *must* test for this
3452 case here because the code below that splits two independent SETs doesn't
3453 handle this case correctly when it updates the register status.
3454
3455 It's pointless doing this if we originally had two sets, one from
3456 i3, and one from i2. Combining then splitting the parallel results
3457 in the original i2 again plus an invalid insn (which we delete).
3458 The net effect is only to move instructions around, which makes
3459 debug info less accurate. */
3460
3461 if (!(added_sets_2 && i1 == 0)
3462 && is_parallel_of_n_reg_sets (newpat, 2)
3463 && asm_noperands (newpat) < 0)
3464 {
3465 rtx set0 = XVECEXP (newpat, 0, 0);
3466 rtx set1 = XVECEXP (newpat, 0, 1);
3467 rtx oldpat = newpat;
3468
3469 if (((REG_P (SET_DEST (set1))
3470 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3471 || (GET_CODE (SET_DEST (set1)) == SUBREG
3472 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3473 && insn_nothrow_p (i3)
3474 && !side_effects_p (SET_SRC (set1)))
3475 {
3476 newpat = set0;
3477 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3478 }
3479
3480 else if (((REG_P (SET_DEST (set0))
3481 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3482 || (GET_CODE (SET_DEST (set0)) == SUBREG
3483 && find_reg_note (i3, REG_UNUSED,
3484 SUBREG_REG (SET_DEST (set0)))))
3485 && insn_nothrow_p (i3)
3486 && !side_effects_p (SET_SRC (set0)))
3487 {
3488 newpat = set1;
3489 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3490
3491 if (insn_code_number >= 0)
3492 changed_i3_dest = 1;
3493 }
3494
3495 if (insn_code_number < 0)
3496 newpat = oldpat;
3497 }
3498
3499 /* Is the result of combination a valid instruction? */
3500 if (insn_code_number < 0)
3501 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3502
3503 /* If we were combining three insns and the result is a simple SET
3504 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3505 insns. There are two ways to do this. It can be split using a
3506 machine-specific method (like when you have an addition of a large
3507 constant) or by combine in the function find_split_point. */
3508
3509 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3510 && asm_noperands (newpat) < 0)
3511 {
3512 rtx parallel, *split;
3513 rtx_insn *m_split_insn;
3514
3515 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3516 use I2DEST as a scratch register will help. In the latter case,
3517 convert I2DEST to the mode of the source of NEWPAT if we can. */
3518
3519 m_split_insn = combine_split_insns (newpat, i3);
3520
3521 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3522 inputs of NEWPAT. */
3523
3524 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3525 possible to try that as a scratch reg. This would require adding
3526 more code to make it work though. */
3527
3528 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3529 {
3530 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3531
3532 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3533 (temporarily, until we are committed to this instruction
3534 combination) does not work: for example, any call to nonzero_bits
3535 on the register (from a splitter in the MD file, for example)
3536 will get the old information, which is invalid.
3537
3538 Since nowadays we can create registers during combine just fine,
3539 we should just create a new one here, not reuse i2dest. */
3540
3541 /* First try to split using the original register as a
3542 scratch register. */
3543 parallel = gen_rtx_PARALLEL (VOIDmode,
3544 gen_rtvec (2, newpat,
3545 gen_rtx_CLOBBER (VOIDmode,
3546 i2dest)));
3547 m_split_insn = combine_split_insns (parallel, i3);
3548
3549 /* If that didn't work, try changing the mode of I2DEST if
3550 we can. */
3551 if (m_split_insn == 0
3552 && new_mode != GET_MODE (i2dest)
3553 && new_mode != VOIDmode
3554 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3555 {
3556 machine_mode old_mode = GET_MODE (i2dest);
3557 rtx ni2dest;
3558
3559 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3560 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3561 else
3562 {
3563 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3564 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3565 }
3566
3567 parallel = (gen_rtx_PARALLEL
3568 (VOIDmode,
3569 gen_rtvec (2, newpat,
3570 gen_rtx_CLOBBER (VOIDmode,
3571 ni2dest))));
3572 m_split_insn = combine_split_insns (parallel, i3);
3573
3574 if (m_split_insn == 0
3575 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3576 {
3577 struct undo *buf;
3578
3579 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3580 buf = undobuf.undos;
3581 undobuf.undos = buf->next;
3582 buf->next = undobuf.frees;
3583 undobuf.frees = buf;
3584 }
3585 }
3586
3587 i2scratch = m_split_insn != 0;
3588 }
3589
3590 /* If recog_for_combine has discarded clobbers, try to use them
3591 again for the split. */
3592 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3593 {
3594 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3595 m_split_insn = combine_split_insns (parallel, i3);
3596 }
3597
3598 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3599 {
3600 rtx m_split_pat = PATTERN (m_split_insn);
3601 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3602 if (insn_code_number >= 0)
3603 newpat = m_split_pat;
3604 }
3605 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3606 && (next_nonnote_nondebug_insn (i2) == i3
3607 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3608 {
3609 rtx i2set, i3set;
3610 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3611 newi2pat = PATTERN (m_split_insn);
3612
3613 i3set = single_set (NEXT_INSN (m_split_insn));
3614 i2set = single_set (m_split_insn);
3615
3616 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3617
3618 /* If I2 or I3 has multiple SETs, we won't know how to track
3619 register status, so don't use these insns. If I2's destination
3620 is used between I2 and I3, we also can't use these insns. */
3621
3622 if (i2_code_number >= 0 && i2set && i3set
3623 && (next_nonnote_nondebug_insn (i2) == i3
3624 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3625 insn_code_number = recog_for_combine (&newi3pat, i3,
3626 &new_i3_notes);
3627 if (insn_code_number >= 0)
3628 newpat = newi3pat;
3629
3630 /* It is possible that both insns now set the destination of I3.
3631 If so, we must show an extra use of it. */
3632
3633 if (insn_code_number >= 0)
3634 {
3635 rtx new_i3_dest = SET_DEST (i3set);
3636 rtx new_i2_dest = SET_DEST (i2set);
3637
3638 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3639 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3640 || GET_CODE (new_i3_dest) == SUBREG)
3641 new_i3_dest = XEXP (new_i3_dest, 0);
3642
3643 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3644 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3645 || GET_CODE (new_i2_dest) == SUBREG)
3646 new_i2_dest = XEXP (new_i2_dest, 0);
3647
3648 if (REG_P (new_i3_dest)
3649 && REG_P (new_i2_dest)
3650 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3651 && REGNO (new_i2_dest) < reg_n_sets_max)
3652 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3653 }
3654 }
3655
3656 /* If we can split it and use I2DEST, go ahead and see if that
3657 helps things be recognized. Verify that none of the registers
3658 are set between I2 and I3. */
3659 if (insn_code_number < 0
3660 && (split = find_split_point (&newpat, i3, false)) != 0
3661 && (!HAVE_cc0 || REG_P (i2dest))
3662 /* We need I2DEST in the proper mode. If it is a hard register
3663 or the only use of a pseudo, we can change its mode.
3664 Make sure we don't change a hard register to have a mode that
3665 isn't valid for it, or change the number of registers. */
3666 && (GET_MODE (*split) == GET_MODE (i2dest)
3667 || GET_MODE (*split) == VOIDmode
3668 || can_change_dest_mode (i2dest, added_sets_2,
3669 GET_MODE (*split)))
3670 && (next_nonnote_nondebug_insn (i2) == i3
3671 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3672 /* We can't overwrite I2DEST if its value is still used by
3673 NEWPAT. */
3674 && ! reg_referenced_p (i2dest, newpat))
3675 {
3676 rtx newdest = i2dest;
3677 enum rtx_code split_code = GET_CODE (*split);
3678 machine_mode split_mode = GET_MODE (*split);
3679 bool subst_done = false;
3680 newi2pat = NULL_RTX;
3681
3682 i2scratch = true;
3683
3684 /* *SPLIT may be part of I2SRC, so make sure we have the
3685 original expression around for later debug processing.
3686 We should not need I2SRC any more in other cases. */
3687 if (MAY_HAVE_DEBUG_INSNS)
3688 i2src = copy_rtx (i2src);
3689 else
3690 i2src = NULL;
3691
3692 /* Get NEWDEST as a register in the proper mode. We have already
3693 validated that we can do this. */
3694 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3695 {
3696 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3697 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3698 else
3699 {
3700 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3701 newdest = regno_reg_rtx[REGNO (i2dest)];
3702 }
3703 }
3704
3705 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3706 an ASHIFT. This can occur if it was inside a PLUS and hence
3707 appeared to be a memory address. This is a kludge. */
3708 if (split_code == MULT
3709 && CONST_INT_P (XEXP (*split, 1))
3710 && INTVAL (XEXP (*split, 1)) > 0
3711 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3712 {
3713 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3714 XEXP (*split, 0), GEN_INT (i)));
3715 /* Update split_code because we may not have a multiply
3716 anymore. */
3717 split_code = GET_CODE (*split);
3718 }
3719
3720 /* Similarly for (plus (mult FOO (const_int pow2))). */
3721 if (split_code == PLUS
3722 && GET_CODE (XEXP (*split, 0)) == MULT
3723 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3724 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3725 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3726 {
3727 rtx nsplit = XEXP (*split, 0);
3728 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3729 XEXP (nsplit, 0), GEN_INT (i)));
3730 /* Update split_code because we may not have a multiply
3731 anymore. */
3732 split_code = GET_CODE (*split);
3733 }
3734
3735 #ifdef INSN_SCHEDULING
3736 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3737 be written as a ZERO_EXTEND. */
3738 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3739 {
3740 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3741 what it really is. */
3742 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3743 == SIGN_EXTEND)
3744 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3745 SUBREG_REG (*split)));
3746 else
3747 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3748 SUBREG_REG (*split)));
3749 }
3750 #endif
3751
3752 /* Attempt to split binary operators using arithmetic identities. */
3753 if (BINARY_P (SET_SRC (newpat))
3754 && split_mode == GET_MODE (SET_SRC (newpat))
3755 && ! side_effects_p (SET_SRC (newpat)))
3756 {
3757 rtx setsrc = SET_SRC (newpat);
3758 machine_mode mode = GET_MODE (setsrc);
3759 enum rtx_code code = GET_CODE (setsrc);
3760 rtx src_op0 = XEXP (setsrc, 0);
3761 rtx src_op1 = XEXP (setsrc, 1);
3762
3763 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3764 if (rtx_equal_p (src_op0, src_op1))
3765 {
3766 newi2pat = gen_rtx_SET (newdest, src_op0);
3767 SUBST (XEXP (setsrc, 0), newdest);
3768 SUBST (XEXP (setsrc, 1), newdest);
3769 subst_done = true;
3770 }
3771 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3772 else if ((code == PLUS || code == MULT)
3773 && GET_CODE (src_op0) == code
3774 && GET_CODE (XEXP (src_op0, 0)) == code
3775 && (INTEGRAL_MODE_P (mode)
3776 || (FLOAT_MODE_P (mode)
3777 && flag_unsafe_math_optimizations)))
3778 {
3779 rtx p = XEXP (XEXP (src_op0, 0), 0);
3780 rtx q = XEXP (XEXP (src_op0, 0), 1);
3781 rtx r = XEXP (src_op0, 1);
3782 rtx s = src_op1;
3783
3784 /* Split both "((X op Y) op X) op Y" and
3785 "((X op Y) op Y) op X" as "T op T" where T is
3786 "X op Y". */
3787 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3788 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3789 {
3790 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3791 SUBST (XEXP (setsrc, 0), newdest);
3792 SUBST (XEXP (setsrc, 1), newdest);
3793 subst_done = true;
3794 }
3795 /* Split "((X op X) op Y) op Y)" as "T op T" where
3796 T is "X op Y". */
3797 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3798 {
3799 rtx tmp = simplify_gen_binary (code, mode, p, r);
3800 newi2pat = gen_rtx_SET (newdest, tmp);
3801 SUBST (XEXP (setsrc, 0), newdest);
3802 SUBST (XEXP (setsrc, 1), newdest);
3803 subst_done = true;
3804 }
3805 }
3806 }
3807
3808 if (!subst_done)
3809 {
3810 newi2pat = gen_rtx_SET (newdest, *split);
3811 SUBST (*split, newdest);
3812 }
3813
3814 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3815
3816 /* recog_for_combine might have added CLOBBERs to newi2pat.
3817 Make sure NEWPAT does not depend on the clobbered regs. */
3818 if (GET_CODE (newi2pat) == PARALLEL)
3819 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3820 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3821 {
3822 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3823 if (reg_overlap_mentioned_p (reg, newpat))
3824 {
3825 undo_all ();
3826 return 0;
3827 }
3828 }
3829
3830 /* If the split point was a MULT and we didn't have one before,
3831 don't use one now. */
3832 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3833 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3834 }
3835 }
3836
3837 /* Check for a case where we loaded from memory in a narrow mode and
3838 then sign extended it, but we need both registers. In that case,
3839 we have a PARALLEL with both loads from the same memory location.
3840 We can split this into a load from memory followed by a register-register
3841 copy. This saves at least one insn, more if register allocation can
3842 eliminate the copy.
3843
3844 We cannot do this if the destination of the first assignment is a
3845 condition code register or cc0. We eliminate this case by making sure
3846 the SET_DEST and SET_SRC have the same mode.
3847
3848 We cannot do this if the destination of the second assignment is
3849 a register that we have already assumed is zero-extended. Similarly
3850 for a SUBREG of such a register. */
3851
3852 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3853 && GET_CODE (newpat) == PARALLEL
3854 && XVECLEN (newpat, 0) == 2
3855 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3856 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3857 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3858 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3859 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3860 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3861 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3862 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3863 DF_INSN_LUID (i2))
3864 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3865 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3866 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3867 (REG_P (temp_expr)
3868 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3869 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3870 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3871 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3872 != GET_MODE_MASK (word_mode))))
3873 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3874 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3875 (REG_P (temp_expr)
3876 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3877 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3878 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3879 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3880 != GET_MODE_MASK (word_mode)))))
3881 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3882 SET_SRC (XVECEXP (newpat, 0, 1)))
3883 && ! find_reg_note (i3, REG_UNUSED,
3884 SET_DEST (XVECEXP (newpat, 0, 0))))
3885 {
3886 rtx ni2dest;
3887
3888 newi2pat = XVECEXP (newpat, 0, 0);
3889 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3890 newpat = XVECEXP (newpat, 0, 1);
3891 SUBST (SET_SRC (newpat),
3892 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3893 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3894
3895 if (i2_code_number >= 0)
3896 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3897
3898 if (insn_code_number >= 0)
3899 swap_i2i3 = 1;
3900 }
3901
3902 /* Similarly, check for a case where we have a PARALLEL of two independent
3903 SETs but we started with three insns. In this case, we can do the sets
3904 as two separate insns. This case occurs when some SET allows two
3905 other insns to combine, but the destination of that SET is still live.
3906
3907 Also do this if we started with two insns and (at least) one of the
3908 resulting sets is a noop; this noop will be deleted later. */
3909
3910 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3911 && GET_CODE (newpat) == PARALLEL
3912 && XVECLEN (newpat, 0) == 2
3913 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3914 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3915 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3916 || set_noop_p (XVECEXP (newpat, 0, 1)))
3917 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3918 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3919 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3920 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3921 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3922 XVECEXP (newpat, 0, 0))
3923 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3924 XVECEXP (newpat, 0, 1))
3925 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3926 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3927 {
3928 rtx set0 = XVECEXP (newpat, 0, 0);
3929 rtx set1 = XVECEXP (newpat, 0, 1);
3930
3931 /* Normally, it doesn't matter which of the two is done first,
3932 but the one that references cc0 can't be the second, and
3933 one which uses any regs/memory set in between i2 and i3 can't
3934 be first. The PARALLEL might also have been pre-existing in i3,
3935 so we need to make sure that we won't wrongly hoist a SET to i2
3936 that would conflict with a death note present in there. */
3937 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3938 && !(REG_P (SET_DEST (set1))
3939 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3940 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3941 && find_reg_note (i2, REG_DEAD,
3942 SUBREG_REG (SET_DEST (set1))))
3943 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3944 /* If I3 is a jump, ensure that set0 is a jump so that
3945 we do not create invalid RTL. */
3946 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3947 )
3948 {
3949 newi2pat = set1;
3950 newpat = set0;
3951 }
3952 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3953 && !(REG_P (SET_DEST (set0))
3954 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3955 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3956 && find_reg_note (i2, REG_DEAD,
3957 SUBREG_REG (SET_DEST (set0))))
3958 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3959 /* If I3 is a jump, ensure that set1 is a jump so that
3960 we do not create invalid RTL. */
3961 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3962 )
3963 {
3964 newi2pat = set0;
3965 newpat = set1;
3966 }
3967 else
3968 {
3969 undo_all ();
3970 return 0;
3971 }
3972
3973 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3974
3975 if (i2_code_number >= 0)
3976 {
3977 /* recog_for_combine might have added CLOBBERs to newi2pat.
3978 Make sure NEWPAT does not depend on the clobbered regs. */
3979 if (GET_CODE (newi2pat) == PARALLEL)
3980 {
3981 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3982 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3983 {
3984 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3985 if (reg_overlap_mentioned_p (reg, newpat))
3986 {
3987 undo_all ();
3988 return 0;
3989 }
3990 }
3991 }
3992
3993 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3994 }
3995 }
3996
3997 /* If it still isn't recognized, fail and change things back the way they
3998 were. */
3999 if ((insn_code_number < 0
4000 /* Is the result a reasonable ASM_OPERANDS? */
4001 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4002 {
4003 undo_all ();
4004 return 0;
4005 }
4006
4007 /* If we had to change another insn, make sure it is valid also. */
4008 if (undobuf.other_insn)
4009 {
4010 CLEAR_HARD_REG_SET (newpat_used_regs);
4011
4012 other_pat = PATTERN (undobuf.other_insn);
4013 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4014 &new_other_notes);
4015
4016 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4017 {
4018 undo_all ();
4019 return 0;
4020 }
4021 }
4022
4023 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4024 they are adjacent to each other or not. */
4025 if (HAVE_cc0)
4026 {
4027 rtx_insn *p = prev_nonnote_insn (i3);
4028 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4029 && sets_cc0_p (newi2pat))
4030 {
4031 undo_all ();
4032 return 0;
4033 }
4034 }
4035
4036 /* Only allow this combination if insn_rtx_costs reports that the
4037 replacement instructions are cheaper than the originals. */
4038 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4039 {
4040 undo_all ();
4041 return 0;
4042 }
4043
4044 if (MAY_HAVE_DEBUG_INSNS)
4045 {
4046 struct undo *undo;
4047
4048 for (undo = undobuf.undos; undo; undo = undo->next)
4049 if (undo->kind == UNDO_MODE)
4050 {
4051 rtx reg = *undo->where.r;
4052 machine_mode new_mode = GET_MODE (reg);
4053 machine_mode old_mode = undo->old_contents.m;
4054
4055 /* Temporarily revert mode back. */
4056 adjust_reg_mode (reg, old_mode);
4057
4058 if (reg == i2dest && i2scratch)
4059 {
4060 /* If we used i2dest as a scratch register with a
4061 different mode, substitute it for the original
4062 i2src while its original mode is temporarily
4063 restored, and then clear i2scratch so that we don't
4064 do it again later. */
4065 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4066 this_basic_block);
4067 i2scratch = false;
4068 /* Put back the new mode. */
4069 adjust_reg_mode (reg, new_mode);
4070 }
4071 else
4072 {
4073 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4074 rtx_insn *first, *last;
4075
4076 if (reg == i2dest)
4077 {
4078 first = i2;
4079 last = last_combined_insn;
4080 }
4081 else
4082 {
4083 first = i3;
4084 last = undobuf.other_insn;
4085 gcc_assert (last);
4086 if (DF_INSN_LUID (last)
4087 < DF_INSN_LUID (last_combined_insn))
4088 last = last_combined_insn;
4089 }
4090
4091 /* We're dealing with a reg that changed mode but not
4092 meaning, so we want to turn it into a subreg for
4093 the new mode. However, because of REG sharing and
4094 because its mode had already changed, we have to do
4095 it in two steps. First, replace any debug uses of
4096 reg, with its original mode temporarily restored,
4097 with this copy we have created; then, replace the
4098 copy with the SUBREG of the original shared reg,
4099 once again changed to the new mode. */
4100 propagate_for_debug (first, last, reg, tempreg,
4101 this_basic_block);
4102 adjust_reg_mode (reg, new_mode);
4103 propagate_for_debug (first, last, tempreg,
4104 lowpart_subreg (old_mode, reg, new_mode),
4105 this_basic_block);
4106 }
4107 }
4108 }
4109
4110 /* If we will be able to accept this, we have made a
4111 change to the destination of I3. This requires us to
4112 do a few adjustments. */
4113
4114 if (changed_i3_dest)
4115 {
4116 PATTERN (i3) = newpat;
4117 adjust_for_new_dest (i3);
4118 }
4119
4120 /* We now know that we can do this combination. Merge the insns and
4121 update the status of registers and LOG_LINKS. */
4122
4123 if (undobuf.other_insn)
4124 {
4125 rtx note, next;
4126
4127 PATTERN (undobuf.other_insn) = other_pat;
4128
4129 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4130 ensure that they are still valid. Then add any non-duplicate
4131 notes added by recog_for_combine. */
4132 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4133 {
4134 next = XEXP (note, 1);
4135
4136 if ((REG_NOTE_KIND (note) == REG_DEAD
4137 && !reg_referenced_p (XEXP (note, 0),
4138 PATTERN (undobuf.other_insn)))
4139 ||(REG_NOTE_KIND (note) == REG_UNUSED
4140 && !reg_set_p (XEXP (note, 0),
4141 PATTERN (undobuf.other_insn))))
4142 remove_note (undobuf.other_insn, note);
4143 }
4144
4145 distribute_notes (new_other_notes, undobuf.other_insn,
4146 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4147 NULL_RTX);
4148 }
4149
4150 if (swap_i2i3)
4151 {
4152 rtx_insn *insn;
4153 struct insn_link *link;
4154 rtx ni2dest;
4155
4156 /* I3 now uses what used to be its destination and which is now
4157 I2's destination. This requires us to do a few adjustments. */
4158 PATTERN (i3) = newpat;
4159 adjust_for_new_dest (i3);
4160
4161 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4162 so we still will.
4163
4164 However, some later insn might be using I2's dest and have
4165 a LOG_LINK pointing at I3. We must remove this link.
4166 The simplest way to remove the link is to point it at I1,
4167 which we know will be a NOTE. */
4168
4169 /* newi2pat is usually a SET here; however, recog_for_combine might
4170 have added some clobbers. */
4171 if (GET_CODE (newi2pat) == PARALLEL)
4172 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4173 else
4174 ni2dest = SET_DEST (newi2pat);
4175
4176 for (insn = NEXT_INSN (i3);
4177 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4178 || insn != BB_HEAD (this_basic_block->next_bb));
4179 insn = NEXT_INSN (insn))
4180 {
4181 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4182 {
4183 FOR_EACH_LOG_LINK (link, insn)
4184 if (link->insn == i3)
4185 link->insn = i1;
4186
4187 break;
4188 }
4189 }
4190 }
4191
4192 {
4193 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4194 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4195 rtx midnotes = 0;
4196 int from_luid;
4197 /* Compute which registers we expect to eliminate. newi2pat may be setting
4198 either i3dest or i2dest, so we must check it. */
4199 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4200 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4201 || !i2dest_killed
4202 ? 0 : i2dest);
4203 /* For i1, we need to compute both local elimination and global
4204 elimination information with respect to newi2pat because i1dest
4205 may be the same as i3dest, in which case newi2pat may be setting
4206 i1dest. Global information is used when distributing REG_DEAD
4207 note for i2 and i3, in which case it does matter if newi2pat sets
4208 i1dest or not.
4209
4210 Local information is used when distributing REG_DEAD note for i1,
4211 in which case it doesn't matter if newi2pat sets i1dest or not.
4212 See PR62151, if we have four insns combination:
4213 i0: r0 <- i0src
4214 i1: r1 <- i1src (using r0)
4215 REG_DEAD (r0)
4216 i2: r0 <- i2src (using r1)
4217 i3: r3 <- i3src (using r0)
4218 ix: using r0
4219 From i1's point of view, r0 is eliminated, no matter if it is set
4220 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4221 should be discarded.
4222
4223 Note local information only affects cases in forms like "I1->I2->I3",
4224 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4225 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4226 i0dest anyway. */
4227 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4228 || !i1dest_killed
4229 ? 0 : i1dest);
4230 rtx elim_i1 = (local_elim_i1 == 0
4231 || (newi2pat && reg_set_p (i1dest, newi2pat))
4232 ? 0 : i1dest);
4233 /* Same case as i1. */
4234 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4235 ? 0 : i0dest);
4236 rtx elim_i0 = (local_elim_i0 == 0
4237 || (newi2pat && reg_set_p (i0dest, newi2pat))
4238 ? 0 : i0dest);
4239
4240 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4241 clear them. */
4242 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4243 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4244 if (i1)
4245 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4246 if (i0)
4247 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4248
4249 /* Ensure that we do not have something that should not be shared but
4250 occurs multiple times in the new insns. Check this by first
4251 resetting all the `used' flags and then copying anything is shared. */
4252
4253 reset_used_flags (i3notes);
4254 reset_used_flags (i2notes);
4255 reset_used_flags (i1notes);
4256 reset_used_flags (i0notes);
4257 reset_used_flags (newpat);
4258 reset_used_flags (newi2pat);
4259 if (undobuf.other_insn)
4260 reset_used_flags (PATTERN (undobuf.other_insn));
4261
4262 i3notes = copy_rtx_if_shared (i3notes);
4263 i2notes = copy_rtx_if_shared (i2notes);
4264 i1notes = copy_rtx_if_shared (i1notes);
4265 i0notes = copy_rtx_if_shared (i0notes);
4266 newpat = copy_rtx_if_shared (newpat);
4267 newi2pat = copy_rtx_if_shared (newi2pat);
4268 if (undobuf.other_insn)
4269 reset_used_flags (PATTERN (undobuf.other_insn));
4270
4271 INSN_CODE (i3) = insn_code_number;
4272 PATTERN (i3) = newpat;
4273
4274 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4275 {
4276 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4277
4278 reset_used_flags (call_usage);
4279 call_usage = copy_rtx (call_usage);
4280
4281 if (substed_i2)
4282 {
4283 /* I2SRC must still be meaningful at this point. Some splitting
4284 operations can invalidate I2SRC, but those operations do not
4285 apply to calls. */
4286 gcc_assert (i2src);
4287 replace_rtx (call_usage, i2dest, i2src);
4288 }
4289
4290 if (substed_i1)
4291 replace_rtx (call_usage, i1dest, i1src);
4292 if (substed_i0)
4293 replace_rtx (call_usage, i0dest, i0src);
4294
4295 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4296 }
4297
4298 if (undobuf.other_insn)
4299 INSN_CODE (undobuf.other_insn) = other_code_number;
4300
4301 /* We had one special case above where I2 had more than one set and
4302 we replaced a destination of one of those sets with the destination
4303 of I3. In that case, we have to update LOG_LINKS of insns later
4304 in this basic block. Note that this (expensive) case is rare.
4305
4306 Also, in this case, we must pretend that all REG_NOTEs for I2
4307 actually came from I3, so that REG_UNUSED notes from I2 will be
4308 properly handled. */
4309
4310 if (i3_subst_into_i2)
4311 {
4312 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4313 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4314 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4315 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4316 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4317 && ! find_reg_note (i2, REG_UNUSED,
4318 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4319 for (temp_insn = NEXT_INSN (i2);
4320 temp_insn
4321 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4322 || BB_HEAD (this_basic_block) != temp_insn);
4323 temp_insn = NEXT_INSN (temp_insn))
4324 if (temp_insn != i3 && INSN_P (temp_insn))
4325 FOR_EACH_LOG_LINK (link, temp_insn)
4326 if (link->insn == i2)
4327 link->insn = i3;
4328
4329 if (i3notes)
4330 {
4331 rtx link = i3notes;
4332 while (XEXP (link, 1))
4333 link = XEXP (link, 1);
4334 XEXP (link, 1) = i2notes;
4335 }
4336 else
4337 i3notes = i2notes;
4338 i2notes = 0;
4339 }
4340
4341 LOG_LINKS (i3) = NULL;
4342 REG_NOTES (i3) = 0;
4343 LOG_LINKS (i2) = NULL;
4344 REG_NOTES (i2) = 0;
4345
4346 if (newi2pat)
4347 {
4348 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4349 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4350 this_basic_block);
4351 INSN_CODE (i2) = i2_code_number;
4352 PATTERN (i2) = newi2pat;
4353 }
4354 else
4355 {
4356 if (MAY_HAVE_DEBUG_INSNS && i2src)
4357 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4358 this_basic_block);
4359 SET_INSN_DELETED (i2);
4360 }
4361
4362 if (i1)
4363 {
4364 LOG_LINKS (i1) = NULL;
4365 REG_NOTES (i1) = 0;
4366 if (MAY_HAVE_DEBUG_INSNS)
4367 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4368 this_basic_block);
4369 SET_INSN_DELETED (i1);
4370 }
4371
4372 if (i0)
4373 {
4374 LOG_LINKS (i0) = NULL;
4375 REG_NOTES (i0) = 0;
4376 if (MAY_HAVE_DEBUG_INSNS)
4377 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4378 this_basic_block);
4379 SET_INSN_DELETED (i0);
4380 }
4381
4382 /* Get death notes for everything that is now used in either I3 or
4383 I2 and used to die in a previous insn. If we built two new
4384 patterns, move from I1 to I2 then I2 to I3 so that we get the
4385 proper movement on registers that I2 modifies. */
4386
4387 if (i0)
4388 from_luid = DF_INSN_LUID (i0);
4389 else if (i1)
4390 from_luid = DF_INSN_LUID (i1);
4391 else
4392 from_luid = DF_INSN_LUID (i2);
4393 if (newi2pat)
4394 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4395 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4396
4397 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4398 if (i3notes)
4399 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4400 elim_i2, elim_i1, elim_i0);
4401 if (i2notes)
4402 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4403 elim_i2, elim_i1, elim_i0);
4404 if (i1notes)
4405 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4406 elim_i2, local_elim_i1, local_elim_i0);
4407 if (i0notes)
4408 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4409 elim_i2, elim_i1, local_elim_i0);
4410 if (midnotes)
4411 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4412 elim_i2, elim_i1, elim_i0);
4413
4414 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4415 know these are REG_UNUSED and want them to go to the desired insn,
4416 so we always pass it as i3. */
4417
4418 if (newi2pat && new_i2_notes)
4419 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4420 NULL_RTX);
4421
4422 if (new_i3_notes)
4423 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4424 NULL_RTX);
4425
4426 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4427 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4428 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4429 in that case, it might delete I2. Similarly for I2 and I1.
4430 Show an additional death due to the REG_DEAD note we make here. If
4431 we discard it in distribute_notes, we will decrement it again. */
4432
4433 if (i3dest_killed)
4434 {
4435 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4436 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4437 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4438 elim_i1, elim_i0);
4439 else
4440 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4441 elim_i2, elim_i1, elim_i0);
4442 }
4443
4444 if (i2dest_in_i2src)
4445 {
4446 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4447 if (newi2pat && reg_set_p (i2dest, newi2pat))
4448 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4449 NULL_RTX, NULL_RTX);
4450 else
4451 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4452 NULL_RTX, NULL_RTX, NULL_RTX);
4453 }
4454
4455 if (i1dest_in_i1src)
4456 {
4457 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4458 if (newi2pat && reg_set_p (i1dest, newi2pat))
4459 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4460 NULL_RTX, NULL_RTX);
4461 else
4462 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4463 NULL_RTX, NULL_RTX, NULL_RTX);
4464 }
4465
4466 if (i0dest_in_i0src)
4467 {
4468 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4469 if (newi2pat && reg_set_p (i0dest, newi2pat))
4470 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4471 NULL_RTX, NULL_RTX);
4472 else
4473 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4474 NULL_RTX, NULL_RTX, NULL_RTX);
4475 }
4476
4477 distribute_links (i3links);
4478 distribute_links (i2links);
4479 distribute_links (i1links);
4480 distribute_links (i0links);
4481
4482 if (REG_P (i2dest))
4483 {
4484 struct insn_link *link;
4485 rtx_insn *i2_insn = 0;
4486 rtx i2_val = 0, set;
4487
4488 /* The insn that used to set this register doesn't exist, and
4489 this life of the register may not exist either. See if one of
4490 I3's links points to an insn that sets I2DEST. If it does,
4491 that is now the last known value for I2DEST. If we don't update
4492 this and I2 set the register to a value that depended on its old
4493 contents, we will get confused. If this insn is used, thing
4494 will be set correctly in combine_instructions. */
4495 FOR_EACH_LOG_LINK (link, i3)
4496 if ((set = single_set (link->insn)) != 0
4497 && rtx_equal_p (i2dest, SET_DEST (set)))
4498 i2_insn = link->insn, i2_val = SET_SRC (set);
4499
4500 record_value_for_reg (i2dest, i2_insn, i2_val);
4501
4502 /* If the reg formerly set in I2 died only once and that was in I3,
4503 zero its use count so it won't make `reload' do any work. */
4504 if (! added_sets_2
4505 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4506 && ! i2dest_in_i2src
4507 && REGNO (i2dest) < reg_n_sets_max)
4508 INC_REG_N_SETS (REGNO (i2dest), -1);
4509 }
4510
4511 if (i1 && REG_P (i1dest))
4512 {
4513 struct insn_link *link;
4514 rtx_insn *i1_insn = 0;
4515 rtx i1_val = 0, set;
4516
4517 FOR_EACH_LOG_LINK (link, i3)
4518 if ((set = single_set (link->insn)) != 0
4519 && rtx_equal_p (i1dest, SET_DEST (set)))
4520 i1_insn = link->insn, i1_val = SET_SRC (set);
4521
4522 record_value_for_reg (i1dest, i1_insn, i1_val);
4523
4524 if (! added_sets_1
4525 && ! i1dest_in_i1src
4526 && REGNO (i1dest) < reg_n_sets_max)
4527 INC_REG_N_SETS (REGNO (i1dest), -1);
4528 }
4529
4530 if (i0 && REG_P (i0dest))
4531 {
4532 struct insn_link *link;
4533 rtx_insn *i0_insn = 0;
4534 rtx i0_val = 0, set;
4535
4536 FOR_EACH_LOG_LINK (link, i3)
4537 if ((set = single_set (link->insn)) != 0
4538 && rtx_equal_p (i0dest, SET_DEST (set)))
4539 i0_insn = link->insn, i0_val = SET_SRC (set);
4540
4541 record_value_for_reg (i0dest, i0_insn, i0_val);
4542
4543 if (! added_sets_0
4544 && ! i0dest_in_i0src
4545 && REGNO (i0dest) < reg_n_sets_max)
4546 INC_REG_N_SETS (REGNO (i0dest), -1);
4547 }
4548
4549 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4550 been made to this insn. The order is important, because newi2pat
4551 can affect nonzero_bits of newpat. */
4552 if (newi2pat)
4553 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4554 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4555 }
4556
4557 if (undobuf.other_insn != NULL_RTX)
4558 {
4559 if (dump_file)
4560 {
4561 fprintf (dump_file, "modifying other_insn ");
4562 dump_insn_slim (dump_file, undobuf.other_insn);
4563 }
4564 df_insn_rescan (undobuf.other_insn);
4565 }
4566
4567 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4568 {
4569 if (dump_file)
4570 {
4571 fprintf (dump_file, "modifying insn i0 ");
4572 dump_insn_slim (dump_file, i0);
4573 }
4574 df_insn_rescan (i0);
4575 }
4576
4577 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4578 {
4579 if (dump_file)
4580 {
4581 fprintf (dump_file, "modifying insn i1 ");
4582 dump_insn_slim (dump_file, i1);
4583 }
4584 df_insn_rescan (i1);
4585 }
4586
4587 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4588 {
4589 if (dump_file)
4590 {
4591 fprintf (dump_file, "modifying insn i2 ");
4592 dump_insn_slim (dump_file, i2);
4593 }
4594 df_insn_rescan (i2);
4595 }
4596
4597 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4598 {
4599 if (dump_file)
4600 {
4601 fprintf (dump_file, "modifying insn i3 ");
4602 dump_insn_slim (dump_file, i3);
4603 }
4604 df_insn_rescan (i3);
4605 }
4606
4607 /* Set new_direct_jump_p if a new return or simple jump instruction
4608 has been created. Adjust the CFG accordingly. */
4609 if (returnjump_p (i3) || any_uncondjump_p (i3))
4610 {
4611 *new_direct_jump_p = 1;
4612 mark_jump_label (PATTERN (i3), i3, 0);
4613 update_cfg_for_uncondjump (i3);
4614 }
4615
4616 if (undobuf.other_insn != NULL_RTX
4617 && (returnjump_p (undobuf.other_insn)
4618 || any_uncondjump_p (undobuf.other_insn)))
4619 {
4620 *new_direct_jump_p = 1;
4621 update_cfg_for_uncondjump (undobuf.other_insn);
4622 }
4623
4624 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4625 && XEXP (PATTERN (i3), 0) == const1_rtx)
4626 {
4627 basic_block bb = BLOCK_FOR_INSN (i3);
4628 gcc_assert (bb);
4629 remove_edge (split_block (bb, i3));
4630 *new_direct_jump_p = 1;
4631 }
4632
4633 if (undobuf.other_insn
4634 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4635 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4636 {
4637 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4638 gcc_assert (bb);
4639 remove_edge (split_block (bb, undobuf.other_insn));
4640 *new_direct_jump_p = 1;
4641 }
4642
4643 /* A noop might also need cleaning up of CFG, if it comes from the
4644 simplification of a jump. */
4645 if (JUMP_P (i3)
4646 && GET_CODE (newpat) == SET
4647 && SET_SRC (newpat) == pc_rtx
4648 && SET_DEST (newpat) == pc_rtx)
4649 {
4650 *new_direct_jump_p = 1;
4651 update_cfg_for_uncondjump (i3);
4652 }
4653
4654 if (undobuf.other_insn != NULL_RTX
4655 && JUMP_P (undobuf.other_insn)
4656 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4657 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4658 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4659 {
4660 *new_direct_jump_p = 1;
4661 update_cfg_for_uncondjump (undobuf.other_insn);
4662 }
4663
4664 combine_successes++;
4665 undo_commit ();
4666
4667 if (added_links_insn
4668 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4669 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4670 return added_links_insn;
4671 else
4672 return newi2pat ? i2 : i3;
4673 }
4674 \f
4675 /* Get a marker for undoing to the current state. */
4676
4677 static void *
4678 get_undo_marker (void)
4679 {
4680 return undobuf.undos;
4681 }
4682
4683 /* Undo the modifications up to the marker. */
4684
4685 static void
4686 undo_to_marker (void *marker)
4687 {
4688 struct undo *undo, *next;
4689
4690 for (undo = undobuf.undos; undo != marker; undo = next)
4691 {
4692 gcc_assert (undo);
4693
4694 next = undo->next;
4695 switch (undo->kind)
4696 {
4697 case UNDO_RTX:
4698 *undo->where.r = undo->old_contents.r;
4699 break;
4700 case UNDO_INT:
4701 *undo->where.i = undo->old_contents.i;
4702 break;
4703 case UNDO_MODE:
4704 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4705 break;
4706 case UNDO_LINKS:
4707 *undo->where.l = undo->old_contents.l;
4708 break;
4709 default:
4710 gcc_unreachable ();
4711 }
4712
4713 undo->next = undobuf.frees;
4714 undobuf.frees = undo;
4715 }
4716
4717 undobuf.undos = (struct undo *) marker;
4718 }
4719
4720 /* Undo all the modifications recorded in undobuf. */
4721
4722 static void
4723 undo_all (void)
4724 {
4725 undo_to_marker (0);
4726 }
4727
4728 /* We've committed to accepting the changes we made. Move all
4729 of the undos to the free list. */
4730
4731 static void
4732 undo_commit (void)
4733 {
4734 struct undo *undo, *next;
4735
4736 for (undo = undobuf.undos; undo; undo = next)
4737 {
4738 next = undo->next;
4739 undo->next = undobuf.frees;
4740 undobuf.frees = undo;
4741 }
4742 undobuf.undos = 0;
4743 }
4744 \f
4745 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4746 where we have an arithmetic expression and return that point. LOC will
4747 be inside INSN.
4748
4749 try_combine will call this function to see if an insn can be split into
4750 two insns. */
4751
4752 static rtx *
4753 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4754 {
4755 rtx x = *loc;
4756 enum rtx_code code = GET_CODE (x);
4757 rtx *split;
4758 unsigned HOST_WIDE_INT len = 0;
4759 HOST_WIDE_INT pos = 0;
4760 int unsignedp = 0;
4761 rtx inner = NULL_RTX;
4762
4763 /* First special-case some codes. */
4764 switch (code)
4765 {
4766 case SUBREG:
4767 #ifdef INSN_SCHEDULING
4768 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4769 point. */
4770 if (MEM_P (SUBREG_REG (x)))
4771 return loc;
4772 #endif
4773 return find_split_point (&SUBREG_REG (x), insn, false);
4774
4775 case MEM:
4776 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4777 using LO_SUM and HIGH. */
4778 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4779 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4780 {
4781 machine_mode address_mode = get_address_mode (x);
4782
4783 SUBST (XEXP (x, 0),
4784 gen_rtx_LO_SUM (address_mode,
4785 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4786 XEXP (x, 0)));
4787 return &XEXP (XEXP (x, 0), 0);
4788 }
4789
4790 /* If we have a PLUS whose second operand is a constant and the
4791 address is not valid, perhaps will can split it up using
4792 the machine-specific way to split large constants. We use
4793 the first pseudo-reg (one of the virtual regs) as a placeholder;
4794 it will not remain in the result. */
4795 if (GET_CODE (XEXP (x, 0)) == PLUS
4796 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4797 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4798 MEM_ADDR_SPACE (x)))
4799 {
4800 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4801 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4802 subst_insn);
4803
4804 /* This should have produced two insns, each of which sets our
4805 placeholder. If the source of the second is a valid address,
4806 we can make put both sources together and make a split point
4807 in the middle. */
4808
4809 if (seq
4810 && NEXT_INSN (seq) != NULL_RTX
4811 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4812 && NONJUMP_INSN_P (seq)
4813 && GET_CODE (PATTERN (seq)) == SET
4814 && SET_DEST (PATTERN (seq)) == reg
4815 && ! reg_mentioned_p (reg,
4816 SET_SRC (PATTERN (seq)))
4817 && NONJUMP_INSN_P (NEXT_INSN (seq))
4818 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4819 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4820 && memory_address_addr_space_p
4821 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4822 MEM_ADDR_SPACE (x)))
4823 {
4824 rtx src1 = SET_SRC (PATTERN (seq));
4825 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4826
4827 /* Replace the placeholder in SRC2 with SRC1. If we can
4828 find where in SRC2 it was placed, that can become our
4829 split point and we can replace this address with SRC2.
