re PR rtl-optimization/42269 (Extra sign extension instructions generated)
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "real.h"
96 #include "toplev.h"
97 #include "target.h"
98 #include "optabs.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 /* Include output.h for dump_file. */
102 #include "output.h"
103 #include "params.h"
104 #include "timevar.h"
105 #include "tree-pass.h"
106 #include "df.h"
107 #include "cgraph.h"
108
109 /* Number of attempts to combine instructions in this function. */
110
111 static int combine_attempts;
112
113 /* Number of attempts that got as far as substitution in this function. */
114
115 static int combine_merges;
116
117 /* Number of instructions combined with added SETs in this function. */
118
119 static int combine_extras;
120
121 /* Number of instructions combined in this function. */
122
123 static int combine_successes;
124
125 /* Totals over entire compilation. */
126
127 static int total_attempts, total_merges, total_extras, total_successes;
128
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
135
136 static rtx i2mod;
137
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139
140 static rtx i2mod_old_rhs;
141
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143
144 static rtx i2mod_new_rhs;
145 \f
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
152
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
158
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
161
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
165
166 Therefore, we maintain the following fields:
167
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
176
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
181
182 (The next two parameters are out of date).
183
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
195
196 /* Record last value assigned to (hard or pseudo) register n. */
197
198 rtx last_set_value;
199
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
202
203 int last_set_table_tick;
204
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
207
208 int last_set_label;
209
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
214
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
222
223 char last_set_invalid;
224
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
229
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
234
235 If an entry is zero, it means that we don't know anything special. */
236
237 unsigned char sign_bit_copies;
238
239 unsigned HOST_WIDE_INT nonzero_bits;
240
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
244
245 int truncation_label;
246
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
251
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
254
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
257
258 static VEC(reg_stat_type,heap) *reg_stat;
259
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
262
263 static int mem_last_set;
264
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
267
268 static int last_call_luid;
269
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
275
276 static rtx subst_insn;
277
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
284
285 static int subst_low_luid;
286
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
289
290 static HARD_REG_SET newpat_used_regs;
291
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
295
296 static rtx added_links_insn;
297
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
301
302 \f
303 /* Length of the currently allocated uid_insn_cost array. */
304
305 static int max_uid_known;
306
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
309
310 static int *uid_insn_cost;
311
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as an INSN_LIST rtx. */
314
315 static rtx *uid_log_links;
316
317 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
318 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
319
320 /* Incremented for each basic block. */
321
322 static int label_tick;
323
324 /* Reset to label_tick for each extended basic block in scanning order. */
325
326 static int label_tick_ebb_start;
327
328 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
329 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
330
331 static enum machine_mode nonzero_bits_mode;
332
333 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
334 be safely used. It is zero while computing them and after combine has
335 completed. This former test prevents propagating values based on
336 previously set values, which can be incorrect if a variable is modified
337 in a loop. */
338
339 static int nonzero_sign_valid;
340
341 \f
342 /* Record one modification to rtl structure
343 to be undone by storing old_contents into *where. */
344
345 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE };
346
347 struct undo
348 {
349 struct undo *next;
350 enum undo_kind kind;
351 union { rtx r; int i; enum machine_mode m; } old_contents;
352 union { rtx *r; int *i; } where;
353 };
354
355 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
356 num_undo says how many are currently recorded.
357
358 other_insn is nonzero if we have modified some other insn in the process
359 of working on subst_insn. It must be verified too. */
360
361 struct undobuf
362 {
363 struct undo *undos;
364 struct undo *frees;
365 rtx other_insn;
366 };
367
368 static struct undobuf undobuf;
369
370 /* Number of times the pseudo being substituted for
371 was found and replaced. */
372
373 static int n_occurrences;
374
375 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
376 enum machine_mode,
377 unsigned HOST_WIDE_INT,
378 unsigned HOST_WIDE_INT *);
379 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
380 enum machine_mode,
381 unsigned int, unsigned int *);
382 static void do_SUBST (rtx *, rtx);
383 static void do_SUBST_INT (int *, int);
384 static void init_reg_last (void);
385 static void setup_incoming_promotions (rtx);
386 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
387 static int cant_combine_insn_p (rtx);
388 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
389 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
390 static int contains_muldiv (rtx);
391 static rtx try_combine (rtx, rtx, rtx, int *);
392 static void undo_all (void);
393 static void undo_commit (void);
394 static rtx *find_split_point (rtx *, rtx);
395 static rtx subst (rtx, rtx, rtx, int, int);
396 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
397 static rtx simplify_if_then_else (rtx);
398 static rtx simplify_set (rtx);
399 static rtx simplify_logical (rtx);
400 static rtx expand_compound_operation (rtx);
401 static const_rtx expand_field_assignment (const_rtx);
402 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
403 rtx, unsigned HOST_WIDE_INT, int, int, int);
404 static rtx extract_left_shift (rtx, int);
405 static rtx make_compound_operation (rtx, enum rtx_code);
406 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
407 unsigned HOST_WIDE_INT *);
408 static rtx canon_reg_for_combine (rtx, rtx);
409 static rtx force_to_mode (rtx, enum machine_mode,
410 unsigned HOST_WIDE_INT, int);
411 static rtx if_then_else_cond (rtx, rtx *, rtx *);
412 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
413 static int rtx_equal_for_field_assignment_p (rtx, rtx);
414 static rtx make_field_assignment (rtx);
415 static rtx apply_distributive_law (rtx);
416 static rtx distribute_and_simplify_rtx (rtx, int);
417 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
418 unsigned HOST_WIDE_INT);
419 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
420 unsigned HOST_WIDE_INT);
421 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
422 HOST_WIDE_INT, enum machine_mode, int *);
423 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
424 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
425 int);
426 static int recog_for_combine (rtx *, rtx, rtx *);
427 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
428 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
429 static void update_table_tick (rtx);
430 static void record_value_for_reg (rtx, rtx, rtx);
431 static void check_promoted_subreg (rtx, rtx);
432 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
433 static void record_dead_and_set_regs (rtx);
434 static int get_last_value_validate (rtx *, rtx, int, int);
435 static rtx get_last_value (const_rtx);
436 static int use_crosses_set_p (const_rtx, int);
437 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
438 static int reg_dead_at_p (rtx, rtx);
439 static void move_deaths (rtx, rtx, int, rtx, rtx *);
440 static int reg_bitfield_target_p (rtx, rtx);
441 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
442 static void distribute_links (rtx);
443 static void mark_used_regs_combine (rtx);
444 static void record_promoted_value (rtx, rtx);
445 static int unmentioned_reg_p_1 (rtx *, void *);
446 static bool unmentioned_reg_p (rtx, rtx);
447 static int record_truncated_value (rtx *, void *);
448 static void record_truncated_values (rtx *, void *);
449 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
450 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
451 \f
452
453 /* It is not safe to use ordinary gen_lowpart in combine.
454 See comments in gen_lowpart_for_combine. */
455 #undef RTL_HOOKS_GEN_LOWPART
456 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
457
458 /* Our implementation of gen_lowpart never emits a new pseudo. */
459 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
460 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
461
462 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
463 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
464
465 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
466 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
467
468 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
469 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
470
471 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
472
473 \f
474 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
475 PATTERN can not be split. Otherwise, it returns an insn sequence.
476 This is a wrapper around split_insns which ensures that the
477 reg_stat vector is made larger if the splitter creates a new
478 register. */
479
480 static rtx
481 combine_split_insns (rtx pattern, rtx insn)
482 {
483 rtx ret;
484 unsigned int nregs;
485
486 ret = split_insns (pattern, insn);
487 nregs = max_reg_num ();
488 if (nregs > VEC_length (reg_stat_type, reg_stat))
489 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
490 return ret;
491 }
492
493 /* This is used by find_single_use to locate an rtx in LOC that
494 contains exactly one use of DEST, which is typically either a REG
495 or CC0. It returns a pointer to the innermost rtx expression
496 containing DEST. Appearances of DEST that are being used to
497 totally replace it are not counted. */
498
499 static rtx *
500 find_single_use_1 (rtx dest, rtx *loc)
501 {
502 rtx x = *loc;
503 enum rtx_code code = GET_CODE (x);
504 rtx *result = NULL;
505 rtx *this_result;
506 int i;
507 const char *fmt;
508
509 switch (code)
510 {
511 case CONST_INT:
512 case CONST:
513 case LABEL_REF:
514 case SYMBOL_REF:
515 case CONST_DOUBLE:
516 case CONST_VECTOR:
517 case CLOBBER:
518 return 0;
519
520 case SET:
521 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
522 of a REG that occupies all of the REG, the insn uses DEST if
523 it is mentioned in the destination or the source. Otherwise, we
524 need just check the source. */
525 if (GET_CODE (SET_DEST (x)) != CC0
526 && GET_CODE (SET_DEST (x)) != PC
527 && !REG_P (SET_DEST (x))
528 && ! (GET_CODE (SET_DEST (x)) == SUBREG
529 && REG_P (SUBREG_REG (SET_DEST (x)))
530 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
531 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
532 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
533 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
534 break;
535
536 return find_single_use_1 (dest, &SET_SRC (x));
537
538 case MEM:
539 case SUBREG:
540 return find_single_use_1 (dest, &XEXP (x, 0));
541
542 default:
543 break;
544 }
545
546 /* If it wasn't one of the common cases above, check each expression and
547 vector of this code. Look for a unique usage of DEST. */
548
549 fmt = GET_RTX_FORMAT (code);
550 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
551 {
552 if (fmt[i] == 'e')
553 {
554 if (dest == XEXP (x, i)
555 || (REG_P (dest) && REG_P (XEXP (x, i))
556 && REGNO (dest) == REGNO (XEXP (x, i))))
557 this_result = loc;
558 else
559 this_result = find_single_use_1 (dest, &XEXP (x, i));
560
561 if (result == NULL)
562 result = this_result;
563 else if (this_result)
564 /* Duplicate usage. */
565 return NULL;
566 }
567 else if (fmt[i] == 'E')
568 {
569 int j;
570
571 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
572 {
573 if (XVECEXP (x, i, j) == dest
574 || (REG_P (dest)
575 && REG_P (XVECEXP (x, i, j))
576 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
577 this_result = loc;
578 else
579 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
580
581 if (result == NULL)
582 result = this_result;
583 else if (this_result)
584 return NULL;
585 }
586 }
587 }
588
589 return result;
590 }
591
592
593 /* See if DEST, produced in INSN, is used only a single time in the
594 sequel. If so, return a pointer to the innermost rtx expression in which
595 it is used.
596
597 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
598
599 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
600 care about REG_DEAD notes or LOG_LINKS.
601
602 Otherwise, we find the single use by finding an insn that has a
603 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
604 only referenced once in that insn, we know that it must be the first
605 and last insn referencing DEST. */
606
607 static rtx *
608 find_single_use (rtx dest, rtx insn, rtx *ploc)
609 {
610 basic_block bb;
611 rtx next;
612 rtx *result;
613 rtx link;
614
615 #ifdef HAVE_cc0
616 if (dest == cc0_rtx)
617 {
618 next = NEXT_INSN (insn);
619 if (next == 0
620 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
621 return 0;
622
623 result = find_single_use_1 (dest, &PATTERN (next));
624 if (result && ploc)
625 *ploc = next;
626 return result;
627 }
628 #endif
629
630 if (!REG_P (dest))
631 return 0;
632
633 bb = BLOCK_FOR_INSN (insn);
634 for (next = NEXT_INSN (insn);
635 next && BLOCK_FOR_INSN (next) == bb;
636 next = NEXT_INSN (next))
637 if (INSN_P (next) && dead_or_set_p (next, dest))
638 {
639 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
640 if (XEXP (link, 0) == insn)
641 break;
642
643 if (link)
644 {
645 result = find_single_use_1 (dest, &PATTERN (next));
646 if (ploc)
647 *ploc = next;
648 return result;
649 }
650 }
651
652 return 0;
653 }
654 \f
655 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
656 insn. The substitution can be undone by undo_all. If INTO is already
657 set to NEWVAL, do not record this change. Because computing NEWVAL might
658 also call SUBST, we have to compute it before we put anything into
659 the undo table. */
660
661 static void
662 do_SUBST (rtx *into, rtx newval)
663 {
664 struct undo *buf;
665 rtx oldval = *into;
666
667 if (oldval == newval)
668 return;
669
670 /* We'd like to catch as many invalid transformations here as
671 possible. Unfortunately, there are way too many mode changes
672 that are perfectly valid, so we'd waste too much effort for
673 little gain doing the checks here. Focus on catching invalid
674 transformations involving integer constants. */
675 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
676 && CONST_INT_P (newval))
677 {
678 /* Sanity check that we're replacing oldval with a CONST_INT
679 that is a valid sign-extension for the original mode. */
680 gcc_assert (INTVAL (newval)
681 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
682
683 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
684 CONST_INT is not valid, because after the replacement, the
685 original mode would be gone. Unfortunately, we can't tell
686 when do_SUBST is called to replace the operand thereof, so we
687 perform this test on oldval instead, checking whether an
688 invalid replacement took place before we got here. */
689 gcc_assert (!(GET_CODE (oldval) == SUBREG
690 && CONST_INT_P (SUBREG_REG (oldval))));
691 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
692 && CONST_INT_P (XEXP (oldval, 0))));
693 }
694
695 if (undobuf.frees)
696 buf = undobuf.frees, undobuf.frees = buf->next;
697 else
698 buf = XNEW (struct undo);
699
700 buf->kind = UNDO_RTX;
701 buf->where.r = into;
702 buf->old_contents.r = oldval;
703 *into = newval;
704
705 buf->next = undobuf.undos, undobuf.undos = buf;
706 }
707
708 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
709
710 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
711 for the value of a HOST_WIDE_INT value (including CONST_INT) is
712 not safe. */
713
714 static void
715 do_SUBST_INT (int *into, int newval)
716 {
717 struct undo *buf;
718 int oldval = *into;
719
720 if (oldval == newval)
721 return;
722
723 if (undobuf.frees)
724 buf = undobuf.frees, undobuf.frees = buf->next;
725 else
726 buf = XNEW (struct undo);
727
728 buf->kind = UNDO_INT;
729 buf->where.i = into;
730 buf->old_contents.i = oldval;
731 *into = newval;
732
733 buf->next = undobuf.undos, undobuf.undos = buf;
734 }
735
736 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
737
738 /* Similar to SUBST, but just substitute the mode. This is used when
739 changing the mode of a pseudo-register, so that any other
740 references to the entry in the regno_reg_rtx array will change as
741 well. */
742
743 static void
744 do_SUBST_MODE (rtx *into, enum machine_mode newval)
745 {
746 struct undo *buf;
747 enum machine_mode oldval = GET_MODE (*into);
748
749 if (oldval == newval)
750 return;
751
752 if (undobuf.frees)
753 buf = undobuf.frees, undobuf.frees = buf->next;
754 else
755 buf = XNEW (struct undo);
756
757 buf->kind = UNDO_MODE;
758 buf->where.r = into;
759 buf->old_contents.m = oldval;
760 adjust_reg_mode (*into, newval);
761
762 buf->next = undobuf.undos, undobuf.undos = buf;
763 }
764
765 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
766 \f
767 /* Subroutine of try_combine. Determine whether the combine replacement
768 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
769 insn_rtx_cost that the original instruction sequence I1, I2, I3 and
770 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
771 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
772 function returns false, if the costs of all instructions can be
773 estimated, and the replacements are more expensive than the original
774 sequence. */
775
776 static bool
777 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat,
778 rtx newotherpat)
779 {
780 int i1_cost, i2_cost, i3_cost;
781 int new_i2_cost, new_i3_cost;
782 int old_cost, new_cost;
783
784 /* Lookup the original insn_rtx_costs. */
785 i2_cost = INSN_COST (i2);
786 i3_cost = INSN_COST (i3);
787
788 if (i1)
789 {
790 i1_cost = INSN_COST (i1);
791 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
792 ? i1_cost + i2_cost + i3_cost : 0;
793 }
794 else
795 {
796 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
797 i1_cost = 0;
798 }
799
800 /* Calculate the replacement insn_rtx_costs. */
801 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
802 if (newi2pat)
803 {
804 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
805 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
806 ? new_i2_cost + new_i3_cost : 0;
807 }
808 else
809 {
810 new_cost = new_i3_cost;
811 new_i2_cost = 0;
812 }
813
814 if (undobuf.other_insn)
815 {
816 int old_other_cost, new_other_cost;
817
818 old_other_cost = INSN_COST (undobuf.other_insn);
819 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
820 if (old_other_cost > 0 && new_other_cost > 0)
821 {
822 old_cost += old_other_cost;
823 new_cost += new_other_cost;
824 }
825 else
826 old_cost = 0;
827 }
828
829 /* Disallow this recombination if both new_cost and old_cost are
830 greater than zero, and new_cost is greater than old cost. */
831 if (old_cost > 0
832 && new_cost > old_cost)
833 {
834 if (dump_file)
835 {
836 if (i1)
837 {
838 fprintf (dump_file,
839 "rejecting combination of insns %d, %d and %d\n",
840 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
841 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
842 i1_cost, i2_cost, i3_cost, old_cost);
843 }
844 else
845 {
846 fprintf (dump_file,
847 "rejecting combination of insns %d and %d\n",
848 INSN_UID (i2), INSN_UID (i3));
849 fprintf (dump_file, "original costs %d + %d = %d\n",
850 i2_cost, i3_cost, old_cost);
851 }
852
853 if (newi2pat)
854 {
855 fprintf (dump_file, "replacement costs %d + %d = %d\n",
856 new_i2_cost, new_i3_cost, new_cost);
857 }
858 else
859 fprintf (dump_file, "replacement cost %d\n", new_cost);
860 }
861
862 return false;
863 }
864
865 /* Update the uid_insn_cost array with the replacement costs. */
866 INSN_COST (i2) = new_i2_cost;
867 INSN_COST (i3) = new_i3_cost;
868 if (i1)
869 INSN_COST (i1) = 0;
870
871 return true;
872 }
873
874
875 /* Delete any insns that copy a register to itself. */
876
877 static void
878 delete_noop_moves (void)
879 {
880 rtx insn, next;
881 basic_block bb;
882
883 FOR_EACH_BB (bb)
884 {
885 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
886 {
887 next = NEXT_INSN (insn);
888 if (INSN_P (insn) && noop_move_p (insn))
889 {
890 if (dump_file)
891 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
892
893 delete_insn_and_edges (insn);
894 }
895 }
896 }
897 }
898
899 \f
900 /* Fill in log links field for all insns. */
901
902 static void
903 create_log_links (void)
904 {
905 basic_block bb;
906 rtx *next_use, insn;
907 df_ref *def_vec, *use_vec;
908
909 next_use = XCNEWVEC (rtx, max_reg_num ());
910
911 /* Pass through each block from the end, recording the uses of each
912 register and establishing log links when def is encountered.
913 Note that we do not clear next_use array in order to save time,
914 so we have to test whether the use is in the same basic block as def.
915
916 There are a few cases below when we do not consider the definition or
917 usage -- these are taken from original flow.c did. Don't ask me why it is
918 done this way; I don't know and if it works, I don't want to know. */
919
920 FOR_EACH_BB (bb)
921 {
922 FOR_BB_INSNS_REVERSE (bb, insn)
923 {
924 if (!NONDEBUG_INSN_P (insn))
925 continue;
926
927 /* Log links are created only once. */
928 gcc_assert (!LOG_LINKS (insn));
929
930 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
931 {
932 df_ref def = *def_vec;
933 int regno = DF_REF_REGNO (def);
934 rtx use_insn;
935
936 if (!next_use[regno])
937 continue;
938
939 /* Do not consider if it is pre/post modification in MEM. */
940 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
941 continue;
942
943 /* Do not make the log link for frame pointer. */
944 if ((regno == FRAME_POINTER_REGNUM
945 && (! reload_completed || frame_pointer_needed))
946 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
947 || (regno == HARD_FRAME_POINTER_REGNUM
948 && (! reload_completed || frame_pointer_needed))
949 #endif
950 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
951 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
952 #endif
953 )
954 continue;
955
956 use_insn = next_use[regno];
957 if (BLOCK_FOR_INSN (use_insn) == bb)
958 {
959 /* flow.c claimed:
960
961 We don't build a LOG_LINK for hard registers contained
962 in ASM_OPERANDs. If these registers get replaced,
963 we might wind up changing the semantics of the insn,
964 even if reload can make what appear to be valid
965 assignments later. */
966 if (regno >= FIRST_PSEUDO_REGISTER
967 || asm_noperands (PATTERN (use_insn)) < 0)
968 {
969 /* Don't add duplicate links between instructions. */
970 rtx links;
971 for (links = LOG_LINKS (use_insn); links;
972 links = XEXP (links, 1))
973 if (insn == XEXP (links, 0))
974 break;
975
976 if (!links)
977 LOG_LINKS (use_insn) =
978 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
979 }
980 }
981 next_use[regno] = NULL_RTX;
982 }
983
984 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
985 {
986 df_ref use = *use_vec;
987 int regno = DF_REF_REGNO (use);
988
989 /* Do not consider the usage of the stack pointer
990 by function call. */
991 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
992 continue;
993
994 next_use[regno] = insn;
995 }
996 }
997 }
998
999 free (next_use);
1000 }
1001
1002 /* Clear LOG_LINKS fields of insns. */
1003
1004 static void
1005 clear_log_links (void)
1006 {
1007 rtx insn;
1008
1009 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1010 if (INSN_P (insn))
1011 free_INSN_LIST_list (&LOG_LINKS (insn));
1012 }
1013 \f
1014 /* Main entry point for combiner. F is the first insn of the function.
1015 NREGS is the first unused pseudo-reg number.
1016
1017 Return nonzero if the combiner has turned an indirect jump
1018 instruction into a direct jump. */
1019 static int
1020 combine_instructions (rtx f, unsigned int nregs)
1021 {
1022 rtx insn, next;
1023 #ifdef HAVE_cc0
1024 rtx prev;
1025 #endif
1026 rtx links, nextlinks;
1027 rtx first;
1028 basic_block last_bb;
1029
1030 int new_direct_jump_p = 0;
1031
1032 for (first = f; first && !INSN_P (first); )
1033 first = NEXT_INSN (first);
1034 if (!first)
1035 return 0;
1036
1037 combine_attempts = 0;
1038 combine_merges = 0;
1039 combine_extras = 0;
1040 combine_successes = 0;
1041
1042 rtl_hooks = combine_rtl_hooks;
1043
1044 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1045
1046 init_recog_no_volatile ();
1047
1048 /* Allocate array for insn info. */
1049 max_uid_known = get_max_uid ();
1050 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1051 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1052
1053 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1054
1055 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1056 problems when, for example, we have j <<= 1 in a loop. */
1057
1058 nonzero_sign_valid = 0;
1059 label_tick = label_tick_ebb_start = 1;
1060
1061 /* Scan all SETs and see if we can deduce anything about what
1062 bits are known to be zero for some registers and how many copies
1063 of the sign bit are known to exist for those registers.
1064
1065 Also set any known values so that we can use it while searching
1066 for what bits are known to be set. */
1067
1068 setup_incoming_promotions (first);
1069 /* Allow the entry block and the first block to fall into the same EBB.
1070 Conceptually the incoming promotions are assigned to the entry block. */
1071 last_bb = ENTRY_BLOCK_PTR;
1072
1073 create_log_links ();
1074 FOR_EACH_BB (this_basic_block)
1075 {
1076 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1077 last_call_luid = 0;
1078 mem_last_set = -1;
1079
1080 label_tick++;
1081 if (!single_pred_p (this_basic_block)
1082 || single_pred (this_basic_block) != last_bb)
1083 label_tick_ebb_start = label_tick;
1084 last_bb = this_basic_block;
1085
1086 FOR_BB_INSNS (this_basic_block, insn)
1087 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1088 {
1089 subst_low_luid = DF_INSN_LUID (insn);
1090 subst_insn = insn;
1091
1092 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1093 insn);
1094 record_dead_and_set_regs (insn);
1095
1096 #ifdef AUTO_INC_DEC
1097 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1098 if (REG_NOTE_KIND (links) == REG_INC)
1099 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1100 insn);
1101 #endif
1102
1103 /* Record the current insn_rtx_cost of this instruction. */
1104 if (NONJUMP_INSN_P (insn))
1105 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1106 optimize_this_for_speed_p);
1107 if (dump_file)
1108 fprintf(dump_file, "insn_cost %d: %d\n",
1109 INSN_UID (insn), INSN_COST (insn));
1110 }
1111 }
1112
1113 nonzero_sign_valid = 1;
1114
1115 /* Now scan all the insns in forward order. */
1116 label_tick = label_tick_ebb_start = 1;
1117 init_reg_last ();
1118 setup_incoming_promotions (first);
1119 last_bb = ENTRY_BLOCK_PTR;
1120
1121 FOR_EACH_BB (this_basic_block)
1122 {
1123 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1124 last_call_luid = 0;
1125 mem_last_set = -1;
1126
1127 label_tick++;
1128 if (!single_pred_p (this_basic_block)
1129 || single_pred (this_basic_block) != last_bb)
1130 label_tick_ebb_start = label_tick;
1131 last_bb = this_basic_block;
1132
1133 rtl_profile_for_bb (this_basic_block);
1134 for (insn = BB_HEAD (this_basic_block);
1135 insn != NEXT_INSN (BB_END (this_basic_block));
1136 insn = next ? next : NEXT_INSN (insn))
1137 {
1138 next = 0;
1139 if (NONDEBUG_INSN_P (insn))
1140 {
1141 /* See if we know about function return values before this
1142 insn based upon SUBREG flags. */
1143 check_promoted_subreg (insn, PATTERN (insn));
1144
1145 /* See if we can find hardregs and subreg of pseudos in
1146 narrower modes. This could help turning TRUNCATEs
1147 into SUBREGs. */
1148 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1149
1150 /* Try this insn with each insn it links back to. */
1151
1152 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1153 if ((next = try_combine (insn, XEXP (links, 0),
1154 NULL_RTX, &new_direct_jump_p)) != 0)
1155 goto retry;
1156
1157 /* Try each sequence of three linked insns ending with this one. */
1158
1159 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1160 {
1161 rtx link = XEXP (links, 0);
1162
1163 /* If the linked insn has been replaced by a note, then there
1164 is no point in pursuing this chain any further. */
1165 if (NOTE_P (link))
1166 continue;
1167
1168 for (nextlinks = LOG_LINKS (link);
1169 nextlinks;
1170 nextlinks = XEXP (nextlinks, 1))
1171 if ((next = try_combine (insn, link,
1172 XEXP (nextlinks, 0),
1173 &new_direct_jump_p)) != 0)
1174 goto retry;
1175 }
1176
1177 #ifdef HAVE_cc0
1178 /* Try to combine a jump insn that uses CC0
1179 with a preceding insn that sets CC0, and maybe with its
1180 logical predecessor as well.
1181 This is how we make decrement-and-branch insns.
1182 We need this special code because data flow connections
1183 via CC0 do not get entered in LOG_LINKS. */
1184
1185 if (JUMP_P (insn)
1186 && (prev = prev_nonnote_insn (insn)) != 0
1187 && NONJUMP_INSN_P (prev)
1188 && sets_cc0_p (PATTERN (prev)))
1189 {
1190 if ((next = try_combine (insn, prev,
1191 NULL_RTX, &new_direct_jump_p)) != 0)
1192 goto retry;
1193
1194 for (nextlinks = LOG_LINKS (prev); nextlinks;
1195 nextlinks = XEXP (nextlinks, 1))
1196 if ((next = try_combine (insn, prev,
1197 XEXP (nextlinks, 0),
1198 &new_direct_jump_p)) != 0)
1199 goto retry;
1200 }
1201
1202 /* Do the same for an insn that explicitly references CC0. */
1203 if (NONJUMP_INSN_P (insn)
1204 && (prev = prev_nonnote_insn (insn)) != 0
1205 && NONJUMP_INSN_P (prev)
1206 && sets_cc0_p (PATTERN (prev))
1207 && GET_CODE (PATTERN (insn)) == SET
1208 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1209 {
1210 if ((next = try_combine (insn, prev,
1211 NULL_RTX, &new_direct_jump_p)) != 0)
1212 goto retry;
1213
1214 for (nextlinks = LOG_LINKS (prev); nextlinks;
1215 nextlinks = XEXP (nextlinks, 1))
1216 if ((next = try_combine (insn, prev,
1217 XEXP (nextlinks, 0),
1218 &new_direct_jump_p)) != 0)
1219 goto retry;
1220 }
1221
1222 /* Finally, see if any of the insns that this insn links to
1223 explicitly references CC0. If so, try this insn, that insn,
1224 and its predecessor if it sets CC0. */
1225 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1226 if (NONJUMP_INSN_P (XEXP (links, 0))
1227 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1228 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1229 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1230 && NONJUMP_INSN_P (prev)
1231 && sets_cc0_p (PATTERN (prev))
1232 && (next = try_combine (insn, XEXP (links, 0),
1233 prev, &new_direct_jump_p)) != 0)
1234 goto retry;
1235 #endif
1236
1237 /* Try combining an insn with two different insns whose results it
1238 uses. */
1239 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1240 for (nextlinks = XEXP (links, 1); nextlinks;
1241 nextlinks = XEXP (nextlinks, 1))
1242 if ((next = try_combine (insn, XEXP (links, 0),
1243 XEXP (nextlinks, 0),
1244 &new_direct_jump_p)) != 0)
1245 goto retry;
1246
1247 /* Try this insn with each REG_EQUAL note it links back to. */
1248 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1249 {
1250 rtx set, note;
1251 rtx temp = XEXP (links, 0);
1252 if ((set = single_set (temp)) != 0
1253 && (note = find_reg_equal_equiv_note (temp)) != 0
1254 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1255 /* Avoid using a register that may already been marked
1256 dead by an earlier instruction. */
1257 && ! unmentioned_reg_p (note, SET_SRC (set))
1258 && (GET_MODE (note) == VOIDmode
1259 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1260 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1261 {
1262 /* Temporarily replace the set's source with the
1263 contents of the REG_EQUAL note. The insn will
1264 be deleted or recognized by try_combine. */
1265 rtx orig = SET_SRC (set);
1266 SET_SRC (set) = note;
1267 i2mod = temp;
1268 i2mod_old_rhs = copy_rtx (orig);
1269 i2mod_new_rhs = copy_rtx (note);
1270 next = try_combine (insn, i2mod, NULL_RTX,
1271 &new_direct_jump_p);
1272 i2mod = NULL_RTX;
1273 if (next)
1274 goto retry;
1275 SET_SRC (set) = orig;
1276 }
1277 }
1278
1279 if (!NOTE_P (insn))
1280 record_dead_and_set_regs (insn);
1281
1282 retry:
1283 ;
1284 }
1285 }
1286 }
1287
1288 default_rtl_profile ();
1289 clear_log_links ();
1290 clear_bb_flags ();
1291 new_direct_jump_p |= purge_all_dead_edges ();
1292 delete_noop_moves ();
1293
1294 /* Clean up. */
1295 free (uid_log_links);
1296 free (uid_insn_cost);
1297 VEC_free (reg_stat_type, heap, reg_stat);
1298
1299 {
1300 struct undo *undo, *next;
1301 for (undo = undobuf.frees; undo; undo = next)
1302 {
1303 next = undo->next;
1304 free (undo);
1305 }
1306 undobuf.frees = 0;
1307 }
1308
1309 total_attempts += combine_attempts;
1310 total_merges += combine_merges;
1311 total_extras += combine_extras;
1312 total_successes += combine_successes;
1313
1314 nonzero_sign_valid = 0;
1315 rtl_hooks = general_rtl_hooks;
1316
1317 /* Make recognizer allow volatile MEMs again. */
1318 init_recog ();
1319
1320 return new_direct_jump_p;
1321 }
1322
1323 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1324
1325 static void
1326 init_reg_last (void)
1327 {
1328 unsigned int i;
1329 reg_stat_type *p;
1330
1331 for (i = 0; VEC_iterate (reg_stat_type, reg_stat, i, p); ++i)
1332 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1333 }
1334 \f
1335 /* Set up any promoted values for incoming argument registers. */
1336
1337 static void
1338 setup_incoming_promotions (rtx first)
1339 {
1340 tree arg;
1341 bool strictly_local = false;
1342
1343 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1344 arg = TREE_CHAIN (arg))
1345 {
1346 rtx reg = DECL_INCOMING_RTL (arg);
1347 int uns1, uns3;
1348 enum machine_mode mode1, mode2, mode3, mode4;
1349
1350 /* Only continue if the incoming argument is in a register. */
1351 if (!REG_P (reg))
1352 continue;
1353
1354 /* Determine, if possible, whether all call sites of the current
1355 function lie within the current compilation unit. (This does
1356 take into account the exporting of a function via taking its
1357 address, and so forth.) */
1358 strictly_local = cgraph_local_info (current_function_decl)->local;
1359
1360 /* The mode and signedness of the argument before any promotions happen
1361 (equal to the mode of the pseudo holding it at that stage). */
1362 mode1 = TYPE_MODE (TREE_TYPE (arg));
1363 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1364
1365 /* The mode and signedness of the argument after any source language and
1366 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1367 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1368 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1369
1370 /* The mode and signedness of the argument as it is actually passed,
1371 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1372 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1373 TREE_TYPE (cfun->decl), 0);
1374
1375 /* The mode of the register in which the argument is being passed. */
1376 mode4 = GET_MODE (reg);
1377
1378 /* Eliminate sign extensions in the callee when possible. Only
1379 do this when:
1380 (a) A mode promotion has occurred;
1381 (b) The mode of the register is the same as the mode of
1382 the argument as it is passed; and
1383 (c) Either there's no language level extension, or the extension
1384 from source to end result is valid. The later case is true
1385 when the signedness of the extensions match, or when the
1386 language level extension is unsigned. In the later case,
1387 a zero extension followed by a sign extension is the same
1388 as one big zero extension.
1389 (d) When no language-level promotions (which we cannot guarantee
1390 will have been done by an external caller) are necessary,
1391 unless we know that this function is only ever called from
1392 the current compilation unit -- all of whose call sites will
1393 do the mode1 --> mode2 promotion. */
1394 if (mode1 != mode3
1395 && mode3 == mode4
1396 && (mode1 == mode2 || ((uns1 || !uns3) && strictly_local)))
1397 {
1398 /* Record that the value was promoted from mode1 to mode3,
1399 so that any sign extension at the head of the current
1400 function may be eliminated. */
1401 rtx x;
1402 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1403 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1404 record_value_for_reg (reg, first, x);
1405 }
1406 }
1407 }
1408
1409 /* Called via note_stores. If X is a pseudo that is narrower than
1410 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1411
1412 If we are setting only a portion of X and we can't figure out what
1413 portion, assume all bits will be used since we don't know what will
1414 be happening.
