explow.c (trunc_int_for_mode): Use GET_MODE_PRECISION instead of GET_MODE_BITSIZE...
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "diagnostic-core.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
101 #include "output.h"
102 #include "params.h"
103 #include "timevar.h"
104 #include "tree-pass.h"
105 #include "df.h"
106 #include "cgraph.h"
107 #include "obstack.h"
108
109 /* Number of attempts to combine instructions in this function. */
110
111 static int combine_attempts;
112
113 /* Number of attempts that got as far as substitution in this function. */
114
115 static int combine_merges;
116
117 /* Number of instructions combined with added SETs in this function. */
118
119 static int combine_extras;
120
121 /* Number of instructions combined in this function. */
122
123 static int combine_successes;
124
125 /* Totals over entire compilation. */
126
127 static int total_attempts, total_merges, total_extras, total_successes;
128
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
135
136 static rtx i2mod;
137
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139
140 static rtx i2mod_old_rhs;
141
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143
144 static rtx i2mod_new_rhs;
145 \f
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
152
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
158
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
161
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
165
166 Therefore, we maintain the following fields:
167
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
176
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
181
182 (The next two parameters are out of date).
183
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
195
196 /* Record last value assigned to (hard or pseudo) register n. */
197
198 rtx last_set_value;
199
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
202
203 int last_set_table_tick;
204
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
207
208 int last_set_label;
209
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
214
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
222
223 char last_set_invalid;
224
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
229
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
234
235 If an entry is zero, it means that we don't know anything special. */
236
237 unsigned char sign_bit_copies;
238
239 unsigned HOST_WIDE_INT nonzero_bits;
240
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
244
245 int truncation_label;
246
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
251
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
254
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
257
258 static VEC(reg_stat_type,heap) *reg_stat;
259
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
262
263 static int mem_last_set;
264
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
267
268 static int last_call_luid;
269
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
275
276 static rtx subst_insn;
277
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
284
285 static int subst_low_luid;
286
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
289
290 static HARD_REG_SET newpat_used_regs;
291
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
295
296 static rtx added_links_insn;
297
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
301
302 \f
303 /* Length of the currently allocated uid_insn_cost array. */
304
305 static int max_uid_known;
306
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
309
310 static int *uid_insn_cost;
311
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as struct insn_link pointers. */
314
315 struct insn_link {
316 rtx insn;
317 struct insn_link *next;
318 };
319
320 static struct insn_link **uid_log_links;
321
322 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
323 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
324
325 #define FOR_EACH_LOG_LINK(L, INSN) \
326 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
327
328 /* Links for LOG_LINKS are allocated from this obstack. */
329
330 static struct obstack insn_link_obstack;
331
332 /* Allocate a link. */
333
334 static inline struct insn_link *
335 alloc_insn_link (rtx insn, struct insn_link *next)
336 {
337 struct insn_link *l
338 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
339 sizeof (struct insn_link));
340 l->insn = insn;
341 l->next = next;
342 return l;
343 }
344
345 /* Incremented for each basic block. */
346
347 static int label_tick;
348
349 /* Reset to label_tick for each extended basic block in scanning order. */
350
351 static int label_tick_ebb_start;
352
353 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
354 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
355
356 static enum machine_mode nonzero_bits_mode;
357
358 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
359 be safely used. It is zero while computing them and after combine has
360 completed. This former test prevents propagating values based on
361 previously set values, which can be incorrect if a variable is modified
362 in a loop. */
363
364 static int nonzero_sign_valid;
365
366 \f
367 /* Record one modification to rtl structure
368 to be undone by storing old_contents into *where. */
369
370 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE };
371
372 struct undo
373 {
374 struct undo *next;
375 enum undo_kind kind;
376 union { rtx r; int i; enum machine_mode m; } old_contents;
377 union { rtx *r; int *i; } where;
378 };
379
380 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
381 num_undo says how many are currently recorded.
382
383 other_insn is nonzero if we have modified some other insn in the process
384 of working on subst_insn. It must be verified too. */
385
386 struct undobuf
387 {
388 struct undo *undos;
389 struct undo *frees;
390 rtx other_insn;
391 };
392
393 static struct undobuf undobuf;
394
395 /* Number of times the pseudo being substituted for
396 was found and replaced. */
397
398 static int n_occurrences;
399
400 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
401 enum machine_mode,
402 unsigned HOST_WIDE_INT,
403 unsigned HOST_WIDE_INT *);
404 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
405 enum machine_mode,
406 unsigned int, unsigned int *);
407 static void do_SUBST (rtx *, rtx);
408 static void do_SUBST_INT (int *, int);
409 static void init_reg_last (void);
410 static void setup_incoming_promotions (rtx);
411 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
412 static int cant_combine_insn_p (rtx);
413 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
414 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
415 static int contains_muldiv (rtx);
416 static rtx try_combine (rtx, rtx, rtx, rtx, int *, rtx);
417 static void undo_all (void);
418 static void undo_commit (void);
419 static rtx *find_split_point (rtx *, rtx, bool);
420 static rtx subst (rtx, rtx, rtx, int, int, int);
421 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
422 static rtx simplify_if_then_else (rtx);
423 static rtx simplify_set (rtx);
424 static rtx simplify_logical (rtx);
425 static rtx expand_compound_operation (rtx);
426 static const_rtx expand_field_assignment (const_rtx);
427 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
428 rtx, unsigned HOST_WIDE_INT, int, int, int);
429 static rtx extract_left_shift (rtx, int);
430 static rtx make_compound_operation (rtx, enum rtx_code);
431 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
432 unsigned HOST_WIDE_INT *);
433 static rtx canon_reg_for_combine (rtx, rtx);
434 static rtx force_to_mode (rtx, enum machine_mode,
435 unsigned HOST_WIDE_INT, int);
436 static rtx if_then_else_cond (rtx, rtx *, rtx *);
437 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
438 static int rtx_equal_for_field_assignment_p (rtx, rtx);
439 static rtx make_field_assignment (rtx);
440 static rtx apply_distributive_law (rtx);
441 static rtx distribute_and_simplify_rtx (rtx, int);
442 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
443 unsigned HOST_WIDE_INT);
444 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
445 unsigned HOST_WIDE_INT);
446 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
447 HOST_WIDE_INT, enum machine_mode, int *);
448 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
449 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
450 int);
451 static int recog_for_combine (rtx *, rtx, rtx *);
452 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
453 static enum rtx_code simplify_compare_const (enum rtx_code, rtx, rtx *);
454 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
455 static void update_table_tick (rtx);
456 static void record_value_for_reg (rtx, rtx, rtx);
457 static void check_promoted_subreg (rtx, rtx);
458 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
459 static void record_dead_and_set_regs (rtx);
460 static int get_last_value_validate (rtx *, rtx, int, int);
461 static rtx get_last_value (const_rtx);
462 static int use_crosses_set_p (const_rtx, int);
463 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
464 static int reg_dead_at_p (rtx, rtx);
465 static void move_deaths (rtx, rtx, int, rtx, rtx *);
466 static int reg_bitfield_target_p (rtx, rtx);
467 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
468 static void distribute_links (struct insn_link *);
469 static void mark_used_regs_combine (rtx);
470 static void record_promoted_value (rtx, rtx);
471 static int unmentioned_reg_p_1 (rtx *, void *);
472 static bool unmentioned_reg_p (rtx, rtx);
473 static int record_truncated_value (rtx *, void *);
474 static void record_truncated_values (rtx *, void *);
475 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
476 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
477 \f
478
479 /* It is not safe to use ordinary gen_lowpart in combine.
480 See comments in gen_lowpart_for_combine. */
481 #undef RTL_HOOKS_GEN_LOWPART
482 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
483
484 /* Our implementation of gen_lowpart never emits a new pseudo. */
485 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
486 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
487
488 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
489 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
490
491 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
492 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
493
494 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
495 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
496
497 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
498
499 \f
500 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
501 PATTERN can not be split. Otherwise, it returns an insn sequence.
502 This is a wrapper around split_insns which ensures that the
503 reg_stat vector is made larger if the splitter creates a new
504 register. */
505
506 static rtx
507 combine_split_insns (rtx pattern, rtx insn)
508 {
509 rtx ret;
510 unsigned int nregs;
511
512 ret = split_insns (pattern, insn);
513 nregs = max_reg_num ();
514 if (nregs > VEC_length (reg_stat_type, reg_stat))
515 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
516 return ret;
517 }
518
519 /* This is used by find_single_use to locate an rtx in LOC that
520 contains exactly one use of DEST, which is typically either a REG
521 or CC0. It returns a pointer to the innermost rtx expression
522 containing DEST. Appearances of DEST that are being used to
523 totally replace it are not counted. */
524
525 static rtx *
526 find_single_use_1 (rtx dest, rtx *loc)
527 {
528 rtx x = *loc;
529 enum rtx_code code = GET_CODE (x);
530 rtx *result = NULL;
531 rtx *this_result;
532 int i;
533 const char *fmt;
534
535 switch (code)
536 {
537 case CONST_INT:
538 case CONST:
539 case LABEL_REF:
540 case SYMBOL_REF:
541 case CONST_DOUBLE:
542 case CONST_VECTOR:
543 case CLOBBER:
544 return 0;
545
546 case SET:
547 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
548 of a REG that occupies all of the REG, the insn uses DEST if
549 it is mentioned in the destination or the source. Otherwise, we
550 need just check the source. */
551 if (GET_CODE (SET_DEST (x)) != CC0
552 && GET_CODE (SET_DEST (x)) != PC
553 && !REG_P (SET_DEST (x))
554 && ! (GET_CODE (SET_DEST (x)) == SUBREG
555 && REG_P (SUBREG_REG (SET_DEST (x)))
556 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
557 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
558 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
559 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
560 break;
561
562 return find_single_use_1 (dest, &SET_SRC (x));
563
564 case MEM:
565 case SUBREG:
566 return find_single_use_1 (dest, &XEXP (x, 0));
567
568 default:
569 break;
570 }
571
572 /* If it wasn't one of the common cases above, check each expression and
573 vector of this code. Look for a unique usage of DEST. */
574
575 fmt = GET_RTX_FORMAT (code);
576 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
577 {
578 if (fmt[i] == 'e')
579 {
580 if (dest == XEXP (x, i)
581 || (REG_P (dest) && REG_P (XEXP (x, i))
582 && REGNO (dest) == REGNO (XEXP (x, i))))
583 this_result = loc;
584 else
585 this_result = find_single_use_1 (dest, &XEXP (x, i));
586
587 if (result == NULL)
588 result = this_result;
589 else if (this_result)
590 /* Duplicate usage. */
591 return NULL;
592 }
593 else if (fmt[i] == 'E')
594 {
595 int j;
596
597 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
598 {
599 if (XVECEXP (x, i, j) == dest
600 || (REG_P (dest)
601 && REG_P (XVECEXP (x, i, j))
602 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
603 this_result = loc;
604 else
605 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
606
607 if (result == NULL)
608 result = this_result;
609 else if (this_result)
610 return NULL;
611 }
612 }
613 }
614
615 return result;
616 }
617
618
619 /* See if DEST, produced in INSN, is used only a single time in the
620 sequel. If so, return a pointer to the innermost rtx expression in which
621 it is used.
622
623 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
624
625 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
626 care about REG_DEAD notes or LOG_LINKS.
627
628 Otherwise, we find the single use by finding an insn that has a
629 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
630 only referenced once in that insn, we know that it must be the first
631 and last insn referencing DEST. */
632
633 static rtx *
634 find_single_use (rtx dest, rtx insn, rtx *ploc)
635 {
636 basic_block bb;
637 rtx next;
638 rtx *result;
639 struct insn_link *link;
640
641 #ifdef HAVE_cc0
642 if (dest == cc0_rtx)
643 {
644 next = NEXT_INSN (insn);
645 if (next == 0
646 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
647 return 0;
648
649 result = find_single_use_1 (dest, &PATTERN (next));
650 if (result && ploc)
651 *ploc = next;
652 return result;
653 }
654 #endif
655
656 if (!REG_P (dest))
657 return 0;
658
659 bb = BLOCK_FOR_INSN (insn);
660 for (next = NEXT_INSN (insn);
661 next && BLOCK_FOR_INSN (next) == bb;
662 next = NEXT_INSN (next))
663 if (INSN_P (next) && dead_or_set_p (next, dest))
664 {
665 FOR_EACH_LOG_LINK (link, next)
666 if (link->insn == insn)
667 break;
668
669 if (link)
670 {
671 result = find_single_use_1 (dest, &PATTERN (next));
672 if (ploc)
673 *ploc = next;
674 return result;
675 }
676 }
677
678 return 0;
679 }
680 \f
681 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
682 insn. The substitution can be undone by undo_all. If INTO is already
683 set to NEWVAL, do not record this change. Because computing NEWVAL might
684 also call SUBST, we have to compute it before we put anything into
685 the undo table. */
686
687 static void
688 do_SUBST (rtx *into, rtx newval)
689 {
690 struct undo *buf;
691 rtx oldval = *into;
692
693 if (oldval == newval)
694 return;
695
696 /* We'd like to catch as many invalid transformations here as
697 possible. Unfortunately, there are way too many mode changes
698 that are perfectly valid, so we'd waste too much effort for
699 little gain doing the checks here. Focus on catching invalid
700 transformations involving integer constants. */
701 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
702 && CONST_INT_P (newval))
703 {
704 /* Sanity check that we're replacing oldval with a CONST_INT
705 that is a valid sign-extension for the original mode. */
706 gcc_assert (INTVAL (newval)
707 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
708
709 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
710 CONST_INT is not valid, because after the replacement, the
711 original mode would be gone. Unfortunately, we can't tell
712 when do_SUBST is called to replace the operand thereof, so we
713 perform this test on oldval instead, checking whether an
714 invalid replacement took place before we got here. */
715 gcc_assert (!(GET_CODE (oldval) == SUBREG
716 && CONST_INT_P (SUBREG_REG (oldval))));
717 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
718 && CONST_INT_P (XEXP (oldval, 0))));
719 }
720
721 if (undobuf.frees)
722 buf = undobuf.frees, undobuf.frees = buf->next;
723 else
724 buf = XNEW (struct undo);
725
726 buf->kind = UNDO_RTX;
727 buf->where.r = into;
728 buf->old_contents.r = oldval;
729 *into = newval;
730
731 buf->next = undobuf.undos, undobuf.undos = buf;
732 }
733
734 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
735
736 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
737 for the value of a HOST_WIDE_INT value (including CONST_INT) is
738 not safe. */
739
740 static void
741 do_SUBST_INT (int *into, int newval)
742 {
743 struct undo *buf;
744 int oldval = *into;
745
746 if (oldval == newval)
747 return;
748
749 if (undobuf.frees)
750 buf = undobuf.frees, undobuf.frees = buf->next;
751 else
752 buf = XNEW (struct undo);
753
754 buf->kind = UNDO_INT;
755 buf->where.i = into;
756 buf->old_contents.i = oldval;
757 *into = newval;
758
759 buf->next = undobuf.undos, undobuf.undos = buf;
760 }
761
762 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
763
764 /* Similar to SUBST, but just substitute the mode. This is used when
765 changing the mode of a pseudo-register, so that any other
766 references to the entry in the regno_reg_rtx array will change as
767 well. */
768
769 static void
770 do_SUBST_MODE (rtx *into, enum machine_mode newval)
771 {
772 struct undo *buf;
773 enum machine_mode oldval = GET_MODE (*into);
774
775 if (oldval == newval)
776 return;
777
778 if (undobuf.frees)
779 buf = undobuf.frees, undobuf.frees = buf->next;
780 else
781 buf = XNEW (struct undo);
782
783 buf->kind = UNDO_MODE;
784 buf->where.r = into;
785 buf->old_contents.m = oldval;
786 adjust_reg_mode (*into, newval);
787
788 buf->next = undobuf.undos, undobuf.undos = buf;
789 }
790
791 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
792 \f
793 /* Subroutine of try_combine. Determine whether the replacement patterns
794 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
795 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
796 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
797 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
798 of all the instructions can be estimated and the replacements are more
799 expensive than the original sequence. */
800
801 static bool
802 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
803 rtx newi2pat, rtx newotherpat)
804 {
805 int i0_cost, i1_cost, i2_cost, i3_cost;
806 int new_i2_cost, new_i3_cost;
807 int old_cost, new_cost;
808
809 /* Lookup the original insn_rtx_costs. */
810 i2_cost = INSN_COST (i2);
811 i3_cost = INSN_COST (i3);
812
813 if (i1)
814 {
815 i1_cost = INSN_COST (i1);
816 if (i0)
817 {
818 i0_cost = INSN_COST (i0);
819 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
820 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
821 }
822 else
823 {
824 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
825 ? i1_cost + i2_cost + i3_cost : 0);
826 i0_cost = 0;
827 }
828 }
829 else
830 {
831 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
832 i1_cost = i0_cost = 0;
833 }
834
835 /* Calculate the replacement insn_rtx_costs. */
836 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
837 if (newi2pat)
838 {
839 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
840 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
841 ? new_i2_cost + new_i3_cost : 0;
842 }
843 else
844 {
845 new_cost = new_i3_cost;
846 new_i2_cost = 0;
847 }
848
849 if (undobuf.other_insn)
850 {
851 int old_other_cost, new_other_cost;
852
853 old_other_cost = INSN_COST (undobuf.other_insn);
854 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
855 if (old_other_cost > 0 && new_other_cost > 0)
856 {
857 old_cost += old_other_cost;
858 new_cost += new_other_cost;
859 }
860 else
861 old_cost = 0;
862 }
863
864 /* Disallow this combination if both new_cost and old_cost are greater than
865 zero, and new_cost is greater than old cost. */
866 if (old_cost > 0 && new_cost > old_cost)
867 {
868 if (dump_file)
869 {
870 if (i0)
871 {
872 fprintf (dump_file,
873 "rejecting combination of insns %d, %d, %d and %d\n",
874 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
875 INSN_UID (i3));
876 fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
877 i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
878 }
879 else if (i1)
880 {
881 fprintf (dump_file,
882 "rejecting combination of insns %d, %d and %d\n",
883 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
884 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
885 i1_cost, i2_cost, i3_cost, old_cost);
886 }
887 else
888 {
889 fprintf (dump_file,
890 "rejecting combination of insns %d and %d\n",
891 INSN_UID (i2), INSN_UID (i3));
892 fprintf (dump_file, "original costs %d + %d = %d\n",
893 i2_cost, i3_cost, old_cost);
894 }
895
896 if (newi2pat)
897 {
898 fprintf (dump_file, "replacement costs %d + %d = %d\n",
899 new_i2_cost, new_i3_cost, new_cost);
900 }
901 else
902 fprintf (dump_file, "replacement cost %d\n", new_cost);
903 }
904
905 return false;
906 }
907
908 /* Update the uid_insn_cost array with the replacement costs. */
909 INSN_COST (i2) = new_i2_cost;
910 INSN_COST (i3) = new_i3_cost;
911 if (i1)
912 {
913 INSN_COST (i1) = 0;
914 if (i0)
915 INSN_COST (i0) = 0;
916 }
917
918 return true;
919 }
920
921
922 /* Delete any insns that copy a register to itself. */
923
924 static void
925 delete_noop_moves (void)
926 {
927 rtx insn, next;
928 basic_block bb;
929
930 FOR_EACH_BB (bb)
931 {
932 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
933 {
934 next = NEXT_INSN (insn);
935 if (INSN_P (insn) && noop_move_p (insn))
936 {
937 if (dump_file)
938 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
939
940 delete_insn_and_edges (insn);
941 }
942 }
943 }
944 }
945
946 \f
947 /* Fill in log links field for all insns. */
948
949 static void
950 create_log_links (void)
951 {
952 basic_block bb;
953 rtx *next_use, insn;
954 df_ref *def_vec, *use_vec;
955
956 next_use = XCNEWVEC (rtx, max_reg_num ());
957
958 /* Pass through each block from the end, recording the uses of each
959 register and establishing log links when def is encountered.
960 Note that we do not clear next_use array in order to save time,
961 so we have to test whether the use is in the same basic block as def.
962
963 There are a few cases below when we do not consider the definition or
964 usage -- these are taken from original flow.c did. Don't ask me why it is
965 done this way; I don't know and if it works, I don't want to know. */
966
967 FOR_EACH_BB (bb)
968 {
969 FOR_BB_INSNS_REVERSE (bb, insn)
970 {
971 if (!NONDEBUG_INSN_P (insn))
972 continue;
973
974 /* Log links are created only once. */
975 gcc_assert (!LOG_LINKS (insn));
976
977 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
978 {
979 df_ref def = *def_vec;
980 int regno = DF_REF_REGNO (def);
981 rtx use_insn;
982
983 if (!next_use[regno])
984 continue;
985
986 /* Do not consider if it is pre/post modification in MEM. */
987 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
988 continue;
989
990 /* Do not make the log link for frame pointer. */
991 if ((regno == FRAME_POINTER_REGNUM
992 && (! reload_completed || frame_pointer_needed))
993 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
994 || (regno == HARD_FRAME_POINTER_REGNUM
995 && (! reload_completed || frame_pointer_needed))
996 #endif
997 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
998 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
999 #endif
1000 )
1001 continue;
1002
1003 use_insn = next_use[regno];
1004 if (BLOCK_FOR_INSN (use_insn) == bb)
1005 {
1006 /* flow.c claimed:
1007
1008 We don't build a LOG_LINK for hard registers contained
1009 in ASM_OPERANDs. If these registers get replaced,
1010 we might wind up changing the semantics of the insn,
1011 even if reload can make what appear to be valid
1012 assignments later. */
1013 if (regno >= FIRST_PSEUDO_REGISTER
1014 || asm_noperands (PATTERN (use_insn)) < 0)
1015 {
1016 /* Don't add duplicate links between instructions. */
1017 struct insn_link *links;
1018 FOR_EACH_LOG_LINK (links, use_insn)
1019 if (insn == links->insn)
1020 break;
1021
1022 if (!links)
1023 LOG_LINKS (use_insn)
1024 = alloc_insn_link (insn, LOG_LINKS (use_insn));
1025 }
1026 }
1027 next_use[regno] = NULL_RTX;
1028 }
1029
1030 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1031 {
1032 df_ref use = *use_vec;
1033 int regno = DF_REF_REGNO (use);
1034
1035 /* Do not consider the usage of the stack pointer
1036 by function call. */
1037 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1038 continue;
1039
1040 next_use[regno] = insn;
1041 }
1042 }
1043 }
1044
1045 free (next_use);
1046 }
1047
1048 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1049 true if we found a LOG_LINK that proves that A feeds B. This only works
1050 if there are no instructions between A and B which could have a link
1051 depending on A, since in that case we would not record a link for B.
1052 We also check the implicit dependency created by a cc0 setter/user
1053 pair. */
1054
1055 static bool
1056 insn_a_feeds_b (rtx a, rtx b)
1057 {
1058 struct insn_link *links;
1059 FOR_EACH_LOG_LINK (links, b)
1060 if (links->insn == a)
1061 return true;
1062 #ifdef HAVE_cc0
1063 if (sets_cc0_p (a))
1064 return true;
1065 #endif
1066 return false;
1067 }
1068 \f
1069 /* Main entry point for combiner. F is the first insn of the function.
1070 NREGS is the first unused pseudo-reg number.
1071
1072 Return nonzero if the combiner has turned an indirect jump
1073 instruction into a direct jump. */
1074 static int
1075 combine_instructions (rtx f, unsigned int nregs)
1076 {
1077 rtx insn, next;
1078 #ifdef HAVE_cc0
1079 rtx prev;
1080 #endif
1081 struct insn_link *links, *nextlinks;
1082 rtx first;
1083 basic_block last_bb;
1084
1085 int new_direct_jump_p = 0;
1086
1087 for (first = f; first && !INSN_P (first); )
1088 first = NEXT_INSN (first);
1089 if (!first)
1090 return 0;
1091
1092 combine_attempts = 0;
1093 combine_merges = 0;
1094 combine_extras = 0;
1095 combine_successes = 0;
1096
1097 rtl_hooks = combine_rtl_hooks;
1098
1099 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1100
1101 init_recog_no_volatile ();
1102
1103 /* Allocate array for insn info. */
1104 max_uid_known = get_max_uid ();
1105 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1106 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1107 gcc_obstack_init (&insn_link_obstack);
1108
1109 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1110
1111 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1112 problems when, for example, we have j <<= 1 in a loop. */
1113
1114 nonzero_sign_valid = 0;
1115 label_tick = label_tick_ebb_start = 1;
1116
1117 /* Scan all SETs and see if we can deduce anything about what
1118 bits are known to be zero for some registers and how many copies
1119 of the sign bit are known to exist for those registers.
1120
1121 Also set any known values so that we can use it while searching
1122 for what bits are known to be set. */
1123
1124 setup_incoming_promotions (first);
1125 /* Allow the entry block and the first block to fall into the same EBB.
1126 Conceptually the incoming promotions are assigned to the entry block. */
1127 last_bb = ENTRY_BLOCK_PTR;
1128
1129 create_log_links ();
1130 FOR_EACH_BB (this_basic_block)
1131 {
1132 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1133 last_call_luid = 0;
1134 mem_last_set = -1;
1135
1136 label_tick++;
1137 if (!single_pred_p (this_basic_block)
1138 || single_pred (this_basic_block) != last_bb)
1139 label_tick_ebb_start = label_tick;
1140 last_bb = this_basic_block;
1141
1142 FOR_BB_INSNS (this_basic_block, insn)
1143 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1144 {
1145 #ifdef AUTO_INC_DEC
1146 rtx links;
1147 #endif
1148
1149 subst_low_luid = DF_INSN_LUID (insn);
1150 subst_insn = insn;
1151
1152 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1153 insn);
1154 record_dead_and_set_regs (insn);
1155
1156 #ifdef AUTO_INC_DEC
1157 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1158 if (REG_NOTE_KIND (links) == REG_INC)
1159 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1160 insn);
1161 #endif
1162
1163 /* Record the current insn_rtx_cost of this instruction. */
1164 if (NONJUMP_INSN_P (insn))
1165 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1166 optimize_this_for_speed_p);
1167 if (dump_file)
1168 fprintf(dump_file, "insn_cost %d: %d\n",
1169 INSN_UID (insn), INSN_COST (insn));
1170 }
1171 }
1172
1173 nonzero_sign_valid = 1;
1174
1175 /* Now scan all the insns in forward order. */
1176 label_tick = label_tick_ebb_start = 1;
1177 init_reg_last ();
1178 setup_incoming_promotions (first);
1179 last_bb = ENTRY_BLOCK_PTR;
1180
1181 FOR_EACH_BB (this_basic_block)
1182 {
1183 rtx last_combined_insn = NULL_RTX;
1184 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1185 last_call_luid = 0;
1186 mem_last_set = -1;
1187
1188 label_tick++;
1189 if (!single_pred_p (this_basic_block)
1190 || single_pred (this_basic_block) != last_bb)
1191 label_tick_ebb_start = label_tick;
1192 last_bb = this_basic_block;
1193
1194 rtl_profile_for_bb (this_basic_block);
1195 for (insn = BB_HEAD (this_basic_block);
1196 insn != NEXT_INSN (BB_END (this_basic_block));
1197 insn = next ? next : NEXT_INSN (insn))
1198 {
1199 next = 0;
1200 if (NONDEBUG_INSN_P (insn))
1201 {
1202 while (last_combined_insn
1203 && INSN_DELETED_P (last_combined_insn))
1204 last_combined_insn = PREV_INSN (last_combined_insn);
1205 if (last_combined_insn == NULL_RTX
1206 || BARRIER_P (last_combined_insn)
1207 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1208 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1209 last_combined_insn = insn;
1210
1211 /* See if we know about function return values before this
1212 insn based upon SUBREG flags. */
1213 check_promoted_subreg (insn, PATTERN (insn));
1214
1215 /* See if we can find hardregs and subreg of pseudos in
1216 narrower modes. This could help turning TRUNCATEs
1217 into SUBREGs. */
1218 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1219
1220 /* Try this insn with each insn it links back to. */
1221
1222 FOR_EACH_LOG_LINK (links, insn)
1223 if ((next = try_combine (insn, links->insn, NULL_RTX,
1224 NULL_RTX, &new_direct_jump_p,
1225 last_combined_insn)) != 0)
1226 goto retry;
1227
1228 /* Try each sequence of three linked insns ending with this one. */
1229
1230 FOR_EACH_LOG_LINK (links, insn)
1231 {
1232 rtx link = links->insn;
1233
1234 /* If the linked insn has been replaced by a note, then there
1235 is no point in pursuing this chain any further. */
1236 if (NOTE_P (link))
1237 continue;
1238
1239 FOR_EACH_LOG_LINK (nextlinks, link)
1240 if ((next = try_combine (insn, link, nextlinks->insn,
1241 NULL_RTX, &new_direct_jump_p,
1242 last_combined_insn)) != 0)
1243 goto retry;
1244 }
1245
1246 #ifdef HAVE_cc0
1247 /* Try to combine a jump insn that uses CC0
1248 with a preceding insn that sets CC0, and maybe with its
1249 logical predecessor as well.
1250 This is how we make decrement-and-branch insns.
1251 We need this special code because data flow connections
1252 via CC0 do not get entered in LOG_LINKS. */
1253
1254 if (JUMP_P (insn)
1255 && (prev = prev_nonnote_insn (insn)) != 0
1256 && NONJUMP_INSN_P (prev)
1257 && sets_cc0_p (PATTERN (prev)))
1258 {
1259 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1260 &new_direct_jump_p,
1261 last_combined_insn)) != 0)
1262 goto retry;
1263
1264 FOR_EACH_LOG_LINK (nextlinks, prev)
1265 if ((next = try_combine (insn, prev, nextlinks->insn,
1266 NULL_RTX, &new_direct_jump_p,
1267 last_combined_insn)) != 0)
1268 goto retry;
1269 }
1270
1271 /* Do the same for an insn that explicitly references CC0. */
1272 if (NONJUMP_INSN_P (insn)
1273 && (prev = prev_nonnote_insn (insn)) != 0
1274 && NONJUMP_INSN_P (prev)
1275 && sets_cc0_p (PATTERN (prev))
1276 && GET_CODE (PATTERN (insn)) == SET
1277 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1278 {
1279 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1280 &new_direct_jump_p,
1281 last_combined_insn)) != 0)
1282 goto retry;
1283
1284 FOR_EACH_LOG_LINK (nextlinks, prev)
1285 if ((next = try_combine (insn, prev, nextlinks->insn,
1286 NULL_RTX, &new_direct_jump_p,
1287 last_combined_insn)) != 0)
1288 goto retry;
1289 }
1290
1291 /* Finally, see if any of the insns that this insn links to
1292 explicitly references CC0. If so, try this insn, that insn,
1293 and its predecessor if it sets CC0. */
1294 FOR_EACH_LOG_LINK (links, insn)
1295 if (NONJUMP_INSN_P (links->insn)
1296 && GET_CODE (PATTERN (links->insn)) == SET
1297 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1298 && (prev = prev_nonnote_insn (links->insn)) != 0
1299 && NONJUMP_INSN_P (prev)
1300 && sets_cc0_p (PATTERN (prev))
1301 && (next = try_combine (insn, links->insn,
1302 prev, NULL_RTX, &new_direct_jump_p,
1303 last_combined_insn)) != 0)
1304 goto retry;
1305 #endif
1306
1307 /* Try combining an insn with two different insns whose results it
1308 uses. */
1309 FOR_EACH_LOG_LINK (links, insn)
1310 for (nextlinks = links->next; nextlinks;
1311 nextlinks = nextlinks->next)
1312 if ((next = try_combine (insn, links->insn,
1313 nextlinks->insn, NULL_RTX,
1314 &new_direct_jump_p,
1315 last_combined_insn)) != 0)
1316 goto retry;
1317
1318 /* Try four-instruction combinations. */
1319 FOR_EACH_LOG_LINK (links, insn)
1320 {
1321 struct insn_link *next1;
1322 rtx link = links->insn;
1323
1324 /* If the linked insn has been replaced by a note, then there
1325 is no point in pursuing this chain any further. */
1326 if (NOTE_P (link))
1327 continue;
1328
1329 FOR_EACH_LOG_LINK (next1, link)
1330 {
1331 rtx link1 = next1->insn;
1332 if (NOTE_P (link1))
1333 continue;
1334 /* I0 -> I1 -> I2 -> I3. */
1335 FOR_EACH_LOG_LINK (nextlinks, link1)
1336 if ((next = try_combine (insn, link, link1,
1337 nextlinks->insn,
1338 &new_direct_jump_p,
1339 last_combined_insn)) != 0)
1340 goto retry;
1341 /* I0, I1 -> I2, I2 -> I3. */
1342 for (nextlinks = next1->next; nextlinks;
1343 nextlinks = nextlinks->next)
1344 if ((next = try_combine (insn, link, link1,
1345 nextlinks->insn,
1346 &new_direct_jump_p,
1347 last_combined_insn)) != 0)
1348 goto retry;
1349 }
1350
1351 for (next1 = links->next; next1; next1 = next1->next)
1352 {
1353 rtx link1 = next1->insn;
1354 if (NOTE_P (link1))
1355 continue;
1356 /* I0 -> I2; I1, I2 -> I3. */
1357 FOR_EACH_LOG_LINK (nextlinks, link)
1358 if ((next = try_combine (insn, link, link1,
1359 nextlinks->insn,
1360 &new_direct_jump_p,
1361 last_combined_insn)) != 0)
1362 goto retry;
1363 /* I0 -> I1; I1, I2 -> I3. */
1364 FOR_EACH_LOG_LINK (nextlinks, link1)
1365 if ((next = try_combine (insn, link, link1,
1366 nextlinks->insn,
1367 &new_direct_jump_p,
1368 last_combined_insn)) != 0)
1369 goto retry;
1370 }
1371 }
1372
1373 /* Try this insn with each REG_EQUAL note it links back to. */
1374 FOR_EACH_LOG_LINK (links, insn)
1375 {
1376 rtx set, note;
1377 rtx temp = links->insn;
1378 if ((set = single_set (temp)) != 0
1379 && (note = find_reg_equal_equiv_note (temp)) != 0
1380 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1381 /* Avoid using a register that may already been marked
1382 dead by an earlier instruction. */
1383 && ! unmentioned_reg_p (note, SET_SRC (set))
1384 && (GET_MODE (note) == VOIDmode
1385 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1386 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1387 {
1388 /* Temporarily replace the set's source with the
1389 contents of the REG_EQUAL note. The insn will
1390 be deleted or recognized by try_combine. */
1391 rtx orig = SET_SRC (set);
1392 SET_SRC (set) = note;
1393 i2mod = temp;
1394 i2mod_old_rhs = copy_rtx (orig);
1395 i2mod_new_rhs = copy_rtx (note);
1396 next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1397 &new_direct_jump_p,
1398 last_combined_insn);
1399 i2mod = NULL_RTX;
1400 if (next)
1401 goto retry;
1402 SET_SRC (set) = orig;
1403 }
1404 }
1405
1406 if (!NOTE_P (insn))
1407 record_dead_and_set_regs (insn);
1408
1409 retry:
1410 ;
1411 }
1412 }
1413 }
1414
1415 default_rtl_profile ();
1416 clear_bb_flags ();
1417 new_direct_jump_p |= purge_all_dead_edges ();
1418 delete_noop_moves ();
1419
1420 /* Clean up. */
1421 obstack_free (&insn_link_obstack, NULL);
1422 free (uid_log_links);
1423 free (uid_insn_cost);
1424 VEC_free (reg_stat_type, heap, reg_stat);
1425
1426 {
1427 struct undo *undo, *next;
1428 for (undo = undobuf.frees; undo; undo = next)
1429 {
1430 next = undo->next;
1431 free (undo);
1432 }
1433 undobuf.frees = 0;
1434 }
1435
1436 total_attempts += combine_attempts;
1437 total_merges += combine_merges;
1438 total_extras += combine_extras;
1439 total_successes += combine_successes;
1440
1441 nonzero_sign_valid = 0;
1442 rtl_hooks = general_rtl_hooks;
1443
1444 /* Make recognizer allow volatile MEMs again. */
1445 init_recog ();
1446
1447 return new_direct_jump_p;
1448 }
1449
1450 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1451
1452 static void
1453 init_reg_last (void)
1454 {
1455 unsigned int i;
1456 reg_stat_type *p;
1457
1458 FOR_EACH_VEC_ELT (reg_stat_type, reg_stat, i, p)
1459 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1460 }
1461 \f
1462 /* Set up any promoted values for incoming argument registers. */
1463
1464 static void
1465 setup_incoming_promotions (rtx first)
1466 {
1467 tree arg;
1468 bool strictly_local = false;
1469
1470 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1471 arg = DECL_CHAIN (arg))
1472 {
1473 rtx x, reg = DECL_INCOMING_RTL (arg);
1474 int uns1, uns3;
1475 enum machine_mode mode1, mode2, mode3, mode4;
1476
1477 /* Only continue if the incoming argument is in a register. */
1478 if (!REG_P (reg))
1479 continue;
1480
1481 /* Determine, if possible, whether all call sites of the current
1482 function lie within the current compilation unit. (This does
1483 take into account the exporting of a function via taking its
1484 address, and so forth.) */
1485 strictly_local = cgraph_local_info (current_function_decl)->local;
1486
1487 /* The mode and signedness of the argument before any promotions happen
1488 (equal to the mode of the pseudo holding it at that stage). */
1489 mode1 = TYPE_MODE (TREE_TYPE (arg));
1490 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1491
1492 /* The mode and signedness of the argument after any source language and
1493 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1494 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1495 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1496
1497 /* The mode and signedness of the argument as it is actually passed,
1498 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1499 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1500 TREE_TYPE (cfun->decl), 0);
1501
1502 /* The mode of the register in which the argument is being passed. */
1503 mode4 = GET_MODE (reg);
1504
1505 /* Eliminate sign extensions in the callee when:
1506 (a) A mode promotion has occurred; */
1507 if (mode1 == mode3)
1508 continue;
1509 /* (b) The mode of the register is the same as the mode of
1510 the argument as it is passed; */
1511 if (mode3 != mode4)
1512 continue;
1513 /* (c) There's no language level extension; */
1514 if (mode1 == mode2)
1515 ;
1516 /* (c.1) All callers are from the current compilation unit. If that's
1517 the case we don't have to rely on an ABI, we only have to know
1518 what we're generating right now, and we know that we will do the
1519 mode1 to mode2 promotion with the given sign. */
1520 else if (!strictly_local)
1521 continue;
1522 /* (c.2) The combination of the two promotions is useful. This is
1523 true when the signs match, or if the first promotion is unsigned.
1524 In the later case, (sign_extend (zero_extend x)) is the same as
1525 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1526 else if (uns1)
1527 uns3 = true;
1528 else if (uns3)
1529 continue;
1530
1531 /* Record that the value was promoted from mode1 to mode3,
1532 so that any sign extension at the head of the current
1533 function may be eliminated. */
1534 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1535 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1536 record_value_for_reg (reg, first, x);
1537 }
1538 }
1539
1540 /* Called via note_stores. If X is a pseudo that is narrower than
1541 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1542
1543 If we are setting only a portion of X and we can't figure out what
1544 portion, assume all bits will be used since we don't know what will
1545 be happening.
1546
1547 Similarly, set how many bits of X are known to be copies of the sign bit
1548 at all locations in the function. This is the smallest number implied
1549 by any set of X. */
1550
1551 static void
1552 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1553 {
1554 rtx insn = (rtx) data;
1555 unsigned int num;
1556
1557 if (REG_P (x)
1558 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1559 /* If this register is undefined at the start of the file, we can't
1560 say what its contents were. */
1561 && ! REGNO_REG_SET_P
1562 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1563 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1564 {
1565 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1566
1567 if (set == 0 || GET_CODE (set) == CLOBBER)
1568 {
1569 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1570 rsp->sign_bit_copies = 1;
1571 return;
1572 }
1573
1574 /* If this register is being initialized using itself, and the
1575 register is uninitialized in this basic block, and there are
1576 no LOG_LINKS which set the register, then part of the
1577 register is uninitialized. In that case we can't assume
1578 anything about the number of nonzero bits.
1579
1580 ??? We could do better if we checked this in
1581 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1582 could avoid making assumptions about the insn which initially
1583 sets the register, while still using the information in other
1584 insns. We would have to be careful to check every insn
1585 involved in the combination. */
1586
1587 if (insn
1588 && reg_referenced_p (x, PATTERN (insn))
1589 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1590 REGNO (x)))
1591 {
1592 struct insn_link *link;
1593
1594 FOR_EACH_LOG_LINK (link, insn)
1595 if (dead_or_set_p (link->insn, x))
1596 break;
1597 if (!link)
1598 {
1599 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1600 rsp->sign_bit_copies = 1;
1601 return;
1602 }
1603 }
1604
1605 /* If this is a complex assignment, see if we can convert it into a
1606 simple assignment. */
1607 set = expand_field_assignment (set);
1608
1609 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1610 set what we know about X. */
1611
1612 if (SET_DEST (set) == x
1613 || (paradoxical_subreg_p (SET_DEST (set))
1614 && SUBREG_REG (SET_DEST (set)) == x))
1615 {
1616 rtx src = SET_SRC (set);
1617
1618 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1619 /* If X is narrower than a word and SRC is a non-negative
1620 constant that would appear negative in the mode of X,
1621 sign-extend it for use in reg_stat[].nonzero_bits because some
1622 machines (maybe most) will actually do the sign-extension
1623 and this is the conservative approach.
1624
1625 ??? For 2.5, try to tighten up the MD files in this regard
1626 instead of this kludge. */
1627
1628 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
1629 && CONST_INT_P (src)
1630 && INTVAL (src) > 0
1631 && val_signbit_known_set_p (GET_MODE (x), INTVAL (src)))
1632 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (GET_MODE (x)));
1633 #endif
1634
1635 /* Don't call nonzero_bits if it cannot change anything. */
1636 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1637 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1638 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1639 if (rsp->sign_bit_copies == 0
1640 || rsp->sign_bit_copies > num)
1641 rsp->sign_bit_copies = num;
1642 }
1643 else
1644 {
1645 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1646 rsp->sign_bit_copies = 1;
1647 }
1648 }
1649 }
1650 \f
1651 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1652 optionally insns that were previously combined into I3 or that will be
1653 combined into the merger of INSN and I3. The order is PRED, PRED2,
1654 INSN, SUCC, SUCC2, I3.
1655
1656 Return 0 if the combination is not allowed for any reason.
1657
1658 If the combination is allowed, *PDEST will be set to the single
1659 destination of INSN and *PSRC to the single source, and this function
1660 will return 1. */
1661
1662 static int
1663 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1664 rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1665 rtx *pdest, rtx *psrc)
1666 {
1667 int i;
1668 const_rtx set = 0;
1669 rtx src, dest;
1670 rtx p;
1671 #ifdef AUTO_INC_DEC
1672 rtx link;
1673 #endif
1674 bool all_adjacent = true;
1675
1676 if (succ)
1677 {
1678 if (succ2)
1679 {
1680 if (next_active_insn (succ2) != i3)
1681 all_adjacent = false;
1682 if (next_active_insn (succ) != succ2)
1683 all_adjacent = false;
1684 }
1685 else if (next_active_insn (succ) != i3)
1686 all_adjacent = false;
1687 if (next_active_insn (insn) != succ)
1688 all_adjacent = false;
1689 }
1690 else if (next_active_insn (insn) != i3)
1691 all_adjacent = false;
1692
1693 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1694 or a PARALLEL consisting of such a SET and CLOBBERs.
1695
1696 If INSN has CLOBBER parallel parts, ignore them for our processing.
1697 By definition, these happen during the execution of the insn. When it
1698 is merged with another insn, all bets are off. If they are, in fact,
1699 needed and aren't also supplied in I3, they may be added by
1700 recog_for_combine. Otherwise, it won't match.
1701
1702 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1703 note.
1704
1705 Get the source and destination of INSN. If more than one, can't
1706 combine. */
1707
1708 if (GET_CODE (PATTERN (insn)) == SET)
1709 set = PATTERN (insn);
1710 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1711 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1712 {
1713 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1714 {
1715 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1716
1717 switch (GET_CODE (elt))
1718 {
1719 /* This is important to combine floating point insns
1720 for the SH4 port. */
1721 case USE:
1722 /* Combining an isolated USE doesn't make sense.
1723 We depend here on combinable_i3pat to reject them. */
1724 /* The code below this loop only verifies that the inputs of
1725 the SET in INSN do not change. We call reg_set_between_p
1726 to verify that the REG in the USE does not change between
1727 I3 and INSN.
1728 If the USE in INSN was for a pseudo register, the matching
1729 insn pattern will likely match any register; combining this
1730 with any other USE would only be safe if we knew that the
1731 used registers have identical values, or if there was
1732 something to tell them apart, e.g. different modes. For
1733 now, we forgo such complicated tests and simply disallow
1734 combining of USES of pseudo registers with any other USE. */
1735 if (REG_P (XEXP (elt, 0))
1736 && GET_CODE (PATTERN (i3)) == PARALLEL)
1737 {
1738 rtx i3pat = PATTERN (i3);
1739 int i = XVECLEN (i3pat, 0) - 1;
1740 unsigned int regno = REGNO (XEXP (elt, 0));
1741
1742 do
1743 {
1744 rtx i3elt = XVECEXP (i3pat, 0, i);
1745
1746 if (GET_CODE (i3elt) == USE
1747 && REG_P (XEXP (i3elt, 0))
1748 && (REGNO (XEXP (i3elt, 0)) == regno
1749 ? reg_set_between_p (XEXP (elt, 0),
1750 PREV_INSN (insn), i3)
1751 : regno >= FIRST_PSEUDO_REGISTER))
1752 return 0;
1753 }
1754 while (--i >= 0);
1755 }
1756 break;
1757
1758 /* We can ignore CLOBBERs. */
1759 case CLOBBER:
1760 break;
1761
1762 case SET:
1763 /* Ignore SETs whose result isn't used but not those that
1764 have side-effects. */
1765 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1766 && insn_nothrow_p (insn)
1767 && !side_effects_p (elt))
1768 break;
1769
1770 /* If we have already found a SET, this is a second one and
1771 so we cannot combine with this insn. */
1772 if (set)
1773 return 0;
1774
1775 set = elt;
1776 break;
1777
1778 default:
1779 /* Anything else means we can't combine. */
1780 return 0;
1781 }
1782 }
1783
1784 if (set == 0
1785 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1786 so don't do anything with it. */
1787 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1788 return 0;
1789 }
1790 else
1791 return 0;
1792
1793 if (set == 0)
1794 return 0;
1795
1796 set = expand_field_assignment (set);
1797 src = SET_SRC (set), dest = SET_DEST (set);
1798
1799 /* Don't eliminate a store in the stack pointer. */
1800 if (dest == stack_pointer_rtx
1801 /* Don't combine with an insn that sets a register to itself if it has
1802 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1803 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1804 /* Can't merge an ASM_OPERANDS. */
1805 || GET_CODE (src) == ASM_OPERANDS
1806 /* Can't merge a function call. */
1807 || GET_CODE (src) == CALL
1808 /* Don't eliminate a function call argument. */
1809 || (CALL_P (i3)
1810 && (find_reg_fusage (i3, USE, dest)
1811 || (REG_P (dest)
1812 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1813 && global_regs[REGNO (dest)])))
1814 /* Don't substitute into an incremented register. */
1815 || FIND_REG_INC_NOTE (i3, dest)
1816 || (succ && FIND_REG_INC_NOTE (succ, dest))
1817 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1818 /* Don't substitute into a non-local goto, this confuses CFG. */
1819 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1820 /* Make sure that DEST is not used after SUCC but before I3. */
1821 || (!all_adjacent
1822 && ((succ2
1823 && (reg_used_between_p (dest, succ2, i3)
1824 || reg_used_between_p (dest, succ, succ2)))
1825 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1826 /* Make sure that the value that is to be substituted for the register
1827 does not use any registers whose values alter in between. However,
1828 If the insns are adjacent, a use can't cross a set even though we
1829 think it might (this can happen for a sequence of insns each setting
1830 the same destination; last_set of that register might point to
1831 a NOTE). If INSN has a REG_EQUIV note, the register is always
1832 equivalent to the memory so the substitution is valid even if there
1833 are intervening stores. Also, don't move a volatile asm or
1834 UNSPEC_VOLATILE across any other insns. */
1835 || (! all_adjacent
1836 && (((!MEM_P (src)
1837 || ! find_reg_note (insn, REG_EQUIV, src))
1838 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1839 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1840 || GET_CODE (src) == UNSPEC_VOLATILE))
1841 /* Don't combine across a CALL_INSN, because that would possibly
1842 change whether the life span of some REGs crosses calls or not,
1843 and it is a pain to update that information.
1844 Exception: if source is a constant, moving it later can't hurt.
1845 Accept that as a special case. */
1846 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1847 return 0;
1848
1849 /* DEST must either be a REG or CC0. */
1850 if (REG_P (dest))
1851 {
1852 /* If register alignment is being enforced for multi-word items in all
1853 cases except for parameters, it is possible to have a register copy
1854 insn referencing a hard register that is not allowed to contain the
1855 mode being copied and which would not be valid as an operand of most
1856 insns. Eliminate this problem by not combining with such an insn.
1857
1858 Also, on some machines we don't want to extend the life of a hard
1859 register. */
1860
1861 if (REG_P (src)
1862 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1863 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1864 /* Don't extend the life of a hard register unless it is
1865 user variable (if we have few registers) or it can't
1866 fit into the desired register (meaning something special
1867 is going on).
1868 Also avoid substituting a return register into I3, because
1869 reload can't handle a conflict with constraints of other
1870 inputs. */
1871 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1872 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1873 return 0;
1874 }
1875 else if (GET_CODE (dest) != CC0)
1876 return 0;
1877
1878
1879 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1880 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1881 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1882 {
1883 /* Don't substitute for a register intended as a clobberable
1884 operand. */
1885 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1886 if (rtx_equal_p (reg, dest))
1887 return 0;
1888
1889 /* If the clobber represents an earlyclobber operand, we must not
1890 substitute an expression containing the clobbered register.
1891 As we do not analyze the constraint strings here, we have to
1892 make the conservative assumption. However, if the register is
1893 a fixed hard reg, the clobber cannot represent any operand;
1894 we leave it up to the machine description to either accept or
1895 reject use-and-clobber patterns. */
1896 if (!REG_P (reg)
1897 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1898 || !fixed_regs[REGNO (reg)])
1899 if (reg_overlap_mentioned_p (reg, src))
1900 return 0;
1901 }
1902
1903 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1904 or not), reject, unless nothing volatile comes between it and I3 */
1905
1906 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1907 {
1908 /* Make sure neither succ nor succ2 contains a volatile reference. */
1909 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1910 return 0;
1911 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1912 return 0;
1913 /* We'll check insns between INSN and I3 below. */
1914 }
1915
1916 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1917 to be an explicit register variable, and was chosen for a reason. */
1918
1919 if (GET_CODE (src) == ASM_OPERANDS
1920 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1921 return 0;
1922
1923 /* If there are any volatile insns between INSN and I3, reject, because
1924 they might affect machine state. */
1925
1926 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1927 if (INSN_P (p) && p != succ && p != succ2 && volatile_insn_p (PATTERN (p)))
1928 return 0;
1929
1930 /* If INSN contains an autoincrement or autodecrement, make sure that
1931 register is not used between there and I3, and not already used in
1932 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1933 Also insist that I3 not be a jump; if it were one
1934 and the incremented register were spilled, we would lose. */
1935
1936 #ifdef AUTO_INC_DEC
1937 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1938 if (REG_NOTE_KIND (link) == REG_INC
1939 && (JUMP_P (i3)
1940 || reg_used_between_p (XEXP (link, 0), insn, i3)
1941 || (pred != NULL_RTX
1942 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1943 || (pred2 != NULL_RTX
1944 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1945 || (succ != NULL_RTX
1946 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1947 || (succ2 != NULL_RTX
1948 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1949 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1950 return 0;
1951 #endif
1952
1953 #ifdef HAVE_cc0
1954 /* Don't combine an insn that follows a CC0-setting insn.
1955 An insn that uses CC0 must not be separated from the one that sets it.
1956 We do, however, allow I2 to follow a CC0-setting insn if that insn
1957 is passed as I1; in that case it will be deleted also.
1958 We also allow combining in this case if all the insns are adjacent
1959 because that would leave the two CC0 insns adjacent as well.