4830 Just try two obvious places. */
4831
4832 src2 = replace_rtx (src2, reg, src1);
4833 split = 0;
4834 if (XEXP (src2, 0) == src1)
4835 split = &XEXP (src2, 0);
4836 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4837 && XEXP (XEXP (src2, 0), 0) == src1)
4838 split = &XEXP (XEXP (src2, 0), 0);
4839
4840 if (split)
4841 {
4842 SUBST (XEXP (x, 0), src2);
4843 return split;
4844 }
4845 }
4846
4847 /* If that didn't work, perhaps the first operand is complex and
4848 needs to be computed separately, so make a split point there.
4849 This will occur on machines that just support REG + CONST
4850 and have a constant moved through some previous computation. */
4851
4852 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4853 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4854 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4855 return &XEXP (XEXP (x, 0), 0);
4856 }
4857
4858 /* If we have a PLUS whose first operand is complex, try computing it
4859 separately by making a split there. */
4860 if (GET_CODE (XEXP (x, 0)) == PLUS
4861 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4862 MEM_ADDR_SPACE (x))
4863 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4864 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4865 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4866 return &XEXP (XEXP (x, 0), 0);
4867 break;
4868
4869 case SET:
4870 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4871 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4872 we need to put the operand into a register. So split at that
4873 point. */
4874
4875 if (SET_DEST (x) == cc0_rtx
4876 && GET_CODE (SET_SRC (x)) != COMPARE
4877 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4878 && !OBJECT_P (SET_SRC (x))
4879 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4880 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4881 return &SET_SRC (x);
4882
4883 /* See if we can split SET_SRC as it stands. */
4884 split = find_split_point (&SET_SRC (x), insn, true);
4885 if (split && split != &SET_SRC (x))
4886 return split;
4887
4888 /* See if we can split SET_DEST as it stands. */
4889 split = find_split_point (&SET_DEST (x), insn, false);
4890 if (split && split != &SET_DEST (x))
4891 return split;
4892
4893 /* See if this is a bitfield assignment with everything constant. If
4894 so, this is an IOR of an AND, so split it into that. */
4895 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4896 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4897 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4898 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4899 && CONST_INT_P (SET_SRC (x))
4900 && ((INTVAL (XEXP (SET_DEST (x), 1))
4901 + INTVAL (XEXP (SET_DEST (x), 2)))
4902 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4903 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4904 {
4905 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4906 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4907 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4908 rtx dest = XEXP (SET_DEST (x), 0);
4909 machine_mode mode = GET_MODE (dest);
4910 unsigned HOST_WIDE_INT mask
4911 = (HOST_WIDE_INT_1U << len) - 1;
4912 rtx or_mask;
4913
4914 if (BITS_BIG_ENDIAN)
4915 pos = GET_MODE_PRECISION (mode) - len - pos;
4916
4917 or_mask = gen_int_mode (src << pos, mode);
4918 if (src == mask)
4919 SUBST (SET_SRC (x),
4920 simplify_gen_binary (IOR, mode, dest, or_mask));
4921 else
4922 {
4923 rtx negmask = gen_int_mode (~(mask << pos), mode);
4924 SUBST (SET_SRC (x),
4925 simplify_gen_binary (IOR, mode,
4926 simplify_gen_binary (AND, mode,
4927 dest, negmask),
4928 or_mask));
4929 }
4930
4931 SUBST (SET_DEST (x), dest);
4932
4933 split = find_split_point (&SET_SRC (x), insn, true);
4934 if (split && split != &SET_SRC (x))
4935 return split;
4936 }
4937
4938 /* Otherwise, see if this is an operation that we can split into two.
4939 If so, try to split that. */
4940 code = GET_CODE (SET_SRC (x));
4941
4942 switch (code)
4943 {
4944 case AND:
4945 /* If we are AND'ing with a large constant that is only a single
4946 bit and the result is only being used in a context where we
4947 need to know if it is zero or nonzero, replace it with a bit
4948 extraction. This will avoid the large constant, which might
4949 have taken more than one insn to make. If the constant were
4950 not a valid argument to the AND but took only one insn to make,
4951 this is no worse, but if it took more than one insn, it will
4952 be better. */
4953
4954 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4955 && REG_P (XEXP (SET_SRC (x), 0))
4956 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4957 && REG_P (SET_DEST (x))
4958 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4959 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4960 && XEXP (*split, 0) == SET_DEST (x)
4961 && XEXP (*split, 1) == const0_rtx)
4962 {
4963 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4964 XEXP (SET_SRC (x), 0),
4965 pos, NULL_RTX, 1, 1, 0, 0);
4966 if (extraction != 0)
4967 {
4968 SUBST (SET_SRC (x), extraction);
4969 return find_split_point (loc, insn, false);
4970 }
4971 }
4972 break;
4973
4974 case NE:
4975 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4976 is known to be on, this can be converted into a NEG of a shift. */
4977 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4978 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4979 && 1 <= (pos = exact_log2
4980 (nonzero_bits (XEXP (SET_SRC (x), 0),
4981 GET_MODE (XEXP (SET_SRC (x), 0))))))
4982 {
4983 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4984
4985 SUBST (SET_SRC (x),
4986 gen_rtx_NEG (mode,
4987 gen_rtx_LSHIFTRT (mode,
4988 XEXP (SET_SRC (x), 0),
4989 GEN_INT (pos))));
4990
4991 split = find_split_point (&SET_SRC (x), insn, true);
4992 if (split && split != &SET_SRC (x))
4993 return split;
4994 }
4995 break;
4996
4997 case SIGN_EXTEND:
4998 inner = XEXP (SET_SRC (x), 0);
4999
5000 /* We can't optimize if either mode is a partial integer
5001 mode as we don't know how many bits are significant
5002 in those modes. */
5003 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
5004 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5005 break;
5006
5007 pos = 0;
5008 len = GET_MODE_PRECISION (GET_MODE (inner));
5009 unsignedp = 0;
5010 break;
5011
5012 case SIGN_EXTRACT:
5013 case ZERO_EXTRACT:
5014 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5015 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5016 {
5017 inner = XEXP (SET_SRC (x), 0);
5018 len = INTVAL (XEXP (SET_SRC (x), 1));
5019 pos = INTVAL (XEXP (SET_SRC (x), 2));
5020
5021 if (BITS_BIG_ENDIAN)
5022 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
5023 unsignedp = (code == ZERO_EXTRACT);
5024 }
5025 break;
5026
5027 default:
5028 break;
5029 }
5030
5031 if (len && pos >= 0
5032 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
5033 {
5034 machine_mode mode = GET_MODE (SET_SRC (x));
5035
5036 /* For unsigned, we have a choice of a shift followed by an
5037 AND or two shifts. Use two shifts for field sizes where the
5038 constant might be too large. We assume here that we can
5039 always at least get 8-bit constants in an AND insn, which is
5040 true for every current RISC. */
5041
5042 if (unsignedp && len <= 8)
5043 {
5044 unsigned HOST_WIDE_INT mask
5045 = (HOST_WIDE_INT_1U << len) - 1;
5046 SUBST (SET_SRC (x),
5047 gen_rtx_AND (mode,
5048 gen_rtx_LSHIFTRT
5049 (mode, gen_lowpart (mode, inner),
5050 GEN_INT (pos)),
5051 gen_int_mode (mask, mode)));
5052
5053 split = find_split_point (&SET_SRC (x), insn, true);
5054 if (split && split != &SET_SRC (x))
5055 return split;
5056 }
5057 else
5058 {
5059 SUBST (SET_SRC (x),
5060 gen_rtx_fmt_ee
5061 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5062 gen_rtx_ASHIFT (mode,
5063 gen_lowpart (mode, inner),
5064 GEN_INT (GET_MODE_PRECISION (mode)
5065 - len - pos)),
5066 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5067
5068 split = find_split_point (&SET_SRC (x), insn, true);
5069 if (split && split != &SET_SRC (x))
5070 return split;
5071 }
5072 }
5073
5074 /* See if this is a simple operation with a constant as the second
5075 operand. It might be that this constant is out of range and hence
5076 could be used as a split point. */
5077 if (BINARY_P (SET_SRC (x))
5078 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5079 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5080 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5081 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5082 return &XEXP (SET_SRC (x), 1);
5083
5084 /* Finally, see if this is a simple operation with its first operand
5085 not in a register. The operation might require this operand in a
5086 register, so return it as a split point. We can always do this
5087 because if the first operand were another operation, we would have
5088 already found it as a split point. */
5089 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5090 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5091 return &XEXP (SET_SRC (x), 0);
5092
5093 return 0;
5094
5095 case AND:
5096 case IOR:
5097 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5098 it is better to write this as (not (ior A B)) so we can split it.
5099 Similarly for IOR. */
5100 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5101 {
5102 SUBST (*loc,
5103 gen_rtx_NOT (GET_MODE (x),
5104 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5105 GET_MODE (x),
5106 XEXP (XEXP (x, 0), 0),
5107 XEXP (XEXP (x, 1), 0))));
5108 return find_split_point (loc, insn, set_src);
5109 }
5110
5111 /* Many RISC machines have a large set of logical insns. If the
5112 second operand is a NOT, put it first so we will try to split the
5113 other operand first. */
5114 if (GET_CODE (XEXP (x, 1)) == NOT)
5115 {
5116 rtx tem = XEXP (x, 0);
5117 SUBST (XEXP (x, 0), XEXP (x, 1));
5118 SUBST (XEXP (x, 1), tem);
5119 }
5120 break;
5121
5122 case PLUS:
5123 case MINUS:
5124 /* Canonicalization can produce (minus A (mult B C)), where C is a
5125 constant. It may be better to try splitting (plus (mult B -C) A)
5126 instead if this isn't a multiply by a power of two. */
5127 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5128 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5129 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5130 {
5131 machine_mode mode = GET_MODE (x);
5132 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5133 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5134 SUBST (*loc, gen_rtx_PLUS (mode,
5135 gen_rtx_MULT (mode,
5136 XEXP (XEXP (x, 1), 0),
5137 gen_int_mode (other_int,
5138 mode)),
5139 XEXP (x, 0)));
5140 return find_split_point (loc, insn, set_src);
5141 }
5142
5143 /* Split at a multiply-accumulate instruction. However if this is
5144 the SET_SRC, we likely do not have such an instruction and it's
5145 worthless to try this split. */
5146 if (!set_src
5147 && (GET_CODE (XEXP (x, 0)) == MULT
5148 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5149 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5150 return loc;
5151
5152 default:
5153 break;
5154 }
5155
5156 /* Otherwise, select our actions depending on our rtx class. */
5157 switch (GET_RTX_CLASS (code))
5158 {
5159 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5160 case RTX_TERNARY:
5161 split = find_split_point (&XEXP (x, 2), insn, false);
5162 if (split)
5163 return split;
5164 /* fall through */
5165 case RTX_BIN_ARITH:
5166 case RTX_COMM_ARITH:
5167 case RTX_COMPARE:
5168 case RTX_COMM_COMPARE:
5169 split = find_split_point (&XEXP (x, 1), insn, false);
5170 if (split)
5171 return split;
5172 /* fall through */
5173 case RTX_UNARY:
5174 /* Some machines have (and (shift ...) ...) insns. If X is not
5175 an AND, but XEXP (X, 0) is, use it as our split point. */
5176 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5177 return &XEXP (x, 0);
5178
5179 split = find_split_point (&XEXP (x, 0), insn, false);
5180 if (split)
5181 return split;
5182 return loc;
5183
5184 default:
5185 /* Otherwise, we don't have a split point. */
5186 return 0;
5187 }
5188 }
5189 \f
5190 /* Throughout X, replace FROM with TO, and return the result.
5191 The result is TO if X is FROM;
5192 otherwise the result is X, but its contents may have been modified.
5193 If they were modified, a record was made in undobuf so that
5194 undo_all will (among other things) return X to its original state.
5195
5196 If the number of changes necessary is too much to record to undo,
5197 the excess changes are not made, so the result is invalid.
5198 The changes already made can still be undone.
5199 undobuf.num_undo is incremented for such changes, so by testing that
5200 the caller can tell whether the result is valid.
5201
5202 `n_occurrences' is incremented each time FROM is replaced.
5203
5204 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5205
5206 IN_COND is nonzero if we are at the top level of a condition.
5207
5208 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5209 by copying if `n_occurrences' is nonzero. */
5210
5211 static rtx
5212 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5213 {
5214 enum rtx_code code = GET_CODE (x);
5215 machine_mode op0_mode = VOIDmode;
5216 const char *fmt;
5217 int len, i;
5218 rtx new_rtx;
5219
5220 /* Two expressions are equal if they are identical copies of a shared
5221 RTX or if they are both registers with the same register number
5222 and mode. */
5223
5224 #define COMBINE_RTX_EQUAL_P(X,Y) \
5225 ((X) == (Y) \
5226 || (REG_P (X) && REG_P (Y) \
5227 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5228
5229 /* Do not substitute into clobbers of regs -- this will never result in
5230 valid RTL. */
5231 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5232 return x;
5233
5234 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5235 {
5236 n_occurrences++;
5237 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5238 }
5239
5240 /* If X and FROM are the same register but different modes, they
5241 will not have been seen as equal above. However, the log links code
5242 will make a LOG_LINKS entry for that case. If we do nothing, we
5243 will try to rerecognize our original insn and, when it succeeds,
5244 we will delete the feeding insn, which is incorrect.
5245
5246 So force this insn not to match in this (rare) case. */
5247 if (! in_dest && code == REG && REG_P (from)
5248 && reg_overlap_mentioned_p (x, from))
5249 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5250
5251 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5252 of which may contain things that can be combined. */
5253 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5254 return x;
5255
5256 /* It is possible to have a subexpression appear twice in the insn.
5257 Suppose that FROM is a register that appears within TO.
5258 Then, after that subexpression has been scanned once by `subst',
5259 the second time it is scanned, TO may be found. If we were
5260 to scan TO here, we would find FROM within it and create a
5261 self-referent rtl structure which is completely wrong. */
5262 if (COMBINE_RTX_EQUAL_P (x, to))
5263 return to;
5264
5265 /* Parallel asm_operands need special attention because all of the
5266 inputs are shared across the arms. Furthermore, unsharing the
5267 rtl results in recognition failures. Failure to handle this case
5268 specially can result in circular rtl.
5269
5270 Solve this by doing a normal pass across the first entry of the
5271 parallel, and only processing the SET_DESTs of the subsequent
5272 entries. Ug. */
5273
5274 if (code == PARALLEL
5275 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5276 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5277 {
5278 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5279
5280 /* If this substitution failed, this whole thing fails. */
5281 if (GET_CODE (new_rtx) == CLOBBER
5282 && XEXP (new_rtx, 0) == const0_rtx)
5283 return new_rtx;
5284
5285 SUBST (XVECEXP (x, 0, 0), new_rtx);
5286
5287 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5288 {
5289 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5290
5291 if (!REG_P (dest)
5292 && GET_CODE (dest) != CC0
5293 && GET_CODE (dest) != PC)
5294 {
5295 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5296
5297 /* If this substitution failed, this whole thing fails. */
5298 if (GET_CODE (new_rtx) == CLOBBER
5299 && XEXP (new_rtx, 0) == const0_rtx)
5300 return new_rtx;
5301
5302 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5303 }
5304 }
5305 }
5306 else
5307 {
5308 len = GET_RTX_LENGTH (code);
5309 fmt = GET_RTX_FORMAT (code);
5310
5311 /* We don't need to process a SET_DEST that is a register, CC0,
5312 or PC, so set up to skip this common case. All other cases
5313 where we want to suppress replacing something inside a
5314 SET_SRC are handled via the IN_DEST operand. */
5315 if (code == SET
5316 && (REG_P (SET_DEST (x))
5317 || GET_CODE (SET_DEST (x)) == CC0
5318 || GET_CODE (SET_DEST (x)) == PC))
5319 fmt = "ie";
5320
5321 /* Trying to simplify the operands of a widening MULT is not likely
5322 to create RTL matching a machine insn. */
5323 if (code == MULT
5324 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5325 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5326 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5327 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5328 && REG_P (XEXP (XEXP (x, 0), 0))
5329 && REG_P (XEXP (XEXP (x, 1), 0))
5330 && from == to)
5331 return x;
5332
5333
5334 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5335 constant. */
5336 if (fmt[0] == 'e')
5337 op0_mode = GET_MODE (XEXP (x, 0));
5338
5339 for (i = 0; i < len; i++)
5340 {
5341 if (fmt[i] == 'E')
5342 {
5343 int j;
5344 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5345 {
5346 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5347 {
5348 new_rtx = (unique_copy && n_occurrences
5349 ? copy_rtx (to) : to);
5350 n_occurrences++;
5351 }
5352 else
5353 {
5354 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5355 unique_copy);
5356
5357 /* If this substitution failed, this whole thing
5358 fails. */
5359 if (GET_CODE (new_rtx) == CLOBBER
5360 && XEXP (new_rtx, 0) == const0_rtx)
5361 return new_rtx;
5362 }
5363
5364 SUBST (XVECEXP (x, i, j), new_rtx);
5365 }
5366 }
5367 else if (fmt[i] == 'e')
5368 {
5369 /* If this is a register being set, ignore it. */
5370 new_rtx = XEXP (x, i);
5371 if (in_dest
5372 && i == 0
5373 && (((code == SUBREG || code == ZERO_EXTRACT)
5374 && REG_P (new_rtx))
5375 || code == STRICT_LOW_PART))
5376 ;
5377
5378 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5379 {
5380 /* In general, don't install a subreg involving two
5381 modes not tieable. It can worsen register
5382 allocation, and can even make invalid reload
5383 insns, since the reg inside may need to be copied
5384 from in the outside mode, and that may be invalid
5385 if it is an fp reg copied in integer mode.
5386
5387 We allow two exceptions to this: It is valid if
5388 it is inside another SUBREG and the mode of that
5389 SUBREG and the mode of the inside of TO is
5390 tieable and it is valid if X is a SET that copies
5391 FROM to CC0. */
5392
5393 if (GET_CODE (to) == SUBREG
5394 && ! MODES_TIEABLE_P (GET_MODE (to),
5395 GET_MODE (SUBREG_REG (to)))
5396 && ! (code == SUBREG
5397 && MODES_TIEABLE_P (GET_MODE (x),
5398 GET_MODE (SUBREG_REG (to))))
5399 && (!HAVE_cc0
5400 || (! (code == SET
5401 && i == 1
5402 && XEXP (x, 0) == cc0_rtx))))
5403 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5404
5405 if (code == SUBREG
5406 && REG_P (to)
5407 && REGNO (to) < FIRST_PSEUDO_REGISTER
5408 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5409 SUBREG_BYTE (x),
5410 GET_MODE (x)) < 0)
5411 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5412
5413 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5414 n_occurrences++;
5415 }
5416 else
5417 /* If we are in a SET_DEST, suppress most cases unless we
5418 have gone inside a MEM, in which case we want to
5419 simplify the address. We assume here that things that
5420 are actually part of the destination have their inner
5421 parts in the first expression. This is true for SUBREG,
5422 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5423 things aside from REG and MEM that should appear in a
5424 SET_DEST. */
5425 new_rtx = subst (XEXP (x, i), from, to,
5426 (((in_dest
5427 && (code == SUBREG || code == STRICT_LOW_PART
5428 || code == ZERO_EXTRACT))
5429 || code == SET)
5430 && i == 0),
5431 code == IF_THEN_ELSE && i == 0,
5432 unique_copy);
5433
5434 /* If we found that we will have to reject this combination,
5435 indicate that by returning the CLOBBER ourselves, rather than
5436 an expression containing it. This will speed things up as
5437 well as prevent accidents where two CLOBBERs are considered
5438 to be equal, thus producing an incorrect simplification. */
5439
5440 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5441 return new_rtx;
5442
5443 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5444 {
5445 machine_mode mode = GET_MODE (x);
5446
5447 x = simplify_subreg (GET_MODE (x), new_rtx,
5448 GET_MODE (SUBREG_REG (x)),
5449 SUBREG_BYTE (x));
5450 if (! x)
5451 x = gen_rtx_CLOBBER (mode, const0_rtx);
5452 }
5453 else if (CONST_SCALAR_INT_P (new_rtx)
5454 && GET_CODE (x) == ZERO_EXTEND)
5455 {
5456 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5457 new_rtx, GET_MODE (XEXP (x, 0)));
5458 gcc_assert (x);
5459 }
5460 else
5461 SUBST (XEXP (x, i), new_rtx);
5462 }
5463 }
5464 }
5465
5466 /* Check if we are loading something from the constant pool via float
5467 extension; in this case we would undo compress_float_constant
5468 optimization and degenerate constant load to an immediate value. */
5469 if (GET_CODE (x) == FLOAT_EXTEND
5470 && MEM_P (XEXP (x, 0))
5471 && MEM_READONLY_P (XEXP (x, 0)))
5472 {
5473 rtx tmp = avoid_constant_pool_reference (x);
5474 if (x != tmp)
5475 return x;
5476 }
5477
5478 /* Try to simplify X. If the simplification changed the code, it is likely
5479 that further simplification will help, so loop, but limit the number
5480 of repetitions that will be performed. */
5481
5482 for (i = 0; i < 4; i++)
5483 {
5484 /* If X is sufficiently simple, don't bother trying to do anything
5485 with it. */
5486 if (code != CONST_INT && code != REG && code != CLOBBER)
5487 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5488
5489 if (GET_CODE (x) == code)
5490 break;
5491
5492 code = GET_CODE (x);
5493
5494 /* We no longer know the original mode of operand 0 since we
5495 have changed the form of X) */
5496 op0_mode = VOIDmode;
5497 }
5498
5499 return x;
5500 }
5501 \f
5502 /* If X is a commutative operation whose operands are not in the canonical
5503 order, use substitutions to swap them. */
5504
5505 static void
5506 maybe_swap_commutative_operands (rtx x)
5507 {
5508 if (COMMUTATIVE_ARITH_P (x)
5509 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5510 {
5511 rtx temp = XEXP (x, 0);
5512 SUBST (XEXP (x, 0), XEXP (x, 1));
5513 SUBST (XEXP (x, 1), temp);
5514 }
5515 }
5516
5517 /* Simplify X, a piece of RTL. We just operate on the expression at the
5518 outer level; call `subst' to simplify recursively. Return the new
5519 expression.
5520
5521 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5522 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5523 of a condition. */
5524
5525 static rtx
5526 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5527 int in_cond)
5528 {
5529 enum rtx_code code = GET_CODE (x);
5530 machine_mode mode = GET_MODE (x);
5531 rtx temp;
5532 int i;
5533
5534 /* If this is a commutative operation, put a constant last and a complex
5535 expression first. We don't need to do this for comparisons here. */
5536 maybe_swap_commutative_operands (x);
5537
5538 /* Try to fold this expression in case we have constants that weren't
5539 present before. */
5540 temp = 0;
5541 switch (GET_RTX_CLASS (code))
5542 {
5543 case RTX_UNARY:
5544 if (op0_mode == VOIDmode)
5545 op0_mode = GET_MODE (XEXP (x, 0));
5546 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5547 break;
5548 case RTX_COMPARE:
5549 case RTX_COMM_COMPARE:
5550 {
5551 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5552 if (cmp_mode == VOIDmode)
5553 {
5554 cmp_mode = GET_MODE (XEXP (x, 1));
5555 if (cmp_mode == VOIDmode)
5556 cmp_mode = op0_mode;
5557 }
5558 temp = simplify_relational_operation (code, mode, cmp_mode,
5559 XEXP (x, 0), XEXP (x, 1));
5560 }
5561 break;
5562 case RTX_COMM_ARITH:
5563 case RTX_BIN_ARITH:
5564 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5565 break;
5566 case RTX_BITFIELD_OPS:
5567 case RTX_TERNARY:
5568 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5569 XEXP (x, 1), XEXP (x, 2));
5570 break;
5571 default:
5572 break;
5573 }
5574
5575 if (temp)
5576 {
5577 x = temp;
5578 code = GET_CODE (temp);
5579 op0_mode = VOIDmode;
5580 mode = GET_MODE (temp);
5581 }
5582
5583 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5584 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5585 things. Check for cases where both arms are testing the same
5586 condition.
5587
5588 Don't do anything if all operands are very simple. */
5589
5590 if ((BINARY_P (x)
5591 && ((!OBJECT_P (XEXP (x, 0))
5592 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5593 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5594 || (!OBJECT_P (XEXP (x, 1))
5595 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5596 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5597 || (UNARY_P (x)
5598 && (!OBJECT_P (XEXP (x, 0))
5599 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5600 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5601 {
5602 rtx cond, true_rtx, false_rtx;
5603
5604 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5605 if (cond != 0
5606 /* If everything is a comparison, what we have is highly unlikely
5607 to be simpler, so don't use it. */
5608 && ! (COMPARISON_P (x)
5609 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5610 {
5611 rtx cop1 = const0_rtx;
5612 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5613
5614 if (cond_code == NE && COMPARISON_P (cond))
5615 return x;
5616
5617 /* Simplify the alternative arms; this may collapse the true and
5618 false arms to store-flag values. Be careful to use copy_rtx
5619 here since true_rtx or false_rtx might share RTL with x as a
5620 result of the if_then_else_cond call above. */
5621 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5622 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5623
5624 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5625 is unlikely to be simpler. */
5626 if (general_operand (true_rtx, VOIDmode)
5627 && general_operand (false_rtx, VOIDmode))
5628 {
5629 enum rtx_code reversed;
5630
5631 /* Restarting if we generate a store-flag expression will cause
5632 us to loop. Just drop through in this case. */
5633
5634 /* If the result values are STORE_FLAG_VALUE and zero, we can
5635 just make the comparison operation. */
5636 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5637 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5638 cond, cop1);
5639 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5640 && ((reversed = reversed_comparison_code_parts
5641 (cond_code, cond, cop1, NULL))
5642 != UNKNOWN))
5643 x = simplify_gen_relational (reversed, mode, VOIDmode,
5644 cond, cop1);
5645
5646 /* Likewise, we can make the negate of a comparison operation
5647 if the result values are - STORE_FLAG_VALUE and zero. */
5648 else if (CONST_INT_P (true_rtx)
5649 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5650 && false_rtx == const0_rtx)
5651 x = simplify_gen_unary (NEG, mode,
5652 simplify_gen_relational (cond_code,
5653 mode, VOIDmode,
5654 cond, cop1),
5655 mode);
5656 else if (CONST_INT_P (false_rtx)
5657 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5658 && true_rtx == const0_rtx
5659 && ((reversed = reversed_comparison_code_parts
5660 (cond_code, cond, cop1, NULL))
5661 != UNKNOWN))
5662 x = simplify_gen_unary (NEG, mode,
5663 simplify_gen_relational (reversed,
5664 mode, VOIDmode,
5665 cond, cop1),
5666 mode);
5667 else
5668 return gen_rtx_IF_THEN_ELSE (mode,
5669 simplify_gen_relational (cond_code,
5670 mode,
5671 VOIDmode,
5672 cond,
5673 cop1),
5674 true_rtx, false_rtx);
5675
5676 code = GET_CODE (x);
5677 op0_mode = VOIDmode;
5678 }
5679 }
5680 }
5681
5682 /* First see if we can apply the inverse distributive law. */
5683 if (code == PLUS || code == MINUS
5684 || code == AND || code == IOR || code == XOR)
5685 {
5686 x = apply_distributive_law (x);
5687 code = GET_CODE (x);
5688 op0_mode = VOIDmode;
5689 }
5690
5691 /* If CODE is an associative operation not otherwise handled, see if we
5692 can associate some operands. This can win if they are constants or
5693 if they are logically related (i.e. (a & b) & a). */
5694 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5695 || code == AND || code == IOR || code == XOR
5696 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5697 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5698 || (flag_associative_math && FLOAT_MODE_P (mode))))
5699 {
5700 if (GET_CODE (XEXP (x, 0)) == code)
5701 {
5702 rtx other = XEXP (XEXP (x, 0), 0);
5703 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5704 rtx inner_op1 = XEXP (x, 1);
5705 rtx inner;
5706
5707 /* Make sure we pass the constant operand if any as the second
5708 one if this is a commutative operation. */
5709 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5710 std::swap (inner_op0, inner_op1);
5711 inner = simplify_binary_operation (code == MINUS ? PLUS
5712 : code == DIV ? MULT
5713 : code,
5714 mode, inner_op0, inner_op1);
5715
5716 /* For commutative operations, try the other pair if that one
5717 didn't simplify. */
5718 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5719 {
5720 other = XEXP (XEXP (x, 0), 1);
5721 inner = simplify_binary_operation (code, mode,
5722 XEXP (XEXP (x, 0), 0),
5723 XEXP (x, 1));
5724 }
5725
5726 if (inner)
5727 return simplify_gen_binary (code, mode, other, inner);
5728 }
5729 }
5730
5731 /* A little bit of algebraic simplification here. */
5732 switch (code)
5733 {
5734 case MEM:
5735 /* Ensure that our address has any ASHIFTs converted to MULT in case
5736 address-recognizing predicates are called later. */
5737 temp = make_compound_operation (XEXP (x, 0), MEM);
5738 SUBST (XEXP (x, 0), temp);
5739 break;
5740
5741 case SUBREG:
5742 if (op0_mode == VOIDmode)
5743 op0_mode = GET_MODE (SUBREG_REG (x));
5744
5745 /* See if this can be moved to simplify_subreg. */
5746 if (CONSTANT_P (SUBREG_REG (x))
5747 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5748 /* Don't call gen_lowpart if the inner mode
5749 is VOIDmode and we cannot simplify it, as SUBREG without
5750 inner mode is invalid. */
5751 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5752 || gen_lowpart_common (mode, SUBREG_REG (x))))
5753 return gen_lowpart (mode, SUBREG_REG (x));
5754
5755 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5756 break;
5757 {
5758 rtx temp;
5759 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5760 SUBREG_BYTE (x));
5761 if (temp)
5762 return temp;
5763
5764 /* If op is known to have all lower bits zero, the result is zero. */
5765 if (!in_dest
5766 && SCALAR_INT_MODE_P (mode)
5767 && SCALAR_INT_MODE_P (op0_mode)
5768 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5769 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5770 && HWI_COMPUTABLE_MODE_P (op0_mode)
5771 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5772 & GET_MODE_MASK (mode)) == 0)
5773 return CONST0_RTX (mode);
5774 }
5775
5776 /* Don't change the mode of the MEM if that would change the meaning
5777 of the address. */
5778 if (MEM_P (SUBREG_REG (x))
5779 && (MEM_VOLATILE_P (SUBREG_REG (x))
5780 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5781 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5782 return gen_rtx_CLOBBER (mode, const0_rtx);
5783
5784 /* Note that we cannot do any narrowing for non-constants since
5785 we might have been counting on using the fact that some bits were
5786 zero. We now do this in the SET. */
5787
5788 break;
5789
5790 case NEG:
5791 temp = expand_compound_operation (XEXP (x, 0));
5792
5793 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5794 replaced by (lshiftrt X C). This will convert
5795 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5796
5797 if (GET_CODE (temp) == ASHIFTRT
5798 && CONST_INT_P (XEXP (temp, 1))
5799 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5800 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5801 INTVAL (XEXP (temp, 1)));
5802
5803 /* If X has only a single bit that might be nonzero, say, bit I, convert
5804 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5805 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5806 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5807 or a SUBREG of one since we'd be making the expression more
5808 complex if it was just a register. */
5809
5810 if (!REG_P (temp)
5811 && ! (GET_CODE (temp) == SUBREG
5812 && REG_P (SUBREG_REG (temp)))
5813 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5814 {
5815 rtx temp1 = simplify_shift_const
5816 (NULL_RTX, ASHIFTRT, mode,
5817 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5818 GET_MODE_PRECISION (mode) - 1 - i),
5819 GET_MODE_PRECISION (mode) - 1 - i);
5820
5821 /* If all we did was surround TEMP with the two shifts, we
5822 haven't improved anything, so don't use it. Otherwise,
5823 we are better off with TEMP1. */
5824 if (GET_CODE (temp1) != ASHIFTRT
5825 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5826 || XEXP (XEXP (temp1, 0), 0) != temp)
5827 return temp1;
5828 }
5829 break;
5830
5831 case TRUNCATE:
5832 /* We can't handle truncation to a partial integer mode here
5833 because we don't know the real bitsize of the partial
5834 integer mode. */
5835 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5836 break;
5837
5838 if (HWI_COMPUTABLE_MODE_P (mode))
5839 SUBST (XEXP (x, 0),
5840 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5841 GET_MODE_MASK (mode), 0));
5842
5843 /* We can truncate a constant value and return it. */
5844 if (CONST_INT_P (XEXP (x, 0)))
5845 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5846
5847 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5848 whose value is a comparison can be replaced with a subreg if
5849 STORE_FLAG_VALUE permits. */
5850 if (HWI_COMPUTABLE_MODE_P (mode)
5851 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5852 && (temp = get_last_value (XEXP (x, 0)))
5853 && COMPARISON_P (temp))
5854 return gen_lowpart (mode, XEXP (x, 0));
5855 break;
5856
5857 case CONST:
5858 /* (const (const X)) can become (const X). Do it this way rather than
5859 returning the inner CONST since CONST can be shared with a
5860 REG_EQUAL note. */
5861 if (GET_CODE (XEXP (x, 0)) == CONST)
5862 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5863 break;
5864
5865 case LO_SUM:
5866 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5867 can add in an offset. find_split_point will split this address up
5868 again if it doesn't match. */
5869 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5870 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5871 return XEXP (x, 1);
5872 break;
5873
5874 case PLUS:
5875 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5876 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5877 bit-field and can be replaced by either a sign_extend or a
5878 sign_extract. The `and' may be a zero_extend and the two
5879 <c>, -<c> constants may be reversed. */
5880 if (GET_CODE (XEXP (x, 0)) == XOR
5881 && CONST_INT_P (XEXP (x, 1))
5882 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5883 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5884 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5885 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5886 && HWI_COMPUTABLE_MODE_P (mode)
5887 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5888 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5889 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5890 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
5891 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5892 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5893 == (unsigned int) i + 1))))
5894 return simplify_shift_const
5895 (NULL_RTX, ASHIFTRT, mode,
5896 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5897 XEXP (XEXP (XEXP (x, 0), 0), 0),
5898 GET_MODE_PRECISION (mode) - (i + 1)),
5899 GET_MODE_PRECISION (mode) - (i + 1));
5900
5901 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5902 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5903 the bitsize of the mode - 1. This allows simplification of
5904 "a = (b & 8) == 0;" */
5905 if (XEXP (x, 1) == constm1_rtx
5906 && !REG_P (XEXP (x, 0))
5907 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5908 && REG_P (SUBREG_REG (XEXP (x, 0))))
5909 && nonzero_bits (XEXP (x, 0), mode) == 1)
5910 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5911 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5912 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5913 GET_MODE_PRECISION (mode) - 1),
5914 GET_MODE_PRECISION (mode) - 1);
5915
5916 /* If we are adding two things that have no bits in common, convert
5917 the addition into an IOR. This will often be further simplified,
5918 for example in cases like ((a & 1) + (a & 2)), which can
5919 become a & 3. */
5920
5921 if (HWI_COMPUTABLE_MODE_P (mode)
5922 && (nonzero_bits (XEXP (x, 0), mode)
5923 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5924 {
5925 /* Try to simplify the expression further. */
5926 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5927 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5928
5929 /* If we could, great. If not, do not go ahead with the IOR
5930 replacement, since PLUS appears in many special purpose
5931 address arithmetic instructions. */
5932 if (GET_CODE (temp) != CLOBBER
5933 && (GET_CODE (temp) != IOR
5934 || ((XEXP (temp, 0) != XEXP (x, 0)
5935 || XEXP (temp, 1) != XEXP (x, 1))
5936 && (XEXP (temp, 0) != XEXP (x, 1)
5937 || XEXP (temp, 1) != XEXP (x, 0)))))
5938 return temp;
5939 }
5940
5941 /* Canonicalize x + x into x << 1. */
5942 if (GET_MODE_CLASS (mode) == MODE_INT
5943 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
5944 && !side_effects_p (XEXP (x, 0)))
5945 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
5946
5947 break;
5948
5949 case MINUS:
5950 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5951 (and <foo> (const_int pow2-1)) */
5952 if (GET_CODE (XEXP (x, 1)) == AND
5953 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5954 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
5955 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5956 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5957 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5958 break;
5959
5960 case MULT:
5961 /* If we have (mult (plus A B) C), apply the distributive law and then
5962 the inverse distributive law to see if things simplify. This
5963 occurs mostly in addresses, often when unrolling loops. */
5964
5965 if (GET_CODE (XEXP (x, 0)) == PLUS)
5966 {
5967 rtx result = distribute_and_simplify_rtx (x, 0);
5968 if (result)
5969 return result;
5970 }
5971
5972 /* Try simplify a*(b/c) as (a*b)/c. */
5973 if (FLOAT_MODE_P (mode) && flag_associative_math
5974 && GET_CODE (XEXP (x, 0)) == DIV)
5975 {
5976 rtx tem = simplify_binary_operation (MULT, mode,
5977 XEXP (XEXP (x, 0), 0),
5978 XEXP (x, 1));
5979 if (tem)
5980 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5981 }
5982 break;
5983
5984 case UDIV:
5985 /* If this is a divide by a power of two, treat it as a shift if
5986 its first operand is a shift. */
5987 if (CONST_INT_P (XEXP (x, 1))
5988 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5989 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5990 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5991 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5992 || GET_CODE (XEXP (x, 0)) == ROTATE
5993 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5994 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5995 break;
5996
5997 case EQ: case NE:
5998 case GT: case GTU: case GE: case GEU:
5999 case LT: case LTU: case LE: case LEU:
6000 case UNEQ: case LTGT:
6001 case UNGT: case UNGE:
6002 case UNLT: case UNLE:
6003 case UNORDERED: case ORDERED:
6004 /* If the first operand is a condition code, we can't do anything
6005 with it. */
6006 if (GET_CODE (XEXP (x, 0)) == COMPARE
6007 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6008 && ! CC0_P (XEXP (x, 0))))
6009 {
6010 rtx op0 = XEXP (x, 0);
6011 rtx op1 = XEXP (x, 1);
6012 enum rtx_code new_code;
6013
6014 if (GET_CODE (op0) == COMPARE)
6015 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6016
6017 /* Simplify our comparison, if possible. */
6018 new_code = simplify_comparison (code, &op0, &op1);
6019
6020 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6021 if only the low-order bit is possibly nonzero in X (such as when
6022 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6023 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6024 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6025 (plus X 1).
6026
6027 Remove any ZERO_EXTRACT we made when thinking this was a
6028 comparison. It may now be simpler to use, e.g., an AND. If a
6029 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6030 the call to make_compound_operation in the SET case.
6031
6032 Don't apply these optimizations if the caller would
6033 prefer a comparison rather than a value.
6034 E.g., for the condition in an IF_THEN_ELSE most targets need
6035 an explicit comparison. */
6036
6037 if (in_cond)
6038 ;
6039
6040 else if (STORE_FLAG_VALUE == 1
6041 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6042 && op1 == const0_rtx
6043 && mode == GET_MODE (op0)
6044 && nonzero_bits (op0, mode) == 1)
6045 return gen_lowpart (mode,
6046 expand_compound_operation (op0));
6047
6048 else if (STORE_FLAG_VALUE == 1
6049 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6050 && op1 == const0_rtx
6051 && mode == GET_MODE (op0)
6052 && (num_sign_bit_copies (op0, mode)
6053 == GET_MODE_PRECISION (mode)))
6054 {
6055 op0 = expand_compound_operation (op0);
6056 return simplify_gen_unary (NEG, mode,
6057 gen_lowpart (mode, op0),
6058 mode);
6059 }
6060
6061 else if (STORE_FLAG_VALUE == 1
6062 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6063 && op1 == const0_rtx
6064 && mode == GET_MODE (op0)
6065 && nonzero_bits (op0, mode) == 1)
6066 {
6067 op0 = expand_compound_operation (op0);
6068 return simplify_gen_binary (XOR, mode,
6069 gen_lowpart (mode, op0),
6070 const1_rtx);
6071 }
6072
6073 else if (STORE_FLAG_VALUE == 1
6074 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6075 && op1 == const0_rtx
6076 && mode == GET_MODE (op0)
6077 && (num_sign_bit_copies (op0, mode)
6078 == GET_MODE_PRECISION (mode)))
6079 {
6080 op0 = expand_compound_operation (op0);
6081 return plus_constant (mode, gen_lowpart (mode, op0), 1);
6082 }
6083
6084 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6085 those above. */
6086 if (in_cond)
6087 ;
6088
6089 else if (STORE_FLAG_VALUE == -1
6090 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6091 && op1 == const0_rtx
6092 && mode == GET_MODE (op0)
6093 && (num_sign_bit_copies (op0, mode)
6094 == GET_MODE_PRECISION (mode)))
6095 return gen_lowpart (mode,
6096 expand_compound_operation (op0));
6097
6098 else if (STORE_FLAG_VALUE == -1
6099 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6100 && op1 == const0_rtx
6101 && mode == GET_MODE (op0)
6102 && nonzero_bits (op0, mode) == 1)
6103 {
6104 op0 = expand_compound_operation (op0);
6105 return simplify_gen_unary (NEG, mode,
6106 gen_lowpart (mode, op0),
6107 mode);
6108 }
6109
6110 else if (STORE_FLAG_VALUE == -1
6111 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6112 && op1 == const0_rtx
6113 && mode == GET_MODE (op0)
6114 && (num_sign_bit_copies (op0, mode)
6115 == GET_MODE_PRECISION (mode)))
6116 {
6117 op0 = expand_compound_operation (op0);
6118 return simplify_gen_unary (NOT, mode,
6119 gen_lowpart (mode, op0),
6120 mode);
6121 }
6122
6123 /* If X is 0/1, (eq X 0) is X-1. */
6124 else if (STORE_FLAG_VALUE == -1
6125 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6126 && op1 == const0_rtx
6127 && mode == GET_MODE (op0)
6128 && nonzero_bits (op0, mode) == 1)
6129 {
6130 op0 = expand_compound_operation (op0);
6131 return plus_constant (mode, gen_lowpart (mode, op0), -1);
6132 }
6133
6134 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6135 one bit that might be nonzero, we can convert (ne x 0) to
6136 (ashift x c) where C puts the bit in the sign bit. Remove any
6137 AND with STORE_FLAG_VALUE when we are done, since we are only
6138 going to test the sign bit. */
6139 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6140 && HWI_COMPUTABLE_MODE_P (mode)
6141 && val_signbit_p (mode, STORE_FLAG_VALUE)
6142 && op1 == const0_rtx
6143 && mode == GET_MODE (op0)
6144 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6145 {
6146 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6147 expand_compound_operation (op0),
6148 GET_MODE_PRECISION (mode) - 1 - i);
6149 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6150 return XEXP (x, 0);
6151 else
6152 return x;
6153 }
6154
6155 /* If the code changed, return a whole new comparison.
6156 We also need to avoid using SUBST in cases where
6157 simplify_comparison has widened a comparison with a CONST_INT,
6158 since in that case the wider CONST_INT may fail the sanity
6159 checks in do_SUBST. */
6160 if (new_code != code
6161 || (CONST_INT_P (op1)
6162 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6163 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6164 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6165
6166 /* Otherwise, keep this operation, but maybe change its operands.