1415
1416 Similarly, set how many bits of X are known to be copies of the sign bit
1417 at all locations in the function. This is the smallest number implied
1418 by any set of X. */
1419
1420 static void
1421 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1422 {
1423 rtx insn = (rtx) data;
1424 unsigned int num;
1425
1426 if (REG_P (x)
1427 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1428 /* If this register is undefined at the start of the file, we can't
1429 say what its contents were. */
1430 && ! REGNO_REG_SET_P
1431 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1432 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1433 {
1434 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1435
1436 if (set == 0 || GET_CODE (set) == CLOBBER)
1437 {
1438 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1439 rsp->sign_bit_copies = 1;
1440 return;
1441 }
1442
1443 /* If this register is being initialized using itself, and the
1444 register is uninitialized in this basic block, and there are
1445 no LOG_LINKS which set the register, then part of the
1446 register is uninitialized. In that case we can't assume
1447 anything about the number of nonzero bits.
1448
1449 ??? We could do better if we checked this in
1450 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1451 could avoid making assumptions about the insn which initially
1452 sets the register, while still using the information in other
1453 insns. We would have to be careful to check every insn
1454 involved in the combination. */
1455
1456 if (insn
1457 && reg_referenced_p (x, PATTERN (insn))
1458 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1459 REGNO (x)))
1460 {
1461 rtx link;
1462
1463 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1464 {
1465 if (dead_or_set_p (XEXP (link, 0), x))
1466 break;
1467 }
1468 if (!link)
1469 {
1470 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1471 rsp->sign_bit_copies = 1;
1472 return;
1473 }
1474 }
1475
1476 /* If this is a complex assignment, see if we can convert it into a
1477 simple assignment. */
1478 set = expand_field_assignment (set);
1479
1480 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1481 set what we know about X. */
1482
1483 if (SET_DEST (set) == x
1484 || (GET_CODE (SET_DEST (set)) == SUBREG
1485 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1486 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1487 && SUBREG_REG (SET_DEST (set)) == x))
1488 {
1489 rtx src = SET_SRC (set);
1490
1491 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1492 /* If X is narrower than a word and SRC is a non-negative
1493 constant that would appear negative in the mode of X,
1494 sign-extend it for use in reg_stat[].nonzero_bits because some
1495 machines (maybe most) will actually do the sign-extension
1496 and this is the conservative approach.
1497
1498 ??? For 2.5, try to tighten up the MD files in this regard
1499 instead of this kludge. */
1500
1501 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1502 && CONST_INT_P (src)
1503 && INTVAL (src) > 0
1504 && 0 != (INTVAL (src)
1505 & ((HOST_WIDE_INT) 1
1506 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1507 src = GEN_INT (INTVAL (src)
1508 | ((HOST_WIDE_INT) (-1)
1509 << GET_MODE_BITSIZE (GET_MODE (x))));
1510 #endif
1511
1512 /* Don't call nonzero_bits if it cannot change anything. */
1513 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1514 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1515 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1516 if (rsp->sign_bit_copies == 0
1517 || rsp->sign_bit_copies > num)
1518 rsp->sign_bit_copies = num;
1519 }
1520 else
1521 {
1522 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1523 rsp->sign_bit_copies = 1;
1524 }
1525 }
1526 }
1527 \f
1528 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1529 insns that were previously combined into I3 or that will be combined
1530 into the merger of INSN and I3.
1531
1532 Return 0 if the combination is not allowed for any reason.
1533
1534 If the combination is allowed, *PDEST will be set to the single
1535 destination of INSN and *PSRC to the single source, and this function
1536 will return 1. */
1537
1538 static int
1539 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1540 rtx *pdest, rtx *psrc)
1541 {
1542 int i;
1543 const_rtx set = 0;
1544 rtx src, dest;
1545 rtx p;
1546 #ifdef AUTO_INC_DEC
1547 rtx link;
1548 #endif
1549 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1550 && next_active_insn (succ) == i3)
1551 : next_active_insn (insn) == i3);
1552
1553 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1554 or a PARALLEL consisting of such a SET and CLOBBERs.
1555
1556 If INSN has CLOBBER parallel parts, ignore them for our processing.
1557 By definition, these happen during the execution of the insn. When it
1558 is merged with another insn, all bets are off. If they are, in fact,
1559 needed and aren't also supplied in I3, they may be added by
1560 recog_for_combine. Otherwise, it won't match.
1561
1562 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1563 note.
1564
1565 Get the source and destination of INSN. If more than one, can't
1566 combine. */
1567
1568 if (GET_CODE (PATTERN (insn)) == SET)
1569 set = PATTERN (insn);
1570 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1571 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1572 {
1573 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1574 {
1575 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1576
1577 switch (GET_CODE (elt))
1578 {
1579 /* This is important to combine floating point insns
1580 for the SH4 port. */
1581 case USE:
1582 /* Combining an isolated USE doesn't make sense.
1583 We depend here on combinable_i3pat to reject them. */
1584 /* The code below this loop only verifies that the inputs of
1585 the SET in INSN do not change. We call reg_set_between_p
1586 to verify that the REG in the USE does not change between
1587 I3 and INSN.
1588 If the USE in INSN was for a pseudo register, the matching
1589 insn pattern will likely match any register; combining this
1590 with any other USE would only be safe if we knew that the
1591 used registers have identical values, or if there was
1592 something to tell them apart, e.g. different modes. For
1593 now, we forgo such complicated tests and simply disallow
1594 combining of USES of pseudo registers with any other USE. */
1595 if (REG_P (XEXP (elt, 0))
1596 && GET_CODE (PATTERN (i3)) == PARALLEL)
1597 {
1598 rtx i3pat = PATTERN (i3);
1599 int i = XVECLEN (i3pat, 0) - 1;
1600 unsigned int regno = REGNO (XEXP (elt, 0));
1601
1602 do
1603 {
1604 rtx i3elt = XVECEXP (i3pat, 0, i);
1605
1606 if (GET_CODE (i3elt) == USE
1607 && REG_P (XEXP (i3elt, 0))
1608 && (REGNO (XEXP (i3elt, 0)) == regno
1609 ? reg_set_between_p (XEXP (elt, 0),
1610 PREV_INSN (insn), i3)
1611 : regno >= FIRST_PSEUDO_REGISTER))
1612 return 0;
1613 }
1614 while (--i >= 0);
1615 }
1616 break;
1617
1618 /* We can ignore CLOBBERs. */
1619 case CLOBBER:
1620 break;
1621
1622 case SET:
1623 /* Ignore SETs whose result isn't used but not those that
1624 have side-effects. */
1625 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1626 && insn_nothrow_p (insn)
1627 && !side_effects_p (elt))
1628 break;
1629
1630 /* If we have already found a SET, this is a second one and
1631 so we cannot combine with this insn. */
1632 if (set)
1633 return 0;
1634
1635 set = elt;
1636 break;
1637
1638 default:
1639 /* Anything else means we can't combine. */
1640 return 0;
1641 }
1642 }
1643
1644 if (set == 0
1645 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1646 so don't do anything with it. */
1647 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1648 return 0;
1649 }
1650 else
1651 return 0;
1652
1653 if (set == 0)
1654 return 0;
1655
1656 set = expand_field_assignment (set);
1657 src = SET_SRC (set), dest = SET_DEST (set);
1658
1659 /* Don't eliminate a store in the stack pointer. */
1660 if (dest == stack_pointer_rtx
1661 /* Don't combine with an insn that sets a register to itself if it has
1662 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1663 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1664 /* Can't merge an ASM_OPERANDS. */
1665 || GET_CODE (src) == ASM_OPERANDS
1666 /* Can't merge a function call. */
1667 || GET_CODE (src) == CALL
1668 /* Don't eliminate a function call argument. */
1669 || (CALL_P (i3)
1670 && (find_reg_fusage (i3, USE, dest)
1671 || (REG_P (dest)
1672 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1673 && global_regs[REGNO (dest)])))
1674 /* Don't substitute into an incremented register. */
1675 || FIND_REG_INC_NOTE (i3, dest)
1676 || (succ && FIND_REG_INC_NOTE (succ, dest))
1677 /* Don't substitute into a non-local goto, this confuses CFG. */
1678 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1679 /* Make sure that DEST is not used after SUCC but before I3. */
1680 || (succ && ! all_adjacent
1681 && reg_used_between_p (dest, succ, i3))
1682 /* Make sure that the value that is to be substituted for the register
1683 does not use any registers whose values alter in between. However,
1684 If the insns are adjacent, a use can't cross a set even though we
1685 think it might (this can happen for a sequence of insns each setting
1686 the same destination; last_set of that register might point to
1687 a NOTE). If INSN has a REG_EQUIV note, the register is always
1688 equivalent to the memory so the substitution is valid even if there
1689 are intervening stores. Also, don't move a volatile asm or
1690 UNSPEC_VOLATILE across any other insns. */
1691 || (! all_adjacent
1692 && (((!MEM_P (src)
1693 || ! find_reg_note (insn, REG_EQUIV, src))
1694 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1695 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1696 || GET_CODE (src) == UNSPEC_VOLATILE))
1697 /* Don't combine across a CALL_INSN, because that would possibly
1698 change whether the life span of some REGs crosses calls or not,
1699 and it is a pain to update that information.
1700 Exception: if source is a constant, moving it later can't hurt.
1701 Accept that as a special case. */
1702 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1703 return 0;
1704
1705 /* DEST must either be a REG or CC0. */
1706 if (REG_P (dest))
1707 {
1708 /* If register alignment is being enforced for multi-word items in all
1709 cases except for parameters, it is possible to have a register copy
1710 insn referencing a hard register that is not allowed to contain the
1711 mode being copied and which would not be valid as an operand of most
1712 insns. Eliminate this problem by not combining with such an insn.
1713
1714 Also, on some machines we don't want to extend the life of a hard
1715 register. */
1716
1717 if (REG_P (src)
1718 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1719 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1720 /* Don't extend the life of a hard register unless it is
1721 user variable (if we have few registers) or it can't
1722 fit into the desired register (meaning something special
1723 is going on).
1724 Also avoid substituting a return register into I3, because
1725 reload can't handle a conflict with constraints of other
1726 inputs. */
1727 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1728 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1729 return 0;
1730 }
1731 else if (GET_CODE (dest) != CC0)
1732 return 0;
1733
1734
1735 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1736 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1737 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1738 {
1739 /* Don't substitute for a register intended as a clobberable
1740 operand. */
1741 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1742 if (rtx_equal_p (reg, dest))
1743 return 0;
1744
1745 /* If the clobber represents an earlyclobber operand, we must not
1746 substitute an expression containing the clobbered register.
1747 As we do not analyze the constraint strings here, we have to
1748 make the conservative assumption. However, if the register is
1749 a fixed hard reg, the clobber cannot represent any operand;
1750 we leave it up to the machine description to either accept or
1751 reject use-and-clobber patterns. */
1752 if (!REG_P (reg)
1753 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1754 || !fixed_regs[REGNO (reg)])
1755 if (reg_overlap_mentioned_p (reg, src))
1756 return 0;
1757 }
1758
1759 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1760 or not), reject, unless nothing volatile comes between it and I3 */
1761
1762 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1763 {
1764 /* Make sure succ doesn't contain a volatile reference. */
1765 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1766 return 0;
1767
1768 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1769 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1770 return 0;
1771 }
1772
1773 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1774 to be an explicit register variable, and was chosen for a reason. */
1775
1776 if (GET_CODE (src) == ASM_OPERANDS
1777 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1778 return 0;
1779
1780 /* If there are any volatile insns between INSN and I3, reject, because
1781 they might affect machine state. */
1782
1783 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1784 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1785 return 0;
1786
1787 /* If INSN contains an autoincrement or autodecrement, make sure that
1788 register is not used between there and I3, and not already used in
1789 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1790 Also insist that I3 not be a jump; if it were one
1791 and the incremented register were spilled, we would lose. */
1792
1793 #ifdef AUTO_INC_DEC
1794 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1795 if (REG_NOTE_KIND (link) == REG_INC
1796 && (JUMP_P (i3)
1797 || reg_used_between_p (XEXP (link, 0), insn, i3)
1798 || (pred != NULL_RTX
1799 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1800 || (succ != NULL_RTX
1801 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1802 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1803 return 0;
1804 #endif
1805
1806 #ifdef HAVE_cc0
1807 /* Don't combine an insn that follows a CC0-setting insn.
1808 An insn that uses CC0 must not be separated from the one that sets it.
1809 We do, however, allow I2 to follow a CC0-setting insn if that insn
1810 is passed as I1; in that case it will be deleted also.
1811 We also allow combining in this case if all the insns are adjacent
1812 because that would leave the two CC0 insns adjacent as well.
1813 It would be more logical to test whether CC0 occurs inside I1 or I2,
1814 but that would be much slower, and this ought to be equivalent. */
1815
1816 p = prev_nonnote_insn (insn);
1817 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1818 && ! all_adjacent)
1819 return 0;
1820 #endif
1821
1822 /* If we get here, we have passed all the tests and the combination is
1823 to be allowed. */
1824
1825 *pdest = dest;
1826 *psrc = src;
1827
1828 return 1;
1829 }
1830 \f
1831 /* LOC is the location within I3 that contains its pattern or the component
1832 of a PARALLEL of the pattern. We validate that it is valid for combining.
1833
1834 One problem is if I3 modifies its output, as opposed to replacing it
1835 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1836 so would produce an insn that is not equivalent to the original insns.
1837
1838 Consider:
1839
1840 (set (reg:DI 101) (reg:DI 100))
1841 (set (subreg:SI (reg:DI 101) 0) <foo>)
1842
1843 This is NOT equivalent to:
1844
1845 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1846 (set (reg:DI 101) (reg:DI 100))])
1847
1848 Not only does this modify 100 (in which case it might still be valid
1849 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1850
1851 We can also run into a problem if I2 sets a register that I1
1852 uses and I1 gets directly substituted into I3 (not via I2). In that
1853 case, we would be getting the wrong value of I2DEST into I3, so we
1854 must reject the combination. This case occurs when I2 and I1 both
1855 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1856 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1857 of a SET must prevent combination from occurring.
1858
1859 Before doing the above check, we first try to expand a field assignment
1860 into a set of logical operations.
1861
1862 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1863 we place a register that is both set and used within I3. If more than one
1864 such register is detected, we fail.
1865
1866 Return 1 if the combination is valid, zero otherwise. */
1867
1868 static int
1869 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1870 int i1_not_in_src, rtx *pi3dest_killed)
1871 {
1872 rtx x = *loc;
1873
1874 if (GET_CODE (x) == SET)
1875 {
1876 rtx set = x ;
1877 rtx dest = SET_DEST (set);
1878 rtx src = SET_SRC (set);
1879 rtx inner_dest = dest;
1880 rtx subdest;
1881
1882 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1883 || GET_CODE (inner_dest) == SUBREG
1884 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1885 inner_dest = XEXP (inner_dest, 0);
1886
1887 /* Check for the case where I3 modifies its output, as discussed
1888 above. We don't want to prevent pseudos from being combined
1889 into the address of a MEM, so only prevent the combination if
1890 i1 or i2 set the same MEM. */
1891 if ((inner_dest != dest &&
1892 (!MEM_P (inner_dest)
1893 || rtx_equal_p (i2dest, inner_dest)
1894 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1895 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1896 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1897
1898 /* This is the same test done in can_combine_p except we can't test
1899 all_adjacent; we don't have to, since this instruction will stay
1900 in place, thus we are not considering increasing the lifetime of
1901 INNER_DEST.
1902
1903 Also, if this insn sets a function argument, combining it with
1904 something that might need a spill could clobber a previous
1905 function argument; the all_adjacent test in can_combine_p also
1906 checks this; here, we do a more specific test for this case. */
1907
1908 || (REG_P (inner_dest)
1909 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1910 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1911 GET_MODE (inner_dest))))
1912 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1913 return 0;
1914
1915 /* If DEST is used in I3, it is being killed in this insn, so
1916 record that for later. We have to consider paradoxical
1917 subregs here, since they kill the whole register, but we
1918 ignore partial subregs, STRICT_LOW_PART, etc.
1919 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1920 STACK_POINTER_REGNUM, since these are always considered to be
1921 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1922 subdest = dest;
1923 if (GET_CODE (subdest) == SUBREG
1924 && (GET_MODE_SIZE (GET_MODE (subdest))
1925 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1926 subdest = SUBREG_REG (subdest);
1927 if (pi3dest_killed
1928 && REG_P (subdest)
1929 && reg_referenced_p (subdest, PATTERN (i3))
1930 && REGNO (subdest) != FRAME_POINTER_REGNUM
1931 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1932 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1933 #endif
1934 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1935 && (REGNO (subdest) != ARG_POINTER_REGNUM
1936 || ! fixed_regs [REGNO (subdest)])
1937 #endif
1938 && REGNO (subdest) != STACK_POINTER_REGNUM)
1939 {
1940 if (*pi3dest_killed)
1941 return 0;
1942
1943 *pi3dest_killed = subdest;
1944 }
1945 }
1946
1947 else if (GET_CODE (x) == PARALLEL)
1948 {
1949 int i;
1950
1951 for (i = 0; i < XVECLEN (x, 0); i++)
1952 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1953 i1_not_in_src, pi3dest_killed))
1954 return 0;
1955 }
1956
1957 return 1;
1958 }
1959 \f
1960 /* Return 1 if X is an arithmetic expression that contains a multiplication
1961 and division. We don't count multiplications by powers of two here. */
1962
1963 static int
1964 contains_muldiv (rtx x)
1965 {
1966 switch (GET_CODE (x))
1967 {
1968 case MOD: case DIV: case UMOD: case UDIV:
1969 return 1;
1970
1971 case MULT:
1972 return ! (CONST_INT_P (XEXP (x, 1))
1973 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1974 default:
1975 if (BINARY_P (x))
1976 return contains_muldiv (XEXP (x, 0))
1977 || contains_muldiv (XEXP (x, 1));
1978
1979 if (UNARY_P (x))
1980 return contains_muldiv (XEXP (x, 0));
1981
1982 return 0;
1983 }
1984 }
1985 \f
1986 /* Determine whether INSN can be used in a combination. Return nonzero if
1987 not. This is used in try_combine to detect early some cases where we
1988 can't perform combinations. */
1989
1990 static int
1991 cant_combine_insn_p (rtx insn)
1992 {
1993 rtx set;
1994 rtx src, dest;
1995
1996 /* If this isn't really an insn, we can't do anything.
1997 This can occur when flow deletes an insn that it has merged into an
1998 auto-increment address. */
1999 if (! INSN_P (insn))
2000 return 1;
2001
2002 /* Never combine loads and stores involving hard regs that are likely
2003 to be spilled. The register allocator can usually handle such
2004 reg-reg moves by tying. If we allow the combiner to make
2005 substitutions of likely-spilled regs, reload might die.
2006 As an exception, we allow combinations involving fixed regs; these are
2007 not available to the register allocator so there's no risk involved. */
2008
2009 set = single_set (insn);
2010 if (! set)
2011 return 0;
2012 src = SET_SRC (set);
2013 dest = SET_DEST (set);
2014 if (GET_CODE (src) == SUBREG)
2015 src = SUBREG_REG (src);
2016 if (GET_CODE (dest) == SUBREG)
2017 dest = SUBREG_REG (dest);
2018 if (REG_P (src) && REG_P (dest)
2019 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
2020 && ! fixed_regs[REGNO (src)]
2021 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
2022 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
2023 && ! fixed_regs[REGNO (dest)]
2024 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
2025 return 1;
2026
2027 return 0;
2028 }
2029
2030 struct likely_spilled_retval_info
2031 {
2032 unsigned regno, nregs;
2033 unsigned mask;
2034 };
2035
2036 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2037 hard registers that are known to be written to / clobbered in full. */
2038 static void
2039 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2040 {
2041 struct likely_spilled_retval_info *const info =
2042 (struct likely_spilled_retval_info *) data;
2043 unsigned regno, nregs;
2044 unsigned new_mask;
2045
2046 if (!REG_P (XEXP (set, 0)))
2047 return;
2048 regno = REGNO (x);
2049 if (regno >= info->regno + info->nregs)
2050 return;
2051 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2052 if (regno + nregs <= info->regno)
2053 return;
2054 new_mask = (2U << (nregs - 1)) - 1;
2055 if (regno < info->regno)
2056 new_mask >>= info->regno - regno;
2057 else
2058 new_mask <<= regno - info->regno;
2059 info->mask &= ~new_mask;
2060 }
2061
2062 /* Return nonzero iff part of the return value is live during INSN, and
2063 it is likely spilled. This can happen when more than one insn is needed
2064 to copy the return value, e.g. when we consider to combine into the
2065 second copy insn for a complex value. */
2066
2067 static int
2068 likely_spilled_retval_p (rtx insn)
2069 {
2070 rtx use = BB_END (this_basic_block);
2071 rtx reg, p;
2072 unsigned regno, nregs;
2073 /* We assume here that no machine mode needs more than
2074 32 hard registers when the value overlaps with a register
2075 for which FUNCTION_VALUE_REGNO_P is true. */
2076 unsigned mask;
2077 struct likely_spilled_retval_info info;
2078
2079 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2080 return 0;
2081 reg = XEXP (PATTERN (use), 0);
2082 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
2083 return 0;
2084 regno = REGNO (reg);
2085 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2086 if (nregs == 1)
2087 return 0;
2088 mask = (2U << (nregs - 1)) - 1;
2089
2090 /* Disregard parts of the return value that are set later. */
2091 info.regno = regno;
2092 info.nregs = nregs;
2093 info.mask = mask;
2094 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2095 if (INSN_P (p))
2096 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2097 mask = info.mask;
2098
2099 /* Check if any of the (probably) live return value registers is
2100 likely spilled. */
2101 nregs --;
2102 do
2103 {
2104 if ((mask & 1 << nregs)
2105 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
2106 return 1;
2107 } while (nregs--);
2108 return 0;
2109 }
2110
2111 /* Adjust INSN after we made a change to its destination.
2112
2113 Changing the destination can invalidate notes that say something about
2114 the results of the insn and a LOG_LINK pointing to the insn. */
2115
2116 static void
2117 adjust_for_new_dest (rtx insn)
2118 {
2119 /* For notes, be conservative and simply remove them. */
2120 remove_reg_equal_equiv_notes (insn);
2121
2122 /* The new insn will have a destination that was previously the destination
2123 of an insn just above it. Call distribute_links to make a LOG_LINK from
2124 the next use of that destination. */
2125 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2126
2127 df_insn_rescan (insn);
2128 }
2129
2130 /* Return TRUE if combine can reuse reg X in mode MODE.
2131 ADDED_SETS is nonzero if the original set is still required. */
2132 static bool
2133 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2134 {
2135 unsigned int regno;
2136
2137 if (!REG_P(x))
2138 return false;
2139
2140 regno = REGNO (x);
2141 /* Allow hard registers if the new mode is legal, and occupies no more
2142 registers than the old mode. */
2143 if (regno < FIRST_PSEUDO_REGISTER)
2144 return (HARD_REGNO_MODE_OK (regno, mode)
2145 && (hard_regno_nregs[regno][GET_MODE (x)]
2146 >= hard_regno_nregs[regno][mode]));
2147
2148 /* Or a pseudo that is only used once. */
2149 return (REG_N_SETS (regno) == 1 && !added_sets
2150 && !REG_USERVAR_P (x));
2151 }
2152
2153
2154 /* Check whether X, the destination of a set, refers to part of
2155 the register specified by REG. */
2156
2157 static bool
2158 reg_subword_p (rtx x, rtx reg)
2159 {
2160 /* Check that reg is an integer mode register. */
2161 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2162 return false;
2163
2164 if (GET_CODE (x) == STRICT_LOW_PART
2165 || GET_CODE (x) == ZERO_EXTRACT)
2166 x = XEXP (x, 0);
2167
2168 return GET_CODE (x) == SUBREG
2169 && SUBREG_REG (x) == reg
2170 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2171 }
2172
2173 #ifdef AUTO_INC_DEC
2174 /* Replace auto-increment addressing modes with explicit operations to
2175 access the same addresses without modifying the corresponding
2176 registers. If AFTER holds, SRC is meant to be reused after the
2177 side effect, otherwise it is to be reused before that. */
2178
2179 static rtx
2180 cleanup_auto_inc_dec (rtx src, bool after, enum machine_mode mem_mode)
2181 {
2182 rtx x = src;
2183 const RTX_CODE code = GET_CODE (x);
2184 int i;
2185 const char *fmt;
2186
2187 switch (code)
2188 {
2189 case REG:
2190 case CONST_INT:
2191 case CONST_DOUBLE:
2192 case CONST_FIXED:
2193 case CONST_VECTOR:
2194 case SYMBOL_REF:
2195 case CODE_LABEL:
2196 case PC:
2197 case CC0:
2198 case SCRATCH:
2199 /* SCRATCH must be shared because they represent distinct values. */
2200 return x;
2201 case CLOBBER:
2202 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2203 return x;
2204 break;
2205
2206 case CONST:
2207 if (shared_const_p (x))
2208 return x;
2209 break;
2210
2211 case MEM:
2212 mem_mode = GET_MODE (x);
2213 break;
2214
2215 case PRE_INC:
2216 case PRE_DEC:
2217 case POST_INC:
2218 case POST_DEC:
2219 gcc_assert (mem_mode != VOIDmode && mem_mode != BLKmode);
2220 if (after == (code == PRE_INC || code == PRE_DEC))
2221 x = cleanup_auto_inc_dec (XEXP (x, 0), after, mem_mode);
2222 else
2223 x = gen_rtx_PLUS (GET_MODE (x),
2224 cleanup_auto_inc_dec (XEXP (x, 0), after, mem_mode),
2225 GEN_INT ((code == PRE_INC || code == POST_INC)
2226 ? GET_MODE_SIZE (mem_mode)
2227 : -GET_MODE_SIZE (mem_mode)));
2228 return x;
2229
2230 case PRE_MODIFY:
2231 case POST_MODIFY:
2232 if (after == (code == PRE_MODIFY))
2233 x = XEXP (x, 0);
2234 else
2235 x = XEXP (x, 1);
2236 return cleanup_auto_inc_dec (x, after, mem_mode);
2237
2238 default:
2239 break;
2240 }
2241
2242 /* Copy the various flags, fields, and other information. We assume
2243 that all fields need copying, and then clear the fields that should
2244 not be copied. That is the sensible default behavior, and forces
2245 us to explicitly document why we are *not* copying a flag. */
2246 x = shallow_copy_rtx (x);
2247
2248 /* We do not copy the USED flag, which is used as a mark bit during
2249 walks over the RTL. */
2250 RTX_FLAG (x, used) = 0;
2251
2252 /* We do not copy FRAME_RELATED for INSNs. */
2253 if (INSN_P (x))
2254 RTX_FLAG (x, frame_related) = 0;
2255
2256 fmt = GET_RTX_FORMAT (code);
2257 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2258 if (fmt[i] == 'e')
2259 XEXP (x, i) = cleanup_auto_inc_dec (XEXP (x, i), after, mem_mode);
2260 else if (fmt[i] == 'E' || fmt[i] == 'V')
2261 {
2262 int j;
2263 XVEC (x, i) = rtvec_alloc (XVECLEN (x, i));
2264 for (j = 0; j < XVECLEN (x, i); j++)
2265 XVECEXP (x, i, j)
2266 = cleanup_auto_inc_dec (XVECEXP (src, i, j), after, mem_mode);
2267 }
2268
2269 return x;
2270 }
2271
2272 /* Auxiliary data structure for propagate_for_debug_stmt. */
2273
2274 struct rtx_subst_pair
2275 {
2276 rtx to;
2277 bool adjusted;
2278 bool after;
2279 };
2280
2281 /* DATA points to an rtx_subst_pair. Return the value that should be
2282 substituted. */
2283
2284 static rtx
2285 propagate_for_debug_subst (rtx from ATTRIBUTE_UNUSED, void *data)
2286 {
2287 struct rtx_subst_pair *pair = (struct rtx_subst_pair *)data;
2288
2289 if (!pair->adjusted)
2290 {
2291 pair->adjusted = true;
2292 pair->to = cleanup_auto_inc_dec (pair->to, pair->after, VOIDmode);
2293 return pair->to;
2294 }
2295 return copy_rtx (pair->to);
2296 }
2297 #endif
2298
2299 /* Replace occurrences of DEST with SRC in DEBUG_INSNs between INSN
2300 and LAST. If MOVE holds, debug insns must also be moved past
2301 LAST. */
2302
2303 static void
2304 propagate_for_debug (rtx insn, rtx last, rtx dest, rtx src, bool move)
2305 {
2306 rtx next, move_pos = move ? last : NULL_RTX, loc;
2307
2308 #ifdef AUTO_INC_DEC
2309 struct rtx_subst_pair p;
2310 p.to = src;
2311 p.adjusted = false;
2312 p.after = move;
2313 #endif
2314
2315 next = NEXT_INSN (insn);
2316 while (next != last)
2317 {
2318 insn = next;
2319 next = NEXT_INSN (insn);
2320 if (DEBUG_INSN_P (insn))
2321 {
2322 #ifdef AUTO_INC_DEC
2323 loc = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
2324 dest, propagate_for_debug_subst, &p);
2325 #else
2326 loc = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn), dest, src);
2327 #endif
2328 if (loc == INSN_VAR_LOCATION_LOC (insn))
2329 continue;
2330 INSN_VAR_LOCATION_LOC (insn) = loc;
2331 if (move_pos)
2332 {
2333 remove_insn (insn);
2334 PREV_INSN (insn) = NEXT_INSN (insn) = NULL_RTX;
2335 move_pos = emit_debug_insn_after (insn, move_pos);
2336 }
2337 else
2338 df_insn_rescan (insn);
2339 }
2340 }
2341 }
2342
2343 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2344 Note that the INSN should be deleted *after* removing dead edges, so
2345 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2346 but not for a (set (pc) (label_ref FOO)). */
2347
2348 static void
2349 update_cfg_for_uncondjump (rtx insn)
2350 {
2351 basic_block bb = BLOCK_FOR_INSN (insn);
2352 bool at_end = (BB_END (bb) == insn);
2353
2354 if (at_end)
2355 purge_dead_edges (bb);
2356
2357 delete_insn (insn);
2358 if (at_end && EDGE_COUNT (bb->succs) == 1)
2359 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2360 }
2361
2362
2363 /* Try to combine the insns I1 and I2 into I3.
2364 Here I1 and I2 appear earlier than I3.
2365 I1 can be zero; then we combine just I2 into I3.
2366
2367 If we are combining three insns and the resulting insn is not recognized,
2368 try splitting it into two insns. If that happens, I2 and I3 are retained
2369 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
2370 are pseudo-deleted.
2371
2372 Return 0 if the combination does not work. Then nothing is changed.
2373 If we did the combination, return the insn at which combine should
2374 resume scanning.
2375
2376 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2377 new direct jump instruction. */
2378
2379 static rtx
2380 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
2381 {
2382 /* New patterns for I3 and I2, respectively. */
2383 rtx newpat, newi2pat = 0;
2384 rtvec newpat_vec_with_clobbers = 0;
2385 int substed_i2 = 0, substed_i1 = 0;
2386 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
2387 int added_sets_1, added_sets_2;
2388 /* Total number of SETs to put into I3. */
2389 int total_sets;
2390 /* Nonzero if I2's body now appears in I3. */
2391 int i2_is_used;
2392 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2393 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2394 /* Contains I3 if the destination of I3 is used in its source, which means
2395 that the old life of I3 is being killed. If that usage is placed into
2396 I2 and not in I3, a REG_DEAD note must be made. */
2397 rtx i3dest_killed = 0;
2398 /* SET_DEST and SET_SRC of I2 and I1. */
2399 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0;
2400 /* Set if I2DEST was reused as a scratch register. */
2401 bool i2scratch = false;
2402 /* PATTERN (I1) and PATTERN (I2), or a copy of it in certain cases. */
2403 rtx i1pat = 0, i2pat = 0;
2404 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2405 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2406 int i2dest_killed = 0, i1dest_killed = 0;
2407 int i1_feeds_i3 = 0;
2408 /* Notes that must be added to REG_NOTES in I3 and I2. */
2409 rtx new_i3_notes, new_i2_notes;
2410 /* Notes that we substituted I3 into I2 instead of the normal case. */
2411 int i3_subst_into_i2 = 0;
2412 /* Notes that I1, I2 or I3 is a MULT operation. */
2413 int have_mult = 0;
2414 int swap_i2i3 = 0;
2415 int changed_i3_dest = 0;
2416
2417 int maxreg;
2418 rtx temp;
2419 rtx link;
2420 rtx other_pat = 0;
2421 rtx new_other_notes;
2422 int i;
2423
2424 /* Exit early if one of the insns involved can't be used for
2425 combinations. */
2426 if (cant_combine_insn_p (i3)
2427 || cant_combine_insn_p (i2)
2428 || (i1 && cant_combine_insn_p (i1))
2429 || likely_spilled_retval_p (i3))
2430 return 0;
2431
2432 combine_attempts++;
2433 undobuf.other_insn = 0;
2434
2435 /* Reset the hard register usage information. */
2436 CLEAR_HARD_REG_SET (newpat_used_regs);
2437
2438 if (dump_file && (dump_flags & TDF_DETAILS))
2439 {
2440 if (i1)
2441 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2442 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2443 else
2444 fprintf (dump_file, "\nTrying %d -> %d:\n",
2445 INSN_UID (i2), INSN_UID (i3));
2446 }
2447
2448 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
2449 code below, set I1 to be the earlier of the two insns. */
2450 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2451 temp = i1, i1 = i2, i2 = temp;
2452
2453 added_links_insn = 0;
2454
2455 /* First check for one important special-case that the code below will
2456 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2457 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2458 we may be able to replace that destination with the destination of I3.
2459 This occurs in the common code where we compute both a quotient and
2460 remainder into a structure, in which case we want to do the computation
2461 directly into the structure to avoid register-register copies.
2462
2463 Note that this case handles both multiple sets in I2 and also
2464 cases where I2 has a number of CLOBBER or PARALLELs.
2465
2466 We make very conservative checks below and only try to handle the
2467 most common cases of this. For example, we only handle the case
2468 where I2 and I3 are adjacent to avoid making difficult register
2469 usage tests. */
2470
2471 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2472 && REG_P (SET_SRC (PATTERN (i3)))
2473 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2474 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2475 && GET_CODE (PATTERN (i2)) == PARALLEL
2476 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2477 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2478 below would need to check what is inside (and reg_overlap_mentioned_p
2479 doesn't support those codes anyway). Don't allow those destinations;
2480 the resulting insn isn't likely to be recognized anyway. */
2481 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2482 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2483 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2484 SET_DEST (PATTERN (i3)))
2485 && next_active_insn (i2) == i3)
2486 {
2487 rtx p2 = PATTERN (i2);
2488
2489 /* Make sure that the destination of I3,
2490 which we are going to substitute into one output of I2,
2491 is not used within another output of I2. We must avoid making this:
2492 (parallel [(set (mem (reg 69)) ...)
2493 (set (reg 69) ...)])
2494 which is not well-defined as to order of actions.
2495 (Besides, reload can't handle output reloads for this.)