1960 It would be more logical to test whether CC0 occurs inside I1 or I2,
1961 but that would be much slower, and this ought to be equivalent. */
1962
1963 p = prev_nonnote_insn (insn);
1964 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1965 && ! all_adjacent)
1966 return 0;
1967 #endif
1968
1969 /* If we get here, we have passed all the tests and the combination is
1970 to be allowed. */
1971
1972 *pdest = dest;
1973 *psrc = src;
1974
1975 return 1;
1976 }
1977 \f
1978 /* LOC is the location within I3 that contains its pattern or the component
1979 of a PARALLEL of the pattern. We validate that it is valid for combining.
1980
1981 One problem is if I3 modifies its output, as opposed to replacing it
1982 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
1983 doing so would produce an insn that is not equivalent to the original insns.
1984
1985 Consider:
1986
1987 (set (reg:DI 101) (reg:DI 100))
1988 (set (subreg:SI (reg:DI 101) 0) <foo>)
1989
1990 This is NOT equivalent to:
1991
1992 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1993 (set (reg:DI 101) (reg:DI 100))])
1994
1995 Not only does this modify 100 (in which case it might still be valid
1996 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1997
1998 We can also run into a problem if I2 sets a register that I1
1999 uses and I1 gets directly substituted into I3 (not via I2). In that
2000 case, we would be getting the wrong value of I2DEST into I3, so we
2001 must reject the combination. This case occurs when I2 and I1 both
2002 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2003 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2004 of a SET must prevent combination from occurring. The same situation
2005 can occur for I0, in which case I0_NOT_IN_SRC is set.
2006
2007 Before doing the above check, we first try to expand a field assignment
2008 into a set of logical operations.
2009
2010 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2011 we place a register that is both set and used within I3. If more than one
2012 such register is detected, we fail.
2013
2014 Return 1 if the combination is valid, zero otherwise. */
2015
2016 static int
2017 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2018 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2019 {
2020 rtx x = *loc;
2021
2022 if (GET_CODE (x) == SET)
2023 {
2024 rtx set = x ;
2025 rtx dest = SET_DEST (set);
2026 rtx src = SET_SRC (set);
2027 rtx inner_dest = dest;
2028 rtx subdest;
2029
2030 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2031 || GET_CODE (inner_dest) == SUBREG
2032 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2033 inner_dest = XEXP (inner_dest, 0);
2034
2035 /* Check for the case where I3 modifies its output, as discussed
2036 above. We don't want to prevent pseudos from being combined
2037 into the address of a MEM, so only prevent the combination if
2038 i1 or i2 set the same MEM. */
2039 if ((inner_dest != dest &&
2040 (!MEM_P (inner_dest)
2041 || rtx_equal_p (i2dest, inner_dest)
2042 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2043 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2044 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2045 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2046 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2047
2048 /* This is the same test done in can_combine_p except we can't test
2049 all_adjacent; we don't have to, since this instruction will stay
2050 in place, thus we are not considering increasing the lifetime of
2051 INNER_DEST.
2052
2053 Also, if this insn sets a function argument, combining it with
2054 something that might need a spill could clobber a previous
2055 function argument; the all_adjacent test in can_combine_p also
2056 checks this; here, we do a more specific test for this case. */
2057
2058 || (REG_P (inner_dest)
2059 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2060 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2061 GET_MODE (inner_dest))))
2062 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2063 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2064 return 0;
2065
2066 /* If DEST is used in I3, it is being killed in this insn, so
2067 record that for later. We have to consider paradoxical
2068 subregs here, since they kill the whole register, but we
2069 ignore partial subregs, STRICT_LOW_PART, etc.
2070 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2071 STACK_POINTER_REGNUM, since these are always considered to be
2072 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2073 subdest = dest;
2074 if (GET_CODE (subdest) == SUBREG
2075 && (GET_MODE_SIZE (GET_MODE (subdest))
2076 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2077 subdest = SUBREG_REG (subdest);
2078 if (pi3dest_killed
2079 && REG_P (subdest)
2080 && reg_referenced_p (subdest, PATTERN (i3))
2081 && REGNO (subdest) != FRAME_POINTER_REGNUM
2082 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2083 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2084 #endif
2085 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2086 && (REGNO (subdest) != ARG_POINTER_REGNUM
2087 || ! fixed_regs [REGNO (subdest)])
2088 #endif
2089 && REGNO (subdest) != STACK_POINTER_REGNUM)
2090 {
2091 if (*pi3dest_killed)
2092 return 0;
2093
2094 *pi3dest_killed = subdest;
2095 }
2096 }
2097
2098 else if (GET_CODE (x) == PARALLEL)
2099 {
2100 int i;
2101
2102 for (i = 0; i < XVECLEN (x, 0); i++)
2103 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2104 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2105 return 0;
2106 }
2107
2108 return 1;
2109 }
2110 \f
2111 /* Return 1 if X is an arithmetic expression that contains a multiplication
2112 and division. We don't count multiplications by powers of two here. */
2113
2114 static int
2115 contains_muldiv (rtx x)
2116 {
2117 switch (GET_CODE (x))
2118 {
2119 case MOD: case DIV: case UMOD: case UDIV:
2120 return 1;
2121
2122 case MULT:
2123 return ! (CONST_INT_P (XEXP (x, 1))
2124 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2125 default:
2126 if (BINARY_P (x))
2127 return contains_muldiv (XEXP (x, 0))
2128 || contains_muldiv (XEXP (x, 1));
2129
2130 if (UNARY_P (x))
2131 return contains_muldiv (XEXP (x, 0));
2132
2133 return 0;
2134 }
2135 }
2136 \f
2137 /* Determine whether INSN can be used in a combination. Return nonzero if
2138 not. This is used in try_combine to detect early some cases where we
2139 can't perform combinations. */
2140
2141 static int
2142 cant_combine_insn_p (rtx insn)
2143 {
2144 rtx set;
2145 rtx src, dest;
2146
2147 /* If this isn't really an insn, we can't do anything.
2148 This can occur when flow deletes an insn that it has merged into an
2149 auto-increment address. */
2150 if (! INSN_P (insn))
2151 return 1;
2152
2153 /* Never combine loads and stores involving hard regs that are likely
2154 to be spilled. The register allocator can usually handle such
2155 reg-reg moves by tying. If we allow the combiner to make
2156 substitutions of likely-spilled regs, reload might die.
2157 As an exception, we allow combinations involving fixed regs; these are
2158 not available to the register allocator so there's no risk involved. */
2159
2160 set = single_set (insn);
2161 if (! set)
2162 return 0;
2163 src = SET_SRC (set);
2164 dest = SET_DEST (set);
2165 if (GET_CODE (src) == SUBREG)
2166 src = SUBREG_REG (src);
2167 if (GET_CODE (dest) == SUBREG)
2168 dest = SUBREG_REG (dest);
2169 if (REG_P (src) && REG_P (dest)
2170 && ((HARD_REGISTER_P (src)
2171 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2172 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2173 || (HARD_REGISTER_P (dest)
2174 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2175 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2176 return 1;
2177
2178 return 0;
2179 }
2180
2181 struct likely_spilled_retval_info
2182 {
2183 unsigned regno, nregs;
2184 unsigned mask;
2185 };
2186
2187 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2188 hard registers that are known to be written to / clobbered in full. */
2189 static void
2190 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2191 {
2192 struct likely_spilled_retval_info *const info =
2193 (struct likely_spilled_retval_info *) data;
2194 unsigned regno, nregs;
2195 unsigned new_mask;
2196
2197 if (!REG_P (XEXP (set, 0)))
2198 return;
2199 regno = REGNO (x);
2200 if (regno >= info->regno + info->nregs)
2201 return;
2202 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2203 if (regno + nregs <= info->regno)
2204 return;
2205 new_mask = (2U << (nregs - 1)) - 1;
2206 if (regno < info->regno)
2207 new_mask >>= info->regno - regno;
2208 else
2209 new_mask <<= regno - info->regno;
2210 info->mask &= ~new_mask;
2211 }
2212
2213 /* Return nonzero iff part of the return value is live during INSN, and
2214 it is likely spilled. This can happen when more than one insn is needed
2215 to copy the return value, e.g. when we consider to combine into the
2216 second copy insn for a complex value. */
2217
2218 static int
2219 likely_spilled_retval_p (rtx insn)
2220 {
2221 rtx use = BB_END (this_basic_block);
2222 rtx reg, p;
2223 unsigned regno, nregs;
2224 /* We assume here that no machine mode needs more than
2225 32 hard registers when the value overlaps with a register
2226 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2227 unsigned mask;
2228 struct likely_spilled_retval_info info;
2229
2230 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2231 return 0;
2232 reg = XEXP (PATTERN (use), 0);
2233 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2234 return 0;
2235 regno = REGNO (reg);
2236 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2237 if (nregs == 1)
2238 return 0;
2239 mask = (2U << (nregs - 1)) - 1;
2240
2241 /* Disregard parts of the return value that are set later. */
2242 info.regno = regno;
2243 info.nregs = nregs;
2244 info.mask = mask;
2245 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2246 if (INSN_P (p))
2247 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2248 mask = info.mask;
2249
2250 /* Check if any of the (probably) live return value registers is
2251 likely spilled. */
2252 nregs --;
2253 do
2254 {
2255 if ((mask & 1 << nregs)
2256 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2257 return 1;
2258 } while (nregs--);
2259 return 0;
2260 }
2261
2262 /* Adjust INSN after we made a change to its destination.
2263
2264 Changing the destination can invalidate notes that say something about
2265 the results of the insn and a LOG_LINK pointing to the insn. */
2266
2267 static void
2268 adjust_for_new_dest (rtx insn)
2269 {
2270 /* For notes, be conservative and simply remove them. */
2271 remove_reg_equal_equiv_notes (insn);
2272
2273 /* The new insn will have a destination that was previously the destination
2274 of an insn just above it. Call distribute_links to make a LOG_LINK from
2275 the next use of that destination. */
2276 distribute_links (alloc_insn_link (insn, NULL));
2277
2278 df_insn_rescan (insn);
2279 }
2280
2281 /* Return TRUE if combine can reuse reg X in mode MODE.
2282 ADDED_SETS is nonzero if the original set is still required. */
2283 static bool
2284 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2285 {
2286 unsigned int regno;
2287
2288 if (!REG_P(x))
2289 return false;
2290
2291 regno = REGNO (x);
2292 /* Allow hard registers if the new mode is legal, and occupies no more
2293 registers than the old mode. */
2294 if (regno < FIRST_PSEUDO_REGISTER)
2295 return (HARD_REGNO_MODE_OK (regno, mode)
2296 && (hard_regno_nregs[regno][GET_MODE (x)]
2297 >= hard_regno_nregs[regno][mode]));
2298
2299 /* Or a pseudo that is only used once. */
2300 return (REG_N_SETS (regno) == 1 && !added_sets
2301 && !REG_USERVAR_P (x));
2302 }
2303
2304
2305 /* Check whether X, the destination of a set, refers to part of
2306 the register specified by REG. */
2307
2308 static bool
2309 reg_subword_p (rtx x, rtx reg)
2310 {
2311 /* Check that reg is an integer mode register. */
2312 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2313 return false;
2314
2315 if (GET_CODE (x) == STRICT_LOW_PART
2316 || GET_CODE (x) == ZERO_EXTRACT)
2317 x = XEXP (x, 0);
2318
2319 return GET_CODE (x) == SUBREG
2320 && SUBREG_REG (x) == reg
2321 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2322 }
2323
2324 #ifdef AUTO_INC_DEC
2325 /* Replace auto-increment addressing modes with explicit operations to access
2326 the same addresses without modifying the corresponding registers. */
2327
2328 static rtx
2329 cleanup_auto_inc_dec (rtx src, enum machine_mode mem_mode)
2330 {
2331 rtx x = src;
2332 const RTX_CODE code = GET_CODE (x);
2333 int i;
2334 const char *fmt;
2335
2336 switch (code)
2337 {
2338 case REG:
2339 case CONST_INT:
2340 case CONST_DOUBLE:
2341 case CONST_FIXED:
2342 case CONST_VECTOR:
2343 case SYMBOL_REF:
2344 case CODE_LABEL:
2345 case PC:
2346 case CC0:
2347 case SCRATCH:
2348 /* SCRATCH must be shared because they represent distinct values. */
2349 return x;
2350 case CLOBBER:
2351 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2352 return x;
2353 break;
2354
2355 case CONST:
2356 if (shared_const_p (x))
2357 return x;
2358 break;
2359
2360 case MEM:
2361 mem_mode = GET_MODE (x);
2362 break;
2363
2364 case PRE_INC:
2365 case PRE_DEC:
2366 gcc_assert (mem_mode != VOIDmode && mem_mode != BLKmode);
2367 return gen_rtx_PLUS (GET_MODE (x),
2368 cleanup_auto_inc_dec (XEXP (x, 0), mem_mode),
2369 GEN_INT (code == PRE_INC
2370 ? GET_MODE_SIZE (mem_mode)
2371 : -GET_MODE_SIZE (mem_mode)));
2372
2373 case POST_INC:
2374 case POST_DEC:
2375 case PRE_MODIFY:
2376 case POST_MODIFY:
2377 return cleanup_auto_inc_dec (code == PRE_MODIFY
2378 ? XEXP (x, 1) : XEXP (x, 0),
2379 mem_mode);
2380
2381 default:
2382 break;
2383 }
2384
2385 /* Copy the various flags, fields, and other information. We assume
2386 that all fields need copying, and then clear the fields that should
2387 not be copied. That is the sensible default behavior, and forces
2388 us to explicitly document why we are *not* copying a flag. */
2389 x = shallow_copy_rtx (x);
2390
2391 /* We do not copy the USED flag, which is used as a mark bit during
2392 walks over the RTL. */
2393 RTX_FLAG (x, used) = 0;
2394
2395 /* We do not copy FRAME_RELATED for INSNs. */
2396 if (INSN_P (x))
2397 RTX_FLAG (x, frame_related) = 0;
2398
2399 fmt = GET_RTX_FORMAT (code);
2400 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2401 if (fmt[i] == 'e')
2402 XEXP (x, i) = cleanup_auto_inc_dec (XEXP (x, i), mem_mode);
2403 else if (fmt[i] == 'E' || fmt[i] == 'V')
2404 {
2405 int j;
2406 XVEC (x, i) = rtvec_alloc (XVECLEN (x, i));
2407 for (j = 0; j < XVECLEN (x, i); j++)
2408 XVECEXP (x, i, j)
2409 = cleanup_auto_inc_dec (XVECEXP (src, i, j), mem_mode);
2410 }
2411
2412 return x;
2413 }
2414 #endif
2415
2416 /* Auxiliary data structure for propagate_for_debug_stmt. */
2417
2418 struct rtx_subst_pair
2419 {
2420 rtx to;
2421 bool adjusted;
2422 };
2423
2424 /* DATA points to an rtx_subst_pair. Return the value that should be
2425 substituted. */
2426
2427 static rtx
2428 propagate_for_debug_subst (rtx from, const_rtx old_rtx, void *data)
2429 {
2430 struct rtx_subst_pair *pair = (struct rtx_subst_pair *)data;
2431
2432 if (!rtx_equal_p (from, old_rtx))
2433 return NULL_RTX;
2434 if (!pair->adjusted)
2435 {
2436 pair->adjusted = true;
2437 #ifdef AUTO_INC_DEC
2438 pair->to = cleanup_auto_inc_dec (pair->to, VOIDmode);
2439 #else
2440 pair->to = copy_rtx (pair->to);
2441 #endif
2442 pair->to = make_compound_operation (pair->to, SET);
2443 return pair->to;
2444 }
2445 return copy_rtx (pair->to);
2446 }
2447
2448 /* Replace all the occurrences of DEST with SRC in DEBUG_INSNs between INSN
2449 and LAST, not including INSN, but including LAST. Also stop at the end
2450 of THIS_BASIC_BLOCK. */
2451
2452 static void
2453 propagate_for_debug (rtx insn, rtx last, rtx dest, rtx src)
2454 {
2455 rtx next, loc, end = NEXT_INSN (BB_END (this_basic_block));
2456
2457 struct rtx_subst_pair p;
2458 p.to = src;
2459 p.adjusted = false;
2460
2461 next = NEXT_INSN (insn);
2462 last = NEXT_INSN (last);
2463 while (next != last && next != end)
2464 {
2465 insn = next;
2466 next = NEXT_INSN (insn);
2467 if (DEBUG_INSN_P (insn))
2468 {
2469 loc = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
2470 dest, propagate_for_debug_subst, &p);
2471 if (loc == INSN_VAR_LOCATION_LOC (insn))
2472 continue;
2473 INSN_VAR_LOCATION_LOC (insn) = loc;
2474 df_insn_rescan (insn);
2475 }
2476 }
2477 }
2478
2479 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2480 Note that the INSN should be deleted *after* removing dead edges, so
2481 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2482 but not for a (set (pc) (label_ref FOO)). */
2483
2484 static void
2485 update_cfg_for_uncondjump (rtx insn)
2486 {
2487 basic_block bb = BLOCK_FOR_INSN (insn);
2488 gcc_assert (BB_END (bb) == insn);
2489
2490 purge_dead_edges (bb);
2491
2492 delete_insn (insn);
2493 if (EDGE_COUNT (bb->succs) == 1)
2494 {
2495 rtx insn;
2496
2497 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2498
2499 /* Remove barriers from the footer if there are any. */
2500 for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
2501 if (BARRIER_P (insn))
2502 {
2503 if (PREV_INSN (insn))
2504 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2505 else
2506 bb->il.rtl->footer = NEXT_INSN (insn);
2507 if (NEXT_INSN (insn))
2508 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2509 }
2510 else if (LABEL_P (insn))
2511 break;
2512 }
2513 }
2514
2515 /* Try to combine the insns I0, I1 and I2 into I3.
2516 Here I0, I1 and I2 appear earlier than I3.
2517 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2518 I3.
2519
2520 If we are combining more than two insns and the resulting insn is not
2521 recognized, try splitting it into two insns. If that happens, I2 and I3
2522 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2523 Otherwise, I0, I1 and I2 are pseudo-deleted.
2524
2525 Return 0 if the combination does not work. Then nothing is changed.
2526 If we did the combination, return the insn at which combine should
2527 resume scanning.
2528
2529 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2530 new direct jump instruction.
2531
2532 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2533 been I3 passed to an earlier try_combine within the same basic
2534 block. */
2535
2536 static rtx
2537 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p,
2538 rtx last_combined_insn)
2539 {
2540 /* New patterns for I3 and I2, respectively. */
2541 rtx newpat, newi2pat = 0;
2542 rtvec newpat_vec_with_clobbers = 0;
2543 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2544 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2545 dead. */
2546 int added_sets_0, added_sets_1, added_sets_2;
2547 /* Total number of SETs to put into I3. */
2548 int total_sets;
2549 /* Nonzero if I2's or I1's body now appears in I3. */
2550 int i2_is_used = 0, i1_is_used = 0;
2551 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2552 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2553 /* Contains I3 if the destination of I3 is used in its source, which means
2554 that the old life of I3 is being killed. If that usage is placed into
2555 I2 and not in I3, a REG_DEAD note must be made. */
2556 rtx i3dest_killed = 0;
2557 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2558 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2559 /* Copy of SET_SRC of I1, if needed. */
2560 rtx i1src_copy = 0;
2561 /* Set if I2DEST was reused as a scratch register. */
2562 bool i2scratch = false;
2563 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2564 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2565 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2566 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2567 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2568 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2569 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2570 /* Notes that must be added to REG_NOTES in I3 and I2. */
2571 rtx new_i3_notes, new_i2_notes;
2572 /* Notes that we substituted I3 into I2 instead of the normal case. */
2573 int i3_subst_into_i2 = 0;
2574 /* Notes that I1, I2 or I3 is a MULT operation. */
2575 int have_mult = 0;
2576 int swap_i2i3 = 0;
2577 int changed_i3_dest = 0;
2578
2579 int maxreg;
2580 rtx temp;
2581 struct insn_link *link;
2582 rtx other_pat = 0;
2583 rtx new_other_notes;
2584 int i;
2585
2586 /* Only try four-insn combinations when there's high likelihood of
2587 success. Look for simple insns, such as loads of constants or
2588 binary operations involving a constant. */
2589 if (i0)
2590 {
2591 int i;
2592 int ngood = 0;
2593 int nshift = 0;
2594
2595 if (!flag_expensive_optimizations)
2596 return 0;
2597
2598 for (i = 0; i < 4; i++)
2599 {
2600 rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2601 rtx set = single_set (insn);
2602 rtx src;
2603 if (!set)
2604 continue;
2605 src = SET_SRC (set);
2606 if (CONSTANT_P (src))
2607 {
2608 ngood += 2;
2609 break;
2610 }
2611 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2612 ngood++;
2613 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2614 || GET_CODE (src) == LSHIFTRT)
2615 nshift++;
2616 }
2617 if (ngood < 2 && nshift < 2)
2618 return 0;
2619 }
2620
2621 /* Exit early if one of the insns involved can't be used for
2622 combinations. */
2623 if (cant_combine_insn_p (i3)
2624 || cant_combine_insn_p (i2)
2625 || (i1 && cant_combine_insn_p (i1))
2626 || (i0 && cant_combine_insn_p (i0))
2627 || likely_spilled_retval_p (i3))
2628 return 0;
2629
2630 combine_attempts++;
2631 undobuf.other_insn = 0;
2632
2633 /* Reset the hard register usage information. */
2634 CLEAR_HARD_REG_SET (newpat_used_regs);
2635
2636 if (dump_file && (dump_flags & TDF_DETAILS))
2637 {
2638 if (i0)
2639 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2640 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2641 else if (i1)
2642 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2643 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2644 else
2645 fprintf (dump_file, "\nTrying %d -> %d:\n",
2646 INSN_UID (i2), INSN_UID (i3));
2647 }
2648
2649 /* If multiple insns feed into one of I2 or I3, they can be in any
2650 order. To simplify the code below, reorder them in sequence. */
2651 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2652 temp = i2, i2 = i0, i0 = temp;
2653 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2654 temp = i1, i1 = i0, i0 = temp;
2655 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2656 temp = i1, i1 = i2, i2 = temp;
2657
2658 added_links_insn = 0;
2659
2660 /* First check for one important special case that the code below will
2661 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2662 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2663 we may be able to replace that destination with the destination of I3.
2664 This occurs in the common code where we compute both a quotient and
2665 remainder into a structure, in which case we want to do the computation
2666 directly into the structure to avoid register-register copies.
2667
2668 Note that this case handles both multiple sets in I2 and also cases
2669 where I2 has a number of CLOBBERs inside the PARALLEL.
2670
2671 We make very conservative checks below and only try to handle the
2672 most common cases of this. For example, we only handle the case
2673 where I2 and I3 are adjacent to avoid making difficult register
2674 usage tests. */
2675
2676 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2677 && REG_P (SET_SRC (PATTERN (i3)))
2678 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2679 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2680 && GET_CODE (PATTERN (i2)) == PARALLEL
2681 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2682 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2683 below would need to check what is inside (and reg_overlap_mentioned_p
2684 doesn't support those codes anyway). Don't allow those destinations;
2685 the resulting insn isn't likely to be recognized anyway. */
2686 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2687 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2688 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2689 SET_DEST (PATTERN (i3)))
2690 && next_active_insn (i2) == i3)
2691 {
2692 rtx p2 = PATTERN (i2);
2693
2694 /* Make sure that the destination of I3,
2695 which we are going to substitute into one output of I2,
2696 is not used within another output of I2. We must avoid making this:
2697 (parallel [(set (mem (reg 69)) ...)
2698 (set (reg 69) ...)])
2699 which is not well-defined as to order of actions.
2700 (Besides, reload can't handle output reloads for this.)
2701
2702 The problem can also happen if the dest of I3 is a memory ref,
2703 if another dest in I2 is an indirect memory ref. */
2704 for (i = 0; i < XVECLEN (p2, 0); i++)
2705 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2706 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2707 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2708 SET_DEST (XVECEXP (p2, 0, i))))
2709 break;
2710
2711 if (i == XVECLEN (p2, 0))
2712 for (i = 0; i < XVECLEN (p2, 0); i++)
2713 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2714 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2715 {
2716 combine_merges++;
2717
2718 subst_insn = i3;
2719 subst_low_luid = DF_INSN_LUID (i2);
2720
2721 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2722 i2src = SET_SRC (XVECEXP (p2, 0, i));
2723 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2724 i2dest_killed = dead_or_set_p (i2, i2dest);
2725
2726 /* Replace the dest in I2 with our dest and make the resulting
2727 insn the new pattern for I3. Then skip to where we validate
2728 the pattern. Everything was set up above. */
2729 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2730 newpat = p2;
2731 i3_subst_into_i2 = 1;
2732 goto validate_replacement;
2733 }
2734 }
2735
2736 /* If I2 is setting a pseudo to a constant and I3 is setting some
2737 sub-part of it to another constant, merge them by making a new
2738 constant. */
2739 if (i1 == 0
2740 && (temp = single_set (i2)) != 0
2741 && (CONST_INT_P (SET_SRC (temp))
2742 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2743 && GET_CODE (PATTERN (i3)) == SET
2744 && (CONST_INT_P (SET_SRC (PATTERN (i3)))
2745 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2746 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2747 {
2748 rtx dest = SET_DEST (PATTERN (i3));
2749 int offset = -1;
2750 int width = 0;
2751
2752 if (GET_CODE (dest) == ZERO_EXTRACT)
2753 {
2754 if (CONST_INT_P (XEXP (dest, 1))
2755 && CONST_INT_P (XEXP (dest, 2)))
2756 {
2757 width = INTVAL (XEXP (dest, 1));
2758 offset = INTVAL (XEXP (dest, 2));
2759 dest = XEXP (dest, 0);
2760 if (BITS_BIG_ENDIAN)
2761 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2762 }
2763 }
2764 else
2765 {
2766 if (GET_CODE (dest) == STRICT_LOW_PART)
2767 dest = XEXP (dest, 0);
2768 width = GET_MODE_PRECISION (GET_MODE (dest));
2769 offset = 0;
2770 }
2771
2772 if (offset >= 0)
2773 {
2774 /* If this is the low part, we're done. */
2775 if (subreg_lowpart_p (dest))
2776 ;
2777 /* Handle the case where inner is twice the size of outer. */
2778 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2779 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2780 offset += GET_MODE_PRECISION (GET_MODE (dest));
2781 /* Otherwise give up for now. */
2782 else
2783 offset = -1;
2784 }
2785
2786 if (offset >= 0
2787 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2788 <= HOST_BITS_PER_DOUBLE_INT))
2789 {
2790 double_int m, o, i;
2791 rtx inner = SET_SRC (PATTERN (i3));
2792 rtx outer = SET_SRC (temp);
2793
2794 o = rtx_to_double_int (outer);
2795 i = rtx_to_double_int (inner);
2796
2797 m = double_int_mask (width);
2798 i = double_int_and (i, m);
2799 m = double_int_lshift (m, offset, HOST_BITS_PER_DOUBLE_INT, false);
2800 i = double_int_lshift (i, offset, HOST_BITS_PER_DOUBLE_INT, false);
2801 o = double_int_ior (double_int_and_not (o, m), i);
2802
2803 combine_merges++;
2804 subst_insn = i3;
2805 subst_low_luid = DF_INSN_LUID (i2);
2806 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2807 i2dest = SET_DEST (temp);
2808 i2dest_killed = dead_or_set_p (i2, i2dest);
2809
2810 /* Replace the source in I2 with the new constant and make the
2811 resulting insn the new pattern for I3. Then skip to where we
2812 validate the pattern. Everything was set up above. */
2813 SUBST (SET_SRC (temp),
2814 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2815
2816 newpat = PATTERN (i2);
2817
2818 /* The dest of I3 has been replaced with the dest of I2. */
2819 changed_i3_dest = 1;
2820 goto validate_replacement;
2821 }
2822 }
2823
2824 #ifndef HAVE_cc0
2825 /* If we have no I1 and I2 looks like:
2826 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2827 (set Y OP)])
2828 make up a dummy I1 that is
2829 (set Y OP)
2830 and change I2 to be
2831 (set (reg:CC X) (compare:CC Y (const_int 0)))
2832
2833 (We can ignore any trailing CLOBBERs.)
2834
2835 This undoes a previous combination and allows us to match a branch-and-
2836 decrement insn. */
2837
2838 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2839 && XVECLEN (PATTERN (i2), 0) >= 2
2840 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2841 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2842 == MODE_CC)
2843 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2844 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2845 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2846 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2847 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2848 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2849 {
2850 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2851 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2852 break;
2853
2854 if (i == 1)
2855 {
2856 /* We make I1 with the same INSN_UID as I2. This gives it
2857 the same DF_INSN_LUID for value tracking. Our fake I1 will
2858 never appear in the insn stream so giving it the same INSN_UID
2859 as I2 will not cause a problem. */
2860
2861 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2862 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2863 INSN_LOCATOR (i2), -1, NULL_RTX);
2864
2865 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2866 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2867 SET_DEST (PATTERN (i1)));
2868 }
2869 }
2870 #endif
2871
2872 /* Verify that I2 and I1 are valid for combining. */
2873 if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2874 || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2875 &i1dest, &i1src))
2876 || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2877 &i0dest, &i0src)))
2878 {
2879 undo_all ();
2880 return 0;
2881 }
2882
2883 /* Record whether I2DEST is used in I2SRC and similarly for the other
2884 cases. Knowing this will help in register status updating below. */
2885 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2886 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2887 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2888 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2889 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2890 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2891 i2dest_killed = dead_or_set_p (i2, i2dest);
2892 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2893 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2894
2895 /* For the earlier insns, determine which of the subsequent ones they
2896 feed. */
2897 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2898 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2899 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2900 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2901 && reg_overlap_mentioned_p (i0dest, i2src))));
2902
2903 /* Ensure that I3's pattern can be the destination of combines. */
2904 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2905 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2906 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2907 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2908 &i3dest_killed))
2909 {
2910 undo_all ();
2911 return 0;
2912 }
2913
2914 /* See if any of the insns is a MULT operation. Unless one is, we will
2915 reject a combination that is, since it must be slower. Be conservative
2916 here. */
2917 if (GET_CODE (i2src) == MULT
2918 || (i1 != 0 && GET_CODE (i1src) == MULT)
2919 || (i0 != 0 && GET_CODE (i0src) == MULT)
2920 || (GET_CODE (PATTERN (i3)) == SET
2921 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2922 have_mult = 1;
2923
2924 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2925 We used to do this EXCEPT in one case: I3 has a post-inc in an
2926 output operand. However, that exception can give rise to insns like
2927 mov r3,(r3)+
2928 which is a famous insn on the PDP-11 where the value of r3 used as the
2929 source was model-dependent. Avoid this sort of thing. */
2930
2931 #if 0
2932 if (!(GET_CODE (PATTERN (i3)) == SET
2933 && REG_P (SET_SRC (PATTERN (i3)))
2934 && MEM_P (SET_DEST (PATTERN (i3)))
2935 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2936 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2937 /* It's not the exception. */
2938 #endif
2939 #ifdef AUTO_INC_DEC
2940 {
2941 rtx link;
2942 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2943 if (REG_NOTE_KIND (link) == REG_INC
2944 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2945 || (i1 != 0
2946 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2947 {
2948 undo_all ();
2949 return 0;
2950 }
2951 }
2952 #endif
2953
2954 /* See if the SETs in I1 or I2 need to be kept around in the merged
2955 instruction: whenever the value set there is still needed past I3.
2956 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2957
2958 For the SET in I1, we have two cases: If I1 and I2 independently
2959 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2960 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2961 in I1 needs to be kept around unless I1DEST dies or is set in either
2962 I2 or I3. The same consideration applies to I0. */
2963
2964 added_sets_2 = !dead_or_set_p (i3, i2dest);
2965
2966 if (i1)
2967 added_sets_1 = !(dead_or_set_p (i3, i1dest)
2968 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
2969 else
2970 added_sets_1 = 0;
2971
2972 if (i0)
2973 added_sets_0 = !(dead_or_set_p (i3, i0dest)
2974 || (i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
2975 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)));
2976 else
2977 added_sets_0 = 0;
2978
2979 /* We are about to copy insns for the case where they need to be kept
2980 around. Check that they can be copied in the merged instruction. */
2981
2982 if (targetm.cannot_copy_insn_p
2983 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
2984 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
2985 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
2986 {
2987 undo_all ();
2988 return 0;
2989 }
2990
2991 /* If the set in I2 needs to be kept around, we must make a copy of
2992 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2993 PATTERN (I2), we are only substituting for the original I1DEST, not into
2994 an already-substituted copy. This also prevents making self-referential
2995 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2996 I2DEST. */
2997
2998 if (added_sets_2)
2999 {
3000 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3001 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
3002 else
3003 i2pat = copy_rtx (PATTERN (i2));
3004 }
3005
3006 if (added_sets_1)
3007 {
3008 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3009 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
3010 else
3011 i1pat = copy_rtx (PATTERN (i1));
3012 }
3013
3014 if (added_sets_0)
3015 {
3016 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3017 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
3018 else
3019 i0pat = copy_rtx (PATTERN (i0));
3020 }
3021
3022 combine_merges++;
3023
3024 /* Substitute in the latest insn for the regs set by the earlier ones. */
3025
3026 maxreg = max_reg_num ();
3027
3028 subst_insn = i3;
3029
3030 #ifndef HAVE_cc0
3031 /* Many machines that don't use CC0 have insns that can both perform an
3032 arithmetic operation and set the condition code. These operations will
3033 be represented as a PARALLEL with the first element of the vector
3034 being a COMPARE of an arithmetic operation with the constant zero.
3035 The second element of the vector will set some pseudo to the result
3036 of the same arithmetic operation. If we simplify the COMPARE, we won't
3037 match such a pattern and so will generate an extra insn. Here we test
3038 for this case, where both the comparison and the operation result are
3039 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3040 I2SRC. Later we will make the PARALLEL that contains I2. */
3041
3042 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3043 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3044 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3045 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3046 {
3047 rtx newpat_dest;
3048 rtx *cc_use_loc = NULL, cc_use_insn = NULL_RTX;
3049 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3050 enum machine_mode compare_mode, orig_compare_mode;
3051 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3052
3053 newpat = PATTERN (i3);
3054 newpat_dest = SET_DEST (newpat);
3055 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3056
3057 if (undobuf.other_insn == 0
3058 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3059 &cc_use_insn)))
3060 {
3061 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3062 compare_code = simplify_compare_const (compare_code,
3063 op0, &op1);
3064 #ifdef CANONICALIZE_COMPARISON
3065 CANONICALIZE_COMPARISON (compare_code, op0, op1);
3066 #endif
3067 }
3068
3069 /* Do the rest only if op1 is const0_rtx, which may be the
3070 result of simplification. */
3071 if (op1 == const0_rtx)
3072 {
3073 /* If a single use of the CC is found, prepare to modify it
3074 when SELECT_CC_MODE returns a new CC-class mode, or when
3075 the above simplify_compare_const() returned a new comparison
3076 operator. undobuf.other_insn is assigned the CC use insn
3077 when modifying it. */
3078 if (cc_use_loc)
3079 {
3080 #ifdef SELECT_CC_MODE
3081 enum machine_mode new_mode
3082 = SELECT_CC_MODE (compare_code, op0, op1);
3083 if (new_mode != orig_compare_mode
3084 && can_change_dest_mode (SET_DEST (newpat),
3085 added_sets_2, new_mode))
3086 {
3087 unsigned int regno = REGNO (newpat_dest);
3088 compare_mode = new_mode;
3089 if (regno < FIRST_PSEUDO_REGISTER)
3090 newpat_dest = gen_rtx_REG (compare_mode, regno);
3091 else
3092 {
3093 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3094 newpat_dest = regno_reg_rtx[regno];
3095 }
3096 }
3097 #endif
3098 /* Cases for modifying the CC-using comparison. */
3099 if (compare_code != orig_compare_code
3100 /* ??? Do we need to verify the zero rtx? */
3101 && XEXP (*cc_use_loc, 1) == const0_rtx)
3102 {
3103 /* Replace cc_use_loc with entire new RTX. */
3104 SUBST (*cc_use_loc,
3105 gen_rtx_fmt_ee (compare_code, compare_mode,
3106 newpat_dest, const0_rtx));
3107 undobuf.other_insn = cc_use_insn;
3108 }
3109 else if (compare_mode != orig_compare_mode)
3110 {
3111 /* Just replace the CC reg with a new mode. */
3112 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3113 undobuf.other_insn = cc_use_insn;
3114 }
3115 }
3116
3117 /* Now we modify the current newpat:
3118 First, SET_DEST(newpat) is updated if the CC mode has been
3119 altered. For targets without SELECT_CC_MODE, this should be
3120 optimized away. */
3121 if (compare_mode != orig_compare_mode)
3122 SUBST (SET_DEST (newpat), newpat_dest);
3123 /* This is always done to propagate i2src into newpat. */
3124 SUBST (SET_SRC (newpat),
3125 gen_rtx_COMPARE (compare_mode, op0, op1));
3126 /* Create new version of i2pat if needed; the below PARALLEL
3127 creation needs this to work correctly. */
3128 if (! rtx_equal_p (i2src, op0))
3129 i2pat = gen_rtx_SET (VOIDmode, i2dest, op0);
3130 i2_is_used = 1;
3131 }
3132 }
3133 #endif
3134
3135 if (i2_is_used == 0)
3136 {
3137 /* It is possible that the source of I2 or I1 may be performing
3138 an unneeded operation, such as a ZERO_EXTEND of something
3139 that is known to have the high part zero. Handle that case
3140 by letting subst look at the inner insns.
3141
3142 Another way to do this would be to have a function that tries
3143 to simplify a single insn instead of merging two or more
3144 insns. We don't do this because of the potential of infinite
3145 loops and because of the potential extra memory required.
3146 However, doing it the way we are is a bit of a kludge and
3147 doesn't catch all cases.
3148
3149 But only do this if -fexpensive-optimizations since it slows
3150 things down and doesn't usually win.
3151
3152 This is not done in the COMPARE case above because the
3153 unmodified I2PAT is used in the PARALLEL and so a pattern
3154 with a modified I2SRC would not match. */
3155
3156 if (flag_expensive_optimizations)
3157 {
3158 /* Pass pc_rtx so no substitutions are done, just
3159 simplifications. */
3160 if (i1)
3161 {
3162 subst_low_luid = DF_INSN_LUID (i1);
3163 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3164 }
3165
3166 subst_low_luid = DF_INSN_LUID (i2);
3167 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3168 }
3169
3170 n_occurrences = 0; /* `subst' counts here */
3171 subst_low_luid = DF_INSN_LUID (i2);
3172
3173 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3174 copy of I2SRC each time we substitute it, in order to avoid creating
3175 self-referential RTL when we will be substituting I1SRC for I1DEST
3176 later. Likewise if I0 feeds into I2, either directly or indirectly
3177 through I1, and I0DEST is in I0SRC. */
3178 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3179 (i1_feeds_i2_n && i1dest_in_i1src)
3180 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3181 && i0dest_in_i0src));
3182 substed_i2 = 1;
3183
3184 /* Record whether I2's body now appears within I3's body. */
3185 i2_is_used = n_occurrences;
3186 }
3187
3188 /* If we already got a failure, don't try to do more. Otherwise, try to
3189 substitute I1 if we have it. */
3190
3191 if (i1 && GET_CODE (newpat) != CLOBBER)
3192 {
3193 /* Check that an autoincrement side-effect on I1 has not been lost.
3194 This happens if I1DEST is mentioned in I2 and dies there, and
3195 has disappeared from the new pattern. */
3196 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3197 && i1_feeds_i2_n
3198 && dead_or_set_p (i2, i1dest)
3199 && !reg_overlap_mentioned_p (i1dest, newpat))
3200 /* Before we can do this substitution, we must redo the test done
3201 above (see detailed comments there) that ensures I1DEST isn't
3202 mentioned in any SETs in NEWPAT that are field assignments. */
3203 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3204 0, 0, 0))
3205 {
3206 undo_all ();
3207 return 0;
3208 }
3209
3210 n_occurrences = 0;
3211 subst_low_luid = DF_INSN_LUID (i1);
3212
3213 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3214 copy of I1SRC each time we substitute it, in order to avoid creating
3215 self-referential RTL when we will be substituting I0SRC for I0DEST
3216 later. */
3217 newpat = subst (newpat, i1dest, i1src, 0, 0,
3218 i0_feeds_i1_n && i0dest_in_i0src);
3219 substed_i1 = 1;
3220
3221 /* Record whether I1's body now appears within I3's body. */
3222 i1_is_used = n_occurrences;
3223 }
3224
3225 /* Likewise for I0 if we have it. */
3226
3227 if (i0 && GET_CODE (newpat) != CLOBBER)
3228 {
3229 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3230 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3231 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3232 && !reg_overlap_mentioned_p (i0dest, newpat))
3233 || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3234 0, 0, 0))
3235 {
3236 undo_all ();
3237 return 0;
3238 }
3239
3240 /* If the following substitution will modify I1SRC, make a copy of it
3241 for the case where it is substituted for I1DEST in I2PAT later. */
3242 if (i0_feeds_i1_n && added_sets_2 && i1_feeds_i2_n)
3243 i1src_copy = copy_rtx (i1src);
3244
3245 n_occurrences = 0;
3246 subst_low_luid = DF_INSN_LUID (i0);
3247 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3248 substed_i0 = 1;
3249 }
3250
3251 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3252 to count all the ways that I2SRC and I1SRC can be used. */
3253 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3254 && i2_is_used + added_sets_2 > 1)
3255 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3256 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3257 > 1))
3258 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3259 && (n_occurrences + added_sets_0
3260 + (added_sets_1 && i0_feeds_i1_n)
3261 + (added_sets_2 && i0_feeds_i2_n)
3262 > 1))
3263 /* Fail if we tried to make a new register. */
3264 || max_reg_num () != maxreg
3265 /* Fail if we couldn't do something and have a CLOBBER. */
3266 || GET_CODE (newpat) == CLOBBER
3267 /* Fail if this new pattern is a MULT and we didn't have one before
3268 at the outer level. */
3269 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3270 && ! have_mult))
3271 {
3272 undo_all ();
3273 return 0;
3274 }
3275
3276 /* If the actions of the earlier insns must be kept
3277 in addition to substituting them into the latest one,
3278 we must make a new PARALLEL for the latest insn
3279 to hold additional the SETs. */
3280
3281 if (added_sets_0 || added_sets_1 || added_sets_2)
3282 {
3283 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3284 combine_extras++;
3285
3286 if (GET_CODE (newpat) == PARALLEL)
3287 {
3288 rtvec old = XVEC (newpat, 0);
3289 total_sets = XVECLEN (newpat, 0) + extra_sets;
3290 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3291 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3292 sizeof (old->elem[0]) * old->num_elem);
3293 }
3294 else
3295 {
3296 rtx old = newpat;
3297 total_sets = 1 + extra_sets;
3298 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3299 XVECEXP (newpat, 0, 0) = old;
3300 }
3301
3302 if (added_sets_0)
3303 XVECEXP (newpat, 0, --total_sets) = i0pat;
3304
3305 if (added_sets_1)
3306 {
3307 rtx t = i1pat;
3308 if (i0_feeds_i1_n)
3309 t = subst (t, i0dest, i0src, 0, 0, 0);
3310
3311 XVECEXP (newpat, 0, --total_sets) = t;
3312 }
3313 if (added_sets_2)
3314 {
3315 rtx t = i2pat;
3316 if (i1_feeds_i2_n)
3317 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3318 i0_feeds_i1_n && i0dest_in_i0src);
3319 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3320 t = subst (t, i0dest, i0src, 0, 0, 0);
3321
3322 XVECEXP (newpat, 0, --total_sets) = t;
3323 }
3324 }
3325
3326 validate_replacement:
3327
3328 /* Note which hard regs this insn has as inputs. */
3329 mark_used_regs_combine (newpat);
3330
3331 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3332 consider splitting this pattern, we might need these clobbers. */
3333 if (i1 && GET_CODE (newpat) == PARALLEL
3334 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3335 {
3336 int len = XVECLEN (newpat, 0);
3337
3338 newpat_vec_with_clobbers = rtvec_alloc (len);
3339 for (i = 0; i < len; i++)
3340 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3341 }
3342
3343 /* Is the result of combination a valid instruction? */
3344 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3345
3346 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3347 the second SET's destination is a register that is unused and isn't
3348 marked as an instruction that might trap in an EH region. In that case,
3349 we just need the first SET. This can occur when simplifying a divmod
3350 insn. We *must* test for this case here because the code below that
3351 splits two independent SETs doesn't handle this case correctly when it
3352 updates the register status.
3353
3354 It's pointless doing this if we originally had two sets, one from
3355 i3, and one from i2. Combining then splitting the parallel results
3356 in the original i2 again plus an invalid insn (which we delete).
3357 The net effect is only to move instructions around, which makes
3358 debug info less accurate.
3359
3360 Also check the case where the first SET's destination is unused.
3361 That would not cause incorrect code, but does cause an unneeded
3362 insn to remain. */
3363
3364 if (insn_code_number < 0
3365 && !(added_sets_2 && i1 == 0)
3366 && GET_CODE (newpat) == PARALLEL
3367 && XVECLEN (newpat, 0) == 2
3368 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3369 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3370 && asm_noperands (newpat) < 0)
3371 {
3372 rtx set0 = XVECEXP (newpat, 0, 0);
3373 rtx set1 = XVECEXP (newpat, 0, 1);
3374
3375 if (((REG_P (SET_DEST (set1))
3376 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3377 || (GET_CODE (SET_DEST (set1)) == SUBREG
3378 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3379 && insn_nothrow_p (i3)
3380 && !side_effects_p (SET_SRC (set1)))
3381 {
3382 newpat = set0;
3383 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3384 }
3385
3386 else if (((REG_P (SET_DEST (set0))
3387 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3388 || (GET_CODE (SET_DEST (set0)) == SUBREG
3389 && find_reg_note (i3, REG_UNUSED,
3390 SUBREG_REG (SET_DEST (set0)))))
3391 && insn_nothrow_p (i3)
3392 && !side_effects_p (SET_SRC (set0)))
3393 {
3394 newpat = set1;
3395 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3396
3397 if (insn_code_number >= 0)
3398 changed_i3_dest = 1;
3399 }
3400 }
3401
3402 /* If we were combining three insns and the result is a simple SET
3403 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3404 insns. There are two ways to do this. It can be split using a
3405 machine-specific method (like when you have an addition of a large
3406 constant) or by combine in the function find_split_point. */
3407
3408 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3409 && asm_noperands (newpat) < 0)
3410 {
3411 rtx parallel, m_split, *split;
3412
3413 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3414 use I2DEST as a scratch register will help. In the latter case,
3415 convert I2DEST to the mode of the source of NEWPAT if we can. */
3416
3417 m_split = combine_split_insns (newpat, i3);
3418
3419 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3420 inputs of NEWPAT. */
3421
3422 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3423 possible to try that as a scratch reg. This would require adding
3424 more code to make it work though. */
3425
3426 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3427 {
3428 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3429
3430 /* First try to split using the original register as a
3431 scratch register. */
3432 parallel = gen_rtx_PARALLEL (VOIDmode,
3433 gen_rtvec (2, newpat,
3434 gen_rtx_CLOBBER (VOIDmode,
3435 i2dest)));
3436 m_split = combine_split_insns (parallel, i3);
3437
3438 /* If that didn't work, try changing the mode of I2DEST if
3439 we can. */
3440 if (m_split == 0
3441 && new_mode != GET_MODE (i2dest)
3442 && new_mode != VOIDmode
3443 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3444 {
3445 enum machine_mode old_mode = GET_MODE (i2dest);
3446 rtx ni2dest;
3447
3448 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3449 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3450 else
3451 {
3452 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3453 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3454 }
3455
3456 parallel = (gen_rtx_PARALLEL
3457 (VOIDmode,
3458 gen_rtvec (2, newpat,
3459 gen_rtx_CLOBBER (VOIDmode,
3460 ni2dest))));
3461 m_split = combine_split_insns (parallel, i3);
3462
3463 if (m_split == 0
3464 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3465 {
3466 struct undo *buf;
3467
3468 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3469 buf = undobuf.undos;
3470 undobuf.undos = buf->next;
3471 buf->next = undobuf.frees;
3472 undobuf.frees = buf;
3473 }
3474 }
3475
3476 i2scratch = m_split != 0;
3477 }
3478
3479 /* If recog_for_combine has discarded clobbers, try to use them
3480 again for the split. */
3481 if (m_split == 0 && newpat_vec_with_clobbers)
3482 {
3483 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3484 m_split = combine_split_insns (parallel, i3);
3485 }
3486
3487 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3488 {
3489 m_split = PATTERN (m_split);
3490 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3491 if (insn_code_number >= 0)
3492 newpat = m_split;
3493 }
3494 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3495 && (next_nonnote_nondebug_insn (i2) == i3
3496 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3497 {
3498 rtx i2set, i3set;
3499 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3500 newi2pat = PATTERN (m_split);
3501
3502 i3set = single_set (NEXT_INSN (m_split));
3503 i2set = single_set (m_split);
3504
3505 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3506
3507 /* If I2 or I3 has multiple SETs, we won't know how to track
3508 register status, so don't use these insns. If I2's destination
3509 is used between I2 and I3, we also can't use these insns. */
3510
3511 if (i2_code_number >= 0 && i2set && i3set
3512 && (next_nonnote_nondebug_insn (i2) == i3
3513 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3514 insn_code_number = recog_for_combine (&newi3pat, i3,
3515 &new_i3_notes);
3516 if (insn_code_number >= 0)
3517 newpat = newi3pat;
3518
3519 /* It is possible that both insns now set the destination of I3.
3520 If so, we must show an extra use of it. */
3521
3522 if (insn_code_number >= 0)
3523 {
3524 rtx new_i3_dest = SET_DEST (i3set);
3525 rtx new_i2_dest = SET_DEST (i2set);
3526
3527 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3528 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3529 || GET_CODE (new_i3_dest) == SUBREG)
3530 new_i3_dest = XEXP (new_i3_dest, 0);
3531
3532 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3533 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3534 || GET_CODE (new_i2_dest) == SUBREG)
3535 new_i2_dest = XEXP (new_i2_dest, 0);
3536
3537 if (REG_P (new_i3_dest)
3538 && REG_P (new_i2_dest)
3539 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3540 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3541 }
3542 }
3543
3544 /* If we can split it and use I2DEST, go ahead and see if that
3545 helps things be recognized. Verify that none of the registers
3546 are set between I2 and I3. */
3547 if (insn_code_number < 0
3548 && (split = find_split_point (&newpat, i3, false)) != 0
3549 #ifdef HAVE_cc0
3550 && REG_P (i2dest)
3551 #endif
3552 /* We need I2DEST in the proper mode. If it is a hard register
3553 or the only use of a pseudo, we can change its mode.
3554 Make sure we don't change a hard register to have a mode that
3555 isn't valid for it, or change the number of registers. */
3556 && (GET_MODE (*split) == GET_MODE (i2dest)
3557 || GET_MODE (*split) == VOIDmode
3558 || can_change_dest_mode (i2dest, added_sets_2,
3559 GET_MODE (*split)))
3560 && (next_nonnote_nondebug_insn (i2) == i3
3561 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3562 /* We can't overwrite I2DEST if its value is still used by
3563 NEWPAT. */
3564 && ! reg_referenced_p (i2dest, newpat))
3565 {
3566 rtx newdest = i2dest;
3567 enum rtx_code split_code = GET_CODE (*split);
3568 enum machine_mode split_mode = GET_MODE (*split);
3569 bool subst_done = false;
3570 newi2pat = NULL_RTX;
3571
3572 i2scratch = true;
3573
3574 /* *SPLIT may be part of I2SRC, so make sure we have the
3575 original expression around for later debug processing.