6167 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6168 SUBST (XEXP (x, 0), op0);
6169 SUBST (XEXP (x, 1), op1);
6170 }
6171 break;
6172
6173 case IF_THEN_ELSE:
6174 return simplify_if_then_else (x);
6175
6176 case ZERO_EXTRACT:
6177 case SIGN_EXTRACT:
6178 case ZERO_EXTEND:
6179 case SIGN_EXTEND:
6180 /* If we are processing SET_DEST, we are done. */
6181 if (in_dest)
6182 return x;
6183
6184 return expand_compound_operation (x);
6185
6186 case SET:
6187 return simplify_set (x);
6188
6189 case AND:
6190 case IOR:
6191 return simplify_logical (x);
6192
6193 case ASHIFT:
6194 case LSHIFTRT:
6195 case ASHIFTRT:
6196 case ROTATE:
6197 case ROTATERT:
6198 /* If this is a shift by a constant amount, simplify it. */
6199 if (CONST_INT_P (XEXP (x, 1)))
6200 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6201 INTVAL (XEXP (x, 1)));
6202
6203 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6204 SUBST (XEXP (x, 1),
6205 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6206 (HOST_WIDE_INT_1U
6207 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6208 - 1,
6209 0));
6210 break;
6211
6212 default:
6213 break;
6214 }
6215
6216 return x;
6217 }
6218 \f
6219 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6220
6221 static rtx
6222 simplify_if_then_else (rtx x)
6223 {
6224 machine_mode mode = GET_MODE (x);
6225 rtx cond = XEXP (x, 0);
6226 rtx true_rtx = XEXP (x, 1);
6227 rtx false_rtx = XEXP (x, 2);
6228 enum rtx_code true_code = GET_CODE (cond);
6229 int comparison_p = COMPARISON_P (cond);
6230 rtx temp;
6231 int i;
6232 enum rtx_code false_code;
6233 rtx reversed;
6234
6235 /* Simplify storing of the truth value. */
6236 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6237 return simplify_gen_relational (true_code, mode, VOIDmode,
6238 XEXP (cond, 0), XEXP (cond, 1));
6239
6240 /* Also when the truth value has to be reversed. */
6241 if (comparison_p
6242 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6243 && (reversed = reversed_comparison (cond, mode)))
6244 return reversed;
6245
6246 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6247 in it is being compared against certain values. Get the true and false
6248 comparisons and see if that says anything about the value of each arm. */
6249
6250 if (comparison_p
6251 && ((false_code = reversed_comparison_code (cond, NULL))
6252 != UNKNOWN)
6253 && REG_P (XEXP (cond, 0)))
6254 {
6255 HOST_WIDE_INT nzb;
6256 rtx from = XEXP (cond, 0);
6257 rtx true_val = XEXP (cond, 1);
6258 rtx false_val = true_val;
6259 int swapped = 0;
6260
6261 /* If FALSE_CODE is EQ, swap the codes and arms. */
6262
6263 if (false_code == EQ)
6264 {
6265 swapped = 1, true_code = EQ, false_code = NE;
6266 std::swap (true_rtx, false_rtx);
6267 }
6268
6269 /* If we are comparing against zero and the expression being tested has
6270 only a single bit that might be nonzero, that is its value when it is
6271 not equal to zero. Similarly if it is known to be -1 or 0. */
6272
6273 if (true_code == EQ && true_val == const0_rtx
6274 && pow2p_hwi (nzb = nonzero_bits (from, GET_MODE (from))))
6275 {
6276 false_code = EQ;
6277 false_val = gen_int_mode (nzb, GET_MODE (from));
6278 }
6279 else if (true_code == EQ && true_val == const0_rtx
6280 && (num_sign_bit_copies (from, GET_MODE (from))
6281 == GET_MODE_PRECISION (GET_MODE (from))))
6282 {
6283 false_code = EQ;
6284 false_val = constm1_rtx;
6285 }
6286
6287 /* Now simplify an arm if we know the value of the register in the
6288 branch and it is used in the arm. Be careful due to the potential
6289 of locally-shared RTL. */
6290
6291 if (reg_mentioned_p (from, true_rtx))
6292 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6293 from, true_val),
6294 pc_rtx, pc_rtx, 0, 0, 0);
6295 if (reg_mentioned_p (from, false_rtx))
6296 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6297 from, false_val),
6298 pc_rtx, pc_rtx, 0, 0, 0);
6299
6300 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6301 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6302
6303 true_rtx = XEXP (x, 1);
6304 false_rtx = XEXP (x, 2);
6305 true_code = GET_CODE (cond);
6306 }
6307
6308 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6309 reversed, do so to avoid needing two sets of patterns for
6310 subtract-and-branch insns. Similarly if we have a constant in the true
6311 arm, the false arm is the same as the first operand of the comparison, or
6312 the false arm is more complicated than the true arm. */
6313
6314 if (comparison_p
6315 && reversed_comparison_code (cond, NULL) != UNKNOWN
6316 && (true_rtx == pc_rtx
6317 || (CONSTANT_P (true_rtx)
6318 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6319 || true_rtx == const0_rtx
6320 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6321 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6322 && !OBJECT_P (false_rtx))
6323 || reg_mentioned_p (true_rtx, false_rtx)
6324 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6325 {
6326 true_code = reversed_comparison_code (cond, NULL);
6327 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6328 SUBST (XEXP (x, 1), false_rtx);
6329 SUBST (XEXP (x, 2), true_rtx);
6330
6331 std::swap (true_rtx, false_rtx);
6332 cond = XEXP (x, 0);
6333
6334 /* It is possible that the conditional has been simplified out. */
6335 true_code = GET_CODE (cond);
6336 comparison_p = COMPARISON_P (cond);
6337 }
6338
6339 /* If the two arms are identical, we don't need the comparison. */
6340
6341 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6342 return true_rtx;
6343
6344 /* Convert a == b ? b : a to "a". */
6345 if (true_code == EQ && ! side_effects_p (cond)
6346 && !HONOR_NANS (mode)
6347 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6348 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6349 return false_rtx;
6350 else if (true_code == NE && ! side_effects_p (cond)
6351 && !HONOR_NANS (mode)
6352 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6353 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6354 return true_rtx;
6355
6356 /* Look for cases where we have (abs x) or (neg (abs X)). */
6357
6358 if (GET_MODE_CLASS (mode) == MODE_INT
6359 && comparison_p
6360 && XEXP (cond, 1) == const0_rtx
6361 && GET_CODE (false_rtx) == NEG
6362 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6363 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6364 && ! side_effects_p (true_rtx))
6365 switch (true_code)
6366 {
6367 case GT:
6368 case GE:
6369 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6370 case LT:
6371 case LE:
6372 return
6373 simplify_gen_unary (NEG, mode,
6374 simplify_gen_unary (ABS, mode, true_rtx, mode),
6375 mode);
6376 default:
6377 break;
6378 }
6379
6380 /* Look for MIN or MAX. */
6381
6382 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6383 && comparison_p
6384 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6385 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6386 && ! side_effects_p (cond))
6387 switch (true_code)
6388 {
6389 case GE:
6390 case GT:
6391 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6392 case LE:
6393 case LT:
6394 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6395 case GEU:
6396 case GTU:
6397 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6398 case LEU:
6399 case LTU:
6400 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6401 default:
6402 break;
6403 }
6404
6405 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6406 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6407 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6408 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6409 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6410 neither 1 or -1, but it isn't worth checking for. */
6411
6412 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6413 && comparison_p
6414 && GET_MODE_CLASS (mode) == MODE_INT
6415 && ! side_effects_p (x))
6416 {
6417 rtx t = make_compound_operation (true_rtx, SET);
6418 rtx f = make_compound_operation (false_rtx, SET);
6419 rtx cond_op0 = XEXP (cond, 0);
6420 rtx cond_op1 = XEXP (cond, 1);
6421 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6422 machine_mode m = mode;
6423 rtx z = 0, c1 = NULL_RTX;
6424
6425 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6426 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6427 || GET_CODE (t) == ASHIFT
6428 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6429 && rtx_equal_p (XEXP (t, 0), f))
6430 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6431
6432 /* If an identity-zero op is commutative, check whether there
6433 would be a match if we swapped the operands. */
6434 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6435 || GET_CODE (t) == XOR)
6436 && rtx_equal_p (XEXP (t, 1), f))
6437 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6438 else if (GET_CODE (t) == SIGN_EXTEND
6439 && (GET_CODE (XEXP (t, 0)) == PLUS
6440 || GET_CODE (XEXP (t, 0)) == MINUS
6441 || GET_CODE (XEXP (t, 0)) == IOR
6442 || GET_CODE (XEXP (t, 0)) == XOR
6443 || GET_CODE (XEXP (t, 0)) == ASHIFT
6444 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6445 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6446 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6447 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6448 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6449 && (num_sign_bit_copies (f, GET_MODE (f))
6450 > (unsigned int)
6451 (GET_MODE_PRECISION (mode)
6452 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6453 {
6454 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6455 extend_op = SIGN_EXTEND;
6456 m = GET_MODE (XEXP (t, 0));
6457 }
6458 else if (GET_CODE (t) == SIGN_EXTEND
6459 && (GET_CODE (XEXP (t, 0)) == PLUS
6460 || GET_CODE (XEXP (t, 0)) == IOR
6461 || GET_CODE (XEXP (t, 0)) == XOR)
6462 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6463 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6464 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6465 && (num_sign_bit_copies (f, GET_MODE (f))
6466 > (unsigned int)
6467 (GET_MODE_PRECISION (mode)
6468 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6469 {
6470 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6471 extend_op = SIGN_EXTEND;
6472 m = GET_MODE (XEXP (t, 0));
6473 }
6474 else if (GET_CODE (t) == ZERO_EXTEND
6475 && (GET_CODE (XEXP (t, 0)) == PLUS
6476 || GET_CODE (XEXP (t, 0)) == MINUS
6477 || GET_CODE (XEXP (t, 0)) == IOR
6478 || GET_CODE (XEXP (t, 0)) == XOR
6479 || GET_CODE (XEXP (t, 0)) == ASHIFT
6480 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6481 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6482 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6483 && HWI_COMPUTABLE_MODE_P (mode)
6484 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6485 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6486 && ((nonzero_bits (f, GET_MODE (f))
6487 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6488 == 0))
6489 {
6490 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6491 extend_op = ZERO_EXTEND;
6492 m = GET_MODE (XEXP (t, 0));
6493 }
6494 else if (GET_CODE (t) == ZERO_EXTEND
6495 && (GET_CODE (XEXP (t, 0)) == PLUS
6496 || GET_CODE (XEXP (t, 0)) == IOR
6497 || GET_CODE (XEXP (t, 0)) == XOR)
6498 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6499 && HWI_COMPUTABLE_MODE_P (mode)
6500 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6501 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6502 && ((nonzero_bits (f, GET_MODE (f))
6503 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6504 == 0))
6505 {
6506 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6507 extend_op = ZERO_EXTEND;
6508 m = GET_MODE (XEXP (t, 0));
6509 }
6510
6511 if (z)
6512 {
6513 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6514 cond_op0, cond_op1),
6515 pc_rtx, pc_rtx, 0, 0, 0);
6516 temp = simplify_gen_binary (MULT, m, temp,
6517 simplify_gen_binary (MULT, m, c1,
6518 const_true_rtx));
6519 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6520 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6521
6522 if (extend_op != UNKNOWN)
6523 temp = simplify_gen_unary (extend_op, mode, temp, m);
6524
6525 return temp;
6526 }
6527 }
6528
6529 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6530 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6531 negation of a single bit, we can convert this operation to a shift. We
6532 can actually do this more generally, but it doesn't seem worth it. */
6533
6534 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6535 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6536 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6537 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6538 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6539 == GET_MODE_PRECISION (mode))
6540 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6541 return
6542 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6543 gen_lowpart (mode, XEXP (cond, 0)), i);
6544
6545 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6546 non-zero bit in A is C1. */
6547 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6548 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6549 && INTEGRAL_MODE_P (GET_MODE (XEXP (cond, 0)))
6550 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6551 == nonzero_bits (XEXP (cond, 0), GET_MODE (XEXP (cond, 0)))
6552 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6553 {
6554 rtx val = XEXP (cond, 0);
6555 enum machine_mode val_mode = GET_MODE (val);
6556 if (val_mode == mode)
6557 return val;
6558 else if (GET_MODE_PRECISION (val_mode) < GET_MODE_PRECISION (mode))
6559 return simplify_gen_unary (ZERO_EXTEND, mode, val, val_mode);
6560 }
6561
6562 return x;
6563 }
6564 \f
6565 /* Simplify X, a SET expression. Return the new expression. */
6566
6567 static rtx
6568 simplify_set (rtx x)
6569 {
6570 rtx src = SET_SRC (x);
6571 rtx dest = SET_DEST (x);
6572 machine_mode mode
6573 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6574 rtx_insn *other_insn;
6575 rtx *cc_use;
6576
6577 /* (set (pc) (return)) gets written as (return). */
6578 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6579 return src;
6580
6581 /* Now that we know for sure which bits of SRC we are using, see if we can
6582 simplify the expression for the object knowing that we only need the
6583 low-order bits. */
6584
6585 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6586 {
6587 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6588 SUBST (SET_SRC (x), src);
6589 }
6590
6591 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6592 the comparison result and try to simplify it unless we already have used
6593 undobuf.other_insn. */
6594 if ((GET_MODE_CLASS (mode) == MODE_CC
6595 || GET_CODE (src) == COMPARE
6596 || CC0_P (dest))
6597 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6598 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6599 && COMPARISON_P (*cc_use)
6600 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6601 {
6602 enum rtx_code old_code = GET_CODE (*cc_use);
6603 enum rtx_code new_code;
6604 rtx op0, op1, tmp;
6605 int other_changed = 0;
6606 rtx inner_compare = NULL_RTX;
6607 machine_mode compare_mode = GET_MODE (dest);
6608
6609 if (GET_CODE (src) == COMPARE)
6610 {
6611 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6612 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6613 {
6614 inner_compare = op0;
6615 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6616 }
6617 }
6618 else
6619 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6620
6621 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6622 op0, op1);
6623 if (!tmp)
6624 new_code = old_code;
6625 else if (!CONSTANT_P (tmp))
6626 {
6627 new_code = GET_CODE (tmp);
6628 op0 = XEXP (tmp, 0);
6629 op1 = XEXP (tmp, 1);
6630 }
6631 else
6632 {
6633 rtx pat = PATTERN (other_insn);
6634 undobuf.other_insn = other_insn;
6635 SUBST (*cc_use, tmp);
6636
6637 /* Attempt to simplify CC user. */
6638 if (GET_CODE (pat) == SET)
6639 {
6640 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6641 if (new_rtx != NULL_RTX)
6642 SUBST (SET_SRC (pat), new_rtx);
6643 }
6644
6645 /* Convert X into a no-op move. */
6646 SUBST (SET_DEST (x), pc_rtx);
6647 SUBST (SET_SRC (x), pc_rtx);
6648 return x;
6649 }
6650
6651 /* Simplify our comparison, if possible. */
6652 new_code = simplify_comparison (new_code, &op0, &op1);
6653
6654 #ifdef SELECT_CC_MODE
6655 /* If this machine has CC modes other than CCmode, check to see if we
6656 need to use a different CC mode here. */
6657 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6658 compare_mode = GET_MODE (op0);
6659 else if (inner_compare
6660 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6661 && new_code == old_code
6662 && op0 == XEXP (inner_compare, 0)
6663 && op1 == XEXP (inner_compare, 1))
6664 compare_mode = GET_MODE (inner_compare);
6665 else
6666 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6667
6668 /* If the mode changed, we have to change SET_DEST, the mode in the
6669 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6670 a hard register, just build new versions with the proper mode. If it
6671 is a pseudo, we lose unless it is only time we set the pseudo, in
6672 which case we can safely change its mode. */
6673 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6674 {
6675 if (can_change_dest_mode (dest, 0, compare_mode))
6676 {
6677 unsigned int regno = REGNO (dest);
6678 rtx new_dest;
6679
6680 if (regno < FIRST_PSEUDO_REGISTER)
6681 new_dest = gen_rtx_REG (compare_mode, regno);
6682 else
6683 {
6684 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6685 new_dest = regno_reg_rtx[regno];
6686 }
6687
6688 SUBST (SET_DEST (x), new_dest);
6689 SUBST (XEXP (*cc_use, 0), new_dest);
6690 other_changed = 1;
6691
6692 dest = new_dest;
6693 }
6694 }
6695 #endif /* SELECT_CC_MODE */
6696
6697 /* If the code changed, we have to build a new comparison in
6698 undobuf.other_insn. */
6699 if (new_code != old_code)
6700 {
6701 int other_changed_previously = other_changed;
6702 unsigned HOST_WIDE_INT mask;
6703 rtx old_cc_use = *cc_use;
6704
6705 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6706 dest, const0_rtx));
6707 other_changed = 1;
6708
6709 /* If the only change we made was to change an EQ into an NE or
6710 vice versa, OP0 has only one bit that might be nonzero, and OP1
6711 is zero, check if changing the user of the condition code will
6712 produce a valid insn. If it won't, we can keep the original code
6713 in that insn by surrounding our operation with an XOR. */
6714
6715 if (((old_code == NE && new_code == EQ)
6716 || (old_code == EQ && new_code == NE))
6717 && ! other_changed_previously && op1 == const0_rtx
6718 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6719 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6720 {
6721 rtx pat = PATTERN (other_insn), note = 0;
6722
6723 if ((recog_for_combine (&pat, other_insn, &note) < 0
6724 && ! check_asm_operands (pat)))
6725 {
6726 *cc_use = old_cc_use;
6727 other_changed = 0;
6728
6729 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6730 gen_int_mode (mask,
6731 GET_MODE (op0)));
6732 }
6733 }
6734 }
6735
6736 if (other_changed)
6737 undobuf.other_insn = other_insn;
6738
6739 /* Don't generate a compare of a CC with 0, just use that CC. */
6740 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6741 {
6742 SUBST (SET_SRC (x), op0);
6743 src = SET_SRC (x);
6744 }
6745 /* Otherwise, if we didn't previously have the same COMPARE we
6746 want, create it from scratch. */
6747 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6748 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6749 {
6750 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6751 src = SET_SRC (x);
6752 }
6753 }
6754 else
6755 {
6756 /* Get SET_SRC in a form where we have placed back any
6757 compound expressions. Then do the checks below. */
6758 src = make_compound_operation (src, SET);
6759 SUBST (SET_SRC (x), src);
6760 }
6761
6762 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6763 and X being a REG or (subreg (reg)), we may be able to convert this to
6764 (set (subreg:m2 x) (op)).
6765
6766 We can always do this if M1 is narrower than M2 because that means that
6767 we only care about the low bits of the result.
6768
6769 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6770 perform a narrower operation than requested since the high-order bits will
6771 be undefined. On machine where it is defined, this transformation is safe
6772 as long as M1 and M2 have the same number of words. */
6773
6774 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6775 && !OBJECT_P (SUBREG_REG (src))
6776 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6777 / UNITS_PER_WORD)
6778 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6779 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6780 && (WORD_REGISTER_OPERATIONS
6781 || (GET_MODE_SIZE (GET_MODE (src))
6782 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
6783 #ifdef CANNOT_CHANGE_MODE_CLASS
6784 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6785 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6786 GET_MODE (SUBREG_REG (src)),
6787 GET_MODE (src)))
6788 #endif
6789 && (REG_P (dest)
6790 || (GET_CODE (dest) == SUBREG
6791 && REG_P (SUBREG_REG (dest)))))
6792 {
6793 SUBST (SET_DEST (x),
6794 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6795 dest));
6796 SUBST (SET_SRC (x), SUBREG_REG (src));
6797
6798 src = SET_SRC (x), dest = SET_DEST (x);
6799 }
6800
6801 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6802 in SRC. */
6803 if (dest == cc0_rtx
6804 && GET_CODE (src) == SUBREG
6805 && subreg_lowpart_p (src)
6806 && (GET_MODE_PRECISION (GET_MODE (src))
6807 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6808 {
6809 rtx inner = SUBREG_REG (src);
6810 machine_mode inner_mode = GET_MODE (inner);
6811
6812 /* Here we make sure that we don't have a sign bit on. */
6813 if (val_signbit_known_clear_p (GET_MODE (src),
6814 nonzero_bits (inner, inner_mode)))
6815 {
6816 SUBST (SET_SRC (x), inner);
6817 src = SET_SRC (x);
6818 }
6819 }
6820
6821 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6822 would require a paradoxical subreg. Replace the subreg with a
6823 zero_extend to avoid the reload that would otherwise be required. */
6824
6825 enum rtx_code extend_op;
6826 if (paradoxical_subreg_p (src)
6827 && MEM_P (SUBREG_REG (src))
6828 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
6829 {
6830 SUBST (SET_SRC (x),
6831 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
6832
6833 src = SET_SRC (x);
6834 }
6835
6836 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6837 are comparing an item known to be 0 or -1 against 0, use a logical
6838 operation instead. Check for one of the arms being an IOR of the other
6839 arm with some value. We compute three terms to be IOR'ed together. In
6840 practice, at most two will be nonzero. Then we do the IOR's. */
6841
6842 if (GET_CODE (dest) != PC
6843 && GET_CODE (src) == IF_THEN_ELSE
6844 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6845 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6846 && XEXP (XEXP (src, 0), 1) == const0_rtx
6847 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6848 && (!HAVE_conditional_move
6849 || ! can_conditionally_move_p (GET_MODE (src)))
6850 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6851 GET_MODE (XEXP (XEXP (src, 0), 0)))
6852 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6853 && ! side_effects_p (src))
6854 {
6855 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6856 ? XEXP (src, 1) : XEXP (src, 2));
6857 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6858 ? XEXP (src, 2) : XEXP (src, 1));
6859 rtx term1 = const0_rtx, term2, term3;
6860
6861 if (GET_CODE (true_rtx) == IOR
6862 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6863 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6864 else if (GET_CODE (true_rtx) == IOR
6865 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6866 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6867 else if (GET_CODE (false_rtx) == IOR
6868 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6869 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6870 else if (GET_CODE (false_rtx) == IOR
6871 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6872 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6873
6874 term2 = simplify_gen_binary (AND, GET_MODE (src),
6875 XEXP (XEXP (src, 0), 0), true_rtx);
6876 term3 = simplify_gen_binary (AND, GET_MODE (src),
6877 simplify_gen_unary (NOT, GET_MODE (src),
6878 XEXP (XEXP (src, 0), 0),
6879 GET_MODE (src)),
6880 false_rtx);
6881
6882 SUBST (SET_SRC (x),
6883 simplify_gen_binary (IOR, GET_MODE (src),
6884 simplify_gen_binary (IOR, GET_MODE (src),
6885 term1, term2),
6886 term3));
6887
6888 src = SET_SRC (x);
6889 }
6890
6891 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6892 whole thing fail. */
6893 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6894 return src;
6895 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6896 return dest;
6897 else
6898 /* Convert this into a field assignment operation, if possible. */
6899 return make_field_assignment (x);
6900 }
6901 \f
6902 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6903 result. */
6904
6905 static rtx
6906 simplify_logical (rtx x)
6907 {
6908 machine_mode mode = GET_MODE (x);
6909 rtx op0 = XEXP (x, 0);
6910 rtx op1 = XEXP (x, 1);
6911
6912 switch (GET_CODE (x))
6913 {
6914 case AND:
6915 /* We can call simplify_and_const_int only if we don't lose
6916 any (sign) bits when converting INTVAL (op1) to
6917 "unsigned HOST_WIDE_INT". */
6918 if (CONST_INT_P (op1)
6919 && (HWI_COMPUTABLE_MODE_P (mode)
6920 || INTVAL (op1) > 0))
6921 {
6922 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6923 if (GET_CODE (x) != AND)
6924 return x;
6925
6926 op0 = XEXP (x, 0);
6927 op1 = XEXP (x, 1);
6928 }
6929
6930 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6931 apply the distributive law and then the inverse distributive
6932 law to see if things simplify. */
6933 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6934 {
6935 rtx result = distribute_and_simplify_rtx (x, 0);
6936 if (result)
6937 return result;
6938 }
6939 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6940 {
6941 rtx result = distribute_and_simplify_rtx (x, 1);
6942 if (result)
6943 return result;
6944 }
6945 break;
6946
6947 case IOR:
6948 /* If we have (ior (and A B) C), apply the distributive law and then
6949 the inverse distributive law to see if things simplify. */
6950
6951 if (GET_CODE (op0) == AND)
6952 {
6953 rtx result = distribute_and_simplify_rtx (x, 0);
6954 if (result)
6955 return result;
6956 }
6957
6958 if (GET_CODE (op1) == AND)
6959 {
6960 rtx result = distribute_and_simplify_rtx (x, 1);
6961 if (result)
6962 return result;
6963 }
6964 break;
6965
6966 default:
6967 gcc_unreachable ();
6968 }
6969
6970 return x;
6971 }
6972 \f
6973 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6974 operations" because they can be replaced with two more basic operations.
6975 ZERO_EXTEND is also considered "compound" because it can be replaced with
6976 an AND operation, which is simpler, though only one operation.
6977
6978 The function expand_compound_operation is called with an rtx expression
6979 and will convert it to the appropriate shifts and AND operations,
6980 simplifying at each stage.
6981
6982 The function make_compound_operation is called to convert an expression
6983 consisting of shifts and ANDs into the equivalent compound expression.
6984 It is the inverse of this function, loosely speaking. */
6985
6986 static rtx
6987 expand_compound_operation (rtx x)
6988 {
6989 unsigned HOST_WIDE_INT pos = 0, len;
6990 int unsignedp = 0;
6991 unsigned int modewidth;
6992 rtx tem;
6993
6994 switch (GET_CODE (x))
6995 {
6996 case ZERO_EXTEND:
6997 unsignedp = 1;
6998 /* FALLTHRU */
6999 case SIGN_EXTEND:
7000 /* We can't necessarily use a const_int for a multiword mode;
7001 it depends on implicitly extending the value.
7002 Since we don't know the right way to extend it,
7003 we can't tell whether the implicit way is right.
7004
7005 Even for a mode that is no wider than a const_int,
7006 we can't win, because we need to sign extend one of its bits through
7007 the rest of it, and we don't know which bit. */
7008 if (CONST_INT_P (XEXP (x, 0)))
7009 return x;
7010
7011 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7012 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7013 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7014 reloaded. If not for that, MEM's would very rarely be safe.
7015
7016 Reject MODEs bigger than a word, because we might not be able
7017 to reference a two-register group starting with an arbitrary register
7018 (and currently gen_lowpart might crash for a SUBREG). */
7019
7020 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
7021 return x;
7022
7023 /* Reject MODEs that aren't scalar integers because turning vector
7024 or complex modes into shifts causes problems. */
7025
7026 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7027 return x;
7028
7029 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
7030 /* If the inner object has VOIDmode (the only way this can happen
7031 is if it is an ASM_OPERANDS), we can't do anything since we don't
7032 know how much masking to do. */
7033 if (len == 0)
7034 return x;
7035
7036 break;
7037
7038 case ZERO_EXTRACT:
7039 unsignedp = 1;
7040
7041 /* fall through */
7042
7043 case SIGN_EXTRACT:
7044 /* If the operand is a CLOBBER, just return it. */
7045 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7046 return XEXP (x, 0);
7047
7048 if (!CONST_INT_P (XEXP (x, 1))
7049 || !CONST_INT_P (XEXP (x, 2))
7050 || GET_MODE (XEXP (x, 0)) == VOIDmode)
7051 return x;
7052
7053 /* Reject MODEs that aren't scalar integers because turning vector
7054 or complex modes into shifts causes problems. */
7055
7056 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7057 return x;
7058
7059 len = INTVAL (XEXP (x, 1));
7060 pos = INTVAL (XEXP (x, 2));
7061
7062 /* This should stay within the object being extracted, fail otherwise. */
7063 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
7064 return x;
7065
7066 if (BITS_BIG_ENDIAN)
7067 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7068
7069 break;
7070
7071 default:
7072 return x;
7073 }
7074 /* Convert sign extension to zero extension, if we know that the high
7075 bit is not set, as this is easier to optimize. It will be converted
7076 back to cheaper alternative in make_extraction. */
7077 if (GET_CODE (x) == SIGN_EXTEND
7078 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7079 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7080 & ~(((unsigned HOST_WIDE_INT)
7081 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7082 >> 1))
7083 == 0)))
7084 {
7085 machine_mode mode = GET_MODE (x);
7086 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7087 rtx temp2 = expand_compound_operation (temp);
7088
7089 /* Make sure this is a profitable operation. */
7090 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7091 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7092 return temp2;
7093 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7094 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7095 return temp;
7096 else
7097 return x;
7098 }
7099
7100 /* We can optimize some special cases of ZERO_EXTEND. */
7101 if (GET_CODE (x) == ZERO_EXTEND)
7102 {
7103 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7104 know that the last value didn't have any inappropriate bits
7105 set. */
7106 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7107 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7108 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7109 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7110 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7111 return XEXP (XEXP (x, 0), 0);
7112
7113 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7114 if (GET_CODE (XEXP (x, 0)) == SUBREG
7115 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7116 && subreg_lowpart_p (XEXP (x, 0))
7117 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7118 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7119 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7120 return SUBREG_REG (XEXP (x, 0));
7121
7122 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7123 is a comparison and STORE_FLAG_VALUE permits. This is like
7124 the first case, but it works even when GET_MODE (x) is larger
7125 than HOST_WIDE_INT. */
7126 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7127 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7128 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7129 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7130 <= HOST_BITS_PER_WIDE_INT)
7131 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7132 return XEXP (XEXP (x, 0), 0);
7133
7134 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7135 if (GET_CODE (XEXP (x, 0)) == SUBREG
7136 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7137 && subreg_lowpart_p (XEXP (x, 0))
7138 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7139 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7140 <= HOST_BITS_PER_WIDE_INT)
7141 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7142 return SUBREG_REG (XEXP (x, 0));
7143
7144 }
7145
7146 /* If we reach here, we want to return a pair of shifts. The inner
7147 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7148 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7149 logical depending on the value of UNSIGNEDP.
7150
7151 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7152 converted into an AND of a shift.
7153
7154 We must check for the case where the left shift would have a negative
7155 count. This can happen in a case like (x >> 31) & 255 on machines
7156 that can't shift by a constant. On those machines, we would first
7157 combine the shift with the AND to produce a variable-position
7158 extraction. Then the constant of 31 would be substituted in
7159 to produce such a position. */
7160
7161 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7162 if (modewidth >= pos + len)
7163 {
7164 machine_mode mode = GET_MODE (x);
7165 tem = gen_lowpart (mode, XEXP (x, 0));
7166 if (!tem || GET_CODE (tem) == CLOBBER)
7167 return x;
7168 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7169 tem, modewidth - pos - len);
7170 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7171 mode, tem, modewidth - len);
7172 }
7173 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7174 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7175 simplify_shift_const (NULL_RTX, LSHIFTRT,
7176 GET_MODE (x),
7177 XEXP (x, 0), pos),
7178 (HOST_WIDE_INT_1U << len) - 1);
7179 else
7180 /* Any other cases we can't handle. */
7181 return x;
7182
7183 /* If we couldn't do this for some reason, return the original
7184 expression. */
7185 if (GET_CODE (tem) == CLOBBER)
7186 return x;
7187
7188 return tem;
7189 }
7190 \f
7191 /* X is a SET which contains an assignment of one object into
7192 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7193 or certain SUBREGS). If possible, convert it into a series of
7194 logical operations.
7195
7196 We half-heartedly support variable positions, but do not at all
7197 support variable lengths. */
7198
7199 static const_rtx
7200 expand_field_assignment (const_rtx x)
7201 {
7202 rtx inner;
7203 rtx pos; /* Always counts from low bit. */
7204 int len;
7205 rtx mask, cleared, masked;
7206 machine_mode compute_mode;
7207
7208 /* Loop until we find something we can't simplify. */
7209 while (1)
7210 {
7211 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7212 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7213 {
7214 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7215 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7216 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7217 }
7218 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7219 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7220 {
7221 inner = XEXP (SET_DEST (x), 0);
7222 len = INTVAL (XEXP (SET_DEST (x), 1));
7223 pos = XEXP (SET_DEST (x), 2);
7224
7225 /* A constant position should stay within the width of INNER. */
7226 if (CONST_INT_P (pos)
7227 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7228 break;
7229
7230 if (BITS_BIG_ENDIAN)
7231 {
7232 if (CONST_INT_P (pos))
7233 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7234 - INTVAL (pos));
7235 else if (GET_CODE (pos) == MINUS
7236 && CONST_INT_P (XEXP (pos, 1))
7237 && (INTVAL (XEXP (pos, 1))
7238 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7239 /* If position is ADJUST - X, new position is X. */
7240 pos = XEXP (pos, 0);
7241 else
7242 {
7243 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7244 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7245 gen_int_mode (prec - len,
7246 GET_MODE (pos)),
7247 pos);
7248 }
7249 }
7250 }
7251
7252 /* A SUBREG between two modes that occupy the same numbers of words
7253 can be done by moving the SUBREG to the source. */
7254 else if (GET_CODE (SET_DEST (x)) == SUBREG
7255 /* We need SUBREGs to compute nonzero_bits properly. */
7256 && nonzero_sign_valid
7257 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7258 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7259 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7260 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7261 {
7262 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7263 gen_lowpart
7264 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7265 SET_SRC (x)));
7266 continue;
7267 }
7268 else
7269 break;
7270
7271 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7272 inner = SUBREG_REG (inner);
7273
7274 compute_mode = GET_MODE (inner);
7275
7276 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7277 if (! SCALAR_INT_MODE_P (compute_mode))
7278 {
7279 machine_mode imode;
7280
7281 /* Don't do anything for vector or complex integral types. */
7282 if (! FLOAT_MODE_P (compute_mode))
7283 break;
7284
7285 /* Try to find an integral mode to pun with. */
7286 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7287 if (imode == BLKmode)
7288 break;
7289
7290 compute_mode = imode;
7291 inner = gen_lowpart (imode, inner);
7292 }
7293
7294 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7295 if (len >= HOST_BITS_PER_WIDE_INT)
7296 break;
7297
7298 /* Don't try to compute in too wide unsupported modes. */
7299 if (!targetm.scalar_mode_supported_p (compute_mode))
7300 break;
7301
7302 /* Now compute the equivalent expression. Make a copy of INNER
7303 for the SET_DEST in case it is a MEM into which we will substitute;
7304 we don't want shared RTL in that case. */
7305 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7306 compute_mode);
7307 cleared = simplify_gen_binary (AND, compute_mode,
7308 simplify_gen_unary (NOT, compute_mode,
7309 simplify_gen_binary (ASHIFT,
7310 compute_mode,
7311 mask, pos),
7312 compute_mode),
7313 inner);
7314 masked = simplify_gen_binary (ASHIFT, compute_mode,
7315 simplify_gen_binary (
7316 AND, compute_mode,
7317 gen_lowpart (compute_mode, SET_SRC (x)),
7318 mask),
7319 pos);
7320
7321 x = gen_rtx_SET (copy_rtx (inner),
7322 simplify_gen_binary (IOR, compute_mode,
7323 cleared, masked));
7324 }
7325
7326 return x;
7327 }
7328 \f
7329 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7330 it is an RTX that represents the (variable) starting position; otherwise,
7331 POS is the (constant) starting bit position. Both are counted from the LSB.
7332
7333 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7334
7335 IN_DEST is nonzero if this is a reference in the destination of a SET.
7336 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7337 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7338 be used.
7339
7340 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7341 ZERO_EXTRACT should be built even for bits starting at bit 0.
7342
7343 MODE is the desired mode of the result (if IN_DEST == 0).
7344
7345 The result is an RTX for the extraction or NULL_RTX if the target
7346 can't handle it. */
7347
7348 static rtx
7349 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7350 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7351 int in_dest, int in_compare)
7352 {
7353 /* This mode describes the size of the storage area
7354 to fetch the overall value from. Within that, we
7355 ignore the POS lowest bits, etc. */
7356 machine_mode is_mode = GET_MODE (inner);
7357 machine_mode inner_mode;
7358 machine_mode wanted_inner_mode;
7359 machine_mode wanted_inner_reg_mode = word_mode;
7360 machine_mode pos_mode = word_mode;
7361 machine_mode extraction_mode = word_mode;
7362 machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7363 rtx new_rtx = 0;
7364 rtx orig_pos_rtx = pos_rtx;
7365 HOST_WIDE_INT orig_pos;
7366
7367 if (pos_rtx && CONST_INT_P (pos_rtx))
7368 pos = INTVAL (pos_rtx), pos_rtx = 0;
7369
7370 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7371 {
7372 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7373 consider just the QI as the memory to extract from.
7374 The subreg adds or removes high bits; its mode is
7375 irrelevant to the meaning of this extraction,
7376 since POS and LEN count from the lsb. */
7377 if (MEM_P (SUBREG_REG (inner)))
7378 is_mode = GET_MODE (SUBREG_REG (inner));
7379 inner = SUBREG_REG (inner);
7380 }
7381 else if (GET_CODE (inner) == ASHIFT
7382 && CONST_INT_P (XEXP (inner, 1))
7383 && pos_rtx == 0 && pos == 0
7384 && len > UINTVAL (XEXP (inner, 1)))
7385 {
7386 /* We're extracting the least significant bits of an rtx
7387 (ashift X (const_int C)), where LEN > C. Extract the
7388 least significant (LEN - C) bits of X, giving an rtx
7389 whose mode is MODE, then shift it left C times. */
7390 new_rtx = make_extraction (mode, XEXP (inner, 0),
7391 0, 0, len - INTVAL (XEXP (inner, 1)),
7392 unsignedp, in_dest, in_compare);
7393 if (new_rtx != 0)
7394 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7395 }
7396 else if (GET_CODE (inner) == TRUNCATE)
7397 inner = XEXP (inner, 0);
7398
7399 inner_mode = GET_MODE (inner);
7400
7401 /* See if this can be done without an extraction. We never can if the
7402 width of the field is not the same as that of some integer mode. For
7403 registers, we can only avoid the extraction if the position is at the
7404 low-order bit and this is either not in the destination or we have the
7405 appropriate STRICT_LOW_PART operation available.
7406
7407 For MEM, we can avoid an extract if the field starts on an appropriate
7408 boundary and we can change the mode of the memory reference. */
7409
7410 if (tmode != BLKmode
7411 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7412 && !MEM_P (inner)
7413 && (pos == 0 || REG_P (inner))
7414 && (inner_mode == tmode
7415 || !REG_P (inner)
7416 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7417 || reg_truncated_to_mode (tmode, inner))
7418 && (! in_dest
7419 || (REG_P (inner)
7420 && have_insn_for (STRICT_LOW_PART, tmode))))
7421 || (MEM_P (inner) && pos_rtx == 0
7422 && (pos
7423 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7424 : BITS_PER_UNIT)) == 0
7425 /* We can't do this if we are widening INNER_MODE (it
7426 may not be aligned, for one thing). */
7427 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7428 && (inner_mode == tmode
7429 || (! mode_dependent_address_p (XEXP (inner, 0),
7430 MEM_ADDR_SPACE (inner))
7431 && ! MEM_VOLATILE_P (inner))))))
7432 {
7433 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7434 field. If the original and current mode are the same, we need not
7435 adjust the offset. Otherwise, we do if bytes big endian.
7436
7437 If INNER is not a MEM, get a piece consisting of just the field
7438 of interest (in this case POS % BITS_PER_WORD must be 0). */
7439
7440 if (MEM_P (inner))
7441 {
7442 HOST_WIDE_INT offset;
7443
7444 /* POS counts from lsb, but make OFFSET count in memory order. */
7445 if (BYTES_BIG_ENDIAN)
7446 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7447 else
7448 offset = pos / BITS_PER_UNIT;
7449
7450 new_rtx = adjust_address_nv (inner, tmode, offset);
7451 }
7452 else if (REG_P (inner))
7453 {
7454 if (tmode != inner_mode)
7455 {
7456 /* We can't call gen_lowpart in a DEST since we
7457 always want a SUBREG (see below) and it would sometimes
7458 return a new hard register. */
7459 if (pos || in_dest)
7460 {
7461 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7462
7463 if (WORDS_BIG_ENDIAN
7464 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7465 final_word = ((GET_MODE_SIZE (inner_mode)
7466 - GET_MODE_SIZE (tmode))
7467 / UNITS_PER_WORD) - final_word;
7468
7469 final_word *= UNITS_PER_WORD;
7470 if (BYTES_BIG_ENDIAN &&
7471 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7472 final_word += (GET_MODE_SIZE (inner_mode)
7473 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7474
7475 /* Avoid creating invalid subregs, for example when
7476 simplifying (x>>32)&255. */
7477 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7478 return NULL_RTX;
7479
7480 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7481 }
7482 else
7483 new_rtx = gen_lowpart (tmode, inner);
7484 }
7485 else
7486 new_rtx = inner;
7487 }
7488 else
7489 new_rtx = force_to_mode (inner, tmode,
7490 len >= HOST_BITS_PER_WIDE_INT
7491 ? HOST_WIDE_INT_M1U
7492 : (HOST_WIDE_INT_1U << len) - 1, 0);
7493
7494 /* If this extraction is going into the destination of a SET,
7495 make a STRICT_LOW_PART unless we made a MEM. */
7496
7497 if (in_dest)
7498 return (MEM_P (new_rtx) ? new_rtx
7499 : (GET_CODE (new_rtx) != SUBREG
7500 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7501 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7502
7503 if (mode == tmode)
7504 return new_rtx;
7505
7506 if (CONST_SCALAR_INT_P (new_rtx))
7507 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7508 mode, new_rtx, tmode);
7509
7510 /* If we know that no extraneous bits are set, and that the high
7511 bit is not set, convert the extraction to the cheaper of
7512 sign and zero extension, that are equivalent in these cases. */
7513 if (flag_expensive_optimizations
7514 && (HWI_COMPUTABLE_MODE_P (tmode)
7515 && ((nonzero_bits (new_rtx, tmode)
7516 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7517 == 0)))
7518 {
7519 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7520 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7521
7522 /* Prefer ZERO_EXTENSION, since it gives more information to
7523 backends. */
7524 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7525 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7526 return temp;
7527 return temp1;
7528 }
7529
7530 /* Otherwise, sign- or zero-extend unless we already are in the
7531 proper mode. */
7532
7533 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7534 mode, new_rtx));
7535 }
7536
7537 /* Unless this is a COMPARE or we have a funny memory reference,
7538 don't do anything with zero-extending field extracts starting at
7539 the low-order bit since they are simple AND operations. */
7540 if (pos_rtx == 0 && pos == 0 && ! in_dest
7541 && ! in_compare && unsignedp)
7542 return 0;
7543
7544 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7545 if the position is not a constant and the length is not 1. In all
7546 other cases, we would only be going outside our object in cases when
7547 an original shift would have been undefined. */
7548 if (MEM_P (inner)
7549 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7550 || (pos_rtx != 0 && len != 1)))
7551 return 0;
7552
7553 enum extraction_pattern pattern = (in_dest ? EP_insv
7554 : unsignedp ? EP_extzv : EP_extv);
7555
7556 /* If INNER is not from memory, we want it to have the mode of a register
7557 extraction pattern's structure operand, or word_mode if there is no
7558 such pattern. The same applies to extraction_mode and pos_mode
7559 and their respective operands.