2496
2497 The problem can also happen if the dest of I3 is a memory ref,
2498 if another dest in I2 is an indirect memory ref. */
2499 for (i = 0; i < XVECLEN (p2, 0); i++)
2500 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2501 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2502 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2503 SET_DEST (XVECEXP (p2, 0, i))))
2504 break;
2505
2506 if (i == XVECLEN (p2, 0))
2507 for (i = 0; i < XVECLEN (p2, 0); i++)
2508 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2509 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2510 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2511 {
2512 combine_merges++;
2513
2514 subst_insn = i3;
2515 subst_low_luid = DF_INSN_LUID (i2);
2516
2517 added_sets_2 = added_sets_1 = 0;
2518 i2src = SET_DEST (PATTERN (i3));
2519 i2dest = SET_SRC (PATTERN (i3));
2520 i2dest_killed = dead_or_set_p (i2, i2dest);
2521
2522 /* Replace the dest in I2 with our dest and make the resulting
2523 insn the new pattern for I3. Then skip to where we
2524 validate the pattern. Everything was set up above. */
2525 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
2526 SET_DEST (PATTERN (i3)));
2527
2528 newpat = p2;
2529 i3_subst_into_i2 = 1;
2530 goto validate_replacement;
2531 }
2532 }
2533
2534 /* If I2 is setting a pseudo to a constant and I3 is setting some
2535 sub-part of it to another constant, merge them by making a new
2536 constant. */
2537 if (i1 == 0
2538 && (temp = single_set (i2)) != 0
2539 && (CONST_INT_P (SET_SRC (temp))
2540 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2541 && GET_CODE (PATTERN (i3)) == SET
2542 && (CONST_INT_P (SET_SRC (PATTERN (i3)))
2543 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2544 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2545 {
2546 rtx dest = SET_DEST (PATTERN (i3));
2547 int offset = -1;
2548 int width = 0;
2549
2550 if (GET_CODE (dest) == ZERO_EXTRACT)
2551 {
2552 if (CONST_INT_P (XEXP (dest, 1))
2553 && CONST_INT_P (XEXP (dest, 2)))
2554 {
2555 width = INTVAL (XEXP (dest, 1));
2556 offset = INTVAL (XEXP (dest, 2));
2557 dest = XEXP (dest, 0);
2558 if (BITS_BIG_ENDIAN)
2559 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2560 }
2561 }
2562 else
2563 {
2564 if (GET_CODE (dest) == STRICT_LOW_PART)
2565 dest = XEXP (dest, 0);
2566 width = GET_MODE_BITSIZE (GET_MODE (dest));
2567 offset = 0;
2568 }
2569
2570 if (offset >= 0)
2571 {
2572 /* If this is the low part, we're done. */
2573 if (subreg_lowpart_p (dest))
2574 ;
2575 /* Handle the case where inner is twice the size of outer. */
2576 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2577 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2578 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2579 /* Otherwise give up for now. */
2580 else
2581 offset = -1;
2582 }
2583
2584 if (offset >= 0
2585 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2586 <= HOST_BITS_PER_WIDE_INT * 2))
2587 {
2588 HOST_WIDE_INT mhi, ohi, ihi;
2589 HOST_WIDE_INT mlo, olo, ilo;
2590 rtx inner = SET_SRC (PATTERN (i3));
2591 rtx outer = SET_SRC (temp);
2592
2593 if (CONST_INT_P (outer))
2594 {
2595 olo = INTVAL (outer);
2596 ohi = olo < 0 ? -1 : 0;
2597 }
2598 else
2599 {
2600 olo = CONST_DOUBLE_LOW (outer);
2601 ohi = CONST_DOUBLE_HIGH (outer);
2602 }
2603
2604 if (CONST_INT_P (inner))
2605 {
2606 ilo = INTVAL (inner);
2607 ihi = ilo < 0 ? -1 : 0;
2608 }
2609 else
2610 {
2611 ilo = CONST_DOUBLE_LOW (inner);
2612 ihi = CONST_DOUBLE_HIGH (inner);
2613 }
2614
2615 if (width < HOST_BITS_PER_WIDE_INT)
2616 {
2617 mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2618 mhi = 0;
2619 }
2620 else if (width < HOST_BITS_PER_WIDE_INT * 2)
2621 {
2622 mhi = ((unsigned HOST_WIDE_INT) 1
2623 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2624 mlo = -1;
2625 }
2626 else
2627 {
2628 mlo = -1;
2629 mhi = -1;
2630 }
2631
2632 ilo &= mlo;
2633 ihi &= mhi;
2634
2635 if (offset >= HOST_BITS_PER_WIDE_INT)
2636 {
2637 mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2638 mlo = 0;
2639 ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2640 ilo = 0;
2641 }
2642 else if (offset > 0)
2643 {
2644 mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2645 >> (HOST_BITS_PER_WIDE_INT - offset));
2646 mlo = mlo << offset;
2647 ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2648 >> (HOST_BITS_PER_WIDE_INT - offset));
2649 ilo = ilo << offset;
2650 }
2651
2652 olo = (olo & ~mlo) | ilo;
2653 ohi = (ohi & ~mhi) | ihi;
2654
2655 combine_merges++;
2656 subst_insn = i3;
2657 subst_low_luid = DF_INSN_LUID (i2);
2658 added_sets_2 = added_sets_1 = 0;
2659 i2dest = SET_DEST (temp);
2660 i2dest_killed = dead_or_set_p (i2, i2dest);
2661
2662 SUBST (SET_SRC (temp),
2663 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2664
2665 newpat = PATTERN (i2);
2666 goto validate_replacement;
2667 }
2668 }
2669
2670 #ifndef HAVE_cc0
2671 /* If we have no I1 and I2 looks like:
2672 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2673 (set Y OP)])
2674 make up a dummy I1 that is
2675 (set Y OP)
2676 and change I2 to be
2677 (set (reg:CC X) (compare:CC Y (const_int 0)))
2678
2679 (We can ignore any trailing CLOBBERs.)
2680
2681 This undoes a previous combination and allows us to match a branch-and-
2682 decrement insn. */
2683
2684 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2685 && XVECLEN (PATTERN (i2), 0) >= 2
2686 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2687 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2688 == MODE_CC)
2689 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2690 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2691 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2692 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2693 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2694 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2695 {
2696 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2697 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2698 break;
2699
2700 if (i == 1)
2701 {
2702 /* We make I1 with the same INSN_UID as I2. This gives it
2703 the same DF_INSN_LUID for value tracking. Our fake I1 will
2704 never appear in the insn stream so giving it the same INSN_UID
2705 as I2 will not cause a problem. */
2706
2707 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2708 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2709 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX);
2710
2711 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2712 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2713 SET_DEST (PATTERN (i1)));
2714 }
2715 }
2716 #endif
2717
2718 /* Verify that I2 and I1 are valid for combining. */
2719 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2720 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2721 {
2722 undo_all ();
2723 return 0;
2724 }
2725
2726 /* Record whether I2DEST is used in I2SRC and similarly for the other
2727 cases. Knowing this will help in register status updating below. */
2728 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2729 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2730 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2731 i2dest_killed = dead_or_set_p (i2, i2dest);
2732 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2733
2734 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2735 in I2SRC. */
2736 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2737
2738 /* Ensure that I3's pattern can be the destination of combines. */
2739 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2740 i1 && i2dest_in_i1src && i1_feeds_i3,
2741 &i3dest_killed))
2742 {
2743 undo_all ();
2744 return 0;
2745 }
2746
2747 /* See if any of the insns is a MULT operation. Unless one is, we will
2748 reject a combination that is, since it must be slower. Be conservative
2749 here. */
2750 if (GET_CODE (i2src) == MULT
2751 || (i1 != 0 && GET_CODE (i1src) == MULT)
2752 || (GET_CODE (PATTERN (i3)) == SET
2753 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2754 have_mult = 1;
2755
2756 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2757 We used to do this EXCEPT in one case: I3 has a post-inc in an
2758 output operand. However, that exception can give rise to insns like
2759 mov r3,(r3)+
2760 which is a famous insn on the PDP-11 where the value of r3 used as the
2761 source was model-dependent. Avoid this sort of thing. */
2762
2763 #if 0
2764 if (!(GET_CODE (PATTERN (i3)) == SET
2765 && REG_P (SET_SRC (PATTERN (i3)))
2766 && MEM_P (SET_DEST (PATTERN (i3)))
2767 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2768 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2769 /* It's not the exception. */
2770 #endif
2771 #ifdef AUTO_INC_DEC
2772 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2773 if (REG_NOTE_KIND (link) == REG_INC
2774 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2775 || (i1 != 0
2776 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2777 {
2778 undo_all ();
2779 return 0;
2780 }
2781 #endif
2782
2783 /* See if the SETs in I1 or I2 need to be kept around in the merged
2784 instruction: whenever the value set there is still needed past I3.
2785 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2786
2787 For the SET in I1, we have two cases: If I1 and I2 independently
2788 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2789 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2790 in I1 needs to be kept around unless I1DEST dies or is set in either
2791 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2792 I1DEST. If so, we know I1 feeds into I2. */
2793
2794 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2795
2796 added_sets_1
2797 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2798 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2799
2800 /* If the set in I2 needs to be kept around, we must make a copy of
2801 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2802 PATTERN (I2), we are only substituting for the original I1DEST, not into
2803 an already-substituted copy. This also prevents making self-referential
2804 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2805 I2DEST. */
2806
2807 if (added_sets_2)
2808 {
2809 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2810 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2811 else
2812 i2pat = copy_rtx (PATTERN (i2));
2813 }
2814
2815 if (added_sets_1)
2816 {
2817 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2818 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2819 else
2820 i1pat = copy_rtx (PATTERN (i1));
2821 }
2822
2823 combine_merges++;
2824
2825 /* Substitute in the latest insn for the regs set by the earlier ones. */
2826
2827 maxreg = max_reg_num ();
2828
2829 subst_insn = i3;
2830
2831 #ifndef HAVE_cc0
2832 /* Many machines that don't use CC0 have insns that can both perform an
2833 arithmetic operation and set the condition code. These operations will
2834 be represented as a PARALLEL with the first element of the vector
2835 being a COMPARE of an arithmetic operation with the constant zero.
2836 The second element of the vector will set some pseudo to the result
2837 of the same arithmetic operation. If we simplify the COMPARE, we won't
2838 match such a pattern and so will generate an extra insn. Here we test
2839 for this case, where both the comparison and the operation result are
2840 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2841 I2SRC. Later we will make the PARALLEL that contains I2. */
2842
2843 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2844 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2845 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2846 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2847 {
2848 #ifdef SELECT_CC_MODE
2849 rtx *cc_use;
2850 enum machine_mode compare_mode;
2851 #endif
2852
2853 newpat = PATTERN (i3);
2854 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2855
2856 i2_is_used = 1;
2857
2858 #ifdef SELECT_CC_MODE
2859 /* See if a COMPARE with the operand we substituted in should be done
2860 with the mode that is currently being used. If not, do the same
2861 processing we do in `subst' for a SET; namely, if the destination
2862 is used only once, try to replace it with a register of the proper
2863 mode and also replace the COMPARE. */
2864 if (undobuf.other_insn == 0
2865 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2866 &undobuf.other_insn))
2867 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2868 i2src, const0_rtx))
2869 != GET_MODE (SET_DEST (newpat))))
2870 {
2871 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2872 compare_mode))
2873 {
2874 unsigned int regno = REGNO (SET_DEST (newpat));
2875 rtx new_dest;
2876
2877 if (regno < FIRST_PSEUDO_REGISTER)
2878 new_dest = gen_rtx_REG (compare_mode, regno);
2879 else
2880 {
2881 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2882 new_dest = regno_reg_rtx[regno];
2883 }
2884
2885 SUBST (SET_DEST (newpat), new_dest);
2886 SUBST (XEXP (*cc_use, 0), new_dest);
2887 SUBST (SET_SRC (newpat),
2888 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2889 }
2890 else
2891 undobuf.other_insn = 0;
2892 }
2893 #endif
2894 }
2895 else
2896 #endif
2897 {
2898 /* It is possible that the source of I2 or I1 may be performing
2899 an unneeded operation, such as a ZERO_EXTEND of something
2900 that is known to have the high part zero. Handle that case
2901 by letting subst look at the innermost one of them.
2902
2903 Another way to do this would be to have a function that tries
2904 to simplify a single insn instead of merging two or more
2905 insns. We don't do this because of the potential of infinite
2906 loops and because of the potential extra memory required.
2907 However, doing it the way we are is a bit of a kludge and
2908 doesn't catch all cases.
2909
2910 But only do this if -fexpensive-optimizations since it slows
2911 things down and doesn't usually win.
2912
2913 This is not done in the COMPARE case above because the
2914 unmodified I2PAT is used in the PARALLEL and so a pattern
2915 with a modified I2SRC would not match. */
2916
2917 if (flag_expensive_optimizations)
2918 {
2919 /* Pass pc_rtx so no substitutions are done, just
2920 simplifications. */
2921 if (i1)
2922 {
2923 subst_low_luid = DF_INSN_LUID (i1);
2924 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2925 }
2926 else
2927 {
2928 subst_low_luid = DF_INSN_LUID (i2);
2929 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2930 }
2931 }
2932
2933 n_occurrences = 0; /* `subst' counts here */
2934
2935 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2936 need to make a unique copy of I2SRC each time we substitute it
2937 to avoid self-referential rtl. */
2938
2939 subst_low_luid = DF_INSN_LUID (i2);
2940 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2941 ! i1_feeds_i3 && i1dest_in_i1src);
2942 substed_i2 = 1;
2943
2944 /* Record whether i2's body now appears within i3's body. */
2945 i2_is_used = n_occurrences;
2946 }
2947
2948 /* If we already got a failure, don't try to do more. Otherwise,
2949 try to substitute in I1 if we have it. */
2950
2951 if (i1 && GET_CODE (newpat) != CLOBBER)
2952 {
2953 /* Check that an autoincrement side-effect on I1 has not been lost.
2954 This happens if I1DEST is mentioned in I2 and dies there, and
2955 has disappeared from the new pattern. */
2956 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2957 && !i1_feeds_i3
2958 && dead_or_set_p (i2, i1dest)
2959 && !reg_overlap_mentioned_p (i1dest, newpat))
2960 /* Before we can do this substitution, we must redo the test done
2961 above (see detailed comments there) that ensures that I1DEST
2962 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2963 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, 0, 0))
2964 {
2965 undo_all ();
2966 return 0;
2967 }
2968
2969 n_occurrences = 0;
2970 subst_low_luid = DF_INSN_LUID (i1);
2971 newpat = subst (newpat, i1dest, i1src, 0, 0);
2972 substed_i1 = 1;
2973 }
2974
2975 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2976 to count all the ways that I2SRC and I1SRC can be used. */
2977 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2978 && i2_is_used + added_sets_2 > 1)
2979 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2980 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2981 > 1))
2982 /* Fail if we tried to make a new register. */
2983 || max_reg_num () != maxreg
2984 /* Fail if we couldn't do something and have a CLOBBER. */
2985 || GET_CODE (newpat) == CLOBBER
2986 /* Fail if this new pattern is a MULT and we didn't have one before
2987 at the outer level. */
2988 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2989 && ! have_mult))
2990 {
2991 undo_all ();
2992 return 0;
2993 }
2994
2995 /* If the actions of the earlier insns must be kept
2996 in addition to substituting them into the latest one,
2997 we must make a new PARALLEL for the latest insn
2998 to hold additional the SETs. */
2999
3000 if (added_sets_1 || added_sets_2)
3001 {
3002 combine_extras++;
3003
3004 if (GET_CODE (newpat) == PARALLEL)
3005 {
3006 rtvec old = XVEC (newpat, 0);
3007 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
3008 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3009 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3010 sizeof (old->elem[0]) * old->num_elem);
3011 }
3012 else
3013 {
3014 rtx old = newpat;
3015 total_sets = 1 + added_sets_1 + added_sets_2;
3016 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3017 XVECEXP (newpat, 0, 0) = old;
3018 }
3019
3020 if (added_sets_1)
3021 XVECEXP (newpat, 0, --total_sets) = i1pat;
3022
3023 if (added_sets_2)
3024 {
3025 /* If there is no I1, use I2's body as is. We used to also not do
3026 the subst call below if I2 was substituted into I3,
3027 but that could lose a simplification. */
3028 if (i1 == 0)
3029 XVECEXP (newpat, 0, --total_sets) = i2pat;
3030 else
3031 /* See comment where i2pat is assigned. */
3032 XVECEXP (newpat, 0, --total_sets)
3033 = subst (i2pat, i1dest, i1src, 0, 0);
3034 }
3035 }
3036
3037 /* We come here when we are replacing a destination in I2 with the
3038 destination of I3. */
3039 validate_replacement:
3040
3041 /* Note which hard regs this insn has as inputs. */
3042 mark_used_regs_combine (newpat);
3043
3044 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3045 consider splitting this pattern, we might need these clobbers. */
3046 if (i1 && GET_CODE (newpat) == PARALLEL
3047 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3048 {
3049 int len = XVECLEN (newpat, 0);
3050
3051 newpat_vec_with_clobbers = rtvec_alloc (len);
3052 for (i = 0; i < len; i++)
3053 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3054 }
3055
3056 /* Is the result of combination a valid instruction? */
3057 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3058
3059 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3060 the second SET's destination is a register that is unused and isn't
3061 marked as an instruction that might trap in an EH region. In that case,
3062 we just need the first SET. This can occur when simplifying a divmod
3063 insn. We *must* test for this case here because the code below that
3064 splits two independent SETs doesn't handle this case correctly when it
3065 updates the register status.
3066
3067 It's pointless doing this if we originally had two sets, one from
3068 i3, and one from i2. Combining then splitting the parallel results
3069 in the original i2 again plus an invalid insn (which we delete).
3070 The net effect is only to move instructions around, which makes
3071 debug info less accurate.
3072
3073 Also check the case where the first SET's destination is unused.
3074 That would not cause incorrect code, but does cause an unneeded
3075 insn to remain. */
3076
3077 if (insn_code_number < 0
3078 && !(added_sets_2 && i1 == 0)
3079 && GET_CODE (newpat) == PARALLEL
3080 && XVECLEN (newpat, 0) == 2
3081 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3082 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3083 && asm_noperands (newpat) < 0)
3084 {
3085 rtx set0 = XVECEXP (newpat, 0, 0);
3086 rtx set1 = XVECEXP (newpat, 0, 1);
3087
3088 if (((REG_P (SET_DEST (set1))
3089 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3090 || (GET_CODE (SET_DEST (set1)) == SUBREG
3091 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3092 && insn_nothrow_p (i3)
3093 && !side_effects_p (SET_SRC (set1)))
3094 {
3095 newpat = set0;
3096 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3097 }
3098
3099 else if (((REG_P (SET_DEST (set0))
3100 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3101 || (GET_CODE (SET_DEST (set0)) == SUBREG
3102 && find_reg_note (i3, REG_UNUSED,
3103 SUBREG_REG (SET_DEST (set0)))))
3104 && insn_nothrow_p (i3)
3105 && !side_effects_p (SET_SRC (set0)))
3106 {
3107 newpat = set1;
3108 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3109
3110 if (insn_code_number >= 0)
3111 changed_i3_dest = 1;
3112 }
3113 }
3114
3115 /* If we were combining three insns and the result is a simple SET
3116 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3117 insns. There are two ways to do this. It can be split using a
3118 machine-specific method (like when you have an addition of a large
3119 constant) or by combine in the function find_split_point. */
3120
3121 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3122 && asm_noperands (newpat) < 0)
3123 {
3124 rtx parallel, m_split, *split;
3125
3126 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3127 use I2DEST as a scratch register will help. In the latter case,
3128 convert I2DEST to the mode of the source of NEWPAT if we can. */
3129
3130 m_split = combine_split_insns (newpat, i3);
3131
3132 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3133 inputs of NEWPAT. */
3134
3135 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3136 possible to try that as a scratch reg. This would require adding
3137 more code to make it work though. */
3138
3139 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3140 {
3141 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3142
3143 /* First try to split using the original register as a
3144 scratch register. */
3145 parallel = gen_rtx_PARALLEL (VOIDmode,
3146 gen_rtvec (2, newpat,
3147 gen_rtx_CLOBBER (VOIDmode,
3148 i2dest)));
3149 m_split = combine_split_insns (parallel, i3);
3150
3151 /* If that didn't work, try changing the mode of I2DEST if
3152 we can. */
3153 if (m_split == 0
3154 && new_mode != GET_MODE (i2dest)
3155 && new_mode != VOIDmode
3156 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3157 {
3158 enum machine_mode old_mode = GET_MODE (i2dest);
3159 rtx ni2dest;
3160
3161 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3162 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3163 else
3164 {
3165 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3166 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3167 }
3168
3169 parallel = (gen_rtx_PARALLEL
3170 (VOIDmode,
3171 gen_rtvec (2, newpat,
3172 gen_rtx_CLOBBER (VOIDmode,
3173 ni2dest))));
3174 m_split = combine_split_insns (parallel, i3);
3175
3176 if (m_split == 0
3177 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3178 {
3179 struct undo *buf;
3180
3181 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3182 buf = undobuf.undos;
3183 undobuf.undos = buf->next;
3184 buf->next = undobuf.frees;
3185 undobuf.frees = buf;
3186 }
3187 }
3188
3189 i2scratch = m_split != 0;
3190 }
3191
3192 /* If recog_for_combine has discarded clobbers, try to use them
3193 again for the split. */
3194 if (m_split == 0 && newpat_vec_with_clobbers)
3195 {
3196 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3197 m_split = combine_split_insns (parallel, i3);
3198 }
3199
3200 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3201 {
3202 m_split = PATTERN (m_split);
3203 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3204 if (insn_code_number >= 0)
3205 newpat = m_split;
3206 }
3207 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3208 && (next_real_insn (i2) == i3
3209 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3210 {
3211 rtx i2set, i3set;
3212 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3213 newi2pat = PATTERN (m_split);
3214
3215 i3set = single_set (NEXT_INSN (m_split));
3216 i2set = single_set (m_split);
3217
3218 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3219
3220 /* If I2 or I3 has multiple SETs, we won't know how to track
3221 register status, so don't use these insns. If I2's destination
3222 is used between I2 and I3, we also can't use these insns. */
3223
3224 if (i2_code_number >= 0 && i2set && i3set
3225 && (next_real_insn (i2) == i3
3226 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3227 insn_code_number = recog_for_combine (&newi3pat, i3,
3228 &new_i3_notes);
3229 if (insn_code_number >= 0)
3230 newpat = newi3pat;
3231
3232 /* It is possible that both insns now set the destination of I3.
3233 If so, we must show an extra use of it. */
3234
3235 if (insn_code_number >= 0)
3236 {
3237 rtx new_i3_dest = SET_DEST (i3set);
3238 rtx new_i2_dest = SET_DEST (i2set);
3239
3240 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3241 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3242 || GET_CODE (new_i3_dest) == SUBREG)
3243 new_i3_dest = XEXP (new_i3_dest, 0);
3244
3245 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3246 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3247 || GET_CODE (new_i2_dest) == SUBREG)
3248 new_i2_dest = XEXP (new_i2_dest, 0);
3249
3250 if (REG_P (new_i3_dest)
3251 && REG_P (new_i2_dest)
3252 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3253 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3254 }
3255 }
3256
3257 /* If we can split it and use I2DEST, go ahead and see if that
3258 helps things be recognized. Verify that none of the registers
3259 are set between I2 and I3. */
3260 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
3261 #ifdef HAVE_cc0
3262 && REG_P (i2dest)
3263 #endif
3264 /* We need I2DEST in the proper mode. If it is a hard register
3265 or the only use of a pseudo, we can change its mode.
3266 Make sure we don't change a hard register to have a mode that
3267 isn't valid for it, or change the number of registers. */
3268 && (GET_MODE (*split) == GET_MODE (i2dest)
3269 || GET_MODE (*split) == VOIDmode
3270 || can_change_dest_mode (i2dest, added_sets_2,
3271 GET_MODE (*split)))
3272 && (next_real_insn (i2) == i3
3273 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3274 /* We can't overwrite I2DEST if its value is still used by
3275 NEWPAT. */
3276 && ! reg_referenced_p (i2dest, newpat))
3277 {
3278 rtx newdest = i2dest;
3279 enum rtx_code split_code = GET_CODE (*split);
3280 enum machine_mode split_mode = GET_MODE (*split);
3281 bool subst_done = false;
3282 newi2pat = NULL_RTX;
3283
3284 i2scratch = true;
3285
3286 /* Get NEWDEST as a register in the proper mode. We have already
3287 validated that we can do this. */
3288 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3289 {
3290 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3291 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3292 else
3293 {
3294 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3295 newdest = regno_reg_rtx[REGNO (i2dest)];
3296 }
3297 }
3298
3299 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3300 an ASHIFT. This can occur if it was inside a PLUS and hence
3301 appeared to be a memory address. This is a kludge. */
3302 if (split_code == MULT
3303 && CONST_INT_P (XEXP (*split, 1))
3304 && INTVAL (XEXP (*split, 1)) > 0
3305 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
3306 {
3307 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3308 XEXP (*split, 0), GEN_INT (i)));
3309 /* Update split_code because we may not have a multiply
3310 anymore. */
3311 split_code = GET_CODE (*split);
3312 }
3313
3314 #ifdef INSN_SCHEDULING
3315 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3316 be written as a ZERO_EXTEND. */
3317 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3318 {
3319 #ifdef LOAD_EXTEND_OP
3320 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3321 what it really is. */
3322 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3323 == SIGN_EXTEND)
3324 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3325 SUBREG_REG (*split)));
3326 else
3327 #endif
3328 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3329 SUBREG_REG (*split)));
3330 }
3331 #endif
3332
3333 /* Attempt to split binary operators using arithmetic identities. */
3334 if (BINARY_P (SET_SRC (newpat))
3335 && split_mode == GET_MODE (SET_SRC (newpat))
3336 && ! side_effects_p (SET_SRC (newpat)))
3337 {
3338 rtx setsrc = SET_SRC (newpat);
3339 enum machine_mode mode = GET_MODE (setsrc);
3340 enum rtx_code code = GET_CODE (setsrc);
3341 rtx src_op0 = XEXP (setsrc, 0);
3342 rtx src_op1 = XEXP (setsrc, 1);
3343
3344 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3345 if (rtx_equal_p (src_op0, src_op1))
3346 {
3347 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3348 SUBST (XEXP (setsrc, 0), newdest);
3349 SUBST (XEXP (setsrc, 1), newdest);
3350 subst_done = true;
3351 }
3352 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3353 else if ((code == PLUS || code == MULT)
3354 && GET_CODE (src_op0) == code
3355 && GET_CODE (XEXP (src_op0, 0)) == code
3356 && (INTEGRAL_MODE_P (mode)
3357 || (FLOAT_MODE_P (mode)
3358 && flag_unsafe_math_optimizations)))
3359 {
3360 rtx p = XEXP (XEXP (src_op0, 0), 0);
3361 rtx q = XEXP (XEXP (src_op0, 0), 1);
3362 rtx r = XEXP (src_op0, 1);
3363 rtx s = src_op1;
3364
3365 /* Split both "((X op Y) op X) op Y" and
3366 "((X op Y) op Y) op X" as "T op T" where T is
3367 "X op Y". */
3368 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3369 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3370 {
3371 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3372 XEXP (src_op0, 0));
3373 SUBST (XEXP (setsrc, 0), newdest);
3374 SUBST (XEXP (setsrc, 1), newdest);
3375 subst_done = true;
3376 }
3377 /* Split "((X op X) op Y) op Y)" as "T op T" where
3378 T is "X op Y". */
3379 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3380 {
3381 rtx tmp = simplify_gen_binary (code, mode, p, r);
3382 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3383 SUBST (XEXP (setsrc, 0), newdest);
3384 SUBST (XEXP (setsrc, 1), newdest);
3385 subst_done = true;
3386 }
3387 }
3388 }
3389
3390 if (!subst_done)
3391 {
3392 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3393 SUBST (*split, newdest);
3394 }
3395
3396 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3397
3398 /* recog_for_combine might have added CLOBBERs to newi2pat.
3399 Make sure NEWPAT does not depend on the clobbered regs. */
3400 if (GET_CODE (newi2pat) == PARALLEL)
3401 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3402 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3403 {
3404 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3405 if (reg_overlap_mentioned_p (reg, newpat))
3406 {
3407 undo_all ();
3408 return 0;
3409 }
3410 }
3411
3412 /* If the split point was a MULT and we didn't have one before,
3413 don't use one now. */
3414 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3415 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3416 }
3417 }
3418
3419 /* Check for a case where we loaded from memory in a narrow mode and
3420 then sign extended it, but we need both registers. In that case,
3421 we have a PARALLEL with both loads from the same memory location.
3422 We can split this into a load from memory followed by a register-register
3423 copy. This saves at least one insn, more if register allocation can
3424 eliminate the copy.
3425
3426 We cannot do this if the destination of the first assignment is a
3427 condition code register or cc0. We eliminate this case by making sure
3428 the SET_DEST and SET_SRC have the same mode.
3429
3430 We cannot do this if the destination of the second assignment is
3431 a register that we have already assumed is zero-extended. Similarly
3432 for a SUBREG of such a register. */
3433
3434 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3435 && GET_CODE (newpat) == PARALLEL
3436 && XVECLEN (newpat, 0) == 2
3437 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3438 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3439 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3440 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3441 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3442 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3443 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3444 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3445 DF_INSN_LUID (i2))
3446 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3447 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3448 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3449 (REG_P (temp)
3450 && VEC_index (reg_stat_type, reg_stat,
3451 REGNO (temp))->nonzero_bits != 0
3452 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3453 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3454 && (VEC_index (reg_stat_type, reg_stat,
3455 REGNO (temp))->nonzero_bits
3456 != GET_MODE_MASK (word_mode))))
3457 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3458 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3459 (REG_P (temp)
3460 && VEC_index (reg_stat_type, reg_stat,
3461 REGNO (temp))->nonzero_bits != 0
3462 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3463 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3464 && (VEC_index (reg_stat_type, reg_stat,
3465 REGNO (temp))->nonzero_bits
3466 != GET_MODE_MASK (word_mode)))))
3467 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3468 SET_SRC (XVECEXP (newpat, 0, 1)))
3469 && ! find_reg_note (i3, REG_UNUSED,
3470 SET_DEST (XVECEXP (newpat, 0, 0))))
3471 {
3472 rtx ni2dest;
3473
3474 newi2pat = XVECEXP (newpat, 0, 0);
3475 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3476 newpat = XVECEXP (newpat, 0, 1);
3477 SUBST (SET_SRC (newpat),
3478 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3479 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3480
3481 if (i2_code_number >= 0)
3482 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3483
3484 if (insn_code_number >= 0)
3485 swap_i2i3 = 1;
3486 }
3487
3488 /* Similarly, check for a case where we have a PARALLEL of two independent
3489 SETs but we started with three insns. In this case, we can do the sets
3490 as two separate insns. This case occurs when some SET allows two
3491 other insns to combine, but the destination of that SET is still live. */
3492
3493 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3494 && GET_CODE (newpat) == PARALLEL
3495 && XVECLEN (newpat, 0) == 2
3496 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3497 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3498 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3499 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3500 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3501 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3502 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3503 DF_INSN_LUID (i2))
3504 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3505 XVECEXP (newpat, 0, 0))
3506 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3507 XVECEXP (newpat, 0, 1))
3508 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3509 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))
3510 #ifdef HAVE_cc0
3511 /* We cannot split the parallel into two sets if both sets
3512 reference cc0. */
3513 && ! (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3514 && reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1)))
3515 #endif
3516 )
3517 {
3518 /* Normally, it doesn't matter which of the two is done first,
3519 but it does if one references cc0. In that case, it has to
3520 be first. */
3521 #ifdef HAVE_cc0
3522 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
3523 {
3524 newi2pat = XVECEXP (newpat, 0, 0);
3525 newpat = XVECEXP (newpat, 0, 1);
3526 }
3527 else
3528 #endif
3529 {
3530 newi2pat = XVECEXP (newpat, 0, 1);
3531 newpat = XVECEXP (newpat, 0, 0);
3532 }
3533
3534 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3535
3536 if (i2_code_number >= 0)
3537 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3538 }
3539
3540 /* If it still isn't recognized, fail and change things back the way they
3541 were. */
3542 if ((insn_code_number < 0
3543 /* Is the result a reasonable ASM_OPERANDS? */
3544 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3545 {
3546 undo_all ();
3547 return 0;
3548 }
3549
3550 /* If we had to change another insn, make sure it is valid also. */
3551 if (undobuf.other_insn)
3552 {
3553 CLEAR_HARD_REG_SET (newpat_used_regs);
3554
3555 other_pat = PATTERN (undobuf.other_insn);
3556 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3557 &new_other_notes);
3558
3559 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3560 {
3561 undo_all ();
3562 return 0;
3563 }
3564 }
3565
3566 #ifdef HAVE_cc0
3567 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3568 they are adjacent to each other or not. */
3569 {
3570 rtx p = prev_nonnote_insn (i3);
3571 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3572 && sets_cc0_p (newi2pat))
3573 {
3574 undo_all ();
3575 return 0;
3576 }
3577 }
3578 #endif
3579
3580 /* Only allow this combination if insn_rtx_costs reports that the
3581 replacement instructions are cheaper than the originals. */
3582 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat, other_pat))
3583 {
3584 undo_all ();
3585 return 0;
3586 }
3587
3588 if (MAY_HAVE_DEBUG_INSNS)
3589 {
3590 struct undo *undo;
3591
3592 for (undo = undobuf.undos; undo; undo = undo->next)
3593 if (undo->kind == UNDO_MODE)
3594 {
3595 rtx reg = *undo->where.r;
3596 enum machine_mode new_mode = GET_MODE (reg);
3597 enum machine_mode old_mode = undo->old_contents.m;
3598
3599 /* Temporarily revert mode back. */
3600 adjust_reg_mode (reg, old_mode);
3601
3602 if (reg == i2dest && i2scratch)
3603 {
3604 /* If we used i2dest as a scratch register with a
3605 different mode, substitute it for the original
3606 i2src while its original mode is temporarily
3607 restored, and then clear i2scratch so that we don't
3608 do it again later. */
3609 propagate_for_debug (i2, i3, reg, i2src, false);
3610 i2scratch = false;
3611 /* Put back the new mode. */
3612 adjust_reg_mode (reg, new_mode);
3613 }
3614 else
3615 {
3616 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3617 rtx first, last;
3618
3619 if (reg == i2dest)
3620 {
3621 first = i2;
3622 last = i3;
3623 }
3624 else
3625 {
3626 first = i3;
3627 last = undobuf.other_insn;
3628 gcc_assert (last);
3629 }
3630
3631 /* We're dealing with a reg that changed mode but not
3632 meaning, so we want to turn it into a subreg for
3633 the new mode. However, because of REG sharing and
3634 because its mode had already changed, we have to do
3635 it in two steps. First, replace any debug uses of
3636 reg, with its original mode temporarily restored,
3637 with this copy we have created; then, replace the
3638 copy with the SUBREG of the original shared reg,
3639 once again changed to the new mode. */
3640 propagate_for_debug (first, last, reg, tempreg, false);
3641 adjust_reg_mode (reg, new_mode);
3642 propagate_for_debug (first, last, tempreg,
3643 lowpart_subreg (old_mode, reg, new_mode),
3644 false);
3645 }
3646 }
3647 }
3648
3649 /* If we will be able to accept this, we have made a
3650 change to the destination of I3. This requires us to
3651 do a few adjustments. */
3652
3653 if (changed_i3_dest)
3654 {
3655 PATTERN (i3) = newpat;
3656 adjust_for_new_dest (i3);
3657 }
3658
3659 /* We now know that we can do this combination. Merge the insns and
3660 update the status of registers and LOG_LINKS. */
3661
3662 if (undobuf.other_insn)
3663 {
3664 rtx note, next;
3665
3666 PATTERN (undobuf.other_insn) = other_pat;
3667
3668 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3669 are still valid. Then add any non-duplicate notes added by
3670 recog_for_combine. */
3671 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3672 {
3673 next = XEXP (note, 1);
3674
3675 if (REG_NOTE_KIND (note) == REG_UNUSED
3676 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3677 remove_note (undobuf.other_insn, note);
3678 }
3679
3680 distribute_notes (new_other_notes, undobuf.other_insn,
3681 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
3682 }
3683
3684 if (swap_i2i3)
3685 {
3686 rtx insn;
3687 rtx link;
3688 rtx ni2dest;
3689
3690 /* I3 now uses what used to be its destination and which is now
3691 I2's destination. This requires us to do a few adjustments. */
3692 PATTERN (i3) = newpat;
3693 adjust_for_new_dest (i3);
3694
3695 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3696 so we still will.
