re PR rtl-optimization/79910 (wrong code with -O -fweb)
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
107
108 /* Number of attempts to combine instructions in this function. */
109
110 static int combine_attempts;
111
112 /* Number of attempts that got as far as substitution in this function. */
113
114 static int combine_merges;
115
116 /* Number of instructions combined with added SETs in this function. */
117
118 static int combine_extras;
119
120 /* Number of instructions combined in this function. */
121
122 static int combine_successes;
123
124 /* Totals over entire compilation. */
125
126 static int total_attempts, total_merges, total_extras, total_successes;
127
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
134
135 static rtx_insn *i2mod;
136
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
138
139 static rtx i2mod_old_rhs;
140
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
142
143 static rtx i2mod_new_rhs;
144 \f
145 struct reg_stat_type {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx_insn *last_death;
148
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx_insn *last_set;
151
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
157
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
160
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
164
165 Therefore, we maintain the following fields:
166
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
175
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
180
181 (The next two parameters are out of date).
182
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
194
195 /* Record last value assigned to (hard or pseudo) register n. */
196
197 rtx last_set_value;
198
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
201
202 int last_set_table_tick;
203
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
206
207 int last_set_label;
208
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
213
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
217
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
221
222 char last_set_invalid;
223
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
228
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
233
234 If an entry is zero, it means that we don't know anything special. */
235
236 unsigned char sign_bit_copies;
237
238 unsigned HOST_WIDE_INT nonzero_bits;
239
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
243
244 int truncation_label;
245
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
250
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
252 };
253
254
255 static vec<reg_stat_type> reg_stat;
256
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259 but during combine_split_insns new pseudos can be created. As we don't have
260 updated DF information in that case, it is hard to initialize the array
261 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
262 so instead of growing the arrays, just assume all newly created pseudos
263 during combine might be set multiple times. */
264
265 static unsigned int reg_n_sets_max;
266
267 /* Record the luid of the last insn that invalidated memory
268 (anything that writes memory, and subroutine calls, but not pushes). */
269
270 static int mem_last_set;
271
272 /* Record the luid of the last CALL_INSN
273 so we can tell whether a potential combination crosses any calls. */
274
275 static int last_call_luid;
276
277 /* When `subst' is called, this is the insn that is being modified
278 (by combining in a previous insn). The PATTERN of this insn
279 is still the old pattern partially modified and it should not be
280 looked at, but this may be used to examine the successors of the insn
281 to judge whether a simplification is valid. */
282
283 static rtx_insn *subst_insn;
284
285 /* This is the lowest LUID that `subst' is currently dealing with.
286 get_last_value will not return a value if the register was set at or
287 after this LUID. If not for this mechanism, we could get confused if
288 I2 or I1 in try_combine were an insn that used the old value of a register
289 to obtain a new value. In that case, we might erroneously get the
290 new value of the register when we wanted the old one. */
291
292 static int subst_low_luid;
293
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295 must consider all these registers to be always live. */
296
297 static HARD_REG_SET newpat_used_regs;
298
299 /* This is an insn to which a LOG_LINKS entry has been added. If this
300 insn is the earlier than I2 or I3, combine should rescan starting at
301 that location. */
302
303 static rtx_insn *added_links_insn;
304
305 /* Basic block in which we are performing combines. */
306 static basic_block this_basic_block;
307 static bool optimize_this_for_speed_p;
308
309 \f
310 /* Length of the currently allocated uid_insn_cost array. */
311
312 static int max_uid_known;
313
314 /* The following array records the insn_rtx_cost for every insn
315 in the instruction stream. */
316
317 static int *uid_insn_cost;
318
319 /* The following array records the LOG_LINKS for every insn in the
320 instruction stream as struct insn_link pointers. */
321
322 struct insn_link {
323 rtx_insn *insn;
324 unsigned int regno;
325 struct insn_link *next;
326 };
327
328 static struct insn_link **uid_log_links;
329
330 static inline int
331 insn_uid_check (const_rtx insn)
332 {
333 int uid = INSN_UID (insn);
334 gcc_checking_assert (uid <= max_uid_known);
335 return uid;
336 }
337
338 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
339 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
340
341 #define FOR_EACH_LOG_LINK(L, INSN) \
342 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
343
344 /* Links for LOG_LINKS are allocated from this obstack. */
345
346 static struct obstack insn_link_obstack;
347
348 /* Allocate a link. */
349
350 static inline struct insn_link *
351 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
352 {
353 struct insn_link *l
354 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
355 sizeof (struct insn_link));
356 l->insn = insn;
357 l->regno = regno;
358 l->next = next;
359 return l;
360 }
361
362 /* Incremented for each basic block. */
363
364 static int label_tick;
365
366 /* Reset to label_tick for each extended basic block in scanning order. */
367
368 static int label_tick_ebb_start;
369
370 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
371 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
372
373 static machine_mode nonzero_bits_mode;
374
375 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
376 be safely used. It is zero while computing them and after combine has
377 completed. This former test prevents propagating values based on
378 previously set values, which can be incorrect if a variable is modified
379 in a loop. */
380
381 static int nonzero_sign_valid;
382
383 \f
384 /* Record one modification to rtl structure
385 to be undone by storing old_contents into *where. */
386
387 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
388
389 struct undo
390 {
391 struct undo *next;
392 enum undo_kind kind;
393 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
394 union { rtx *r; int *i; struct insn_link **l; } where;
395 };
396
397 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
398 num_undo says how many are currently recorded.
399
400 other_insn is nonzero if we have modified some other insn in the process
401 of working on subst_insn. It must be verified too. */
402
403 struct undobuf
404 {
405 struct undo *undos;
406 struct undo *frees;
407 rtx_insn *other_insn;
408 };
409
410 static struct undobuf undobuf;
411
412 /* Number of times the pseudo being substituted for
413 was found and replaced. */
414
415 static int n_occurrences;
416
417 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
418 machine_mode,
419 unsigned HOST_WIDE_INT,
420 unsigned HOST_WIDE_INT *);
421 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
422 machine_mode,
423 unsigned int, unsigned int *);
424 static void do_SUBST (rtx *, rtx);
425 static void do_SUBST_INT (int *, int);
426 static void init_reg_last (void);
427 static void setup_incoming_promotions (rtx_insn *);
428 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
429 static int cant_combine_insn_p (rtx_insn *);
430 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
431 rtx_insn *, rtx_insn *, rtx *, rtx *);
432 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
433 static int contains_muldiv (rtx);
434 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
435 int *, rtx_insn *);
436 static void undo_all (void);
437 static void undo_commit (void);
438 static rtx *find_split_point (rtx *, rtx_insn *, bool);
439 static rtx subst (rtx, rtx, rtx, int, int, int);
440 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
441 static rtx simplify_if_then_else (rtx);
442 static rtx simplify_set (rtx);
443 static rtx simplify_logical (rtx);
444 static rtx expand_compound_operation (rtx);
445 static const_rtx expand_field_assignment (const_rtx);
446 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
447 rtx, unsigned HOST_WIDE_INT, int, int, int);
448 static rtx extract_left_shift (rtx, int);
449 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
450 unsigned HOST_WIDE_INT *);
451 static rtx canon_reg_for_combine (rtx, rtx);
452 static rtx force_to_mode (rtx, machine_mode,
453 unsigned HOST_WIDE_INT, int);
454 static rtx if_then_else_cond (rtx, rtx *, rtx *);
455 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
456 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
457 static rtx make_field_assignment (rtx);
458 static rtx apply_distributive_law (rtx);
459 static rtx distribute_and_simplify_rtx (rtx, int);
460 static rtx simplify_and_const_int_1 (machine_mode, rtx,
461 unsigned HOST_WIDE_INT);
462 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
463 unsigned HOST_WIDE_INT);
464 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
465 HOST_WIDE_INT, machine_mode, int *);
466 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
467 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
468 int);
469 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
470 static rtx gen_lowpart_for_combine (machine_mode, rtx);
471 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
472 rtx, rtx *);
473 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
474 static void update_table_tick (rtx);
475 static void record_value_for_reg (rtx, rtx_insn *, rtx);
476 static void check_promoted_subreg (rtx_insn *, rtx);
477 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
478 static void record_dead_and_set_regs (rtx_insn *);
479 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
480 static rtx get_last_value (const_rtx);
481 static int use_crosses_set_p (const_rtx, int);
482 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
483 static int reg_dead_at_p (rtx, rtx_insn *);
484 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
485 static int reg_bitfield_target_p (rtx, rtx);
486 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
487 static void distribute_links (struct insn_link *);
488 static void mark_used_regs_combine (rtx);
489 static void record_promoted_value (rtx_insn *, rtx);
490 static bool unmentioned_reg_p (rtx, rtx);
491 static void record_truncated_values (rtx *, void *);
492 static bool reg_truncated_to_mode (machine_mode, const_rtx);
493 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
494 \f
495
496 /* It is not safe to use ordinary gen_lowpart in combine.
497 See comments in gen_lowpart_for_combine. */
498 #undef RTL_HOOKS_GEN_LOWPART
499 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
500
501 /* Our implementation of gen_lowpart never emits a new pseudo. */
502 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
503 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
504
505 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
506 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
507
508 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
509 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
510
511 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
512 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
513
514 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
515
516 \f
517 /* Convenience wrapper for the canonicalize_comparison target hook.
518 Target hooks cannot use enum rtx_code. */
519 static inline void
520 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
521 bool op0_preserve_value)
522 {
523 int code_int = (int)*code;
524 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
525 *code = (enum rtx_code)code_int;
526 }
527
528 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
529 PATTERN can not be split. Otherwise, it returns an insn sequence.
530 This is a wrapper around split_insns which ensures that the
531 reg_stat vector is made larger if the splitter creates a new
532 register. */
533
534 static rtx_insn *
535 combine_split_insns (rtx pattern, rtx_insn *insn)
536 {
537 rtx_insn *ret;
538 unsigned int nregs;
539
540 ret = split_insns (pattern, insn);
541 nregs = max_reg_num ();
542 if (nregs > reg_stat.length ())
543 reg_stat.safe_grow_cleared (nregs);
544 return ret;
545 }
546
547 /* This is used by find_single_use to locate an rtx in LOC that
548 contains exactly one use of DEST, which is typically either a REG
549 or CC0. It returns a pointer to the innermost rtx expression
550 containing DEST. Appearances of DEST that are being used to
551 totally replace it are not counted. */
552
553 static rtx *
554 find_single_use_1 (rtx dest, rtx *loc)
555 {
556 rtx x = *loc;
557 enum rtx_code code = GET_CODE (x);
558 rtx *result = NULL;
559 rtx *this_result;
560 int i;
561 const char *fmt;
562
563 switch (code)
564 {
565 case CONST:
566 case LABEL_REF:
567 case SYMBOL_REF:
568 CASE_CONST_ANY:
569 case CLOBBER:
570 return 0;
571
572 case SET:
573 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
574 of a REG that occupies all of the REG, the insn uses DEST if
575 it is mentioned in the destination or the source. Otherwise, we
576 need just check the source. */
577 if (GET_CODE (SET_DEST (x)) != CC0
578 && GET_CODE (SET_DEST (x)) != PC
579 && !REG_P (SET_DEST (x))
580 && ! (GET_CODE (SET_DEST (x)) == SUBREG
581 && REG_P (SUBREG_REG (SET_DEST (x)))
582 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
583 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
584 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
585 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
586 break;
587
588 return find_single_use_1 (dest, &SET_SRC (x));
589
590 case MEM:
591 case SUBREG:
592 return find_single_use_1 (dest, &XEXP (x, 0));
593
594 default:
595 break;
596 }
597
598 /* If it wasn't one of the common cases above, check each expression and
599 vector of this code. Look for a unique usage of DEST. */
600
601 fmt = GET_RTX_FORMAT (code);
602 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
603 {
604 if (fmt[i] == 'e')
605 {
606 if (dest == XEXP (x, i)
607 || (REG_P (dest) && REG_P (XEXP (x, i))
608 && REGNO (dest) == REGNO (XEXP (x, i))))
609 this_result = loc;
610 else
611 this_result = find_single_use_1 (dest, &XEXP (x, i));
612
613 if (result == NULL)
614 result = this_result;
615 else if (this_result)
616 /* Duplicate usage. */
617 return NULL;
618 }
619 else if (fmt[i] == 'E')
620 {
621 int j;
622
623 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
624 {
625 if (XVECEXP (x, i, j) == dest
626 || (REG_P (dest)
627 && REG_P (XVECEXP (x, i, j))
628 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
629 this_result = loc;
630 else
631 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
632
633 if (result == NULL)
634 result = this_result;
635 else if (this_result)
636 return NULL;
637 }
638 }
639 }
640
641 return result;
642 }
643
644
645 /* See if DEST, produced in INSN, is used only a single time in the
646 sequel. If so, return a pointer to the innermost rtx expression in which
647 it is used.
648
649 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
650
651 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
652 care about REG_DEAD notes or LOG_LINKS.
653
654 Otherwise, we find the single use by finding an insn that has a
655 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
656 only referenced once in that insn, we know that it must be the first
657 and last insn referencing DEST. */
658
659 static rtx *
660 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
661 {
662 basic_block bb;
663 rtx_insn *next;
664 rtx *result;
665 struct insn_link *link;
666
667 if (dest == cc0_rtx)
668 {
669 next = NEXT_INSN (insn);
670 if (next == 0
671 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
672 return 0;
673
674 result = find_single_use_1 (dest, &PATTERN (next));
675 if (result && ploc)
676 *ploc = next;
677 return result;
678 }
679
680 if (!REG_P (dest))
681 return 0;
682
683 bb = BLOCK_FOR_INSN (insn);
684 for (next = NEXT_INSN (insn);
685 next && BLOCK_FOR_INSN (next) == bb;
686 next = NEXT_INSN (next))
687 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
688 {
689 FOR_EACH_LOG_LINK (link, next)
690 if (link->insn == insn && link->regno == REGNO (dest))
691 break;
692
693 if (link)
694 {
695 result = find_single_use_1 (dest, &PATTERN (next));
696 if (ploc)
697 *ploc = next;
698 return result;
699 }
700 }
701
702 return 0;
703 }
704 \f
705 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
706 insn. The substitution can be undone by undo_all. If INTO is already
707 set to NEWVAL, do not record this change. Because computing NEWVAL might
708 also call SUBST, we have to compute it before we put anything into
709 the undo table. */
710
711 static void
712 do_SUBST (rtx *into, rtx newval)
713 {
714 struct undo *buf;
715 rtx oldval = *into;
716
717 if (oldval == newval)
718 return;
719
720 /* We'd like to catch as many invalid transformations here as
721 possible. Unfortunately, there are way too many mode changes
722 that are perfectly valid, so we'd waste too much effort for
723 little gain doing the checks here. Focus on catching invalid
724 transformations involving integer constants. */
725 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
726 && CONST_INT_P (newval))
727 {
728 /* Sanity check that we're replacing oldval with a CONST_INT
729 that is a valid sign-extension for the original mode. */
730 gcc_assert (INTVAL (newval)
731 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
732
733 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
734 CONST_INT is not valid, because after the replacement, the
735 original mode would be gone. Unfortunately, we can't tell
736 when do_SUBST is called to replace the operand thereof, so we
737 perform this test on oldval instead, checking whether an
738 invalid replacement took place before we got here. */
739 gcc_assert (!(GET_CODE (oldval) == SUBREG
740 && CONST_INT_P (SUBREG_REG (oldval))));
741 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
742 && CONST_INT_P (XEXP (oldval, 0))));
743 }
744
745 if (undobuf.frees)
746 buf = undobuf.frees, undobuf.frees = buf->next;
747 else
748 buf = XNEW (struct undo);
749
750 buf->kind = UNDO_RTX;
751 buf->where.r = into;
752 buf->old_contents.r = oldval;
753 *into = newval;
754
755 buf->next = undobuf.undos, undobuf.undos = buf;
756 }
757
758 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
759
760 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
761 for the value of a HOST_WIDE_INT value (including CONST_INT) is
762 not safe. */
763
764 static void
765 do_SUBST_INT (int *into, int newval)
766 {
767 struct undo *buf;
768 int oldval = *into;
769
770 if (oldval == newval)
771 return;
772
773 if (undobuf.frees)
774 buf = undobuf.frees, undobuf.frees = buf->next;
775 else
776 buf = XNEW (struct undo);
777
778 buf->kind = UNDO_INT;
779 buf->where.i = into;
780 buf->old_contents.i = oldval;
781 *into = newval;
782
783 buf->next = undobuf.undos, undobuf.undos = buf;
784 }
785
786 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
787
788 /* Similar to SUBST, but just substitute the mode. This is used when
789 changing the mode of a pseudo-register, so that any other
790 references to the entry in the regno_reg_rtx array will change as
791 well. */
792
793 static void
794 do_SUBST_MODE (rtx *into, machine_mode newval)
795 {
796 struct undo *buf;
797 machine_mode oldval = GET_MODE (*into);
798
799 if (oldval == newval)
800 return;
801
802 if (undobuf.frees)
803 buf = undobuf.frees, undobuf.frees = buf->next;
804 else
805 buf = XNEW (struct undo);
806
807 buf->kind = UNDO_MODE;
808 buf->where.r = into;
809 buf->old_contents.m = oldval;
810 adjust_reg_mode (*into, newval);
811
812 buf->next = undobuf.undos, undobuf.undos = buf;
813 }
814
815 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
816
817 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
818
819 static void
820 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
821 {
822 struct undo *buf;
823 struct insn_link * oldval = *into;
824
825 if (oldval == newval)
826 return;
827
828 if (undobuf.frees)
829 buf = undobuf.frees, undobuf.frees = buf->next;
830 else
831 buf = XNEW (struct undo);
832
833 buf->kind = UNDO_LINKS;
834 buf->where.l = into;
835 buf->old_contents.l = oldval;
836 *into = newval;
837
838 buf->next = undobuf.undos, undobuf.undos = buf;
839 }
840
841 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
842 \f
843 /* Subroutine of try_combine. Determine whether the replacement patterns
844 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
845 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
846 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
847 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
848 of all the instructions can be estimated and the replacements are more
849 expensive than the original sequence. */
850
851 static bool
852 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
853 rtx newpat, rtx newi2pat, rtx newotherpat)
854 {
855 int i0_cost, i1_cost, i2_cost, i3_cost;
856 int new_i2_cost, new_i3_cost;
857 int old_cost, new_cost;
858
859 /* Lookup the original insn_rtx_costs. */
860 i2_cost = INSN_COST (i2);
861 i3_cost = INSN_COST (i3);
862
863 if (i1)
864 {
865 i1_cost = INSN_COST (i1);
866 if (i0)
867 {
868 i0_cost = INSN_COST (i0);
869 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
870 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
871 }
872 else
873 {
874 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
875 ? i1_cost + i2_cost + i3_cost : 0);
876 i0_cost = 0;
877 }
878 }
879 else
880 {
881 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
882 i1_cost = i0_cost = 0;
883 }
884
885 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
886 correct that. */
887 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
888 old_cost -= i1_cost;
889
890
891 /* Calculate the replacement insn_rtx_costs. */
892 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
893 if (newi2pat)
894 {
895 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
896 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
897 ? new_i2_cost + new_i3_cost : 0;
898 }
899 else
900 {
901 new_cost = new_i3_cost;
902 new_i2_cost = 0;
903 }
904
905 if (undobuf.other_insn)
906 {
907 int old_other_cost, new_other_cost;
908
909 old_other_cost = INSN_COST (undobuf.other_insn);
910 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
911 if (old_other_cost > 0 && new_other_cost > 0)
912 {
913 old_cost += old_other_cost;
914 new_cost += new_other_cost;
915 }
916 else
917 old_cost = 0;
918 }
919
920 /* Disallow this combination if both new_cost and old_cost are greater than
921 zero, and new_cost is greater than old cost. */
922 int reject = old_cost > 0 && new_cost > old_cost;
923
924 if (dump_file)
925 {
926 fprintf (dump_file, "%s combination of insns ",
927 reject ? "rejecting" : "allowing");
928 if (i0)
929 fprintf (dump_file, "%d, ", INSN_UID (i0));
930 if (i1 && INSN_UID (i1) != INSN_UID (i2))
931 fprintf (dump_file, "%d, ", INSN_UID (i1));
932 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
933
934 fprintf (dump_file, "original costs ");
935 if (i0)
936 fprintf (dump_file, "%d + ", i0_cost);
937 if (i1 && INSN_UID (i1) != INSN_UID (i2))
938 fprintf (dump_file, "%d + ", i1_cost);
939 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
940
941 if (newi2pat)
942 fprintf (dump_file, "replacement costs %d + %d = %d\n",
943 new_i2_cost, new_i3_cost, new_cost);
944 else
945 fprintf (dump_file, "replacement cost %d\n", new_cost);
946 }
947
948 if (reject)
949 return false;
950
951 /* Update the uid_insn_cost array with the replacement costs. */
952 INSN_COST (i2) = new_i2_cost;
953 INSN_COST (i3) = new_i3_cost;
954 if (i1)
955 {
956 INSN_COST (i1) = 0;
957 if (i0)
958 INSN_COST (i0) = 0;
959 }
960
961 return true;
962 }
963
964
965 /* Delete any insns that copy a register to itself. */
966
967 static void
968 delete_noop_moves (void)
969 {
970 rtx_insn *insn, *next;
971 basic_block bb;
972
973 FOR_EACH_BB_FN (bb, cfun)
974 {
975 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
976 {
977 next = NEXT_INSN (insn);
978 if (INSN_P (insn) && noop_move_p (insn))
979 {
980 if (dump_file)
981 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
982
983 delete_insn_and_edges (insn);
984 }
985 }
986 }
987 }
988
989 \f
990 /* Return false if we do not want to (or cannot) combine DEF. */
991 static bool
992 can_combine_def_p (df_ref def)
993 {
994 /* Do not consider if it is pre/post modification in MEM. */
995 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
996 return false;
997
998 unsigned int regno = DF_REF_REGNO (def);
999
1000 /* Do not combine frame pointer adjustments. */
1001 if ((regno == FRAME_POINTER_REGNUM
1002 && (!reload_completed || frame_pointer_needed))
1003 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1004 && regno == HARD_FRAME_POINTER_REGNUM
1005 && (!reload_completed || frame_pointer_needed))
1006 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1007 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1008 return false;
1009
1010 return true;
1011 }
1012
1013 /* Return false if we do not want to (or cannot) combine USE. */
1014 static bool
1015 can_combine_use_p (df_ref use)
1016 {
1017 /* Do not consider the usage of the stack pointer by function call. */
1018 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1019 return false;
1020
1021 return true;
1022 }
1023
1024 /* Fill in log links field for all insns. */
1025
1026 static void
1027 create_log_links (void)
1028 {
1029 basic_block bb;
1030 rtx_insn **next_use;
1031 rtx_insn *insn;
1032 df_ref def, use;
1033
1034 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1035
1036 /* Pass through each block from the end, recording the uses of each
1037 register and establishing log links when def is encountered.
1038 Note that we do not clear next_use array in order to save time,
1039 so we have to test whether the use is in the same basic block as def.
1040
1041 There are a few cases below when we do not consider the definition or
1042 usage -- these are taken from original flow.c did. Don't ask me why it is
1043 done this way; I don't know and if it works, I don't want to know. */
1044
1045 FOR_EACH_BB_FN (bb, cfun)
1046 {
1047 FOR_BB_INSNS_REVERSE (bb, insn)
1048 {
1049 if (!NONDEBUG_INSN_P (insn))
1050 continue;
1051
1052 /* Log links are created only once. */
1053 gcc_assert (!LOG_LINKS (insn));
1054
1055 FOR_EACH_INSN_DEF (def, insn)
1056 {
1057 unsigned int regno = DF_REF_REGNO (def);
1058 rtx_insn *use_insn;
1059
1060 if (!next_use[regno])
1061 continue;
1062
1063 if (!can_combine_def_p (def))
1064 continue;
1065
1066 use_insn = next_use[regno];
1067 next_use[regno] = NULL;
1068
1069 if (BLOCK_FOR_INSN (use_insn) != bb)
1070 continue;
1071
1072 /* flow.c claimed:
1073
1074 We don't build a LOG_LINK for hard registers contained
1075 in ASM_OPERANDs. If these registers get replaced,
1076 we might wind up changing the semantics of the insn,
1077 even if reload can make what appear to be valid
1078 assignments later. */
1079 if (regno < FIRST_PSEUDO_REGISTER
1080 && asm_noperands (PATTERN (use_insn)) >= 0)
1081 continue;
1082
1083 /* Don't add duplicate links between instructions. */
1084 struct insn_link *links;
1085 FOR_EACH_LOG_LINK (links, use_insn)
1086 if (insn == links->insn && regno == links->regno)
1087 break;
1088
1089 if (!links)
1090 LOG_LINKS (use_insn)
1091 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1092 }
1093
1094 FOR_EACH_INSN_USE (use, insn)
1095 if (can_combine_use_p (use))
1096 next_use[DF_REF_REGNO (use)] = insn;
1097 }
1098 }
1099
1100 free (next_use);
1101 }
1102
1103 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1104 true if we found a LOG_LINK that proves that A feeds B. This only works
1105 if there are no instructions between A and B which could have a link
1106 depending on A, since in that case we would not record a link for B.
1107 We also check the implicit dependency created by a cc0 setter/user
1108 pair. */
1109
1110 static bool
1111 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1112 {
1113 struct insn_link *links;
1114 FOR_EACH_LOG_LINK (links, b)
1115 if (links->insn == a)
1116 return true;
1117 if (HAVE_cc0 && sets_cc0_p (a))
1118 return true;
1119 return false;
1120 }
1121 \f
1122 /* Main entry point for combiner. F is the first insn of the function.
1123 NREGS is the first unused pseudo-reg number.
1124
1125 Return nonzero if the combiner has turned an indirect jump
1126 instruction into a direct jump. */
1127 static int
1128 combine_instructions (rtx_insn *f, unsigned int nregs)
1129 {
1130 rtx_insn *insn, *next;
1131 rtx_insn *prev;
1132 struct insn_link *links, *nextlinks;
1133 rtx_insn *first;
1134 basic_block last_bb;
1135
1136 int new_direct_jump_p = 0;
1137
1138 for (first = f; first && !NONDEBUG_INSN_P (first); )
1139 first = NEXT_INSN (first);
1140 if (!first)
1141 return 0;
1142
1143 combine_attempts = 0;
1144 combine_merges = 0;
1145 combine_extras = 0;
1146 combine_successes = 0;
1147
1148 rtl_hooks = combine_rtl_hooks;
1149
1150 reg_stat.safe_grow_cleared (nregs);
1151
1152 init_recog_no_volatile ();
1153
1154 /* Allocate array for insn info. */
1155 max_uid_known = get_max_uid ();
1156 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1157 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1158 gcc_obstack_init (&insn_link_obstack);
1159
1160 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1161
1162 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1163 problems when, for example, we have j <<= 1 in a loop. */
1164
1165 nonzero_sign_valid = 0;
1166 label_tick = label_tick_ebb_start = 1;
1167
1168 /* Scan all SETs and see if we can deduce anything about what
1169 bits are known to be zero for some registers and how many copies
1170 of the sign bit are known to exist for those registers.
1171
1172 Also set any known values so that we can use it while searching
1173 for what bits are known to be set. */
1174
1175 setup_incoming_promotions (first);
1176 /* Allow the entry block and the first block to fall into the same EBB.
1177 Conceptually the incoming promotions are assigned to the entry block. */
1178 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1179
1180 create_log_links ();
1181 FOR_EACH_BB_FN (this_basic_block, cfun)
1182 {
1183 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1184 last_call_luid = 0;
1185 mem_last_set = -1;
1186
1187 label_tick++;
1188 if (!single_pred_p (this_basic_block)
1189 || single_pred (this_basic_block) != last_bb)
1190 label_tick_ebb_start = label_tick;
1191 last_bb = this_basic_block;
1192
1193 FOR_BB_INSNS (this_basic_block, insn)
1194 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1195 {
1196 rtx links;
1197
1198 subst_low_luid = DF_INSN_LUID (insn);
1199 subst_insn = insn;
1200
1201 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1202 insn);
1203 record_dead_and_set_regs (insn);
1204
1205 if (AUTO_INC_DEC)
1206 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1207 if (REG_NOTE_KIND (links) == REG_INC)
1208 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1209 insn);
1210
1211 /* Record the current insn_rtx_cost of this instruction. */
1212 if (NONJUMP_INSN_P (insn))
1213 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1214 optimize_this_for_speed_p);
1215 if (dump_file)
1216 fprintf (dump_file, "insn_cost %d: %d\n",
1217 INSN_UID (insn), INSN_COST (insn));
1218 }
1219 }
1220
1221 nonzero_sign_valid = 1;
1222
1223 /* Now scan all the insns in forward order. */
1224 label_tick = label_tick_ebb_start = 1;
1225 init_reg_last ();
1226 setup_incoming_promotions (first);
1227 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1228 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1229
1230 FOR_EACH_BB_FN (this_basic_block, cfun)
1231 {
1232 rtx_insn *last_combined_insn = NULL;
1233 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1234 last_call_luid = 0;
1235 mem_last_set = -1;
1236
1237 label_tick++;
1238 if (!single_pred_p (this_basic_block)
1239 || single_pred (this_basic_block) != last_bb)
1240 label_tick_ebb_start = label_tick;
1241 last_bb = this_basic_block;
1242
1243 rtl_profile_for_bb (this_basic_block);
1244 for (insn = BB_HEAD (this_basic_block);
1245 insn != NEXT_INSN (BB_END (this_basic_block));
1246 insn = next ? next : NEXT_INSN (insn))
1247 {
1248 next = 0;
1249 if (!NONDEBUG_INSN_P (insn))
1250 continue;
1251
1252 while (last_combined_insn
1253 && last_combined_insn->deleted ())
1254 last_combined_insn = PREV_INSN (last_combined_insn);
1255 if (last_combined_insn == NULL_RTX
1256 || BARRIER_P (last_combined_insn)
1257 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1258 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1259 last_combined_insn = insn;
1260
1261 /* See if we know about function return values before this
1262 insn based upon SUBREG flags. */
1263 check_promoted_subreg (insn, PATTERN (insn));
1264
1265 /* See if we can find hardregs and subreg of pseudos in
1266 narrower modes. This could help turning TRUNCATEs
1267 into SUBREGs. */
1268 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1269
1270 /* Try this insn with each insn it links back to. */
1271
1272 FOR_EACH_LOG_LINK (links, insn)
1273 if ((next = try_combine (insn, links->insn, NULL,
1274 NULL, &new_direct_jump_p,
1275 last_combined_insn)) != 0)
1276 {
1277 statistics_counter_event (cfun, "two-insn combine", 1);
1278 goto retry;
1279 }
1280
1281 /* Try each sequence of three linked insns ending with this one. */
1282
1283 if (max_combine >= 3)
1284 FOR_EACH_LOG_LINK (links, insn)
1285 {
1286 rtx_insn *link = links->insn;
1287
1288 /* If the linked insn has been replaced by a note, then there
1289 is no point in pursuing this chain any further. */
1290 if (NOTE_P (link))
1291 continue;
1292
1293 FOR_EACH_LOG_LINK (nextlinks, link)
1294 if ((next = try_combine (insn, link, nextlinks->insn,
1295 NULL, &new_direct_jump_p,
1296 last_combined_insn)) != 0)
1297 {
1298 statistics_counter_event (cfun, "three-insn combine", 1);
1299 goto retry;
1300 }
1301 }
1302
1303 /* Try to combine a jump insn that uses CC0
1304 with a preceding insn that sets CC0, and maybe with its
1305 logical predecessor as well.
1306 This is how we make decrement-and-branch insns.
1307 We need this special code because data flow connections
1308 via CC0 do not get entered in LOG_LINKS. */
1309
1310 if (HAVE_cc0
1311 && JUMP_P (insn)
1312 && (prev = prev_nonnote_insn (insn)) != 0
1313 && NONJUMP_INSN_P (prev)
1314 && sets_cc0_p (PATTERN (prev)))
1315 {
1316 if ((next = try_combine (insn, prev, NULL, NULL,
1317 &new_direct_jump_p,
1318 last_combined_insn)) != 0)
1319 goto retry;
1320
1321 FOR_EACH_LOG_LINK (nextlinks, prev)
1322 if ((next = try_combine (insn, prev, nextlinks->insn,
1323 NULL, &new_direct_jump_p,
1324 last_combined_insn)) != 0)
1325 goto retry;
1326 }
1327
1328 /* Do the same for an insn that explicitly references CC0. */
1329 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1330 && (prev = prev_nonnote_insn (insn)) != 0
1331 && NONJUMP_INSN_P (prev)
1332 && sets_cc0_p (PATTERN (prev))
1333 && GET_CODE (PATTERN (insn)) == SET
1334 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1335 {
1336 if ((next = try_combine (insn, prev, NULL, NULL,
1337 &new_direct_jump_p,
1338 last_combined_insn)) != 0)
1339 goto retry;
1340
1341 FOR_EACH_LOG_LINK (nextlinks, prev)
1342 if ((next = try_combine (insn, prev, nextlinks->insn,
1343 NULL, &new_direct_jump_p,
1344 last_combined_insn)) != 0)
1345 goto retry;
1346 }
1347
1348 /* Finally, see if any of the insns that this insn links to
1349 explicitly references CC0. If so, try this insn, that insn,
1350 and its predecessor if it sets CC0. */
1351 if (HAVE_cc0)
1352 {
1353 FOR_EACH_LOG_LINK (links, insn)
1354 if (NONJUMP_INSN_P (links->insn)
1355 && GET_CODE (PATTERN (links->insn)) == SET
1356 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1357 && (prev = prev_nonnote_insn (links->insn)) != 0
1358 && NONJUMP_INSN_P (prev)
1359 && sets_cc0_p (PATTERN (prev))
1360 && (next = try_combine (insn, links->insn,
1361 prev, NULL, &new_direct_jump_p,
1362 last_combined_insn)) != 0)
1363 goto retry;
1364 }
1365
1366 /* Try combining an insn with two different insns whose results it
1367 uses. */
1368 if (max_combine >= 3)
1369 FOR_EACH_LOG_LINK (links, insn)
1370 for (nextlinks = links->next; nextlinks;
1371 nextlinks = nextlinks->next)
1372 if ((next = try_combine (insn, links->insn,
1373 nextlinks->insn, NULL,
1374 &new_direct_jump_p,
1375 last_combined_insn)) != 0)
1376
1377 {
1378 statistics_counter_event (cfun, "three-insn combine", 1);
1379 goto retry;
1380 }
1381
1382 /* Try four-instruction combinations. */
1383 if (max_combine >= 4)
1384 FOR_EACH_LOG_LINK (links, insn)
1385 {
1386 struct insn_link *next1;
1387 rtx_insn *link = links->insn;
1388
1389 /* If the linked insn has been replaced by a note, then there
1390 is no point in pursuing this chain any further. */
1391 if (NOTE_P (link))
1392 continue;
1393
1394 FOR_EACH_LOG_LINK (next1, link)
1395 {
1396 rtx_insn *link1 = next1->insn;
1397 if (NOTE_P (link1))
1398 continue;
1399 /* I0 -> I1 -> I2 -> I3. */
1400 FOR_EACH_LOG_LINK (nextlinks, link1)
1401 if ((next = try_combine (insn, link, link1,
1402 nextlinks->insn,
1403 &new_direct_jump_p,
1404 last_combined_insn)) != 0)
1405 {
1406 statistics_counter_event (cfun, "four-insn combine", 1);
1407 goto retry;
1408 }
1409 /* I0, I1 -> I2, I2 -> I3. */
1410 for (nextlinks = next1->next; nextlinks;
1411 nextlinks = nextlinks->next)
1412 if ((next = try_combine (insn, link, link1,
1413 nextlinks->insn,
1414 &new_direct_jump_p,
1415 last_combined_insn)) != 0)
1416 {
1417 statistics_counter_event (cfun, "four-insn combine", 1);
1418 goto retry;
1419 }
1420 }
1421
1422 for (next1 = links->next; next1; next1 = next1->next)
1423 {
1424 rtx_insn *link1 = next1->insn;
1425 if (NOTE_P (link1))
1426 continue;
1427 /* I0 -> I2; I1, I2 -> I3. */
1428 FOR_EACH_LOG_LINK (nextlinks, link)
1429 if ((next = try_combine (insn, link, link1,
1430 nextlinks->insn,
1431 &new_direct_jump_p,
1432 last_combined_insn)) != 0)
1433 {
1434 statistics_counter_event (cfun, "four-insn combine", 1);
1435 goto retry;
1436 }
1437 /* I0 -> I1; I1, I2 -> I3. */
1438 FOR_EACH_LOG_LINK (nextlinks, link1)
1439 if ((next = try_combine (insn, link, link1,
1440 nextlinks->insn,
1441 &new_direct_jump_p,
1442 last_combined_insn)) != 0)
1443 {
1444 statistics_counter_event (cfun, "four-insn combine", 1);
1445 goto retry;
1446 }
1447 }
1448 }
1449
1450 /* Try this insn with each REG_EQUAL note it links back to. */
1451 FOR_EACH_LOG_LINK (links, insn)
1452 {
1453 rtx set, note;
1454 rtx_insn *temp = links->insn;
1455 if ((set = single_set (temp)) != 0
1456 && (note = find_reg_equal_equiv_note (temp)) != 0
1457 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1458 /* Avoid using a register that may already been marked
1459 dead by an earlier instruction. */
1460 && ! unmentioned_reg_p (note, SET_SRC (set))
1461 && (GET_MODE (note) == VOIDmode
1462 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1463 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1464 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1465 || (GET_MODE (XEXP (SET_DEST (set), 0))
1466 == GET_MODE (note))))))
1467 {
1468 /* Temporarily replace the set's source with the
1469 contents of the REG_EQUAL note. The insn will
1470 be deleted or recognized by try_combine. */
1471 rtx orig_src = SET_SRC (set);
1472 rtx orig_dest = SET_DEST (set);
1473 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1474 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1475 SET_SRC (set) = note;
1476 i2mod = temp;
1477 i2mod_old_rhs = copy_rtx (orig_src);
1478 i2mod_new_rhs = copy_rtx (note);
1479 next = try_combine (insn, i2mod, NULL, NULL,
1480 &new_direct_jump_p,
1481 last_combined_insn);
1482 i2mod = NULL;
1483 if (next)
1484 {
1485 statistics_counter_event (cfun, "insn-with-note combine", 1);
1486 goto retry;
1487 }
1488 SET_SRC (set) = orig_src;
1489 SET_DEST (set) = orig_dest;
1490 }
1491 }
1492
1493 if (!NOTE_P (insn))
1494 record_dead_and_set_regs (insn);
1495
1496 retry:
1497 ;
1498 }
1499 }
1500
1501 default_rtl_profile ();
1502 clear_bb_flags ();
1503 new_direct_jump_p |= purge_all_dead_edges ();
1504 delete_noop_moves ();
1505
1506 /* Clean up. */
1507 obstack_free (&insn_link_obstack, NULL);
1508 free (uid_log_links);
1509 free (uid_insn_cost);
1510 reg_stat.release ();
1511
1512 {
1513 struct undo *undo, *next;
1514 for (undo = undobuf.frees; undo; undo = next)
1515 {
1516 next = undo->next;
1517 free (undo);
1518 }
1519 undobuf.frees = 0;
1520 }
1521
1522 total_attempts += combine_attempts;
1523 total_merges += combine_merges;
1524 total_extras += combine_extras;
1525 total_successes += combine_successes;
1526
1527 nonzero_sign_valid = 0;
1528 rtl_hooks = general_rtl_hooks;
1529
1530 /* Make recognizer allow volatile MEMs again. */
1531 init_recog ();
1532
1533 return new_direct_jump_p;
1534 }
1535
1536 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1537
1538 static void
1539 init_reg_last (void)
1540 {
1541 unsigned int i;
1542 reg_stat_type *p;
1543
1544 FOR_EACH_VEC_ELT (reg_stat, i, p)
1545 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1546 }
1547 \f
1548 /* Set up any promoted values for incoming argument registers. */
1549
1550 static void
1551 setup_incoming_promotions (rtx_insn *first)
1552 {
1553 tree arg;
1554 bool strictly_local = false;
1555
1556 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1557 arg = DECL_CHAIN (arg))
1558 {
1559 rtx x, reg = DECL_INCOMING_RTL (arg);
1560 int uns1, uns3;
1561 machine_mode mode1, mode2, mode3, mode4;
1562
1563 /* Only continue if the incoming argument is in a register. */
1564 if (!REG_P (reg))
1565 continue;
1566
1567 /* Determine, if possible, whether all call sites of the current
1568 function lie within the current compilation unit. (This does
1569 take into account the exporting of a function via taking its
1570 address, and so forth.) */
1571 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1572
1573 /* The mode and signedness of the argument before any promotions happen
1574 (equal to the mode of the pseudo holding it at that stage). */
1575 mode1 = TYPE_MODE (TREE_TYPE (arg));
1576 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1577
1578 /* The mode and signedness of the argument after any source language and
1579 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1580 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1581 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1582
1583 /* The mode and signedness of the argument as it is actually passed,
1584 see assign_parm_setup_reg in function.c. */
1585 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1586 TREE_TYPE (cfun->decl), 0);
1587
1588 /* The mode of the register in which the argument is being passed. */
1589 mode4 = GET_MODE (reg);
1590
1591 /* Eliminate sign extensions in the callee when:
1592 (a) A mode promotion has occurred; */
1593 if (mode1 == mode3)
1594 continue;
1595 /* (b) The mode of the register is the same as the mode of
1596 the argument as it is passed; */
1597 if (mode3 != mode4)
1598 continue;
1599 /* (c) There's no language level extension; */
1600 if (mode1 == mode2)
1601 ;
1602 /* (c.1) All callers are from the current compilation unit. If that's
1603 the case we don't have to rely on an ABI, we only have to know
1604 what we're generating right now, and we know that we will do the
1605 mode1 to mode2 promotion with the given sign. */
1606 else if (!strictly_local)
1607 continue;
1608 /* (c.2) The combination of the two promotions is useful. This is
1609 true when the signs match, or if the first promotion is unsigned.
1610 In the later case, (sign_extend (zero_extend x)) is the same as
1611 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1612 else if (uns1)
1613 uns3 = true;
1614 else if (uns3)
1615 continue;
1616
1617 /* Record that the value was promoted from mode1 to mode3,
1618 so that any sign extension at the head of the current
1619 function may be eliminated. */
1620 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1621 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1622 record_value_for_reg (reg, first, x);
1623 }
1624 }
1625
1626 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1627 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1628 because some machines (maybe most) will actually do the sign-extension and
1629 this is the conservative approach.
1630
1631 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1632 kludge. */
1633
1634 static rtx
1635 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1636 {
1637 if (GET_MODE_PRECISION (mode) < prec
1638 && CONST_INT_P (src)
1639 && INTVAL (src) > 0
1640 && val_signbit_known_set_p (mode, INTVAL (src)))
1641 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1642
1643 return src;
1644 }
1645
1646 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1647 and SET. */
1648
1649 static void
1650 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1651 rtx x)
1652 {
1653 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1654 unsigned HOST_WIDE_INT bits = 0;
1655 rtx reg_equal = NULL, src = SET_SRC (set);
1656 unsigned int num = 0;
1657
1658 if (reg_equal_note)
1659 reg_equal = XEXP (reg_equal_note, 0);
1660
1661 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1662 {
1663 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1664 if (reg_equal)
1665 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1666 }
1667
1668 /* Don't call nonzero_bits if it cannot change anything. */
1669 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1670 {
1671 bits = nonzero_bits (src, nonzero_bits_mode);
1672 if (reg_equal && bits)
1673 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1674 rsp->nonzero_bits |= bits;
1675 }
1676
1677 /* Don't call num_sign_bit_copies if it cannot change anything. */
1678 if (rsp->sign_bit_copies != 1)
1679 {
1680 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1681 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1682 {
1683 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1684 if (num == 0 || numeq > num)
1685 num = numeq;
1686 }
1687 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1688 rsp->sign_bit_copies = num;
1689 }
1690 }
1691
1692 /* Called via note_stores. If X is a pseudo that is narrower than
1693 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1694
1695 If we are setting only a portion of X and we can't figure out what
1696 portion, assume all bits will be used since we don't know what will
1697 be happening.
1698
1699 Similarly, set how many bits of X are known to be copies of the sign bit
1700 at all locations in the function. This is the smallest number implied
1701 by any set of X. */
1702
1703 static void
1704 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1705 {
1706 rtx_insn *insn = (rtx_insn *) data;
1707
1708 if (REG_P (x)
1709 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1710 /* If this register is undefined at the start of the file, we can't
1711 say what its contents were. */
1712 && ! REGNO_REG_SET_P
1713 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1714 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1715 {
1716 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1717
1718 if (set == 0 || GET_CODE (set) == CLOBBER)
1719 {
1720 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1721 rsp->sign_bit_copies = 1;
1722 return;
1723 }
1724
1725 /* If this register is being initialized using itself, and the
1726 register is uninitialized in this basic block, and there are
1727 no LOG_LINKS which set the register, then part of the
1728 register is uninitialized. In that case we can't assume
1729 anything about the number of nonzero bits.
1730
1731 ??? We could do better if we checked this in
1732 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1733 could avoid making assumptions about the insn which initially
1734 sets the register, while still using the information in other
1735 insns. We would have to be careful to check every insn
1736 involved in the combination. */
1737
1738 if (insn
1739 && reg_referenced_p (x, PATTERN (insn))
1740 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1741 REGNO (x)))
1742 {
1743 struct insn_link *link;
1744
1745 FOR_EACH_LOG_LINK (link, insn)
1746 if (dead_or_set_p (link->insn, x))
1747 break;
1748 if (!link)
1749 {
1750 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1751 rsp->sign_bit_copies = 1;
1752 return;
1753 }
1754 }
1755
1756 /* If this is a complex assignment, see if we can convert it into a
1757 simple assignment. */
1758 set = expand_field_assignment (set);
1759
1760 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1761 set what we know about X. */
1762
1763 if (SET_DEST (set) == x
1764 || (paradoxical_subreg_p (SET_DEST (set))
1765 && SUBREG_REG (SET_DEST (set)) == x))
1766 update_rsp_from_reg_equal (rsp, insn, set, x);
1767 else
1768 {
1769 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1770 rsp->sign_bit_copies = 1;
1771 }
1772 }
1773 }
1774 \f
1775 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1776 optionally insns that were previously combined into I3 or that will be
1777 combined into the merger of INSN and I3. The order is PRED, PRED2,
1778 INSN, SUCC, SUCC2, I3.
1779
1780 Return 0 if the combination is not allowed for any reason.
1781
1782 If the combination is allowed, *PDEST will be set to the single
1783 destination of INSN and *PSRC to the single source, and this function
1784 will return 1. */
1785
1786 static int
1787 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1788 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1789 rtx *pdest, rtx *psrc)
1790 {
1791 int i;
1792 const_rtx set = 0;
1793 rtx src, dest;
1794 rtx_insn *p;
1795 rtx link;
1796 bool all_adjacent = true;
1797 int (*is_volatile_p) (const_rtx);
1798
1799 if (succ)
1800 {
1801 if (succ2)
1802 {
1803 if (next_active_insn (succ2) != i3)
1804 all_adjacent = false;
1805 if (next_active_insn (succ) != succ2)
1806 all_adjacent = false;
1807 }
1808 else if (next_active_insn (succ) != i3)
1809 all_adjacent = false;
1810 if (next_active_insn (insn) != succ)
1811 all_adjacent = false;
1812 }
1813 else if (next_active_insn (insn) != i3)
1814 all_adjacent = false;
1815
1816 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1817 or a PARALLEL consisting of such a SET and CLOBBERs.
1818
1819 If INSN has CLOBBER parallel parts, ignore them for our processing.
1820 By definition, these happen during the execution of the insn. When it
1821 is merged with another insn, all bets are off. If they are, in fact,
1822 needed and aren't also supplied in I3, they may be added by
1823 recog_for_combine. Otherwise, it won't match.
1824
1825 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1826 note.
1827
1828 Get the source and destination of INSN. If more than one, can't
1829 combine. */
1830
1831 if (GET_CODE (PATTERN (insn)) == SET)
1832 set = PATTERN (insn);
1833 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1834 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1835 {
1836 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1837 {
1838 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1839
1840 switch (GET_CODE (elt))
1841 {
1842 /* This is important to combine floating point insns
1843 for the SH4 port. */
1844 case USE:
1845 /* Combining an isolated USE doesn't make sense.
1846 We depend here on combinable_i3pat to reject them. */
1847 /* The code below this loop only verifies that the inputs of
1848 the SET in INSN do not change. We call reg_set_between_p
1849 to verify that the REG in the USE does not change between
1850 I3 and INSN.
1851 If the USE in INSN was for a pseudo register, the matching
1852 insn pattern will likely match any register; combining this
1853 with any other USE would only be safe if we knew that the
1854 used registers have identical values, or if there was
1855 something to tell them apart, e.g. different modes. For
1856 now, we forgo such complicated tests and simply disallow
1857 combining of USES of pseudo registers with any other USE. */
1858 if (REG_P (XEXP (elt, 0))
1859 && GET_CODE (PATTERN (i3)) == PARALLEL)
1860 {
1861 rtx i3pat = PATTERN (i3);
1862 int i = XVECLEN (i3pat, 0) - 1;
1863 unsigned int regno = REGNO (XEXP (elt, 0));
1864
1865 do
1866 {
1867 rtx i3elt = XVECEXP (i3pat, 0, i);
1868
1869 if (GET_CODE (i3elt) == USE
1870 && REG_P (XEXP (i3elt, 0))
1871 && (REGNO (XEXP (i3elt, 0)) == regno
1872 ? reg_set_between_p (XEXP (elt, 0),
1873 PREV_INSN (insn), i3)
1874 : regno >= FIRST_PSEUDO_REGISTER))
1875 return 0;
1876 }
1877 while (--i >= 0);
1878 }
1879 break;
1880
1881 /* We can ignore CLOBBERs. */
1882 case CLOBBER:
1883 break;
1884
1885 case SET:
1886 /* Ignore SETs whose result isn't used but not those that
1887 have side-effects. */
1888 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1889 && insn_nothrow_p (insn)
1890 && !side_effects_p (elt))
1891 break;
1892
1893 /* If we have already found a SET, this is a second one and
1894 so we cannot combine with this insn. */
1895 if (set)
1896 return 0;
1897
1898 set = elt;
1899 break;
1900
1901 default:
1902 /* Anything else means we can't combine. */
1903 return 0;
1904 }
1905 }
1906
1907 if (set == 0
1908 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1909 so don't do anything with it. */
1910 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1911 return 0;
1912 }
1913 else
1914 return 0;
1915
1916 if (set == 0)
1917 return 0;
1918
1919 /* The simplification in expand_field_assignment may call back to
1920 get_last_value, so set safe guard here. */
1921 subst_low_luid = DF_INSN_LUID (insn);
1922
1923 set = expand_field_assignment (set);
1924 src = SET_SRC (set), dest = SET_DEST (set);
1925
1926 /* Do not eliminate user-specified register if it is in an
1927 asm input because we may break the register asm usage defined
1928 in GCC manual if allow to do so.
1929 Be aware that this may cover more cases than we expect but this
1930 should be harmless. */
1931 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1932 && extract_asm_operands (PATTERN (i3)))
1933 return 0;
1934
1935 /* Don't eliminate a store in the stack pointer. */
1936 if (dest == stack_pointer_rtx
1937 /* Don't combine with an insn that sets a register to itself if it has
1938 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1939 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1940 /* Can't merge an ASM_OPERANDS. */
1941 || GET_CODE (src) == ASM_OPERANDS
1942 /* Can't merge a function call. */
1943 || GET_CODE (src) == CALL
1944 /* Don't eliminate a function call argument. */
1945 || (CALL_P (i3)
1946 && (find_reg_fusage (i3, USE, dest)
1947 || (REG_P (dest)
1948 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1949 && global_regs[REGNO (dest)])))
1950 /* Don't substitute into an incremented register. */
1951 || FIND_REG_INC_NOTE (i3, dest)
1952 || (succ && FIND_REG_INC_NOTE (succ, dest))
1953 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1954 /* Don't substitute into a non-local goto, this confuses CFG. */
1955 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1956 /* Make sure that DEST is not used after SUCC but before I3. */
1957 || (!all_adjacent
1958 && ((succ2
1959 && (reg_used_between_p (dest, succ2, i3)
1960 || reg_used_between_p (dest, succ, succ2)))
1961 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1962 /* Make sure that the value that is to be substituted for the register
1963 does not use any registers whose values alter in between. However,
1964 If the insns are adjacent, a use can't cross a set even though we
1965 think it might (this can happen for a sequence of insns each setting
1966 the same destination; last_set of that register might point to
1967 a NOTE). If INSN has a REG_EQUIV note, the register is always
1968 equivalent to the memory so the substitution is valid even if there
1969 are intervening stores. Also, don't move a volatile asm or
1970 UNSPEC_VOLATILE across any other insns. */
1971 || (! all_adjacent
1972 && (((!MEM_P (src)
1973 || ! find_reg_note (insn, REG_EQUIV, src))
1974 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1975 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1976 || GET_CODE (src) == UNSPEC_VOLATILE))
1977 /* Don't combine across a CALL_INSN, because that would possibly
1978 change whether the life span of some REGs crosses calls or not,
1979 and it is a pain to update that information.
1980 Exception: if source is a constant, moving it later can't hurt.
1981 Accept that as a special case. */
1982 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1983 return 0;
1984
1985 /* DEST must either be a REG or CC0. */
1986 if (REG_P (dest))
1987 {
1988 /* If register alignment is being enforced for multi-word items in all
1989 cases except for parameters, it is possible to have a register copy
1990 insn referencing a hard register that is not allowed to contain the
1991 mode being copied and which would not be valid as an operand of most
1992 insns. Eliminate this problem by not combining with such an insn.
1993
1994 Also, on some machines we don't want to extend the life of a hard
1995 register. */
1996
1997 if (REG_P (src)
1998 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1999 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
2000 /* Don't extend the life of a hard register unless it is
2001 user variable (if we have few registers) or it can't
2002 fit into the desired register (meaning something special
2003 is going on).
2004 Also avoid substituting a return register into I3, because
2005 reload can't handle a conflict with constraints of other
2006 inputs. */
2007 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2008 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
2009 return 0;
2010 }
2011 else if (GET_CODE (dest) != CC0)
2012 return 0;
2013
2014
2015 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2016 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2017 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2018 {
2019 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2020
2021 /* If the clobber represents an earlyclobber operand, we must not
2022 substitute an expression containing the clobbered register.
2023 As we do not analyze the constraint strings here, we have to
2024 make the conservative assumption. However, if the register is
2025 a fixed hard reg, the clobber cannot represent any operand;
2026 we leave it up to the machine description to either accept or
2027 reject use-and-clobber patterns. */
2028 if (!REG_P (reg)
2029 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2030 || !fixed_regs[REGNO (reg)])
2031 if (reg_overlap_mentioned_p (reg, src))
2032 return 0;
2033 }
2034
2035 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2036 or not), reject, unless nothing volatile comes between it and I3 */
2037
2038 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2039 {
2040 /* Make sure neither succ nor succ2 contains a volatile reference. */
2041 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2042 return 0;
2043 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2044 return 0;
2045 /* We'll check insns between INSN and I3 below. */
2046 }
2047
2048 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2049 to be an explicit register variable, and was chosen for a reason. */
2050
2051 if (GET_CODE (src) == ASM_OPERANDS
2052 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2053 return 0;
2054
2055 /* If INSN contains volatile references (specifically volatile MEMs),
2056 we cannot combine across any other volatile references.
2057 Even if INSN doesn't contain volatile references, any intervening
2058 volatile insn might affect machine state. */
2059
2060 is_volatile_p = volatile_refs_p (PATTERN (insn))
2061 ? volatile_refs_p
2062 : volatile_insn_p;
2063
2064 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2065 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2066 return 0;
2067
2068 /* If INSN contains an autoincrement or autodecrement, make sure that
2069 register is not used between there and I3, and not already used in
2070 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2071 Also insist that I3 not be a jump; if it were one
2072 and the incremented register were spilled, we would lose. */
2073
2074 if (AUTO_INC_DEC)
2075 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2076 if (REG_NOTE_KIND (link) == REG_INC
2077 && (JUMP_P (i3)
2078 || reg_used_between_p (XEXP (link, 0), insn, i3)
2079 || (pred != NULL_RTX
2080 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2081 || (pred2 != NULL_RTX
2082 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2083 || (succ != NULL_RTX
2084 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2085 || (succ2 != NULL_RTX
2086 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2087 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2088 return 0;
2089
2090 /* Don't combine an insn that follows a CC0-setting insn.