7560
7561 For memory, assume that the desired extraction_mode and pos_mode
7562 are the same as for a register operation, since at present we don't
7563 have named patterns for aligned memory structures. */
7564 struct extraction_insn insn;
7565 if (get_best_reg_extraction_insn (&insn, pattern,
7566 GET_MODE_BITSIZE (inner_mode), mode))
7567 {
7568 wanted_inner_reg_mode = insn.struct_mode;
7569 pos_mode = insn.pos_mode;
7570 extraction_mode = insn.field_mode;
7571 }
7572
7573 /* Never narrow an object, since that might not be safe. */
7574
7575 if (mode != VOIDmode
7576 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7577 extraction_mode = mode;
7578
7579 if (!MEM_P (inner))
7580 wanted_inner_mode = wanted_inner_reg_mode;
7581 else
7582 {
7583 /* Be careful not to go beyond the extracted object and maintain the
7584 natural alignment of the memory. */
7585 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7586 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7587 > GET_MODE_BITSIZE (wanted_inner_mode))
7588 {
7589 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7590 gcc_assert (wanted_inner_mode != VOIDmode);
7591 }
7592 }
7593
7594 orig_pos = pos;
7595
7596 if (BITS_BIG_ENDIAN)
7597 {
7598 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7599 BITS_BIG_ENDIAN style. If position is constant, compute new
7600 position. Otherwise, build subtraction.
7601 Note that POS is relative to the mode of the original argument.
7602 If it's a MEM we need to recompute POS relative to that.
7603 However, if we're extracting from (or inserting into) a register,
7604 we want to recompute POS relative to wanted_inner_mode. */
7605 int width = (MEM_P (inner)
7606 ? GET_MODE_BITSIZE (is_mode)
7607 : GET_MODE_BITSIZE (wanted_inner_mode));
7608
7609 if (pos_rtx == 0)
7610 pos = width - len - pos;
7611 else
7612 pos_rtx
7613 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7614 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7615 pos_rtx);
7616 /* POS may be less than 0 now, but we check for that below.
7617 Note that it can only be less than 0 if !MEM_P (inner). */
7618 }
7619
7620 /* If INNER has a wider mode, and this is a constant extraction, try to
7621 make it smaller and adjust the byte to point to the byte containing
7622 the value. */
7623 if (wanted_inner_mode != VOIDmode
7624 && inner_mode != wanted_inner_mode
7625 && ! pos_rtx
7626 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7627 && MEM_P (inner)
7628 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7629 && ! MEM_VOLATILE_P (inner))
7630 {
7631 int offset = 0;
7632
7633 /* The computations below will be correct if the machine is big
7634 endian in both bits and bytes or little endian in bits and bytes.
7635 If it is mixed, we must adjust. */
7636
7637 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7638 adjust OFFSET to compensate. */
7639 if (BYTES_BIG_ENDIAN
7640 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7641 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7642
7643 /* We can now move to the desired byte. */
7644 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7645 * GET_MODE_SIZE (wanted_inner_mode);
7646 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7647
7648 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7649 && is_mode != wanted_inner_mode)
7650 offset = (GET_MODE_SIZE (is_mode)
7651 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7652
7653 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7654 }
7655
7656 /* If INNER is not memory, get it into the proper mode. If we are changing
7657 its mode, POS must be a constant and smaller than the size of the new
7658 mode. */
7659 else if (!MEM_P (inner))
7660 {
7661 /* On the LHS, don't create paradoxical subregs implicitely truncating
7662 the register unless TRULY_NOOP_TRUNCATION. */
7663 if (in_dest
7664 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7665 wanted_inner_mode))
7666 return NULL_RTX;
7667
7668 if (GET_MODE (inner) != wanted_inner_mode
7669 && (pos_rtx != 0
7670 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7671 return NULL_RTX;
7672
7673 if (orig_pos < 0)
7674 return NULL_RTX;
7675
7676 inner = force_to_mode (inner, wanted_inner_mode,
7677 pos_rtx
7678 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7679 ? HOST_WIDE_INT_M1U
7680 : (((HOST_WIDE_INT_1U << len) - 1)
7681 << orig_pos),
7682 0);
7683 }
7684
7685 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7686 have to zero extend. Otherwise, we can just use a SUBREG. */
7687 if (pos_rtx != 0
7688 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7689 {
7690 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7691 GET_MODE (pos_rtx));
7692
7693 /* If we know that no extraneous bits are set, and that the high
7694 bit is not set, convert extraction to cheaper one - either
7695 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7696 cases. */
7697 if (flag_expensive_optimizations
7698 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7699 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7700 & ~(((unsigned HOST_WIDE_INT)
7701 GET_MODE_MASK (GET_MODE (pos_rtx)))
7702 >> 1))
7703 == 0)))
7704 {
7705 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7706 GET_MODE (pos_rtx));
7707
7708 /* Prefer ZERO_EXTENSION, since it gives more information to
7709 backends. */
7710 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7711 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7712 temp = temp1;
7713 }
7714 pos_rtx = temp;
7715 }
7716
7717 /* Make POS_RTX unless we already have it and it is correct. If we don't
7718 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7719 be a CONST_INT. */
7720 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7721 pos_rtx = orig_pos_rtx;
7722
7723 else if (pos_rtx == 0)
7724 pos_rtx = GEN_INT (pos);
7725
7726 /* Make the required operation. See if we can use existing rtx. */
7727 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7728 extraction_mode, inner, GEN_INT (len), pos_rtx);
7729 if (! in_dest)
7730 new_rtx = gen_lowpart (mode, new_rtx);
7731
7732 return new_rtx;
7733 }
7734 \f
7735 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7736 with any other operations in X. Return X without that shift if so. */
7737
7738 static rtx
7739 extract_left_shift (rtx x, int count)
7740 {
7741 enum rtx_code code = GET_CODE (x);
7742 machine_mode mode = GET_MODE (x);
7743 rtx tem;
7744
7745 switch (code)
7746 {
7747 case ASHIFT:
7748 /* This is the shift itself. If it is wide enough, we will return
7749 either the value being shifted if the shift count is equal to
7750 COUNT or a shift for the difference. */
7751 if (CONST_INT_P (XEXP (x, 1))
7752 && INTVAL (XEXP (x, 1)) >= count)
7753 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7754 INTVAL (XEXP (x, 1)) - count);
7755 break;
7756
7757 case NEG: case NOT:
7758 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7759 return simplify_gen_unary (code, mode, tem, mode);
7760
7761 break;
7762
7763 case PLUS: case IOR: case XOR: case AND:
7764 /* If we can safely shift this constant and we find the inner shift,
7765 make a new operation. */
7766 if (CONST_INT_P (XEXP (x, 1))
7767 && (UINTVAL (XEXP (x, 1))
7768 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7769 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7770 {
7771 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7772 return simplify_gen_binary (code, mode, tem,
7773 gen_int_mode (val, mode));
7774 }
7775 break;
7776
7777 default:
7778 break;
7779 }
7780
7781 return 0;
7782 }
7783 \f
7784 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7785 level of the expression and MODE is its mode. IN_CODE is as for
7786 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7787 that should be used when recursing on operands of *X_PTR.
7788
7789 There are two possible actions:
7790
7791 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7792 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7793
7794 - Return a new rtx, which the caller returns directly. */
7795
7796 static rtx
7797 make_compound_operation_int (machine_mode mode, rtx *x_ptr,
7798 enum rtx_code in_code,
7799 enum rtx_code *next_code_ptr)
7800 {
7801 rtx x = *x_ptr;
7802 enum rtx_code next_code = *next_code_ptr;
7803 enum rtx_code code = GET_CODE (x);
7804 int mode_width = GET_MODE_PRECISION (mode);
7805 rtx rhs, lhs;
7806 rtx new_rtx = 0;
7807 int i;
7808 rtx tem;
7809 bool equality_comparison = false;
7810
7811 if (in_code == EQ)
7812 {
7813 equality_comparison = true;
7814 in_code = COMPARE;
7815 }
7816
7817 /* Process depending on the code of this operation. If NEW is set
7818 nonzero, it will be returned. */
7819
7820 switch (code)
7821 {
7822 case ASHIFT:
7823 /* Convert shifts by constants into multiplications if inside
7824 an address. */
7825 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7826 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7827 && INTVAL (XEXP (x, 1)) >= 0)
7828 {
7829 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7830 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7831
7832 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7833 if (GET_CODE (new_rtx) == NEG)
7834 {
7835 new_rtx = XEXP (new_rtx, 0);
7836 multval = -multval;
7837 }
7838 multval = trunc_int_for_mode (multval, mode);
7839 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7840 }
7841 break;
7842
7843 case PLUS:
7844 lhs = XEXP (x, 0);
7845 rhs = XEXP (x, 1);
7846 lhs = make_compound_operation (lhs, next_code);
7847 rhs = make_compound_operation (rhs, next_code);
7848 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
7849 {
7850 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7851 XEXP (lhs, 1));
7852 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7853 }
7854 else if (GET_CODE (lhs) == MULT
7855 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7856 {
7857 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7858 simplify_gen_unary (NEG, mode,
7859 XEXP (lhs, 1),
7860 mode));
7861 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7862 }
7863 else
7864 {
7865 SUBST (XEXP (x, 0), lhs);
7866 SUBST (XEXP (x, 1), rhs);
7867 }
7868 maybe_swap_commutative_operands (x);
7869 return x;
7870
7871 case MINUS:
7872 lhs = XEXP (x, 0);
7873 rhs = XEXP (x, 1);
7874 lhs = make_compound_operation (lhs, next_code);
7875 rhs = make_compound_operation (rhs, next_code);
7876 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
7877 {
7878 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7879 XEXP (rhs, 1));
7880 return simplify_gen_binary (PLUS, mode, tem, lhs);
7881 }
7882 else if (GET_CODE (rhs) == MULT
7883 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7884 {
7885 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7886 simplify_gen_unary (NEG, mode,
7887 XEXP (rhs, 1),
7888 mode));
7889 return simplify_gen_binary (PLUS, mode, tem, lhs);
7890 }
7891 else
7892 {
7893 SUBST (XEXP (x, 0), lhs);
7894 SUBST (XEXP (x, 1), rhs);
7895 return x;
7896 }
7897
7898 case AND:
7899 /* If the second operand is not a constant, we can't do anything
7900 with it. */
7901 if (!CONST_INT_P (XEXP (x, 1)))
7902 break;
7903
7904 /* If the constant is a power of two minus one and the first operand
7905 is a logical right shift, make an extraction. */
7906 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7907 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7908 {
7909 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7910 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7911 0, in_code == COMPARE);
7912 }
7913
7914 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7915 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7916 && subreg_lowpart_p (XEXP (x, 0))
7917 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7918 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7919 {
7920 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
7921 machine_mode inner_mode = GET_MODE (inner_x0);
7922 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
7923 new_rtx = make_extraction (inner_mode, new_rtx, 0,
7924 XEXP (inner_x0, 1),
7925 i, 1, 0, in_code == COMPARE);
7926
7927 if (new_rtx)
7928 {
7929 /* If we narrowed the mode when dropping the subreg, then
7930 we must zero-extend to keep the semantics of the AND. */
7931 if (GET_MODE_SIZE (inner_mode) >= GET_MODE_SIZE (mode))
7932 ;
7933 else if (SCALAR_INT_MODE_P (inner_mode))
7934 new_rtx = simplify_gen_unary (ZERO_EXTEND, mode,
7935 new_rtx, inner_mode);
7936 else
7937 new_rtx = NULL;
7938 }
7939
7940 /* If that didn't give anything, see if the AND simplifies on
7941 its own. */
7942 if (!new_rtx && i >= 0)
7943 {
7944 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7945 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
7946 0, in_code == COMPARE);
7947 }
7948 }
7949 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7950 else if ((GET_CODE (XEXP (x, 0)) == XOR
7951 || GET_CODE (XEXP (x, 0)) == IOR)
7952 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7953 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7954 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7955 {
7956 /* Apply the distributive law, and then try to make extractions. */
7957 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7958 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7959 XEXP (x, 1)),
7960 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7961 XEXP (x, 1)));
7962 new_rtx = make_compound_operation (new_rtx, in_code);
7963 }
7964
7965 /* If we are have (and (rotate X C) M) and C is larger than the number
7966 of bits in M, this is an extraction. */
7967
7968 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7969 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7970 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7971 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7972 {
7973 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7974 new_rtx = make_extraction (mode, new_rtx,
7975 (GET_MODE_PRECISION (mode)
7976 - INTVAL (XEXP (XEXP (x, 0), 1))),
7977 NULL_RTX, i, 1, 0, in_code == COMPARE);
7978 }
7979
7980 /* On machines without logical shifts, if the operand of the AND is
7981 a logical shift and our mask turns off all the propagated sign
7982 bits, we can replace the logical shift with an arithmetic shift. */
7983 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7984 && !have_insn_for (LSHIFTRT, mode)
7985 && have_insn_for (ASHIFTRT, mode)
7986 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7987 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7988 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7989 && mode_width <= HOST_BITS_PER_WIDE_INT)
7990 {
7991 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7992
7993 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7994 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7995 SUBST (XEXP (x, 0),
7996 gen_rtx_ASHIFTRT (mode,
7997 make_compound_operation
7998 (XEXP (XEXP (x, 0), 0), next_code),
7999 XEXP (XEXP (x, 0), 1)));
8000 }
8001
8002 /* If the constant is one less than a power of two, this might be
8003 representable by an extraction even if no shift is present.
8004 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8005 we are in a COMPARE. */
8006 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8007 new_rtx = make_extraction (mode,
8008 make_compound_operation (XEXP (x, 0),
8009 next_code),
8010 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8011
8012 /* If we are in a comparison and this is an AND with a power of two,
8013 convert this into the appropriate bit extract. */
8014 else if (in_code == COMPARE
8015 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8016 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8017 new_rtx = make_extraction (mode,
8018 make_compound_operation (XEXP (x, 0),
8019 next_code),
8020 i, NULL_RTX, 1, 1, 0, 1);
8021
8022 /* If the one operand is a paradoxical subreg of a register or memory and
8023 the constant (limited to the smaller mode) has only zero bits where
8024 the sub expression has known zero bits, this can be expressed as
8025 a zero_extend. */
8026 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8027 {
8028 rtx sub;
8029
8030 sub = XEXP (XEXP (x, 0), 0);
8031 machine_mode sub_mode = GET_MODE (sub);
8032 if ((REG_P (sub) || MEM_P (sub))
8033 && GET_MODE_PRECISION (sub_mode) < mode_width)
8034 {
8035 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8036 unsigned HOST_WIDE_INT mask;
8037
8038 /* original AND constant with all the known zero bits set */
8039 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8040 if ((mask & mode_mask) == mode_mask)
8041 {
8042 new_rtx = make_compound_operation (sub, next_code);
8043 new_rtx = make_extraction (mode, new_rtx, 0, 0,
8044 GET_MODE_PRECISION (sub_mode),
8045 1, 0, in_code == COMPARE);
8046 }
8047 }
8048 }
8049
8050 break;
8051
8052 case LSHIFTRT:
8053 /* If the sign bit is known to be zero, replace this with an
8054 arithmetic shift. */
8055 if (have_insn_for (ASHIFTRT, mode)
8056 && ! have_insn_for (LSHIFTRT, mode)
8057 && mode_width <= HOST_BITS_PER_WIDE_INT
8058 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8059 {
8060 new_rtx = gen_rtx_ASHIFTRT (mode,
8061 make_compound_operation (XEXP (x, 0),
8062 next_code),
8063 XEXP (x, 1));
8064 break;
8065 }
8066
8067 /* fall through */
8068
8069 case ASHIFTRT:
8070 lhs = XEXP (x, 0);
8071 rhs = XEXP (x, 1);
8072
8073 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8074 this is a SIGN_EXTRACT. */
8075 if (CONST_INT_P (rhs)
8076 && GET_CODE (lhs) == ASHIFT
8077 && CONST_INT_P (XEXP (lhs, 1))
8078 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8079 && INTVAL (XEXP (lhs, 1)) >= 0
8080 && INTVAL (rhs) < mode_width)
8081 {
8082 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8083 new_rtx = make_extraction (mode, new_rtx,
8084 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8085 NULL_RTX, mode_width - INTVAL (rhs),
8086 code == LSHIFTRT, 0, in_code == COMPARE);
8087 break;
8088 }
8089
8090 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8091 If so, try to merge the shifts into a SIGN_EXTEND. We could
8092 also do this for some cases of SIGN_EXTRACT, but it doesn't
8093 seem worth the effort; the case checked for occurs on Alpha. */
8094
8095 if (!OBJECT_P (lhs)
8096 && ! (GET_CODE (lhs) == SUBREG
8097 && (OBJECT_P (SUBREG_REG (lhs))))
8098 && CONST_INT_P (rhs)
8099 && INTVAL (rhs) >= 0
8100 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8101 && INTVAL (rhs) < mode_width
8102 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8103 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8104 0, NULL_RTX, mode_width - INTVAL (rhs),
8105 code == LSHIFTRT, 0, in_code == COMPARE);
8106
8107 break;
8108
8109 case SUBREG:
8110 /* Call ourselves recursively on the inner expression. If we are
8111 narrowing the object and it has a different RTL code from
8112 what it originally did, do this SUBREG as a force_to_mode. */
8113 {
8114 rtx inner = SUBREG_REG (x), simplified;
8115 enum rtx_code subreg_code = in_code;
8116
8117 /* If the SUBREG is masking of a logical right shift,
8118 make an extraction. */
8119 if (GET_CODE (inner) == LSHIFTRT
8120 && CONST_INT_P (XEXP (inner, 1))
8121 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8122 && (UINTVAL (XEXP (inner, 1))
8123 < GET_MODE_PRECISION (GET_MODE (inner)))
8124 && subreg_lowpart_p (x))
8125 {
8126 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8127 int width = GET_MODE_PRECISION (GET_MODE (inner))
8128 - INTVAL (XEXP (inner, 1));
8129 if (width > mode_width)
8130 width = mode_width;
8131 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8132 width, 1, 0, in_code == COMPARE);
8133 break;
8134 }
8135
8136 /* If in_code is COMPARE, it isn't always safe to pass it through
8137 to the recursive make_compound_operation call. */
8138 if (subreg_code == COMPARE
8139 && (!subreg_lowpart_p (x)
8140 || GET_CODE (inner) == SUBREG
8141 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8142 is (const_int 0), rather than
8143 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
8144 || (GET_CODE (inner) == AND
8145 && CONST_INT_P (XEXP (inner, 1))
8146 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8147 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8148 >= GET_MODE_BITSIZE (mode))))
8149 subreg_code = SET;
8150
8151 tem = make_compound_operation (inner, subreg_code);
8152
8153 simplified
8154 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8155 if (simplified)
8156 tem = simplified;
8157
8158 if (GET_CODE (tem) != GET_CODE (inner)
8159 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8160 && subreg_lowpart_p (x))
8161 {
8162 rtx newer
8163 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8164
8165 /* If we have something other than a SUBREG, we might have
8166 done an expansion, so rerun ourselves. */
8167 if (GET_CODE (newer) != SUBREG)
8168 newer = make_compound_operation (newer, in_code);
8169
8170 /* force_to_mode can expand compounds. If it just re-expanded the
8171 compound, use gen_lowpart to convert to the desired mode. */
8172 if (rtx_equal_p (newer, x)
8173 /* Likewise if it re-expanded the compound only partially.
8174 This happens for SUBREG of ZERO_EXTRACT if they extract
8175 the same number of bits. */
8176 || (GET_CODE (newer) == SUBREG
8177 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8178 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8179 && GET_CODE (inner) == AND
8180 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8181 return gen_lowpart (GET_MODE (x), tem);
8182
8183 return newer;
8184 }
8185
8186 if (simplified)
8187 return tem;
8188 }
8189 break;
8190
8191 default:
8192 break;
8193 }
8194
8195 if (new_rtx)
8196 *x_ptr = gen_lowpart (mode, new_rtx);
8197 *next_code_ptr = next_code;
8198 return NULL_RTX;
8199 }
8200
8201 /* Look at the expression rooted at X. Look for expressions
8202 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8203 Form these expressions.
8204
8205 Return the new rtx, usually just X.
8206
8207 Also, for machines like the VAX that don't have logical shift insns,
8208 try to convert logical to arithmetic shift operations in cases where
8209 they are equivalent. This undoes the canonicalizations to logical
8210 shifts done elsewhere.
8211
8212 We try, as much as possible, to re-use rtl expressions to save memory.
8213
8214 IN_CODE says what kind of expression we are processing. Normally, it is
8215 SET. In a memory address it is MEM. When processing the arguments of
8216 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8217 precisely it is an equality comparison against zero. */
8218
8219 rtx
8220 make_compound_operation (rtx x, enum rtx_code in_code)
8221 {
8222 enum rtx_code code = GET_CODE (x);
8223 const char *fmt;
8224 int i, j;
8225 enum rtx_code next_code;
8226 rtx new_rtx, tem;
8227
8228 /* Select the code to be used in recursive calls. Once we are inside an
8229 address, we stay there. If we have a comparison, set to COMPARE,
8230 but once inside, go back to our default of SET. */
8231
8232 next_code = (code == MEM ? MEM
8233 : ((code == COMPARE || COMPARISON_P (x))
8234 && XEXP (x, 1) == const0_rtx) ? COMPARE
8235 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8236
8237 if (SCALAR_INT_MODE_P (GET_MODE (x)))
8238 {
8239 rtx new_rtx = make_compound_operation_int (GET_MODE (x), &x,
8240 in_code, &next_code);
8241 if (new_rtx)
8242 return new_rtx;
8243 code = GET_CODE (x);
8244 }
8245
8246 /* Now recursively process each operand of this operation. We need to
8247 handle ZERO_EXTEND specially so that we don't lose track of the
8248 inner mode. */
8249 if (code == ZERO_EXTEND)
8250 {
8251 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8252 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8253 new_rtx, GET_MODE (XEXP (x, 0)));
8254 if (tem)
8255 return tem;
8256 SUBST (XEXP (x, 0), new_rtx);
8257 return x;
8258 }
8259
8260 fmt = GET_RTX_FORMAT (code);
8261 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8262 if (fmt[i] == 'e')
8263 {
8264 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8265 SUBST (XEXP (x, i), new_rtx);
8266 }
8267 else if (fmt[i] == 'E')
8268 for (j = 0; j < XVECLEN (x, i); j++)
8269 {
8270 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8271 SUBST (XVECEXP (x, i, j), new_rtx);
8272 }
8273
8274 maybe_swap_commutative_operands (x);
8275 return x;
8276 }
8277 \f
8278 /* Given M see if it is a value that would select a field of bits
8279 within an item, but not the entire word. Return -1 if not.
8280 Otherwise, return the starting position of the field, where 0 is the
8281 low-order bit.
8282
8283 *PLEN is set to the length of the field. */
8284
8285 static int
8286 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8287 {
8288 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8289 int pos = m ? ctz_hwi (m) : -1;
8290 int len = 0;
8291
8292 if (pos >= 0)
8293 /* Now shift off the low-order zero bits and see if we have a
8294 power of two minus 1. */
8295 len = exact_log2 ((m >> pos) + 1);
8296
8297 if (len <= 0)
8298 pos = -1;
8299
8300 *plen = len;
8301 return pos;
8302 }
8303 \f
8304 /* If X refers to a register that equals REG in value, replace these
8305 references with REG. */
8306 static rtx
8307 canon_reg_for_combine (rtx x, rtx reg)
8308 {
8309 rtx op0, op1, op2;
8310 const char *fmt;
8311 int i;
8312 bool copied;
8313
8314 enum rtx_code code = GET_CODE (x);
8315 switch (GET_RTX_CLASS (code))
8316 {
8317 case RTX_UNARY:
8318 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8319 if (op0 != XEXP (x, 0))
8320 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8321 GET_MODE (reg));
8322 break;
8323
8324 case RTX_BIN_ARITH:
8325 case RTX_COMM_ARITH:
8326 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8327 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8328 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8329 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8330 break;
8331
8332 case RTX_COMPARE:
8333 case RTX_COMM_COMPARE:
8334 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8335 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8336 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8337 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8338 GET_MODE (op0), op0, op1);
8339 break;
8340
8341 case RTX_TERNARY:
8342 case RTX_BITFIELD_OPS:
8343 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8344 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8345 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8346 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8347 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8348 GET_MODE (op0), op0, op1, op2);
8349 /* FALLTHRU */
8350
8351 case RTX_OBJ:
8352 if (REG_P (x))
8353 {
8354 if (rtx_equal_p (get_last_value (reg), x)
8355 || rtx_equal_p (reg, get_last_value (x)))
8356 return reg;
8357 else
8358 break;
8359 }
8360
8361 /* fall through */
8362
8363 default:
8364 fmt = GET_RTX_FORMAT (code);
8365 copied = false;
8366 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8367 if (fmt[i] == 'e')
8368 {
8369 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8370 if (op != XEXP (x, i))
8371 {
8372 if (!copied)
8373 {
8374 copied = true;
8375 x = copy_rtx (x);
8376 }
8377 XEXP (x, i) = op;
8378 }
8379 }
8380 else if (fmt[i] == 'E')
8381 {
8382 int j;
8383 for (j = 0; j < XVECLEN (x, i); j++)
8384 {
8385 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8386 if (op != XVECEXP (x, i, j))
8387 {
8388 if (!copied)
8389 {
8390 copied = true;
8391 x = copy_rtx (x);
8392 }
8393 XVECEXP (x, i, j) = op;
8394 }
8395 }
8396 }
8397
8398 break;
8399 }
8400
8401 return x;
8402 }
8403
8404 /* Return X converted to MODE. If the value is already truncated to
8405 MODE we can just return a subreg even though in the general case we
8406 would need an explicit truncation. */
8407
8408 static rtx
8409 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8410 {
8411 if (!CONST_INT_P (x)
8412 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8413 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8414 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8415 {
8416 /* Bit-cast X into an integer mode. */
8417 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8418 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8419 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8420 x, GET_MODE (x));
8421 }
8422
8423 return gen_lowpart (mode, x);
8424 }
8425
8426 /* See if X can be simplified knowing that we will only refer to it in
8427 MODE and will only refer to those bits that are nonzero in MASK.
8428 If other bits are being computed or if masking operations are done
8429 that select a superset of the bits in MASK, they can sometimes be
8430 ignored.
8431
8432 Return a possibly simplified expression, but always convert X to
8433 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8434
8435 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8436 are all off in X. This is used when X will be complemented, by either
8437 NOT, NEG, or XOR. */
8438
8439 static rtx
8440 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8441 int just_select)
8442 {
8443 enum rtx_code code = GET_CODE (x);
8444 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8445 machine_mode op_mode;
8446 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8447 rtx op0, op1, temp;
8448
8449 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8450 code below will do the wrong thing since the mode of such an
8451 expression is VOIDmode.
8452
8453 Also do nothing if X is a CLOBBER; this can happen if X was
8454 the return value from a call to gen_lowpart. */
8455 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8456 return x;
8457
8458 /* We want to perform the operation in its present mode unless we know
8459 that the operation is valid in MODE, in which case we do the operation
8460 in MODE. */
8461 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8462 && have_insn_for (code, mode))
8463 ? mode : GET_MODE (x));
8464
8465 /* It is not valid to do a right-shift in a narrower mode
8466 than the one it came in with. */
8467 if ((code == LSHIFTRT || code == ASHIFTRT)
8468 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8469 op_mode = GET_MODE (x);
8470
8471 /* Truncate MASK to fit OP_MODE. */
8472 if (op_mode)
8473 mask &= GET_MODE_MASK (op_mode);
8474
8475 /* When we have an arithmetic operation, or a shift whose count we
8476 do not know, we need to assume that all bits up to the highest-order
8477 bit in MASK will be needed. This is how we form such a mask. */
8478 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8479 fuller_mask = HOST_WIDE_INT_M1U;
8480 else
8481 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8482 - 1);
8483
8484 /* Determine what bits of X are guaranteed to be (non)zero. */
8485 nonzero = nonzero_bits (x, mode);
8486
8487 /* If none of the bits in X are needed, return a zero. */
8488 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8489 x = const0_rtx;
8490
8491 /* If X is a CONST_INT, return a new one. Do this here since the
8492 test below will fail. */
8493 if (CONST_INT_P (x))
8494 {
8495 if (SCALAR_INT_MODE_P (mode))
8496 return gen_int_mode (INTVAL (x) & mask, mode);
8497 else
8498 {
8499 x = GEN_INT (INTVAL (x) & mask);
8500 return gen_lowpart_common (mode, x);
8501 }
8502 }
8503
8504 /* If X is narrower than MODE and we want all the bits in X's mode, just
8505 get X in the proper mode. */
8506 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8507 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8508 return gen_lowpart (mode, x);
8509
8510 /* We can ignore the effect of a SUBREG if it narrows the mode or
8511 if the constant masks to zero all the bits the mode doesn't have. */
8512 if (GET_CODE (x) == SUBREG
8513 && subreg_lowpart_p (x)
8514 && ((GET_MODE_SIZE (GET_MODE (x))
8515 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8516 || (0 == (mask
8517 & GET_MODE_MASK (GET_MODE (x))
8518 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8519 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8520
8521 /* The arithmetic simplifications here only work for scalar integer modes. */
8522 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8523 return gen_lowpart_or_truncate (mode, x);
8524
8525 switch (code)
8526 {
8527 case CLOBBER:
8528 /* If X is a (clobber (const_int)), return it since we know we are
8529 generating something that won't match. */
8530 return x;
8531
8532 case SIGN_EXTEND:
8533 case ZERO_EXTEND:
8534 case ZERO_EXTRACT:
8535 case SIGN_EXTRACT:
8536 x = expand_compound_operation (x);
8537 if (GET_CODE (x) != code)
8538 return force_to_mode (x, mode, mask, next_select);
8539 break;
8540
8541 case TRUNCATE:
8542 /* Similarly for a truncate. */
8543 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8544
8545 case AND:
8546 /* If this is an AND with a constant, convert it into an AND
8547 whose constant is the AND of that constant with MASK. If it
8548 remains an AND of MASK, delete it since it is redundant. */
8549
8550 if (CONST_INT_P (XEXP (x, 1)))
8551 {
8552 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8553 mask & INTVAL (XEXP (x, 1)));
8554
8555 /* If X is still an AND, see if it is an AND with a mask that
8556 is just some low-order bits. If so, and it is MASK, we don't
8557 need it. */
8558
8559 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8560 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8561 == mask))
8562 x = XEXP (x, 0);
8563
8564 /* If it remains an AND, try making another AND with the bits
8565 in the mode mask that aren't in MASK turned on. If the
8566 constant in the AND is wide enough, this might make a
8567 cheaper constant. */
8568
8569 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8570 && GET_MODE_MASK (GET_MODE (x)) != mask
8571 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8572 {
8573 unsigned HOST_WIDE_INT cval
8574 = UINTVAL (XEXP (x, 1))
8575 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8576 rtx y;
8577
8578 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8579 gen_int_mode (cval, GET_MODE (x)));
8580 if (set_src_cost (y, GET_MODE (x), optimize_this_for_speed_p)
8581 < set_src_cost (x, GET_MODE (x), optimize_this_for_speed_p))
8582 x = y;
8583 }
8584
8585 break;
8586 }
8587
8588 goto binop;
8589
8590 case PLUS:
8591 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8592 low-order bits (as in an alignment operation) and FOO is already
8593 aligned to that boundary, mask C1 to that boundary as well.
8594 This may eliminate that PLUS and, later, the AND. */
8595
8596 {
8597 unsigned int width = GET_MODE_PRECISION (mode);
8598 unsigned HOST_WIDE_INT smask = mask;
8599
8600 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8601 number, sign extend it. */
8602
8603 if (width < HOST_BITS_PER_WIDE_INT
8604 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8605 smask |= HOST_WIDE_INT_M1U << width;
8606
8607 if (CONST_INT_P (XEXP (x, 1))
8608 && pow2p_hwi (- smask)
8609 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8610 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8611 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8612 (INTVAL (XEXP (x, 1)) & smask)),
8613 mode, smask, next_select);
8614 }
8615
8616 /* fall through */
8617
8618 case MULT:
8619 /* Substituting into the operands of a widening MULT is not likely to
8620 create RTL matching a machine insn. */
8621 if (code == MULT
8622 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8623 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8624 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8625 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8626 && REG_P (XEXP (XEXP (x, 0), 0))
8627 && REG_P (XEXP (XEXP (x, 1), 0)))
8628 return gen_lowpart_or_truncate (mode, x);
8629
8630 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8631 most significant bit in MASK since carries from those bits will
8632 affect the bits we are interested in. */
8633 mask = fuller_mask;
8634 goto binop;
8635
8636 case MINUS:
8637 /* If X is (minus C Y) where C's least set bit is larger than any bit
8638 in the mask, then we may replace with (neg Y). */
8639 if (CONST_INT_P (XEXP (x, 0))
8640 && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8641 {
8642 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8643 GET_MODE (x));
8644 return force_to_mode (x, mode, mask, next_select);
8645 }
8646
8647 /* Similarly, if C contains every bit in the fuller_mask, then we may
8648 replace with (not Y). */
8649 if (CONST_INT_P (XEXP (x, 0))
8650 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8651 {
8652 x = simplify_gen_unary (NOT, GET_MODE (x),
8653 XEXP (x, 1), GET_MODE (x));
8654 return force_to_mode (x, mode, mask, next_select);
8655 }
8656
8657 mask = fuller_mask;
8658 goto binop;
8659
8660 case IOR:
8661 case XOR:
8662 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8663 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8664 operation which may be a bitfield extraction. Ensure that the
8665 constant we form is not wider than the mode of X. */
8666
8667 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8668 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8669 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8670 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8671 && CONST_INT_P (XEXP (x, 1))
8672 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8673 + floor_log2 (INTVAL (XEXP (x, 1))))
8674 < GET_MODE_PRECISION (GET_MODE (x)))
8675 && (UINTVAL (XEXP (x, 1))
8676 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8677 {
8678 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8679 << INTVAL (XEXP (XEXP (x, 0), 1)),
8680 GET_MODE (x));
8681 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8682 XEXP (XEXP (x, 0), 0), temp);
8683 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8684 XEXP (XEXP (x, 0), 1));
8685 return force_to_mode (x, mode, mask, next_select);
8686 }
8687
8688 binop:
8689 /* For most binary operations, just propagate into the operation and
8690 change the mode if we have an operation of that mode. */
8691
8692 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8693 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8694
8695 /* If we ended up truncating both operands, truncate the result of the
8696 operation instead. */
8697 if (GET_CODE (op0) == TRUNCATE
8698 && GET_CODE (op1) == TRUNCATE)
8699 {
8700 op0 = XEXP (op0, 0);
8701 op1 = XEXP (op1, 0);
8702 }
8703
8704 op0 = gen_lowpart_or_truncate (op_mode, op0);
8705 op1 = gen_lowpart_or_truncate (op_mode, op1);
8706
8707 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8708 x = simplify_gen_binary (code, op_mode, op0, op1);
8709 break;
8710
8711 case ASHIFT:
8712 /* For left shifts, do the same, but just for the first operand.
8713 However, we cannot do anything with shifts where we cannot
8714 guarantee that the counts are smaller than the size of the mode
8715 because such a count will have a different meaning in a
8716 wider mode. */
8717
8718 if (! (CONST_INT_P (XEXP (x, 1))
8719 && INTVAL (XEXP (x, 1)) >= 0
8720 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8721 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8722 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8723 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8724 break;
8725
8726 /* If the shift count is a constant and we can do arithmetic in
8727 the mode of the shift, refine which bits we need. Otherwise, use the
8728 conservative form of the mask. */
8729 if (CONST_INT_P (XEXP (x, 1))
8730 && INTVAL (XEXP (x, 1)) >= 0
8731 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8732 && HWI_COMPUTABLE_MODE_P (op_mode))
8733 mask >>= INTVAL (XEXP (x, 1));
8734 else
8735 mask = fuller_mask;
8736
8737 op0 = gen_lowpart_or_truncate (op_mode,
8738 force_to_mode (XEXP (x, 0), op_mode,
8739 mask, next_select));
8740
8741 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8742 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8743 break;
8744
8745 case LSHIFTRT:
8746 /* Here we can only do something if the shift count is a constant,
8747 this shift constant is valid for the host, and we can do arithmetic
8748 in OP_MODE. */
8749
8750 if (CONST_INT_P (XEXP (x, 1))
8751 && INTVAL (XEXP (x, 1)) >= 0
8752 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8753 && HWI_COMPUTABLE_MODE_P (op_mode))
8754 {
8755 rtx inner = XEXP (x, 0);
8756 unsigned HOST_WIDE_INT inner_mask;
8757
8758 /* Select the mask of the bits we need for the shift operand. */
8759 inner_mask = mask << INTVAL (XEXP (x, 1));
8760
8761 /* We can only change the mode of the shift if we can do arithmetic
8762 in the mode of the shift and INNER_MASK is no wider than the
8763 width of X's mode. */
8764 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8765 op_mode = GET_MODE (x);
8766
8767 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8768
8769 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8770 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8771 }
8772
8773 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8774 shift and AND produces only copies of the sign bit (C2 is one less
8775 than a power of two), we can do this with just a shift. */
8776
8777 if (GET_CODE (x) == LSHIFTRT
8778 && CONST_INT_P (XEXP (x, 1))
8779 /* The shift puts one of the sign bit copies in the least significant
8780 bit. */
8781 && ((INTVAL (XEXP (x, 1))
8782 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8783 >= GET_MODE_PRECISION (GET_MODE (x)))
8784 && pow2p_hwi (mask + 1)
8785 /* Number of bits left after the shift must be more than the mask
8786 needs. */
8787 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8788 <= GET_MODE_PRECISION (GET_MODE (x)))
8789 /* Must be more sign bit copies than the mask needs. */
8790 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8791 >= exact_log2 (mask + 1)))
8792 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8793 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8794 - exact_log2 (mask + 1)));
8795
8796 goto shiftrt;
8797
8798 case ASHIFTRT:
8799 /* If we are just looking for the sign bit, we don't need this shift at
8800 all, even if it has a variable count. */
8801 if (val_signbit_p (GET_MODE (x), mask))
8802 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8803
8804 /* If this is a shift by a constant, get a mask that contains those bits
8805 that are not copies of the sign bit. We then have two cases: If
8806 MASK only includes those bits, this can be a logical shift, which may
8807 allow simplifications. If MASK is a single-bit field not within
8808 those bits, we are requesting a copy of the sign bit and hence can
8809 shift the sign bit to the appropriate location. */
8810
8811 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8812 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8813 {
8814 int i;
8815
8816 /* If the considered data is wider than HOST_WIDE_INT, we can't
8817 represent a mask for all its bits in a single scalar.
8818 But we only care about the lower bits, so calculate these. */
8819
8820 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8821 {
8822 nonzero = HOST_WIDE_INT_M1U;
8823
8824 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8825 is the number of bits a full-width mask would have set.
8826 We need only shift if these are fewer than nonzero can
8827 hold. If not, we must keep all bits set in nonzero. */
8828
8829 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8830 < HOST_BITS_PER_WIDE_INT)
8831 nonzero >>= INTVAL (XEXP (x, 1))
8832 + HOST_BITS_PER_WIDE_INT
8833 - GET_MODE_PRECISION (GET_MODE (x)) ;
8834 }
8835 else
8836 {
8837 nonzero = GET_MODE_MASK (GET_MODE (x));
8838 nonzero >>= INTVAL (XEXP (x, 1));
8839 }
8840
8841 if ((mask & ~nonzero) == 0)
8842 {
8843 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8844 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8845 if (GET_CODE (x) != ASHIFTRT)
8846 return force_to_mode (x, mode, mask, next_select);
8847 }
8848
8849 else if ((i = exact_log2 (mask)) >= 0)
8850 {
8851 x = simplify_shift_const
8852 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8853 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8854
8855 if (GET_CODE (x) != ASHIFTRT)
8856 return force_to_mode (x, mode, mask, next_select);
8857 }
8858 }
8859
8860 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8861 even if the shift count isn't a constant. */
8862 if (mask == 1)
8863 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8864 XEXP (x, 0), XEXP (x, 1));
8865
8866 shiftrt:
8867
8868 /* If this is a zero- or sign-extension operation that just affects bits
8869 we don't care about, remove it. Be sure the call above returned
8870 something that is still a shift. */
8871
8872 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8873 && CONST_INT_P (XEXP (x, 1))
8874 && INTVAL (XEXP (x, 1)) >= 0
8875 && (INTVAL (XEXP (x, 1))
8876 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8877 && GET_CODE (XEXP (x, 0)) == ASHIFT
8878 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8879 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8880 next_select);
8881
8882 break;
8883
8884 case ROTATE:
8885 case ROTATERT:
8886 /* If the shift count is constant and we can do computations
8887 in the mode of X, compute where the bits we care about are.
8888 Otherwise, we can't do anything. Don't change the mode of
8889 the shift or propagate MODE into the shift, though. */
8890 if (CONST_INT_P (XEXP (x, 1))
8891 && INTVAL (XEXP (x, 1)) >= 0)
8892 {
8893 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8894 GET_MODE (x),
8895 gen_int_mode (mask, GET_MODE (x)),
8896 XEXP (x, 1));
8897 if (temp && CONST_INT_P (temp))
8898 x = simplify_gen_binary (code, GET_MODE (x),
8899 force_to_mode (XEXP (x, 0), GET_MODE (x),
8900 INTVAL (temp), next_select),
8901 XEXP (x, 1));
8902 }
8903 break;
8904
8905 case NEG:
8906 /* If we just want the low-order bit, the NEG isn't needed since it
8907 won't change the low-order bit. */
8908 if (mask == 1)
8909 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8910
8911 /* We need any bits less significant than the most significant bit in
8912 MASK since carries from those bits will affect the bits we are
8913 interested in. */
8914 mask = fuller_mask;
8915 goto unop;
8916
8917 case NOT:
8918 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8919 same as the XOR case above. Ensure that the constant we form is not
8920 wider than the mode of X. */
8921
8922 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8923 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8924 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8925 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8926 < GET_MODE_PRECISION (GET_MODE (x)))
8927 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8928 {
8929 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8930 GET_MODE (x));
8931 temp = simplify_gen_binary (XOR, GET_MODE (x),
8932 XEXP (XEXP (x, 0), 0), temp);
8933 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8934 temp, XEXP (XEXP (x, 0), 1));
8935
8936 return force_to_mode (x, mode, mask, next_select);
8937 }
8938
8939 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8940 use the full mask inside the NOT. */
8941 mask = fuller_mask;
8942
8943 unop:
8944 op0 = gen_lowpart_or_truncate (op_mode,
8945 force_to_mode (XEXP (x, 0), mode, mask,
8946 next_select));
8947 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8948 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8949 break;
8950
8951 case NE:
8952 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8953 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8954 which is equal to STORE_FLAG_VALUE. */
8955 if ((mask & ~STORE_FLAG_VALUE) == 0
8956 && XEXP (x, 1) == const0_rtx
8957 && GET_MODE (XEXP (x, 0)) == mode
8958 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
8959 && (nonzero_bits (XEXP (x, 0), mode)
8960 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8961 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8962
8963 break;
8964
8965 case IF_THEN_ELSE:
8966 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8967 written in a narrower mode. We play it safe and do not do so. */
8968
8969 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8970 force_to_mode (XEXP (x, 1), mode,
8971 mask, next_select));
8972 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8973 force_to_mode (XEXP (x, 2), mode,
8974 mask, next_select));
8975 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
8976 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
8977 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
8978 op0, op1);
8979 break;
8980
8981 default:
8982 break;
8983 }
8984
8985 /* Ensure we return a value of the proper mode. */
8986 return gen_lowpart_or_truncate (mode, x);
8987 }
8988 \f
8989 /* Return nonzero if X is an expression that has one of two values depending on
8990 whether some other value is zero or nonzero. In that case, we return the
8991 value that is being tested, *PTRUE is set to the value if the rtx being
8992 returned has a nonzero value, and *PFALSE is set to the other alternative.