3697
3698 However, some later insn might be using I2's dest and have
3699 a LOG_LINK pointing at I3. We must remove this link.
3700 The simplest way to remove the link is to point it at I1,
3701 which we know will be a NOTE. */
3702
3703 /* newi2pat is usually a SET here; however, recog_for_combine might
3704 have added some clobbers. */
3705 if (GET_CODE (newi2pat) == PARALLEL)
3706 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3707 else
3708 ni2dest = SET_DEST (newi2pat);
3709
3710 for (insn = NEXT_INSN (i3);
3711 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3712 || insn != BB_HEAD (this_basic_block->next_bb));
3713 insn = NEXT_INSN (insn))
3714 {
3715 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3716 {
3717 for (link = LOG_LINKS (insn); link;
3718 link = XEXP (link, 1))
3719 if (XEXP (link, 0) == i3)
3720 XEXP (link, 0) = i1;
3721
3722 break;
3723 }
3724 }
3725 }
3726
3727 {
3728 rtx i3notes, i2notes, i1notes = 0;
3729 rtx i3links, i2links, i1links = 0;
3730 rtx midnotes = 0;
3731 unsigned int regno;
3732 /* Compute which registers we expect to eliminate. newi2pat may be setting
3733 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3734 same as i3dest, in which case newi2pat may be setting i1dest. */
3735 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3736 || i2dest_in_i2src || i2dest_in_i1src
3737 || !i2dest_killed
3738 ? 0 : i2dest);
3739 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3740 || (newi2pat && reg_set_p (i1dest, newi2pat))
3741 || !i1dest_killed
3742 ? 0 : i1dest);
3743
3744 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3745 clear them. */
3746 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3747 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3748 if (i1)
3749 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3750
3751 /* Ensure that we do not have something that should not be shared but
3752 occurs multiple times in the new insns. Check this by first
3753 resetting all the `used' flags and then copying anything is shared. */
3754
3755 reset_used_flags (i3notes);
3756 reset_used_flags (i2notes);
3757 reset_used_flags (i1notes);
3758 reset_used_flags (newpat);
3759 reset_used_flags (newi2pat);
3760 if (undobuf.other_insn)
3761 reset_used_flags (PATTERN (undobuf.other_insn));
3762
3763 i3notes = copy_rtx_if_shared (i3notes);
3764 i2notes = copy_rtx_if_shared (i2notes);
3765 i1notes = copy_rtx_if_shared (i1notes);
3766 newpat = copy_rtx_if_shared (newpat);
3767 newi2pat = copy_rtx_if_shared (newi2pat);
3768 if (undobuf.other_insn)
3769 reset_used_flags (PATTERN (undobuf.other_insn));
3770
3771 INSN_CODE (i3) = insn_code_number;
3772 PATTERN (i3) = newpat;
3773
3774 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3775 {
3776 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3777
3778 reset_used_flags (call_usage);
3779 call_usage = copy_rtx (call_usage);
3780
3781 if (substed_i2)
3782 replace_rtx (call_usage, i2dest, i2src);
3783
3784 if (substed_i1)
3785 replace_rtx (call_usage, i1dest, i1src);
3786
3787 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3788 }
3789
3790 if (undobuf.other_insn)
3791 INSN_CODE (undobuf.other_insn) = other_code_number;
3792
3793 /* We had one special case above where I2 had more than one set and
3794 we replaced a destination of one of those sets with the destination
3795 of I3. In that case, we have to update LOG_LINKS of insns later
3796 in this basic block. Note that this (expensive) case is rare.
3797
3798 Also, in this case, we must pretend that all REG_NOTEs for I2
3799 actually came from I3, so that REG_UNUSED notes from I2 will be
3800 properly handled. */
3801
3802 if (i3_subst_into_i2)
3803 {
3804 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3805 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
3806 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
3807 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3808 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3809 && ! find_reg_note (i2, REG_UNUSED,
3810 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3811 for (temp = NEXT_INSN (i2);
3812 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3813 || BB_HEAD (this_basic_block) != temp);
3814 temp = NEXT_INSN (temp))
3815 if (temp != i3 && INSN_P (temp))
3816 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3817 if (XEXP (link, 0) == i2)
3818 XEXP (link, 0) = i3;
3819
3820 if (i3notes)
3821 {
3822 rtx link = i3notes;
3823 while (XEXP (link, 1))
3824 link = XEXP (link, 1);
3825 XEXP (link, 1) = i2notes;
3826 }
3827 else
3828 i3notes = i2notes;
3829 i2notes = 0;
3830 }
3831
3832 LOG_LINKS (i3) = 0;
3833 REG_NOTES (i3) = 0;
3834 LOG_LINKS (i2) = 0;
3835 REG_NOTES (i2) = 0;
3836
3837 if (newi2pat)
3838 {
3839 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
3840 propagate_for_debug (i2, i3, i2dest, i2src, false);
3841 INSN_CODE (i2) = i2_code_number;
3842 PATTERN (i2) = newi2pat;
3843 }
3844 else
3845 {
3846 if (MAY_HAVE_DEBUG_INSNS && i2src)
3847 propagate_for_debug (i2, i3, i2dest, i2src, i3_subst_into_i2);
3848 SET_INSN_DELETED (i2);
3849 }
3850
3851 if (i1)
3852 {
3853 LOG_LINKS (i1) = 0;
3854 REG_NOTES (i1) = 0;
3855 if (MAY_HAVE_DEBUG_INSNS)
3856 propagate_for_debug (i1, i3, i1dest, i1src, false);
3857 SET_INSN_DELETED (i1);
3858 }
3859
3860 /* Get death notes for everything that is now used in either I3 or
3861 I2 and used to die in a previous insn. If we built two new
3862 patterns, move from I1 to I2 then I2 to I3 so that we get the
3863 proper movement on registers that I2 modifies. */
3864
3865 if (newi2pat)
3866 {
3867 move_deaths (newi2pat, NULL_RTX, DF_INSN_LUID (i1), i2, &midnotes);
3868 move_deaths (newpat, newi2pat, DF_INSN_LUID (i1), i3, &midnotes);
3869 }
3870 else
3871 move_deaths (newpat, NULL_RTX, i1 ? DF_INSN_LUID (i1) : DF_INSN_LUID (i2),
3872 i3, &midnotes);
3873
3874 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3875 if (i3notes)
3876 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3877 elim_i2, elim_i1);
3878 if (i2notes)
3879 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3880 elim_i2, elim_i1);
3881 if (i1notes)
3882 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3883 elim_i2, elim_i1);
3884 if (midnotes)
3885 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3886 elim_i2, elim_i1);
3887
3888 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3889 know these are REG_UNUSED and want them to go to the desired insn,
3890 so we always pass it as i3. */
3891
3892 if (newi2pat && new_i2_notes)
3893 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3894
3895 if (new_i3_notes)
3896 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3897
3898 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3899 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3900 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3901 in that case, it might delete I2. Similarly for I2 and I1.
3902 Show an additional death due to the REG_DEAD note we make here. If
3903 we discard it in distribute_notes, we will decrement it again. */
3904
3905 if (i3dest_killed)
3906 {
3907 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3908 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
3909 NULL_RTX),
3910 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3911 else
3912 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
3913 NULL_RTX),
3914 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3915 elim_i2, elim_i1);
3916 }
3917
3918 if (i2dest_in_i2src)
3919 {
3920 if (newi2pat && reg_set_p (i2dest, newi2pat))
3921 distribute_notes (alloc_reg_note (REG_DEAD, i2dest, NULL_RTX),
3922 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3923 else
3924 distribute_notes (alloc_reg_note (REG_DEAD, i2dest, NULL_RTX),
3925 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3926 NULL_RTX, NULL_RTX);
3927 }
3928
3929 if (i1dest_in_i1src)
3930 {
3931 if (newi2pat && reg_set_p (i1dest, newi2pat))
3932 distribute_notes (alloc_reg_note (REG_DEAD, i1dest, NULL_RTX),
3933 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3934 else
3935 distribute_notes (alloc_reg_note (REG_DEAD, i1dest, NULL_RTX),
3936 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3937 NULL_RTX, NULL_RTX);
3938 }
3939
3940 distribute_links (i3links);
3941 distribute_links (i2links);
3942 distribute_links (i1links);
3943
3944 if (REG_P (i2dest))
3945 {
3946 rtx link;
3947 rtx i2_insn = 0, i2_val = 0, set;
3948
3949 /* The insn that used to set this register doesn't exist, and
3950 this life of the register may not exist either. See if one of
3951 I3's links points to an insn that sets I2DEST. If it does,
3952 that is now the last known value for I2DEST. If we don't update
3953 this and I2 set the register to a value that depended on its old
3954 contents, we will get confused. If this insn is used, thing
3955 will be set correctly in combine_instructions. */
3956
3957 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3958 if ((set = single_set (XEXP (link, 0))) != 0
3959 && rtx_equal_p (i2dest, SET_DEST (set)))
3960 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3961
3962 record_value_for_reg (i2dest, i2_insn, i2_val);
3963
3964 /* If the reg formerly set in I2 died only once and that was in I3,
3965 zero its use count so it won't make `reload' do any work. */
3966 if (! added_sets_2
3967 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3968 && ! i2dest_in_i2src)
3969 {
3970 regno = REGNO (i2dest);
3971 INC_REG_N_SETS (regno, -1);
3972 }
3973 }
3974
3975 if (i1 && REG_P (i1dest))
3976 {
3977 rtx link;
3978 rtx i1_insn = 0, i1_val = 0, set;
3979
3980 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3981 if ((set = single_set (XEXP (link, 0))) != 0
3982 && rtx_equal_p (i1dest, SET_DEST (set)))
3983 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3984
3985 record_value_for_reg (i1dest, i1_insn, i1_val);
3986
3987 regno = REGNO (i1dest);
3988 if (! added_sets_1 && ! i1dest_in_i1src)
3989 INC_REG_N_SETS (regno, -1);
3990 }
3991
3992 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3993 been made to this insn. The order of
3994 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3995 can affect nonzero_bits of newpat */
3996 if (newi2pat)
3997 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3998 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3999 }
4000
4001 if (undobuf.other_insn != NULL_RTX)
4002 {
4003 if (dump_file)
4004 {
4005 fprintf (dump_file, "modifying other_insn ");
4006 dump_insn_slim (dump_file, undobuf.other_insn);
4007 }
4008 df_insn_rescan (undobuf.other_insn);
4009 }
4010
4011 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4012 {
4013 if (dump_file)
4014 {
4015 fprintf (dump_file, "modifying insn i1 ");
4016 dump_insn_slim (dump_file, i1);
4017 }
4018 df_insn_rescan (i1);
4019 }
4020
4021 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4022 {
4023 if (dump_file)
4024 {
4025 fprintf (dump_file, "modifying insn i2 ");
4026 dump_insn_slim (dump_file, i2);
4027 }
4028 df_insn_rescan (i2);
4029 }
4030
4031 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4032 {
4033 if (dump_file)
4034 {
4035 fprintf (dump_file, "modifying insn i3 ");
4036 dump_insn_slim (dump_file, i3);
4037 }
4038 df_insn_rescan (i3);
4039 }
4040
4041 /* Set new_direct_jump_p if a new return or simple jump instruction
4042 has been created. Adjust the CFG accordingly. */
4043
4044 if (returnjump_p (i3) || any_uncondjump_p (i3))
4045 {
4046 *new_direct_jump_p = 1;
4047 mark_jump_label (PATTERN (i3), i3, 0);
4048 update_cfg_for_uncondjump (i3);
4049 }
4050
4051 if (undobuf.other_insn != NULL_RTX
4052 && (returnjump_p (undobuf.other_insn)
4053 || any_uncondjump_p (undobuf.other_insn)))
4054 {
4055 *new_direct_jump_p = 1;
4056 update_cfg_for_uncondjump (undobuf.other_insn);
4057 }
4058
4059 /* A noop might also need cleaning up of CFG, if it comes from the
4060 simplification of a jump. */
4061 if (GET_CODE (newpat) == SET
4062 && SET_SRC (newpat) == pc_rtx
4063 && SET_DEST (newpat) == pc_rtx)
4064 {
4065 *new_direct_jump_p = 1;
4066 update_cfg_for_uncondjump (i3);
4067 }
4068
4069 combine_successes++;
4070 undo_commit ();
4071
4072 if (added_links_insn
4073 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4074 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4075 return added_links_insn;
4076 else
4077 return newi2pat ? i2 : i3;
4078 }
4079 \f
4080 /* Undo all the modifications recorded in undobuf. */
4081
4082 static void
4083 undo_all (void)
4084 {
4085 struct undo *undo, *next;
4086
4087 for (undo = undobuf.undos; undo; undo = next)
4088 {
4089 next = undo->next;
4090 switch (undo->kind)
4091 {
4092 case UNDO_RTX:
4093 *undo->where.r = undo->old_contents.r;
4094 break;
4095 case UNDO_INT:
4096 *undo->where.i = undo->old_contents.i;
4097 break;
4098 case UNDO_MODE:
4099 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4100 break;
4101 default:
4102 gcc_unreachable ();
4103 }
4104
4105 undo->next = undobuf.frees;
4106 undobuf.frees = undo;
4107 }
4108
4109 undobuf.undos = 0;
4110 }
4111
4112 /* We've committed to accepting the changes we made. Move all
4113 of the undos to the free list. */
4114
4115 static void
4116 undo_commit (void)
4117 {
4118 struct undo *undo, *next;
4119
4120 for (undo = undobuf.undos; undo; undo = next)
4121 {
4122 next = undo->next;
4123 undo->next = undobuf.frees;
4124 undobuf.frees = undo;
4125 }
4126 undobuf.undos = 0;
4127 }
4128 \f
4129 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4130 where we have an arithmetic expression and return that point. LOC will
4131 be inside INSN.
4132
4133 try_combine will call this function to see if an insn can be split into
4134 two insns. */
4135
4136 static rtx *
4137 find_split_point (rtx *loc, rtx insn)
4138 {
4139 rtx x = *loc;
4140 enum rtx_code code = GET_CODE (x);
4141 rtx *split;
4142 unsigned HOST_WIDE_INT len = 0;
4143 HOST_WIDE_INT pos = 0;
4144 int unsignedp = 0;
4145 rtx inner = NULL_RTX;
4146
4147 /* First special-case some codes. */
4148 switch (code)
4149 {
4150 case SUBREG:
4151 #ifdef INSN_SCHEDULING
4152 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4153 point. */
4154 if (MEM_P (SUBREG_REG (x)))
4155 return loc;
4156 #endif
4157 return find_split_point (&SUBREG_REG (x), insn);
4158
4159 case MEM:
4160 #ifdef HAVE_lo_sum
4161 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4162 using LO_SUM and HIGH. */
4163 if (GET_CODE (XEXP (x, 0)) == CONST
4164 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4165 {
4166 enum machine_mode address_mode
4167 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
4168
4169 SUBST (XEXP (x, 0),
4170 gen_rtx_LO_SUM (address_mode,
4171 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4172 XEXP (x, 0)));
4173 return &XEXP (XEXP (x, 0), 0);
4174 }
4175 #endif
4176
4177 /* If we have a PLUS whose second operand is a constant and the
4178 address is not valid, perhaps will can split it up using
4179 the machine-specific way to split large constants. We use
4180 the first pseudo-reg (one of the virtual regs) as a placeholder;
4181 it will not remain in the result. */
4182 if (GET_CODE (XEXP (x, 0)) == PLUS
4183 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4184 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4185 MEM_ADDR_SPACE (x)))
4186 {
4187 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4188 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4189 XEXP (x, 0)),
4190 subst_insn);
4191
4192 /* This should have produced two insns, each of which sets our
4193 placeholder. If the source of the second is a valid address,
4194 we can make put both sources together and make a split point
4195 in the middle. */
4196
4197 if (seq
4198 && NEXT_INSN (seq) != NULL_RTX
4199 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4200 && NONJUMP_INSN_P (seq)
4201 && GET_CODE (PATTERN (seq)) == SET
4202 && SET_DEST (PATTERN (seq)) == reg
4203 && ! reg_mentioned_p (reg,
4204 SET_SRC (PATTERN (seq)))
4205 && NONJUMP_INSN_P (NEXT_INSN (seq))
4206 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4207 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4208 && memory_address_addr_space_p
4209 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4210 MEM_ADDR_SPACE (x)))
4211 {
4212 rtx src1 = SET_SRC (PATTERN (seq));
4213 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4214
4215 /* Replace the placeholder in SRC2 with SRC1. If we can
4216 find where in SRC2 it was placed, that can become our
4217 split point and we can replace this address with SRC2.
4218 Just try two obvious places. */
4219
4220 src2 = replace_rtx (src2, reg, src1);
4221 split = 0;
4222 if (XEXP (src2, 0) == src1)
4223 split = &XEXP (src2, 0);
4224 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4225 && XEXP (XEXP (src2, 0), 0) == src1)
4226 split = &XEXP (XEXP (src2, 0), 0);
4227
4228 if (split)
4229 {
4230 SUBST (XEXP (x, 0), src2);
4231 return split;
4232 }
4233 }
4234
4235 /* If that didn't work, perhaps the first operand is complex and
4236 needs to be computed separately, so make a split point there.
4237 This will occur on machines that just support REG + CONST
4238 and have a constant moved through some previous computation. */
4239
4240 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4241 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4242 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4243 return &XEXP (XEXP (x, 0), 0);
4244 }
4245
4246 /* If we have a PLUS whose first operand is complex, try computing it
4247 separately by making a split there. */
4248 if (GET_CODE (XEXP (x, 0)) == PLUS
4249 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4250 MEM_ADDR_SPACE (x))
4251 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4252 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4253 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4254 return &XEXP (XEXP (x, 0), 0);
4255 break;
4256
4257 case SET:
4258 #ifdef HAVE_cc0
4259 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4260 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4261 we need to put the operand into a register. So split at that
4262 point. */
4263
4264 if (SET_DEST (x) == cc0_rtx
4265 && GET_CODE (SET_SRC (x)) != COMPARE
4266 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4267 && !OBJECT_P (SET_SRC (x))
4268 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4269 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4270 return &SET_SRC (x);
4271 #endif
4272
4273 /* See if we can split SET_SRC as it stands. */
4274 split = find_split_point (&SET_SRC (x), insn);
4275 if (split && split != &SET_SRC (x))
4276 return split;
4277
4278 /* See if we can split SET_DEST as it stands. */
4279 split = find_split_point (&SET_DEST (x), insn);
4280 if (split && split != &SET_DEST (x))
4281 return split;
4282
4283 /* See if this is a bitfield assignment with everything constant. If
4284 so, this is an IOR of an AND, so split it into that. */
4285 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4286 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
4287 <= HOST_BITS_PER_WIDE_INT)
4288 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4289 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4290 && CONST_INT_P (SET_SRC (x))
4291 && ((INTVAL (XEXP (SET_DEST (x), 1))
4292 + INTVAL (XEXP (SET_DEST (x), 2)))
4293 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4294 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4295 {
4296 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4297 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4298 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4299 rtx dest = XEXP (SET_DEST (x), 0);
4300 enum machine_mode mode = GET_MODE (dest);
4301 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
4302 rtx or_mask;
4303
4304 if (BITS_BIG_ENDIAN)
4305 pos = GET_MODE_BITSIZE (mode) - len - pos;
4306
4307 or_mask = gen_int_mode (src << pos, mode);
4308 if (src == mask)
4309 SUBST (SET_SRC (x),
4310 simplify_gen_binary (IOR, mode, dest, or_mask));
4311 else
4312 {
4313 rtx negmask = gen_int_mode (~(mask << pos), mode);
4314 SUBST (SET_SRC (x),
4315 simplify_gen_binary (IOR, mode,
4316 simplify_gen_binary (AND, mode,
4317 dest, negmask),
4318 or_mask));
4319 }
4320
4321 SUBST (SET_DEST (x), dest);
4322
4323 split = find_split_point (&SET_SRC (x), insn);
4324 if (split && split != &SET_SRC (x))
4325 return split;
4326 }
4327
4328 /* Otherwise, see if this is an operation that we can split into two.
4329 If so, try to split that. */
4330 code = GET_CODE (SET_SRC (x));
4331
4332 switch (code)
4333 {
4334 case AND:
4335 /* If we are AND'ing with a large constant that is only a single
4336 bit and the result is only being used in a context where we
4337 need to know if it is zero or nonzero, replace it with a bit
4338 extraction. This will avoid the large constant, which might
4339 have taken more than one insn to make. If the constant were
4340 not a valid argument to the AND but took only one insn to make,
4341 this is no worse, but if it took more than one insn, it will
4342 be better. */
4343
4344 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4345 && REG_P (XEXP (SET_SRC (x), 0))
4346 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4347 && REG_P (SET_DEST (x))
4348 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4349 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4350 && XEXP (*split, 0) == SET_DEST (x)
4351 && XEXP (*split, 1) == const0_rtx)
4352 {
4353 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4354 XEXP (SET_SRC (x), 0),
4355 pos, NULL_RTX, 1, 1, 0, 0);
4356 if (extraction != 0)
4357 {
4358 SUBST (SET_SRC (x), extraction);
4359 return find_split_point (loc, insn);
4360 }
4361 }
4362 break;
4363
4364 case NE:
4365 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4366 is known to be on, this can be converted into a NEG of a shift. */
4367 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4368 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4369 && 1 <= (pos = exact_log2
4370 (nonzero_bits (XEXP (SET_SRC (x), 0),
4371 GET_MODE (XEXP (SET_SRC (x), 0))))))
4372 {
4373 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4374
4375 SUBST (SET_SRC (x),
4376 gen_rtx_NEG (mode,
4377 gen_rtx_LSHIFTRT (mode,
4378 XEXP (SET_SRC (x), 0),
4379 GEN_INT (pos))));
4380
4381 split = find_split_point (&SET_SRC (x), insn);
4382 if (split && split != &SET_SRC (x))
4383 return split;
4384 }
4385 break;
4386
4387 case SIGN_EXTEND:
4388 inner = XEXP (SET_SRC (x), 0);
4389
4390 /* We can't optimize if either mode is a partial integer
4391 mode as we don't know how many bits are significant
4392 in those modes. */
4393 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4394 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4395 break;
4396
4397 pos = 0;
4398 len = GET_MODE_BITSIZE (GET_MODE (inner));
4399 unsignedp = 0;
4400 break;
4401
4402 case SIGN_EXTRACT:
4403 case ZERO_EXTRACT:
4404 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4405 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4406 {
4407 inner = XEXP (SET_SRC (x), 0);
4408 len = INTVAL (XEXP (SET_SRC (x), 1));
4409 pos = INTVAL (XEXP (SET_SRC (x), 2));
4410
4411 if (BITS_BIG_ENDIAN)
4412 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4413 unsignedp = (code == ZERO_EXTRACT);
4414 }
4415 break;
4416
4417 default:
4418 break;
4419 }
4420
4421 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4422 {
4423 enum machine_mode mode = GET_MODE (SET_SRC (x));
4424
4425 /* For unsigned, we have a choice of a shift followed by an
4426 AND or two shifts. Use two shifts for field sizes where the
4427 constant might be too large. We assume here that we can
4428 always at least get 8-bit constants in an AND insn, which is
4429 true for every current RISC. */
4430
4431 if (unsignedp && len <= 8)
4432 {
4433 SUBST (SET_SRC (x),
4434 gen_rtx_AND (mode,
4435 gen_rtx_LSHIFTRT
4436 (mode, gen_lowpart (mode, inner),
4437 GEN_INT (pos)),
4438 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
4439
4440 split = find_split_point (&SET_SRC (x), insn);
4441 if (split && split != &SET_SRC (x))
4442 return split;
4443 }
4444 else
4445 {
4446 SUBST (SET_SRC (x),
4447 gen_rtx_fmt_ee
4448 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4449 gen_rtx_ASHIFT (mode,
4450 gen_lowpart (mode, inner),
4451 GEN_INT (GET_MODE_BITSIZE (mode)
4452 - len - pos)),
4453 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4454
4455 split = find_split_point (&SET_SRC (x), insn);
4456 if (split && split != &SET_SRC (x))
4457 return split;
4458 }
4459 }
4460
4461 /* See if this is a simple operation with a constant as the second
4462 operand. It might be that this constant is out of range and hence
4463 could be used as a split point. */
4464 if (BINARY_P (SET_SRC (x))
4465 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4466 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4467 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4468 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4469 return &XEXP (SET_SRC (x), 1);
4470
4471 /* Finally, see if this is a simple operation with its first operand
4472 not in a register. The operation might require this operand in a
4473 register, so return it as a split point. We can always do this
4474 because if the first operand were another operation, we would have
4475 already found it as a split point. */
4476 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4477 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4478 return &XEXP (SET_SRC (x), 0);
4479
4480 return 0;
4481
4482 case AND:
4483 case IOR:
4484 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4485 it is better to write this as (not (ior A B)) so we can split it.
4486 Similarly for IOR. */
4487 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4488 {
4489 SUBST (*loc,
4490 gen_rtx_NOT (GET_MODE (x),
4491 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4492 GET_MODE (x),
4493 XEXP (XEXP (x, 0), 0),
4494 XEXP (XEXP (x, 1), 0))));
4495 return find_split_point (loc, insn);
4496 }
4497
4498 /* Many RISC machines have a large set of logical insns. If the
4499 second operand is a NOT, put it first so we will try to split the
4500 other operand first. */
4501 if (GET_CODE (XEXP (x, 1)) == NOT)
4502 {
4503 rtx tem = XEXP (x, 0);
4504 SUBST (XEXP (x, 0), XEXP (x, 1));
4505 SUBST (XEXP (x, 1), tem);
4506 }
4507 break;
4508
4509 default:
4510 break;
4511 }
4512
4513 /* Otherwise, select our actions depending on our rtx class. */
4514 switch (GET_RTX_CLASS (code))
4515 {
4516 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4517 case RTX_TERNARY:
4518 split = find_split_point (&XEXP (x, 2), insn);
4519 if (split)
4520 return split;
4521 /* ... fall through ... */
4522 case RTX_BIN_ARITH:
4523 case RTX_COMM_ARITH:
4524 case RTX_COMPARE:
4525 case RTX_COMM_COMPARE:
4526 split = find_split_point (&XEXP (x, 1), insn);
4527 if (split)
4528 return split;
4529 /* ... fall through ... */
4530 case RTX_UNARY:
4531 /* Some machines have (and (shift ...) ...) insns. If X is not
4532 an AND, but XEXP (X, 0) is, use it as our split point. */
4533 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4534 return &XEXP (x, 0);
4535
4536 split = find_split_point (&XEXP (x, 0), insn);
4537 if (split)
4538 return split;
4539 return loc;
4540
4541 default:
4542 /* Otherwise, we don't have a split point. */
4543 return 0;
4544 }
4545 }
4546 \f
4547 /* Throughout X, replace FROM with TO, and return the result.
4548 The result is TO if X is FROM;
4549 otherwise the result is X, but its contents may have been modified.
4550 If they were modified, a record was made in undobuf so that
4551 undo_all will (among other things) return X to its original state.
4552
4553 If the number of changes necessary is too much to record to undo,
4554 the excess changes are not made, so the result is invalid.
4555 The changes already made can still be undone.
4556 undobuf.num_undo is incremented for such changes, so by testing that
4557 the caller can tell whether the result is valid.
4558
4559 `n_occurrences' is incremented each time FROM is replaced.
4560
4561 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4562
4563 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4564 by copying if `n_occurrences' is nonzero. */
4565
4566 static rtx
4567 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4568 {
4569 enum rtx_code code = GET_CODE (x);
4570 enum machine_mode op0_mode = VOIDmode;
4571 const char *fmt;
4572 int len, i;
4573 rtx new_rtx;
4574
4575 /* Two expressions are equal if they are identical copies of a shared
4576 RTX or if they are both registers with the same register number
4577 and mode. */
4578
4579 #define COMBINE_RTX_EQUAL_P(X,Y) \
4580 ((X) == (Y) \
4581 || (REG_P (X) && REG_P (Y) \
4582 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4583
4584 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4585 {
4586 n_occurrences++;
4587 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4588 }
4589
4590 /* If X and FROM are the same register but different modes, they
4591 will not have been seen as equal above. However, the log links code
4592 will make a LOG_LINKS entry for that case. If we do nothing, we
4593 will try to rerecognize our original insn and, when it succeeds,
4594 we will delete the feeding insn, which is incorrect.
4595
4596 So force this insn not to match in this (rare) case. */
4597 if (! in_dest && code == REG && REG_P (from)
4598 && reg_overlap_mentioned_p (x, from))
4599 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4600
4601 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4602 of which may contain things that can be combined. */
4603 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4604 return x;
4605
4606 /* It is possible to have a subexpression appear twice in the insn.
4607 Suppose that FROM is a register that appears within TO.
4608 Then, after that subexpression has been scanned once by `subst',
4609 the second time it is scanned, TO may be found. If we were
4610 to scan TO here, we would find FROM within it and create a
4611 self-referent rtl structure which is completely wrong. */
4612 if (COMBINE_RTX_EQUAL_P (x, to))
4613 return to;
4614
4615 /* Parallel asm_operands need special attention because all of the
4616 inputs are shared across the arms. Furthermore, unsharing the
4617 rtl results in recognition failures. Failure to handle this case
4618 specially can result in circular rtl.
4619
4620 Solve this by doing a normal pass across the first entry of the
4621 parallel, and only processing the SET_DESTs of the subsequent
4622 entries. Ug. */
4623
4624 if (code == PARALLEL
4625 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4626 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4627 {
4628 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4629
4630 /* If this substitution failed, this whole thing fails. */
4631 if (GET_CODE (new_rtx) == CLOBBER
4632 && XEXP (new_rtx, 0) == const0_rtx)
4633 return new_rtx;
4634
4635 SUBST (XVECEXP (x, 0, 0), new_rtx);
4636
4637 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4638 {
4639 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4640
4641 if (!REG_P (dest)
4642 && GET_CODE (dest) != CC0
4643 && GET_CODE (dest) != PC)
4644 {
4645 new_rtx = subst (dest, from, to, 0, unique_copy);
4646
4647 /* If this substitution failed, this whole thing fails. */
4648 if (GET_CODE (new_rtx) == CLOBBER
4649 && XEXP (new_rtx, 0) == const0_rtx)
4650 return new_rtx;
4651
4652 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4653 }
4654 }
4655 }
4656 else
4657 {
4658 len = GET_RTX_LENGTH (code);
4659 fmt = GET_RTX_FORMAT (code);
4660
4661 /* We don't need to process a SET_DEST that is a register, CC0,
4662 or PC, so set up to skip this common case. All other cases
4663 where we want to suppress replacing something inside a
4664 SET_SRC are handled via the IN_DEST operand. */
4665 if (code == SET
4666 && (REG_P (SET_DEST (x))
4667 || GET_CODE (SET_DEST (x)) == CC0
4668 || GET_CODE (SET_DEST (x)) == PC))
4669 fmt = "ie";
4670
4671 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
4672 constant. */
4673 if (fmt[0] == 'e')
4674 op0_mode = GET_MODE (XEXP (x, 0));
4675
4676 for (i = 0; i < len; i++)
4677 {
4678 if (fmt[i] == 'E')
4679 {
4680 int j;
4681 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4682 {
4683 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
4684 {
4685 new_rtx = (unique_copy && n_occurrences
4686 ? copy_rtx (to) : to);
4687 n_occurrences++;
4688 }
4689 else
4690 {
4691 new_rtx = subst (XVECEXP (x, i, j), from, to, 0,
4692 unique_copy);
4693
4694 /* If this substitution failed, this whole thing
4695 fails. */
4696 if (GET_CODE (new_rtx) == CLOBBER
4697 && XEXP (new_rtx, 0) == const0_rtx)
4698 return new_rtx;
4699 }
4700
4701 SUBST (XVECEXP (x, i, j), new_rtx);
4702 }
4703 }
4704 else if (fmt[i] == 'e')
4705 {
4706 /* If this is a register being set, ignore it. */
4707 new_rtx = XEXP (x, i);
4708 if (in_dest
4709 && i == 0
4710 && (((code == SUBREG || code == ZERO_EXTRACT)
4711 && REG_P (new_rtx))
4712 || code == STRICT_LOW_PART))
4713 ;
4714
4715 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4716 {
4717 /* In general, don't install a subreg involving two
4718 modes not tieable. It can worsen register
4719 allocation, and can even make invalid reload
4720 insns, since the reg inside may need to be copied
4721 from in the outside mode, and that may be invalid
4722 if it is an fp reg copied in integer mode.