3576 We should not need I2SRC any more in other cases. */
3577 if (MAY_HAVE_DEBUG_INSNS)
3578 i2src = copy_rtx (i2src);
3579 else
3580 i2src = NULL;
3581
3582 /* Get NEWDEST as a register in the proper mode. We have already
3583 validated that we can do this. */
3584 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3585 {
3586 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3587 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3588 else
3589 {
3590 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3591 newdest = regno_reg_rtx[REGNO (i2dest)];
3592 }
3593 }
3594
3595 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3596 an ASHIFT. This can occur if it was inside a PLUS and hence
3597 appeared to be a memory address. This is a kludge. */
3598 if (split_code == MULT
3599 && CONST_INT_P (XEXP (*split, 1))
3600 && INTVAL (XEXP (*split, 1)) > 0
3601 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3602 {
3603 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3604 XEXP (*split, 0), GEN_INT (i)));
3605 /* Update split_code because we may not have a multiply
3606 anymore. */
3607 split_code = GET_CODE (*split);
3608 }
3609
3610 #ifdef INSN_SCHEDULING
3611 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3612 be written as a ZERO_EXTEND. */
3613 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3614 {
3615 #ifdef LOAD_EXTEND_OP
3616 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3617 what it really is. */
3618 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3619 == SIGN_EXTEND)
3620 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3621 SUBREG_REG (*split)));
3622 else
3623 #endif
3624 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3625 SUBREG_REG (*split)));
3626 }
3627 #endif
3628
3629 /* Attempt to split binary operators using arithmetic identities. */
3630 if (BINARY_P (SET_SRC (newpat))
3631 && split_mode == GET_MODE (SET_SRC (newpat))
3632 && ! side_effects_p (SET_SRC (newpat)))
3633 {
3634 rtx setsrc = SET_SRC (newpat);
3635 enum machine_mode mode = GET_MODE (setsrc);
3636 enum rtx_code code = GET_CODE (setsrc);
3637 rtx src_op0 = XEXP (setsrc, 0);
3638 rtx src_op1 = XEXP (setsrc, 1);
3639
3640 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3641 if (rtx_equal_p (src_op0, src_op1))
3642 {
3643 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3644 SUBST (XEXP (setsrc, 0), newdest);
3645 SUBST (XEXP (setsrc, 1), newdest);
3646 subst_done = true;
3647 }
3648 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3649 else if ((code == PLUS || code == MULT)
3650 && GET_CODE (src_op0) == code
3651 && GET_CODE (XEXP (src_op0, 0)) == code
3652 && (INTEGRAL_MODE_P (mode)
3653 || (FLOAT_MODE_P (mode)
3654 && flag_unsafe_math_optimizations)))
3655 {
3656 rtx p = XEXP (XEXP (src_op0, 0), 0);
3657 rtx q = XEXP (XEXP (src_op0, 0), 1);
3658 rtx r = XEXP (src_op0, 1);
3659 rtx s = src_op1;
3660
3661 /* Split both "((X op Y) op X) op Y" and
3662 "((X op Y) op Y) op X" as "T op T" where T is
3663 "X op Y". */
3664 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3665 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3666 {
3667 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3668 XEXP (src_op0, 0));
3669 SUBST (XEXP (setsrc, 0), newdest);
3670 SUBST (XEXP (setsrc, 1), newdest);
3671 subst_done = true;
3672 }
3673 /* Split "((X op X) op Y) op Y)" as "T op T" where
3674 T is "X op Y". */
3675 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3676 {
3677 rtx tmp = simplify_gen_binary (code, mode, p, r);
3678 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3679 SUBST (XEXP (setsrc, 0), newdest);
3680 SUBST (XEXP (setsrc, 1), newdest);
3681 subst_done = true;
3682 }
3683 }
3684 }
3685
3686 if (!subst_done)
3687 {
3688 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3689 SUBST (*split, newdest);
3690 }
3691
3692 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3693
3694 /* recog_for_combine might have added CLOBBERs to newi2pat.
3695 Make sure NEWPAT does not depend on the clobbered regs. */
3696 if (GET_CODE (newi2pat) == PARALLEL)
3697 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3698 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3699 {
3700 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3701 if (reg_overlap_mentioned_p (reg, newpat))
3702 {
3703 undo_all ();
3704 return 0;
3705 }
3706 }
3707
3708 /* If the split point was a MULT and we didn't have one before,
3709 don't use one now. */
3710 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3711 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3712 }
3713 }
3714
3715 /* Check for a case where we loaded from memory in a narrow mode and
3716 then sign extended it, but we need both registers. In that case,
3717 we have a PARALLEL with both loads from the same memory location.
3718 We can split this into a load from memory followed by a register-register
3719 copy. This saves at least one insn, more if register allocation can
3720 eliminate the copy.
3721
3722 We cannot do this if the destination of the first assignment is a
3723 condition code register or cc0. We eliminate this case by making sure
3724 the SET_DEST and SET_SRC have the same mode.
3725
3726 We cannot do this if the destination of the second assignment is
3727 a register that we have already assumed is zero-extended. Similarly
3728 for a SUBREG of such a register. */
3729
3730 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3731 && GET_CODE (newpat) == PARALLEL
3732 && XVECLEN (newpat, 0) == 2
3733 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3734 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3735 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3736 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3737 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3738 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3739 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3740 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3741 DF_INSN_LUID (i2))
3742 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3743 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3744 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3745 (REG_P (temp)
3746 && VEC_index (reg_stat_type, reg_stat,
3747 REGNO (temp))->nonzero_bits != 0
3748 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3749 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3750 && (VEC_index (reg_stat_type, reg_stat,
3751 REGNO (temp))->nonzero_bits
3752 != GET_MODE_MASK (word_mode))))
3753 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3754 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3755 (REG_P (temp)
3756 && VEC_index (reg_stat_type, reg_stat,
3757 REGNO (temp))->nonzero_bits != 0
3758 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3759 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3760 && (VEC_index (reg_stat_type, reg_stat,
3761 REGNO (temp))->nonzero_bits
3762 != GET_MODE_MASK (word_mode)))))
3763 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3764 SET_SRC (XVECEXP (newpat, 0, 1)))
3765 && ! find_reg_note (i3, REG_UNUSED,
3766 SET_DEST (XVECEXP (newpat, 0, 0))))
3767 {
3768 rtx ni2dest;
3769
3770 newi2pat = XVECEXP (newpat, 0, 0);
3771 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3772 newpat = XVECEXP (newpat, 0, 1);
3773 SUBST (SET_SRC (newpat),
3774 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3775 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3776
3777 if (i2_code_number >= 0)
3778 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3779
3780 if (insn_code_number >= 0)
3781 swap_i2i3 = 1;
3782 }
3783
3784 /* Similarly, check for a case where we have a PARALLEL of two independent
3785 SETs but we started with three insns. In this case, we can do the sets
3786 as two separate insns. This case occurs when some SET allows two
3787 other insns to combine, but the destination of that SET is still live. */
3788
3789 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3790 && GET_CODE (newpat) == PARALLEL
3791 && XVECLEN (newpat, 0) == 2
3792 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3793 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3794 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3795 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3796 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3797 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3798 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3799 XVECEXP (newpat, 0, 0))
3800 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3801 XVECEXP (newpat, 0, 1))
3802 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3803 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3804 {
3805 /* Normally, it doesn't matter which of the two is done first,
3806 but the one that references cc0 can't be the second, and
3807 one which uses any regs/memory set in between i2 and i3 can't
3808 be first. */
3809 if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3810 DF_INSN_LUID (i2))
3811 #ifdef HAVE_cc0
3812 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3813 #endif
3814 )
3815 {
3816 newi2pat = XVECEXP (newpat, 0, 1);
3817 newpat = XVECEXP (newpat, 0, 0);
3818 }
3819 else if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 0)),
3820 DF_INSN_LUID (i2))
3821 #ifdef HAVE_cc0
3822 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1))
3823 #endif
3824 )
3825 {
3826 newi2pat = XVECEXP (newpat, 0, 0);
3827 newpat = XVECEXP (newpat, 0, 1);
3828 }
3829 else
3830 {
3831 undo_all ();
3832 return 0;
3833 }
3834
3835 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3836
3837 if (i2_code_number >= 0)
3838 {
3839 /* recog_for_combine might have added CLOBBERs to newi2pat.
3840 Make sure NEWPAT does not depend on the clobbered regs. */
3841 if (GET_CODE (newi2pat) == PARALLEL)
3842 {
3843 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3844 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3845 {
3846 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3847 if (reg_overlap_mentioned_p (reg, newpat))
3848 {
3849 undo_all ();
3850 return 0;
3851 }
3852 }
3853 }
3854
3855 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3856 }
3857 }
3858
3859 /* If it still isn't recognized, fail and change things back the way they
3860 were. */
3861 if ((insn_code_number < 0
3862 /* Is the result a reasonable ASM_OPERANDS? */
3863 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3864 {
3865 undo_all ();
3866 return 0;
3867 }
3868
3869 /* If we had to change another insn, make sure it is valid also. */
3870 if (undobuf.other_insn)
3871 {
3872 CLEAR_HARD_REG_SET (newpat_used_regs);
3873
3874 other_pat = PATTERN (undobuf.other_insn);
3875 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3876 &new_other_notes);
3877
3878 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3879 {
3880 undo_all ();
3881 return 0;
3882 }
3883 }
3884
3885 #ifdef HAVE_cc0
3886 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3887 they are adjacent to each other or not. */
3888 {
3889 rtx p = prev_nonnote_insn (i3);
3890 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3891 && sets_cc0_p (newi2pat))
3892 {
3893 undo_all ();
3894 return 0;
3895 }
3896 }
3897 #endif
3898
3899 /* Only allow this combination if insn_rtx_costs reports that the
3900 replacement instructions are cheaper than the originals. */
3901 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3902 {
3903 undo_all ();
3904 return 0;
3905 }
3906
3907 if (MAY_HAVE_DEBUG_INSNS)
3908 {
3909 struct undo *undo;
3910
3911 for (undo = undobuf.undos; undo; undo = undo->next)
3912 if (undo->kind == UNDO_MODE)
3913 {
3914 rtx reg = *undo->where.r;
3915 enum machine_mode new_mode = GET_MODE (reg);
3916 enum machine_mode old_mode = undo->old_contents.m;
3917
3918 /* Temporarily revert mode back. */
3919 adjust_reg_mode (reg, old_mode);
3920
3921 if (reg == i2dest && i2scratch)
3922 {
3923 /* If we used i2dest as a scratch register with a
3924 different mode, substitute it for the original
3925 i2src while its original mode is temporarily
3926 restored, and then clear i2scratch so that we don't
3927 do it again later. */
3928 propagate_for_debug (i2, last_combined_insn, reg, i2src);
3929 i2scratch = false;
3930 /* Put back the new mode. */
3931 adjust_reg_mode (reg, new_mode);
3932 }
3933 else
3934 {
3935 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3936 rtx first, last;
3937
3938 if (reg == i2dest)
3939 {
3940 first = i2;
3941 last = last_combined_insn;
3942 }
3943 else
3944 {
3945 first = i3;
3946 last = undobuf.other_insn;
3947 gcc_assert (last);
3948 if (DF_INSN_LUID (last)
3949 < DF_INSN_LUID (last_combined_insn))
3950 last = last_combined_insn;
3951 }
3952
3953 /* We're dealing with a reg that changed mode but not
3954 meaning, so we want to turn it into a subreg for
3955 the new mode. However, because of REG sharing and
3956 because its mode had already changed, we have to do
3957 it in two steps. First, replace any debug uses of
3958 reg, with its original mode temporarily restored,
3959 with this copy we have created; then, replace the
3960 copy with the SUBREG of the original shared reg,
3961 once again changed to the new mode. */
3962 propagate_for_debug (first, last, reg, tempreg);
3963 adjust_reg_mode (reg, new_mode);
3964 propagate_for_debug (first, last, tempreg,
3965 lowpart_subreg (old_mode, reg, new_mode));
3966 }
3967 }
3968 }
3969
3970 /* If we will be able to accept this, we have made a
3971 change to the destination of I3. This requires us to
3972 do a few adjustments. */
3973
3974 if (changed_i3_dest)
3975 {
3976 PATTERN (i3) = newpat;
3977 adjust_for_new_dest (i3);
3978 }
3979
3980 /* We now know that we can do this combination. Merge the insns and
3981 update the status of registers and LOG_LINKS. */
3982
3983 if (undobuf.other_insn)
3984 {
3985 rtx note, next;
3986
3987 PATTERN (undobuf.other_insn) = other_pat;
3988
3989 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3990 are still valid. Then add any non-duplicate notes added by
3991 recog_for_combine. */
3992 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3993 {
3994 next = XEXP (note, 1);
3995
3996 if (REG_NOTE_KIND (note) == REG_UNUSED
3997 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3998 remove_note (undobuf.other_insn, note);
3999 }
4000
4001 distribute_notes (new_other_notes, undobuf.other_insn,
4002 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
4003 NULL_RTX);
4004 }
4005
4006 if (swap_i2i3)
4007 {
4008 rtx insn;
4009 struct insn_link *link;
4010 rtx ni2dest;
4011
4012 /* I3 now uses what used to be its destination and which is now
4013 I2's destination. This requires us to do a few adjustments. */
4014 PATTERN (i3) = newpat;
4015 adjust_for_new_dest (i3);
4016
4017 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4018 so we still will.
4019
4020 However, some later insn might be using I2's dest and have
4021 a LOG_LINK pointing at I3. We must remove this link.
4022 The simplest way to remove the link is to point it at I1,
4023 which we know will be a NOTE. */
4024
4025 /* newi2pat is usually a SET here; however, recog_for_combine might
4026 have added some clobbers. */
4027 if (GET_CODE (newi2pat) == PARALLEL)
4028 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4029 else
4030 ni2dest = SET_DEST (newi2pat);
4031
4032 for (insn = NEXT_INSN (i3);
4033 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4034 || insn != BB_HEAD (this_basic_block->next_bb));
4035 insn = NEXT_INSN (insn))
4036 {
4037 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4038 {
4039 FOR_EACH_LOG_LINK (link, insn)
4040 if (link->insn == i3)
4041 link->insn = i1;
4042
4043 break;
4044 }
4045 }
4046 }
4047
4048 {
4049 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4050 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4051 rtx midnotes = 0;
4052 int from_luid;
4053 /* Compute which registers we expect to eliminate. newi2pat may be setting
4054 either i3dest or i2dest, so we must check it. Also, i1dest may be the
4055 same as i3dest, in which case newi2pat may be setting i1dest. */
4056 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4057 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4058 || !i2dest_killed
4059 ? 0 : i2dest);
4060 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4061 || (newi2pat && reg_set_p (i1dest, newi2pat))
4062 || !i1dest_killed
4063 ? 0 : i1dest);
4064 rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
4065 || (newi2pat && reg_set_p (i0dest, newi2pat))
4066 || !i0dest_killed
4067 ? 0 : i0dest);
4068
4069 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4070 clear them. */
4071 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4072 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4073 if (i1)
4074 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4075 if (i0)
4076 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4077
4078 /* Ensure that we do not have something that should not be shared but
4079 occurs multiple times in the new insns. Check this by first
4080 resetting all the `used' flags and then copying anything is shared. */
4081
4082 reset_used_flags (i3notes);
4083 reset_used_flags (i2notes);
4084 reset_used_flags (i1notes);
4085 reset_used_flags (i0notes);
4086 reset_used_flags (newpat);
4087 reset_used_flags (newi2pat);
4088 if (undobuf.other_insn)
4089 reset_used_flags (PATTERN (undobuf.other_insn));
4090
4091 i3notes = copy_rtx_if_shared (i3notes);
4092 i2notes = copy_rtx_if_shared (i2notes);
4093 i1notes = copy_rtx_if_shared (i1notes);
4094 i0notes = copy_rtx_if_shared (i0notes);
4095 newpat = copy_rtx_if_shared (newpat);
4096 newi2pat = copy_rtx_if_shared (newi2pat);
4097 if (undobuf.other_insn)
4098 reset_used_flags (PATTERN (undobuf.other_insn));
4099
4100 INSN_CODE (i3) = insn_code_number;
4101 PATTERN (i3) = newpat;
4102
4103 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4104 {
4105 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4106
4107 reset_used_flags (call_usage);
4108 call_usage = copy_rtx (call_usage);
4109
4110 if (substed_i2)
4111 {
4112 /* I2SRC must still be meaningful at this point. Some splitting
4113 operations can invalidate I2SRC, but those operations do not
4114 apply to calls. */
4115 gcc_assert (i2src);
4116 replace_rtx (call_usage, i2dest, i2src);
4117 }
4118
4119 if (substed_i1)
4120 replace_rtx (call_usage, i1dest, i1src);
4121 if (substed_i0)
4122 replace_rtx (call_usage, i0dest, i0src);
4123
4124 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4125 }
4126
4127 if (undobuf.other_insn)
4128 INSN_CODE (undobuf.other_insn) = other_code_number;
4129
4130 /* We had one special case above where I2 had more than one set and
4131 we replaced a destination of one of those sets with the destination
4132 of I3. In that case, we have to update LOG_LINKS of insns later
4133 in this basic block. Note that this (expensive) case is rare.
4134
4135 Also, in this case, we must pretend that all REG_NOTEs for I2
4136 actually came from I3, so that REG_UNUSED notes from I2 will be
4137 properly handled. */
4138
4139 if (i3_subst_into_i2)
4140 {
4141 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4142 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4143 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4144 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4145 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4146 && ! find_reg_note (i2, REG_UNUSED,
4147 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4148 for (temp = NEXT_INSN (i2);
4149 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4150 || BB_HEAD (this_basic_block) != temp);
4151 temp = NEXT_INSN (temp))
4152 if (temp != i3 && INSN_P (temp))
4153 FOR_EACH_LOG_LINK (link, temp)
4154 if (link->insn == i2)
4155 link->insn = i3;
4156
4157 if (i3notes)
4158 {
4159 rtx link = i3notes;
4160 while (XEXP (link, 1))
4161 link = XEXP (link, 1);
4162 XEXP (link, 1) = i2notes;
4163 }
4164 else
4165 i3notes = i2notes;
4166 i2notes = 0;
4167 }
4168
4169 LOG_LINKS (i3) = NULL;
4170 REG_NOTES (i3) = 0;
4171 LOG_LINKS (i2) = NULL;
4172 REG_NOTES (i2) = 0;
4173
4174 if (newi2pat)
4175 {
4176 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4177 propagate_for_debug (i2, last_combined_insn, i2dest, i2src);
4178 INSN_CODE (i2) = i2_code_number;
4179 PATTERN (i2) = newi2pat;
4180 }
4181 else
4182 {
4183 if (MAY_HAVE_DEBUG_INSNS && i2src)
4184 propagate_for_debug (i2, last_combined_insn, i2dest, i2src);
4185 SET_INSN_DELETED (i2);
4186 }
4187
4188 if (i1)
4189 {
4190 LOG_LINKS (i1) = NULL;
4191 REG_NOTES (i1) = 0;
4192 if (MAY_HAVE_DEBUG_INSNS)
4193 propagate_for_debug (i1, last_combined_insn, i1dest, i1src);
4194 SET_INSN_DELETED (i1);
4195 }
4196
4197 if (i0)
4198 {
4199 LOG_LINKS (i0) = NULL;
4200 REG_NOTES (i0) = 0;
4201 if (MAY_HAVE_DEBUG_INSNS)
4202 propagate_for_debug (i0, last_combined_insn, i0dest, i0src);
4203 SET_INSN_DELETED (i0);
4204 }
4205
4206 /* Get death notes for everything that is now used in either I3 or
4207 I2 and used to die in a previous insn. If we built two new
4208 patterns, move from I1 to I2 then I2 to I3 so that we get the
4209 proper movement on registers that I2 modifies. */
4210
4211 if (i0)
4212 from_luid = DF_INSN_LUID (i0);
4213 else if (i1)
4214 from_luid = DF_INSN_LUID (i1);
4215 else
4216 from_luid = DF_INSN_LUID (i2);
4217 if (newi2pat)
4218 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4219 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4220
4221 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4222 if (i3notes)
4223 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4224 elim_i2, elim_i1, elim_i0);
4225 if (i2notes)
4226 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4227 elim_i2, elim_i1, elim_i0);
4228 if (i1notes)
4229 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4230 elim_i2, elim_i1, elim_i0);
4231 if (i0notes)
4232 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4233 elim_i2, elim_i1, elim_i0);
4234 if (midnotes)
4235 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4236 elim_i2, elim_i1, elim_i0);
4237
4238 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4239 know these are REG_UNUSED and want them to go to the desired insn,
4240 so we always pass it as i3. */
4241
4242 if (newi2pat && new_i2_notes)
4243 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4244 NULL_RTX);
4245
4246 if (new_i3_notes)
4247 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4248 NULL_RTX);
4249
4250 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4251 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4252 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4253 in that case, it might delete I2. Similarly for I2 and I1.
4254 Show an additional death due to the REG_DEAD note we make here. If
4255 we discard it in distribute_notes, we will decrement it again. */
4256
4257 if (i3dest_killed)
4258 {
4259 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4260 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4261 NULL_RTX),
4262 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1, elim_i0);
4263 else
4264 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4265 NULL_RTX),
4266 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4267 elim_i2, elim_i1, elim_i0);
4268 }
4269
4270 if (i2dest_in_i2src)
4271 {
4272 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4273 if (newi2pat && reg_set_p (i2dest, newi2pat))
4274 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4275 NULL_RTX, NULL_RTX);
4276 else
4277 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4278 NULL_RTX, NULL_RTX, NULL_RTX);
4279 }
4280
4281 if (i1dest_in_i1src)
4282 {
4283 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4284 if (newi2pat && reg_set_p (i1dest, newi2pat))
4285 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4286 NULL_RTX, NULL_RTX);
4287 else
4288 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4289 NULL_RTX, NULL_RTX, NULL_RTX);
4290 }
4291
4292 if (i0dest_in_i0src)
4293 {
4294 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4295 if (newi2pat && reg_set_p (i0dest, newi2pat))
4296 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4297 NULL_RTX, NULL_RTX);
4298 else
4299 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4300 NULL_RTX, NULL_RTX, NULL_RTX);
4301 }
4302
4303 distribute_links (i3links);
4304 distribute_links (i2links);
4305 distribute_links (i1links);
4306 distribute_links (i0links);
4307
4308 if (REG_P (i2dest))
4309 {
4310 struct insn_link *link;
4311 rtx i2_insn = 0, i2_val = 0, set;
4312
4313 /* The insn that used to set this register doesn't exist, and
4314 this life of the register may not exist either. See if one of
4315 I3's links points to an insn that sets I2DEST. If it does,
4316 that is now the last known value for I2DEST. If we don't update
4317 this and I2 set the register to a value that depended on its old
4318 contents, we will get confused. If this insn is used, thing
4319 will be set correctly in combine_instructions. */
4320 FOR_EACH_LOG_LINK (link, i3)
4321 if ((set = single_set (link->insn)) != 0
4322 && rtx_equal_p (i2dest, SET_DEST (set)))
4323 i2_insn = link->insn, i2_val = SET_SRC (set);
4324
4325 record_value_for_reg (i2dest, i2_insn, i2_val);
4326
4327 /* If the reg formerly set in I2 died only once and that was in I3,
4328 zero its use count so it won't make `reload' do any work. */
4329 if (! added_sets_2
4330 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4331 && ! i2dest_in_i2src)
4332 INC_REG_N_SETS (REGNO (i2dest), -1);
4333 }
4334
4335 if (i1 && REG_P (i1dest))
4336 {
4337 struct insn_link *link;
4338 rtx i1_insn = 0, i1_val = 0, set;
4339
4340 FOR_EACH_LOG_LINK (link, i3)
4341 if ((set = single_set (link->insn)) != 0
4342 && rtx_equal_p (i1dest, SET_DEST (set)))
4343 i1_insn = link->insn, i1_val = SET_SRC (set);
4344
4345 record_value_for_reg (i1dest, i1_insn, i1_val);
4346
4347 if (! added_sets_1 && ! i1dest_in_i1src)
4348 INC_REG_N_SETS (REGNO (i1dest), -1);
4349 }
4350
4351 if (i0 && REG_P (i0dest))
4352 {
4353 struct insn_link *link;
4354 rtx i0_insn = 0, i0_val = 0, set;
4355
4356 FOR_EACH_LOG_LINK (link, i3)
4357 if ((set = single_set (link->insn)) != 0
4358 && rtx_equal_p (i0dest, SET_DEST (set)))
4359 i0_insn = link->insn, i0_val = SET_SRC (set);
4360
4361 record_value_for_reg (i0dest, i0_insn, i0_val);
4362
4363 if (! added_sets_0 && ! i0dest_in_i0src)
4364 INC_REG_N_SETS (REGNO (i0dest), -1);
4365 }
4366
4367 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4368 been made to this insn. The order of
4369 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
4370 can affect nonzero_bits of newpat */
4371 if (newi2pat)
4372 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4373 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4374 }
4375
4376 if (undobuf.other_insn != NULL_RTX)
4377 {
4378 if (dump_file)
4379 {
4380 fprintf (dump_file, "modifying other_insn ");
4381 dump_insn_slim (dump_file, undobuf.other_insn);
4382 }
4383 df_insn_rescan (undobuf.other_insn);
4384 }
4385
4386 if (i0 && !(NOTE_P(i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4387 {
4388 if (dump_file)
4389 {
4390 fprintf (dump_file, "modifying insn i1 ");
4391 dump_insn_slim (dump_file, i0);
4392 }
4393 df_insn_rescan (i0);
4394 }
4395
4396 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4397 {
4398 if (dump_file)
4399 {
4400 fprintf (dump_file, "modifying insn i1 ");
4401 dump_insn_slim (dump_file, i1);
4402 }
4403 df_insn_rescan (i1);
4404 }
4405
4406 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4407 {
4408 if (dump_file)
4409 {
4410 fprintf (dump_file, "modifying insn i2 ");
4411 dump_insn_slim (dump_file, i2);
4412 }
4413 df_insn_rescan (i2);
4414 }
4415
4416 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4417 {
4418 if (dump_file)
4419 {
4420 fprintf (dump_file, "modifying insn i3 ");
4421 dump_insn_slim (dump_file, i3);
4422 }
4423 df_insn_rescan (i3);
4424 }
4425
4426 /* Set new_direct_jump_p if a new return or simple jump instruction
4427 has been created. Adjust the CFG accordingly. */
4428
4429 if (returnjump_p (i3) || any_uncondjump_p (i3))
4430 {
4431 *new_direct_jump_p = 1;
4432 mark_jump_label (PATTERN (i3), i3, 0);
4433 update_cfg_for_uncondjump (i3);
4434 }
4435
4436 if (undobuf.other_insn != NULL_RTX
4437 && (returnjump_p (undobuf.other_insn)
4438 || any_uncondjump_p (undobuf.other_insn)))
4439 {
4440 *new_direct_jump_p = 1;
4441 update_cfg_for_uncondjump (undobuf.other_insn);
4442 }
4443
4444 /* A noop might also need cleaning up of CFG, if it comes from the
4445 simplification of a jump. */
4446 if (JUMP_P (i3)
4447 && GET_CODE (newpat) == SET
4448 && SET_SRC (newpat) == pc_rtx
4449 && SET_DEST (newpat) == pc_rtx)
4450 {
4451 *new_direct_jump_p = 1;
4452 update_cfg_for_uncondjump (i3);
4453 }
4454
4455 if (undobuf.other_insn != NULL_RTX
4456 && JUMP_P (undobuf.other_insn)
4457 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4458 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4459 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4460 {
4461 *new_direct_jump_p = 1;
4462 update_cfg_for_uncondjump (undobuf.other_insn);
4463 }
4464
4465 combine_successes++;
4466 undo_commit ();
4467
4468 if (added_links_insn
4469 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4470 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4471 return added_links_insn;
4472 else
4473 return newi2pat ? i2 : i3;
4474 }
4475 \f
4476 /* Undo all the modifications recorded in undobuf. */
4477
4478 static void
4479 undo_all (void)
4480 {
4481 struct undo *undo, *next;
4482
4483 for (undo = undobuf.undos; undo; undo = next)
4484 {
4485 next = undo->next;
4486 switch (undo->kind)
4487 {
4488 case UNDO_RTX:
4489 *undo->where.r = undo->old_contents.r;
4490 break;
4491 case UNDO_INT:
4492 *undo->where.i = undo->old_contents.i;
4493 break;
4494 case UNDO_MODE:
4495 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4496 break;
4497 default:
4498 gcc_unreachable ();
4499 }
4500
4501 undo->next = undobuf.frees;
4502 undobuf.frees = undo;
4503 }
4504
4505 undobuf.undos = 0;
4506 }
4507
4508 /* We've committed to accepting the changes we made. Move all
4509 of the undos to the free list. */
4510
4511 static void
4512 undo_commit (void)
4513 {
4514 struct undo *undo, *next;
4515
4516 for (undo = undobuf.undos; undo; undo = next)
4517 {
4518 next = undo->next;
4519 undo->next = undobuf.frees;
4520 undobuf.frees = undo;
4521 }
4522 undobuf.undos = 0;
4523 }
4524 \f
4525 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4526 where we have an arithmetic expression and return that point. LOC will
4527 be inside INSN.
4528
4529 try_combine will call this function to see if an insn can be split into
4530 two insns. */
4531
4532 static rtx *
4533 find_split_point (rtx *loc, rtx insn, bool set_src)
4534 {
4535 rtx x = *loc;
4536 enum rtx_code code = GET_CODE (x);
4537 rtx *split;
4538 unsigned HOST_WIDE_INT len = 0;
4539 HOST_WIDE_INT pos = 0;
4540 int unsignedp = 0;
4541 rtx inner = NULL_RTX;
4542
4543 /* First special-case some codes. */
4544 switch (code)
4545 {
4546 case SUBREG:
4547 #ifdef INSN_SCHEDULING
4548 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4549 point. */
4550 if (MEM_P (SUBREG_REG (x)))
4551 return loc;
4552 #endif
4553 return find_split_point (&SUBREG_REG (x), insn, false);
4554
4555 case MEM:
4556 #ifdef HAVE_lo_sum
4557 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4558 using LO_SUM and HIGH. */
4559 if (GET_CODE (XEXP (x, 0)) == CONST
4560 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4561 {
4562 enum machine_mode address_mode
4563 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
4564
4565 SUBST (XEXP (x, 0),
4566 gen_rtx_LO_SUM (address_mode,
4567 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4568 XEXP (x, 0)));
4569 return &XEXP (XEXP (x, 0), 0);
4570 }
4571 #endif
4572
4573 /* If we have a PLUS whose second operand is a constant and the
4574 address is not valid, perhaps will can split it up using
4575 the machine-specific way to split large constants. We use
4576 the first pseudo-reg (one of the virtual regs) as a placeholder;
4577 it will not remain in the result. */
4578 if (GET_CODE (XEXP (x, 0)) == PLUS
4579 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4580 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4581 MEM_ADDR_SPACE (x)))
4582 {
4583 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4584 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4585 XEXP (x, 0)),
4586 subst_insn);
4587
4588 /* This should have produced two insns, each of which sets our
4589 placeholder. If the source of the second is a valid address,
4590 we can make put both sources together and make a split point
4591 in the middle. */
4592
4593 if (seq
4594 && NEXT_INSN (seq) != NULL_RTX
4595 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4596 && NONJUMP_INSN_P (seq)
4597 && GET_CODE (PATTERN (seq)) == SET
4598 && SET_DEST (PATTERN (seq)) == reg
4599 && ! reg_mentioned_p (reg,
4600 SET_SRC (PATTERN (seq)))
4601 && NONJUMP_INSN_P (NEXT_INSN (seq))
4602 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4603 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4604 && memory_address_addr_space_p
4605 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4606 MEM_ADDR_SPACE (x)))
4607 {
4608 rtx src1 = SET_SRC (PATTERN (seq));
4609 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4610
4611 /* Replace the placeholder in SRC2 with SRC1. If we can
4612 find where in SRC2 it was placed, that can become our
4613 split point and we can replace this address with SRC2.
4614 Just try two obvious places. */
4615
4616 src2 = replace_rtx (src2, reg, src1);
4617 split = 0;
4618 if (XEXP (src2, 0) == src1)
4619 split = &XEXP (src2, 0);
4620 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4621 && XEXP (XEXP (src2, 0), 0) == src1)
4622 split = &XEXP (XEXP (src2, 0), 0);
4623
4624 if (split)
4625 {
4626 SUBST (XEXP (x, 0), src2);
4627 return split;
4628 }
4629 }
4630
4631 /* If that didn't work, perhaps the first operand is complex and
4632 needs to be computed separately, so make a split point there.
4633 This will occur on machines that just support REG + CONST
4634 and have a constant moved through some previous computation. */
4635
4636 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4637 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4638 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4639 return &XEXP (XEXP (x, 0), 0);
4640 }
4641
4642 /* If we have a PLUS whose first operand is complex, try computing it
4643 separately by making a split there. */
4644 if (GET_CODE (XEXP (x, 0)) == PLUS
4645 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4646 MEM_ADDR_SPACE (x))
4647 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4648 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4649 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4650 return &XEXP (XEXP (x, 0), 0);
4651 break;
4652
4653 case SET:
4654 #ifdef HAVE_cc0
4655 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4656 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4657 we need to put the operand into a register. So split at that
4658 point. */
4659
4660 if (SET_DEST (x) == cc0_rtx
4661 && GET_CODE (SET_SRC (x)) != COMPARE
4662 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4663 && !OBJECT_P (SET_SRC (x))
4664 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4665 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4666 return &SET_SRC (x);
4667 #endif
4668
4669 /* See if we can split SET_SRC as it stands. */
4670 split = find_split_point (&SET_SRC (x), insn, true);
4671 if (split && split != &SET_SRC (x))
4672 return split;
4673
4674 /* See if we can split SET_DEST as it stands. */
4675 split = find_split_point (&SET_DEST (x), insn, false);
4676 if (split && split != &SET_DEST (x))
4677 return split;
4678
4679 /* See if this is a bitfield assignment with everything constant. If
4680 so, this is an IOR of an AND, so split it into that. */
4681 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4682 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4683 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4684 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4685 && CONST_INT_P (SET_SRC (x))
4686 && ((INTVAL (XEXP (SET_DEST (x), 1))
4687 + INTVAL (XEXP (SET_DEST (x), 2)))
4688 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4689 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4690 {
4691 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4692 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4693 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4694 rtx dest = XEXP (SET_DEST (x), 0);
4695 enum machine_mode mode = GET_MODE (dest);
4696 unsigned HOST_WIDE_INT mask
4697 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4698 rtx or_mask;
4699
4700 if (BITS_BIG_ENDIAN)
4701 pos = GET_MODE_PRECISION (mode) - len - pos;
4702
4703 or_mask = gen_int_mode (src << pos, mode);
4704 if (src == mask)
4705 SUBST (SET_SRC (x),
4706 simplify_gen_binary (IOR, mode, dest, or_mask));
4707 else
4708 {
4709 rtx negmask = gen_int_mode (~(mask << pos), mode);
4710 SUBST (SET_SRC (x),
4711 simplify_gen_binary (IOR, mode,
4712 simplify_gen_binary (AND, mode,
4713 dest, negmask),
4714 or_mask));
4715 }
4716
4717 SUBST (SET_DEST (x), dest);
4718
4719 split = find_split_point (&SET_SRC (x), insn, true);
4720 if (split && split != &SET_SRC (x))
4721 return split;
4722 }
4723
4724 /* Otherwise, see if this is an operation that we can split into two.
4725 If so, try to split that. */
4726 code = GET_CODE (SET_SRC (x));
4727
4728 switch (code)
4729 {
4730 case AND:
4731 /* If we are AND'ing with a large constant that is only a single
4732 bit and the result is only being used in a context where we
4733 need to know if it is zero or nonzero, replace it with a bit
4734 extraction. This will avoid the large constant, which might
4735 have taken more than one insn to make. If the constant were
4736 not a valid argument to the AND but took only one insn to make,
4737 this is no worse, but if it took more than one insn, it will
4738 be better. */
4739
4740 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4741 && REG_P (XEXP (SET_SRC (x), 0))
4742 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4743 && REG_P (SET_DEST (x))
4744 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4745 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4746 && XEXP (*split, 0) == SET_DEST (x)
4747 && XEXP (*split, 1) == const0_rtx)
4748 {
4749 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4750 XEXP (SET_SRC (x), 0),
4751 pos, NULL_RTX, 1, 1, 0, 0);
4752 if (extraction != 0)
4753 {
4754 SUBST (SET_SRC (x), extraction);
4755 return find_split_point (loc, insn, false);
4756 }
4757 }
4758 break;
4759
4760 case NE:
4761 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4762 is known to be on, this can be converted into a NEG of a shift. */
4763 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4764 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4765 && 1 <= (pos = exact_log2
4766 (nonzero_bits (XEXP (SET_SRC (x), 0),
4767 GET_MODE (XEXP (SET_SRC (x), 0))))))
4768 {
4769 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4770
4771 SUBST (SET_SRC (x),
4772 gen_rtx_NEG (mode,
4773 gen_rtx_LSHIFTRT (mode,
4774 XEXP (SET_SRC (x), 0),
4775 GEN_INT (pos))));
4776
4777 split = find_split_point (&SET_SRC (x), insn, true);
4778 if (split && split != &SET_SRC (x))
4779 return split;
4780 }
4781 break;
4782
4783 case SIGN_EXTEND:
4784 inner = XEXP (SET_SRC (x), 0);
4785
4786 /* We can't optimize if either mode is a partial integer
4787 mode as we don't know how many bits are significant
4788 in those modes. */
4789 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4790 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4791 break;
4792
4793 pos = 0;
4794 len = GET_MODE_PRECISION (GET_MODE (inner));
4795 unsignedp = 0;
4796 break;
4797
4798 case SIGN_EXTRACT:
4799 case ZERO_EXTRACT:
4800 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4801 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4802 {
4803 inner = XEXP (SET_SRC (x), 0);
4804 len = INTVAL (XEXP (SET_SRC (x), 1));
4805 pos = INTVAL (XEXP (SET_SRC (x), 2));
4806
4807 if (BITS_BIG_ENDIAN)
4808 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4809 unsignedp = (code == ZERO_EXTRACT);
4810 }
4811 break;
4812
4813 default:
4814 break;
4815 }
4816
4817 if (len && pos >= 0
4818 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
4819 {
4820 enum machine_mode mode = GET_MODE (SET_SRC (x));
4821
4822 /* For unsigned, we have a choice of a shift followed by an
4823 AND or two shifts. Use two shifts for field sizes where the
4824 constant might be too large. We assume here that we can
4825 always at least get 8-bit constants in an AND insn, which is
4826 true for every current RISC. */
4827
4828 if (unsignedp && len <= 8)
4829 {
4830 SUBST (SET_SRC (x),
4831 gen_rtx_AND (mode,
4832 gen_rtx_LSHIFTRT
4833 (mode, gen_lowpart (mode, inner),
4834 GEN_INT (pos)),
4835 GEN_INT (((unsigned HOST_WIDE_INT) 1 << len)
4836 - 1)));
4837
4838 split = find_split_point (&SET_SRC (x), insn, true);
4839 if (split && split != &SET_SRC (x))
4840 return split;
4841 }
4842 else
4843 {
4844 SUBST (SET_SRC (x),
4845 gen_rtx_fmt_ee
4846 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4847 gen_rtx_ASHIFT (mode,
4848 gen_lowpart (mode, inner),
4849 GEN_INT (GET_MODE_PRECISION (mode)
4850 - len - pos)),
4851 GEN_INT (GET_MODE_PRECISION (mode) - len)));
4852
4853 split = find_split_point (&SET_SRC (x), insn, true);
4854 if (split && split != &SET_SRC (x))
4855 return split;
4856 }
4857 }
4858
4859 /* See if this is a simple operation with a constant as the second
4860 operand. It might be that this constant is out of range and hence
4861 could be used as a split point. */
4862 if (BINARY_P (SET_SRC (x))
4863 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4864 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4865 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4866 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4867 return &XEXP (SET_SRC (x), 1);
4868
4869 /* Finally, see if this is a simple operation with its first operand
4870 not in a register. The operation might require this operand in a
4871 register, so return it as a split point. We can always do this
4872 because if the first operand were another operation, we would have
4873 already found it as a split point. */
4874 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4875 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4876 return &XEXP (SET_SRC (x), 0);
4877
4878 return 0;
4879
4880 case AND:
4881 case IOR:
4882 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4883 it is better to write this as (not (ior A B)) so we can split it.
4884 Similarly for IOR. */
4885 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4886 {
4887 SUBST (*loc,
4888 gen_rtx_NOT (GET_MODE (x),
4889 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4890 GET_MODE (x),
4891 XEXP (XEXP (x, 0), 0),
4892 XEXP (XEXP (x, 1), 0))));
4893 return find_split_point (loc, insn, set_src);
4894 }
4895
4896 /* Many RISC machines have a large set of logical insns. If the
4897 second operand is a NOT, put it first so we will try to split the
4898 other operand first. */
4899 if (GET_CODE (XEXP (x, 1)) == NOT)
4900 {
4901 rtx tem = XEXP (x, 0);
4902 SUBST (XEXP (x, 0), XEXP (x, 1));
4903 SUBST (XEXP (x, 1), tem);
4904 }
4905 break;
4906
4907 case PLUS:
4908 case MINUS:
4909 /* Canonicalization can produce (minus A (mult B C)), where C is a
4910 constant. It may be better to try splitting (plus (mult B -C) A)
4911 instead if this isn't a multiply by a power of two. */
4912 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4913 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4914 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4915 {
4916 enum machine_mode mode = GET_MODE (x);
4917 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4918 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4919 SUBST (*loc, gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
4920 XEXP (XEXP (x, 1), 0),
4921 GEN_INT (other_int)),
4922 XEXP (x, 0)));
4923 return find_split_point (loc, insn, set_src);
4924 }
4925
4926 /* Split at a multiply-accumulate instruction. However if this is
4927 the SET_SRC, we likely do not have such an instruction and it's
4928 worthless to try this split. */
4929 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4930 return loc;
4931
4932 default:
4933 break;
4934 }
4935
4936 /* Otherwise, select our actions depending on our rtx class. */
4937 switch (GET_RTX_CLASS (code))
4938 {
4939 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4940 case RTX_TERNARY:
4941 split = find_split_point (&XEXP (x, 2), insn, false);
4942 if (split)
4943 return split;
4944 /* ... fall through ... */
4945 case RTX_BIN_ARITH:
4946 case RTX_COMM_ARITH:
4947 case RTX_COMPARE:
4948 case RTX_COMM_COMPARE:
4949 split = find_split_point (&XEXP (x, 1), insn, false);
4950 if (split)
4951 return split;
4952 /* ... fall through ... */
4953 case RTX_UNARY:
4954 /* Some machines have (and (shift ...) ...) insns. If X is not
4955 an AND, but XEXP (X, 0) is, use it as our split point. */
4956 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4957 return &XEXP (x, 0);
4958
4959 split = find_split_point (&XEXP (x, 0), insn, false);
4960 if (split)
4961 return split;
4962 return loc;
4963
4964 default:
4965 /* Otherwise, we don't have a split point. */
4966 return 0;
4967 }
4968 }
4969 \f
4970 /* Throughout X, replace FROM with TO, and return the result.
4971 The result is TO if X is FROM;
4972 otherwise the result is X, but its contents may have been modified.
4973 If they were modified, a record was made in undobuf so that
4974 undo_all will (among other things) return X to its original state.
4975
4976 If the number of changes necessary is too much to record to undo,
4977 the excess changes are not made, so the result is invalid.
4978 The changes already made can still be undone.
4979 undobuf.num_undo is incremented for such changes, so by testing that
4980 the caller can tell whether the result is valid.
4981
4982 `n_occurrences' is incremented each time FROM is replaced.
4983
4984 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4985
4986 IN_COND is nonzero if we are at the top level of a condition.
4987
4988 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4989 by copying if `n_occurrences' is nonzero. */
4990
4991 static rtx
4992 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
4993 {
4994 enum rtx_code code = GET_CODE (x);
4995 enum machine_mode op0_mode = VOIDmode;
4996 const char *fmt;
4997 int len, i;
4998 rtx new_rtx;
4999
5000 /* Two expressions are equal if they are identical copies of a shared
5001 RTX or if they are both registers with the same register number
5002 and mode. */
5003
5004 #define COMBINE_RTX_EQUAL_P(X,Y) \
5005 ((X) == (Y) \
5006 || (REG_P (X) && REG_P (Y) \
5007 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5008
5009 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5010 {
5011 n_occurrences++;
5012 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5013 }
5014
5015 /* If X and FROM are the same register but different modes, they
5016 will not have been seen as equal above. However, the log links code
5017 will make a LOG_LINKS entry for that case. If we do nothing, we
5018 will try to rerecognize our original insn and, when it succeeds,
5019 we will delete the feeding insn, which is incorrect.
5020
5021 So force this insn not to match in this (rare) case. */
5022 if (! in_dest && code == REG && REG_P (from)
5023 && reg_overlap_mentioned_p (x, from))
5024 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5025
5026 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5027 of which may contain things that can be combined. */
5028 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5029 return x;
5030
5031 /* It is possible to have a subexpression appear twice in the insn.
5032 Suppose that FROM is a register that appears within TO.
5033 Then, after that subexpression has been scanned once by `subst',
5034 the second time it is scanned, TO may be found. If we were
5035 to scan TO here, we would find FROM within it and create a
5036 self-referent rtl structure which is completely wrong. */
5037 if (COMBINE_RTX_EQUAL_P (x, to))
5038 return to;
5039
5040 /* Parallel asm_operands need special attention because all of the
5041 inputs are shared across the arms. Furthermore, unsharing the
5042 rtl results in recognition failures. Failure to handle this case
5043 specially can result in circular rtl.
5044
5045 Solve this by doing a normal pass across the first entry of the
5046 parallel, and only processing the SET_DESTs of the subsequent
5047 entries. Ug. */
5048
5049 if (code == PARALLEL
5050 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5051 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5052 {
5053 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5054
5055 /* If this substitution failed, this whole thing fails. */
5056 if (GET_CODE (new_rtx) == CLOBBER
5057 && XEXP (new_rtx, 0) == const0_rtx)
5058 return new_rtx;
5059
5060 SUBST (XVECEXP (x, 0, 0), new_rtx);
5061
5062 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5063 {
5064 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5065
5066 if (!REG_P (dest)
5067 && GET_CODE (dest) != CC0
5068 && GET_CODE (dest) != PC)
5069 {
5070 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5071
5072 /* If this substitution failed, this whole thing fails. */
5073 if (GET_CODE (new_rtx) == CLOBBER
5074 && XEXP (new_rtx, 0) == const0_rtx)
5075 return new_rtx;
5076
5077 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5078 }
5079 }
5080 }
5081 else
5082 {
5083 len = GET_RTX_LENGTH (code);
5084 fmt = GET_RTX_FORMAT (code);
5085
5086 /* We don't need to process a SET_DEST that is a register, CC0,
5087 or PC, so set up to skip this common case. All other cases
5088 where we want to suppress replacing something inside a
5089 SET_SRC are handled via the IN_DEST operand. */
5090 if (code == SET
5091 && (REG_P (SET_DEST (x))
5092 || GET_CODE (SET_DEST (x)) == CC0
5093 || GET_CODE (SET_DEST (x)) == PC))
5094 fmt = "ie";
5095
5096 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5097 constant. */
5098 if (fmt[0] == 'e')
5099 op0_mode = GET_MODE (XEXP (x, 0));
5100
5101 for (i = 0; i < len; i++)
5102 {
5103 if (fmt[i] == 'E')
5104 {
5105 int j;
5106 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5107 {
5108 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5109 {
5110 new_rtx = (unique_copy && n_occurrences
5111 ? copy_rtx (to) : to);
5112 n_occurrences++;
5113 }
5114 else
5115 {
5116 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5117 unique_copy);
5118
5119 /* If this substitution failed, this whole thing
5120 fails. */
5121 if (GET_CODE (new_rtx) == CLOBBER
5122 && XEXP (new_rtx, 0) == const0_rtx)
5123 return new_rtx;
5124 }
5125
5126 SUBST (XVECEXP (x, i, j), new_rtx);
5127 }
5128 }
5129 else if (fmt[i] == 'e')
5130 {
5131 /* If this is a register being set, ignore it. */
5132 new_rtx = XEXP (x, i);
5133 if (in_dest
5134 && i == 0
5135 && (((code == SUBREG || code == ZERO_EXTRACT)
5136 && REG_P (new_rtx))
5137 || code == STRICT_LOW_PART))
5138 ;
5139
5140 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5141 {
5142 /* In general, don't install a subreg involving two
5143 modes not tieable. It can worsen register
5144 allocation, and can even make invalid reload
5145 insns, since the reg inside may need to be copied
5146 from in the outside mode, and that may be invalid
5147 if it is an fp reg copied in integer mode.
5148
5149 We allow two exceptions to this: It is valid if
5150 it is inside another SUBREG and the mode of that
5151 SUBREG and the mode of the inside of TO is
5152 tieable and it is valid if X is a SET that copies
5153 FROM to CC0. */
5154
5155 if (GET_CODE (to) == SUBREG
5156 && ! MODES_TIEABLE_P (GET_MODE (to),
5157 GET_MODE (SUBREG_REG (to)))
5158 && ! (code == SUBREG
5159 && MODES_TIEABLE_P (GET_MODE (x),
5160 GET_MODE (SUBREG_REG (to))))
5161 #ifdef HAVE_cc0
5162 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5163 #endif
5164 )
5165 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5166
5167 #ifdef CANNOT_CHANGE_MODE_CLASS
5168 if (code == SUBREG
5169 && REG_P (to)
5170 && REGNO (to) < FIRST_PSEUDO_REGISTER
5171 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5172 GET_MODE (to),
5173 GET_MODE (x)))
5174 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5175 #endif
5176
5177 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5178 n_occurrences++;
5179 }
5180 else
5181 /* If we are in a SET_DEST, suppress most cases unless we
5182 have gone inside a MEM, in which case we want to
5183 simplify the address. We assume here that things that
5184 are actually part of the destination have their inner
5185 parts in the first expression. This is true for SUBREG,
5186 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5187 things aside from REG and MEM that should appear in a
5188 SET_DEST. */
5189 new_rtx = subst (XEXP (x, i), from, to,
5190 (((in_dest
5191 && (code == SUBREG || code == STRICT_LOW_PART
5192 || code == ZERO_EXTRACT))
5193 || code == SET)
5194 && i == 0),
5195 code == IF_THEN_ELSE && i == 0,
5196 unique_copy);
5197
5198 /* If we found that we will have to reject this combination,
5199 indicate that by returning the CLOBBER ourselves, rather than
5200 an expression containing it. This will speed things up as
5201 well as prevent accidents where two CLOBBERs are considered
5202 to be equal, thus producing an incorrect simplification. */
5203
5204 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5205 return new_rtx;
5206
5207 if (GET_CODE (x) == SUBREG
5208 && (CONST_INT_P (new_rtx)
5209 || GET_CODE (new_rtx) == CONST_DOUBLE))
5210 {
5211 enum machine_mode mode = GET_MODE (x);
5212
5213 x = simplify_subreg (GET_MODE (x), new_rtx,
5214 GET_MODE (SUBREG_REG (x)),
5215 SUBREG_BYTE (x));
5216 if (! x)
5217 x = gen_rtx_CLOBBER (mode, const0_rtx);
5218 }
5219 else if (CONST_INT_P (new_rtx)
5220 && GET_CODE (x) == ZERO_EXTEND)
5221 {
5222 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5223 new_rtx, GET_MODE (XEXP (x, 0)));
5224 gcc_assert (x);
5225 }
5226 else
5227 SUBST (XEXP (x, i), new_rtx);
5228 }
5229 }
5230 }
5231
5232 /* Check if we are loading something from the constant pool via float
5233 extension; in this case we would undo compress_float_constant
5234 optimization and degenerate constant load to an immediate value. */
5235 if (GET_CODE (x) == FLOAT_EXTEND
5236 && MEM_P (XEXP (x, 0))
5237 && MEM_READONLY_P (XEXP (x, 0)))
5238 {
5239 rtx tmp = avoid_constant_pool_reference (x);
5240 if (x != tmp)
5241 return x;
5242 }
5243
5244 /* Try to simplify X. If the simplification changed the code, it is likely
5245 that further simplification will help, so loop, but limit the number
5246 of repetitions that will be performed. */
5247
5248 for (i = 0; i < 4; i++)
5249 {
5250 /* If X is sufficiently simple, don't bother trying to do anything
5251 with it. */
5252 if (code != CONST_INT && code != REG && code != CLOBBER)
5253 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5254
5255 if (GET_CODE (x) == code)
5256 break;
5257
5258 code = GET_CODE (x);
5259
5260 /* We no longer know the original mode of operand 0 since we
5261 have changed the form of X) */
5262 op0_mode = VOIDmode;
5263 }
5264
5265 return x;
5266 }
5267 \f
5268 /* Simplify X, a piece of RTL. We just operate on the expression at the
5269 outer level; call `subst' to simplify recursively. Return the new
5270 expression.
5271
5272 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5273 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5274 of a condition. */
5275
5276 static rtx
5277 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest,
5278 int in_cond)
5279 {
5280 enum rtx_code code = GET_CODE (x);
5281 enum machine_mode mode = GET_MODE (x);
5282 rtx temp;
5283 int i;
5284
5285 /* If this is a commutative operation, put a constant last and a complex
5286 expression first. We don't need to do this for comparisons here. */
5287 if (COMMUTATIVE_ARITH_P (x)
5288 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5289 {
5290 temp = XEXP (x, 0);
5291 SUBST (XEXP (x, 0), XEXP (x, 1));
5292 SUBST (XEXP (x, 1), temp);
5293 }
5294
5295 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5296 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5297 things. Check for cases where both arms are testing the same
5298 condition.