8993
8994 If we return zero, we set *PTRUE and *PFALSE to X. */
8995
8996 static rtx
8997 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8998 {
8999 machine_mode mode = GET_MODE (x);
9000 enum rtx_code code = GET_CODE (x);
9001 rtx cond0, cond1, true0, true1, false0, false1;
9002 unsigned HOST_WIDE_INT nz;
9003
9004 /* If we are comparing a value against zero, we are done. */
9005 if ((code == NE || code == EQ)
9006 && XEXP (x, 1) == const0_rtx)
9007 {
9008 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9009 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9010 return XEXP (x, 0);
9011 }
9012
9013 /* If this is a unary operation whose operand has one of two values, apply
9014 our opcode to compute those values. */
9015 else if (UNARY_P (x)
9016 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9017 {
9018 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9019 *pfalse = simplify_gen_unary (code, mode, false0,
9020 GET_MODE (XEXP (x, 0)));
9021 return cond0;
9022 }
9023
9024 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9025 make can't possibly match and would suppress other optimizations. */
9026 else if (code == COMPARE)
9027 ;
9028
9029 /* If this is a binary operation, see if either side has only one of two
9030 values. If either one does or if both do and they are conditional on
9031 the same value, compute the new true and false values. */
9032 else if (BINARY_P (x))
9033 {
9034 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
9035 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
9036
9037 if ((cond0 != 0 || cond1 != 0)
9038 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
9039 {
9040 /* If if_then_else_cond returned zero, then true/false are the
9041 same rtl. We must copy one of them to prevent invalid rtl
9042 sharing. */
9043 if (cond0 == 0)
9044 true0 = copy_rtx (true0);
9045 else if (cond1 == 0)
9046 true1 = copy_rtx (true1);
9047
9048 if (COMPARISON_P (x))
9049 {
9050 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9051 true0, true1);
9052 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9053 false0, false1);
9054 }
9055 else
9056 {
9057 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9058 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9059 }
9060
9061 return cond0 ? cond0 : cond1;
9062 }
9063
9064 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9065 operands is zero when the other is nonzero, and vice-versa,
9066 and STORE_FLAG_VALUE is 1 or -1. */
9067
9068 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9069 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9070 || code == UMAX)
9071 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9072 {
9073 rtx op0 = XEXP (XEXP (x, 0), 1);
9074 rtx op1 = XEXP (XEXP (x, 1), 1);
9075
9076 cond0 = XEXP (XEXP (x, 0), 0);
9077 cond1 = XEXP (XEXP (x, 1), 0);
9078
9079 if (COMPARISON_P (cond0)
9080 && COMPARISON_P (cond1)
9081 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9082 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9083 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9084 || ((swap_condition (GET_CODE (cond0))
9085 == reversed_comparison_code (cond1, NULL))
9086 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9087 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9088 && ! side_effects_p (x))
9089 {
9090 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9091 *pfalse = simplify_gen_binary (MULT, mode,
9092 (code == MINUS
9093 ? simplify_gen_unary (NEG, mode,
9094 op1, mode)
9095 : op1),
9096 const_true_rtx);
9097 return cond0;
9098 }
9099 }
9100
9101 /* Similarly for MULT, AND and UMIN, except that for these the result
9102 is always zero. */
9103 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9104 && (code == MULT || code == AND || code == UMIN)
9105 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9106 {
9107 cond0 = XEXP (XEXP (x, 0), 0);
9108 cond1 = XEXP (XEXP (x, 1), 0);
9109
9110 if (COMPARISON_P (cond0)
9111 && COMPARISON_P (cond1)
9112 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9113 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9114 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9115 || ((swap_condition (GET_CODE (cond0))
9116 == reversed_comparison_code (cond1, NULL))
9117 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9118 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9119 && ! side_effects_p (x))
9120 {
9121 *ptrue = *pfalse = const0_rtx;
9122 return cond0;
9123 }
9124 }
9125 }
9126
9127 else if (code == IF_THEN_ELSE)
9128 {
9129 /* If we have IF_THEN_ELSE already, extract the condition and
9130 canonicalize it if it is NE or EQ. */
9131 cond0 = XEXP (x, 0);
9132 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9133 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9134 return XEXP (cond0, 0);
9135 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9136 {
9137 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9138 return XEXP (cond0, 0);
9139 }
9140 else
9141 return cond0;
9142 }
9143
9144 /* If X is a SUBREG, we can narrow both the true and false values
9145 if the inner expression, if there is a condition. */
9146 else if (code == SUBREG
9147 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9148 &true0, &false0)))
9149 {
9150 true0 = simplify_gen_subreg (mode, true0,
9151 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9152 false0 = simplify_gen_subreg (mode, false0,
9153 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9154 if (true0 && false0)
9155 {
9156 *ptrue = true0;
9157 *pfalse = false0;
9158 return cond0;
9159 }
9160 }
9161
9162 /* If X is a constant, this isn't special and will cause confusions
9163 if we treat it as such. Likewise if it is equivalent to a constant. */
9164 else if (CONSTANT_P (x)
9165 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9166 ;
9167
9168 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9169 will be least confusing to the rest of the compiler. */
9170 else if (mode == BImode)
9171 {
9172 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9173 return x;
9174 }
9175
9176 /* If X is known to be either 0 or -1, those are the true and
9177 false values when testing X. */
9178 else if (x == constm1_rtx || x == const0_rtx
9179 || (mode != VOIDmode
9180 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9181 {
9182 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9183 return x;
9184 }
9185
9186 /* Likewise for 0 or a single bit. */
9187 else if (HWI_COMPUTABLE_MODE_P (mode)
9188 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9189 {
9190 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9191 return x;
9192 }
9193
9194 /* Otherwise fail; show no condition with true and false values the same. */
9195 *ptrue = *pfalse = x;
9196 return 0;
9197 }
9198 \f
9199 /* Return the value of expression X given the fact that condition COND
9200 is known to be true when applied to REG as its first operand and VAL
9201 as its second. X is known to not be shared and so can be modified in
9202 place.
9203
9204 We only handle the simplest cases, and specifically those cases that
9205 arise with IF_THEN_ELSE expressions. */
9206
9207 static rtx
9208 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9209 {
9210 enum rtx_code code = GET_CODE (x);
9211 const char *fmt;
9212 int i, j;
9213
9214 if (side_effects_p (x))
9215 return x;
9216
9217 /* If either operand of the condition is a floating point value,
9218 then we have to avoid collapsing an EQ comparison. */
9219 if (cond == EQ
9220 && rtx_equal_p (x, reg)
9221 && ! FLOAT_MODE_P (GET_MODE (x))
9222 && ! FLOAT_MODE_P (GET_MODE (val)))
9223 return val;
9224
9225 if (cond == UNEQ && rtx_equal_p (x, reg))
9226 return val;
9227
9228 /* If X is (abs REG) and we know something about REG's relationship
9229 with zero, we may be able to simplify this. */
9230
9231 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9232 switch (cond)
9233 {
9234 case GE: case GT: case EQ:
9235 return XEXP (x, 0);
9236 case LT: case LE:
9237 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9238 XEXP (x, 0),
9239 GET_MODE (XEXP (x, 0)));
9240 default:
9241 break;
9242 }
9243
9244 /* The only other cases we handle are MIN, MAX, and comparisons if the
9245 operands are the same as REG and VAL. */
9246
9247 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9248 {
9249 if (rtx_equal_p (XEXP (x, 0), val))
9250 {
9251 std::swap (val, reg);
9252 cond = swap_condition (cond);
9253 }
9254
9255 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9256 {
9257 if (COMPARISON_P (x))
9258 {
9259 if (comparison_dominates_p (cond, code))
9260 return const_true_rtx;
9261
9262 code = reversed_comparison_code (x, NULL);
9263 if (code != UNKNOWN
9264 && comparison_dominates_p (cond, code))
9265 return const0_rtx;
9266 else
9267 return x;
9268 }
9269 else if (code == SMAX || code == SMIN
9270 || code == UMIN || code == UMAX)
9271 {
9272 int unsignedp = (code == UMIN || code == UMAX);
9273
9274 /* Do not reverse the condition when it is NE or EQ.
9275 This is because we cannot conclude anything about
9276 the value of 'SMAX (x, y)' when x is not equal to y,
9277 but we can when x equals y. */
9278 if ((code == SMAX || code == UMAX)
9279 && ! (cond == EQ || cond == NE))
9280 cond = reverse_condition (cond);
9281
9282 switch (cond)
9283 {
9284 case GE: case GT:
9285 return unsignedp ? x : XEXP (x, 1);
9286 case LE: case LT:
9287 return unsignedp ? x : XEXP (x, 0);
9288 case GEU: case GTU:
9289 return unsignedp ? XEXP (x, 1) : x;
9290 case LEU: case LTU:
9291 return unsignedp ? XEXP (x, 0) : x;
9292 default:
9293 break;
9294 }
9295 }
9296 }
9297 }
9298 else if (code == SUBREG)
9299 {
9300 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9301 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9302
9303 if (SUBREG_REG (x) != r)
9304 {
9305 /* We must simplify subreg here, before we lose track of the
9306 original inner_mode. */
9307 new_rtx = simplify_subreg (GET_MODE (x), r,
9308 inner_mode, SUBREG_BYTE (x));
9309 if (new_rtx)
9310 return new_rtx;
9311 else
9312 SUBST (SUBREG_REG (x), r);
9313 }
9314
9315 return x;
9316 }
9317 /* We don't have to handle SIGN_EXTEND here, because even in the
9318 case of replacing something with a modeless CONST_INT, a
9319 CONST_INT is already (supposed to be) a valid sign extension for
9320 its narrower mode, which implies it's already properly
9321 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9322 story is different. */
9323 else if (code == ZERO_EXTEND)
9324 {
9325 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9326 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9327
9328 if (XEXP (x, 0) != r)
9329 {
9330 /* We must simplify the zero_extend here, before we lose
9331 track of the original inner_mode. */
9332 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9333 r, inner_mode);
9334 if (new_rtx)
9335 return new_rtx;
9336 else
9337 SUBST (XEXP (x, 0), r);
9338 }
9339
9340 return x;
9341 }
9342
9343 fmt = GET_RTX_FORMAT (code);
9344 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9345 {
9346 if (fmt[i] == 'e')
9347 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9348 else if (fmt[i] == 'E')
9349 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9350 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9351 cond, reg, val));
9352 }
9353
9354 return x;
9355 }
9356 \f
9357 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9358 assignment as a field assignment. */
9359
9360 static int
9361 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9362 {
9363 if (widen_x && GET_MODE (x) != GET_MODE (y))
9364 {
9365 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9366 return 0;
9367 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9368 return 0;
9369 /* For big endian, adjust the memory offset. */
9370 if (BYTES_BIG_ENDIAN)
9371 x = adjust_address_nv (x, GET_MODE (y),
9372 -subreg_lowpart_offset (GET_MODE (x),
9373 GET_MODE (y)));
9374 else
9375 x = adjust_address_nv (x, GET_MODE (y), 0);
9376 }
9377
9378 if (x == y || rtx_equal_p (x, y))
9379 return 1;
9380
9381 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9382 return 0;
9383
9384 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9385 Note that all SUBREGs of MEM are paradoxical; otherwise they
9386 would have been rewritten. */
9387 if (MEM_P (x) && GET_CODE (y) == SUBREG
9388 && MEM_P (SUBREG_REG (y))
9389 && rtx_equal_p (SUBREG_REG (y),
9390 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9391 return 1;
9392
9393 if (MEM_P (y) && GET_CODE (x) == SUBREG
9394 && MEM_P (SUBREG_REG (x))
9395 && rtx_equal_p (SUBREG_REG (x),
9396 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9397 return 1;
9398
9399 /* We used to see if get_last_value of X and Y were the same but that's
9400 not correct. In one direction, we'll cause the assignment to have
9401 the wrong destination and in the case, we'll import a register into this
9402 insn that might have already have been dead. So fail if none of the
9403 above cases are true. */
9404 return 0;
9405 }
9406 \f
9407 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9408 Return that assignment if so.
9409
9410 We only handle the most common cases. */
9411
9412 static rtx
9413 make_field_assignment (rtx x)
9414 {
9415 rtx dest = SET_DEST (x);
9416 rtx src = SET_SRC (x);
9417 rtx assign;
9418 rtx rhs, lhs;
9419 HOST_WIDE_INT c1;
9420 HOST_WIDE_INT pos;
9421 unsigned HOST_WIDE_INT len;
9422 rtx other;
9423 machine_mode mode;
9424
9425 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9426 a clear of a one-bit field. We will have changed it to
9427 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9428 for a SUBREG. */
9429
9430 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9431 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9432 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9433 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9434 {
9435 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9436 1, 1, 1, 0);
9437 if (assign != 0)
9438 return gen_rtx_SET (assign, const0_rtx);
9439 return x;
9440 }
9441
9442 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9443 && subreg_lowpart_p (XEXP (src, 0))
9444 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9445 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9446 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9447 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9448 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9449 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9450 {
9451 assign = make_extraction (VOIDmode, dest, 0,
9452 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9453 1, 1, 1, 0);
9454 if (assign != 0)
9455 return gen_rtx_SET (assign, const0_rtx);
9456 return x;
9457 }
9458
9459 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9460 one-bit field. */
9461 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9462 && XEXP (XEXP (src, 0), 0) == const1_rtx
9463 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9464 {
9465 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9466 1, 1, 1, 0);
9467 if (assign != 0)
9468 return gen_rtx_SET (assign, const1_rtx);
9469 return x;
9470 }
9471
9472 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9473 SRC is an AND with all bits of that field set, then we can discard
9474 the AND. */
9475 if (GET_CODE (dest) == ZERO_EXTRACT
9476 && CONST_INT_P (XEXP (dest, 1))
9477 && GET_CODE (src) == AND
9478 && CONST_INT_P (XEXP (src, 1)))
9479 {
9480 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9481 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9482 unsigned HOST_WIDE_INT ze_mask;
9483
9484 if (width >= HOST_BITS_PER_WIDE_INT)
9485 ze_mask = -1;
9486 else
9487 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9488
9489 /* Complete overlap. We can remove the source AND. */
9490 if ((and_mask & ze_mask) == ze_mask)
9491 return gen_rtx_SET (dest, XEXP (src, 0));
9492
9493 /* Partial overlap. We can reduce the source AND. */
9494 if ((and_mask & ze_mask) != and_mask)
9495 {
9496 mode = GET_MODE (src);
9497 src = gen_rtx_AND (mode, XEXP (src, 0),
9498 gen_int_mode (and_mask & ze_mask, mode));
9499 return gen_rtx_SET (dest, src);
9500 }
9501 }
9502
9503 /* The other case we handle is assignments into a constant-position
9504 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9505 a mask that has all one bits except for a group of zero bits and
9506 OTHER is known to have zeros where C1 has ones, this is such an
9507 assignment. Compute the position and length from C1. Shift OTHER
9508 to the appropriate position, force it to the required mode, and
9509 make the extraction. Check for the AND in both operands. */
9510
9511 /* One or more SUBREGs might obscure the constant-position field
9512 assignment. The first one we are likely to encounter is an outer
9513 narrowing SUBREG, which we can just strip for the purposes of
9514 identifying the constant-field assignment. */
9515 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9516 src = SUBREG_REG (src);
9517
9518 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9519 return x;
9520
9521 rhs = expand_compound_operation (XEXP (src, 0));
9522 lhs = expand_compound_operation (XEXP (src, 1));
9523
9524 if (GET_CODE (rhs) == AND
9525 && CONST_INT_P (XEXP (rhs, 1))
9526 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9527 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9528 /* The second SUBREG that might get in the way is a paradoxical
9529 SUBREG around the first operand of the AND. We want to
9530 pretend the operand is as wide as the destination here. We
9531 do this by adjusting the MEM to wider mode for the sole
9532 purpose of the call to rtx_equal_for_field_assignment_p. Also
9533 note this trick only works for MEMs. */
9534 else if (GET_CODE (rhs) == AND
9535 && paradoxical_subreg_p (XEXP (rhs, 0))
9536 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9537 && CONST_INT_P (XEXP (rhs, 1))
9538 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9539 dest, true))
9540 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9541 else if (GET_CODE (lhs) == AND
9542 && CONST_INT_P (XEXP (lhs, 1))
9543 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9544 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9545 /* The second SUBREG that might get in the way is a paradoxical
9546 SUBREG around the first operand of the AND. We want to
9547 pretend the operand is as wide as the destination here. We
9548 do this by adjusting the MEM to wider mode for the sole
9549 purpose of the call to rtx_equal_for_field_assignment_p. Also
9550 note this trick only works for MEMs. */
9551 else if (GET_CODE (lhs) == AND
9552 && paradoxical_subreg_p (XEXP (lhs, 0))
9553 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9554 && CONST_INT_P (XEXP (lhs, 1))
9555 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9556 dest, true))
9557 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9558 else
9559 return x;
9560
9561 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9562 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9563 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9564 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9565 return x;
9566
9567 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9568 if (assign == 0)
9569 return x;
9570
9571 /* The mode to use for the source is the mode of the assignment, or of
9572 what is inside a possible STRICT_LOW_PART. */
9573 mode = (GET_CODE (assign) == STRICT_LOW_PART
9574 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9575
9576 /* Shift OTHER right POS places and make it the source, restricting it
9577 to the proper length and mode. */
9578
9579 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9580 GET_MODE (src),
9581 other, pos),
9582 dest);
9583 src = force_to_mode (src, mode,
9584 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9585 ? HOST_WIDE_INT_M1U
9586 : (HOST_WIDE_INT_1U << len) - 1,
9587 0);
9588
9589 /* If SRC is masked by an AND that does not make a difference in
9590 the value being stored, strip it. */
9591 if (GET_CODE (assign) == ZERO_EXTRACT
9592 && CONST_INT_P (XEXP (assign, 1))
9593 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9594 && GET_CODE (src) == AND
9595 && CONST_INT_P (XEXP (src, 1))
9596 && UINTVAL (XEXP (src, 1))
9597 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9598 src = XEXP (src, 0);
9599
9600 return gen_rtx_SET (assign, src);
9601 }
9602 \f
9603 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9604 if so. */
9605
9606 static rtx
9607 apply_distributive_law (rtx x)
9608 {
9609 enum rtx_code code = GET_CODE (x);
9610 enum rtx_code inner_code;
9611 rtx lhs, rhs, other;
9612 rtx tem;
9613
9614 /* Distributivity is not true for floating point as it can change the
9615 value. So we don't do it unless -funsafe-math-optimizations. */
9616 if (FLOAT_MODE_P (GET_MODE (x))
9617 && ! flag_unsafe_math_optimizations)
9618 return x;
9619
9620 /* The outer operation can only be one of the following: */
9621 if (code != IOR && code != AND && code != XOR
9622 && code != PLUS && code != MINUS)
9623 return x;
9624
9625 lhs = XEXP (x, 0);
9626 rhs = XEXP (x, 1);
9627
9628 /* If either operand is a primitive we can't do anything, so get out
9629 fast. */
9630 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9631 return x;
9632
9633 lhs = expand_compound_operation (lhs);
9634 rhs = expand_compound_operation (rhs);
9635 inner_code = GET_CODE (lhs);
9636 if (inner_code != GET_CODE (rhs))
9637 return x;
9638
9639 /* See if the inner and outer operations distribute. */
9640 switch (inner_code)
9641 {
9642 case LSHIFTRT:
9643 case ASHIFTRT:
9644 case AND:
9645 case IOR:
9646 /* These all distribute except over PLUS. */
9647 if (code == PLUS || code == MINUS)
9648 return x;
9649 break;
9650
9651 case MULT:
9652 if (code != PLUS && code != MINUS)
9653 return x;
9654 break;
9655
9656 case ASHIFT:
9657 /* This is also a multiply, so it distributes over everything. */
9658 break;
9659
9660 /* This used to handle SUBREG, but this turned out to be counter-
9661 productive, since (subreg (op ...)) usually is not handled by
9662 insn patterns, and this "optimization" therefore transformed
9663 recognizable patterns into unrecognizable ones. Therefore the
9664 SUBREG case was removed from here.
9665
9666 It is possible that distributing SUBREG over arithmetic operations
9667 leads to an intermediate result than can then be optimized further,
9668 e.g. by moving the outer SUBREG to the other side of a SET as done
9669 in simplify_set. This seems to have been the original intent of
9670 handling SUBREGs here.
9671
9672 However, with current GCC this does not appear to actually happen,
9673 at least on major platforms. If some case is found where removing
9674 the SUBREG case here prevents follow-on optimizations, distributing
9675 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9676
9677 default:
9678 return x;
9679 }
9680
9681 /* Set LHS and RHS to the inner operands (A and B in the example
9682 above) and set OTHER to the common operand (C in the example).
9683 There is only one way to do this unless the inner operation is
9684 commutative. */
9685 if (COMMUTATIVE_ARITH_P (lhs)
9686 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9687 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9688 else if (COMMUTATIVE_ARITH_P (lhs)
9689 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9690 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9691 else if (COMMUTATIVE_ARITH_P (lhs)
9692 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9693 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9694 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9695 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9696 else
9697 return x;
9698
9699 /* Form the new inner operation, seeing if it simplifies first. */
9700 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9701
9702 /* There is one exception to the general way of distributing:
9703 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9704 if (code == XOR && inner_code == IOR)
9705 {
9706 inner_code = AND;
9707 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9708 }
9709
9710 /* We may be able to continuing distributing the result, so call
9711 ourselves recursively on the inner operation before forming the
9712 outer operation, which we return. */
9713 return simplify_gen_binary (inner_code, GET_MODE (x),
9714 apply_distributive_law (tem), other);
9715 }
9716
9717 /* See if X is of the form (* (+ A B) C), and if so convert to
9718 (+ (* A C) (* B C)) and try to simplify.
9719
9720 Most of the time, this results in no change. However, if some of
9721 the operands are the same or inverses of each other, simplifications
9722 will result.
9723
9724 For example, (and (ior A B) (not B)) can occur as the result of
9725 expanding a bit field assignment. When we apply the distributive
9726 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9727 which then simplifies to (and (A (not B))).
9728
9729 Note that no checks happen on the validity of applying the inverse
9730 distributive law. This is pointless since we can do it in the
9731 few places where this routine is called.
9732
9733 N is the index of the term that is decomposed (the arithmetic operation,
9734 i.e. (+ A B) in the first example above). !N is the index of the term that
9735 is distributed, i.e. of C in the first example above. */
9736 static rtx
9737 distribute_and_simplify_rtx (rtx x, int n)
9738 {
9739 machine_mode mode;
9740 enum rtx_code outer_code, inner_code;
9741 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9742
9743 /* Distributivity is not true for floating point as it can change the
9744 value. So we don't do it unless -funsafe-math-optimizations. */
9745 if (FLOAT_MODE_P (GET_MODE (x))
9746 && ! flag_unsafe_math_optimizations)
9747 return NULL_RTX;
9748
9749 decomposed = XEXP (x, n);
9750 if (!ARITHMETIC_P (decomposed))
9751 return NULL_RTX;
9752
9753 mode = GET_MODE (x);
9754 outer_code = GET_CODE (x);
9755 distributed = XEXP (x, !n);
9756
9757 inner_code = GET_CODE (decomposed);
9758 inner_op0 = XEXP (decomposed, 0);
9759 inner_op1 = XEXP (decomposed, 1);
9760
9761 /* Special case (and (xor B C) (not A)), which is equivalent to
9762 (xor (ior A B) (ior A C)) */
9763 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9764 {
9765 distributed = XEXP (distributed, 0);
9766 outer_code = IOR;
9767 }
9768
9769 if (n == 0)
9770 {
9771 /* Distribute the second term. */
9772 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9773 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9774 }
9775 else
9776 {
9777 /* Distribute the first term. */
9778 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9779 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9780 }
9781
9782 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9783 new_op0, new_op1));
9784 if (GET_CODE (tmp) != outer_code
9785 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9786 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9787 return tmp;
9788
9789 return NULL_RTX;
9790 }
9791 \f
9792 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9793 in MODE. Return an equivalent form, if different from (and VAROP
9794 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9795
9796 static rtx
9797 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9798 unsigned HOST_WIDE_INT constop)
9799 {
9800 unsigned HOST_WIDE_INT nonzero;
9801 unsigned HOST_WIDE_INT orig_constop;
9802 rtx orig_varop;
9803 int i;
9804
9805 orig_varop = varop;
9806 orig_constop = constop;
9807 if (GET_CODE (varop) == CLOBBER)
9808 return NULL_RTX;
9809
9810 /* Simplify VAROP knowing that we will be only looking at some of the
9811 bits in it.
9812
9813 Note by passing in CONSTOP, we guarantee that the bits not set in
9814 CONSTOP are not significant and will never be examined. We must
9815 ensure that is the case by explicitly masking out those bits
9816 before returning. */
9817 varop = force_to_mode (varop, mode, constop, 0);
9818
9819 /* If VAROP is a CLOBBER, we will fail so return it. */
9820 if (GET_CODE (varop) == CLOBBER)
9821 return varop;
9822
9823 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9824 to VAROP and return the new constant. */
9825 if (CONST_INT_P (varop))
9826 return gen_int_mode (INTVAL (varop) & constop, mode);
9827
9828 /* See what bits may be nonzero in VAROP. Unlike the general case of
9829 a call to nonzero_bits, here we don't care about bits outside
9830 MODE. */
9831
9832 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9833
9834 /* Turn off all bits in the constant that are known to already be zero.
9835 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9836 which is tested below. */
9837
9838 constop &= nonzero;
9839
9840 /* If we don't have any bits left, return zero. */
9841 if (constop == 0)
9842 return const0_rtx;
9843
9844 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9845 a power of two, we can replace this with an ASHIFT. */
9846 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9847 && (i = exact_log2 (constop)) >= 0)
9848 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9849
9850 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9851 or XOR, then try to apply the distributive law. This may eliminate
9852 operations if either branch can be simplified because of the AND.
9853 It may also make some cases more complex, but those cases probably
9854 won't match a pattern either with or without this. */
9855
9856 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9857 return
9858 gen_lowpart
9859 (mode,
9860 apply_distributive_law
9861 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9862 simplify_and_const_int (NULL_RTX,
9863 GET_MODE (varop),
9864 XEXP (varop, 0),
9865 constop),
9866 simplify_and_const_int (NULL_RTX,
9867 GET_MODE (varop),
9868 XEXP (varop, 1),
9869 constop))));
9870
9871 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9872 the AND and see if one of the operands simplifies to zero. If so, we
9873 may eliminate it. */
9874
9875 if (GET_CODE (varop) == PLUS
9876 && pow2p_hwi (constop + 1))
9877 {
9878 rtx o0, o1;
9879
9880 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9881 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9882 if (o0 == const0_rtx)
9883 return o1;
9884 if (o1 == const0_rtx)
9885 return o0;
9886 }
9887
9888 /* Make a SUBREG if necessary. If we can't make it, fail. */
9889 varop = gen_lowpart (mode, varop);
9890 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9891 return NULL_RTX;
9892
9893 /* If we are only masking insignificant bits, return VAROP. */
9894 if (constop == nonzero)
9895 return varop;
9896
9897 if (varop == orig_varop && constop == orig_constop)
9898 return NULL_RTX;
9899
9900 /* Otherwise, return an AND. */
9901 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9902 }
9903
9904
9905 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9906 in MODE.
9907
9908 Return an equivalent form, if different from X. Otherwise, return X. If
9909 X is zero, we are to always construct the equivalent form. */
9910
9911 static rtx
9912 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9913 unsigned HOST_WIDE_INT constop)
9914 {
9915 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9916 if (tem)
9917 return tem;
9918
9919 if (!x)
9920 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9921 gen_int_mode (constop, mode));
9922 if (GET_MODE (x) != mode)
9923 x = gen_lowpart (mode, x);
9924 return x;
9925 }
9926 \f
9927 /* Given a REG, X, compute which bits in X can be nonzero.
9928 We don't care about bits outside of those defined in MODE.
9929
9930 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9931 a shift, AND, or zero_extract, we can do better. */
9932
9933 static rtx
9934 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9935 const_rtx known_x ATTRIBUTE_UNUSED,
9936 machine_mode known_mode ATTRIBUTE_UNUSED,
9937 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9938 unsigned HOST_WIDE_INT *nonzero)
9939 {
9940 rtx tem;
9941 reg_stat_type *rsp;
9942
9943 /* If X is a register whose nonzero bits value is current, use it.
9944 Otherwise, if X is a register whose value we can find, use that
9945 value. Otherwise, use the previously-computed global nonzero bits
9946 for this register. */
9947
9948 rsp = &reg_stat[REGNO (x)];
9949 if (rsp->last_set_value != 0
9950 && (rsp->last_set_mode == mode
9951 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9952 && GET_MODE_CLASS (mode) == MODE_INT))
9953 && ((rsp->last_set_label >= label_tick_ebb_start
9954 && rsp->last_set_label < label_tick)
9955 || (rsp->last_set_label == label_tick
9956 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9957 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9958 && REGNO (x) < reg_n_sets_max
9959 && REG_N_SETS (REGNO (x)) == 1
9960 && !REGNO_REG_SET_P
9961 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9962 REGNO (x)))))
9963 {
9964 /* Note that, even if the precision of last_set_mode is lower than that
9965 of mode, record_value_for_reg invoked nonzero_bits on the register
9966 with nonzero_bits_mode (because last_set_mode is necessarily integral
9967 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
9968 are all valid, hence in mode too since nonzero_bits_mode is defined
9969 to the largest HWI_COMPUTABLE_MODE_P mode. */
9970 *nonzero &= rsp->last_set_nonzero_bits;
9971 return NULL;
9972 }
9973
9974 tem = get_last_value (x);
9975 if (tem)
9976 {
9977 if (SHORT_IMMEDIATES_SIGN_EXTEND)
9978 tem = sign_extend_short_imm (tem, GET_MODE (x),
9979 GET_MODE_PRECISION (mode));
9980
9981 return tem;
9982 }
9983
9984 if (nonzero_sign_valid && rsp->nonzero_bits)
9985 {
9986 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9987
9988 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9989 /* We don't know anything about the upper bits. */
9990 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9991
9992 *nonzero &= mask;
9993 }
9994
9995 return NULL;
9996 }
9997
9998 /* Return the number of bits at the high-order end of X that are known to
9999 be equal to the sign bit. X will be used in mode MODE; if MODE is
10000 VOIDmode, X will be used in its own mode. The returned value will always
10001 be between 1 and the number of bits in MODE. */
10002
10003 static rtx
10004 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
10005 const_rtx known_x ATTRIBUTE_UNUSED,
10006 machine_mode known_mode
10007 ATTRIBUTE_UNUSED,
10008 unsigned int known_ret ATTRIBUTE_UNUSED,
10009 unsigned int *result)
10010 {
10011 rtx tem;
10012 reg_stat_type *rsp;
10013
10014 rsp = &reg_stat[REGNO (x)];
10015 if (rsp->last_set_value != 0
10016 && rsp->last_set_mode == mode
10017 && ((rsp->last_set_label >= label_tick_ebb_start
10018 && rsp->last_set_label < label_tick)
10019 || (rsp->last_set_label == label_tick
10020 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10021 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10022 && REGNO (x) < reg_n_sets_max
10023 && REG_N_SETS (REGNO (x)) == 1
10024 && !REGNO_REG_SET_P
10025 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10026 REGNO (x)))))
10027 {
10028 *result = rsp->last_set_sign_bit_copies;
10029 return NULL;
10030 }
10031
10032 tem = get_last_value (x);
10033 if (tem != 0)
10034 return tem;
10035
10036 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10037 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
10038 *result = rsp->sign_bit_copies;
10039
10040 return NULL;
10041 }
10042 \f
10043 /* Return the number of "extended" bits there are in X, when interpreted
10044 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10045 unsigned quantities, this is the number of high-order zero bits.
10046 For signed quantities, this is the number of copies of the sign bit
10047 minus 1. In both case, this function returns the number of "spare"
10048 bits. For example, if two quantities for which this function returns
10049 at least 1 are added, the addition is known not to overflow.
10050
10051 This function will always return 0 unless called during combine, which
10052 implies that it must be called from a define_split. */
10053
10054 unsigned int
10055 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10056 {
10057 if (nonzero_sign_valid == 0)
10058 return 0;
10059
10060 return (unsignedp
10061 ? (HWI_COMPUTABLE_MODE_P (mode)
10062 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
10063 - floor_log2 (nonzero_bits (x, mode)))
10064 : 0)
10065 : num_sign_bit_copies (x, mode) - 1);
10066 }
10067
10068 /* This function is called from `simplify_shift_const' to merge two
10069 outer operations. Specifically, we have already found that we need
10070 to perform operation *POP0 with constant *PCONST0 at the outermost
10071 position. We would now like to also perform OP1 with constant CONST1
10072 (with *POP0 being done last).
10073
10074 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10075 the resulting operation. *PCOMP_P is set to 1 if we would need to
10076 complement the innermost operand, otherwise it is unchanged.
10077
10078 MODE is the mode in which the operation will be done. No bits outside
10079 the width of this mode matter. It is assumed that the width of this mode
10080 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10081
10082 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10083 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10084 result is simply *PCONST0.
10085
10086 If the resulting operation cannot be expressed as one operation, we
10087 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10088
10089 static int
10090 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10091 {
10092 enum rtx_code op0 = *pop0;
10093 HOST_WIDE_INT const0 = *pconst0;
10094
10095 const0 &= GET_MODE_MASK (mode);
10096 const1 &= GET_MODE_MASK (mode);
10097
10098 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10099 if (op0 == AND)
10100 const1 &= const0;
10101
10102 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10103 if OP0 is SET. */
10104
10105 if (op1 == UNKNOWN || op0 == SET)
10106 return 1;
10107
10108 else if (op0 == UNKNOWN)
10109 op0 = op1, const0 = const1;
10110
10111 else if (op0 == op1)
10112 {
10113 switch (op0)
10114 {
10115 case AND:
10116 const0 &= const1;
10117 break;
10118 case IOR:
10119 const0 |= const1;
10120 break;
10121 case XOR:
10122 const0 ^= const1;
10123 break;
10124 case PLUS:
10125 const0 += const1;
10126 break;
10127 case NEG:
10128 op0 = UNKNOWN;
10129 break;
10130 default:
10131 break;
10132 }
10133 }
10134
10135 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10136 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10137 return 0;
10138
10139 /* If the two constants aren't the same, we can't do anything. The
10140 remaining six cases can all be done. */
10141 else if (const0 != const1)
10142 return 0;
10143
10144 else
10145 switch (op0)
10146 {
10147 case IOR:
10148 if (op1 == AND)
10149 /* (a & b) | b == b */
10150 op0 = SET;
10151 else /* op1 == XOR */
10152 /* (a ^ b) | b == a | b */
10153 {;}
10154 break;
10155
10156 case XOR:
10157 if (op1 == AND)
10158 /* (a & b) ^ b == (~a) & b */
10159 op0 = AND, *pcomp_p = 1;
10160 else /* op1 == IOR */
10161 /* (a | b) ^ b == a & ~b */
10162 op0 = AND, const0 = ~const0;
10163 break;
10164
10165 case AND:
10166 if (op1 == IOR)
10167 /* (a | b) & b == b */
10168 op0 = SET;
10169 else /* op1 == XOR */
10170 /* (a ^ b) & b) == (~a) & b */
10171 *pcomp_p = 1;
10172 break;
10173 default:
10174 break;
10175 }
10176
10177 /* Check for NO-OP cases. */
10178 const0 &= GET_MODE_MASK (mode);
10179 if (const0 == 0
10180 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10181 op0 = UNKNOWN;
10182 else if (const0 == 0 && op0 == AND)
10183 op0 = SET;
10184 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10185 && op0 == AND)
10186 op0 = UNKNOWN;
10187
10188 *pop0 = op0;
10189
10190 /* ??? Slightly redundant with the above mask, but not entirely.
10191 Moving this above means we'd have to sign-extend the mode mask
10192 for the final test. */
10193 if (op0 != UNKNOWN && op0 != NEG)
10194 *pconst0 = trunc_int_for_mode (const0, mode);
10195
10196 return 1;
10197 }
10198 \f
10199 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10200 the shift in. The original shift operation CODE is performed on OP in
10201 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10202 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10203 result of the shift is subject to operation OUTER_CODE with operand
10204 OUTER_CONST. */
10205
10206 static machine_mode
10207 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10208 machine_mode orig_mode, machine_mode mode,
10209 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10210 {
10211 if (orig_mode == mode)
10212 return mode;
10213 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10214
10215 /* In general we can't perform in wider mode for right shift and rotate. */
10216 switch (code)
10217 {
10218 case ASHIFTRT:
10219 /* We can still widen if the bits brought in from the left are identical
10220 to the sign bit of ORIG_MODE. */
10221 if (num_sign_bit_copies (op, mode)
10222 > (unsigned) (GET_MODE_PRECISION (mode)
10223 - GET_MODE_PRECISION (orig_mode)))
10224 return mode;
10225 return orig_mode;
10226
10227 case LSHIFTRT:
10228 /* Similarly here but with zero bits. */
10229 if (HWI_COMPUTABLE_MODE_P (mode)
10230 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10231 return mode;
10232
10233 /* We can also widen if the bits brought in will be masked off. This
10234 operation is performed in ORIG_MODE. */
10235 if (outer_code == AND)
10236 {
10237 int care_bits = low_bitmask_len (orig_mode, outer_const);
10238
10239 if (care_bits >= 0
10240 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10241 return mode;
10242 }
10243 /* fall through */
10244
10245 case ROTATE:
10246 return orig_mode;
10247
10248 case ROTATERT:
10249 gcc_unreachable ();
10250
10251 default:
10252 return mode;
10253 }
10254 }
10255
10256 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10257 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10258 if we cannot simplify it. Otherwise, return a simplified value.
10259
10260 The shift is normally computed in the widest mode we find in VAROP, as
10261 long as it isn't a different number of words than RESULT_MODE. Exceptions
10262 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10263
10264 static rtx
10265 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10266 rtx varop, int orig_count)
10267 {
10268 enum rtx_code orig_code = code;
10269 rtx orig_varop = varop;
10270 int count;
10271 machine_mode mode = result_mode;
10272 machine_mode shift_mode, tmode;
10273 unsigned int mode_words
10274 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10275 /* We form (outer_op (code varop count) (outer_const)). */
10276 enum rtx_code outer_op = UNKNOWN;
10277 HOST_WIDE_INT outer_const = 0;
10278 int complement_p = 0;
10279 rtx new_rtx, x;
10280
10281 /* Make sure and truncate the "natural" shift on the way in. We don't
10282 want to do this inside the loop as it makes it more difficult to
10283 combine shifts. */
10284 if (SHIFT_COUNT_TRUNCATED)
10285 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10286
10287 /* If we were given an invalid count, don't do anything except exactly
10288 what was requested. */
10289
10290 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10291 return NULL_RTX;
10292
10293 count = orig_count;
10294
10295 /* Unless one of the branches of the `if' in this loop does a `continue',
10296 we will `break' the loop after the `if'. */
10297
10298 while (count != 0)
10299 {
10300 /* If we have an operand of (clobber (const_int 0)), fail. */
10301 if (GET_CODE (varop) == CLOBBER)
10302 return NULL_RTX;
10303
10304 /* Convert ROTATERT to ROTATE. */
10305 if (code == ROTATERT)
10306 {
10307 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10308 code = ROTATE;
10309 count = bitsize - count;
10310 }
10311
10312 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10313 mode, outer_op, outer_const);
10314 machine_mode shift_unit_mode = GET_MODE_INNER (shift_mode);
10315
10316 /* Handle cases where the count is greater than the size of the mode
10317 minus 1. For ASHIFT, use the size minus one as the count (this can
10318 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10319 take the count modulo the size. For other shifts, the result is
10320 zero.