4723
4724 We allow two exceptions to this: It is valid if
4725 it is inside another SUBREG and the mode of that
4726 SUBREG and the mode of the inside of TO is
4727 tieable and it is valid if X is a SET that copies
4728 FROM to CC0. */
4729
4730 if (GET_CODE (to) == SUBREG
4731 && ! MODES_TIEABLE_P (GET_MODE (to),
4732 GET_MODE (SUBREG_REG (to)))
4733 && ! (code == SUBREG
4734 && MODES_TIEABLE_P (GET_MODE (x),
4735 GET_MODE (SUBREG_REG (to))))
4736 #ifdef HAVE_cc0
4737 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4738 #endif
4739 )
4740 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4741
4742 #ifdef CANNOT_CHANGE_MODE_CLASS
4743 if (code == SUBREG
4744 && REG_P (to)
4745 && REGNO (to) < FIRST_PSEUDO_REGISTER
4746 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4747 GET_MODE (to),
4748 GET_MODE (x)))
4749 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4750 #endif
4751
4752 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4753 n_occurrences++;
4754 }
4755 else
4756 /* If we are in a SET_DEST, suppress most cases unless we
4757 have gone inside a MEM, in which case we want to
4758 simplify the address. We assume here that things that
4759 are actually part of the destination have their inner
4760 parts in the first expression. This is true for SUBREG,
4761 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4762 things aside from REG and MEM that should appear in a
4763 SET_DEST. */
4764 new_rtx = subst (XEXP (x, i), from, to,
4765 (((in_dest
4766 && (code == SUBREG || code == STRICT_LOW_PART
4767 || code == ZERO_EXTRACT))
4768 || code == SET)
4769 && i == 0), unique_copy);
4770
4771 /* If we found that we will have to reject this combination,
4772 indicate that by returning the CLOBBER ourselves, rather than
4773 an expression containing it. This will speed things up as
4774 well as prevent accidents where two CLOBBERs are considered
4775 to be equal, thus producing an incorrect simplification. */
4776
4777 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
4778 return new_rtx;
4779
4780 if (GET_CODE (x) == SUBREG
4781 && (CONST_INT_P (new_rtx)
4782 || GET_CODE (new_rtx) == CONST_DOUBLE))
4783 {
4784 enum machine_mode mode = GET_MODE (x);
4785
4786 x = simplify_subreg (GET_MODE (x), new_rtx,
4787 GET_MODE (SUBREG_REG (x)),
4788 SUBREG_BYTE (x));
4789 if (! x)
4790 x = gen_rtx_CLOBBER (mode, const0_rtx);
4791 }
4792 else if (CONST_INT_P (new_rtx)
4793 && GET_CODE (x) == ZERO_EXTEND)
4794 {
4795 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4796 new_rtx, GET_MODE (XEXP (x, 0)));
4797 gcc_assert (x);
4798 }
4799 else
4800 SUBST (XEXP (x, i), new_rtx);
4801 }
4802 }
4803 }
4804
4805 /* Check if we are loading something from the constant pool via float
4806 extension; in this case we would undo compress_float_constant
4807 optimization and degenerate constant load to an immediate value. */
4808 if (GET_CODE (x) == FLOAT_EXTEND
4809 && MEM_P (XEXP (x, 0))
4810 && MEM_READONLY_P (XEXP (x, 0)))
4811 {
4812 rtx tmp = avoid_constant_pool_reference (x);
4813 if (x != tmp)
4814 return x;
4815 }
4816
4817 /* Try to simplify X. If the simplification changed the code, it is likely
4818 that further simplification will help, so loop, but limit the number
4819 of repetitions that will be performed. */
4820
4821 for (i = 0; i < 4; i++)
4822 {
4823 /* If X is sufficiently simple, don't bother trying to do anything
4824 with it. */
4825 if (code != CONST_INT && code != REG && code != CLOBBER)
4826 x = combine_simplify_rtx (x, op0_mode, in_dest);
4827
4828 if (GET_CODE (x) == code)
4829 break;
4830
4831 code = GET_CODE (x);
4832
4833 /* We no longer know the original mode of operand 0 since we
4834 have changed the form of X) */
4835 op0_mode = VOIDmode;
4836 }
4837
4838 return x;
4839 }
4840 \f
4841 /* Simplify X, a piece of RTL. We just operate on the expression at the
4842 outer level; call `subst' to simplify recursively. Return the new
4843 expression.
4844
4845 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4846 if we are inside a SET_DEST. */
4847
4848 static rtx
4849 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4850 {
4851 enum rtx_code code = GET_CODE (x);
4852 enum machine_mode mode = GET_MODE (x);
4853 rtx temp;
4854 int i;
4855
4856 /* If this is a commutative operation, put a constant last and a complex
4857 expression first. We don't need to do this for comparisons here. */
4858 if (COMMUTATIVE_ARITH_P (x)
4859 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4860 {
4861 temp = XEXP (x, 0);
4862 SUBST (XEXP (x, 0), XEXP (x, 1));
4863 SUBST (XEXP (x, 1), temp);
4864 }
4865
4866 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4867 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4868 things. Check for cases where both arms are testing the same
4869 condition.
4870
4871 Don't do anything if all operands are very simple. */
4872
4873 if ((BINARY_P (x)
4874 && ((!OBJECT_P (XEXP (x, 0))
4875 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4876 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4877 || (!OBJECT_P (XEXP (x, 1))
4878 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4879 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4880 || (UNARY_P (x)
4881 && (!OBJECT_P (XEXP (x, 0))
4882 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4883 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4884 {
4885 rtx cond, true_rtx, false_rtx;
4886
4887 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4888 if (cond != 0
4889 /* If everything is a comparison, what we have is highly unlikely
4890 to be simpler, so don't use it. */
4891 && ! (COMPARISON_P (x)
4892 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4893 {
4894 rtx cop1 = const0_rtx;
4895 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4896
4897 if (cond_code == NE && COMPARISON_P (cond))
4898 return x;
4899
4900 /* Simplify the alternative arms; this may collapse the true and
4901 false arms to store-flag values. Be careful to use copy_rtx
4902 here since true_rtx or false_rtx might share RTL with x as a
4903 result of the if_then_else_cond call above. */
4904 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4905 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4906
4907 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4908 is unlikely to be simpler. */
4909 if (general_operand (true_rtx, VOIDmode)
4910 && general_operand (false_rtx, VOIDmode))
4911 {
4912 enum rtx_code reversed;
4913
4914 /* Restarting if we generate a store-flag expression will cause
4915 us to loop. Just drop through in this case. */
4916
4917 /* If the result values are STORE_FLAG_VALUE and zero, we can
4918 just make the comparison operation. */
4919 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4920 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4921 cond, cop1);
4922 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4923 && ((reversed = reversed_comparison_code_parts
4924 (cond_code, cond, cop1, NULL))
4925 != UNKNOWN))
4926 x = simplify_gen_relational (reversed, mode, VOIDmode,
4927 cond, cop1);
4928
4929 /* Likewise, we can make the negate of a comparison operation
4930 if the result values are - STORE_FLAG_VALUE and zero. */
4931 else if (CONST_INT_P (true_rtx)
4932 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4933 && false_rtx == const0_rtx)
4934 x = simplify_gen_unary (NEG, mode,
4935 simplify_gen_relational (cond_code,
4936 mode, VOIDmode,
4937 cond, cop1),
4938 mode);
4939 else if (CONST_INT_P (false_rtx)
4940 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4941 && true_rtx == const0_rtx
4942 && ((reversed = reversed_comparison_code_parts
4943 (cond_code, cond, cop1, NULL))
4944 != UNKNOWN))
4945 x = simplify_gen_unary (NEG, mode,
4946 simplify_gen_relational (reversed,
4947 mode, VOIDmode,
4948 cond, cop1),
4949 mode);
4950 else
4951 return gen_rtx_IF_THEN_ELSE (mode,
4952 simplify_gen_relational (cond_code,
4953 mode,
4954 VOIDmode,
4955 cond,
4956 cop1),
4957 true_rtx, false_rtx);
4958
4959 code = GET_CODE (x);
4960 op0_mode = VOIDmode;
4961 }
4962 }
4963 }
4964
4965 /* Try to fold this expression in case we have constants that weren't
4966 present before. */
4967 temp = 0;
4968 switch (GET_RTX_CLASS (code))
4969 {
4970 case RTX_UNARY:
4971 if (op0_mode == VOIDmode)
4972 op0_mode = GET_MODE (XEXP (x, 0));
4973 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4974 break;
4975 case RTX_COMPARE:
4976 case RTX_COMM_COMPARE:
4977 {
4978 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4979 if (cmp_mode == VOIDmode)
4980 {
4981 cmp_mode = GET_MODE (XEXP (x, 1));
4982 if (cmp_mode == VOIDmode)
4983 cmp_mode = op0_mode;
4984 }
4985 temp = simplify_relational_operation (code, mode, cmp_mode,
4986 XEXP (x, 0), XEXP (x, 1));
4987 }
4988 break;
4989 case RTX_COMM_ARITH:
4990 case RTX_BIN_ARITH:
4991 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4992 break;
4993 case RTX_BITFIELD_OPS:
4994 case RTX_TERNARY:
4995 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4996 XEXP (x, 1), XEXP (x, 2));
4997 break;
4998 default:
4999 break;
5000 }
5001
5002 if (temp)
5003 {
5004 x = temp;
5005 code = GET_CODE (temp);
5006 op0_mode = VOIDmode;
5007 mode = GET_MODE (temp);
5008 }
5009
5010 /* First see if we can apply the inverse distributive law. */
5011 if (code == PLUS || code == MINUS
5012 || code == AND || code == IOR || code == XOR)
5013 {
5014 x = apply_distributive_law (x);
5015 code = GET_CODE (x);
5016 op0_mode = VOIDmode;
5017 }
5018
5019 /* If CODE is an associative operation not otherwise handled, see if we
5020 can associate some operands. This can win if they are constants or
5021 if they are logically related (i.e. (a & b) & a). */
5022 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5023 || code == AND || code == IOR || code == XOR
5024 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5025 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5026 || (flag_associative_math && FLOAT_MODE_P (mode))))
5027 {
5028 if (GET_CODE (XEXP (x, 0)) == code)
5029 {
5030 rtx other = XEXP (XEXP (x, 0), 0);
5031 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5032 rtx inner_op1 = XEXP (x, 1);
5033 rtx inner;
5034
5035 /* Make sure we pass the constant operand if any as the second
5036 one if this is a commutative operation. */
5037 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5038 {
5039 rtx tem = inner_op0;
5040 inner_op0 = inner_op1;
5041 inner_op1 = tem;
5042 }
5043 inner = simplify_binary_operation (code == MINUS ? PLUS
5044 : code == DIV ? MULT
5045 : code,
5046 mode, inner_op0, inner_op1);
5047
5048 /* For commutative operations, try the other pair if that one
5049 didn't simplify. */
5050 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5051 {
5052 other = XEXP (XEXP (x, 0), 1);
5053 inner = simplify_binary_operation (code, mode,
5054 XEXP (XEXP (x, 0), 0),
5055 XEXP (x, 1));
5056 }
5057
5058 if (inner)
5059 return simplify_gen_binary (code, mode, other, inner);
5060 }
5061 }
5062
5063 /* A little bit of algebraic simplification here. */
5064 switch (code)
5065 {
5066 case MEM:
5067 /* Ensure that our address has any ASHIFTs converted to MULT in case
5068 address-recognizing predicates are called later. */
5069 temp = make_compound_operation (XEXP (x, 0), MEM);
5070 SUBST (XEXP (x, 0), temp);
5071 break;
5072
5073 case SUBREG:
5074 if (op0_mode == VOIDmode)
5075 op0_mode = GET_MODE (SUBREG_REG (x));
5076
5077 /* See if this can be moved to simplify_subreg. */
5078 if (CONSTANT_P (SUBREG_REG (x))
5079 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5080 /* Don't call gen_lowpart if the inner mode
5081 is VOIDmode and we cannot simplify it, as SUBREG without
5082 inner mode is invalid. */
5083 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5084 || gen_lowpart_common (mode, SUBREG_REG (x))))
5085 return gen_lowpart (mode, SUBREG_REG (x));
5086
5087 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5088 break;
5089 {
5090 rtx temp;
5091 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5092 SUBREG_BYTE (x));
5093 if (temp)
5094 return temp;
5095 }
5096
5097 /* Don't change the mode of the MEM if that would change the meaning
5098 of the address. */
5099 if (MEM_P (SUBREG_REG (x))
5100 && (MEM_VOLATILE_P (SUBREG_REG (x))
5101 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
5102 return gen_rtx_CLOBBER (mode, const0_rtx);
5103
5104 /* Note that we cannot do any narrowing for non-constants since
5105 we might have been counting on using the fact that some bits were
5106 zero. We now do this in the SET. */
5107
5108 break;
5109
5110 case NEG:
5111 temp = expand_compound_operation (XEXP (x, 0));
5112
5113 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5114 replaced by (lshiftrt X C). This will convert
5115 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5116
5117 if (GET_CODE (temp) == ASHIFTRT
5118 && CONST_INT_P (XEXP (temp, 1))
5119 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
5120 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5121 INTVAL (XEXP (temp, 1)));
5122
5123 /* If X has only a single bit that might be nonzero, say, bit I, convert
5124 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5125 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5126 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5127 or a SUBREG of one since we'd be making the expression more
5128 complex if it was just a register. */
5129
5130 if (!REG_P (temp)
5131 && ! (GET_CODE (temp) == SUBREG
5132 && REG_P (SUBREG_REG (temp)))
5133 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5134 {
5135 rtx temp1 = simplify_shift_const
5136 (NULL_RTX, ASHIFTRT, mode,
5137 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5138 GET_MODE_BITSIZE (mode) - 1 - i),
5139 GET_MODE_BITSIZE (mode) - 1 - i);
5140
5141 /* If all we did was surround TEMP with the two shifts, we
5142 haven't improved anything, so don't use it. Otherwise,
5143 we are better off with TEMP1. */
5144 if (GET_CODE (temp1) != ASHIFTRT
5145 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5146 || XEXP (XEXP (temp1, 0), 0) != temp)
5147 return temp1;
5148 }
5149 break;
5150
5151 case TRUNCATE:
5152 /* We can't handle truncation to a partial integer mode here
5153 because we don't know the real bitsize of the partial
5154 integer mode. */
5155 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5156 break;
5157
5158 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5159 SUBST (XEXP (x, 0),
5160 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5161 GET_MODE_MASK (mode), 0));
5162
5163 /* We can truncate a constant value and return it. */
5164 if (CONST_INT_P (XEXP (x, 0)))
5165 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5166
5167 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5168 whose value is a comparison can be replaced with a subreg if
5169 STORE_FLAG_VALUE permits. */
5170 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5171 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5172 && (temp = get_last_value (XEXP (x, 0)))
5173 && COMPARISON_P (temp))
5174 return gen_lowpart (mode, XEXP (x, 0));
5175 break;
5176
5177 case CONST:
5178 /* (const (const X)) can become (const X). Do it this way rather than
5179 returning the inner CONST since CONST can be shared with a
5180 REG_EQUAL note. */
5181 if (GET_CODE (XEXP (x, 0)) == CONST)
5182 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5183 break;
5184
5185 #ifdef HAVE_lo_sum
5186 case LO_SUM:
5187 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5188 can add in an offset. find_split_point will split this address up
5189 again if it doesn't match. */
5190 if (GET_CODE (XEXP (x, 0)) == HIGH
5191 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5192 return XEXP (x, 1);
5193 break;
5194 #endif
5195
5196 case PLUS:
5197 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5198 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5199 bit-field and can be replaced by either a sign_extend or a
5200 sign_extract. The `and' may be a zero_extend and the two
5201 <c>, -<c> constants may be reversed. */
5202 if (GET_CODE (XEXP (x, 0)) == XOR
5203 && CONST_INT_P (XEXP (x, 1))
5204 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5205 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5206 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5207 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
5208 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5209 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5210 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5211 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5212 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
5213 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5214 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5215 == (unsigned int) i + 1))))
5216 return simplify_shift_const
5217 (NULL_RTX, ASHIFTRT, mode,
5218 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5219 XEXP (XEXP (XEXP (x, 0), 0), 0),
5220 GET_MODE_BITSIZE (mode) - (i + 1)),
5221 GET_MODE_BITSIZE (mode) - (i + 1));
5222
5223 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5224 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5225 the bitsize of the mode - 1. This allows simplification of
5226 "a = (b & 8) == 0;" */
5227 if (XEXP (x, 1) == constm1_rtx
5228 && !REG_P (XEXP (x, 0))
5229 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5230 && REG_P (SUBREG_REG (XEXP (x, 0))))
5231 && nonzero_bits (XEXP (x, 0), mode) == 1)
5232 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5233 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5234 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5235 GET_MODE_BITSIZE (mode) - 1),
5236 GET_MODE_BITSIZE (mode) - 1);
5237
5238 /* If we are adding two things that have no bits in common, convert
5239 the addition into an IOR. This will often be further simplified,
5240 for example in cases like ((a & 1) + (a & 2)), which can
5241 become a & 3. */
5242
5243 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5244 && (nonzero_bits (XEXP (x, 0), mode)
5245 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5246 {
5247 /* Try to simplify the expression further. */
5248 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5249 temp = combine_simplify_rtx (tor, mode, in_dest);
5250
5251 /* If we could, great. If not, do not go ahead with the IOR
5252 replacement, since PLUS appears in many special purpose
5253 address arithmetic instructions. */
5254 if (GET_CODE (temp) != CLOBBER && temp != tor)
5255 return temp;
5256 }
5257 break;
5258
5259 case MINUS:
5260 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5261 (and <foo> (const_int pow2-1)) */
5262 if (GET_CODE (XEXP (x, 1)) == AND
5263 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5264 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5265 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5266 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5267 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5268 break;
5269
5270 case MULT:
5271 /* If we have (mult (plus A B) C), apply the distributive law and then
5272 the inverse distributive law to see if things simplify. This
5273 occurs mostly in addresses, often when unrolling loops. */
5274
5275 if (GET_CODE (XEXP (x, 0)) == PLUS)
5276 {
5277 rtx result = distribute_and_simplify_rtx (x, 0);
5278 if (result)
5279 return result;
5280 }
5281
5282 /* Try simplify a*(b/c) as (a*b)/c. */
5283 if (FLOAT_MODE_P (mode) && flag_associative_math
5284 && GET_CODE (XEXP (x, 0)) == DIV)
5285 {
5286 rtx tem = simplify_binary_operation (MULT, mode,
5287 XEXP (XEXP (x, 0), 0),
5288 XEXP (x, 1));
5289 if (tem)
5290 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5291 }
5292 break;
5293
5294 case UDIV:
5295 /* If this is a divide by a power of two, treat it as a shift if
5296 its first operand is a shift. */
5297 if (CONST_INT_P (XEXP (x, 1))
5298 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
5299 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5300 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5301 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5302 || GET_CODE (XEXP (x, 0)) == ROTATE
5303 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5304 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5305 break;
5306
5307 case EQ: case NE:
5308 case GT: case GTU: case GE: case GEU:
5309 case LT: case LTU: case LE: case LEU:
5310 case UNEQ: case LTGT:
5311 case UNGT: case UNGE:
5312 case UNLT: case UNLE:
5313 case UNORDERED: case ORDERED:
5314 /* If the first operand is a condition code, we can't do anything
5315 with it. */
5316 if (GET_CODE (XEXP (x, 0)) == COMPARE
5317 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5318 && ! CC0_P (XEXP (x, 0))))
5319 {
5320 rtx op0 = XEXP (x, 0);
5321 rtx op1 = XEXP (x, 1);
5322 enum rtx_code new_code;
5323
5324 if (GET_CODE (op0) == COMPARE)
5325 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5326
5327 /* Simplify our comparison, if possible. */
5328 new_code = simplify_comparison (code, &op0, &op1);
5329
5330 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5331 if only the low-order bit is possibly nonzero in X (such as when
5332 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5333 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5334 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5335 (plus X 1).
5336
5337 Remove any ZERO_EXTRACT we made when thinking this was a
5338 comparison. It may now be simpler to use, e.g., an AND. If a
5339 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5340 the call to make_compound_operation in the SET case. */
5341
5342 if (STORE_FLAG_VALUE == 1
5343 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5344 && op1 == const0_rtx
5345 && mode == GET_MODE (op0)
5346 && nonzero_bits (op0, mode) == 1)
5347 return gen_lowpart (mode,
5348 expand_compound_operation (op0));
5349
5350 else if (STORE_FLAG_VALUE == 1
5351 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5352 && op1 == const0_rtx
5353 && mode == GET_MODE (op0)
5354 && (num_sign_bit_copies (op0, mode)
5355 == GET_MODE_BITSIZE (mode)))
5356 {
5357 op0 = expand_compound_operation (op0);
5358 return simplify_gen_unary (NEG, mode,
5359 gen_lowpart (mode, op0),
5360 mode);
5361 }
5362
5363 else if (STORE_FLAG_VALUE == 1
5364 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5365 && op1 == const0_rtx
5366 && mode == GET_MODE (op0)
5367 && nonzero_bits (op0, mode) == 1)
5368 {
5369 op0 = expand_compound_operation (op0);
5370 return simplify_gen_binary (XOR, mode,
5371 gen_lowpart (mode, op0),
5372 const1_rtx);
5373 }
5374
5375 else if (STORE_FLAG_VALUE == 1
5376 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5377 && op1 == const0_rtx
5378 && mode == GET_MODE (op0)
5379 && (num_sign_bit_copies (op0, mode)
5380 == GET_MODE_BITSIZE (mode)))
5381 {
5382 op0 = expand_compound_operation (op0);
5383 return plus_constant (gen_lowpart (mode, op0), 1);
5384 }
5385
5386 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5387 those above. */
5388 if (STORE_FLAG_VALUE == -1
5389 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5390 && op1 == const0_rtx
5391 && (num_sign_bit_copies (op0, mode)
5392 == GET_MODE_BITSIZE (mode)))
5393 return gen_lowpart (mode,
5394 expand_compound_operation (op0));
5395
5396 else if (STORE_FLAG_VALUE == -1
5397 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5398 && op1 == const0_rtx
5399 && mode == GET_MODE (op0)
5400 && nonzero_bits (op0, mode) == 1)
5401 {
5402 op0 = expand_compound_operation (op0);
5403 return simplify_gen_unary (NEG, mode,
5404 gen_lowpart (mode, op0),
5405 mode);
5406 }
5407
5408 else if (STORE_FLAG_VALUE == -1
5409 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5410 && op1 == const0_rtx
5411 && mode == GET_MODE (op0)
5412 && (num_sign_bit_copies (op0, mode)
5413 == GET_MODE_BITSIZE (mode)))
5414 {
5415 op0 = expand_compound_operation (op0);
5416 return simplify_gen_unary (NOT, mode,
5417 gen_lowpart (mode, op0),
5418 mode);
5419 }
5420
5421 /* If X is 0/1, (eq X 0) is X-1. */
5422 else if (STORE_FLAG_VALUE == -1
5423 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5424 && op1 == const0_rtx
5425 && mode == GET_MODE (op0)
5426 && nonzero_bits (op0, mode) == 1)
5427 {
5428 op0 = expand_compound_operation (op0);
5429 return plus_constant (gen_lowpart (mode, op0), -1);
5430 }
5431
5432 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5433 one bit that might be nonzero, we can convert (ne x 0) to
5434 (ashift x c) where C puts the bit in the sign bit. Remove any
5435 AND with STORE_FLAG_VALUE when we are done, since we are only
5436 going to test the sign bit. */
5437 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5438 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5439 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5440 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5441 && op1 == const0_rtx
5442 && mode == GET_MODE (op0)
5443 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5444 {
5445 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5446 expand_compound_operation (op0),
5447 GET_MODE_BITSIZE (mode) - 1 - i);
5448 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5449 return XEXP (x, 0);
5450 else
5451 return x;
5452 }
5453
5454 /* If the code changed, return a whole new comparison. */
5455 if (new_code != code)
5456 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5457
5458 /* Otherwise, keep this operation, but maybe change its operands.
5459 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5460 SUBST (XEXP (x, 0), op0);
5461 SUBST (XEXP (x, 1), op1);
5462 }
5463 break;
5464
5465 case IF_THEN_ELSE:
5466 return simplify_if_then_else (x);
5467
5468 case ZERO_EXTRACT:
5469 case SIGN_EXTRACT:
5470 case ZERO_EXTEND:
5471 case SIGN_EXTEND:
5472 /* If we are processing SET_DEST, we are done. */
5473 if (in_dest)
5474 return x;
5475
5476 return expand_compound_operation (x);
5477
5478 case SET:
5479 return simplify_set (x);
5480
5481 case AND:
5482 case IOR:
5483 return simplify_logical (x);
5484
5485 case ASHIFT:
5486 case LSHIFTRT:
5487 case ASHIFTRT:
5488 case ROTATE:
5489 case ROTATERT:
5490 /* If this is a shift by a constant amount, simplify it. */
5491 if (CONST_INT_P (XEXP (x, 1)))
5492 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5493 INTVAL (XEXP (x, 1)));
5494
5495 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5496 SUBST (XEXP (x, 1),
5497 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5498 ((HOST_WIDE_INT) 1
5499 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5500 - 1,
5501 0));
5502 break;
5503
5504 default:
5505 break;
5506 }
5507
5508 return x;
5509 }
5510 \f
5511 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5512
5513 static rtx
5514 simplify_if_then_else (rtx x)
5515 {
5516 enum machine_mode mode = GET_MODE (x);
5517 rtx cond = XEXP (x, 0);
5518 rtx true_rtx = XEXP (x, 1);
5519 rtx false_rtx = XEXP (x, 2);
5520 enum rtx_code true_code = GET_CODE (cond);
5521 int comparison_p = COMPARISON_P (cond);
5522 rtx temp;
5523 int i;
5524 enum rtx_code false_code;
5525 rtx reversed;
5526
5527 /* Simplify storing of the truth value. */
5528 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5529 return simplify_gen_relational (true_code, mode, VOIDmode,
5530 XEXP (cond, 0), XEXP (cond, 1));
5531
5532 /* Also when the truth value has to be reversed. */
5533 if (comparison_p
5534 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5535 && (reversed = reversed_comparison (cond, mode)))
5536 return reversed;
5537
5538 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5539 in it is being compared against certain values. Get the true and false
5540 comparisons and see if that says anything about the value of each arm. */
5541
5542 if (comparison_p
5543 && ((false_code = reversed_comparison_code (cond, NULL))
5544 != UNKNOWN)
5545 && REG_P (XEXP (cond, 0)))
5546 {
5547 HOST_WIDE_INT nzb;
5548 rtx from = XEXP (cond, 0);
5549 rtx true_val = XEXP (cond, 1);
5550 rtx false_val = true_val;
5551 int swapped = 0;
5552
5553 /* If FALSE_CODE is EQ, swap the codes and arms. */
5554
5555 if (false_code == EQ)
5556 {
5557 swapped = 1, true_code = EQ, false_code = NE;
5558 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5559 }
5560
5561 /* If we are comparing against zero and the expression being tested has
5562 only a single bit that might be nonzero, that is its value when it is
5563 not equal to zero. Similarly if it is known to be -1 or 0. */
5564
5565 if (true_code == EQ && true_val == const0_rtx
5566 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5567 {
5568 false_code = EQ;
5569 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5570 }
5571 else if (true_code == EQ && true_val == const0_rtx
5572 && (num_sign_bit_copies (from, GET_MODE (from))
5573 == GET_MODE_BITSIZE (GET_MODE (from))))
5574 {
5575 false_code = EQ;
5576 false_val = constm1_rtx;
5577 }
5578
5579 /* Now simplify an arm if we know the value of the register in the
5580 branch and it is used in the arm. Be careful due to the potential
5581 of locally-shared RTL. */
5582
5583 if (reg_mentioned_p (from, true_rtx))
5584 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5585 from, true_val),
5586 pc_rtx, pc_rtx, 0, 0);
5587 if (reg_mentioned_p (from, false_rtx))
5588 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5589 from, false_val),
5590 pc_rtx, pc_rtx, 0, 0);
5591
5592 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5593 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5594
5595 true_rtx = XEXP (x, 1);
5596 false_rtx = XEXP (x, 2);
5597 true_code = GET_CODE (cond);
5598 }
5599
5600 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5601 reversed, do so to avoid needing two sets of patterns for
5602 subtract-and-branch insns. Similarly if we have a constant in the true
5603 arm, the false arm is the same as the first operand of the comparison, or
5604 the false arm is more complicated than the true arm. */
5605
5606 if (comparison_p
5607 && reversed_comparison_code (cond, NULL) != UNKNOWN
5608 && (true_rtx == pc_rtx
5609 || (CONSTANT_P (true_rtx)
5610 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5611 || true_rtx == const0_rtx
5612 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5613 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5614 && !OBJECT_P (false_rtx))
5615 || reg_mentioned_p (true_rtx, false_rtx)
5616 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5617 {
5618 true_code = reversed_comparison_code (cond, NULL);
5619 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5620 SUBST (XEXP (x, 1), false_rtx);
5621 SUBST (XEXP (x, 2), true_rtx);
5622
5623 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5624 cond = XEXP (x, 0);
5625
5626 /* It is possible that the conditional has been simplified out. */
5627 true_code = GET_CODE (cond);
5628 comparison_p = COMPARISON_P (cond);
5629 }
5630
5631 /* If the two arms are identical, we don't need the comparison. */
5632
5633 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5634 return true_rtx;
5635
5636 /* Convert a == b ? b : a to "a". */
5637 if (true_code == EQ && ! side_effects_p (cond)
5638 && !HONOR_NANS (mode)
5639 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5640 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5641 return false_rtx;
5642 else if (true_code == NE && ! side_effects_p (cond)
5643 && !HONOR_NANS (mode)
5644 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5645 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5646 return true_rtx;
5647
5648 /* Look for cases where we have (abs x) or (neg (abs X)). */
5649
5650 if (GET_MODE_CLASS (mode) == MODE_INT
5651 && comparison_p
5652 && XEXP (cond, 1) == const0_rtx
5653 && GET_CODE (false_rtx) == NEG
5654 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5655 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5656 && ! side_effects_p (true_rtx))
5657 switch (true_code)
5658 {
5659 case GT:
5660 case GE:
5661 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5662 case LT:
5663 case LE:
5664 return
5665 simplify_gen_unary (NEG, mode,
5666 simplify_gen_unary (ABS, mode, true_rtx, mode),
5667 mode);
5668 default:
5669 break;
5670 }
5671
5672 /* Look for MIN or MAX. */
5673
5674 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5675 && comparison_p
5676 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5677 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5678 && ! side_effects_p (cond))
5679 switch (true_code)
5680 {
5681 case GE:
5682 case GT:
5683 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5684 case LE:
5685 case LT:
5686 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5687 case GEU:
5688 case GTU:
5689 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5690 case LEU:
5691 case LTU:
5692 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5693 default:
5694 break;
5695 }
5696
5697 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5698 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5699 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5700 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5701 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5702 neither 1 or -1, but it isn't worth checking for. */
5703
5704 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5705 && comparison_p
5706 && GET_MODE_CLASS (mode) == MODE_INT
5707 && ! side_effects_p (x))
5708 {
5709 rtx t = make_compound_operation (true_rtx, SET);
5710 rtx f = make_compound_operation (false_rtx, SET);
5711 rtx cond_op0 = XEXP (cond, 0);
5712 rtx cond_op1 = XEXP (cond, 1);
5713 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5714 enum machine_mode m = mode;
5715 rtx z = 0, c1 = NULL_RTX;
5716
5717 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5718 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5719 || GET_CODE (t) == ASHIFT
5720 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5721 && rtx_equal_p (XEXP (t, 0), f))
5722 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5723
5724 /* If an identity-zero op is commutative, check whether there
5725 would be a match if we swapped the operands. */
5726 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5727 || GET_CODE (t) == XOR)
5728 && rtx_equal_p (XEXP (t, 1), f))
5729 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5730 else if (GET_CODE (t) == SIGN_EXTEND
5731 && (GET_CODE (XEXP (t, 0)) == PLUS
5732 || GET_CODE (XEXP (t, 0)) == MINUS
5733 || GET_CODE (XEXP (t, 0)) == IOR
5734 || GET_CODE (XEXP (t, 0)) == XOR
5735 || GET_CODE (XEXP (t, 0)) == ASHIFT
5736 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5737 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5738 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5739 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5740 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5741 && (num_sign_bit_copies (f, GET_MODE (f))
5742 > (unsigned int)
5743 (GET_MODE_BITSIZE (mode)
5744 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5745 {
5746 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5747 extend_op = SIGN_EXTEND;
5748 m = GET_MODE (XEXP (t, 0));
5749 }
5750 else if (GET_CODE (t) == SIGN_EXTEND
5751 && (GET_CODE (XEXP (t, 0)) == PLUS
5752 || GET_CODE (XEXP (t, 0)) == IOR
5753 || GET_CODE (XEXP (t, 0)) == XOR)
5754 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5755 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5756 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5757 && (num_sign_bit_copies (f, GET_MODE (f))
5758 > (unsigned int)
5759 (GET_MODE_BITSIZE (mode)
5760 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5761 {
5762 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5763 extend_op = SIGN_EXTEND;
5764 m = GET_MODE (XEXP (t, 0));
5765 }
5766 else if (GET_CODE (t) == ZERO_EXTEND
5767 && (GET_CODE (XEXP (t, 0)) == PLUS
5768 || GET_CODE (XEXP (t, 0)) == MINUS
5769 || GET_CODE (XEXP (t, 0)) == IOR
5770 || GET_CODE (XEXP (t, 0)) == XOR
5771 || GET_CODE (XEXP (t, 0)) == ASHIFT
5772 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5773 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5774 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5775 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5776 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5777 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5778 && ((nonzero_bits (f, GET_MODE (f))
5779 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5780 == 0))
5781 {
5782 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5783 extend_op = ZERO_EXTEND;
5784 m = GET_MODE (XEXP (t, 0));
5785 }
5786 else if (GET_CODE (t) == ZERO_EXTEND
5787 && (GET_CODE (XEXP (t, 0)) == PLUS
5788 || GET_CODE (XEXP (t, 0)) == IOR
5789 || GET_CODE (XEXP (t, 0)) == XOR)
5790 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5791 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5792 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5793 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5794 && ((nonzero_bits (f, GET_MODE (f))
5795 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5796 == 0))
5797 {
5798 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5799 extend_op = ZERO_EXTEND;
5800 m = GET_MODE (XEXP (t, 0));
5801 }
5802
5803 if (z)
5804 {
5805 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5806 cond_op0, cond_op1),
5807 pc_rtx, pc_rtx, 0, 0);
5808 temp = simplify_gen_binary (MULT, m, temp,
5809 simplify_gen_binary (MULT, m, c1,
5810 const_true_rtx));
5811 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5812 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5813
5814 if (extend_op != UNKNOWN)
5815 temp = simplify_gen_unary (extend_op, mode, temp, m);
5816
5817 return temp;
5818 }
5819 }
5820
5821 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5822 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5823 negation of a single bit, we can convert this operation to a shift. We
5824 can actually do this more generally, but it doesn't seem worth it. */
5825
5826 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5827 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
5828 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5829 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5830 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5831 == GET_MODE_BITSIZE (mode))
5832 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5833 return
5834 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5835 gen_lowpart (mode, XEXP (cond, 0)), i);
5836
5837 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5838 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5839 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
5840 && GET_MODE (XEXP (cond, 0)) == mode
5841 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5842 == nonzero_bits (XEXP (cond, 0), mode)
5843 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5844 return XEXP (cond, 0);
5845
5846 return x;
5847 }
5848 \f
5849 /* Simplify X, a SET expression. Return the new expression. */
5850
5851 static rtx
5852 simplify_set (rtx x)
5853 {
5854 rtx src = SET_SRC (x);
5855 rtx dest = SET_DEST (x);
5856 enum machine_mode mode
5857 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5858 rtx other_insn;
5859 rtx *cc_use;
5860
5861 /* (set (pc) (return)) gets written as (return). */
5862 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5863 return src;
5864
5865 /* Now that we know for sure which bits of SRC we are using, see if we can
5866 simplify the expression for the object knowing that we only need the
5867 low-order bits. */
5868
5869 if (GET_MODE_CLASS (mode) == MODE_INT
5870 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5871 {
5872 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5873 SUBST (SET_SRC (x), src);
5874 }
5875
5876 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5877 the comparison result and try to simplify it unless we already have used
5878 undobuf.other_insn. */
5879 if ((GET_MODE_CLASS (mode) == MODE_CC
5880 || GET_CODE (src) == COMPARE
5881 || CC0_P (dest))
5882 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5883 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5884 && COMPARISON_P (*cc_use)
5885 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5886 {
5887 enum rtx_code old_code = GET_CODE (*cc_use);
5888 enum rtx_code new_code;
5889 rtx op0, op1, tmp;
5890 int other_changed = 0;
5891 enum machine_mode compare_mode = GET_MODE (dest);
5892
5893 if (GET_CODE (src) == COMPARE)
5894 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5895 else
5896 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5897
5898 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5899 op0, op1);
5900 if (!tmp)
5901 new_code = old_code;
5902 else if (!CONSTANT_P (tmp))
5903 {
5904 new_code = GET_CODE (tmp);
5905 op0 = XEXP (tmp, 0);
5906 op1 = XEXP (tmp, 1);
5907 }
5908 else
5909 {
5910 rtx pat = PATTERN (other_insn);
5911 undobuf.other_insn = other_insn;
5912 SUBST (*cc_use, tmp);
5913
5914 /* Attempt to simplify CC user. */
5915 if (GET_CODE (pat) == SET)
5916 {
5917 rtx new_rtx = simplify_rtx (SET_SRC (pat));
5918 if (new_rtx != NULL_RTX)
5919 SUBST (SET_SRC (pat), new_rtx);
5920 }
5921
5922 /* Convert X into a no-op move. */
5923 SUBST (SET_DEST (x), pc_rtx);
5924 SUBST (SET_SRC (x), pc_rtx);
5925 return x;
5926 }
5927
5928 /* Simplify our comparison, if possible. */
5929 new_code = simplify_comparison (new_code, &op0, &op1);
5930
5931 #ifdef SELECT_CC_MODE
5932 /* If this machine has CC modes other than CCmode, check to see if we
5933 need to use a different CC mode here. */
5934 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5935 compare_mode = GET_MODE (op0);
5936 else
5937 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5938
5939 #ifndef HAVE_cc0
5940 /* If the mode changed, we have to change SET_DEST, the mode in the
5941 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5942 a hard register, just build new versions with the proper mode. If it
5943 is a pseudo, we lose unless it is only time we set the pseudo, in
5944 which case we can safely change its mode. */
5945 if (compare_mode != GET_MODE (dest))
5946 {
5947 if (can_change_dest_mode (dest, 0, compare_mode))
5948 {
5949 unsigned int regno = REGNO (dest);
5950 rtx new_dest;
5951
5952 if (regno < FIRST_PSEUDO_REGISTER)
5953 new_dest = gen_rtx_REG (compare_mode, regno);
5954 else
5955 {
5956 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5957 new_dest = regno_reg_rtx[regno];
5958 }
5959
5960 SUBST (SET_DEST (x), new_dest);
5961 SUBST (XEXP (*cc_use, 0), new_dest);
5962 other_changed = 1;
5963
5964 dest = new_dest;
5965 }
5966 }
5967 #endif /* cc0 */
5968 #endif /* SELECT_CC_MODE */
5969
5970 /* If the code changed, we have to build a new comparison in
5971 undobuf.other_insn. */
5972 if (new_code != old_code)
5973 {
5974 int other_changed_previously = other_changed;
5975 unsigned HOST_WIDE_INT mask;
5976 rtx old_cc_use = *cc_use;
5977
5978 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5979 dest, const0_rtx));
5980 other_changed = 1;
5981
5982 /* If the only change we made was to change an EQ into an NE or
5983 vice versa, OP0 has only one bit that might be nonzero, and OP1
5984 is zero, check if changing the user of the condition code will
5985 produce a valid insn. If it won't, we can keep the original code
5986 in that insn by surrounding our operation with an XOR. */
5987
5988 if (((old_code == NE && new_code == EQ)
5989 || (old_code == EQ && new_code == NE))
5990 && ! other_changed_previously && op1 == const0_rtx
5991 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5992 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5993 {
5994 rtx pat = PATTERN (other_insn), note = 0;
5995
5996 if ((recog_for_combine (&pat, other_insn, &note) < 0
5997 && ! check_asm_operands (pat)))
5998 {
5999 *cc_use = old_cc_use;
6000 other_changed = 0;
6001
6002 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
6003 op0, GEN_INT (mask));
6004 }
6005 }
6006 }
6007
6008 if (other_changed)
6009 undobuf.other_insn = other_insn;
6010
6011 /* Otherwise, if we didn't previously have a COMPARE in the
6012 correct mode, we need one. */
6013 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6014 {
6015 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6016 src = SET_SRC (x);
6017 }
6018 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6019 {
6020 SUBST (SET_SRC (x), op0);
6021 src = SET_SRC (x);
6022 }
6023 /* Otherwise, update the COMPARE if needed. */
6024 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6025 {
6026 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6027 src = SET_SRC (x);
6028 }
6029 }
6030 else
6031 {
6032 /* Get SET_SRC in a form where we have placed back any
6033 compound expressions. Then do the checks below. */
6034 src = make_compound_operation (src, SET);
6035 SUBST (SET_SRC (x), src);
6036 }
6037
6038 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6039 and X being a REG or (subreg (reg)), we may be able to convert this to
6040 (set (subreg:m2 x) (op)).