2091 An insn that uses CC0 must not be separated from the one that sets it.
2092 We do, however, allow I2 to follow a CC0-setting insn if that insn
2093 is passed as I1; in that case it will be deleted also.
2094 We also allow combining in this case if all the insns are adjacent
2095 because that would leave the two CC0 insns adjacent as well.
2096 It would be more logical to test whether CC0 occurs inside I1 or I2,
2097 but that would be much slower, and this ought to be equivalent. */
2098
2099 if (HAVE_cc0)
2100 {
2101 p = prev_nonnote_insn (insn);
2102 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2103 && ! all_adjacent)
2104 return 0;
2105 }
2106
2107 /* If we get here, we have passed all the tests and the combination is
2108 to be allowed. */
2109
2110 *pdest = dest;
2111 *psrc = src;
2112
2113 return 1;
2114 }
2115 \f
2116 /* LOC is the location within I3 that contains its pattern or the component
2117 of a PARALLEL of the pattern. We validate that it is valid for combining.
2118
2119 One problem is if I3 modifies its output, as opposed to replacing it
2120 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2121 doing so would produce an insn that is not equivalent to the original insns.
2122
2123 Consider:
2124
2125 (set (reg:DI 101) (reg:DI 100))
2126 (set (subreg:SI (reg:DI 101) 0) <foo>)
2127
2128 This is NOT equivalent to:
2129
2130 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2131 (set (reg:DI 101) (reg:DI 100))])
2132
2133 Not only does this modify 100 (in which case it might still be valid
2134 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2135
2136 We can also run into a problem if I2 sets a register that I1
2137 uses and I1 gets directly substituted into I3 (not via I2). In that
2138 case, we would be getting the wrong value of I2DEST into I3, so we
2139 must reject the combination. This case occurs when I2 and I1 both
2140 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2141 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2142 of a SET must prevent combination from occurring. The same situation
2143 can occur for I0, in which case I0_NOT_IN_SRC is set.
2144
2145 Before doing the above check, we first try to expand a field assignment
2146 into a set of logical operations.
2147
2148 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2149 we place a register that is both set and used within I3. If more than one
2150 such register is detected, we fail.
2151
2152 Return 1 if the combination is valid, zero otherwise. */
2153
2154 static int
2155 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2156 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2157 {
2158 rtx x = *loc;
2159
2160 if (GET_CODE (x) == SET)
2161 {
2162 rtx set = x ;
2163 rtx dest = SET_DEST (set);
2164 rtx src = SET_SRC (set);
2165 rtx inner_dest = dest;
2166 rtx subdest;
2167
2168 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2169 || GET_CODE (inner_dest) == SUBREG
2170 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2171 inner_dest = XEXP (inner_dest, 0);
2172
2173 /* Check for the case where I3 modifies its output, as discussed
2174 above. We don't want to prevent pseudos from being combined
2175 into the address of a MEM, so only prevent the combination if
2176 i1 or i2 set the same MEM. */
2177 if ((inner_dest != dest &&
2178 (!MEM_P (inner_dest)
2179 || rtx_equal_p (i2dest, inner_dest)
2180 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2181 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2182 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2183 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2184 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2185
2186 /* This is the same test done in can_combine_p except we can't test
2187 all_adjacent; we don't have to, since this instruction will stay
2188 in place, thus we are not considering increasing the lifetime of
2189 INNER_DEST.
2190
2191 Also, if this insn sets a function argument, combining it with
2192 something that might need a spill could clobber a previous
2193 function argument; the all_adjacent test in can_combine_p also
2194 checks this; here, we do a more specific test for this case. */
2195
2196 || (REG_P (inner_dest)
2197 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2198 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2199 GET_MODE (inner_dest))))
2200 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2201 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2202 return 0;
2203
2204 /* If DEST is used in I3, it is being killed in this insn, so
2205 record that for later. We have to consider paradoxical
2206 subregs here, since they kill the whole register, but we
2207 ignore partial subregs, STRICT_LOW_PART, etc.
2208 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2209 STACK_POINTER_REGNUM, since these are always considered to be
2210 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2211 subdest = dest;
2212 if (GET_CODE (subdest) == SUBREG
2213 && (GET_MODE_SIZE (GET_MODE (subdest))
2214 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2215 subdest = SUBREG_REG (subdest);
2216 if (pi3dest_killed
2217 && REG_P (subdest)
2218 && reg_referenced_p (subdest, PATTERN (i3))
2219 && REGNO (subdest) != FRAME_POINTER_REGNUM
2220 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2221 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2222 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2223 || (REGNO (subdest) != ARG_POINTER_REGNUM
2224 || ! fixed_regs [REGNO (subdest)]))
2225 && REGNO (subdest) != STACK_POINTER_REGNUM)
2226 {
2227 if (*pi3dest_killed)
2228 return 0;
2229
2230 *pi3dest_killed = subdest;
2231 }
2232 }
2233
2234 else if (GET_CODE (x) == PARALLEL)
2235 {
2236 int i;
2237
2238 for (i = 0; i < XVECLEN (x, 0); i++)
2239 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2240 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2241 return 0;
2242 }
2243
2244 return 1;
2245 }
2246 \f
2247 /* Return 1 if X is an arithmetic expression that contains a multiplication
2248 and division. We don't count multiplications by powers of two here. */
2249
2250 static int
2251 contains_muldiv (rtx x)
2252 {
2253 switch (GET_CODE (x))
2254 {
2255 case MOD: case DIV: case UMOD: case UDIV:
2256 return 1;
2257
2258 case MULT:
2259 return ! (CONST_INT_P (XEXP (x, 1))
2260 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2261 default:
2262 if (BINARY_P (x))
2263 return contains_muldiv (XEXP (x, 0))
2264 || contains_muldiv (XEXP (x, 1));
2265
2266 if (UNARY_P (x))
2267 return contains_muldiv (XEXP (x, 0));
2268
2269 return 0;
2270 }
2271 }
2272 \f
2273 /* Determine whether INSN can be used in a combination. Return nonzero if
2274 not. This is used in try_combine to detect early some cases where we
2275 can't perform combinations. */
2276
2277 static int
2278 cant_combine_insn_p (rtx_insn *insn)
2279 {
2280 rtx set;
2281 rtx src, dest;
2282
2283 /* If this isn't really an insn, we can't do anything.
2284 This can occur when flow deletes an insn that it has merged into an
2285 auto-increment address. */
2286 if (!NONDEBUG_INSN_P (insn))
2287 return 1;
2288
2289 /* Never combine loads and stores involving hard regs that are likely
2290 to be spilled. The register allocator can usually handle such
2291 reg-reg moves by tying. If we allow the combiner to make
2292 substitutions of likely-spilled regs, reload might die.
2293 As an exception, we allow combinations involving fixed regs; these are
2294 not available to the register allocator so there's no risk involved. */
2295
2296 set = single_set (insn);
2297 if (! set)
2298 return 0;
2299 src = SET_SRC (set);
2300 dest = SET_DEST (set);
2301 if (GET_CODE (src) == SUBREG)
2302 src = SUBREG_REG (src);
2303 if (GET_CODE (dest) == SUBREG)
2304 dest = SUBREG_REG (dest);
2305 if (REG_P (src) && REG_P (dest)
2306 && ((HARD_REGISTER_P (src)
2307 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2308 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2309 || (HARD_REGISTER_P (dest)
2310 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2311 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2312 return 1;
2313
2314 return 0;
2315 }
2316
2317 struct likely_spilled_retval_info
2318 {
2319 unsigned regno, nregs;
2320 unsigned mask;
2321 };
2322
2323 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2324 hard registers that are known to be written to / clobbered in full. */
2325 static void
2326 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2327 {
2328 struct likely_spilled_retval_info *const info =
2329 (struct likely_spilled_retval_info *) data;
2330 unsigned regno, nregs;
2331 unsigned new_mask;
2332
2333 if (!REG_P (XEXP (set, 0)))
2334 return;
2335 regno = REGNO (x);
2336 if (regno >= info->regno + info->nregs)
2337 return;
2338 nregs = REG_NREGS (x);
2339 if (regno + nregs <= info->regno)
2340 return;
2341 new_mask = (2U << (nregs - 1)) - 1;
2342 if (regno < info->regno)
2343 new_mask >>= info->regno - regno;
2344 else
2345 new_mask <<= regno - info->regno;
2346 info->mask &= ~new_mask;
2347 }
2348
2349 /* Return nonzero iff part of the return value is live during INSN, and
2350 it is likely spilled. This can happen when more than one insn is needed
2351 to copy the return value, e.g. when we consider to combine into the
2352 second copy insn for a complex value. */
2353
2354 static int
2355 likely_spilled_retval_p (rtx_insn *insn)
2356 {
2357 rtx_insn *use = BB_END (this_basic_block);
2358 rtx reg;
2359 rtx_insn *p;
2360 unsigned regno, nregs;
2361 /* We assume here that no machine mode needs more than
2362 32 hard registers when the value overlaps with a register
2363 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2364 unsigned mask;
2365 struct likely_spilled_retval_info info;
2366
2367 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2368 return 0;
2369 reg = XEXP (PATTERN (use), 0);
2370 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2371 return 0;
2372 regno = REGNO (reg);
2373 nregs = REG_NREGS (reg);
2374 if (nregs == 1)
2375 return 0;
2376 mask = (2U << (nregs - 1)) - 1;
2377
2378 /* Disregard parts of the return value that are set later. */
2379 info.regno = regno;
2380 info.nregs = nregs;
2381 info.mask = mask;
2382 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2383 if (INSN_P (p))
2384 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2385 mask = info.mask;
2386
2387 /* Check if any of the (probably) live return value registers is
2388 likely spilled. */
2389 nregs --;
2390 do
2391 {
2392 if ((mask & 1 << nregs)
2393 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2394 return 1;
2395 } while (nregs--);
2396 return 0;
2397 }
2398
2399 /* Adjust INSN after we made a change to its destination.
2400
2401 Changing the destination can invalidate notes that say something about
2402 the results of the insn and a LOG_LINK pointing to the insn. */
2403
2404 static void
2405 adjust_for_new_dest (rtx_insn *insn)
2406 {
2407 /* For notes, be conservative and simply remove them. */
2408 remove_reg_equal_equiv_notes (insn);
2409
2410 /* The new insn will have a destination that was previously the destination
2411 of an insn just above it. Call distribute_links to make a LOG_LINK from
2412 the next use of that destination. */
2413
2414 rtx set = single_set (insn);
2415 gcc_assert (set);
2416
2417 rtx reg = SET_DEST (set);
2418
2419 while (GET_CODE (reg) == ZERO_EXTRACT
2420 || GET_CODE (reg) == STRICT_LOW_PART
2421 || GET_CODE (reg) == SUBREG)
2422 reg = XEXP (reg, 0);
2423 gcc_assert (REG_P (reg));
2424
2425 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2426
2427 df_insn_rescan (insn);
2428 }
2429
2430 /* Return TRUE if combine can reuse reg X in mode MODE.
2431 ADDED_SETS is nonzero if the original set is still required. */
2432 static bool
2433 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2434 {
2435 unsigned int regno;
2436
2437 if (!REG_P (x))
2438 return false;
2439
2440 regno = REGNO (x);
2441 /* Allow hard registers if the new mode is legal, and occupies no more
2442 registers than the old mode. */
2443 if (regno < FIRST_PSEUDO_REGISTER)
2444 return (HARD_REGNO_MODE_OK (regno, mode)
2445 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2446
2447 /* Or a pseudo that is only used once. */
2448 return (regno < reg_n_sets_max
2449 && REG_N_SETS (regno) == 1
2450 && !added_sets
2451 && !REG_USERVAR_P (x));
2452 }
2453
2454
2455 /* Check whether X, the destination of a set, refers to part of
2456 the register specified by REG. */
2457
2458 static bool
2459 reg_subword_p (rtx x, rtx reg)
2460 {
2461 /* Check that reg is an integer mode register. */
2462 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2463 return false;
2464
2465 if (GET_CODE (x) == STRICT_LOW_PART
2466 || GET_CODE (x) == ZERO_EXTRACT)
2467 x = XEXP (x, 0);
2468
2469 return GET_CODE (x) == SUBREG
2470 && SUBREG_REG (x) == reg
2471 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2472 }
2473
2474 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2475 Note that the INSN should be deleted *after* removing dead edges, so
2476 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2477 but not for a (set (pc) (label_ref FOO)). */
2478
2479 static void
2480 update_cfg_for_uncondjump (rtx_insn *insn)
2481 {
2482 basic_block bb = BLOCK_FOR_INSN (insn);
2483 gcc_assert (BB_END (bb) == insn);
2484
2485 purge_dead_edges (bb);
2486
2487 delete_insn (insn);
2488 if (EDGE_COUNT (bb->succs) == 1)
2489 {
2490 rtx_insn *insn;
2491
2492 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2493
2494 /* Remove barriers from the footer if there are any. */
2495 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2496 if (BARRIER_P (insn))
2497 {
2498 if (PREV_INSN (insn))
2499 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2500 else
2501 BB_FOOTER (bb) = NEXT_INSN (insn);
2502 if (NEXT_INSN (insn))
2503 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2504 }
2505 else if (LABEL_P (insn))
2506 break;
2507 }
2508 }
2509
2510 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2511 by an arbitrary number of CLOBBERs. */
2512 static bool
2513 is_parallel_of_n_reg_sets (rtx pat, int n)
2514 {
2515 if (GET_CODE (pat) != PARALLEL)
2516 return false;
2517
2518 int len = XVECLEN (pat, 0);
2519 if (len < n)
2520 return false;
2521
2522 int i;
2523 for (i = 0; i < n; i++)
2524 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2525 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2526 return false;
2527 for ( ; i < len; i++)
2528 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2529 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2530 return false;
2531
2532 return true;
2533 }
2534
2535 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2536 CLOBBERs), can be split into individual SETs in that order, without
2537 changing semantics. */
2538 static bool
2539 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2540 {
2541 if (!insn_nothrow_p (insn))
2542 return false;
2543
2544 rtx pat = PATTERN (insn);
2545
2546 int i, j;
2547 for (i = 0; i < n; i++)
2548 {
2549 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2550 return false;
2551
2552 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2553
2554 for (j = i + 1; j < n; j++)
2555 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2556 return false;
2557 }
2558
2559 return true;
2560 }
2561
2562 /* Set up a set of registers used in an insn. Called through note_uses,
2563 arguments as described for that function. */
2564
2565 static void
2566 record_used_regs (rtx *xptr, void *data)
2567 {
2568 bitmap set = (bitmap)data;
2569 int i, j;
2570 enum rtx_code code;
2571 const char *fmt;
2572 rtx x = *xptr;
2573
2574 /* repeat is used to turn tail-recursion into iteration since GCC
2575 can't do it when there's no return value. */
2576 repeat:
2577 if (x == 0)
2578 return;
2579
2580 code = GET_CODE (x);
2581 if (REG_P (x))
2582 {
2583 unsigned regno = REGNO (x);
2584 unsigned end_regno = END_REGNO (x);
2585 while (regno < end_regno)
2586 bitmap_set_bit (set, regno++);
2587 return;
2588 }
2589
2590 /* Recursively scan the operands of this expression. */
2591
2592 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2593 {
2594 if (fmt[i] == 'e')
2595 {
2596 /* If we are about to do the last recursive call
2597 needed at this level, change it into iteration.
2598 This function is called enough to be worth it. */
2599 if (i == 0)
2600 {
2601 x = XEXP (x, 0);
2602 goto repeat;
2603 }
2604
2605 record_used_regs (&XEXP (x, i), data);
2606 }
2607 else if (fmt[i] == 'E')
2608 for (j = 0; j < XVECLEN (x, i); j++)
2609 record_used_regs (&XVECEXP (x, i, j), data);
2610 }
2611 }
2612
2613 /* Try to combine the insns I0, I1 and I2 into I3.
2614 Here I0, I1 and I2 appear earlier than I3.
2615 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2616 I3.
2617
2618 If we are combining more than two insns and the resulting insn is not
2619 recognized, try splitting it into two insns. If that happens, I2 and I3
2620 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2621 Otherwise, I0, I1 and I2 are pseudo-deleted.
2622
2623 Return 0 if the combination does not work. Then nothing is changed.
2624 If we did the combination, return the insn at which combine should
2625 resume scanning.
2626
2627 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2628 new direct jump instruction.
2629
2630 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2631 been I3 passed to an earlier try_combine within the same basic
2632 block. */
2633
2634 static rtx_insn *
2635 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2636 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2637 {
2638 /* New patterns for I3 and I2, respectively. */
2639 rtx newpat, newi2pat = 0;
2640 rtvec newpat_vec_with_clobbers = 0;
2641 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2642 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2643 dead. */
2644 int added_sets_0, added_sets_1, added_sets_2;
2645 /* Total number of SETs to put into I3. */
2646 int total_sets;
2647 /* Nonzero if I2's or I1's body now appears in I3. */
2648 int i2_is_used = 0, i1_is_used = 0;
2649 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2650 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2651 /* Contains I3 if the destination of I3 is used in its source, which means
2652 that the old life of I3 is being killed. If that usage is placed into
2653 I2 and not in I3, a REG_DEAD note must be made. */
2654 rtx i3dest_killed = 0;
2655 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2656 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2657 /* Copy of SET_SRC of I1 and I0, if needed. */
2658 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2659 /* Set if I2DEST was reused as a scratch register. */
2660 bool i2scratch = false;
2661 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2662 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2663 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2664 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2665 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2666 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2667 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2668 /* Notes that must be added to REG_NOTES in I3 and I2. */
2669 rtx new_i3_notes, new_i2_notes;
2670 /* Notes that we substituted I3 into I2 instead of the normal case. */
2671 int i3_subst_into_i2 = 0;
2672 /* Notes that I1, I2 or I3 is a MULT operation. */
2673 int have_mult = 0;
2674 int swap_i2i3 = 0;
2675 int changed_i3_dest = 0;
2676
2677 int maxreg;
2678 rtx_insn *temp_insn;
2679 rtx temp_expr;
2680 struct insn_link *link;
2681 rtx other_pat = 0;
2682 rtx new_other_notes;
2683 int i;
2684
2685 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2686 never be). */
2687 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2688 return 0;
2689
2690 /* Only try four-insn combinations when there's high likelihood of
2691 success. Look for simple insns, such as loads of constants or
2692 binary operations involving a constant. */
2693 if (i0)
2694 {
2695 int i;
2696 int ngood = 0;
2697 int nshift = 0;
2698 rtx set0, set3;
2699
2700 if (!flag_expensive_optimizations)
2701 return 0;
2702
2703 for (i = 0; i < 4; i++)
2704 {
2705 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2706 rtx set = single_set (insn);
2707 rtx src;
2708 if (!set)
2709 continue;
2710 src = SET_SRC (set);
2711 if (CONSTANT_P (src))
2712 {
2713 ngood += 2;
2714 break;
2715 }
2716 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2717 ngood++;
2718 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2719 || GET_CODE (src) == LSHIFTRT)
2720 nshift++;
2721 }
2722
2723 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2724 are likely manipulating its value. Ideally we'll be able to combine
2725 all four insns into a bitfield insertion of some kind.
2726
2727 Note the source in I0 might be inside a sign/zero extension and the
2728 memory modes in I0 and I3 might be different. So extract the address
2729 from the destination of I3 and search for it in the source of I0.
2730
2731 In the event that there's a match but the source/dest do not actually
2732 refer to the same memory, the worst that happens is we try some
2733 combinations that we wouldn't have otherwise. */
2734 if ((set0 = single_set (i0))
2735 /* Ensure the source of SET0 is a MEM, possibly buried inside
2736 an extension. */
2737 && (GET_CODE (SET_SRC (set0)) == MEM
2738 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2739 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2740 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2741 && (set3 = single_set (i3))
2742 /* Ensure the destination of SET3 is a MEM. */
2743 && GET_CODE (SET_DEST (set3)) == MEM
2744 /* Would it be better to extract the base address for the MEM
2745 in SET3 and look for that? I don't have cases where it matters
2746 but I could envision such cases. */
2747 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2748 ngood += 2;
2749
2750 if (ngood < 2 && nshift < 2)
2751 return 0;
2752 }
2753
2754 /* Exit early if one of the insns involved can't be used for
2755 combinations. */
2756 if (CALL_P (i2)
2757 || (i1 && CALL_P (i1))
2758 || (i0 && CALL_P (i0))
2759 || cant_combine_insn_p (i3)
2760 || cant_combine_insn_p (i2)
2761 || (i1 && cant_combine_insn_p (i1))
2762 || (i0 && cant_combine_insn_p (i0))
2763 || likely_spilled_retval_p (i3))
2764 return 0;
2765
2766 combine_attempts++;
2767 undobuf.other_insn = 0;
2768
2769 /* Reset the hard register usage information. */
2770 CLEAR_HARD_REG_SET (newpat_used_regs);
2771
2772 if (dump_file && (dump_flags & TDF_DETAILS))
2773 {
2774 if (i0)
2775 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2776 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2777 else if (i1)
2778 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2779 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2780 else
2781 fprintf (dump_file, "\nTrying %d -> %d:\n",
2782 INSN_UID (i2), INSN_UID (i3));
2783 }
2784
2785 /* If multiple insns feed into one of I2 or I3, they can be in any
2786 order. To simplify the code below, reorder them in sequence. */
2787 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2788 std::swap (i0, i2);
2789 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2790 std::swap (i0, i1);
2791 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2792 std::swap (i1, i2);
2793
2794 added_links_insn = 0;
2795
2796 /* For combinations that may result in two insns, we have to gather
2797 some extra information about registers used, so that we can
2798 update all relevant LOG_LINKS later. */
2799 auto_bitmap i2_regset, i3_regset, links_regset;
2800 if (i1)
2801 {
2802 note_uses (&PATTERN (i2), record_used_regs, (bitmap)i2_regset);
2803 note_uses (&PATTERN (i3), record_used_regs, (bitmap)i3_regset);
2804 insn_link *ll;
2805 FOR_EACH_LOG_LINK (ll, i3)
2806 bitmap_set_bit (links_regset, ll->regno);
2807 FOR_EACH_LOG_LINK (ll, i2)
2808 bitmap_set_bit (links_regset, ll->regno);
2809 if (i1)
2810 FOR_EACH_LOG_LINK (ll, i1)
2811 bitmap_set_bit (links_regset, ll->regno);
2812 if (i0)
2813 FOR_EACH_LOG_LINK (ll, i0)
2814 bitmap_set_bit (links_regset, ll->regno);
2815 }
2816
2817 /* First check for one important special case that the code below will
2818 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2819 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2820 we may be able to replace that destination with the destination of I3.
2821 This occurs in the common code where we compute both a quotient and
2822 remainder into a structure, in which case we want to do the computation
2823 directly into the structure to avoid register-register copies.
2824
2825 Note that this case handles both multiple sets in I2 and also cases
2826 where I2 has a number of CLOBBERs inside the PARALLEL.
2827
2828 We make very conservative checks below and only try to handle the
2829 most common cases of this. For example, we only handle the case
2830 where I2 and I3 are adjacent to avoid making difficult register
2831 usage tests. */
2832
2833 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2834 && REG_P (SET_SRC (PATTERN (i3)))
2835 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2836 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2837 && GET_CODE (PATTERN (i2)) == PARALLEL
2838 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2839 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2840 below would need to check what is inside (and reg_overlap_mentioned_p
2841 doesn't support those codes anyway). Don't allow those destinations;
2842 the resulting insn isn't likely to be recognized anyway. */
2843 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2844 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2845 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2846 SET_DEST (PATTERN (i3)))
2847 && next_active_insn (i2) == i3)
2848 {
2849 rtx p2 = PATTERN (i2);
2850
2851 /* Make sure that the destination of I3,
2852 which we are going to substitute into one output of I2,
2853 is not used within another output of I2. We must avoid making this:
2854 (parallel [(set (mem (reg 69)) ...)
2855 (set (reg 69) ...)])
2856 which is not well-defined as to order of actions.
2857 (Besides, reload can't handle output reloads for this.)
2858
2859 The problem can also happen if the dest of I3 is a memory ref,
2860 if another dest in I2 is an indirect memory ref.
2861
2862 Neither can this PARALLEL be an asm. We do not allow combining
2863 that usually (see can_combine_p), so do not here either. */
2864 bool ok = true;
2865 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2866 {
2867 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2868 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2869 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2870 SET_DEST (XVECEXP (p2, 0, i))))
2871 ok = false;
2872 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2873 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2874 ok = false;
2875 }
2876
2877 if (ok)
2878 for (i = 0; i < XVECLEN (p2, 0); i++)
2879 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2880 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2881 {
2882 combine_merges++;
2883
2884 subst_insn = i3;
2885 subst_low_luid = DF_INSN_LUID (i2);
2886
2887 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2888 i2src = SET_SRC (XVECEXP (p2, 0, i));
2889 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2890 i2dest_killed = dead_or_set_p (i2, i2dest);
2891
2892 /* Replace the dest in I2 with our dest and make the resulting
2893 insn the new pattern for I3. Then skip to where we validate
2894 the pattern. Everything was set up above. */
2895 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2896 newpat = p2;
2897 i3_subst_into_i2 = 1;
2898 goto validate_replacement;
2899 }
2900 }
2901
2902 /* If I2 is setting a pseudo to a constant and I3 is setting some
2903 sub-part of it to another constant, merge them by making a new
2904 constant. */
2905 if (i1 == 0
2906 && (temp_expr = single_set (i2)) != 0
2907 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2908 && GET_CODE (PATTERN (i3)) == SET
2909 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2910 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2911 {
2912 rtx dest = SET_DEST (PATTERN (i3));
2913 int offset = -1;
2914 int width = 0;
2915
2916 if (GET_CODE (dest) == ZERO_EXTRACT)
2917 {
2918 if (CONST_INT_P (XEXP (dest, 1))
2919 && CONST_INT_P (XEXP (dest, 2)))
2920 {
2921 width = INTVAL (XEXP (dest, 1));
2922 offset = INTVAL (XEXP (dest, 2));
2923 dest = XEXP (dest, 0);
2924 if (BITS_BIG_ENDIAN)
2925 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2926 }
2927 }
2928 else
2929 {
2930 if (GET_CODE (dest) == STRICT_LOW_PART)
2931 dest = XEXP (dest, 0);
2932 width = GET_MODE_PRECISION (GET_MODE (dest));
2933 offset = 0;
2934 }
2935
2936 if (offset >= 0)
2937 {
2938 /* If this is the low part, we're done. */
2939 if (subreg_lowpart_p (dest))
2940 ;
2941 /* Handle the case where inner is twice the size of outer. */
2942 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2943 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2944 offset += GET_MODE_PRECISION (GET_MODE (dest));
2945 /* Otherwise give up for now. */
2946 else
2947 offset = -1;
2948 }
2949
2950 if (offset >= 0)
2951 {
2952 rtx inner = SET_SRC (PATTERN (i3));
2953 rtx outer = SET_SRC (temp_expr);
2954
2955 wide_int o
2956 = wi::insert (rtx_mode_t (outer, GET_MODE (SET_DEST (temp_expr))),
2957 rtx_mode_t (inner, GET_MODE (dest)),
2958 offset, width);
2959
2960 combine_merges++;
2961 subst_insn = i3;
2962 subst_low_luid = DF_INSN_LUID (i2);
2963 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2964 i2dest = SET_DEST (temp_expr);
2965 i2dest_killed = dead_or_set_p (i2, i2dest);
2966
2967 /* Replace the source in I2 with the new constant and make the
2968 resulting insn the new pattern for I3. Then skip to where we
2969 validate the pattern. Everything was set up above. */
2970 SUBST (SET_SRC (temp_expr),
2971 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2972
2973 newpat = PATTERN (i2);
2974
2975 /* The dest of I3 has been replaced with the dest of I2. */
2976 changed_i3_dest = 1;
2977 goto validate_replacement;
2978 }
2979 }
2980
2981 /* If we have no I1 and I2 looks like:
2982 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2983 (set Y OP)])
2984 make up a dummy I1 that is
2985 (set Y OP)
2986 and change I2 to be
2987 (set (reg:CC X) (compare:CC Y (const_int 0)))
2988
2989 (We can ignore any trailing CLOBBERs.)
2990
2991 This undoes a previous combination and allows us to match a branch-and-
2992 decrement insn. */
2993
2994 if (!HAVE_cc0 && i1 == 0
2995 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2996 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2997 == MODE_CC)
2998 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2999 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
3000 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
3001 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
3002 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3003 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3004 {
3005 /* We make I1 with the same INSN_UID as I2. This gives it
3006 the same DF_INSN_LUID for value tracking. Our fake I1 will
3007 never appear in the insn stream so giving it the same INSN_UID
3008 as I2 will not cause a problem. */
3009
3010 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3011 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
3012 -1, NULL_RTX);
3013 INSN_UID (i1) = INSN_UID (i2);
3014
3015 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
3016 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
3017 SET_DEST (PATTERN (i1)));
3018 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
3019 SUBST_LINK (LOG_LINKS (i2),
3020 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
3021 }
3022
3023 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3024 make those two SETs separate I1 and I2 insns, and make an I0 that is
3025 the original I1. */
3026 if (!HAVE_cc0 && i0 == 0
3027 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3028 && can_split_parallel_of_n_reg_sets (i2, 2)
3029 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3030 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3031 {
3032 /* If there is no I1, there is no I0 either. */
3033 i0 = i1;
3034
3035 /* We make I1 with the same INSN_UID as I2. This gives it
3036 the same DF_INSN_LUID for value tracking. Our fake I1 will
3037 never appear in the insn stream so giving it the same INSN_UID
3038 as I2 will not cause a problem. */
3039
3040 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3041 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
3042 -1, NULL_RTX);
3043 INSN_UID (i1) = INSN_UID (i2);
3044
3045 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3046 }
3047
3048 /* Verify that I2 and I1 are valid for combining. */
3049 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
3050 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
3051 &i1dest, &i1src))
3052 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
3053 &i0dest, &i0src)))
3054 {
3055 undo_all ();
3056 return 0;
3057 }
3058
3059 /* Record whether I2DEST is used in I2SRC and similarly for the other
3060 cases. Knowing this will help in register status updating below. */
3061 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3062 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3063 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3064 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3065 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3066 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3067 i2dest_killed = dead_or_set_p (i2, i2dest);
3068 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3069 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3070
3071 /* For the earlier insns, determine which of the subsequent ones they
3072 feed. */
3073 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3074 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3075 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3076 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3077 && reg_overlap_mentioned_p (i0dest, i2src))));
3078
3079 /* Ensure that I3's pattern can be the destination of combines. */
3080 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3081 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3082 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3083 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3084 &i3dest_killed))
3085 {
3086 undo_all ();
3087 return 0;
3088 }
3089
3090 /* See if any of the insns is a MULT operation. Unless one is, we will
3091 reject a combination that is, since it must be slower. Be conservative
3092 here. */
3093 if (GET_CODE (i2src) == MULT
3094 || (i1 != 0 && GET_CODE (i1src) == MULT)
3095 || (i0 != 0 && GET_CODE (i0src) == MULT)
3096 || (GET_CODE (PATTERN (i3)) == SET
3097 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3098 have_mult = 1;
3099
3100 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3101 We used to do this EXCEPT in one case: I3 has a post-inc in an
3102 output operand. However, that exception can give rise to insns like
3103 mov r3,(r3)+
3104 which is a famous insn on the PDP-11 where the value of r3 used as the
3105 source was model-dependent. Avoid this sort of thing. */
3106
3107 #if 0
3108 if (!(GET_CODE (PATTERN (i3)) == SET
3109 && REG_P (SET_SRC (PATTERN (i3)))
3110 && MEM_P (SET_DEST (PATTERN (i3)))
3111 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3112 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3113 /* It's not the exception. */
3114 #endif
3115 if (AUTO_INC_DEC)
3116 {
3117 rtx link;
3118 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3119 if (REG_NOTE_KIND (link) == REG_INC
3120 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3121 || (i1 != 0
3122 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3123 {
3124 undo_all ();
3125 return 0;
3126 }
3127 }
3128
3129 /* See if the SETs in I1 or I2 need to be kept around in the merged
3130 instruction: whenever the value set there is still needed past I3.
3131 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3132
3133 For the SET in I1, we have two cases: if I1 and I2 independently feed
3134 into I3, the set in I1 needs to be kept around unless I1DEST dies
3135 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3136 in I1 needs to be kept around unless I1DEST dies or is set in either
3137 I2 or I3. The same considerations apply to I0. */
3138
3139 added_sets_2 = !dead_or_set_p (i3, i2dest);
3140
3141 if (i1)
3142 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3143 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3144 else
3145 added_sets_1 = 0;
3146
3147 if (i0)
3148 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3149 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3150 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3151 && dead_or_set_p (i2, i0dest)));
3152 else
3153 added_sets_0 = 0;
3154
3155 /* We are about to copy insns for the case where they need to be kept
3156 around. Check that they can be copied in the merged instruction. */
3157
3158 if (targetm.cannot_copy_insn_p
3159 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3160 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3161 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3162 {
3163 undo_all ();
3164 return 0;
3165 }
3166
3167 /* If the set in I2 needs to be kept around, we must make a copy of
3168 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3169 PATTERN (I2), we are only substituting for the original I1DEST, not into
3170 an already-substituted copy. This also prevents making self-referential
3171 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3172 I2DEST. */
3173
3174 if (added_sets_2)
3175 {
3176 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3177 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3178 else
3179 i2pat = copy_rtx (PATTERN (i2));
3180 }
3181
3182 if (added_sets_1)
3183 {
3184 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3185 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3186 else
3187 i1pat = copy_rtx (PATTERN (i1));
3188 }
3189
3190 if (added_sets_0)
3191 {
3192 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3193 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3194 else
3195 i0pat = copy_rtx (PATTERN (i0));
3196 }
3197
3198 combine_merges++;
3199
3200 /* Substitute in the latest insn for the regs set by the earlier ones. */
3201
3202 maxreg = max_reg_num ();
3203
3204 subst_insn = i3;
3205
3206 /* Many machines that don't use CC0 have insns that can both perform an
3207 arithmetic operation and set the condition code. These operations will
3208 be represented as a PARALLEL with the first element of the vector
3209 being a COMPARE of an arithmetic operation with the constant zero.
3210 The second element of the vector will set some pseudo to the result
3211 of the same arithmetic operation. If we simplify the COMPARE, we won't
3212 match such a pattern and so will generate an extra insn. Here we test
3213 for this case, where both the comparison and the operation result are
3214 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3215 I2SRC. Later we will make the PARALLEL that contains I2. */
3216
3217 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3218 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3219 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3220 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3221 {
3222 rtx newpat_dest;
3223 rtx *cc_use_loc = NULL;
3224 rtx_insn *cc_use_insn = NULL;
3225 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3226 machine_mode compare_mode, orig_compare_mode;
3227 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3228
3229 newpat = PATTERN (i3);
3230 newpat_dest = SET_DEST (newpat);
3231 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3232
3233 if (undobuf.other_insn == 0
3234 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3235 &cc_use_insn)))
3236 {
3237 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3238 compare_code = simplify_compare_const (compare_code,
3239 GET_MODE (i2dest), op0, &op1);
3240 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3241 }
3242
3243 /* Do the rest only if op1 is const0_rtx, which may be the
3244 result of simplification. */
3245 if (op1 == const0_rtx)
3246 {
3247 /* If a single use of the CC is found, prepare to modify it
3248 when SELECT_CC_MODE returns a new CC-class mode, or when
3249 the above simplify_compare_const() returned a new comparison
3250 operator. undobuf.other_insn is assigned the CC use insn
3251 when modifying it. */
3252 if (cc_use_loc)
3253 {
3254 #ifdef SELECT_CC_MODE
3255 machine_mode new_mode
3256 = SELECT_CC_MODE (compare_code, op0, op1);
3257 if (new_mode != orig_compare_mode
3258 && can_change_dest_mode (SET_DEST (newpat),
3259 added_sets_2, new_mode))
3260 {
3261 unsigned int regno = REGNO (newpat_dest);
3262 compare_mode = new_mode;
3263 if (regno < FIRST_PSEUDO_REGISTER)
3264 newpat_dest = gen_rtx_REG (compare_mode, regno);
3265 else
3266 {
3267 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3268 newpat_dest = regno_reg_rtx[regno];
3269 }
3270 }
3271 #endif
3272 /* Cases for modifying the CC-using comparison. */
3273 if (compare_code != orig_compare_code
3274 /* ??? Do we need to verify the zero rtx? */
3275 && XEXP (*cc_use_loc, 1) == const0_rtx)
3276 {
3277 /* Replace cc_use_loc with entire new RTX. */
3278 SUBST (*cc_use_loc,
3279 gen_rtx_fmt_ee (compare_code, compare_mode,
3280 newpat_dest, const0_rtx));
3281 undobuf.other_insn = cc_use_insn;
3282 }
3283 else if (compare_mode != orig_compare_mode)
3284 {
3285 /* Just replace the CC reg with a new mode. */
3286 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3287 undobuf.other_insn = cc_use_insn;
3288 }
3289 }
3290
3291 /* Now we modify the current newpat:
3292 First, SET_DEST(newpat) is updated if the CC mode has been
3293 altered. For targets without SELECT_CC_MODE, this should be
3294 optimized away. */
3295 if (compare_mode != orig_compare_mode)
3296 SUBST (SET_DEST (newpat), newpat_dest);
3297 /* This is always done to propagate i2src into newpat. */
3298 SUBST (SET_SRC (newpat),
3299 gen_rtx_COMPARE (compare_mode, op0, op1));
3300 /* Create new version of i2pat if needed; the below PARALLEL
3301 creation needs this to work correctly. */
3302 if (! rtx_equal_p (i2src, op0))
3303 i2pat = gen_rtx_SET (i2dest, op0);
3304 i2_is_used = 1;
3305 }
3306 }
3307
3308 if (i2_is_used == 0)
3309 {
3310 /* It is possible that the source of I2 or I1 may be performing
3311 an unneeded operation, such as a ZERO_EXTEND of something
3312 that is known to have the high part zero. Handle that case
3313 by letting subst look at the inner insns.
3314
3315 Another way to do this would be to have a function that tries
3316 to simplify a single insn instead of merging two or more
3317 insns. We don't do this because of the potential of infinite
3318 loops and because of the potential extra memory required.
3319 However, doing it the way we are is a bit of a kludge and
3320 doesn't catch all cases.
3321
3322 But only do this if -fexpensive-optimizations since it slows
3323 things down and doesn't usually win.
3324
3325 This is not done in the COMPARE case above because the
3326 unmodified I2PAT is used in the PARALLEL and so a pattern
3327 with a modified I2SRC would not match. */
3328
3329 if (flag_expensive_optimizations)
3330 {
3331 /* Pass pc_rtx so no substitutions are done, just
3332 simplifications. */
3333 if (i1)
3334 {
3335 subst_low_luid = DF_INSN_LUID (i1);
3336 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3337 }
3338
3339 subst_low_luid = DF_INSN_LUID (i2);
3340 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3341 }
3342
3343 n_occurrences = 0; /* `subst' counts here */
3344 subst_low_luid = DF_INSN_LUID (i2);
3345
3346 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3347 copy of I2SRC each time we substitute it, in order to avoid creating
3348 self-referential RTL when we will be substituting I1SRC for I1DEST
3349 later. Likewise if I0 feeds into I2, either directly or indirectly
3350 through I1, and I0DEST is in I0SRC. */
3351 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3352 (i1_feeds_i2_n && i1dest_in_i1src)
3353 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3354 && i0dest_in_i0src));
3355 substed_i2 = 1;
3356
3357 /* Record whether I2's body now appears within I3's body. */
3358 i2_is_used = n_occurrences;
3359 }
3360
3361 /* If we already got a failure, don't try to do more. Otherwise, try to
3362 substitute I1 if we have it. */
3363
3364 if (i1 && GET_CODE (newpat) != CLOBBER)
3365 {
3366 /* Check that an autoincrement side-effect on I1 has not been lost.
3367 This happens if I1DEST is mentioned in I2 and dies there, and
3368 has disappeared from the new pattern. */
3369 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3370 && i1_feeds_i2_n
3371 && dead_or_set_p (i2, i1dest)
3372 && !reg_overlap_mentioned_p (i1dest, newpat))
3373 /* Before we can do this substitution, we must redo the test done
3374 above (see detailed comments there) that ensures I1DEST isn't
3375 mentioned in any SETs in NEWPAT that are field assignments. */
3376 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3377 0, 0, 0))
3378 {
3379 undo_all ();
3380 return 0;
3381 }
3382
3383 n_occurrences = 0;
3384 subst_low_luid = DF_INSN_LUID (i1);
3385
3386 /* If the following substitution will modify I1SRC, make a copy of it
3387 for the case where it is substituted for I1DEST in I2PAT later. */
3388 if (added_sets_2 && i1_feeds_i2_n)
3389 i1src_copy = copy_rtx (i1src);
3390
3391 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3392 copy of I1SRC each time we substitute it, in order to avoid creating
3393 self-referential RTL when we will be substituting I0SRC for I0DEST
3394 later. */
3395 newpat = subst (newpat, i1dest, i1src, 0, 0,
3396 i0_feeds_i1_n && i0dest_in_i0src);
3397 substed_i1 = 1;
3398
3399 /* Record whether I1's body now appears within I3's body. */
3400 i1_is_used = n_occurrences;
3401 }
3402
3403 /* Likewise for I0 if we have it. */
3404
3405 if (i0 && GET_CODE (newpat) != CLOBBER)
3406 {
3407 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3408 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3409 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3410 && !reg_overlap_mentioned_p (i0dest, newpat))
3411 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3412 0, 0, 0))
3413 {
3414 undo_all ();
3415 return 0;
3416 }
3417
3418 /* If the following substitution will modify I0SRC, make a copy of it
3419 for the case where it is substituted for I0DEST in I1PAT later. */
3420 if (added_sets_1 && i0_feeds_i1_n)
3421 i0src_copy = copy_rtx (i0src);
3422 /* And a copy for I0DEST in I2PAT substitution. */
3423 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3424 || (i0_feeds_i2_n)))
3425 i0src_copy2 = copy_rtx (i0src);
3426
3427 n_occurrences = 0;
3428 subst_low_luid = DF_INSN_LUID (i0);
3429 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3430 substed_i0 = 1;
3431 }
3432
3433 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3434 to count all the ways that I2SRC and I1SRC can be used. */
3435 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3436 && i2_is_used + added_sets_2 > 1)
3437 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3438 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3439 > 1))
3440 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3441 && (n_occurrences + added_sets_0
3442 + (added_sets_1 && i0_feeds_i1_n)
3443 + (added_sets_2 && i0_feeds_i2_n)
3444 > 1))
3445 /* Fail if we tried to make a new register. */
3446 || max_reg_num () != maxreg
3447 /* Fail if we couldn't do something and have a CLOBBER. */
3448 || GET_CODE (newpat) == CLOBBER
3449 /* Fail if this new pattern is a MULT and we didn't have one before
3450 at the outer level. */
3451 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3452 && ! have_mult))
3453 {
3454 undo_all ();
3455 return 0;
3456 }
3457
3458 /* If the actions of the earlier insns must be kept
3459 in addition to substituting them into the latest one,
3460 we must make a new PARALLEL for the latest insn
3461 to hold additional the SETs. */
3462
3463 if (added_sets_0 || added_sets_1 || added_sets_2)
3464 {
3465 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3466 combine_extras++;
3467
3468 if (GET_CODE (newpat) == PARALLEL)
3469 {
3470 rtvec old = XVEC (newpat, 0);
3471 total_sets = XVECLEN (newpat, 0) + extra_sets;
3472 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3473 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3474 sizeof (old->elem[0]) * old->num_elem);
3475 }
3476 else
3477 {
3478 rtx old = newpat;
3479 total_sets = 1 + extra_sets;
3480 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3481 XVECEXP (newpat, 0, 0) = old;
3482 }
3483
3484 if (added_sets_0)
3485 XVECEXP (newpat, 0, --total_sets) = i0pat;
3486
3487 if (added_sets_1)
3488 {
3489 rtx t = i1pat;
3490 if (i0_feeds_i1_n)
3491 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3492
3493 XVECEXP (newpat, 0, --total_sets) = t;
3494 }
3495 if (added_sets_2)
3496 {
3497 rtx t = i2pat;
3498 if (i1_feeds_i2_n)
3499 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3500 i0_feeds_i1_n && i0dest_in_i0src);
3501 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3502 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3503
3504 XVECEXP (newpat, 0, --total_sets) = t;
3505 }
3506 }
3507
3508 validate_replacement:
3509
3510 /* Note which hard regs this insn has as inputs. */
3511 mark_used_regs_combine (newpat);
3512
3513 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3514 consider splitting this pattern, we might need these clobbers. */
3515 if (i1 && GET_CODE (newpat) == PARALLEL
3516 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3517 {
3518 int len = XVECLEN (newpat, 0);
3519
3520 newpat_vec_with_clobbers = rtvec_alloc (len);
3521 for (i = 0; i < len; i++)
3522 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3523 }
3524
3525 /* We have recognized nothing yet. */
3526 insn_code_number = -1;
3527
3528 /* See if this is a PARALLEL of two SETs where one SET's destination is
3529 a register that is unused and this isn't marked as an instruction that
3530 might trap in an EH region. In that case, we just need the other SET.
3531 We prefer this over the PARALLEL.
3532
3533 This can occur when simplifying a divmod insn. We *must* test for this
3534 case here because the code below that splits two independent SETs doesn't
3535 handle this case correctly when it updates the register status.
3536
3537 It's pointless doing this if we originally had two sets, one from
3538 i3, and one from i2. Combining then splitting the parallel results
3539 in the original i2 again plus an invalid insn (which we delete).
3540 The net effect is only to move instructions around, which makes
3541 debug info less accurate. */
3542
3543 if (!(added_sets_2 && i1 == 0)
3544 && is_parallel_of_n_reg_sets (newpat, 2)
3545 && asm_noperands (newpat) < 0)
3546 {
3547 rtx set0 = XVECEXP (newpat, 0, 0);
3548 rtx set1 = XVECEXP (newpat, 0, 1);
3549 rtx oldpat = newpat;
3550
3551 if (((REG_P (SET_DEST (set1))
3552 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3553 || (GET_CODE (SET_DEST (set1)) == SUBREG
3554 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3555 && insn_nothrow_p (i3)
3556 && !side_effects_p (SET_SRC (set1)))
3557 {
3558 newpat = set0;
3559 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3560 }
3561
3562 else if (((REG_P (SET_DEST (set0))
3563 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3564 || (GET_CODE (SET_DEST (set0)) == SUBREG
3565 && find_reg_note (i3, REG_UNUSED,
3566 SUBREG_REG (SET_DEST (set0)))))
3567 && insn_nothrow_p (i3)
3568 && !side_effects_p (SET_SRC (set0)))
3569 {
3570 newpat = set1;
3571 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3572
3573 if (insn_code_number >= 0)
3574 changed_i3_dest = 1;
3575 }
3576
3577 if (insn_code_number < 0)
3578 newpat = oldpat;
3579 }
3580
3581 /* Is the result of combination a valid instruction? */
3582 if (insn_code_number < 0)
3583 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3584
3585 /* If we were combining three insns and the result is a simple SET
3586 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3587 insns. There are two ways to do this. It can be split using a
3588 machine-specific method (like when you have an addition of a large
3589 constant) or by combine in the function find_split_point. */
3590
3591 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3592 && asm_noperands (newpat) < 0)
3593 {
3594 rtx parallel, *split;
3595 rtx_insn *m_split_insn;
3596
3597 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3598 use I2DEST as a scratch register will help. In the latter case,
3599 convert I2DEST to the mode of the source of NEWPAT if we can. */
3600
3601 m_split_insn = combine_split_insns (newpat, i3);
3602
3603 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3604 inputs of NEWPAT. */
3605
3606 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3607 possible to try that as a scratch reg. This would require adding
3608 more code to make it work though. */
3609
3610 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3611 {
3612 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3613
3614 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3615 (temporarily, until we are committed to this instruction
3616 combination) does not work: for example, any call to nonzero_bits
3617 on the register (from a splitter in the MD file, for example)
3618 will get the old information, which is invalid.
3619
3620 Since nowadays we can create registers during combine just fine,
3621 we should just create a new one here, not reuse i2dest. */
3622
3623 /* First try to split using the original register as a
3624 scratch register. */
3625 parallel = gen_rtx_PARALLEL (VOIDmode,
3626 gen_rtvec (2, newpat,
3627 gen_rtx_CLOBBER (VOIDmode,
3628 i2dest)));
3629 m_split_insn = combine_split_insns (parallel, i3);
3630
3631 /* If that didn't work, try changing the mode of I2DEST if
3632 we can. */
3633 if (m_split_insn == 0
3634 && new_mode != GET_MODE (i2dest)
3635 && new_mode != VOIDmode
3636 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3637 {
3638 machine_mode old_mode = GET_MODE (i2dest);
3639 rtx ni2dest;
3640
3641 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3642 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3643 else
3644 {
3645 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3646 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3647 }
3648
3649 parallel = (gen_rtx_PARALLEL
3650 (VOIDmode,
3651 gen_rtvec (2, newpat,
3652 gen_rtx_CLOBBER (VOIDmode,
3653 ni2dest))));
3654 m_split_insn = combine_split_insns (parallel, i3);
3655
3656 if (m_split_insn == 0
3657 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3658 {
3659 struct undo *buf;
3660
3661 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3662 buf = undobuf.undos;
3663 undobuf.undos = buf->next;
3664 buf->next = undobuf.frees;
3665 undobuf.frees = buf;
3666 }
3667 }
3668
3669 i2scratch = m_split_insn != 0;
3670 }
3671
3672 /* If recog_for_combine has discarded clobbers, try to use them
3673 again for the split. */
3674 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3675 {
3676 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3677 m_split_insn = combine_split_insns (parallel, i3);
3678 }
3679
3680 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3681 {
3682 rtx m_split_pat = PATTERN (m_split_insn);
3683 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3684 if (insn_code_number >= 0)
3685 newpat = m_split_pat;
3686 }
3687 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3688 && (next_nonnote_nondebug_insn (i2) == i3
3689 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3690 {
3691 rtx i2set, i3set;
3692 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3693 newi2pat = PATTERN (m_split_insn);
3694
3695 i3set = single_set (NEXT_INSN (m_split_insn));
3696 i2set = single_set (m_split_insn);
3697
3698 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3699
3700 /* If I2 or I3 has multiple SETs, we won't know how to track
3701 register status, so don't use these insns. If I2's destination
3702 is used between I2 and I3, we also can't use these insns. */
3703
3704 if (i2_code_number >= 0 && i2set && i3set
3705 && (next_nonnote_nondebug_insn (i2) == i3
3706 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3707 insn_code_number = recog_for_combine (&newi3pat, i3,
3708 &new_i3_notes);
3709 if (insn_code_number >= 0)
3710 newpat = newi3pat;
3711
3712 /* It is possible that both insns now set the destination of I3.
3713 If so, we must show an extra use of it. */
3714
3715 if (insn_code_number >= 0)
3716 {
3717 rtx new_i3_dest = SET_DEST (i3set);
3718 rtx new_i2_dest = SET_DEST (i2set);
3719
3720 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3721 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3722 || GET_CODE (new_i3_dest) == SUBREG)
3723 new_i3_dest = XEXP (new_i3_dest, 0);
3724
3725 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3726 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3727 || GET_CODE (new_i2_dest) == SUBREG)
3728 new_i2_dest = XEXP (new_i2_dest, 0);
3729
3730 if (REG_P (new_i3_dest)
3731 && REG_P (new_i2_dest)
3732 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3733 && REGNO (new_i2_dest) < reg_n_sets_max)
3734 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3735 }
3736 }
3737
3738 /* If we can split it and use I2DEST, go ahead and see if that
3739 helps things be recognized. Verify that none of the registers
3740 are set between I2 and I3. */
3741 if (insn_code_number < 0
3742 && (split = find_split_point (&newpat, i3, false)) != 0
3743 && (!HAVE_cc0 || REG_P (i2dest))
3744 /* We need I2DEST in the proper mode. If it is a hard register
3745 or the only use of a pseudo, we can change its mode.
3746 Make sure we don't change a hard register to have a mode that
3747 isn't valid for it, or change the number of registers. */
3748 && (GET_MODE (*split) == GET_MODE (i2dest)
3749 || GET_MODE (*split) == VOIDmode
3750 || can_change_dest_mode (i2dest, added_sets_2,
3751 GET_MODE (*split)))
3752 && (next_nonnote_nondebug_insn (i2) == i3
3753 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3754 /* We can't overwrite I2DEST if its value is still used by
3755 NEWPAT. */
3756 && ! reg_referenced_p (i2dest, newpat))
3757 {
3758 rtx newdest = i2dest;
3759 enum rtx_code split_code = GET_CODE (*split);
3760 machine_mode split_mode = GET_MODE (*split);
3761 bool subst_done = false;
3762 newi2pat = NULL_RTX;
3763
3764 i2scratch = true;
3765
3766 /* *SPLIT may be part of I2SRC, so make sure we have the
3767 original expression around for later debug processing.
3768 We should not need I2SRC any more in other cases. */
3769 if (MAY_HAVE_DEBUG_INSNS)
3770 i2src = copy_rtx (i2src);
3771 else
3772 i2src = NULL;
3773
3774 /* Get NEWDEST as a register in the proper mode. We have already
3775 validated that we can do this. */
3776 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3777 {
3778 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3779 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3780 else
3781 {
3782 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3783 newdest = regno_reg_rtx[REGNO (i2dest)];
3784 }
3785 }
3786
3787 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3788 an ASHIFT. This can occur if it was inside a PLUS and hence
3789 appeared to be a memory address. This is a kludge. */
3790 if (split_code == MULT
3791 && CONST_INT_P (XEXP (*split, 1))
3792 && INTVAL (XEXP (*split, 1)) > 0
3793 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3794 {
3795 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3796 XEXP (*split, 0), GEN_INT (i)));
3797 /* Update split_code because we may not have a multiply
3798 anymore. */
3799 split_code = GET_CODE (*split);
3800 }
3801
3802 /* Similarly for (plus (mult FOO (const_int pow2))). */
3803 if (split_code == PLUS
3804 && GET_CODE (XEXP (*split, 0)) == MULT
3805 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3806 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3807 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3808 {
3809 rtx nsplit = XEXP (*split, 0);
3810 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3811 XEXP (nsplit, 0), GEN_INT (i)));
3812 /* Update split_code because we may not have a multiply
3813 anymore. */
3814 split_code = GET_CODE (*split);
3815 }
3816
3817 #ifdef INSN_SCHEDULING
3818 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3819 be written as a ZERO_EXTEND. */
3820 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3821 {
3822 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3823 what it really is. */
3824 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3825 == SIGN_EXTEND)
3826 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3827 SUBREG_REG (*split)));
3828 else
3829 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3830 SUBREG_REG (*split)));
3831 }
3832 #endif
3833
3834 /* Attempt to split binary operators using arithmetic identities. */
3835 if (BINARY_P (SET_SRC (newpat))
3836 && split_mode == GET_MODE (SET_SRC (newpat))
3837 && ! side_effects_p (SET_SRC (newpat)))
3838 {
3839 rtx setsrc = SET_SRC (newpat);
3840 machine_mode mode = GET_MODE (setsrc);
3841 enum rtx_code code = GET_CODE (setsrc);
3842 rtx src_op0 = XEXP (setsrc, 0);
3843 rtx src_op1 = XEXP (setsrc, 1);
3844
3845 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3846 if (rtx_equal_p (src_op0, src_op1))
3847 {
3848 newi2pat = gen_rtx_SET (newdest, src_op0);
3849 SUBST (XEXP (setsrc, 0), newdest);
3850 SUBST (XEXP (setsrc, 1), newdest);
3851 subst_done = true;
3852 }
3853 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3854 else if ((code == PLUS || code == MULT)
3855 && GET_CODE (src_op0) == code
3856 && GET_CODE (XEXP (src_op0, 0)) == code
3857 && (INTEGRAL_MODE_P (mode)
3858 || (FLOAT_MODE_P (mode)
3859 && flag_unsafe_math_optimizations)))
3860 {
3861 rtx p = XEXP (XEXP (src_op0, 0), 0);
3862 rtx q = XEXP (XEXP (src_op0, 0), 1);
3863 rtx r = XEXP (src_op0, 1);
3864 rtx s = src_op1;
3865
3866 /* Split both "((X op Y) op X) op Y" and
3867 "((X op Y) op Y) op X" as "T op T" where T is
3868 "X op Y". */
3869 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3870 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3871 {
3872 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3873 SUBST (XEXP (setsrc, 0), newdest);
3874 SUBST (XEXP (setsrc, 1), newdest);
3875 subst_done = true;
3876 }
3877 /* Split "((X op X) op Y) op Y)" as "T op T" where
3878 T is "X op Y". */
3879 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3880 {
3881 rtx tmp = simplify_gen_binary (code, mode, p, r);
3882 newi2pat = gen_rtx_SET (newdest, tmp);
3883 SUBST (XEXP (setsrc, 0), newdest);
3884 SUBST (XEXP (setsrc, 1), newdest);
3885 subst_done = true;
3886 }
3887 }
3888 }
3889
3890 if (!subst_done)
3891 {
3892 newi2pat = gen_rtx_SET (newdest, *split);
3893 SUBST (*split, newdest);
3894 }
3895
3896 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3897
3898 /* recog_for_combine might have added CLOBBERs to newi2pat.