10321
10322 Since these shifts are being produced by the compiler by combining
10323 multiple operations, each of which are defined, we know what the
10324 result is supposed to be. */
10325
10326 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10327 {
10328 if (code == ASHIFTRT)
10329 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10330 else if (code == ROTATE || code == ROTATERT)
10331 count %= GET_MODE_PRECISION (shift_unit_mode);
10332 else
10333 {
10334 /* We can't simply return zero because there may be an
10335 outer op. */
10336 varop = const0_rtx;
10337 count = 0;
10338 break;
10339 }
10340 }
10341
10342 /* If we discovered we had to complement VAROP, leave. Making a NOT
10343 here would cause an infinite loop. */
10344 if (complement_p)
10345 break;
10346
10347 if (shift_mode == shift_unit_mode)
10348 {
10349 /* An arithmetic right shift of a quantity known to be -1 or 0
10350 is a no-op. */
10351 if (code == ASHIFTRT
10352 && (num_sign_bit_copies (varop, shift_unit_mode)
10353 == GET_MODE_PRECISION (shift_unit_mode)))
10354 {
10355 count = 0;
10356 break;
10357 }
10358
10359 /* If we are doing an arithmetic right shift and discarding all but
10360 the sign bit copies, this is equivalent to doing a shift by the
10361 bitsize minus one. Convert it into that shift because it will
10362 often allow other simplifications. */
10363
10364 if (code == ASHIFTRT
10365 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10366 >= GET_MODE_PRECISION (shift_unit_mode)))
10367 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10368
10369 /* We simplify the tests below and elsewhere by converting
10370 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10371 `make_compound_operation' will convert it to an ASHIFTRT for
10372 those machines (such as VAX) that don't have an LSHIFTRT. */
10373 if (code == ASHIFTRT
10374 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10375 && val_signbit_known_clear_p (shift_unit_mode,
10376 nonzero_bits (varop,
10377 shift_unit_mode)))
10378 code = LSHIFTRT;
10379
10380 if (((code == LSHIFTRT
10381 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10382 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10383 || (code == ASHIFT
10384 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10385 && !((nonzero_bits (varop, shift_unit_mode) << count)
10386 & GET_MODE_MASK (shift_unit_mode))))
10387 && !side_effects_p (varop))
10388 varop = const0_rtx;
10389 }
10390
10391 switch (GET_CODE (varop))
10392 {
10393 case SIGN_EXTEND:
10394 case ZERO_EXTEND:
10395 case SIGN_EXTRACT:
10396 case ZERO_EXTRACT:
10397 new_rtx = expand_compound_operation (varop);
10398 if (new_rtx != varop)
10399 {
10400 varop = new_rtx;
10401 continue;
10402 }
10403 break;
10404
10405 case MEM:
10406 /* The following rules apply only to scalars. */
10407 if (shift_mode != shift_unit_mode)
10408 break;
10409
10410 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10411 minus the width of a smaller mode, we can do this with a
10412 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10413 if ((code == ASHIFTRT || code == LSHIFTRT)
10414 && ! mode_dependent_address_p (XEXP (varop, 0),
10415 MEM_ADDR_SPACE (varop))
10416 && ! MEM_VOLATILE_P (varop)
10417 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10418 MODE_INT, 1)) != BLKmode)
10419 {
10420 new_rtx = adjust_address_nv (varop, tmode,
10421 BYTES_BIG_ENDIAN ? 0
10422 : count / BITS_PER_UNIT);
10423
10424 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10425 : ZERO_EXTEND, mode, new_rtx);
10426 count = 0;
10427 continue;
10428 }
10429 break;
10430
10431 case SUBREG:
10432 /* The following rules apply only to scalars. */
10433 if (shift_mode != shift_unit_mode)
10434 break;
10435
10436 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10437 the same number of words as what we've seen so far. Then store
10438 the widest mode in MODE. */
10439 if (subreg_lowpart_p (varop)
10440 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10441 > GET_MODE_SIZE (GET_MODE (varop)))
10442 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10443 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10444 == mode_words
10445 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10446 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10447 {
10448 varop = SUBREG_REG (varop);
10449 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10450 mode = GET_MODE (varop);
10451 continue;
10452 }
10453 break;
10454
10455 case MULT:
10456 /* Some machines use MULT instead of ASHIFT because MULT
10457 is cheaper. But it is still better on those machines to
10458 merge two shifts into one. */
10459 if (CONST_INT_P (XEXP (varop, 1))
10460 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10461 {
10462 varop
10463 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10464 XEXP (varop, 0),
10465 GEN_INT (exact_log2 (
10466 UINTVAL (XEXP (varop, 1)))));
10467 continue;
10468 }
10469 break;
10470
10471 case UDIV:
10472 /* Similar, for when divides are cheaper. */
10473 if (CONST_INT_P (XEXP (varop, 1))
10474 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10475 {
10476 varop
10477 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10478 XEXP (varop, 0),
10479 GEN_INT (exact_log2 (
10480 UINTVAL (XEXP (varop, 1)))));
10481 continue;
10482 }
10483 break;
10484
10485 case ASHIFTRT:
10486 /* If we are extracting just the sign bit of an arithmetic
10487 right shift, that shift is not needed. However, the sign
10488 bit of a wider mode may be different from what would be
10489 interpreted as the sign bit in a narrower mode, so, if
10490 the result is narrower, don't discard the shift. */
10491 if (code == LSHIFTRT
10492 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10493 && (GET_MODE_UNIT_BITSIZE (result_mode)
10494 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10495 {
10496 varop = XEXP (varop, 0);
10497 continue;
10498 }
10499
10500 /* fall through */
10501
10502 case LSHIFTRT:
10503 case ASHIFT:
10504 case ROTATE:
10505 /* The following rules apply only to scalars. */
10506 if (shift_mode != shift_unit_mode)
10507 break;
10508
10509 /* Here we have two nested shifts. The result is usually the
10510 AND of a new shift with a mask. We compute the result below. */
10511 if (CONST_INT_P (XEXP (varop, 1))
10512 && INTVAL (XEXP (varop, 1)) >= 0
10513 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10514 && HWI_COMPUTABLE_MODE_P (result_mode)
10515 && HWI_COMPUTABLE_MODE_P (mode))
10516 {
10517 enum rtx_code first_code = GET_CODE (varop);
10518 unsigned int first_count = INTVAL (XEXP (varop, 1));
10519 unsigned HOST_WIDE_INT mask;
10520 rtx mask_rtx;
10521
10522 /* We have one common special case. We can't do any merging if
10523 the inner code is an ASHIFTRT of a smaller mode. However, if
10524 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10525 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10526 we can convert it to
10527 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10528 This simplifies certain SIGN_EXTEND operations. */
10529 if (code == ASHIFT && first_code == ASHIFTRT
10530 && count == (GET_MODE_PRECISION (result_mode)
10531 - GET_MODE_PRECISION (GET_MODE (varop))))
10532 {
10533 /* C3 has the low-order C1 bits zero. */
10534
10535 mask = GET_MODE_MASK (mode)
10536 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10537
10538 varop = simplify_and_const_int (NULL_RTX, result_mode,
10539 XEXP (varop, 0), mask);
10540 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10541 varop, count);
10542 count = first_count;
10543 code = ASHIFTRT;
10544 continue;
10545 }
10546
10547 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10548 than C1 high-order bits equal to the sign bit, we can convert
10549 this to either an ASHIFT or an ASHIFTRT depending on the
10550 two counts.
10551
10552 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10553
10554 if (code == ASHIFTRT && first_code == ASHIFT
10555 && GET_MODE (varop) == shift_mode
10556 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10557 > first_count))
10558 {
10559 varop = XEXP (varop, 0);
10560 count -= first_count;
10561 if (count < 0)
10562 {
10563 count = -count;
10564 code = ASHIFT;
10565 }
10566
10567 continue;
10568 }
10569
10570 /* There are some cases we can't do. If CODE is ASHIFTRT,
10571 we can only do this if FIRST_CODE is also ASHIFTRT.
10572
10573 We can't do the case when CODE is ROTATE and FIRST_CODE is
10574 ASHIFTRT.
10575
10576 If the mode of this shift is not the mode of the outer shift,
10577 we can't do this if either shift is a right shift or ROTATE.
10578
10579 Finally, we can't do any of these if the mode is too wide
10580 unless the codes are the same.
10581
10582 Handle the case where the shift codes are the same
10583 first. */
10584
10585 if (code == first_code)
10586 {
10587 if (GET_MODE (varop) != result_mode
10588 && (code == ASHIFTRT || code == LSHIFTRT
10589 || code == ROTATE))
10590 break;
10591
10592 count += first_count;
10593 varop = XEXP (varop, 0);
10594 continue;
10595 }
10596
10597 if (code == ASHIFTRT
10598 || (code == ROTATE && first_code == ASHIFTRT)
10599 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10600 || (GET_MODE (varop) != result_mode
10601 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10602 || first_code == ROTATE
10603 || code == ROTATE)))
10604 break;
10605
10606 /* To compute the mask to apply after the shift, shift the
10607 nonzero bits of the inner shift the same way the
10608 outer shift will. */
10609
10610 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10611 result_mode);
10612
10613 mask_rtx
10614 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10615 GEN_INT (count));
10616
10617 /* Give up if we can't compute an outer operation to use. */
10618 if (mask_rtx == 0
10619 || !CONST_INT_P (mask_rtx)
10620 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10621 INTVAL (mask_rtx),
10622 result_mode, &complement_p))
10623 break;
10624
10625 /* If the shifts are in the same direction, we add the
10626 counts. Otherwise, we subtract them. */
10627 if ((code == ASHIFTRT || code == LSHIFTRT)
10628 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10629 count += first_count;
10630 else
10631 count -= first_count;
10632
10633 /* If COUNT is positive, the new shift is usually CODE,
10634 except for the two exceptions below, in which case it is
10635 FIRST_CODE. If the count is negative, FIRST_CODE should
10636 always be used */
10637 if (count > 0
10638 && ((first_code == ROTATE && code == ASHIFT)
10639 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10640 code = first_code;
10641 else if (count < 0)
10642 code = first_code, count = -count;
10643
10644 varop = XEXP (varop, 0);
10645 continue;
10646 }
10647
10648 /* If we have (A << B << C) for any shift, we can convert this to
10649 (A << C << B). This wins if A is a constant. Only try this if
10650 B is not a constant. */
10651
10652 else if (GET_CODE (varop) == code
10653 && CONST_INT_P (XEXP (varop, 0))
10654 && !CONST_INT_P (XEXP (varop, 1)))
10655 {
10656 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10657 sure the result will be masked. See PR70222. */
10658 if (code == LSHIFTRT
10659 && mode != result_mode
10660 && !merge_outer_ops (&outer_op, &outer_const, AND,
10661 GET_MODE_MASK (result_mode)
10662 >> orig_count, result_mode,
10663 &complement_p))
10664 break;
10665 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10666 up outer sign extension (often left and right shift) is
10667 hardly more efficient than the original. See PR70429. */
10668 if (code == ASHIFTRT && mode != result_mode)
10669 break;
10670
10671 rtx new_rtx = simplify_const_binary_operation (code, mode,
10672 XEXP (varop, 0),
10673 GEN_INT (count));
10674 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10675 count = 0;
10676 continue;
10677 }
10678 break;
10679
10680 case NOT:
10681 /* The following rules apply only to scalars. */
10682 if (shift_mode != shift_unit_mode)
10683 break;
10684
10685 /* Make this fit the case below. */
10686 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10687 continue;
10688
10689 case IOR:
10690 case AND:
10691 case XOR:
10692 /* The following rules apply only to scalars. */
10693 if (shift_mode != shift_unit_mode)
10694 break;
10695
10696 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10697 with C the size of VAROP - 1 and the shift is logical if
10698 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10699 we have an (le X 0) operation. If we have an arithmetic shift
10700 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10701 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10702
10703 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10704 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10705 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10706 && (code == LSHIFTRT || code == ASHIFTRT)
10707 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10708 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10709 {
10710 count = 0;
10711 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10712 const0_rtx);
10713
10714 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10715 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10716
10717 continue;
10718 }
10719
10720 /* If we have (shift (logical)), move the logical to the outside
10721 to allow it to possibly combine with another logical and the
10722 shift to combine with another shift. This also canonicalizes to
10723 what a ZERO_EXTRACT looks like. Also, some machines have
10724 (and (shift)) insns. */
10725
10726 if (CONST_INT_P (XEXP (varop, 1))
10727 /* We can't do this if we have (ashiftrt (xor)) and the
10728 constant has its sign bit set in shift_mode with shift_mode
10729 wider than result_mode. */
10730 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10731 && result_mode != shift_mode
10732 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10733 shift_mode))
10734 && (new_rtx = simplify_const_binary_operation
10735 (code, result_mode,
10736 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10737 GEN_INT (count))) != 0
10738 && CONST_INT_P (new_rtx)
10739 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10740 INTVAL (new_rtx), result_mode, &complement_p))
10741 {
10742 varop = XEXP (varop, 0);
10743 continue;
10744 }
10745
10746 /* If we can't do that, try to simplify the shift in each arm of the
10747 logical expression, make a new logical expression, and apply
10748 the inverse distributive law. This also can't be done for
10749 (ashiftrt (xor)) where we've widened the shift and the constant
10750 changes the sign bit. */
10751 if (CONST_INT_P (XEXP (varop, 1))
10752 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10753 && result_mode != shift_mode
10754 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10755 shift_mode)))
10756 {
10757 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10758 XEXP (varop, 0), count);
10759 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10760 XEXP (varop, 1), count);
10761
10762 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10763 lhs, rhs);
10764 varop = apply_distributive_law (varop);
10765
10766 count = 0;
10767 continue;
10768 }
10769 break;
10770
10771 case EQ:
10772 /* The following rules apply only to scalars. */
10773 if (shift_mode != shift_unit_mode)
10774 break;
10775
10776 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10777 says that the sign bit can be tested, FOO has mode MODE, C is
10778 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10779 that may be nonzero. */
10780 if (code == LSHIFTRT
10781 && XEXP (varop, 1) == const0_rtx
10782 && GET_MODE (XEXP (varop, 0)) == result_mode
10783 && count == (GET_MODE_PRECISION (result_mode) - 1)
10784 && HWI_COMPUTABLE_MODE_P (result_mode)
10785 && STORE_FLAG_VALUE == -1
10786 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10787 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10788 &complement_p))
10789 {
10790 varop = XEXP (varop, 0);
10791 count = 0;
10792 continue;
10793 }
10794 break;
10795
10796 case NEG:
10797 /* The following rules apply only to scalars. */
10798 if (shift_mode != shift_unit_mode)
10799 break;
10800
10801 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10802 than the number of bits in the mode is equivalent to A. */
10803 if (code == LSHIFTRT
10804 && count == (GET_MODE_PRECISION (result_mode) - 1)
10805 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10806 {
10807 varop = XEXP (varop, 0);
10808 count = 0;
10809 continue;
10810 }
10811
10812 /* NEG commutes with ASHIFT since it is multiplication. Move the
10813 NEG outside to allow shifts to combine. */
10814 if (code == ASHIFT
10815 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10816 &complement_p))
10817 {
10818 varop = XEXP (varop, 0);
10819 continue;
10820 }
10821 break;
10822
10823 case PLUS:
10824 /* The following rules apply only to scalars. */
10825 if (shift_mode != shift_unit_mode)
10826 break;
10827
10828 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10829 is one less than the number of bits in the mode is
10830 equivalent to (xor A 1). */
10831 if (code == LSHIFTRT
10832 && count == (GET_MODE_PRECISION (result_mode) - 1)
10833 && XEXP (varop, 1) == constm1_rtx
10834 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10835 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10836 &complement_p))
10837 {
10838 count = 0;
10839 varop = XEXP (varop, 0);
10840 continue;
10841 }
10842
10843 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10844 that might be nonzero in BAR are those being shifted out and those
10845 bits are known zero in FOO, we can replace the PLUS with FOO.
10846 Similarly in the other operand order. This code occurs when
10847 we are computing the size of a variable-size array. */
10848
10849 if ((code == ASHIFTRT || code == LSHIFTRT)
10850 && count < HOST_BITS_PER_WIDE_INT
10851 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10852 && (nonzero_bits (XEXP (varop, 1), result_mode)
10853 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10854 {
10855 varop = XEXP (varop, 0);
10856 continue;
10857 }
10858 else if ((code == ASHIFTRT || code == LSHIFTRT)
10859 && count < HOST_BITS_PER_WIDE_INT
10860 && HWI_COMPUTABLE_MODE_P (result_mode)
10861 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10862 >> count)
10863 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10864 & nonzero_bits (XEXP (varop, 1),
10865 result_mode)))
10866 {
10867 varop = XEXP (varop, 1);
10868 continue;
10869 }
10870
10871 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10872 if (code == ASHIFT
10873 && CONST_INT_P (XEXP (varop, 1))
10874 && (new_rtx = simplify_const_binary_operation
10875 (ASHIFT, result_mode,
10876 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10877 GEN_INT (count))) != 0
10878 && CONST_INT_P (new_rtx)
10879 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10880 INTVAL (new_rtx), result_mode, &complement_p))
10881 {
10882 varop = XEXP (varop, 0);
10883 continue;
10884 }
10885
10886 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10887 signbit', and attempt to change the PLUS to an XOR and move it to
10888 the outer operation as is done above in the AND/IOR/XOR case
10889 leg for shift(logical). See details in logical handling above
10890 for reasoning in doing so. */
10891 if (code == LSHIFTRT
10892 && CONST_INT_P (XEXP (varop, 1))
10893 && mode_signbit_p (result_mode, XEXP (varop, 1))
10894 && (new_rtx = simplify_const_binary_operation
10895 (code, result_mode,
10896 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10897 GEN_INT (count))) != 0
10898 && CONST_INT_P (new_rtx)
10899 && merge_outer_ops (&outer_op, &outer_const, XOR,
10900 INTVAL (new_rtx), result_mode, &complement_p))
10901 {
10902 varop = XEXP (varop, 0);
10903 continue;
10904 }
10905
10906 break;
10907
10908 case MINUS:
10909 /* The following rules apply only to scalars. */
10910 if (shift_mode != shift_unit_mode)
10911 break;
10912
10913 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10914 with C the size of VAROP - 1 and the shift is logical if
10915 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10916 we have a (gt X 0) operation. If the shift is arithmetic with
10917 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10918 we have a (neg (gt X 0)) operation. */
10919
10920 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10921 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10922 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10923 && (code == LSHIFTRT || code == ASHIFTRT)
10924 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10925 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10926 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10927 {
10928 count = 0;
10929 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10930 const0_rtx);
10931
10932 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10933 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10934
10935 continue;
10936 }
10937 break;
10938
10939 case TRUNCATE:
10940 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10941 if the truncate does not affect the value. */
10942 if (code == LSHIFTRT
10943 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10944 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10945 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10946 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
10947 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
10948 {
10949 rtx varop_inner = XEXP (varop, 0);
10950
10951 varop_inner
10952 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10953 XEXP (varop_inner, 0),
10954 GEN_INT
10955 (count + INTVAL (XEXP (varop_inner, 1))));
10956 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10957 count = 0;
10958 continue;
10959 }
10960 break;
10961
10962 default:
10963 break;
10964 }
10965
10966 break;
10967 }
10968
10969 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10970 outer_op, outer_const);
10971
10972 /* We have now finished analyzing the shift. The result should be
10973 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10974 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10975 to the result of the shift. OUTER_CONST is the relevant constant,
10976 but we must turn off all bits turned off in the shift. */
10977
10978 if (outer_op == UNKNOWN
10979 && orig_code == code && orig_count == count
10980 && varop == orig_varop
10981 && shift_mode == GET_MODE (varop))
10982 return NULL_RTX;
10983
10984 /* Make a SUBREG if necessary. If we can't make it, fail. */
10985 varop = gen_lowpart (shift_mode, varop);
10986 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10987 return NULL_RTX;
10988
10989 /* If we have an outer operation and we just made a shift, it is
10990 possible that we could have simplified the shift were it not
10991 for the outer operation. So try to do the simplification
10992 recursively. */
10993
10994 if (outer_op != UNKNOWN)
10995 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10996 else
10997 x = NULL_RTX;
10998
10999 if (x == NULL_RTX)
11000 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
11001
11002 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11003 turn off all the bits that the shift would have turned off. */
11004 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11005 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
11006 GET_MODE_MASK (result_mode) >> orig_count);
11007
11008 /* Do the remainder of the processing in RESULT_MODE. */
11009 x = gen_lowpart_or_truncate (result_mode, x);
11010
11011 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11012 operation. */
11013 if (complement_p)
11014 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11015
11016 if (outer_op != UNKNOWN)
11017 {
11018 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11019 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
11020 outer_const = trunc_int_for_mode (outer_const, result_mode);
11021
11022 if (outer_op == AND)
11023 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
11024 else if (outer_op == SET)
11025 {
11026 /* This means that we have determined that the result is
11027 equivalent to a constant. This should be rare. */
11028 if (!side_effects_p (x))
11029 x = GEN_INT (outer_const);
11030 }
11031 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11032 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
11033 else
11034 x = simplify_gen_binary (outer_op, result_mode, x,
11035 GEN_INT (outer_const));
11036 }
11037
11038 return x;
11039 }
11040
11041 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11042 The result of the shift is RESULT_MODE. If we cannot simplify it,
11043 return X or, if it is NULL, synthesize the expression with
11044 simplify_gen_binary. Otherwise, return a simplified value.
11045
11046 The shift is normally computed in the widest mode we find in VAROP, as
11047 long as it isn't a different number of words than RESULT_MODE. Exceptions
11048 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11049
11050 static rtx
11051 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11052 rtx varop, int count)
11053 {
11054 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11055 if (tem)
11056 return tem;
11057
11058 if (!x)
11059 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
11060 if (GET_MODE (x) != result_mode)
11061 x = gen_lowpart (result_mode, x);
11062 return x;
11063 }
11064
11065 \f
11066 /* A subroutine of recog_for_combine. See there for arguments and
11067 return value. */
11068
11069 static int
11070 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11071 {
11072 rtx pat = *pnewpat;
11073 rtx pat_without_clobbers;
11074 int insn_code_number;
11075 int num_clobbers_to_add = 0;
11076 int i;
11077 rtx notes = NULL_RTX;
11078 rtx old_notes, old_pat;
11079 int old_icode;
11080
11081 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11082 we use to indicate that something didn't match. If we find such a
11083 thing, force rejection. */
11084 if (GET_CODE (pat) == PARALLEL)
11085 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11086 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11087 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11088 return -1;
11089
11090 old_pat = PATTERN (insn);
11091 old_notes = REG_NOTES (insn);
11092 PATTERN (insn) = pat;
11093 REG_NOTES (insn) = NULL_RTX;
11094
11095 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11096 if (dump_file && (dump_flags & TDF_DETAILS))
11097 {
11098 if (insn_code_number < 0)
11099 fputs ("Failed to match this instruction:\n", dump_file);
11100 else
11101 fputs ("Successfully matched this instruction:\n", dump_file);
11102 print_rtl_single (dump_file, pat);
11103 }
11104
11105 /* If it isn't, there is the possibility that we previously had an insn
11106 that clobbered some register as a side effect, but the combined
11107 insn doesn't need to do that. So try once more without the clobbers
11108 unless this represents an ASM insn. */
11109
11110 if (insn_code_number < 0 && ! check_asm_operands (pat)
11111 && GET_CODE (pat) == PARALLEL)
11112 {
11113 int pos;
11114
11115 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11116 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11117 {
11118 if (i != pos)
11119 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11120 pos++;
11121 }
11122
11123 SUBST_INT (XVECLEN (pat, 0), pos);
11124
11125 if (pos == 1)
11126 pat = XVECEXP (pat, 0, 0);
11127
11128 PATTERN (insn) = pat;
11129 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11130 if (dump_file && (dump_flags & TDF_DETAILS))
11131 {
11132 if (insn_code_number < 0)
11133 fputs ("Failed to match this instruction:\n", dump_file);
11134 else
11135 fputs ("Successfully matched this instruction:\n", dump_file);
11136 print_rtl_single (dump_file, pat);
11137 }
11138 }
11139
11140 pat_without_clobbers = pat;
11141
11142 PATTERN (insn) = old_pat;
11143 REG_NOTES (insn) = old_notes;
11144
11145 /* Recognize all noop sets, these will be killed by followup pass. */
11146 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11147 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11148
11149 /* If we had any clobbers to add, make a new pattern than contains
11150 them. Then check to make sure that all of them are dead. */
11151 if (num_clobbers_to_add)
11152 {
11153 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11154 rtvec_alloc (GET_CODE (pat) == PARALLEL
11155 ? (XVECLEN (pat, 0)
11156 + num_clobbers_to_add)
11157 : num_clobbers_to_add + 1));
11158
11159 if (GET_CODE (pat) == PARALLEL)
11160 for (i = 0; i < XVECLEN (pat, 0); i++)
11161 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11162 else
11163 XVECEXP (newpat, 0, 0) = pat;
11164
11165 add_clobbers (newpat, insn_code_number);
11166
11167 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11168 i < XVECLEN (newpat, 0); i++)
11169 {
11170 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11171 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11172 return -1;
11173 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11174 {
11175 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11176 notes = alloc_reg_note (REG_UNUSED,
11177 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11178 }
11179 }
11180 pat = newpat;
11181 }
11182
11183 if (insn_code_number >= 0
11184 && insn_code_number != NOOP_MOVE_INSN_CODE)
11185 {
11186 old_pat = PATTERN (insn);
11187 old_notes = REG_NOTES (insn);
11188 old_icode = INSN_CODE (insn);
11189 PATTERN (insn) = pat;
11190 REG_NOTES (insn) = notes;
11191
11192 /* Allow targets to reject combined insn. */
11193 if (!targetm.legitimate_combined_insn (insn))
11194 {
11195 if (dump_file && (dump_flags & TDF_DETAILS))
11196 fputs ("Instruction not appropriate for target.",
11197 dump_file);
11198
11199 /* Callers expect recog_for_combine to strip
11200 clobbers from the pattern on failure. */
11201 pat = pat_without_clobbers;
11202 notes = NULL_RTX;
11203
11204 insn_code_number = -1;
11205 }
11206
11207 PATTERN (insn) = old_pat;
11208 REG_NOTES (insn) = old_notes;
11209 INSN_CODE (insn) = old_icode;
11210 }
11211
11212 *pnewpat = pat;
11213 *pnotes = notes;
11214
11215 return insn_code_number;
11216 }
11217
11218 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11219 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11220 Return whether anything was so changed. */
11221
11222 static bool
11223 change_zero_ext (rtx pat)
11224 {
11225 bool changed = false;
11226 rtx *src = &SET_SRC (pat);
11227
11228 subrtx_ptr_iterator::array_type array;
11229 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11230 {
11231 rtx x = **iter;
11232 machine_mode mode = GET_MODE (x);
11233 int size;
11234
11235 if (GET_CODE (x) == ZERO_EXTRACT
11236 && CONST_INT_P (XEXP (x, 1))
11237 && CONST_INT_P (XEXP (x, 2))
11238 && GET_MODE (XEXP (x, 0)) == mode)
11239 {
11240 size = INTVAL (XEXP (x, 1));
11241
11242 int start = INTVAL (XEXP (x, 2));
11243 if (BITS_BIG_ENDIAN)
11244 start = GET_MODE_PRECISION (mode) - size - start;
11245
11246 if (start)
11247 x = gen_rtx_LSHIFTRT (mode, XEXP (x, 0), GEN_INT (start));
11248 else
11249 x = XEXP (x, 0);
11250 }
11251 else if (GET_CODE (x) == ZERO_EXTEND
11252 && SCALAR_INT_MODE_P (mode)
11253 && GET_CODE (XEXP (x, 0)) == SUBREG
11254 && !paradoxical_subreg_p (XEXP (x, 0))
11255 && subreg_lowpart_p (XEXP (x, 0)))
11256 {
11257 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11258 x = SUBREG_REG (XEXP (x, 0));
11259 if (GET_MODE (x) != mode)
11260 x = gen_lowpart_SUBREG (mode, x);
11261 }
11262 else if (GET_CODE (x) == ZERO_EXTEND
11263 && SCALAR_INT_MODE_P (mode)
11264 && REG_P (XEXP (x, 0))
11265 && HARD_REGISTER_P (XEXP (x, 0))
11266 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11267 {
11268 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11269 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11270 }
11271 else
11272 continue;
11273
11274 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11275 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11276
11277 SUBST (**iter, x);
11278 changed = true;
11279 }
11280
11281 if (changed)
11282 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11283 maybe_swap_commutative_operands (**iter);
11284
11285 rtx *dst = &SET_DEST (pat);
11286 if (GET_CODE (*dst) == ZERO_EXTRACT
11287 && REG_P (XEXP (*dst, 0))
11288 && CONST_INT_P (XEXP (*dst, 1))
11289 && CONST_INT_P (XEXP (*dst, 2)))
11290 {
11291 rtx reg = XEXP (*dst, 0);
11292 int width = INTVAL (XEXP (*dst, 1));
11293 int offset = INTVAL (XEXP (*dst, 2));
11294 machine_mode mode = GET_MODE (reg);
11295 int reg_width = GET_MODE_PRECISION (mode);
11296 if (BITS_BIG_ENDIAN)
11297 offset = reg_width - width - offset;
11298
11299 rtx x, y, z, w;
11300 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11301 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11302 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11303 if (offset)
11304 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11305 else
11306 y = SET_SRC (pat);
11307 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11308 w = gen_rtx_IOR (mode, x, z);
11309 SUBST (SET_DEST (pat), reg);
11310 SUBST (SET_SRC (pat), w);
11311
11312 changed = true;
11313 }
11314
11315 return changed;
11316 }
11317
11318 /* Like recog, but we receive the address of a pointer to a new pattern.
11319 We try to match the rtx that the pointer points to.
11320 If that fails, we may try to modify or replace the pattern,
11321 storing the replacement into the same pointer object.
11322
11323 Modifications include deletion or addition of CLOBBERs. If the
11324 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11325 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11326 (and undo if that fails).
11327
11328 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11329 the CLOBBERs are placed.
11330
11331 The value is the final insn code from the pattern ultimately matched,
11332 or -1. */
11333
11334 static int
11335 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11336 {
11337 rtx pat = *pnewpat;
11338 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11339 if (insn_code_number >= 0 || check_asm_operands (pat))
11340 return insn_code_number;
11341
11342 void *marker = get_undo_marker ();
11343 bool changed = false;
11344
11345 if (GET_CODE (pat) == SET)
11346 changed = change_zero_ext (pat);
11347 else if (GET_CODE (pat) == PARALLEL)
11348 {
11349 int i;
11350 for (i = 0; i < XVECLEN (pat, 0); i++)
11351 {
11352 rtx set = XVECEXP (pat, 0, i);
11353 if (GET_CODE (set) == SET)
11354 changed |= change_zero_ext (set);
11355 }
11356 }
11357
11358 if (changed)
11359 {
11360 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11361
11362 if (insn_code_number < 0)
11363 undo_to_marker (marker);
11364 }
11365
11366 return insn_code_number;
11367 }
11368 \f
11369 /* Like gen_lowpart_general but for use by combine. In combine it
11370 is not possible to create any new pseudoregs. However, it is
11371 safe to create invalid memory addresses, because combine will
11372 try to recognize them and all they will do is make the combine
11373 attempt fail.
11374
11375 If for some reason this cannot do its job, an rtx
11376 (clobber (const_int 0)) is returned.
11377 An insn containing that will not be recognized. */
11378
11379 static rtx
11380 gen_lowpart_for_combine (machine_mode omode, rtx x)
11381 {
11382 machine_mode imode = GET_MODE (x);
11383 unsigned int osize = GET_MODE_SIZE (omode);
11384 unsigned int isize = GET_MODE_SIZE (imode);
11385 rtx result;
11386
11387 if (omode == imode)
11388 return x;
11389
11390 /* We can only support MODE being wider than a word if X is a
11391 constant integer or has a mode the same size. */
11392 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11393 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11394 goto fail;
11395
11396 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11397 won't know what to do. So we will strip off the SUBREG here and
11398 process normally. */
11399 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11400 {
11401 x = SUBREG_REG (x);
11402
11403 /* For use in case we fall down into the address adjustments
11404 further below, we need to adjust the known mode and size of
11405 x; imode and isize, since we just adjusted x. */
11406 imode = GET_MODE (x);
11407
11408 if (imode == omode)
11409 return x;
11410
11411 isize = GET_MODE_SIZE (imode);
11412 }
11413
11414 result = gen_lowpart_common (omode, x);
11415
11416 if (result)
11417 return result;
11418
11419 if (MEM_P (x))
11420 {
11421 int offset = 0;
11422
11423 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11424 address. */
11425 if (MEM_VOLATILE_P (x)
11426 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11427 goto fail;
11428
11429 /* If we want to refer to something bigger than the original memref,
11430 generate a paradoxical subreg instead. That will force a reload
11431 of the original memref X. */
11432 if (isize < osize)
11433 return gen_rtx_SUBREG (omode, x, 0);
11434
11435 if (WORDS_BIG_ENDIAN)
11436 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11437
11438 /* Adjust the address so that the address-after-the-data is
11439 unchanged. */
11440 if (BYTES_BIG_ENDIAN)
11441 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11442
11443 return adjust_address_nv (x, omode, offset);
11444 }
11445
11446 /* If X is a comparison operator, rewrite it in a new mode. This
11447 probably won't match, but may allow further simplifications. */
11448 else if (COMPARISON_P (x))
11449 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11450
11451 /* If we couldn't simplify X any other way, just enclose it in a
11452 SUBREG. Normally, this SUBREG won't match, but some patterns may
11453 include an explicit SUBREG or we may simplify it further in combine. */
11454 else
11455 {
11456 rtx res;
11457
11458 if (imode == VOIDmode)
11459 {
11460 imode = int_mode_for_mode (omode);
11461 x = gen_lowpart_common (imode, x);
11462 if (x == NULL)
11463 goto fail;
11464 }
11465 res = lowpart_subreg (omode, x, imode);
11466 if (res)
11467 return res;
11468 }
11469
11470 fail:
11471 return gen_rtx_CLOBBER (omode, const0_rtx);
11472 }
11473 \f
11474 /* Try to simplify a comparison between OP0 and a constant OP1,
11475 where CODE is the comparison code that will be tested, into a
11476 (CODE OP0 const0_rtx) form.
11477
11478 The result is a possibly different comparison code to use.
11479 *POP1 may be updated. */
11480
11481 static enum rtx_code
11482 simplify_compare_const (enum rtx_code code, machine_mode mode,
11483 rtx op0, rtx *pop1)
11484 {
11485 unsigned int mode_width = GET_MODE_PRECISION (mode);
11486 HOST_WIDE_INT const_op = INTVAL (*pop1);
11487
11488 /* Get the constant we are comparing against and turn off all bits
11489 not on in our mode. */
11490 if (mode != VOIDmode)
11491 const_op = trunc_int_for_mode (const_op, mode);
11492
11493 /* If we are comparing against a constant power of two and the value
11494 being compared can only have that single bit nonzero (e.g., it was
11495 `and'ed with that bit), we can replace this with a comparison
11496 with zero. */
11497 if (const_op
11498 && (code == EQ || code == NE || code == GE || code == GEU
11499 || code == LT || code == LTU)
11500 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11501 && pow2p_hwi (const_op & GET_MODE_MASK (mode))
11502 && (nonzero_bits (op0, mode)
11503 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11504 {
11505 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11506 const_op = 0;
11507 }
11508
11509 /* Similarly, if we are comparing a value known to be either -1 or
11510 0 with -1, change it to the opposite comparison against zero. */
11511 if (const_op == -1
11512 && (code == EQ || code == NE || code == GT || code == LE
11513 || code == GEU || code == LTU)
11514 && num_sign_bit_copies (op0, mode) == mode_width)
11515 {
11516 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11517 const_op = 0;
11518 }
11519
11520 /* Do some canonicalizations based on the comparison code. We prefer
11521 comparisons against zero and then prefer equality comparisons.
11522 If we can reduce the size of a constant, we will do that too. */
11523 switch (code)
11524 {
11525 case LT:
11526 /* < C is equivalent to <= (C - 1) */
11527 if (const_op > 0)
11528 {
11529 const_op -= 1;
11530 code = LE;
11531 /* ... fall through to LE case below. */
11532 gcc_fallthrough ();
11533 }
11534 else
11535 break;
11536
11537 case LE:
11538 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11539 if (const_op < 0)
11540 {
11541 const_op += 1;
11542 code = LT;
11543 }
11544
11545 /* If we are doing a <= 0 comparison on a value known to have
11546 a zero sign bit, we can replace this with == 0. */
11547 else if (const_op == 0
11548 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11549 && (nonzero_bits (op0, mode)
11550 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11551 == 0)
11552 code = EQ;
11553 break;
11554
11555 case GE:
11556 /* >= C is equivalent to > (C - 1). */
11557 if (const_op > 0)
11558 {
11559 const_op -= 1;
11560 code = GT;
11561 /* ... fall through to GT below. */
11562 gcc_fallthrough ();
11563 }
11564 else
11565 break;
11566
11567 case GT:
11568 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11569 if (const_op < 0)
11570 {
11571 const_op += 1;
11572 code = GE;
11573 }
11574
11575 /* If we are doing a > 0 comparison on a value known to have
11576 a zero sign bit, we can replace this with != 0. */
11577 else if (const_op == 0
11578 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11579 && (nonzero_bits (op0, mode)
11580 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11581 == 0)
11582 code = NE;
11583 break;
11584
11585 case LTU:
11586 /* < C is equivalent to <= (C - 1). */
11587 if (const_op > 0)
11588 {
11589 const_op -= 1;
11590 code = LEU;
11591 /* ... fall through ... */
11592 }
11593 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11594 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11595 && (unsigned HOST_WIDE_INT) const_op
11596 == HOST_WIDE_INT_1U << (mode_width - 1))
11597 {
11598 const_op = 0;
11599 code = GE;
11600 break;
11601 }
11602 else
11603 break;
11604
11605 case LEU:
11606 /* unsigned <= 0 is equivalent to == 0 */
11607 if (const_op == 0)
11608 code = EQ;
11609 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11610 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11611 && (unsigned HOST_WIDE_INT) const_op
11612 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11613 {
11614 const_op = 0;
11615 code = GE;
11616 }
11617 break;
11618
11619 case GEU:
11620 /* >= C is equivalent to > (C - 1). */
11621 if (const_op > 1)
11622 {
11623 const_op -= 1;
11624 code = GTU;
11625 /* ... fall through ... */
11626 }
11627
11628 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11629 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11630 && (unsigned HOST_WIDE_INT) const_op
11631 == HOST_WIDE_INT_1U << (mode_width - 1))
11632 {
11633 const_op = 0;
11634 code = LT;
11635 break;
11636 }
11637 else
11638 break;
11639
11640 case GTU:
11641 /* unsigned > 0 is equivalent to != 0 */
11642 if (const_op == 0)
11643 code = NE;
11644 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11645 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11646 && (unsigned HOST_WIDE_INT) const_op
11647 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11648 {
11649 const_op = 0;
11650 code = LT;
11651 }
11652 break;
11653
11654 default:
11655 break;
11656 }
11657
11658 *pop1 = GEN_INT (const_op);
11659 return code;
11660 }
11661 \f
11662 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11663 comparison code that will be tested.
11664
11665 The result is a possibly different comparison code to use. *POP0 and
11666 *POP1 may be updated.
11667
11668 It is possible that we might detect that a comparison is either always
11669 true or always false. However, we do not perform general constant
11670 folding in combine, so this knowledge isn't useful. Such tautologies
11671 should have been detected earlier. Hence we ignore all such cases. */
11672
11673 static enum rtx_code
11674 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11675 {
11676 rtx op0 = *pop0;
11677 rtx op1 = *pop1;
11678 rtx tem, tem1;
11679 int i;
11680 machine_mode mode, tmode;
11681
11682 /* Try a few ways of applying the same transformation to both operands. */
11683 while (1)
11684 {
11685 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11686 so check specially. */
11687 if (!WORD_REGISTER_OPERATIONS
11688 && code != GTU && code != GEU && code != LTU && code != LEU
11689 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11690 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11691 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11692 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11693 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11694 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11695 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11696 && CONST_INT_P (XEXP (op0, 1))
11697 && XEXP (op0, 1) == XEXP (op1, 1)
11698 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11699 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11700 && (INTVAL (XEXP (op0, 1))
11701 == (GET_MODE_PRECISION (GET_MODE (op0))
11702 - (GET_MODE_PRECISION
11703 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11704 {
11705 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11706 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11707 }
11708
11709 /* If both operands are the same constant shift, see if we can ignore the
11710 shift. We can if the shift is a rotate or if the bits shifted out of
11711 this shift are known to be zero for both inputs and if the type of
11712 comparison is compatible with the shift. */
11713 if (GET_CODE (op0) == GET_CODE (op1)
11714 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11715 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11716 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11717 && (code != GT && code != LT && code != GE && code != LE))
11718 || (GET_CODE (op0) == ASHIFTRT
11719 && (code != GTU && code != LTU
11720 && code != GEU && code != LEU)))
11721 && CONST_INT_P (XEXP (op0, 1))
11722 && INTVAL (XEXP (op0, 1)) >= 0
11723 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11724 && XEXP (op0, 1) == XEXP (op1, 1))
11725 {
11726 machine_mode mode = GET_MODE (op0);
11727 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11728 int shift_count = INTVAL (XEXP (op0, 1));
11729
11730 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11731 mask &= (mask >> shift_count) << shift_count;
11732 else if (GET_CODE (op0) == ASHIFT)
11733 mask = (mask & (mask << shift_count)) >> shift_count;
11734
11735 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11736 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11737 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11738 else
11739 break;
11740 }
11741
11742 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11743 SUBREGs are of the same mode, and, in both cases, the AND would
11744 be redundant if the comparison was done in the narrower mode,
11745 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11746 and the operand's possibly nonzero bits are 0xffffff01; in that case
11747 if we only care about QImode, we don't need the AND). This case
11748 occurs if the output mode of an scc insn is not SImode and
11749 STORE_FLAG_VALUE == 1 (e.g., the 386).
11750
11751 Similarly, check for a case where the AND's are ZERO_EXTEND
11752 operations from some narrower mode even though a SUBREG is not
11753 present. */
11754
11755 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11756 && CONST_INT_P (XEXP (op0, 1))
11757 && CONST_INT_P (XEXP (op1, 1)))
11758 {
11759 rtx inner_op0 = XEXP (op0, 0);
11760 rtx inner_op1 = XEXP (op1, 0);
11761 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11762 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11763 int changed = 0;
11764
11765 if (paradoxical_subreg_p (inner_op0)
11766 && GET_CODE (inner_op1) == SUBREG
11767 && (GET_MODE (SUBREG_REG (inner_op0))
11768 == GET_MODE (SUBREG_REG (inner_op1)))
11769 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11770 <= HOST_BITS_PER_WIDE_INT)
11771 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11772 GET_MODE (SUBREG_REG (inner_op0)))))
11773 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11774 GET_MODE (SUBREG_REG (inner_op1))))))
11775 {
11776 op0 = SUBREG_REG (inner_op0);
11777 op1 = SUBREG_REG (inner_op1);
11778
11779 /* The resulting comparison is always unsigned since we masked
11780 off the original sign bit. */
11781 code = unsigned_condition (code);
11782
11783 changed = 1;
11784 }
11785
11786 else if (c0 == c1)
11787 for (tmode = GET_CLASS_NARROWEST_MODE
11788 (GET_MODE_CLASS (GET_MODE (op0)));
11789 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11790 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11791 {
11792 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
11793 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
11794 code = unsigned_condition (code);
11795 changed = 1;
11796 break;
11797 }
11798
11799 if (! changed)
11800 break;
11801 }
11802
11803 /* If both operands are NOT, we can strip off the outer operation
11804 and adjust the comparison code for swapped operands; similarly for
11805 NEG, except that this must be an equality comparison. */
11806 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11807 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11808 && (code == EQ || code == NE)))
11809 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11810
11811 else
11812 break;
11813 }
11814
11815 /* If the first operand is a constant, swap the operands and adjust the
11816 comparison code appropriately, but don't do this if the second operand
11817 is already a constant integer. */
11818 if (swap_commutative_operands_p (op0, op1))
11819 {
11820 std::swap (op0, op1);
11821 code = swap_condition (code);
11822 }
11823
11824 /* We now enter a loop during which we will try to simplify the comparison.