6041
6042 We can always do this if M1 is narrower than M2 because that means that
6043 we only care about the low bits of the result.
6044
6045 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6046 perform a narrower operation than requested since the high-order bits will
6047 be undefined. On machine where it is defined, this transformation is safe
6048 as long as M1 and M2 have the same number of words. */
6049
6050 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6051 && !OBJECT_P (SUBREG_REG (src))
6052 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6053 / UNITS_PER_WORD)
6054 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6055 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6056 #ifndef WORD_REGISTER_OPERATIONS
6057 && (GET_MODE_SIZE (GET_MODE (src))
6058 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6059 #endif
6060 #ifdef CANNOT_CHANGE_MODE_CLASS
6061 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6062 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6063 GET_MODE (SUBREG_REG (src)),
6064 GET_MODE (src)))
6065 #endif
6066 && (REG_P (dest)
6067 || (GET_CODE (dest) == SUBREG
6068 && REG_P (SUBREG_REG (dest)))))
6069 {
6070 SUBST (SET_DEST (x),
6071 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6072 dest));
6073 SUBST (SET_SRC (x), SUBREG_REG (src));
6074
6075 src = SET_SRC (x), dest = SET_DEST (x);
6076 }
6077
6078 #ifdef HAVE_cc0
6079 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6080 in SRC. */
6081 if (dest == cc0_rtx
6082 && GET_CODE (src) == SUBREG
6083 && subreg_lowpart_p (src)
6084 && (GET_MODE_BITSIZE (GET_MODE (src))
6085 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
6086 {
6087 rtx inner = SUBREG_REG (src);
6088 enum machine_mode inner_mode = GET_MODE (inner);
6089
6090 /* Here we make sure that we don't have a sign bit on. */
6091 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
6092 && (nonzero_bits (inner, inner_mode)
6093 < ((unsigned HOST_WIDE_INT) 1
6094 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
6095 {
6096 SUBST (SET_SRC (x), inner);
6097 src = SET_SRC (x);
6098 }
6099 }
6100 #endif
6101
6102 #ifdef LOAD_EXTEND_OP
6103 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6104 would require a paradoxical subreg. Replace the subreg with a
6105 zero_extend to avoid the reload that would otherwise be required. */
6106
6107 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6108 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6109 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6110 && SUBREG_BYTE (src) == 0
6111 && (GET_MODE_SIZE (GET_MODE (src))
6112 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6113 && MEM_P (SUBREG_REG (src)))
6114 {
6115 SUBST (SET_SRC (x),
6116 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6117 GET_MODE (src), SUBREG_REG (src)));
6118
6119 src = SET_SRC (x);
6120 }
6121 #endif
6122
6123 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6124 are comparing an item known to be 0 or -1 against 0, use a logical
6125 operation instead. Check for one of the arms being an IOR of the other
6126 arm with some value. We compute three terms to be IOR'ed together. In
6127 practice, at most two will be nonzero. Then we do the IOR's. */
6128
6129 if (GET_CODE (dest) != PC
6130 && GET_CODE (src) == IF_THEN_ELSE
6131 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6132 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6133 && XEXP (XEXP (src, 0), 1) == const0_rtx
6134 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6135 #ifdef HAVE_conditional_move
6136 && ! can_conditionally_move_p (GET_MODE (src))
6137 #endif
6138 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6139 GET_MODE (XEXP (XEXP (src, 0), 0)))
6140 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
6141 && ! side_effects_p (src))
6142 {
6143 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6144 ? XEXP (src, 1) : XEXP (src, 2));
6145 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6146 ? XEXP (src, 2) : XEXP (src, 1));
6147 rtx term1 = const0_rtx, term2, term3;
6148
6149 if (GET_CODE (true_rtx) == IOR
6150 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6151 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6152 else if (GET_CODE (true_rtx) == IOR
6153 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6154 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6155 else if (GET_CODE (false_rtx) == IOR
6156 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6157 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6158 else if (GET_CODE (false_rtx) == IOR
6159 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6160 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6161
6162 term2 = simplify_gen_binary (AND, GET_MODE (src),
6163 XEXP (XEXP (src, 0), 0), true_rtx);
6164 term3 = simplify_gen_binary (AND, GET_MODE (src),
6165 simplify_gen_unary (NOT, GET_MODE (src),
6166 XEXP (XEXP (src, 0), 0),
6167 GET_MODE (src)),
6168 false_rtx);
6169
6170 SUBST (SET_SRC (x),
6171 simplify_gen_binary (IOR, GET_MODE (src),
6172 simplify_gen_binary (IOR, GET_MODE (src),
6173 term1, term2),
6174 term3));
6175
6176 src = SET_SRC (x);
6177 }
6178
6179 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6180 whole thing fail. */
6181 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6182 return src;
6183 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6184 return dest;
6185 else
6186 /* Convert this into a field assignment operation, if possible. */
6187 return make_field_assignment (x);
6188 }
6189 \f
6190 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6191 result. */
6192
6193 static rtx
6194 simplify_logical (rtx x)
6195 {
6196 enum machine_mode mode = GET_MODE (x);
6197 rtx op0 = XEXP (x, 0);
6198 rtx op1 = XEXP (x, 1);
6199
6200 switch (GET_CODE (x))
6201 {
6202 case AND:
6203 /* We can call simplify_and_const_int only if we don't lose
6204 any (sign) bits when converting INTVAL (op1) to
6205 "unsigned HOST_WIDE_INT". */
6206 if (CONST_INT_P (op1)
6207 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6208 || INTVAL (op1) > 0))
6209 {
6210 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6211 if (GET_CODE (x) != AND)
6212 return x;
6213
6214 op0 = XEXP (x, 0);
6215 op1 = XEXP (x, 1);
6216 }
6217
6218 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6219 apply the distributive law and then the inverse distributive
6220 law to see if things simplify. */
6221 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6222 {
6223 rtx result = distribute_and_simplify_rtx (x, 0);
6224 if (result)
6225 return result;
6226 }
6227 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6228 {
6229 rtx result = distribute_and_simplify_rtx (x, 1);
6230 if (result)
6231 return result;
6232 }
6233 break;
6234
6235 case IOR:
6236 /* If we have (ior (and A B) C), apply the distributive law and then
6237 the inverse distributive law to see if things simplify. */
6238
6239 if (GET_CODE (op0) == AND)
6240 {
6241 rtx result = distribute_and_simplify_rtx (x, 0);
6242 if (result)
6243 return result;
6244 }
6245
6246 if (GET_CODE (op1) == AND)
6247 {
6248 rtx result = distribute_and_simplify_rtx (x, 1);
6249 if (result)
6250 return result;
6251 }
6252 break;
6253
6254 default:
6255 gcc_unreachable ();
6256 }
6257
6258 return x;
6259 }
6260 \f
6261 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6262 operations" because they can be replaced with two more basic operations.
6263 ZERO_EXTEND is also considered "compound" because it can be replaced with
6264 an AND operation, which is simpler, though only one operation.
6265
6266 The function expand_compound_operation is called with an rtx expression
6267 and will convert it to the appropriate shifts and AND operations,
6268 simplifying at each stage.
6269
6270 The function make_compound_operation is called to convert an expression
6271 consisting of shifts and ANDs into the equivalent compound expression.
6272 It is the inverse of this function, loosely speaking. */
6273
6274 static rtx
6275 expand_compound_operation (rtx x)
6276 {
6277 unsigned HOST_WIDE_INT pos = 0, len;
6278 int unsignedp = 0;
6279 unsigned int modewidth;
6280 rtx tem;
6281
6282 switch (GET_CODE (x))
6283 {
6284 case ZERO_EXTEND:
6285 unsignedp = 1;
6286 case SIGN_EXTEND:
6287 /* We can't necessarily use a const_int for a multiword mode;
6288 it depends on implicitly extending the value.
6289 Since we don't know the right way to extend it,
6290 we can't tell whether the implicit way is right.
6291
6292 Even for a mode that is no wider than a const_int,
6293 we can't win, because we need to sign extend one of its bits through
6294 the rest of it, and we don't know which bit. */
6295 if (CONST_INT_P (XEXP (x, 0)))
6296 return x;
6297
6298 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6299 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6300 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6301 reloaded. If not for that, MEM's would very rarely be safe.
6302
6303 Reject MODEs bigger than a word, because we might not be able
6304 to reference a two-register group starting with an arbitrary register
6305 (and currently gen_lowpart might crash for a SUBREG). */
6306
6307 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6308 return x;
6309
6310 /* Reject MODEs that aren't scalar integers because turning vector
6311 or complex modes into shifts causes problems. */
6312
6313 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6314 return x;
6315
6316 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6317 /* If the inner object has VOIDmode (the only way this can happen
6318 is if it is an ASM_OPERANDS), we can't do anything since we don't
6319 know how much masking to do. */
6320 if (len == 0)
6321 return x;
6322
6323 break;
6324
6325 case ZERO_EXTRACT:
6326 unsignedp = 1;
6327
6328 /* ... fall through ... */
6329
6330 case SIGN_EXTRACT:
6331 /* If the operand is a CLOBBER, just return it. */
6332 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6333 return XEXP (x, 0);
6334
6335 if (!CONST_INT_P (XEXP (x, 1))
6336 || !CONST_INT_P (XEXP (x, 2))
6337 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6338 return x;
6339
6340 /* Reject MODEs that aren't scalar integers because turning vector
6341 or complex modes into shifts causes problems. */
6342
6343 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6344 return x;
6345
6346 len = INTVAL (XEXP (x, 1));
6347 pos = INTVAL (XEXP (x, 2));
6348
6349 /* This should stay within the object being extracted, fail otherwise. */
6350 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6351 return x;
6352
6353 if (BITS_BIG_ENDIAN)
6354 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6355
6356 break;
6357
6358 default:
6359 return x;
6360 }
6361 /* Convert sign extension to zero extension, if we know that the high
6362 bit is not set, as this is easier to optimize. It will be converted
6363 back to cheaper alternative in make_extraction. */
6364 if (GET_CODE (x) == SIGN_EXTEND
6365 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6366 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6367 & ~(((unsigned HOST_WIDE_INT)
6368 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6369 >> 1))
6370 == 0)))
6371 {
6372 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6373 rtx temp2 = expand_compound_operation (temp);
6374
6375 /* Make sure this is a profitable operation. */
6376 if (rtx_cost (x, SET, optimize_this_for_speed_p)
6377 > rtx_cost (temp2, SET, optimize_this_for_speed_p))
6378 return temp2;
6379 else if (rtx_cost (x, SET, optimize_this_for_speed_p)
6380 > rtx_cost (temp, SET, optimize_this_for_speed_p))
6381 return temp;
6382 else
6383 return x;
6384 }
6385
6386 /* We can optimize some special cases of ZERO_EXTEND. */
6387 if (GET_CODE (x) == ZERO_EXTEND)
6388 {
6389 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6390 know that the last value didn't have any inappropriate bits
6391 set. */
6392 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6393 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6394 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6395 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6396 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6397 return XEXP (XEXP (x, 0), 0);
6398
6399 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6400 if (GET_CODE (XEXP (x, 0)) == SUBREG
6401 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6402 && subreg_lowpart_p (XEXP (x, 0))
6403 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6404 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6405 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6406 return SUBREG_REG (XEXP (x, 0));
6407
6408 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6409 is a comparison and STORE_FLAG_VALUE permits. This is like
6410 the first case, but it works even when GET_MODE (x) is larger
6411 than HOST_WIDE_INT. */
6412 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6413 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6414 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6415 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6416 <= HOST_BITS_PER_WIDE_INT)
6417 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6418 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6419 return XEXP (XEXP (x, 0), 0);
6420
6421 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6422 if (GET_CODE (XEXP (x, 0)) == SUBREG
6423 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6424 && subreg_lowpart_p (XEXP (x, 0))
6425 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6426 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6427 <= HOST_BITS_PER_WIDE_INT)
6428 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6429 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6430 return SUBREG_REG (XEXP (x, 0));
6431
6432 }
6433
6434 /* If we reach here, we want to return a pair of shifts. The inner
6435 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6436 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6437 logical depending on the value of UNSIGNEDP.
6438
6439 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6440 converted into an AND of a shift.
6441
6442 We must check for the case where the left shift would have a negative
6443 count. This can happen in a case like (x >> 31) & 255 on machines
6444 that can't shift by a constant. On those machines, we would first
6445 combine the shift with the AND to produce a variable-position
6446 extraction. Then the constant of 31 would be substituted in to produce
6447 a such a position. */
6448
6449 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6450 if (modewidth + len >= pos)
6451 {
6452 enum machine_mode mode = GET_MODE (x);
6453 tem = gen_lowpart (mode, XEXP (x, 0));
6454 if (!tem || GET_CODE (tem) == CLOBBER)
6455 return x;
6456 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6457 tem, modewidth - pos - len);
6458 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6459 mode, tem, modewidth - len);
6460 }
6461 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6462 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6463 simplify_shift_const (NULL_RTX, LSHIFTRT,
6464 GET_MODE (x),
6465 XEXP (x, 0), pos),
6466 ((HOST_WIDE_INT) 1 << len) - 1);
6467 else
6468 /* Any other cases we can't handle. */
6469 return x;
6470
6471 /* If we couldn't do this for some reason, return the original
6472 expression. */
6473 if (GET_CODE (tem) == CLOBBER)
6474 return x;
6475
6476 return tem;
6477 }
6478 \f
6479 /* X is a SET which contains an assignment of one object into
6480 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6481 or certain SUBREGS). If possible, convert it into a series of
6482 logical operations.
6483
6484 We half-heartedly support variable positions, but do not at all
6485 support variable lengths. */
6486
6487 static const_rtx
6488 expand_field_assignment (const_rtx x)
6489 {
6490 rtx inner;
6491 rtx pos; /* Always counts from low bit. */
6492 int len;
6493 rtx mask, cleared, masked;
6494 enum machine_mode compute_mode;
6495
6496 /* Loop until we find something we can't simplify. */
6497 while (1)
6498 {
6499 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6500 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6501 {
6502 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6503 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6504 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6505 }
6506 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6507 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6508 {
6509 inner = XEXP (SET_DEST (x), 0);
6510 len = INTVAL (XEXP (SET_DEST (x), 1));
6511 pos = XEXP (SET_DEST (x), 2);
6512
6513 /* A constant position should stay within the width of INNER. */
6514 if (CONST_INT_P (pos)
6515 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6516 break;
6517
6518 if (BITS_BIG_ENDIAN)
6519 {
6520 if (CONST_INT_P (pos))
6521 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6522 - INTVAL (pos));
6523 else if (GET_CODE (pos) == MINUS
6524 && CONST_INT_P (XEXP (pos, 1))
6525 && (INTVAL (XEXP (pos, 1))
6526 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6527 /* If position is ADJUST - X, new position is X. */
6528 pos = XEXP (pos, 0);
6529 else
6530 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6531 GEN_INT (GET_MODE_BITSIZE (
6532 GET_MODE (inner))
6533 - len),
6534 pos);
6535 }
6536 }
6537
6538 /* A SUBREG between two modes that occupy the same numbers of words
6539 can be done by moving the SUBREG to the source. */
6540 else if (GET_CODE (SET_DEST (x)) == SUBREG
6541 /* We need SUBREGs to compute nonzero_bits properly. */
6542 && nonzero_sign_valid
6543 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6544 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6545 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6546 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6547 {
6548 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6549 gen_lowpart
6550 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6551 SET_SRC (x)));
6552 continue;
6553 }
6554 else
6555 break;
6556
6557 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6558 inner = SUBREG_REG (inner);
6559
6560 compute_mode = GET_MODE (inner);
6561
6562 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6563 if (! SCALAR_INT_MODE_P (compute_mode))
6564 {
6565 enum machine_mode imode;
6566
6567 /* Don't do anything for vector or complex integral types. */
6568 if (! FLOAT_MODE_P (compute_mode))
6569 break;
6570
6571 /* Try to find an integral mode to pun with. */
6572 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6573 if (imode == BLKmode)
6574 break;
6575
6576 compute_mode = imode;
6577 inner = gen_lowpart (imode, inner);
6578 }
6579
6580 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6581 if (len >= HOST_BITS_PER_WIDE_INT)
6582 break;
6583
6584 /* Now compute the equivalent expression. Make a copy of INNER
6585 for the SET_DEST in case it is a MEM into which we will substitute;
6586 we don't want shared RTL in that case. */
6587 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6588 cleared = simplify_gen_binary (AND, compute_mode,
6589 simplify_gen_unary (NOT, compute_mode,
6590 simplify_gen_binary (ASHIFT,
6591 compute_mode,
6592 mask, pos),
6593 compute_mode),
6594 inner);
6595 masked = simplify_gen_binary (ASHIFT, compute_mode,
6596 simplify_gen_binary (
6597 AND, compute_mode,
6598 gen_lowpart (compute_mode, SET_SRC (x)),
6599 mask),
6600 pos);
6601
6602 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6603 simplify_gen_binary (IOR, compute_mode,
6604 cleared, masked));
6605 }
6606
6607 return x;
6608 }
6609 \f
6610 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6611 it is an RTX that represents a variable starting position; otherwise,
6612 POS is the (constant) starting bit position (counted from the LSB).
6613
6614 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6615 signed reference.
6616
6617 IN_DEST is nonzero if this is a reference in the destination of a
6618 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6619 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6620 be used.
6621
6622 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6623 ZERO_EXTRACT should be built even for bits starting at bit 0.
6624
6625 MODE is the desired mode of the result (if IN_DEST == 0).
6626
6627 The result is an RTX for the extraction or NULL_RTX if the target
6628 can't handle it. */
6629
6630 static rtx
6631 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6632 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6633 int in_dest, int in_compare)
6634 {
6635 /* This mode describes the size of the storage area
6636 to fetch the overall value from. Within that, we
6637 ignore the POS lowest bits, etc. */
6638 enum machine_mode is_mode = GET_MODE (inner);
6639 enum machine_mode inner_mode;
6640 enum machine_mode wanted_inner_mode;
6641 enum machine_mode wanted_inner_reg_mode = word_mode;
6642 enum machine_mode pos_mode = word_mode;
6643 enum machine_mode extraction_mode = word_mode;
6644 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6645 rtx new_rtx = 0;
6646 rtx orig_pos_rtx = pos_rtx;
6647 HOST_WIDE_INT orig_pos;
6648
6649 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6650 {
6651 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6652 consider just the QI as the memory to extract from.
6653 The subreg adds or removes high bits; its mode is
6654 irrelevant to the meaning of this extraction,
6655 since POS and LEN count from the lsb. */
6656 if (MEM_P (SUBREG_REG (inner)))
6657 is_mode = GET_MODE (SUBREG_REG (inner));
6658 inner = SUBREG_REG (inner);
6659 }
6660 else if (GET_CODE (inner) == ASHIFT
6661 && CONST_INT_P (XEXP (inner, 1))
6662 && pos_rtx == 0 && pos == 0
6663 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6664 {
6665 /* We're extracting the least significant bits of an rtx
6666 (ashift X (const_int C)), where LEN > C. Extract the
6667 least significant (LEN - C) bits of X, giving an rtx
6668 whose mode is MODE, then shift it left C times. */
6669 new_rtx = make_extraction (mode, XEXP (inner, 0),
6670 0, 0, len - INTVAL (XEXP (inner, 1)),
6671 unsignedp, in_dest, in_compare);
6672 if (new_rtx != 0)
6673 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
6674 }
6675
6676 inner_mode = GET_MODE (inner);
6677
6678 if (pos_rtx && CONST_INT_P (pos_rtx))
6679 pos = INTVAL (pos_rtx), pos_rtx = 0;
6680
6681 /* See if this can be done without an extraction. We never can if the
6682 width of the field is not the same as that of some integer mode. For
6683 registers, we can only avoid the extraction if the position is at the
6684 low-order bit and this is either not in the destination or we have the
6685 appropriate STRICT_LOW_PART operation available.
6686
6687 For MEM, we can avoid an extract if the field starts on an appropriate
6688 boundary and we can change the mode of the memory reference. */
6689
6690 if (tmode != BLKmode
6691 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6692 && !MEM_P (inner)
6693 && (inner_mode == tmode
6694 || !REG_P (inner)
6695 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
6696 GET_MODE_BITSIZE (inner_mode))
6697 || reg_truncated_to_mode (tmode, inner))
6698 && (! in_dest
6699 || (REG_P (inner)
6700 && have_insn_for (STRICT_LOW_PART, tmode))))
6701 || (MEM_P (inner) && pos_rtx == 0
6702 && (pos
6703 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6704 : BITS_PER_UNIT)) == 0
6705 /* We can't do this if we are widening INNER_MODE (it
6706 may not be aligned, for one thing). */
6707 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6708 && (inner_mode == tmode
6709 || (! mode_dependent_address_p (XEXP (inner, 0))
6710 && ! MEM_VOLATILE_P (inner))))))
6711 {
6712 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6713 field. If the original and current mode are the same, we need not
6714 adjust the offset. Otherwise, we do if bytes big endian.
6715
6716 If INNER is not a MEM, get a piece consisting of just the field
6717 of interest (in this case POS % BITS_PER_WORD must be 0). */
6718
6719 if (MEM_P (inner))
6720 {
6721 HOST_WIDE_INT offset;
6722
6723 /* POS counts from lsb, but make OFFSET count in memory order. */
6724 if (BYTES_BIG_ENDIAN)
6725 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6726 else
6727 offset = pos / BITS_PER_UNIT;
6728
6729 new_rtx = adjust_address_nv (inner, tmode, offset);
6730 }
6731 else if (REG_P (inner))
6732 {
6733 if (tmode != inner_mode)
6734 {
6735 /* We can't call gen_lowpart in a DEST since we
6736 always want a SUBREG (see below) and it would sometimes
6737 return a new hard register. */
6738 if (pos || in_dest)
6739 {
6740 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6741
6742 if (WORDS_BIG_ENDIAN
6743 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6744 final_word = ((GET_MODE_SIZE (inner_mode)
6745 - GET_MODE_SIZE (tmode))
6746 / UNITS_PER_WORD) - final_word;
6747
6748 final_word *= UNITS_PER_WORD;
6749 if (BYTES_BIG_ENDIAN &&
6750 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6751 final_word += (GET_MODE_SIZE (inner_mode)
6752 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6753
6754 /* Avoid creating invalid subregs, for example when
6755 simplifying (x>>32)&255. */
6756 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6757 return NULL_RTX;
6758
6759 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
6760 }
6761 else
6762 new_rtx = gen_lowpart (tmode, inner);
6763 }
6764 else
6765 new_rtx = inner;
6766 }
6767 else
6768 new_rtx = force_to_mode (inner, tmode,
6769 len >= HOST_BITS_PER_WIDE_INT
6770 ? ~(unsigned HOST_WIDE_INT) 0
6771 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6772 0);
6773
6774 /* If this extraction is going into the destination of a SET,
6775 make a STRICT_LOW_PART unless we made a MEM. */
6776
6777 if (in_dest)
6778 return (MEM_P (new_rtx) ? new_rtx
6779 : (GET_CODE (new_rtx) != SUBREG
6780 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6781 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
6782
6783 if (mode == tmode)
6784 return new_rtx;
6785
6786 if (CONST_INT_P (new_rtx))
6787 return gen_int_mode (INTVAL (new_rtx), mode);
6788
6789 /* If we know that no extraneous bits are set, and that the high
6790 bit is not set, convert the extraction to the cheaper of
6791 sign and zero extension, that are equivalent in these cases. */
6792 if (flag_expensive_optimizations
6793 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6794 && ((nonzero_bits (new_rtx, tmode)
6795 & ~(((unsigned HOST_WIDE_INT)
6796 GET_MODE_MASK (tmode))
6797 >> 1))
6798 == 0)))
6799 {
6800 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
6801 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
6802
6803 /* Prefer ZERO_EXTENSION, since it gives more information to
6804 backends. */
6805 if (rtx_cost (temp, SET, optimize_this_for_speed_p)
6806 <= rtx_cost (temp1, SET, optimize_this_for_speed_p))
6807 return temp;
6808 return temp1;
6809 }
6810
6811 /* Otherwise, sign- or zero-extend unless we already are in the
6812 proper mode. */
6813
6814 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6815 mode, new_rtx));
6816 }
6817
6818 /* Unless this is a COMPARE or we have a funny memory reference,
6819 don't do anything with zero-extending field extracts starting at
6820 the low-order bit since they are simple AND operations. */
6821 if (pos_rtx == 0 && pos == 0 && ! in_dest
6822 && ! in_compare && unsignedp)
6823 return 0;
6824
6825 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6826 if the position is not a constant and the length is not 1. In all
6827 other cases, we would only be going outside our object in cases when
6828 an original shift would have been undefined. */
6829 if (MEM_P (inner)
6830 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6831 || (pos_rtx != 0 && len != 1)))
6832 return 0;
6833
6834 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6835 and the mode for the result. */
6836 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6837 {
6838 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6839 pos_mode = mode_for_extraction (EP_insv, 2);
6840 extraction_mode = mode_for_extraction (EP_insv, 3);
6841 }
6842
6843 if (! in_dest && unsignedp
6844 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6845 {
6846 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6847 pos_mode = mode_for_extraction (EP_extzv, 3);
6848 extraction_mode = mode_for_extraction (EP_extzv, 0);
6849 }
6850
6851 if (! in_dest && ! unsignedp
6852 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6853 {
6854 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6855 pos_mode = mode_for_extraction (EP_extv, 3);
6856 extraction_mode = mode_for_extraction (EP_extv, 0);
6857 }
6858
6859 /* Never narrow an object, since that might not be safe. */
6860
6861 if (mode != VOIDmode
6862 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6863 extraction_mode = mode;
6864
6865 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6866 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6867 pos_mode = GET_MODE (pos_rtx);
6868
6869 /* If this is not from memory, the desired mode is the preferred mode
6870 for an extraction pattern's first input operand, or word_mode if there
6871 is none. */
6872 if (!MEM_P (inner))
6873 wanted_inner_mode = wanted_inner_reg_mode;
6874 else
6875 {
6876 /* Be careful not to go beyond the extracted object and maintain the
6877 natural alignment of the memory. */
6878 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6879 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6880 > GET_MODE_BITSIZE (wanted_inner_mode))
6881 {
6882 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6883 gcc_assert (wanted_inner_mode != VOIDmode);
6884 }
6885
6886 /* If we have to change the mode of memory and cannot, the desired mode
6887 is EXTRACTION_MODE. */
6888 if (inner_mode != wanted_inner_mode
6889 && (mode_dependent_address_p (XEXP (inner, 0))
6890 || MEM_VOLATILE_P (inner)
6891 || pos_rtx))
6892 wanted_inner_mode = extraction_mode;
6893 }
6894
6895 orig_pos = pos;
6896
6897 if (BITS_BIG_ENDIAN)
6898 {
6899 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6900 BITS_BIG_ENDIAN style. If position is constant, compute new
6901 position. Otherwise, build subtraction.
6902 Note that POS is relative to the mode of the original argument.
6903 If it's a MEM we need to recompute POS relative to that.
6904 However, if we're extracting from (or inserting into) a register,
6905 we want to recompute POS relative to wanted_inner_mode. */
6906 int width = (MEM_P (inner)
6907 ? GET_MODE_BITSIZE (is_mode)
6908 : GET_MODE_BITSIZE (wanted_inner_mode));
6909
6910 if (pos_rtx == 0)
6911 pos = width - len - pos;
6912 else
6913 pos_rtx
6914 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6915 /* POS may be less than 0 now, but we check for that below.
6916 Note that it can only be less than 0 if !MEM_P (inner). */
6917 }
6918
6919 /* If INNER has a wider mode, and this is a constant extraction, try to
6920 make it smaller and adjust the byte to point to the byte containing
6921 the value. */
6922 if (wanted_inner_mode != VOIDmode
6923 && inner_mode != wanted_inner_mode
6924 && ! pos_rtx
6925 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6926 && MEM_P (inner)
6927 && ! mode_dependent_address_p (XEXP (inner, 0))
6928 && ! MEM_VOLATILE_P (inner))
6929 {
6930 int offset = 0;
6931
6932 /* The computations below will be correct if the machine is big
6933 endian in both bits and bytes or little endian in bits and bytes.
6934 If it is mixed, we must adjust. */
6935
6936 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6937 adjust OFFSET to compensate. */
6938 if (BYTES_BIG_ENDIAN
6939 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6940 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6941
6942 /* We can now move to the desired byte. */
6943 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6944 * GET_MODE_SIZE (wanted_inner_mode);
6945 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6946
6947 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6948 && is_mode != wanted_inner_mode)
6949 offset = (GET_MODE_SIZE (is_mode)
6950 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6951
6952 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6953 }
6954
6955 /* If INNER is not memory, get it into the proper mode. If we are changing
6956 its mode, POS must be a constant and smaller than the size of the new
6957 mode. */
6958 else if (!MEM_P (inner))
6959 {
6960 /* On the LHS, don't create paradoxical subregs implicitely truncating
6961 the register unless TRULY_NOOP_TRUNCATION. */
6962 if (in_dest
6963 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (inner)),
6964 GET_MODE_BITSIZE (wanted_inner_mode)))
6965 return NULL_RTX;
6966
6967 if (GET_MODE (inner) != wanted_inner_mode
6968 && (pos_rtx != 0
6969 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6970 return NULL_RTX;
6971
6972 if (orig_pos < 0)
6973 return NULL_RTX;
6974
6975 inner = force_to_mode (inner, wanted_inner_mode,
6976 pos_rtx
6977 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6978 ? ~(unsigned HOST_WIDE_INT) 0
6979 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6980 << orig_pos),
6981 0);
6982 }
6983
6984 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6985 have to zero extend. Otherwise, we can just use a SUBREG. */
6986 if (pos_rtx != 0
6987 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6988 {
6989 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6990
6991 /* If we know that no extraneous bits are set, and that the high
6992 bit is not set, convert extraction to cheaper one - either
6993 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6994 cases. */
6995 if (flag_expensive_optimizations
6996 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6997 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6998 & ~(((unsigned HOST_WIDE_INT)
6999 GET_MODE_MASK (GET_MODE (pos_rtx)))
7000 >> 1))
7001 == 0)))
7002 {
7003 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
7004
7005 /* Prefer ZERO_EXTENSION, since it gives more information to
7006 backends. */
7007 if (rtx_cost (temp1, SET, optimize_this_for_speed_p)
7008 < rtx_cost (temp, SET, optimize_this_for_speed_p))
7009 temp = temp1;
7010 }
7011 pos_rtx = temp;
7012 }
7013 else if (pos_rtx != 0
7014 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7015 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
7016
7017 /* Make POS_RTX unless we already have it and it is correct. If we don't
7018 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7019 be a CONST_INT. */
7020 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7021 pos_rtx = orig_pos_rtx;
7022
7023 else if (pos_rtx == 0)
7024 pos_rtx = GEN_INT (pos);
7025
7026 /* Make the required operation. See if we can use existing rtx. */
7027 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7028 extraction_mode, inner, GEN_INT (len), pos_rtx);
7029 if (! in_dest)
7030 new_rtx = gen_lowpart (mode, new_rtx);
7031
7032 return new_rtx;
7033 }
7034 \f
7035 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7036 with any other operations in X. Return X without that shift if so. */
7037
7038 static rtx
7039 extract_left_shift (rtx x, int count)
7040 {
7041 enum rtx_code code = GET_CODE (x);
7042 enum machine_mode mode = GET_MODE (x);
7043 rtx tem;
7044
7045 switch (code)
7046 {
7047 case ASHIFT:
7048 /* This is the shift itself. If it is wide enough, we will return
7049 either the value being shifted if the shift count is equal to
7050 COUNT or a shift for the difference. */
7051 if (CONST_INT_P (XEXP (x, 1))
7052 && INTVAL (XEXP (x, 1)) >= count)
7053 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7054 INTVAL (XEXP (x, 1)) - count);
7055 break;
7056
7057 case NEG: case NOT:
7058 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7059 return simplify_gen_unary (code, mode, tem, mode);
7060
7061 break;
7062
7063 case PLUS: case IOR: case XOR: case AND:
7064 /* If we can safely shift this constant and we find the inner shift,
7065 make a new operation. */
7066 if (CONST_INT_P (XEXP (x, 1))
7067 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
7068 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7069 return simplify_gen_binary (code, mode, tem,
7070 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7071
7072 break;
7073
7074 default:
7075 break;
7076 }
7077
7078 return 0;
7079 }
7080 \f
7081 /* Look at the expression rooted at X. Look for expressions
7082 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7083 Form these expressions.