5299
5300 Don't do anything if all operands are very simple. */
5301
5302 if ((BINARY_P (x)
5303 && ((!OBJECT_P (XEXP (x, 0))
5304 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5305 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5306 || (!OBJECT_P (XEXP (x, 1))
5307 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5308 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5309 || (UNARY_P (x)
5310 && (!OBJECT_P (XEXP (x, 0))
5311 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5312 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5313 {
5314 rtx cond, true_rtx, false_rtx;
5315
5316 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5317 if (cond != 0
5318 /* If everything is a comparison, what we have is highly unlikely
5319 to be simpler, so don't use it. */
5320 && ! (COMPARISON_P (x)
5321 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5322 {
5323 rtx cop1 = const0_rtx;
5324 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5325
5326 if (cond_code == NE && COMPARISON_P (cond))
5327 return x;
5328
5329 /* Simplify the alternative arms; this may collapse the true and
5330 false arms to store-flag values. Be careful to use copy_rtx
5331 here since true_rtx or false_rtx might share RTL with x as a
5332 result of the if_then_else_cond call above. */
5333 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5334 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5335
5336 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5337 is unlikely to be simpler. */
5338 if (general_operand (true_rtx, VOIDmode)
5339 && general_operand (false_rtx, VOIDmode))
5340 {
5341 enum rtx_code reversed;
5342
5343 /* Restarting if we generate a store-flag expression will cause
5344 us to loop. Just drop through in this case. */
5345
5346 /* If the result values are STORE_FLAG_VALUE and zero, we can
5347 just make the comparison operation. */
5348 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5349 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5350 cond, cop1);
5351 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5352 && ((reversed = reversed_comparison_code_parts
5353 (cond_code, cond, cop1, NULL))
5354 != UNKNOWN))
5355 x = simplify_gen_relational (reversed, mode, VOIDmode,
5356 cond, cop1);
5357
5358 /* Likewise, we can make the negate of a comparison operation
5359 if the result values are - STORE_FLAG_VALUE and zero. */
5360 else if (CONST_INT_P (true_rtx)
5361 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5362 && false_rtx == const0_rtx)
5363 x = simplify_gen_unary (NEG, mode,
5364 simplify_gen_relational (cond_code,
5365 mode, VOIDmode,
5366 cond, cop1),
5367 mode);
5368 else if (CONST_INT_P (false_rtx)
5369 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5370 && true_rtx == const0_rtx
5371 && ((reversed = reversed_comparison_code_parts
5372 (cond_code, cond, cop1, NULL))
5373 != UNKNOWN))
5374 x = simplify_gen_unary (NEG, mode,
5375 simplify_gen_relational (reversed,
5376 mode, VOIDmode,
5377 cond, cop1),
5378 mode);
5379 else
5380 return gen_rtx_IF_THEN_ELSE (mode,
5381 simplify_gen_relational (cond_code,
5382 mode,
5383 VOIDmode,
5384 cond,
5385 cop1),
5386 true_rtx, false_rtx);
5387
5388 code = GET_CODE (x);
5389 op0_mode = VOIDmode;
5390 }
5391 }
5392 }
5393
5394 /* Try to fold this expression in case we have constants that weren't
5395 present before. */
5396 temp = 0;
5397 switch (GET_RTX_CLASS (code))
5398 {
5399 case RTX_UNARY:
5400 if (op0_mode == VOIDmode)
5401 op0_mode = GET_MODE (XEXP (x, 0));
5402 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5403 break;
5404 case RTX_COMPARE:
5405 case RTX_COMM_COMPARE:
5406 {
5407 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5408 if (cmp_mode == VOIDmode)
5409 {
5410 cmp_mode = GET_MODE (XEXP (x, 1));
5411 if (cmp_mode == VOIDmode)
5412 cmp_mode = op0_mode;
5413 }
5414 temp = simplify_relational_operation (code, mode, cmp_mode,
5415 XEXP (x, 0), XEXP (x, 1));
5416 }
5417 break;
5418 case RTX_COMM_ARITH:
5419 case RTX_BIN_ARITH:
5420 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5421 break;
5422 case RTX_BITFIELD_OPS:
5423 case RTX_TERNARY:
5424 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5425 XEXP (x, 1), XEXP (x, 2));
5426 break;
5427 default:
5428 break;
5429 }
5430
5431 if (temp)
5432 {
5433 x = temp;
5434 code = GET_CODE (temp);
5435 op0_mode = VOIDmode;
5436 mode = GET_MODE (temp);
5437 }
5438
5439 /* First see if we can apply the inverse distributive law. */
5440 if (code == PLUS || code == MINUS
5441 || code == AND || code == IOR || code == XOR)
5442 {
5443 x = apply_distributive_law (x);
5444 code = GET_CODE (x);
5445 op0_mode = VOIDmode;
5446 }
5447
5448 /* If CODE is an associative operation not otherwise handled, see if we
5449 can associate some operands. This can win if they are constants or
5450 if they are logically related (i.e. (a & b) & a). */
5451 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5452 || code == AND || code == IOR || code == XOR
5453 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5454 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5455 || (flag_associative_math && FLOAT_MODE_P (mode))))
5456 {
5457 if (GET_CODE (XEXP (x, 0)) == code)
5458 {
5459 rtx other = XEXP (XEXP (x, 0), 0);
5460 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5461 rtx inner_op1 = XEXP (x, 1);
5462 rtx inner;
5463
5464 /* Make sure we pass the constant operand if any as the second
5465 one if this is a commutative operation. */
5466 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5467 {
5468 rtx tem = inner_op0;
5469 inner_op0 = inner_op1;
5470 inner_op1 = tem;
5471 }
5472 inner = simplify_binary_operation (code == MINUS ? PLUS
5473 : code == DIV ? MULT
5474 : code,
5475 mode, inner_op0, inner_op1);
5476
5477 /* For commutative operations, try the other pair if that one
5478 didn't simplify. */
5479 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5480 {
5481 other = XEXP (XEXP (x, 0), 1);
5482 inner = simplify_binary_operation (code, mode,
5483 XEXP (XEXP (x, 0), 0),
5484 XEXP (x, 1));
5485 }
5486
5487 if (inner)
5488 return simplify_gen_binary (code, mode, other, inner);
5489 }
5490 }
5491
5492 /* A little bit of algebraic simplification here. */
5493 switch (code)
5494 {
5495 case MEM:
5496 /* Ensure that our address has any ASHIFTs converted to MULT in case
5497 address-recognizing predicates are called later. */
5498 temp = make_compound_operation (XEXP (x, 0), MEM);
5499 SUBST (XEXP (x, 0), temp);
5500 break;
5501
5502 case SUBREG:
5503 if (op0_mode == VOIDmode)
5504 op0_mode = GET_MODE (SUBREG_REG (x));
5505
5506 /* See if this can be moved to simplify_subreg. */
5507 if (CONSTANT_P (SUBREG_REG (x))
5508 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5509 /* Don't call gen_lowpart if the inner mode
5510 is VOIDmode and we cannot simplify it, as SUBREG without
5511 inner mode is invalid. */
5512 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5513 || gen_lowpart_common (mode, SUBREG_REG (x))))
5514 return gen_lowpart (mode, SUBREG_REG (x));
5515
5516 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5517 break;
5518 {
5519 rtx temp;
5520 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5521 SUBREG_BYTE (x));
5522 if (temp)
5523 return temp;
5524 }
5525
5526 /* Don't change the mode of the MEM if that would change the meaning
5527 of the address. */
5528 if (MEM_P (SUBREG_REG (x))
5529 && (MEM_VOLATILE_P (SUBREG_REG (x))
5530 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
5531 return gen_rtx_CLOBBER (mode, const0_rtx);
5532
5533 /* Note that we cannot do any narrowing for non-constants since
5534 we might have been counting on using the fact that some bits were
5535 zero. We now do this in the SET. */
5536
5537 break;
5538
5539 case NEG:
5540 temp = expand_compound_operation (XEXP (x, 0));
5541
5542 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5543 replaced by (lshiftrt X C). This will convert
5544 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5545
5546 if (GET_CODE (temp) == ASHIFTRT
5547 && CONST_INT_P (XEXP (temp, 1))
5548 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5549 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5550 INTVAL (XEXP (temp, 1)));
5551
5552 /* If X has only a single bit that might be nonzero, say, bit I, convert
5553 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5554 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5555 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5556 or a SUBREG of one since we'd be making the expression more
5557 complex if it was just a register. */
5558
5559 if (!REG_P (temp)
5560 && ! (GET_CODE (temp) == SUBREG
5561 && REG_P (SUBREG_REG (temp)))
5562 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5563 {
5564 rtx temp1 = simplify_shift_const
5565 (NULL_RTX, ASHIFTRT, mode,
5566 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5567 GET_MODE_PRECISION (mode) - 1 - i),
5568 GET_MODE_PRECISION (mode) - 1 - i);
5569
5570 /* If all we did was surround TEMP with the two shifts, we
5571 haven't improved anything, so don't use it. Otherwise,
5572 we are better off with TEMP1. */
5573 if (GET_CODE (temp1) != ASHIFTRT
5574 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5575 || XEXP (XEXP (temp1, 0), 0) != temp)
5576 return temp1;
5577 }
5578 break;
5579
5580 case TRUNCATE:
5581 /* We can't handle truncation to a partial integer mode here
5582 because we don't know the real bitsize of the partial
5583 integer mode. */
5584 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5585 break;
5586
5587 if (HWI_COMPUTABLE_MODE_P (mode))
5588 SUBST (XEXP (x, 0),
5589 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5590 GET_MODE_MASK (mode), 0));
5591
5592 /* We can truncate a constant value and return it. */
5593 if (CONST_INT_P (XEXP (x, 0)))
5594 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5595
5596 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5597 whose value is a comparison can be replaced with a subreg if
5598 STORE_FLAG_VALUE permits. */
5599 if (HWI_COMPUTABLE_MODE_P (mode)
5600 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5601 && (temp = get_last_value (XEXP (x, 0)))
5602 && COMPARISON_P (temp))
5603 return gen_lowpart (mode, XEXP (x, 0));
5604 break;
5605
5606 case CONST:
5607 /* (const (const X)) can become (const X). Do it this way rather than
5608 returning the inner CONST since CONST can be shared with a
5609 REG_EQUAL note. */
5610 if (GET_CODE (XEXP (x, 0)) == CONST)
5611 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5612 break;
5613
5614 #ifdef HAVE_lo_sum
5615 case LO_SUM:
5616 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5617 can add in an offset. find_split_point will split this address up
5618 again if it doesn't match. */
5619 if (GET_CODE (XEXP (x, 0)) == HIGH
5620 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5621 return XEXP (x, 1);
5622 break;
5623 #endif
5624
5625 case PLUS:
5626 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5627 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5628 bit-field and can be replaced by either a sign_extend or a
5629 sign_extract. The `and' may be a zero_extend and the two
5630 <c>, -<c> constants may be reversed. */
5631 if (GET_CODE (XEXP (x, 0)) == XOR
5632 && CONST_INT_P (XEXP (x, 1))
5633 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5634 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5635 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5636 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5637 && HWI_COMPUTABLE_MODE_P (mode)
5638 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5639 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5640 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5641 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5642 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5643 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5644 == (unsigned int) i + 1))))
5645 return simplify_shift_const
5646 (NULL_RTX, ASHIFTRT, mode,
5647 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5648 XEXP (XEXP (XEXP (x, 0), 0), 0),
5649 GET_MODE_PRECISION (mode) - (i + 1)),
5650 GET_MODE_PRECISION (mode) - (i + 1));
5651
5652 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5653 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5654 the bitsize of the mode - 1. This allows simplification of
5655 "a = (b & 8) == 0;" */
5656 if (XEXP (x, 1) == constm1_rtx
5657 && !REG_P (XEXP (x, 0))
5658 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5659 && REG_P (SUBREG_REG (XEXP (x, 0))))
5660 && nonzero_bits (XEXP (x, 0), mode) == 1)
5661 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5662 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5663 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5664 GET_MODE_PRECISION (mode) - 1),
5665 GET_MODE_PRECISION (mode) - 1);
5666
5667 /* If we are adding two things that have no bits in common, convert
5668 the addition into an IOR. This will often be further simplified,
5669 for example in cases like ((a & 1) + (a & 2)), which can
5670 become a & 3. */
5671
5672 if (HWI_COMPUTABLE_MODE_P (mode)
5673 && (nonzero_bits (XEXP (x, 0), mode)
5674 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5675 {
5676 /* Try to simplify the expression further. */
5677 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5678 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5679
5680 /* If we could, great. If not, do not go ahead with the IOR
5681 replacement, since PLUS appears in many special purpose
5682 address arithmetic instructions. */
5683 if (GET_CODE (temp) != CLOBBER
5684 && (GET_CODE (temp) != IOR
5685 || ((XEXP (temp, 0) != XEXP (x, 0)
5686 || XEXP (temp, 1) != XEXP (x, 1))
5687 && (XEXP (temp, 0) != XEXP (x, 1)
5688 || XEXP (temp, 1) != XEXP (x, 0)))))
5689 return temp;
5690 }
5691 break;
5692
5693 case MINUS:
5694 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5695 (and <foo> (const_int pow2-1)) */
5696 if (GET_CODE (XEXP (x, 1)) == AND
5697 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5698 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5699 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5700 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5701 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5702 break;
5703
5704 case MULT:
5705 /* If we have (mult (plus A B) C), apply the distributive law and then
5706 the inverse distributive law to see if things simplify. This
5707 occurs mostly in addresses, often when unrolling loops. */
5708
5709 if (GET_CODE (XEXP (x, 0)) == PLUS)
5710 {
5711 rtx result = distribute_and_simplify_rtx (x, 0);
5712 if (result)
5713 return result;
5714 }
5715
5716 /* Try simplify a*(b/c) as (a*b)/c. */
5717 if (FLOAT_MODE_P (mode) && flag_associative_math
5718 && GET_CODE (XEXP (x, 0)) == DIV)
5719 {
5720 rtx tem = simplify_binary_operation (MULT, mode,
5721 XEXP (XEXP (x, 0), 0),
5722 XEXP (x, 1));
5723 if (tem)
5724 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5725 }
5726 break;
5727
5728 case UDIV:
5729 /* If this is a divide by a power of two, treat it as a shift if
5730 its first operand is a shift. */
5731 if (CONST_INT_P (XEXP (x, 1))
5732 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5733 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5734 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5735 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5736 || GET_CODE (XEXP (x, 0)) == ROTATE
5737 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5738 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5739 break;
5740
5741 case EQ: case NE:
5742 case GT: case GTU: case GE: case GEU:
5743 case LT: case LTU: case LE: case LEU:
5744 case UNEQ: case LTGT:
5745 case UNGT: case UNGE:
5746 case UNLT: case UNLE:
5747 case UNORDERED: case ORDERED:
5748 /* If the first operand is a condition code, we can't do anything
5749 with it. */
5750 if (GET_CODE (XEXP (x, 0)) == COMPARE
5751 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5752 && ! CC0_P (XEXP (x, 0))))
5753 {
5754 rtx op0 = XEXP (x, 0);
5755 rtx op1 = XEXP (x, 1);
5756 enum rtx_code new_code;
5757
5758 if (GET_CODE (op0) == COMPARE)
5759 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5760
5761 /* Simplify our comparison, if possible. */
5762 new_code = simplify_comparison (code, &op0, &op1);
5763
5764 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5765 if only the low-order bit is possibly nonzero in X (such as when
5766 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5767 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5768 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5769 (plus X 1).
5770
5771 Remove any ZERO_EXTRACT we made when thinking this was a
5772 comparison. It may now be simpler to use, e.g., an AND. If a
5773 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5774 the call to make_compound_operation in the SET case.
5775
5776 Don't apply these optimizations if the caller would
5777 prefer a comparison rather than a value.
5778 E.g., for the condition in an IF_THEN_ELSE most targets need
5779 an explicit comparison. */
5780
5781 if (in_cond)
5782 ;
5783
5784 else if (STORE_FLAG_VALUE == 1
5785 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5786 && op1 == const0_rtx
5787 && mode == GET_MODE (op0)
5788 && nonzero_bits (op0, mode) == 1)
5789 return gen_lowpart (mode,
5790 expand_compound_operation (op0));
5791
5792 else if (STORE_FLAG_VALUE == 1
5793 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5794 && op1 == const0_rtx
5795 && mode == GET_MODE (op0)
5796 && (num_sign_bit_copies (op0, mode)
5797 == GET_MODE_PRECISION (mode)))
5798 {
5799 op0 = expand_compound_operation (op0);
5800 return simplify_gen_unary (NEG, mode,
5801 gen_lowpart (mode, op0),
5802 mode);
5803 }
5804
5805 else if (STORE_FLAG_VALUE == 1
5806 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5807 && op1 == const0_rtx
5808 && mode == GET_MODE (op0)
5809 && nonzero_bits (op0, mode) == 1)
5810 {
5811 op0 = expand_compound_operation (op0);
5812 return simplify_gen_binary (XOR, mode,
5813 gen_lowpart (mode, op0),
5814 const1_rtx);
5815 }
5816
5817 else if (STORE_FLAG_VALUE == 1
5818 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5819 && op1 == const0_rtx
5820 && mode == GET_MODE (op0)
5821 && (num_sign_bit_copies (op0, mode)
5822 == GET_MODE_PRECISION (mode)))
5823 {
5824 op0 = expand_compound_operation (op0);
5825 return plus_constant (gen_lowpart (mode, op0), 1);
5826 }
5827
5828 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5829 those above. */
5830 if (in_cond)
5831 ;
5832
5833 else if (STORE_FLAG_VALUE == -1
5834 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5835 && op1 == const0_rtx
5836 && (num_sign_bit_copies (op0, mode)
5837 == GET_MODE_PRECISION (mode)))
5838 return gen_lowpart (mode,
5839 expand_compound_operation (op0));
5840
5841 else if (STORE_FLAG_VALUE == -1
5842 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5843 && op1 == const0_rtx
5844 && mode == GET_MODE (op0)
5845 && nonzero_bits (op0, mode) == 1)
5846 {
5847 op0 = expand_compound_operation (op0);
5848 return simplify_gen_unary (NEG, mode,
5849 gen_lowpart (mode, op0),
5850 mode);
5851 }
5852
5853 else if (STORE_FLAG_VALUE == -1
5854 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5855 && op1 == const0_rtx
5856 && mode == GET_MODE (op0)
5857 && (num_sign_bit_copies (op0, mode)
5858 == GET_MODE_PRECISION (mode)))
5859 {
5860 op0 = expand_compound_operation (op0);
5861 return simplify_gen_unary (NOT, mode,
5862 gen_lowpart (mode, op0),
5863 mode);
5864 }
5865
5866 /* If X is 0/1, (eq X 0) is X-1. */
5867 else if (STORE_FLAG_VALUE == -1
5868 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5869 && op1 == const0_rtx
5870 && mode == GET_MODE (op0)
5871 && nonzero_bits (op0, mode) == 1)
5872 {
5873 op0 = expand_compound_operation (op0);
5874 return plus_constant (gen_lowpart (mode, op0), -1);
5875 }
5876
5877 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5878 one bit that might be nonzero, we can convert (ne x 0) to
5879 (ashift x c) where C puts the bit in the sign bit. Remove any
5880 AND with STORE_FLAG_VALUE when we are done, since we are only
5881 going to test the sign bit. */
5882 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5883 && HWI_COMPUTABLE_MODE_P (mode)
5884 && val_signbit_p (mode, STORE_FLAG_VALUE)
5885 && op1 == const0_rtx
5886 && mode == GET_MODE (op0)
5887 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5888 {
5889 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5890 expand_compound_operation (op0),
5891 GET_MODE_PRECISION (mode) - 1 - i);
5892 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5893 return XEXP (x, 0);
5894 else
5895 return x;
5896 }
5897
5898 /* If the code changed, return a whole new comparison. */
5899 if (new_code != code)
5900 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5901
5902 /* Otherwise, keep this operation, but maybe change its operands.
5903 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5904 SUBST (XEXP (x, 0), op0);
5905 SUBST (XEXP (x, 1), op1);
5906 }
5907 break;
5908
5909 case IF_THEN_ELSE:
5910 return simplify_if_then_else (x);
5911
5912 case ZERO_EXTRACT:
5913 case SIGN_EXTRACT:
5914 case ZERO_EXTEND:
5915 case SIGN_EXTEND:
5916 /* If we are processing SET_DEST, we are done. */
5917 if (in_dest)
5918 return x;
5919
5920 return expand_compound_operation (x);
5921
5922 case SET:
5923 return simplify_set (x);
5924
5925 case AND:
5926 case IOR:
5927 return simplify_logical (x);
5928
5929 case ASHIFT:
5930 case LSHIFTRT:
5931 case ASHIFTRT:
5932 case ROTATE:
5933 case ROTATERT:
5934 /* If this is a shift by a constant amount, simplify it. */
5935 if (CONST_INT_P (XEXP (x, 1)))
5936 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5937 INTVAL (XEXP (x, 1)));
5938
5939 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5940 SUBST (XEXP (x, 1),
5941 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5942 targetm.shift_truncation_mask (GET_MODE (x)),
5943 0));
5944 break;
5945
5946 default:
5947 break;
5948 }
5949
5950 return x;
5951 }
5952 \f
5953 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5954
5955 static rtx
5956 simplify_if_then_else (rtx x)
5957 {
5958 enum machine_mode mode = GET_MODE (x);
5959 rtx cond = XEXP (x, 0);
5960 rtx true_rtx = XEXP (x, 1);
5961 rtx false_rtx = XEXP (x, 2);
5962 enum rtx_code true_code = GET_CODE (cond);
5963 int comparison_p = COMPARISON_P (cond);
5964 rtx temp;
5965 int i;
5966 enum rtx_code false_code;
5967 rtx reversed;
5968
5969 /* Simplify storing of the truth value. */
5970 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5971 return simplify_gen_relational (true_code, mode, VOIDmode,
5972 XEXP (cond, 0), XEXP (cond, 1));
5973
5974 /* Also when the truth value has to be reversed. */
5975 if (comparison_p
5976 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5977 && (reversed = reversed_comparison (cond, mode)))
5978 return reversed;
5979
5980 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5981 in it is being compared against certain values. Get the true and false
5982 comparisons and see if that says anything about the value of each arm. */
5983
5984 if (comparison_p
5985 && ((false_code = reversed_comparison_code (cond, NULL))
5986 != UNKNOWN)
5987 && REG_P (XEXP (cond, 0)))
5988 {
5989 HOST_WIDE_INT nzb;
5990 rtx from = XEXP (cond, 0);
5991 rtx true_val = XEXP (cond, 1);
5992 rtx false_val = true_val;
5993 int swapped = 0;
5994
5995 /* If FALSE_CODE is EQ, swap the codes and arms. */
5996
5997 if (false_code == EQ)
5998 {
5999 swapped = 1, true_code = EQ, false_code = NE;
6000 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
6001 }
6002
6003 /* If we are comparing against zero and the expression being tested has
6004 only a single bit that might be nonzero, that is its value when it is
6005 not equal to zero. Similarly if it is known to be -1 or 0. */
6006
6007 if (true_code == EQ && true_val == const0_rtx
6008 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
6009 {
6010 false_code = EQ;
6011 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
6012 }
6013 else if (true_code == EQ && true_val == const0_rtx
6014 && (num_sign_bit_copies (from, GET_MODE (from))
6015 == GET_MODE_PRECISION (GET_MODE (from))))
6016 {
6017 false_code = EQ;
6018 false_val = constm1_rtx;
6019 }
6020
6021 /* Now simplify an arm if we know the value of the register in the
6022 branch and it is used in the arm. Be careful due to the potential
6023 of locally-shared RTL. */
6024
6025 if (reg_mentioned_p (from, true_rtx))
6026 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6027 from, true_val),
6028 pc_rtx, pc_rtx, 0, 0, 0);
6029 if (reg_mentioned_p (from, false_rtx))
6030 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6031 from, false_val),
6032 pc_rtx, pc_rtx, 0, 0, 0);
6033
6034 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6035 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6036
6037 true_rtx = XEXP (x, 1);
6038 false_rtx = XEXP (x, 2);
6039 true_code = GET_CODE (cond);
6040 }
6041
6042 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6043 reversed, do so to avoid needing two sets of patterns for
6044 subtract-and-branch insns. Similarly if we have a constant in the true
6045 arm, the false arm is the same as the first operand of the comparison, or
6046 the false arm is more complicated than the true arm. */
6047
6048 if (comparison_p
6049 && reversed_comparison_code (cond, NULL) != UNKNOWN
6050 && (true_rtx == pc_rtx
6051 || (CONSTANT_P (true_rtx)
6052 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6053 || true_rtx == const0_rtx
6054 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6055 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6056 && !OBJECT_P (false_rtx))
6057 || reg_mentioned_p (true_rtx, false_rtx)
6058 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6059 {
6060 true_code = reversed_comparison_code (cond, NULL);
6061 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6062 SUBST (XEXP (x, 1), false_rtx);
6063 SUBST (XEXP (x, 2), true_rtx);
6064
6065 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
6066 cond = XEXP (x, 0);
6067
6068 /* It is possible that the conditional has been simplified out. */
6069 true_code = GET_CODE (cond);
6070 comparison_p = COMPARISON_P (cond);
6071 }
6072
6073 /* If the two arms are identical, we don't need the comparison. */
6074
6075 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6076 return true_rtx;
6077
6078 /* Convert a == b ? b : a to "a". */
6079 if (true_code == EQ && ! side_effects_p (cond)
6080 && !HONOR_NANS (mode)
6081 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6082 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6083 return false_rtx;
6084 else if (true_code == NE && ! side_effects_p (cond)
6085 && !HONOR_NANS (mode)
6086 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6087 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6088 return true_rtx;
6089
6090 /* Look for cases where we have (abs x) or (neg (abs X)). */
6091
6092 if (GET_MODE_CLASS (mode) == MODE_INT
6093 && comparison_p
6094 && XEXP (cond, 1) == const0_rtx
6095 && GET_CODE (false_rtx) == NEG
6096 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6097 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6098 && ! side_effects_p (true_rtx))
6099 switch (true_code)
6100 {
6101 case GT:
6102 case GE:
6103 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6104 case LT:
6105 case LE:
6106 return
6107 simplify_gen_unary (NEG, mode,
6108 simplify_gen_unary (ABS, mode, true_rtx, mode),
6109 mode);
6110 default:
6111 break;
6112 }
6113
6114 /* Look for MIN or MAX. */
6115
6116 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6117 && comparison_p
6118 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6119 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6120 && ! side_effects_p (cond))
6121 switch (true_code)
6122 {
6123 case GE:
6124 case GT:
6125 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6126 case LE:
6127 case LT:
6128 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6129 case GEU:
6130 case GTU:
6131 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6132 case LEU:
6133 case LTU:
6134 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6135 default:
6136 break;
6137 }
6138
6139 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6140 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6141 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6142 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6143 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6144 neither 1 or -1, but it isn't worth checking for. */
6145
6146 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6147 && comparison_p
6148 && GET_MODE_CLASS (mode) == MODE_INT
6149 && ! side_effects_p (x))
6150 {
6151 rtx t = make_compound_operation (true_rtx, SET);
6152 rtx f = make_compound_operation (false_rtx, SET);
6153 rtx cond_op0 = XEXP (cond, 0);
6154 rtx cond_op1 = XEXP (cond, 1);
6155 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6156 enum machine_mode m = mode;
6157 rtx z = 0, c1 = NULL_RTX;
6158
6159 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6160 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6161 || GET_CODE (t) == ASHIFT
6162 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6163 && rtx_equal_p (XEXP (t, 0), f))
6164 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6165
6166 /* If an identity-zero op is commutative, check whether there
6167 would be a match if we swapped the operands. */
6168 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6169 || GET_CODE (t) == XOR)
6170 && rtx_equal_p (XEXP (t, 1), f))
6171 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6172 else if (GET_CODE (t) == SIGN_EXTEND
6173 && (GET_CODE (XEXP (t, 0)) == PLUS
6174 || GET_CODE (XEXP (t, 0)) == MINUS
6175 || GET_CODE (XEXP (t, 0)) == IOR
6176 || GET_CODE (XEXP (t, 0)) == XOR
6177 || GET_CODE (XEXP (t, 0)) == ASHIFT
6178 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6179 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6180 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6181 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6182 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6183 && (num_sign_bit_copies (f, GET_MODE (f))
6184 > (unsigned int)
6185 (GET_MODE_PRECISION (mode)
6186 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6187 {
6188 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6189 extend_op = SIGN_EXTEND;
6190 m = GET_MODE (XEXP (t, 0));
6191 }
6192 else if (GET_CODE (t) == SIGN_EXTEND
6193 && (GET_CODE (XEXP (t, 0)) == PLUS
6194 || GET_CODE (XEXP (t, 0)) == IOR
6195 || GET_CODE (XEXP (t, 0)) == XOR)
6196 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6197 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6198 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6199 && (num_sign_bit_copies (f, GET_MODE (f))
6200 > (unsigned int)
6201 (GET_MODE_PRECISION (mode)
6202 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6203 {
6204 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6205 extend_op = SIGN_EXTEND;
6206 m = GET_MODE (XEXP (t, 0));
6207 }
6208 else if (GET_CODE (t) == ZERO_EXTEND
6209 && (GET_CODE (XEXP (t, 0)) == PLUS
6210 || GET_CODE (XEXP (t, 0)) == MINUS
6211 || GET_CODE (XEXP (t, 0)) == IOR
6212 || GET_CODE (XEXP (t, 0)) == XOR
6213 || GET_CODE (XEXP (t, 0)) == ASHIFT
6214 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6215 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6216 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6217 && HWI_COMPUTABLE_MODE_P (mode)
6218 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6219 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6220 && ((nonzero_bits (f, GET_MODE (f))
6221 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6222 == 0))
6223 {
6224 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6225 extend_op = ZERO_EXTEND;
6226 m = GET_MODE (XEXP (t, 0));
6227 }
6228 else if (GET_CODE (t) == ZERO_EXTEND
6229 && (GET_CODE (XEXP (t, 0)) == PLUS
6230 || GET_CODE (XEXP (t, 0)) == IOR
6231 || GET_CODE (XEXP (t, 0)) == XOR)
6232 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6233 && HWI_COMPUTABLE_MODE_P (mode)
6234 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6235 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6236 && ((nonzero_bits (f, GET_MODE (f))
6237 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6238 == 0))
6239 {
6240 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6241 extend_op = ZERO_EXTEND;
6242 m = GET_MODE (XEXP (t, 0));
6243 }
6244
6245 if (z)
6246 {
6247 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6248 cond_op0, cond_op1),
6249 pc_rtx, pc_rtx, 0, 0, 0);
6250 temp = simplify_gen_binary (MULT, m, temp,
6251 simplify_gen_binary (MULT, m, c1,
6252 const_true_rtx));
6253 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6254 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6255
6256 if (extend_op != UNKNOWN)
6257 temp = simplify_gen_unary (extend_op, mode, temp, m);
6258
6259 return temp;
6260 }
6261 }
6262
6263 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6264 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6265 negation of a single bit, we can convert this operation to a shift. We
6266 can actually do this more generally, but it doesn't seem worth it. */
6267
6268 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6269 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6270 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6271 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6272 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6273 == GET_MODE_PRECISION (mode))
6274 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6275 return
6276 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6277 gen_lowpart (mode, XEXP (cond, 0)), i);
6278
6279 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6280 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6281 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6282 && GET_MODE (XEXP (cond, 0)) == mode
6283 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6284 == nonzero_bits (XEXP (cond, 0), mode)
6285 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6286 return XEXP (cond, 0);
6287
6288 return x;
6289 }
6290 \f
6291 /* Simplify X, a SET expression. Return the new expression. */
6292
6293 static rtx
6294 simplify_set (rtx x)
6295 {
6296 rtx src = SET_SRC (x);
6297 rtx dest = SET_DEST (x);
6298 enum machine_mode mode
6299 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6300 rtx other_insn;
6301 rtx *cc_use;
6302
6303 /* (set (pc) (return)) gets written as (return). */
6304 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
6305 return src;
6306
6307 /* Now that we know for sure which bits of SRC we are using, see if we can
6308 simplify the expression for the object knowing that we only need the
6309 low-order bits. */
6310
6311 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6312 {
6313 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6314 SUBST (SET_SRC (x), src);
6315 }
6316
6317 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6318 the comparison result and try to simplify it unless we already have used
6319 undobuf.other_insn. */
6320 if ((GET_MODE_CLASS (mode) == MODE_CC
6321 || GET_CODE (src) == COMPARE
6322 || CC0_P (dest))
6323 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6324 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6325 && COMPARISON_P (*cc_use)
6326 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6327 {
6328 enum rtx_code old_code = GET_CODE (*cc_use);
6329 enum rtx_code new_code;
6330 rtx op0, op1, tmp;
6331 int other_changed = 0;
6332 rtx inner_compare = NULL_RTX;
6333 enum machine_mode compare_mode = GET_MODE (dest);
6334
6335 if (GET_CODE (src) == COMPARE)
6336 {
6337 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6338 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6339 {
6340 inner_compare = op0;
6341 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6342 }
6343 }
6344 else
6345 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6346
6347 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6348 op0, op1);
6349 if (!tmp)
6350 new_code = old_code;
6351 else if (!CONSTANT_P (tmp))
6352 {
6353 new_code = GET_CODE (tmp);
6354 op0 = XEXP (tmp, 0);
6355 op1 = XEXP (tmp, 1);
6356 }
6357 else
6358 {
6359 rtx pat = PATTERN (other_insn);
6360 undobuf.other_insn = other_insn;
6361 SUBST (*cc_use, tmp);
6362
6363 /* Attempt to simplify CC user. */
6364 if (GET_CODE (pat) == SET)
6365 {
6366 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6367 if (new_rtx != NULL_RTX)
6368 SUBST (SET_SRC (pat), new_rtx);
6369 }
6370
6371 /* Convert X into a no-op move. */
6372 SUBST (SET_DEST (x), pc_rtx);
6373 SUBST (SET_SRC (x), pc_rtx);
6374 return x;
6375 }
6376
6377 /* Simplify our comparison, if possible. */
6378 new_code = simplify_comparison (new_code, &op0, &op1);
6379
6380 #ifdef SELECT_CC_MODE
6381 /* If this machine has CC modes other than CCmode, check to see if we
6382 need to use a different CC mode here. */
6383 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6384 compare_mode = GET_MODE (op0);
6385 else if (inner_compare
6386 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6387 && new_code == old_code
6388 && op0 == XEXP (inner_compare, 0)
6389 && op1 == XEXP (inner_compare, 1))
6390 compare_mode = GET_MODE (inner_compare);
6391 else
6392 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6393
6394 #ifndef HAVE_cc0
6395 /* If the mode changed, we have to change SET_DEST, the mode in the
6396 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6397 a hard register, just build new versions with the proper mode. If it
6398 is a pseudo, we lose unless it is only time we set the pseudo, in
6399 which case we can safely change its mode. */
6400 if (compare_mode != GET_MODE (dest))
6401 {
6402 if (can_change_dest_mode (dest, 0, compare_mode))
6403 {
6404 unsigned int regno = REGNO (dest);
6405 rtx new_dest;
6406
6407 if (regno < FIRST_PSEUDO_REGISTER)
6408 new_dest = gen_rtx_REG (compare_mode, regno);
6409 else
6410 {
6411 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6412 new_dest = regno_reg_rtx[regno];
6413 }
6414
6415 SUBST (SET_DEST (x), new_dest);
6416 SUBST (XEXP (*cc_use, 0), new_dest);
6417 other_changed = 1;
6418
6419 dest = new_dest;
6420 }
6421 }
6422 #endif /* cc0 */
6423 #endif /* SELECT_CC_MODE */
6424
6425 /* If the code changed, we have to build a new comparison in
6426 undobuf.other_insn. */
6427 if (new_code != old_code)
6428 {
6429 int other_changed_previously = other_changed;
6430 unsigned HOST_WIDE_INT mask;
6431 rtx old_cc_use = *cc_use;
6432
6433 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6434 dest, const0_rtx));
6435 other_changed = 1;
6436
6437 /* If the only change we made was to change an EQ into an NE or
6438 vice versa, OP0 has only one bit that might be nonzero, and OP1
6439 is zero, check if changing the user of the condition code will
6440 produce a valid insn. If it won't, we can keep the original code
6441 in that insn by surrounding our operation with an XOR. */
6442
6443 if (((old_code == NE && new_code == EQ)
6444 || (old_code == EQ && new_code == NE))
6445 && ! other_changed_previously && op1 == const0_rtx
6446 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6447 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6448 {
6449 rtx pat = PATTERN (other_insn), note = 0;
6450
6451 if ((recog_for_combine (&pat, other_insn, &note) < 0
6452 && ! check_asm_operands (pat)))
6453 {
6454 *cc_use = old_cc_use;
6455 other_changed = 0;
6456
6457 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
6458 op0, GEN_INT (mask));
6459 }
6460 }
6461 }
6462
6463 if (other_changed)
6464 undobuf.other_insn = other_insn;
6465
6466 /* Otherwise, if we didn't previously have a COMPARE in the
6467 correct mode, we need one. */
6468 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6469 {
6470 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6471 src = SET_SRC (x);
6472 }
6473 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6474 {
6475 SUBST (SET_SRC (x), op0);
6476 src = SET_SRC (x);
6477 }
6478 /* Otherwise, update the COMPARE if needed. */
6479 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6480 {
6481 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6482 src = SET_SRC (x);
6483 }
6484 }
6485 else
6486 {
6487 /* Get SET_SRC in a form where we have placed back any
6488 compound expressions. Then do the checks below. */
6489 src = make_compound_operation (src, SET);
6490 SUBST (SET_SRC (x), src);
6491 }
6492
6493 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6494 and X being a REG or (subreg (reg)), we may be able to convert this to
6495 (set (subreg:m2 x) (op)).
6496
6497 We can always do this if M1 is narrower than M2 because that means that
6498 we only care about the low bits of the result.
6499
6500 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6501 perform a narrower operation than requested since the high-order bits will
6502 be undefined. On machine where it is defined, this transformation is safe
6503 as long as M1 and M2 have the same number of words. */
6504
6505 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6506 && !OBJECT_P (SUBREG_REG (src))
6507 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6508 / UNITS_PER_WORD)
6509 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6510 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6511 #ifndef WORD_REGISTER_OPERATIONS
6512 && (GET_MODE_SIZE (GET_MODE (src))
6513 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6514 #endif
6515 #ifdef CANNOT_CHANGE_MODE_CLASS
6516 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6517 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6518 GET_MODE (SUBREG_REG (src)),
6519 GET_MODE (src)))
6520 #endif
6521 && (REG_P (dest)
6522 || (GET_CODE (dest) == SUBREG
6523 && REG_P (SUBREG_REG (dest)))))
6524 {
6525 SUBST (SET_DEST (x),
6526 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6527 dest));
6528 SUBST (SET_SRC (x), SUBREG_REG (src));
6529
6530 src = SET_SRC (x), dest = SET_DEST (x);
6531 }
6532
6533 #ifdef HAVE_cc0
6534 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6535 in SRC. */
6536 if (dest == cc0_rtx
6537 && GET_CODE (src) == SUBREG
6538 && subreg_lowpart_p (src)
6539 && (GET_MODE_PRECISION (GET_MODE (src))
6540 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6541 {
6542 rtx inner = SUBREG_REG (src);
6543 enum machine_mode inner_mode = GET_MODE (inner);
6544
6545 /* Here we make sure that we don't have a sign bit on. */
6546 if (val_signbit_known_clear_p (GET_MODE (src),
6547 nonzero_bits (inner, inner_mode)))
6548 {
6549 SUBST (SET_SRC (x), inner);
6550 src = SET_SRC (x);
6551 }
6552 }
6553 #endif
6554
6555 #ifdef LOAD_EXTEND_OP
6556 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6557 would require a paradoxical subreg. Replace the subreg with a
6558 zero_extend to avoid the reload that would otherwise be required. */
6559
6560 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6561 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6562 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6563 && SUBREG_BYTE (src) == 0
6564 && paradoxical_subreg_p (src)
6565 && MEM_P (SUBREG_REG (src)))
6566 {
6567 SUBST (SET_SRC (x),
6568 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6569 GET_MODE (src), SUBREG_REG (src)));
6570
6571 src = SET_SRC (x);
6572 }
6573 #endif
6574
6575 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6576 are comparing an item known to be 0 or -1 against 0, use a logical
6577 operation instead. Check for one of the arms being an IOR of the other
6578 arm with some value. We compute three terms to be IOR'ed together. In
6579 practice, at most two will be nonzero. Then we do the IOR's. */
6580
6581 if (GET_CODE (dest) != PC
6582 && GET_CODE (src) == IF_THEN_ELSE
6583 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6584 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6585 && XEXP (XEXP (src, 0), 1) == const0_rtx
6586 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6587 #ifdef HAVE_conditional_move
6588 && ! can_conditionally_move_p (GET_MODE (src))
6589 #endif
6590 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6591 GET_MODE (XEXP (XEXP (src, 0), 0)))
6592 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6593 && ! side_effects_p (src))
6594 {
6595 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6596 ? XEXP (src, 1) : XEXP (src, 2));
6597 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6598 ? XEXP (src, 2) : XEXP (src, 1));
6599 rtx term1 = const0_rtx, term2, term3;
6600
6601 if (GET_CODE (true_rtx) == IOR
6602 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6603 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6604 else if (GET_CODE (true_rtx) == IOR
6605 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6606 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6607 else if (GET_CODE (false_rtx) == IOR
6608 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6609 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6610 else if (GET_CODE (false_rtx) == IOR
6611 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6612 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6613
6614 term2 = simplify_gen_binary (AND, GET_MODE (src),
6615 XEXP (XEXP (src, 0), 0), true_rtx);
6616 term3 = simplify_gen_binary (AND, GET_MODE (src),
6617 simplify_gen_unary (NOT, GET_MODE (src),
6618 XEXP (XEXP (src, 0), 0),
6619 GET_MODE (src)),
6620 false_rtx);
6621
6622 SUBST (SET_SRC (x),
6623 simplify_gen_binary (IOR, GET_MODE (src),
6624 simplify_gen_binary (IOR, GET_MODE (src),
6625 term1, term2),
6626 term3));
6627
6628 src = SET_SRC (x);
6629 }
6630
6631 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6632 whole thing fail. */
6633 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6634 return src;
6635 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6636 return dest;
6637 else
6638 /* Convert this into a field assignment operation, if possible. */
6639 return make_field_assignment (x);
6640 }
6641 \f
6642 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6643 result. */
6644
6645 static rtx
6646 simplify_logical (rtx x)
6647 {
6648 enum machine_mode mode = GET_MODE (x);
6649 rtx op0 = XEXP (x, 0);
6650 rtx op1 = XEXP (x, 1);
6651
6652 switch (GET_CODE (x))
6653 {
6654 case AND:
6655 /* We can call simplify_and_const_int only if we don't lose
6656 any (sign) bits when converting INTVAL (op1) to
6657 "unsigned HOST_WIDE_INT". */
6658 if (CONST_INT_P (op1)
6659 && (HWI_COMPUTABLE_MODE_P (mode)
6660 || INTVAL (op1) > 0))
6661 {
6662 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6663 if (GET_CODE (x) != AND)
6664 return x;
6665
6666 op0 = XEXP (x, 0);
6667 op1 = XEXP (x, 1);
6668 }
6669
6670 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6671 apply the distributive law and then the inverse distributive
6672 law to see if things simplify. */
6673 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6674 {
6675 rtx result = distribute_and_simplify_rtx (x, 0);
6676 if (result)
6677 return result;
6678 }
6679 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6680 {
6681 rtx result = distribute_and_simplify_rtx (x, 1);
6682 if (result)
6683 return result;
6684 }
6685 break;
6686
6687 case IOR:
6688 /* If we have (ior (and A B) C), apply the distributive law and then
6689 the inverse distributive law to see if things simplify. */
6690
6691 if (GET_CODE (op0) == AND)
6692 {
6693 rtx result = distribute_and_simplify_rtx (x, 0);
6694 if (result)
6695 return result;
6696 }
6697
6698 if (GET_CODE (op1) == AND)
6699 {
6700 rtx result = distribute_and_simplify_rtx (x, 1);
6701 if (result)
6702 return result;
6703 }
6704 break;
6705
6706 default:
6707 gcc_unreachable ();
6708 }
6709
6710 return x;
6711 }
6712 \f
6713 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6714 operations" because they can be replaced with two more basic operations.
6715 ZERO_EXTEND is also considered "compound" because it can be replaced with
6716 an AND operation, which is simpler, though only one operation.
6717
6718 The function expand_compound_operation is called with an rtx expression
6719 and will convert it to the appropriate shifts and AND operations,
6720 simplifying at each stage.
6721
6722 The function make_compound_operation is called to convert an expression
6723 consisting of shifts and ANDs into the equivalent compound expression.
6724 It is the inverse of this function, loosely speaking. */
6725
6726 static rtx
6727 expand_compound_operation (rtx x)
6728 {
6729 unsigned HOST_WIDE_INT pos = 0, len;
6730 int unsignedp = 0;
6731 unsigned int modewidth;
6732 rtx tem;
6733
6734 switch (GET_CODE (x))
6735 {
6736 case ZERO_EXTEND:
6737 unsignedp = 1;
6738 case SIGN_EXTEND:
6739 /* We can't necessarily use a const_int for a multiword mode;
6740 it depends on implicitly extending the value.
6741 Since we don't know the right way to extend it,
6742 we can't tell whether the implicit way is right.
6743
6744 Even for a mode that is no wider than a const_int,
6745 we can't win, because we need to sign extend one of its bits through
6746 the rest of it, and we don't know which bit. */
6747 if (CONST_INT_P (XEXP (x, 0)))
6748 return x;
6749
6750 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6751 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6752 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6753 reloaded. If not for that, MEM's would very rarely be safe.
6754
6755 Reject MODEs bigger than a word, because we might not be able
6756 to reference a two-register group starting with an arbitrary register
6757 (and currently gen_lowpart might crash for a SUBREG). */
6758
6759 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6760 return x;
6761
6762 /* Reject MODEs that aren't scalar integers because turning vector
6763 or complex modes into shifts causes problems. */
6764
6765 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6766 return x;
6767
6768 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6769 /* If the inner object has VOIDmode (the only way this can happen
6770 is if it is an ASM_OPERANDS), we can't do anything since we don't
6771 know how much masking to do. */
6772 if (len == 0)
6773 return x;
6774
6775 break;
6776
6777 case ZERO_EXTRACT:
6778 unsignedp = 1;
6779
6780 /* ... fall through ... */
6781
6782 case SIGN_EXTRACT:
6783 /* If the operand is a CLOBBER, just return it. */
6784 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6785 return XEXP (x, 0);
6786
6787 if (!CONST_INT_P (XEXP (x, 1))
6788 || !CONST_INT_P (XEXP (x, 2))
6789 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6790 return x;
6791
6792 /* Reject MODEs that aren't scalar integers because turning vector
6793 or complex modes into shifts causes problems. */
6794
6795 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6796 return x;
6797
6798 len = INTVAL (XEXP (x, 1));
6799 pos = INTVAL (XEXP (x, 2));
6800
6801 /* This should stay within the object being extracted, fail otherwise. */
6802 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
6803 return x;
6804
6805 if (BITS_BIG_ENDIAN)
6806 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
6807
6808 break;
6809
6810 default:
6811 return x;
6812 }
6813 /* Convert sign extension to zero extension, if we know that the high
6814 bit is not set, as this is easier to optimize. It will be converted
6815 back to cheaper alternative in make_extraction. */
6816 if (GET_CODE (x) == SIGN_EXTEND
6817 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6818 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6819 & ~(((unsigned HOST_WIDE_INT)
6820 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6821 >> 1))
6822 == 0)))
6823 {
6824 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6825 rtx temp2 = expand_compound_operation (temp);
6826
6827 /* Make sure this is a profitable operation. */
6828 if (rtx_cost (x, SET, optimize_this_for_speed_p)
6829 > rtx_cost (temp2, SET, optimize_this_for_speed_p))
6830 return temp2;
6831 else if (rtx_cost (x, SET, optimize_this_for_speed_p)
6832 > rtx_cost (temp, SET, optimize_this_for_speed_p))
6833 return temp;
6834 else
6835 return x;
6836 }
6837
6838 /* We can optimize some special cases of ZERO_EXTEND. */
6839 if (GET_CODE (x) == ZERO_EXTEND)
6840 {
6841 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6842 know that the last value didn't have any inappropriate bits
6843 set. */
6844 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6845 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6846 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6847 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6848 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6849 return XEXP (XEXP (x, 0), 0);
6850
6851 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6852 if (GET_CODE (XEXP (x, 0)) == SUBREG
6853 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6854 && subreg_lowpart_p (XEXP (x, 0))
6855 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6856 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6857 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6858 return SUBREG_REG (XEXP (x, 0));
6859
6860 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6861 is a comparison and STORE_FLAG_VALUE permits. This is like
6862 the first case, but it works even when GET_MODE (x) is larger
6863 than HOST_WIDE_INT. */
6864 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6865 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6866 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6867 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6868 <= HOST_BITS_PER_WIDE_INT)
6869 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6870 return XEXP (XEXP (x, 0), 0);
6871
6872 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6873 if (GET_CODE (XEXP (x, 0)) == SUBREG
6874 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6875 && subreg_lowpart_p (XEXP (x, 0))
6876 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6877 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6878 <= HOST_BITS_PER_WIDE_INT)
6879 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6880 return SUBREG_REG (XEXP (x, 0));
6881
6882 }
6883
6884 /* If we reach here, we want to return a pair of shifts. The inner
6885 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6886 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6887 logical depending on the value of UNSIGNEDP.
6888
6889 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6890 converted into an AND of a shift.
6891
6892 We must check for the case where the left shift would have a negative
6893 count. This can happen in a case like (x >> 31) & 255 on machines
6894 that can't shift by a constant. On those machines, we would first
6895 combine the shift with the AND to produce a variable-position
6896 extraction. Then the constant of 31 would be substituted in
6897 to produce such a position. */
6898
6899 modewidth = GET_MODE_PRECISION (GET_MODE (x));
6900 if (modewidth >= pos + len)
6901 {
6902 enum machine_mode mode = GET_MODE (x);
6903 tem = gen_lowpart (mode, XEXP (x, 0));
6904 if (!tem || GET_CODE (tem) == CLOBBER)
6905 return x;
6906 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6907 tem, modewidth - pos - len);
6908 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6909 mode, tem, modewidth - len);
6910 }
6911 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6912 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6913 simplify_shift_const (NULL_RTX, LSHIFTRT,
6914 GET_MODE (x),
6915 XEXP (x, 0), pos),
6916 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
6917 else
6918 /* Any other cases we can't handle. */
6919 return x;
6920
6921 /* If we couldn't do this for some reason, return the original
6922 expression. */
6923 if (GET_CODE (tem) == CLOBBER)
6924 return x;
6925
6926 return tem;
6927 }
6928 \f
6929 /* X is a SET which contains an assignment of one object into
6930 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6931 or certain SUBREGS). If possible, convert it into a series of
6932 logical operations.