3899 Make sure NEWPAT does not depend on the clobbered regs. */
3900 if (GET_CODE (newi2pat) == PARALLEL)
3901 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3902 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3903 {
3904 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3905 if (reg_overlap_mentioned_p (reg, newpat))
3906 {
3907 undo_all ();
3908 return 0;
3909 }
3910 }
3911
3912 /* If the split point was a MULT and we didn't have one before,
3913 don't use one now. */
3914 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3915 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3916 }
3917 }
3918
3919 /* Check for a case where we loaded from memory in a narrow mode and
3920 then sign extended it, but we need both registers. In that case,
3921 we have a PARALLEL with both loads from the same memory location.
3922 We can split this into a load from memory followed by a register-register
3923 copy. This saves at least one insn, more if register allocation can
3924 eliminate the copy.
3925
3926 We cannot do this if the destination of the first assignment is a
3927 condition code register or cc0. We eliminate this case by making sure
3928 the SET_DEST and SET_SRC have the same mode.
3929
3930 We cannot do this if the destination of the second assignment is
3931 a register that we have already assumed is zero-extended. Similarly
3932 for a SUBREG of such a register. */
3933
3934 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3935 && GET_CODE (newpat) == PARALLEL
3936 && XVECLEN (newpat, 0) == 2
3937 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3938 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3939 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3940 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3941 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3942 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3943 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3944 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3945 DF_INSN_LUID (i2))
3946 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3947 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3948 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3949 (REG_P (temp_expr)
3950 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3951 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3952 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3953 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3954 != GET_MODE_MASK (word_mode))))
3955 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3956 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3957 (REG_P (temp_expr)
3958 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3959 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3960 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3961 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3962 != GET_MODE_MASK (word_mode)))))
3963 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3964 SET_SRC (XVECEXP (newpat, 0, 1)))
3965 && ! find_reg_note (i3, REG_UNUSED,
3966 SET_DEST (XVECEXP (newpat, 0, 0))))
3967 {
3968 rtx ni2dest;
3969
3970 newi2pat = XVECEXP (newpat, 0, 0);
3971 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3972 newpat = XVECEXP (newpat, 0, 1);
3973 SUBST (SET_SRC (newpat),
3974 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3975 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3976
3977 if (i2_code_number >= 0)
3978 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3979
3980 if (insn_code_number >= 0)
3981 swap_i2i3 = 1;
3982 }
3983
3984 /* Similarly, check for a case where we have a PARALLEL of two independent
3985 SETs but we started with three insns. In this case, we can do the sets
3986 as two separate insns. This case occurs when some SET allows two
3987 other insns to combine, but the destination of that SET is still live.
3988
3989 Also do this if we started with two insns and (at least) one of the
3990 resulting sets is a noop; this noop will be deleted later. */
3991
3992 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3993 && GET_CODE (newpat) == PARALLEL
3994 && XVECLEN (newpat, 0) == 2
3995 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3996 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3997 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3998 || set_noop_p (XVECEXP (newpat, 0, 1)))
3999 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
4000 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
4001 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4002 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4003 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4004 XVECEXP (newpat, 0, 0))
4005 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
4006 XVECEXP (newpat, 0, 1))
4007 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
4008 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
4009 {
4010 rtx set0 = XVECEXP (newpat, 0, 0);
4011 rtx set1 = XVECEXP (newpat, 0, 1);
4012
4013 /* Normally, it doesn't matter which of the two is done first,
4014 but the one that references cc0 can't be the second, and
4015 one which uses any regs/memory set in between i2 and i3 can't
4016 be first. The PARALLEL might also have been pre-existing in i3,
4017 so we need to make sure that we won't wrongly hoist a SET to i2
4018 that would conflict with a death note present in there. */
4019 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
4020 && !(REG_P (SET_DEST (set1))
4021 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4022 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4023 && find_reg_note (i2, REG_DEAD,
4024 SUBREG_REG (SET_DEST (set1))))
4025 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
4026 /* If I3 is a jump, ensure that set0 is a jump so that
4027 we do not create invalid RTL. */
4028 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4029 )
4030 {
4031 newi2pat = set1;
4032 newpat = set0;
4033 }
4034 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
4035 && !(REG_P (SET_DEST (set0))
4036 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4037 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4038 && find_reg_note (i2, REG_DEAD,
4039 SUBREG_REG (SET_DEST (set0))))
4040 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
4041 /* If I3 is a jump, ensure that set1 is a jump so that
4042 we do not create invalid RTL. */
4043 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4044 )
4045 {
4046 newi2pat = set0;
4047 newpat = set1;
4048 }
4049 else
4050 {
4051 undo_all ();
4052 return 0;
4053 }
4054
4055 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4056
4057 if (i2_code_number >= 0)
4058 {
4059 /* recog_for_combine might have added CLOBBERs to newi2pat.
4060 Make sure NEWPAT does not depend on the clobbered regs. */
4061 if (GET_CODE (newi2pat) == PARALLEL)
4062 {
4063 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4064 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4065 {
4066 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4067 if (reg_overlap_mentioned_p (reg, newpat))
4068 {
4069 undo_all ();
4070 return 0;
4071 }
4072 }
4073 }
4074
4075 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4076 }
4077 }
4078
4079 /* If it still isn't recognized, fail and change things back the way they
4080 were. */
4081 if ((insn_code_number < 0
4082 /* Is the result a reasonable ASM_OPERANDS? */
4083 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4084 {
4085 undo_all ();
4086 return 0;
4087 }
4088
4089 /* If we had to change another insn, make sure it is valid also. */
4090 if (undobuf.other_insn)
4091 {
4092 CLEAR_HARD_REG_SET (newpat_used_regs);
4093
4094 other_pat = PATTERN (undobuf.other_insn);
4095 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4096 &new_other_notes);
4097
4098 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4099 {
4100 undo_all ();
4101 return 0;
4102 }
4103 }
4104
4105 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4106 they are adjacent to each other or not. */
4107 if (HAVE_cc0)
4108 {
4109 rtx_insn *p = prev_nonnote_insn (i3);
4110 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4111 && sets_cc0_p (newi2pat))
4112 {
4113 undo_all ();
4114 return 0;
4115 }
4116 }
4117
4118 /* Only allow this combination if insn_rtx_costs reports that the
4119 replacement instructions are cheaper than the originals. */
4120 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4121 {
4122 undo_all ();
4123 return 0;
4124 }
4125
4126 auto_bitmap new_regs_in_i2;
4127 if (newi2pat)
4128 {
4129 /* We need to discover situations where we introduce a use of a
4130 register into I2, where none of the existing LOG_LINKS contain
4131 a reference to it. This can happen if previously I3 referenced
4132 the reg, and there is an additional use between I2 and I3. We
4133 must remove the LOG_LINKS entry from that additional use and
4134 distribute it along with our own ones. */
4135 note_uses (&newi2pat, record_used_regs, (bitmap)new_regs_in_i2);
4136 bitmap_and_compl_into (new_regs_in_i2, i2_regset);
4137 bitmap_and_compl_into (new_regs_in_i2, links_regset);
4138
4139 /* Here, we first look for situations where a hard register use
4140 moved, and just give up. This should happen approximately
4141 never, and it's not worth it to deal with possibilities like
4142 multi-word registers. Later, when fixing up LOG_LINKS, we
4143 deal with the case where a pseudo use moved. */
4144 if (!bitmap_empty_p (new_regs_in_i2)
4145 && prev_nonnote_insn (i3) != i2
4146 && bitmap_first_set_bit (new_regs_in_i2) < FIRST_PSEUDO_REGISTER)
4147 {
4148 undo_all ();
4149 return 0;
4150 }
4151 }
4152
4153 if (MAY_HAVE_DEBUG_INSNS)
4154 {
4155 struct undo *undo;
4156
4157 for (undo = undobuf.undos; undo; undo = undo->next)
4158 if (undo->kind == UNDO_MODE)
4159 {
4160 rtx reg = *undo->where.r;
4161 machine_mode new_mode = GET_MODE (reg);
4162 machine_mode old_mode = undo->old_contents.m;
4163
4164 /* Temporarily revert mode back. */
4165 adjust_reg_mode (reg, old_mode);
4166
4167 if (reg == i2dest && i2scratch)
4168 {
4169 /* If we used i2dest as a scratch register with a
4170 different mode, substitute it for the original
4171 i2src while its original mode is temporarily
4172 restored, and then clear i2scratch so that we don't
4173 do it again later. */
4174 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4175 this_basic_block);
4176 i2scratch = false;
4177 /* Put back the new mode. */
4178 adjust_reg_mode (reg, new_mode);
4179 }
4180 else
4181 {
4182 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4183 rtx_insn *first, *last;
4184
4185 if (reg == i2dest)
4186 {
4187 first = i2;
4188 last = last_combined_insn;
4189 }
4190 else
4191 {
4192 first = i3;
4193 last = undobuf.other_insn;
4194 gcc_assert (last);
4195 if (DF_INSN_LUID (last)
4196 < DF_INSN_LUID (last_combined_insn))
4197 last = last_combined_insn;
4198 }
4199
4200 /* We're dealing with a reg that changed mode but not
4201 meaning, so we want to turn it into a subreg for
4202 the new mode. However, because of REG sharing and
4203 because its mode had already changed, we have to do
4204 it in two steps. First, replace any debug uses of
4205 reg, with its original mode temporarily restored,
4206 with this copy we have created; then, replace the
4207 copy with the SUBREG of the original shared reg,
4208 once again changed to the new mode. */
4209 propagate_for_debug (first, last, reg, tempreg,
4210 this_basic_block);
4211 adjust_reg_mode (reg, new_mode);
4212 propagate_for_debug (first, last, tempreg,
4213 lowpart_subreg (old_mode, reg, new_mode),
4214 this_basic_block);
4215 }
4216 }
4217 }
4218
4219 /* If we will be able to accept this, we have made a
4220 change to the destination of I3. This requires us to
4221 do a few adjustments. */
4222
4223 if (changed_i3_dest)
4224 {
4225 PATTERN (i3) = newpat;
4226 adjust_for_new_dest (i3);
4227 }
4228
4229 /* We now know that we can do this combination. Merge the insns and
4230 update the status of registers and LOG_LINKS. */
4231
4232 if (undobuf.other_insn)
4233 {
4234 rtx note, next;
4235
4236 PATTERN (undobuf.other_insn) = other_pat;
4237
4238 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4239 ensure that they are still valid. Then add any non-duplicate
4240 notes added by recog_for_combine. */
4241 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4242 {
4243 next = XEXP (note, 1);
4244
4245 if ((REG_NOTE_KIND (note) == REG_DEAD
4246 && !reg_referenced_p (XEXP (note, 0),
4247 PATTERN (undobuf.other_insn)))
4248 ||(REG_NOTE_KIND (note) == REG_UNUSED
4249 && !reg_set_p (XEXP (note, 0),
4250 PATTERN (undobuf.other_insn)))
4251 /* Simply drop equal note since it may be no longer valid
4252 for other_insn. It may be possible to record that CC
4253 register is changed and only discard those notes, but
4254 in practice it's unnecessary complication and doesn't
4255 give any meaningful improvement.
4256
4257 See PR78559. */
4258 || REG_NOTE_KIND (note) == REG_EQUAL
4259 || REG_NOTE_KIND (note) == REG_EQUIV)
4260 remove_note (undobuf.other_insn, note);
4261 }
4262
4263 distribute_notes (new_other_notes, undobuf.other_insn,
4264 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4265 NULL_RTX);
4266 }
4267
4268 if (swap_i2i3)
4269 {
4270 rtx_insn *insn;
4271 struct insn_link *link;
4272 rtx ni2dest;
4273
4274 /* I3 now uses what used to be its destination and which is now
4275 I2's destination. This requires us to do a few adjustments. */
4276 PATTERN (i3) = newpat;
4277 adjust_for_new_dest (i3);
4278
4279 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4280 so we still will.
4281
4282 However, some later insn might be using I2's dest and have
4283 a LOG_LINK pointing at I3. We must remove this link.
4284 The simplest way to remove the link is to point it at I1,
4285 which we know will be a NOTE. */
4286
4287 /* newi2pat is usually a SET here; however, recog_for_combine might
4288 have added some clobbers. */
4289 if (GET_CODE (newi2pat) == PARALLEL)
4290 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4291 else
4292 ni2dest = SET_DEST (newi2pat);
4293
4294 for (insn = NEXT_INSN (i3);
4295 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4296 || insn != BB_HEAD (this_basic_block->next_bb));
4297 insn = NEXT_INSN (insn))
4298 {
4299 if (NONDEBUG_INSN_P (insn)
4300 && reg_referenced_p (ni2dest, PATTERN (insn)))
4301 {
4302 FOR_EACH_LOG_LINK (link, insn)
4303 if (link->insn == i3)
4304 link->insn = i1;
4305
4306 break;
4307 }
4308 }
4309 }
4310
4311 {
4312 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4313 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4314 rtx midnotes = 0;
4315 int from_luid;
4316 /* Compute which registers we expect to eliminate. newi2pat may be setting
4317 either i3dest or i2dest, so we must check it. */
4318 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4319 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4320 || !i2dest_killed
4321 ? 0 : i2dest);
4322 /* For i1, we need to compute both local elimination and global
4323 elimination information with respect to newi2pat because i1dest
4324 may be the same as i3dest, in which case newi2pat may be setting
4325 i1dest. Global information is used when distributing REG_DEAD
4326 note for i2 and i3, in which case it does matter if newi2pat sets
4327 i1dest or not.
4328
4329 Local information is used when distributing REG_DEAD note for i1,
4330 in which case it doesn't matter if newi2pat sets i1dest or not.
4331 See PR62151, if we have four insns combination:
4332 i0: r0 <- i0src
4333 i1: r1 <- i1src (using r0)
4334 REG_DEAD (r0)
4335 i2: r0 <- i2src (using r1)
4336 i3: r3 <- i3src (using r0)
4337 ix: using r0
4338 From i1's point of view, r0 is eliminated, no matter if it is set
4339 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4340 should be discarded.
4341
4342 Note local information only affects cases in forms like "I1->I2->I3",
4343 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4344 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4345 i0dest anyway. */
4346 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4347 || !i1dest_killed
4348 ? 0 : i1dest);
4349 rtx elim_i1 = (local_elim_i1 == 0
4350 || (newi2pat && reg_set_p (i1dest, newi2pat))
4351 ? 0 : i1dest);
4352 /* Same case as i1. */
4353 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4354 ? 0 : i0dest);
4355 rtx elim_i0 = (local_elim_i0 == 0
4356 || (newi2pat && reg_set_p (i0dest, newi2pat))
4357 ? 0 : i0dest);
4358
4359 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4360 clear them. */
4361 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4362 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4363 if (i1)
4364 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4365 if (i0)
4366 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4367
4368 /* Ensure that we do not have something that should not be shared but
4369 occurs multiple times in the new insns. Check this by first
4370 resetting all the `used' flags and then copying anything is shared. */
4371
4372 reset_used_flags (i3notes);
4373 reset_used_flags (i2notes);
4374 reset_used_flags (i1notes);
4375 reset_used_flags (i0notes);
4376 reset_used_flags (newpat);
4377 reset_used_flags (newi2pat);
4378 if (undobuf.other_insn)
4379 reset_used_flags (PATTERN (undobuf.other_insn));
4380
4381 i3notes = copy_rtx_if_shared (i3notes);
4382 i2notes = copy_rtx_if_shared (i2notes);
4383 i1notes = copy_rtx_if_shared (i1notes);
4384 i0notes = copy_rtx_if_shared (i0notes);
4385 newpat = copy_rtx_if_shared (newpat);
4386 newi2pat = copy_rtx_if_shared (newi2pat);
4387 if (undobuf.other_insn)
4388 reset_used_flags (PATTERN (undobuf.other_insn));
4389
4390 INSN_CODE (i3) = insn_code_number;
4391 PATTERN (i3) = newpat;
4392
4393 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4394 {
4395 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4396 link = XEXP (link, 1))
4397 {
4398 if (substed_i2)
4399 {
4400 /* I2SRC must still be meaningful at this point. Some
4401 splitting operations can invalidate I2SRC, but those
4402 operations do not apply to calls. */
4403 gcc_assert (i2src);
4404 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4405 i2dest, i2src);
4406 }
4407 if (substed_i1)
4408 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4409 i1dest, i1src);
4410 if (substed_i0)
4411 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4412 i0dest, i0src);
4413 }
4414 }
4415
4416 if (undobuf.other_insn)
4417 INSN_CODE (undobuf.other_insn) = other_code_number;
4418
4419 /* We had one special case above where I2 had more than one set and
4420 we replaced a destination of one of those sets with the destination
4421 of I3. In that case, we have to update LOG_LINKS of insns later
4422 in this basic block. Note that this (expensive) case is rare.
4423
4424 Also, in this case, we must pretend that all REG_NOTEs for I2
4425 actually came from I3, so that REG_UNUSED notes from I2 will be
4426 properly handled. */
4427
4428 if (i3_subst_into_i2)
4429 {
4430 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4431 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4432 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4433 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4434 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4435 && ! find_reg_note (i2, REG_UNUSED,
4436 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4437 for (temp_insn = NEXT_INSN (i2);
4438 temp_insn
4439 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4440 || BB_HEAD (this_basic_block) != temp_insn);
4441 temp_insn = NEXT_INSN (temp_insn))
4442 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4443 FOR_EACH_LOG_LINK (link, temp_insn)
4444 if (link->insn == i2)
4445 link->insn = i3;
4446
4447 if (i3notes)
4448 {
4449 rtx link = i3notes;
4450 while (XEXP (link, 1))
4451 link = XEXP (link, 1);
4452 XEXP (link, 1) = i2notes;
4453 }
4454 else
4455 i3notes = i2notes;
4456 i2notes = 0;
4457 }
4458
4459 LOG_LINKS (i3) = NULL;
4460 REG_NOTES (i3) = 0;
4461 LOG_LINKS (i2) = NULL;
4462 REG_NOTES (i2) = 0;
4463
4464 if (newi2pat)
4465 {
4466 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4467 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4468 this_basic_block);
4469 INSN_CODE (i2) = i2_code_number;
4470 PATTERN (i2) = newi2pat;
4471 }
4472 else
4473 {
4474 if (MAY_HAVE_DEBUG_INSNS && i2src)
4475 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4476 this_basic_block);
4477 SET_INSN_DELETED (i2);
4478 }
4479
4480 if (i1)
4481 {
4482 LOG_LINKS (i1) = NULL;
4483 REG_NOTES (i1) = 0;
4484 if (MAY_HAVE_DEBUG_INSNS)
4485 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4486 this_basic_block);
4487 SET_INSN_DELETED (i1);
4488 }
4489
4490 if (i0)
4491 {
4492 LOG_LINKS (i0) = NULL;
4493 REG_NOTES (i0) = 0;
4494 if (MAY_HAVE_DEBUG_INSNS)
4495 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4496 this_basic_block);
4497 SET_INSN_DELETED (i0);
4498 }
4499
4500 /* Get death notes for everything that is now used in either I3 or
4501 I2 and used to die in a previous insn. If we built two new
4502 patterns, move from I1 to I2 then I2 to I3 so that we get the
4503 proper movement on registers that I2 modifies. */
4504
4505 if (i0)
4506 from_luid = DF_INSN_LUID (i0);
4507 else if (i1)
4508 from_luid = DF_INSN_LUID (i1);
4509 else
4510 from_luid = DF_INSN_LUID (i2);
4511 if (newi2pat)
4512 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4513 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4514
4515 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4516 if (i3notes)
4517 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4518 elim_i2, elim_i1, elim_i0);
4519 if (i2notes)
4520 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4521 elim_i2, elim_i1, elim_i0);
4522 if (i1notes)
4523 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4524 elim_i2, local_elim_i1, local_elim_i0);
4525 if (i0notes)
4526 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4527 elim_i2, elim_i1, local_elim_i0);
4528 if (midnotes)
4529 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4530 elim_i2, elim_i1, elim_i0);
4531
4532 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4533 know these are REG_UNUSED and want them to go to the desired insn,
4534 so we always pass it as i3. */
4535
4536 if (newi2pat && new_i2_notes)
4537 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4538 NULL_RTX);
4539
4540 if (new_i3_notes)
4541 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4542 NULL_RTX);
4543
4544 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4545 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4546 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4547 in that case, it might delete I2. Similarly for I2 and I1.
4548 Show an additional death due to the REG_DEAD note we make here. If
4549 we discard it in distribute_notes, we will decrement it again. */
4550
4551 if (i3dest_killed)
4552 {
4553 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4554 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4555 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4556 elim_i1, elim_i0);
4557 else
4558 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4559 elim_i2, elim_i1, elim_i0);
4560 }
4561
4562 if (i2dest_in_i2src)
4563 {
4564 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4565 if (newi2pat && reg_set_p (i2dest, newi2pat))
4566 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4567 NULL_RTX, NULL_RTX);
4568 else
4569 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4570 NULL_RTX, NULL_RTX, NULL_RTX);
4571 }
4572
4573 if (i1dest_in_i1src)
4574 {
4575 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4576 if (newi2pat && reg_set_p (i1dest, newi2pat))
4577 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4578 NULL_RTX, NULL_RTX);
4579 else
4580 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4581 NULL_RTX, NULL_RTX, NULL_RTX);
4582 }
4583
4584 if (i0dest_in_i0src)
4585 {
4586 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4587 if (newi2pat && reg_set_p (i0dest, newi2pat))
4588 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4589 NULL_RTX, NULL_RTX);
4590 else
4591 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4592 NULL_RTX, NULL_RTX, NULL_RTX);
4593 }
4594
4595 if (newi2pat)
4596 {
4597 bitmap_iterator iter;
4598 unsigned int i;
4599
4600 /* See comments above where we calculate the bitmap. */
4601 EXECUTE_IF_SET_IN_BITMAP ((bitmap)new_regs_in_i2,
4602 LAST_VIRTUAL_REGISTER, i, iter)
4603 {
4604 rtx reg = regno_reg_rtx[i];
4605 rtx_insn *other;
4606 for (other = NEXT_INSN (i2); other != i3; other = NEXT_INSN (other))
4607 if (NONDEBUG_INSN_P (other)
4608 && (reg_overlap_mentioned_p (reg, PATTERN (other))
4609 || (CALL_P (other) && find_reg_fusage (other, USE, reg))))
4610 {
4611 if (dump_file)
4612 fprintf (dump_file,
4613 "found extra use of reg %d at insn %d\n", i,
4614 INSN_UID (other));
4615 insn_link **plink;
4616 for (plink = &LOG_LINKS (other);
4617 *plink;
4618 plink = &(*plink)->next)
4619 {
4620 insn_link *link = *plink;
4621 if (link->regno == i)
4622 {
4623 *plink = link->next;
4624 link->next = i3links;
4625 i3links = link;
4626 break;
4627 }
4628 }
4629 break;
4630 }
4631 }
4632 }
4633
4634 distribute_links (i3links);
4635 distribute_links (i2links);
4636 distribute_links (i1links);
4637 distribute_links (i0links);
4638
4639 if (REG_P (i2dest))
4640 {
4641 struct insn_link *link;
4642 rtx_insn *i2_insn = 0;
4643 rtx i2_val = 0, set;
4644
4645 /* The insn that used to set this register doesn't exist, and
4646 this life of the register may not exist either. See if one of
4647 I3's links points to an insn that sets I2DEST. If it does,
4648 that is now the last known value for I2DEST. If we don't update
4649 this and I2 set the register to a value that depended on its old
4650 contents, we will get confused. If this insn is used, thing
4651 will be set correctly in combine_instructions. */
4652 FOR_EACH_LOG_LINK (link, i3)
4653 if ((set = single_set (link->insn)) != 0
4654 && rtx_equal_p (i2dest, SET_DEST (set)))
4655 i2_insn = link->insn, i2_val = SET_SRC (set);
4656
4657 record_value_for_reg (i2dest, i2_insn, i2_val);
4658
4659 /* If the reg formerly set in I2 died only once and that was in I3,
4660 zero its use count so it won't make `reload' do any work. */
4661 if (! added_sets_2
4662 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4663 && ! i2dest_in_i2src
4664 && REGNO (i2dest) < reg_n_sets_max)
4665 INC_REG_N_SETS (REGNO (i2dest), -1);
4666 }
4667
4668 if (i1 && REG_P (i1dest))
4669 {
4670 struct insn_link *link;
4671 rtx_insn *i1_insn = 0;
4672 rtx i1_val = 0, set;
4673
4674 FOR_EACH_LOG_LINK (link, i3)
4675 if ((set = single_set (link->insn)) != 0
4676 && rtx_equal_p (i1dest, SET_DEST (set)))
4677 i1_insn = link->insn, i1_val = SET_SRC (set);
4678
4679 record_value_for_reg (i1dest, i1_insn, i1_val);
4680
4681 if (! added_sets_1
4682 && ! i1dest_in_i1src
4683 && REGNO (i1dest) < reg_n_sets_max)
4684 INC_REG_N_SETS (REGNO (i1dest), -1);
4685 }
4686
4687 if (i0 && REG_P (i0dest))
4688 {
4689 struct insn_link *link;
4690 rtx_insn *i0_insn = 0;
4691 rtx i0_val = 0, set;
4692
4693 FOR_EACH_LOG_LINK (link, i3)
4694 if ((set = single_set (link->insn)) != 0
4695 && rtx_equal_p (i0dest, SET_DEST (set)))
4696 i0_insn = link->insn, i0_val = SET_SRC (set);
4697
4698 record_value_for_reg (i0dest, i0_insn, i0_val);
4699
4700 if (! added_sets_0
4701 && ! i0dest_in_i0src
4702 && REGNO (i0dest) < reg_n_sets_max)
4703 INC_REG_N_SETS (REGNO (i0dest), -1);
4704 }
4705
4706 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4707 been made to this insn. The order is important, because newi2pat
4708 can affect nonzero_bits of newpat. */
4709 if (newi2pat)
4710 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4711 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4712 }
4713
4714 if (undobuf.other_insn != NULL_RTX)
4715 {
4716 if (dump_file)
4717 {
4718 fprintf (dump_file, "modifying other_insn ");
4719 dump_insn_slim (dump_file, undobuf.other_insn);
4720 }
4721 df_insn_rescan (undobuf.other_insn);
4722 }
4723
4724 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4725 {
4726 if (dump_file)
4727 {
4728 fprintf (dump_file, "modifying insn i0 ");
4729 dump_insn_slim (dump_file, i0);
4730 }
4731 df_insn_rescan (i0);
4732 }
4733
4734 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4735 {
4736 if (dump_file)
4737 {
4738 fprintf (dump_file, "modifying insn i1 ");
4739 dump_insn_slim (dump_file, i1);
4740 }
4741 df_insn_rescan (i1);
4742 }
4743
4744 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4745 {
4746 if (dump_file)
4747 {
4748 fprintf (dump_file, "modifying insn i2 ");
4749 dump_insn_slim (dump_file, i2);
4750 }
4751 df_insn_rescan (i2);
4752 }
4753
4754 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4755 {
4756 if (dump_file)
4757 {
4758 fprintf (dump_file, "modifying insn i3 ");
4759 dump_insn_slim (dump_file, i3);
4760 }
4761 df_insn_rescan (i3);
4762 }
4763
4764 /* Set new_direct_jump_p if a new return or simple jump instruction
4765 has been created. Adjust the CFG accordingly. */
4766 if (returnjump_p (i3) || any_uncondjump_p (i3))
4767 {
4768 *new_direct_jump_p = 1;
4769 mark_jump_label (PATTERN (i3), i3, 0);
4770 update_cfg_for_uncondjump (i3);
4771 }
4772
4773 if (undobuf.other_insn != NULL_RTX
4774 && (returnjump_p (undobuf.other_insn)
4775 || any_uncondjump_p (undobuf.other_insn)))
4776 {
4777 *new_direct_jump_p = 1;
4778 update_cfg_for_uncondjump (undobuf.other_insn);
4779 }
4780
4781 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4782 && XEXP (PATTERN (i3), 0) == const1_rtx)
4783 {
4784 basic_block bb = BLOCK_FOR_INSN (i3);
4785 gcc_assert (bb);
4786 remove_edge (split_block (bb, i3));
4787 emit_barrier_after_bb (bb);
4788 *new_direct_jump_p = 1;
4789 }
4790
4791 if (undobuf.other_insn
4792 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4793 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4794 {
4795 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4796 gcc_assert (bb);
4797 remove_edge (split_block (bb, undobuf.other_insn));
4798 emit_barrier_after_bb (bb);
4799 *new_direct_jump_p = 1;
4800 }
4801
4802 /* A noop might also need cleaning up of CFG, if it comes from the
4803 simplification of a jump. */
4804 if (JUMP_P (i3)
4805 && GET_CODE (newpat) == SET
4806 && SET_SRC (newpat) == pc_rtx
4807 && SET_DEST (newpat) == pc_rtx)
4808 {
4809 *new_direct_jump_p = 1;
4810 update_cfg_for_uncondjump (i3);
4811 }
4812
4813 if (undobuf.other_insn != NULL_RTX
4814 && JUMP_P (undobuf.other_insn)
4815 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4816 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4817 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4818 {
4819 *new_direct_jump_p = 1;
4820 update_cfg_for_uncondjump (undobuf.other_insn);
4821 }
4822
4823 combine_successes++;
4824 undo_commit ();
4825
4826 if (added_links_insn
4827 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4828 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4829 return added_links_insn;
4830 else
4831 return newi2pat ? i2 : i3;
4832 }
4833 \f
4834 /* Get a marker for undoing to the current state. */
4835
4836 static void *
4837 get_undo_marker (void)
4838 {
4839 return undobuf.undos;
4840 }
4841
4842 /* Undo the modifications up to the marker. */
4843
4844 static void
4845 undo_to_marker (void *marker)
4846 {
4847 struct undo *undo, *next;
4848
4849 for (undo = undobuf.undos; undo != marker; undo = next)
4850 {
4851 gcc_assert (undo);
4852
4853 next = undo->next;
4854 switch (undo->kind)
4855 {
4856 case UNDO_RTX:
4857 *undo->where.r = undo->old_contents.r;
4858 break;
4859 case UNDO_INT:
4860 *undo->where.i = undo->old_contents.i;
4861 break;
4862 case UNDO_MODE:
4863 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4864 break;
4865 case UNDO_LINKS:
4866 *undo->where.l = undo->old_contents.l;
4867 break;
4868 default:
4869 gcc_unreachable ();
4870 }
4871
4872 undo->next = undobuf.frees;
4873 undobuf.frees = undo;
4874 }
4875
4876 undobuf.undos = (struct undo *) marker;
4877 }
4878
4879 /* Undo all the modifications recorded in undobuf. */
4880
4881 static void
4882 undo_all (void)
4883 {
4884 undo_to_marker (0);
4885 }
4886
4887 /* We've committed to accepting the changes we made. Move all
4888 of the undos to the free list. */
4889
4890 static void
4891 undo_commit (void)
4892 {
4893 struct undo *undo, *next;
4894
4895 for (undo = undobuf.undos; undo; undo = next)
4896 {
4897 next = undo->next;
4898 undo->next = undobuf.frees;
4899 undobuf.frees = undo;
4900 }
4901 undobuf.undos = 0;
4902 }
4903 \f
4904 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4905 where we have an arithmetic expression and return that point. LOC will
4906 be inside INSN.
4907
4908 try_combine will call this function to see if an insn can be split into
4909 two insns. */
4910
4911 static rtx *
4912 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4913 {
4914 rtx x = *loc;
4915 enum rtx_code code = GET_CODE (x);
4916 rtx *split;
4917 unsigned HOST_WIDE_INT len = 0;
4918 HOST_WIDE_INT pos = 0;
4919 int unsignedp = 0;
4920 rtx inner = NULL_RTX;
4921
4922 /* First special-case some codes. */
4923 switch (code)
4924 {
4925 case SUBREG:
4926 #ifdef INSN_SCHEDULING
4927 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4928 point. */
4929 if (MEM_P (SUBREG_REG (x)))
4930 return loc;
4931 #endif
4932 return find_split_point (&SUBREG_REG (x), insn, false);
4933
4934 case MEM:
4935 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4936 using LO_SUM and HIGH. */
4937 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4938 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4939 {
4940 machine_mode address_mode = get_address_mode (x);
4941
4942 SUBST (XEXP (x, 0),
4943 gen_rtx_LO_SUM (address_mode,
4944 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4945 XEXP (x, 0)));
4946 return &XEXP (XEXP (x, 0), 0);
4947 }
4948
4949 /* If we have a PLUS whose second operand is a constant and the
4950 address is not valid, perhaps will can split it up using
4951 the machine-specific way to split large constants. We use
4952 the first pseudo-reg (one of the virtual regs) as a placeholder;
4953 it will not remain in the result. */
4954 if (GET_CODE (XEXP (x, 0)) == PLUS
4955 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4956 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4957 MEM_ADDR_SPACE (x)))
4958 {
4959 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4960 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4961 subst_insn);
4962
4963 /* This should have produced two insns, each of which sets our
4964 placeholder. If the source of the second is a valid address,
4965 we can make put both sources together and make a split point
4966 in the middle. */
4967
4968 if (seq
4969 && NEXT_INSN (seq) != NULL_RTX
4970 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4971 && NONJUMP_INSN_P (seq)
4972 && GET_CODE (PATTERN (seq)) == SET
4973 && SET_DEST (PATTERN (seq)) == reg
4974 && ! reg_mentioned_p (reg,
4975 SET_SRC (PATTERN (seq)))
4976 && NONJUMP_INSN_P (NEXT_INSN (seq))
4977 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4978 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4979 && memory_address_addr_space_p
4980 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4981 MEM_ADDR_SPACE (x)))
4982 {
4983 rtx src1 = SET_SRC (PATTERN (seq));
4984 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4985
4986 /* Replace the placeholder in SRC2 with SRC1. If we can
4987 find where in SRC2 it was placed, that can become our
4988 split point and we can replace this address with SRC2.
4989 Just try two obvious places. */
4990
4991 src2 = replace_rtx (src2, reg, src1);
4992 split = 0;
4993 if (XEXP (src2, 0) == src1)
4994 split = &XEXP (src2, 0);
4995 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4996 && XEXP (XEXP (src2, 0), 0) == src1)
4997 split = &XEXP (XEXP (src2, 0), 0);
4998
4999 if (split)
5000 {
5001 SUBST (XEXP (x, 0), src2);
5002 return split;
5003 }
5004 }
5005
5006 /* If that didn't work, perhaps the first operand is complex and
5007 needs to be computed separately, so make a split point there.
5008 This will occur on machines that just support REG + CONST
5009 and have a constant moved through some previous computation. */
5010
5011 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
5012 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5013 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5014 return &XEXP (XEXP (x, 0), 0);
5015 }
5016
5017 /* If we have a PLUS whose first operand is complex, try computing it
5018 separately by making a split there. */
5019 if (GET_CODE (XEXP (x, 0)) == PLUS
5020 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5021 MEM_ADDR_SPACE (x))
5022 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
5023 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5024 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5025 return &XEXP (XEXP (x, 0), 0);
5026 break;
5027
5028 case SET:
5029 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
5030 ZERO_EXTRACT, the most likely reason why this doesn't match is that
5031 we need to put the operand into a register. So split at that
5032 point. */
5033
5034 if (SET_DEST (x) == cc0_rtx
5035 && GET_CODE (SET_SRC (x)) != COMPARE
5036 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
5037 && !OBJECT_P (SET_SRC (x))
5038 && ! (GET_CODE (SET_SRC (x)) == SUBREG
5039 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
5040 return &SET_SRC (x);
5041
5042 /* See if we can split SET_SRC as it stands. */
5043 split = find_split_point (&SET_SRC (x), insn, true);
5044 if (split && split != &SET_SRC (x))
5045 return split;
5046
5047 /* See if we can split SET_DEST as it stands. */
5048 split = find_split_point (&SET_DEST (x), insn, false);
5049 if (split && split != &SET_DEST (x))
5050 return split;
5051
5052 /* See if this is a bitfield assignment with everything constant. If
5053 so, this is an IOR of an AND, so split it into that. */
5054 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5055 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
5056 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5057 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5058 && CONST_INT_P (SET_SRC (x))
5059 && ((INTVAL (XEXP (SET_DEST (x), 1))
5060 + INTVAL (XEXP (SET_DEST (x), 2)))
5061 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
5062 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5063 {
5064 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5065 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5066 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
5067 rtx dest = XEXP (SET_DEST (x), 0);
5068 machine_mode mode = GET_MODE (dest);
5069 unsigned HOST_WIDE_INT mask
5070 = (HOST_WIDE_INT_1U << len) - 1;
5071 rtx or_mask;
5072
5073 if (BITS_BIG_ENDIAN)
5074 pos = GET_MODE_PRECISION (mode) - len - pos;
5075
5076 or_mask = gen_int_mode (src << pos, mode);
5077 if (src == mask)
5078 SUBST (SET_SRC (x),
5079 simplify_gen_binary (IOR, mode, dest, or_mask));
5080 else
5081 {
5082 rtx negmask = gen_int_mode (~(mask << pos), mode);
5083 SUBST (SET_SRC (x),
5084 simplify_gen_binary (IOR, mode,
5085 simplify_gen_binary (AND, mode,
5086 dest, negmask),
5087 or_mask));
5088 }
5089
5090 SUBST (SET_DEST (x), dest);
5091
5092 split = find_split_point (&SET_SRC (x), insn, true);
5093 if (split && split != &SET_SRC (x))
5094 return split;
5095 }
5096
5097 /* Otherwise, see if this is an operation that we can split into two.
5098 If so, try to split that. */
5099 code = GET_CODE (SET_SRC (x));
5100
5101 switch (code)
5102 {
5103 case AND:
5104 /* If we are AND'ing with a large constant that is only a single
5105 bit and the result is only being used in a context where we
5106 need to know if it is zero or nonzero, replace it with a bit
5107 extraction. This will avoid the large constant, which might
5108 have taken more than one insn to make. If the constant were
5109 not a valid argument to the AND but took only one insn to make,
5110 this is no worse, but if it took more than one insn, it will
5111 be better. */
5112
5113 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5114 && REG_P (XEXP (SET_SRC (x), 0))
5115 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5116 && REG_P (SET_DEST (x))
5117 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5118 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5119 && XEXP (*split, 0) == SET_DEST (x)
5120 && XEXP (*split, 1) == const0_rtx)
5121 {
5122 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5123 XEXP (SET_SRC (x), 0),
5124 pos, NULL_RTX, 1, 1, 0, 0);
5125 if (extraction != 0)
5126 {
5127 SUBST (SET_SRC (x), extraction);
5128 return find_split_point (loc, insn, false);
5129 }
5130 }
5131 break;
5132
5133 case NE:
5134 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5135 is known to be on, this can be converted into a NEG of a shift. */
5136 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5137 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5138 && 1 <= (pos = exact_log2
5139 (nonzero_bits (XEXP (SET_SRC (x), 0),
5140 GET_MODE (XEXP (SET_SRC (x), 0))))))
5141 {
5142 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5143
5144 SUBST (SET_SRC (x),
5145 gen_rtx_NEG (mode,
5146 gen_rtx_LSHIFTRT (mode,
5147 XEXP (SET_SRC (x), 0),
5148 GEN_INT (pos))));
5149
5150 split = find_split_point (&SET_SRC (x), insn, true);
5151 if (split && split != &SET_SRC (x))
5152 return split;
5153 }
5154 break;
5155
5156 case SIGN_EXTEND:
5157 inner = XEXP (SET_SRC (x), 0);
5158
5159 /* We can't optimize if either mode is a partial integer
5160 mode as we don't know how many bits are significant
5161 in those modes. */
5162 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
5163 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5164 break;
5165
5166 pos = 0;
5167 len = GET_MODE_PRECISION (GET_MODE (inner));
5168 unsignedp = 0;
5169 break;
5170
5171 case SIGN_EXTRACT:
5172 case ZERO_EXTRACT:
5173 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5174 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5175 {
5176 inner = XEXP (SET_SRC (x), 0);
5177 len = INTVAL (XEXP (SET_SRC (x), 1));
5178 pos = INTVAL (XEXP (SET_SRC (x), 2));
5179
5180 if (BITS_BIG_ENDIAN)
5181 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
5182 unsignedp = (code == ZERO_EXTRACT);
5183 }
5184 break;
5185
5186 default:
5187 break;
5188 }
5189
5190 if (len && pos >= 0
5191 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
5192 {
5193 machine_mode mode = GET_MODE (SET_SRC (x));
5194
5195 /* For unsigned, we have a choice of a shift followed by an
5196 AND or two shifts. Use two shifts for field sizes where the
5197 constant might be too large. We assume here that we can
5198 always at least get 8-bit constants in an AND insn, which is
5199 true for every current RISC. */
5200
5201 if (unsignedp && len <= 8)
5202 {
5203 unsigned HOST_WIDE_INT mask
5204 = (HOST_WIDE_INT_1U << len) - 1;
5205 SUBST (SET_SRC (x),
5206 gen_rtx_AND (mode,
5207 gen_rtx_LSHIFTRT
5208 (mode, gen_lowpart (mode, inner),
5209 GEN_INT (pos)),
5210 gen_int_mode (mask, mode)));
5211
5212 split = find_split_point (&SET_SRC (x), insn, true);
5213 if (split && split != &SET_SRC (x))
5214 return split;
5215 }
5216 else
5217 {
5218 SUBST (SET_SRC (x),
5219 gen_rtx_fmt_ee
5220 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5221 gen_rtx_ASHIFT (mode,
5222 gen_lowpart (mode, inner),
5223 GEN_INT (GET_MODE_PRECISION (mode)
5224 - len - pos)),
5225 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5226
5227 split = find_split_point (&SET_SRC (x), insn, true);
5228 if (split && split != &SET_SRC (x))
5229 return split;
5230 }
5231 }
5232
5233 /* See if this is a simple operation with a constant as the second
5234 operand. It might be that this constant is out of range and hence
5235 could be used as a split point. */
5236 if (BINARY_P (SET_SRC (x))
5237 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5238 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5239 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5240 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5241 return &XEXP (SET_SRC (x), 1);
5242
5243 /* Finally, see if this is a simple operation with its first operand
5244 not in a register. The operation might require this operand in a
5245 register, so return it as a split point. We can always do this
5246 because if the first operand were another operation, we would have
5247 already found it as a split point. */
5248 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5249 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5250 return &XEXP (SET_SRC (x), 0);
5251
5252 return 0;
5253
5254 case AND:
5255 case IOR:
5256 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5257 it is better to write this as (not (ior A B)) so we can split it.
5258 Similarly for IOR. */
5259 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5260 {
5261 SUBST (*loc,
5262 gen_rtx_NOT (GET_MODE (x),
5263 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5264 GET_MODE (x),
5265 XEXP (XEXP (x, 0), 0),
5266 XEXP (XEXP (x, 1), 0))));
5267 return find_split_point (loc, insn, set_src);
5268 }
5269
5270 /* Many RISC machines have a large set of logical insns. If the
5271 second operand is a NOT, put it first so we will try to split the
5272 other operand first. */
5273 if (GET_CODE (XEXP (x, 1)) == NOT)
5274 {
5275 rtx tem = XEXP (x, 0);
5276 SUBST (XEXP (x, 0), XEXP (x, 1));
5277 SUBST (XEXP (x, 1), tem);
5278 }
5279 break;
5280
5281 case PLUS:
5282 case MINUS:
5283 /* Canonicalization can produce (minus A (mult B C)), where C is a
5284 constant. It may be better to try splitting (plus (mult B -C) A)
5285 instead if this isn't a multiply by a power of two. */
5286 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5287 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5288 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5289 {
5290 machine_mode mode = GET_MODE (x);
5291 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5292 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5293 SUBST (*loc, gen_rtx_PLUS (mode,
5294 gen_rtx_MULT (mode,
5295 XEXP (XEXP (x, 1), 0),
5296 gen_int_mode (other_int,
5297 mode)),
5298 XEXP (x, 0)));
5299 return find_split_point (loc, insn, set_src);
5300 }
5301
5302 /* Split at a multiply-accumulate instruction. However if this is
5303 the SET_SRC, we likely do not have such an instruction and it's
5304 worthless to try this split. */
5305 if (!set_src
5306 && (GET_CODE (XEXP (x, 0)) == MULT
5307 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5308 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5309 return loc;
5310
5311 default:
5312 break;
5313 }
5314
5315 /* Otherwise, select our actions depending on our rtx class. */
5316 switch (GET_RTX_CLASS (code))
5317 {
5318 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5319 case RTX_TERNARY:
5320 split = find_split_point (&XEXP (x, 2), insn, false);
5321 if (split)
5322 return split;
5323 /* fall through */
5324 case RTX_BIN_ARITH:
5325 case RTX_COMM_ARITH:
5326 case RTX_COMPARE:
5327 case RTX_COMM_COMPARE:
5328 split = find_split_point (&XEXP (x, 1), insn, false);
5329 if (split)
5330 return split;
5331 /* fall through */
5332 case RTX_UNARY:
5333 /* Some machines have (and (shift ...) ...) insns. If X is not
5334 an AND, but XEXP (X, 0) is, use it as our split point. */
5335 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5336 return &XEXP (x, 0);
5337
5338 split = find_split_point (&XEXP (x, 0), insn, false);
5339 if (split)
5340 return split;
5341 return loc;
5342
5343 default:
5344 /* Otherwise, we don't have a split point. */
5345 return 0;
5346 }
5347 }
5348 \f
5349 /* Throughout X, replace FROM with TO, and return the result.
5350 The result is TO if X is FROM;
5351 otherwise the result is X, but its contents may have been modified.
5352 If they were modified, a record was made in undobuf so that
5353 undo_all will (among other things) return X to its original state.
5354
5355 If the number of changes necessary is too much to record to undo,
5356 the excess changes are not made, so the result is invalid.
5357 The changes already made can still be undone.
5358 undobuf.num_undo is incremented for such changes, so by testing that
5359 the caller can tell whether the result is valid.
5360
5361 `n_occurrences' is incremented each time FROM is replaced.
5362
5363 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5364
5365 IN_COND is nonzero if we are at the top level of a condition.
5366
5367 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5368 by copying if `n_occurrences' is nonzero. */
5369
5370 static rtx
5371 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5372 {
5373 enum rtx_code code = GET_CODE (x);
5374 machine_mode op0_mode = VOIDmode;
5375 const char *fmt;
5376 int len, i;
5377 rtx new_rtx;
5378
5379 /* Two expressions are equal if they are identical copies of a shared
5380 RTX or if they are both registers with the same register number
5381 and mode. */
5382
5383 #define COMBINE_RTX_EQUAL_P(X,Y) \
5384 ((X) == (Y) \
5385 || (REG_P (X) && REG_P (Y) \
5386 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5387
5388 /* Do not substitute into clobbers of regs -- this will never result in
5389 valid RTL. */
5390 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5391 return x;
5392
5393 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5394 {
5395 n_occurrences++;
5396 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5397 }
5398
5399 /* If X and FROM are the same register but different modes, they
5400 will not have been seen as equal above. However, the log links code
5401 will make a LOG_LINKS entry for that case. If we do nothing, we
5402 will try to rerecognize our original insn and, when it succeeds,
5403 we will delete the feeding insn, which is incorrect.
5404
5405 So force this insn not to match in this (rare) case. */
5406 if (! in_dest && code == REG && REG_P (from)
5407 && reg_overlap_mentioned_p (x, from))
5408 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5409
5410 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5411 of which may contain things that can be combined. */
5412 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5413 return x;
5414
5415 /* It is possible to have a subexpression appear twice in the insn.
5416 Suppose that FROM is a register that appears within TO.
5417 Then, after that subexpression has been scanned once by `subst',
5418 the second time it is scanned, TO may be found. If we were
5419 to scan TO here, we would find FROM within it and create a
5420 self-referent rtl structure which is completely wrong. */
5421 if (COMBINE_RTX_EQUAL_P (x, to))
5422 return to;
5423
5424 /* Parallel asm_operands need special attention because all of the
5425 inputs are shared across the arms. Furthermore, unsharing the
5426 rtl results in recognition failures. Failure to handle this case
5427 specially can result in circular rtl.
5428
5429 Solve this by doing a normal pass across the first entry of the
5430 parallel, and only processing the SET_DESTs of the subsequent
5431 entries. Ug. */
5432
5433 if (code == PARALLEL
5434 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5435 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5436 {
5437 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5438
5439 /* If this substitution failed, this whole thing fails. */
5440 if (GET_CODE (new_rtx) == CLOBBER
5441 && XEXP (new_rtx, 0) == const0_rtx)
5442 return new_rtx;
5443
5444 SUBST (XVECEXP (x, 0, 0), new_rtx);
5445
5446 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5447 {
5448 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5449
5450 if (!REG_P (dest)
5451 && GET_CODE (dest) != CC0
5452 && GET_CODE (dest) != PC)
5453 {
5454 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5455
5456 /* If this substitution failed, this whole thing fails. */
5457 if (GET_CODE (new_rtx) == CLOBBER
5458 && XEXP (new_rtx, 0) == const0_rtx)
5459 return new_rtx;
5460
5461 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5462 }
5463 }
5464 }
5465 else
5466 {
5467 len = GET_RTX_LENGTH (code);
5468 fmt = GET_RTX_FORMAT (code);
5469
5470 /* We don't need to process a SET_DEST that is a register, CC0,
5471 or PC, so set up to skip this common case. All other cases
5472 where we want to suppress replacing something inside a
5473 SET_SRC are handled via the IN_DEST operand. */
5474 if (code == SET
5475 && (REG_P (SET_DEST (x))
5476 || GET_CODE (SET_DEST (x)) == CC0
5477 || GET_CODE (SET_DEST (x)) == PC))
5478 fmt = "ie";
5479
5480 /* Trying to simplify the operands of a widening MULT is not likely
5481 to create RTL matching a machine insn. */
5482 if (code == MULT
5483 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5484 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5485 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5486 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5487 && REG_P (XEXP (XEXP (x, 0), 0))
5488 && REG_P (XEXP (XEXP (x, 1), 0))
5489 && from == to)
5490 return x;
5491
5492
5493 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5494 constant. */
5495 if (fmt[0] == 'e')
5496 op0_mode = GET_MODE (XEXP (x, 0));
5497
5498 for (i = 0; i < len; i++)
5499 {
5500 if (fmt[i] == 'E')
5501 {
5502 int j;
5503 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5504 {
5505 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5506 {
5507 new_rtx = (unique_copy && n_occurrences
5508 ? copy_rtx (to) : to);
5509 n_occurrences++;
5510 }
5511 else
5512 {
5513 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5514 unique_copy);
5515
5516 /* If this substitution failed, this whole thing
5517 fails. */
5518 if (GET_CODE (new_rtx) == CLOBBER
5519 && XEXP (new_rtx, 0) == const0_rtx)
5520 return new_rtx;
5521 }
5522
5523 SUBST (XVECEXP (x, i, j), new_rtx);
5524 }
5525 }
5526 else if (fmt[i] == 'e')
5527 {
5528 /* If this is a register being set, ignore it. */
5529 new_rtx = XEXP (x, i);
5530 if (in_dest
5531 && i == 0
5532 && (((code == SUBREG || code == ZERO_EXTRACT)
5533 && REG_P (new_rtx))
5534 || code == STRICT_LOW_PART))
5535 ;
5536
5537 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5538 {
5539 /* In general, don't install a subreg involving two
5540 modes not tieable. It can worsen register
5541 allocation, and can even make invalid reload
5542 insns, since the reg inside may need to be copied
5543 from in the outside mode, and that may be invalid
5544 if it is an fp reg copied in integer mode.
5545
5546 We allow two exceptions to this: It is valid if
5547 it is inside another SUBREG and the mode of that
5548 SUBREG and the mode of the inside of TO is
5549 tieable and it is valid if X is a SET that copies
5550 FROM to CC0. */
5551
5552 if (GET_CODE (to) == SUBREG
5553 && ! MODES_TIEABLE_P (GET_MODE (to),
5554 GET_MODE (SUBREG_REG (to)))
5555 && ! (code == SUBREG
5556 && MODES_TIEABLE_P (GET_MODE (x),
5557 GET_MODE (SUBREG_REG (to))))
5558 && (!HAVE_cc0
5559 || (! (code == SET
5560 && i == 1
5561 && XEXP (x, 0) == cc0_rtx))))
5562 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5563
5564 if (code == SUBREG
5565 && REG_P (to)
5566 && REGNO (to) < FIRST_PSEUDO_REGISTER
5567 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5568 SUBREG_BYTE (x),
5569 GET_MODE (x)) < 0)
5570 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5571
5572 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5573 n_occurrences++;
5574 }
5575 else
5576 /* If we are in a SET_DEST, suppress most cases unless we
5577 have gone inside a MEM, in which case we want to
5578 simplify the address. We assume here that things that
5579 are actually part of the destination have their inner
5580 parts in the first expression. This is true for SUBREG,
5581 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5582 things aside from REG and MEM that should appear in a
5583 SET_DEST. */
5584 new_rtx = subst (XEXP (x, i), from, to,
5585 (((in_dest
5586 && (code == SUBREG || code == STRICT_LOW_PART
5587 || code == ZERO_EXTRACT))
5588 || code == SET)
5589 && i == 0),
5590 code == IF_THEN_ELSE && i == 0,
5591 unique_copy);
5592
5593 /* If we found that we will have to reject this combination,
5594 indicate that by returning the CLOBBER ourselves, rather than
5595 an expression containing it. This will speed things up as
5596 well as prevent accidents where two CLOBBERs are considered
5597 to be equal, thus producing an incorrect simplification. */
5598
5599 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5600 return new_rtx;
5601
5602 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5603 {
5604 machine_mode mode = GET_MODE (x);
5605
5606 x = simplify_subreg (GET_MODE (x), new_rtx,
5607 GET_MODE (SUBREG_REG (x)),
5608 SUBREG_BYTE (x));
5609 if (! x)
5610 x = gen_rtx_CLOBBER (mode, const0_rtx);
5611 }
5612 else if (CONST_SCALAR_INT_P (new_rtx)
5613 && GET_CODE (x) == ZERO_EXTEND)
5614 {
5615 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5616 new_rtx, GET_MODE (XEXP (x, 0)));
5617 gcc_assert (x);
5618 }
5619 else
5620 SUBST (XEXP (x, i), new_rtx);
5621 }
5622 }
5623 }
5624
5625 /* Check if we are loading something from the constant pool via float
5626 extension; in this case we would undo compress_float_constant
5627 optimization and degenerate constant load to an immediate value. */
5628 if (GET_CODE (x) == FLOAT_EXTEND
5629 && MEM_P (XEXP (x, 0))
5630 && MEM_READONLY_P (XEXP (x, 0)))
5631 {
5632 rtx tmp = avoid_constant_pool_reference (x);
5633 if (x != tmp)
5634 return x;
5635 }
5636
5637 /* Try to simplify X. If the simplification changed the code, it is likely
5638 that further simplification will help, so loop, but limit the number
5639 of repetitions that will be performed. */
5640
5641 for (i = 0; i < 4; i++)
5642 {
5643 /* If X is sufficiently simple, don't bother trying to do anything
5644 with it. */
5645 if (code != CONST_INT && code != REG && code != CLOBBER)
5646 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5647
5648 if (GET_CODE (x) == code)
5649 break;
5650
5651 code = GET_CODE (x);
5652
5653 /* We no longer know the original mode of operand 0 since we
5654 have changed the form of X) */
5655 op0_mode = VOIDmode;
5656 }
5657
5658 return x;
5659 }
5660 \f
5661 /* If X is a commutative operation whose operands are not in the canonical
5662 order, use substitutions to swap them. */
5663
5664 static void
5665 maybe_swap_commutative_operands (rtx x)
5666 {
5667 if (COMMUTATIVE_ARITH_P (x)
5668 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5669 {
5670 rtx temp = XEXP (x, 0);
5671 SUBST (XEXP (x, 0), XEXP (x, 1));
5672 SUBST (XEXP (x, 1), temp);
5673 }
5674 }
5675
5676 /* Simplify X, a piece of RTL. We just operate on the expression at the
5677 outer level; call `subst' to simplify recursively. Return the new
5678 expression.