7084
7085 Return the new rtx, usually just X.
7086
7087 Also, for machines like the VAX that don't have logical shift insns,
7088 try to convert logical to arithmetic shift operations in cases where
7089 they are equivalent. This undoes the canonicalizations to logical
7090 shifts done elsewhere.
7091
7092 We try, as much as possible, to re-use rtl expressions to save memory.
7093
7094 IN_CODE says what kind of expression we are processing. Normally, it is
7095 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7096 being kludges), it is MEM. When processing the arguments of a comparison
7097 or a COMPARE against zero, it is COMPARE. */
7098
7099 static rtx
7100 make_compound_operation (rtx x, enum rtx_code in_code)
7101 {
7102 enum rtx_code code = GET_CODE (x);
7103 enum machine_mode mode = GET_MODE (x);
7104 int mode_width = GET_MODE_BITSIZE (mode);
7105 rtx rhs, lhs;
7106 enum rtx_code next_code;
7107 int i, j;
7108 rtx new_rtx = 0;
7109 rtx tem;
7110 const char *fmt;
7111
7112 /* Select the code to be used in recursive calls. Once we are inside an
7113 address, we stay there. If we have a comparison, set to COMPARE,
7114 but once inside, go back to our default of SET. */
7115
7116 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
7117 : ((code == COMPARE || COMPARISON_P (x))
7118 && XEXP (x, 1) == const0_rtx) ? COMPARE
7119 : in_code == COMPARE ? SET : in_code);
7120
7121 /* Process depending on the code of this operation. If NEW is set
7122 nonzero, it will be returned. */
7123
7124 switch (code)
7125 {
7126 case ASHIFT:
7127 /* Convert shifts by constants into multiplications if inside
7128 an address. */
7129 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7130 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7131 && INTVAL (XEXP (x, 1)) >= 0)
7132 {
7133 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7134 new_rtx = gen_rtx_MULT (mode, new_rtx,
7135 GEN_INT ((HOST_WIDE_INT) 1
7136 << INTVAL (XEXP (x, 1))));
7137 }
7138 break;
7139
7140 case AND:
7141 /* If the second operand is not a constant, we can't do anything
7142 with it. */
7143 if (!CONST_INT_P (XEXP (x, 1)))
7144 break;
7145
7146 /* If the constant is a power of two minus one and the first operand
7147 is a logical right shift, make an extraction. */
7148 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7149 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7150 {
7151 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7152 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7153 0, in_code == COMPARE);
7154 }
7155
7156 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7157 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7158 && subreg_lowpart_p (XEXP (x, 0))
7159 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7160 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7161 {
7162 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7163 next_code);
7164 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7165 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7166 0, in_code == COMPARE);
7167 }
7168 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7169 else if ((GET_CODE (XEXP (x, 0)) == XOR
7170 || GET_CODE (XEXP (x, 0)) == IOR)
7171 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7172 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7173 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7174 {
7175 /* Apply the distributive law, and then try to make extractions. */
7176 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7177 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7178 XEXP (x, 1)),
7179 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7180 XEXP (x, 1)));
7181 new_rtx = make_compound_operation (new_rtx, in_code);
7182 }
7183
7184 /* If we are have (and (rotate X C) M) and C is larger than the number
7185 of bits in M, this is an extraction. */
7186
7187 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7188 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7189 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
7190 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7191 {
7192 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7193 new_rtx = make_extraction (mode, new_rtx,
7194 (GET_MODE_BITSIZE (mode)
7195 - INTVAL (XEXP (XEXP (x, 0), 1))),
7196 NULL_RTX, i, 1, 0, in_code == COMPARE);
7197 }
7198
7199 /* On machines without logical shifts, if the operand of the AND is
7200 a logical shift and our mask turns off all the propagated sign
7201 bits, we can replace the logical shift with an arithmetic shift. */
7202 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7203 && !have_insn_for (LSHIFTRT, mode)
7204 && have_insn_for (ASHIFTRT, mode)
7205 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7206 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7207 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7208 && mode_width <= HOST_BITS_PER_WIDE_INT)
7209 {
7210 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7211
7212 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7213 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7214 SUBST (XEXP (x, 0),
7215 gen_rtx_ASHIFTRT (mode,
7216 make_compound_operation
7217 (XEXP (XEXP (x, 0), 0), next_code),
7218 XEXP (XEXP (x, 0), 1)));
7219 }
7220
7221 /* If the constant is one less than a power of two, this might be
7222 representable by an extraction even if no shift is present.
7223 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7224 we are in a COMPARE. */
7225 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7226 new_rtx = make_extraction (mode,
7227 make_compound_operation (XEXP (x, 0),
7228 next_code),
7229 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7230
7231 /* If we are in a comparison and this is an AND with a power of two,
7232 convert this into the appropriate bit extract. */
7233 else if (in_code == COMPARE
7234 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
7235 new_rtx = make_extraction (mode,
7236 make_compound_operation (XEXP (x, 0),
7237 next_code),
7238 i, NULL_RTX, 1, 1, 0, 1);
7239
7240 break;
7241
7242 case LSHIFTRT:
7243 /* If the sign bit is known to be zero, replace this with an
7244 arithmetic shift. */
7245 if (have_insn_for (ASHIFTRT, mode)
7246 && ! have_insn_for (LSHIFTRT, mode)
7247 && mode_width <= HOST_BITS_PER_WIDE_INT
7248 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7249 {
7250 new_rtx = gen_rtx_ASHIFTRT (mode,
7251 make_compound_operation (XEXP (x, 0),
7252 next_code),
7253 XEXP (x, 1));
7254 break;
7255 }
7256
7257 /* ... fall through ... */
7258
7259 case ASHIFTRT:
7260 lhs = XEXP (x, 0);
7261 rhs = XEXP (x, 1);
7262
7263 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7264 this is a SIGN_EXTRACT. */
7265 if (CONST_INT_P (rhs)
7266 && GET_CODE (lhs) == ASHIFT
7267 && CONST_INT_P (XEXP (lhs, 1))
7268 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7269 && INTVAL (rhs) < mode_width)
7270 {
7271 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7272 new_rtx = make_extraction (mode, new_rtx,
7273 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7274 NULL_RTX, mode_width - INTVAL (rhs),
7275 code == LSHIFTRT, 0, in_code == COMPARE);
7276 break;
7277 }
7278
7279 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7280 If so, try to merge the shifts into a SIGN_EXTEND. We could
7281 also do this for some cases of SIGN_EXTRACT, but it doesn't
7282 seem worth the effort; the case checked for occurs on Alpha. */
7283
7284 if (!OBJECT_P (lhs)
7285 && ! (GET_CODE (lhs) == SUBREG
7286 && (OBJECT_P (SUBREG_REG (lhs))))
7287 && CONST_INT_P (rhs)
7288 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7289 && INTVAL (rhs) < mode_width
7290 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7291 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7292 0, NULL_RTX, mode_width - INTVAL (rhs),
7293 code == LSHIFTRT, 0, in_code == COMPARE);
7294
7295 break;
7296
7297 case SUBREG:
7298 /* Call ourselves recursively on the inner expression. If we are
7299 narrowing the object and it has a different RTL code from
7300 what it originally did, do this SUBREG as a force_to_mode. */
7301
7302 tem = make_compound_operation (SUBREG_REG (x), in_code);
7303
7304 {
7305 rtx simplified;
7306 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
7307 SUBREG_BYTE (x));
7308
7309 if (simplified)
7310 tem = simplified;
7311
7312 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
7313 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
7314 && subreg_lowpart_p (x))
7315 {
7316 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
7317 0);
7318
7319 /* If we have something other than a SUBREG, we might have
7320 done an expansion, so rerun ourselves. */
7321 if (GET_CODE (newer) != SUBREG)
7322 newer = make_compound_operation (newer, in_code);
7323
7324 /* force_to_mode can expand compounds. If it just re-expanded the
7325 compound use gen_lowpart instead to convert to the desired
7326 mode. */
7327 if (rtx_equal_p (newer, x))
7328 return gen_lowpart (GET_MODE (x), tem);
7329
7330 return newer;
7331 }
7332
7333 if (simplified)
7334 return tem;
7335 }
7336 break;
7337
7338 default:
7339 break;
7340 }
7341
7342 if (new_rtx)
7343 {
7344 x = gen_lowpart (mode, new_rtx);
7345 code = GET_CODE (x);
7346 }
7347
7348 /* Now recursively process each operand of this operation. */
7349 fmt = GET_RTX_FORMAT (code);
7350 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7351 if (fmt[i] == 'e')
7352 {
7353 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7354 SUBST (XEXP (x, i), new_rtx);
7355 }
7356 else if (fmt[i] == 'E')
7357 for (j = 0; j < XVECLEN (x, i); j++)
7358 {
7359 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7360 SUBST (XVECEXP (x, i, j), new_rtx);
7361 }
7362
7363 /* If this is a commutative operation, the changes to the operands
7364 may have made it noncanonical. */
7365 if (COMMUTATIVE_ARITH_P (x)
7366 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7367 {
7368 tem = XEXP (x, 0);
7369 SUBST (XEXP (x, 0), XEXP (x, 1));
7370 SUBST (XEXP (x, 1), tem);
7371 }
7372
7373 return x;
7374 }
7375 \f
7376 /* Given M see if it is a value that would select a field of bits
7377 within an item, but not the entire word. Return -1 if not.
7378 Otherwise, return the starting position of the field, where 0 is the
7379 low-order bit.
7380
7381 *PLEN is set to the length of the field. */
7382
7383 static int
7384 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7385 {
7386 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7387 int pos = exact_log2 (m & -m);
7388 int len = 0;
7389
7390 if (pos >= 0)
7391 /* Now shift off the low-order zero bits and see if we have a
7392 power of two minus 1. */
7393 len = exact_log2 ((m >> pos) + 1);
7394
7395 if (len <= 0)
7396 pos = -1;
7397
7398 *plen = len;
7399 return pos;
7400 }
7401 \f
7402 /* If X refers to a register that equals REG in value, replace these
7403 references with REG. */
7404 static rtx
7405 canon_reg_for_combine (rtx x, rtx reg)
7406 {
7407 rtx op0, op1, op2;
7408 const char *fmt;
7409 int i;
7410 bool copied;
7411
7412 enum rtx_code code = GET_CODE (x);
7413 switch (GET_RTX_CLASS (code))
7414 {
7415 case RTX_UNARY:
7416 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7417 if (op0 != XEXP (x, 0))
7418 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7419 GET_MODE (reg));
7420 break;
7421
7422 case RTX_BIN_ARITH:
7423 case RTX_COMM_ARITH:
7424 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7425 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7426 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7427 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7428 break;
7429
7430 case RTX_COMPARE:
7431 case RTX_COMM_COMPARE:
7432 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7433 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7434 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7435 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7436 GET_MODE (op0), op0, op1);
7437 break;
7438
7439 case RTX_TERNARY:
7440 case RTX_BITFIELD_OPS:
7441 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7442 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7443 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7444 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7445 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7446 GET_MODE (op0), op0, op1, op2);
7447
7448 case RTX_OBJ:
7449 if (REG_P (x))
7450 {
7451 if (rtx_equal_p (get_last_value (reg), x)
7452 || rtx_equal_p (reg, get_last_value (x)))
7453 return reg;
7454 else
7455 break;
7456 }
7457
7458 /* fall through */
7459
7460 default:
7461 fmt = GET_RTX_FORMAT (code);
7462 copied = false;
7463 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7464 if (fmt[i] == 'e')
7465 {
7466 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7467 if (op != XEXP (x, i))
7468 {
7469 if (!copied)
7470 {
7471 copied = true;
7472 x = copy_rtx (x);
7473 }
7474 XEXP (x, i) = op;
7475 }
7476 }
7477 else if (fmt[i] == 'E')
7478 {
7479 int j;
7480 for (j = 0; j < XVECLEN (x, i); j++)
7481 {
7482 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7483 if (op != XVECEXP (x, i, j))
7484 {
7485 if (!copied)
7486 {
7487 copied = true;
7488 x = copy_rtx (x);
7489 }
7490 XVECEXP (x, i, j) = op;
7491 }
7492 }
7493 }
7494
7495 break;
7496 }
7497
7498 return x;
7499 }
7500
7501 /* Return X converted to MODE. If the value is already truncated to
7502 MODE we can just return a subreg even though in the general case we
7503 would need an explicit truncation. */
7504
7505 static rtx
7506 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7507 {
7508 if (!CONST_INT_P (x)
7509 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
7510 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7511 GET_MODE_BITSIZE (GET_MODE (x)))
7512 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
7513 {
7514 /* Bit-cast X into an integer mode. */
7515 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
7516 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
7517 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
7518 x, GET_MODE (x));
7519 }
7520
7521 return gen_lowpart (mode, x);
7522 }
7523
7524 /* See if X can be simplified knowing that we will only refer to it in
7525 MODE and will only refer to those bits that are nonzero in MASK.
7526 If other bits are being computed or if masking operations are done
7527 that select a superset of the bits in MASK, they can sometimes be
7528 ignored.
7529
7530 Return a possibly simplified expression, but always convert X to
7531 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7532
7533 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7534 are all off in X. This is used when X will be complemented, by either
7535 NOT, NEG, or XOR. */
7536
7537 static rtx
7538 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7539 int just_select)
7540 {
7541 enum rtx_code code = GET_CODE (x);
7542 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7543 enum machine_mode op_mode;
7544 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7545 rtx op0, op1, temp;
7546
7547 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7548 code below will do the wrong thing since the mode of such an
7549 expression is VOIDmode.
7550
7551 Also do nothing if X is a CLOBBER; this can happen if X was
7552 the return value from a call to gen_lowpart. */
7553 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7554 return x;
7555
7556 /* We want to perform the operation is its present mode unless we know
7557 that the operation is valid in MODE, in which case we do the operation
7558 in MODE. */
7559 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7560 && have_insn_for (code, mode))
7561 ? mode : GET_MODE (x));
7562
7563 /* It is not valid to do a right-shift in a narrower mode
7564 than the one it came in with. */
7565 if ((code == LSHIFTRT || code == ASHIFTRT)
7566 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7567 op_mode = GET_MODE (x);
7568
7569 /* Truncate MASK to fit OP_MODE. */
7570 if (op_mode)
7571 mask &= GET_MODE_MASK (op_mode);
7572
7573 /* When we have an arithmetic operation, or a shift whose count we
7574 do not know, we need to assume that all bits up to the highest-order
7575 bit in MASK will be needed. This is how we form such a mask. */
7576 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7577 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7578 else
7579 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7580 - 1);
7581
7582 /* Determine what bits of X are guaranteed to be (non)zero. */
7583 nonzero = nonzero_bits (x, mode);
7584
7585 /* If none of the bits in X are needed, return a zero. */
7586 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
7587 x = const0_rtx;
7588
7589 /* If X is a CONST_INT, return a new one. Do this here since the
7590 test below will fail. */
7591 if (CONST_INT_P (x))
7592 {
7593 if (SCALAR_INT_MODE_P (mode))
7594 return gen_int_mode (INTVAL (x) & mask, mode);
7595 else
7596 {
7597 x = GEN_INT (INTVAL (x) & mask);
7598 return gen_lowpart_common (mode, x);
7599 }
7600 }
7601
7602 /* If X is narrower than MODE and we want all the bits in X's mode, just
7603 get X in the proper mode. */
7604 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7605 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7606 return gen_lowpart (mode, x);
7607
7608 /* We can ignore the effect of a SUBREG if it narrows the mode or
7609 if the constant masks to zero all the bits the mode doesn't have. */
7610 if (GET_CODE (x) == SUBREG
7611 && subreg_lowpart_p (x)
7612 && ((GET_MODE_SIZE (GET_MODE (x))
7613 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7614 || (0 == (mask
7615 & GET_MODE_MASK (GET_MODE (x))
7616 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7617 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
7618
7619 /* The arithmetic simplifications here only work for scalar integer modes. */
7620 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
7621 return gen_lowpart_or_truncate (mode, x);
7622
7623 switch (code)
7624 {
7625 case CLOBBER:
7626 /* If X is a (clobber (const_int)), return it since we know we are
7627 generating something that won't match. */
7628 return x;
7629
7630 case SIGN_EXTEND:
7631 case ZERO_EXTEND:
7632 case ZERO_EXTRACT:
7633 case SIGN_EXTRACT:
7634 x = expand_compound_operation (x);
7635 if (GET_CODE (x) != code)
7636 return force_to_mode (x, mode, mask, next_select);
7637 break;
7638
7639 case TRUNCATE:
7640 /* Similarly for a truncate. */
7641 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7642
7643 case AND:
7644 /* If this is an AND with a constant, convert it into an AND
7645 whose constant is the AND of that constant with MASK. If it
7646 remains an AND of MASK, delete it since it is redundant. */
7647
7648 if (CONST_INT_P (XEXP (x, 1)))
7649 {
7650 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7651 mask & INTVAL (XEXP (x, 1)));
7652
7653 /* If X is still an AND, see if it is an AND with a mask that
7654 is just some low-order bits. If so, and it is MASK, we don't
7655 need it. */
7656
7657 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
7658 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7659 == mask))
7660 x = XEXP (x, 0);
7661
7662 /* If it remains an AND, try making another AND with the bits
7663 in the mode mask that aren't in MASK turned on. If the
7664 constant in the AND is wide enough, this might make a
7665 cheaper constant. */
7666
7667 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
7668 && GET_MODE_MASK (GET_MODE (x)) != mask
7669 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7670 {
7671 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7672 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7673 int width = GET_MODE_BITSIZE (GET_MODE (x));
7674 rtx y;
7675
7676 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7677 number, sign extend it. */
7678 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7679 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7680 cval |= (HOST_WIDE_INT) -1 << width;
7681
7682 y = simplify_gen_binary (AND, GET_MODE (x),
7683 XEXP (x, 0), GEN_INT (cval));
7684 if (rtx_cost (y, SET, optimize_this_for_speed_p)
7685 < rtx_cost (x, SET, optimize_this_for_speed_p))
7686 x = y;
7687 }
7688
7689 break;
7690 }
7691
7692 goto binop;
7693
7694 case PLUS:
7695 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7696 low-order bits (as in an alignment operation) and FOO is already
7697 aligned to that boundary, mask C1 to that boundary as well.
7698 This may eliminate that PLUS and, later, the AND. */
7699
7700 {
7701 unsigned int width = GET_MODE_BITSIZE (mode);
7702 unsigned HOST_WIDE_INT smask = mask;
7703
7704 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7705 number, sign extend it. */
7706
7707 if (width < HOST_BITS_PER_WIDE_INT
7708 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7709 smask |= (HOST_WIDE_INT) -1 << width;
7710
7711 if (CONST_INT_P (XEXP (x, 1))
7712 && exact_log2 (- smask) >= 0
7713 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7714 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7715 return force_to_mode (plus_constant (XEXP (x, 0),
7716 (INTVAL (XEXP (x, 1)) & smask)),
7717 mode, smask, next_select);
7718 }
7719
7720 /* ... fall through ... */
7721
7722 case MULT:
7723 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7724 most significant bit in MASK since carries from those bits will
7725 affect the bits we are interested in. */
7726 mask = fuller_mask;
7727 goto binop;
7728
7729 case MINUS:
7730 /* If X is (minus C Y) where C's least set bit is larger than any bit
7731 in the mask, then we may replace with (neg Y). */
7732 if (CONST_INT_P (XEXP (x, 0))
7733 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7734 & -INTVAL (XEXP (x, 0))))
7735 > mask))
7736 {
7737 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7738 GET_MODE (x));
7739 return force_to_mode (x, mode, mask, next_select);
7740 }
7741
7742 /* Similarly, if C contains every bit in the fuller_mask, then we may
7743 replace with (not Y). */
7744 if (CONST_INT_P (XEXP (x, 0))
7745 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7746 == INTVAL (XEXP (x, 0))))
7747 {
7748 x = simplify_gen_unary (NOT, GET_MODE (x),
7749 XEXP (x, 1), GET_MODE (x));
7750 return force_to_mode (x, mode, mask, next_select);
7751 }
7752
7753 mask = fuller_mask;
7754 goto binop;
7755
7756 case IOR:
7757 case XOR:
7758 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7759 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7760 operation which may be a bitfield extraction. Ensure that the
7761 constant we form is not wider than the mode of X. */
7762
7763 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7764 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7765 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7766 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7767 && CONST_INT_P (XEXP (x, 1))
7768 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7769 + floor_log2 (INTVAL (XEXP (x, 1))))
7770 < GET_MODE_BITSIZE (GET_MODE (x)))
7771 && (INTVAL (XEXP (x, 1))
7772 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7773 {
7774 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7775 << INTVAL (XEXP (XEXP (x, 0), 1)));
7776 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7777 XEXP (XEXP (x, 0), 0), temp);
7778 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7779 XEXP (XEXP (x, 0), 1));
7780 return force_to_mode (x, mode, mask, next_select);
7781 }
7782
7783 binop:
7784 /* For most binary operations, just propagate into the operation and
7785 change the mode if we have an operation of that mode. */
7786
7787 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
7788 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
7789
7790 /* If we ended up truncating both operands, truncate the result of the
7791 operation instead. */
7792 if (GET_CODE (op0) == TRUNCATE
7793 && GET_CODE (op1) == TRUNCATE)
7794 {
7795 op0 = XEXP (op0, 0);
7796 op1 = XEXP (op1, 0);
7797 }
7798
7799 op0 = gen_lowpart_or_truncate (op_mode, op0);
7800 op1 = gen_lowpart_or_truncate (op_mode, op1);
7801
7802 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7803 x = simplify_gen_binary (code, op_mode, op0, op1);
7804 break;
7805
7806 case ASHIFT:
7807 /* For left shifts, do the same, but just for the first operand.
7808 However, we cannot do anything with shifts where we cannot
7809 guarantee that the counts are smaller than the size of the mode
7810 because such a count will have a different meaning in a
7811 wider mode. */
7812
7813 if (! (CONST_INT_P (XEXP (x, 1))
7814 && INTVAL (XEXP (x, 1)) >= 0
7815 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7816 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7817 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7818 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7819 break;
7820
7821 /* If the shift count is a constant and we can do arithmetic in
7822 the mode of the shift, refine which bits we need. Otherwise, use the
7823 conservative form of the mask. */
7824 if (CONST_INT_P (XEXP (x, 1))
7825 && INTVAL (XEXP (x, 1)) >= 0
7826 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7827 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7828 mask >>= INTVAL (XEXP (x, 1));
7829 else
7830 mask = fuller_mask;
7831
7832 op0 = gen_lowpart_or_truncate (op_mode,
7833 force_to_mode (XEXP (x, 0), op_mode,
7834 mask, next_select));
7835
7836 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7837 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7838 break;
7839
7840 case LSHIFTRT:
7841 /* Here we can only do something if the shift count is a constant,
7842 this shift constant is valid for the host, and we can do arithmetic
7843 in OP_MODE. */
7844
7845 if (CONST_INT_P (XEXP (x, 1))
7846 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7847 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7848 {
7849 rtx inner = XEXP (x, 0);
7850 unsigned HOST_WIDE_INT inner_mask;
7851
7852 /* Select the mask of the bits we need for the shift operand. */
7853 inner_mask = mask << INTVAL (XEXP (x, 1));
7854
7855 /* We can only change the mode of the shift if we can do arithmetic
7856 in the mode of the shift and INNER_MASK is no wider than the
7857 width of X's mode. */
7858 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7859 op_mode = GET_MODE (x);
7860
7861 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7862
7863 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7864 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7865 }
7866
7867 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7868 shift and AND produces only copies of the sign bit (C2 is one less
7869 than a power of two), we can do this with just a shift. */
7870
7871 if (GET_CODE (x) == LSHIFTRT
7872 && CONST_INT_P (XEXP (x, 1))
7873 /* The shift puts one of the sign bit copies in the least significant
7874 bit. */
7875 && ((INTVAL (XEXP (x, 1))
7876 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7877 >= GET_MODE_BITSIZE (GET_MODE (x)))
7878 && exact_log2 (mask + 1) >= 0
7879 /* Number of bits left after the shift must be more than the mask
7880 needs. */
7881 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7882 <= GET_MODE_BITSIZE (GET_MODE (x)))
7883 /* Must be more sign bit copies than the mask needs. */
7884 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7885 >= exact_log2 (mask + 1)))
7886 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7887 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7888 - exact_log2 (mask + 1)));
7889
7890 goto shiftrt;
7891
7892 case ASHIFTRT:
7893 /* If we are just looking for the sign bit, we don't need this shift at
7894 all, even if it has a variable count. */
7895 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7896 && (mask == ((unsigned HOST_WIDE_INT) 1
7897 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7898 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7899
7900 /* If this is a shift by a constant, get a mask that contains those bits
7901 that are not copies of the sign bit. We then have two cases: If
7902 MASK only includes those bits, this can be a logical shift, which may
7903 allow simplifications. If MASK is a single-bit field not within
7904 those bits, we are requesting a copy of the sign bit and hence can
7905 shift the sign bit to the appropriate location. */
7906
7907 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
7908 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7909 {
7910 int i;
7911
7912 /* If the considered data is wider than HOST_WIDE_INT, we can't
7913 represent a mask for all its bits in a single scalar.
7914 But we only care about the lower bits, so calculate these. */
7915
7916 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7917 {
7918 nonzero = ~(HOST_WIDE_INT) 0;
7919
7920 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7921 is the number of bits a full-width mask would have set.
7922 We need only shift if these are fewer than nonzero can
7923 hold. If not, we must keep all bits set in nonzero. */
7924
7925 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7926 < HOST_BITS_PER_WIDE_INT)
7927 nonzero >>= INTVAL (XEXP (x, 1))
7928 + HOST_BITS_PER_WIDE_INT
7929 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7930 }
7931 else
7932 {
7933 nonzero = GET_MODE_MASK (GET_MODE (x));
7934 nonzero >>= INTVAL (XEXP (x, 1));
7935 }
7936
7937 if ((mask & ~nonzero) == 0)
7938 {
7939 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7940 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7941 if (GET_CODE (x) != ASHIFTRT)
7942 return force_to_mode (x, mode, mask, next_select);
7943 }
7944
7945 else if ((i = exact_log2 (mask)) >= 0)
7946 {
7947 x = simplify_shift_const
7948 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7949 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7950
7951 if (GET_CODE (x) != ASHIFTRT)
7952 return force_to_mode (x, mode, mask, next_select);
7953 }
7954 }
7955
7956 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7957 even if the shift count isn't a constant. */
7958 if (mask == 1)
7959 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7960 XEXP (x, 0), XEXP (x, 1));
7961
7962 shiftrt:
7963
7964 /* If this is a zero- or sign-extension operation that just affects bits
7965 we don't care about, remove it. Be sure the call above returned
7966 something that is still a shift. */
7967
7968 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7969 && CONST_INT_P (XEXP (x, 1))
7970 && INTVAL (XEXP (x, 1)) >= 0
7971 && (INTVAL (XEXP (x, 1))
7972 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7973 && GET_CODE (XEXP (x, 0)) == ASHIFT
7974 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7975 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7976 next_select);
7977
7978 break;
7979
7980 case ROTATE:
7981 case ROTATERT:
7982 /* If the shift count is constant and we can do computations
7983 in the mode of X, compute where the bits we care about are.
7984 Otherwise, we can't do anything. Don't change the mode of
7985 the shift or propagate MODE into the shift, though. */
7986 if (CONST_INT_P (XEXP (x, 1))
7987 && INTVAL (XEXP (x, 1)) >= 0)
7988 {
7989 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7990 GET_MODE (x), GEN_INT (mask),
7991 XEXP (x, 1));
7992 if (temp && CONST_INT_P (temp))
7993 SUBST (XEXP (x, 0),
7994 force_to_mode (XEXP (x, 0), GET_MODE (x),
7995 INTVAL (temp), next_select));
7996 }
7997 break;
7998
7999 case NEG:
8000 /* If we just want the low-order bit, the NEG isn't needed since it
8001 won't change the low-order bit. */
8002 if (mask == 1)
8003 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8004
8005 /* We need any bits less significant than the most significant bit in
8006 MASK since carries from those bits will affect the bits we are
8007 interested in. */
8008 mask = fuller_mask;
8009 goto unop;
8010
8011 case NOT:
8012 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8013 same as the XOR case above. Ensure that the constant we form is not
8014 wider than the mode of X. */
8015
8016 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8017 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8018 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8019 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8020 < GET_MODE_BITSIZE (GET_MODE (x)))
8021 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8022 {
8023 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8024 GET_MODE (x));
8025 temp = simplify_gen_binary (XOR, GET_MODE (x),
8026 XEXP (XEXP (x, 0), 0), temp);
8027 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8028 temp, XEXP (XEXP (x, 0), 1));
8029
8030 return force_to_mode (x, mode, mask, next_select);
8031 }
8032
8033 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8034 use the full mask inside the NOT. */
8035 mask = fuller_mask;
8036
8037 unop:
8038 op0 = gen_lowpart_or_truncate (op_mode,
8039 force_to_mode (XEXP (x, 0), mode, mask,
8040 next_select));
8041 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8042 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8043 break;
8044
8045 case NE:
8046 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8047 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8048 which is equal to STORE_FLAG_VALUE. */
8049 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
8050 && GET_MODE (XEXP (x, 0)) == mode
8051 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8052 && (nonzero_bits (XEXP (x, 0), mode)
8053 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8054 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8055
8056 break;
8057
8058 case IF_THEN_ELSE:
8059 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8060 written in a narrower mode. We play it safe and do not do so. */
8061
8062 SUBST (XEXP (x, 1),
8063 gen_lowpart_or_truncate (GET_MODE (x),
8064 force_to_mode (XEXP (x, 1), mode,
8065 mask, next_select)));
8066 SUBST (XEXP (x, 2),
8067 gen_lowpart_or_truncate (GET_MODE (x),
8068 force_to_mode (XEXP (x, 2), mode,
8069 mask, next_select)));
8070 break;
8071
8072 default:
8073 break;
8074 }
8075
8076 /* Ensure we return a value of the proper mode. */
8077 return gen_lowpart_or_truncate (mode, x);
8078 }
8079 \f
8080 /* Return nonzero if X is an expression that has one of two values depending on
8081 whether some other value is zero or nonzero. In that case, we return the
8082 value that is being tested, *PTRUE is set to the value if the rtx being
8083 returned has a nonzero value, and *PFALSE is set to the other alternative.