6933
6934 We half-heartedly support variable positions, but do not at all
6935 support variable lengths. */
6936
6937 static const_rtx
6938 expand_field_assignment (const_rtx x)
6939 {
6940 rtx inner;
6941 rtx pos; /* Always counts from low bit. */
6942 int len;
6943 rtx mask, cleared, masked;
6944 enum machine_mode compute_mode;
6945
6946 /* Loop until we find something we can't simplify. */
6947 while (1)
6948 {
6949 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6950 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6951 {
6952 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6953 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
6954 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6955 }
6956 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6957 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6958 {
6959 inner = XEXP (SET_DEST (x), 0);
6960 len = INTVAL (XEXP (SET_DEST (x), 1));
6961 pos = XEXP (SET_DEST (x), 2);
6962
6963 /* A constant position should stay within the width of INNER. */
6964 if (CONST_INT_P (pos)
6965 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
6966 break;
6967
6968 if (BITS_BIG_ENDIAN)
6969 {
6970 if (CONST_INT_P (pos))
6971 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
6972 - INTVAL (pos));
6973 else if (GET_CODE (pos) == MINUS
6974 && CONST_INT_P (XEXP (pos, 1))
6975 && (INTVAL (XEXP (pos, 1))
6976 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
6977 /* If position is ADJUST - X, new position is X. */
6978 pos = XEXP (pos, 0);
6979 else
6980 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6981 GEN_INT (GET_MODE_PRECISION (
6982 GET_MODE (inner))
6983 - len),
6984 pos);
6985 }
6986 }
6987
6988 /* A SUBREG between two modes that occupy the same numbers of words
6989 can be done by moving the SUBREG to the source. */
6990 else if (GET_CODE (SET_DEST (x)) == SUBREG
6991 /* We need SUBREGs to compute nonzero_bits properly. */
6992 && nonzero_sign_valid
6993 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6994 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6995 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6996 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6997 {
6998 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6999 gen_lowpart
7000 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7001 SET_SRC (x)));
7002 continue;
7003 }
7004 else
7005 break;
7006
7007 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7008 inner = SUBREG_REG (inner);
7009
7010 compute_mode = GET_MODE (inner);
7011
7012 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7013 if (! SCALAR_INT_MODE_P (compute_mode))
7014 {
7015 enum machine_mode imode;
7016
7017 /* Don't do anything for vector or complex integral types. */
7018 if (! FLOAT_MODE_P (compute_mode))
7019 break;
7020
7021 /* Try to find an integral mode to pun with. */
7022 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7023 if (imode == BLKmode)
7024 break;
7025
7026 compute_mode = imode;
7027 inner = gen_lowpart (imode, inner);
7028 }
7029
7030 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7031 if (len >= HOST_BITS_PER_WIDE_INT)
7032 break;
7033
7034 /* Now compute the equivalent expression. Make a copy of INNER
7035 for the SET_DEST in case it is a MEM into which we will substitute;
7036 we don't want shared RTL in that case. */
7037 mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << len) - 1);
7038 cleared = simplify_gen_binary (AND, compute_mode,
7039 simplify_gen_unary (NOT, compute_mode,
7040 simplify_gen_binary (ASHIFT,
7041 compute_mode,
7042 mask, pos),
7043 compute_mode),
7044 inner);
7045 masked = simplify_gen_binary (ASHIFT, compute_mode,
7046 simplify_gen_binary (
7047 AND, compute_mode,
7048 gen_lowpart (compute_mode, SET_SRC (x)),
7049 mask),
7050 pos);
7051
7052 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
7053 simplify_gen_binary (IOR, compute_mode,
7054 cleared, masked));
7055 }
7056
7057 return x;
7058 }
7059 \f
7060 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7061 it is an RTX that represents a variable starting position; otherwise,
7062 POS is the (constant) starting bit position (counted from the LSB).
7063
7064 UNSIGNEDP is nonzero for an unsigned reference and zero for a
7065 signed reference.
7066
7067 IN_DEST is nonzero if this is a reference in the destination of a
7068 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7069 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7070 be used.
7071
7072 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7073 ZERO_EXTRACT should be built even for bits starting at bit 0.
7074
7075 MODE is the desired mode of the result (if IN_DEST == 0).
7076
7077 The result is an RTX for the extraction or NULL_RTX if the target
7078 can't handle it. */
7079
7080 static rtx
7081 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7082 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7083 int in_dest, int in_compare)
7084 {
7085 /* This mode describes the size of the storage area
7086 to fetch the overall value from. Within that, we
7087 ignore the POS lowest bits, etc. */
7088 enum machine_mode is_mode = GET_MODE (inner);
7089 enum machine_mode inner_mode;
7090 enum machine_mode wanted_inner_mode;
7091 enum machine_mode wanted_inner_reg_mode = word_mode;
7092 enum machine_mode pos_mode = word_mode;
7093 enum machine_mode extraction_mode = word_mode;
7094 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7095 rtx new_rtx = 0;
7096 rtx orig_pos_rtx = pos_rtx;
7097 HOST_WIDE_INT orig_pos;
7098
7099 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7100 {
7101 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7102 consider just the QI as the memory to extract from.
7103 The subreg adds or removes high bits; its mode is
7104 irrelevant to the meaning of this extraction,
7105 since POS and LEN count from the lsb. */
7106 if (MEM_P (SUBREG_REG (inner)))
7107 is_mode = GET_MODE (SUBREG_REG (inner));
7108 inner = SUBREG_REG (inner);
7109 }
7110 else if (GET_CODE (inner) == ASHIFT
7111 && CONST_INT_P (XEXP (inner, 1))
7112 && pos_rtx == 0 && pos == 0
7113 && len > UINTVAL (XEXP (inner, 1)))
7114 {
7115 /* We're extracting the least significant bits of an rtx
7116 (ashift X (const_int C)), where LEN > C. Extract the
7117 least significant (LEN - C) bits of X, giving an rtx
7118 whose mode is MODE, then shift it left C times. */
7119 new_rtx = make_extraction (mode, XEXP (inner, 0),
7120 0, 0, len - INTVAL (XEXP (inner, 1)),
7121 unsignedp, in_dest, in_compare);
7122 if (new_rtx != 0)
7123 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7124 }
7125
7126 inner_mode = GET_MODE (inner);
7127
7128 if (pos_rtx && CONST_INT_P (pos_rtx))
7129 pos = INTVAL (pos_rtx), pos_rtx = 0;
7130
7131 /* See if this can be done without an extraction. We never can if the
7132 width of the field is not the same as that of some integer mode. For
7133 registers, we can only avoid the extraction if the position is at the
7134 low-order bit and this is either not in the destination or we have the
7135 appropriate STRICT_LOW_PART operation available.
7136
7137 For MEM, we can avoid an extract if the field starts on an appropriate
7138 boundary and we can change the mode of the memory reference. */
7139
7140 if (tmode != BLKmode
7141 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7142 && !MEM_P (inner)
7143 && (inner_mode == tmode
7144 || !REG_P (inner)
7145 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7146 || reg_truncated_to_mode (tmode, inner))
7147 && (! in_dest
7148 || (REG_P (inner)
7149 && have_insn_for (STRICT_LOW_PART, tmode))))
7150 || (MEM_P (inner) && pos_rtx == 0
7151 && (pos
7152 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7153 : BITS_PER_UNIT)) == 0
7154 /* We can't do this if we are widening INNER_MODE (it
7155 may not be aligned, for one thing). */
7156 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7157 && (inner_mode == tmode
7158 || (! mode_dependent_address_p (XEXP (inner, 0))
7159 && ! MEM_VOLATILE_P (inner))))))
7160 {
7161 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7162 field. If the original and current mode are the same, we need not
7163 adjust the offset. Otherwise, we do if bytes big endian.
7164
7165 If INNER is not a MEM, get a piece consisting of just the field
7166 of interest (in this case POS % BITS_PER_WORD must be 0). */
7167
7168 if (MEM_P (inner))
7169 {
7170 HOST_WIDE_INT offset;
7171
7172 /* POS counts from lsb, but make OFFSET count in memory order. */
7173 if (BYTES_BIG_ENDIAN)
7174 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7175 else
7176 offset = pos / BITS_PER_UNIT;
7177
7178 new_rtx = adjust_address_nv (inner, tmode, offset);
7179 }
7180 else if (REG_P (inner))
7181 {
7182 if (tmode != inner_mode)
7183 {
7184 /* We can't call gen_lowpart in a DEST since we
7185 always want a SUBREG (see below) and it would sometimes
7186 return a new hard register. */
7187 if (pos || in_dest)
7188 {
7189 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7190
7191 if (WORDS_BIG_ENDIAN
7192 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7193 final_word = ((GET_MODE_SIZE (inner_mode)
7194 - GET_MODE_SIZE (tmode))
7195 / UNITS_PER_WORD) - final_word;
7196
7197 final_word *= UNITS_PER_WORD;
7198 if (BYTES_BIG_ENDIAN &&
7199 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7200 final_word += (GET_MODE_SIZE (inner_mode)
7201 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7202
7203 /* Avoid creating invalid subregs, for example when
7204 simplifying (x>>32)&255. */
7205 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7206 return NULL_RTX;
7207
7208 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7209 }
7210 else
7211 new_rtx = gen_lowpart (tmode, inner);
7212 }
7213 else
7214 new_rtx = inner;
7215 }
7216 else
7217 new_rtx = force_to_mode (inner, tmode,
7218 len >= HOST_BITS_PER_WIDE_INT
7219 ? ~(unsigned HOST_WIDE_INT) 0
7220 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7221 0);
7222
7223 /* If this extraction is going into the destination of a SET,
7224 make a STRICT_LOW_PART unless we made a MEM. */
7225
7226 if (in_dest)
7227 return (MEM_P (new_rtx) ? new_rtx
7228 : (GET_CODE (new_rtx) != SUBREG
7229 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7230 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7231
7232 if (mode == tmode)
7233 return new_rtx;
7234
7235 if (CONST_INT_P (new_rtx)
7236 || GET_CODE (new_rtx) == CONST_DOUBLE)
7237 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7238 mode, new_rtx, tmode);
7239
7240 /* If we know that no extraneous bits are set, and that the high
7241 bit is not set, convert the extraction to the cheaper of
7242 sign and zero extension, that are equivalent in these cases. */
7243 if (flag_expensive_optimizations
7244 && (HWI_COMPUTABLE_MODE_P (tmode)
7245 && ((nonzero_bits (new_rtx, tmode)
7246 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7247 == 0)))
7248 {
7249 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7250 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7251
7252 /* Prefer ZERO_EXTENSION, since it gives more information to
7253 backends. */
7254 if (rtx_cost (temp, SET, optimize_this_for_speed_p)
7255 <= rtx_cost (temp1, SET, optimize_this_for_speed_p))
7256 return temp;
7257 return temp1;
7258 }
7259
7260 /* Otherwise, sign- or zero-extend unless we already are in the
7261 proper mode. */
7262
7263 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7264 mode, new_rtx));
7265 }
7266
7267 /* Unless this is a COMPARE or we have a funny memory reference,
7268 don't do anything with zero-extending field extracts starting at
7269 the low-order bit since they are simple AND operations. */
7270 if (pos_rtx == 0 && pos == 0 && ! in_dest
7271 && ! in_compare && unsignedp)
7272 return 0;
7273
7274 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7275 if the position is not a constant and the length is not 1. In all
7276 other cases, we would only be going outside our object in cases when
7277 an original shift would have been undefined. */
7278 if (MEM_P (inner)
7279 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7280 || (pos_rtx != 0 && len != 1)))
7281 return 0;
7282
7283 /* Get the mode to use should INNER not be a MEM, the mode for the position,
7284 and the mode for the result. */
7285 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
7286 {
7287 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
7288 pos_mode = mode_for_extraction (EP_insv, 2);
7289 extraction_mode = mode_for_extraction (EP_insv, 3);
7290 }
7291
7292 if (! in_dest && unsignedp
7293 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
7294 {
7295 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
7296 pos_mode = mode_for_extraction (EP_extzv, 3);
7297 extraction_mode = mode_for_extraction (EP_extzv, 0);
7298 }
7299
7300 if (! in_dest && ! unsignedp
7301 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
7302 {
7303 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
7304 pos_mode = mode_for_extraction (EP_extv, 3);
7305 extraction_mode = mode_for_extraction (EP_extv, 0);
7306 }
7307
7308 /* Never narrow an object, since that might not be safe. */
7309
7310 if (mode != VOIDmode
7311 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7312 extraction_mode = mode;
7313
7314 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
7315 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7316 pos_mode = GET_MODE (pos_rtx);
7317
7318 /* If this is not from memory, the desired mode is the preferred mode
7319 for an extraction pattern's first input operand, or word_mode if there
7320 is none. */
7321 if (!MEM_P (inner))
7322 wanted_inner_mode = wanted_inner_reg_mode;
7323 else
7324 {
7325 /* Be careful not to go beyond the extracted object and maintain the
7326 natural alignment of the memory. */
7327 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7328 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7329 > GET_MODE_BITSIZE (wanted_inner_mode))
7330 {
7331 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7332 gcc_assert (wanted_inner_mode != VOIDmode);
7333 }
7334
7335 /* If we have to change the mode of memory and cannot, the desired mode
7336 is EXTRACTION_MODE. */
7337 if (inner_mode != wanted_inner_mode
7338 && (mode_dependent_address_p (XEXP (inner, 0))
7339 || MEM_VOLATILE_P (inner)
7340 || pos_rtx))
7341 wanted_inner_mode = extraction_mode;
7342 }
7343
7344 orig_pos = pos;
7345
7346 if (BITS_BIG_ENDIAN)
7347 {
7348 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7349 BITS_BIG_ENDIAN style. If position is constant, compute new
7350 position. Otherwise, build subtraction.
7351 Note that POS is relative to the mode of the original argument.
7352 If it's a MEM we need to recompute POS relative to that.
7353 However, if we're extracting from (or inserting into) a register,
7354 we want to recompute POS relative to wanted_inner_mode. */
7355 int width = (MEM_P (inner)
7356 ? GET_MODE_BITSIZE (is_mode)
7357 : GET_MODE_BITSIZE (wanted_inner_mode));
7358
7359 if (pos_rtx == 0)
7360 pos = width - len - pos;
7361 else
7362 pos_rtx
7363 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
7364 /* POS may be less than 0 now, but we check for that below.
7365 Note that it can only be less than 0 if !MEM_P (inner). */
7366 }
7367
7368 /* If INNER has a wider mode, and this is a constant extraction, try to
7369 make it smaller and adjust the byte to point to the byte containing
7370 the value. */
7371 if (wanted_inner_mode != VOIDmode
7372 && inner_mode != wanted_inner_mode
7373 && ! pos_rtx
7374 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7375 && MEM_P (inner)
7376 && ! mode_dependent_address_p (XEXP (inner, 0))
7377 && ! MEM_VOLATILE_P (inner))
7378 {
7379 int offset = 0;
7380
7381 /* The computations below will be correct if the machine is big
7382 endian in both bits and bytes or little endian in bits and bytes.
7383 If it is mixed, we must adjust. */
7384
7385 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7386 adjust OFFSET to compensate. */
7387 if (BYTES_BIG_ENDIAN
7388 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7389 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7390
7391 /* We can now move to the desired byte. */
7392 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7393 * GET_MODE_SIZE (wanted_inner_mode);
7394 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7395
7396 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7397 && is_mode != wanted_inner_mode)
7398 offset = (GET_MODE_SIZE (is_mode)
7399 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7400
7401 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7402 }
7403
7404 /* If INNER is not memory, get it into the proper mode. If we are changing
7405 its mode, POS must be a constant and smaller than the size of the new
7406 mode. */
7407 else if (!MEM_P (inner))
7408 {
7409 /* On the LHS, don't create paradoxical subregs implicitely truncating
7410 the register unless TRULY_NOOP_TRUNCATION. */
7411 if (in_dest
7412 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7413 wanted_inner_mode))
7414 return NULL_RTX;
7415
7416 if (GET_MODE (inner) != wanted_inner_mode
7417 && (pos_rtx != 0
7418 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7419 return NULL_RTX;
7420
7421 if (orig_pos < 0)
7422 return NULL_RTX;
7423
7424 inner = force_to_mode (inner, wanted_inner_mode,
7425 pos_rtx
7426 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7427 ? ~(unsigned HOST_WIDE_INT) 0
7428 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7429 << orig_pos),
7430 0);
7431 }
7432
7433 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7434 have to zero extend. Otherwise, we can just use a SUBREG. */
7435 if (pos_rtx != 0
7436 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7437 {
7438 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
7439
7440 /* If we know that no extraneous bits are set, and that the high
7441 bit is not set, convert extraction to cheaper one - either
7442 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7443 cases. */
7444 if (flag_expensive_optimizations
7445 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7446 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7447 & ~(((unsigned HOST_WIDE_INT)
7448 GET_MODE_MASK (GET_MODE (pos_rtx)))
7449 >> 1))
7450 == 0)))
7451 {
7452 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
7453
7454 /* Prefer ZERO_EXTENSION, since it gives more information to
7455 backends. */
7456 if (rtx_cost (temp1, SET, optimize_this_for_speed_p)
7457 < rtx_cost (temp, SET, optimize_this_for_speed_p))
7458 temp = temp1;
7459 }
7460 pos_rtx = temp;
7461 }
7462 else if (pos_rtx != 0
7463 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7464 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
7465
7466 /* Make POS_RTX unless we already have it and it is correct. If we don't
7467 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7468 be a CONST_INT. */
7469 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7470 pos_rtx = orig_pos_rtx;
7471
7472 else if (pos_rtx == 0)
7473 pos_rtx = GEN_INT (pos);
7474
7475 /* Make the required operation. See if we can use existing rtx. */
7476 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7477 extraction_mode, inner, GEN_INT (len), pos_rtx);
7478 if (! in_dest)
7479 new_rtx = gen_lowpart (mode, new_rtx);
7480
7481 return new_rtx;
7482 }
7483 \f
7484 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7485 with any other operations in X. Return X without that shift if so. */
7486
7487 static rtx
7488 extract_left_shift (rtx x, int count)
7489 {
7490 enum rtx_code code = GET_CODE (x);
7491 enum machine_mode mode = GET_MODE (x);
7492 rtx tem;
7493
7494 switch (code)
7495 {
7496 case ASHIFT:
7497 /* This is the shift itself. If it is wide enough, we will return
7498 either the value being shifted if the shift count is equal to
7499 COUNT or a shift for the difference. */
7500 if (CONST_INT_P (XEXP (x, 1))
7501 && INTVAL (XEXP (x, 1)) >= count)
7502 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7503 INTVAL (XEXP (x, 1)) - count);
7504 break;
7505
7506 case NEG: case NOT:
7507 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7508 return simplify_gen_unary (code, mode, tem, mode);
7509
7510 break;
7511
7512 case PLUS: case IOR: case XOR: case AND:
7513 /* If we can safely shift this constant and we find the inner shift,
7514 make a new operation. */
7515 if (CONST_INT_P (XEXP (x, 1))
7516 && (UINTVAL (XEXP (x, 1))
7517 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7518 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7519 return simplify_gen_binary (code, mode, tem,
7520 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7521
7522 break;
7523
7524 default:
7525 break;
7526 }
7527
7528 return 0;
7529 }
7530 \f
7531 /* Look at the expression rooted at X. Look for expressions
7532 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7533 Form these expressions.
7534
7535 Return the new rtx, usually just X.
7536
7537 Also, for machines like the VAX that don't have logical shift insns,
7538 try to convert logical to arithmetic shift operations in cases where
7539 they are equivalent. This undoes the canonicalizations to logical
7540 shifts done elsewhere.
7541
7542 We try, as much as possible, to re-use rtl expressions to save memory.
7543
7544 IN_CODE says what kind of expression we are processing. Normally, it is
7545 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7546 being kludges), it is MEM. When processing the arguments of a comparison
7547 or a COMPARE against zero, it is COMPARE. */
7548
7549 static rtx
7550 make_compound_operation (rtx x, enum rtx_code in_code)
7551 {
7552 enum rtx_code code = GET_CODE (x);
7553 enum machine_mode mode = GET_MODE (x);
7554 int mode_width = GET_MODE_PRECISION (mode);
7555 rtx rhs, lhs;
7556 enum rtx_code next_code;
7557 int i, j;
7558 rtx new_rtx = 0;
7559 rtx tem;
7560 const char *fmt;
7561
7562 /* Select the code to be used in recursive calls. Once we are inside an
7563 address, we stay there. If we have a comparison, set to COMPARE,
7564 but once inside, go back to our default of SET. */
7565
7566 next_code = (code == MEM ? MEM
7567 : ((code == PLUS || code == MINUS)
7568 && SCALAR_INT_MODE_P (mode)) ? MEM
7569 : ((code == COMPARE || COMPARISON_P (x))
7570 && XEXP (x, 1) == const0_rtx) ? COMPARE
7571 : in_code == COMPARE ? SET : in_code);
7572
7573 /* Process depending on the code of this operation. If NEW is set
7574 nonzero, it will be returned. */
7575
7576 switch (code)
7577 {
7578 case ASHIFT:
7579 /* Convert shifts by constants into multiplications if inside
7580 an address. */
7581 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7582 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7583 && INTVAL (XEXP (x, 1)) >= 0
7584 && SCALAR_INT_MODE_P (mode))
7585 {
7586 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7587 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7588
7589 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7590 if (GET_CODE (new_rtx) == NEG)
7591 {
7592 new_rtx = XEXP (new_rtx, 0);
7593 multval = -multval;
7594 }
7595 multval = trunc_int_for_mode (multval, mode);
7596 new_rtx = gen_rtx_MULT (mode, new_rtx, GEN_INT (multval));
7597 }
7598 break;
7599
7600 case PLUS:
7601 lhs = XEXP (x, 0);
7602 rhs = XEXP (x, 1);
7603 lhs = make_compound_operation (lhs, next_code);
7604 rhs = make_compound_operation (rhs, next_code);
7605 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7606 && SCALAR_INT_MODE_P (mode))
7607 {
7608 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7609 XEXP (lhs, 1));
7610 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7611 }
7612 else if (GET_CODE (lhs) == MULT
7613 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7614 {
7615 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7616 simplify_gen_unary (NEG, mode,
7617 XEXP (lhs, 1),
7618 mode));
7619 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7620 }
7621 else
7622 {
7623 SUBST (XEXP (x, 0), lhs);
7624 SUBST (XEXP (x, 1), rhs);
7625 goto maybe_swap;
7626 }
7627 x = gen_lowpart (mode, new_rtx);
7628 goto maybe_swap;
7629
7630 case MINUS:
7631 lhs = XEXP (x, 0);
7632 rhs = XEXP (x, 1);
7633 lhs = make_compound_operation (lhs, next_code);
7634 rhs = make_compound_operation (rhs, next_code);
7635 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7636 && SCALAR_INT_MODE_P (mode))
7637 {
7638 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7639 XEXP (rhs, 1));
7640 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7641 }
7642 else if (GET_CODE (rhs) == MULT
7643 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7644 {
7645 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7646 simplify_gen_unary (NEG, mode,
7647 XEXP (rhs, 1),
7648 mode));
7649 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7650 }
7651 else
7652 {
7653 SUBST (XEXP (x, 0), lhs);
7654 SUBST (XEXP (x, 1), rhs);
7655 return x;
7656 }
7657 return gen_lowpart (mode, new_rtx);
7658
7659 case AND:
7660 /* If the second operand is not a constant, we can't do anything
7661 with it. */
7662 if (!CONST_INT_P (XEXP (x, 1)))
7663 break;
7664
7665 /* If the constant is a power of two minus one and the first operand
7666 is a logical right shift, make an extraction. */
7667 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7668 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7669 {
7670 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7671 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7672 0, in_code == COMPARE);
7673 }
7674
7675 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7676 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7677 && subreg_lowpart_p (XEXP (x, 0))
7678 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7679 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7680 {
7681 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7682 next_code);
7683 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7684 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7685 0, in_code == COMPARE);
7686 }
7687 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7688 else if ((GET_CODE (XEXP (x, 0)) == XOR
7689 || GET_CODE (XEXP (x, 0)) == IOR)
7690 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7691 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7692 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7693 {
7694 /* Apply the distributive law, and then try to make extractions. */
7695 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7696 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7697 XEXP (x, 1)),
7698 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7699 XEXP (x, 1)));
7700 new_rtx = make_compound_operation (new_rtx, in_code);
7701 }
7702
7703 /* If we are have (and (rotate X C) M) and C is larger than the number
7704 of bits in M, this is an extraction. */
7705
7706 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7707 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7708 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7709 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7710 {
7711 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7712 new_rtx = make_extraction (mode, new_rtx,
7713 (GET_MODE_PRECISION (mode)
7714 - INTVAL (XEXP (XEXP (x, 0), 1))),
7715 NULL_RTX, i, 1, 0, in_code == COMPARE);
7716 }
7717
7718 /* On machines without logical shifts, if the operand of the AND is
7719 a logical shift and our mask turns off all the propagated sign
7720 bits, we can replace the logical shift with an arithmetic shift. */
7721 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7722 && !have_insn_for (LSHIFTRT, mode)
7723 && have_insn_for (ASHIFTRT, mode)
7724 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7725 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7726 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7727 && mode_width <= HOST_BITS_PER_WIDE_INT)
7728 {
7729 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7730
7731 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7732 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7733 SUBST (XEXP (x, 0),
7734 gen_rtx_ASHIFTRT (mode,
7735 make_compound_operation
7736 (XEXP (XEXP (x, 0), 0), next_code),
7737 XEXP (XEXP (x, 0), 1)));
7738 }
7739
7740 /* If the constant is one less than a power of two, this might be
7741 representable by an extraction even if no shift is present.
7742 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7743 we are in a COMPARE. */
7744 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7745 new_rtx = make_extraction (mode,
7746 make_compound_operation (XEXP (x, 0),
7747 next_code),
7748 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7749
7750 /* If we are in a comparison and this is an AND with a power of two,
7751 convert this into the appropriate bit extract. */
7752 else if (in_code == COMPARE
7753 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7754 new_rtx = make_extraction (mode,
7755 make_compound_operation (XEXP (x, 0),
7756 next_code),
7757 i, NULL_RTX, 1, 1, 0, 1);
7758
7759 break;
7760
7761 case LSHIFTRT:
7762 /* If the sign bit is known to be zero, replace this with an
7763 arithmetic shift. */
7764 if (have_insn_for (ASHIFTRT, mode)
7765 && ! have_insn_for (LSHIFTRT, mode)
7766 && mode_width <= HOST_BITS_PER_WIDE_INT
7767 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7768 {
7769 new_rtx = gen_rtx_ASHIFTRT (mode,
7770 make_compound_operation (XEXP (x, 0),
7771 next_code),
7772 XEXP (x, 1));
7773 break;
7774 }
7775
7776 /* ... fall through ... */
7777
7778 case ASHIFTRT:
7779 lhs = XEXP (x, 0);
7780 rhs = XEXP (x, 1);
7781
7782 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7783 this is a SIGN_EXTRACT. */
7784 if (CONST_INT_P (rhs)
7785 && GET_CODE (lhs) == ASHIFT
7786 && CONST_INT_P (XEXP (lhs, 1))
7787 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7788 && INTVAL (rhs) < mode_width)
7789 {
7790 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7791 new_rtx = make_extraction (mode, new_rtx,
7792 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7793 NULL_RTX, mode_width - INTVAL (rhs),
7794 code == LSHIFTRT, 0, in_code == COMPARE);
7795 break;
7796 }
7797
7798 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7799 If so, try to merge the shifts into a SIGN_EXTEND. We could
7800 also do this for some cases of SIGN_EXTRACT, but it doesn't
7801 seem worth the effort; the case checked for occurs on Alpha. */
7802
7803 if (!OBJECT_P (lhs)
7804 && ! (GET_CODE (lhs) == SUBREG
7805 && (OBJECT_P (SUBREG_REG (lhs))))
7806 && CONST_INT_P (rhs)
7807 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7808 && INTVAL (rhs) < mode_width
7809 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7810 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7811 0, NULL_RTX, mode_width - INTVAL (rhs),
7812 code == LSHIFTRT, 0, in_code == COMPARE);
7813
7814 break;
7815
7816 case SUBREG:
7817 /* Call ourselves recursively on the inner expression. If we are
7818 narrowing the object and it has a different RTL code from
7819 what it originally did, do this SUBREG as a force_to_mode. */
7820 {
7821 rtx inner = SUBREG_REG (x), simplified;
7822
7823 tem = make_compound_operation (inner, in_code);
7824
7825 simplified
7826 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7827 if (simplified)
7828 tem = simplified;
7829
7830 if (GET_CODE (tem) != GET_CODE (inner)
7831 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7832 && subreg_lowpart_p (x))
7833 {
7834 rtx newer
7835 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
7836
7837 /* If we have something other than a SUBREG, we might have
7838 done an expansion, so rerun ourselves. */
7839 if (GET_CODE (newer) != SUBREG)
7840 newer = make_compound_operation (newer, in_code);
7841
7842 /* force_to_mode can expand compounds. If it just re-expanded the
7843 compound, use gen_lowpart to convert to the desired mode. */
7844 if (rtx_equal_p (newer, x)
7845 /* Likewise if it re-expanded the compound only partially.
7846 This happens for SUBREG of ZERO_EXTRACT if they extract
7847 the same number of bits. */
7848 || (GET_CODE (newer) == SUBREG
7849 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7850 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7851 && GET_CODE (inner) == AND
7852 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7853 return gen_lowpart (GET_MODE (x), tem);
7854
7855 return newer;
7856 }
7857
7858 if (simplified)
7859 return tem;
7860 }
7861 break;
7862
7863 default:
7864 break;
7865 }
7866
7867 if (new_rtx)
7868 {
7869 x = gen_lowpart (mode, new_rtx);
7870 code = GET_CODE (x);
7871 }
7872
7873 /* Now recursively process each operand of this operation. We need to
7874 handle ZERO_EXTEND specially so that we don't lose track of the
7875 inner mode. */
7876 if (GET_CODE (x) == ZERO_EXTEND)
7877 {
7878 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7879 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
7880 new_rtx, GET_MODE (XEXP (x, 0)));
7881 if (tem)
7882 return tem;
7883 SUBST (XEXP (x, 0), new_rtx);
7884 return x;
7885 }
7886
7887 fmt = GET_RTX_FORMAT (code);
7888 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7889 if (fmt[i] == 'e')
7890 {
7891 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7892 SUBST (XEXP (x, i), new_rtx);
7893 }
7894 else if (fmt[i] == 'E')
7895 for (j = 0; j < XVECLEN (x, i); j++)
7896 {
7897 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7898 SUBST (XVECEXP (x, i, j), new_rtx);
7899 }
7900
7901 maybe_swap:
7902 /* If this is a commutative operation, the changes to the operands
7903 may have made it noncanonical. */
7904 if (COMMUTATIVE_ARITH_P (x)
7905 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7906 {
7907 tem = XEXP (x, 0);
7908 SUBST (XEXP (x, 0), XEXP (x, 1));
7909 SUBST (XEXP (x, 1), tem);
7910 }
7911
7912 return x;
7913 }
7914 \f
7915 /* Given M see if it is a value that would select a field of bits
7916 within an item, but not the entire word. Return -1 if not.
7917 Otherwise, return the starting position of the field, where 0 is the
7918 low-order bit.
7919
7920 *PLEN is set to the length of the field. */
7921
7922 static int
7923 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7924 {
7925 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7926 int pos = m ? ctz_hwi (m) : -1;
7927 int len = 0;
7928
7929 if (pos >= 0)
7930 /* Now shift off the low-order zero bits and see if we have a
7931 power of two minus 1. */
7932 len = exact_log2 ((m >> pos) + 1);
7933
7934 if (len <= 0)
7935 pos = -1;
7936
7937 *plen = len;
7938 return pos;
7939 }
7940 \f
7941 /* If X refers to a register that equals REG in value, replace these
7942 references with REG. */
7943 static rtx
7944 canon_reg_for_combine (rtx x, rtx reg)
7945 {
7946 rtx op0, op1, op2;
7947 const char *fmt;
7948 int i;
7949 bool copied;
7950
7951 enum rtx_code code = GET_CODE (x);
7952 switch (GET_RTX_CLASS (code))
7953 {
7954 case RTX_UNARY:
7955 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7956 if (op0 != XEXP (x, 0))
7957 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7958 GET_MODE (reg));
7959 break;
7960
7961 case RTX_BIN_ARITH:
7962 case RTX_COMM_ARITH:
7963 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7964 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7965 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7966 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7967 break;
7968
7969 case RTX_COMPARE:
7970 case RTX_COMM_COMPARE:
7971 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7972 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7973 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7974 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7975 GET_MODE (op0), op0, op1);
7976 break;
7977
7978 case RTX_TERNARY:
7979 case RTX_BITFIELD_OPS:
7980 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7981 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7982 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7983 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7984 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7985 GET_MODE (op0), op0, op1, op2);
7986
7987 case RTX_OBJ:
7988 if (REG_P (x))
7989 {
7990 if (rtx_equal_p (get_last_value (reg), x)
7991 || rtx_equal_p (reg, get_last_value (x)))
7992 return reg;
7993 else
7994 break;
7995 }
7996
7997 /* fall through */
7998
7999 default:
8000 fmt = GET_RTX_FORMAT (code);
8001 copied = false;
8002 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8003 if (fmt[i] == 'e')
8004 {
8005 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8006 if (op != XEXP (x, i))
8007 {
8008 if (!copied)
8009 {
8010 copied = true;
8011 x = copy_rtx (x);
8012 }
8013 XEXP (x, i) = op;
8014 }
8015 }
8016 else if (fmt[i] == 'E')
8017 {
8018 int j;
8019 for (j = 0; j < XVECLEN (x, i); j++)
8020 {
8021 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8022 if (op != XVECEXP (x, i, j))
8023 {
8024 if (!copied)
8025 {
8026 copied = true;
8027 x = copy_rtx (x);
8028 }
8029 XVECEXP (x, i, j) = op;
8030 }
8031 }
8032 }
8033
8034 break;
8035 }
8036
8037 return x;
8038 }
8039
8040 /* Return X converted to MODE. If the value is already truncated to
8041 MODE we can just return a subreg even though in the general case we
8042 would need an explicit truncation. */
8043
8044 static rtx
8045 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
8046 {
8047 if (!CONST_INT_P (x)
8048 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8049 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8050 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8051 {
8052 /* Bit-cast X into an integer mode. */
8053 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8054 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8055 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8056 x, GET_MODE (x));
8057 }
8058
8059 return gen_lowpart (mode, x);
8060 }
8061
8062 /* See if X can be simplified knowing that we will only refer to it in
8063 MODE and will only refer to those bits that are nonzero in MASK.
8064 If other bits are being computed or if masking operations are done
8065 that select a superset of the bits in MASK, they can sometimes be
8066 ignored.
8067
8068 Return a possibly simplified expression, but always convert X to
8069 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8070
8071 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8072 are all off in X. This is used when X will be complemented, by either
8073 NOT, NEG, or XOR. */
8074
8075 static rtx
8076 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
8077 int just_select)
8078 {
8079 enum rtx_code code = GET_CODE (x);
8080 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8081 enum machine_mode op_mode;
8082 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8083 rtx op0, op1, temp;
8084
8085 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8086 code below will do the wrong thing since the mode of such an
8087 expression is VOIDmode.
8088
8089 Also do nothing if X is a CLOBBER; this can happen if X was
8090 the return value from a call to gen_lowpart. */
8091 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8092 return x;
8093
8094 /* We want to perform the operation is its present mode unless we know
8095 that the operation is valid in MODE, in which case we do the operation
8096 in MODE. */
8097 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8098 && have_insn_for (code, mode))
8099 ? mode : GET_MODE (x));
8100
8101 /* It is not valid to do a right-shift in a narrower mode
8102 than the one it came in with. */
8103 if ((code == LSHIFTRT || code == ASHIFTRT)
8104 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8105 op_mode = GET_MODE (x);
8106
8107 /* Truncate MASK to fit OP_MODE. */
8108 if (op_mode)
8109 mask &= GET_MODE_MASK (op_mode);
8110
8111 /* When we have an arithmetic operation, or a shift whose count we
8112 do not know, we need to assume that all bits up to the highest-order
8113 bit in MASK will be needed. This is how we form such a mask. */
8114 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8115 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8116 else
8117 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8118 - 1);
8119
8120 /* Determine what bits of X are guaranteed to be (non)zero. */
8121 nonzero = nonzero_bits (x, mode);
8122
8123 /* If none of the bits in X are needed, return a zero. */
8124 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8125 x = const0_rtx;
8126
8127 /* If X is a CONST_INT, return a new one. Do this here since the
8128 test below will fail. */
8129 if (CONST_INT_P (x))
8130 {
8131 if (SCALAR_INT_MODE_P (mode))
8132 return gen_int_mode (INTVAL (x) & mask, mode);
8133 else
8134 {
8135 x = GEN_INT (INTVAL (x) & mask);
8136 return gen_lowpart_common (mode, x);
8137 }
8138 }
8139
8140 /* If X is narrower than MODE and we want all the bits in X's mode, just
8141 get X in the proper mode. */
8142 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8143 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8144 return gen_lowpart (mode, x);
8145
8146 /* We can ignore the effect of a SUBREG if it narrows the mode or
8147 if the constant masks to zero all the bits the mode doesn't have. */
8148 if (GET_CODE (x) == SUBREG
8149 && subreg_lowpart_p (x)
8150 && ((GET_MODE_SIZE (GET_MODE (x))
8151 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8152 || (0 == (mask
8153 & GET_MODE_MASK (GET_MODE (x))
8154 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8155 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8156
8157 /* The arithmetic simplifications here only work for scalar integer modes. */
8158 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8159 return gen_lowpart_or_truncate (mode, x);
8160
8161 switch (code)
8162 {
8163 case CLOBBER:
8164 /* If X is a (clobber (const_int)), return it since we know we are
8165 generating something that won't match. */
8166 return x;
8167
8168 case SIGN_EXTEND:
8169 case ZERO_EXTEND:
8170 case ZERO_EXTRACT:
8171 case SIGN_EXTRACT:
8172 x = expand_compound_operation (x);
8173 if (GET_CODE (x) != code)
8174 return force_to_mode (x, mode, mask, next_select);
8175 break;
8176
8177 case TRUNCATE:
8178 /* Similarly for a truncate. */
8179 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8180
8181 case AND:
8182 /* If this is an AND with a constant, convert it into an AND
8183 whose constant is the AND of that constant with MASK. If it
8184 remains an AND of MASK, delete it since it is redundant. */
8185
8186 if (CONST_INT_P (XEXP (x, 1)))
8187 {
8188 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8189 mask & INTVAL (XEXP (x, 1)));
8190
8191 /* If X is still an AND, see if it is an AND with a mask that
8192 is just some low-order bits. If so, and it is MASK, we don't
8193 need it. */
8194
8195 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8196 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8197 == mask))
8198 x = XEXP (x, 0);
8199
8200 /* If it remains an AND, try making another AND with the bits
8201 in the mode mask that aren't in MASK turned on. If the
8202 constant in the AND is wide enough, this might make a
8203 cheaper constant. */
8204
8205 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8206 && GET_MODE_MASK (GET_MODE (x)) != mask
8207 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8208 {
8209 unsigned HOST_WIDE_INT cval
8210 = UINTVAL (XEXP (x, 1))
8211 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8212 int width = GET_MODE_PRECISION (GET_MODE (x));
8213 rtx y;
8214
8215 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
8216 number, sign extend it. */
8217 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8218 && (cval & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8219 cval |= (unsigned HOST_WIDE_INT) -1 << width;
8220
8221 y = simplify_gen_binary (AND, GET_MODE (x),
8222 XEXP (x, 0), GEN_INT (cval));
8223 if (rtx_cost (y, SET, optimize_this_for_speed_p)
8224 < rtx_cost (x, SET, optimize_this_for_speed_p))
8225 x = y;
8226 }
8227
8228 break;
8229 }
8230
8231 goto binop;
8232
8233 case PLUS:
8234 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8235 low-order bits (as in an alignment operation) and FOO is already
8236 aligned to that boundary, mask C1 to that boundary as well.
8237 This may eliminate that PLUS and, later, the AND. */
8238
8239 {
8240 unsigned int width = GET_MODE_PRECISION (mode);
8241 unsigned HOST_WIDE_INT smask = mask;
8242
8243 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8244 number, sign extend it. */
8245
8246 if (width < HOST_BITS_PER_WIDE_INT
8247 && (smask & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8248 smask |= (unsigned HOST_WIDE_INT) (-1) << width;
8249
8250 if (CONST_INT_P (XEXP (x, 1))
8251 && exact_log2 (- smask) >= 0
8252 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8253 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8254 return force_to_mode (plus_constant (XEXP (x, 0),
8255 (INTVAL (XEXP (x, 1)) & smask)),
8256 mode, smask, next_select);
8257 }
8258
8259 /* ... fall through ... */
8260
8261 case MULT:
8262 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8263 most significant bit in MASK since carries from those bits will
8264 affect the bits we are interested in. */
8265 mask = fuller_mask;
8266 goto binop;
8267
8268 case MINUS:
8269 /* If X is (minus C Y) where C's least set bit is larger than any bit
8270 in the mask, then we may replace with (neg Y). */
8271 if (CONST_INT_P (XEXP (x, 0))
8272 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
8273 & -INTVAL (XEXP (x, 0))))
8274 > mask))
8275 {
8276 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8277 GET_MODE (x));
8278 return force_to_mode (x, mode, mask, next_select);
8279 }
8280
8281 /* Similarly, if C contains every bit in the fuller_mask, then we may
8282 replace with (not Y). */
8283 if (CONST_INT_P (XEXP (x, 0))
8284 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8285 {
8286 x = simplify_gen_unary (NOT, GET_MODE (x),
8287 XEXP (x, 1), GET_MODE (x));
8288 return force_to_mode (x, mode, mask, next_select);
8289 }
8290
8291 mask = fuller_mask;
8292 goto binop;
8293
8294 case IOR:
8295 case XOR:
8296 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8297 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8298 operation which may be a bitfield extraction. Ensure that the
8299 constant we form is not wider than the mode of X. */
8300
8301 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8302 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8303 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8304 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8305 && CONST_INT_P (XEXP (x, 1))
8306 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8307 + floor_log2 (INTVAL (XEXP (x, 1))))
8308 < GET_MODE_PRECISION (GET_MODE (x)))
8309 && (UINTVAL (XEXP (x, 1))
8310 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8311 {
8312 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
8313 << INTVAL (XEXP (XEXP (x, 0), 1)));
8314 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8315 XEXP (XEXP (x, 0), 0), temp);
8316 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8317 XEXP (XEXP (x, 0), 1));
8318 return force_to_mode (x, mode, mask, next_select);
8319 }
8320
8321 binop:
8322 /* For most binary operations, just propagate into the operation and
8323 change the mode if we have an operation of that mode. */
8324
8325 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8326 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8327
8328 /* If we ended up truncating both operands, truncate the result of the
8329 operation instead. */
8330 if (GET_CODE (op0) == TRUNCATE
8331 && GET_CODE (op1) == TRUNCATE)
8332 {
8333 op0 = XEXP (op0, 0);
8334 op1 = XEXP (op1, 0);
8335 }
8336
8337 op0 = gen_lowpart_or_truncate (op_mode, op0);
8338 op1 = gen_lowpart_or_truncate (op_mode, op1);
8339
8340 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8341 x = simplify_gen_binary (code, op_mode, op0, op1);
8342 break;
8343
8344 case ASHIFT:
8345 /* For left shifts, do the same, but just for the first operand.
8346 However, we cannot do anything with shifts where we cannot
8347 guarantee that the counts are smaller than the size of the mode
8348 because such a count will have a different meaning in a
8349 wider mode. */
8350
8351 if (! (CONST_INT_P (XEXP (x, 1))
8352 && INTVAL (XEXP (x, 1)) >= 0
8353 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8354 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8355 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8356 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8357 break;
8358
8359 /* If the shift count is a constant and we can do arithmetic in
8360 the mode of the shift, refine which bits we need. Otherwise, use the
8361 conservative form of the mask. */
8362 if (CONST_INT_P (XEXP (x, 1))
8363 && INTVAL (XEXP (x, 1)) >= 0
8364 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8365 && HWI_COMPUTABLE_MODE_P (op_mode))
8366 mask >>= INTVAL (XEXP (x, 1));
8367 else
8368 mask = fuller_mask;
8369
8370 op0 = gen_lowpart_or_truncate (op_mode,
8371 force_to_mode (XEXP (x, 0), op_mode,
8372 mask, next_select));
8373
8374 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8375 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8376 break;
8377
8378 case LSHIFTRT:
8379 /* Here we can only do something if the shift count is a constant,
8380 this shift constant is valid for the host, and we can do arithmetic
8381 in OP_MODE. */
8382
8383 if (CONST_INT_P (XEXP (x, 1))
8384 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8385 && HWI_COMPUTABLE_MODE_P (op_mode))
8386 {
8387 rtx inner = XEXP (x, 0);
8388 unsigned HOST_WIDE_INT inner_mask;
8389
8390 /* Select the mask of the bits we need for the shift operand. */
8391 inner_mask = mask << INTVAL (XEXP (x, 1));
8392
8393 /* We can only change the mode of the shift if we can do arithmetic
8394 in the mode of the shift and INNER_MASK is no wider than the
8395 width of X's mode. */
8396 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8397 op_mode = GET_MODE (x);
8398
8399 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8400
8401 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8402 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8403 }
8404
8405 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8406 shift and AND produces only copies of the sign bit (C2 is one less
8407 than a power of two), we can do this with just a shift. */
8408
8409 if (GET_CODE (x) == LSHIFTRT
8410 && CONST_INT_P (XEXP (x, 1))
8411 /* The shift puts one of the sign bit copies in the least significant
8412 bit. */
8413 && ((INTVAL (XEXP (x, 1))
8414 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8415 >= GET_MODE_PRECISION (GET_MODE (x)))
8416 && exact_log2 (mask + 1) >= 0
8417 /* Number of bits left after the shift must be more than the mask
8418 needs. */
8419 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8420 <= GET_MODE_PRECISION (GET_MODE (x)))
8421 /* Must be more sign bit copies than the mask needs. */
8422 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8423 >= exact_log2 (mask + 1)))
8424 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8425 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8426 - exact_log2 (mask + 1)));
8427
8428 goto shiftrt;
8429
8430 case ASHIFTRT:
8431 /* If we are just looking for the sign bit, we don't need this shift at
8432 all, even if it has a variable count. */
8433 if (val_signbit_p (GET_MODE (x), mask))
8434 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8435
8436 /* If this is a shift by a constant, get a mask that contains those bits
8437 that are not copies of the sign bit. We then have two cases: If
8438 MASK only includes those bits, this can be a logical shift, which may
8439 allow simplifications. If MASK is a single-bit field not within
8440 those bits, we are requesting a copy of the sign bit and hence can
8441 shift the sign bit to the appropriate location. */
8442
8443 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8444 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8445 {
8446 int i;
8447
8448 /* If the considered data is wider than HOST_WIDE_INT, we can't
8449 represent a mask for all its bits in a single scalar.
8450 But we only care about the lower bits, so calculate these. */
8451
8452 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8453 {
8454 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8455
8456 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8457 is the number of bits a full-width mask would have set.
8458 We need only shift if these are fewer than nonzero can
8459 hold. If not, we must keep all bits set in nonzero. */
8460
8461 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8462 < HOST_BITS_PER_WIDE_INT)
8463 nonzero >>= INTVAL (XEXP (x, 1))
8464 + HOST_BITS_PER_WIDE_INT
8465 - GET_MODE_PRECISION (GET_MODE (x)) ;
8466 }
8467 else
8468 {
8469 nonzero = GET_MODE_MASK (GET_MODE (x));
8470 nonzero >>= INTVAL (XEXP (x, 1));
8471 }
8472
8473 if ((mask & ~nonzero) == 0)
8474 {
8475 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8476 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8477 if (GET_CODE (x) != ASHIFTRT)
8478 return force_to_mode (x, mode, mask, next_select);
8479 }
8480
8481 else if ((i = exact_log2 (mask)) >= 0)
8482 {
8483 x = simplify_shift_const
8484 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8485 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8486
8487 if (GET_CODE (x) != ASHIFTRT)
8488 return force_to_mode (x, mode, mask, next_select);
8489 }
8490 }
8491
8492 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8493 even if the shift count isn't a constant. */
8494 if (mask == 1)
8495 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8496 XEXP (x, 0), XEXP (x, 1));
8497
8498 shiftrt:
8499
8500 /* If this is a zero- or sign-extension operation that just affects bits
8501 we don't care about, remove it. Be sure the call above returned
8502 something that is still a shift. */
8503
8504 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8505 && CONST_INT_P (XEXP (x, 1))
8506 && INTVAL (XEXP (x, 1)) >= 0
8507 && (INTVAL (XEXP (x, 1))
8508 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8509 && GET_CODE (XEXP (x, 0)) == ASHIFT
8510 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8511 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8512 next_select);
8513
8514 break;
8515
8516 case ROTATE:
8517 case ROTATERT:
8518 /* If the shift count is constant and we can do computations
8519 in the mode of X, compute where the bits we care about are.
8520 Otherwise, we can't do anything. Don't change the mode of
8521 the shift or propagate MODE into the shift, though. */
8522 if (CONST_INT_P (XEXP (x, 1))
8523 && INTVAL (XEXP (x, 1)) >= 0)
8524 {
8525 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8526 GET_MODE (x), GEN_INT (mask),
8527 XEXP (x, 1));
8528 if (temp && CONST_INT_P (temp))
8529 SUBST (XEXP (x, 0),
8530 force_to_mode (XEXP (x, 0), GET_MODE (x),
8531 INTVAL (temp), next_select));
8532 }
8533 break;
8534
8535 case NEG:
8536 /* If we just want the low-order bit, the NEG isn't needed since it
8537 won't change the low-order bit. */
8538 if (mask == 1)
8539 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8540
8541 /* We need any bits less significant than the most significant bit in
8542 MASK since carries from those bits will affect the bits we are
8543 interested in. */
8544 mask = fuller_mask;
8545 goto unop;
8546
8547 case NOT:
8548 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8549 same as the XOR case above. Ensure that the constant we form is not
8550 wider than the mode of X. */
8551
8552 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8553 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8554 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8555 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8556 < GET_MODE_PRECISION (GET_MODE (x)))
8557 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8558 {
8559 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8560 GET_MODE (x));
8561 temp = simplify_gen_binary (XOR, GET_MODE (x),
8562 XEXP (XEXP (x, 0), 0), temp);
8563 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8564 temp, XEXP (XEXP (x, 0), 1));
8565
8566 return force_to_mode (x, mode, mask, next_select);
8567 }
8568
8569 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8570 use the full mask inside the NOT. */
8571 mask = fuller_mask;
8572
8573 unop:
8574 op0 = gen_lowpart_or_truncate (op_mode,
8575 force_to_mode (XEXP (x, 0), mode, mask,
8576 next_select));
8577 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8578 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8579 break;
8580
8581 case NE:
8582 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8583 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8584 which is equal to STORE_FLAG_VALUE. */
8585 if ((mask & ~STORE_FLAG_VALUE) == 0
8586 && XEXP (x, 1) == const0_rtx
8587 && GET_MODE (XEXP (x, 0)) == mode
8588 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8589 && (nonzero_bits (XEXP (x, 0), mode)
8590 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8591 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8592
8593 break;
8594
8595 case IF_THEN_ELSE:
8596 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8597 written in a narrower mode. We play it safe and do not do so. */
8598
8599 SUBST (XEXP (x, 1),
8600 gen_lowpart_or_truncate (GET_MODE (x),
8601 force_to_mode (XEXP (x, 1), mode,
8602 mask, next_select)));
8603 SUBST (XEXP (x, 2),
8604 gen_lowpart_or_truncate (GET_MODE (x),
8605 force_to_mode (XEXP (x, 2), mode,
8606 mask, next_select)));
8607 break;
8608
8609 default:
8610 break;
8611 }
8612
8613 /* Ensure we return a value of the proper mode. */
8614 return gen_lowpart_or_truncate (mode, x);
8615 }
8616 \f
8617 /* Return nonzero if X is an expression that has one of two values depending on
8618 whether some other value is zero or nonzero. In that case, we return the
8619 value that is being tested, *PTRUE is set to the value if the rtx being
8620 returned has a nonzero value, and *PFALSE is set to the other alternative.