11825 For the most part, we only are concerned with comparisons with zero,
11826 but some things may really be comparisons with zero but not start
11827 out looking that way. */
11828
11829 while (CONST_INT_P (op1))
11830 {
11831 machine_mode mode = GET_MODE (op0);
11832 unsigned int mode_width = GET_MODE_PRECISION (mode);
11833 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11834 int equality_comparison_p;
11835 int sign_bit_comparison_p;
11836 int unsigned_comparison_p;
11837 HOST_WIDE_INT const_op;
11838
11839 /* We only want to handle integral modes. This catches VOIDmode,
11840 CCmode, and the floating-point modes. An exception is that we
11841 can handle VOIDmode if OP0 is a COMPARE or a comparison
11842 operation. */
11843
11844 if (GET_MODE_CLASS (mode) != MODE_INT
11845 && ! (mode == VOIDmode
11846 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11847 break;
11848
11849 /* Try to simplify the compare to constant, possibly changing the
11850 comparison op, and/or changing op1 to zero. */
11851 code = simplify_compare_const (code, mode, op0, &op1);
11852 const_op = INTVAL (op1);
11853
11854 /* Compute some predicates to simplify code below. */
11855
11856 equality_comparison_p = (code == EQ || code == NE);
11857 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11858 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11859 || code == GEU);
11860
11861 /* If this is a sign bit comparison and we can do arithmetic in
11862 MODE, say that we will only be needing the sign bit of OP0. */
11863 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11864 op0 = force_to_mode (op0, mode,
11865 HOST_WIDE_INT_1U
11866 << (GET_MODE_PRECISION (mode) - 1),
11867 0);
11868
11869 /* Now try cases based on the opcode of OP0. If none of the cases
11870 does a "continue", we exit this loop immediately after the
11871 switch. */
11872
11873 switch (GET_CODE (op0))
11874 {
11875 case ZERO_EXTRACT:
11876 /* If we are extracting a single bit from a variable position in
11877 a constant that has only a single bit set and are comparing it
11878 with zero, we can convert this into an equality comparison
11879 between the position and the location of the single bit. */
11880 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11881 have already reduced the shift count modulo the word size. */
11882 if (!SHIFT_COUNT_TRUNCATED
11883 && CONST_INT_P (XEXP (op0, 0))
11884 && XEXP (op0, 1) == const1_rtx
11885 && equality_comparison_p && const_op == 0
11886 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11887 {
11888 if (BITS_BIG_ENDIAN)
11889 i = BITS_PER_WORD - 1 - i;
11890
11891 op0 = XEXP (op0, 2);
11892 op1 = GEN_INT (i);
11893 const_op = i;
11894
11895 /* Result is nonzero iff shift count is equal to I. */
11896 code = reverse_condition (code);
11897 continue;
11898 }
11899
11900 /* fall through */
11901
11902 case SIGN_EXTRACT:
11903 tem = expand_compound_operation (op0);
11904 if (tem != op0)
11905 {
11906 op0 = tem;
11907 continue;
11908 }
11909 break;
11910
11911 case NOT:
11912 /* If testing for equality, we can take the NOT of the constant. */
11913 if (equality_comparison_p
11914 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11915 {
11916 op0 = XEXP (op0, 0);
11917 op1 = tem;
11918 continue;
11919 }
11920
11921 /* If just looking at the sign bit, reverse the sense of the
11922 comparison. */
11923 if (sign_bit_comparison_p)
11924 {
11925 op0 = XEXP (op0, 0);
11926 code = (code == GE ? LT : GE);
11927 continue;
11928 }
11929 break;
11930
11931 case NEG:
11932 /* If testing for equality, we can take the NEG of the constant. */
11933 if (equality_comparison_p
11934 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11935 {
11936 op0 = XEXP (op0, 0);
11937 op1 = tem;
11938 continue;
11939 }
11940
11941 /* The remaining cases only apply to comparisons with zero. */
11942 if (const_op != 0)
11943 break;
11944
11945 /* When X is ABS or is known positive,
11946 (neg X) is < 0 if and only if X != 0. */
11947
11948 if (sign_bit_comparison_p
11949 && (GET_CODE (XEXP (op0, 0)) == ABS
11950 || (mode_width <= HOST_BITS_PER_WIDE_INT
11951 && (nonzero_bits (XEXP (op0, 0), mode)
11952 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11953 == 0)))
11954 {
11955 op0 = XEXP (op0, 0);
11956 code = (code == LT ? NE : EQ);
11957 continue;
11958 }
11959
11960 /* If we have NEG of something whose two high-order bits are the
11961 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11962 if (num_sign_bit_copies (op0, mode) >= 2)
11963 {
11964 op0 = XEXP (op0, 0);
11965 code = swap_condition (code);
11966 continue;
11967 }
11968 break;
11969
11970 case ROTATE:
11971 /* If we are testing equality and our count is a constant, we
11972 can perform the inverse operation on our RHS. */
11973 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11974 && (tem = simplify_binary_operation (ROTATERT, mode,
11975 op1, XEXP (op0, 1))) != 0)
11976 {
11977 op0 = XEXP (op0, 0);
11978 op1 = tem;
11979 continue;
11980 }
11981
11982 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11983 a particular bit. Convert it to an AND of a constant of that
11984 bit. This will be converted into a ZERO_EXTRACT. */
11985 if (const_op == 0 && sign_bit_comparison_p
11986 && CONST_INT_P (XEXP (op0, 1))
11987 && mode_width <= HOST_BITS_PER_WIDE_INT)
11988 {
11989 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11990 (HOST_WIDE_INT_1U
11991 << (mode_width - 1
11992 - INTVAL (XEXP (op0, 1)))));
11993 code = (code == LT ? NE : EQ);
11994 continue;
11995 }
11996
11997 /* Fall through. */
11998
11999 case ABS:
12000 /* ABS is ignorable inside an equality comparison with zero. */
12001 if (const_op == 0 && equality_comparison_p)
12002 {
12003 op0 = XEXP (op0, 0);
12004 continue;
12005 }
12006 break;
12007
12008 case SIGN_EXTEND:
12009 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12010 (compare FOO CONST) if CONST fits in FOO's mode and we
12011 are either testing inequality or have an unsigned
12012 comparison with ZERO_EXTEND or a signed comparison with
12013 SIGN_EXTEND. But don't do it if we don't have a compare
12014 insn of the given mode, since we'd have to revert it
12015 later on, and then we wouldn't know whether to sign- or
12016 zero-extend. */
12017 mode = GET_MODE (XEXP (op0, 0));
12018 if (GET_MODE_CLASS (mode) == MODE_INT
12019 && ! unsigned_comparison_p
12020 && HWI_COMPUTABLE_MODE_P (mode)
12021 && trunc_int_for_mode (const_op, mode) == const_op
12022 && have_insn_for (COMPARE, mode))
12023 {
12024 op0 = XEXP (op0, 0);
12025 continue;
12026 }
12027 break;
12028
12029 case SUBREG:
12030 /* Check for the case where we are comparing A - C1 with C2, that is
12031
12032 (subreg:MODE (plus (A) (-C1))) op (C2)
12033
12034 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12035 comparison in the wider mode. One of the following two conditions
12036 must be true in order for this to be valid:
12037
12038 1. The mode extension results in the same bit pattern being added
12039 on both sides and the comparison is equality or unsigned. As
12040 C2 has been truncated to fit in MODE, the pattern can only be
12041 all 0s or all 1s.
12042
12043 2. The mode extension results in the sign bit being copied on
12044 each side.
12045
12046 The difficulty here is that we have predicates for A but not for
12047 (A - C1) so we need to check that C1 is within proper bounds so
12048 as to perturbate A as little as possible. */
12049
12050 if (mode_width <= HOST_BITS_PER_WIDE_INT
12051 && subreg_lowpart_p (op0)
12052 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
12053 && GET_CODE (SUBREG_REG (op0)) == PLUS
12054 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12055 {
12056 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
12057 rtx a = XEXP (SUBREG_REG (op0), 0);
12058 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12059
12060 if ((c1 > 0
12061 && (unsigned HOST_WIDE_INT) c1
12062 < HOST_WIDE_INT_1U << (mode_width - 1)
12063 && (equality_comparison_p || unsigned_comparison_p)
12064 /* (A - C1) zero-extends if it is positive and sign-extends
12065 if it is negative, C2 both zero- and sign-extends. */
12066 && ((0 == (nonzero_bits (a, inner_mode)
12067 & ~GET_MODE_MASK (mode))
12068 && const_op >= 0)
12069 /* (A - C1) sign-extends if it is positive and 1-extends
12070 if it is negative, C2 both sign- and 1-extends. */
12071 || (num_sign_bit_copies (a, inner_mode)
12072 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12073 - mode_width)
12074 && const_op < 0)))
12075 || ((unsigned HOST_WIDE_INT) c1
12076 < HOST_WIDE_INT_1U << (mode_width - 2)
12077 /* (A - C1) always sign-extends, like C2. */
12078 && num_sign_bit_copies (a, inner_mode)
12079 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12080 - (mode_width - 1))))
12081 {
12082 op0 = SUBREG_REG (op0);
12083 continue;
12084 }
12085 }
12086
12087 /* If the inner mode is narrower and we are extracting the low part,
12088 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12089 if (subreg_lowpart_p (op0)
12090 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
12091 ;
12092 else if (subreg_lowpart_p (op0)
12093 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12094 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12095 && (code == NE || code == EQ)
12096 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12097 <= HOST_BITS_PER_WIDE_INT)
12098 && !paradoxical_subreg_p (op0)
12099 && (nonzero_bits (SUBREG_REG (op0),
12100 GET_MODE (SUBREG_REG (op0)))
12101 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12102 {
12103 /* Remove outer subregs that don't do anything. */
12104 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12105
12106 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12107 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12108 {
12109 op0 = SUBREG_REG (op0);
12110 op1 = tem;
12111 continue;
12112 }
12113 break;
12114 }
12115 else
12116 break;
12117
12118 /* FALLTHROUGH */
12119
12120 case ZERO_EXTEND:
12121 mode = GET_MODE (XEXP (op0, 0));
12122 if (GET_MODE_CLASS (mode) == MODE_INT
12123 && (unsigned_comparison_p || equality_comparison_p)
12124 && HWI_COMPUTABLE_MODE_P (mode)
12125 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12126 && const_op >= 0
12127 && have_insn_for (COMPARE, mode))
12128 {
12129 op0 = XEXP (op0, 0);
12130 continue;
12131 }
12132 break;
12133
12134 case PLUS:
12135 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12136 this for equality comparisons due to pathological cases involving
12137 overflows. */
12138 if (equality_comparison_p
12139 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12140 op1, XEXP (op0, 1))))
12141 {
12142 op0 = XEXP (op0, 0);
12143 op1 = tem;
12144 continue;
12145 }
12146
12147 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12148 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12149 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12150 {
12151 op0 = XEXP (XEXP (op0, 0), 0);
12152 code = (code == LT ? EQ : NE);
12153 continue;
12154 }
12155 break;
12156
12157 case MINUS:
12158 /* We used to optimize signed comparisons against zero, but that
12159 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12160 arrive here as equality comparisons, or (GEU, LTU) are
12161 optimized away. No need to special-case them. */
12162
12163 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12164 (eq B (minus A C)), whichever simplifies. We can only do
12165 this for equality comparisons due to pathological cases involving
12166 overflows. */
12167 if (equality_comparison_p
12168 && 0 != (tem = simplify_binary_operation (PLUS, mode,
12169 XEXP (op0, 1), op1)))
12170 {
12171 op0 = XEXP (op0, 0);
12172 op1 = tem;
12173 continue;
12174 }
12175
12176 if (equality_comparison_p
12177 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12178 XEXP (op0, 0), op1)))
12179 {
12180 op0 = XEXP (op0, 1);
12181 op1 = tem;
12182 continue;
12183 }
12184
12185 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12186 of bits in X minus 1, is one iff X > 0. */
12187 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12188 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12189 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12190 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12191 {
12192 op0 = XEXP (op0, 1);
12193 code = (code == GE ? LE : GT);
12194 continue;
12195 }
12196 break;
12197
12198 case XOR:
12199 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12200 if C is zero or B is a constant. */
12201 if (equality_comparison_p
12202 && 0 != (tem = simplify_binary_operation (XOR, mode,
12203 XEXP (op0, 1), op1)))
12204 {
12205 op0 = XEXP (op0, 0);
12206 op1 = tem;
12207 continue;
12208 }
12209 break;
12210
12211 case EQ: case NE:
12212 case UNEQ: case LTGT:
12213 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
12214 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
12215 case UNORDERED: case ORDERED:
12216 /* We can't do anything if OP0 is a condition code value, rather
12217 than an actual data value. */
12218 if (const_op != 0
12219 || CC0_P (XEXP (op0, 0))
12220 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12221 break;
12222
12223 /* Get the two operands being compared. */
12224 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12225 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12226 else
12227 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12228
12229 /* Check for the cases where we simply want the result of the
12230 earlier test or the opposite of that result. */
12231 if (code == NE || code == EQ
12232 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
12233 && (code == LT || code == GE)))
12234 {
12235 enum rtx_code new_code;
12236 if (code == LT || code == NE)
12237 new_code = GET_CODE (op0);
12238 else
12239 new_code = reversed_comparison_code (op0, NULL);
12240
12241 if (new_code != UNKNOWN)
12242 {
12243 code = new_code;
12244 op0 = tem;
12245 op1 = tem1;
12246 continue;
12247 }
12248 }
12249 break;
12250
12251 case IOR:
12252 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12253 iff X <= 0. */
12254 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12255 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12256 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12257 {
12258 op0 = XEXP (op0, 1);
12259 code = (code == GE ? GT : LE);
12260 continue;
12261 }
12262 break;
12263
12264 case AND:
12265 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12266 will be converted to a ZERO_EXTRACT later. */
12267 if (const_op == 0 && equality_comparison_p
12268 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12269 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12270 {
12271 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12272 XEXP (XEXP (op0, 0), 1));
12273 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12274 continue;
12275 }
12276
12277 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12278 zero and X is a comparison and C1 and C2 describe only bits set
12279 in STORE_FLAG_VALUE, we can compare with X. */
12280 if (const_op == 0 && equality_comparison_p
12281 && mode_width <= HOST_BITS_PER_WIDE_INT
12282 && CONST_INT_P (XEXP (op0, 1))
12283 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12284 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12285 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12286 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12287 {
12288 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12289 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12290 if ((~STORE_FLAG_VALUE & mask) == 0
12291 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12292 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12293 && COMPARISON_P (tem))))
12294 {
12295 op0 = XEXP (XEXP (op0, 0), 0);
12296 continue;
12297 }
12298 }
12299
12300 /* If we are doing an equality comparison of an AND of a bit equal
12301 to the sign bit, replace this with a LT or GE comparison of
12302 the underlying value. */
12303 if (equality_comparison_p
12304 && const_op == 0
12305 && CONST_INT_P (XEXP (op0, 1))
12306 && mode_width <= HOST_BITS_PER_WIDE_INT
12307 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12308 == HOST_WIDE_INT_1U << (mode_width - 1)))
12309 {
12310 op0 = XEXP (op0, 0);
12311 code = (code == EQ ? GE : LT);
12312 continue;
12313 }
12314
12315 /* If this AND operation is really a ZERO_EXTEND from a narrower
12316 mode, the constant fits within that mode, and this is either an
12317 equality or unsigned comparison, try to do this comparison in
12318 the narrower mode.
12319
12320 Note that in:
12321
12322 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12323 -> (ne:DI (reg:SI 4) (const_int 0))
12324
12325 unless TRULY_NOOP_TRUNCATION allows it or the register is
12326 known to hold a value of the required mode the
12327 transformation is invalid. */
12328 if ((equality_comparison_p || unsigned_comparison_p)
12329 && CONST_INT_P (XEXP (op0, 1))
12330 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12331 & GET_MODE_MASK (mode))
12332 + 1)) >= 0
12333 && const_op >> i == 0
12334 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
12335 {
12336 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12337 continue;
12338 }
12339
12340 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12341 fits in both M1 and M2 and the SUBREG is either paradoxical
12342 or represents the low part, permute the SUBREG and the AND
12343 and try again. */
12344 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12345 && CONST_INT_P (XEXP (op0, 1)))
12346 {
12347 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12348 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12349 /* Require an integral mode, to avoid creating something like
12350 (AND:SF ...). */
12351 if (SCALAR_INT_MODE_P (tmode)
12352 /* It is unsafe to commute the AND into the SUBREG if the
12353 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12354 not defined. As originally written the upper bits
12355 have a defined value due to the AND operation.
12356 However, if we commute the AND inside the SUBREG then
12357 they no longer have defined values and the meaning of
12358 the code has been changed.
12359 Also C1 should not change value in the smaller mode,
12360 see PR67028 (a positive C1 can become negative in the
12361 smaller mode, so that the AND does no longer mask the
12362 upper bits). */
12363 && ((WORD_REGISTER_OPERATIONS
12364 && mode_width > GET_MODE_PRECISION (tmode)
12365 && mode_width <= BITS_PER_WORD
12366 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12367 || (mode_width <= GET_MODE_PRECISION (tmode)
12368 && subreg_lowpart_p (XEXP (op0, 0))))
12369 && mode_width <= HOST_BITS_PER_WIDE_INT
12370 && HWI_COMPUTABLE_MODE_P (tmode)
12371 && (c1 & ~mask) == 0
12372 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12373 && c1 != mask
12374 && c1 != GET_MODE_MASK (tmode))
12375 {
12376 op0 = simplify_gen_binary (AND, tmode,
12377 SUBREG_REG (XEXP (op0, 0)),
12378 gen_int_mode (c1, tmode));
12379 op0 = gen_lowpart (mode, op0);
12380 continue;
12381 }
12382 }
12383
12384 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12385 if (const_op == 0 && equality_comparison_p
12386 && XEXP (op0, 1) == const1_rtx
12387 && GET_CODE (XEXP (op0, 0)) == NOT)
12388 {
12389 op0 = simplify_and_const_int (NULL_RTX, mode,
12390 XEXP (XEXP (op0, 0), 0), 1);
12391 code = (code == NE ? EQ : NE);
12392 continue;
12393 }
12394
12395 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12396 (eq (and (lshiftrt X) 1) 0).
12397 Also handle the case where (not X) is expressed using xor. */
12398 if (const_op == 0 && equality_comparison_p
12399 && XEXP (op0, 1) == const1_rtx
12400 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12401 {
12402 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12403 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12404
12405 if (GET_CODE (shift_op) == NOT
12406 || (GET_CODE (shift_op) == XOR
12407 && CONST_INT_P (XEXP (shift_op, 1))
12408 && CONST_INT_P (shift_count)
12409 && HWI_COMPUTABLE_MODE_P (mode)
12410 && (UINTVAL (XEXP (shift_op, 1))
12411 == HOST_WIDE_INT_1U
12412 << INTVAL (shift_count))))
12413 {
12414 op0
12415 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12416 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12417 code = (code == NE ? EQ : NE);
12418 continue;
12419 }
12420 }
12421 break;
12422
12423 case ASHIFT:
12424 /* If we have (compare (ashift FOO N) (const_int C)) and
12425 the high order N bits of FOO (N+1 if an inequality comparison)
12426 are known to be zero, we can do this by comparing FOO with C
12427 shifted right N bits so long as the low-order N bits of C are
12428 zero. */
12429 if (CONST_INT_P (XEXP (op0, 1))
12430 && INTVAL (XEXP (op0, 1)) >= 0
12431 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12432 < HOST_BITS_PER_WIDE_INT)
12433 && (((unsigned HOST_WIDE_INT) const_op
12434 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12435 - 1)) == 0)
12436 && mode_width <= HOST_BITS_PER_WIDE_INT
12437 && (nonzero_bits (XEXP (op0, 0), mode)
12438 & ~(mask >> (INTVAL (XEXP (op0, 1))
12439 + ! equality_comparison_p))) == 0)
12440 {
12441 /* We must perform a logical shift, not an arithmetic one,
12442 as we want the top N bits of C to be zero. */
12443 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12444
12445 temp >>= INTVAL (XEXP (op0, 1));
12446 op1 = gen_int_mode (temp, mode);
12447 op0 = XEXP (op0, 0);
12448 continue;
12449 }
12450
12451 /* If we are doing a sign bit comparison, it means we are testing
12452 a particular bit. Convert it to the appropriate AND. */
12453 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12454 && mode_width <= HOST_BITS_PER_WIDE_INT)
12455 {
12456 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12457 (HOST_WIDE_INT_1U
12458 << (mode_width - 1
12459 - INTVAL (XEXP (op0, 1)))));
12460 code = (code == LT ? NE : EQ);
12461 continue;
12462 }
12463
12464 /* If this an equality comparison with zero and we are shifting
12465 the low bit to the sign bit, we can convert this to an AND of the
12466 low-order bit. */
12467 if (const_op == 0 && equality_comparison_p
12468 && CONST_INT_P (XEXP (op0, 1))
12469 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12470 {
12471 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12472 continue;
12473 }
12474 break;
12475
12476 case ASHIFTRT:
12477 /* If this is an equality comparison with zero, we can do this
12478 as a logical shift, which might be much simpler. */
12479 if (equality_comparison_p && const_op == 0
12480 && CONST_INT_P (XEXP (op0, 1)))
12481 {
12482 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12483 XEXP (op0, 0),
12484 INTVAL (XEXP (op0, 1)));
12485 continue;
12486 }
12487
12488 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12489 do the comparison in a narrower mode. */
12490 if (! unsigned_comparison_p
12491 && CONST_INT_P (XEXP (op0, 1))
12492 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12493 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12494 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12495 MODE_INT, 1)) != BLKmode
12496 && (((unsigned HOST_WIDE_INT) const_op
12497 + (GET_MODE_MASK (tmode) >> 1) + 1)
12498 <= GET_MODE_MASK (tmode)))
12499 {
12500 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12501 continue;
12502 }
12503
12504 /* Likewise if OP0 is a PLUS of a sign extension with a
12505 constant, which is usually represented with the PLUS
12506 between the shifts. */
12507 if (! unsigned_comparison_p
12508 && CONST_INT_P (XEXP (op0, 1))
12509 && GET_CODE (XEXP (op0, 0)) == PLUS
12510 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12511 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12512 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12513 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12514 MODE_INT, 1)) != BLKmode
12515 && (((unsigned HOST_WIDE_INT) const_op
12516 + (GET_MODE_MASK (tmode) >> 1) + 1)
12517 <= GET_MODE_MASK (tmode)))
12518 {
12519 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12520 rtx add_const = XEXP (XEXP (op0, 0), 1);
12521 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12522 add_const, XEXP (op0, 1));
12523
12524 op0 = simplify_gen_binary (PLUS, tmode,
12525 gen_lowpart (tmode, inner),
12526 new_const);
12527 continue;
12528 }
12529
12530 /* FALLTHROUGH */
12531 case LSHIFTRT:
12532 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12533 the low order N bits of FOO are known to be zero, we can do this
12534 by comparing FOO with C shifted left N bits so long as no
12535 overflow occurs. Even if the low order N bits of FOO aren't known
12536 to be zero, if the comparison is >= or < we can use the same
12537 optimization and for > or <= by setting all the low
12538 order N bits in the comparison constant. */
12539 if (CONST_INT_P (XEXP (op0, 1))
12540 && INTVAL (XEXP (op0, 1)) > 0
12541 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12542 && mode_width <= HOST_BITS_PER_WIDE_INT
12543 && (((unsigned HOST_WIDE_INT) const_op
12544 + (GET_CODE (op0) != LSHIFTRT
12545 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12546 + 1)
12547 : 0))
12548 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12549 {
12550 unsigned HOST_WIDE_INT low_bits
12551 = (nonzero_bits (XEXP (op0, 0), mode)
12552 & ((HOST_WIDE_INT_1U
12553 << INTVAL (XEXP (op0, 1))) - 1));
12554 if (low_bits == 0 || !equality_comparison_p)
12555 {
12556 /* If the shift was logical, then we must make the condition
12557 unsigned. */
12558 if (GET_CODE (op0) == LSHIFTRT)
12559 code = unsigned_condition (code);
12560
12561 const_op <<= INTVAL (XEXP (op0, 1));
12562 if (low_bits != 0
12563 && (code == GT || code == GTU
12564 || code == LE || code == LEU))
12565 const_op
12566 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12567 op1 = GEN_INT (const_op);
12568 op0 = XEXP (op0, 0);
12569 continue;
12570 }
12571 }
12572
12573 /* If we are using this shift to extract just the sign bit, we
12574 can replace this with an LT or GE comparison. */
12575 if (const_op == 0
12576 && (equality_comparison_p || sign_bit_comparison_p)
12577 && CONST_INT_P (XEXP (op0, 1))
12578 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12579 {
12580 op0 = XEXP (op0, 0);
12581 code = (code == NE || code == GT ? LT : GE);
12582 continue;
12583 }
12584 break;
12585
12586 default:
12587 break;
12588 }
12589
12590 break;
12591 }
12592
12593 /* Now make any compound operations involved in this comparison. Then,
12594 check for an outmost SUBREG on OP0 that is not doing anything or is
12595 paradoxical. The latter transformation must only be performed when
12596 it is known that the "extra" bits will be the same in op0 and op1 or
12597 that they don't matter. There are three cases to consider:
12598
12599 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12600 care bits and we can assume they have any convenient value. So
12601 making the transformation is safe.
12602
12603 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12604 In this case the upper bits of op0 are undefined. We should not make
12605 the simplification in that case as we do not know the contents of
12606 those bits.
12607
12608 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12609 In that case we know those bits are zeros or ones. We must also be
12610 sure that they are the same as the upper bits of op1.
12611
12612 We can never remove a SUBREG for a non-equality comparison because
12613 the sign bit is in a different place in the underlying object. */
12614
12615 rtx_code op0_mco_code = SET;
12616 if (op1 == const0_rtx)
12617 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12618
12619 op0 = make_compound_operation (op0, op0_mco_code);
12620 op1 = make_compound_operation (op1, SET);
12621
12622 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12623 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12624 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12625 && (code == NE || code == EQ))
12626 {
12627 if (paradoxical_subreg_p (op0))
12628 {
12629 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12630 implemented. */
12631 if (REG_P (SUBREG_REG (op0)))
12632 {
12633 op0 = SUBREG_REG (op0);
12634 op1 = gen_lowpart (GET_MODE (op0), op1);
12635 }
12636 }
12637 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12638 <= HOST_BITS_PER_WIDE_INT)
12639 && (nonzero_bits (SUBREG_REG (op0),
12640 GET_MODE (SUBREG_REG (op0)))
12641 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12642 {
12643 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12644
12645 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12646 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12647 op0 = SUBREG_REG (op0), op1 = tem;
12648 }
12649 }
12650
12651 /* We now do the opposite procedure: Some machines don't have compare
12652 insns in all modes. If OP0's mode is an integer mode smaller than a
12653 word and we can't do a compare in that mode, see if there is a larger
12654 mode for which we can do the compare. There are a number of cases in
12655 which we can use the wider mode. */
12656
12657 mode = GET_MODE (op0);
12658 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12659 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12660 && ! have_insn_for (COMPARE, mode))
12661 for (tmode = GET_MODE_WIDER_MODE (mode);
12662 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12663 tmode = GET_MODE_WIDER_MODE (tmode))
12664 if (have_insn_for (COMPARE, tmode))
12665 {
12666 int zero_extended;
12667
12668 /* If this is a test for negative, we can make an explicit
12669 test of the sign bit. Test this first so we can use
12670 a paradoxical subreg to extend OP0. */
12671
12672 if (op1 == const0_rtx && (code == LT || code == GE)
12673 && HWI_COMPUTABLE_MODE_P (mode))
12674 {
12675 unsigned HOST_WIDE_INT sign
12676 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12677 op0 = simplify_gen_binary (AND, tmode,
12678 gen_lowpart (tmode, op0),
12679 gen_int_mode (sign, tmode));
12680 code = (code == LT) ? NE : EQ;
12681 break;
12682 }
12683
12684 /* If the only nonzero bits in OP0 and OP1 are those in the
12685 narrower mode and this is an equality or unsigned comparison,
12686 we can use the wider mode. Similarly for sign-extended
12687 values, in which case it is true for all comparisons. */
12688 zero_extended = ((code == EQ || code == NE
12689 || code == GEU || code == GTU
12690 || code == LEU || code == LTU)
12691 && (nonzero_bits (op0, tmode)
12692 & ~GET_MODE_MASK (mode)) == 0
12693 && ((CONST_INT_P (op1)
12694 || (nonzero_bits (op1, tmode)
12695 & ~GET_MODE_MASK (mode)) == 0)));
12696
12697 if (zero_extended
12698 || ((num_sign_bit_copies (op0, tmode)
12699 > (unsigned int) (GET_MODE_PRECISION (tmode)
12700 - GET_MODE_PRECISION (mode)))
12701 && (num_sign_bit_copies (op1, tmode)
12702 > (unsigned int) (GET_MODE_PRECISION (tmode)
12703 - GET_MODE_PRECISION (mode)))))
12704 {
12705 /* If OP0 is an AND and we don't have an AND in MODE either,
12706 make a new AND in the proper mode. */
12707 if (GET_CODE (op0) == AND
12708 && !have_insn_for (AND, mode))
12709 op0 = simplify_gen_binary (AND, tmode,
12710 gen_lowpart (tmode,
12711 XEXP (op0, 0)),
12712 gen_lowpart (tmode,
12713 XEXP (op0, 1)));
12714 else
12715 {
12716 if (zero_extended)
12717 {
12718 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12719 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12720 }
12721 else
12722 {
12723 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12724 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12725 }
12726 break;
12727 }
12728 }
12729 }
12730
12731 /* We may have changed the comparison operands. Re-canonicalize. */
12732 if (swap_commutative_operands_p (op0, op1))
12733 {
12734 std::swap (op0, op1);
12735 code = swap_condition (code);
12736 }
12737
12738 /* If this machine only supports a subset of valid comparisons, see if we
12739 can convert an unsupported one into a supported one. */
12740 target_canonicalize_comparison (&code, &op0, &op1, 0);
12741
12742 *pop0 = op0;
12743 *pop1 = op1;
12744
12745 return code;
12746 }
12747 \f
12748 /* Utility function for record_value_for_reg. Count number of
12749 rtxs in X. */
12750 static int
12751 count_rtxs (rtx x)
12752 {
12753 enum rtx_code code = GET_CODE (x);
12754 const char *fmt;
12755 int i, j, ret = 1;
12756
12757 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12758 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12759 {
12760 rtx x0 = XEXP (x, 0);
12761 rtx x1 = XEXP (x, 1);
12762
12763 if (x0 == x1)
12764 return 1 + 2 * count_rtxs (x0);
12765
12766 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12767 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12768 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12769 return 2 + 2 * count_rtxs (x0)
12770 + count_rtxs (x == XEXP (x1, 0)
12771 ? XEXP (x1, 1) : XEXP (x1, 0));
12772
12773 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12774 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12775 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12776 return 2 + 2 * count_rtxs (x1)
12777 + count_rtxs (x == XEXP (x0, 0)
12778 ? XEXP (x0, 1) : XEXP (x0, 0));
12779 }
12780
12781 fmt = GET_RTX_FORMAT (code);
12782 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12783 if (fmt[i] == 'e')
12784 ret += count_rtxs (XEXP (x, i));
12785 else if (fmt[i] == 'E')
12786 for (j = 0; j < XVECLEN (x, i); j++)
12787 ret += count_rtxs (XVECEXP (x, i, j));
12788
12789 return ret;
12790 }
12791 \f
12792 /* Utility function for following routine. Called when X is part of a value
12793 being stored into last_set_value. Sets last_set_table_tick
12794 for each register mentioned. Similar to mention_regs in cse.c */
12795
12796 static void
12797 update_table_tick (rtx x)
12798 {
12799 enum rtx_code code = GET_CODE (x);
12800 const char *fmt = GET_RTX_FORMAT (code);
12801 int i, j;
12802
12803 if (code == REG)
12804 {
12805 unsigned int regno = REGNO (x);
12806 unsigned int endregno = END_REGNO (x);
12807 unsigned int r;
12808
12809 for (r = regno; r < endregno; r++)
12810 {
12811 reg_stat_type *rsp = &reg_stat[r];
12812 rsp->last_set_table_tick = label_tick;
12813 }
12814
12815 return;
12816 }
12817
12818 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12819 if (fmt[i] == 'e')
12820 {
12821 /* Check for identical subexpressions. If x contains
12822 identical subexpression we only have to traverse one of
12823 them. */
12824 if (i == 0 && ARITHMETIC_P (x))
12825 {
12826 /* Note that at this point x1 has already been
12827 processed. */
12828 rtx x0 = XEXP (x, 0);
12829 rtx x1 = XEXP (x, 1);
12830
12831 /* If x0 and x1 are identical then there is no need to
12832 process x0. */
12833 if (x0 == x1)
12834 break;
12835
12836 /* If x0 is identical to a subexpression of x1 then while
12837 processing x1, x0 has already been processed. Thus we
12838 are done with x. */
12839 if (ARITHMETIC_P (x1)
12840 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12841 break;
12842
12843 /* If x1 is identical to a subexpression of x0 then we
12844 still have to process the rest of x0. */
12845 if (ARITHMETIC_P (x0)
12846 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12847 {
12848 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12849 break;
12850 }
12851 }
12852
12853 update_table_tick (XEXP (x, i));
12854 }
12855 else if (fmt[i] == 'E')
12856 for (j = 0; j < XVECLEN (x, i); j++)
12857 update_table_tick (XVECEXP (x, i, j));
12858 }
12859
12860 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12861 are saying that the register is clobbered and we no longer know its
12862 value. If INSN is zero, don't update reg_stat[].last_set; this is
12863 only permitted with VALUE also zero and is used to invalidate the
12864 register. */
12865
12866 static void
12867 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12868 {
12869 unsigned int regno = REGNO (reg);
12870 unsigned int endregno = END_REGNO (reg);
12871 unsigned int i;
12872 reg_stat_type *rsp;
12873
12874 /* If VALUE contains REG and we have a previous value for REG, substitute
12875 the previous value. */
12876 if (value && insn && reg_overlap_mentioned_p (reg, value))
12877 {
12878 rtx tem;
12879
12880 /* Set things up so get_last_value is allowed to see anything set up to
12881 our insn. */
12882 subst_low_luid = DF_INSN_LUID (insn);
12883 tem = get_last_value (reg);
12884
12885 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12886 it isn't going to be useful and will take a lot of time to process,
12887 so just use the CLOBBER. */
12888
12889 if (tem)
12890 {
12891 if (ARITHMETIC_P (tem)
12892 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12893 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12894 tem = XEXP (tem, 0);
12895 else if (count_occurrences (value, reg, 1) >= 2)
12896 {
12897 /* If there are two or more occurrences of REG in VALUE,
12898 prevent the value from growing too much. */
12899 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12900 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12901 }
12902
12903 value = replace_rtx (copy_rtx (value), reg, tem);
12904 }
12905 }
12906
12907 /* For each register modified, show we don't know its value, that
12908 we don't know about its bitwise content, that its value has been
12909 updated, and that we don't know the location of the death of the
12910 register. */
12911 for (i = regno; i < endregno; i++)
12912 {
12913 rsp = &reg_stat[i];
12914
12915 if (insn)
12916 rsp->last_set = insn;
12917
12918 rsp->last_set_value = 0;
12919 rsp->last_set_mode = VOIDmode;
12920 rsp->last_set_nonzero_bits = 0;
12921 rsp->last_set_sign_bit_copies = 0;
12922 rsp->last_death = 0;
12923 rsp->truncated_to_mode = VOIDmode;
12924 }
12925
12926 /* Mark registers that are being referenced in this value. */
12927 if (value)
12928 update_table_tick (value);
12929
12930 /* Now update the status of each register being set.
12931 If someone is using this register in this block, set this register
12932 to invalid since we will get confused between the two lives in this
12933 basic block. This makes using this register always invalid. In cse, we
12934 scan the table to invalidate all entries using this register, but this
12935 is too much work for us. */
12936
12937 for (i = regno; i < endregno; i++)
12938 {
12939 rsp = &reg_stat[i];
12940 rsp->last_set_label = label_tick;
12941 if (!insn
12942 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12943 rsp->last_set_invalid = 1;
12944 else
12945 rsp->last_set_invalid = 0;
12946 }
12947
12948 /* The value being assigned might refer to X (like in "x++;"). In that
12949 case, we must replace it with (clobber (const_int 0)) to prevent
12950 infinite loops. */
12951 rsp = &reg_stat[regno];
12952 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12953 {
12954 value = copy_rtx (value);
12955 if (!get_last_value_validate (&value, insn, label_tick, 1))
12956 value = 0;
12957 }
12958
12959 /* For the main register being modified, update the value, the mode, the
12960 nonzero bits, and the number of sign bit copies. */
12961
12962 rsp->last_set_value = value;
12963
12964 if (value)
12965 {
12966 machine_mode mode = GET_MODE (reg);
12967 subst_low_luid = DF_INSN_LUID (insn);
12968 rsp->last_set_mode = mode;
12969 if (GET_MODE_CLASS (mode) == MODE_INT
12970 && HWI_COMPUTABLE_MODE_P (mode))
12971 mode = nonzero_bits_mode;
12972 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12973 rsp->last_set_sign_bit_copies
12974 = num_sign_bit_copies (value, GET_MODE (reg));
12975 }
12976 }
12977
12978 /* Called via note_stores from record_dead_and_set_regs to handle one
12979 SET or CLOBBER in an insn. DATA is the instruction in which the
12980 set is occurring. */
12981
12982 static void
12983 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12984 {
12985 rtx_insn *record_dead_insn = (rtx_insn *) data;
12986
12987 if (GET_CODE (dest) == SUBREG)
12988 dest = SUBREG_REG (dest);
12989
12990 if (!record_dead_insn)
12991 {
12992 if (REG_P (dest))
12993 record_value_for_reg (dest, NULL, NULL_RTX);
12994 return;
12995 }
12996
12997 if (REG_P (dest))
12998 {
12999 /* If we are setting the whole register, we know its value. Otherwise
13000 show that we don't know the value. We can handle SUBREG in
13001 some cases. */
13002 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13003 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13004 else if (GET_CODE (setter) == SET
13005 && GET_CODE (SET_DEST (setter)) == SUBREG
13006 && SUBREG_REG (SET_DEST (setter)) == dest
13007 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
13008 && subreg_lowpart_p (SET_DEST (setter)))
13009 record_value_for_reg (dest, record_dead_insn,
13010 gen_lowpart (GET_MODE (dest),
13011 SET_SRC (setter)));
13012 else
13013 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13014 }
13015 else if (MEM_P (dest)
13016 /* Ignore pushes, they clobber nothing. */
13017 && ! push_operand (dest, GET_MODE (dest)))
13018 mem_last_set = DF_INSN_LUID (record_dead_insn);
13019 }
13020
13021 /* Update the records of when each REG was most recently set or killed
13022 for the things done by INSN. This is the last thing done in processing
13023 INSN in the combiner loop.
13024
13025 We update reg_stat[], in particular fields last_set, last_set_value,
13026 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13027 last_death, and also the similar information mem_last_set (which insn
13028 most recently modified memory) and last_call_luid (which insn was the
13029 most recent subroutine call). */
13030
13031 static void
13032 record_dead_and_set_regs (rtx_insn *insn)
13033 {
13034 rtx link;
13035 unsigned int i;
13036
13037 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13038 {
13039 if (REG_NOTE_KIND (link) == REG_DEAD
13040 && REG_P (XEXP (link, 0)))
13041 {
13042 unsigned int regno = REGNO (XEXP (link, 0));
13043 unsigned int endregno = END_REGNO (XEXP (link, 0));
13044
13045 for (i = regno; i < endregno; i++)
13046 {
13047 reg_stat_type *rsp;
13048
13049 rsp = &reg_stat[i];
13050 rsp->last_death = insn;
13051 }
13052 }
13053 else if (REG_NOTE_KIND (link) == REG_INC)
13054 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13055 }
13056
13057 if (CALL_P (insn))
13058 {
13059 hard_reg_set_iterator hrsi;
13060 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13061 {
13062 reg_stat_type *rsp;
13063
13064 rsp = &reg_stat[i];
13065 rsp->last_set_invalid = 1;
13066 rsp->last_set = insn;
13067 rsp->last_set_value = 0;
13068 rsp->last_set_mode = VOIDmode;
13069 rsp->last_set_nonzero_bits = 0;
13070 rsp->last_set_sign_bit_copies = 0;
13071 rsp->last_death = 0;
13072 rsp->truncated_to_mode = VOIDmode;
13073 }
13074
13075 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13076
13077 /* We can't combine into a call pattern. Remember, though, that
13078 the return value register is set at this LUID. We could
13079 still replace a register with the return value from the
13080 wrong subroutine call! */
13081 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13082 }
13083 else
13084 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13085 }
13086
13087 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13088 register present in the SUBREG, so for each such SUBREG go back and
13089 adjust nonzero and sign bit information of the registers that are
13090 known to have some zero/sign bits set.