5679
5680 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5681 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5682 of a condition. */
5683
5684 static rtx
5685 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5686 int in_cond)
5687 {
5688 enum rtx_code code = GET_CODE (x);
5689 machine_mode mode = GET_MODE (x);
5690 rtx temp;
5691 int i;
5692
5693 /* If this is a commutative operation, put a constant last and a complex
5694 expression first. We don't need to do this for comparisons here. */
5695 maybe_swap_commutative_operands (x);
5696
5697 /* Try to fold this expression in case we have constants that weren't
5698 present before. */
5699 temp = 0;
5700 switch (GET_RTX_CLASS (code))
5701 {
5702 case RTX_UNARY:
5703 if (op0_mode == VOIDmode)
5704 op0_mode = GET_MODE (XEXP (x, 0));
5705 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5706 break;
5707 case RTX_COMPARE:
5708 case RTX_COMM_COMPARE:
5709 {
5710 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5711 if (cmp_mode == VOIDmode)
5712 {
5713 cmp_mode = GET_MODE (XEXP (x, 1));
5714 if (cmp_mode == VOIDmode)
5715 cmp_mode = op0_mode;
5716 }
5717 temp = simplify_relational_operation (code, mode, cmp_mode,
5718 XEXP (x, 0), XEXP (x, 1));
5719 }
5720 break;
5721 case RTX_COMM_ARITH:
5722 case RTX_BIN_ARITH:
5723 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5724 break;
5725 case RTX_BITFIELD_OPS:
5726 case RTX_TERNARY:
5727 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5728 XEXP (x, 1), XEXP (x, 2));
5729 break;
5730 default:
5731 break;
5732 }
5733
5734 if (temp)
5735 {
5736 x = temp;
5737 code = GET_CODE (temp);
5738 op0_mode = VOIDmode;
5739 mode = GET_MODE (temp);
5740 }
5741
5742 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5743 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5744 things. Check for cases where both arms are testing the same
5745 condition.
5746
5747 Don't do anything if all operands are very simple. */
5748
5749 if ((BINARY_P (x)
5750 && ((!OBJECT_P (XEXP (x, 0))
5751 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5752 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5753 || (!OBJECT_P (XEXP (x, 1))
5754 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5755 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5756 || (UNARY_P (x)
5757 && (!OBJECT_P (XEXP (x, 0))
5758 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5759 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5760 {
5761 rtx cond, true_rtx, false_rtx;
5762
5763 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5764 if (cond != 0
5765 /* If everything is a comparison, what we have is highly unlikely
5766 to be simpler, so don't use it. */
5767 && ! (COMPARISON_P (x)
5768 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5769 {
5770 rtx cop1 = const0_rtx;
5771 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5772
5773 if (cond_code == NE && COMPARISON_P (cond))
5774 return x;
5775
5776 /* Simplify the alternative arms; this may collapse the true and
5777 false arms to store-flag values. Be careful to use copy_rtx
5778 here since true_rtx or false_rtx might share RTL with x as a
5779 result of the if_then_else_cond call above. */
5780 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5781 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5782
5783 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5784 is unlikely to be simpler. */
5785 if (general_operand (true_rtx, VOIDmode)
5786 && general_operand (false_rtx, VOIDmode))
5787 {
5788 enum rtx_code reversed;
5789
5790 /* Restarting if we generate a store-flag expression will cause
5791 us to loop. Just drop through in this case. */
5792
5793 /* If the result values are STORE_FLAG_VALUE and zero, we can
5794 just make the comparison operation. */
5795 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5796 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5797 cond, cop1);
5798 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5799 && ((reversed = reversed_comparison_code_parts
5800 (cond_code, cond, cop1, NULL))
5801 != UNKNOWN))
5802 x = simplify_gen_relational (reversed, mode, VOIDmode,
5803 cond, cop1);
5804
5805 /* Likewise, we can make the negate of a comparison operation
5806 if the result values are - STORE_FLAG_VALUE and zero. */
5807 else if (CONST_INT_P (true_rtx)
5808 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5809 && false_rtx == const0_rtx)
5810 x = simplify_gen_unary (NEG, mode,
5811 simplify_gen_relational (cond_code,
5812 mode, VOIDmode,
5813 cond, cop1),
5814 mode);
5815 else if (CONST_INT_P (false_rtx)
5816 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5817 && true_rtx == const0_rtx
5818 && ((reversed = reversed_comparison_code_parts
5819 (cond_code, cond, cop1, NULL))
5820 != UNKNOWN))
5821 x = simplify_gen_unary (NEG, mode,
5822 simplify_gen_relational (reversed,
5823 mode, VOIDmode,
5824 cond, cop1),
5825 mode);
5826 else
5827 return gen_rtx_IF_THEN_ELSE (mode,
5828 simplify_gen_relational (cond_code,
5829 mode,
5830 VOIDmode,
5831 cond,
5832 cop1),
5833 true_rtx, false_rtx);
5834
5835 code = GET_CODE (x);
5836 op0_mode = VOIDmode;
5837 }
5838 }
5839 }
5840
5841 /* First see if we can apply the inverse distributive law. */
5842 if (code == PLUS || code == MINUS
5843 || code == AND || code == IOR || code == XOR)
5844 {
5845 x = apply_distributive_law (x);
5846 code = GET_CODE (x);
5847 op0_mode = VOIDmode;
5848 }
5849
5850 /* If CODE is an associative operation not otherwise handled, see if we
5851 can associate some operands. This can win if they are constants or
5852 if they are logically related (i.e. (a & b) & a). */
5853 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5854 || code == AND || code == IOR || code == XOR
5855 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5856 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5857 || (flag_associative_math && FLOAT_MODE_P (mode))))
5858 {
5859 if (GET_CODE (XEXP (x, 0)) == code)
5860 {
5861 rtx other = XEXP (XEXP (x, 0), 0);
5862 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5863 rtx inner_op1 = XEXP (x, 1);
5864 rtx inner;
5865
5866 /* Make sure we pass the constant operand if any as the second
5867 one if this is a commutative operation. */
5868 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5869 std::swap (inner_op0, inner_op1);
5870 inner = simplify_binary_operation (code == MINUS ? PLUS
5871 : code == DIV ? MULT
5872 : code,
5873 mode, inner_op0, inner_op1);
5874
5875 /* For commutative operations, try the other pair if that one
5876 didn't simplify. */
5877 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5878 {
5879 other = XEXP (XEXP (x, 0), 1);
5880 inner = simplify_binary_operation (code, mode,
5881 XEXP (XEXP (x, 0), 0),
5882 XEXP (x, 1));
5883 }
5884
5885 if (inner)
5886 return simplify_gen_binary (code, mode, other, inner);
5887 }
5888 }
5889
5890 /* A little bit of algebraic simplification here. */
5891 switch (code)
5892 {
5893 case MEM:
5894 /* Ensure that our address has any ASHIFTs converted to MULT in case
5895 address-recognizing predicates are called later. */
5896 temp = make_compound_operation (XEXP (x, 0), MEM);
5897 SUBST (XEXP (x, 0), temp);
5898 break;
5899
5900 case SUBREG:
5901 if (op0_mode == VOIDmode)
5902 op0_mode = GET_MODE (SUBREG_REG (x));
5903
5904 /* See if this can be moved to simplify_subreg. */
5905 if (CONSTANT_P (SUBREG_REG (x))
5906 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5907 /* Don't call gen_lowpart if the inner mode
5908 is VOIDmode and we cannot simplify it, as SUBREG without
5909 inner mode is invalid. */
5910 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5911 || gen_lowpart_common (mode, SUBREG_REG (x))))
5912 return gen_lowpart (mode, SUBREG_REG (x));
5913
5914 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5915 break;
5916 {
5917 rtx temp;
5918 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5919 SUBREG_BYTE (x));
5920 if (temp)
5921 return temp;
5922
5923 /* If op is known to have all lower bits zero, the result is zero. */
5924 if (!in_dest
5925 && SCALAR_INT_MODE_P (mode)
5926 && SCALAR_INT_MODE_P (op0_mode)
5927 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5928 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5929 && HWI_COMPUTABLE_MODE_P (op0_mode)
5930 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5931 & GET_MODE_MASK (mode)) == 0)
5932 return CONST0_RTX (mode);
5933 }
5934
5935 /* Don't change the mode of the MEM if that would change the meaning
5936 of the address. */
5937 if (MEM_P (SUBREG_REG (x))
5938 && (MEM_VOLATILE_P (SUBREG_REG (x))
5939 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5940 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5941 return gen_rtx_CLOBBER (mode, const0_rtx);
5942
5943 /* Note that we cannot do any narrowing for non-constants since
5944 we might have been counting on using the fact that some bits were
5945 zero. We now do this in the SET. */
5946
5947 break;
5948
5949 case NEG:
5950 temp = expand_compound_operation (XEXP (x, 0));
5951
5952 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5953 replaced by (lshiftrt X C). This will convert
5954 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5955
5956 if (GET_CODE (temp) == ASHIFTRT
5957 && CONST_INT_P (XEXP (temp, 1))
5958 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5959 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5960 INTVAL (XEXP (temp, 1)));
5961
5962 /* If X has only a single bit that might be nonzero, say, bit I, convert
5963 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5964 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5965 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5966 or a SUBREG of one since we'd be making the expression more
5967 complex if it was just a register. */
5968
5969 if (!REG_P (temp)
5970 && ! (GET_CODE (temp) == SUBREG
5971 && REG_P (SUBREG_REG (temp)))
5972 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5973 {
5974 rtx temp1 = simplify_shift_const
5975 (NULL_RTX, ASHIFTRT, mode,
5976 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5977 GET_MODE_PRECISION (mode) - 1 - i),
5978 GET_MODE_PRECISION (mode) - 1 - i);
5979
5980 /* If all we did was surround TEMP with the two shifts, we
5981 haven't improved anything, so don't use it. Otherwise,
5982 we are better off with TEMP1. */
5983 if (GET_CODE (temp1) != ASHIFTRT
5984 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5985 || XEXP (XEXP (temp1, 0), 0) != temp)
5986 return temp1;
5987 }
5988 break;
5989
5990 case TRUNCATE:
5991 /* We can't handle truncation to a partial integer mode here
5992 because we don't know the real bitsize of the partial
5993 integer mode. */
5994 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5995 break;
5996
5997 if (HWI_COMPUTABLE_MODE_P (mode))
5998 SUBST (XEXP (x, 0),
5999 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
6000 GET_MODE_MASK (mode), 0));
6001
6002 /* We can truncate a constant value and return it. */
6003 if (CONST_INT_P (XEXP (x, 0)))
6004 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
6005
6006 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
6007 whose value is a comparison can be replaced with a subreg if
6008 STORE_FLAG_VALUE permits. */
6009 if (HWI_COMPUTABLE_MODE_P (mode)
6010 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
6011 && (temp = get_last_value (XEXP (x, 0)))
6012 && COMPARISON_P (temp))
6013 return gen_lowpart (mode, XEXP (x, 0));
6014 break;
6015
6016 case CONST:
6017 /* (const (const X)) can become (const X). Do it this way rather than
6018 returning the inner CONST since CONST can be shared with a
6019 REG_EQUAL note. */
6020 if (GET_CODE (XEXP (x, 0)) == CONST)
6021 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
6022 break;
6023
6024 case LO_SUM:
6025 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
6026 can add in an offset. find_split_point will split this address up
6027 again if it doesn't match. */
6028 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
6029 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6030 return XEXP (x, 1);
6031 break;
6032
6033 case PLUS:
6034 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6035 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6036 bit-field and can be replaced by either a sign_extend or a
6037 sign_extract. The `and' may be a zero_extend and the two
6038 <c>, -<c> constants may be reversed. */
6039 if (GET_CODE (XEXP (x, 0)) == XOR
6040 && CONST_INT_P (XEXP (x, 1))
6041 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6042 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6043 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6044 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6045 && HWI_COMPUTABLE_MODE_P (mode)
6046 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6047 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6048 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6049 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6050 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6051 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
6052 == (unsigned int) i + 1))))
6053 return simplify_shift_const
6054 (NULL_RTX, ASHIFTRT, mode,
6055 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6056 XEXP (XEXP (XEXP (x, 0), 0), 0),
6057 GET_MODE_PRECISION (mode) - (i + 1)),
6058 GET_MODE_PRECISION (mode) - (i + 1));
6059
6060 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6061 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6062 the bitsize of the mode - 1. This allows simplification of
6063 "a = (b & 8) == 0;" */
6064 if (XEXP (x, 1) == constm1_rtx
6065 && !REG_P (XEXP (x, 0))
6066 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6067 && REG_P (SUBREG_REG (XEXP (x, 0))))
6068 && nonzero_bits (XEXP (x, 0), mode) == 1)
6069 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
6070 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6071 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
6072 GET_MODE_PRECISION (mode) - 1),
6073 GET_MODE_PRECISION (mode) - 1);
6074
6075 /* If we are adding two things that have no bits in common, convert
6076 the addition into an IOR. This will often be further simplified,
6077 for example in cases like ((a & 1) + (a & 2)), which can
6078 become a & 3. */
6079
6080 if (HWI_COMPUTABLE_MODE_P (mode)
6081 && (nonzero_bits (XEXP (x, 0), mode)
6082 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6083 {
6084 /* Try to simplify the expression further. */
6085 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6086 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6087
6088 /* If we could, great. If not, do not go ahead with the IOR
6089 replacement, since PLUS appears in many special purpose
6090 address arithmetic instructions. */
6091 if (GET_CODE (temp) != CLOBBER
6092 && (GET_CODE (temp) != IOR
6093 || ((XEXP (temp, 0) != XEXP (x, 0)
6094 || XEXP (temp, 1) != XEXP (x, 1))
6095 && (XEXP (temp, 0) != XEXP (x, 1)
6096 || XEXP (temp, 1) != XEXP (x, 0)))))
6097 return temp;
6098 }
6099
6100 /* Canonicalize x + x into x << 1. */
6101 if (GET_MODE_CLASS (mode) == MODE_INT
6102 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6103 && !side_effects_p (XEXP (x, 0)))
6104 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6105
6106 break;
6107
6108 case MINUS:
6109 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6110 (and <foo> (const_int pow2-1)) */
6111 if (GET_CODE (XEXP (x, 1)) == AND
6112 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6113 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6114 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6115 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
6116 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6117 break;
6118
6119 case MULT:
6120 /* If we have (mult (plus A B) C), apply the distributive law and then
6121 the inverse distributive law to see if things simplify. This
6122 occurs mostly in addresses, often when unrolling loops. */
6123
6124 if (GET_CODE (XEXP (x, 0)) == PLUS)
6125 {
6126 rtx result = distribute_and_simplify_rtx (x, 0);
6127 if (result)
6128 return result;
6129 }
6130
6131 /* Try simplify a*(b/c) as (a*b)/c. */
6132 if (FLOAT_MODE_P (mode) && flag_associative_math
6133 && GET_CODE (XEXP (x, 0)) == DIV)
6134 {
6135 rtx tem = simplify_binary_operation (MULT, mode,
6136 XEXP (XEXP (x, 0), 0),
6137 XEXP (x, 1));
6138 if (tem)
6139 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6140 }
6141 break;
6142
6143 case UDIV:
6144 /* If this is a divide by a power of two, treat it as a shift if
6145 its first operand is a shift. */
6146 if (CONST_INT_P (XEXP (x, 1))
6147 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6148 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6149 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6150 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6151 || GET_CODE (XEXP (x, 0)) == ROTATE
6152 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6153 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
6154 break;
6155
6156 case EQ: case NE:
6157 case GT: case GTU: case GE: case GEU:
6158 case LT: case LTU: case LE: case LEU:
6159 case UNEQ: case LTGT:
6160 case UNGT: case UNGE:
6161 case UNLT: case UNLE:
6162 case UNORDERED: case ORDERED:
6163 /* If the first operand is a condition code, we can't do anything
6164 with it. */
6165 if (GET_CODE (XEXP (x, 0)) == COMPARE
6166 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6167 && ! CC0_P (XEXP (x, 0))))
6168 {
6169 rtx op0 = XEXP (x, 0);
6170 rtx op1 = XEXP (x, 1);
6171 enum rtx_code new_code;
6172
6173 if (GET_CODE (op0) == COMPARE)
6174 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6175
6176 /* Simplify our comparison, if possible. */
6177 new_code = simplify_comparison (code, &op0, &op1);
6178
6179 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6180 if only the low-order bit is possibly nonzero in X (such as when
6181 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6182 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6183 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6184 (plus X 1).
6185
6186 Remove any ZERO_EXTRACT we made when thinking this was a
6187 comparison. It may now be simpler to use, e.g., an AND. If a
6188 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6189 the call to make_compound_operation in the SET case.
6190
6191 Don't apply these optimizations if the caller would
6192 prefer a comparison rather than a value.
6193 E.g., for the condition in an IF_THEN_ELSE most targets need
6194 an explicit comparison. */
6195
6196 if (in_cond)
6197 ;
6198
6199 else if (STORE_FLAG_VALUE == 1
6200 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6201 && op1 == const0_rtx
6202 && mode == GET_MODE (op0)
6203 && nonzero_bits (op0, mode) == 1)
6204 return gen_lowpart (mode,
6205 expand_compound_operation (op0));
6206
6207 else if (STORE_FLAG_VALUE == 1
6208 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6209 && op1 == const0_rtx
6210 && mode == GET_MODE (op0)
6211 && (num_sign_bit_copies (op0, mode)
6212 == GET_MODE_PRECISION (mode)))
6213 {
6214 op0 = expand_compound_operation (op0);
6215 return simplify_gen_unary (NEG, mode,
6216 gen_lowpart (mode, op0),
6217 mode);
6218 }
6219
6220 else if (STORE_FLAG_VALUE == 1
6221 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6222 && op1 == const0_rtx
6223 && mode == GET_MODE (op0)
6224 && nonzero_bits (op0, mode) == 1)
6225 {
6226 op0 = expand_compound_operation (op0);
6227 return simplify_gen_binary (XOR, mode,
6228 gen_lowpart (mode, op0),
6229 const1_rtx);
6230 }
6231
6232 else if (STORE_FLAG_VALUE == 1
6233 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6234 && op1 == const0_rtx
6235 && mode == GET_MODE (op0)
6236 && (num_sign_bit_copies (op0, mode)
6237 == GET_MODE_PRECISION (mode)))
6238 {
6239 op0 = expand_compound_operation (op0);
6240 return plus_constant (mode, gen_lowpart (mode, op0), 1);
6241 }
6242
6243 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6244 those above. */
6245 if (in_cond)
6246 ;
6247
6248 else if (STORE_FLAG_VALUE == -1
6249 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6250 && op1 == const0_rtx
6251 && mode == GET_MODE (op0)
6252 && (num_sign_bit_copies (op0, mode)
6253 == GET_MODE_PRECISION (mode)))
6254 return gen_lowpart (mode,
6255 expand_compound_operation (op0));
6256
6257 else if (STORE_FLAG_VALUE == -1
6258 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6259 && op1 == const0_rtx
6260 && mode == GET_MODE (op0)
6261 && nonzero_bits (op0, mode) == 1)
6262 {
6263 op0 = expand_compound_operation (op0);
6264 return simplify_gen_unary (NEG, mode,
6265 gen_lowpart (mode, op0),
6266 mode);
6267 }
6268
6269 else if (STORE_FLAG_VALUE == -1
6270 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6271 && op1 == const0_rtx
6272 && mode == GET_MODE (op0)
6273 && (num_sign_bit_copies (op0, mode)
6274 == GET_MODE_PRECISION (mode)))
6275 {
6276 op0 = expand_compound_operation (op0);
6277 return simplify_gen_unary (NOT, mode,
6278 gen_lowpart (mode, op0),
6279 mode);
6280 }
6281
6282 /* If X is 0/1, (eq X 0) is X-1. */
6283 else if (STORE_FLAG_VALUE == -1
6284 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6285 && op1 == const0_rtx
6286 && mode == GET_MODE (op0)
6287 && nonzero_bits (op0, mode) == 1)
6288 {
6289 op0 = expand_compound_operation (op0);
6290 return plus_constant (mode, gen_lowpart (mode, op0), -1);
6291 }
6292
6293 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6294 one bit that might be nonzero, we can convert (ne x 0) to
6295 (ashift x c) where C puts the bit in the sign bit. Remove any
6296 AND with STORE_FLAG_VALUE when we are done, since we are only
6297 going to test the sign bit. */
6298 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6299 && HWI_COMPUTABLE_MODE_P (mode)
6300 && val_signbit_p (mode, STORE_FLAG_VALUE)
6301 && op1 == const0_rtx
6302 && mode == GET_MODE (op0)
6303 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6304 {
6305 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6306 expand_compound_operation (op0),
6307 GET_MODE_PRECISION (mode) - 1 - i);
6308 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6309 return XEXP (x, 0);
6310 else
6311 return x;
6312 }
6313
6314 /* If the code changed, return a whole new comparison.
6315 We also need to avoid using SUBST in cases where
6316 simplify_comparison has widened a comparison with a CONST_INT,
6317 since in that case the wider CONST_INT may fail the sanity
6318 checks in do_SUBST. */
6319 if (new_code != code
6320 || (CONST_INT_P (op1)
6321 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6322 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6323 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6324
6325 /* Otherwise, keep this operation, but maybe change its operands.
6326 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6327 SUBST (XEXP (x, 0), op0);
6328 SUBST (XEXP (x, 1), op1);
6329 }
6330 break;
6331
6332 case IF_THEN_ELSE:
6333 return simplify_if_then_else (x);
6334
6335 case ZERO_EXTRACT:
6336 case SIGN_EXTRACT:
6337 case ZERO_EXTEND:
6338 case SIGN_EXTEND:
6339 /* If we are processing SET_DEST, we are done. */
6340 if (in_dest)
6341 return x;
6342
6343 return expand_compound_operation (x);
6344
6345 case SET:
6346 return simplify_set (x);
6347
6348 case AND:
6349 case IOR:
6350 return simplify_logical (x);
6351
6352 case ASHIFT:
6353 case LSHIFTRT:
6354 case ASHIFTRT:
6355 case ROTATE:
6356 case ROTATERT:
6357 /* If this is a shift by a constant amount, simplify it. */
6358 if (CONST_INT_P (XEXP (x, 1)))
6359 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6360 INTVAL (XEXP (x, 1)));
6361
6362 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6363 SUBST (XEXP (x, 1),
6364 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6365 (HOST_WIDE_INT_1U
6366 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6367 - 1,
6368 0));
6369 break;
6370
6371 default:
6372 break;
6373 }
6374
6375 return x;
6376 }
6377 \f
6378 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6379
6380 static rtx
6381 simplify_if_then_else (rtx x)
6382 {
6383 machine_mode mode = GET_MODE (x);
6384 rtx cond = XEXP (x, 0);
6385 rtx true_rtx = XEXP (x, 1);
6386 rtx false_rtx = XEXP (x, 2);
6387 enum rtx_code true_code = GET_CODE (cond);
6388 int comparison_p = COMPARISON_P (cond);
6389 rtx temp;
6390 int i;
6391 enum rtx_code false_code;
6392 rtx reversed;
6393
6394 /* Simplify storing of the truth value. */
6395 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6396 return simplify_gen_relational (true_code, mode, VOIDmode,
6397 XEXP (cond, 0), XEXP (cond, 1));
6398
6399 /* Also when the truth value has to be reversed. */
6400 if (comparison_p
6401 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6402 && (reversed = reversed_comparison (cond, mode)))
6403 return reversed;
6404
6405 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6406 in it is being compared against certain values. Get the true and false
6407 comparisons and see if that says anything about the value of each arm. */
6408
6409 if (comparison_p
6410 && ((false_code = reversed_comparison_code (cond, NULL))
6411 != UNKNOWN)
6412 && REG_P (XEXP (cond, 0)))
6413 {
6414 HOST_WIDE_INT nzb;
6415 rtx from = XEXP (cond, 0);
6416 rtx true_val = XEXP (cond, 1);
6417 rtx false_val = true_val;
6418 int swapped = 0;
6419
6420 /* If FALSE_CODE is EQ, swap the codes and arms. */
6421
6422 if (false_code == EQ)
6423 {
6424 swapped = 1, true_code = EQ, false_code = NE;
6425 std::swap (true_rtx, false_rtx);
6426 }
6427
6428 /* If we are comparing against zero and the expression being tested has
6429 only a single bit that might be nonzero, that is its value when it is
6430 not equal to zero. Similarly if it is known to be -1 or 0. */
6431
6432 if (true_code == EQ && true_val == const0_rtx
6433 && pow2p_hwi (nzb = nonzero_bits (from, GET_MODE (from))))
6434 {
6435 false_code = EQ;
6436 false_val = gen_int_mode (nzb, GET_MODE (from));
6437 }
6438 else if (true_code == EQ && true_val == const0_rtx
6439 && (num_sign_bit_copies (from, GET_MODE (from))
6440 == GET_MODE_PRECISION (GET_MODE (from))))
6441 {
6442 false_code = EQ;
6443 false_val = constm1_rtx;
6444 }
6445
6446 /* Now simplify an arm if we know the value of the register in the
6447 branch and it is used in the arm. Be careful due to the potential
6448 of locally-shared RTL. */
6449
6450 if (reg_mentioned_p (from, true_rtx))
6451 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6452 from, true_val),
6453 pc_rtx, pc_rtx, 0, 0, 0);
6454 if (reg_mentioned_p (from, false_rtx))
6455 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6456 from, false_val),
6457 pc_rtx, pc_rtx, 0, 0, 0);
6458
6459 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6460 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6461
6462 true_rtx = XEXP (x, 1);
6463 false_rtx = XEXP (x, 2);
6464 true_code = GET_CODE (cond);
6465 }
6466
6467 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6468 reversed, do so to avoid needing two sets of patterns for
6469 subtract-and-branch insns. Similarly if we have a constant in the true
6470 arm, the false arm is the same as the first operand of the comparison, or
6471 the false arm is more complicated than the true arm. */
6472
6473 if (comparison_p
6474 && reversed_comparison_code (cond, NULL) != UNKNOWN
6475 && (true_rtx == pc_rtx
6476 || (CONSTANT_P (true_rtx)
6477 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6478 || true_rtx == const0_rtx
6479 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6480 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6481 && !OBJECT_P (false_rtx))
6482 || reg_mentioned_p (true_rtx, false_rtx)
6483 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6484 {
6485 true_code = reversed_comparison_code (cond, NULL);
6486 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6487 SUBST (XEXP (x, 1), false_rtx);
6488 SUBST (XEXP (x, 2), true_rtx);
6489
6490 std::swap (true_rtx, false_rtx);
6491 cond = XEXP (x, 0);
6492
6493 /* It is possible that the conditional has been simplified out. */
6494 true_code = GET_CODE (cond);
6495 comparison_p = COMPARISON_P (cond);
6496 }
6497
6498 /* If the two arms are identical, we don't need the comparison. */
6499
6500 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6501 return true_rtx;
6502
6503 /* Convert a == b ? b : a to "a". */
6504 if (true_code == EQ && ! side_effects_p (cond)
6505 && !HONOR_NANS (mode)
6506 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6507 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6508 return false_rtx;
6509 else if (true_code == NE && ! side_effects_p (cond)
6510 && !HONOR_NANS (mode)
6511 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6512 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6513 return true_rtx;
6514
6515 /* Look for cases where we have (abs x) or (neg (abs X)). */
6516
6517 if (GET_MODE_CLASS (mode) == MODE_INT
6518 && comparison_p
6519 && XEXP (cond, 1) == const0_rtx
6520 && GET_CODE (false_rtx) == NEG
6521 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6522 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6523 && ! side_effects_p (true_rtx))
6524 switch (true_code)
6525 {
6526 case GT:
6527 case GE:
6528 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6529 case LT:
6530 case LE:
6531 return
6532 simplify_gen_unary (NEG, mode,
6533 simplify_gen_unary (ABS, mode, true_rtx, mode),
6534 mode);
6535 default:
6536 break;
6537 }
6538
6539 /* Look for MIN or MAX. */
6540
6541 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6542 && comparison_p
6543 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6544 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6545 && ! side_effects_p (cond))
6546 switch (true_code)
6547 {
6548 case GE:
6549 case GT:
6550 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6551 case LE:
6552 case LT:
6553 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6554 case GEU:
6555 case GTU:
6556 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6557 case LEU:
6558 case LTU:
6559 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6560 default:
6561 break;
6562 }
6563
6564 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6565 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6566 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6567 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6568 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6569 neither 1 or -1, but it isn't worth checking for. */
6570
6571 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6572 && comparison_p
6573 && GET_MODE_CLASS (mode) == MODE_INT
6574 && ! side_effects_p (x))
6575 {
6576 rtx t = make_compound_operation (true_rtx, SET);
6577 rtx f = make_compound_operation (false_rtx, SET);
6578 rtx cond_op0 = XEXP (cond, 0);
6579 rtx cond_op1 = XEXP (cond, 1);
6580 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6581 machine_mode m = mode;
6582 rtx z = 0, c1 = NULL_RTX;
6583
6584 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6585 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6586 || GET_CODE (t) == ASHIFT
6587 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6588 && rtx_equal_p (XEXP (t, 0), f))
6589 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6590
6591 /* If an identity-zero op is commutative, check whether there
6592 would be a match if we swapped the operands. */
6593 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6594 || GET_CODE (t) == XOR)
6595 && rtx_equal_p (XEXP (t, 1), f))
6596 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6597 else if (GET_CODE (t) == SIGN_EXTEND
6598 && (GET_CODE (XEXP (t, 0)) == PLUS
6599 || GET_CODE (XEXP (t, 0)) == MINUS
6600 || GET_CODE (XEXP (t, 0)) == IOR
6601 || GET_CODE (XEXP (t, 0)) == XOR
6602 || GET_CODE (XEXP (t, 0)) == ASHIFT
6603 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6604 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6605 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6606 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6607 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6608 && (num_sign_bit_copies (f, GET_MODE (f))
6609 > (unsigned int)
6610 (GET_MODE_PRECISION (mode)
6611 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6612 {
6613 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6614 extend_op = SIGN_EXTEND;
6615 m = GET_MODE (XEXP (t, 0));
6616 }
6617 else if (GET_CODE (t) == SIGN_EXTEND
6618 && (GET_CODE (XEXP (t, 0)) == PLUS
6619 || GET_CODE (XEXP (t, 0)) == IOR
6620 || GET_CODE (XEXP (t, 0)) == XOR)
6621 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6622 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6623 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6624 && (num_sign_bit_copies (f, GET_MODE (f))
6625 > (unsigned int)
6626 (GET_MODE_PRECISION (mode)
6627 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6628 {
6629 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6630 extend_op = SIGN_EXTEND;
6631 m = GET_MODE (XEXP (t, 0));
6632 }
6633 else if (GET_CODE (t) == ZERO_EXTEND
6634 && (GET_CODE (XEXP (t, 0)) == PLUS
6635 || GET_CODE (XEXP (t, 0)) == MINUS
6636 || GET_CODE (XEXP (t, 0)) == IOR
6637 || GET_CODE (XEXP (t, 0)) == XOR
6638 || GET_CODE (XEXP (t, 0)) == ASHIFT
6639 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6640 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6641 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6642 && HWI_COMPUTABLE_MODE_P (mode)
6643 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6644 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6645 && ((nonzero_bits (f, GET_MODE (f))
6646 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6647 == 0))
6648 {
6649 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6650 extend_op = ZERO_EXTEND;
6651 m = GET_MODE (XEXP (t, 0));
6652 }
6653 else if (GET_CODE (t) == ZERO_EXTEND
6654 && (GET_CODE (XEXP (t, 0)) == PLUS
6655 || GET_CODE (XEXP (t, 0)) == IOR
6656 || GET_CODE (XEXP (t, 0)) == XOR)
6657 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6658 && HWI_COMPUTABLE_MODE_P (mode)
6659 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6660 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6661 && ((nonzero_bits (f, GET_MODE (f))
6662 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6663 == 0))
6664 {
6665 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6666 extend_op = ZERO_EXTEND;
6667 m = GET_MODE (XEXP (t, 0));
6668 }
6669
6670 if (z)
6671 {
6672 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6673 cond_op0, cond_op1),
6674 pc_rtx, pc_rtx, 0, 0, 0);
6675 temp = simplify_gen_binary (MULT, m, temp,
6676 simplify_gen_binary (MULT, m, c1,
6677 const_true_rtx));
6678 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6679 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6680
6681 if (extend_op != UNKNOWN)
6682 temp = simplify_gen_unary (extend_op, mode, temp, m);
6683
6684 return temp;
6685 }
6686 }
6687
6688 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6689 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6690 negation of a single bit, we can convert this operation to a shift. We
6691 can actually do this more generally, but it doesn't seem worth it. */
6692
6693 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6694 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6695 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6696 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6697 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6698 == GET_MODE_PRECISION (mode))
6699 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6700 return
6701 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6702 gen_lowpart (mode, XEXP (cond, 0)), i);
6703
6704 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6705 non-zero bit in A is C1. */
6706 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6707 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6708 && INTEGRAL_MODE_P (GET_MODE (XEXP (cond, 0)))
6709 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6710 == nonzero_bits (XEXP (cond, 0), GET_MODE (XEXP (cond, 0)))
6711 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6712 {
6713 rtx val = XEXP (cond, 0);
6714 enum machine_mode val_mode = GET_MODE (val);
6715 if (val_mode == mode)
6716 return val;
6717 else if (GET_MODE_PRECISION (val_mode) < GET_MODE_PRECISION (mode))
6718 return simplify_gen_unary (ZERO_EXTEND, mode, val, val_mode);
6719 }
6720
6721 return x;
6722 }
6723 \f
6724 /* Simplify X, a SET expression. Return the new expression. */
6725
6726 static rtx
6727 simplify_set (rtx x)
6728 {
6729 rtx src = SET_SRC (x);
6730 rtx dest = SET_DEST (x);
6731 machine_mode mode
6732 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6733 rtx_insn *other_insn;
6734 rtx *cc_use;
6735
6736 /* (set (pc) (return)) gets written as (return). */
6737 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6738 return src;
6739
6740 /* Now that we know for sure which bits of SRC we are using, see if we can
6741 simplify the expression for the object knowing that we only need the
6742 low-order bits. */
6743
6744 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6745 {
6746 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6747 SUBST (SET_SRC (x), src);
6748 }
6749
6750 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6751 the comparison result and try to simplify it unless we already have used
6752 undobuf.other_insn. */
6753 if ((GET_MODE_CLASS (mode) == MODE_CC
6754 || GET_CODE (src) == COMPARE
6755 || CC0_P (dest))
6756 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6757 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6758 && COMPARISON_P (*cc_use)
6759 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6760 {
6761 enum rtx_code old_code = GET_CODE (*cc_use);
6762 enum rtx_code new_code;
6763 rtx op0, op1, tmp;
6764 int other_changed = 0;
6765 rtx inner_compare = NULL_RTX;
6766 machine_mode compare_mode = GET_MODE (dest);
6767
6768 if (GET_CODE (src) == COMPARE)
6769 {
6770 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6771 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6772 {
6773 inner_compare = op0;
6774 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6775 }
6776 }
6777 else
6778 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6779
6780 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6781 op0, op1);
6782 if (!tmp)
6783 new_code = old_code;
6784 else if (!CONSTANT_P (tmp))
6785 {
6786 new_code = GET_CODE (tmp);
6787 op0 = XEXP (tmp, 0);
6788 op1 = XEXP (tmp, 1);
6789 }
6790 else
6791 {
6792 rtx pat = PATTERN (other_insn);
6793 undobuf.other_insn = other_insn;
6794 SUBST (*cc_use, tmp);
6795
6796 /* Attempt to simplify CC user. */
6797 if (GET_CODE (pat) == SET)
6798 {
6799 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6800 if (new_rtx != NULL_RTX)
6801 SUBST (SET_SRC (pat), new_rtx);
6802 }
6803
6804 /* Convert X into a no-op move. */
6805 SUBST (SET_DEST (x), pc_rtx);
6806 SUBST (SET_SRC (x), pc_rtx);
6807 return x;
6808 }
6809
6810 /* Simplify our comparison, if possible. */
6811 new_code = simplify_comparison (new_code, &op0, &op1);
6812
6813 #ifdef SELECT_CC_MODE
6814 /* If this machine has CC modes other than CCmode, check to see if we
6815 need to use a different CC mode here. */
6816 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6817 compare_mode = GET_MODE (op0);
6818 else if (inner_compare
6819 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6820 && new_code == old_code
6821 && op0 == XEXP (inner_compare, 0)
6822 && op1 == XEXP (inner_compare, 1))
6823 compare_mode = GET_MODE (inner_compare);
6824 else
6825 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6826
6827 /* If the mode changed, we have to change SET_DEST, the mode in the
6828 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6829 a hard register, just build new versions with the proper mode. If it
6830 is a pseudo, we lose unless it is only time we set the pseudo, in
6831 which case we can safely change its mode. */
6832 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6833 {
6834 if (can_change_dest_mode (dest, 0, compare_mode))
6835 {
6836 unsigned int regno = REGNO (dest);
6837 rtx new_dest;
6838
6839 if (regno < FIRST_PSEUDO_REGISTER)
6840 new_dest = gen_rtx_REG (compare_mode, regno);
6841 else
6842 {
6843 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6844 new_dest = regno_reg_rtx[regno];
6845 }
6846
6847 SUBST (SET_DEST (x), new_dest);
6848 SUBST (XEXP (*cc_use, 0), new_dest);
6849 other_changed = 1;
6850
6851 dest = new_dest;
6852 }
6853 }
6854 #endif /* SELECT_CC_MODE */
6855
6856 /* If the code changed, we have to build a new comparison in
6857 undobuf.other_insn. */
6858 if (new_code != old_code)
6859 {
6860 int other_changed_previously = other_changed;
6861 unsigned HOST_WIDE_INT mask;
6862 rtx old_cc_use = *cc_use;
6863
6864 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6865 dest, const0_rtx));
6866 other_changed = 1;
6867
6868 /* If the only change we made was to change an EQ into an NE or
6869 vice versa, OP0 has only one bit that might be nonzero, and OP1
6870 is zero, check if changing the user of the condition code will
6871 produce a valid insn. If it won't, we can keep the original code
6872 in that insn by surrounding our operation with an XOR. */
6873
6874 if (((old_code == NE && new_code == EQ)
6875 || (old_code == EQ && new_code == NE))
6876 && ! other_changed_previously && op1 == const0_rtx
6877 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6878 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6879 {
6880 rtx pat = PATTERN (other_insn), note = 0;
6881
6882 if ((recog_for_combine (&pat, other_insn, &note) < 0
6883 && ! check_asm_operands (pat)))
6884 {
6885 *cc_use = old_cc_use;
6886 other_changed = 0;
6887
6888 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6889 gen_int_mode (mask,
6890 GET_MODE (op0)));
6891 }
6892 }
6893 }
6894
6895 if (other_changed)
6896 undobuf.other_insn = other_insn;
6897
6898 /* Don't generate a compare of a CC with 0, just use that CC. */
6899 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6900 {
6901 SUBST (SET_SRC (x), op0);
6902 src = SET_SRC (x);
6903 }
6904 /* Otherwise, if we didn't previously have the same COMPARE we
6905 want, create it from scratch. */
6906 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6907 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6908 {
6909 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6910 src = SET_SRC (x);
6911 }
6912 }
6913 else
6914 {
6915 /* Get SET_SRC in a form where we have placed back any
6916 compound expressions. Then do the checks below. */
6917 src = make_compound_operation (src, SET);
6918 SUBST (SET_SRC (x), src);
6919 }
6920
6921 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6922 and X being a REG or (subreg (reg)), we may be able to convert this to
6923 (set (subreg:m2 x) (op)).
6924
6925 We can always do this if M1 is narrower than M2 because that means that
6926 we only care about the low bits of the result.
6927
6928 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6929 perform a narrower operation than requested since the high-order bits will
6930 be undefined. On machine where it is defined, this transformation is safe
6931 as long as M1 and M2 have the same number of words. */
6932
6933 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6934 && !OBJECT_P (SUBREG_REG (src))
6935 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6936 / UNITS_PER_WORD)
6937 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6938 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6939 && (WORD_REGISTER_OPERATIONS
6940 || (GET_MODE_SIZE (GET_MODE (src))
6941 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
6942 #ifdef CANNOT_CHANGE_MODE_CLASS
6943 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6944 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6945 GET_MODE (SUBREG_REG (src)),
6946 GET_MODE (src)))
6947 #endif
6948 && (REG_P (dest)
6949 || (GET_CODE (dest) == SUBREG
6950 && REG_P (SUBREG_REG (dest)))))
6951 {
6952 SUBST (SET_DEST (x),
6953 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6954 dest));
6955 SUBST (SET_SRC (x), SUBREG_REG (src));
6956
6957 src = SET_SRC (x), dest = SET_DEST (x);
6958 }
6959
6960 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6961 in SRC. */
6962 if (dest == cc0_rtx
6963 && GET_CODE (src) == SUBREG
6964 && subreg_lowpart_p (src)
6965 && (GET_MODE_PRECISION (GET_MODE (src))
6966 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6967 {
6968 rtx inner = SUBREG_REG (src);
6969 machine_mode inner_mode = GET_MODE (inner);
6970
6971 /* Here we make sure that we don't have a sign bit on. */
6972 if (val_signbit_known_clear_p (GET_MODE (src),
6973 nonzero_bits (inner, inner_mode)))
6974 {
6975 SUBST (SET_SRC (x), inner);
6976 src = SET_SRC (x);
6977 }
6978 }
6979
6980 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6981 would require a paradoxical subreg. Replace the subreg with a
6982 zero_extend to avoid the reload that would otherwise be required. */
6983
6984 enum rtx_code extend_op;
6985 if (paradoxical_subreg_p (src)
6986 && MEM_P (SUBREG_REG (src))
6987 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
6988 {
6989 SUBST (SET_SRC (x),
6990 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
6991
6992 src = SET_SRC (x);
6993 }
6994
6995 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6996 are comparing an item known to be 0 or -1 against 0, use a logical
6997 operation instead. Check for one of the arms being an IOR of the other
6998 arm with some value. We compute three terms to be IOR'ed together. In
6999 practice, at most two will be nonzero. Then we do the IOR's. */
7000
7001 if (GET_CODE (dest) != PC
7002 && GET_CODE (src) == IF_THEN_ELSE
7003 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
7004 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7005 && XEXP (XEXP (src, 0), 1) == const0_rtx
7006 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
7007 && (!HAVE_conditional_move
7008 || ! can_conditionally_move_p (GET_MODE (src)))
7009 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
7010 GET_MODE (XEXP (XEXP (src, 0), 0)))
7011 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
7012 && ! side_effects_p (src))
7013 {
7014 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7015 ? XEXP (src, 1) : XEXP (src, 2));
7016 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7017 ? XEXP (src, 2) : XEXP (src, 1));
7018 rtx term1 = const0_rtx, term2, term3;
7019
7020 if (GET_CODE (true_rtx) == IOR
7021 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7022 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7023 else if (GET_CODE (true_rtx) == IOR
7024 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7025 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7026 else if (GET_CODE (false_rtx) == IOR
7027 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7028 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7029 else if (GET_CODE (false_rtx) == IOR
7030 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7031 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7032
7033 term2 = simplify_gen_binary (AND, GET_MODE (src),
7034 XEXP (XEXP (src, 0), 0), true_rtx);
7035 term3 = simplify_gen_binary (AND, GET_MODE (src),
7036 simplify_gen_unary (NOT, GET_MODE (src),
7037 XEXP (XEXP (src, 0), 0),
7038 GET_MODE (src)),
7039 false_rtx);
7040
7041 SUBST (SET_SRC (x),
7042 simplify_gen_binary (IOR, GET_MODE (src),
7043 simplify_gen_binary (IOR, GET_MODE (src),
7044 term1, term2),
7045 term3));
7046
7047 src = SET_SRC (x);
7048 }
7049
7050 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7051 whole thing fail. */
7052 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7053 return src;
7054 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7055 return dest;
7056 else
7057 /* Convert this into a field assignment operation, if possible. */
7058 return make_field_assignment (x);
7059 }
7060 \f
7061 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7062 result. */
7063
7064 static rtx
7065 simplify_logical (rtx x)
7066 {
7067 machine_mode mode = GET_MODE (x);
7068 rtx op0 = XEXP (x, 0);
7069 rtx op1 = XEXP (x, 1);
7070
7071 switch (GET_CODE (x))
7072 {
7073 case AND:
7074 /* We can call simplify_and_const_int only if we don't lose
7075 any (sign) bits when converting INTVAL (op1) to
7076 "unsigned HOST_WIDE_INT". */
7077 if (CONST_INT_P (op1)
7078 && (HWI_COMPUTABLE_MODE_P (mode)
7079 || INTVAL (op1) > 0))
7080 {
7081 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7082 if (GET_CODE (x) != AND)
7083 return x;
7084
7085 op0 = XEXP (x, 0);
7086 op1 = XEXP (x, 1);
7087 }
7088
7089 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7090 apply the distributive law and then the inverse distributive
7091 law to see if things simplify. */
7092 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7093 {
7094 rtx result = distribute_and_simplify_rtx (x, 0);
7095 if (result)
7096 return result;
7097 }
7098 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7099 {
7100 rtx result = distribute_and_simplify_rtx (x, 1);
7101 if (result)
7102 return result;
7103 }
7104 break;
7105
7106 case IOR:
7107 /* If we have (ior (and A B) C), apply the distributive law and then
7108 the inverse distributive law to see if things simplify. */
7109
7110 if (GET_CODE (op0) == AND)
7111 {
7112 rtx result = distribute_and_simplify_rtx (x, 0);
7113 if (result)
7114 return result;
7115 }
7116
7117 if (GET_CODE (op1) == AND)
7118 {
7119 rtx result = distribute_and_simplify_rtx (x, 1);
7120 if (result)
7121 return result;
7122 }
7123 break;
7124
7125 default:
7126 gcc_unreachable ();
7127 }
7128
7129 return x;
7130 }
7131 \f
7132 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7133 operations" because they can be replaced with two more basic operations.
7134 ZERO_EXTEND is also considered "compound" because it can be replaced with
7135 an AND operation, which is simpler, though only one operation.
7136
7137 The function expand_compound_operation is called with an rtx expression
7138 and will convert it to the appropriate shifts and AND operations,
7139 simplifying at each stage.
7140
7141 The function make_compound_operation is called to convert an expression
7142 consisting of shifts and ANDs into the equivalent compound expression.
7143 It is the inverse of this function, loosely speaking. */
7144
7145 static rtx
7146 expand_compound_operation (rtx x)
7147 {
7148 unsigned HOST_WIDE_INT pos = 0, len;
7149 int unsignedp = 0;
7150 unsigned int modewidth;
7151 rtx tem;
7152
7153 switch (GET_CODE (x))
7154 {
7155 case ZERO_EXTEND:
7156 unsignedp = 1;
7157 /* FALLTHRU */
7158 case SIGN_EXTEND:
7159 /* We can't necessarily use a const_int for a multiword mode;
7160 it depends on implicitly extending the value.
7161 Since we don't know the right way to extend it,
7162 we can't tell whether the implicit way is right.
7163
7164 Even for a mode that is no wider than a const_int,
7165 we can't win, because we need to sign extend one of its bits through
7166 the rest of it, and we don't know which bit. */
7167 if (CONST_INT_P (XEXP (x, 0)))
7168 return x;
7169
7170 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7171 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7172 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7173 reloaded. If not for that, MEM's would very rarely be safe.
7174
7175 Reject MODEs bigger than a word, because we might not be able
7176 to reference a two-register group starting with an arbitrary register
7177 (and currently gen_lowpart might crash for a SUBREG). */
7178
7179 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
7180 return x;
7181
7182 /* Reject MODEs that aren't scalar integers because turning vector
7183 or complex modes into shifts causes problems. */
7184
7185 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7186 return x;
7187
7188 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
7189 /* If the inner object has VOIDmode (the only way this can happen
7190 is if it is an ASM_OPERANDS), we can't do anything since we don't
7191 know how much masking to do. */
7192 if (len == 0)
7193 return x;
7194
7195 break;
7196
7197 case ZERO_EXTRACT:
7198 unsignedp = 1;
7199
7200 /* fall through */
7201
7202 case SIGN_EXTRACT:
7203 /* If the operand is a CLOBBER, just return it. */
7204 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7205 return XEXP (x, 0);
7206
7207 if (!CONST_INT_P (XEXP (x, 1))
7208 || !CONST_INT_P (XEXP (x, 2))
7209 || GET_MODE (XEXP (x, 0)) == VOIDmode)
7210 return x;
7211
7212 /* Reject MODEs that aren't scalar integers because turning vector
7213 or complex modes into shifts causes problems. */
7214
7215 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7216 return x;
7217
7218 len = INTVAL (XEXP (x, 1));
7219 pos = INTVAL (XEXP (x, 2));
7220
7221 /* This should stay within the object being extracted, fail otherwise. */
7222 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
7223 return x;
7224
7225 if (BITS_BIG_ENDIAN)
7226 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7227
7228 break;
7229
7230 default:
7231 return x;
7232 }
7233 /* Convert sign extension to zero extension, if we know that the high
7234 bit is not set, as this is easier to optimize. It will be converted
7235 back to cheaper alternative in make_extraction. */
7236 if (GET_CODE (x) == SIGN_EXTEND
7237 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7238 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7239 & ~(((unsigned HOST_WIDE_INT)
7240 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7241 >> 1))
7242 == 0)))
7243 {
7244 machine_mode mode = GET_MODE (x);
7245 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7246 rtx temp2 = expand_compound_operation (temp);
7247
7248 /* Make sure this is a profitable operation. */
7249 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7250 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7251 return temp2;
7252 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7253 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7254 return temp;
7255 else
7256 return x;
7257 }
7258
7259 /* We can optimize some special cases of ZERO_EXTEND. */
7260 if (GET_CODE (x) == ZERO_EXTEND)
7261 {
7262 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7263 know that the last value didn't have any inappropriate bits
7264 set. */
7265 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7266 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7267 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7268 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7269 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7270 return XEXP (XEXP (x, 0), 0);
7271
7272 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7273 if (GET_CODE (XEXP (x, 0)) == SUBREG
7274 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7275 && subreg_lowpart_p (XEXP (x, 0))
7276 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7277 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7278 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7279 return SUBREG_REG (XEXP (x, 0));
7280
7281 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7282 is a comparison and STORE_FLAG_VALUE permits. This is like
7283 the first case, but it works even when GET_MODE (x) is larger
7284 than HOST_WIDE_INT. */
7285 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7286 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7287 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7288 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7289 <= HOST_BITS_PER_WIDE_INT)
7290 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7291 return XEXP (XEXP (x, 0), 0);
7292
7293 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7294 if (GET_CODE (XEXP (x, 0)) == SUBREG
7295 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7296 && subreg_lowpart_p (XEXP (x, 0))
7297 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7298 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7299 <= HOST_BITS_PER_WIDE_INT)
7300 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7301 return SUBREG_REG (XEXP (x, 0));
7302
7303 }
7304
7305 /* If we reach here, we want to return a pair of shifts. The inner
7306 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7307 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7308 logical depending on the value of UNSIGNEDP.
7309
7310 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7311 converted into an AND of a shift.
7312
7313 We must check for the case where the left shift would have a negative
7314 count. This can happen in a case like (x >> 31) & 255 on machines
7315 that can't shift by a constant. On those machines, we would first
7316 combine the shift with the AND to produce a variable-position
7317 extraction. Then the constant of 31 would be substituted in
7318 to produce such a position. */
7319
7320 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7321 if (modewidth >= pos + len)
7322 {
7323 machine_mode mode = GET_MODE (x);
7324 tem = gen_lowpart (mode, XEXP (x, 0));
7325 if (!tem || GET_CODE (tem) == CLOBBER)
7326 return x;
7327 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7328 tem, modewidth - pos - len);
7329 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7330 mode, tem, modewidth - len);
7331 }
7332 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7333 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7334 simplify_shift_const (NULL_RTX, LSHIFTRT,
7335 GET_MODE (x),
7336 XEXP (x, 0), pos),
7337 (HOST_WIDE_INT_1U << len) - 1);
7338 else
7339 /* Any other cases we can't handle. */
7340 return x;
7341
7342 /* If we couldn't do this for some reason, return the original
7343 expression. */
7344 if (GET_CODE (tem) == CLOBBER)
7345 return x;
7346
7347 return tem;
7348 }
7349 \f
7350 /* X is a SET which contains an assignment of one object into
7351 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7352 or certain SUBREGS). If possible, convert it into a series of
7353 logical operations.
7354
7355 We half-heartedly support variable positions, but do not at all
7356 support variable lengths. */
7357
7358 static const_rtx
7359 expand_field_assignment (const_rtx x)
7360 {
7361 rtx inner;
7362 rtx pos; /* Always counts from low bit. */
7363 int len;
7364 rtx mask, cleared, masked;
7365 machine_mode compute_mode;
7366
7367 /* Loop until we find something we can't simplify. */
7368 while (1)
7369 {
7370 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7371 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7372 {
7373 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7374 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7375 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7376 }
7377 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7378 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7379 {
7380 inner = XEXP (SET_DEST (x), 0);
7381 len = INTVAL (XEXP (SET_DEST (x), 1));
7382 pos = XEXP (SET_DEST (x), 2);
7383
7384 /* A constant position should stay within the width of INNER. */
7385 if (CONST_INT_P (pos)
7386 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7387 break;
7388
7389 if (BITS_BIG_ENDIAN)
7390 {
7391 if (CONST_INT_P (pos))
7392 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7393 - INTVAL (pos));
7394 else if (GET_CODE (pos) == MINUS
7395 && CONST_INT_P (XEXP (pos, 1))
7396 && (INTVAL (XEXP (pos, 1))
7397 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7398 /* If position is ADJUST - X, new position is X. */
7399 pos = XEXP (pos, 0);
7400 else
7401 {
7402 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7403 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7404 gen_int_mode (prec - len,
7405 GET_MODE (pos)),
7406 pos);
7407 }
7408 }
7409 }
7410
7411 /* A SUBREG between two modes that occupy the same numbers of words
7412 can be done by moving the SUBREG to the source. */
7413 else if (GET_CODE (SET_DEST (x)) == SUBREG
7414 /* We need SUBREGs to compute nonzero_bits properly. */
7415 && nonzero_sign_valid
7416 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7417 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7418 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7419 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7420 {
7421 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7422 gen_lowpart
7423 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7424 SET_SRC (x)));
7425 continue;
7426 }
7427 else
7428 break;
7429
7430 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7431 inner = SUBREG_REG (inner);
7432
7433 compute_mode = GET_MODE (inner);
7434
7435 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7436 if (! SCALAR_INT_MODE_P (compute_mode))
7437 {
7438 machine_mode imode;
7439
7440 /* Don't do anything for vector or complex integral types. */
7441 if (! FLOAT_MODE_P (compute_mode))
7442 break;
7443
7444 /* Try to find an integral mode to pun with. */
7445 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7446 if (imode == BLKmode)
7447 break;
7448
7449 compute_mode = imode;
7450 inner = gen_lowpart (imode, inner);
7451 }
7452
7453 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7454 if (len >= HOST_BITS_PER_WIDE_INT)
7455 break;
7456
7457 /* Don't try to compute in too wide unsupported modes. */
7458 if (!targetm.scalar_mode_supported_p (compute_mode))
7459 break;
7460
7461 /* Now compute the equivalent expression. Make a copy of INNER
7462 for the SET_DEST in case it is a MEM into which we will substitute;
7463 we don't want shared RTL in that case. */
7464 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7465 compute_mode);
7466 cleared = simplify_gen_binary (AND, compute_mode,
7467 simplify_gen_unary (NOT, compute_mode,
7468 simplify_gen_binary (ASHIFT,
7469 compute_mode,
7470 mask, pos),
7471 compute_mode),
7472 inner);
7473 masked = simplify_gen_binary (ASHIFT, compute_mode,
7474 simplify_gen_binary (
7475 AND, compute_mode,
7476 gen_lowpart (compute_mode, SET_SRC (x)),
7477 mask),
7478 pos);
7479
7480 x = gen_rtx_SET (copy_rtx (inner),
7481 simplify_gen_binary (IOR, compute_mode,
7482 cleared, masked));
7483 }
7484
7485 return x;
7486 }
7487 \f
7488 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7489 it is an RTX that represents the (variable) starting position; otherwise,
7490 POS is the (constant) starting bit position. Both are counted from the LSB.
7491
7492 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7493
7494 IN_DEST is nonzero if this is a reference in the destination of a SET.
7495 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7496 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7497 be used.