8621
8622 If we return zero, we set *PTRUE and *PFALSE to X. */
8623
8624 static rtx
8625 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8626 {
8627 enum machine_mode mode = GET_MODE (x);
8628 enum rtx_code code = GET_CODE (x);
8629 rtx cond0, cond1, true0, true1, false0, false1;
8630 unsigned HOST_WIDE_INT nz;
8631
8632 /* If we are comparing a value against zero, we are done. */
8633 if ((code == NE || code == EQ)
8634 && XEXP (x, 1) == const0_rtx)
8635 {
8636 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8637 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8638 return XEXP (x, 0);
8639 }
8640
8641 /* If this is a unary operation whose operand has one of two values, apply
8642 our opcode to compute those values. */
8643 else if (UNARY_P (x)
8644 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8645 {
8646 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8647 *pfalse = simplify_gen_unary (code, mode, false0,
8648 GET_MODE (XEXP (x, 0)));
8649 return cond0;
8650 }
8651
8652 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8653 make can't possibly match and would suppress other optimizations. */
8654 else if (code == COMPARE)
8655 ;
8656
8657 /* If this is a binary operation, see if either side has only one of two
8658 values. If either one does or if both do and they are conditional on
8659 the same value, compute the new true and false values. */
8660 else if (BINARY_P (x))
8661 {
8662 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8663 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8664
8665 if ((cond0 != 0 || cond1 != 0)
8666 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8667 {
8668 /* If if_then_else_cond returned zero, then true/false are the
8669 same rtl. We must copy one of them to prevent invalid rtl
8670 sharing. */
8671 if (cond0 == 0)
8672 true0 = copy_rtx (true0);
8673 else if (cond1 == 0)
8674 true1 = copy_rtx (true1);
8675
8676 if (COMPARISON_P (x))
8677 {
8678 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8679 true0, true1);
8680 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8681 false0, false1);
8682 }
8683 else
8684 {
8685 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8686 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8687 }
8688
8689 return cond0 ? cond0 : cond1;
8690 }
8691
8692 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8693 operands is zero when the other is nonzero, and vice-versa,
8694 and STORE_FLAG_VALUE is 1 or -1. */
8695
8696 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8697 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8698 || code == UMAX)
8699 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8700 {
8701 rtx op0 = XEXP (XEXP (x, 0), 1);
8702 rtx op1 = XEXP (XEXP (x, 1), 1);
8703
8704 cond0 = XEXP (XEXP (x, 0), 0);
8705 cond1 = XEXP (XEXP (x, 1), 0);
8706
8707 if (COMPARISON_P (cond0)
8708 && COMPARISON_P (cond1)
8709 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8710 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8711 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8712 || ((swap_condition (GET_CODE (cond0))
8713 == reversed_comparison_code (cond1, NULL))
8714 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8715 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8716 && ! side_effects_p (x))
8717 {
8718 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8719 *pfalse = simplify_gen_binary (MULT, mode,
8720 (code == MINUS
8721 ? simplify_gen_unary (NEG, mode,
8722 op1, mode)
8723 : op1),
8724 const_true_rtx);
8725 return cond0;
8726 }
8727 }
8728
8729 /* Similarly for MULT, AND and UMIN, except that for these the result
8730 is always zero. */
8731 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8732 && (code == MULT || code == AND || code == UMIN)
8733 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8734 {
8735 cond0 = XEXP (XEXP (x, 0), 0);
8736 cond1 = XEXP (XEXP (x, 1), 0);
8737
8738 if (COMPARISON_P (cond0)
8739 && COMPARISON_P (cond1)
8740 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8741 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8742 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8743 || ((swap_condition (GET_CODE (cond0))
8744 == reversed_comparison_code (cond1, NULL))
8745 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8746 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8747 && ! side_effects_p (x))
8748 {
8749 *ptrue = *pfalse = const0_rtx;
8750 return cond0;
8751 }
8752 }
8753 }
8754
8755 else if (code == IF_THEN_ELSE)
8756 {
8757 /* If we have IF_THEN_ELSE already, extract the condition and
8758 canonicalize it if it is NE or EQ. */
8759 cond0 = XEXP (x, 0);
8760 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8761 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8762 return XEXP (cond0, 0);
8763 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8764 {
8765 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8766 return XEXP (cond0, 0);
8767 }
8768 else
8769 return cond0;
8770 }
8771
8772 /* If X is a SUBREG, we can narrow both the true and false values
8773 if the inner expression, if there is a condition. */
8774 else if (code == SUBREG
8775 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8776 &true0, &false0)))
8777 {
8778 true0 = simplify_gen_subreg (mode, true0,
8779 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8780 false0 = simplify_gen_subreg (mode, false0,
8781 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8782 if (true0 && false0)
8783 {
8784 *ptrue = true0;
8785 *pfalse = false0;
8786 return cond0;
8787 }
8788 }
8789
8790 /* If X is a constant, this isn't special and will cause confusions
8791 if we treat it as such. Likewise if it is equivalent to a constant. */
8792 else if (CONSTANT_P (x)
8793 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8794 ;
8795
8796 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8797 will be least confusing to the rest of the compiler. */
8798 else if (mode == BImode)
8799 {
8800 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8801 return x;
8802 }
8803
8804 /* If X is known to be either 0 or -1, those are the true and
8805 false values when testing X. */
8806 else if (x == constm1_rtx || x == const0_rtx
8807 || (mode != VOIDmode
8808 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
8809 {
8810 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8811 return x;
8812 }
8813
8814 /* Likewise for 0 or a single bit. */
8815 else if (HWI_COMPUTABLE_MODE_P (mode)
8816 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8817 {
8818 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8819 return x;
8820 }
8821
8822 /* Otherwise fail; show no condition with true and false values the same. */
8823 *ptrue = *pfalse = x;
8824 return 0;
8825 }
8826 \f
8827 /* Return the value of expression X given the fact that condition COND
8828 is known to be true when applied to REG as its first operand and VAL
8829 as its second. X is known to not be shared and so can be modified in
8830 place.
8831
8832 We only handle the simplest cases, and specifically those cases that
8833 arise with IF_THEN_ELSE expressions. */
8834
8835 static rtx
8836 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8837 {
8838 enum rtx_code code = GET_CODE (x);
8839 rtx temp;
8840 const char *fmt;
8841 int i, j;
8842
8843 if (side_effects_p (x))
8844 return x;
8845
8846 /* If either operand of the condition is a floating point value,
8847 then we have to avoid collapsing an EQ comparison. */
8848 if (cond == EQ
8849 && rtx_equal_p (x, reg)
8850 && ! FLOAT_MODE_P (GET_MODE (x))
8851 && ! FLOAT_MODE_P (GET_MODE (val)))
8852 return val;
8853
8854 if (cond == UNEQ && rtx_equal_p (x, reg))
8855 return val;
8856
8857 /* If X is (abs REG) and we know something about REG's relationship
8858 with zero, we may be able to simplify this. */
8859
8860 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8861 switch (cond)
8862 {
8863 case GE: case GT: case EQ:
8864 return XEXP (x, 0);
8865 case LT: case LE:
8866 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8867 XEXP (x, 0),
8868 GET_MODE (XEXP (x, 0)));
8869 default:
8870 break;
8871 }
8872
8873 /* The only other cases we handle are MIN, MAX, and comparisons if the
8874 operands are the same as REG and VAL. */
8875
8876 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8877 {
8878 if (rtx_equal_p (XEXP (x, 0), val))
8879 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8880
8881 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8882 {
8883 if (COMPARISON_P (x))
8884 {
8885 if (comparison_dominates_p (cond, code))
8886 return const_true_rtx;
8887
8888 code = reversed_comparison_code (x, NULL);
8889 if (code != UNKNOWN
8890 && comparison_dominates_p (cond, code))
8891 return const0_rtx;
8892 else
8893 return x;
8894 }
8895 else if (code == SMAX || code == SMIN
8896 || code == UMIN || code == UMAX)
8897 {
8898 int unsignedp = (code == UMIN || code == UMAX);
8899
8900 /* Do not reverse the condition when it is NE or EQ.
8901 This is because we cannot conclude anything about
8902 the value of 'SMAX (x, y)' when x is not equal to y,
8903 but we can when x equals y. */
8904 if ((code == SMAX || code == UMAX)
8905 && ! (cond == EQ || cond == NE))
8906 cond = reverse_condition (cond);
8907
8908 switch (cond)
8909 {
8910 case GE: case GT:
8911 return unsignedp ? x : XEXP (x, 1);
8912 case LE: case LT:
8913 return unsignedp ? x : XEXP (x, 0);
8914 case GEU: case GTU:
8915 return unsignedp ? XEXP (x, 1) : x;
8916 case LEU: case LTU:
8917 return unsignedp ? XEXP (x, 0) : x;
8918 default:
8919 break;
8920 }
8921 }
8922 }
8923 }
8924 else if (code == SUBREG)
8925 {
8926 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8927 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8928
8929 if (SUBREG_REG (x) != r)
8930 {
8931 /* We must simplify subreg here, before we lose track of the
8932 original inner_mode. */
8933 new_rtx = simplify_subreg (GET_MODE (x), r,
8934 inner_mode, SUBREG_BYTE (x));
8935 if (new_rtx)
8936 return new_rtx;
8937 else
8938 SUBST (SUBREG_REG (x), r);
8939 }
8940
8941 return x;
8942 }
8943 /* We don't have to handle SIGN_EXTEND here, because even in the
8944 case of replacing something with a modeless CONST_INT, a
8945 CONST_INT is already (supposed to be) a valid sign extension for
8946 its narrower mode, which implies it's already properly
8947 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8948 story is different. */
8949 else if (code == ZERO_EXTEND)
8950 {
8951 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8952 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8953
8954 if (XEXP (x, 0) != r)
8955 {
8956 /* We must simplify the zero_extend here, before we lose
8957 track of the original inner_mode. */
8958 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8959 r, inner_mode);
8960 if (new_rtx)
8961 return new_rtx;
8962 else
8963 SUBST (XEXP (x, 0), r);
8964 }
8965
8966 return x;
8967 }
8968
8969 fmt = GET_RTX_FORMAT (code);
8970 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8971 {
8972 if (fmt[i] == 'e')
8973 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8974 else if (fmt[i] == 'E')
8975 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8976 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8977 cond, reg, val));
8978 }
8979
8980 return x;
8981 }
8982 \f
8983 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8984 assignment as a field assignment. */
8985
8986 static int
8987 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8988 {
8989 if (x == y || rtx_equal_p (x, y))
8990 return 1;
8991
8992 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8993 return 0;
8994
8995 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8996 Note that all SUBREGs of MEM are paradoxical; otherwise they
8997 would have been rewritten. */
8998 if (MEM_P (x) && GET_CODE (y) == SUBREG
8999 && MEM_P (SUBREG_REG (y))
9000 && rtx_equal_p (SUBREG_REG (y),
9001 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9002 return 1;
9003
9004 if (MEM_P (y) && GET_CODE (x) == SUBREG
9005 && MEM_P (SUBREG_REG (x))
9006 && rtx_equal_p (SUBREG_REG (x),
9007 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9008 return 1;
9009
9010 /* We used to see if get_last_value of X and Y were the same but that's
9011 not correct. In one direction, we'll cause the assignment to have
9012 the wrong destination and in the case, we'll import a register into this
9013 insn that might have already have been dead. So fail if none of the
9014 above cases are true. */
9015 return 0;
9016 }
9017 \f
9018 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9019 Return that assignment if so.
9020
9021 We only handle the most common cases. */
9022
9023 static rtx
9024 make_field_assignment (rtx x)
9025 {
9026 rtx dest = SET_DEST (x);
9027 rtx src = SET_SRC (x);
9028 rtx assign;
9029 rtx rhs, lhs;
9030 HOST_WIDE_INT c1;
9031 HOST_WIDE_INT pos;
9032 unsigned HOST_WIDE_INT len;
9033 rtx other;
9034 enum machine_mode mode;
9035
9036 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9037 a clear of a one-bit field. We will have changed it to
9038 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9039 for a SUBREG. */
9040
9041 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9042 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9043 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9044 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9045 {
9046 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9047 1, 1, 1, 0);
9048 if (assign != 0)
9049 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
9050 return x;
9051 }
9052
9053 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9054 && subreg_lowpart_p (XEXP (src, 0))
9055 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9056 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9057 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9058 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9059 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9060 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9061 {
9062 assign = make_extraction (VOIDmode, dest, 0,
9063 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9064 1, 1, 1, 0);
9065 if (assign != 0)
9066 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
9067 return x;
9068 }
9069
9070 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9071 one-bit field. */
9072 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9073 && XEXP (XEXP (src, 0), 0) == const1_rtx
9074 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9075 {
9076 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9077 1, 1, 1, 0);
9078 if (assign != 0)
9079 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
9080 return x;
9081 }
9082
9083 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9084 SRC is an AND with all bits of that field set, then we can discard
9085 the AND. */
9086 if (GET_CODE (dest) == ZERO_EXTRACT
9087 && CONST_INT_P (XEXP (dest, 1))
9088 && GET_CODE (src) == AND
9089 && CONST_INT_P (XEXP (src, 1)))
9090 {
9091 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9092 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9093 unsigned HOST_WIDE_INT ze_mask;
9094
9095 if (width >= HOST_BITS_PER_WIDE_INT)
9096 ze_mask = -1;
9097 else
9098 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9099
9100 /* Complete overlap. We can remove the source AND. */
9101 if ((and_mask & ze_mask) == ze_mask)
9102 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
9103
9104 /* Partial overlap. We can reduce the source AND. */
9105 if ((and_mask & ze_mask) != and_mask)
9106 {
9107 mode = GET_MODE (src);
9108 src = gen_rtx_AND (mode, XEXP (src, 0),
9109 gen_int_mode (and_mask & ze_mask, mode));
9110 return gen_rtx_SET (VOIDmode, dest, src);
9111 }
9112 }
9113
9114 /* The other case we handle is assignments into a constant-position
9115 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9116 a mask that has all one bits except for a group of zero bits and
9117 OTHER is known to have zeros where C1 has ones, this is such an
9118 assignment. Compute the position and length from C1. Shift OTHER
9119 to the appropriate position, force it to the required mode, and
9120 make the extraction. Check for the AND in both operands. */
9121
9122 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9123 return x;
9124
9125 rhs = expand_compound_operation (XEXP (src, 0));
9126 lhs = expand_compound_operation (XEXP (src, 1));
9127
9128 if (GET_CODE (rhs) == AND
9129 && CONST_INT_P (XEXP (rhs, 1))
9130 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9131 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9132 else if (GET_CODE (lhs) == AND
9133 && CONST_INT_P (XEXP (lhs, 1))
9134 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9135 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9136 else
9137 return x;
9138
9139 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9140 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9141 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9142 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9143 return x;
9144
9145 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9146 if (assign == 0)
9147 return x;
9148
9149 /* The mode to use for the source is the mode of the assignment, or of
9150 what is inside a possible STRICT_LOW_PART. */
9151 mode = (GET_CODE (assign) == STRICT_LOW_PART
9152 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9153
9154 /* Shift OTHER right POS places and make it the source, restricting it
9155 to the proper length and mode. */
9156
9157 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9158 GET_MODE (src),
9159 other, pos),
9160 dest);
9161 src = force_to_mode (src, mode,
9162 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9163 ? ~(unsigned HOST_WIDE_INT) 0
9164 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9165 0);
9166
9167 /* If SRC is masked by an AND that does not make a difference in
9168 the value being stored, strip it. */
9169 if (GET_CODE (assign) == ZERO_EXTRACT
9170 && CONST_INT_P (XEXP (assign, 1))
9171 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9172 && GET_CODE (src) == AND
9173 && CONST_INT_P (XEXP (src, 1))
9174 && UINTVAL (XEXP (src, 1))
9175 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9176 src = XEXP (src, 0);
9177
9178 return gen_rtx_SET (VOIDmode, assign, src);
9179 }
9180 \f
9181 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9182 if so. */
9183
9184 static rtx
9185 apply_distributive_law (rtx x)
9186 {
9187 enum rtx_code code = GET_CODE (x);
9188 enum rtx_code inner_code;
9189 rtx lhs, rhs, other;
9190 rtx tem;
9191
9192 /* Distributivity is not true for floating point as it can change the
9193 value. So we don't do it unless -funsafe-math-optimizations. */
9194 if (FLOAT_MODE_P (GET_MODE (x))
9195 && ! flag_unsafe_math_optimizations)
9196 return x;
9197
9198 /* The outer operation can only be one of the following: */
9199 if (code != IOR && code != AND && code != XOR
9200 && code != PLUS && code != MINUS)
9201 return x;
9202
9203 lhs = XEXP (x, 0);
9204 rhs = XEXP (x, 1);
9205
9206 /* If either operand is a primitive we can't do anything, so get out
9207 fast. */
9208 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9209 return x;
9210
9211 lhs = expand_compound_operation (lhs);
9212 rhs = expand_compound_operation (rhs);
9213 inner_code = GET_CODE (lhs);
9214 if (inner_code != GET_CODE (rhs))
9215 return x;
9216
9217 /* See if the inner and outer operations distribute. */
9218 switch (inner_code)
9219 {
9220 case LSHIFTRT:
9221 case ASHIFTRT:
9222 case AND:
9223 case IOR:
9224 /* These all distribute except over PLUS. */
9225 if (code == PLUS || code == MINUS)
9226 return x;
9227 break;
9228
9229 case MULT:
9230 if (code != PLUS && code != MINUS)
9231 return x;
9232 break;
9233
9234 case ASHIFT:
9235 /* This is also a multiply, so it distributes over everything. */
9236 break;
9237
9238 case SUBREG:
9239 /* Non-paradoxical SUBREGs distributes over all operations,
9240 provided the inner modes and byte offsets are the same, this
9241 is an extraction of a low-order part, we don't convert an fp
9242 operation to int or vice versa, this is not a vector mode,
9243 and we would not be converting a single-word operation into a
9244 multi-word operation. The latter test is not required, but
9245 it prevents generating unneeded multi-word operations. Some
9246 of the previous tests are redundant given the latter test,
9247 but are retained because they are required for correctness.
9248
9249 We produce the result slightly differently in this case. */
9250
9251 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
9252 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
9253 || ! subreg_lowpart_p (lhs)
9254 || (GET_MODE_CLASS (GET_MODE (lhs))
9255 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
9256 || paradoxical_subreg_p (lhs)
9257 || VECTOR_MODE_P (GET_MODE (lhs))
9258 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
9259 /* Result might need to be truncated. Don't change mode if
9260 explicit truncation is needed. */
9261 || !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (x),
9262 GET_MODE (SUBREG_REG (lhs))))
9263 return x;
9264
9265 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
9266 SUBREG_REG (lhs), SUBREG_REG (rhs));
9267 return gen_lowpart (GET_MODE (x), tem);
9268
9269 default:
9270 return x;
9271 }
9272
9273 /* Set LHS and RHS to the inner operands (A and B in the example
9274 above) and set OTHER to the common operand (C in the example).
9275 There is only one way to do this unless the inner operation is
9276 commutative. */
9277 if (COMMUTATIVE_ARITH_P (lhs)
9278 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9279 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9280 else if (COMMUTATIVE_ARITH_P (lhs)
9281 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9282 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9283 else if (COMMUTATIVE_ARITH_P (lhs)
9284 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9285 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9286 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9287 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9288 else
9289 return x;
9290
9291 /* Form the new inner operation, seeing if it simplifies first. */
9292 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9293
9294 /* There is one exception to the general way of distributing:
9295 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9296 if (code == XOR && inner_code == IOR)
9297 {
9298 inner_code = AND;
9299 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9300 }
9301
9302 /* We may be able to continuing distributing the result, so call
9303 ourselves recursively on the inner operation before forming the
9304 outer operation, which we return. */
9305 return simplify_gen_binary (inner_code, GET_MODE (x),
9306 apply_distributive_law (tem), other);
9307 }
9308
9309 /* See if X is of the form (* (+ A B) C), and if so convert to
9310 (+ (* A C) (* B C)) and try to simplify.
9311
9312 Most of the time, this results in no change. However, if some of
9313 the operands are the same or inverses of each other, simplifications
9314 will result.
9315
9316 For example, (and (ior A B) (not B)) can occur as the result of
9317 expanding a bit field assignment. When we apply the distributive
9318 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9319 which then simplifies to (and (A (not B))).
9320
9321 Note that no checks happen on the validity of applying the inverse
9322 distributive law. This is pointless since we can do it in the
9323 few places where this routine is called.
9324
9325 N is the index of the term that is decomposed (the arithmetic operation,
9326 i.e. (+ A B) in the first example above). !N is the index of the term that
9327 is distributed, i.e. of C in the first example above. */
9328 static rtx
9329 distribute_and_simplify_rtx (rtx x, int n)
9330 {
9331 enum machine_mode mode;
9332 enum rtx_code outer_code, inner_code;
9333 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9334
9335 /* Distributivity is not true for floating point as it can change the
9336 value. So we don't do it unless -funsafe-math-optimizations. */
9337 if (FLOAT_MODE_P (GET_MODE (x))
9338 && ! flag_unsafe_math_optimizations)
9339 return NULL_RTX;
9340
9341 decomposed = XEXP (x, n);
9342 if (!ARITHMETIC_P (decomposed))
9343 return NULL_RTX;
9344
9345 mode = GET_MODE (x);
9346 outer_code = GET_CODE (x);
9347 distributed = XEXP (x, !n);
9348
9349 inner_code = GET_CODE (decomposed);
9350 inner_op0 = XEXP (decomposed, 0);
9351 inner_op1 = XEXP (decomposed, 1);
9352
9353 /* Special case (and (xor B C) (not A)), which is equivalent to
9354 (xor (ior A B) (ior A C)) */
9355 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9356 {
9357 distributed = XEXP (distributed, 0);
9358 outer_code = IOR;
9359 }
9360
9361 if (n == 0)
9362 {
9363 /* Distribute the second term. */
9364 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9365 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9366 }
9367 else
9368 {
9369 /* Distribute the first term. */
9370 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9371 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9372 }
9373
9374 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9375 new_op0, new_op1));
9376 if (GET_CODE (tmp) != outer_code
9377 && rtx_cost (tmp, SET, optimize_this_for_speed_p)
9378 < rtx_cost (x, SET, optimize_this_for_speed_p))
9379 return tmp;
9380
9381 return NULL_RTX;
9382 }
9383 \f
9384 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9385 in MODE. Return an equivalent form, if different from (and VAROP
9386 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9387
9388 static rtx
9389 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9390 unsigned HOST_WIDE_INT constop)
9391 {
9392 unsigned HOST_WIDE_INT nonzero;
9393 unsigned HOST_WIDE_INT orig_constop;
9394 rtx orig_varop;
9395 int i;
9396
9397 orig_varop = varop;
9398 orig_constop = constop;
9399 if (GET_CODE (varop) == CLOBBER)
9400 return NULL_RTX;
9401
9402 /* Simplify VAROP knowing that we will be only looking at some of the
9403 bits in it.
9404
9405 Note by passing in CONSTOP, we guarantee that the bits not set in
9406 CONSTOP are not significant and will never be examined. We must
9407 ensure that is the case by explicitly masking out those bits
9408 before returning. */
9409 varop = force_to_mode (varop, mode, constop, 0);
9410
9411 /* If VAROP is a CLOBBER, we will fail so return it. */
9412 if (GET_CODE (varop) == CLOBBER)
9413 return varop;
9414
9415 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9416 to VAROP and return the new constant. */
9417 if (CONST_INT_P (varop))
9418 return gen_int_mode (INTVAL (varop) & constop, mode);
9419
9420 /* See what bits may be nonzero in VAROP. Unlike the general case of
9421 a call to nonzero_bits, here we don't care about bits outside
9422 MODE. */
9423
9424 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9425
9426 /* Turn off all bits in the constant that are known to already be zero.
9427 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9428 which is tested below. */
9429
9430 constop &= nonzero;
9431
9432 /* If we don't have any bits left, return zero. */
9433 if (constop == 0)
9434 return const0_rtx;
9435
9436 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9437 a power of two, we can replace this with an ASHIFT. */
9438 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9439 && (i = exact_log2 (constop)) >= 0)
9440 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9441
9442 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9443 or XOR, then try to apply the distributive law. This may eliminate
9444 operations if either branch can be simplified because of the AND.
9445 It may also make some cases more complex, but those cases probably
9446 won't match a pattern either with or without this. */
9447
9448 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9449 return
9450 gen_lowpart
9451 (mode,
9452 apply_distributive_law
9453 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9454 simplify_and_const_int (NULL_RTX,
9455 GET_MODE (varop),
9456 XEXP (varop, 0),
9457 constop),
9458 simplify_and_const_int (NULL_RTX,
9459 GET_MODE (varop),
9460 XEXP (varop, 1),
9461 constop))));
9462
9463 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9464 the AND and see if one of the operands simplifies to zero. If so, we
9465 may eliminate it. */
9466
9467 if (GET_CODE (varop) == PLUS
9468 && exact_log2 (constop + 1) >= 0)
9469 {
9470 rtx o0, o1;
9471
9472 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9473 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9474 if (o0 == const0_rtx)
9475 return o1;
9476 if (o1 == const0_rtx)
9477 return o0;
9478 }
9479
9480 /* Make a SUBREG if necessary. If we can't make it, fail. */
9481 varop = gen_lowpart (mode, varop);
9482 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9483 return NULL_RTX;
9484
9485 /* If we are only masking insignificant bits, return VAROP. */
9486 if (constop == nonzero)
9487 return varop;
9488
9489 if (varop == orig_varop && constop == orig_constop)
9490 return NULL_RTX;
9491
9492 /* Otherwise, return an AND. */
9493 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9494 }
9495
9496
9497 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9498 in MODE.
9499
9500 Return an equivalent form, if different from X. Otherwise, return X. If
9501 X is zero, we are to always construct the equivalent form. */
9502
9503 static rtx
9504 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9505 unsigned HOST_WIDE_INT constop)
9506 {
9507 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9508 if (tem)
9509 return tem;
9510
9511 if (!x)
9512 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9513 gen_int_mode (constop, mode));
9514 if (GET_MODE (x) != mode)
9515 x = gen_lowpart (mode, x);
9516 return x;
9517 }
9518 \f
9519 /* Given a REG, X, compute which bits in X can be nonzero.
9520 We don't care about bits outside of those defined in MODE.
9521
9522 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9523 a shift, AND, or zero_extract, we can do better. */
9524
9525 static rtx
9526 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9527 const_rtx known_x ATTRIBUTE_UNUSED,
9528 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9529 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9530 unsigned HOST_WIDE_INT *nonzero)
9531 {
9532 rtx tem;
9533 reg_stat_type *rsp;
9534
9535 /* If X is a register whose nonzero bits value is current, use it.
9536 Otherwise, if X is a register whose value we can find, use that
9537 value. Otherwise, use the previously-computed global nonzero bits
9538 for this register. */
9539
9540 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9541 if (rsp->last_set_value != 0
9542 && (rsp->last_set_mode == mode
9543 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9544 && GET_MODE_CLASS (mode) == MODE_INT))
9545 && ((rsp->last_set_label >= label_tick_ebb_start
9546 && rsp->last_set_label < label_tick)
9547 || (rsp->last_set_label == label_tick
9548 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9549 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9550 && REG_N_SETS (REGNO (x)) == 1
9551 && !REGNO_REG_SET_P
9552 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9553 {
9554 *nonzero &= rsp->last_set_nonzero_bits;
9555 return NULL;
9556 }
9557
9558 tem = get_last_value (x);
9559
9560 if (tem)
9561 {
9562 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9563 /* If X is narrower than MODE and TEM is a non-negative
9564 constant that would appear negative in the mode of X,
9565 sign-extend it for use in reg_nonzero_bits because some
9566 machines (maybe most) will actually do the sign-extension
9567 and this is the conservative approach.
9568
9569 ??? For 2.5, try to tighten up the MD files in this regard
9570 instead of this kludge. */
9571
9572 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode)
9573 && CONST_INT_P (tem)
9574 && INTVAL (tem) > 0
9575 && val_signbit_known_set_p (GET_MODE (x), INTVAL (tem)))
9576 tem = GEN_INT (INTVAL (tem) | ~GET_MODE_MASK (GET_MODE (x)));
9577 #endif
9578 return tem;
9579 }
9580 else if (nonzero_sign_valid && rsp->nonzero_bits)
9581 {
9582 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9583
9584 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9585 /* We don't know anything about the upper bits. */
9586 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9587 *nonzero &= mask;
9588 }
9589
9590 return NULL;
9591 }
9592
9593 /* Return the number of bits at the high-order end of X that are known to
9594 be equal to the sign bit. X will be used in mode MODE; if MODE is
9595 VOIDmode, X will be used in its own mode. The returned value will always
9596 be between 1 and the number of bits in MODE. */
9597
9598 static rtx
9599 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9600 const_rtx known_x ATTRIBUTE_UNUSED,
9601 enum machine_mode known_mode
9602 ATTRIBUTE_UNUSED,
9603 unsigned int known_ret ATTRIBUTE_UNUSED,
9604 unsigned int *result)
9605 {
9606 rtx tem;
9607 reg_stat_type *rsp;
9608
9609 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9610 if (rsp->last_set_value != 0
9611 && rsp->last_set_mode == mode
9612 && ((rsp->last_set_label >= label_tick_ebb_start
9613 && rsp->last_set_label < label_tick)
9614 || (rsp->last_set_label == label_tick
9615 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9616 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9617 && REG_N_SETS (REGNO (x)) == 1
9618 && !REGNO_REG_SET_P
9619 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9620 {
9621 *result = rsp->last_set_sign_bit_copies;
9622 return NULL;
9623 }
9624
9625 tem = get_last_value (x);
9626 if (tem != 0)
9627 return tem;
9628
9629 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9630 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9631 *result = rsp->sign_bit_copies;
9632
9633 return NULL;
9634 }
9635 \f
9636 /* Return the number of "extended" bits there are in X, when interpreted
9637 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9638 unsigned quantities, this is the number of high-order zero bits.
9639 For signed quantities, this is the number of copies of the sign bit
9640 minus 1. In both case, this function returns the number of "spare"
9641 bits. For example, if two quantities for which this function returns
9642 at least 1 are added, the addition is known not to overflow.
9643
9644 This function will always return 0 unless called during combine, which
9645 implies that it must be called from a define_split. */
9646
9647 unsigned int
9648 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9649 {
9650 if (nonzero_sign_valid == 0)
9651 return 0;
9652
9653 return (unsignedp
9654 ? (HWI_COMPUTABLE_MODE_P (mode)
9655 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9656 - floor_log2 (nonzero_bits (x, mode)))
9657 : 0)
9658 : num_sign_bit_copies (x, mode) - 1);
9659 }
9660 \f
9661 /* This function is called from `simplify_shift_const' to merge two
9662 outer operations. Specifically, we have already found that we need
9663 to perform operation *POP0 with constant *PCONST0 at the outermost
9664 position. We would now like to also perform OP1 with constant CONST1
9665 (with *POP0 being done last).
9666
9667 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9668 the resulting operation. *PCOMP_P is set to 1 if we would need to
9669 complement the innermost operand, otherwise it is unchanged.
9670
9671 MODE is the mode in which the operation will be done. No bits outside
9672 the width of this mode matter. It is assumed that the width of this mode
9673 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9674
9675 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9676 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9677 result is simply *PCONST0.
9678
9679 If the resulting operation cannot be expressed as one operation, we
9680 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9681
9682 static int
9683 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9684 {
9685 enum rtx_code op0 = *pop0;
9686 HOST_WIDE_INT const0 = *pconst0;
9687
9688 const0 &= GET_MODE_MASK (mode);
9689 const1 &= GET_MODE_MASK (mode);
9690
9691 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9692 if (op0 == AND)
9693 const1 &= const0;
9694
9695 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9696 if OP0 is SET. */
9697
9698 if (op1 == UNKNOWN || op0 == SET)
9699 return 1;
9700
9701 else if (op0 == UNKNOWN)
9702 op0 = op1, const0 = const1;
9703
9704 else if (op0 == op1)
9705 {
9706 switch (op0)
9707 {
9708 case AND:
9709 const0 &= const1;
9710 break;
9711 case IOR:
9712 const0 |= const1;
9713 break;
9714 case XOR:
9715 const0 ^= const1;
9716 break;
9717 case PLUS:
9718 const0 += const1;
9719 break;
9720 case NEG:
9721 op0 = UNKNOWN;
9722 break;
9723 default:
9724 break;
9725 }
9726 }
9727
9728 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9729 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9730 return 0;
9731
9732 /* If the two constants aren't the same, we can't do anything. The
9733 remaining six cases can all be done. */
9734 else if (const0 != const1)
9735 return 0;
9736
9737 else
9738 switch (op0)
9739 {
9740 case IOR:
9741 if (op1 == AND)
9742 /* (a & b) | b == b */
9743 op0 = SET;
9744 else /* op1 == XOR */
9745 /* (a ^ b) | b == a | b */
9746 {;}
9747 break;
9748
9749 case XOR:
9750 if (op1 == AND)
9751 /* (a & b) ^ b == (~a) & b */
9752 op0 = AND, *pcomp_p = 1;
9753 else /* op1 == IOR */
9754 /* (a | b) ^ b == a & ~b */
9755 op0 = AND, const0 = ~const0;
9756 break;
9757
9758 case AND:
9759 if (op1 == IOR)
9760 /* (a | b) & b == b */
9761 op0 = SET;
9762 else /* op1 == XOR */
9763 /* (a ^ b) & b) == (~a) & b */
9764 *pcomp_p = 1;
9765 break;
9766 default:
9767 break;
9768 }
9769
9770 /* Check for NO-OP cases. */
9771 const0 &= GET_MODE_MASK (mode);
9772 if (const0 == 0
9773 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9774 op0 = UNKNOWN;
9775 else if (const0 == 0 && op0 == AND)
9776 op0 = SET;
9777 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9778 && op0 == AND)
9779 op0 = UNKNOWN;
9780
9781 *pop0 = op0;
9782
9783 /* ??? Slightly redundant with the above mask, but not entirely.
9784 Moving this above means we'd have to sign-extend the mode mask
9785 for the final test. */
9786 if (op0 != UNKNOWN && op0 != NEG)
9787 *pconst0 = trunc_int_for_mode (const0, mode);
9788
9789 return 1;
9790 }
9791 \f
9792 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9793 the shift in. The original shift operation CODE is performed on OP in
9794 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9795 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9796 result of the shift is subject to operation OUTER_CODE with operand
9797 OUTER_CONST. */
9798
9799 static enum machine_mode
9800 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9801 enum machine_mode orig_mode, enum machine_mode mode,
9802 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9803 {
9804 if (orig_mode == mode)
9805 return mode;
9806 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
9807
9808 /* In general we can't perform in wider mode for right shift and rotate. */
9809 switch (code)
9810 {
9811 case ASHIFTRT:
9812 /* We can still widen if the bits brought in from the left are identical
9813 to the sign bit of ORIG_MODE. */
9814 if (num_sign_bit_copies (op, mode)
9815 > (unsigned) (GET_MODE_PRECISION (mode)
9816 - GET_MODE_PRECISION (orig_mode)))
9817 return mode;
9818 return orig_mode;
9819
9820 case LSHIFTRT:
9821 /* Similarly here but with zero bits. */
9822 if (HWI_COMPUTABLE_MODE_P (mode)
9823 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9824 return mode;
9825
9826 /* We can also widen if the bits brought in will be masked off. This
9827 operation is performed in ORIG_MODE. */
9828 if (outer_code == AND)
9829 {
9830 int care_bits = low_bitmask_len (orig_mode, outer_const);
9831
9832 if (care_bits >= 0
9833 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
9834 return mode;
9835 }
9836 /* fall through */
9837
9838 case ROTATE:
9839 return orig_mode;
9840
9841 case ROTATERT:
9842 gcc_unreachable ();
9843
9844 default:
9845 return mode;
9846 }
9847 }
9848
9849 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
9850 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
9851 if we cannot simplify it. Otherwise, return a simplified value.
9852
9853 The shift is normally computed in the widest mode we find in VAROP, as
9854 long as it isn't a different number of words than RESULT_MODE. Exceptions
9855 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9856
9857 static rtx
9858 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9859 rtx varop, int orig_count)
9860 {
9861 enum rtx_code orig_code = code;
9862 rtx orig_varop = varop;
9863 int count;
9864 enum machine_mode mode = result_mode;
9865 enum machine_mode shift_mode, tmode;
9866 unsigned int mode_words
9867 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9868 /* We form (outer_op (code varop count) (outer_const)). */
9869 enum rtx_code outer_op = UNKNOWN;
9870 HOST_WIDE_INT outer_const = 0;
9871 int complement_p = 0;
9872 rtx new_rtx, x;
9873
9874 /* Make sure and truncate the "natural" shift on the way in. We don't
9875 want to do this inside the loop as it makes it more difficult to
9876 combine shifts. */
9877 if (SHIFT_COUNT_TRUNCATED)
9878 orig_count &= targetm.shift_truncation_mask (mode);
9879
9880 /* If we were given an invalid count, don't do anything except exactly
9881 what was requested. */
9882
9883 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
9884 return NULL_RTX;
9885
9886 count = orig_count;
9887
9888 /* Unless one of the branches of the `if' in this loop does a `continue',
9889 we will `break' the loop after the `if'. */
9890
9891 while (count != 0)
9892 {
9893 /* If we have an operand of (clobber (const_int 0)), fail. */
9894 if (GET_CODE (varop) == CLOBBER)
9895 return NULL_RTX;
9896
9897 /* Convert ROTATERT to ROTATE. */
9898 if (code == ROTATERT)
9899 {
9900 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
9901 code = ROTATE;
9902 if (VECTOR_MODE_P (result_mode))
9903 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9904 else
9905 count = bitsize - count;
9906 }
9907
9908 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9909 mode, outer_op, outer_const);
9910
9911 /* Handle cases where the count is greater than the size of the mode
9912 minus 1. For ASHIFT, use the size minus one as the count (this can
9913 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9914 take the count modulo the size. For other shifts, the result is
9915 zero.
9916
9917 Since these shifts are being produced by the compiler by combining
9918 multiple operations, each of which are defined, we know what the
9919 result is supposed to be. */
9920
9921 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
9922 {
9923 if (code == ASHIFTRT)
9924 count = GET_MODE_PRECISION (shift_mode) - 1;
9925 else if (code == ROTATE || code == ROTATERT)
9926 count %= GET_MODE_PRECISION (shift_mode);
9927 else
9928 {
9929 /* We can't simply return zero because there may be an
9930 outer op. */
9931 varop = const0_rtx;
9932 count = 0;
9933 break;
9934 }
9935 }
9936
9937 /* If we discovered we had to complement VAROP, leave. Making a NOT
9938 here would cause an infinite loop. */
9939 if (complement_p)
9940 break;
9941
9942 /* An arithmetic right shift of a quantity known to be -1 or 0
9943 is a no-op. */
9944 if (code == ASHIFTRT
9945 && (num_sign_bit_copies (varop, shift_mode)
9946 == GET_MODE_PRECISION (shift_mode)))
9947 {
9948 count = 0;
9949 break;
9950 }
9951
9952 /* If we are doing an arithmetic right shift and discarding all but
9953 the sign bit copies, this is equivalent to doing a shift by the
9954 bitsize minus one. Convert it into that shift because it will often
9955 allow other simplifications. */
9956
9957 if (code == ASHIFTRT
9958 && (count + num_sign_bit_copies (varop, shift_mode)
9959 >= GET_MODE_PRECISION (shift_mode)))
9960 count = GET_MODE_PRECISION (shift_mode) - 1;
9961
9962 /* We simplify the tests below and elsewhere by converting
9963 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9964 `make_compound_operation' will convert it to an ASHIFTRT for
9965 those machines (such as VAX) that don't have an LSHIFTRT. */
9966 if (code == ASHIFTRT
9967 && val_signbit_known_clear_p (shift_mode,
9968 nonzero_bits (varop, shift_mode)))
9969 code = LSHIFTRT;
9970
9971 if (((code == LSHIFTRT
9972 && HWI_COMPUTABLE_MODE_P (shift_mode)
9973 && !(nonzero_bits (varop, shift_mode) >> count))
9974 || (code == ASHIFT
9975 && HWI_COMPUTABLE_MODE_P (shift_mode)
9976 && !((nonzero_bits (varop, shift_mode) << count)
9977 & GET_MODE_MASK (shift_mode))))
9978 && !side_effects_p (varop))
9979 varop = const0_rtx;
9980
9981 switch (GET_CODE (varop))
9982 {
9983 case SIGN_EXTEND:
9984 case ZERO_EXTEND:
9985 case SIGN_EXTRACT:
9986 case ZERO_EXTRACT:
9987 new_rtx = expand_compound_operation (varop);
9988 if (new_rtx != varop)
9989 {
9990 varop = new_rtx;
9991 continue;
9992 }
9993 break;
9994
9995 case MEM:
9996 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9997 minus the width of a smaller mode, we can do this with a
9998 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9999 if ((code == ASHIFTRT || code == LSHIFTRT)
10000 && ! mode_dependent_address_p (XEXP (varop, 0))
10001 && ! MEM_VOLATILE_P (varop)
10002 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10003 MODE_INT, 1)) != BLKmode)
10004 {
10005 new_rtx = adjust_address_nv (varop, tmode,
10006 BYTES_BIG_ENDIAN ? 0
10007 : count / BITS_PER_UNIT);
10008
10009 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10010 : ZERO_EXTEND, mode, new_rtx);
10011 count = 0;
10012 continue;
10013 }
10014 break;
10015
10016 case SUBREG:
10017 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10018 the same number of words as what we've seen so far. Then store
10019 the widest mode in MODE. */
10020 if (subreg_lowpart_p (varop)
10021 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10022 > GET_MODE_SIZE (GET_MODE (varop)))
10023 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10024 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10025 == mode_words
10026 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10027 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10028 {
10029 varop = SUBREG_REG (varop);
10030 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10031 mode = GET_MODE (varop);
10032 continue;
10033 }
10034 break;
10035
10036 case MULT:
10037 /* Some machines use MULT instead of ASHIFT because MULT
10038 is cheaper. But it is still better on those machines to
10039 merge two shifts into one. */
10040 if (CONST_INT_P (XEXP (varop, 1))
10041 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10042 {
10043 varop
10044 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10045 XEXP (varop, 0),
10046 GEN_INT (exact_log2 (
10047 UINTVAL (XEXP (varop, 1)))));
10048 continue;
10049 }
10050 break;
10051
10052 case UDIV:
10053 /* Similar, for when divides are cheaper. */
10054 if (CONST_INT_P (XEXP (varop, 1))
10055 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10056 {
10057 varop
10058 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10059 XEXP (varop, 0),
10060 GEN_INT (exact_log2 (
10061 UINTVAL (XEXP (varop, 1)))));
10062 continue;
10063 }
10064 break;
10065
10066 case ASHIFTRT:
10067 /* If we are extracting just the sign bit of an arithmetic
10068 right shift, that shift is not needed. However, the sign
10069 bit of a wider mode may be different from what would be
10070 interpreted as the sign bit in a narrower mode, so, if
10071 the result is narrower, don't discard the shift. */
10072 if (code == LSHIFTRT
10073 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10074 && (GET_MODE_BITSIZE (result_mode)
10075 >= GET_MODE_BITSIZE (GET_MODE (varop))))
10076 {
10077 varop = XEXP (varop, 0);
10078 continue;
10079 }
10080
10081 /* ... fall through ... */
10082
10083 case LSHIFTRT:
10084 case ASHIFT:
10085 case ROTATE:
10086 /* Here we have two nested shifts. The result is usually the
10087 AND of a new shift with a mask. We compute the result below. */
10088 if (CONST_INT_P (XEXP (varop, 1))
10089 && INTVAL (XEXP (varop, 1)) >= 0
10090 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10091 && HWI_COMPUTABLE_MODE_P (result_mode)
10092 && HWI_COMPUTABLE_MODE_P (mode)
10093 && !VECTOR_MODE_P (result_mode))
10094 {
10095 enum rtx_code first_code = GET_CODE (varop);
10096 unsigned int first_count = INTVAL (XEXP (varop, 1));
10097 unsigned HOST_WIDE_INT mask;
10098 rtx mask_rtx;
10099
10100 /* We have one common special case. We can't do any merging if
10101 the inner code is an ASHIFTRT of a smaller mode. However, if
10102 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10103 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10104 we can convert it to
10105 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10106 This simplifies certain SIGN_EXTEND operations. */
10107 if (code == ASHIFT && first_code == ASHIFTRT
10108 && count == (GET_MODE_PRECISION (result_mode)
10109 - GET_MODE_PRECISION (GET_MODE (varop))))
10110 {
10111 /* C3 has the low-order C1 bits zero. */
10112
10113 mask = GET_MODE_MASK (mode)
10114 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10115
10116 varop = simplify_and_const_int (NULL_RTX, result_mode,
10117 XEXP (varop, 0), mask);
10118 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10119 varop, count);
10120 count = first_count;
10121 code = ASHIFTRT;
10122 continue;
10123 }
10124
10125 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10126 than C1 high-order bits equal to the sign bit, we can convert
10127 this to either an ASHIFT or an ASHIFTRT depending on the
10128 two counts.
10129
10130 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10131
10132 if (code == ASHIFTRT && first_code == ASHIFT
10133 && GET_MODE (varop) == shift_mode
10134 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10135 > first_count))
10136 {
10137 varop = XEXP (varop, 0);
10138 count -= first_count;
10139 if (count < 0)
10140 {
10141 count = -count;
10142 code = ASHIFT;
10143 }
10144
10145 continue;
10146 }
10147
10148 /* There are some cases we can't do. If CODE is ASHIFTRT,
10149 we can only do this if FIRST_CODE is also ASHIFTRT.
10150
10151 We can't do the case when CODE is ROTATE and FIRST_CODE is
10152 ASHIFTRT.
10153
10154 If the mode of this shift is not the mode of the outer shift,
10155 we can't do this if either shift is a right shift or ROTATE.
10156
10157 Finally, we can't do any of these if the mode is too wide
10158 unless the codes are the same.
10159
10160 Handle the case where the shift codes are the same
10161 first. */
10162
10163 if (code == first_code)
10164 {
10165 if (GET_MODE (varop) != result_mode
10166 && (code == ASHIFTRT || code == LSHIFTRT
10167 || code == ROTATE))
10168 break;
10169
10170 count += first_count;
10171 varop = XEXP (varop, 0);
10172 continue;
10173 }
10174
10175 if (code == ASHIFTRT
10176 || (code == ROTATE && first_code == ASHIFTRT)
10177 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10178 || (GET_MODE (varop) != result_mode
10179 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10180 || first_code == ROTATE
10181 || code == ROTATE)))
10182 break;
10183
10184 /* To compute the mask to apply after the shift, shift the
10185 nonzero bits of the inner shift the same way the
10186 outer shift will. */
10187
10188 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
10189
10190 mask_rtx
10191 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10192 GEN_INT (count));
10193
10194 /* Give up if we can't compute an outer operation to use. */
10195 if (mask_rtx == 0
10196 || !CONST_INT_P (mask_rtx)
10197 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10198 INTVAL (mask_rtx),
10199 result_mode, &complement_p))
10200 break;
10201
10202 /* If the shifts are in the same direction, we add the
10203 counts. Otherwise, we subtract them. */
10204 if ((code == ASHIFTRT || code == LSHIFTRT)
10205 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10206 count += first_count;
10207 else
10208 count -= first_count;
10209
10210 /* If COUNT is positive, the new shift is usually CODE,
10211 except for the two exceptions below, in which case it is
10212 FIRST_CODE. If the count is negative, FIRST_CODE should
10213 always be used */
10214 if (count > 0
10215 && ((first_code == ROTATE && code == ASHIFT)
10216 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10217 code = first_code;
10218 else if (count < 0)
10219 code = first_code, count = -count;
10220
10221 varop = XEXP (varop, 0);
10222 continue;
10223 }
10224
10225 /* If we have (A << B << C) for any shift, we can convert this to
10226 (A << C << B). This wins if A is a constant. Only try this if
10227 B is not a constant. */
10228
10229 else if (GET_CODE (varop) == code
10230 && CONST_INT_P (XEXP (varop, 0))
10231 && !CONST_INT_P (XEXP (varop, 1)))
10232 {
10233 rtx new_rtx = simplify_const_binary_operation (code, mode,
10234 XEXP (varop, 0),
10235 GEN_INT (count));
10236 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10237 count = 0;
10238 continue;
10239 }
10240 break;
10241
10242 case NOT:
10243 if (VECTOR_MODE_P (mode))
10244 break;
10245
10246 /* Make this fit the case below. */
10247 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
10248 GEN_INT (GET_MODE_MASK (mode)));
10249 continue;
10250
10251 case IOR:
10252 case AND:
10253 case XOR:
10254 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10255 with C the size of VAROP - 1 and the shift is logical if
10256 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10257 we have an (le X 0) operation. If we have an arithmetic shift
10258 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10259 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10260
10261 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10262 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10263 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10264 && (code == LSHIFTRT || code == ASHIFTRT)
10265 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10266 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10267 {
10268 count = 0;
10269 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10270 const0_rtx);
10271
10272 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10273 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10274
10275 continue;
10276 }
10277
10278 /* If we have (shift (logical)), move the logical to the outside
10279 to allow it to possibly combine with another logical and the
10280 shift to combine with another shift. This also canonicalizes to
10281 what a ZERO_EXTRACT looks like. Also, some machines have
10282 (and (shift)) insns. */
10283
10284 if (CONST_INT_P (XEXP (varop, 1))
10285 /* We can't do this if we have (ashiftrt (xor)) and the
10286 constant has its sign bit set in shift_mode. */
10287 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10288 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10289 shift_mode))
10290 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10291 XEXP (varop, 1),
10292 GEN_INT (count))) != 0
10293 && CONST_INT_P (new_rtx)
10294 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10295 INTVAL (new_rtx), result_mode, &complement_p))
10296 {
10297 varop = XEXP (varop, 0);
10298 continue;
10299 }
10300
10301 /* If we can't do that, try to simplify the shift in each arm of the
10302 logical expression, make a new logical expression, and apply
10303 the inverse distributive law. This also can't be done
10304 for some (ashiftrt (xor)). */
10305 if (CONST_INT_P (XEXP (varop, 1))
10306 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10307 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10308 shift_mode)))
10309 {
10310 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10311 XEXP (varop, 0), count);
10312 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10313 XEXP (varop, 1), count);
10314
10315 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10316 lhs, rhs);
10317 varop = apply_distributive_law (varop);
10318
10319 count = 0;
10320 continue;
10321 }
10322 break;
10323
10324 case EQ:
10325 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10326 says that the sign bit can be tested, FOO has mode MODE, C is
10327 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10328 that may be nonzero. */
10329 if (code == LSHIFTRT
10330 && XEXP (varop, 1) == const0_rtx
10331 && GET_MODE (XEXP (varop, 0)) == result_mode
10332 && count == (GET_MODE_PRECISION (result_mode) - 1)
10333 && HWI_COMPUTABLE_MODE_P (result_mode)
10334 && STORE_FLAG_VALUE == -1
10335 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10336 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10337 &complement_p))
10338 {
10339 varop = XEXP (varop, 0);
10340 count = 0;
10341 continue;
10342 }
10343 break;
10344
10345 case NEG:
10346 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10347 than the number of bits in the mode is equivalent to A. */
10348 if (code == LSHIFTRT
10349 && count == (GET_MODE_PRECISION (result_mode) - 1)
10350 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10351 {
10352 varop = XEXP (varop, 0);
10353 count = 0;
10354 continue;
10355 }
10356
10357 /* NEG commutes with ASHIFT since it is multiplication. Move the
10358 NEG outside to allow shifts to combine. */
10359 if (code == ASHIFT
10360 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10361 &complement_p))
10362 {
10363 varop = XEXP (varop, 0);
10364 continue;
10365 }
10366 break;
10367
10368 case PLUS:
10369 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10370 is one less than the number of bits in the mode is
10371 equivalent to (xor A 1). */
10372 if (code == LSHIFTRT
10373 && count == (GET_MODE_PRECISION (result_mode) - 1)
10374 && XEXP (varop, 1) == constm1_rtx
10375 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10376 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10377 &complement_p))
10378 {
10379 count = 0;
10380 varop = XEXP (varop, 0);
10381 continue;
10382 }
10383
10384 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10385 that might be nonzero in BAR are those being shifted out and those
10386 bits are known zero in FOO, we can replace the PLUS with FOO.