13091
13092 This is needed because when combine blows the SUBREGs away, the
13093 information on zero/sign bits is lost and further combines can be
13094 missed because of that. */
13095
13096 static void
13097 record_promoted_value (rtx_insn *insn, rtx subreg)
13098 {
13099 struct insn_link *links;
13100 rtx set;
13101 unsigned int regno = REGNO (SUBREG_REG (subreg));
13102 machine_mode mode = GET_MODE (subreg);
13103
13104 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
13105 return;
13106
13107 for (links = LOG_LINKS (insn); links;)
13108 {
13109 reg_stat_type *rsp;
13110
13111 insn = links->insn;
13112 set = single_set (insn);
13113
13114 if (! set || !REG_P (SET_DEST (set))
13115 || REGNO (SET_DEST (set)) != regno
13116 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13117 {
13118 links = links->next;
13119 continue;
13120 }
13121
13122 rsp = &reg_stat[regno];
13123 if (rsp->last_set == insn)
13124 {
13125 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13126 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13127 }
13128
13129 if (REG_P (SET_SRC (set)))
13130 {
13131 regno = REGNO (SET_SRC (set));
13132 links = LOG_LINKS (insn);
13133 }
13134 else
13135 break;
13136 }
13137 }
13138
13139 /* Check if X, a register, is known to contain a value already
13140 truncated to MODE. In this case we can use a subreg to refer to
13141 the truncated value even though in the generic case we would need
13142 an explicit truncation. */
13143
13144 static bool
13145 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13146 {
13147 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13148 machine_mode truncated = rsp->truncated_to_mode;
13149
13150 if (truncated == 0
13151 || rsp->truncation_label < label_tick_ebb_start)
13152 return false;
13153 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
13154 return true;
13155 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13156 return true;
13157 return false;
13158 }
13159
13160 /* If X is a hard reg or a subreg record the mode that the register is
13161 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
13162 to turn a truncate into a subreg using this information. Return true
13163 if traversing X is complete. */
13164
13165 static bool
13166 record_truncated_value (rtx x)
13167 {
13168 machine_mode truncated_mode;
13169 reg_stat_type *rsp;
13170
13171 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13172 {
13173 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13174 truncated_mode = GET_MODE (x);
13175
13176 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
13177 return true;
13178
13179 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13180 return true;
13181
13182 x = SUBREG_REG (x);
13183 }
13184 /* ??? For hard-regs we now record everything. We might be able to
13185 optimize this using last_set_mode. */
13186 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13187 truncated_mode = GET_MODE (x);
13188 else
13189 return false;
13190
13191 rsp = &reg_stat[REGNO (x)];
13192 if (rsp->truncated_to_mode == 0
13193 || rsp->truncation_label < label_tick_ebb_start
13194 || (GET_MODE_SIZE (truncated_mode)
13195 < GET_MODE_SIZE (rsp->truncated_to_mode)))
13196 {
13197 rsp->truncated_to_mode = truncated_mode;
13198 rsp->truncation_label = label_tick;
13199 }
13200
13201 return true;
13202 }
13203
13204 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13205 the modes they are used in. This can help truning TRUNCATEs into
13206 SUBREGs. */
13207
13208 static void
13209 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13210 {
13211 subrtx_var_iterator::array_type array;
13212 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13213 if (record_truncated_value (*iter))
13214 iter.skip_subrtxes ();
13215 }
13216
13217 /* Scan X for promoted SUBREGs. For each one found,
13218 note what it implies to the registers used in it. */
13219
13220 static void
13221 check_promoted_subreg (rtx_insn *insn, rtx x)
13222 {
13223 if (GET_CODE (x) == SUBREG
13224 && SUBREG_PROMOTED_VAR_P (x)
13225 && REG_P (SUBREG_REG (x)))
13226 record_promoted_value (insn, x);
13227 else
13228 {
13229 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13230 int i, j;
13231
13232 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13233 switch (format[i])
13234 {
13235 case 'e':
13236 check_promoted_subreg (insn, XEXP (x, i));
13237 break;
13238 case 'V':
13239 case 'E':
13240 if (XVEC (x, i) != 0)
13241 for (j = 0; j < XVECLEN (x, i); j++)
13242 check_promoted_subreg (insn, XVECEXP (x, i, j));
13243 break;
13244 }
13245 }
13246 }
13247 \f
13248 /* Verify that all the registers and memory references mentioned in *LOC are
13249 still valid. *LOC was part of a value set in INSN when label_tick was
13250 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13251 the invalid references with (clobber (const_int 0)) and return 1. This
13252 replacement is useful because we often can get useful information about
13253 the form of a value (e.g., if it was produced by a shift that always
13254 produces -1 or 0) even though we don't know exactly what registers it
13255 was produced from. */
13256
13257 static int
13258 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13259 {
13260 rtx x = *loc;
13261 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13262 int len = GET_RTX_LENGTH (GET_CODE (x));
13263 int i, j;
13264
13265 if (REG_P (x))
13266 {
13267 unsigned int regno = REGNO (x);
13268 unsigned int endregno = END_REGNO (x);
13269 unsigned int j;
13270
13271 for (j = regno; j < endregno; j++)
13272 {
13273 reg_stat_type *rsp = &reg_stat[j];
13274 if (rsp->last_set_invalid
13275 /* If this is a pseudo-register that was only set once and not
13276 live at the beginning of the function, it is always valid. */
13277 || (! (regno >= FIRST_PSEUDO_REGISTER
13278 && regno < reg_n_sets_max
13279 && REG_N_SETS (regno) == 1
13280 && (!REGNO_REG_SET_P
13281 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13282 regno)))
13283 && rsp->last_set_label > tick))
13284 {
13285 if (replace)
13286 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13287 return replace;
13288 }
13289 }
13290
13291 return 1;
13292 }
13293 /* If this is a memory reference, make sure that there were no stores after
13294 it that might have clobbered the value. We don't have alias info, so we
13295 assume any store invalidates it. Moreover, we only have local UIDs, so
13296 we also assume that there were stores in the intervening basic blocks. */
13297 else if (MEM_P (x) && !MEM_READONLY_P (x)
13298 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13299 {
13300 if (replace)
13301 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13302 return replace;
13303 }
13304
13305 for (i = 0; i < len; i++)
13306 {
13307 if (fmt[i] == 'e')
13308 {
13309 /* Check for identical subexpressions. If x contains
13310 identical subexpression we only have to traverse one of
13311 them. */
13312 if (i == 1 && ARITHMETIC_P (x))
13313 {
13314 /* Note that at this point x0 has already been checked
13315 and found valid. */
13316 rtx x0 = XEXP (x, 0);
13317 rtx x1 = XEXP (x, 1);
13318
13319 /* If x0 and x1 are identical then x is also valid. */
13320 if (x0 == x1)
13321 return 1;
13322
13323 /* If x1 is identical to a subexpression of x0 then
13324 while checking x0, x1 has already been checked. Thus
13325 it is valid and so as x. */
13326 if (ARITHMETIC_P (x0)
13327 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13328 return 1;
13329
13330 /* If x0 is identical to a subexpression of x1 then x is
13331 valid iff the rest of x1 is valid. */
13332 if (ARITHMETIC_P (x1)
13333 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13334 return
13335 get_last_value_validate (&XEXP (x1,
13336 x0 == XEXP (x1, 0) ? 1 : 0),
13337 insn, tick, replace);
13338 }
13339
13340 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13341 replace) == 0)
13342 return 0;
13343 }
13344 else if (fmt[i] == 'E')
13345 for (j = 0; j < XVECLEN (x, i); j++)
13346 if (get_last_value_validate (&XVECEXP (x, i, j),
13347 insn, tick, replace) == 0)
13348 return 0;
13349 }
13350
13351 /* If we haven't found a reason for it to be invalid, it is valid. */
13352 return 1;
13353 }
13354
13355 /* Get the last value assigned to X, if known. Some registers
13356 in the value may be replaced with (clobber (const_int 0)) if their value
13357 is known longer known reliably. */
13358
13359 static rtx
13360 get_last_value (const_rtx x)
13361 {
13362 unsigned int regno;
13363 rtx value;
13364 reg_stat_type *rsp;
13365
13366 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13367 then convert it to the desired mode. If this is a paradoxical SUBREG,
13368 we cannot predict what values the "extra" bits might have. */
13369 if (GET_CODE (x) == SUBREG
13370 && subreg_lowpart_p (x)
13371 && !paradoxical_subreg_p (x)
13372 && (value = get_last_value (SUBREG_REG (x))) != 0)
13373 return gen_lowpart (GET_MODE (x), value);
13374
13375 if (!REG_P (x))
13376 return 0;
13377
13378 regno = REGNO (x);
13379 rsp = &reg_stat[regno];
13380 value = rsp->last_set_value;
13381
13382 /* If we don't have a value, or if it isn't for this basic block and
13383 it's either a hard register, set more than once, or it's a live
13384 at the beginning of the function, return 0.
13385
13386 Because if it's not live at the beginning of the function then the reg
13387 is always set before being used (is never used without being set).
13388 And, if it's set only once, and it's always set before use, then all
13389 uses must have the same last value, even if it's not from this basic
13390 block. */
13391
13392 if (value == 0
13393 || (rsp->last_set_label < label_tick_ebb_start
13394 && (regno < FIRST_PSEUDO_REGISTER
13395 || regno >= reg_n_sets_max
13396 || REG_N_SETS (regno) != 1
13397 || REGNO_REG_SET_P
13398 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13399 return 0;
13400
13401 /* If the value was set in a later insn than the ones we are processing,
13402 we can't use it even if the register was only set once. */
13403 if (rsp->last_set_label == label_tick
13404 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13405 return 0;
13406
13407 /* If fewer bits were set than what we are asked for now, we cannot use
13408 the value. */
13409 if (GET_MODE_PRECISION (rsp->last_set_mode)
13410 < GET_MODE_PRECISION (GET_MODE (x)))
13411 return 0;
13412
13413 /* If the value has all its registers valid, return it. */
13414 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13415 return value;
13416
13417 /* Otherwise, make a copy and replace any invalid register with
13418 (clobber (const_int 0)). If that fails for some reason, return 0. */
13419
13420 value = copy_rtx (value);
13421 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13422 return value;
13423
13424 return 0;
13425 }
13426 \f
13427 /* Return nonzero if expression X refers to a REG or to memory
13428 that is set in an instruction more recent than FROM_LUID. */
13429
13430 static int
13431 use_crosses_set_p (const_rtx x, int from_luid)
13432 {
13433 const char *fmt;
13434 int i;
13435 enum rtx_code code = GET_CODE (x);
13436
13437 if (code == REG)
13438 {
13439 unsigned int regno = REGNO (x);
13440 unsigned endreg = END_REGNO (x);
13441
13442 #ifdef PUSH_ROUNDING
13443 /* Don't allow uses of the stack pointer to be moved,
13444 because we don't know whether the move crosses a push insn. */
13445 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13446 return 1;
13447 #endif
13448 for (; regno < endreg; regno++)
13449 {
13450 reg_stat_type *rsp = &reg_stat[regno];
13451 if (rsp->last_set
13452 && rsp->last_set_label == label_tick
13453 && DF_INSN_LUID (rsp->last_set) > from_luid)
13454 return 1;
13455 }
13456 return 0;
13457 }
13458
13459 if (code == MEM && mem_last_set > from_luid)
13460 return 1;
13461
13462 fmt = GET_RTX_FORMAT (code);
13463
13464 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13465 {
13466 if (fmt[i] == 'E')
13467 {
13468 int j;
13469 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13470 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13471 return 1;
13472 }
13473 else if (fmt[i] == 'e'
13474 && use_crosses_set_p (XEXP (x, i), from_luid))
13475 return 1;
13476 }
13477 return 0;
13478 }
13479 \f
13480 /* Define three variables used for communication between the following
13481 routines. */
13482
13483 static unsigned int reg_dead_regno, reg_dead_endregno;
13484 static int reg_dead_flag;
13485
13486 /* Function called via note_stores from reg_dead_at_p.
13487
13488 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13489 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13490
13491 static void
13492 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13493 {
13494 unsigned int regno, endregno;
13495
13496 if (!REG_P (dest))
13497 return;
13498
13499 regno = REGNO (dest);
13500 endregno = END_REGNO (dest);
13501 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13502 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13503 }
13504
13505 /* Return nonzero if REG is known to be dead at INSN.
13506
13507 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13508 referencing REG, it is dead. If we hit a SET referencing REG, it is
13509 live. Otherwise, see if it is live or dead at the start of the basic
13510 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13511 must be assumed to be always live. */
13512
13513 static int
13514 reg_dead_at_p (rtx reg, rtx_insn *insn)
13515 {
13516 basic_block block;
13517 unsigned int i;
13518
13519 /* Set variables for reg_dead_at_p_1. */
13520 reg_dead_regno = REGNO (reg);
13521 reg_dead_endregno = END_REGNO (reg);
13522
13523 reg_dead_flag = 0;
13524
13525 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13526 we allow the machine description to decide whether use-and-clobber
13527 patterns are OK. */
13528 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13529 {
13530 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13531 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13532 return 0;
13533 }
13534
13535 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13536 beginning of basic block. */
13537 block = BLOCK_FOR_INSN (insn);
13538 for (;;)
13539 {
13540 if (INSN_P (insn))
13541 {
13542 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13543 return 1;
13544
13545 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13546 if (reg_dead_flag)
13547 return reg_dead_flag == 1 ? 1 : 0;
13548
13549 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13550 return 1;
13551 }
13552
13553 if (insn == BB_HEAD (block))
13554 break;
13555
13556 insn = PREV_INSN (insn);
13557 }
13558
13559 /* Look at live-in sets for the basic block that we were in. */
13560 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13561 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13562 return 0;
13563
13564 return 1;
13565 }
13566 \f
13567 /* Note hard registers in X that are used. */
13568
13569 static void
13570 mark_used_regs_combine (rtx x)
13571 {
13572 RTX_CODE code = GET_CODE (x);
13573 unsigned int regno;
13574 int i;
13575
13576 switch (code)
13577 {
13578 case LABEL_REF:
13579 case SYMBOL_REF:
13580 case CONST:
13581 CASE_CONST_ANY:
13582 case PC:
13583 case ADDR_VEC:
13584 case ADDR_DIFF_VEC:
13585 case ASM_INPUT:
13586 /* CC0 must die in the insn after it is set, so we don't need to take
13587 special note of it here. */
13588 case CC0:
13589 return;
13590
13591 case CLOBBER:
13592 /* If we are clobbering a MEM, mark any hard registers inside the
13593 address as used. */
13594 if (MEM_P (XEXP (x, 0)))
13595 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13596 return;
13597
13598 case REG:
13599 regno = REGNO (x);
13600 /* A hard reg in a wide mode may really be multiple registers.
13601 If so, mark all of them just like the first. */
13602 if (regno < FIRST_PSEUDO_REGISTER)
13603 {
13604 /* None of this applies to the stack, frame or arg pointers. */
13605 if (regno == STACK_POINTER_REGNUM
13606 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13607 && regno == HARD_FRAME_POINTER_REGNUM)
13608 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13609 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13610 || regno == FRAME_POINTER_REGNUM)
13611 return;
13612
13613 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13614 }
13615 return;
13616
13617 case SET:
13618 {
13619 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13620 the address. */
13621 rtx testreg = SET_DEST (x);
13622
13623 while (GET_CODE (testreg) == SUBREG
13624 || GET_CODE (testreg) == ZERO_EXTRACT
13625 || GET_CODE (testreg) == STRICT_LOW_PART)
13626 testreg = XEXP (testreg, 0);
13627
13628 if (MEM_P (testreg))
13629 mark_used_regs_combine (XEXP (testreg, 0));
13630
13631 mark_used_regs_combine (SET_SRC (x));
13632 }
13633 return;
13634
13635 default:
13636 break;
13637 }
13638
13639 /* Recursively scan the operands of this expression. */
13640
13641 {
13642 const char *fmt = GET_RTX_FORMAT (code);
13643
13644 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13645 {
13646 if (fmt[i] == 'e')
13647 mark_used_regs_combine (XEXP (x, i));
13648 else if (fmt[i] == 'E')
13649 {
13650 int j;
13651
13652 for (j = 0; j < XVECLEN (x, i); j++)
13653 mark_used_regs_combine (XVECEXP (x, i, j));
13654 }
13655 }
13656 }
13657 }
13658 \f
13659 /* Remove register number REGNO from the dead registers list of INSN.
13660
13661 Return the note used to record the death, if there was one. */
13662
13663 rtx
13664 remove_death (unsigned int regno, rtx_insn *insn)
13665 {
13666 rtx note = find_regno_note (insn, REG_DEAD, regno);
13667
13668 if (note)
13669 remove_note (insn, note);
13670
13671 return note;
13672 }
13673
13674 /* For each register (hardware or pseudo) used within expression X, if its
13675 death is in an instruction with luid between FROM_LUID (inclusive) and
13676 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13677 list headed by PNOTES.
13678
13679 That said, don't move registers killed by maybe_kill_insn.
13680
13681 This is done when X is being merged by combination into TO_INSN. These
13682 notes will then be distributed as needed. */
13683
13684 static void
13685 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13686 rtx *pnotes)
13687 {
13688 const char *fmt;
13689 int len, i;
13690 enum rtx_code code = GET_CODE (x);
13691
13692 if (code == REG)
13693 {
13694 unsigned int regno = REGNO (x);
13695 rtx_insn *where_dead = reg_stat[regno].last_death;
13696
13697 /* Don't move the register if it gets killed in between from and to. */
13698 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13699 && ! reg_referenced_p (x, maybe_kill_insn))
13700 return;
13701
13702 if (where_dead
13703 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13704 && DF_INSN_LUID (where_dead) >= from_luid
13705 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13706 {
13707 rtx note = remove_death (regno, where_dead);
13708
13709 /* It is possible for the call above to return 0. This can occur
13710 when last_death points to I2 or I1 that we combined with.
13711 In that case make a new note.
13712
13713 We must also check for the case where X is a hard register
13714 and NOTE is a death note for a range of hard registers
13715 including X. In that case, we must put REG_DEAD notes for
13716 the remaining registers in place of NOTE. */
13717
13718 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13719 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13720 > GET_MODE_SIZE (GET_MODE (x))))
13721 {
13722 unsigned int deadregno = REGNO (XEXP (note, 0));
13723 unsigned int deadend = END_REGNO (XEXP (note, 0));
13724 unsigned int ourend = END_REGNO (x);
13725 unsigned int i;
13726
13727 for (i = deadregno; i < deadend; i++)
13728 if (i < regno || i >= ourend)
13729 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13730 }
13731
13732 /* If we didn't find any note, or if we found a REG_DEAD note that
13733 covers only part of the given reg, and we have a multi-reg hard
13734 register, then to be safe we must check for REG_DEAD notes
13735 for each register other than the first. They could have
13736 their own REG_DEAD notes lying around. */
13737 else if ((note == 0
13738 || (note != 0
13739 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13740 < GET_MODE_SIZE (GET_MODE (x)))))
13741 && regno < FIRST_PSEUDO_REGISTER
13742 && REG_NREGS (x) > 1)
13743 {
13744 unsigned int ourend = END_REGNO (x);
13745 unsigned int i, offset;
13746 rtx oldnotes = 0;
13747
13748 if (note)
13749 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13750 else
13751 offset = 1;
13752
13753 for (i = regno + offset; i < ourend; i++)
13754 move_deaths (regno_reg_rtx[i],
13755 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13756 }
13757
13758 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13759 {
13760 XEXP (note, 1) = *pnotes;
13761 *pnotes = note;
13762 }
13763 else
13764 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13765 }
13766
13767 return;
13768 }
13769
13770 else if (GET_CODE (x) == SET)
13771 {
13772 rtx dest = SET_DEST (x);
13773
13774 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13775
13776 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13777 that accesses one word of a multi-word item, some
13778 piece of everything register in the expression is used by
13779 this insn, so remove any old death. */
13780 /* ??? So why do we test for equality of the sizes? */
13781
13782 if (GET_CODE (dest) == ZERO_EXTRACT
13783 || GET_CODE (dest) == STRICT_LOW_PART
13784 || (GET_CODE (dest) == SUBREG
13785 && (((GET_MODE_SIZE (GET_MODE (dest))
13786 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13787 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13788 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13789 {
13790 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13791 return;
13792 }
13793
13794 /* If this is some other SUBREG, we know it replaces the entire
13795 value, so use that as the destination. */
13796 if (GET_CODE (dest) == SUBREG)
13797 dest = SUBREG_REG (dest);
13798
13799 /* If this is a MEM, adjust deaths of anything used in the address.
13800 For a REG (the only other possibility), the entire value is
13801 being replaced so the old value is not used in this insn. */
13802
13803 if (MEM_P (dest))
13804 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13805 to_insn, pnotes);
13806 return;
13807 }
13808
13809 else if (GET_CODE (x) == CLOBBER)
13810 return;
13811
13812 len = GET_RTX_LENGTH (code);
13813 fmt = GET_RTX_FORMAT (code);
13814
13815 for (i = 0; i < len; i++)
13816 {
13817 if (fmt[i] == 'E')
13818 {
13819 int j;
13820 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13821 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13822 to_insn, pnotes);
13823 }
13824 else if (fmt[i] == 'e')
13825 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13826 }
13827 }
13828 \f
13829 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13830 pattern of an insn. X must be a REG. */
13831
13832 static int
13833 reg_bitfield_target_p (rtx x, rtx body)
13834 {
13835 int i;
13836
13837 if (GET_CODE (body) == SET)
13838 {
13839 rtx dest = SET_DEST (body);
13840 rtx target;
13841 unsigned int regno, tregno, endregno, endtregno;
13842
13843 if (GET_CODE (dest) == ZERO_EXTRACT)
13844 target = XEXP (dest, 0);
13845 else if (GET_CODE (dest) == STRICT_LOW_PART)
13846 target = SUBREG_REG (XEXP (dest, 0));
13847 else
13848 return 0;
13849
13850 if (GET_CODE (target) == SUBREG)
13851 target = SUBREG_REG (target);
13852
13853 if (!REG_P (target))
13854 return 0;
13855
13856 tregno = REGNO (target), regno = REGNO (x);
13857 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13858 return target == x;
13859
13860 endtregno = end_hard_regno (GET_MODE (target), tregno);
13861 endregno = end_hard_regno (GET_MODE (x), regno);
13862
13863 return endregno > tregno && regno < endtregno;
13864 }
13865
13866 else if (GET_CODE (body) == PARALLEL)
13867 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13868 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13869 return 1;
13870
13871 return 0;
13872 }
13873 \f
13874 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13875 as appropriate. I3 and I2 are the insns resulting from the combination
13876 insns including FROM (I2 may be zero).
13877
13878 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13879 not need REG_DEAD notes because they are being substituted for. This
13880 saves searching in the most common cases.
13881
13882 Each note in the list is either ignored or placed on some insns, depending
13883 on the type of note. */
13884
13885 static void
13886 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13887 rtx elim_i2, rtx elim_i1, rtx elim_i0)
13888 {
13889 rtx note, next_note;
13890 rtx tem_note;
13891 rtx_insn *tem_insn;
13892
13893 for (note = notes; note; note = next_note)
13894 {
13895 rtx_insn *place = 0, *place2 = 0;
13896
13897 next_note = XEXP (note, 1);
13898 switch (REG_NOTE_KIND (note))
13899 {
13900 case REG_BR_PROB:
13901 case REG_BR_PRED:
13902 /* Doesn't matter much where we put this, as long as it's somewhere.
13903 It is preferable to keep these notes on branches, which is most
13904 likely to be i3. */
13905 place = i3;
13906 break;
13907
13908 case REG_NON_LOCAL_GOTO:
13909 if (JUMP_P (i3))
13910 place = i3;
13911 else
13912 {
13913 gcc_assert (i2 && JUMP_P (i2));
13914 place = i2;
13915 }
13916 break;
13917
13918 case REG_EH_REGION:
13919 /* These notes must remain with the call or trapping instruction. */
13920 if (CALL_P (i3))
13921 place = i3;
13922 else if (i2 && CALL_P (i2))
13923 place = i2;
13924 else
13925 {
13926 gcc_assert (cfun->can_throw_non_call_exceptions);
13927 if (may_trap_p (i3))
13928 place = i3;
13929 else if (i2 && may_trap_p (i2))
13930 place = i2;
13931 /* ??? Otherwise assume we've combined things such that we
13932 can now prove that the instructions can't trap. Drop the
13933 note in this case. */
13934 }
13935 break;
13936
13937 case REG_ARGS_SIZE:
13938 /* ??? How to distribute between i3-i1. Assume i3 contains the
13939 entire adjustment. Assert i3 contains at least some adjust. */
13940 if (!noop_move_p (i3))
13941 {
13942 int old_size, args_size = INTVAL (XEXP (note, 0));
13943 /* fixup_args_size_notes looks at REG_NORETURN note,
13944 so ensure the note is placed there first. */
13945 if (CALL_P (i3))
13946 {
13947 rtx *np;
13948 for (np = &next_note; *np; np = &XEXP (*np, 1))
13949 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13950 {
13951 rtx n = *np;
13952 *np = XEXP (n, 1);
13953 XEXP (n, 1) = REG_NOTES (i3);
13954 REG_NOTES (i3) = n;
13955 break;
13956 }
13957 }
13958 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13959 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13960 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13961 gcc_assert (old_size != args_size
13962 || (CALL_P (i3)
13963 && !ACCUMULATE_OUTGOING_ARGS
13964 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13965 }
13966 break;
13967
13968 case REG_NORETURN:
13969 case REG_SETJMP:
13970 case REG_TM:
13971 case REG_CALL_DECL:
13972 /* These notes must remain with the call. It should not be
13973 possible for both I2 and I3 to be a call. */
13974 if (CALL_P (i3))
13975 place = i3;
13976 else
13977 {
13978 gcc_assert (i2 && CALL_P (i2));
13979 place = i2;
13980 }
13981 break;
13982
13983 case REG_UNUSED:
13984 /* Any clobbers for i3 may still exist, and so we must process
13985 REG_UNUSED notes from that insn.
13986
13987 Any clobbers from i2 or i1 can only exist if they were added by
13988 recog_for_combine. In that case, recog_for_combine created the
13989 necessary REG_UNUSED notes. Trying to keep any original
13990 REG_UNUSED notes from these insns can cause incorrect output
13991 if it is for the same register as the original i3 dest.
13992 In that case, we will notice that the register is set in i3,
13993 and then add a REG_UNUSED note for the destination of i3, which
13994 is wrong. However, it is possible to have REG_UNUSED notes from
13995 i2 or i1 for register which were both used and clobbered, so
13996 we keep notes from i2 or i1 if they will turn into REG_DEAD
13997 notes. */
13998
13999 /* If this register is set or clobbered in I3, put the note there
14000 unless there is one already. */
14001 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14002 {
14003 if (from_insn != i3)
14004 break;
14005
14006 if (! (REG_P (XEXP (note, 0))
14007 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14008 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14009 place = i3;
14010 }
14011 /* Otherwise, if this register is used by I3, then this register
14012 now dies here, so we must put a REG_DEAD note here unless there
14013 is one already. */
14014 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14015 && ! (REG_P (XEXP (note, 0))
14016 ? find_regno_note (i3, REG_DEAD,
14017 REGNO (XEXP (note, 0)))
14018 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14019 {
14020 PUT_REG_NOTE_KIND (note, REG_DEAD);
14021 place = i3;
14022 }
14023 break;
14024
14025 case REG_EQUAL:
14026 case REG_EQUIV:
14027 case REG_NOALIAS:
14028 /* These notes say something about results of an insn. We can
14029 only support them if they used to be on I3 in which case they
14030 remain on I3. Otherwise they are ignored.
14031
14032 If the note refers to an expression that is not a constant, we
14033 must also ignore the note since we cannot tell whether the
14034 equivalence is still true. It might be possible to do
14035 slightly better than this (we only have a problem if I2DEST
14036 or I1DEST is present in the expression), but it doesn't
14037 seem worth the trouble. */
14038
14039 if (from_insn == i3
14040 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14041 place = i3;
14042 break;
14043
14044 case REG_INC:
14045 /* These notes say something about how a register is used. They must
14046 be present on any use of the register in I2 or I3. */
14047 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14048 place = i3;
14049
14050 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14051 {
14052 if (place)
14053 place2 = i2;
14054 else
14055 place = i2;
14056 }
14057 break;
14058
14059 case REG_LABEL_TARGET:
14060 case REG_LABEL_OPERAND:
14061 /* This can show up in several ways -- either directly in the
14062 pattern, or hidden off in the constant pool with (or without?)
14063 a REG_EQUAL note. */
14064 /* ??? Ignore the without-reg_equal-note problem for now. */
14065 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14066 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14067 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14068 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14069 place = i3;
14070
14071 if (i2
14072 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14073 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14074 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14075 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14076 {
14077 if (place)
14078 place2 = i2;
14079 else
14080 place = i2;
14081 }
14082
14083 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14084 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14085 there. */
14086 if (place && JUMP_P (place)
14087 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14088 && (JUMP_LABEL (place) == NULL
14089 || JUMP_LABEL (place) == XEXP (note, 0)))
14090 {
14091 rtx label = JUMP_LABEL (place);
14092
14093 if (!label)
14094 JUMP_LABEL (place) = XEXP (note, 0);
14095 else if (LABEL_P (label))
14096 LABEL_NUSES (label)--;
14097 }
14098
14099 if (place2 && JUMP_P (place2)
14100 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14101 && (JUMP_LABEL (place2) == NULL
14102 || JUMP_LABEL (place2) == XEXP (note, 0)))
14103 {
14104 rtx label = JUMP_LABEL (place2);
14105
14106 if (!label)
14107 JUMP_LABEL (place2) = XEXP (note, 0);
14108 else if (LABEL_P (label))
14109 LABEL_NUSES (label)--;
14110 place2 = 0;
14111 }
14112 break;
14113
14114 case REG_NONNEG:
14115 /* This note says something about the value of a register prior
14116 to the execution of an insn. It is too much trouble to see
14117 if the note is still correct in all situations. It is better
14118 to simply delete it. */
14119 break;
14120
14121 case REG_DEAD:
14122 /* If we replaced the right hand side of FROM_INSN with a
14123 REG_EQUAL note, the original use of the dying register
14124 will not have been combined into I3 and I2. In such cases,
14125 FROM_INSN is guaranteed to be the first of the combined
14126 instructions, so we simply need to search back before
14127 FROM_INSN for the previous use or set of this register,
14128 then alter the notes there appropriately.
14129
14130 If the register is used as an input in I3, it dies there.
14131 Similarly for I2, if it is nonzero and adjacent to I3.
14132
14133 If the register is not used as an input in either I3 or I2
14134 and it is not one of the registers we were supposed to eliminate,
14135 there are two possibilities. We might have a non-adjacent I2
14136 or we might have somehow eliminated an additional register
14137 from a computation. For example, we might have had A & B where
14138 we discover that B will always be zero. In this case we will
14139 eliminate the reference to A.
14140
14141 In both cases, we must search to see if we can find a previous
14142 use of A and put the death note there. */
14143
14144 if (from_insn
14145 && from_insn == i2mod
14146 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14147 tem_insn = from_insn;
14148 else
14149 {
14150 if (from_insn
14151 && CALL_P (from_insn)
14152 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14153 place = from_insn;
14154 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14155 place = i3;
14156 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14157 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14158 place = i2;
14159 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14160 && !(i2mod
14161 && reg_overlap_mentioned_p (XEXP (note, 0),
14162 i2mod_old_rhs)))
14163 || rtx_equal_p (XEXP (note, 0), elim_i1)
14164 || rtx_equal_p (XEXP (note, 0), elim_i0))
14165 break;
14166 tem_insn = i3;
14167 /* If the new I2 sets the same register that is marked dead
14168 in the note, we do not know where to put the note.
14169 Give up. */
14170 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14171 break;
14172 }
14173
14174 if (place == 0)
14175 {
14176 basic_block bb = this_basic_block;
14177
14178 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14179 {
14180 if (!NONDEBUG_INSN_P (tem_insn))
14181 {
14182 if (tem_insn == BB_HEAD (bb))
14183 break;
14184 continue;
14185 }
14186
14187 /* If the register is being set at TEM_INSN, see if that is all
14188 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14189 into a REG_UNUSED note instead. Don't delete sets to
14190 global register vars. */
14191 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14192 || !global_regs[REGNO (XEXP (note, 0))])
14193 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14194 {
14195 rtx set = single_set (tem_insn);
14196 rtx inner_dest = 0;
14197 rtx_insn *cc0_setter = NULL;
14198
14199 if (set != 0)
14200 for (inner_dest = SET_DEST (set);
14201 (GET_CODE (inner_dest) == STRICT_LOW_PART
14202 || GET_CODE (inner_dest) == SUBREG
14203 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14204 inner_dest = XEXP (inner_dest, 0))
14205 ;
14206
14207 /* Verify that it was the set, and not a clobber that
14208 modified the register.
14209
14210 CC0 targets must be careful to maintain setter/user
14211 pairs. If we cannot delete the setter due to side
14212 effects, mark the user with an UNUSED note instead
14213 of deleting it. */
14214
14215 if (set != 0 && ! side_effects_p (SET_SRC (set))
14216 && rtx_equal_p (XEXP (note, 0), inner_dest)
14217 && (!HAVE_cc0
14218 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14219 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14220 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14221 {
14222 /* Move the notes and links of TEM_INSN elsewhere.
14223 This might delete other dead insns recursively.
14224 First set the pattern to something that won't use
14225 any register. */
14226 rtx old_notes = REG_NOTES (tem_insn);
14227
14228 PATTERN (tem_insn) = pc_rtx;
14229 REG_NOTES (tem_insn) = NULL;
14230
14231 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14232 NULL_RTX, NULL_RTX, NULL_RTX);
14233 distribute_links (LOG_LINKS (tem_insn));
14234
14235 SET_INSN_DELETED (tem_insn);
14236 if (tem_insn == i2)
14237 i2 = NULL;
14238
14239 /* Delete the setter too. */
14240 if (cc0_setter)
14241 {
14242 PATTERN (cc0_setter) = pc_rtx;
14243 old_notes = REG_NOTES (cc0_setter);
14244 REG_NOTES (cc0_setter) = NULL;
14245
14246 distribute_notes (old_notes, cc0_setter,
14247 cc0_setter, NULL,
14248 NULL_RTX, NULL_RTX, NULL_RTX);
14249 distribute_links (LOG_LINKS (cc0_setter));
14250
14251 SET_INSN_DELETED (cc0_setter);
14252 if (cc0_setter == i2)
14253 i2 = NULL;
14254 }
14255 }
14256 else
14257 {
14258 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14259
14260 /* If there isn't already a REG_UNUSED note, put one
14261 here. Do not place a REG_DEAD note, even if
14262 the register is also used here; that would not
14263 match the algorithm used in lifetime analysis
14264 and can cause the consistency check in the
14265 scheduler to fail. */
14266 if (! find_regno_note (tem_insn, REG_UNUSED,
14267 REGNO (XEXP (note, 0))))
14268 place = tem_insn;
14269 break;
14270 }
14271 }
14272 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14273 || (CALL_P (tem_insn)
14274 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14275 {
14276 place = tem_insn;
14277
14278 /* If we are doing a 3->2 combination, and we have a
14279 register which formerly died in i3 and was not used
14280 by i2, which now no longer dies in i3 and is used in
14281 i2 but does not die in i2, and place is between i2
14282 and i3, then we may need to move a link from place to
14283 i2. */
14284 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14285 && from_insn
14286 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14287 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14288 {
14289 struct insn_link *links = LOG_LINKS (place);
14290 LOG_LINKS (place) = NULL;
14291 distribute_links (links);
14292 }
14293 break;
14294 }
14295
14296 if (tem_insn == BB_HEAD (bb))
14297 break;
14298 }
14299
14300 }
14301
14302 /* If the register is set or already dead at PLACE, we needn't do
14303 anything with this note if it is still a REG_DEAD note.
14304 We check here if it is set at all, not if is it totally replaced,
14305 which is what `dead_or_set_p' checks, so also check for it being
14306 set partially. */
14307
14308 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14309 {
14310 unsigned int regno = REGNO (XEXP (note, 0));
14311 reg_stat_type *rsp = &reg_stat[regno];
14312
14313 if (dead_or_set_p (place, XEXP (note, 0))
14314 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14315 {
14316 /* Unless the register previously died in PLACE, clear
14317 last_death. [I no longer understand why this is
14318 being done.] */
14319 if (rsp->last_death != place)
14320 rsp->last_death = 0;
14321 place = 0;
14322 }
14323 else
14324 rsp->last_death = place;
14325
14326 /* If this is a death note for a hard reg that is occupying
14327 multiple registers, ensure that we are still using all
14328 parts of the object. If we find a piece of the object
14329 that is unused, we must arrange for an appropriate REG_DEAD
14330 note to be added for it. However, we can't just emit a USE
14331 and tag the note to it, since the register might actually
14332 be dead; so we recourse, and the recursive call then finds
14333 the previous insn that used this register. */
14334
14335 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14336 {
14337 unsigned int endregno = END_REGNO (XEXP (note, 0));
14338 bool all_used = true;
14339 unsigned int i;
14340
14341 for (i = regno; i < endregno; i++)
14342 if ((! refers_to_regno_p (i, PATTERN (place))
14343 && ! find_regno_fusage (place, USE, i))
14344 || dead_or_set_regno_p (place, i))
14345 {
14346 all_used = false;
14347 break;
14348 }
14349
14350 if (! all_used)
14351 {
14352 /* Put only REG_DEAD notes for pieces that are
14353 not already dead or set. */
14354
14355 for (i = regno; i < endregno;
14356 i += hard_regno_nregs[i][reg_raw_mode[i]])
14357 {
14358 rtx piece = regno_reg_rtx[i];
14359 basic_block bb = this_basic_block;
14360
14361 if (! dead_or_set_p (place, piece)
14362 && ! reg_bitfield_target_p (piece,
14363 PATTERN (place)))
14364 {
14365 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14366 NULL_RTX);
14367
14368 distribute_notes (new_note, place, place,
14369 NULL, NULL_RTX, NULL_RTX,
14370 NULL_RTX);
14371 }
14372 else if (! refers_to_regno_p (i, PATTERN (place))
14373 && ! find_regno_fusage (place, USE, i))
14374 for (tem_insn = PREV_INSN (place); ;
14375 tem_insn = PREV_INSN (tem_insn))
14376 {
14377 if (!NONDEBUG_INSN_P (tem_insn))
14378 {
14379 if (tem_insn == BB_HEAD (bb))
14380 break;
14381 continue;
14382 }
14383 if (dead_or_set_p (tem_insn, piece)
14384 || reg_bitfield_target_p (piece,
14385 PATTERN (tem_insn)))
14386 {
14387 add_reg_note (tem_insn, REG_UNUSED, piece);
14388 break;
14389 }
14390 }
14391 }
14392
14393 place = 0;
14394 }
14395 }
14396 }
14397 break;
14398
14399 default:
14400 /* Any other notes should not be present at this point in the
14401 compilation. */
14402 gcc_unreachable ();
14403 }
14404
14405 if (place)
14406 {
14407 XEXP (note, 1) = REG_NOTES (place);
14408 REG_NOTES (place) = note;
14409 }
14410
14411 if (place2)
14412 add_shallow_copy_of_reg_note (place2, note);
14413 }
14414 }
14415 \f
14416 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14417 I3, I2, and I1 to new locations. This is also called to add a link
14418 pointing at I3 when I3's destination is changed. */
14419
14420 static void
14421 distribute_links (struct insn_link *links)
14422 {
14423 struct insn_link *link, *next_link;
14424
14425 for (link = links; link; link = next_link)
14426 {
14427 rtx_insn *place = 0;
14428 rtx_insn *insn;
14429 rtx set, reg;
14430
14431 next_link = link->next;
14432
14433 /* If the insn that this link points to is a NOTE, ignore it. */
14434 if (NOTE_P (link->insn))
14435 continue;
14436
14437 set = 0;
14438 rtx pat = PATTERN (link->insn);
14439 if (GET_CODE (pat) == SET)
14440 set = pat;
14441 else if (GET_CODE (pat) == PARALLEL)
14442 {
14443 int i;
14444 for (i = 0; i < XVECLEN (pat, 0); i++)
14445 {
14446 set = XVECEXP (pat, 0, i);
14447 if (GET_CODE (set) != SET)
14448 continue;
14449
14450 reg = SET_DEST (set);
14451 while (GET_CODE (reg) == ZERO_EXTRACT
14452 || GET_CODE (reg) == STRICT_LOW_PART
14453 || GET_CODE (reg) == SUBREG)
14454 reg = XEXP (reg, 0);
14455
14456 if (!REG_P (reg))
14457 continue;
14458
14459 if (REGNO (reg) == link->regno)
14460 break;
14461 }
14462 if (i == XVECLEN (pat, 0))
14463 continue;
14464 }
14465 else
14466 continue;
14467
14468 reg = SET_DEST (set);
14469
14470 while (GET_CODE (reg) == ZERO_EXTRACT
14471 || GET_CODE (reg) == STRICT_LOW_PART
14472 || GET_CODE (reg) == SUBREG)
14473 reg = XEXP (reg, 0);
14474
14475 /* A LOG_LINK is defined as being placed on the first insn that uses
14476 a register and points to the insn that sets the register. Start
14477 searching at the next insn after the target of the link and stop
14478 when we reach a set of the register or the end of the basic block.
14479
14480 Note that this correctly handles the link that used to point from
14481 I3 to I2. Also note that not much searching is typically done here
14482 since most links don't point very far away. */
14483
14484 for (insn = NEXT_INSN (link->insn);
14485 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14486 || BB_HEAD (this_basic_block->next_bb) != insn));
14487 insn = NEXT_INSN (insn))
14488 if (DEBUG_INSN_P (insn))
14489 continue;
14490 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14491 {
14492 if (reg_referenced_p (reg, PATTERN (insn)))
14493 place = insn;
14494 break;
14495 }
14496 else if (CALL_P (insn)
14497 && find_reg_fusage (insn, USE, reg))
14498 {
14499 place = insn;
14500 break;
14501 }
14502 else if (INSN_P (insn) && reg_set_p (reg, insn))
14503 break;
14504
14505 /* If we found a place to put the link, place it there unless there
14506 is already a link to the same insn as LINK at that point. */
14507
14508 if (place)
14509 {
14510 struct insn_link *link2;
14511
14512 FOR_EACH_LOG_LINK (link2, place)
14513 if (link2->insn == link->insn && link2->regno == link->regno)
14514 break;
14515
14516 if (link2 == NULL)
14517 {
14518 link->next = LOG_LINKS (place);
14519 LOG_LINKS (place) = link;
14520
14521 /* Set added_links_insn to the earliest insn we added a
14522 link to. */
14523 if (added_links_insn == 0
14524 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14525 added_links_insn = place;
14526 }
14527 }
14528 }
14529 }
14530 \f
14531 /* Check for any register or memory mentioned in EQUIV that is not
14532 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14533 of EXPR where some registers may have been replaced by constants. */
14534
14535 static bool
14536 unmentioned_reg_p (rtx equiv, rtx expr)
14537 {
14538 subrtx_iterator::array_type array;
14539 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14540 {
14541 const_rtx x = *iter;
14542 if ((REG_P (x) || MEM_P (x))
14543 && !reg_mentioned_p (x, expr))
14544 return true;
14545 }
14546 return false;
14547 }
14548 \f
14549 DEBUG_FUNCTION void
14550 dump_combine_stats (FILE *file)
14551 {
14552 fprintf
14553 (file,
14554 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14555 combine_attempts, combine_merges, combine_extras, combine_successes);
14556 }
14557
14558 void
14559 dump_combine_total_stats (FILE *file)
14560 {
14561 fprintf
14562 (file,
14563 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14564 total_attempts, total_merges, total_extras, total_successes);
14565 }
14566 \f
14567 /* Try combining insns through substitution. */
14568 static unsigned int
14569 rest_of_handle_combine (void)
14570 {
14571 int rebuild_jump_labels_after_combine;
14572
14573 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14574 df_note_add_problem ();
14575 df_analyze ();
14576
14577 regstat_init_n_sets_and_refs ();
14578 reg_n_sets_max = max_reg_num ();
14579
14580 rebuild_jump_labels_after_combine
14581 = combine_instructions (get_insns (), max_reg_num ());
14582
14583 /* Combining insns may have turned an indirect jump into a
14584 direct jump. Rebuild the JUMP_LABEL fields of jumping
14585 instructions. */
14586 if (rebuild_jump_labels_after_combine)
14587 {
14588 if (dom_info_available_p (CDI_DOMINATORS))
14589 free_dominance_info (CDI_DOMINATORS);
14590 timevar_push (TV_JUMP);
14591 rebuild_jump_labels (get_insns ());
14592 cleanup_cfg (0);
14593 timevar_pop (TV_JUMP);
14594 }
14595
14596 regstat_free_n_sets_and_refs ();
14597 return 0;
14598 }
14599
14600 namespace {
14601
14602 const pass_data pass_data_combine =
14603 {
14604 RTL_PASS, /* type */
14605 "combine", /* name */
14606 OPTGROUP_NONE, /* optinfo_flags */
14607 TV_COMBINE, /* tv_id */
14608 PROP_cfglayout, /* properties_required */
14609 0, /* properties_provided */
14610 0, /* properties_destroyed */
14611 0, /* todo_flags_start */
14612 TODO_df_finish, /* todo_flags_finish */
14613 };
14614
14615 class pass_combine : public rtl_opt_pass
14616 {
14617 public:
14618 pass_combine (gcc::context *ctxt)
14619 : rtl_opt_pass (pass_data_combine, ctxt)
14620 {}
14621
14622 /* opt_pass methods: */
14623 virtual bool gate (function *) { return (optimize > 0); }
14624 virtual unsigned int execute (function *)
14625 {
14626 return rest_of_handle_combine ();
14627 }
14628
14629 }; // class pass_combine
14630
14631 } // anon namespace
14632
14633 rtl_opt_pass *
14634 make_pass_combine (gcc::context *ctxt)
14635 {
14636 return new pass_combine (ctxt);
14637 }