7498
7499 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7500 ZERO_EXTRACT should be built even for bits starting at bit 0.
7501
7502 MODE is the desired mode of the result (if IN_DEST == 0).
7503
7504 The result is an RTX for the extraction or NULL_RTX if the target
7505 can't handle it. */
7506
7507 static rtx
7508 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7509 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7510 int in_dest, int in_compare)
7511 {
7512 /* This mode describes the size of the storage area
7513 to fetch the overall value from. Within that, we
7514 ignore the POS lowest bits, etc. */
7515 machine_mode is_mode = GET_MODE (inner);
7516 machine_mode inner_mode;
7517 machine_mode wanted_inner_mode;
7518 machine_mode wanted_inner_reg_mode = word_mode;
7519 machine_mode pos_mode = word_mode;
7520 machine_mode extraction_mode = word_mode;
7521 machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7522 rtx new_rtx = 0;
7523 rtx orig_pos_rtx = pos_rtx;
7524 HOST_WIDE_INT orig_pos;
7525
7526 if (pos_rtx && CONST_INT_P (pos_rtx))
7527 pos = INTVAL (pos_rtx), pos_rtx = 0;
7528
7529 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7530 {
7531 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7532 consider just the QI as the memory to extract from.
7533 The subreg adds or removes high bits; its mode is
7534 irrelevant to the meaning of this extraction,
7535 since POS and LEN count from the lsb. */
7536 if (MEM_P (SUBREG_REG (inner)))
7537 is_mode = GET_MODE (SUBREG_REG (inner));
7538 inner = SUBREG_REG (inner);
7539 }
7540 else if (GET_CODE (inner) == ASHIFT
7541 && CONST_INT_P (XEXP (inner, 1))
7542 && pos_rtx == 0 && pos == 0
7543 && len > UINTVAL (XEXP (inner, 1)))
7544 {
7545 /* We're extracting the least significant bits of an rtx
7546 (ashift X (const_int C)), where LEN > C. Extract the
7547 least significant (LEN - C) bits of X, giving an rtx
7548 whose mode is MODE, then shift it left C times. */
7549 new_rtx = make_extraction (mode, XEXP (inner, 0),
7550 0, 0, len - INTVAL (XEXP (inner, 1)),
7551 unsignedp, in_dest, in_compare);
7552 if (new_rtx != 0)
7553 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7554 }
7555 else if (GET_CODE (inner) == TRUNCATE)
7556 inner = XEXP (inner, 0);
7557
7558 inner_mode = GET_MODE (inner);
7559
7560 /* See if this can be done without an extraction. We never can if the
7561 width of the field is not the same as that of some integer mode. For
7562 registers, we can only avoid the extraction if the position is at the
7563 low-order bit and this is either not in the destination or we have the
7564 appropriate STRICT_LOW_PART operation available.
7565
7566 For MEM, we can avoid an extract if the field starts on an appropriate
7567 boundary and we can change the mode of the memory reference. */
7568
7569 if (tmode != BLKmode
7570 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7571 && !MEM_P (inner)
7572 && (pos == 0 || REG_P (inner))
7573 && (inner_mode == tmode
7574 || !REG_P (inner)
7575 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7576 || reg_truncated_to_mode (tmode, inner))
7577 && (! in_dest
7578 || (REG_P (inner)
7579 && have_insn_for (STRICT_LOW_PART, tmode))))
7580 || (MEM_P (inner) && pos_rtx == 0
7581 && (pos
7582 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7583 : BITS_PER_UNIT)) == 0
7584 /* We can't do this if we are widening INNER_MODE (it
7585 may not be aligned, for one thing). */
7586 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7587 && (inner_mode == tmode
7588 || (! mode_dependent_address_p (XEXP (inner, 0),
7589 MEM_ADDR_SPACE (inner))
7590 && ! MEM_VOLATILE_P (inner))))))
7591 {
7592 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7593 field. If the original and current mode are the same, we need not
7594 adjust the offset. Otherwise, we do if bytes big endian.
7595
7596 If INNER is not a MEM, get a piece consisting of just the field
7597 of interest (in this case POS % BITS_PER_WORD must be 0). */
7598
7599 if (MEM_P (inner))
7600 {
7601 HOST_WIDE_INT offset;
7602
7603 /* POS counts from lsb, but make OFFSET count in memory order. */
7604 if (BYTES_BIG_ENDIAN)
7605 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7606 else
7607 offset = pos / BITS_PER_UNIT;
7608
7609 new_rtx = adjust_address_nv (inner, tmode, offset);
7610 }
7611 else if (REG_P (inner))
7612 {
7613 if (tmode != inner_mode)
7614 {
7615 /* We can't call gen_lowpart in a DEST since we
7616 always want a SUBREG (see below) and it would sometimes
7617 return a new hard register. */
7618 if (pos || in_dest)
7619 {
7620 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7621
7622 if (WORDS_BIG_ENDIAN
7623 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7624 final_word = ((GET_MODE_SIZE (inner_mode)
7625 - GET_MODE_SIZE (tmode))
7626 / UNITS_PER_WORD) - final_word;
7627
7628 final_word *= UNITS_PER_WORD;
7629 if (BYTES_BIG_ENDIAN &&
7630 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7631 final_word += (GET_MODE_SIZE (inner_mode)
7632 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7633
7634 /* Avoid creating invalid subregs, for example when
7635 simplifying (x>>32)&255. */
7636 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7637 return NULL_RTX;
7638
7639 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7640 }
7641 else
7642 new_rtx = gen_lowpart (tmode, inner);
7643 }
7644 else
7645 new_rtx = inner;
7646 }
7647 else
7648 new_rtx = force_to_mode (inner, tmode,
7649 len >= HOST_BITS_PER_WIDE_INT
7650 ? HOST_WIDE_INT_M1U
7651 : (HOST_WIDE_INT_1U << len) - 1, 0);
7652
7653 /* If this extraction is going into the destination of a SET,
7654 make a STRICT_LOW_PART unless we made a MEM. */
7655
7656 if (in_dest)
7657 return (MEM_P (new_rtx) ? new_rtx
7658 : (GET_CODE (new_rtx) != SUBREG
7659 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7660 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7661
7662 if (mode == tmode)
7663 return new_rtx;
7664
7665 if (CONST_SCALAR_INT_P (new_rtx))
7666 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7667 mode, new_rtx, tmode);
7668
7669 /* If we know that no extraneous bits are set, and that the high
7670 bit is not set, convert the extraction to the cheaper of
7671 sign and zero extension, that are equivalent in these cases. */
7672 if (flag_expensive_optimizations
7673 && (HWI_COMPUTABLE_MODE_P (tmode)
7674 && ((nonzero_bits (new_rtx, tmode)
7675 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7676 == 0)))
7677 {
7678 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7679 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7680
7681 /* Prefer ZERO_EXTENSION, since it gives more information to
7682 backends. */
7683 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7684 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7685 return temp;
7686 return temp1;
7687 }
7688
7689 /* Otherwise, sign- or zero-extend unless we already are in the
7690 proper mode. */
7691
7692 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7693 mode, new_rtx));
7694 }
7695
7696 /* Unless this is a COMPARE or we have a funny memory reference,
7697 don't do anything with zero-extending field extracts starting at
7698 the low-order bit since they are simple AND operations. */
7699 if (pos_rtx == 0 && pos == 0 && ! in_dest
7700 && ! in_compare && unsignedp)
7701 return 0;
7702
7703 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7704 if the position is not a constant and the length is not 1. In all
7705 other cases, we would only be going outside our object in cases when
7706 an original shift would have been undefined. */
7707 if (MEM_P (inner)
7708 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7709 || (pos_rtx != 0 && len != 1)))
7710 return 0;
7711
7712 enum extraction_pattern pattern = (in_dest ? EP_insv
7713 : unsignedp ? EP_extzv : EP_extv);
7714
7715 /* If INNER is not from memory, we want it to have the mode of a register
7716 extraction pattern's structure operand, or word_mode if there is no
7717 such pattern. The same applies to extraction_mode and pos_mode
7718 and their respective operands.
7719
7720 For memory, assume that the desired extraction_mode and pos_mode
7721 are the same as for a register operation, since at present we don't
7722 have named patterns for aligned memory structures. */
7723 struct extraction_insn insn;
7724 if (get_best_reg_extraction_insn (&insn, pattern,
7725 GET_MODE_BITSIZE (inner_mode), mode))
7726 {
7727 wanted_inner_reg_mode = insn.struct_mode;
7728 pos_mode = insn.pos_mode;
7729 extraction_mode = insn.field_mode;
7730 }
7731
7732 /* Never narrow an object, since that might not be safe. */
7733
7734 if (mode != VOIDmode
7735 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7736 extraction_mode = mode;
7737
7738 if (!MEM_P (inner))
7739 wanted_inner_mode = wanted_inner_reg_mode;
7740 else
7741 {
7742 /* Be careful not to go beyond the extracted object and maintain the
7743 natural alignment of the memory. */
7744 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7745 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7746 > GET_MODE_BITSIZE (wanted_inner_mode))
7747 {
7748 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7749 gcc_assert (wanted_inner_mode != VOIDmode);
7750 }
7751 }
7752
7753 orig_pos = pos;
7754
7755 if (BITS_BIG_ENDIAN)
7756 {
7757 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7758 BITS_BIG_ENDIAN style. If position is constant, compute new
7759 position. Otherwise, build subtraction.
7760 Note that POS is relative to the mode of the original argument.
7761 If it's a MEM we need to recompute POS relative to that.
7762 However, if we're extracting from (or inserting into) a register,
7763 we want to recompute POS relative to wanted_inner_mode. */
7764 int width = (MEM_P (inner)
7765 ? GET_MODE_BITSIZE (is_mode)
7766 : GET_MODE_BITSIZE (wanted_inner_mode));
7767
7768 if (pos_rtx == 0)
7769 pos = width - len - pos;
7770 else
7771 pos_rtx
7772 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7773 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7774 pos_rtx);
7775 /* POS may be less than 0 now, but we check for that below.
7776 Note that it can only be less than 0 if !MEM_P (inner). */
7777 }
7778
7779 /* If INNER has a wider mode, and this is a constant extraction, try to
7780 make it smaller and adjust the byte to point to the byte containing
7781 the value. */
7782 if (wanted_inner_mode != VOIDmode
7783 && inner_mode != wanted_inner_mode
7784 && ! pos_rtx
7785 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7786 && MEM_P (inner)
7787 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7788 && ! MEM_VOLATILE_P (inner))
7789 {
7790 int offset = 0;
7791
7792 /* The computations below will be correct if the machine is big
7793 endian in both bits and bytes or little endian in bits and bytes.
7794 If it is mixed, we must adjust. */
7795
7796 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7797 adjust OFFSET to compensate. */
7798 if (BYTES_BIG_ENDIAN
7799 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7800 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7801
7802 /* We can now move to the desired byte. */
7803 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7804 * GET_MODE_SIZE (wanted_inner_mode);
7805 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7806
7807 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7808 && is_mode != wanted_inner_mode)
7809 offset = (GET_MODE_SIZE (is_mode)
7810 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7811
7812 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7813 }
7814
7815 /* If INNER is not memory, get it into the proper mode. If we are changing
7816 its mode, POS must be a constant and smaller than the size of the new
7817 mode. */
7818 else if (!MEM_P (inner))
7819 {
7820 /* On the LHS, don't create paradoxical subregs implicitely truncating
7821 the register unless TRULY_NOOP_TRUNCATION. */
7822 if (in_dest
7823 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7824 wanted_inner_mode))
7825 return NULL_RTX;
7826
7827 if (GET_MODE (inner) != wanted_inner_mode
7828 && (pos_rtx != 0
7829 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7830 return NULL_RTX;
7831
7832 if (orig_pos < 0)
7833 return NULL_RTX;
7834
7835 inner = force_to_mode (inner, wanted_inner_mode,
7836 pos_rtx
7837 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7838 ? HOST_WIDE_INT_M1U
7839 : (((HOST_WIDE_INT_1U << len) - 1)
7840 << orig_pos),
7841 0);
7842 }
7843
7844 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7845 have to zero extend. Otherwise, we can just use a SUBREG. */
7846 if (pos_rtx != 0
7847 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7848 {
7849 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7850 GET_MODE (pos_rtx));
7851
7852 /* If we know that no extraneous bits are set, and that the high
7853 bit is not set, convert extraction to cheaper one - either
7854 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7855 cases. */
7856 if (flag_expensive_optimizations
7857 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7858 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7859 & ~(((unsigned HOST_WIDE_INT)
7860 GET_MODE_MASK (GET_MODE (pos_rtx)))
7861 >> 1))
7862 == 0)))
7863 {
7864 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7865 GET_MODE (pos_rtx));
7866
7867 /* Prefer ZERO_EXTENSION, since it gives more information to
7868 backends. */
7869 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7870 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7871 temp = temp1;
7872 }
7873 pos_rtx = temp;
7874 }
7875
7876 /* Make POS_RTX unless we already have it and it is correct. If we don't
7877 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7878 be a CONST_INT. */
7879 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7880 pos_rtx = orig_pos_rtx;
7881
7882 else if (pos_rtx == 0)
7883 pos_rtx = GEN_INT (pos);
7884
7885 /* Make the required operation. See if we can use existing rtx. */
7886 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7887 extraction_mode, inner, GEN_INT (len), pos_rtx);
7888 if (! in_dest)
7889 new_rtx = gen_lowpart (mode, new_rtx);
7890
7891 return new_rtx;
7892 }
7893 \f
7894 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7895 with any other operations in X. Return X without that shift if so. */
7896
7897 static rtx
7898 extract_left_shift (rtx x, int count)
7899 {
7900 enum rtx_code code = GET_CODE (x);
7901 machine_mode mode = GET_MODE (x);
7902 rtx tem;
7903
7904 switch (code)
7905 {
7906 case ASHIFT:
7907 /* This is the shift itself. If it is wide enough, we will return
7908 either the value being shifted if the shift count is equal to
7909 COUNT or a shift for the difference. */
7910 if (CONST_INT_P (XEXP (x, 1))
7911 && INTVAL (XEXP (x, 1)) >= count)
7912 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7913 INTVAL (XEXP (x, 1)) - count);
7914 break;
7915
7916 case NEG: case NOT:
7917 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7918 return simplify_gen_unary (code, mode, tem, mode);
7919
7920 break;
7921
7922 case PLUS: case IOR: case XOR: case AND:
7923 /* If we can safely shift this constant and we find the inner shift,
7924 make a new operation. */
7925 if (CONST_INT_P (XEXP (x, 1))
7926 && (UINTVAL (XEXP (x, 1))
7927 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7928 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7929 {
7930 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7931 return simplify_gen_binary (code, mode, tem,
7932 gen_int_mode (val, mode));
7933 }
7934 break;
7935
7936 default:
7937 break;
7938 }
7939
7940 return 0;
7941 }
7942 \f
7943 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7944 level of the expression and MODE is its mode. IN_CODE is as for
7945 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7946 that should be used when recursing on operands of *X_PTR.
7947
7948 There are two possible actions:
7949
7950 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7951 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7952
7953 - Return a new rtx, which the caller returns directly. */
7954
7955 static rtx
7956 make_compound_operation_int (machine_mode mode, rtx *x_ptr,
7957 enum rtx_code in_code,
7958 enum rtx_code *next_code_ptr)
7959 {
7960 rtx x = *x_ptr;
7961 enum rtx_code next_code = *next_code_ptr;
7962 enum rtx_code code = GET_CODE (x);
7963 int mode_width = GET_MODE_PRECISION (mode);
7964 rtx rhs, lhs;
7965 rtx new_rtx = 0;
7966 int i;
7967 rtx tem;
7968 bool equality_comparison = false;
7969
7970 if (in_code == EQ)
7971 {
7972 equality_comparison = true;
7973 in_code = COMPARE;
7974 }
7975
7976 /* Process depending on the code of this operation. If NEW is set
7977 nonzero, it will be returned. */
7978
7979 switch (code)
7980 {
7981 case ASHIFT:
7982 /* Convert shifts by constants into multiplications if inside
7983 an address. */
7984 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7985 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7986 && INTVAL (XEXP (x, 1)) >= 0)
7987 {
7988 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7989 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7990
7991 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7992 if (GET_CODE (new_rtx) == NEG)
7993 {
7994 new_rtx = XEXP (new_rtx, 0);
7995 multval = -multval;
7996 }
7997 multval = trunc_int_for_mode (multval, mode);
7998 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7999 }
8000 break;
8001
8002 case PLUS:
8003 lhs = XEXP (x, 0);
8004 rhs = XEXP (x, 1);
8005 lhs = make_compound_operation (lhs, next_code);
8006 rhs = make_compound_operation (rhs, next_code);
8007 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8008 {
8009 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
8010 XEXP (lhs, 1));
8011 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8012 }
8013 else if (GET_CODE (lhs) == MULT
8014 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8015 {
8016 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
8017 simplify_gen_unary (NEG, mode,
8018 XEXP (lhs, 1),
8019 mode));
8020 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8021 }
8022 else
8023 {
8024 SUBST (XEXP (x, 0), lhs);
8025 SUBST (XEXP (x, 1), rhs);
8026 }
8027 maybe_swap_commutative_operands (x);
8028 return x;
8029
8030 case MINUS:
8031 lhs = XEXP (x, 0);
8032 rhs = XEXP (x, 1);
8033 lhs = make_compound_operation (lhs, next_code);
8034 rhs = make_compound_operation (rhs, next_code);
8035 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8036 {
8037 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8038 XEXP (rhs, 1));
8039 return simplify_gen_binary (PLUS, mode, tem, lhs);
8040 }
8041 else if (GET_CODE (rhs) == MULT
8042 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8043 {
8044 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8045 simplify_gen_unary (NEG, mode,
8046 XEXP (rhs, 1),
8047 mode));
8048 return simplify_gen_binary (PLUS, mode, tem, lhs);
8049 }
8050 else
8051 {
8052 SUBST (XEXP (x, 0), lhs);
8053 SUBST (XEXP (x, 1), rhs);
8054 return x;
8055 }
8056
8057 case AND:
8058 /* If the second operand is not a constant, we can't do anything
8059 with it. */
8060 if (!CONST_INT_P (XEXP (x, 1)))
8061 break;
8062
8063 /* If the constant is a power of two minus one and the first operand
8064 is a logical right shift, make an extraction. */
8065 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8066 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8067 {
8068 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8069 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
8070 0, in_code == COMPARE);
8071 }
8072
8073 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8074 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8075 && subreg_lowpart_p (XEXP (x, 0))
8076 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8077 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8078 {
8079 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8080 machine_mode inner_mode = GET_MODE (inner_x0);
8081 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8082 new_rtx = make_extraction (inner_mode, new_rtx, 0,
8083 XEXP (inner_x0, 1),
8084 i, 1, 0, in_code == COMPARE);
8085
8086 if (new_rtx)
8087 {
8088 /* If we narrowed the mode when dropping the subreg, then
8089 we must zero-extend to keep the semantics of the AND. */
8090 if (GET_MODE_SIZE (inner_mode) >= GET_MODE_SIZE (mode))
8091 ;
8092 else if (SCALAR_INT_MODE_P (inner_mode))
8093 new_rtx = simplify_gen_unary (ZERO_EXTEND, mode,
8094 new_rtx, inner_mode);
8095 else
8096 new_rtx = NULL;
8097 }
8098
8099 /* If that didn't give anything, see if the AND simplifies on
8100 its own. */
8101 if (!new_rtx && i >= 0)
8102 {
8103 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8104 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8105 0, in_code == COMPARE);
8106 }
8107 }
8108 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8109 else if ((GET_CODE (XEXP (x, 0)) == XOR
8110 || GET_CODE (XEXP (x, 0)) == IOR)
8111 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8112 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8113 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8114 {
8115 /* Apply the distributive law, and then try to make extractions. */
8116 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8117 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8118 XEXP (x, 1)),
8119 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8120 XEXP (x, 1)));
8121 new_rtx = make_compound_operation (new_rtx, in_code);
8122 }
8123
8124 /* If we are have (and (rotate X C) M) and C is larger than the number
8125 of bits in M, this is an extraction. */
8126
8127 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8128 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8129 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8130 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8131 {
8132 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8133 new_rtx = make_extraction (mode, new_rtx,
8134 (GET_MODE_PRECISION (mode)
8135 - INTVAL (XEXP (XEXP (x, 0), 1))),
8136 NULL_RTX, i, 1, 0, in_code == COMPARE);
8137 }
8138
8139 /* On machines without logical shifts, if the operand of the AND is
8140 a logical shift and our mask turns off all the propagated sign
8141 bits, we can replace the logical shift with an arithmetic shift. */
8142 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8143 && !have_insn_for (LSHIFTRT, mode)
8144 && have_insn_for (ASHIFTRT, mode)
8145 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8146 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8147 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8148 && mode_width <= HOST_BITS_PER_WIDE_INT)
8149 {
8150 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8151
8152 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8153 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8154 SUBST (XEXP (x, 0),
8155 gen_rtx_ASHIFTRT (mode,
8156 make_compound_operation
8157 (XEXP (XEXP (x, 0), 0), next_code),
8158 XEXP (XEXP (x, 0), 1)));
8159 }
8160
8161 /* If the constant is one less than a power of two, this might be
8162 representable by an extraction even if no shift is present.
8163 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8164 we are in a COMPARE. */
8165 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8166 new_rtx = make_extraction (mode,
8167 make_compound_operation (XEXP (x, 0),
8168 next_code),
8169 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8170
8171 /* If we are in a comparison and this is an AND with a power of two,
8172 convert this into the appropriate bit extract. */
8173 else if (in_code == COMPARE
8174 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8175 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8176 new_rtx = make_extraction (mode,
8177 make_compound_operation (XEXP (x, 0),
8178 next_code),
8179 i, NULL_RTX, 1, 1, 0, 1);
8180
8181 /* If the one operand is a paradoxical subreg of a register or memory and
8182 the constant (limited to the smaller mode) has only zero bits where
8183 the sub expression has known zero bits, this can be expressed as
8184 a zero_extend. */
8185 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8186 {
8187 rtx sub;
8188
8189 sub = XEXP (XEXP (x, 0), 0);
8190 machine_mode sub_mode = GET_MODE (sub);
8191 if ((REG_P (sub) || MEM_P (sub))
8192 && GET_MODE_PRECISION (sub_mode) < mode_width)
8193 {
8194 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8195 unsigned HOST_WIDE_INT mask;
8196
8197 /* original AND constant with all the known zero bits set */
8198 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8199 if ((mask & mode_mask) == mode_mask)
8200 {
8201 new_rtx = make_compound_operation (sub, next_code);
8202 new_rtx = make_extraction (mode, new_rtx, 0, 0,
8203 GET_MODE_PRECISION (sub_mode),
8204 1, 0, in_code == COMPARE);
8205 }
8206 }
8207 }
8208
8209 break;
8210
8211 case LSHIFTRT:
8212 /* If the sign bit is known to be zero, replace this with an
8213 arithmetic shift. */
8214 if (have_insn_for (ASHIFTRT, mode)
8215 && ! have_insn_for (LSHIFTRT, mode)
8216 && mode_width <= HOST_BITS_PER_WIDE_INT
8217 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8218 {
8219 new_rtx = gen_rtx_ASHIFTRT (mode,
8220 make_compound_operation (XEXP (x, 0),
8221 next_code),
8222 XEXP (x, 1));
8223 break;
8224 }
8225
8226 /* fall through */
8227
8228 case ASHIFTRT:
8229 lhs = XEXP (x, 0);
8230 rhs = XEXP (x, 1);
8231
8232 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8233 this is a SIGN_EXTRACT. */
8234 if (CONST_INT_P (rhs)
8235 && GET_CODE (lhs) == ASHIFT
8236 && CONST_INT_P (XEXP (lhs, 1))
8237 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8238 && INTVAL (XEXP (lhs, 1)) >= 0
8239 && INTVAL (rhs) < mode_width)
8240 {
8241 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8242 new_rtx = make_extraction (mode, new_rtx,
8243 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8244 NULL_RTX, mode_width - INTVAL (rhs),
8245 code == LSHIFTRT, 0, in_code == COMPARE);
8246 break;
8247 }
8248
8249 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8250 If so, try to merge the shifts into a SIGN_EXTEND. We could
8251 also do this for some cases of SIGN_EXTRACT, but it doesn't
8252 seem worth the effort; the case checked for occurs on Alpha. */
8253
8254 if (!OBJECT_P (lhs)
8255 && ! (GET_CODE (lhs) == SUBREG
8256 && (OBJECT_P (SUBREG_REG (lhs))))
8257 && CONST_INT_P (rhs)
8258 && INTVAL (rhs) >= 0
8259 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8260 && INTVAL (rhs) < mode_width
8261 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8262 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8263 0, NULL_RTX, mode_width - INTVAL (rhs),
8264 code == LSHIFTRT, 0, in_code == COMPARE);
8265
8266 break;
8267
8268 case SUBREG:
8269 /* Call ourselves recursively on the inner expression. If we are
8270 narrowing the object and it has a different RTL code from
8271 what it originally did, do this SUBREG as a force_to_mode. */
8272 {
8273 rtx inner = SUBREG_REG (x), simplified;
8274 enum rtx_code subreg_code = in_code;
8275
8276 /* If the SUBREG is masking of a logical right shift,
8277 make an extraction. */
8278 if (GET_CODE (inner) == LSHIFTRT
8279 && CONST_INT_P (XEXP (inner, 1))
8280 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8281 && (UINTVAL (XEXP (inner, 1))
8282 < GET_MODE_PRECISION (GET_MODE (inner)))
8283 && subreg_lowpart_p (x))
8284 {
8285 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8286 int width = GET_MODE_PRECISION (GET_MODE (inner))
8287 - INTVAL (XEXP (inner, 1));
8288 if (width > mode_width)
8289 width = mode_width;
8290 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8291 width, 1, 0, in_code == COMPARE);
8292 break;
8293 }
8294
8295 /* If in_code is COMPARE, it isn't always safe to pass it through
8296 to the recursive make_compound_operation call. */
8297 if (subreg_code == COMPARE
8298 && (!subreg_lowpart_p (x)
8299 || GET_CODE (inner) == SUBREG
8300 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8301 is (const_int 0), rather than
8302 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
8303 || (GET_CODE (inner) == AND
8304 && CONST_INT_P (XEXP (inner, 1))
8305 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8306 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8307 >= GET_MODE_BITSIZE (mode))))
8308 subreg_code = SET;
8309
8310 tem = make_compound_operation (inner, subreg_code);
8311
8312 simplified
8313 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8314 if (simplified)
8315 tem = simplified;
8316
8317 if (GET_CODE (tem) != GET_CODE (inner)
8318 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8319 && subreg_lowpart_p (x))
8320 {
8321 rtx newer
8322 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8323
8324 /* If we have something other than a SUBREG, we might have
8325 done an expansion, so rerun ourselves. */
8326 if (GET_CODE (newer) != SUBREG)
8327 newer = make_compound_operation (newer, in_code);
8328
8329 /* force_to_mode can expand compounds. If it just re-expanded the
8330 compound, use gen_lowpart to convert to the desired mode. */
8331 if (rtx_equal_p (newer, x)
8332 /* Likewise if it re-expanded the compound only partially.
8333 This happens for SUBREG of ZERO_EXTRACT if they extract
8334 the same number of bits. */
8335 || (GET_CODE (newer) == SUBREG
8336 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8337 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8338 && GET_CODE (inner) == AND
8339 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8340 return gen_lowpart (GET_MODE (x), tem);
8341
8342 return newer;
8343 }
8344
8345 if (simplified)
8346 return tem;
8347 }
8348 break;
8349
8350 default:
8351 break;
8352 }
8353
8354 if (new_rtx)
8355 *x_ptr = gen_lowpart (mode, new_rtx);
8356 *next_code_ptr = next_code;
8357 return NULL_RTX;
8358 }
8359
8360 /* Look at the expression rooted at X. Look for expressions
8361 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8362 Form these expressions.
8363
8364 Return the new rtx, usually just X.
8365
8366 Also, for machines like the VAX that don't have logical shift insns,
8367 try to convert logical to arithmetic shift operations in cases where
8368 they are equivalent. This undoes the canonicalizations to logical
8369 shifts done elsewhere.
8370
8371 We try, as much as possible, to re-use rtl expressions to save memory.
8372
8373 IN_CODE says what kind of expression we are processing. Normally, it is
8374 SET. In a memory address it is MEM. When processing the arguments of
8375 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8376 precisely it is an equality comparison against zero. */
8377
8378 rtx
8379 make_compound_operation (rtx x, enum rtx_code in_code)
8380 {
8381 enum rtx_code code = GET_CODE (x);
8382 const char *fmt;
8383 int i, j;
8384 enum rtx_code next_code;
8385 rtx new_rtx, tem;
8386
8387 /* Select the code to be used in recursive calls. Once we are inside an
8388 address, we stay there. If we have a comparison, set to COMPARE,
8389 but once inside, go back to our default of SET. */
8390
8391 next_code = (code == MEM ? MEM
8392 : ((code == COMPARE || COMPARISON_P (x))
8393 && XEXP (x, 1) == const0_rtx) ? COMPARE
8394 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8395
8396 if (SCALAR_INT_MODE_P (GET_MODE (x)))
8397 {
8398 rtx new_rtx = make_compound_operation_int (GET_MODE (x), &x,
8399 in_code, &next_code);
8400 if (new_rtx)
8401 return new_rtx;
8402 code = GET_CODE (x);
8403 }
8404
8405 /* Now recursively process each operand of this operation. We need to
8406 handle ZERO_EXTEND specially so that we don't lose track of the
8407 inner mode. */
8408 if (code == ZERO_EXTEND)
8409 {
8410 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8411 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8412 new_rtx, GET_MODE (XEXP (x, 0)));
8413 if (tem)
8414 return tem;
8415 SUBST (XEXP (x, 0), new_rtx);
8416 return x;
8417 }
8418
8419 fmt = GET_RTX_FORMAT (code);
8420 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8421 if (fmt[i] == 'e')
8422 {
8423 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8424 SUBST (XEXP (x, i), new_rtx);
8425 }
8426 else if (fmt[i] == 'E')
8427 for (j = 0; j < XVECLEN (x, i); j++)
8428 {
8429 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8430 SUBST (XVECEXP (x, i, j), new_rtx);
8431 }
8432
8433 maybe_swap_commutative_operands (x);
8434 return x;
8435 }
8436 \f
8437 /* Given M see if it is a value that would select a field of bits
8438 within an item, but not the entire word. Return -1 if not.
8439 Otherwise, return the starting position of the field, where 0 is the
8440 low-order bit.
8441
8442 *PLEN is set to the length of the field. */
8443
8444 static int
8445 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8446 {
8447 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8448 int pos = m ? ctz_hwi (m) : -1;
8449 int len = 0;
8450
8451 if (pos >= 0)
8452 /* Now shift off the low-order zero bits and see if we have a
8453 power of two minus 1. */
8454 len = exact_log2 ((m >> pos) + 1);
8455
8456 if (len <= 0)
8457 pos = -1;
8458
8459 *plen = len;
8460 return pos;
8461 }
8462 \f
8463 /* If X refers to a register that equals REG in value, replace these
8464 references with REG. */
8465 static rtx
8466 canon_reg_for_combine (rtx x, rtx reg)
8467 {
8468 rtx op0, op1, op2;
8469 const char *fmt;
8470 int i;
8471 bool copied;
8472
8473 enum rtx_code code = GET_CODE (x);
8474 switch (GET_RTX_CLASS (code))
8475 {
8476 case RTX_UNARY:
8477 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8478 if (op0 != XEXP (x, 0))
8479 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8480 GET_MODE (reg));
8481 break;
8482
8483 case RTX_BIN_ARITH:
8484 case RTX_COMM_ARITH:
8485 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8486 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8487 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8488 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8489 break;
8490
8491 case RTX_COMPARE:
8492 case RTX_COMM_COMPARE:
8493 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8494 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8495 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8496 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8497 GET_MODE (op0), op0, op1);
8498 break;
8499
8500 case RTX_TERNARY:
8501 case RTX_BITFIELD_OPS:
8502 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8503 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8504 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8505 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8506 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8507 GET_MODE (op0), op0, op1, op2);
8508 /* FALLTHRU */
8509
8510 case RTX_OBJ:
8511 if (REG_P (x))
8512 {
8513 if (rtx_equal_p (get_last_value (reg), x)
8514 || rtx_equal_p (reg, get_last_value (x)))
8515 return reg;
8516 else
8517 break;
8518 }
8519
8520 /* fall through */
8521
8522 default:
8523 fmt = GET_RTX_FORMAT (code);
8524 copied = false;
8525 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8526 if (fmt[i] == 'e')
8527 {
8528 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8529 if (op != XEXP (x, i))
8530 {
8531 if (!copied)
8532 {
8533 copied = true;
8534 x = copy_rtx (x);
8535 }
8536 XEXP (x, i) = op;
8537 }
8538 }
8539 else if (fmt[i] == 'E')
8540 {
8541 int j;
8542 for (j = 0; j < XVECLEN (x, i); j++)
8543 {
8544 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8545 if (op != XVECEXP (x, i, j))
8546 {
8547 if (!copied)
8548 {
8549 copied = true;
8550 x = copy_rtx (x);
8551 }
8552 XVECEXP (x, i, j) = op;
8553 }
8554 }
8555 }
8556
8557 break;
8558 }
8559
8560 return x;
8561 }
8562
8563 /* Return X converted to MODE. If the value is already truncated to
8564 MODE we can just return a subreg even though in the general case we
8565 would need an explicit truncation. */
8566
8567 static rtx
8568 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8569 {
8570 if (!CONST_INT_P (x)
8571 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8572 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8573 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8574 {
8575 /* Bit-cast X into an integer mode. */
8576 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8577 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8578 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8579 x, GET_MODE (x));
8580 }
8581
8582 return gen_lowpart (mode, x);
8583 }
8584
8585 /* See if X can be simplified knowing that we will only refer to it in
8586 MODE and will only refer to those bits that are nonzero in MASK.
8587 If other bits are being computed or if masking operations are done
8588 that select a superset of the bits in MASK, they can sometimes be
8589 ignored.
8590
8591 Return a possibly simplified expression, but always convert X to
8592 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8593
8594 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8595 are all off in X. This is used when X will be complemented, by either
8596 NOT, NEG, or XOR. */
8597
8598 static rtx
8599 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8600 int just_select)
8601 {
8602 enum rtx_code code = GET_CODE (x);
8603 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8604 machine_mode op_mode;
8605 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8606 rtx op0, op1, temp;
8607
8608 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8609 code below will do the wrong thing since the mode of such an
8610 expression is VOIDmode.
8611
8612 Also do nothing if X is a CLOBBER; this can happen if X was
8613 the return value from a call to gen_lowpart. */
8614 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8615 return x;
8616
8617 /* We want to perform the operation in its present mode unless we know
8618 that the operation is valid in MODE, in which case we do the operation
8619 in MODE. */
8620 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8621 && have_insn_for (code, mode))
8622 ? mode : GET_MODE (x));
8623
8624 /* It is not valid to do a right-shift in a narrower mode
8625 than the one it came in with. */
8626 if ((code == LSHIFTRT || code == ASHIFTRT)
8627 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8628 op_mode = GET_MODE (x);
8629
8630 /* Truncate MASK to fit OP_MODE. */
8631 if (op_mode)
8632 mask &= GET_MODE_MASK (op_mode);
8633
8634 /* When we have an arithmetic operation, or a shift whose count we
8635 do not know, we need to assume that all bits up to the highest-order
8636 bit in MASK will be needed. This is how we form such a mask. */
8637 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8638 fuller_mask = HOST_WIDE_INT_M1U;
8639 else
8640 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8641 - 1);
8642
8643 /* Determine what bits of X are guaranteed to be (non)zero. */
8644 nonzero = nonzero_bits (x, mode);
8645
8646 /* If none of the bits in X are needed, return a zero. */
8647 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8648 x = const0_rtx;
8649
8650 /* If X is a CONST_INT, return a new one. Do this here since the
8651 test below will fail. */
8652 if (CONST_INT_P (x))
8653 {
8654 if (SCALAR_INT_MODE_P (mode))
8655 return gen_int_mode (INTVAL (x) & mask, mode);
8656 else
8657 {
8658 x = GEN_INT (INTVAL (x) & mask);
8659 return gen_lowpart_common (mode, x);
8660 }
8661 }
8662
8663 /* If X is narrower than MODE and we want all the bits in X's mode, just
8664 get X in the proper mode. */
8665 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8666 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8667 return gen_lowpart (mode, x);
8668
8669 /* We can ignore the effect of a SUBREG if it narrows the mode or
8670 if the constant masks to zero all the bits the mode doesn't have. */
8671 if (GET_CODE (x) == SUBREG
8672 && subreg_lowpart_p (x)
8673 && ((GET_MODE_SIZE (GET_MODE (x))
8674 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8675 || (0 == (mask
8676 & GET_MODE_MASK (GET_MODE (x))
8677 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8678 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8679
8680 /* The arithmetic simplifications here only work for scalar integer modes. */
8681 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8682 return gen_lowpart_or_truncate (mode, x);
8683
8684 switch (code)
8685 {
8686 case CLOBBER:
8687 /* If X is a (clobber (const_int)), return it since we know we are
8688 generating something that won't match. */
8689 return x;
8690
8691 case SIGN_EXTEND:
8692 case ZERO_EXTEND:
8693 case ZERO_EXTRACT:
8694 case SIGN_EXTRACT:
8695 x = expand_compound_operation (x);
8696 if (GET_CODE (x) != code)
8697 return force_to_mode (x, mode, mask, next_select);
8698 break;
8699
8700 case TRUNCATE:
8701 /* Similarly for a truncate. */
8702 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8703
8704 case AND:
8705 /* If this is an AND with a constant, convert it into an AND
8706 whose constant is the AND of that constant with MASK. If it
8707 remains an AND of MASK, delete it since it is redundant. */
8708
8709 if (CONST_INT_P (XEXP (x, 1)))
8710 {
8711 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8712 mask & INTVAL (XEXP (x, 1)));
8713
8714 /* If X is still an AND, see if it is an AND with a mask that
8715 is just some low-order bits. If so, and it is MASK, we don't
8716 need it. */
8717
8718 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8719 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8720 == mask))
8721 x = XEXP (x, 0);
8722
8723 /* If it remains an AND, try making another AND with the bits
8724 in the mode mask that aren't in MASK turned on. If the
8725 constant in the AND is wide enough, this might make a
8726 cheaper constant. */
8727
8728 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8729 && GET_MODE_MASK (GET_MODE (x)) != mask
8730 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8731 {
8732 unsigned HOST_WIDE_INT cval
8733 = UINTVAL (XEXP (x, 1))
8734 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8735 rtx y;
8736
8737 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8738 gen_int_mode (cval, GET_MODE (x)));
8739 if (set_src_cost (y, GET_MODE (x), optimize_this_for_speed_p)
8740 < set_src_cost (x, GET_MODE (x), optimize_this_for_speed_p))
8741 x = y;
8742 }
8743
8744 break;
8745 }
8746
8747 goto binop;
8748
8749 case PLUS:
8750 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8751 low-order bits (as in an alignment operation) and FOO is already
8752 aligned to that boundary, mask C1 to that boundary as well.
8753 This may eliminate that PLUS and, later, the AND. */
8754
8755 {
8756 unsigned int width = GET_MODE_PRECISION (mode);
8757 unsigned HOST_WIDE_INT smask = mask;
8758
8759 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8760 number, sign extend it. */
8761
8762 if (width < HOST_BITS_PER_WIDE_INT
8763 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8764 smask |= HOST_WIDE_INT_M1U << width;
8765
8766 if (CONST_INT_P (XEXP (x, 1))
8767 && pow2p_hwi (- smask)
8768 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8769 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8770 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8771 (INTVAL (XEXP (x, 1)) & smask)),
8772 mode, smask, next_select);
8773 }
8774
8775 /* fall through */
8776
8777 case MULT:
8778 /* Substituting into the operands of a widening MULT is not likely to
8779 create RTL matching a machine insn. */
8780 if (code == MULT
8781 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8782 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8783 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8784 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8785 && REG_P (XEXP (XEXP (x, 0), 0))
8786 && REG_P (XEXP (XEXP (x, 1), 0)))
8787 return gen_lowpart_or_truncate (mode, x);
8788
8789 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8790 most significant bit in MASK since carries from those bits will
8791 affect the bits we are interested in. */
8792 mask = fuller_mask;
8793 goto binop;
8794
8795 case MINUS:
8796 /* If X is (minus C Y) where C's least set bit is larger than any bit
8797 in the mask, then we may replace with (neg Y). */
8798 if (CONST_INT_P (XEXP (x, 0))
8799 && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8800 {
8801 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8802 GET_MODE (x));
8803 return force_to_mode (x, mode, mask, next_select);
8804 }
8805
8806 /* Similarly, if C contains every bit in the fuller_mask, then we may
8807 replace with (not Y). */
8808 if (CONST_INT_P (XEXP (x, 0))
8809 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8810 {
8811 x = simplify_gen_unary (NOT, GET_MODE (x),
8812 XEXP (x, 1), GET_MODE (x));
8813 return force_to_mode (x, mode, mask, next_select);
8814 }
8815
8816 mask = fuller_mask;
8817 goto binop;
8818
8819 case IOR:
8820 case XOR:
8821 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8822 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8823 operation which may be a bitfield extraction. Ensure that the
8824 constant we form is not wider than the mode of X. */
8825
8826 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8827 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8828 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8829 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8830 && CONST_INT_P (XEXP (x, 1))
8831 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8832 + floor_log2 (INTVAL (XEXP (x, 1))))
8833 < GET_MODE_PRECISION (GET_MODE (x)))
8834 && (UINTVAL (XEXP (x, 1))
8835 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8836 {
8837 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8838 << INTVAL (XEXP (XEXP (x, 0), 1)),
8839 GET_MODE (x));
8840 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8841 XEXP (XEXP (x, 0), 0), temp);
8842 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8843 XEXP (XEXP (x, 0), 1));
8844 return force_to_mode (x, mode, mask, next_select);
8845 }
8846
8847 binop:
8848 /* For most binary operations, just propagate into the operation and
8849 change the mode if we have an operation of that mode. */
8850
8851 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8852 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8853
8854 /* If we ended up truncating both operands, truncate the result of the
8855 operation instead. */
8856 if (GET_CODE (op0) == TRUNCATE
8857 && GET_CODE (op1) == TRUNCATE)
8858 {
8859 op0 = XEXP (op0, 0);
8860 op1 = XEXP (op1, 0);
8861 }
8862
8863 op0 = gen_lowpart_or_truncate (op_mode, op0);
8864 op1 = gen_lowpart_or_truncate (op_mode, op1);
8865
8866 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8867 x = simplify_gen_binary (code, op_mode, op0, op1);
8868 break;
8869
8870 case ASHIFT:
8871 /* For left shifts, do the same, but just for the first operand.
8872 However, we cannot do anything with shifts where we cannot
8873 guarantee that the counts are smaller than the size of the mode
8874 because such a count will have a different meaning in a
8875 wider mode. */
8876
8877 if (! (CONST_INT_P (XEXP (x, 1))
8878 && INTVAL (XEXP (x, 1)) >= 0
8879 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8880 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8881 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8882 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8883 break;
8884
8885 /* If the shift count is a constant and we can do arithmetic in
8886 the mode of the shift, refine which bits we need. Otherwise, use the
8887 conservative form of the mask. */
8888 if (CONST_INT_P (XEXP (x, 1))
8889 && INTVAL (XEXP (x, 1)) >= 0
8890 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8891 && HWI_COMPUTABLE_MODE_P (op_mode))
8892 mask >>= INTVAL (XEXP (x, 1));
8893 else
8894 mask = fuller_mask;
8895
8896 op0 = gen_lowpart_or_truncate (op_mode,
8897 force_to_mode (XEXP (x, 0), op_mode,
8898 mask, next_select));
8899
8900 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8901 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8902 break;
8903
8904 case LSHIFTRT:
8905 /* Here we can only do something if the shift count is a constant,
8906 this shift constant is valid for the host, and we can do arithmetic
8907 in OP_MODE. */
8908
8909 if (CONST_INT_P (XEXP (x, 1))
8910 && INTVAL (XEXP (x, 1)) >= 0
8911 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8912 && HWI_COMPUTABLE_MODE_P (op_mode))
8913 {
8914 rtx inner = XEXP (x, 0);
8915 unsigned HOST_WIDE_INT inner_mask;
8916
8917 /* Select the mask of the bits we need for the shift operand. */
8918 inner_mask = mask << INTVAL (XEXP (x, 1));
8919
8920 /* We can only change the mode of the shift if we can do arithmetic
8921 in the mode of the shift and INNER_MASK is no wider than the
8922 width of X's mode. */
8923 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8924 op_mode = GET_MODE (x);
8925
8926 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8927
8928 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8929 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8930 }
8931
8932 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8933 shift and AND produces only copies of the sign bit (C2 is one less
8934 than a power of two), we can do this with just a shift. */
8935
8936 if (GET_CODE (x) == LSHIFTRT
8937 && CONST_INT_P (XEXP (x, 1))
8938 /* The shift puts one of the sign bit copies in the least significant
8939 bit. */
8940 && ((INTVAL (XEXP (x, 1))
8941 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8942 >= GET_MODE_PRECISION (GET_MODE (x)))
8943 && pow2p_hwi (mask + 1)
8944 /* Number of bits left after the shift must be more than the mask
8945 needs. */
8946 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8947 <= GET_MODE_PRECISION (GET_MODE (x)))
8948 /* Must be more sign bit copies than the mask needs. */
8949 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8950 >= exact_log2 (mask + 1)))
8951 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8952 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8953 - exact_log2 (mask + 1)));
8954
8955 goto shiftrt;
8956
8957 case ASHIFTRT:
8958 /* If we are just looking for the sign bit, we don't need this shift at
8959 all, even if it has a variable count. */
8960 if (val_signbit_p (GET_MODE (x), mask))
8961 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8962
8963 /* If this is a shift by a constant, get a mask that contains those bits
8964 that are not copies of the sign bit. We then have two cases: If
8965 MASK only includes those bits, this can be a logical shift, which may
8966 allow simplifications. If MASK is a single-bit field not within
8967 those bits, we are requesting a copy of the sign bit and hence can
8968 shift the sign bit to the appropriate location. */
8969
8970 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8971 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8972 {
8973 int i;
8974
8975 /* If the considered data is wider than HOST_WIDE_INT, we can't
8976 represent a mask for all its bits in a single scalar.
8977 But we only care about the lower bits, so calculate these. */
8978
8979 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8980 {
8981 nonzero = HOST_WIDE_INT_M1U;
8982
8983 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8984 is the number of bits a full-width mask would have set.
8985 We need only shift if these are fewer than nonzero can
8986 hold. If not, we must keep all bits set in nonzero. */
8987
8988 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8989 < HOST_BITS_PER_WIDE_INT)
8990 nonzero >>= INTVAL (XEXP (x, 1))
8991 + HOST_BITS_PER_WIDE_INT
8992 - GET_MODE_PRECISION (GET_MODE (x)) ;
8993 }
8994 else
8995 {
8996 nonzero = GET_MODE_MASK (GET_MODE (x));
8997 nonzero >>= INTVAL (XEXP (x, 1));
8998 }
8999
9000 if ((mask & ~nonzero) == 0)
9001 {
9002 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
9003 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9004 if (GET_CODE (x) != ASHIFTRT)
9005 return force_to_mode (x, mode, mask, next_select);
9006 }
9007
9008 else if ((i = exact_log2 (mask)) >= 0)
9009 {
9010 x = simplify_shift_const
9011 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
9012 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
9013
9014 if (GET_CODE (x) != ASHIFTRT)
9015 return force_to_mode (x, mode, mask, next_select);
9016 }
9017 }
9018
9019 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9020 even if the shift count isn't a constant. */
9021 if (mask == 1)
9022 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
9023 XEXP (x, 0), XEXP (x, 1));
9024
9025 shiftrt:
9026
9027 /* If this is a zero- or sign-extension operation that just affects bits
9028 we don't care about, remove it. Be sure the call above returned
9029 something that is still a shift. */
9030
9031 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9032 && CONST_INT_P (XEXP (x, 1))
9033 && INTVAL (XEXP (x, 1)) >= 0
9034 && (INTVAL (XEXP (x, 1))
9035 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
9036 && GET_CODE (XEXP (x, 0)) == ASHIFT
9037 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9038 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9039 next_select);
9040
9041 break;
9042
9043 case ROTATE:
9044 case ROTATERT:
9045 /* If the shift count is constant and we can do computations
9046 in the mode of X, compute where the bits we care about are.
9047 Otherwise, we can't do anything. Don't change the mode of
9048 the shift or propagate MODE into the shift, though. */
9049 if (CONST_INT_P (XEXP (x, 1))
9050 && INTVAL (XEXP (x, 1)) >= 0)
9051 {
9052 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9053 GET_MODE (x),
9054 gen_int_mode (mask, GET_MODE (x)),
9055 XEXP (x, 1));
9056 if (temp && CONST_INT_P (temp))
9057 x = simplify_gen_binary (code, GET_MODE (x),
9058 force_to_mode (XEXP (x, 0), GET_MODE (x),
9059 INTVAL (temp), next_select),
9060 XEXP (x, 1));
9061 }
9062 break;
9063
9064 case NEG:
9065 /* If we just want the low-order bit, the NEG isn't needed since it
9066 won't change the low-order bit. */
9067 if (mask == 1)
9068 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9069
9070 /* We need any bits less significant than the most significant bit in
9071 MASK since carries from those bits will affect the bits we are
9072 interested in. */
9073 mask = fuller_mask;
9074 goto unop;
9075
9076 case NOT:
9077 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9078 same as the XOR case above. Ensure that the constant we form is not
9079 wider than the mode of X. */
9080
9081 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9082 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9083 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9084 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9085 < GET_MODE_PRECISION (GET_MODE (x)))
9086 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9087 {
9088 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
9089 GET_MODE (x));
9090 temp = simplify_gen_binary (XOR, GET_MODE (x),
9091 XEXP (XEXP (x, 0), 0), temp);
9092 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
9093 temp, XEXP (XEXP (x, 0), 1));
9094
9095 return force_to_mode (x, mode, mask, next_select);
9096 }
9097
9098 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9099 use the full mask inside the NOT. */
9100 mask = fuller_mask;
9101
9102 unop:
9103 op0 = gen_lowpart_or_truncate (op_mode,
9104 force_to_mode (XEXP (x, 0), mode, mask,
9105 next_select));
9106 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
9107 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9108 break;
9109
9110 case NE:
9111 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9112 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9113 which is equal to STORE_FLAG_VALUE. */
9114 if ((mask & ~STORE_FLAG_VALUE) == 0
9115 && XEXP (x, 1) == const0_rtx
9116 && GET_MODE (XEXP (x, 0)) == mode
9117 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9118 && (nonzero_bits (XEXP (x, 0), mode)
9119 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9120 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9121
9122 break;
9123
9124 case IF_THEN_ELSE:
9125 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9126 written in a narrower mode. We play it safe and do not do so. */
9127
9128 op0 = gen_lowpart_or_truncate (GET_MODE (x),
9129 force_to_mode (XEXP (x, 1), mode,
9130 mask, next_select));
9131 op1 = gen_lowpart_or_truncate (GET_MODE (x),
9132 force_to_mode (XEXP (x, 2), mode,
9133 mask, next_select));
9134 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9135 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
9136 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9137 op0, op1);
9138 break;
9139
9140 default:
9141 break;
9142 }
9143
9144 /* Ensure we return a value of the proper mode. */
9145 return gen_lowpart_or_truncate (mode, x);
9146 }
9147 \f
9148 /* Return nonzero if X is an expression that has one of two values depending on
9149 whether some other value is zero or nonzero. In that case, we return the
9150 value that is being tested, *PTRUE is set to the value if the rtx being
9151 returned has a nonzero value, and *PFALSE is set to the other alternative.