10387 Similarly in the other operand order. This code occurs when
10388 we are computing the size of a variable-size array. */
10389
10390 if ((code == ASHIFTRT || code == LSHIFTRT)
10391 && count < HOST_BITS_PER_WIDE_INT
10392 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10393 && (nonzero_bits (XEXP (varop, 1), result_mode)
10394 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10395 {
10396 varop = XEXP (varop, 0);
10397 continue;
10398 }
10399 else if ((code == ASHIFTRT || code == LSHIFTRT)
10400 && count < HOST_BITS_PER_WIDE_INT
10401 && HWI_COMPUTABLE_MODE_P (result_mode)
10402 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10403 >> count)
10404 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10405 & nonzero_bits (XEXP (varop, 1),
10406 result_mode)))
10407 {
10408 varop = XEXP (varop, 1);
10409 continue;
10410 }
10411
10412 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10413 if (code == ASHIFT
10414 && CONST_INT_P (XEXP (varop, 1))
10415 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10416 XEXP (varop, 1),
10417 GEN_INT (count))) != 0
10418 && CONST_INT_P (new_rtx)
10419 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10420 INTVAL (new_rtx), result_mode, &complement_p))
10421 {
10422 varop = XEXP (varop, 0);
10423 continue;
10424 }
10425
10426 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10427 signbit', and attempt to change the PLUS to an XOR and move it to
10428 the outer operation as is done above in the AND/IOR/XOR case
10429 leg for shift(logical). See details in logical handling above
10430 for reasoning in doing so. */
10431 if (code == LSHIFTRT
10432 && CONST_INT_P (XEXP (varop, 1))
10433 && mode_signbit_p (result_mode, XEXP (varop, 1))
10434 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10435 XEXP (varop, 1),
10436 GEN_INT (count))) != 0
10437 && CONST_INT_P (new_rtx)
10438 && merge_outer_ops (&outer_op, &outer_const, XOR,
10439 INTVAL (new_rtx), result_mode, &complement_p))
10440 {
10441 varop = XEXP (varop, 0);
10442 continue;
10443 }
10444
10445 break;
10446
10447 case MINUS:
10448 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10449 with C the size of VAROP - 1 and the shift is logical if
10450 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10451 we have a (gt X 0) operation. If the shift is arithmetic with
10452 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10453 we have a (neg (gt X 0)) operation. */
10454
10455 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10456 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10457 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10458 && (code == LSHIFTRT || code == ASHIFTRT)
10459 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10460 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10461 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10462 {
10463 count = 0;
10464 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10465 const0_rtx);
10466
10467 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10468 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10469
10470 continue;
10471 }
10472 break;
10473
10474 case TRUNCATE:
10475 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10476 if the truncate does not affect the value. */
10477 if (code == LSHIFTRT
10478 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10479 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10480 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10481 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10482 - GET_MODE_PRECISION (GET_MODE (varop)))))
10483 {
10484 rtx varop_inner = XEXP (varop, 0);
10485
10486 varop_inner
10487 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10488 XEXP (varop_inner, 0),
10489 GEN_INT
10490 (count + INTVAL (XEXP (varop_inner, 1))));
10491 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10492 count = 0;
10493 continue;
10494 }
10495 break;
10496
10497 default:
10498 break;
10499 }
10500
10501 break;
10502 }
10503
10504 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10505 outer_op, outer_const);
10506
10507 /* We have now finished analyzing the shift. The result should be
10508 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10509 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10510 to the result of the shift. OUTER_CONST is the relevant constant,
10511 but we must turn off all bits turned off in the shift. */
10512
10513 if (outer_op == UNKNOWN
10514 && orig_code == code && orig_count == count
10515 && varop == orig_varop
10516 && shift_mode == GET_MODE (varop))
10517 return NULL_RTX;
10518
10519 /* Make a SUBREG if necessary. If we can't make it, fail. */
10520 varop = gen_lowpart (shift_mode, varop);
10521 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10522 return NULL_RTX;
10523
10524 /* If we have an outer operation and we just made a shift, it is
10525 possible that we could have simplified the shift were it not
10526 for the outer operation. So try to do the simplification
10527 recursively. */
10528
10529 if (outer_op != UNKNOWN)
10530 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10531 else
10532 x = NULL_RTX;
10533
10534 if (x == NULL_RTX)
10535 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10536
10537 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10538 turn off all the bits that the shift would have turned off. */
10539 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10540 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10541 GET_MODE_MASK (result_mode) >> orig_count);
10542
10543 /* Do the remainder of the processing in RESULT_MODE. */
10544 x = gen_lowpart_or_truncate (result_mode, x);
10545
10546 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10547 operation. */
10548 if (complement_p)
10549 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10550
10551 if (outer_op != UNKNOWN)
10552 {
10553 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10554 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10555 outer_const = trunc_int_for_mode (outer_const, result_mode);
10556
10557 if (outer_op == AND)
10558 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10559 else if (outer_op == SET)
10560 {
10561 /* This means that we have determined that the result is
10562 equivalent to a constant. This should be rare. */
10563 if (!side_effects_p (x))
10564 x = GEN_INT (outer_const);
10565 }
10566 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10567 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10568 else
10569 x = simplify_gen_binary (outer_op, result_mode, x,
10570 GEN_INT (outer_const));
10571 }
10572
10573 return x;
10574 }
10575
10576 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10577 The result of the shift is RESULT_MODE. If we cannot simplify it,
10578 return X or, if it is NULL, synthesize the expression with
10579 simplify_gen_binary. Otherwise, return a simplified value.
10580
10581 The shift is normally computed in the widest mode we find in VAROP, as
10582 long as it isn't a different number of words than RESULT_MODE. Exceptions
10583 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10584
10585 static rtx
10586 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10587 rtx varop, int count)
10588 {
10589 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10590 if (tem)
10591 return tem;
10592
10593 if (!x)
10594 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10595 if (GET_MODE (x) != result_mode)
10596 x = gen_lowpart (result_mode, x);
10597 return x;
10598 }
10599
10600 \f
10601 /* Like recog, but we receive the address of a pointer to a new pattern.
10602 We try to match the rtx that the pointer points to.
10603 If that fails, we may try to modify or replace the pattern,
10604 storing the replacement into the same pointer object.
10605
10606 Modifications include deletion or addition of CLOBBERs.
10607
10608 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10609 the CLOBBERs are placed.
10610
10611 The value is the final insn code from the pattern ultimately matched,
10612 or -1. */
10613
10614 static int
10615 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10616 {
10617 rtx pat = *pnewpat;
10618 int insn_code_number;
10619 int num_clobbers_to_add = 0;
10620 int i;
10621 rtx notes = 0;
10622 rtx old_notes, old_pat;
10623
10624 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10625 we use to indicate that something didn't match. If we find such a
10626 thing, force rejection. */
10627 if (GET_CODE (pat) == PARALLEL)
10628 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10629 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10630 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10631 return -1;
10632
10633 old_pat = PATTERN (insn);
10634 old_notes = REG_NOTES (insn);
10635 PATTERN (insn) = pat;
10636 REG_NOTES (insn) = 0;
10637
10638 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10639 if (dump_file && (dump_flags & TDF_DETAILS))
10640 {
10641 if (insn_code_number < 0)
10642 fputs ("Failed to match this instruction:\n", dump_file);
10643 else
10644 fputs ("Successfully matched this instruction:\n", dump_file);
10645 print_rtl_single (dump_file, pat);
10646 }
10647
10648 /* If it isn't, there is the possibility that we previously had an insn
10649 that clobbered some register as a side effect, but the combined
10650 insn doesn't need to do that. So try once more without the clobbers
10651 unless this represents an ASM insn. */
10652
10653 if (insn_code_number < 0 && ! check_asm_operands (pat)
10654 && GET_CODE (pat) == PARALLEL)
10655 {
10656 int pos;
10657
10658 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10659 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10660 {
10661 if (i != pos)
10662 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10663 pos++;
10664 }
10665
10666 SUBST_INT (XVECLEN (pat, 0), pos);
10667
10668 if (pos == 1)
10669 pat = XVECEXP (pat, 0, 0);
10670
10671 PATTERN (insn) = pat;
10672 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10673 if (dump_file && (dump_flags & TDF_DETAILS))
10674 {
10675 if (insn_code_number < 0)
10676 fputs ("Failed to match this instruction:\n", dump_file);
10677 else
10678 fputs ("Successfully matched this instruction:\n", dump_file);
10679 print_rtl_single (dump_file, pat);
10680 }
10681 }
10682 PATTERN (insn) = old_pat;
10683 REG_NOTES (insn) = old_notes;
10684
10685 /* Recognize all noop sets, these will be killed by followup pass. */
10686 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10687 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10688
10689 /* If we had any clobbers to add, make a new pattern than contains
10690 them. Then check to make sure that all of them are dead. */
10691 if (num_clobbers_to_add)
10692 {
10693 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10694 rtvec_alloc (GET_CODE (pat) == PARALLEL
10695 ? (XVECLEN (pat, 0)
10696 + num_clobbers_to_add)
10697 : num_clobbers_to_add + 1));
10698
10699 if (GET_CODE (pat) == PARALLEL)
10700 for (i = 0; i < XVECLEN (pat, 0); i++)
10701 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10702 else
10703 XVECEXP (newpat, 0, 0) = pat;
10704
10705 add_clobbers (newpat, insn_code_number);
10706
10707 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10708 i < XVECLEN (newpat, 0); i++)
10709 {
10710 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10711 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10712 return -1;
10713 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10714 {
10715 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10716 notes = alloc_reg_note (REG_UNUSED,
10717 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10718 }
10719 }
10720 pat = newpat;
10721 }
10722
10723 *pnewpat = pat;
10724 *pnotes = notes;
10725
10726 return insn_code_number;
10727 }
10728 \f
10729 /* Like gen_lowpart_general but for use by combine. In combine it
10730 is not possible to create any new pseudoregs. However, it is
10731 safe to create invalid memory addresses, because combine will
10732 try to recognize them and all they will do is make the combine
10733 attempt fail.
10734
10735 If for some reason this cannot do its job, an rtx
10736 (clobber (const_int 0)) is returned.
10737 An insn containing that will not be recognized. */
10738
10739 static rtx
10740 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10741 {
10742 enum machine_mode imode = GET_MODE (x);
10743 unsigned int osize = GET_MODE_SIZE (omode);
10744 unsigned int isize = GET_MODE_SIZE (imode);
10745 rtx result;
10746
10747 if (omode == imode)
10748 return x;
10749
10750 /* Return identity if this is a CONST or symbolic reference. */
10751 if (omode == Pmode
10752 && (GET_CODE (x) == CONST
10753 || GET_CODE (x) == SYMBOL_REF
10754 || GET_CODE (x) == LABEL_REF))
10755 return x;
10756
10757 /* We can only support MODE being wider than a word if X is a
10758 constant integer or has a mode the same size. */
10759 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10760 && ! ((imode == VOIDmode
10761 && (CONST_INT_P (x)
10762 || GET_CODE (x) == CONST_DOUBLE))
10763 || isize == osize))
10764 goto fail;
10765
10766 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10767 won't know what to do. So we will strip off the SUBREG here and
10768 process normally. */
10769 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10770 {
10771 x = SUBREG_REG (x);
10772
10773 /* For use in case we fall down into the address adjustments
10774 further below, we need to adjust the known mode and size of
10775 x; imode and isize, since we just adjusted x. */
10776 imode = GET_MODE (x);
10777
10778 if (imode == omode)
10779 return x;
10780
10781 isize = GET_MODE_SIZE (imode);
10782 }
10783
10784 result = gen_lowpart_common (omode, x);
10785
10786 if (result)
10787 return result;
10788
10789 if (MEM_P (x))
10790 {
10791 int offset = 0;
10792
10793 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10794 address. */
10795 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10796 goto fail;
10797
10798 /* If we want to refer to something bigger than the original memref,
10799 generate a paradoxical subreg instead. That will force a reload
10800 of the original memref X. */
10801 if (isize < osize)
10802 return gen_rtx_SUBREG (omode, x, 0);
10803
10804 if (WORDS_BIG_ENDIAN)
10805 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10806
10807 /* Adjust the address so that the address-after-the-data is
10808 unchanged. */
10809 if (BYTES_BIG_ENDIAN)
10810 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10811
10812 return adjust_address_nv (x, omode, offset);
10813 }
10814
10815 /* If X is a comparison operator, rewrite it in a new mode. This
10816 probably won't match, but may allow further simplifications. */
10817 else if (COMPARISON_P (x))
10818 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10819
10820 /* If we couldn't simplify X any other way, just enclose it in a
10821 SUBREG. Normally, this SUBREG won't match, but some patterns may
10822 include an explicit SUBREG or we may simplify it further in combine. */
10823 else
10824 {
10825 int offset = 0;
10826 rtx res;
10827
10828 offset = subreg_lowpart_offset (omode, imode);
10829 if (imode == VOIDmode)
10830 {
10831 imode = int_mode_for_mode (omode);
10832 x = gen_lowpart_common (imode, x);
10833 if (x == NULL)
10834 goto fail;
10835 }
10836 res = simplify_gen_subreg (omode, x, imode, offset);
10837 if (res)
10838 return res;
10839 }
10840
10841 fail:
10842 return gen_rtx_CLOBBER (omode, const0_rtx);
10843 }
10844 \f
10845 /* Try to simplify a comparison between OP0 and a constant OP1,
10846 where CODE is the comparison code that will be tested, into a
10847 (CODE OP0 const0_rtx) form.
10848
10849 The result is a possibly different comparison code to use.
10850 *POP1 may be updated. */
10851
10852 static enum rtx_code
10853 simplify_compare_const (enum rtx_code code, rtx op0, rtx *pop1)
10854 {
10855 enum machine_mode mode = GET_MODE (op0);
10856 unsigned int mode_width = GET_MODE_PRECISION (mode);
10857 HOST_WIDE_INT const_op = INTVAL (*pop1);
10858
10859 /* Get the constant we are comparing against and turn off all bits
10860 not on in our mode. */
10861 if (mode != VOIDmode)
10862 const_op = trunc_int_for_mode (const_op, mode);
10863
10864 /* If we are comparing against a constant power of two and the value
10865 being compared can only have that single bit nonzero (e.g., it was
10866 `and'ed with that bit), we can replace this with a comparison
10867 with zero. */
10868 if (const_op
10869 && (code == EQ || code == NE || code == GE || code == GEU
10870 || code == LT || code == LTU)
10871 && mode_width <= HOST_BITS_PER_WIDE_INT
10872 && exact_log2 (const_op) >= 0
10873 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10874 {
10875 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10876 const_op = 0;
10877 }
10878
10879 /* Similarly, if we are comparing a value known to be either -1 or
10880 0 with -1, change it to the opposite comparison against zero. */
10881 if (const_op == -1
10882 && (code == EQ || code == NE || code == GT || code == LE
10883 || code == GEU || code == LTU)
10884 && num_sign_bit_copies (op0, mode) == mode_width)
10885 {
10886 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10887 const_op = 0;
10888 }
10889
10890 /* Do some canonicalizations based on the comparison code. We prefer
10891 comparisons against zero and then prefer equality comparisons.
10892 If we can reduce the size of a constant, we will do that too. */
10893 switch (code)
10894 {
10895 case LT:
10896 /* < C is equivalent to <= (C - 1) */
10897 if (const_op > 0)
10898 {
10899 const_op -= 1;
10900 code = LE;
10901 /* ... fall through to LE case below. */
10902 }
10903 else
10904 break;
10905
10906 case LE:
10907 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10908 if (const_op < 0)
10909 {
10910 const_op += 1;
10911 code = LT;
10912 }
10913
10914 /* If we are doing a <= 0 comparison on a value known to have
10915 a zero sign bit, we can replace this with == 0. */
10916 else if (const_op == 0
10917 && mode_width <= HOST_BITS_PER_WIDE_INT
10918 && (nonzero_bits (op0, mode)
10919 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10920 == 0)
10921 code = EQ;
10922 break;
10923
10924 case GE:
10925 /* >= C is equivalent to > (C - 1). */
10926 if (const_op > 0)
10927 {
10928 const_op -= 1;
10929 code = GT;
10930 /* ... fall through to GT below. */
10931 }
10932 else
10933 break;
10934
10935 case GT:
10936 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10937 if (const_op < 0)
10938 {
10939 const_op += 1;
10940 code = GE;
10941 }
10942
10943 /* If we are doing a > 0 comparison on a value known to have
10944 a zero sign bit, we can replace this with != 0. */
10945 else if (const_op == 0
10946 && mode_width <= HOST_BITS_PER_WIDE_INT
10947 && (nonzero_bits (op0, mode)
10948 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10949 == 0)
10950 code = NE;
10951 break;
10952
10953 case LTU:
10954 /* < C is equivalent to <= (C - 1). */
10955 if (const_op > 0)
10956 {
10957 const_op -= 1;
10958 code = LEU;
10959 /* ... fall through ... */
10960 }
10961 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10962 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10963 && (unsigned HOST_WIDE_INT) const_op
10964 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
10965 {
10966 const_op = 0;
10967 code = GE;
10968 break;
10969 }
10970 else
10971 break;
10972
10973 case LEU:
10974 /* unsigned <= 0 is equivalent to == 0 */
10975 if (const_op == 0)
10976 code = EQ;
10977 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10978 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10979 && (unsigned HOST_WIDE_INT) const_op
10980 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
10981 {
10982 const_op = 0;
10983 code = GE;
10984 }
10985 break;
10986
10987 case GEU:
10988 /* >= C is equivalent to > (C - 1). */
10989 if (const_op > 1)
10990 {
10991 const_op -= 1;
10992 code = GTU;
10993 /* ... fall through ... */
10994 }
10995
10996 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10997 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10998 && (unsigned HOST_WIDE_INT) const_op
10999 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11000 {
11001 const_op = 0;
11002 code = LT;
11003 break;
11004 }
11005 else
11006 break;
11007
11008 case GTU:
11009 /* unsigned > 0 is equivalent to != 0 */
11010 if (const_op == 0)
11011 code = NE;
11012 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11013 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11014 && (unsigned HOST_WIDE_INT) const_op
11015 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11016 {
11017 const_op = 0;
11018 code = LT;
11019 }
11020 break;
11021
11022 default:
11023 break;
11024 }
11025
11026 *pop1 = GEN_INT (const_op);
11027 return code;
11028 }
11029 \f
11030 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11031 comparison code that will be tested.
11032
11033 The result is a possibly different comparison code to use. *POP0 and
11034 *POP1 may be updated.
11035
11036 It is possible that we might detect that a comparison is either always
11037 true or always false. However, we do not perform general constant
11038 folding in combine, so this knowledge isn't useful. Such tautologies
11039 should have been detected earlier. Hence we ignore all such cases. */
11040
11041 static enum rtx_code
11042 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11043 {
11044 rtx op0 = *pop0;
11045 rtx op1 = *pop1;
11046 rtx tem, tem1;
11047 int i;
11048 enum machine_mode mode, tmode;
11049
11050 /* Try a few ways of applying the same transformation to both operands. */
11051 while (1)
11052 {
11053 #ifndef WORD_REGISTER_OPERATIONS
11054 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11055 so check specially. */
11056 if (code != GTU && code != GEU && code != LTU && code != LEU
11057 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11058 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11059 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11060 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11061 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11062 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11063 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11064 && CONST_INT_P (XEXP (op0, 1))
11065 && XEXP (op0, 1) == XEXP (op1, 1)
11066 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11067 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11068 && (INTVAL (XEXP (op0, 1))
11069 == (GET_MODE_PRECISION (GET_MODE (op0))
11070 - (GET_MODE_PRECISION
11071 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11072 {
11073 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11074 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11075 }
11076 #endif
11077
11078 /* If both operands are the same constant shift, see if we can ignore the
11079 shift. We can if the shift is a rotate or if the bits shifted out of
11080 this shift are known to be zero for both inputs and if the type of
11081 comparison is compatible with the shift. */
11082 if (GET_CODE (op0) == GET_CODE (op1)
11083 && HWI_COMPUTABLE_MODE_P (GET_MODE(op0))
11084 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11085 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11086 && (code != GT && code != LT && code != GE && code != LE))
11087 || (GET_CODE (op0) == ASHIFTRT
11088 && (code != GTU && code != LTU
11089 && code != GEU && code != LEU)))
11090 && CONST_INT_P (XEXP (op0, 1))
11091 && INTVAL (XEXP (op0, 1)) >= 0
11092 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11093 && XEXP (op0, 1) == XEXP (op1, 1))
11094 {
11095 enum machine_mode mode = GET_MODE (op0);
11096 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11097 int shift_count = INTVAL (XEXP (op0, 1));
11098
11099 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11100 mask &= (mask >> shift_count) << shift_count;
11101 else if (GET_CODE (op0) == ASHIFT)
11102 mask = (mask & (mask << shift_count)) >> shift_count;
11103
11104 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11105 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11106 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11107 else
11108 break;
11109 }
11110
11111 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11112 SUBREGs are of the same mode, and, in both cases, the AND would
11113 be redundant if the comparison was done in the narrower mode,
11114 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11115 and the operand's possibly nonzero bits are 0xffffff01; in that case
11116 if we only care about QImode, we don't need the AND). This case
11117 occurs if the output mode of an scc insn is not SImode and
11118 STORE_FLAG_VALUE == 1 (e.g., the 386).
11119
11120 Similarly, check for a case where the AND's are ZERO_EXTEND
11121 operations from some narrower mode even though a SUBREG is not
11122 present. */
11123
11124 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11125 && CONST_INT_P (XEXP (op0, 1))
11126 && CONST_INT_P (XEXP (op1, 1)))
11127 {
11128 rtx inner_op0 = XEXP (op0, 0);
11129 rtx inner_op1 = XEXP (op1, 0);
11130 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11131 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11132 int changed = 0;
11133
11134 if (paradoxical_subreg_p (inner_op0)
11135 && GET_CODE (inner_op1) == SUBREG
11136 && (GET_MODE (SUBREG_REG (inner_op0))
11137 == GET_MODE (SUBREG_REG (inner_op1)))
11138 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11139 <= HOST_BITS_PER_WIDE_INT)
11140 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11141 GET_MODE (SUBREG_REG (inner_op0)))))
11142 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11143 GET_MODE (SUBREG_REG (inner_op1))))))
11144 {
11145 op0 = SUBREG_REG (inner_op0);
11146 op1 = SUBREG_REG (inner_op1);
11147
11148 /* The resulting comparison is always unsigned since we masked
11149 off the original sign bit. */
11150 code = unsigned_condition (code);
11151
11152 changed = 1;
11153 }
11154
11155 else if (c0 == c1)
11156 for (tmode = GET_CLASS_NARROWEST_MODE
11157 (GET_MODE_CLASS (GET_MODE (op0)));
11158 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11159 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11160 {
11161 op0 = gen_lowpart (tmode, inner_op0);
11162 op1 = gen_lowpart (tmode, inner_op1);
11163 code = unsigned_condition (code);
11164 changed = 1;
11165 break;
11166 }
11167
11168 if (! changed)
11169 break;
11170 }
11171
11172 /* If both operands are NOT, we can strip off the outer operation
11173 and adjust the comparison code for swapped operands; similarly for
11174 NEG, except that this must be an equality comparison. */
11175 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11176 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11177 && (code == EQ || code == NE)))
11178 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11179
11180 else
11181 break;
11182 }
11183
11184 /* If the first operand is a constant, swap the operands and adjust the
11185 comparison code appropriately, but don't do this if the second operand
11186 is already a constant integer. */
11187 if (swap_commutative_operands_p (op0, op1))
11188 {
11189 tem = op0, op0 = op1, op1 = tem;
11190 code = swap_condition (code);
11191 }
11192
11193 /* We now enter a loop during which we will try to simplify the comparison.
11194 For the most part, we only are concerned with comparisons with zero,
11195 but some things may really be comparisons with zero but not start
11196 out looking that way. */
11197
11198 while (CONST_INT_P (op1))
11199 {
11200 enum machine_mode mode = GET_MODE (op0);
11201 unsigned int mode_width = GET_MODE_PRECISION (mode);
11202 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11203 int equality_comparison_p;
11204 int sign_bit_comparison_p;
11205 int unsigned_comparison_p;
11206 HOST_WIDE_INT const_op;
11207
11208 /* We only want to handle integral modes. This catches VOIDmode,
11209 CCmode, and the floating-point modes. An exception is that we
11210 can handle VOIDmode if OP0 is a COMPARE or a comparison
11211 operation. */
11212
11213 if (GET_MODE_CLASS (mode) != MODE_INT
11214 && ! (mode == VOIDmode
11215 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11216 break;
11217
11218 /* Try to simplify the compare to constant, possibly changing the
11219 comparison op, and/or changing op1 to zero. */
11220 code = simplify_compare_const (code, op0, &op1);
11221 const_op = INTVAL (op1);
11222
11223 /* Compute some predicates to simplify code below. */
11224
11225 equality_comparison_p = (code == EQ || code == NE);
11226 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11227 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11228 || code == GEU);
11229
11230 /* If this is a sign bit comparison and we can do arithmetic in
11231 MODE, say that we will only be needing the sign bit of OP0. */
11232 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11233 op0 = force_to_mode (op0, mode,
11234 (unsigned HOST_WIDE_INT) 1
11235 << (GET_MODE_PRECISION (mode) - 1),
11236 0);
11237
11238 /* Now try cases based on the opcode of OP0. If none of the cases
11239 does a "continue", we exit this loop immediately after the
11240 switch. */
11241
11242 switch (GET_CODE (op0))
11243 {
11244 case ZERO_EXTRACT:
11245 /* If we are extracting a single bit from a variable position in
11246 a constant that has only a single bit set and are comparing it
11247 with zero, we can convert this into an equality comparison
11248 between the position and the location of the single bit. */
11249 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11250 have already reduced the shift count modulo the word size. */
11251 if (!SHIFT_COUNT_TRUNCATED
11252 && CONST_INT_P (XEXP (op0, 0))
11253 && XEXP (op0, 1) == const1_rtx
11254 && equality_comparison_p && const_op == 0
11255 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11256 {
11257 if (BITS_BIG_ENDIAN)
11258 {
11259 enum machine_mode new_mode
11260 = mode_for_extraction (EP_extzv, 1);
11261 if (new_mode == MAX_MACHINE_MODE)
11262 i = BITS_PER_WORD - 1 - i;
11263 else
11264 {
11265 mode = new_mode;
11266 i = (GET_MODE_PRECISION (mode) - 1 - i);
11267 }
11268 }
11269
11270 op0 = XEXP (op0, 2);
11271 op1 = GEN_INT (i);
11272 const_op = i;
11273
11274 /* Result is nonzero iff shift count is equal to I. */
11275 code = reverse_condition (code);
11276 continue;
11277 }
11278
11279 /* ... fall through ... */
11280
11281 case SIGN_EXTRACT:
11282 tem = expand_compound_operation (op0);
11283 if (tem != op0)
11284 {
11285 op0 = tem;
11286 continue;
11287 }
11288 break;
11289
11290 case NOT:
11291 /* If testing for equality, we can take the NOT of the constant. */
11292 if (equality_comparison_p
11293 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11294 {
11295 op0 = XEXP (op0, 0);
11296 op1 = tem;
11297 continue;
11298 }
11299
11300 /* If just looking at the sign bit, reverse the sense of the
11301 comparison. */
11302 if (sign_bit_comparison_p)
11303 {
11304 op0 = XEXP (op0, 0);
11305 code = (code == GE ? LT : GE);
11306 continue;
11307 }
11308 break;
11309
11310 case NEG:
11311 /* If testing for equality, we can take the NEG of the constant. */
11312 if (equality_comparison_p
11313 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11314 {
11315 op0 = XEXP (op0, 0);
11316 op1 = tem;
11317 continue;
11318 }
11319
11320 /* The remaining cases only apply to comparisons with zero. */
11321 if (const_op != 0)
11322 break;
11323
11324 /* When X is ABS or is known positive,
11325 (neg X) is < 0 if and only if X != 0. */
11326
11327 if (sign_bit_comparison_p
11328 && (GET_CODE (XEXP (op0, 0)) == ABS
11329 || (mode_width <= HOST_BITS_PER_WIDE_INT
11330 && (nonzero_bits (XEXP (op0, 0), mode)
11331 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11332 == 0)))
11333 {
11334 op0 = XEXP (op0, 0);
11335 code = (code == LT ? NE : EQ);
11336 continue;
11337 }
11338
11339 /* If we have NEG of something whose two high-order bits are the
11340 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11341 if (num_sign_bit_copies (op0, mode) >= 2)
11342 {
11343 op0 = XEXP (op0, 0);
11344 code = swap_condition (code);
11345 continue;
11346 }
11347 break;
11348
11349 case ROTATE:
11350 /* If we are testing equality and our count is a constant, we
11351 can perform the inverse operation on our RHS. */
11352 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11353 && (tem = simplify_binary_operation (ROTATERT, mode,
11354 op1, XEXP (op0, 1))) != 0)
11355 {
11356 op0 = XEXP (op0, 0);
11357 op1 = tem;
11358 continue;
11359 }
11360
11361 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11362 a particular bit. Convert it to an AND of a constant of that
11363 bit. This will be converted into a ZERO_EXTRACT. */
11364 if (const_op == 0 && sign_bit_comparison_p
11365 && CONST_INT_P (XEXP (op0, 1))
11366 && mode_width <= HOST_BITS_PER_WIDE_INT)
11367 {
11368 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11369 ((unsigned HOST_WIDE_INT) 1
11370 << (mode_width - 1
11371 - INTVAL (XEXP (op0, 1)))));
11372 code = (code == LT ? NE : EQ);
11373 continue;
11374 }
11375
11376 /* Fall through. */
11377
11378 case ABS:
11379 /* ABS is ignorable inside an equality comparison with zero. */
11380 if (const_op == 0 && equality_comparison_p)
11381 {
11382 op0 = XEXP (op0, 0);
11383 continue;
11384 }
11385 break;
11386
11387 case SIGN_EXTEND:
11388 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11389 (compare FOO CONST) if CONST fits in FOO's mode and we
11390 are either testing inequality or have an unsigned
11391 comparison with ZERO_EXTEND or a signed comparison with
11392 SIGN_EXTEND. But don't do it if we don't have a compare
11393 insn of the given mode, since we'd have to revert it
11394 later on, and then we wouldn't know whether to sign- or
11395 zero-extend. */
11396 mode = GET_MODE (XEXP (op0, 0));
11397 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11398 && ! unsigned_comparison_p
11399 && val_signbit_known_clear_p (mode, const_op)
11400 && have_insn_for (COMPARE, mode))
11401 {
11402 op0 = XEXP (op0, 0);
11403 continue;
11404 }
11405 break;
11406
11407 case SUBREG:
11408 /* Check for the case where we are comparing A - C1 with C2, that is
11409
11410 (subreg:MODE (plus (A) (-C1))) op (C2)
11411
11412 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11413 comparison in the wider mode. One of the following two conditions
11414 must be true in order for this to be valid:
11415
11416 1. The mode extension results in the same bit pattern being added
11417 on both sides and the comparison is equality or unsigned. As
11418 C2 has been truncated to fit in MODE, the pattern can only be
11419 all 0s or all 1s.
11420
11421 2. The mode extension results in the sign bit being copied on
11422 each side.
11423
11424 The difficulty here is that we have predicates for A but not for
11425 (A - C1) so we need to check that C1 is within proper bounds so
11426 as to perturbate A as little as possible. */
11427
11428 if (mode_width <= HOST_BITS_PER_WIDE_INT
11429 && subreg_lowpart_p (op0)
11430 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11431 && GET_CODE (SUBREG_REG (op0)) == PLUS
11432 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11433 {
11434 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11435 rtx a = XEXP (SUBREG_REG (op0), 0);
11436 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11437
11438 if ((c1 > 0
11439 && (unsigned HOST_WIDE_INT) c1
11440 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11441 && (equality_comparison_p || unsigned_comparison_p)
11442 /* (A - C1) zero-extends if it is positive and sign-extends
11443 if it is negative, C2 both zero- and sign-extends. */
11444 && ((0 == (nonzero_bits (a, inner_mode)
11445 & ~GET_MODE_MASK (mode))
11446 && const_op >= 0)
11447 /* (A - C1) sign-extends if it is positive and 1-extends
11448 if it is negative, C2 both sign- and 1-extends. */
11449 || (num_sign_bit_copies (a, inner_mode)
11450 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11451 - mode_width)
11452 && const_op < 0)))
11453 || ((unsigned HOST_WIDE_INT) c1
11454 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11455 /* (A - C1) always sign-extends, like C2. */
11456 && num_sign_bit_copies (a, inner_mode)
11457 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11458 - (mode_width - 1))))
11459 {
11460 op0 = SUBREG_REG (op0);
11461 continue;
11462 }
11463 }
11464
11465 /* If the inner mode is narrower and we are extracting the low part,
11466 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11467 if (subreg_lowpart_p (op0)
11468 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11469 /* Fall through */ ;
11470 else
11471 break;
11472
11473 /* ... fall through ... */
11474
11475 case ZERO_EXTEND:
11476 mode = GET_MODE (XEXP (op0, 0));
11477 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11478 && (unsigned_comparison_p || equality_comparison_p)
11479 && HWI_COMPUTABLE_MODE_P (mode)
11480 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
11481 && have_insn_for (COMPARE, mode))
11482 {
11483 op0 = XEXP (op0, 0);
11484 continue;
11485 }
11486 break;
11487
11488 case PLUS:
11489 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11490 this for equality comparisons due to pathological cases involving
11491 overflows. */
11492 if (equality_comparison_p
11493 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11494 op1, XEXP (op0, 1))))
11495 {
11496 op0 = XEXP (op0, 0);
11497 op1 = tem;
11498 continue;
11499 }
11500
11501 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11502 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11503 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11504 {
11505 op0 = XEXP (XEXP (op0, 0), 0);
11506 code = (code == LT ? EQ : NE);
11507 continue;
11508 }
11509 break;
11510
11511 case MINUS:
11512 /* We used to optimize signed comparisons against zero, but that
11513 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11514 arrive here as equality comparisons, or (GEU, LTU) are
11515 optimized away. No need to special-case them. */
11516
11517 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11518 (eq B (minus A C)), whichever simplifies. We can only do
11519 this for equality comparisons due to pathological cases involving
11520 overflows. */
11521 if (equality_comparison_p
11522 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11523 XEXP (op0, 1), op1)))
11524 {
11525 op0 = XEXP (op0, 0);
11526 op1 = tem;
11527 continue;
11528 }
11529
11530 if (equality_comparison_p
11531 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11532 XEXP (op0, 0), op1)))
11533 {
11534 op0 = XEXP (op0, 1);
11535 op1 = tem;
11536 continue;
11537 }
11538
11539 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11540 of bits in X minus 1, is one iff X > 0. */
11541 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11542 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11543 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11544 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11545 {
11546 op0 = XEXP (op0, 1);
11547 code = (code == GE ? LE : GT);
11548 continue;
11549 }
11550 break;
11551
11552 case XOR:
11553 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11554 if C is zero or B is a constant. */
11555 if (equality_comparison_p
11556 && 0 != (tem = simplify_binary_operation (XOR, mode,
11557 XEXP (op0, 1), op1)))
11558 {
11559 op0 = XEXP (op0, 0);
11560 op1 = tem;
11561 continue;
11562 }
11563 break;
11564
11565 case EQ: case NE:
11566 case UNEQ: case LTGT:
11567 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11568 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11569 case UNORDERED: case ORDERED:
11570 /* We can't do anything if OP0 is a condition code value, rather
11571 than an actual data value. */
11572 if (const_op != 0
11573 || CC0_P (XEXP (op0, 0))
11574 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11575 break;
11576
11577 /* Get the two operands being compared. */
11578 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11579 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11580 else
11581 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11582
11583 /* Check for the cases where we simply want the result of the
11584 earlier test or the opposite of that result. */
11585 if (code == NE || code == EQ
11586 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11587 && (code == LT || code == GE)))
11588 {
11589 enum rtx_code new_code;
11590 if (code == LT || code == NE)
11591 new_code = GET_CODE (op0);
11592 else
11593 new_code = reversed_comparison_code (op0, NULL);
11594
11595 if (new_code != UNKNOWN)
11596 {
11597 code = new_code;
11598 op0 = tem;
11599 op1 = tem1;
11600 continue;
11601 }
11602 }
11603 break;
11604
11605 case IOR:
11606 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11607 iff X <= 0. */
11608 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11609 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11610 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11611 {
11612 op0 = XEXP (op0, 1);
11613 code = (code == GE ? GT : LE);
11614 continue;
11615 }
11616 break;
11617
11618 case AND:
11619 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11620 will be converted to a ZERO_EXTRACT later. */
11621 if (const_op == 0 && equality_comparison_p
11622 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11623 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11624 {
11625 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11626 XEXP (XEXP (op0, 0), 1));
11627 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11628 continue;
11629 }
11630
11631 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11632 zero and X is a comparison and C1 and C2 describe only bits set
11633 in STORE_FLAG_VALUE, we can compare with X. */
11634 if (const_op == 0 && equality_comparison_p
11635 && mode_width <= HOST_BITS_PER_WIDE_INT
11636 && CONST_INT_P (XEXP (op0, 1))
11637 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11638 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11639 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11640 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11641 {
11642 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11643 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11644 if ((~STORE_FLAG_VALUE & mask) == 0
11645 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11646 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11647 && COMPARISON_P (tem))))
11648 {
11649 op0 = XEXP (XEXP (op0, 0), 0);
11650 continue;
11651 }
11652 }
11653
11654 /* If we are doing an equality comparison of an AND of a bit equal
11655 to the sign bit, replace this with a LT or GE comparison of
11656 the underlying value. */
11657 if (equality_comparison_p
11658 && const_op == 0
11659 && CONST_INT_P (XEXP (op0, 1))
11660 && mode_width <= HOST_BITS_PER_WIDE_INT
11661 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11662 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11663 {
11664 op0 = XEXP (op0, 0);
11665 code = (code == EQ ? GE : LT);
11666 continue;
11667 }
11668
11669 /* If this AND operation is really a ZERO_EXTEND from a narrower
11670 mode, the constant fits within that mode, and this is either an
11671 equality or unsigned comparison, try to do this comparison in
11672 the narrower mode.
11673
11674 Note that in:
11675
11676 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11677 -> (ne:DI (reg:SI 4) (const_int 0))
11678
11679 unless TRULY_NOOP_TRUNCATION allows it or the register is
11680 known to hold a value of the required mode the
11681 transformation is invalid. */
11682 if ((equality_comparison_p || unsigned_comparison_p)
11683 && CONST_INT_P (XEXP (op0, 1))
11684 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
11685 & GET_MODE_MASK (mode))
11686 + 1)) >= 0
11687 && const_op >> i == 0
11688 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11689 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode, GET_MODE (op0))
11690 || (REG_P (XEXP (op0, 0))
11691 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11692 {
11693 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11694 continue;
11695 }
11696
11697 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11698 fits in both M1 and M2 and the SUBREG is either paradoxical
11699 or represents the low part, permute the SUBREG and the AND
11700 and try again. */
11701 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11702 {
11703 unsigned HOST_WIDE_INT c1;
11704 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11705 /* Require an integral mode, to avoid creating something like
11706 (AND:SF ...). */
11707 if (SCALAR_INT_MODE_P (tmode)
11708 /* It is unsafe to commute the AND into the SUBREG if the
11709 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11710 not defined. As originally written the upper bits
11711 have a defined value due to the AND operation.
11712 However, if we commute the AND inside the SUBREG then
11713 they no longer have defined values and the meaning of
11714 the code has been changed. */
11715 && (0
11716 #ifdef WORD_REGISTER_OPERATIONS
11717 || (mode_width > GET_MODE_PRECISION (tmode)
11718 && mode_width <= BITS_PER_WORD)
11719 #endif
11720 || (mode_width <= GET_MODE_PRECISION (tmode)
11721 && subreg_lowpart_p (XEXP (op0, 0))))
11722 && CONST_INT_P (XEXP (op0, 1))
11723 && mode_width <= HOST_BITS_PER_WIDE_INT
11724 && HWI_COMPUTABLE_MODE_P (tmode)
11725 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11726 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11727 && c1 != mask
11728 && c1 != GET_MODE_MASK (tmode))
11729 {
11730 op0 = simplify_gen_binary (AND, tmode,
11731 SUBREG_REG (XEXP (op0, 0)),
11732 gen_int_mode (c1, tmode));
11733 op0 = gen_lowpart (mode, op0);
11734 continue;
11735 }
11736 }
11737
11738 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11739 if (const_op == 0 && equality_comparison_p
11740 && XEXP (op0, 1) == const1_rtx
11741 && GET_CODE (XEXP (op0, 0)) == NOT)
11742 {
11743 op0 = simplify_and_const_int (NULL_RTX, mode,
11744 XEXP (XEXP (op0, 0), 0), 1);
11745 code = (code == NE ? EQ : NE);
11746 continue;
11747 }
11748
11749 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11750 (eq (and (lshiftrt X) 1) 0).
11751 Also handle the case where (not X) is expressed using xor. */
11752 if (const_op == 0 && equality_comparison_p
11753 && XEXP (op0, 1) == const1_rtx
11754 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11755 {
11756 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11757 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11758
11759 if (GET_CODE (shift_op) == NOT
11760 || (GET_CODE (shift_op) == XOR
11761 && CONST_INT_P (XEXP (shift_op, 1))
11762 && CONST_INT_P (shift_count)
11763 && HWI_COMPUTABLE_MODE_P (mode)
11764 && (UINTVAL (XEXP (shift_op, 1))
11765 == (unsigned HOST_WIDE_INT) 1
11766 << INTVAL (shift_count))))
11767 {
11768 op0
11769 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
11770 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11771 code = (code == NE ? EQ : NE);
11772 continue;
11773 }
11774 }
11775 break;
11776
11777 case ASHIFT:
11778 /* If we have (compare (ashift FOO N) (const_int C)) and
11779 the high order N bits of FOO (N+1 if an inequality comparison)
11780 are known to be zero, we can do this by comparing FOO with C
11781 shifted right N bits so long as the low-order N bits of C are
11782 zero. */
11783 if (CONST_INT_P (XEXP (op0, 1))
11784 && INTVAL (XEXP (op0, 1)) >= 0
11785 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11786 < HOST_BITS_PER_WIDE_INT)
11787 && (((unsigned HOST_WIDE_INT) const_op
11788 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
11789 - 1)) == 0)
11790 && mode_width <= HOST_BITS_PER_WIDE_INT
11791 && (nonzero_bits (XEXP (op0, 0), mode)
11792 & ~(mask >> (INTVAL (XEXP (op0, 1))
11793 + ! equality_comparison_p))) == 0)
11794 {
11795 /* We must perform a logical shift, not an arithmetic one,
11796 as we want the top N bits of C to be zero. */
11797 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11798
11799 temp >>= INTVAL (XEXP (op0, 1));
11800 op1 = gen_int_mode (temp, mode);
11801 op0 = XEXP (op0, 0);
11802 continue;
11803 }
11804
11805 /* If we are doing a sign bit comparison, it means we are testing
11806 a particular bit. Convert it to the appropriate AND. */
11807 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11808 && mode_width <= HOST_BITS_PER_WIDE_INT)
11809 {
11810 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11811 ((unsigned HOST_WIDE_INT) 1
11812 << (mode_width - 1
11813 - INTVAL (XEXP (op0, 1)))));
11814 code = (code == LT ? NE : EQ);
11815 continue;
11816 }
11817
11818 /* If this an equality comparison with zero and we are shifting
11819 the low bit to the sign bit, we can convert this to an AND of the
11820 low-order bit. */
11821 if (const_op == 0 && equality_comparison_p
11822 && CONST_INT_P (XEXP (op0, 1))
11823 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11824 {
11825 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
11826 continue;
11827 }
11828 break;
11829
11830 case ASHIFTRT:
11831 /* If this is an equality comparison with zero, we can do this
11832 as a logical shift, which might be much simpler. */
11833 if (equality_comparison_p && const_op == 0
11834 && CONST_INT_P (XEXP (op0, 1)))
11835 {
11836 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11837 XEXP (op0, 0),
11838 INTVAL (XEXP (op0, 1)));
11839 continue;
11840 }
11841
11842 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11843 do the comparison in a narrower mode. */
11844 if (! unsigned_comparison_p
11845 && CONST_INT_P (XEXP (op0, 1))
11846 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11847 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11848 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11849 MODE_INT, 1)) != BLKmode
11850 && (((unsigned HOST_WIDE_INT) const_op
11851 + (GET_MODE_MASK (tmode) >> 1) + 1)
11852 <= GET_MODE_MASK (tmode)))
11853 {
11854 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11855 continue;
11856 }
11857
11858 /* Likewise if OP0 is a PLUS of a sign extension with a
11859 constant, which is usually represented with the PLUS
11860 between the shifts. */
11861 if (! unsigned_comparison_p
11862 && CONST_INT_P (XEXP (op0, 1))
11863 && GET_CODE (XEXP (op0, 0)) == PLUS
11864 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11865 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11866 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11867 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11868 MODE_INT, 1)) != BLKmode
11869 && (((unsigned HOST_WIDE_INT) const_op
11870 + (GET_MODE_MASK (tmode) >> 1) + 1)
11871 <= GET_MODE_MASK (tmode)))
11872 {
11873 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11874 rtx add_const = XEXP (XEXP (op0, 0), 1);
11875 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11876 add_const, XEXP (op0, 1));
11877
11878 op0 = simplify_gen_binary (PLUS, tmode,
11879 gen_lowpart (tmode, inner),
11880 new_const);
11881 continue;
11882 }
11883
11884 /* ... fall through ... */
11885 case LSHIFTRT:
11886 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11887 the low order N bits of FOO are known to be zero, we can do this
11888 by comparing FOO with C shifted left N bits so long as no
11889 overflow occurs. Even if the low order N bits of FOO aren't known
11890 to be zero, if the comparison is >= or < we can use the same
11891 optimization and for > or <= by setting all the low
11892 order N bits in the comparison constant. */
11893 if (CONST_INT_P (XEXP (op0, 1))
11894 && INTVAL (XEXP (op0, 1)) > 0
11895 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11896 && mode_width <= HOST_BITS_PER_WIDE_INT
11897 && (((unsigned HOST_WIDE_INT) const_op
11898 + (GET_CODE (op0) != LSHIFTRT
11899 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11900 + 1)
11901 : 0))
11902 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11903 {
11904 unsigned HOST_WIDE_INT low_bits
11905 = (nonzero_bits (XEXP (op0, 0), mode)
11906 & (((unsigned HOST_WIDE_INT) 1
11907 << INTVAL (XEXP (op0, 1))) - 1));
11908 if (low_bits == 0 || !equality_comparison_p)
11909 {
11910 /* If the shift was logical, then we must make the condition
11911 unsigned. */
11912 if (GET_CODE (op0) == LSHIFTRT)
11913 code = unsigned_condition (code);
11914
11915 const_op <<= INTVAL (XEXP (op0, 1));
11916 if (low_bits != 0
11917 && (code == GT || code == GTU
11918 || code == LE || code == LEU))
11919 const_op
11920 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
11921 op1 = GEN_INT (const_op);
11922 op0 = XEXP (op0, 0);
11923 continue;
11924 }
11925 }
11926
11927 /* If we are using this shift to extract just the sign bit, we
11928 can replace this with an LT or GE comparison. */
11929 if (const_op == 0
11930 && (equality_comparison_p || sign_bit_comparison_p)
11931 && CONST_INT_P (XEXP (op0, 1))
11932 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11933 {
11934 op0 = XEXP (op0, 0);
11935 code = (code == NE || code == GT ? LT : GE);
11936 continue;
11937 }
11938 break;
11939
11940 default:
11941 break;
11942 }
11943
11944 break;
11945 }
11946
11947 /* Now make any compound operations involved in this comparison. Then,
11948 check for an outmost SUBREG on OP0 that is not doing anything or is
11949 paradoxical. The latter transformation must only be performed when
11950 it is known that the "extra" bits will be the same in op0 and op1 or
11951 that they don't matter. There are three cases to consider:
11952
11953 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11954 care bits and we can assume they have any convenient value. So
11955 making the transformation is safe.
11956
11957 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11958 In this case the upper bits of op0 are undefined. We should not make
11959 the simplification in that case as we do not know the contents of
11960 those bits.
11961
11962 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11963 UNKNOWN. In that case we know those bits are zeros or ones. We must
11964 also be sure that they are the same as the upper bits of op1.
11965
11966 We can never remove a SUBREG for a non-equality comparison because
11967 the sign bit is in a different place in the underlying object. */
11968
11969 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11970 op1 = make_compound_operation (op1, SET);
11971
11972 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11973 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11974 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11975 && (code == NE || code == EQ))
11976 {
11977 if (paradoxical_subreg_p (op0))
11978 {
11979 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11980 implemented. */
11981 if (REG_P (SUBREG_REG (op0)))
11982 {
11983 op0 = SUBREG_REG (op0);
11984 op1 = gen_lowpart (GET_MODE (op0), op1);
11985 }
11986 }
11987 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
11988 <= HOST_BITS_PER_WIDE_INT)
11989 && (nonzero_bits (SUBREG_REG (op0),
11990 GET_MODE (SUBREG_REG (op0)))
11991 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11992 {
11993 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11994
11995 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11996 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11997 op0 = SUBREG_REG (op0), op1 = tem;
11998 }
11999 }
12000
12001 /* We now do the opposite procedure: Some machines don't have compare
12002 insns in all modes. If OP0's mode is an integer mode smaller than a
12003 word and we can't do a compare in that mode, see if there is a larger
12004 mode for which we can do the compare. There are a number of cases in
12005 which we can use the wider mode. */
12006
12007 mode = GET_MODE (op0);
12008 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12009 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12010 && ! have_insn_for (COMPARE, mode))
12011 for (tmode = GET_MODE_WIDER_MODE (mode);
12012 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12013 tmode = GET_MODE_WIDER_MODE (tmode))
12014 if (have_insn_for (COMPARE, tmode))
12015 {
12016 int zero_extended;
12017
12018 /* If this is a test for negative, we can make an explicit
12019 test of the sign bit. Test this first so we can use
12020 a paradoxical subreg to extend OP0. */
12021
12022 if (op1 == const0_rtx && (code == LT || code == GE)
12023 && HWI_COMPUTABLE_MODE_P (mode))
12024 {
12025 op0 = simplify_gen_binary (AND, tmode,
12026 gen_lowpart (tmode, op0),
12027 GEN_INT ((unsigned HOST_WIDE_INT) 1
12028 << (GET_MODE_BITSIZE (mode)
12029 - 1)));
12030 code = (code == LT) ? NE : EQ;
12031 break;
12032 }
12033
12034 /* If the only nonzero bits in OP0 and OP1 are those in the
12035 narrower mode and this is an equality or unsigned comparison,
12036 we can use the wider mode. Similarly for sign-extended
12037 values, in which case it is true for all comparisons. */
12038 zero_extended = ((code == EQ || code == NE
12039 || code == GEU || code == GTU
12040 || code == LEU || code == LTU)
12041 && (nonzero_bits (op0, tmode)
12042 & ~GET_MODE_MASK (mode)) == 0
12043 && ((CONST_INT_P (op1)
12044 || (nonzero_bits (op1, tmode)
12045 & ~GET_MODE_MASK (mode)) == 0)));
12046
12047 if (zero_extended
12048 || ((num_sign_bit_copies (op0, tmode)
12049 > (unsigned int) (GET_MODE_PRECISION (tmode)
12050 - GET_MODE_PRECISION (mode)))
12051 && (num_sign_bit_copies (op1, tmode)
12052 > (unsigned int) (GET_MODE_PRECISION (tmode)
12053 - GET_MODE_PRECISION (mode)))))
12054 {
12055 /* If OP0 is an AND and we don't have an AND in MODE either,
12056 make a new AND in the proper mode. */
12057 if (GET_CODE (op0) == AND
12058 && !have_insn_for (AND, mode))
12059 op0 = simplify_gen_binary (AND, tmode,
12060 gen_lowpart (tmode,
12061 XEXP (op0, 0)),
12062 gen_lowpart (tmode,
12063 XEXP (op0, 1)));
12064 else
12065 {
12066 if (zero_extended)
12067 {
12068 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12069 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12070 }
12071 else
12072 {
12073 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12074 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12075 }
12076 break;
12077 }
12078 }
12079 }
12080
12081 #ifdef CANONICALIZE_COMPARISON
12082 /* If this machine only supports a subset of valid comparisons, see if we
12083 can convert an unsupported one into a supported one. */
12084 CANONICALIZE_COMPARISON (code, op0, op1);
12085 #endif
12086
12087 *pop0 = op0;
12088 *pop1 = op1;
12089
12090 return code;
12091 }
12092 \f
12093 /* Utility function for record_value_for_reg. Count number of
12094 rtxs in X. */
12095 static int
12096 count_rtxs (rtx x)
12097 {
12098 enum rtx_code code = GET_CODE (x);
12099 const char *fmt;
12100 int i, j, ret = 1;
12101
12102 if (GET_RTX_CLASS (code) == '2'
12103 || GET_RTX_CLASS (code) == 'c')
12104 {
12105 rtx x0 = XEXP (x, 0);
12106 rtx x1 = XEXP (x, 1);
12107
12108 if (x0 == x1)
12109 return 1 + 2 * count_rtxs (x0);
12110
12111 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
12112 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
12113 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12114 return 2 + 2 * count_rtxs (x0)
12115 + count_rtxs (x == XEXP (x1, 0)
12116 ? XEXP (x1, 1) : XEXP (x1, 0));
12117
12118 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
12119 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
12120 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12121 return 2 + 2 * count_rtxs (x1)
12122 + count_rtxs (x == XEXP (x0, 0)
12123 ? XEXP (x0, 1) : XEXP (x0, 0));
12124 }
12125
12126 fmt = GET_RTX_FORMAT (code);
12127 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12128 if (fmt[i] == 'e')
12129 ret += count_rtxs (XEXP (x, i));
12130 else if (fmt[i] == 'E')
12131 for (j = 0; j < XVECLEN (x, i); j++)
12132 ret += count_rtxs (XVECEXP (x, i, j));
12133
12134 return ret;
12135 }
12136 \f
12137 /* Utility function for following routine. Called when X is part of a value
12138 being stored into last_set_value. Sets last_set_table_tick
12139 for each register mentioned. Similar to mention_regs in cse.c */
12140
12141 static void
12142 update_table_tick (rtx x)
12143 {
12144 enum rtx_code code = GET_CODE (x);
12145 const char *fmt = GET_RTX_FORMAT (code);
12146 int i, j;
12147
12148 if (code == REG)
12149 {
12150 unsigned int regno = REGNO (x);
12151 unsigned int endregno = END_REGNO (x);
12152 unsigned int r;
12153
12154 for (r = regno; r < endregno; r++)
12155 {
12156 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
12157 rsp->last_set_table_tick = label_tick;
12158 }
12159
12160 return;
12161 }
12162
12163 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12164 if (fmt[i] == 'e')
12165 {
12166 /* Check for identical subexpressions. If x contains
12167 identical subexpression we only have to traverse one of
12168 them. */
12169 if (i == 0 && ARITHMETIC_P (x))
12170 {
12171 /* Note that at this point x1 has already been
12172 processed. */
12173 rtx x0 = XEXP (x, 0);
12174 rtx x1 = XEXP (x, 1);
12175
12176 /* If x0 and x1 are identical then there is no need to
12177 process x0. */
12178 if (x0 == x1)
12179 break;
12180
12181 /* If x0 is identical to a subexpression of x1 then while
12182 processing x1, x0 has already been processed. Thus we
12183 are done with x. */
12184 if (ARITHMETIC_P (x1)
12185 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12186 break;
12187
12188 /* If x1 is identical to a subexpression of x0 then we
12189 still have to process the rest of x0. */
12190 if (ARITHMETIC_P (x0)
12191 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12192 {
12193 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12194 break;
12195 }
12196 }
12197
12198 update_table_tick (XEXP (x, i));
12199 }
12200 else if (fmt[i] == 'E')
12201 for (j = 0; j < XVECLEN (x, i); j++)
12202 update_table_tick (XVECEXP (x, i, j));
12203 }
12204
12205 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12206 are saying that the register is clobbered and we no longer know its
12207 value. If INSN is zero, don't update reg_stat[].last_set; this is
12208 only permitted with VALUE also zero and is used to invalidate the
12209 register. */
12210
12211 static void
12212 record_value_for_reg (rtx reg, rtx insn, rtx value)
12213 {
12214 unsigned int regno = REGNO (reg);
12215 unsigned int endregno = END_REGNO (reg);
12216 unsigned int i;
12217 reg_stat_type *rsp;
12218
12219 /* If VALUE contains REG and we have a previous value for REG, substitute
12220 the previous value. */
12221 if (value && insn && reg_overlap_mentioned_p (reg, value))
12222 {
12223 rtx tem;
12224
12225 /* Set things up so get_last_value is allowed to see anything set up to
12226 our insn. */
12227 subst_low_luid = DF_INSN_LUID (insn);
12228 tem = get_last_value (reg);
12229
12230 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12231 it isn't going to be useful and will take a lot of time to process,
12232 so just use the CLOBBER. */
12233
12234 if (tem)
12235 {
12236 if (ARITHMETIC_P (tem)
12237 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12238 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12239 tem = XEXP (tem, 0);
12240 else if (count_occurrences (value, reg, 1) >= 2)
12241 {
12242 /* If there are two or more occurrences of REG in VALUE,
12243 prevent the value from growing too much. */
12244 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12245 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12246 }
12247
12248 value = replace_rtx (copy_rtx (value), reg, tem);
12249 }
12250 }
12251
12252 /* For each register modified, show we don't know its value, that
12253 we don't know about its bitwise content, that its value has been
12254 updated, and that we don't know the location of the death of the
12255 register. */
12256 for (i = regno; i < endregno; i++)
12257 {
12258 rsp = VEC_index (reg_stat_type, reg_stat, i);
12259
12260 if (insn)
12261 rsp->last_set = insn;
12262
12263 rsp->last_set_value = 0;
12264 rsp->last_set_mode = VOIDmode;
12265 rsp->last_set_nonzero_bits = 0;
12266 rsp->last_set_sign_bit_copies = 0;
12267 rsp->last_death = 0;
12268 rsp->truncated_to_mode = VOIDmode;
12269 }
12270
12271 /* Mark registers that are being referenced in this value. */
12272 if (value)
12273 update_table_tick (value);
12274
12275 /* Now update the status of each register being set.