9152
9153 If we return zero, we set *PTRUE and *PFALSE to X. */
9154
9155 static rtx
9156 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9157 {
9158 machine_mode mode = GET_MODE (x);
9159 enum rtx_code code = GET_CODE (x);
9160 rtx cond0, cond1, true0, true1, false0, false1;
9161 unsigned HOST_WIDE_INT nz;
9162
9163 /* If we are comparing a value against zero, we are done. */
9164 if ((code == NE || code == EQ)
9165 && XEXP (x, 1) == const0_rtx)
9166 {
9167 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9168 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9169 return XEXP (x, 0);
9170 }
9171
9172 /* If this is a unary operation whose operand has one of two values, apply
9173 our opcode to compute those values. */
9174 else if (UNARY_P (x)
9175 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9176 {
9177 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9178 *pfalse = simplify_gen_unary (code, mode, false0,
9179 GET_MODE (XEXP (x, 0)));
9180 return cond0;
9181 }
9182
9183 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9184 make can't possibly match and would suppress other optimizations. */
9185 else if (code == COMPARE)
9186 ;
9187
9188 /* If this is a binary operation, see if either side has only one of two
9189 values. If either one does or if both do and they are conditional on
9190 the same value, compute the new true and false values. */
9191 else if (BINARY_P (x))
9192 {
9193 rtx op0 = XEXP (x, 0);
9194 rtx op1 = XEXP (x, 1);
9195 cond0 = if_then_else_cond (op0, &true0, &false0);
9196 cond1 = if_then_else_cond (op1, &true1, &false1);
9197
9198 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9199 && (REG_P (op0) || REG_P (op1)))
9200 {
9201 /* Try to enable a simplification by undoing work done by
9202 if_then_else_cond if it converted a REG into something more
9203 complex. */
9204 if (REG_P (op0))
9205 {
9206 cond0 = 0;
9207 true0 = false0 = op0;
9208 }
9209 else
9210 {
9211 cond1 = 0;
9212 true1 = false1 = op1;
9213 }
9214 }
9215
9216 if ((cond0 != 0 || cond1 != 0)
9217 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9218 {
9219 /* If if_then_else_cond returned zero, then true/false are the
9220 same rtl. We must copy one of them to prevent invalid rtl
9221 sharing. */
9222 if (cond0 == 0)
9223 true0 = copy_rtx (true0);
9224 else if (cond1 == 0)
9225 true1 = copy_rtx (true1);
9226
9227 if (COMPARISON_P (x))
9228 {
9229 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9230 true0, true1);
9231 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9232 false0, false1);
9233 }
9234 else
9235 {
9236 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9237 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9238 }
9239
9240 return cond0 ? cond0 : cond1;
9241 }
9242
9243 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9244 operands is zero when the other is nonzero, and vice-versa,
9245 and STORE_FLAG_VALUE is 1 or -1. */
9246
9247 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9248 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9249 || code == UMAX)
9250 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9251 {
9252 rtx op0 = XEXP (XEXP (x, 0), 1);
9253 rtx op1 = XEXP (XEXP (x, 1), 1);
9254
9255 cond0 = XEXP (XEXP (x, 0), 0);
9256 cond1 = XEXP (XEXP (x, 1), 0);
9257
9258 if (COMPARISON_P (cond0)
9259 && COMPARISON_P (cond1)
9260 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9261 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9262 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9263 || ((swap_condition (GET_CODE (cond0))
9264 == reversed_comparison_code (cond1, NULL))
9265 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9266 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9267 && ! side_effects_p (x))
9268 {
9269 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9270 *pfalse = simplify_gen_binary (MULT, mode,
9271 (code == MINUS
9272 ? simplify_gen_unary (NEG, mode,
9273 op1, mode)
9274 : op1),
9275 const_true_rtx);
9276 return cond0;
9277 }
9278 }
9279
9280 /* Similarly for MULT, AND and UMIN, except that for these the result
9281 is always zero. */
9282 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9283 && (code == MULT || code == AND || code == UMIN)
9284 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9285 {
9286 cond0 = XEXP (XEXP (x, 0), 0);
9287 cond1 = XEXP (XEXP (x, 1), 0);
9288
9289 if (COMPARISON_P (cond0)
9290 && COMPARISON_P (cond1)
9291 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9292 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9293 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9294 || ((swap_condition (GET_CODE (cond0))
9295 == reversed_comparison_code (cond1, NULL))
9296 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9297 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9298 && ! side_effects_p (x))
9299 {
9300 *ptrue = *pfalse = const0_rtx;
9301 return cond0;
9302 }
9303 }
9304 }
9305
9306 else if (code == IF_THEN_ELSE)
9307 {
9308 /* If we have IF_THEN_ELSE already, extract the condition and
9309 canonicalize it if it is NE or EQ. */
9310 cond0 = XEXP (x, 0);
9311 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9312 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9313 return XEXP (cond0, 0);
9314 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9315 {
9316 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9317 return XEXP (cond0, 0);
9318 }
9319 else
9320 return cond0;
9321 }
9322
9323 /* If X is a SUBREG, we can narrow both the true and false values
9324 if the inner expression, if there is a condition. */
9325 else if (code == SUBREG
9326 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9327 &true0, &false0)))
9328 {
9329 true0 = simplify_gen_subreg (mode, true0,
9330 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9331 false0 = simplify_gen_subreg (mode, false0,
9332 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9333 if (true0 && false0)
9334 {
9335 *ptrue = true0;
9336 *pfalse = false0;
9337 return cond0;
9338 }
9339 }
9340
9341 /* If X is a constant, this isn't special and will cause confusions
9342 if we treat it as such. Likewise if it is equivalent to a constant. */
9343 else if (CONSTANT_P (x)
9344 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9345 ;
9346
9347 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9348 will be least confusing to the rest of the compiler. */
9349 else if (mode == BImode)
9350 {
9351 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9352 return x;
9353 }
9354
9355 /* If X is known to be either 0 or -1, those are the true and
9356 false values when testing X. */
9357 else if (x == constm1_rtx || x == const0_rtx
9358 || (mode != VOIDmode && mode != BLKmode
9359 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9360 {
9361 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9362 return x;
9363 }
9364
9365 /* Likewise for 0 or a single bit. */
9366 else if (HWI_COMPUTABLE_MODE_P (mode)
9367 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9368 {
9369 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9370 return x;
9371 }
9372
9373 /* Otherwise fail; show no condition with true and false values the same. */
9374 *ptrue = *pfalse = x;
9375 return 0;
9376 }
9377 \f
9378 /* Return the value of expression X given the fact that condition COND
9379 is known to be true when applied to REG as its first operand and VAL
9380 as its second. X is known to not be shared and so can be modified in
9381 place.
9382
9383 We only handle the simplest cases, and specifically those cases that
9384 arise with IF_THEN_ELSE expressions. */
9385
9386 static rtx
9387 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9388 {
9389 enum rtx_code code = GET_CODE (x);
9390 const char *fmt;
9391 int i, j;
9392
9393 if (side_effects_p (x))
9394 return x;
9395
9396 /* If either operand of the condition is a floating point value,
9397 then we have to avoid collapsing an EQ comparison. */
9398 if (cond == EQ
9399 && rtx_equal_p (x, reg)
9400 && ! FLOAT_MODE_P (GET_MODE (x))
9401 && ! FLOAT_MODE_P (GET_MODE (val)))
9402 return val;
9403
9404 if (cond == UNEQ && rtx_equal_p (x, reg))
9405 return val;
9406
9407 /* If X is (abs REG) and we know something about REG's relationship
9408 with zero, we may be able to simplify this. */
9409
9410 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9411 switch (cond)
9412 {
9413 case GE: case GT: case EQ:
9414 return XEXP (x, 0);
9415 case LT: case LE:
9416 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9417 XEXP (x, 0),
9418 GET_MODE (XEXP (x, 0)));
9419 default:
9420 break;
9421 }
9422
9423 /* The only other cases we handle are MIN, MAX, and comparisons if the
9424 operands are the same as REG and VAL. */
9425
9426 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9427 {
9428 if (rtx_equal_p (XEXP (x, 0), val))
9429 {
9430 std::swap (val, reg);
9431 cond = swap_condition (cond);
9432 }
9433
9434 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9435 {
9436 if (COMPARISON_P (x))
9437 {
9438 if (comparison_dominates_p (cond, code))
9439 return const_true_rtx;
9440
9441 code = reversed_comparison_code (x, NULL);
9442 if (code != UNKNOWN
9443 && comparison_dominates_p (cond, code))
9444 return const0_rtx;
9445 else
9446 return x;
9447 }
9448 else if (code == SMAX || code == SMIN
9449 || code == UMIN || code == UMAX)
9450 {
9451 int unsignedp = (code == UMIN || code == UMAX);
9452
9453 /* Do not reverse the condition when it is NE or EQ.
9454 This is because we cannot conclude anything about
9455 the value of 'SMAX (x, y)' when x is not equal to y,
9456 but we can when x equals y. */
9457 if ((code == SMAX || code == UMAX)
9458 && ! (cond == EQ || cond == NE))
9459 cond = reverse_condition (cond);
9460
9461 switch (cond)
9462 {
9463 case GE: case GT:
9464 return unsignedp ? x : XEXP (x, 1);
9465 case LE: case LT:
9466 return unsignedp ? x : XEXP (x, 0);
9467 case GEU: case GTU:
9468 return unsignedp ? XEXP (x, 1) : x;
9469 case LEU: case LTU:
9470 return unsignedp ? XEXP (x, 0) : x;
9471 default:
9472 break;
9473 }
9474 }
9475 }
9476 }
9477 else if (code == SUBREG)
9478 {
9479 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9480 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9481
9482 if (SUBREG_REG (x) != r)
9483 {
9484 /* We must simplify subreg here, before we lose track of the
9485 original inner_mode. */
9486 new_rtx = simplify_subreg (GET_MODE (x), r,
9487 inner_mode, SUBREG_BYTE (x));
9488 if (new_rtx)
9489 return new_rtx;
9490 else
9491 SUBST (SUBREG_REG (x), r);
9492 }
9493
9494 return x;
9495 }
9496 /* We don't have to handle SIGN_EXTEND here, because even in the
9497 case of replacing something with a modeless CONST_INT, a
9498 CONST_INT is already (supposed to be) a valid sign extension for
9499 its narrower mode, which implies it's already properly
9500 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9501 story is different. */
9502 else if (code == ZERO_EXTEND)
9503 {
9504 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9505 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9506
9507 if (XEXP (x, 0) != r)
9508 {
9509 /* We must simplify the zero_extend here, before we lose
9510 track of the original inner_mode. */
9511 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9512 r, inner_mode);
9513 if (new_rtx)
9514 return new_rtx;
9515 else
9516 SUBST (XEXP (x, 0), r);
9517 }
9518
9519 return x;
9520 }
9521
9522 fmt = GET_RTX_FORMAT (code);
9523 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9524 {
9525 if (fmt[i] == 'e')
9526 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9527 else if (fmt[i] == 'E')
9528 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9529 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9530 cond, reg, val));
9531 }
9532
9533 return x;
9534 }
9535 \f
9536 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9537 assignment as a field assignment. */
9538
9539 static int
9540 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9541 {
9542 if (widen_x && GET_MODE (x) != GET_MODE (y))
9543 {
9544 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9545 return 0;
9546 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9547 return 0;
9548 /* For big endian, adjust the memory offset. */
9549 if (BYTES_BIG_ENDIAN)
9550 x = adjust_address_nv (x, GET_MODE (y),
9551 -subreg_lowpart_offset (GET_MODE (x),
9552 GET_MODE (y)));
9553 else
9554 x = adjust_address_nv (x, GET_MODE (y), 0);
9555 }
9556
9557 if (x == y || rtx_equal_p (x, y))
9558 return 1;
9559
9560 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9561 return 0;
9562
9563 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9564 Note that all SUBREGs of MEM are paradoxical; otherwise they
9565 would have been rewritten. */
9566 if (MEM_P (x) && GET_CODE (y) == SUBREG
9567 && MEM_P (SUBREG_REG (y))
9568 && rtx_equal_p (SUBREG_REG (y),
9569 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9570 return 1;
9571
9572 if (MEM_P (y) && GET_CODE (x) == SUBREG
9573 && MEM_P (SUBREG_REG (x))
9574 && rtx_equal_p (SUBREG_REG (x),
9575 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9576 return 1;
9577
9578 /* We used to see if get_last_value of X and Y were the same but that's
9579 not correct. In one direction, we'll cause the assignment to have
9580 the wrong destination and in the case, we'll import a register into this
9581 insn that might have already have been dead. So fail if none of the
9582 above cases are true. */
9583 return 0;
9584 }
9585 \f
9586 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9587 Return that assignment if so.
9588
9589 We only handle the most common cases. */
9590
9591 static rtx
9592 make_field_assignment (rtx x)
9593 {
9594 rtx dest = SET_DEST (x);
9595 rtx src = SET_SRC (x);
9596 rtx assign;
9597 rtx rhs, lhs;
9598 HOST_WIDE_INT c1;
9599 HOST_WIDE_INT pos;
9600 unsigned HOST_WIDE_INT len;
9601 rtx other;
9602 machine_mode mode;
9603
9604 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9605 a clear of a one-bit field. We will have changed it to
9606 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9607 for a SUBREG. */
9608
9609 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9610 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9611 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9612 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9613 {
9614 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9615 1, 1, 1, 0);
9616 if (assign != 0)
9617 return gen_rtx_SET (assign, const0_rtx);
9618 return x;
9619 }
9620
9621 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9622 && subreg_lowpart_p (XEXP (src, 0))
9623 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9624 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9625 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9626 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9627 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9628 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9629 {
9630 assign = make_extraction (VOIDmode, dest, 0,
9631 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9632 1, 1, 1, 0);
9633 if (assign != 0)
9634 return gen_rtx_SET (assign, const0_rtx);
9635 return x;
9636 }
9637
9638 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9639 one-bit field. */
9640 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9641 && XEXP (XEXP (src, 0), 0) == const1_rtx
9642 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9643 {
9644 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9645 1, 1, 1, 0);
9646 if (assign != 0)
9647 return gen_rtx_SET (assign, const1_rtx);
9648 return x;
9649 }
9650
9651 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9652 SRC is an AND with all bits of that field set, then we can discard
9653 the AND. */
9654 if (GET_CODE (dest) == ZERO_EXTRACT
9655 && CONST_INT_P (XEXP (dest, 1))
9656 && GET_CODE (src) == AND
9657 && CONST_INT_P (XEXP (src, 1)))
9658 {
9659 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9660 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9661 unsigned HOST_WIDE_INT ze_mask;
9662
9663 if (width >= HOST_BITS_PER_WIDE_INT)
9664 ze_mask = -1;
9665 else
9666 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9667
9668 /* Complete overlap. We can remove the source AND. */
9669 if ((and_mask & ze_mask) == ze_mask)
9670 return gen_rtx_SET (dest, XEXP (src, 0));
9671
9672 /* Partial overlap. We can reduce the source AND. */
9673 if ((and_mask & ze_mask) != and_mask)
9674 {
9675 mode = GET_MODE (src);
9676 src = gen_rtx_AND (mode, XEXP (src, 0),
9677 gen_int_mode (and_mask & ze_mask, mode));
9678 return gen_rtx_SET (dest, src);
9679 }
9680 }
9681
9682 /* The other case we handle is assignments into a constant-position
9683 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9684 a mask that has all one bits except for a group of zero bits and
9685 OTHER is known to have zeros where C1 has ones, this is such an
9686 assignment. Compute the position and length from C1. Shift OTHER
9687 to the appropriate position, force it to the required mode, and
9688 make the extraction. Check for the AND in both operands. */
9689
9690 /* One or more SUBREGs might obscure the constant-position field
9691 assignment. The first one we are likely to encounter is an outer
9692 narrowing SUBREG, which we can just strip for the purposes of
9693 identifying the constant-field assignment. */
9694 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9695 src = SUBREG_REG (src);
9696
9697 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9698 return x;
9699
9700 rhs = expand_compound_operation (XEXP (src, 0));
9701 lhs = expand_compound_operation (XEXP (src, 1));
9702
9703 if (GET_CODE (rhs) == AND
9704 && CONST_INT_P (XEXP (rhs, 1))
9705 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9706 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9707 /* The second SUBREG that might get in the way is a paradoxical
9708 SUBREG around the first operand of the AND. We want to
9709 pretend the operand is as wide as the destination here. We
9710 do this by adjusting the MEM to wider mode for the sole
9711 purpose of the call to rtx_equal_for_field_assignment_p. Also
9712 note this trick only works for MEMs. */
9713 else if (GET_CODE (rhs) == AND
9714 && paradoxical_subreg_p (XEXP (rhs, 0))
9715 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9716 && CONST_INT_P (XEXP (rhs, 1))
9717 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9718 dest, true))
9719 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9720 else if (GET_CODE (lhs) == AND
9721 && CONST_INT_P (XEXP (lhs, 1))
9722 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9723 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9724 /* The second SUBREG that might get in the way is a paradoxical
9725 SUBREG around the first operand of the AND. We want to
9726 pretend the operand is as wide as the destination here. We
9727 do this by adjusting the MEM to wider mode for the sole
9728 purpose of the call to rtx_equal_for_field_assignment_p. Also
9729 note this trick only works for MEMs. */
9730 else if (GET_CODE (lhs) == AND
9731 && paradoxical_subreg_p (XEXP (lhs, 0))
9732 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9733 && CONST_INT_P (XEXP (lhs, 1))
9734 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9735 dest, true))
9736 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9737 else
9738 return x;
9739
9740 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9741 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9742 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9743 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9744 return x;
9745
9746 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9747 if (assign == 0)
9748 return x;
9749
9750 /* The mode to use for the source is the mode of the assignment, or of
9751 what is inside a possible STRICT_LOW_PART. */
9752 mode = (GET_CODE (assign) == STRICT_LOW_PART
9753 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9754
9755 /* Shift OTHER right POS places and make it the source, restricting it
9756 to the proper length and mode. */
9757
9758 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9759 GET_MODE (src),
9760 other, pos),
9761 dest);
9762 src = force_to_mode (src, mode,
9763 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9764 ? HOST_WIDE_INT_M1U
9765 : (HOST_WIDE_INT_1U << len) - 1,
9766 0);
9767
9768 /* If SRC is masked by an AND that does not make a difference in
9769 the value being stored, strip it. */
9770 if (GET_CODE (assign) == ZERO_EXTRACT
9771 && CONST_INT_P (XEXP (assign, 1))
9772 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9773 && GET_CODE (src) == AND
9774 && CONST_INT_P (XEXP (src, 1))
9775 && UINTVAL (XEXP (src, 1))
9776 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9777 src = XEXP (src, 0);
9778
9779 return gen_rtx_SET (assign, src);
9780 }
9781 \f
9782 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9783 if so. */
9784
9785 static rtx
9786 apply_distributive_law (rtx x)
9787 {
9788 enum rtx_code code = GET_CODE (x);
9789 enum rtx_code inner_code;
9790 rtx lhs, rhs, other;
9791 rtx tem;
9792
9793 /* Distributivity is not true for floating point as it can change the
9794 value. So we don't do it unless -funsafe-math-optimizations. */
9795 if (FLOAT_MODE_P (GET_MODE (x))
9796 && ! flag_unsafe_math_optimizations)
9797 return x;
9798
9799 /* The outer operation can only be one of the following: */
9800 if (code != IOR && code != AND && code != XOR
9801 && code != PLUS && code != MINUS)
9802 return x;
9803
9804 lhs = XEXP (x, 0);
9805 rhs = XEXP (x, 1);
9806
9807 /* If either operand is a primitive we can't do anything, so get out
9808 fast. */
9809 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9810 return x;
9811
9812 lhs = expand_compound_operation (lhs);
9813 rhs = expand_compound_operation (rhs);
9814 inner_code = GET_CODE (lhs);
9815 if (inner_code != GET_CODE (rhs))
9816 return x;
9817
9818 /* See if the inner and outer operations distribute. */
9819 switch (inner_code)
9820 {
9821 case LSHIFTRT:
9822 case ASHIFTRT:
9823 case AND:
9824 case IOR:
9825 /* These all distribute except over PLUS. */
9826 if (code == PLUS || code == MINUS)
9827 return x;
9828 break;
9829
9830 case MULT:
9831 if (code != PLUS && code != MINUS)
9832 return x;
9833 break;
9834
9835 case ASHIFT:
9836 /* This is also a multiply, so it distributes over everything. */
9837 break;
9838
9839 /* This used to handle SUBREG, but this turned out to be counter-
9840 productive, since (subreg (op ...)) usually is not handled by
9841 insn patterns, and this "optimization" therefore transformed
9842 recognizable patterns into unrecognizable ones. Therefore the
9843 SUBREG case was removed from here.
9844
9845 It is possible that distributing SUBREG over arithmetic operations
9846 leads to an intermediate result than can then be optimized further,
9847 e.g. by moving the outer SUBREG to the other side of a SET as done
9848 in simplify_set. This seems to have been the original intent of
9849 handling SUBREGs here.
9850
9851 However, with current GCC this does not appear to actually happen,
9852 at least on major platforms. If some case is found where removing
9853 the SUBREG case here prevents follow-on optimizations, distributing
9854 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9855
9856 default:
9857 return x;
9858 }
9859
9860 /* Set LHS and RHS to the inner operands (A and B in the example
9861 above) and set OTHER to the common operand (C in the example).
9862 There is only one way to do this unless the inner operation is
9863 commutative. */
9864 if (COMMUTATIVE_ARITH_P (lhs)
9865 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9866 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9867 else if (COMMUTATIVE_ARITH_P (lhs)
9868 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9869 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9870 else if (COMMUTATIVE_ARITH_P (lhs)
9871 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9872 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9873 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9874 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9875 else
9876 return x;
9877
9878 /* Form the new inner operation, seeing if it simplifies first. */
9879 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9880
9881 /* There is one exception to the general way of distributing:
9882 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9883 if (code == XOR && inner_code == IOR)
9884 {
9885 inner_code = AND;
9886 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9887 }
9888
9889 /* We may be able to continuing distributing the result, so call
9890 ourselves recursively on the inner operation before forming the
9891 outer operation, which we return. */
9892 return simplify_gen_binary (inner_code, GET_MODE (x),
9893 apply_distributive_law (tem), other);
9894 }
9895
9896 /* See if X is of the form (* (+ A B) C), and if so convert to
9897 (+ (* A C) (* B C)) and try to simplify.
9898
9899 Most of the time, this results in no change. However, if some of
9900 the operands are the same or inverses of each other, simplifications
9901 will result.
9902
9903 For example, (and (ior A B) (not B)) can occur as the result of
9904 expanding a bit field assignment. When we apply the distributive
9905 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9906 which then simplifies to (and (A (not B))).
9907
9908 Note that no checks happen on the validity of applying the inverse
9909 distributive law. This is pointless since we can do it in the
9910 few places where this routine is called.
9911
9912 N is the index of the term that is decomposed (the arithmetic operation,
9913 i.e. (+ A B) in the first example above). !N is the index of the term that
9914 is distributed, i.e. of C in the first example above. */
9915 static rtx
9916 distribute_and_simplify_rtx (rtx x, int n)
9917 {
9918 machine_mode mode;
9919 enum rtx_code outer_code, inner_code;
9920 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9921
9922 /* Distributivity is not true for floating point as it can change the
9923 value. So we don't do it unless -funsafe-math-optimizations. */
9924 if (FLOAT_MODE_P (GET_MODE (x))
9925 && ! flag_unsafe_math_optimizations)
9926 return NULL_RTX;
9927
9928 decomposed = XEXP (x, n);
9929 if (!ARITHMETIC_P (decomposed))
9930 return NULL_RTX;
9931
9932 mode = GET_MODE (x);
9933 outer_code = GET_CODE (x);
9934 distributed = XEXP (x, !n);
9935
9936 inner_code = GET_CODE (decomposed);
9937 inner_op0 = XEXP (decomposed, 0);
9938 inner_op1 = XEXP (decomposed, 1);
9939
9940 /* Special case (and (xor B C) (not A)), which is equivalent to
9941 (xor (ior A B) (ior A C)) */
9942 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9943 {
9944 distributed = XEXP (distributed, 0);
9945 outer_code = IOR;
9946 }
9947
9948 if (n == 0)
9949 {
9950 /* Distribute the second term. */
9951 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9952 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9953 }
9954 else
9955 {
9956 /* Distribute the first term. */
9957 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9958 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9959 }
9960
9961 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9962 new_op0, new_op1));
9963 if (GET_CODE (tmp) != outer_code
9964 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9965 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9966 return tmp;
9967
9968 return NULL_RTX;
9969 }
9970 \f
9971 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9972 in MODE. Return an equivalent form, if different from (and VAROP
9973 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9974
9975 static rtx
9976 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9977 unsigned HOST_WIDE_INT constop)
9978 {
9979 unsigned HOST_WIDE_INT nonzero;
9980 unsigned HOST_WIDE_INT orig_constop;
9981 rtx orig_varop;
9982 int i;
9983
9984 orig_varop = varop;
9985 orig_constop = constop;
9986 if (GET_CODE (varop) == CLOBBER)
9987 return NULL_RTX;
9988
9989 /* Simplify VAROP knowing that we will be only looking at some of the
9990 bits in it.
9991
9992 Note by passing in CONSTOP, we guarantee that the bits not set in
9993 CONSTOP are not significant and will never be examined. We must
9994 ensure that is the case by explicitly masking out those bits
9995 before returning. */
9996 varop = force_to_mode (varop, mode, constop, 0);
9997
9998 /* If VAROP is a CLOBBER, we will fail so return it. */
9999 if (GET_CODE (varop) == CLOBBER)
10000 return varop;
10001
10002 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10003 to VAROP and return the new constant. */
10004 if (CONST_INT_P (varop))
10005 return gen_int_mode (INTVAL (varop) & constop, mode);
10006
10007 /* See what bits may be nonzero in VAROP. Unlike the general case of
10008 a call to nonzero_bits, here we don't care about bits outside
10009 MODE. */
10010
10011 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10012
10013 /* Turn off all bits in the constant that are known to already be zero.
10014 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10015 which is tested below. */
10016
10017 constop &= nonzero;
10018
10019 /* If we don't have any bits left, return zero. */
10020 if (constop == 0)
10021 return const0_rtx;
10022
10023 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10024 a power of two, we can replace this with an ASHIFT. */
10025 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10026 && (i = exact_log2 (constop)) >= 0)
10027 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10028
10029 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10030 or XOR, then try to apply the distributive law. This may eliminate
10031 operations if either branch can be simplified because of the AND.
10032 It may also make some cases more complex, but those cases probably
10033 won't match a pattern either with or without this. */
10034
10035 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10036 return
10037 gen_lowpart
10038 (mode,
10039 apply_distributive_law
10040 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
10041 simplify_and_const_int (NULL_RTX,
10042 GET_MODE (varop),
10043 XEXP (varop, 0),
10044 constop),
10045 simplify_and_const_int (NULL_RTX,
10046 GET_MODE (varop),
10047 XEXP (varop, 1),
10048 constop))));
10049
10050 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10051 the AND and see if one of the operands simplifies to zero. If so, we
10052 may eliminate it. */
10053
10054 if (GET_CODE (varop) == PLUS
10055 && pow2p_hwi (constop + 1))
10056 {
10057 rtx o0, o1;
10058
10059 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10060 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10061 if (o0 == const0_rtx)
10062 return o1;
10063 if (o1 == const0_rtx)
10064 return o0;
10065 }
10066
10067 /* Make a SUBREG if necessary. If we can't make it, fail. */
10068 varop = gen_lowpart (mode, varop);
10069 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10070 return NULL_RTX;
10071
10072 /* If we are only masking insignificant bits, return VAROP. */
10073 if (constop == nonzero)
10074 return varop;
10075
10076 if (varop == orig_varop && constop == orig_constop)
10077 return NULL_RTX;
10078
10079 /* Otherwise, return an AND. */
10080 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10081 }
10082
10083
10084 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10085 in MODE.
10086
10087 Return an equivalent form, if different from X. Otherwise, return X. If
10088 X is zero, we are to always construct the equivalent form. */
10089
10090 static rtx
10091 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
10092 unsigned HOST_WIDE_INT constop)
10093 {
10094 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10095 if (tem)
10096 return tem;
10097
10098 if (!x)
10099 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10100 gen_int_mode (constop, mode));
10101 if (GET_MODE (x) != mode)
10102 x = gen_lowpart (mode, x);
10103 return x;
10104 }
10105 \f
10106 /* Given a REG, X, compute which bits in X can be nonzero.
10107 We don't care about bits outside of those defined in MODE.
10108
10109 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10110 a shift, AND, or zero_extract, we can do better. */
10111
10112 static rtx
10113 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
10114 const_rtx known_x ATTRIBUTE_UNUSED,
10115 machine_mode known_mode ATTRIBUTE_UNUSED,
10116 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
10117 unsigned HOST_WIDE_INT *nonzero)
10118 {
10119 rtx tem;
10120 reg_stat_type *rsp;
10121
10122 /* If X is a register whose nonzero bits value is current, use it.
10123 Otherwise, if X is a register whose value we can find, use that
10124 value. Otherwise, use the previously-computed global nonzero bits
10125 for this register. */
10126
10127 rsp = &reg_stat[REGNO (x)];
10128 if (rsp->last_set_value != 0
10129 && (rsp->last_set_mode == mode
10130 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10131 && GET_MODE_CLASS (mode) == MODE_INT))
10132 && ((rsp->last_set_label >= label_tick_ebb_start
10133 && rsp->last_set_label < label_tick)
10134 || (rsp->last_set_label == label_tick
10135 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10136 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10137 && REGNO (x) < reg_n_sets_max
10138 && REG_N_SETS (REGNO (x)) == 1
10139 && !REGNO_REG_SET_P
10140 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10141 REGNO (x)))))
10142 {
10143 /* Note that, even if the precision of last_set_mode is lower than that
10144 of mode, record_value_for_reg invoked nonzero_bits on the register
10145 with nonzero_bits_mode (because last_set_mode is necessarily integral
10146 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10147 are all valid, hence in mode too since nonzero_bits_mode is defined
10148 to the largest HWI_COMPUTABLE_MODE_P mode. */
10149 *nonzero &= rsp->last_set_nonzero_bits;
10150 return NULL;
10151 }
10152
10153 tem = get_last_value (x);
10154 if (tem)
10155 {
10156 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10157 tem = sign_extend_short_imm (tem, GET_MODE (x),
10158 GET_MODE_PRECISION (mode));
10159
10160 return tem;
10161 }
10162
10163 if (nonzero_sign_valid && rsp->nonzero_bits)
10164 {
10165 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10166
10167 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
10168 /* We don't know anything about the upper bits. */
10169 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
10170
10171 *nonzero &= mask;
10172 }
10173
10174 return NULL;
10175 }
10176
10177 /* Return the number of bits at the high-order end of X that are known to
10178 be equal to the sign bit. X will be used in mode MODE; if MODE is
10179 VOIDmode, X will be used in its own mode. The returned value will always
10180 be between 1 and the number of bits in MODE. */
10181
10182 static rtx
10183 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
10184 const_rtx known_x ATTRIBUTE_UNUSED,
10185 machine_mode known_mode
10186 ATTRIBUTE_UNUSED,
10187 unsigned int known_ret ATTRIBUTE_UNUSED,
10188 unsigned int *result)
10189 {
10190 rtx tem;
10191 reg_stat_type *rsp;
10192
10193 rsp = &reg_stat[REGNO (x)];
10194 if (rsp->last_set_value != 0
10195 && rsp->last_set_mode == mode
10196 && ((rsp->last_set_label >= label_tick_ebb_start
10197 && rsp->last_set_label < label_tick)
10198 || (rsp->last_set_label == label_tick
10199 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10200 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10201 && REGNO (x) < reg_n_sets_max
10202 && REG_N_SETS (REGNO (x)) == 1
10203 && !REGNO_REG_SET_P
10204 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10205 REGNO (x)))))
10206 {
10207 *result = rsp->last_set_sign_bit_copies;
10208 return NULL;
10209 }
10210
10211 tem = get_last_value (x);
10212 if (tem != 0)
10213 return tem;
10214
10215 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10216 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
10217 *result = rsp->sign_bit_copies;
10218
10219 return NULL;
10220 }
10221 \f
10222 /* Return the number of "extended" bits there are in X, when interpreted
10223 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10224 unsigned quantities, this is the number of high-order zero bits.
10225 For signed quantities, this is the number of copies of the sign bit
10226 minus 1. In both case, this function returns the number of "spare"
10227 bits. For example, if two quantities for which this function returns
10228 at least 1 are added, the addition is known not to overflow.
10229
10230 This function will always return 0 unless called during combine, which
10231 implies that it must be called from a define_split. */
10232
10233 unsigned int
10234 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10235 {
10236 if (nonzero_sign_valid == 0)
10237 return 0;
10238
10239 return (unsignedp
10240 ? (HWI_COMPUTABLE_MODE_P (mode)
10241 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
10242 - floor_log2 (nonzero_bits (x, mode)))
10243 : 0)
10244 : num_sign_bit_copies (x, mode) - 1);
10245 }
10246
10247 /* This function is called from `simplify_shift_const' to merge two
10248 outer operations. Specifically, we have already found that we need
10249 to perform operation *POP0 with constant *PCONST0 at the outermost
10250 position. We would now like to also perform OP1 with constant CONST1
10251 (with *POP0 being done last).
10252
10253 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10254 the resulting operation. *PCOMP_P is set to 1 if we would need to
10255 complement the innermost operand, otherwise it is unchanged.
10256
10257 MODE is the mode in which the operation will be done. No bits outside
10258 the width of this mode matter. It is assumed that the width of this mode
10259 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10260
10261 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10262 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10263 result is simply *PCONST0.
10264
10265 If the resulting operation cannot be expressed as one operation, we
10266 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10267
10268 static int
10269 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10270 {
10271 enum rtx_code op0 = *pop0;
10272 HOST_WIDE_INT const0 = *pconst0;
10273
10274 const0 &= GET_MODE_MASK (mode);
10275 const1 &= GET_MODE_MASK (mode);
10276
10277 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10278 if (op0 == AND)
10279 const1 &= const0;
10280
10281 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10282 if OP0 is SET. */
10283
10284 if (op1 == UNKNOWN || op0 == SET)
10285 return 1;
10286
10287 else if (op0 == UNKNOWN)
10288 op0 = op1, const0 = const1;
10289
10290 else if (op0 == op1)
10291 {
10292 switch (op0)
10293 {
10294 case AND:
10295 const0 &= const1;
10296 break;
10297 case IOR:
10298 const0 |= const1;
10299 break;
10300 case XOR:
10301 const0 ^= const1;
10302 break;
10303 case PLUS:
10304 const0 += const1;
10305 break;
10306 case NEG:
10307 op0 = UNKNOWN;
10308 break;
10309 default:
10310 break;
10311 }
10312 }
10313
10314 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10315 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10316 return 0;
10317
10318 /* If the two constants aren't the same, we can't do anything. The
10319 remaining six cases can all be done. */
10320 else if (const0 != const1)
10321 return 0;
10322
10323 else
10324 switch (op0)
10325 {
10326 case IOR:
10327 if (op1 == AND)
10328 /* (a & b) | b == b */
10329 op0 = SET;
10330 else /* op1 == XOR */
10331 /* (a ^ b) | b == a | b */
10332 {;}
10333 break;
10334
10335 case XOR:
10336 if (op1 == AND)
10337 /* (a & b) ^ b == (~a) & b */
10338 op0 = AND, *pcomp_p = 1;
10339 else /* op1 == IOR */
10340 /* (a | b) ^ b == a & ~b */
10341 op0 = AND, const0 = ~const0;
10342 break;
10343
10344 case AND:
10345 if (op1 == IOR)
10346 /* (a | b) & b == b */
10347 op0 = SET;
10348 else /* op1 == XOR */
10349 /* (a ^ b) & b) == (~a) & b */
10350 *pcomp_p = 1;
10351 break;
10352 default:
10353 break;
10354 }
10355
10356 /* Check for NO-OP cases. */
10357 const0 &= GET_MODE_MASK (mode);
10358 if (const0 == 0
10359 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10360 op0 = UNKNOWN;
10361 else if (const0 == 0 && op0 == AND)
10362 op0 = SET;
10363 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10364 && op0 == AND)
10365 op0 = UNKNOWN;
10366
10367 *pop0 = op0;
10368
10369 /* ??? Slightly redundant with the above mask, but not entirely.
10370 Moving this above means we'd have to sign-extend the mode mask
10371 for the final test. */
10372 if (op0 != UNKNOWN && op0 != NEG)
10373 *pconst0 = trunc_int_for_mode (const0, mode);
10374
10375 return 1;
10376 }
10377 \f
10378 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10379 the shift in. The original shift operation CODE is performed on OP in
10380 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10381 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10382 result of the shift is subject to operation OUTER_CODE with operand
10383 OUTER_CONST. */
10384
10385 static machine_mode
10386 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10387 machine_mode orig_mode, machine_mode mode,
10388 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10389 {
10390 if (orig_mode == mode)
10391 return mode;
10392 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10393
10394 /* In general we can't perform in wider mode for right shift and rotate. */
10395 switch (code)
10396 {
10397 case ASHIFTRT:
10398 /* We can still widen if the bits brought in from the left are identical
10399 to the sign bit of ORIG_MODE. */
10400 if (num_sign_bit_copies (op, mode)
10401 > (unsigned) (GET_MODE_PRECISION (mode)
10402 - GET_MODE_PRECISION (orig_mode)))
10403 return mode;
10404 return orig_mode;
10405
10406 case LSHIFTRT:
10407 /* Similarly here but with zero bits. */
10408 if (HWI_COMPUTABLE_MODE_P (mode)
10409 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10410 return mode;
10411
10412 /* We can also widen if the bits brought in will be masked off. This
10413 operation is performed in ORIG_MODE. */
10414 if (outer_code == AND)
10415 {
10416 int care_bits = low_bitmask_len (orig_mode, outer_const);
10417
10418 if (care_bits >= 0
10419 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10420 return mode;
10421 }
10422 /* fall through */
10423
10424 case ROTATE:
10425 return orig_mode;
10426
10427 case ROTATERT:
10428 gcc_unreachable ();
10429
10430 default:
10431 return mode;
10432 }
10433 }
10434
10435 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10436 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10437 if we cannot simplify it. Otherwise, return a simplified value.
10438
10439 The shift is normally computed in the widest mode we find in VAROP, as
10440 long as it isn't a different number of words than RESULT_MODE. Exceptions
10441 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10442
10443 static rtx
10444 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10445 rtx varop, int orig_count)
10446 {
10447 enum rtx_code orig_code = code;
10448 rtx orig_varop = varop;
10449 int count;
10450 machine_mode mode = result_mode;
10451 machine_mode shift_mode, tmode;
10452 unsigned int mode_words
10453 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10454 /* We form (outer_op (code varop count) (outer_const)). */
10455 enum rtx_code outer_op = UNKNOWN;
10456 HOST_WIDE_INT outer_const = 0;
10457 int complement_p = 0;
10458 rtx new_rtx, x;
10459
10460 /* Make sure and truncate the "natural" shift on the way in. We don't
10461 want to do this inside the loop as it makes it more difficult to
10462 combine shifts. */
10463 if (SHIFT_COUNT_TRUNCATED)
10464 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10465
10466 /* If we were given an invalid count, don't do anything except exactly
10467 what was requested. */
10468
10469 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10470 return NULL_RTX;
10471
10472 count = orig_count;
10473
10474 /* Unless one of the branches of the `if' in this loop does a `continue',
10475 we will `break' the loop after the `if'. */
10476
10477 while (count != 0)
10478 {
10479 /* If we have an operand of (clobber (const_int 0)), fail. */
10480 if (GET_CODE (varop) == CLOBBER)
10481 return NULL_RTX;
10482
10483 /* Convert ROTATERT to ROTATE. */
10484 if (code == ROTATERT)
10485 {
10486 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10487 code = ROTATE;
10488 count = bitsize - count;
10489 }
10490
10491 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10492 mode, outer_op, outer_const);
10493 machine_mode shift_unit_mode = GET_MODE_INNER (shift_mode);
10494
10495 /* Handle cases where the count is greater than the size of the mode
10496 minus 1. For ASHIFT, use the size minus one as the count (this can
10497 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10498 take the count modulo the size. For other shifts, the result is
10499 zero.
10500
10501 Since these shifts are being produced by the compiler by combining
10502 multiple operations, each of which are defined, we know what the
10503 result is supposed to be. */
10504
10505 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10506 {
10507 if (code == ASHIFTRT)
10508 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10509 else if (code == ROTATE || code == ROTATERT)
10510 count %= GET_MODE_PRECISION (shift_unit_mode);
10511 else
10512 {
10513 /* We can't simply return zero because there may be an
10514 outer op. */
10515 varop = const0_rtx;
10516 count = 0;
10517 break;
10518 }
10519 }
10520
10521 /* If we discovered we had to complement VAROP, leave. Making a NOT
10522 here would cause an infinite loop. */
10523 if (complement_p)
10524 break;
10525
10526 if (shift_mode == shift_unit_mode)
10527 {
10528 /* An arithmetic right shift of a quantity known to be -1 or 0
10529 is a no-op. */
10530 if (code == ASHIFTRT
10531 && (num_sign_bit_copies (varop, shift_unit_mode)
10532 == GET_MODE_PRECISION (shift_unit_mode)))
10533 {
10534 count = 0;
10535 break;
10536 }
10537
10538 /* If we are doing an arithmetic right shift and discarding all but
10539 the sign bit copies, this is equivalent to doing a shift by the
10540 bitsize minus one. Convert it into that shift because it will
10541 often allow other simplifications. */
10542
10543 if (code == ASHIFTRT
10544 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10545 >= GET_MODE_PRECISION (shift_unit_mode)))
10546 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10547
10548 /* We simplify the tests below and elsewhere by converting
10549 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10550 `make_compound_operation' will convert it to an ASHIFTRT for
10551 those machines (such as VAX) that don't have an LSHIFTRT. */
10552 if (code == ASHIFTRT
10553 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10554 && val_signbit_known_clear_p (shift_unit_mode,
10555 nonzero_bits (varop,
10556 shift_unit_mode)))
10557 code = LSHIFTRT;
10558
10559 if (((code == LSHIFTRT
10560 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10561 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10562 || (code == ASHIFT
10563 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10564 && !((nonzero_bits (varop, shift_unit_mode) << count)
10565 & GET_MODE_MASK (shift_unit_mode))))
10566 && !side_effects_p (varop))
10567 varop = const0_rtx;
10568 }
10569
10570 switch (GET_CODE (varop))
10571 {
10572 case SIGN_EXTEND:
10573 case ZERO_EXTEND:
10574 case SIGN_EXTRACT:
10575 case ZERO_EXTRACT:
10576 new_rtx = expand_compound_operation (varop);
10577 if (new_rtx != varop)
10578 {
10579 varop = new_rtx;
10580 continue;
10581 }
10582 break;
10583
10584 case MEM:
10585 /* The following rules apply only to scalars. */
10586 if (shift_mode != shift_unit_mode)
10587 break;
10588
10589 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10590 minus the width of a smaller mode, we can do this with a
10591 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10592 if ((code == ASHIFTRT || code == LSHIFTRT)
10593 && ! mode_dependent_address_p (XEXP (varop, 0),
10594 MEM_ADDR_SPACE (varop))
10595 && ! MEM_VOLATILE_P (varop)
10596 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10597 MODE_INT, 1)) != BLKmode)
10598 {
10599 new_rtx = adjust_address_nv (varop, tmode,
10600 BYTES_BIG_ENDIAN ? 0
10601 : count / BITS_PER_UNIT);
10602
10603 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10604 : ZERO_EXTEND, mode, new_rtx);
10605 count = 0;
10606 continue;
10607 }
10608 break;
10609
10610 case SUBREG:
10611 /* The following rules apply only to scalars. */
10612 if (shift_mode != shift_unit_mode)
10613 break;
10614
10615 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10616 the same number of words as what we've seen so far. Then store
10617 the widest mode in MODE. */
10618 if (subreg_lowpart_p (varop)
10619 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10620 > GET_MODE_SIZE (GET_MODE (varop)))
10621 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10622 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10623 == mode_words
10624 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10625 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10626 {
10627 varop = SUBREG_REG (varop);
10628 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10629 mode = GET_MODE (varop);
10630 continue;
10631 }
10632 break;
10633
10634 case MULT:
10635 /* Some machines use MULT instead of ASHIFT because MULT
10636 is cheaper. But it is still better on those machines to
10637 merge two shifts into one. */
10638 if (CONST_INT_P (XEXP (varop, 1))
10639 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10640 {
10641 varop
10642 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10643 XEXP (varop, 0),
10644 GEN_INT (exact_log2 (
10645 UINTVAL (XEXP (varop, 1)))));
10646 continue;
10647 }
10648 break;
10649
10650 case UDIV:
10651 /* Similar, for when divides are cheaper. */
10652 if (CONST_INT_P (XEXP (varop, 1))
10653 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10654 {
10655 varop
10656 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10657 XEXP (varop, 0),
10658 GEN_INT (exact_log2 (
10659 UINTVAL (XEXP (varop, 1)))));
10660 continue;
10661 }
10662 break;
10663
10664 case ASHIFTRT:
10665 /* If we are extracting just the sign bit of an arithmetic
10666 right shift, that shift is not needed. However, the sign
10667 bit of a wider mode may be different from what would be
10668 interpreted as the sign bit in a narrower mode, so, if
10669 the result is narrower, don't discard the shift. */
10670 if (code == LSHIFTRT
10671 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10672 && (GET_MODE_UNIT_BITSIZE (result_mode)
10673 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10674 {
10675 varop = XEXP (varop, 0);
10676 continue;
10677 }
10678
10679 /* fall through */
10680
10681 case LSHIFTRT:
10682 case ASHIFT:
10683 case ROTATE:
10684 /* The following rules apply only to scalars. */
10685 if (shift_mode != shift_unit_mode)
10686 break;
10687
10688 /* Here we have two nested shifts. The result is usually the
10689 AND of a new shift with a mask. We compute the result below. */
10690 if (CONST_INT_P (XEXP (varop, 1))
10691 && INTVAL (XEXP (varop, 1)) >= 0
10692 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10693 && HWI_COMPUTABLE_MODE_P (result_mode)
10694 && HWI_COMPUTABLE_MODE_P (mode))
10695 {
10696 enum rtx_code first_code = GET_CODE (varop);
10697 unsigned int first_count = INTVAL (XEXP (varop, 1));
10698 unsigned HOST_WIDE_INT mask;
10699 rtx mask_rtx;
10700
10701 /* We have one common special case. We can't do any merging if
10702 the inner code is an ASHIFTRT of a smaller mode. However, if
10703 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10704 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10705 we can convert it to
10706 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10707 This simplifies certain SIGN_EXTEND operations. */
10708 if (code == ASHIFT && first_code == ASHIFTRT
10709 && count == (GET_MODE_PRECISION (result_mode)
10710 - GET_MODE_PRECISION (GET_MODE (varop))))
10711 {
10712 /* C3 has the low-order C1 bits zero. */
10713
10714 mask = GET_MODE_MASK (mode)
10715 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10716
10717 varop = simplify_and_const_int (NULL_RTX, result_mode,
10718 XEXP (varop, 0), mask);
10719 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10720 varop, count);
10721 count = first_count;
10722 code = ASHIFTRT;
10723 continue;
10724 }
10725
10726 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10727 than C1 high-order bits equal to the sign bit, we can convert
10728 this to either an ASHIFT or an ASHIFTRT depending on the
10729 two counts.
10730
10731 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10732
10733 if (code == ASHIFTRT && first_code == ASHIFT
10734 && GET_MODE (varop) == shift_mode
10735 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10736 > first_count))
10737 {
10738 varop = XEXP (varop, 0);
10739 count -= first_count;
10740 if (count < 0)
10741 {
10742 count = -count;
10743 code = ASHIFT;
10744 }
10745
10746 continue;
10747 }
10748
10749 /* There are some cases we can't do. If CODE is ASHIFTRT,
10750 we can only do this if FIRST_CODE is also ASHIFTRT.
10751
10752 We can't do the case when CODE is ROTATE and FIRST_CODE is
10753 ASHIFTRT.
10754
10755 If the mode of this shift is not the mode of the outer shift,
10756 we can't do this if either shift is a right shift or ROTATE.
10757
10758 Finally, we can't do any of these if the mode is too wide
10759 unless the codes are the same.
10760
10761 Handle the case where the shift codes are the same
10762 first. */
10763
10764 if (code == first_code)
10765 {
10766 if (GET_MODE (varop) != result_mode
10767 && (code == ASHIFTRT || code == LSHIFTRT
10768 || code == ROTATE))
10769 break;
10770
10771 count += first_count;
10772 varop = XEXP (varop, 0);
10773 continue;
10774 }
10775
10776 if (code == ASHIFTRT
10777 || (code == ROTATE && first_code == ASHIFTRT)
10778 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10779 || (GET_MODE (varop) != result_mode
10780 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10781 || first_code == ROTATE
10782 || code == ROTATE)))
10783 break;
10784
10785 /* To compute the mask to apply after the shift, shift the
10786 nonzero bits of the inner shift the same way the
10787 outer shift will. */
10788
10789 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10790 result_mode);
10791
10792 mask_rtx
10793 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10794 GEN_INT (count));
10795
10796 /* Give up if we can't compute an outer operation to use. */
10797 if (mask_rtx == 0
10798 || !CONST_INT_P (mask_rtx)
10799 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10800 INTVAL (mask_rtx),
10801 result_mode, &complement_p))
10802 break;
10803
10804 /* If the shifts are in the same direction, we add the
10805 counts. Otherwise, we subtract them. */
10806 if ((code == ASHIFTRT || code == LSHIFTRT)
10807 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10808 count += first_count;
10809 else
10810 count -= first_count;
10811
10812 /* If COUNT is positive, the new shift is usually CODE,
10813 except for the two exceptions below, in which case it is
10814 FIRST_CODE. If the count is negative, FIRST_CODE should
10815 always be used */
10816 if (count > 0
10817 && ((first_code == ROTATE && code == ASHIFT)
10818 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10819 code = first_code;
10820 else if (count < 0)
10821 code = first_code, count = -count;
10822
10823 varop = XEXP (varop, 0);
10824 continue;
10825 }
10826
10827 /* If we have (A << B << C) for any shift, we can convert this to
10828 (A << C << B). This wins if A is a constant. Only try this if
10829 B is not a constant. */
10830
10831 else if (GET_CODE (varop) == code
10832 && CONST_INT_P (XEXP (varop, 0))
10833 && !CONST_INT_P (XEXP (varop, 1)))
10834 {
10835 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10836 sure the result will be masked. See PR70222. */
10837 if (code == LSHIFTRT
10838 && mode != result_mode
10839 && !merge_outer_ops (&outer_op, &outer_const, AND,
10840 GET_MODE_MASK (result_mode)
10841 >> orig_count, result_mode,
10842 &complement_p))
10843 break;
10844 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10845 up outer sign extension (often left and right shift) is
10846 hardly more efficient than the original. See PR70429. */
10847 if (code == ASHIFTRT && mode != result_mode)
10848 break;
10849
10850 rtx new_rtx = simplify_const_binary_operation (code, mode,
10851 XEXP (varop, 0),
10852 GEN_INT (count));
10853 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10854 count = 0;
10855 continue;
10856 }
10857 break;
10858
10859 case NOT:
10860 /* The following rules apply only to scalars. */
10861 if (shift_mode != shift_unit_mode)
10862 break;
10863
10864 /* Make this fit the case below. */
10865 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10866 continue;
10867
10868 case IOR:
10869 case AND:
10870 case XOR:
10871 /* The following rules apply only to scalars. */
10872 if (shift_mode != shift_unit_mode)
10873 break;
10874
10875 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10876 with C the size of VAROP - 1 and the shift is logical if
10877 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10878 we have an (le X 0) operation. If we have an arithmetic shift
10879 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10880 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10881
10882 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10883 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10884 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10885 && (code == LSHIFTRT || code == ASHIFTRT)
10886 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10887 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10888 {
10889 count = 0;
10890 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10891 const0_rtx);
10892
10893 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10894 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10895
10896 continue;
10897 }
10898
10899 /* If we have (shift (logical)), move the logical to the outside
10900 to allow it to possibly combine with another logical and the
10901 shift to combine with another shift. This also canonicalizes to
10902 what a ZERO_EXTRACT looks like. Also, some machines have
10903 (and (shift)) insns. */
10904
10905 if (CONST_INT_P (XEXP (varop, 1))
10906 /* We can't do this if we have (ashiftrt (xor)) and the
10907 constant has its sign bit set in shift_mode with shift_mode
10908 wider than result_mode. */
10909 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10910 && result_mode != shift_mode
10911 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10912 shift_mode))
10913 && (new_rtx = simplify_const_binary_operation
10914 (code, result_mode,
10915 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10916 GEN_INT (count))) != 0
10917 && CONST_INT_P (new_rtx)
10918 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10919 INTVAL (new_rtx), result_mode, &complement_p))
10920 {
10921 varop = XEXP (varop, 0);
10922 continue;
10923 }
10924
10925 /* If we can't do that, try to simplify the shift in each arm of the
10926 logical expression, make a new logical expression, and apply
10927 the inverse distributive law. This also can't be done for
10928 (ashiftrt (xor)) where we've widened the shift and the constant
10929 changes the sign bit. */
10930 if (CONST_INT_P (XEXP (varop, 1))
10931 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10932 && result_mode != shift_mode
10933 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10934 shift_mode)))
10935 {
10936 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10937 XEXP (varop, 0), count);
10938 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10939 XEXP (varop, 1), count);
10940
10941 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10942 lhs, rhs);
10943 varop = apply_distributive_law (varop);
10944
10945 count = 0;
10946 continue;
10947 }
10948 break;
10949
10950 case EQ:
10951 /* The following rules apply only to scalars. */
10952 if (shift_mode != shift_unit_mode)
10953 break;
10954
10955 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10956 says that the sign bit can be tested, FOO has mode MODE, C is
10957 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10958 that may be nonzero. */
10959 if (code == LSHIFTRT
10960 && XEXP (varop, 1) == const0_rtx
10961 && GET_MODE (XEXP (varop, 0)) == result_mode
10962 && count == (GET_MODE_PRECISION (result_mode) - 1)
10963 && HWI_COMPUTABLE_MODE_P (result_mode)
10964 && STORE_FLAG_VALUE == -1
10965 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10966 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10967 &complement_p))
10968 {
10969 varop = XEXP (varop, 0);
10970 count = 0;
10971 continue;
10972 }
10973 break;
10974
10975 case NEG:
10976 /* The following rules apply only to scalars. */
10977 if (shift_mode != shift_unit_mode)
10978 break;
10979
10980 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10981 than the number of bits in the mode is equivalent to A. */
10982 if (code == LSHIFTRT
10983 && count == (GET_MODE_PRECISION (result_mode) - 1)
10984 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10985 {
10986 varop = XEXP (varop, 0);
10987 count = 0;
10988 continue;
10989 }
10990
10991 /* NEG commutes with ASHIFT since it is multiplication. Move the
10992 NEG outside to allow shifts to combine. */
10993 if (code == ASHIFT
10994 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10995 &complement_p))
10996 {
10997 varop = XEXP (varop, 0);
10998 continue;
10999 }
11000 break;
11001
11002 case PLUS:
11003 /* The following rules apply only to scalars. */
11004 if (shift_mode != shift_unit_mode)
11005 break;
11006
11007 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11008 is one less than the number of bits in the mode is
11009 equivalent to (xor A 1). */
11010 if (code == LSHIFTRT
11011 && count == (GET_MODE_PRECISION (result_mode) - 1)
11012 && XEXP (varop, 1) == constm1_rtx
11013 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
11014 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
11015 &complement_p))
11016 {
11017 count = 0;
11018 varop = XEXP (varop, 0);
11019 continue;
11020 }
11021
11022 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11023 that might be nonzero in BAR are those being shifted out and those
11024 bits are known zero in FOO, we can replace the PLUS with FOO.
11025 Similarly in the other operand order. This code occurs when
11026 we are computing the size of a variable-size array. */
11027
11028 if ((code == ASHIFTRT || code == LSHIFTRT)
11029 && count < HOST_BITS_PER_WIDE_INT
11030 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
11031 && (nonzero_bits (XEXP (varop, 1), result_mode)
11032 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
11033 {
11034 varop = XEXP (varop, 0);
11035 continue;
11036 }
11037 else if ((code == ASHIFTRT || code == LSHIFTRT)
11038 && count < HOST_BITS_PER_WIDE_INT
11039 && HWI_COMPUTABLE_MODE_P (result_mode)
11040 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
11041 >> count)
11042 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
11043 & nonzero_bits (XEXP (varop, 1),
11044 result_mode)))
11045 {
11046 varop = XEXP (varop, 1);
11047 continue;
11048 }
11049
11050 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11051 if (code == ASHIFT
11052 && CONST_INT_P (XEXP (varop, 1))
11053 && (new_rtx = simplify_const_binary_operation
11054 (ASHIFT, result_mode,
11055 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
11056 GEN_INT (count))) != 0
11057 && CONST_INT_P (new_rtx)
11058 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11059 INTVAL (new_rtx), result_mode, &complement_p))
11060 {
11061 varop = XEXP (varop, 0);
11062 continue;
11063 }
11064
11065 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11066 signbit', and attempt to change the PLUS to an XOR and move it to
11067 the outer operation as is done above in the AND/IOR/XOR case
11068 leg for shift(logical). See details in logical handling above
11069 for reasoning in doing so. */
11070 if (code == LSHIFTRT
11071 && CONST_INT_P (XEXP (varop, 1))
11072 && mode_signbit_p (result_mode, XEXP (varop, 1))
11073 && (new_rtx = simplify_const_binary_operation
11074 (code, result_mode,
11075 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
11076 GEN_INT (count))) != 0
11077 && CONST_INT_P (new_rtx)
11078 && merge_outer_ops (&outer_op, &outer_const, XOR,
11079 INTVAL (new_rtx), result_mode, &complement_p))
11080 {
11081 varop = XEXP (varop, 0);
11082 continue;
11083 }
11084
11085 break;
11086
11087 case MINUS:
11088 /* The following rules apply only to scalars. */
11089 if (shift_mode != shift_unit_mode)
11090 break;
11091
11092 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11093 with C the size of VAROP - 1 and the shift is logical if
11094 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11095 we have a (gt X 0) operation. If the shift is arithmetic with
11096 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11097 we have a (neg (gt X 0)) operation. */
11098
11099 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11100 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11101 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
11102 && (code == LSHIFTRT || code == ASHIFTRT)
11103 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11104 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11105 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11106 {
11107 count = 0;
11108 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
11109 const0_rtx);
11110
11111 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11112 varop = gen_rtx_NEG (GET_MODE (varop), varop);
11113
11114 continue;
11115 }
11116 break;
11117
11118 case TRUNCATE:
11119 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11120 if the truncate does not affect the value. */
11121 if (code == LSHIFTRT
11122 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11123 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11124 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11125 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11126 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11127 {
11128 rtx varop_inner = XEXP (varop, 0);
11129
11130 varop_inner
11131 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11132 XEXP (varop_inner, 0),
11133 GEN_INT
11134 (count + INTVAL (XEXP (varop_inner, 1))));
11135 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11136 count = 0;
11137 continue;
11138 }
11139 break;
11140
11141 default:
11142 break;
11143 }
11144
11145 break;
11146 }
11147
11148 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
11149 outer_op, outer_const);
11150
11151 /* We have now finished analyzing the shift. The result should be
11152 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11153 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11154 to the result of the shift. OUTER_CONST is the relevant constant,
11155 but we must turn off all bits turned off in the shift. */
11156
11157 if (outer_op == UNKNOWN
11158 && orig_code == code && orig_count == count
11159 && varop == orig_varop
11160 && shift_mode == GET_MODE (varop))
11161 return NULL_RTX;
11162
11163 /* Make a SUBREG if necessary. If we can't make it, fail. */
11164 varop = gen_lowpart (shift_mode, varop);
11165 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11166 return NULL_RTX;
11167
11168 /* If we have an outer operation and we just made a shift, it is
11169 possible that we could have simplified the shift were it not
11170 for the outer operation. So try to do the simplification
11171 recursively. */
11172
11173 if (outer_op != UNKNOWN)
11174 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11175 else
11176 x = NULL_RTX;
11177
11178 if (x == NULL_RTX)
11179 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
11180
11181 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11182 turn off all the bits that the shift would have turned off. */
11183 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11184 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
11185 GET_MODE_MASK (result_mode) >> orig_count);
11186
11187 /* Do the remainder of the processing in RESULT_MODE. */
11188 x = gen_lowpart_or_truncate (result_mode, x);
11189
11190 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11191 operation. */
11192 if (complement_p)
11193 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11194
11195 if (outer_op != UNKNOWN)
11196 {
11197 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11198 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
11199 outer_const = trunc_int_for_mode (outer_const, result_mode);
11200
11201 if (outer_op == AND)
11202 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
11203 else if (outer_op == SET)
11204 {
11205 /* This means that we have determined that the result is
11206 equivalent to a constant. This should be rare. */
11207 if (!side_effects_p (x))
11208 x = GEN_INT (outer_const);
11209 }
11210 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11211 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
11212 else
11213 x = simplify_gen_binary (outer_op, result_mode, x,
11214 GEN_INT (outer_const));
11215 }
11216
11217 return x;
11218 }
11219
11220 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11221 The result of the shift is RESULT_MODE. If we cannot simplify it,
11222 return X or, if it is NULL, synthesize the expression with
11223 simplify_gen_binary. Otherwise, return a simplified value.
11224
11225 The shift is normally computed in the widest mode we find in VAROP, as
11226 long as it isn't a different number of words than RESULT_MODE. Exceptions
11227 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11228
11229 static rtx
11230 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11231 rtx varop, int count)
11232 {
11233 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11234 if (tem)
11235 return tem;
11236
11237 if (!x)
11238 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
11239 if (GET_MODE (x) != result_mode)
11240 x = gen_lowpart (result_mode, x);
11241 return x;
11242 }
11243
11244 \f
11245 /* A subroutine of recog_for_combine. See there for arguments and
11246 return value. */
11247
11248 static int
11249 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11250 {
11251 rtx pat = *pnewpat;
11252 rtx pat_without_clobbers;
11253 int insn_code_number;
11254 int num_clobbers_to_add = 0;
11255 int i;
11256 rtx notes = NULL_RTX;
11257 rtx old_notes, old_pat;
11258 int old_icode;
11259
11260 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11261 we use to indicate that something didn't match. If we find such a
11262 thing, force rejection. */
11263 if (GET_CODE (pat) == PARALLEL)
11264 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11265 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11266 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11267 return -1;
11268
11269 old_pat = PATTERN (insn);
11270 old_notes = REG_NOTES (insn);
11271 PATTERN (insn) = pat;
11272 REG_NOTES (insn) = NULL_RTX;
11273
11274 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11275 if (dump_file && (dump_flags & TDF_DETAILS))
11276 {
11277 if (insn_code_number < 0)
11278 fputs ("Failed to match this instruction:\n", dump_file);
11279 else
11280 fputs ("Successfully matched this instruction:\n", dump_file);
11281 print_rtl_single (dump_file, pat);
11282 }
11283
11284 /* If it isn't, there is the possibility that we previously had an insn
11285 that clobbered some register as a side effect, but the combined
11286 insn doesn't need to do that. So try once more without the clobbers
11287 unless this represents an ASM insn. */
11288
11289 if (insn_code_number < 0 && ! check_asm_operands (pat)
11290 && GET_CODE (pat) == PARALLEL)
11291 {
11292 int pos;
11293
11294 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11295 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11296 {
11297 if (i != pos)
11298 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11299 pos++;
11300 }
11301
11302 SUBST_INT (XVECLEN (pat, 0), pos);
11303
11304 if (pos == 1)
11305 pat = XVECEXP (pat, 0, 0);
11306
11307 PATTERN (insn) = pat;
11308 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11309 if (dump_file && (dump_flags & TDF_DETAILS))
11310 {
11311 if (insn_code_number < 0)
11312 fputs ("Failed to match this instruction:\n", dump_file);
11313 else
11314 fputs ("Successfully matched this instruction:\n", dump_file);
11315 print_rtl_single (dump_file, pat);
11316 }
11317 }
11318
11319 pat_without_clobbers = pat;
11320
11321 PATTERN (insn) = old_pat;
11322 REG_NOTES (insn) = old_notes;
11323
11324 /* Recognize all noop sets, these will be killed by followup pass. */
11325 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11326 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11327
11328 /* If we had any clobbers to add, make a new pattern than contains
11329 them. Then check to make sure that all of them are dead. */
11330 if (num_clobbers_to_add)
11331 {
11332 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11333 rtvec_alloc (GET_CODE (pat) == PARALLEL
11334 ? (XVECLEN (pat, 0)
11335 + num_clobbers_to_add)
11336 : num_clobbers_to_add + 1));
11337
11338 if (GET_CODE (pat) == PARALLEL)
11339 for (i = 0; i < XVECLEN (pat, 0); i++)
11340 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11341 else
11342 XVECEXP (newpat, 0, 0) = pat;
11343
11344 add_clobbers (newpat, insn_code_number);
11345
11346 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11347 i < XVECLEN (newpat, 0); i++)
11348 {
11349 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11350 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11351 return -1;
11352 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11353 {
11354 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11355 notes = alloc_reg_note (REG_UNUSED,
11356 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11357 }
11358 }
11359 pat = newpat;
11360 }
11361
11362 if (insn_code_number >= 0
11363 && insn_code_number != NOOP_MOVE_INSN_CODE)
11364 {
11365 old_pat = PATTERN (insn);
11366 old_notes = REG_NOTES (insn);
11367 old_icode = INSN_CODE (insn);
11368 PATTERN (insn) = pat;
11369 REG_NOTES (insn) = notes;
11370 INSN_CODE (insn) = insn_code_number;
11371
11372 /* Allow targets to reject combined insn. */
11373 if (!targetm.legitimate_combined_insn (insn))
11374 {
11375 if (dump_file && (dump_flags & TDF_DETAILS))
11376 fputs ("Instruction not appropriate for target.",
11377 dump_file);
11378
11379 /* Callers expect recog_for_combine to strip
11380 clobbers from the pattern on failure. */
11381 pat = pat_without_clobbers;
11382 notes = NULL_RTX;
11383
11384 insn_code_number = -1;
11385 }
11386
11387 PATTERN (insn) = old_pat;
11388 REG_NOTES (insn) = old_notes;
11389 INSN_CODE (insn) = old_icode;
11390 }
11391
11392 *pnewpat = pat;
11393 *pnotes = notes;
11394
11395 return insn_code_number;
11396 }
11397
11398 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11399 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11400 Return whether anything was so changed. */
11401
11402 static bool
11403 change_zero_ext (rtx pat)
11404 {
11405 bool changed = false;
11406 rtx *src = &SET_SRC (pat);
11407
11408 subrtx_ptr_iterator::array_type array;
11409 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11410 {
11411 rtx x = **iter;
11412 machine_mode mode = GET_MODE (x);
11413 int size;
11414
11415 if (GET_CODE (x) == ZERO_EXTRACT
11416 && CONST_INT_P (XEXP (x, 1))
11417 && CONST_INT_P (XEXP (x, 2))
11418 && GET_MODE (XEXP (x, 0)) != VOIDmode
11419 && GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
11420 <= GET_MODE_PRECISION (mode))
11421 {
11422 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
11423
11424 size = INTVAL (XEXP (x, 1));
11425
11426 int start = INTVAL (XEXP (x, 2));
11427 if (BITS_BIG_ENDIAN)
11428 start = GET_MODE_PRECISION (inner_mode) - size - start;
11429
11430 if (start)
11431 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0), GEN_INT (start));
11432 else
11433 x = XEXP (x, 0);
11434 if (mode != inner_mode)
11435 x = gen_lowpart_SUBREG (mode, x);
11436 }
11437 else if (GET_CODE (x) == ZERO_EXTEND
11438 && SCALAR_INT_MODE_P (mode)
11439 && GET_CODE (XEXP (x, 0)) == SUBREG
11440 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11441 && !paradoxical_subreg_p (XEXP (x, 0))
11442 && subreg_lowpart_p (XEXP (x, 0)))
11443 {
11444 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11445 x = SUBREG_REG (XEXP (x, 0));
11446 if (GET_MODE (x) != mode)
11447 x = gen_lowpart_SUBREG (mode, x);
11448 }
11449 else if (GET_CODE (x) == ZERO_EXTEND
11450 && SCALAR_INT_MODE_P (mode)
11451 && REG_P (XEXP (x, 0))
11452 && HARD_REGISTER_P (XEXP (x, 0))
11453 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11454 {
11455 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11456 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11457 }
11458 else
11459 continue;
11460
11461 if (!(GET_CODE (x) == LSHIFTRT
11462 && CONST_INT_P (XEXP (x, 1))
11463 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11464 {
11465 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11466 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11467 }
11468
11469 SUBST (**iter, x);
11470 changed = true;
11471 }
11472
11473 if (changed)
11474 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11475 maybe_swap_commutative_operands (**iter);
11476
11477 rtx *dst = &SET_DEST (pat);
11478 if (GET_CODE (*dst) == ZERO_EXTRACT
11479 && REG_P (XEXP (*dst, 0))
11480 && CONST_INT_P (XEXP (*dst, 1))
11481 && CONST_INT_P (XEXP (*dst, 2)))
11482 {
11483 rtx reg = XEXP (*dst, 0);
11484 int width = INTVAL (XEXP (*dst, 1));
11485 int offset = INTVAL (XEXP (*dst, 2));
11486 machine_mode mode = GET_MODE (reg);
11487 int reg_width = GET_MODE_PRECISION (mode);
11488 if (BITS_BIG_ENDIAN)
11489 offset = reg_width - width - offset;
11490
11491 rtx x, y, z, w;
11492 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11493 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11494 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11495 if (offset)
11496 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11497 else
11498 y = SET_SRC (pat);
11499 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11500 w = gen_rtx_IOR (mode, x, z);
11501 SUBST (SET_DEST (pat), reg);
11502 SUBST (SET_SRC (pat), w);
11503
11504 changed = true;
11505 }
11506
11507 return changed;
11508 }
11509
11510 /* Like recog, but we receive the address of a pointer to a new pattern.
11511 We try to match the rtx that the pointer points to.
11512 If that fails, we may try to modify or replace the pattern,
11513 storing the replacement into the same pointer object.
11514
11515 Modifications include deletion or addition of CLOBBERs. If the
11516 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11517 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11518 (and undo if that fails).
11519
11520 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11521 the CLOBBERs are placed.
11522
11523 The value is the final insn code from the pattern ultimately matched,
11524 or -1. */
11525
11526 static int
11527 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11528 {
11529 rtx pat = *pnewpat;
11530 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11531 if (insn_code_number >= 0 || check_asm_operands (pat))
11532 return insn_code_number;
11533
11534 void *marker = get_undo_marker ();
11535 bool changed = false;
11536
11537 if (GET_CODE (pat) == SET)
11538 changed = change_zero_ext (pat);
11539 else if (GET_CODE (pat) == PARALLEL)
11540 {
11541 int i;
11542 for (i = 0; i < XVECLEN (pat, 0); i++)
11543 {
11544 rtx set = XVECEXP (pat, 0, i);
11545 if (GET_CODE (set) == SET)
11546 changed |= change_zero_ext (set);
11547 }
11548 }
11549
11550 if (changed)
11551 {
11552 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11553
11554 if (insn_code_number < 0)
11555 undo_to_marker (marker);
11556 }
11557
11558 return insn_code_number;
11559 }
11560 \f
11561 /* Like gen_lowpart_general but for use by combine. In combine it
11562 is not possible to create any new pseudoregs. However, it is
11563 safe to create invalid memory addresses, because combine will
11564 try to recognize them and all they will do is make the combine
11565 attempt fail.
11566
11567 If for some reason this cannot do its job, an rtx
11568 (clobber (const_int 0)) is returned.
11569 An insn containing that will not be recognized. */
11570
11571 static rtx
11572 gen_lowpart_for_combine (machine_mode omode, rtx x)
11573 {
11574 machine_mode imode = GET_MODE (x);
11575 unsigned int osize = GET_MODE_SIZE (omode);
11576 unsigned int isize = GET_MODE_SIZE (imode);
11577 rtx result;
11578
11579 if (omode == imode)
11580 return x;
11581
11582 /* We can only support MODE being wider than a word if X is a
11583 constant integer or has a mode the same size. */
11584 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11585 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11586 goto fail;
11587
11588 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11589 won't know what to do. So we will strip off the SUBREG here and
11590 process normally. */
11591 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11592 {
11593 x = SUBREG_REG (x);
11594
11595 /* For use in case we fall down into the address adjustments
11596 further below, we need to adjust the known mode and size of
11597 x; imode and isize, since we just adjusted x. */
11598 imode = GET_MODE (x);
11599
11600 if (imode == omode)
11601 return x;
11602
11603 isize = GET_MODE_SIZE (imode);
11604 }
11605
11606 result = gen_lowpart_common (omode, x);
11607
11608 if (result)
11609 return result;
11610
11611 if (MEM_P (x))
11612 {
11613 int offset = 0;
11614
11615 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11616 address. */
11617 if (MEM_VOLATILE_P (x)
11618 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11619 goto fail;
11620
11621 /* If we want to refer to something bigger than the original memref,
11622 generate a paradoxical subreg instead. That will force a reload
11623 of the original memref X. */
11624 if (isize < osize)
11625 return gen_rtx_SUBREG (omode, x, 0);
11626
11627 if (WORDS_BIG_ENDIAN)
11628 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11629
11630 /* Adjust the address so that the address-after-the-data is
11631 unchanged. */
11632 if (BYTES_BIG_ENDIAN)
11633 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11634
11635 return adjust_address_nv (x, omode, offset);
11636 }
11637
11638 /* If X is a comparison operator, rewrite it in a new mode. This
11639 probably won't match, but may allow further simplifications. */
11640 else if (COMPARISON_P (x))
11641 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11642
11643 /* If we couldn't simplify X any other way, just enclose it in a
11644 SUBREG. Normally, this SUBREG won't match, but some patterns may
11645 include an explicit SUBREG or we may simplify it further in combine. */
11646 else
11647 {
11648 rtx res;
11649
11650 if (imode == VOIDmode)
11651 {
11652 imode = int_mode_for_mode (omode);
11653 x = gen_lowpart_common (imode, x);
11654 if (x == NULL)
11655 goto fail;
11656 }
11657 res = lowpart_subreg (omode, x, imode);
11658 if (res)
11659 return res;
11660 }
11661
11662 fail:
11663 return gen_rtx_CLOBBER (omode, const0_rtx);
11664 }
11665 \f
11666 /* Try to simplify a comparison between OP0 and a constant OP1,
11667 where CODE is the comparison code that will be tested, into a
11668 (CODE OP0 const0_rtx) form.
11669
11670 The result is a possibly different comparison code to use.
11671 *POP1 may be updated. */
11672
11673 static enum rtx_code
11674 simplify_compare_const (enum rtx_code code, machine_mode mode,
11675 rtx op0, rtx *pop1)
11676 {
11677 unsigned int mode_width = GET_MODE_PRECISION (mode);
11678 HOST_WIDE_INT const_op = INTVAL (*pop1);
11679
11680 /* Get the constant we are comparing against and turn off all bits
11681 not on in our mode. */
11682 if (mode != VOIDmode)
11683 const_op = trunc_int_for_mode (const_op, mode);
11684
11685 /* If we are comparing against a constant power of two and the value
11686 being compared can only have that single bit nonzero (e.g., it was
11687 `and'ed with that bit), we can replace this with a comparison
11688 with zero. */
11689 if (const_op
11690 && (code == EQ || code == NE || code == GE || code == GEU
11691 || code == LT || code == LTU)
11692 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11693 && pow2p_hwi (const_op & GET_MODE_MASK (mode))
11694 && (nonzero_bits (op0, mode)
11695 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11696 {
11697 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11698 const_op = 0;
11699 }
11700
11701 /* Similarly, if we are comparing a value known to be either -1 or
11702 0 with -1, change it to the opposite comparison against zero. */
11703 if (const_op == -1
11704 && (code == EQ || code == NE || code == GT || code == LE
11705 || code == GEU || code == LTU)
11706 && num_sign_bit_copies (op0, mode) == mode_width)
11707 {
11708 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11709 const_op = 0;
11710 }
11711
11712 /* Do some canonicalizations based on the comparison code. We prefer
11713 comparisons against zero and then prefer equality comparisons.
11714 If we can reduce the size of a constant, we will do that too. */
11715 switch (code)
11716 {
11717 case LT:
11718 /* < C is equivalent to <= (C - 1) */
11719 if (const_op > 0)
11720 {
11721 const_op -= 1;
11722 code = LE;
11723 /* ... fall through to LE case below. */
11724 gcc_fallthrough ();
11725 }
11726 else
11727 break;
11728
11729 case LE:
11730 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11731 if (const_op < 0)
11732 {
11733 const_op += 1;
11734 code = LT;
11735 }
11736
11737 /* If we are doing a <= 0 comparison on a value known to have
11738 a zero sign bit, we can replace this with == 0. */
11739 else if (const_op == 0
11740 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11741 && (nonzero_bits (op0, mode)
11742 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11743 == 0)
11744 code = EQ;
11745 break;
11746
11747 case GE:
11748 /* >= C is equivalent to > (C - 1). */
11749 if (const_op > 0)
11750 {
11751 const_op -= 1;
11752 code = GT;
11753 /* ... fall through to GT below. */
11754 gcc_fallthrough ();
11755 }
11756 else
11757 break;
11758
11759 case GT:
11760 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11761 if (const_op < 0)
11762 {
11763 const_op += 1;
11764 code = GE;
11765 }
11766
11767 /* If we are doing a > 0 comparison on a value known to have
11768 a zero sign bit, we can replace this with != 0. */
11769 else if (const_op == 0
11770 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11771 && (nonzero_bits (op0, mode)
11772 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11773 == 0)
11774 code = NE;
11775 break;
11776
11777 case LTU:
11778 /* < C is equivalent to <= (C - 1). */
11779 if (const_op > 0)
11780 {
11781 const_op -= 1;
11782 code = LEU;
11783 /* ... fall through ... */
11784 }
11785 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11786 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11787 && (unsigned HOST_WIDE_INT) const_op
11788 == HOST_WIDE_INT_1U << (mode_width - 1))
11789 {
11790 const_op = 0;
11791 code = GE;
11792 break;
11793 }
11794 else
11795 break;
11796
11797 case LEU:
11798 /* unsigned <= 0 is equivalent to == 0 */
11799 if (const_op == 0)
11800 code = EQ;
11801 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11802 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11803 && (unsigned HOST_WIDE_INT) const_op
11804 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11805 {
11806 const_op = 0;
11807 code = GE;
11808 }
11809 break;
11810
11811 case GEU:
11812 /* >= C is equivalent to > (C - 1). */
11813 if (const_op > 1)
11814 {
11815 const_op -= 1;
11816 code = GTU;
11817 /* ... fall through ... */
11818 }
11819
11820 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11821 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11822 && (unsigned HOST_WIDE_INT) const_op
11823 == HOST_WIDE_INT_1U << (mode_width - 1))
11824 {
11825 const_op = 0;
11826 code = LT;
11827 break;
11828 }
11829 else
11830 break;
11831
11832 case GTU:
11833 /* unsigned > 0 is equivalent to != 0 */
11834 if (const_op == 0)
11835 code = NE;
11836 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11837 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11838 && (unsigned HOST_WIDE_INT) const_op
11839 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11840 {
11841 const_op = 0;
11842 code = LT;
11843 }
11844 break;
11845
11846 default:
11847 break;
11848 }
11849
11850 *pop1 = GEN_INT (const_op);
11851 return code;
11852 }
11853 \f
11854 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11855 comparison code that will be tested.
11856
11857 The result is a possibly different comparison code to use. *POP0 and
11858 *POP1 may be updated.
11859
11860 It is possible that we might detect that a comparison is either always
11861 true or always false. However, we do not perform general constant
11862 folding in combine, so this knowledge isn't useful. Such tautologies
11863 should have been detected earlier. Hence we ignore all such cases. */
11864
11865 static enum rtx_code
11866 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11867 {
11868 rtx op0 = *pop0;
11869 rtx op1 = *pop1;
11870 rtx tem, tem1;
11871 int i;
11872 machine_mode mode, tmode;
11873
11874 /* Try a few ways of applying the same transformation to both operands. */
11875 while (1)
11876 {
11877 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11878 so check specially. */
11879 if (!WORD_REGISTER_OPERATIONS
11880 && code != GTU && code != GEU && code != LTU && code != LEU
11881 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11882 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11883 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11884 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11885 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11886 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11887 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11888 && CONST_INT_P (XEXP (op0, 1))
11889 && XEXP (op0, 1) == XEXP (op1, 1)
11890 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11891 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11892 && (INTVAL (XEXP (op0, 1))
11893 == (GET_MODE_PRECISION (GET_MODE (op0))
11894 - (GET_MODE_PRECISION
11895 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11896 {
11897 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11898 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11899 }
11900
11901 /* If both operands are the same constant shift, see if we can ignore the
11902 shift. We can if the shift is a rotate or if the bits shifted out of
11903 this shift are known to be zero for both inputs and if the type of
11904 comparison is compatible with the shift. */
11905 if (GET_CODE (op0) == GET_CODE (op1)
11906 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11907 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11908 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11909 && (code != GT && code != LT && code != GE && code != LE))
11910 || (GET_CODE (op0) == ASHIFTRT
11911 && (code != GTU && code != LTU
11912 && code != GEU && code != LEU)))
11913 && CONST_INT_P (XEXP (op0, 1))
11914 && INTVAL (XEXP (op0, 1)) >= 0
11915 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11916 && XEXP (op0, 1) == XEXP (op1, 1))
11917 {
11918 machine_mode mode = GET_MODE (op0);
11919 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11920 int shift_count = INTVAL (XEXP (op0, 1));
11921
11922 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11923 mask &= (mask >> shift_count) << shift_count;
11924 else if (GET_CODE (op0) == ASHIFT)
11925 mask = (mask & (mask << shift_count)) >> shift_count;
11926
11927 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11928 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11929 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11930 else
11931 break;
11932 }
11933
11934 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11935 SUBREGs are of the same mode, and, in both cases, the AND would
11936 be redundant if the comparison was done in the narrower mode,
11937 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11938 and the operand's possibly nonzero bits are 0xffffff01; in that case
11939 if we only care about QImode, we don't need the AND). This case
11940 occurs if the output mode of an scc insn is not SImode and
11941 STORE_FLAG_VALUE == 1 (e.g., the 386).
11942
11943 Similarly, check for a case where the AND's are ZERO_EXTEND
11944 operations from some narrower mode even though a SUBREG is not
11945 present. */
11946
11947 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11948 && CONST_INT_P (XEXP (op0, 1))
11949 && CONST_INT_P (XEXP (op1, 1)))
11950 {
11951 rtx inner_op0 = XEXP (op0, 0);
11952 rtx inner_op1 = XEXP (op1, 0);
11953 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11954 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11955 int changed = 0;
11956
11957 if (paradoxical_subreg_p (inner_op0)
11958 && GET_CODE (inner_op1) == SUBREG
11959 && (GET_MODE (SUBREG_REG (inner_op0))
11960 == GET_MODE (SUBREG_REG (inner_op1)))
11961 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11962 <= HOST_BITS_PER_WIDE_INT)
11963 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11964 GET_MODE (SUBREG_REG (inner_op0)))))
11965 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11966 GET_MODE (SUBREG_REG (inner_op1))))))
11967 {
11968 op0 = SUBREG_REG (inner_op0);
11969 op1 = SUBREG_REG (inner_op1);
11970
11971 /* The resulting comparison is always unsigned since we masked
11972 off the original sign bit. */
11973 code = unsigned_condition (code);
11974
11975 changed = 1;
11976 }
11977
11978 else if (c0 == c1)
11979 for (tmode = GET_CLASS_NARROWEST_MODE
11980 (GET_MODE_CLASS (GET_MODE (op0)));
11981 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11982 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11983 {
11984 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
11985 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
11986 code = unsigned_condition (code);
11987 changed = 1;
11988 break;
11989 }
11990
11991 if (! changed)
11992 break;
11993 }
11994
11995 /* If both operands are NOT, we can strip off the outer operation
11996 and adjust the comparison code for swapped operands; similarly for
11997 NEG, except that this must be an equality comparison. */
11998 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11999 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12000 && (code == EQ || code == NE)))
12001 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12002
12003 else
12004 break;
12005 }
12006
12007 /* If the first operand is a constant, swap the operands and adjust the
12008 comparison code appropriately, but don't do this if the second operand
12009 is already a constant integer. */
12010 if (swap_commutative_operands_p (op0, op1))
12011 {
12012 std::swap (op0, op1);
12013 code = swap_condition (code);
12014 }
12015
12016 /* We now enter a loop during which we will try to simplify the comparison.
12017 For the most part, we only are concerned with comparisons with zero,
12018 but some things may really be comparisons with zero but not start
12019 out looking that way. */
12020
12021 while (CONST_INT_P (op1))
12022 {
12023 machine_mode mode = GET_MODE (op0);
12024 unsigned int mode_width = GET_MODE_PRECISION (mode);
12025 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12026 int equality_comparison_p;
12027 int sign_bit_comparison_p;
12028 int unsigned_comparison_p;
12029 HOST_WIDE_INT const_op;
12030
12031 /* We only want to handle integral modes. This catches VOIDmode,
12032 CCmode, and the floating-point modes. An exception is that we
12033 can handle VOIDmode if OP0 is a COMPARE or a comparison
12034 operation. */
12035
12036 if (GET_MODE_CLASS (mode) != MODE_INT
12037 && ! (mode == VOIDmode
12038 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12039 break;
12040
12041 /* Try to simplify the compare to constant, possibly changing the
12042 comparison op, and/or changing op1 to zero. */
12043 code = simplify_compare_const (code, mode, op0, &op1);
12044 const_op = INTVAL (op1);
12045
12046 /* Compute some predicates to simplify code below. */
12047
12048 equality_comparison_p = (code == EQ || code == NE);
12049 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12050 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12051 || code == GEU);
12052
12053 /* If this is a sign bit comparison and we can do arithmetic in
12054 MODE, say that we will only be needing the sign bit of OP0. */
12055 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
12056 op0 = force_to_mode (op0, mode,
12057 HOST_WIDE_INT_1U
12058 << (GET_MODE_PRECISION (mode) - 1),
12059 0);
12060
12061 /* Now try cases based on the opcode of OP0. If none of the cases
12062 does a "continue", we exit this loop immediately after the
12063 switch. */
12064
12065 switch (GET_CODE (op0))
12066 {
12067 case ZERO_EXTRACT:
12068 /* If we are extracting a single bit from a variable position in
12069 a constant that has only a single bit set and are comparing it
12070 with zero, we can convert this into an equality comparison
12071 between the position and the location of the single bit. */
12072 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12073 have already reduced the shift count modulo the word size. */
12074 if (!SHIFT_COUNT_TRUNCATED
12075 && CONST_INT_P (XEXP (op0, 0))
12076 && XEXP (op0, 1) == const1_rtx
12077 && equality_comparison_p && const_op == 0
12078 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12079 {
12080 if (BITS_BIG_ENDIAN)
12081 i = BITS_PER_WORD - 1 - i;
12082
12083 op0 = XEXP (op0, 2);
12084 op1 = GEN_INT (i);
12085 const_op = i;
12086
12087 /* Result is nonzero iff shift count is equal to I. */
12088 code = reverse_condition (code);
12089 continue;
12090 }
12091
12092 /* fall through */
12093
12094 case SIGN_EXTRACT:
12095 tem = expand_compound_operation (op0);
12096 if (tem != op0)
12097 {
12098 op0 = tem;
12099 continue;
12100 }
12101 break;
12102
12103 case NOT:
12104 /* If testing for equality, we can take the NOT of the constant. */
12105 if (equality_comparison_p
12106 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12107 {
12108 op0 = XEXP (op0, 0);
12109 op1 = tem;
12110 continue;
12111 }
12112
12113 /* If just looking at the sign bit, reverse the sense of the
12114 comparison. */
12115 if (sign_bit_comparison_p)
12116 {
12117 op0 = XEXP (op0, 0);
12118 code = (code == GE ? LT : GE);
12119 continue;
12120 }
12121 break;
12122
12123 case NEG:
12124 /* If testing for equality, we can take the NEG of the constant. */
12125 if (equality_comparison_p
12126 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12127 {
12128 op0 = XEXP (op0, 0);
12129 op1 = tem;
12130 continue;
12131 }
12132
12133 /* The remaining cases only apply to comparisons with zero. */
12134 if (const_op != 0)
12135 break;
12136
12137 /* When X is ABS or is known positive,
12138 (neg X) is < 0 if and only if X != 0. */
12139
12140 if (sign_bit_comparison_p
12141 && (GET_CODE (XEXP (op0, 0)) == ABS
12142 || (mode_width <= HOST_BITS_PER_WIDE_INT
12143 && (nonzero_bits (XEXP (op0, 0), mode)
12144 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12145 == 0)))
12146 {
12147 op0 = XEXP (op0, 0);
12148 code = (code == LT ? NE : EQ);
12149 continue;
12150 }
12151
12152 /* If we have NEG of something whose two high-order bits are the
12153 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12154 if (num_sign_bit_copies (op0, mode) >= 2)
12155 {
12156 op0 = XEXP (op0, 0);
12157 code = swap_condition (code);
12158 continue;
12159 }
12160 break;
12161
12162 case ROTATE:
12163 /* If we are testing equality and our count is a constant, we
12164 can perform the inverse operation on our RHS. */
12165 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12166 && (tem = simplify_binary_operation (ROTATERT, mode,
12167 op1, XEXP (op0, 1))) != 0)
12168 {
12169 op0 = XEXP (op0, 0);
12170 op1 = tem;
12171 continue;
12172 }
12173
12174 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12175 a particular bit. Convert it to an AND of a constant of that
12176 bit. This will be converted into a ZERO_EXTRACT. */
12177 if (const_op == 0 && sign_bit_comparison_p
12178 && CONST_INT_P (XEXP (op0, 1))
12179 && mode_width <= HOST_BITS_PER_WIDE_INT)
12180 {
12181 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12182 (HOST_WIDE_INT_1U
12183 << (mode_width - 1
12184 - INTVAL (XEXP (op0, 1)))));
12185 code = (code == LT ? NE : EQ);
12186 continue;
12187 }
12188
12189 /* Fall through. */
12190
12191 case ABS:
12192 /* ABS is ignorable inside an equality comparison with zero. */
12193 if (const_op == 0 && equality_comparison_p)
12194 {
12195 op0 = XEXP (op0, 0);
12196 continue;
12197 }
12198 break;
12199
12200 case SIGN_EXTEND:
12201 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12202 (compare FOO CONST) if CONST fits in FOO's mode and we
12203 are either testing inequality or have an unsigned
12204 comparison with ZERO_EXTEND or a signed comparison with
12205 SIGN_EXTEND. But don't do it if we don't have a compare
12206 insn of the given mode, since we'd have to revert it
12207 later on, and then we wouldn't know whether to sign- or
12208 zero-extend. */
12209 mode = GET_MODE (XEXP (op0, 0));
12210 if (GET_MODE_CLASS (mode) == MODE_INT
12211 && ! unsigned_comparison_p
12212 && HWI_COMPUTABLE_MODE_P (mode)
12213 && trunc_int_for_mode (const_op, mode) == const_op
12214 && have_insn_for (COMPARE, mode))
12215 {
12216 op0 = XEXP (op0, 0);
12217 continue;
12218 }
12219 break;
12220
12221 case SUBREG:
12222 /* Check for the case where we are comparing A - C1 with C2, that is
12223
12224 (subreg:MODE (plus (A) (-C1))) op (C2)
12225
12226 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12227 comparison in the wider mode. One of the following two conditions
12228 must be true in order for this to be valid:
12229
12230 1. The mode extension results in the same bit pattern being added
12231 on both sides and the comparison is equality or unsigned. As
12232 C2 has been truncated to fit in MODE, the pattern can only be
12233 all 0s or all 1s.
12234
12235 2. The mode extension results in the sign bit being copied on
12236 each side.
12237
12238 The difficulty here is that we have predicates for A but not for
12239 (A - C1) so we need to check that C1 is within proper bounds so
12240 as to perturbate A as little as possible. */
12241
12242 if (mode_width <= HOST_BITS_PER_WIDE_INT
12243 && subreg_lowpart_p (op0)
12244 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
12245 && GET_CODE (SUBREG_REG (op0)) == PLUS
12246 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12247 {
12248 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
12249 rtx a = XEXP (SUBREG_REG (op0), 0);
12250 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12251
12252 if ((c1 > 0
12253 && (unsigned HOST_WIDE_INT) c1
12254 < HOST_WIDE_INT_1U << (mode_width - 1)
12255 && (equality_comparison_p || unsigned_comparison_p)
12256 /* (A - C1) zero-extends if it is positive and sign-extends
12257 if it is negative, C2 both zero- and sign-extends. */
12258 && ((0 == (nonzero_bits (a, inner_mode)
12259 & ~GET_MODE_MASK (mode))
12260 && const_op >= 0)
12261 /* (A - C1) sign-extends if it is positive and 1-extends
12262 if it is negative, C2 both sign- and 1-extends. */
12263 || (num_sign_bit_copies (a, inner_mode)
12264 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12265 - mode_width)
12266 && const_op < 0)))
12267 || ((unsigned HOST_WIDE_INT) c1
12268 < HOST_WIDE_INT_1U << (mode_width - 2)
12269 /* (A - C1) always sign-extends, like C2. */
12270 && num_sign_bit_copies (a, inner_mode)
12271 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12272 - (mode_width - 1))))
12273 {
12274 op0 = SUBREG_REG (op0);
12275 continue;
12276 }
12277 }
12278
12279 /* If the inner mode is narrower and we are extracting the low part,
12280 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12281 if (subreg_lowpart_p (op0)
12282 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
12283 ;
12284 else if (subreg_lowpart_p (op0)
12285 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12286 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12287 && (code == NE || code == EQ)
12288 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12289 <= HOST_BITS_PER_WIDE_INT)
12290 && !paradoxical_subreg_p (op0)
12291 && (nonzero_bits (SUBREG_REG (op0),
12292 GET_MODE (SUBREG_REG (op0)))
12293 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12294 {
12295 /* Remove outer subregs that don't do anything. */
12296 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12297
12298 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12299 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12300 {
12301 op0 = SUBREG_REG (op0);
12302 op1 = tem;
12303 continue;
12304 }
12305 break;
12306 }
12307 else
12308 break;
12309
12310 /* FALLTHROUGH */
12311
12312 case ZERO_EXTEND:
12313 mode = GET_MODE (XEXP (op0, 0));
12314 if (GET_MODE_CLASS (mode) == MODE_INT
12315 && (unsigned_comparison_p || equality_comparison_p)
12316 && HWI_COMPUTABLE_MODE_P (mode)
12317 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12318 && const_op >= 0
12319 && have_insn_for (COMPARE, mode))
12320 {
12321 op0 = XEXP (op0, 0);
12322 continue;
12323 }
12324 break;
12325
12326 case PLUS:
12327 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12328 this for equality comparisons due to pathological cases involving
12329 overflows. */
12330 if (equality_comparison_p
12331 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12332 op1, XEXP (op0, 1))))
12333 {
12334 op0 = XEXP (op0, 0);
12335 op1 = tem;
12336 continue;
12337 }
12338
12339 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12340 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12341 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12342 {
12343 op0 = XEXP (XEXP (op0, 0), 0);
12344 code = (code == LT ? EQ : NE);
12345 continue;
12346 }
12347 break;
12348
12349 case MINUS:
12350 /* We used to optimize signed comparisons against zero, but that
12351 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12352 arrive here as equality comparisons, or (GEU, LTU) are
12353 optimized away. No need to special-case them. */
12354
12355 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12356 (eq B (minus A C)), whichever simplifies. We can only do
12357 this for equality comparisons due to pathological cases involving
12358 overflows. */
12359 if (equality_comparison_p
12360 && 0 != (tem = simplify_binary_operation (PLUS, mode,
12361 XEXP (op0, 1), op1)))
12362 {
12363 op0 = XEXP (op0, 0);
12364 op1 = tem;
12365 continue;
12366 }
12367
12368 if (equality_comparison_p
12369 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12370 XEXP (op0, 0), op1)))
12371 {
12372 op0 = XEXP (op0, 1);
12373 op1 = tem;
12374 continue;
12375 }
12376
12377 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12378 of bits in X minus 1, is one iff X > 0. */
12379 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12380 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12381 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12382 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12383 {
12384 op0 = XEXP (op0, 1);
12385 code = (code == GE ? LE : GT);
12386 continue;
12387 }
12388 break;
12389
12390 case XOR:
12391 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12392 if C is zero or B is a constant. */
12393 if (equality_comparison_p
12394 && 0 != (tem = simplify_binary_operation (XOR, mode,
12395 XEXP (op0, 1), op1)))
12396 {
12397 op0 = XEXP (op0, 0);
12398 op1 = tem;
12399 continue;
12400 }
12401 break;
12402
12403 case EQ: case NE:
12404 case UNEQ: case LTGT:
12405 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
12406 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
12407 case UNORDERED: case ORDERED:
12408 /* We can't do anything if OP0 is a condition code value, rather
12409 than an actual data value. */
12410 if (const_op != 0
12411 || CC0_P (XEXP (op0, 0))
12412 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12413 break;
12414
12415 /* Get the two operands being compared. */
12416 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12417 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12418 else
12419 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12420
12421 /* Check for the cases where we simply want the result of the
12422 earlier test or the opposite of that result. */
12423 if (code == NE || code == EQ
12424 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
12425 && (code == LT || code == GE)))
12426 {
12427 enum rtx_code new_code;
12428 if (code == LT || code == NE)
12429 new_code = GET_CODE (op0);
12430 else
12431 new_code = reversed_comparison_code (op0, NULL);
12432
12433 if (new_code != UNKNOWN)
12434 {
12435 code = new_code;
12436 op0 = tem;
12437 op1 = tem1;
12438 continue;
12439 }
12440 }
12441 break;
12442
12443 case IOR:
12444 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12445 iff X <= 0. */
12446 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12447 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12448 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12449 {
12450 op0 = XEXP (op0, 1);
12451 code = (code == GE ? GT : LE);
12452 continue;
12453 }
12454 break;
12455
12456 case AND:
12457 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12458 will be converted to a ZERO_EXTRACT later. */
12459 if (const_op == 0 && equality_comparison_p
12460 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12461 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12462 {
12463 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12464 XEXP (XEXP (op0, 0), 1));
12465 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12466 continue;
12467 }
12468
12469 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12470 zero and X is a comparison and C1 and C2 describe only bits set
12471 in STORE_FLAG_VALUE, we can compare with X. */
12472 if (const_op == 0 && equality_comparison_p
12473 && mode_width <= HOST_BITS_PER_WIDE_INT
12474 && CONST_INT_P (XEXP (op0, 1))
12475 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12476 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12477 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12478 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12479 {
12480 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12481 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12482 if ((~STORE_FLAG_VALUE & mask) == 0
12483 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12484 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12485 && COMPARISON_P (tem))))
12486 {
12487 op0 = XEXP (XEXP (op0, 0), 0);
12488 continue;
12489 }
12490 }
12491
12492 /* If we are doing an equality comparison of an AND of a bit equal
12493 to the sign bit, replace this with a LT or GE comparison of
12494 the underlying value. */
12495 if (equality_comparison_p
12496 && const_op == 0
12497 && CONST_INT_P (XEXP (op0, 1))
12498 && mode_width <= HOST_BITS_PER_WIDE_INT
12499 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12500 == HOST_WIDE_INT_1U << (mode_width - 1)))
12501 {
12502 op0 = XEXP (op0, 0);
12503 code = (code == EQ ? GE : LT);
12504 continue;
12505 }
12506
12507 /* If this AND operation is really a ZERO_EXTEND from a narrower
12508 mode, the constant fits within that mode, and this is either an
12509 equality or unsigned comparison, try to do this comparison in
12510 the narrower mode.
12511
12512 Note that in:
12513
12514 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12515 -> (ne:DI (reg:SI 4) (const_int 0))
12516
12517 unless TRULY_NOOP_TRUNCATION allows it or the register is
12518 known to hold a value of the required mode the
12519 transformation is invalid. */
12520 if ((equality_comparison_p || unsigned_comparison_p)
12521 && CONST_INT_P (XEXP (op0, 1))
12522 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12523 & GET_MODE_MASK (mode))
12524 + 1)) >= 0
12525 && const_op >> i == 0
12526 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
12527 {
12528 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12529 continue;
12530 }
12531
12532 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12533 fits in both M1 and M2 and the SUBREG is either paradoxical
12534 or represents the low part, permute the SUBREG and the AND
12535 and try again. */
12536 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12537 && CONST_INT_P (XEXP (op0, 1)))
12538 {
12539 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12540 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12541 /* Require an integral mode, to avoid creating something like
12542 (AND:SF ...). */
12543 if (SCALAR_INT_MODE_P (tmode)
12544 /* It is unsafe to commute the AND into the SUBREG if the
12545 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12546 not defined. As originally written the upper bits
12547 have a defined value due to the AND operation.
12548 However, if we commute the AND inside the SUBREG then
12549 they no longer have defined values and the meaning of
12550 the code has been changed.
12551 Also C1 should not change value in the smaller mode,
12552 see PR67028 (a positive C1 can become negative in the
12553 smaller mode, so that the AND does no longer mask the
12554 upper bits). */
12555 && ((WORD_REGISTER_OPERATIONS
12556 && mode_width > GET_MODE_PRECISION (tmode)
12557 && mode_width <= BITS_PER_WORD
12558 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12559 || (mode_width <= GET_MODE_PRECISION (tmode)
12560 && subreg_lowpart_p (XEXP (op0, 0))))
12561 && mode_width <= HOST_BITS_PER_WIDE_INT
12562 && HWI_COMPUTABLE_MODE_P (tmode)
12563 && (c1 & ~mask) == 0
12564 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12565 && c1 != mask
12566 && c1 != GET_MODE_MASK (tmode))
12567 {
12568 op0 = simplify_gen_binary (AND, tmode,
12569 SUBREG_REG (XEXP (op0, 0)),
12570 gen_int_mode (c1, tmode));
12571 op0 = gen_lowpart (mode, op0);
12572 continue;
12573 }
12574 }
12575
12576 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12577 if (const_op == 0 && equality_comparison_p
12578 && XEXP (op0, 1) == const1_rtx
12579 && GET_CODE (XEXP (op0, 0)) == NOT)
12580 {
12581 op0 = simplify_and_const_int (NULL_RTX, mode,
12582 XEXP (XEXP (op0, 0), 0), 1);
12583 code = (code == NE ? EQ : NE);
12584 continue;
12585 }
12586
12587 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12588 (eq (and (lshiftrt X) 1) 0).
12589 Also handle the case where (not X) is expressed using xor. */
12590 if (const_op == 0 && equality_comparison_p
12591 && XEXP (op0, 1) == const1_rtx
12592 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12593 {
12594 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12595 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12596
12597 if (GET_CODE (shift_op) == NOT
12598 || (GET_CODE (shift_op) == XOR
12599 && CONST_INT_P (XEXP (shift_op, 1))
12600 && CONST_INT_P (shift_count)
12601 && HWI_COMPUTABLE_MODE_P (mode)
12602 && (UINTVAL (XEXP (shift_op, 1))
12603 == HOST_WIDE_INT_1U
12604 << INTVAL (shift_count))))
12605 {
12606 op0
12607 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12608 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12609 code = (code == NE ? EQ : NE);
12610 continue;
12611 }
12612 }
12613 break;
12614
12615 case ASHIFT:
12616 /* If we have (compare (ashift FOO N) (const_int C)) and
12617 the high order N bits of FOO (N+1 if an inequality comparison)
12618 are known to be zero, we can do this by comparing FOO with C
12619 shifted right N bits so long as the low-order N bits of C are
12620 zero. */
12621 if (CONST_INT_P (XEXP (op0, 1))
12622 && INTVAL (XEXP (op0, 1)) >= 0
12623 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12624 < HOST_BITS_PER_WIDE_INT)
12625 && (((unsigned HOST_WIDE_INT) const_op
12626 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12627 - 1)) == 0)
12628 && mode_width <= HOST_BITS_PER_WIDE_INT
12629 && (nonzero_bits (XEXP (op0, 0), mode)
12630 & ~(mask >> (INTVAL (XEXP (op0, 1))
12631 + ! equality_comparison_p))) == 0)
12632 {
12633 /* We must perform a logical shift, not an arithmetic one,
12634 as we want the top N bits of C to be zero. */
12635 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12636
12637 temp >>= INTVAL (XEXP (op0, 1));
12638 op1 = gen_int_mode (temp, mode);
12639 op0 = XEXP (op0, 0);
12640 continue;
12641 }
12642
12643 /* If we are doing a sign bit comparison, it means we are testing
12644 a particular bit. Convert it to the appropriate AND. */
12645 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12646 && mode_width <= HOST_BITS_PER_WIDE_INT)
12647 {
12648 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12649 (HOST_WIDE_INT_1U
12650 << (mode_width - 1
12651 - INTVAL (XEXP (op0, 1)))));
12652 code = (code == LT ? NE : EQ);
12653 continue;
12654 }
12655
12656 /* If this an equality comparison with zero and we are shifting
12657 the low bit to the sign bit, we can convert this to an AND of the
12658 low-order bit. */
12659 if (const_op == 0 && equality_comparison_p
12660 && CONST_INT_P (XEXP (op0, 1))
12661 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12662 {
12663 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12664 continue;
12665 }
12666 break;
12667
12668 case ASHIFTRT:
12669 /* If this is an equality comparison with zero, we can do this
12670 as a logical shift, which might be much simpler. */
12671 if (equality_comparison_p && const_op == 0
12672 && CONST_INT_P (XEXP (op0, 1)))
12673 {
12674 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12675 XEXP (op0, 0),
12676 INTVAL (XEXP (op0, 1)));
12677 continue;
12678 }
12679
12680 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12681 do the comparison in a narrower mode. */
12682 if (! unsigned_comparison_p
12683 && CONST_INT_P (XEXP (op0, 1))
12684 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12685 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12686 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12687 MODE_INT, 1)) != BLKmode
12688 && (((unsigned HOST_WIDE_INT) const_op
12689 + (GET_MODE_MASK (tmode) >> 1) + 1)
12690 <= GET_MODE_MASK (tmode)))
12691 {
12692 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12693 continue;
12694 }
12695
12696 /* Likewise if OP0 is a PLUS of a sign extension with a
12697 constant, which is usually represented with the PLUS
12698 between the shifts. */
12699 if (! unsigned_comparison_p
12700 && CONST_INT_P (XEXP (op0, 1))
12701 && GET_CODE (XEXP (op0, 0)) == PLUS
12702 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12703 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12704 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12705 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12706 MODE_INT, 1)) != BLKmode
12707 && (((unsigned HOST_WIDE_INT) const_op
12708 + (GET_MODE_MASK (tmode) >> 1) + 1)
12709 <= GET_MODE_MASK (tmode)))
12710 {
12711 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12712 rtx add_const = XEXP (XEXP (op0, 0), 1);
12713 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12714 add_const, XEXP (op0, 1));
12715
12716 op0 = simplify_gen_binary (PLUS, tmode,
12717 gen_lowpart (tmode, inner),
12718 new_const);
12719 continue;
12720 }
12721
12722 /* FALLTHROUGH */
12723 case LSHIFTRT:
12724 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12725 the low order N bits of FOO are known to be zero, we can do this
12726 by comparing FOO with C shifted left N bits so long as no
12727 overflow occurs. Even if the low order N bits of FOO aren't known
12728 to be zero, if the comparison is >= or < we can use the same
12729 optimization and for > or <= by setting all the low
12730 order N bits in the comparison constant. */
12731 if (CONST_INT_P (XEXP (op0, 1))
12732 && INTVAL (XEXP (op0, 1)) > 0
12733 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12734 && mode_width <= HOST_BITS_PER_WIDE_INT
12735 && (((unsigned HOST_WIDE_INT) const_op
12736 + (GET_CODE (op0) != LSHIFTRT
12737 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12738 + 1)
12739 : 0))
12740 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12741 {
12742 unsigned HOST_WIDE_INT low_bits
12743 = (nonzero_bits (XEXP (op0, 0), mode)
12744 & ((HOST_WIDE_INT_1U
12745 << INTVAL (XEXP (op0, 1))) - 1));
12746 if (low_bits == 0 || !equality_comparison_p)
12747 {
12748 /* If the shift was logical, then we must make the condition
12749 unsigned. */
12750 if (GET_CODE (op0) == LSHIFTRT)
12751 code = unsigned_condition (code);
12752
12753 const_op = (unsigned HOST_WIDE_INT) const_op
12754 << INTVAL (XEXP (op0, 1));
12755 if (low_bits != 0
12756 && (code == GT || code == GTU
12757 || code == LE || code == LEU))
12758 const_op
12759 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12760 op1 = GEN_INT (const_op);
12761 op0 = XEXP (op0, 0);
12762 continue;
12763 }
12764 }
12765
12766 /* If we are using this shift to extract just the sign bit, we
12767 can replace this with an LT or GE comparison. */
12768 if (const_op == 0
12769 && (equality_comparison_p || sign_bit_comparison_p)
12770 && CONST_INT_P (XEXP (op0, 1))
12771 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12772 {
12773 op0 = XEXP (op0, 0);
12774 code = (code == NE || code == GT ? LT : GE);
12775 continue;
12776 }
12777 break;
12778
12779 default:
12780 break;
12781 }
12782
12783 break;
12784 }
12785
12786 /* Now make any compound operations involved in this comparison. Then,
12787 check for an outmost SUBREG on OP0 that is not doing anything or is
12788 paradoxical. The latter transformation must only be performed when
12789 it is known that the "extra" bits will be the same in op0 and op1 or
12790 that they don't matter. There are three cases to consider:
12791
12792 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12793 care bits and we can assume they have any convenient value. So
12794 making the transformation is safe.
12795
12796 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12797 In this case the upper bits of op0 are undefined. We should not make
12798 the simplification in that case as we do not know the contents of
12799 those bits.
12800
12801 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12802 In that case we know those bits are zeros or ones. We must also be
12803 sure that they are the same as the upper bits of op1.
12804
12805 We can never remove a SUBREG for a non-equality comparison because
12806 the sign bit is in a different place in the underlying object. */
12807
12808 rtx_code op0_mco_code = SET;
12809 if (op1 == const0_rtx)
12810 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12811
12812 op0 = make_compound_operation (op0, op0_mco_code);
12813 op1 = make_compound_operation (op1, SET);
12814
12815 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12816 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12817 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12818 && (code == NE || code == EQ))
12819 {
12820 if (paradoxical_subreg_p (op0))
12821 {
12822 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12823 implemented. */
12824 if (REG_P (SUBREG_REG (op0)))
12825 {
12826 op0 = SUBREG_REG (op0);
12827 op1 = gen_lowpart (GET_MODE (op0), op1);
12828 }
12829 }
12830 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12831 <= HOST_BITS_PER_WIDE_INT)
12832 && (nonzero_bits (SUBREG_REG (op0),
12833 GET_MODE (SUBREG_REG (op0)))
12834 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12835 {
12836 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12837
12838 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12839 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12840 op0 = SUBREG_REG (op0), op1 = tem;
12841 }
12842 }
12843
12844 /* We now do the opposite procedure: Some machines don't have compare
12845 insns in all modes. If OP0's mode is an integer mode smaller than a
12846 word and we can't do a compare in that mode, see if there is a larger
12847 mode for which we can do the compare. There are a number of cases in
12848 which we can use the wider mode. */
12849
12850 mode = GET_MODE (op0);
12851 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12852 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12853 && ! have_insn_for (COMPARE, mode))
12854 for (tmode = GET_MODE_WIDER_MODE (mode);
12855 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12856 tmode = GET_MODE_WIDER_MODE (tmode))
12857 if (have_insn_for (COMPARE, tmode))
12858 {
12859 int zero_extended;
12860
12861 /* If this is a test for negative, we can make an explicit
12862 test of the sign bit. Test this first so we can use
12863 a paradoxical subreg to extend OP0. */
12864
12865 if (op1 == const0_rtx && (code == LT || code == GE)
12866 && HWI_COMPUTABLE_MODE_P (mode))
12867 {
12868 unsigned HOST_WIDE_INT sign
12869 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12870 op0 = simplify_gen_binary (AND, tmode,
12871 gen_lowpart (tmode, op0),
12872 gen_int_mode (sign, tmode));
12873 code = (code == LT) ? NE : EQ;
12874 break;
12875 }
12876
12877 /* If the only nonzero bits in OP0 and OP1 are those in the
12878 narrower mode and this is an equality or unsigned comparison,
12879 we can use the wider mode. Similarly for sign-extended
12880 values, in which case it is true for all comparisons. */
12881 zero_extended = ((code == EQ || code == NE
12882 || code == GEU || code == GTU
12883 || code == LEU || code == LTU)
12884 && (nonzero_bits (op0, tmode)
12885 & ~GET_MODE_MASK (mode)) == 0
12886 && ((CONST_INT_P (op1)
12887 || (nonzero_bits (op1, tmode)
12888 & ~GET_MODE_MASK (mode)) == 0)));
12889
12890 if (zero_extended
12891 || ((num_sign_bit_copies (op0, tmode)
12892 > (unsigned int) (GET_MODE_PRECISION (tmode)
12893 - GET_MODE_PRECISION (mode)))
12894 && (num_sign_bit_copies (op1, tmode)
12895 > (unsigned int) (GET_MODE_PRECISION (tmode)
12896 - GET_MODE_PRECISION (mode)))))
12897 {
12898 /* If OP0 is an AND and we don't have an AND in MODE either,
12899 make a new AND in the proper mode. */
12900 if (GET_CODE (op0) == AND
12901 && !have_insn_for (AND, mode))
12902 op0 = simplify_gen_binary (AND, tmode,
12903 gen_lowpart (tmode,
12904 XEXP (op0, 0)),
12905 gen_lowpart (tmode,
12906 XEXP (op0, 1)));
12907 else
12908 {
12909 if (zero_extended)
12910 {
12911 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12912 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12913 }
12914 else
12915 {
12916 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12917 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12918 }
12919 break;
12920 }
12921 }
12922 }
12923
12924 /* We may have changed the comparison operands. Re-canonicalize. */
12925 if (swap_commutative_operands_p (op0, op1))
12926 {
12927 std::swap (op0, op1);
12928 code = swap_condition (code);
12929 }
12930
12931 /* If this machine only supports a subset of valid comparisons, see if we
12932 can convert an unsupported one into a supported one. */
12933 target_canonicalize_comparison (&code, &op0, &op1, 0);
12934
12935 *pop0 = op0;
12936 *pop1 = op1;
12937
12938 return code;
12939 }
12940 \f
12941 /* Utility function for record_value_for_reg. Count number of
12942 rtxs in X. */
12943 static int
12944 count_rtxs (rtx x)
12945 {
12946 enum rtx_code code = GET_CODE (x);
12947 const char *fmt;
12948 int i, j, ret = 1;
12949
12950 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12951 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12952 {
12953 rtx x0 = XEXP (x, 0);
12954 rtx x1 = XEXP (x, 1);
12955
12956 if (x0 == x1)
12957 return 1 + 2 * count_rtxs (x0);
12958
12959 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12960 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12961 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12962 return 2 + 2 * count_rtxs (x0)
12963 + count_rtxs (x == XEXP (x1, 0)
12964 ? XEXP (x1, 1) : XEXP (x1, 0));
12965
12966 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12967 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12968 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12969 return 2 + 2 * count_rtxs (x1)
12970 + count_rtxs (x == XEXP (x0, 0)
12971 ? XEXP (x0, 1) : XEXP (x0, 0));
12972 }
12973
12974 fmt = GET_RTX_FORMAT (code);
12975 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12976 if (fmt[i] == 'e')
12977 ret += count_rtxs (XEXP (x, i));
12978 else if (fmt[i] == 'E')
12979 for (j = 0; j < XVECLEN (x, i); j++)
12980 ret += count_rtxs (XVECEXP (x, i, j));
12981
12982 return ret;
12983 }
12984 \f
12985 /* Utility function for following routine. Called when X is part of a value
12986 being stored into last_set_value. Sets last_set_table_tick
12987 for each register mentioned. Similar to mention_regs in cse.c */
12988
12989 static void
12990 update_table_tick (rtx x)
12991 {
12992 enum rtx_code code = GET_CODE (x);
12993 const char *fmt = GET_RTX_FORMAT (code);
12994 int i, j;
12995
12996 if (code == REG)
12997 {
12998 unsigned int regno = REGNO (x);
12999 unsigned int endregno = END_REGNO (x);
13000 unsigned int r;
13001
13002 for (r = regno; r < endregno; r++)
13003 {
13004 reg_stat_type *rsp = &reg_stat[r];
13005 rsp->last_set_table_tick = label_tick;
13006 }
13007
13008 return;
13009 }
13010
13011 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13012 if (fmt[i] == 'e')
13013 {
13014 /* Check for identical subexpressions. If x contains
13015 identical subexpression we only have to traverse one of
13016 them. */
13017 if (i == 0 && ARITHMETIC_P (x))
13018 {
13019 /* Note that at this point x1 has already been
13020 processed. */
13021 rtx x0 = XEXP (x, 0);
13022 rtx x1 = XEXP (x, 1);
13023
13024 /* If x0 and x1 are identical then there is no need to
13025 process x0. */
13026 if (x0 == x1)
13027 break;
13028
13029 /* If x0 is identical to a subexpression of x1 then while
13030 processing x1, x0 has already been processed. Thus we
13031 are done with x. */
13032 if (ARITHMETIC_P (x1)
13033 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13034 break;
13035
13036 /* If x1 is identical to a subexpression of x0 then we
13037 still have to process the rest of x0. */
13038 if (ARITHMETIC_P (x0)
13039 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13040 {
13041 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13042 break;
13043 }
13044 }
13045
13046 update_table_tick (XEXP (x, i));
13047 }
13048 else if (fmt[i] == 'E')
13049 for (j = 0; j < XVECLEN (x, i); j++)
13050 update_table_tick (XVECEXP (x, i, j));
13051 }
13052
13053 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13054 are saying that the register is clobbered and we no longer know its
13055 value. If INSN is zero, don't update reg_stat[].last_set; this is
13056 only permitted with VALUE also zero and is used to invalidate the
13057 register. */
13058
13059 static void
13060 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13061 {
13062 unsigned int regno = REGNO (reg);
13063 unsigned int endregno = END_REGNO (reg);
13064 unsigned int i;
13065 reg_stat_type *rsp;
13066
13067 /* If VALUE contains REG and we have a previous value for REG, substitute
13068 the previous value. */
13069 if (value && insn && reg_overlap_mentioned_p (reg, value))
13070 {
13071 rtx tem;
13072
13073 /* Set things up so get_last_value is allowed to see anything set up to
13074 our insn. */
13075 subst_low_luid = DF_INSN_LUID (insn);
13076 tem = get_last_value (reg);
13077
13078 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13079 it isn't going to be useful and will take a lot of time to process,
13080 so just use the CLOBBER. */
13081
13082 if (tem)
13083 {
13084 if (ARITHMETIC_P (tem)
13085 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13086 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13087 tem = XEXP (tem, 0);
13088 else if (count_occurrences (value, reg, 1) >= 2)
13089 {
13090 /* If there are two or more occurrences of REG in VALUE,
13091 prevent the value from growing too much. */
13092 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
13093 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13094 }
13095
13096 value = replace_rtx (copy_rtx (value), reg, tem);
13097 }
13098 }
13099
13100 /* For each register modified, show we don't know its value, that
13101 we don't know about its bitwise content, that its value has been
13102 updated, and that we don't know the location of the death of the
13103 register. */
13104 for (i = regno; i < endregno; i++)
13105 {
13106 rsp = &reg_stat[i];
13107
13108 if (insn)
13109 rsp->last_set = insn;
13110
13111 rsp->last_set_value = 0;
13112 rsp->last_set_mode = VOIDmode;
13113 rsp->last_set_nonzero_bits = 0;
13114 rsp->last_set_sign_bit_copies = 0;
13115 rsp->last_death = 0;
13116 rsp->truncated_to_mode = VOIDmode;
13117 }
13118
13119 /* Mark registers that are being referenced in this value. */
13120 if (value)
13121 update_table_tick (value);
13122
13123 /* Now update the status of each register being set.