12276 If someone is using this register in this block, set this register
12277 to invalid since we will get confused between the two lives in this
12278 basic block. This makes using this register always invalid. In cse, we
12279 scan the table to invalidate all entries using this register, but this
12280 is too much work for us. */
12281
12282 for (i = regno; i < endregno; i++)
12283 {
12284 rsp = VEC_index (reg_stat_type, reg_stat, i);
12285 rsp->last_set_label = label_tick;
12286 if (!insn
12287 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12288 rsp->last_set_invalid = 1;
12289 else
12290 rsp->last_set_invalid = 0;
12291 }
12292
12293 /* The value being assigned might refer to X (like in "x++;"). In that
12294 case, we must replace it with (clobber (const_int 0)) to prevent
12295 infinite loops. */
12296 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12297 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12298 {
12299 value = copy_rtx (value);
12300 if (!get_last_value_validate (&value, insn, label_tick, 1))
12301 value = 0;
12302 }
12303
12304 /* For the main register being modified, update the value, the mode, the
12305 nonzero bits, and the number of sign bit copies. */
12306
12307 rsp->last_set_value = value;
12308
12309 if (value)
12310 {
12311 enum machine_mode mode = GET_MODE (reg);
12312 subst_low_luid = DF_INSN_LUID (insn);
12313 rsp->last_set_mode = mode;
12314 if (GET_MODE_CLASS (mode) == MODE_INT
12315 && HWI_COMPUTABLE_MODE_P (mode))
12316 mode = nonzero_bits_mode;
12317 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12318 rsp->last_set_sign_bit_copies
12319 = num_sign_bit_copies (value, GET_MODE (reg));
12320 }
12321 }
12322
12323 /* Called via note_stores from record_dead_and_set_regs to handle one
12324 SET or CLOBBER in an insn. DATA is the instruction in which the
12325 set is occurring. */
12326
12327 static void
12328 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12329 {
12330 rtx record_dead_insn = (rtx) data;
12331
12332 if (GET_CODE (dest) == SUBREG)
12333 dest = SUBREG_REG (dest);
12334
12335 if (!record_dead_insn)
12336 {
12337 if (REG_P (dest))
12338 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12339 return;
12340 }
12341
12342 if (REG_P (dest))
12343 {
12344 /* If we are setting the whole register, we know its value. Otherwise
12345 show that we don't know the value. We can handle SUBREG in
12346 some cases. */
12347 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12348 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12349 else if (GET_CODE (setter) == SET
12350 && GET_CODE (SET_DEST (setter)) == SUBREG
12351 && SUBREG_REG (SET_DEST (setter)) == dest
12352 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12353 && subreg_lowpart_p (SET_DEST (setter)))
12354 record_value_for_reg (dest, record_dead_insn,
12355 gen_lowpart (GET_MODE (dest),
12356 SET_SRC (setter)));
12357 else
12358 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12359 }
12360 else if (MEM_P (dest)
12361 /* Ignore pushes, they clobber nothing. */
12362 && ! push_operand (dest, GET_MODE (dest)))
12363 mem_last_set = DF_INSN_LUID (record_dead_insn);
12364 }
12365
12366 /* Update the records of when each REG was most recently set or killed
12367 for the things done by INSN. This is the last thing done in processing
12368 INSN in the combiner loop.
12369
12370 We update reg_stat[], in particular fields last_set, last_set_value,
12371 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12372 last_death, and also the similar information mem_last_set (which insn
12373 most recently modified memory) and last_call_luid (which insn was the
12374 most recent subroutine call). */
12375
12376 static void
12377 record_dead_and_set_regs (rtx insn)
12378 {
12379 rtx link;
12380 unsigned int i;
12381
12382 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12383 {
12384 if (REG_NOTE_KIND (link) == REG_DEAD
12385 && REG_P (XEXP (link, 0)))
12386 {
12387 unsigned int regno = REGNO (XEXP (link, 0));
12388 unsigned int endregno = END_REGNO (XEXP (link, 0));
12389
12390 for (i = regno; i < endregno; i++)
12391 {
12392 reg_stat_type *rsp;
12393
12394 rsp = VEC_index (reg_stat_type, reg_stat, i);
12395 rsp->last_death = insn;
12396 }
12397 }
12398 else if (REG_NOTE_KIND (link) == REG_INC)
12399 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12400 }
12401
12402 if (CALL_P (insn))
12403 {
12404 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
12405 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
12406 {
12407 reg_stat_type *rsp;
12408
12409 rsp = VEC_index (reg_stat_type, reg_stat, i);
12410 rsp->last_set_invalid = 1;
12411 rsp->last_set = insn;
12412 rsp->last_set_value = 0;
12413 rsp->last_set_mode = VOIDmode;
12414 rsp->last_set_nonzero_bits = 0;
12415 rsp->last_set_sign_bit_copies = 0;
12416 rsp->last_death = 0;
12417 rsp->truncated_to_mode = VOIDmode;
12418 }
12419
12420 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12421
12422 /* We can't combine into a call pattern. Remember, though, that
12423 the return value register is set at this LUID. We could
12424 still replace a register with the return value from the
12425 wrong subroutine call! */
12426 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12427 }
12428 else
12429 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12430 }
12431
12432 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12433 register present in the SUBREG, so for each such SUBREG go back and
12434 adjust nonzero and sign bit information of the registers that are
12435 known to have some zero/sign bits set.
12436
12437 This is needed because when combine blows the SUBREGs away, the
12438 information on zero/sign bits is lost and further combines can be
12439 missed because of that. */
12440
12441 static void
12442 record_promoted_value (rtx insn, rtx subreg)
12443 {
12444 struct insn_link *links;
12445 rtx set;
12446 unsigned int regno = REGNO (SUBREG_REG (subreg));
12447 enum machine_mode mode = GET_MODE (subreg);
12448
12449 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12450 return;
12451
12452 for (links = LOG_LINKS (insn); links;)
12453 {
12454 reg_stat_type *rsp;
12455
12456 insn = links->insn;
12457 set = single_set (insn);
12458
12459 if (! set || !REG_P (SET_DEST (set))
12460 || REGNO (SET_DEST (set)) != regno
12461 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12462 {
12463 links = links->next;
12464 continue;
12465 }
12466
12467 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12468 if (rsp->last_set == insn)
12469 {
12470 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12471 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12472 }
12473
12474 if (REG_P (SET_SRC (set)))
12475 {
12476 regno = REGNO (SET_SRC (set));
12477 links = LOG_LINKS (insn);
12478 }
12479 else
12480 break;
12481 }
12482 }
12483
12484 /* Check if X, a register, is known to contain a value already
12485 truncated to MODE. In this case we can use a subreg to refer to
12486 the truncated value even though in the generic case we would need
12487 an explicit truncation. */
12488
12489 static bool
12490 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12491 {
12492 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12493 enum machine_mode truncated = rsp->truncated_to_mode;
12494
12495 if (truncated == 0
12496 || rsp->truncation_label < label_tick_ebb_start)
12497 return false;
12498 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12499 return true;
12500 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12501 return true;
12502 return false;
12503 }
12504
12505 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12506 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12507 might be able to turn a truncate into a subreg using this information.
12508 Return -1 if traversing *P is complete or 0 otherwise. */
12509
12510 static int
12511 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12512 {
12513 rtx x = *p;
12514 enum machine_mode truncated_mode;
12515 reg_stat_type *rsp;
12516
12517 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12518 {
12519 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12520 truncated_mode = GET_MODE (x);
12521
12522 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12523 return -1;
12524
12525 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12526 return -1;
12527
12528 x = SUBREG_REG (x);
12529 }
12530 /* ??? For hard-regs we now record everything. We might be able to
12531 optimize this using last_set_mode. */
12532 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12533 truncated_mode = GET_MODE (x);
12534 else
12535 return 0;
12536
12537 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12538 if (rsp->truncated_to_mode == 0
12539 || rsp->truncation_label < label_tick_ebb_start
12540 || (GET_MODE_SIZE (truncated_mode)
12541 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12542 {
12543 rsp->truncated_to_mode = truncated_mode;
12544 rsp->truncation_label = label_tick;
12545 }
12546
12547 return -1;
12548 }
12549
12550 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12551 the modes they are used in. This can help truning TRUNCATEs into
12552 SUBREGs. */
12553
12554 static void
12555 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12556 {
12557 for_each_rtx (x, record_truncated_value, NULL);
12558 }
12559
12560 /* Scan X for promoted SUBREGs. For each one found,
12561 note what it implies to the registers used in it. */
12562
12563 static void
12564 check_promoted_subreg (rtx insn, rtx x)
12565 {
12566 if (GET_CODE (x) == SUBREG
12567 && SUBREG_PROMOTED_VAR_P (x)
12568 && REG_P (SUBREG_REG (x)))
12569 record_promoted_value (insn, x);
12570 else
12571 {
12572 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12573 int i, j;
12574
12575 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12576 switch (format[i])
12577 {
12578 case 'e':
12579 check_promoted_subreg (insn, XEXP (x, i));
12580 break;
12581 case 'V':
12582 case 'E':
12583 if (XVEC (x, i) != 0)
12584 for (j = 0; j < XVECLEN (x, i); j++)
12585 check_promoted_subreg (insn, XVECEXP (x, i, j));
12586 break;
12587 }
12588 }
12589 }
12590 \f
12591 /* Verify that all the registers and memory references mentioned in *LOC are
12592 still valid. *LOC was part of a value set in INSN when label_tick was
12593 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12594 the invalid references with (clobber (const_int 0)) and return 1. This
12595 replacement is useful because we often can get useful information about
12596 the form of a value (e.g., if it was produced by a shift that always
12597 produces -1 or 0) even though we don't know exactly what registers it
12598 was produced from. */
12599
12600 static int
12601 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12602 {
12603 rtx x = *loc;
12604 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12605 int len = GET_RTX_LENGTH (GET_CODE (x));
12606 int i, j;
12607
12608 if (REG_P (x))
12609 {
12610 unsigned int regno = REGNO (x);
12611 unsigned int endregno = END_REGNO (x);
12612 unsigned int j;
12613
12614 for (j = regno; j < endregno; j++)
12615 {
12616 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
12617 if (rsp->last_set_invalid
12618 /* If this is a pseudo-register that was only set once and not
12619 live at the beginning of the function, it is always valid. */
12620 || (! (regno >= FIRST_PSEUDO_REGISTER
12621 && REG_N_SETS (regno) == 1
12622 && (!REGNO_REG_SET_P
12623 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12624 && rsp->last_set_label > tick))
12625 {
12626 if (replace)
12627 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12628 return replace;
12629 }
12630 }
12631
12632 return 1;
12633 }
12634 /* If this is a memory reference, make sure that there were no stores after
12635 it that might have clobbered the value. We don't have alias info, so we
12636 assume any store invalidates it. Moreover, we only have local UIDs, so
12637 we also assume that there were stores in the intervening basic blocks. */
12638 else if (MEM_P (x) && !MEM_READONLY_P (x)
12639 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12640 {
12641 if (replace)
12642 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12643 return replace;
12644 }
12645
12646 for (i = 0; i < len; i++)
12647 {
12648 if (fmt[i] == 'e')
12649 {
12650 /* Check for identical subexpressions. If x contains
12651 identical subexpression we only have to traverse one of
12652 them. */
12653 if (i == 1 && ARITHMETIC_P (x))
12654 {
12655 /* Note that at this point x0 has already been checked
12656 and found valid. */
12657 rtx x0 = XEXP (x, 0);
12658 rtx x1 = XEXP (x, 1);
12659
12660 /* If x0 and x1 are identical then x is also valid. */
12661 if (x0 == x1)
12662 return 1;
12663
12664 /* If x1 is identical to a subexpression of x0 then
12665 while checking x0, x1 has already been checked. Thus
12666 it is valid and so as x. */
12667 if (ARITHMETIC_P (x0)
12668 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12669 return 1;
12670
12671 /* If x0 is identical to a subexpression of x1 then x is
12672 valid iff the rest of x1 is valid. */
12673 if (ARITHMETIC_P (x1)
12674 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12675 return
12676 get_last_value_validate (&XEXP (x1,
12677 x0 == XEXP (x1, 0) ? 1 : 0),
12678 insn, tick, replace);
12679 }
12680
12681 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12682 replace) == 0)
12683 return 0;
12684 }
12685 else if (fmt[i] == 'E')
12686 for (j = 0; j < XVECLEN (x, i); j++)
12687 if (get_last_value_validate (&XVECEXP (x, i, j),
12688 insn, tick, replace) == 0)
12689 return 0;
12690 }
12691
12692 /* If we haven't found a reason for it to be invalid, it is valid. */
12693 return 1;
12694 }
12695
12696 /* Get the last value assigned to X, if known. Some registers
12697 in the value may be replaced with (clobber (const_int 0)) if their value
12698 is known longer known reliably. */
12699
12700 static rtx
12701 get_last_value (const_rtx x)
12702 {
12703 unsigned int regno;
12704 rtx value;
12705 reg_stat_type *rsp;
12706
12707 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12708 then convert it to the desired mode. If this is a paradoxical SUBREG,
12709 we cannot predict what values the "extra" bits might have. */
12710 if (GET_CODE (x) == SUBREG
12711 && subreg_lowpart_p (x)
12712 && !paradoxical_subreg_p (x)
12713 && (value = get_last_value (SUBREG_REG (x))) != 0)
12714 return gen_lowpart (GET_MODE (x), value);
12715
12716 if (!REG_P (x))
12717 return 0;
12718
12719 regno = REGNO (x);
12720 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12721 value = rsp->last_set_value;
12722
12723 /* If we don't have a value, or if it isn't for this basic block and
12724 it's either a hard register, set more than once, or it's a live
12725 at the beginning of the function, return 0.
12726
12727 Because if it's not live at the beginning of the function then the reg
12728 is always set before being used (is never used without being set).
12729 And, if it's set only once, and it's always set before use, then all
12730 uses must have the same last value, even if it's not from this basic
12731 block. */
12732
12733 if (value == 0
12734 || (rsp->last_set_label < label_tick_ebb_start
12735 && (regno < FIRST_PSEUDO_REGISTER
12736 || REG_N_SETS (regno) != 1
12737 || REGNO_REG_SET_P
12738 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12739 return 0;
12740
12741 /* If the value was set in a later insn than the ones we are processing,
12742 we can't use it even if the register was only set once. */
12743 if (rsp->last_set_label == label_tick
12744 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12745 return 0;
12746
12747 /* If the value has all its registers valid, return it. */
12748 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12749 return value;
12750
12751 /* Otherwise, make a copy and replace any invalid register with
12752 (clobber (const_int 0)). If that fails for some reason, return 0. */
12753
12754 value = copy_rtx (value);
12755 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12756 return value;
12757
12758 return 0;
12759 }
12760 \f
12761 /* Return nonzero if expression X refers to a REG or to memory
12762 that is set in an instruction more recent than FROM_LUID. */
12763
12764 static int
12765 use_crosses_set_p (const_rtx x, int from_luid)
12766 {
12767 const char *fmt;
12768 int i;
12769 enum rtx_code code = GET_CODE (x);
12770
12771 if (code == REG)
12772 {
12773 unsigned int regno = REGNO (x);
12774 unsigned endreg = END_REGNO (x);
12775
12776 #ifdef PUSH_ROUNDING
12777 /* Don't allow uses of the stack pointer to be moved,
12778 because we don't know whether the move crosses a push insn. */
12779 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12780 return 1;
12781 #endif
12782 for (; regno < endreg; regno++)
12783 {
12784 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12785 if (rsp->last_set
12786 && rsp->last_set_label == label_tick
12787 && DF_INSN_LUID (rsp->last_set) > from_luid)
12788 return 1;
12789 }
12790 return 0;
12791 }
12792
12793 if (code == MEM && mem_last_set > from_luid)
12794 return 1;
12795
12796 fmt = GET_RTX_FORMAT (code);
12797
12798 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12799 {
12800 if (fmt[i] == 'E')
12801 {
12802 int j;
12803 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12804 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12805 return 1;
12806 }
12807 else if (fmt[i] == 'e'
12808 && use_crosses_set_p (XEXP (x, i), from_luid))
12809 return 1;
12810 }
12811 return 0;
12812 }
12813 \f
12814 /* Define three variables used for communication between the following
12815 routines. */
12816
12817 static unsigned int reg_dead_regno, reg_dead_endregno;
12818 static int reg_dead_flag;
12819
12820 /* Function called via note_stores from reg_dead_at_p.
12821
12822 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12823 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12824
12825 static void
12826 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12827 {
12828 unsigned int regno, endregno;
12829
12830 if (!REG_P (dest))
12831 return;
12832
12833 regno = REGNO (dest);
12834 endregno = END_REGNO (dest);
12835 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12836 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12837 }
12838
12839 /* Return nonzero if REG is known to be dead at INSN.
12840
12841 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12842 referencing REG, it is dead. If we hit a SET referencing REG, it is
12843 live. Otherwise, see if it is live or dead at the start of the basic
12844 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12845 must be assumed to be always live. */
12846
12847 static int
12848 reg_dead_at_p (rtx reg, rtx insn)
12849 {
12850 basic_block block;
12851 unsigned int i;
12852
12853 /* Set variables for reg_dead_at_p_1. */
12854 reg_dead_regno = REGNO (reg);
12855 reg_dead_endregno = END_REGNO (reg);
12856
12857 reg_dead_flag = 0;
12858
12859 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12860 we allow the machine description to decide whether use-and-clobber
12861 patterns are OK. */
12862 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12863 {
12864 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12865 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12866 return 0;
12867 }
12868
12869 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12870 beginning of basic block. */
12871 block = BLOCK_FOR_INSN (insn);
12872 for (;;)
12873 {
12874 if (INSN_P (insn))
12875 {
12876 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12877 if (reg_dead_flag)
12878 return reg_dead_flag == 1 ? 1 : 0;
12879
12880 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12881 return 1;
12882 }
12883
12884 if (insn == BB_HEAD (block))
12885 break;
12886
12887 insn = PREV_INSN (insn);
12888 }
12889
12890 /* Look at live-in sets for the basic block that we were in. */
12891 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12892 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12893 return 0;
12894
12895 return 1;
12896 }
12897 \f
12898 /* Note hard registers in X that are used. */
12899
12900 static void
12901 mark_used_regs_combine (rtx x)
12902 {
12903 RTX_CODE code = GET_CODE (x);
12904 unsigned int regno;
12905 int i;
12906
12907 switch (code)
12908 {
12909 case LABEL_REF:
12910 case SYMBOL_REF:
12911 case CONST_INT:
12912 case CONST:
12913 case CONST_DOUBLE:
12914 case CONST_VECTOR:
12915 case PC:
12916 case ADDR_VEC:
12917 case ADDR_DIFF_VEC:
12918 case ASM_INPUT:
12919 #ifdef HAVE_cc0
12920 /* CC0 must die in the insn after it is set, so we don't need to take
12921 special note of it here. */
12922 case CC0:
12923 #endif
12924 return;
12925
12926 case CLOBBER:
12927 /* If we are clobbering a MEM, mark any hard registers inside the
12928 address as used. */
12929 if (MEM_P (XEXP (x, 0)))
12930 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12931 return;
12932
12933 case REG:
12934 regno = REGNO (x);
12935 /* A hard reg in a wide mode may really be multiple registers.
12936 If so, mark all of them just like the first. */
12937 if (regno < FIRST_PSEUDO_REGISTER)
12938 {
12939 /* None of this applies to the stack, frame or arg pointers. */
12940 if (regno == STACK_POINTER_REGNUM
12941 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12942 || regno == HARD_FRAME_POINTER_REGNUM
12943 #endif
12944 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12945 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12946 #endif
12947 || regno == FRAME_POINTER_REGNUM)
12948 return;
12949
12950 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12951 }
12952 return;
12953
12954 case SET:
12955 {
12956 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12957 the address. */
12958 rtx testreg = SET_DEST (x);
12959
12960 while (GET_CODE (testreg) == SUBREG
12961 || GET_CODE (testreg) == ZERO_EXTRACT
12962 || GET_CODE (testreg) == STRICT_LOW_PART)
12963 testreg = XEXP (testreg, 0);
12964
12965 if (MEM_P (testreg))
12966 mark_used_regs_combine (XEXP (testreg, 0));
12967
12968 mark_used_regs_combine (SET_SRC (x));
12969 }
12970 return;
12971
12972 default:
12973 break;
12974 }
12975
12976 /* Recursively scan the operands of this expression. */
12977
12978 {
12979 const char *fmt = GET_RTX_FORMAT (code);
12980
12981 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12982 {
12983 if (fmt[i] == 'e')
12984 mark_used_regs_combine (XEXP (x, i));
12985 else if (fmt[i] == 'E')
12986 {
12987 int j;
12988
12989 for (j = 0; j < XVECLEN (x, i); j++)
12990 mark_used_regs_combine (XVECEXP (x, i, j));
12991 }
12992 }
12993 }
12994 }
12995 \f
12996 /* Remove register number REGNO from the dead registers list of INSN.
12997
12998 Return the note used to record the death, if there was one. */
12999
13000 rtx
13001 remove_death (unsigned int regno, rtx insn)
13002 {
13003 rtx note = find_regno_note (insn, REG_DEAD, regno);
13004
13005 if (note)
13006 remove_note (insn, note);
13007
13008 return note;
13009 }
13010
13011 /* For each register (hardware or pseudo) used within expression X, if its
13012 death is in an instruction with luid between FROM_LUID (inclusive) and
13013 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13014 list headed by PNOTES.
13015
13016 That said, don't move registers killed by maybe_kill_insn.
13017
13018 This is done when X is being merged by combination into TO_INSN. These
13019 notes will then be distributed as needed. */
13020
13021 static void
13022 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
13023 rtx *pnotes)
13024 {
13025 const char *fmt;
13026 int len, i;
13027 enum rtx_code code = GET_CODE (x);
13028
13029 if (code == REG)
13030 {
13031 unsigned int regno = REGNO (x);
13032 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
13033
13034 /* Don't move the register if it gets killed in between from and to. */
13035 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13036 && ! reg_referenced_p (x, maybe_kill_insn))
13037 return;
13038
13039 if (where_dead
13040 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13041 && DF_INSN_LUID (where_dead) >= from_luid
13042 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13043 {
13044 rtx note = remove_death (regno, where_dead);
13045
13046 /* It is possible for the call above to return 0. This can occur
13047 when last_death points to I2 or I1 that we combined with.
13048 In that case make a new note.
13049
13050 We must also check for the case where X is a hard register
13051 and NOTE is a death note for a range of hard registers
13052 including X. In that case, we must put REG_DEAD notes for
13053 the remaining registers in place of NOTE. */
13054
13055 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13056 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13057 > GET_MODE_SIZE (GET_MODE (x))))
13058 {
13059 unsigned int deadregno = REGNO (XEXP (note, 0));
13060 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
13061 unsigned int ourend = END_HARD_REGNO (x);
13062 unsigned int i;
13063
13064 for (i = deadregno; i < deadend; i++)
13065 if (i < regno || i >= ourend)
13066 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13067 }
13068
13069 /* If we didn't find any note, or if we found a REG_DEAD note that
13070 covers only part of the given reg, and we have a multi-reg hard
13071 register, then to be safe we must check for REG_DEAD notes
13072 for each register other than the first. They could have
13073 their own REG_DEAD notes lying around. */
13074 else if ((note == 0
13075 || (note != 0
13076 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13077 < GET_MODE_SIZE (GET_MODE (x)))))
13078 && regno < FIRST_PSEUDO_REGISTER
13079 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
13080 {
13081 unsigned int ourend = END_HARD_REGNO (x);
13082 unsigned int i, offset;
13083 rtx oldnotes = 0;
13084
13085 if (note)
13086 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13087 else
13088 offset = 1;
13089
13090 for (i = regno + offset; i < ourend; i++)
13091 move_deaths (regno_reg_rtx[i],
13092 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13093 }
13094
13095 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13096 {
13097 XEXP (note, 1) = *pnotes;
13098 *pnotes = note;
13099 }
13100 else
13101 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13102 }
13103
13104 return;
13105 }
13106
13107 else if (GET_CODE (x) == SET)
13108 {
13109 rtx dest = SET_DEST (x);
13110
13111 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13112
13113 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13114 that accesses one word of a multi-word item, some
13115 piece of everything register in the expression is used by
13116 this insn, so remove any old death. */
13117 /* ??? So why do we test for equality of the sizes? */
13118
13119 if (GET_CODE (dest) == ZERO_EXTRACT
13120 || GET_CODE (dest) == STRICT_LOW_PART
13121 || (GET_CODE (dest) == SUBREG
13122 && (((GET_MODE_SIZE (GET_MODE (dest))
13123 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13124 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13125 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13126 {
13127 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13128 return;
13129 }
13130
13131 /* If this is some other SUBREG, we know it replaces the entire
13132 value, so use that as the destination. */
13133 if (GET_CODE (dest) == SUBREG)
13134 dest = SUBREG_REG (dest);
13135
13136 /* If this is a MEM, adjust deaths of anything used in the address.
13137 For a REG (the only other possibility), the entire value is
13138 being replaced so the old value is not used in this insn. */
13139
13140 if (MEM_P (dest))
13141 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13142 to_insn, pnotes);
13143 return;
13144 }
13145
13146 else if (GET_CODE (x) == CLOBBER)
13147 return;
13148
13149 len = GET_RTX_LENGTH (code);
13150 fmt = GET_RTX_FORMAT (code);
13151
13152 for (i = 0; i < len; i++)
13153 {
13154 if (fmt[i] == 'E')
13155 {
13156 int j;
13157 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13158 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13159 to_insn, pnotes);
13160 }
13161 else if (fmt[i] == 'e')
13162 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13163 }
13164 }
13165 \f
13166 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13167 pattern of an insn. X must be a REG. */
13168
13169 static int
13170 reg_bitfield_target_p (rtx x, rtx body)
13171 {
13172 int i;
13173
13174 if (GET_CODE (body) == SET)
13175 {
13176 rtx dest = SET_DEST (body);
13177 rtx target;
13178 unsigned int regno, tregno, endregno, endtregno;
13179
13180 if (GET_CODE (dest) == ZERO_EXTRACT)
13181 target = XEXP (dest, 0);
13182 else if (GET_CODE (dest) == STRICT_LOW_PART)
13183 target = SUBREG_REG (XEXP (dest, 0));
13184 else
13185 return 0;
13186
13187 if (GET_CODE (target) == SUBREG)
13188 target = SUBREG_REG (target);
13189
13190 if (!REG_P (target))
13191 return 0;
13192
13193 tregno = REGNO (target), regno = REGNO (x);
13194 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13195 return target == x;
13196
13197 endtregno = end_hard_regno (GET_MODE (target), tregno);
13198 endregno = end_hard_regno (GET_MODE (x), regno);
13199
13200 return endregno > tregno && regno < endtregno;
13201 }
13202
13203 else if (GET_CODE (body) == PARALLEL)
13204 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13205 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13206 return 1;
13207
13208 return 0;
13209 }
13210 \f
13211 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13212 as appropriate. I3 and I2 are the insns resulting from the combination
13213 insns including FROM (I2 may be zero).
13214
13215 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13216 not need REG_DEAD notes because they are being substituted for. This
13217 saves searching in the most common cases.
13218
13219 Each note in the list is either ignored or placed on some insns, depending
13220 on the type of note. */
13221
13222 static void
13223 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13224 rtx elim_i1, rtx elim_i0)
13225 {
13226 rtx note, next_note;
13227 rtx tem;
13228
13229 for (note = notes; note; note = next_note)
13230 {
13231 rtx place = 0, place2 = 0;
13232
13233 next_note = XEXP (note, 1);
13234 switch (REG_NOTE_KIND (note))
13235 {
13236 case REG_BR_PROB:
13237 case REG_BR_PRED:
13238 /* Doesn't matter much where we put this, as long as it's somewhere.
13239 It is preferable to keep these notes on branches, which is most
13240 likely to be i3. */
13241 place = i3;
13242 break;
13243
13244 case REG_NON_LOCAL_GOTO:
13245 if (JUMP_P (i3))
13246 place = i3;
13247 else
13248 {
13249 gcc_assert (i2 && JUMP_P (i2));
13250 place = i2;
13251 }
13252 break;
13253
13254 case REG_EH_REGION:
13255 /* These notes must remain with the call or trapping instruction. */
13256 if (CALL_P (i3))
13257 place = i3;
13258 else if (i2 && CALL_P (i2))
13259 place = i2;
13260 else
13261 {
13262 gcc_assert (cfun->can_throw_non_call_exceptions);
13263 if (may_trap_p (i3))
13264 place = i3;
13265 else if (i2 && may_trap_p (i2))
13266 place = i2;
13267 /* ??? Otherwise assume we've combined things such that we
13268 can now prove that the instructions can't trap. Drop the
13269 note in this case. */
13270 }
13271 break;
13272
13273 case REG_NORETURN:
13274 case REG_SETJMP:
13275 /* These notes must remain with the call. It should not be
13276 possible for both I2 and I3 to be a call. */
13277 if (CALL_P (i3))
13278 place = i3;
13279 else
13280 {
13281 gcc_assert (i2 && CALL_P (i2));
13282 place = i2;
13283 }
13284 break;
13285
13286 case REG_UNUSED:
13287 /* Any clobbers for i3 may still exist, and so we must process
13288 REG_UNUSED notes from that insn.
13289
13290 Any clobbers from i2 or i1 can only exist if they were added by
13291 recog_for_combine. In that case, recog_for_combine created the
13292 necessary REG_UNUSED notes. Trying to keep any original
13293 REG_UNUSED notes from these insns can cause incorrect output
13294 if it is for the same register as the original i3 dest.
13295 In that case, we will notice that the register is set in i3,
13296 and then add a REG_UNUSED note for the destination of i3, which
13297 is wrong. However, it is possible to have REG_UNUSED notes from
13298 i2 or i1 for register which were both used and clobbered, so
13299 we keep notes from i2 or i1 if they will turn into REG_DEAD
13300 notes. */
13301
13302 /* If this register is set or clobbered in I3, put the note there
13303 unless there is one already. */
13304 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13305 {
13306 if (from_insn != i3)
13307 break;
13308
13309 if (! (REG_P (XEXP (note, 0))
13310 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13311 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13312 place = i3;
13313 }
13314 /* Otherwise, if this register is used by I3, then this register
13315 now dies here, so we must put a REG_DEAD note here unless there
13316 is one already. */
13317 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13318 && ! (REG_P (XEXP (note, 0))
13319 ? find_regno_note (i3, REG_DEAD,
13320 REGNO (XEXP (note, 0)))
13321 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13322 {
13323 PUT_REG_NOTE_KIND (note, REG_DEAD);
13324 place = i3;
13325 }
13326 break;
13327
13328 case REG_EQUAL:
13329 case REG_EQUIV:
13330 case REG_NOALIAS:
13331 /* These notes say something about results of an insn. We can
13332 only support them if they used to be on I3 in which case they
13333 remain on I3. Otherwise they are ignored.
13334
13335 If the note refers to an expression that is not a constant, we
13336 must also ignore the note since we cannot tell whether the
13337 equivalence is still true. It might be possible to do
13338 slightly better than this (we only have a problem if I2DEST
13339 or I1DEST is present in the expression), but it doesn't
13340 seem worth the trouble. */
13341
13342 if (from_insn == i3
13343 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13344 place = i3;
13345 break;
13346
13347 case REG_INC:
13348 /* These notes say something about how a register is used. They must
13349 be present on any use of the register in I2 or I3. */
13350 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13351 place = i3;
13352
13353 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13354 {
13355 if (place)
13356 place2 = i2;
13357 else
13358 place = i2;
13359 }
13360 break;
13361
13362 case REG_LABEL_TARGET:
13363 case REG_LABEL_OPERAND:
13364 /* This can show up in several ways -- either directly in the
13365 pattern, or hidden off in the constant pool with (or without?)
13366 a REG_EQUAL note. */
13367 /* ??? Ignore the without-reg_equal-note problem for now. */
13368 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13369 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13370 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13371 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13372 place = i3;
13373
13374 if (i2
13375 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13376 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13377 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13378 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13379 {
13380 if (place)
13381 place2 = i2;
13382 else
13383 place = i2;
13384 }
13385
13386 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13387 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13388 there. */
13389 if (place && JUMP_P (place)
13390 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13391 && (JUMP_LABEL (place) == NULL
13392 || JUMP_LABEL (place) == XEXP (note, 0)))
13393 {
13394 rtx label = JUMP_LABEL (place);
13395
13396 if (!label)
13397 JUMP_LABEL (place) = XEXP (note, 0);
13398 else if (LABEL_P (label))
13399 LABEL_NUSES (label)--;
13400 }
13401
13402 if (place2 && JUMP_P (place2)
13403 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13404 && (JUMP_LABEL (place2) == NULL
13405 || JUMP_LABEL (place2) == XEXP (note, 0)))
13406 {
13407 rtx label = JUMP_LABEL (place2);
13408
13409 if (!label)
13410 JUMP_LABEL (place2) = XEXP (note, 0);
13411 else if (LABEL_P (label))
13412 LABEL_NUSES (label)--;
13413 place2 = 0;
13414 }
13415 break;
13416
13417 case REG_NONNEG:
13418 /* This note says something about the value of a register prior
13419 to the execution of an insn. It is too much trouble to see
13420 if the note is still correct in all situations. It is better
13421 to simply delete it. */
13422 break;
13423
13424 case REG_DEAD:
13425 /* If we replaced the right hand side of FROM_INSN with a
13426 REG_EQUAL note, the original use of the dying register
13427 will not have been combined into I3 and I2. In such cases,
13428 FROM_INSN is guaranteed to be the first of the combined
13429 instructions, so we simply need to search back before
13430 FROM_INSN for the previous use or set of this register,
13431 then alter the notes there appropriately.
13432
13433 If the register is used as an input in I3, it dies there.
13434 Similarly for I2, if it is nonzero and adjacent to I3.
13435
13436 If the register is not used as an input in either I3 or I2
13437 and it is not one of the registers we were supposed to eliminate,
13438 there are two possibilities. We might have a non-adjacent I2
13439 or we might have somehow eliminated an additional register
13440 from a computation. For example, we might have had A & B where
13441 we discover that B will always be zero. In this case we will
13442 eliminate the reference to A.
13443
13444 In both cases, we must search to see if we can find a previous
13445 use of A and put the death note there. */
13446
13447 if (from_insn
13448 && from_insn == i2mod
13449 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13450 tem = from_insn;
13451 else
13452 {
13453 if (from_insn
13454 && CALL_P (from_insn)
13455 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13456 place = from_insn;
13457 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13458 place = i3;
13459 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13460 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13461 place = i2;
13462 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13463 && !(i2mod
13464 && reg_overlap_mentioned_p (XEXP (note, 0),
13465 i2mod_old_rhs)))
13466 || rtx_equal_p (XEXP (note, 0), elim_i1)
13467 || rtx_equal_p (XEXP (note, 0), elim_i0))
13468 break;
13469 tem = i3;
13470 }
13471
13472 if (place == 0)
13473 {
13474 basic_block bb = this_basic_block;
13475
13476 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13477 {
13478 if (!NONDEBUG_INSN_P (tem))
13479 {
13480 if (tem == BB_HEAD (bb))
13481 break;
13482 continue;
13483 }
13484
13485 /* If the register is being set at TEM, see if that is all
13486 TEM is doing. If so, delete TEM. Otherwise, make this
13487 into a REG_UNUSED note instead. Don't delete sets to
13488 global register vars. */
13489 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13490 || !global_regs[REGNO (XEXP (note, 0))])
13491 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13492 {
13493 rtx set = single_set (tem);
13494 rtx inner_dest = 0;
13495 #ifdef HAVE_cc0
13496 rtx cc0_setter = NULL_RTX;
13497 #endif
13498
13499 if (set != 0)
13500 for (inner_dest = SET_DEST (set);
13501 (GET_CODE (inner_dest) == STRICT_LOW_PART
13502 || GET_CODE (inner_dest) == SUBREG
13503 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13504 inner_dest = XEXP (inner_dest, 0))
13505 ;
13506
13507 /* Verify that it was the set, and not a clobber that
13508 modified the register.
13509
13510 CC0 targets must be careful to maintain setter/user
13511 pairs. If we cannot delete the setter due to side
13512 effects, mark the user with an UNUSED note instead
13513 of deleting it. */
13514
13515 if (set != 0 && ! side_effects_p (SET_SRC (set))
13516 && rtx_equal_p (XEXP (note, 0), inner_dest)
13517 #ifdef HAVE_cc0
13518 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13519 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13520 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13521 #endif
13522 )
13523 {
13524 /* Move the notes and links of TEM elsewhere.
13525 This might delete other dead insns recursively.
13526 First set the pattern to something that won't use
13527 any register. */
13528 rtx old_notes = REG_NOTES (tem);
13529
13530 PATTERN (tem) = pc_rtx;
13531 REG_NOTES (tem) = NULL;
13532
13533 distribute_notes (old_notes, tem, tem, NULL_RTX,
13534 NULL_RTX, NULL_RTX, NULL_RTX);
13535 distribute_links (LOG_LINKS (tem));
13536
13537 SET_INSN_DELETED (tem);
13538 if (tem == i2)
13539 i2 = NULL_RTX;
13540
13541 #ifdef HAVE_cc0
13542 /* Delete the setter too. */
13543 if (cc0_setter)
13544 {
13545 PATTERN (cc0_setter) = pc_rtx;
13546 old_notes = REG_NOTES (cc0_setter);
13547 REG_NOTES (cc0_setter) = NULL;
13548
13549 distribute_notes (old_notes, cc0_setter,
13550 cc0_setter, NULL_RTX,
13551 NULL_RTX, NULL_RTX, NULL_RTX);
13552 distribute_links (LOG_LINKS (cc0_setter));
13553
13554 SET_INSN_DELETED (cc0_setter);
13555 if (cc0_setter == i2)
13556 i2 = NULL_RTX;
13557 }
13558 #endif
13559 }
13560 else
13561 {
13562 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13563
13564 /* If there isn't already a REG_UNUSED note, put one
13565 here. Do not place a REG_DEAD note, even if
13566 the register is also used here; that would not
13567 match the algorithm used in lifetime analysis
13568 and can cause the consistency check in the
13569 scheduler to fail. */
13570 if (! find_regno_note (tem, REG_UNUSED,
13571 REGNO (XEXP (note, 0))))
13572 place = tem;
13573 break;
13574 }
13575 }
13576 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13577 || (CALL_P (tem)
13578 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13579 {
13580 place = tem;
13581
13582 /* If we are doing a 3->2 combination, and we have a
13583 register which formerly died in i3 and was not used
13584 by i2, which now no longer dies in i3 and is used in
13585 i2 but does not die in i2, and place is between i2
13586 and i3, then we may need to move a link from place to
13587 i2. */
13588 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13589 && from_insn
13590 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13591 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13592 {
13593 struct insn_link *links = LOG_LINKS (place);
13594 LOG_LINKS (place) = NULL;
13595 distribute_links (links);
13596 }
13597 break;
13598 }
13599
13600 if (tem == BB_HEAD (bb))
13601 break;
13602 }
13603
13604 }
13605
13606 /* If the register is set or already dead at PLACE, we needn't do
13607 anything with this note if it is still a REG_DEAD note.
13608 We check here if it is set at all, not if is it totally replaced,
13609 which is what `dead_or_set_p' checks, so also check for it being
13610 set partially. */
13611
13612 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13613 {
13614 unsigned int regno = REGNO (XEXP (note, 0));
13615 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
13616
13617 if (dead_or_set_p (place, XEXP (note, 0))
13618 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13619 {
13620 /* Unless the register previously died in PLACE, clear
13621 last_death. [I no longer understand why this is
13622 being done.] */
13623 if (rsp->last_death != place)
13624 rsp->last_death = 0;
13625 place = 0;
13626 }
13627 else
13628 rsp->last_death = place;
13629
13630 /* If this is a death note for a hard reg that is occupying
13631 multiple registers, ensure that we are still using all
13632 parts of the object. If we find a piece of the object
13633 that is unused, we must arrange for an appropriate REG_DEAD
13634 note to be added for it. However, we can't just emit a USE
13635 and tag the note to it, since the register might actually
13636 be dead; so we recourse, and the recursive call then finds
13637 the previous insn that used this register. */
13638
13639 if (place && regno < FIRST_PSEUDO_REGISTER
13640 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13641 {
13642 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13643 int all_used = 1;
13644 unsigned int i;
13645
13646 for (i = regno; i < endregno; i++)
13647 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13648 && ! find_regno_fusage (place, USE, i))
13649 || dead_or_set_regno_p (place, i))
13650 all_used = 0;
13651
13652 if (! all_used)
13653 {
13654 /* Put only REG_DEAD notes for pieces that are
13655 not already dead or set. */
13656
13657 for (i = regno; i < endregno;
13658 i += hard_regno_nregs[i][reg_raw_mode[i]])
13659 {
13660 rtx piece = regno_reg_rtx[i];
13661 basic_block bb = this_basic_block;
13662
13663 if (! dead_or_set_p (place, piece)
13664 && ! reg_bitfield_target_p (piece,
13665 PATTERN (place)))
13666 {
13667 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13668 NULL_RTX);
13669
13670 distribute_notes (new_note, place, place,
13671 NULL_RTX, NULL_RTX, NULL_RTX,
13672 NULL_RTX);
13673 }
13674 else if (! refers_to_regno_p (i, i + 1,
13675 PATTERN (place), 0)
13676 && ! find_regno_fusage (place, USE, i))
13677 for (tem = PREV_INSN (place); ;
13678 tem = PREV_INSN (tem))
13679 {
13680 if (!NONDEBUG_INSN_P (tem))
13681 {
13682 if (tem == BB_HEAD (bb))
13683 break;
13684 continue;
13685 }
13686 if (dead_or_set_p (tem, piece)
13687 || reg_bitfield_target_p (piece,
13688 PATTERN (tem)))
13689 {
13690 add_reg_note (tem, REG_UNUSED, piece);
13691 break;
13692 }
13693 }
13694
13695 }
13696
13697 place = 0;
13698 }
13699 }
13700 }
13701 break;
13702
13703 default:
13704 /* Any other notes should not be present at this point in the
13705 compilation. */
13706 gcc_unreachable ();
13707 }
13708
13709 if (place)
13710 {
13711 XEXP (note, 1) = REG_NOTES (place);
13712 REG_NOTES (place) = note;
13713 }
13714
13715 if (place2)
13716 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13717 }
13718 }
13719 \f
13720 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13721 I3, I2, and I1 to new locations. This is also called to add a link
13722 pointing at I3 when I3's destination is changed. */
13723
13724 static void
13725 distribute_links (struct insn_link *links)
13726 {
13727 struct insn_link *link, *next_link;
13728
13729 for (link = links; link; link = next_link)
13730 {
13731 rtx place = 0;
13732 rtx insn;
13733 rtx set, reg;
13734
13735 next_link = link->next;
13736
13737 /* If the insn that this link points to is a NOTE or isn't a single
13738 set, ignore it. In the latter case, it isn't clear what we
13739 can do other than ignore the link, since we can't tell which
13740 register it was for. Such links wouldn't be used by combine
13741 anyway.
13742
13743 It is not possible for the destination of the target of the link to
13744 have been changed by combine. The only potential of this is if we
13745 replace I3, I2, and I1 by I3 and I2. But in that case the
13746 destination of I2 also remains unchanged. */
13747
13748 if (NOTE_P (link->insn)
13749 || (set = single_set (link->insn)) == 0)
13750 continue;
13751
13752 reg = SET_DEST (set);
13753 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13754 || GET_CODE (reg) == STRICT_LOW_PART)
13755 reg = XEXP (reg, 0);
13756
13757 /* A LOG_LINK is defined as being placed on the first insn that uses
13758 a register and points to the insn that sets the register. Start
13759 searching at the next insn after the target of the link and stop
13760 when we reach a set of the register or the end of the basic block.
13761
13762 Note that this correctly handles the link that used to point from
13763 I3 to I2. Also note that not much searching is typically done here
13764 since most links don't point very far away. */
13765
13766 for (insn = NEXT_INSN (link->insn);
13767 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13768 || BB_HEAD (this_basic_block->next_bb) != insn));
13769 insn = NEXT_INSN (insn))
13770 if (DEBUG_INSN_P (insn))
13771 continue;
13772 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13773 {
13774 if (reg_referenced_p (reg, PATTERN (insn)))
13775 place = insn;
13776 break;
13777 }
13778 else if (CALL_P (insn)
13779 && find_reg_fusage (insn, USE, reg))
13780 {
13781 place = insn;
13782 break;
13783 }
13784 else if (INSN_P (insn) && reg_set_p (reg, insn))
13785 break;
13786
13787 /* If we found a place to put the link, place it there unless there
13788 is already a link to the same insn as LINK at that point. */
13789
13790 if (place)
13791 {
13792 struct insn_link *link2;
13793
13794 FOR_EACH_LOG_LINK (link2, place)
13795 if (link2->insn == link->insn)
13796 break;
13797
13798 if (link2 == NULL)
13799 {
13800 link->next = LOG_LINKS (place);
13801 LOG_LINKS (place) = link;
13802
13803 /* Set added_links_insn to the earliest insn we added a
13804 link to. */
13805 if (added_links_insn == 0
13806 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13807 added_links_insn = place;
13808 }
13809 }
13810 }
13811 }
13812 \f
13813 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13814 Check whether the expression pointer to by LOC is a register or
13815 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13816 Otherwise return zero. */
13817
13818 static int
13819 unmentioned_reg_p_1 (rtx *loc, void *expr)
13820 {
13821 rtx x = *loc;
13822
13823 if (x != NULL_RTX
13824 && (REG_P (x) || MEM_P (x))
13825 && ! reg_mentioned_p (x, (rtx) expr))
13826 return 1;
13827 return 0;
13828 }
13829
13830 /* Check for any register or memory mentioned in EQUIV that is not
13831 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13832 of EXPR where some registers may have been replaced by constants. */
13833
13834 static bool
13835 unmentioned_reg_p (rtx equiv, rtx expr)
13836 {
13837 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13838 }
13839 \f
13840 void
13841 dump_combine_stats (FILE *file)
13842 {
13843 fprintf
13844 (file,
13845 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13846 combine_attempts, combine_merges, combine_extras, combine_successes);
13847 }
13848
13849 void
13850 dump_combine_total_stats (FILE *file)
13851 {
13852 fprintf
13853 (file,
13854 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13855 total_attempts, total_merges, total_extras, total_successes);
13856 }
13857 \f
13858 static bool
13859 gate_handle_combine (void)
13860 {
13861 return (optimize > 0);
13862 }
13863
13864 /* Try combining insns through substitution. */
13865 static unsigned int
13866 rest_of_handle_combine (void)
13867 {
13868 int rebuild_jump_labels_after_combine;
13869
13870 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13871 df_note_add_problem ();
13872 df_analyze ();
13873
13874 regstat_init_n_sets_and_refs ();
13875
13876 rebuild_jump_labels_after_combine
13877 = combine_instructions (get_insns (), max_reg_num ());
13878
13879 /* Combining insns may have turned an indirect jump into a
13880 direct jump. Rebuild the JUMP_LABEL fields of jumping
13881 instructions. */
13882 if (rebuild_jump_labels_after_combine)
13883 {
13884 timevar_push (TV_JUMP);
13885 rebuild_jump_labels (get_insns ());
13886 cleanup_cfg (0);
13887 timevar_pop (TV_JUMP);
13888 }
13889
13890 regstat_free_n_sets_and_refs ();
13891 return 0;
13892 }
13893
13894 struct rtl_opt_pass pass_combine =
13895 {
13896 {
13897 RTL_PASS,
13898 "combine", /* name */
13899 gate_handle_combine, /* gate */
13900 rest_of_handle_combine, /* execute */
13901 NULL, /* sub */
13902 NULL, /* next */
13903 0, /* static_pass_number */
13904 TV_COMBINE, /* tv_id */
13905 PROP_cfglayout, /* properties_required */
13906 0, /* properties_provided */
13907 0, /* properties_destroyed */
13908 0, /* todo_flags_start */
13909 TODO_df_finish | TODO_verify_rtl_sharing |
13910 TODO_ggc_collect, /* todo_flags_finish */
13911 }
13912 };