13124 If someone is using this register in this block, set this register
13125 to invalid since we will get confused between the two lives in this
13126 basic block. This makes using this register always invalid. In cse, we
13127 scan the table to invalidate all entries using this register, but this
13128 is too much work for us. */
13129
13130 for (i = regno; i < endregno; i++)
13131 {
13132 rsp = &reg_stat[i];
13133 rsp->last_set_label = label_tick;
13134 if (!insn
13135 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13136 rsp->last_set_invalid = 1;
13137 else
13138 rsp->last_set_invalid = 0;
13139 }
13140
13141 /* The value being assigned might refer to X (like in "x++;"). In that
13142 case, we must replace it with (clobber (const_int 0)) to prevent
13143 infinite loops. */
13144 rsp = &reg_stat[regno];
13145 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13146 {
13147 value = copy_rtx (value);
13148 if (!get_last_value_validate (&value, insn, label_tick, 1))
13149 value = 0;
13150 }
13151
13152 /* For the main register being modified, update the value, the mode, the
13153 nonzero bits, and the number of sign bit copies. */
13154
13155 rsp->last_set_value = value;
13156
13157 if (value)
13158 {
13159 machine_mode mode = GET_MODE (reg);
13160 subst_low_luid = DF_INSN_LUID (insn);
13161 rsp->last_set_mode = mode;
13162 if (GET_MODE_CLASS (mode) == MODE_INT
13163 && HWI_COMPUTABLE_MODE_P (mode))
13164 mode = nonzero_bits_mode;
13165 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13166 rsp->last_set_sign_bit_copies
13167 = num_sign_bit_copies (value, GET_MODE (reg));
13168 }
13169 }
13170
13171 /* Called via note_stores from record_dead_and_set_regs to handle one
13172 SET or CLOBBER in an insn. DATA is the instruction in which the
13173 set is occurring. */
13174
13175 static void
13176 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13177 {
13178 rtx_insn *record_dead_insn = (rtx_insn *) data;
13179
13180 if (GET_CODE (dest) == SUBREG)
13181 dest = SUBREG_REG (dest);
13182
13183 if (!record_dead_insn)
13184 {
13185 if (REG_P (dest))
13186 record_value_for_reg (dest, NULL, NULL_RTX);
13187 return;
13188 }
13189
13190 if (REG_P (dest))
13191 {
13192 /* If we are setting the whole register, we know its value. Otherwise
13193 show that we don't know the value. We can handle SUBREG in
13194 some cases. */
13195 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13196 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13197 else if (GET_CODE (setter) == SET
13198 && GET_CODE (SET_DEST (setter)) == SUBREG
13199 && SUBREG_REG (SET_DEST (setter)) == dest
13200 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
13201 && subreg_lowpart_p (SET_DEST (setter)))
13202 record_value_for_reg (dest, record_dead_insn,
13203 gen_lowpart (GET_MODE (dest),
13204 SET_SRC (setter)));
13205 else
13206 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13207 }
13208 else if (MEM_P (dest)
13209 /* Ignore pushes, they clobber nothing. */
13210 && ! push_operand (dest, GET_MODE (dest)))
13211 mem_last_set = DF_INSN_LUID (record_dead_insn);
13212 }
13213
13214 /* Update the records of when each REG was most recently set or killed
13215 for the things done by INSN. This is the last thing done in processing
13216 INSN in the combiner loop.
13217
13218 We update reg_stat[], in particular fields last_set, last_set_value,
13219 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13220 last_death, and also the similar information mem_last_set (which insn
13221 most recently modified memory) and last_call_luid (which insn was the
13222 most recent subroutine call). */
13223
13224 static void
13225 record_dead_and_set_regs (rtx_insn *insn)
13226 {
13227 rtx link;
13228 unsigned int i;
13229
13230 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13231 {
13232 if (REG_NOTE_KIND (link) == REG_DEAD
13233 && REG_P (XEXP (link, 0)))
13234 {
13235 unsigned int regno = REGNO (XEXP (link, 0));
13236 unsigned int endregno = END_REGNO (XEXP (link, 0));
13237
13238 for (i = regno; i < endregno; i++)
13239 {
13240 reg_stat_type *rsp;
13241
13242 rsp = &reg_stat[i];
13243 rsp->last_death = insn;
13244 }
13245 }
13246 else if (REG_NOTE_KIND (link) == REG_INC)
13247 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13248 }
13249
13250 if (CALL_P (insn))
13251 {
13252 hard_reg_set_iterator hrsi;
13253 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13254 {
13255 reg_stat_type *rsp;
13256
13257 rsp = &reg_stat[i];
13258 rsp->last_set_invalid = 1;
13259 rsp->last_set = insn;
13260 rsp->last_set_value = 0;
13261 rsp->last_set_mode = VOIDmode;
13262 rsp->last_set_nonzero_bits = 0;
13263 rsp->last_set_sign_bit_copies = 0;
13264 rsp->last_death = 0;
13265 rsp->truncated_to_mode = VOIDmode;
13266 }
13267
13268 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13269
13270 /* We can't combine into a call pattern. Remember, though, that
13271 the return value register is set at this LUID. We could
13272 still replace a register with the return value from the
13273 wrong subroutine call! */
13274 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13275 }
13276 else
13277 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13278 }
13279
13280 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13281 register present in the SUBREG, so for each such SUBREG go back and
13282 adjust nonzero and sign bit information of the registers that are
13283 known to have some zero/sign bits set.
13284
13285 This is needed because when combine blows the SUBREGs away, the
13286 information on zero/sign bits is lost and further combines can be
13287 missed because of that. */
13288
13289 static void
13290 record_promoted_value (rtx_insn *insn, rtx subreg)
13291 {
13292 struct insn_link *links;
13293 rtx set;
13294 unsigned int regno = REGNO (SUBREG_REG (subreg));
13295 machine_mode mode = GET_MODE (subreg);
13296
13297 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
13298 return;
13299
13300 for (links = LOG_LINKS (insn); links;)
13301 {
13302 reg_stat_type *rsp;
13303
13304 insn = links->insn;
13305 set = single_set (insn);
13306
13307 if (! set || !REG_P (SET_DEST (set))
13308 || REGNO (SET_DEST (set)) != regno
13309 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13310 {
13311 links = links->next;
13312 continue;
13313 }
13314
13315 rsp = &reg_stat[regno];
13316 if (rsp->last_set == insn)
13317 {
13318 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13319 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13320 }
13321
13322 if (REG_P (SET_SRC (set)))
13323 {
13324 regno = REGNO (SET_SRC (set));
13325 links = LOG_LINKS (insn);
13326 }
13327 else
13328 break;
13329 }
13330 }
13331
13332 /* Check if X, a register, is known to contain a value already
13333 truncated to MODE. In this case we can use a subreg to refer to
13334 the truncated value even though in the generic case we would need
13335 an explicit truncation. */
13336
13337 static bool
13338 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13339 {
13340 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13341 machine_mode truncated = rsp->truncated_to_mode;
13342
13343 if (truncated == 0
13344 || rsp->truncation_label < label_tick_ebb_start)
13345 return false;
13346 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
13347 return true;
13348 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13349 return true;
13350 return false;
13351 }
13352
13353 /* If X is a hard reg or a subreg record the mode that the register is
13354 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
13355 to turn a truncate into a subreg using this information. Return true
13356 if traversing X is complete. */
13357
13358 static bool
13359 record_truncated_value (rtx x)
13360 {
13361 machine_mode truncated_mode;
13362 reg_stat_type *rsp;
13363
13364 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13365 {
13366 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13367 truncated_mode = GET_MODE (x);
13368
13369 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
13370 return true;
13371
13372 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13373 return true;
13374
13375 x = SUBREG_REG (x);
13376 }
13377 /* ??? For hard-regs we now record everything. We might be able to
13378 optimize this using last_set_mode. */
13379 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13380 truncated_mode = GET_MODE (x);
13381 else
13382 return false;
13383
13384 rsp = &reg_stat[REGNO (x)];
13385 if (rsp->truncated_to_mode == 0
13386 || rsp->truncation_label < label_tick_ebb_start
13387 || (GET_MODE_SIZE (truncated_mode)
13388 < GET_MODE_SIZE (rsp->truncated_to_mode)))
13389 {
13390 rsp->truncated_to_mode = truncated_mode;
13391 rsp->truncation_label = label_tick;
13392 }
13393
13394 return true;
13395 }
13396
13397 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13398 the modes they are used in. This can help truning TRUNCATEs into
13399 SUBREGs. */
13400
13401 static void
13402 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13403 {
13404 subrtx_var_iterator::array_type array;
13405 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13406 if (record_truncated_value (*iter))
13407 iter.skip_subrtxes ();
13408 }
13409
13410 /* Scan X for promoted SUBREGs. For each one found,
13411 note what it implies to the registers used in it. */
13412
13413 static void
13414 check_promoted_subreg (rtx_insn *insn, rtx x)
13415 {
13416 if (GET_CODE (x) == SUBREG
13417 && SUBREG_PROMOTED_VAR_P (x)
13418 && REG_P (SUBREG_REG (x)))
13419 record_promoted_value (insn, x);
13420 else
13421 {
13422 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13423 int i, j;
13424
13425 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13426 switch (format[i])
13427 {
13428 case 'e':
13429 check_promoted_subreg (insn, XEXP (x, i));
13430 break;
13431 case 'V':
13432 case 'E':
13433 if (XVEC (x, i) != 0)
13434 for (j = 0; j < XVECLEN (x, i); j++)
13435 check_promoted_subreg (insn, XVECEXP (x, i, j));
13436 break;
13437 }
13438 }
13439 }
13440 \f
13441 /* Verify that all the registers and memory references mentioned in *LOC are
13442 still valid. *LOC was part of a value set in INSN when label_tick was
13443 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13444 the invalid references with (clobber (const_int 0)) and return 1. This
13445 replacement is useful because we often can get useful information about
13446 the form of a value (e.g., if it was produced by a shift that always
13447 produces -1 or 0) even though we don't know exactly what registers it
13448 was produced from. */
13449
13450 static int
13451 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13452 {
13453 rtx x = *loc;
13454 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13455 int len = GET_RTX_LENGTH (GET_CODE (x));
13456 int i, j;
13457
13458 if (REG_P (x))
13459 {
13460 unsigned int regno = REGNO (x);
13461 unsigned int endregno = END_REGNO (x);
13462 unsigned int j;
13463
13464 for (j = regno; j < endregno; j++)
13465 {
13466 reg_stat_type *rsp = &reg_stat[j];
13467 if (rsp->last_set_invalid
13468 /* If this is a pseudo-register that was only set once and not
13469 live at the beginning of the function, it is always valid. */
13470 || (! (regno >= FIRST_PSEUDO_REGISTER
13471 && regno < reg_n_sets_max
13472 && REG_N_SETS (regno) == 1
13473 && (!REGNO_REG_SET_P
13474 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13475 regno)))
13476 && rsp->last_set_label > tick))
13477 {
13478 if (replace)
13479 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13480 return replace;
13481 }
13482 }
13483
13484 return 1;
13485 }
13486 /* If this is a memory reference, make sure that there were no stores after
13487 it that might have clobbered the value. We don't have alias info, so we
13488 assume any store invalidates it. Moreover, we only have local UIDs, so
13489 we also assume that there were stores in the intervening basic blocks. */
13490 else if (MEM_P (x) && !MEM_READONLY_P (x)
13491 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13492 {
13493 if (replace)
13494 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13495 return replace;
13496 }
13497
13498 for (i = 0; i < len; i++)
13499 {
13500 if (fmt[i] == 'e')
13501 {
13502 /* Check for identical subexpressions. If x contains
13503 identical subexpression we only have to traverse one of
13504 them. */
13505 if (i == 1 && ARITHMETIC_P (x))
13506 {
13507 /* Note that at this point x0 has already been checked
13508 and found valid. */
13509 rtx x0 = XEXP (x, 0);
13510 rtx x1 = XEXP (x, 1);
13511
13512 /* If x0 and x1 are identical then x is also valid. */
13513 if (x0 == x1)
13514 return 1;
13515
13516 /* If x1 is identical to a subexpression of x0 then
13517 while checking x0, x1 has already been checked. Thus
13518 it is valid and so as x. */
13519 if (ARITHMETIC_P (x0)
13520 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13521 return 1;
13522
13523 /* If x0 is identical to a subexpression of x1 then x is
13524 valid iff the rest of x1 is valid. */
13525 if (ARITHMETIC_P (x1)
13526 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13527 return
13528 get_last_value_validate (&XEXP (x1,
13529 x0 == XEXP (x1, 0) ? 1 : 0),
13530 insn, tick, replace);
13531 }
13532
13533 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13534 replace) == 0)
13535 return 0;
13536 }
13537 else if (fmt[i] == 'E')
13538 for (j = 0; j < XVECLEN (x, i); j++)
13539 if (get_last_value_validate (&XVECEXP (x, i, j),
13540 insn, tick, replace) == 0)
13541 return 0;
13542 }
13543
13544 /* If we haven't found a reason for it to be invalid, it is valid. */
13545 return 1;
13546 }
13547
13548 /* Get the last value assigned to X, if known. Some registers
13549 in the value may be replaced with (clobber (const_int 0)) if their value
13550 is known longer known reliably. */
13551
13552 static rtx
13553 get_last_value (const_rtx x)
13554 {
13555 unsigned int regno;
13556 rtx value;
13557 reg_stat_type *rsp;
13558
13559 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13560 then convert it to the desired mode. If this is a paradoxical SUBREG,
13561 we cannot predict what values the "extra" bits might have. */
13562 if (GET_CODE (x) == SUBREG
13563 && subreg_lowpart_p (x)
13564 && !paradoxical_subreg_p (x)
13565 && (value = get_last_value (SUBREG_REG (x))) != 0)
13566 return gen_lowpart (GET_MODE (x), value);
13567
13568 if (!REG_P (x))
13569 return 0;
13570
13571 regno = REGNO (x);
13572 rsp = &reg_stat[regno];
13573 value = rsp->last_set_value;
13574
13575 /* If we don't have a value, or if it isn't for this basic block and
13576 it's either a hard register, set more than once, or it's a live
13577 at the beginning of the function, return 0.
13578
13579 Because if it's not live at the beginning of the function then the reg
13580 is always set before being used (is never used without being set).
13581 And, if it's set only once, and it's always set before use, then all
13582 uses must have the same last value, even if it's not from this basic
13583 block. */
13584
13585 if (value == 0
13586 || (rsp->last_set_label < label_tick_ebb_start
13587 && (regno < FIRST_PSEUDO_REGISTER
13588 || regno >= reg_n_sets_max
13589 || REG_N_SETS (regno) != 1
13590 || REGNO_REG_SET_P
13591 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13592 return 0;
13593
13594 /* If the value was set in a later insn than the ones we are processing,
13595 we can't use it even if the register was only set once. */
13596 if (rsp->last_set_label == label_tick
13597 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13598 return 0;
13599
13600 /* If fewer bits were set than what we are asked for now, we cannot use
13601 the value. */
13602 if (GET_MODE_PRECISION (rsp->last_set_mode)
13603 < GET_MODE_PRECISION (GET_MODE (x)))
13604 return 0;
13605
13606 /* If the value has all its registers valid, return it. */
13607 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13608 return value;
13609
13610 /* Otherwise, make a copy and replace any invalid register with
13611 (clobber (const_int 0)). If that fails for some reason, return 0. */
13612
13613 value = copy_rtx (value);
13614 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13615 return value;
13616
13617 return 0;
13618 }
13619 \f
13620 /* Return nonzero if expression X refers to a REG or to memory
13621 that is set in an instruction more recent than FROM_LUID. */
13622
13623 static int
13624 use_crosses_set_p (const_rtx x, int from_luid)
13625 {
13626 const char *fmt;
13627 int i;
13628 enum rtx_code code = GET_CODE (x);
13629
13630 if (code == REG)
13631 {
13632 unsigned int regno = REGNO (x);
13633 unsigned endreg = END_REGNO (x);
13634
13635 #ifdef PUSH_ROUNDING
13636 /* Don't allow uses of the stack pointer to be moved,
13637 because we don't know whether the move crosses a push insn. */
13638 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13639 return 1;
13640 #endif
13641 for (; regno < endreg; regno++)
13642 {
13643 reg_stat_type *rsp = &reg_stat[regno];
13644 if (rsp->last_set
13645 && rsp->last_set_label == label_tick
13646 && DF_INSN_LUID (rsp->last_set) > from_luid)
13647 return 1;
13648 }
13649 return 0;
13650 }
13651
13652 if (code == MEM && mem_last_set > from_luid)
13653 return 1;
13654
13655 fmt = GET_RTX_FORMAT (code);
13656
13657 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13658 {
13659 if (fmt[i] == 'E')
13660 {
13661 int j;
13662 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13663 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13664 return 1;
13665 }
13666 else if (fmt[i] == 'e'
13667 && use_crosses_set_p (XEXP (x, i), from_luid))
13668 return 1;
13669 }
13670 return 0;
13671 }
13672 \f
13673 /* Define three variables used for communication between the following
13674 routines. */
13675
13676 static unsigned int reg_dead_regno, reg_dead_endregno;
13677 static int reg_dead_flag;
13678
13679 /* Function called via note_stores from reg_dead_at_p.
13680
13681 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13682 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13683
13684 static void
13685 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13686 {
13687 unsigned int regno, endregno;
13688
13689 if (!REG_P (dest))
13690 return;
13691
13692 regno = REGNO (dest);
13693 endregno = END_REGNO (dest);
13694 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13695 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13696 }
13697
13698 /* Return nonzero if REG is known to be dead at INSN.
13699
13700 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13701 referencing REG, it is dead. If we hit a SET referencing REG, it is
13702 live. Otherwise, see if it is live or dead at the start of the basic
13703 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13704 must be assumed to be always live. */
13705
13706 static int
13707 reg_dead_at_p (rtx reg, rtx_insn *insn)
13708 {
13709 basic_block block;
13710 unsigned int i;
13711
13712 /* Set variables for reg_dead_at_p_1. */
13713 reg_dead_regno = REGNO (reg);
13714 reg_dead_endregno = END_REGNO (reg);
13715
13716 reg_dead_flag = 0;
13717
13718 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13719 we allow the machine description to decide whether use-and-clobber
13720 patterns are OK. */
13721 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13722 {
13723 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13724 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13725 return 0;
13726 }
13727
13728 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13729 beginning of basic block. */
13730 block = BLOCK_FOR_INSN (insn);
13731 for (;;)
13732 {
13733 if (INSN_P (insn))
13734 {
13735 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13736 return 1;
13737
13738 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13739 if (reg_dead_flag)
13740 return reg_dead_flag == 1 ? 1 : 0;
13741
13742 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13743 return 1;
13744 }
13745
13746 if (insn == BB_HEAD (block))
13747 break;
13748
13749 insn = PREV_INSN (insn);
13750 }
13751
13752 /* Look at live-in sets for the basic block that we were in. */
13753 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13754 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13755 return 0;
13756
13757 return 1;
13758 }
13759 \f
13760 /* Note hard registers in X that are used. */
13761
13762 static void
13763 mark_used_regs_combine (rtx x)
13764 {
13765 RTX_CODE code = GET_CODE (x);
13766 unsigned int regno;
13767 int i;
13768
13769 switch (code)
13770 {
13771 case LABEL_REF:
13772 case SYMBOL_REF:
13773 case CONST:
13774 CASE_CONST_ANY:
13775 case PC:
13776 case ADDR_VEC:
13777 case ADDR_DIFF_VEC:
13778 case ASM_INPUT:
13779 /* CC0 must die in the insn after it is set, so we don't need to take
13780 special note of it here. */
13781 case CC0:
13782 return;
13783
13784 case CLOBBER:
13785 /* If we are clobbering a MEM, mark any hard registers inside the
13786 address as used. */
13787 if (MEM_P (XEXP (x, 0)))
13788 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13789 return;
13790
13791 case REG:
13792 regno = REGNO (x);
13793 /* A hard reg in a wide mode may really be multiple registers.
13794 If so, mark all of them just like the first. */
13795 if (regno < FIRST_PSEUDO_REGISTER)
13796 {
13797 /* None of this applies to the stack, frame or arg pointers. */
13798 if (regno == STACK_POINTER_REGNUM
13799 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13800 && regno == HARD_FRAME_POINTER_REGNUM)
13801 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13802 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13803 || regno == FRAME_POINTER_REGNUM)
13804 return;
13805
13806 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13807 }
13808 return;
13809
13810 case SET:
13811 {
13812 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13813 the address. */
13814 rtx testreg = SET_DEST (x);
13815
13816 while (GET_CODE (testreg) == SUBREG
13817 || GET_CODE (testreg) == ZERO_EXTRACT
13818 || GET_CODE (testreg) == STRICT_LOW_PART)
13819 testreg = XEXP (testreg, 0);
13820
13821 if (MEM_P (testreg))
13822 mark_used_regs_combine (XEXP (testreg, 0));
13823
13824 mark_used_regs_combine (SET_SRC (x));
13825 }
13826 return;
13827
13828 default:
13829 break;
13830 }
13831
13832 /* Recursively scan the operands of this expression. */
13833
13834 {
13835 const char *fmt = GET_RTX_FORMAT (code);
13836
13837 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13838 {
13839 if (fmt[i] == 'e')
13840 mark_used_regs_combine (XEXP (x, i));
13841 else if (fmt[i] == 'E')
13842 {
13843 int j;
13844
13845 for (j = 0; j < XVECLEN (x, i); j++)
13846 mark_used_regs_combine (XVECEXP (x, i, j));
13847 }
13848 }
13849 }
13850 }
13851 \f
13852 /* Remove register number REGNO from the dead registers list of INSN.
13853
13854 Return the note used to record the death, if there was one. */
13855
13856 rtx
13857 remove_death (unsigned int regno, rtx_insn *insn)
13858 {
13859 rtx note = find_regno_note (insn, REG_DEAD, regno);
13860
13861 if (note)
13862 remove_note (insn, note);
13863
13864 return note;
13865 }
13866
13867 /* For each register (hardware or pseudo) used within expression X, if its
13868 death is in an instruction with luid between FROM_LUID (inclusive) and
13869 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13870 list headed by PNOTES.
13871
13872 That said, don't move registers killed by maybe_kill_insn.
13873
13874 This is done when X is being merged by combination into TO_INSN. These
13875 notes will then be distributed as needed. */
13876
13877 static void
13878 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13879 rtx *pnotes)
13880 {
13881 const char *fmt;
13882 int len, i;
13883 enum rtx_code code = GET_CODE (x);
13884
13885 if (code == REG)
13886 {
13887 unsigned int regno = REGNO (x);
13888 rtx_insn *where_dead = reg_stat[regno].last_death;
13889
13890 /* Don't move the register if it gets killed in between from and to. */
13891 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13892 && ! reg_referenced_p (x, maybe_kill_insn))
13893 return;
13894
13895 if (where_dead
13896 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13897 && DF_INSN_LUID (where_dead) >= from_luid
13898 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13899 {
13900 rtx note = remove_death (regno, where_dead);
13901
13902 /* It is possible for the call above to return 0. This can occur
13903 when last_death points to I2 or I1 that we combined with.
13904 In that case make a new note.
13905
13906 We must also check for the case where X is a hard register
13907 and NOTE is a death note for a range of hard registers
13908 including X. In that case, we must put REG_DEAD notes for
13909 the remaining registers in place of NOTE. */
13910
13911 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13912 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13913 > GET_MODE_SIZE (GET_MODE (x))))
13914 {
13915 unsigned int deadregno = REGNO (XEXP (note, 0));
13916 unsigned int deadend = END_REGNO (XEXP (note, 0));
13917 unsigned int ourend = END_REGNO (x);
13918 unsigned int i;
13919
13920 for (i = deadregno; i < deadend; i++)
13921 if (i < regno || i >= ourend)
13922 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13923 }
13924
13925 /* If we didn't find any note, or if we found a REG_DEAD note that
13926 covers only part of the given reg, and we have a multi-reg hard
13927 register, then to be safe we must check for REG_DEAD notes
13928 for each register other than the first. They could have
13929 their own REG_DEAD notes lying around. */
13930 else if ((note == 0
13931 || (note != 0
13932 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13933 < GET_MODE_SIZE (GET_MODE (x)))))
13934 && regno < FIRST_PSEUDO_REGISTER
13935 && REG_NREGS (x) > 1)
13936 {
13937 unsigned int ourend = END_REGNO (x);
13938 unsigned int i, offset;
13939 rtx oldnotes = 0;
13940
13941 if (note)
13942 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13943 else
13944 offset = 1;
13945
13946 for (i = regno + offset; i < ourend; i++)
13947 move_deaths (regno_reg_rtx[i],
13948 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13949 }
13950
13951 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13952 {
13953 XEXP (note, 1) = *pnotes;
13954 *pnotes = note;
13955 }
13956 else
13957 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13958 }
13959
13960 return;
13961 }
13962
13963 else if (GET_CODE (x) == SET)
13964 {
13965 rtx dest = SET_DEST (x);
13966
13967 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13968
13969 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13970 that accesses one word of a multi-word item, some
13971 piece of everything register in the expression is used by
13972 this insn, so remove any old death. */
13973 /* ??? So why do we test for equality of the sizes? */
13974
13975 if (GET_CODE (dest) == ZERO_EXTRACT
13976 || GET_CODE (dest) == STRICT_LOW_PART
13977 || (GET_CODE (dest) == SUBREG
13978 && (((GET_MODE_SIZE (GET_MODE (dest))
13979 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13980 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13981 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13982 {
13983 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13984 return;
13985 }
13986
13987 /* If this is some other SUBREG, we know it replaces the entire
13988 value, so use that as the destination. */
13989 if (GET_CODE (dest) == SUBREG)
13990 dest = SUBREG_REG (dest);
13991
13992 /* If this is a MEM, adjust deaths of anything used in the address.
13993 For a REG (the only other possibility), the entire value is
13994 being replaced so the old value is not used in this insn. */
13995
13996 if (MEM_P (dest))
13997 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13998 to_insn, pnotes);
13999 return;
14000 }
14001
14002 else if (GET_CODE (x) == CLOBBER)
14003 return;
14004
14005 len = GET_RTX_LENGTH (code);
14006 fmt = GET_RTX_FORMAT (code);
14007
14008 for (i = 0; i < len; i++)
14009 {
14010 if (fmt[i] == 'E')
14011 {
14012 int j;
14013 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14014 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14015 to_insn, pnotes);
14016 }
14017 else if (fmt[i] == 'e')
14018 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14019 }
14020 }
14021 \f
14022 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14023 pattern of an insn. X must be a REG. */
14024
14025 static int
14026 reg_bitfield_target_p (rtx x, rtx body)
14027 {
14028 int i;
14029
14030 if (GET_CODE (body) == SET)
14031 {
14032 rtx dest = SET_DEST (body);
14033 rtx target;
14034 unsigned int regno, tregno, endregno, endtregno;
14035
14036 if (GET_CODE (dest) == ZERO_EXTRACT)
14037 target = XEXP (dest, 0);
14038 else if (GET_CODE (dest) == STRICT_LOW_PART)
14039 target = SUBREG_REG (XEXP (dest, 0));
14040 else
14041 return 0;
14042
14043 if (GET_CODE (target) == SUBREG)
14044 target = SUBREG_REG (target);
14045
14046 if (!REG_P (target))
14047 return 0;
14048
14049 tregno = REGNO (target), regno = REGNO (x);
14050 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14051 return target == x;
14052
14053 endtregno = end_hard_regno (GET_MODE (target), tregno);
14054 endregno = end_hard_regno (GET_MODE (x), regno);
14055
14056 return endregno > tregno && regno < endtregno;
14057 }
14058
14059 else if (GET_CODE (body) == PARALLEL)
14060 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14061 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14062 return 1;
14063
14064 return 0;
14065 }
14066 \f
14067 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14068 as appropriate. I3 and I2 are the insns resulting from the combination
14069 insns including FROM (I2 may be zero).
14070
14071 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14072 not need REG_DEAD notes because they are being substituted for. This
14073 saves searching in the most common cases.
14074
14075 Each note in the list is either ignored or placed on some insns, depending
14076 on the type of note. */
14077
14078 static void
14079 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14080 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14081 {
14082 rtx note, next_note;
14083 rtx tem_note;
14084 rtx_insn *tem_insn;
14085
14086 for (note = notes; note; note = next_note)
14087 {
14088 rtx_insn *place = 0, *place2 = 0;
14089
14090 next_note = XEXP (note, 1);
14091 switch (REG_NOTE_KIND (note))
14092 {
14093 case REG_BR_PROB:
14094 case REG_BR_PRED:
14095 /* Doesn't matter much where we put this, as long as it's somewhere.
14096 It is preferable to keep these notes on branches, which is most
14097 likely to be i3. */
14098 place = i3;
14099 break;
14100
14101 case REG_NON_LOCAL_GOTO:
14102 if (JUMP_P (i3))
14103 place = i3;
14104 else
14105 {
14106 gcc_assert (i2 && JUMP_P (i2));
14107 place = i2;
14108 }
14109 break;
14110
14111 case REG_EH_REGION:
14112 /* These notes must remain with the call or trapping instruction. */
14113 if (CALL_P (i3))
14114 place = i3;
14115 else if (i2 && CALL_P (i2))
14116 place = i2;
14117 else
14118 {
14119 gcc_assert (cfun->can_throw_non_call_exceptions);
14120 if (may_trap_p (i3))
14121 place = i3;
14122 else if (i2 && may_trap_p (i2))
14123 place = i2;
14124 /* ??? Otherwise assume we've combined things such that we
14125 can now prove that the instructions can't trap. Drop the
14126 note in this case. */
14127 }
14128 break;
14129
14130 case REG_ARGS_SIZE:
14131 /* ??? How to distribute between i3-i1. Assume i3 contains the
14132 entire adjustment. Assert i3 contains at least some adjust. */
14133 if (!noop_move_p (i3))
14134 {
14135 int old_size, args_size = INTVAL (XEXP (note, 0));
14136 /* fixup_args_size_notes looks at REG_NORETURN note,
14137 so ensure the note is placed there first. */
14138 if (CALL_P (i3))
14139 {
14140 rtx *np;
14141 for (np = &next_note; *np; np = &XEXP (*np, 1))
14142 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14143 {
14144 rtx n = *np;
14145 *np = XEXP (n, 1);
14146 XEXP (n, 1) = REG_NOTES (i3);
14147 REG_NOTES (i3) = n;
14148 break;
14149 }
14150 }
14151 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14152 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14153 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14154 gcc_assert (old_size != args_size
14155 || (CALL_P (i3)
14156 && !ACCUMULATE_OUTGOING_ARGS
14157 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14158 }
14159 break;
14160
14161 case REG_NORETURN:
14162 case REG_SETJMP:
14163 case REG_TM:
14164 case REG_CALL_DECL:
14165 /* These notes must remain with the call. It should not be
14166 possible for both I2 and I3 to be a call. */
14167 if (CALL_P (i3))
14168 place = i3;
14169 else
14170 {
14171 gcc_assert (i2 && CALL_P (i2));
14172 place = i2;
14173 }
14174 break;
14175
14176 case REG_UNUSED:
14177 /* Any clobbers for i3 may still exist, and so we must process
14178 REG_UNUSED notes from that insn.
14179
14180 Any clobbers from i2 or i1 can only exist if they were added by
14181 recog_for_combine. In that case, recog_for_combine created the
14182 necessary REG_UNUSED notes. Trying to keep any original
14183 REG_UNUSED notes from these insns can cause incorrect output
14184 if it is for the same register as the original i3 dest.
14185 In that case, we will notice that the register is set in i3,
14186 and then add a REG_UNUSED note for the destination of i3, which
14187 is wrong. However, it is possible to have REG_UNUSED notes from
14188 i2 or i1 for register which were both used and clobbered, so
14189 we keep notes from i2 or i1 if they will turn into REG_DEAD
14190 notes. */
14191
14192 /* If this register is set or clobbered in I3, put the note there
14193 unless there is one already. */
14194 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14195 {
14196 if (from_insn != i3)
14197 break;
14198
14199 if (! (REG_P (XEXP (note, 0))
14200 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14201 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14202 place = i3;
14203 }
14204 /* Otherwise, if this register is used by I3, then this register
14205 now dies here, so we must put a REG_DEAD note here unless there
14206 is one already. */
14207 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14208 && ! (REG_P (XEXP (note, 0))
14209 ? find_regno_note (i3, REG_DEAD,
14210 REGNO (XEXP (note, 0)))
14211 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14212 {
14213 PUT_REG_NOTE_KIND (note, REG_DEAD);
14214 place = i3;
14215 }
14216 break;
14217
14218 case REG_EQUAL:
14219 case REG_EQUIV:
14220 case REG_NOALIAS:
14221 /* These notes say something about results of an insn. We can
14222 only support them if they used to be on I3 in which case they
14223 remain on I3. Otherwise they are ignored.
14224
14225 If the note refers to an expression that is not a constant, we
14226 must also ignore the note since we cannot tell whether the
14227 equivalence is still true. It might be possible to do
14228 slightly better than this (we only have a problem if I2DEST
14229 or I1DEST is present in the expression), but it doesn't
14230 seem worth the trouble. */
14231
14232 if (from_insn == i3
14233 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14234 place = i3;
14235 break;
14236
14237 case REG_INC:
14238 /* These notes say something about how a register is used. They must
14239 be present on any use of the register in I2 or I3. */
14240 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14241 place = i3;
14242
14243 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14244 {
14245 if (place)
14246 place2 = i2;
14247 else
14248 place = i2;
14249 }
14250 break;
14251
14252 case REG_LABEL_TARGET:
14253 case REG_LABEL_OPERAND:
14254 /* This can show up in several ways -- either directly in the
14255 pattern, or hidden off in the constant pool with (or without?)
14256 a REG_EQUAL note. */
14257 /* ??? Ignore the without-reg_equal-note problem for now. */
14258 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14259 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14260 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14261 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14262 place = i3;
14263
14264 if (i2
14265 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14266 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14267 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14268 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14269 {
14270 if (place)
14271 place2 = i2;
14272 else
14273 place = i2;
14274 }
14275
14276 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14277 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14278 there. */
14279 if (place && JUMP_P (place)
14280 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14281 && (JUMP_LABEL (place) == NULL
14282 || JUMP_LABEL (place) == XEXP (note, 0)))
14283 {
14284 rtx label = JUMP_LABEL (place);
14285
14286 if (!label)
14287 JUMP_LABEL (place) = XEXP (note, 0);
14288 else if (LABEL_P (label))
14289 LABEL_NUSES (label)--;
14290 }
14291
14292 if (place2 && JUMP_P (place2)
14293 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14294 && (JUMP_LABEL (place2) == NULL
14295 || JUMP_LABEL (place2) == XEXP (note, 0)))
14296 {
14297 rtx label = JUMP_LABEL (place2);
14298
14299 if (!label)
14300 JUMP_LABEL (place2) = XEXP (note, 0);
14301 else if (LABEL_P (label))
14302 LABEL_NUSES (label)--;
14303 place2 = 0;
14304 }
14305 break;
14306
14307 case REG_NONNEG:
14308 /* This note says something about the value of a register prior
14309 to the execution of an insn. It is too much trouble to see
14310 if the note is still correct in all situations. It is better
14311 to simply delete it. */
14312 break;
14313
14314 case REG_DEAD:
14315 /* If we replaced the right hand side of FROM_INSN with a
14316 REG_EQUAL note, the original use of the dying register
14317 will not have been combined into I3 and I2. In such cases,
14318 FROM_INSN is guaranteed to be the first of the combined
14319 instructions, so we simply need to search back before
14320 FROM_INSN for the previous use or set of this register,
14321 then alter the notes there appropriately.
14322
14323 If the register is used as an input in I3, it dies there.
14324 Similarly for I2, if it is nonzero and adjacent to I3.
14325
14326 If the register is not used as an input in either I3 or I2
14327 and it is not one of the registers we were supposed to eliminate,
14328 there are two possibilities. We might have a non-adjacent I2
14329 or we might have somehow eliminated an additional register
14330 from a computation. For example, we might have had A & B where
14331 we discover that B will always be zero. In this case we will
14332 eliminate the reference to A.
14333
14334 In both cases, we must search to see if we can find a previous
14335 use of A and put the death note there. */
14336
14337 if (from_insn
14338 && from_insn == i2mod
14339 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14340 tem_insn = from_insn;
14341 else
14342 {
14343 if (from_insn
14344 && CALL_P (from_insn)
14345 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14346 place = from_insn;
14347 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14348 place = i3;
14349 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14350 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14351 place = i2;
14352 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14353 && !(i2mod
14354 && reg_overlap_mentioned_p (XEXP (note, 0),
14355 i2mod_old_rhs)))
14356 || rtx_equal_p (XEXP (note, 0), elim_i1)
14357 || rtx_equal_p (XEXP (note, 0), elim_i0))
14358 break;
14359 tem_insn = i3;
14360 /* If the new I2 sets the same register that is marked dead
14361 in the note, we do not know where to put the note.
14362 Give up. */
14363 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14364 break;
14365 }
14366
14367 if (place == 0)
14368 {
14369 basic_block bb = this_basic_block;
14370
14371 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14372 {
14373 if (!NONDEBUG_INSN_P (tem_insn))
14374 {
14375 if (tem_insn == BB_HEAD (bb))
14376 break;
14377 continue;
14378 }
14379
14380 /* If the register is being set at TEM_INSN, see if that is all
14381 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14382 into a REG_UNUSED note instead. Don't delete sets to
14383 global register vars. */
14384 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14385 || !global_regs[REGNO (XEXP (note, 0))])
14386 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14387 {
14388 rtx set = single_set (tem_insn);
14389 rtx inner_dest = 0;
14390 rtx_insn *cc0_setter = NULL;
14391
14392 if (set != 0)
14393 for (inner_dest = SET_DEST (set);
14394 (GET_CODE (inner_dest) == STRICT_LOW_PART
14395 || GET_CODE (inner_dest) == SUBREG
14396 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14397 inner_dest = XEXP (inner_dest, 0))
14398 ;
14399
14400 /* Verify that it was the set, and not a clobber that
14401 modified the register.
14402
14403 CC0 targets must be careful to maintain setter/user
14404 pairs. If we cannot delete the setter due to side
14405 effects, mark the user with an UNUSED note instead
14406 of deleting it. */
14407
14408 if (set != 0 && ! side_effects_p (SET_SRC (set))
14409 && rtx_equal_p (XEXP (note, 0), inner_dest)
14410 && (!HAVE_cc0
14411 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14412 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14413 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14414 {
14415 /* Move the notes and links of TEM_INSN elsewhere.
14416 This might delete other dead insns recursively.
14417 First set the pattern to something that won't use
14418 any register. */
14419 rtx old_notes = REG_NOTES (tem_insn);
14420
14421 PATTERN (tem_insn) = pc_rtx;
14422 REG_NOTES (tem_insn) = NULL;
14423
14424 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14425 NULL_RTX, NULL_RTX, NULL_RTX);
14426 distribute_links (LOG_LINKS (tem_insn));
14427
14428 unsigned int regno = REGNO (XEXP (note, 0));
14429 reg_stat_type *rsp = &reg_stat[regno];
14430 if (rsp->last_set == tem_insn)
14431 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14432
14433 SET_INSN_DELETED (tem_insn);
14434 if (tem_insn == i2)
14435 i2 = NULL;
14436
14437 /* Delete the setter too. */
14438 if (cc0_setter)
14439 {
14440 PATTERN (cc0_setter) = pc_rtx;
14441 old_notes = REG_NOTES (cc0_setter);
14442 REG_NOTES (cc0_setter) = NULL;
14443
14444 distribute_notes (old_notes, cc0_setter,
14445 cc0_setter, NULL,
14446 NULL_RTX, NULL_RTX, NULL_RTX);
14447 distribute_links (LOG_LINKS (cc0_setter));
14448
14449 SET_INSN_DELETED (cc0_setter);
14450 if (cc0_setter == i2)
14451 i2 = NULL;
14452 }
14453 }
14454 else
14455 {
14456 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14457
14458 /* If there isn't already a REG_UNUSED note, put one
14459 here. Do not place a REG_DEAD note, even if
14460 the register is also used here; that would not
14461 match the algorithm used in lifetime analysis
14462 and can cause the consistency check in the
14463 scheduler to fail. */
14464 if (! find_regno_note (tem_insn, REG_UNUSED,
14465 REGNO (XEXP (note, 0))))
14466 place = tem_insn;
14467 break;
14468 }
14469 }
14470 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14471 || (CALL_P (tem_insn)
14472 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14473 {
14474 place = tem_insn;
14475
14476 /* If we are doing a 3->2 combination, and we have a
14477 register which formerly died in i3 and was not used
14478 by i2, which now no longer dies in i3 and is used in
14479 i2 but does not die in i2, and place is between i2
14480 and i3, then we may need to move a link from place to
14481 i2. */
14482 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14483 && from_insn
14484 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14485 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14486 {
14487 struct insn_link *links = LOG_LINKS (place);
14488 LOG_LINKS (place) = NULL;
14489 distribute_links (links);
14490 }
14491 break;
14492 }
14493
14494 if (tem_insn == BB_HEAD (bb))
14495 break;
14496 }
14497
14498 }
14499
14500 /* If the register is set or already dead at PLACE, we needn't do
14501 anything with this note if it is still a REG_DEAD note.
14502 We check here if it is set at all, not if is it totally replaced,
14503 which is what `dead_or_set_p' checks, so also check for it being
14504 set partially. */
14505
14506 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14507 {
14508 unsigned int regno = REGNO (XEXP (note, 0));
14509 reg_stat_type *rsp = &reg_stat[regno];
14510
14511 if (dead_or_set_p (place, XEXP (note, 0))
14512 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14513 {
14514 /* Unless the register previously died in PLACE, clear
14515 last_death. [I no longer understand why this is
14516 being done.] */
14517 if (rsp->last_death != place)
14518 rsp->last_death = 0;
14519 place = 0;
14520 }
14521 else
14522 rsp->last_death = place;
14523
14524 /* If this is a death note for a hard reg that is occupying
14525 multiple registers, ensure that we are still using all
14526 parts of the object. If we find a piece of the object
14527 that is unused, we must arrange for an appropriate REG_DEAD
14528 note to be added for it. However, we can't just emit a USE
14529 and tag the note to it, since the register might actually
14530 be dead; so we recourse, and the recursive call then finds
14531 the previous insn that used this register. */
14532
14533 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14534 {
14535 unsigned int endregno = END_REGNO (XEXP (note, 0));
14536 bool all_used = true;
14537 unsigned int i;
14538
14539 for (i = regno; i < endregno; i++)
14540 if ((! refers_to_regno_p (i, PATTERN (place))
14541 && ! find_regno_fusage (place, USE, i))
14542 || dead_or_set_regno_p (place, i))
14543 {
14544 all_used = false;
14545 break;
14546 }
14547
14548 if (! all_used)
14549 {
14550 /* Put only REG_DEAD notes for pieces that are
14551 not already dead or set. */
14552
14553 for (i = regno; i < endregno;
14554 i += hard_regno_nregs[i][reg_raw_mode[i]])
14555 {
14556 rtx piece = regno_reg_rtx[i];
14557 basic_block bb = this_basic_block;
14558
14559 if (! dead_or_set_p (place, piece)
14560 && ! reg_bitfield_target_p (piece,
14561 PATTERN (place)))
14562 {
14563 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14564 NULL_RTX);
14565
14566 distribute_notes (new_note, place, place,
14567 NULL, NULL_RTX, NULL_RTX,
14568 NULL_RTX);
14569 }
14570 else if (! refers_to_regno_p (i, PATTERN (place))
14571 && ! find_regno_fusage (place, USE, i))
14572 for (tem_insn = PREV_INSN (place); ;
14573 tem_insn = PREV_INSN (tem_insn))
14574 {
14575 if (!NONDEBUG_INSN_P (tem_insn))
14576 {
14577 if (tem_insn == BB_HEAD (bb))
14578 break;
14579 continue;
14580 }
14581 if (dead_or_set_p (tem_insn, piece)
14582 || reg_bitfield_target_p (piece,
14583 PATTERN (tem_insn)))
14584 {
14585 add_reg_note (tem_insn, REG_UNUSED, piece);
14586 break;
14587 }
14588 }
14589 }
14590
14591 place = 0;
14592 }
14593 }
14594 }
14595 break;
14596
14597 default:
14598 /* Any other notes should not be present at this point in the
14599 compilation. */
14600 gcc_unreachable ();
14601 }
14602
14603 if (place)
14604 {
14605 XEXP (note, 1) = REG_NOTES (place);
14606 REG_NOTES (place) = note;
14607 }
14608
14609 if (place2)
14610 add_shallow_copy_of_reg_note (place2, note);
14611 }
14612 }
14613 \f
14614 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14615 I3, I2, and I1 to new locations. This is also called to add a link
14616 pointing at I3 when I3's destination is changed. */
14617
14618 static void
14619 distribute_links (struct insn_link *links)
14620 {
14621 struct insn_link *link, *next_link;
14622
14623 for (link = links; link; link = next_link)
14624 {
14625 rtx_insn *place = 0;
14626 rtx_insn *insn;
14627 rtx set, reg;
14628
14629 next_link = link->next;
14630
14631 /* If the insn that this link points to is a NOTE, ignore it. */
14632 if (NOTE_P (link->insn))
14633 continue;
14634
14635 set = 0;
14636 rtx pat = PATTERN (link->insn);
14637 if (GET_CODE (pat) == SET)
14638 set = pat;
14639 else if (GET_CODE (pat) == PARALLEL)
14640 {
14641 int i;
14642 for (i = 0; i < XVECLEN (pat, 0); i++)
14643 {
14644 set = XVECEXP (pat, 0, i);
14645 if (GET_CODE (set) != SET)
14646 continue;
14647
14648 reg = SET_DEST (set);
14649 while (GET_CODE (reg) == ZERO_EXTRACT
14650 || GET_CODE (reg) == STRICT_LOW_PART
14651 || GET_CODE (reg) == SUBREG)
14652 reg = XEXP (reg, 0);
14653
14654 if (!REG_P (reg))
14655 continue;
14656
14657 if (REGNO (reg) == link->regno)
14658 break;
14659 }
14660 if (i == XVECLEN (pat, 0))
14661 continue;
14662 }
14663 else
14664 continue;
14665
14666 reg = SET_DEST (set);
14667
14668 while (GET_CODE (reg) == ZERO_EXTRACT
14669 || GET_CODE (reg) == STRICT_LOW_PART
14670 || GET_CODE (reg) == SUBREG)
14671 reg = XEXP (reg, 0);
14672
14673 /* A LOG_LINK is defined as being placed on the first insn that uses
14674 a register and points to the insn that sets the register. Start
14675 searching at the next insn after the target of the link and stop
14676 when we reach a set of the register or the end of the basic block.
14677
14678 Note that this correctly handles the link that used to point from
14679 I3 to I2. Also note that not much searching is typically done here
14680 since most links don't point very far away. */
14681
14682 for (insn = NEXT_INSN (link->insn);
14683 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14684 || BB_HEAD (this_basic_block->next_bb) != insn));
14685 insn = NEXT_INSN (insn))
14686 if (DEBUG_INSN_P (insn))
14687 continue;
14688 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14689 {
14690 if (reg_referenced_p (reg, PATTERN (insn)))
14691 place = insn;
14692 break;
14693 }
14694 else if (CALL_P (insn)
14695 && find_reg_fusage (insn, USE, reg))
14696 {
14697 place = insn;
14698 break;
14699 }
14700 else if (INSN_P (insn) && reg_set_p (reg, insn))
14701 break;
14702
14703 /* If we found a place to put the link, place it there unless there
14704 is already a link to the same insn as LINK at that point. */
14705
14706 if (place)
14707 {
14708 struct insn_link *link2;
14709
14710 FOR_EACH_LOG_LINK (link2, place)
14711 if (link2->insn == link->insn && link2->regno == link->regno)
14712 break;
14713
14714 if (link2 == NULL)
14715 {
14716 link->next = LOG_LINKS (place);
14717 LOG_LINKS (place) = link;
14718
14719 /* Set added_links_insn to the earliest insn we added a
14720 link to. */
14721 if (added_links_insn == 0
14722 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14723 added_links_insn = place;
14724 }
14725 }
14726 }
14727 }
14728 \f
14729 /* Check for any register or memory mentioned in EQUIV that is not
14730 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14731 of EXPR where some registers may have been replaced by constants. */
14732
14733 static bool
14734 unmentioned_reg_p (rtx equiv, rtx expr)
14735 {
14736 subrtx_iterator::array_type array;
14737 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14738 {
14739 const_rtx x = *iter;
14740 if ((REG_P (x) || MEM_P (x))
14741 && !reg_mentioned_p (x, expr))
14742 return true;
14743 }
14744 return false;
14745 }
14746 \f
14747 DEBUG_FUNCTION void
14748 dump_combine_stats (FILE *file)
14749 {
14750 fprintf
14751 (file,
14752 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14753 combine_attempts, combine_merges, combine_extras, combine_successes);
14754 }
14755
14756 void
14757 dump_combine_total_stats (FILE *file)
14758 {
14759 fprintf
14760 (file,
14761 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14762 total_attempts, total_merges, total_extras, total_successes);
14763 }
14764 \f
14765 /* Try combining insns through substitution. */
14766 static unsigned int
14767 rest_of_handle_combine (void)
14768 {
14769 int rebuild_jump_labels_after_combine;
14770
14771 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14772 df_note_add_problem ();
14773 df_analyze ();
14774
14775 regstat_init_n_sets_and_refs ();
14776 reg_n_sets_max = max_reg_num ();
14777
14778 rebuild_jump_labels_after_combine
14779 = combine_instructions (get_insns (), max_reg_num ());
14780
14781 /* Combining insns may have turned an indirect jump into a
14782 direct jump. Rebuild the JUMP_LABEL fields of jumping
14783 instructions. */
14784 if (rebuild_jump_labels_after_combine)
14785 {
14786 if (dom_info_available_p (CDI_DOMINATORS))
14787 free_dominance_info (CDI_DOMINATORS);
14788 timevar_push (TV_JUMP);
14789 rebuild_jump_labels (get_insns ());
14790 cleanup_cfg (0);
14791 timevar_pop (TV_JUMP);
14792 }
14793
14794 regstat_free_n_sets_and_refs ();
14795 return 0;
14796 }
14797
14798 namespace {
14799
14800 const pass_data pass_data_combine =
14801 {
14802 RTL_PASS, /* type */
14803 "combine", /* name */
14804 OPTGROUP_NONE, /* optinfo_flags */
14805 TV_COMBINE, /* tv_id */
14806 PROP_cfglayout, /* properties_required */
14807 0, /* properties_provided */
14808 0, /* properties_destroyed */
14809 0, /* todo_flags_start */
14810 TODO_df_finish, /* todo_flags_finish */
14811 };
14812
14813 class pass_combine : public rtl_opt_pass
14814 {
14815 public:
14816 pass_combine (gcc::context *ctxt)
14817 : rtl_opt_pass (pass_data_combine, ctxt)
14818 {}
14819
14820 /* opt_pass methods: */
14821 virtual bool gate (function *) { return (optimize > 0); }
14822 virtual unsigned int execute (function *)
14823 {
14824 return rest_of_handle_combine ();
14825 }
14826
14827 }; // class pass_combine
14828
14829 } // anon namespace
14830
14831 rtl_opt_pass *
14832 make_pass_combine (gcc::context *ctxt)
14833 {
14834 return new pass_combine (ctxt);
14835 }