8084
8085 If we return zero, we set *PTRUE and *PFALSE to X. */
8086
8087 static rtx
8088 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8089 {
8090 enum machine_mode mode = GET_MODE (x);
8091 enum rtx_code code = GET_CODE (x);
8092 rtx cond0, cond1, true0, true1, false0, false1;
8093 unsigned HOST_WIDE_INT nz;
8094
8095 /* If we are comparing a value against zero, we are done. */
8096 if ((code == NE || code == EQ)
8097 && XEXP (x, 1) == const0_rtx)
8098 {
8099 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8100 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8101 return XEXP (x, 0);
8102 }
8103
8104 /* If this is a unary operation whose operand has one of two values, apply
8105 our opcode to compute those values. */
8106 else if (UNARY_P (x)
8107 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8108 {
8109 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8110 *pfalse = simplify_gen_unary (code, mode, false0,
8111 GET_MODE (XEXP (x, 0)));
8112 return cond0;
8113 }
8114
8115 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8116 make can't possibly match and would suppress other optimizations. */
8117 else if (code == COMPARE)
8118 ;
8119
8120 /* If this is a binary operation, see if either side has only one of two
8121 values. If either one does or if both do and they are conditional on
8122 the same value, compute the new true and false values. */
8123 else if (BINARY_P (x))
8124 {
8125 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8126 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8127
8128 if ((cond0 != 0 || cond1 != 0)
8129 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8130 {
8131 /* If if_then_else_cond returned zero, then true/false are the
8132 same rtl. We must copy one of them to prevent invalid rtl
8133 sharing. */
8134 if (cond0 == 0)
8135 true0 = copy_rtx (true0);
8136 else if (cond1 == 0)
8137 true1 = copy_rtx (true1);
8138
8139 if (COMPARISON_P (x))
8140 {
8141 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8142 true0, true1);
8143 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8144 false0, false1);
8145 }
8146 else
8147 {
8148 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8149 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8150 }
8151
8152 return cond0 ? cond0 : cond1;
8153 }
8154
8155 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8156 operands is zero when the other is nonzero, and vice-versa,
8157 and STORE_FLAG_VALUE is 1 or -1. */
8158
8159 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8160 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8161 || code == UMAX)
8162 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8163 {
8164 rtx op0 = XEXP (XEXP (x, 0), 1);
8165 rtx op1 = XEXP (XEXP (x, 1), 1);
8166
8167 cond0 = XEXP (XEXP (x, 0), 0);
8168 cond1 = XEXP (XEXP (x, 1), 0);
8169
8170 if (COMPARISON_P (cond0)
8171 && COMPARISON_P (cond1)
8172 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8173 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8174 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8175 || ((swap_condition (GET_CODE (cond0))
8176 == reversed_comparison_code (cond1, NULL))
8177 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8178 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8179 && ! side_effects_p (x))
8180 {
8181 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8182 *pfalse = simplify_gen_binary (MULT, mode,
8183 (code == MINUS
8184 ? simplify_gen_unary (NEG, mode,
8185 op1, mode)
8186 : op1),
8187 const_true_rtx);
8188 return cond0;
8189 }
8190 }
8191
8192 /* Similarly for MULT, AND and UMIN, except that for these the result
8193 is always zero. */
8194 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8195 && (code == MULT || code == AND || code == UMIN)
8196 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8197 {
8198 cond0 = XEXP (XEXP (x, 0), 0);
8199 cond1 = XEXP (XEXP (x, 1), 0);
8200
8201 if (COMPARISON_P (cond0)
8202 && COMPARISON_P (cond1)
8203 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8204 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8205 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8206 || ((swap_condition (GET_CODE (cond0))
8207 == reversed_comparison_code (cond1, NULL))
8208 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8209 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8210 && ! side_effects_p (x))
8211 {
8212 *ptrue = *pfalse = const0_rtx;
8213 return cond0;
8214 }
8215 }
8216 }
8217
8218 else if (code == IF_THEN_ELSE)
8219 {
8220 /* If we have IF_THEN_ELSE already, extract the condition and
8221 canonicalize it if it is NE or EQ. */
8222 cond0 = XEXP (x, 0);
8223 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8224 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8225 return XEXP (cond0, 0);
8226 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8227 {
8228 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8229 return XEXP (cond0, 0);
8230 }
8231 else
8232 return cond0;
8233 }
8234
8235 /* If X is a SUBREG, we can narrow both the true and false values
8236 if the inner expression, if there is a condition. */
8237 else if (code == SUBREG
8238 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8239 &true0, &false0)))
8240 {
8241 true0 = simplify_gen_subreg (mode, true0,
8242 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8243 false0 = simplify_gen_subreg (mode, false0,
8244 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8245 if (true0 && false0)
8246 {
8247 *ptrue = true0;
8248 *pfalse = false0;
8249 return cond0;
8250 }
8251 }
8252
8253 /* If X is a constant, this isn't special and will cause confusions
8254 if we treat it as such. Likewise if it is equivalent to a constant. */
8255 else if (CONSTANT_P (x)
8256 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8257 ;
8258
8259 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8260 will be least confusing to the rest of the compiler. */
8261 else if (mode == BImode)
8262 {
8263 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8264 return x;
8265 }
8266
8267 /* If X is known to be either 0 or -1, those are the true and
8268 false values when testing X. */
8269 else if (x == constm1_rtx || x == const0_rtx
8270 || (mode != VOIDmode
8271 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
8272 {
8273 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8274 return x;
8275 }
8276
8277 /* Likewise for 0 or a single bit. */
8278 else if (SCALAR_INT_MODE_P (mode)
8279 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8280 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8281 {
8282 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8283 return x;
8284 }
8285
8286 /* Otherwise fail; show no condition with true and false values the same. */
8287 *ptrue = *pfalse = x;
8288 return 0;
8289 }
8290 \f
8291 /* Return the value of expression X given the fact that condition COND
8292 is known to be true when applied to REG as its first operand and VAL
8293 as its second. X is known to not be shared and so can be modified in
8294 place.
8295
8296 We only handle the simplest cases, and specifically those cases that
8297 arise with IF_THEN_ELSE expressions. */
8298
8299 static rtx
8300 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8301 {
8302 enum rtx_code code = GET_CODE (x);
8303 rtx temp;
8304 const char *fmt;
8305 int i, j;
8306
8307 if (side_effects_p (x))
8308 return x;
8309
8310 /* If either operand of the condition is a floating point value,
8311 then we have to avoid collapsing an EQ comparison. */
8312 if (cond == EQ
8313 && rtx_equal_p (x, reg)
8314 && ! FLOAT_MODE_P (GET_MODE (x))
8315 && ! FLOAT_MODE_P (GET_MODE (val)))
8316 return val;
8317
8318 if (cond == UNEQ && rtx_equal_p (x, reg))
8319 return val;
8320
8321 /* If X is (abs REG) and we know something about REG's relationship
8322 with zero, we may be able to simplify this. */
8323
8324 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8325 switch (cond)
8326 {
8327 case GE: case GT: case EQ:
8328 return XEXP (x, 0);
8329 case LT: case LE:
8330 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8331 XEXP (x, 0),
8332 GET_MODE (XEXP (x, 0)));
8333 default:
8334 break;
8335 }
8336
8337 /* The only other cases we handle are MIN, MAX, and comparisons if the
8338 operands are the same as REG and VAL. */
8339
8340 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8341 {
8342 if (rtx_equal_p (XEXP (x, 0), val))
8343 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8344
8345 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8346 {
8347 if (COMPARISON_P (x))
8348 {
8349 if (comparison_dominates_p (cond, code))
8350 return const_true_rtx;
8351
8352 code = reversed_comparison_code (x, NULL);
8353 if (code != UNKNOWN
8354 && comparison_dominates_p (cond, code))
8355 return const0_rtx;
8356 else
8357 return x;
8358 }
8359 else if (code == SMAX || code == SMIN
8360 || code == UMIN || code == UMAX)
8361 {
8362 int unsignedp = (code == UMIN || code == UMAX);
8363
8364 /* Do not reverse the condition when it is NE or EQ.
8365 This is because we cannot conclude anything about
8366 the value of 'SMAX (x, y)' when x is not equal to y,
8367 but we can when x equals y. */
8368 if ((code == SMAX || code == UMAX)
8369 && ! (cond == EQ || cond == NE))
8370 cond = reverse_condition (cond);
8371
8372 switch (cond)
8373 {
8374 case GE: case GT:
8375 return unsignedp ? x : XEXP (x, 1);
8376 case LE: case LT:
8377 return unsignedp ? x : XEXP (x, 0);
8378 case GEU: case GTU:
8379 return unsignedp ? XEXP (x, 1) : x;
8380 case LEU: case LTU:
8381 return unsignedp ? XEXP (x, 0) : x;
8382 default:
8383 break;
8384 }
8385 }
8386 }
8387 }
8388 else if (code == SUBREG)
8389 {
8390 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8391 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8392
8393 if (SUBREG_REG (x) != r)
8394 {
8395 /* We must simplify subreg here, before we lose track of the
8396 original inner_mode. */
8397 new_rtx = simplify_subreg (GET_MODE (x), r,
8398 inner_mode, SUBREG_BYTE (x));
8399 if (new_rtx)
8400 return new_rtx;
8401 else
8402 SUBST (SUBREG_REG (x), r);
8403 }
8404
8405 return x;
8406 }
8407 /* We don't have to handle SIGN_EXTEND here, because even in the
8408 case of replacing something with a modeless CONST_INT, a
8409 CONST_INT is already (supposed to be) a valid sign extension for
8410 its narrower mode, which implies it's already properly
8411 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8412 story is different. */
8413 else if (code == ZERO_EXTEND)
8414 {
8415 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8416 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8417
8418 if (XEXP (x, 0) != r)
8419 {
8420 /* We must simplify the zero_extend here, before we lose
8421 track of the original inner_mode. */
8422 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8423 r, inner_mode);
8424 if (new_rtx)
8425 return new_rtx;
8426 else
8427 SUBST (XEXP (x, 0), r);
8428 }
8429
8430 return x;
8431 }
8432
8433 fmt = GET_RTX_FORMAT (code);
8434 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8435 {
8436 if (fmt[i] == 'e')
8437 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8438 else if (fmt[i] == 'E')
8439 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8440 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8441 cond, reg, val));
8442 }
8443
8444 return x;
8445 }
8446 \f
8447 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8448 assignment as a field assignment. */
8449
8450 static int
8451 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8452 {
8453 if (x == y || rtx_equal_p (x, y))
8454 return 1;
8455
8456 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8457 return 0;
8458
8459 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8460 Note that all SUBREGs of MEM are paradoxical; otherwise they
8461 would have been rewritten. */
8462 if (MEM_P (x) && GET_CODE (y) == SUBREG
8463 && MEM_P (SUBREG_REG (y))
8464 && rtx_equal_p (SUBREG_REG (y),
8465 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8466 return 1;
8467
8468 if (MEM_P (y) && GET_CODE (x) == SUBREG
8469 && MEM_P (SUBREG_REG (x))
8470 && rtx_equal_p (SUBREG_REG (x),
8471 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8472 return 1;
8473
8474 /* We used to see if get_last_value of X and Y were the same but that's
8475 not correct. In one direction, we'll cause the assignment to have
8476 the wrong destination and in the case, we'll import a register into this
8477 insn that might have already have been dead. So fail if none of the
8478 above cases are true. */
8479 return 0;
8480 }
8481 \f
8482 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8483 Return that assignment if so.
8484
8485 We only handle the most common cases. */
8486
8487 static rtx
8488 make_field_assignment (rtx x)
8489 {
8490 rtx dest = SET_DEST (x);
8491 rtx src = SET_SRC (x);
8492 rtx assign;
8493 rtx rhs, lhs;
8494 HOST_WIDE_INT c1;
8495 HOST_WIDE_INT pos;
8496 unsigned HOST_WIDE_INT len;
8497 rtx other;
8498 enum machine_mode mode;
8499
8500 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8501 a clear of a one-bit field. We will have changed it to
8502 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8503 for a SUBREG. */
8504
8505 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8506 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8507 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8508 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8509 {
8510 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8511 1, 1, 1, 0);
8512 if (assign != 0)
8513 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8514 return x;
8515 }
8516
8517 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8518 && subreg_lowpart_p (XEXP (src, 0))
8519 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8520 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8521 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8522 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8523 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8524 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8525 {
8526 assign = make_extraction (VOIDmode, dest, 0,
8527 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8528 1, 1, 1, 0);
8529 if (assign != 0)
8530 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8531 return x;
8532 }
8533
8534 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8535 one-bit field. */
8536 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8537 && XEXP (XEXP (src, 0), 0) == const1_rtx
8538 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8539 {
8540 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8541 1, 1, 1, 0);
8542 if (assign != 0)
8543 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8544 return x;
8545 }
8546
8547 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8548 SRC is an AND with all bits of that field set, then we can discard
8549 the AND. */
8550 if (GET_CODE (dest) == ZERO_EXTRACT
8551 && CONST_INT_P (XEXP (dest, 1))
8552 && GET_CODE (src) == AND
8553 && CONST_INT_P (XEXP (src, 1)))
8554 {
8555 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8556 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8557 unsigned HOST_WIDE_INT ze_mask;
8558
8559 if (width >= HOST_BITS_PER_WIDE_INT)
8560 ze_mask = -1;
8561 else
8562 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8563
8564 /* Complete overlap. We can remove the source AND. */
8565 if ((and_mask & ze_mask) == ze_mask)
8566 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8567
8568 /* Partial overlap. We can reduce the source AND. */
8569 if ((and_mask & ze_mask) != and_mask)
8570 {
8571 mode = GET_MODE (src);
8572 src = gen_rtx_AND (mode, XEXP (src, 0),
8573 gen_int_mode (and_mask & ze_mask, mode));
8574 return gen_rtx_SET (VOIDmode, dest, src);
8575 }
8576 }
8577
8578 /* The other case we handle is assignments into a constant-position
8579 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8580 a mask that has all one bits except for a group of zero bits and
8581 OTHER is known to have zeros where C1 has ones, this is such an
8582 assignment. Compute the position and length from C1. Shift OTHER
8583 to the appropriate position, force it to the required mode, and
8584 make the extraction. Check for the AND in both operands. */
8585
8586 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8587 return x;
8588
8589 rhs = expand_compound_operation (XEXP (src, 0));
8590 lhs = expand_compound_operation (XEXP (src, 1));
8591
8592 if (GET_CODE (rhs) == AND
8593 && CONST_INT_P (XEXP (rhs, 1))
8594 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8595 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8596 else if (GET_CODE (lhs) == AND
8597 && CONST_INT_P (XEXP (lhs, 1))
8598 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8599 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8600 else
8601 return x;
8602
8603 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8604 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8605 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8606 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8607 return x;
8608
8609 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8610 if (assign == 0)
8611 return x;
8612
8613 /* The mode to use for the source is the mode of the assignment, or of
8614 what is inside a possible STRICT_LOW_PART. */
8615 mode = (GET_CODE (assign) == STRICT_LOW_PART
8616 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8617
8618 /* Shift OTHER right POS places and make it the source, restricting it
8619 to the proper length and mode. */
8620
8621 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
8622 GET_MODE (src),
8623 other, pos),
8624 dest);
8625 src = force_to_mode (src, mode,
8626 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8627 ? ~(unsigned HOST_WIDE_INT) 0
8628 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8629 0);
8630
8631 /* If SRC is masked by an AND that does not make a difference in
8632 the value being stored, strip it. */
8633 if (GET_CODE (assign) == ZERO_EXTRACT
8634 && CONST_INT_P (XEXP (assign, 1))
8635 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8636 && GET_CODE (src) == AND
8637 && CONST_INT_P (XEXP (src, 1))
8638 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8639 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8640 src = XEXP (src, 0);
8641
8642 return gen_rtx_SET (VOIDmode, assign, src);
8643 }
8644 \f
8645 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8646 if so. */
8647
8648 static rtx
8649 apply_distributive_law (rtx x)
8650 {
8651 enum rtx_code code = GET_CODE (x);
8652 enum rtx_code inner_code;
8653 rtx lhs, rhs, other;
8654 rtx tem;
8655
8656 /* Distributivity is not true for floating point as it can change the
8657 value. So we don't do it unless -funsafe-math-optimizations. */
8658 if (FLOAT_MODE_P (GET_MODE (x))
8659 && ! flag_unsafe_math_optimizations)
8660 return x;
8661
8662 /* The outer operation can only be one of the following: */
8663 if (code != IOR && code != AND && code != XOR
8664 && code != PLUS && code != MINUS)
8665 return x;
8666
8667 lhs = XEXP (x, 0);
8668 rhs = XEXP (x, 1);
8669
8670 /* If either operand is a primitive we can't do anything, so get out
8671 fast. */
8672 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8673 return x;
8674
8675 lhs = expand_compound_operation (lhs);
8676 rhs = expand_compound_operation (rhs);
8677 inner_code = GET_CODE (lhs);
8678 if (inner_code != GET_CODE (rhs))
8679 return x;
8680
8681 /* See if the inner and outer operations distribute. */
8682 switch (inner_code)
8683 {
8684 case LSHIFTRT:
8685 case ASHIFTRT:
8686 case AND:
8687 case IOR:
8688 /* These all distribute except over PLUS. */
8689 if (code == PLUS || code == MINUS)
8690 return x;
8691 break;
8692
8693 case MULT:
8694 if (code != PLUS && code != MINUS)
8695 return x;
8696 break;
8697
8698 case ASHIFT:
8699 /* This is also a multiply, so it distributes over everything. */
8700 break;
8701
8702 case SUBREG:
8703 /* Non-paradoxical SUBREGs distributes over all operations,
8704 provided the inner modes and byte offsets are the same, this
8705 is an extraction of a low-order part, we don't convert an fp
8706 operation to int or vice versa, this is not a vector mode,
8707 and we would not be converting a single-word operation into a
8708 multi-word operation. The latter test is not required, but
8709 it prevents generating unneeded multi-word operations. Some
8710 of the previous tests are redundant given the latter test,
8711 but are retained because they are required for correctness.
8712
8713 We produce the result slightly differently in this case. */
8714
8715 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8716 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8717 || ! subreg_lowpart_p (lhs)
8718 || (GET_MODE_CLASS (GET_MODE (lhs))
8719 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8720 || (GET_MODE_SIZE (GET_MODE (lhs))
8721 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8722 || VECTOR_MODE_P (GET_MODE (lhs))
8723 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
8724 /* Result might need to be truncated. Don't change mode if
8725 explicit truncation is needed. */
8726 || !TRULY_NOOP_TRUNCATION
8727 (GET_MODE_BITSIZE (GET_MODE (x)),
8728 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
8729 return x;
8730
8731 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8732 SUBREG_REG (lhs), SUBREG_REG (rhs));
8733 return gen_lowpart (GET_MODE (x), tem);
8734
8735 default:
8736 return x;
8737 }
8738
8739 /* Set LHS and RHS to the inner operands (A and B in the example
8740 above) and set OTHER to the common operand (C in the example).
8741 There is only one way to do this unless the inner operation is
8742 commutative. */
8743 if (COMMUTATIVE_ARITH_P (lhs)
8744 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8745 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8746 else if (COMMUTATIVE_ARITH_P (lhs)
8747 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8748 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8749 else if (COMMUTATIVE_ARITH_P (lhs)
8750 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8751 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8752 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8753 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8754 else
8755 return x;
8756
8757 /* Form the new inner operation, seeing if it simplifies first. */
8758 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8759
8760 /* There is one exception to the general way of distributing:
8761 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8762 if (code == XOR && inner_code == IOR)
8763 {
8764 inner_code = AND;
8765 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8766 }
8767
8768 /* We may be able to continuing distributing the result, so call
8769 ourselves recursively on the inner operation before forming the
8770 outer operation, which we return. */
8771 return simplify_gen_binary (inner_code, GET_MODE (x),
8772 apply_distributive_law (tem), other);
8773 }
8774
8775 /* See if X is of the form (* (+ A B) C), and if so convert to
8776 (+ (* A C) (* B C)) and try to simplify.
8777
8778 Most of the time, this results in no change. However, if some of
8779 the operands are the same or inverses of each other, simplifications
8780 will result.
8781
8782 For example, (and (ior A B) (not B)) can occur as the result of
8783 expanding a bit field assignment. When we apply the distributive
8784 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8785 which then simplifies to (and (A (not B))).
8786
8787 Note that no checks happen on the validity of applying the inverse
8788 distributive law. This is pointless since we can do it in the
8789 few places where this routine is called.
8790
8791 N is the index of the term that is decomposed (the arithmetic operation,
8792 i.e. (+ A B) in the first example above). !N is the index of the term that
8793 is distributed, i.e. of C in the first example above. */
8794 static rtx
8795 distribute_and_simplify_rtx (rtx x, int n)
8796 {
8797 enum machine_mode mode;
8798 enum rtx_code outer_code, inner_code;
8799 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8800
8801 /* Distributivity is not true for floating point as it can change the
8802 value. So we don't do it unless -funsafe-math-optimizations. */
8803 if (FLOAT_MODE_P (GET_MODE (x))
8804 && ! flag_unsafe_math_optimizations)
8805 return NULL_RTX;
8806
8807 decomposed = XEXP (x, n);
8808 if (!ARITHMETIC_P (decomposed))
8809 return NULL_RTX;
8810
8811 mode = GET_MODE (x);
8812 outer_code = GET_CODE (x);
8813 distributed = XEXP (x, !n);
8814
8815 inner_code = GET_CODE (decomposed);
8816 inner_op0 = XEXP (decomposed, 0);
8817 inner_op1 = XEXP (decomposed, 1);
8818
8819 /* Special case (and (xor B C) (not A)), which is equivalent to
8820 (xor (ior A B) (ior A C)) */
8821 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8822 {
8823 distributed = XEXP (distributed, 0);
8824 outer_code = IOR;
8825 }
8826
8827 if (n == 0)
8828 {
8829 /* Distribute the second term. */
8830 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8831 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8832 }
8833 else
8834 {
8835 /* Distribute the first term. */
8836 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8837 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8838 }
8839
8840 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8841 new_op0, new_op1));
8842 if (GET_CODE (tmp) != outer_code
8843 && rtx_cost (tmp, SET, optimize_this_for_speed_p)
8844 < rtx_cost (x, SET, optimize_this_for_speed_p))
8845 return tmp;
8846
8847 return NULL_RTX;
8848 }
8849 \f
8850 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8851 in MODE. Return an equivalent form, if different from (and VAROP
8852 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8853
8854 static rtx
8855 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8856 unsigned HOST_WIDE_INT constop)
8857 {
8858 unsigned HOST_WIDE_INT nonzero;
8859 unsigned HOST_WIDE_INT orig_constop;
8860 rtx orig_varop;
8861 int i;
8862
8863 orig_varop = varop;
8864 orig_constop = constop;
8865 if (GET_CODE (varop) == CLOBBER)
8866 return NULL_RTX;
8867
8868 /* Simplify VAROP knowing that we will be only looking at some of the
8869 bits in it.
8870
8871 Note by passing in CONSTOP, we guarantee that the bits not set in
8872 CONSTOP are not significant and will never be examined. We must
8873 ensure that is the case by explicitly masking out those bits
8874 before returning. */
8875 varop = force_to_mode (varop, mode, constop, 0);
8876
8877 /* If VAROP is a CLOBBER, we will fail so return it. */
8878 if (GET_CODE (varop) == CLOBBER)
8879 return varop;
8880
8881 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8882 to VAROP and return the new constant. */
8883 if (CONST_INT_P (varop))
8884 return gen_int_mode (INTVAL (varop) & constop, mode);
8885
8886 /* See what bits may be nonzero in VAROP. Unlike the general case of
8887 a call to nonzero_bits, here we don't care about bits outside
8888 MODE. */
8889
8890 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8891
8892 /* Turn off all bits in the constant that are known to already be zero.
8893 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8894 which is tested below. */
8895
8896 constop &= nonzero;
8897
8898 /* If we don't have any bits left, return zero. */
8899 if (constop == 0)
8900 return const0_rtx;
8901
8902 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8903 a power of two, we can replace this with an ASHIFT. */
8904 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8905 && (i = exact_log2 (constop)) >= 0)
8906 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8907
8908 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8909 or XOR, then try to apply the distributive law. This may eliminate
8910 operations if either branch can be simplified because of the AND.
8911 It may also make some cases more complex, but those cases probably
8912 won't match a pattern either with or without this. */
8913
8914 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8915 return
8916 gen_lowpart
8917 (mode,
8918 apply_distributive_law
8919 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8920 simplify_and_const_int (NULL_RTX,
8921 GET_MODE (varop),
8922 XEXP (varop, 0),
8923 constop),
8924 simplify_and_const_int (NULL_RTX,
8925 GET_MODE (varop),
8926 XEXP (varop, 1),
8927 constop))));
8928
8929 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8930 the AND and see if one of the operands simplifies to zero. If so, we
8931 may eliminate it. */
8932
8933 if (GET_CODE (varop) == PLUS
8934 && exact_log2 (constop + 1) >= 0)
8935 {
8936 rtx o0, o1;
8937
8938 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8939 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8940 if (o0 == const0_rtx)
8941 return o1;
8942 if (o1 == const0_rtx)
8943 return o0;
8944 }
8945
8946 /* Make a SUBREG if necessary. If we can't make it, fail. */
8947 varop = gen_lowpart (mode, varop);
8948 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8949 return NULL_RTX;
8950
8951 /* If we are only masking insignificant bits, return VAROP. */
8952 if (constop == nonzero)
8953 return varop;
8954
8955 if (varop == orig_varop && constop == orig_constop)
8956 return NULL_RTX;
8957
8958 /* Otherwise, return an AND. */
8959 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
8960 }
8961
8962
8963 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8964 in MODE.
8965
8966 Return an equivalent form, if different from X. Otherwise, return X. If
8967 X is zero, we are to always construct the equivalent form. */
8968
8969 static rtx
8970 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8971 unsigned HOST_WIDE_INT constop)
8972 {
8973 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8974 if (tem)
8975 return tem;
8976
8977 if (!x)
8978 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
8979 gen_int_mode (constop, mode));
8980 if (GET_MODE (x) != mode)
8981 x = gen_lowpart (mode, x);
8982 return x;
8983 }
8984 \f
8985 /* Given a REG, X, compute which bits in X can be nonzero.
8986 We don't care about bits outside of those defined in MODE.
8987
8988 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8989 a shift, AND, or zero_extract, we can do better. */
8990
8991 static rtx
8992 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
8993 const_rtx known_x ATTRIBUTE_UNUSED,
8994 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8995 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8996 unsigned HOST_WIDE_INT *nonzero)
8997 {
8998 rtx tem;
8999 reg_stat_type *rsp;
9000
9001 /* If X is a register whose nonzero bits value is current, use it.
9002 Otherwise, if X is a register whose value we can find, use that
9003 value. Otherwise, use the previously-computed global nonzero bits
9004 for this register. */
9005
9006 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9007 if (rsp->last_set_value != 0
9008 && (rsp->last_set_mode == mode
9009 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9010 && GET_MODE_CLASS (mode) == MODE_INT))
9011 && ((rsp->last_set_label >= label_tick_ebb_start
9012 && rsp->last_set_label < label_tick)
9013 || (rsp->last_set_label == label_tick
9014 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9015 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9016 && REG_N_SETS (REGNO (x)) == 1
9017 && !REGNO_REG_SET_P
9018 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9019 {
9020 *nonzero &= rsp->last_set_nonzero_bits;
9021 return NULL;
9022 }
9023
9024 tem = get_last_value (x);
9025
9026 if (tem)
9027 {
9028 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9029 /* If X is narrower than MODE and TEM is a non-negative
9030 constant that would appear negative in the mode of X,
9031 sign-extend it for use in reg_nonzero_bits because some
9032 machines (maybe most) will actually do the sign-extension
9033 and this is the conservative approach.
9034
9035 ??? For 2.5, try to tighten up the MD files in this regard
9036 instead of this kludge. */
9037
9038 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
9039 && CONST_INT_P (tem)
9040 && INTVAL (tem) > 0
9041 && 0 != (INTVAL (tem)
9042 & ((HOST_WIDE_INT) 1
9043 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
9044 tem = GEN_INT (INTVAL (tem)
9045 | ((HOST_WIDE_INT) (-1)
9046 << GET_MODE_BITSIZE (GET_MODE (x))));
9047 #endif
9048 return tem;
9049 }
9050 else if (nonzero_sign_valid && rsp->nonzero_bits)
9051 {
9052 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9053
9054 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
9055 /* We don't know anything about the upper bits. */
9056 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9057 *nonzero &= mask;
9058 }
9059
9060 return NULL;
9061 }
9062
9063 /* Return the number of bits at the high-order end of X that are known to
9064 be equal to the sign bit. X will be used in mode MODE; if MODE is
9065 VOIDmode, X will be used in its own mode. The returned value will always
9066 be between 1 and the number of bits in MODE. */
9067
9068 static rtx
9069 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9070 const_rtx known_x ATTRIBUTE_UNUSED,
9071 enum machine_mode known_mode
9072 ATTRIBUTE_UNUSED,
9073 unsigned int known_ret ATTRIBUTE_UNUSED,
9074 unsigned int *result)
9075 {
9076 rtx tem;
9077 reg_stat_type *rsp;
9078
9079 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9080 if (rsp->last_set_value != 0
9081 && rsp->last_set_mode == mode
9082 && ((rsp->last_set_label >= label_tick_ebb_start
9083 && rsp->last_set_label < label_tick)
9084 || (rsp->last_set_label == label_tick
9085 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9086 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9087 && REG_N_SETS (REGNO (x)) == 1
9088 && !REGNO_REG_SET_P
9089 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9090 {
9091 *result = rsp->last_set_sign_bit_copies;
9092 return NULL;
9093 }
9094
9095 tem = get_last_value (x);
9096 if (tem != 0)
9097 return tem;
9098
9099 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9100 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
9101 *result = rsp->sign_bit_copies;
9102
9103 return NULL;
9104 }
9105 \f
9106 /* Return the number of "extended" bits there are in X, when interpreted
9107 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9108 unsigned quantities, this is the number of high-order zero bits.
9109 For signed quantities, this is the number of copies of the sign bit
9110 minus 1. In both case, this function returns the number of "spare"
9111 bits. For example, if two quantities for which this function returns
9112 at least 1 are added, the addition is known not to overflow.
9113
9114 This function will always return 0 unless called during combine, which
9115 implies that it must be called from a define_split. */
9116
9117 unsigned int
9118 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9119 {
9120 if (nonzero_sign_valid == 0)
9121 return 0;
9122
9123 return (unsignedp
9124 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9125 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
9126 - floor_log2 (nonzero_bits (x, mode)))
9127 : 0)
9128 : num_sign_bit_copies (x, mode) - 1);
9129 }
9130 \f
9131 /* This function is called from `simplify_shift_const' to merge two
9132 outer operations. Specifically, we have already found that we need
9133 to perform operation *POP0 with constant *PCONST0 at the outermost
9134 position. We would now like to also perform OP1 with constant CONST1
9135 (with *POP0 being done last).
9136
9137 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9138 the resulting operation. *PCOMP_P is set to 1 if we would need to
9139 complement the innermost operand, otherwise it is unchanged.
9140
9141 MODE is the mode in which the operation will be done. No bits outside
9142 the width of this mode matter. It is assumed that the width of this mode
9143 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9144
9145 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9146 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9147 result is simply *PCONST0.
9148
9149 If the resulting operation cannot be expressed as one operation, we
9150 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9151
9152 static int
9153 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9154 {
9155 enum rtx_code op0 = *pop0;
9156 HOST_WIDE_INT const0 = *pconst0;
9157
9158 const0 &= GET_MODE_MASK (mode);
9159 const1 &= GET_MODE_MASK (mode);
9160
9161 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9162 if (op0 == AND)
9163 const1 &= const0;
9164
9165 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9166 if OP0 is SET. */
9167
9168 if (op1 == UNKNOWN || op0 == SET)
9169 return 1;
9170
9171 else if (op0 == UNKNOWN)
9172 op0 = op1, const0 = const1;
9173
9174 else if (op0 == op1)
9175 {
9176 switch (op0)
9177 {
9178 case AND:
9179 const0 &= const1;
9180 break;
9181 case IOR:
9182 const0 |= const1;
9183 break;
9184 case XOR:
9185 const0 ^= const1;
9186 break;
9187 case PLUS:
9188 const0 += const1;
9189 break;
9190 case NEG:
9191 op0 = UNKNOWN;
9192 break;
9193 default:
9194 break;
9195 }
9196 }
9197
9198 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9199 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9200 return 0;
9201
9202 /* If the two constants aren't the same, we can't do anything. The
9203 remaining six cases can all be done. */
9204 else if (const0 != const1)
9205 return 0;
9206
9207 else
9208 switch (op0)
9209 {
9210 case IOR:
9211 if (op1 == AND)
9212 /* (a & b) | b == b */
9213 op0 = SET;
9214 else /* op1 == XOR */
9215 /* (a ^ b) | b == a | b */
9216 {;}
9217 break;
9218
9219 case XOR:
9220 if (op1 == AND)
9221 /* (a & b) ^ b == (~a) & b */
9222 op0 = AND, *pcomp_p = 1;
9223 else /* op1 == IOR */
9224 /* (a | b) ^ b == a & ~b */
9225 op0 = AND, const0 = ~const0;
9226 break;
9227
9228 case AND:
9229 if (op1 == IOR)
9230 /* (a | b) & b == b */
9231 op0 = SET;
9232 else /* op1 == XOR */
9233 /* (a ^ b) & b) == (~a) & b */
9234 *pcomp_p = 1;
9235 break;
9236 default:
9237 break;
9238 }
9239
9240 /* Check for NO-OP cases. */
9241 const0 &= GET_MODE_MASK (mode);
9242 if (const0 == 0
9243 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9244 op0 = UNKNOWN;
9245 else if (const0 == 0 && op0 == AND)
9246 op0 = SET;
9247 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9248 && op0 == AND)
9249 op0 = UNKNOWN;
9250
9251 *pop0 = op0;
9252
9253 /* ??? Slightly redundant with the above mask, but not entirely.
9254 Moving this above means we'd have to sign-extend the mode mask
9255 for the final test. */
9256 if (op0 != UNKNOWN && op0 != NEG)
9257 *pconst0 = trunc_int_for_mode (const0, mode);
9258
9259 return 1;
9260 }
9261 \f
9262 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9263 the shift in. The original shift operation CODE is performed on OP in
9264 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9265 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9266 result of the shift is subject to operation OUTER_CODE with operand
9267 OUTER_CONST. */
9268
9269 static enum machine_mode
9270 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9271 enum machine_mode orig_mode, enum machine_mode mode,
9272 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9273 {
9274 if (orig_mode == mode)
9275 return mode;
9276 gcc_assert (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (orig_mode));
9277
9278 /* In general we can't perform in wider mode for right shift and rotate. */
9279 switch (code)
9280 {
9281 case ASHIFTRT:
9282 /* We can still widen if the bits brought in from the left are identical
9283 to the sign bit of ORIG_MODE. */
9284 if (num_sign_bit_copies (op, mode)
9285 > (unsigned) (GET_MODE_BITSIZE (mode)
9286 - GET_MODE_BITSIZE (orig_mode)))
9287 return mode;
9288 return orig_mode;
9289
9290 case LSHIFTRT:
9291 /* Similarly here but with zero bits. */
9292 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9293 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9294 return mode;
9295
9296 /* We can also widen if the bits brought in will be masked off. This
9297 operation is performed in ORIG_MODE. */
9298 if (outer_code == AND)
9299 {
9300 int care_bits = low_bitmask_len (orig_mode, outer_const);
9301
9302 if (care_bits >= 0
9303 && GET_MODE_BITSIZE (orig_mode) - care_bits >= count)
9304 return mode;
9305 }
9306 /* fall through */
9307
9308 case ROTATE:
9309 return orig_mode;
9310
9311 case ROTATERT:
9312 gcc_unreachable ();
9313
9314 default:
9315 return mode;
9316 }
9317 }
9318
9319 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9320 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
9321 simplify it. Otherwise, return a simplified value.
9322
9323 The shift is normally computed in the widest mode we find in VAROP, as
9324 long as it isn't a different number of words than RESULT_MODE. Exceptions
9325 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9326
9327 static rtx
9328 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9329 rtx varop, int orig_count)
9330 {
9331 enum rtx_code orig_code = code;
9332 rtx orig_varop = varop;
9333 int count;
9334 enum machine_mode mode = result_mode;
9335 enum machine_mode shift_mode, tmode;
9336 unsigned int mode_words
9337 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9338 /* We form (outer_op (code varop count) (outer_const)). */
9339 enum rtx_code outer_op = UNKNOWN;
9340 HOST_WIDE_INT outer_const = 0;
9341 int complement_p = 0;
9342 rtx new_rtx, x;
9343
9344 /* Make sure and truncate the "natural" shift on the way in. We don't
9345 want to do this inside the loop as it makes it more difficult to
9346 combine shifts. */
9347 if (SHIFT_COUNT_TRUNCATED)
9348 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9349
9350 /* If we were given an invalid count, don't do anything except exactly
9351 what was requested. */
9352
9353 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9354 return NULL_RTX;
9355
9356 count = orig_count;
9357
9358 /* Unless one of the branches of the `if' in this loop does a `continue',
9359 we will `break' the loop after the `if'. */
9360
9361 while (count != 0)
9362 {
9363 /* If we have an operand of (clobber (const_int 0)), fail. */
9364 if (GET_CODE (varop) == CLOBBER)
9365 return NULL_RTX;
9366
9367 /* Convert ROTATERT to ROTATE. */
9368 if (code == ROTATERT)
9369 {
9370 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9371 code = ROTATE;
9372 if (VECTOR_MODE_P (result_mode))
9373 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9374 else
9375 count = bitsize - count;
9376 }
9377
9378 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9379 mode, outer_op, outer_const);
9380
9381 /* Handle cases where the count is greater than the size of the mode
9382 minus 1. For ASHIFT, use the size minus one as the count (this can
9383 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9384 take the count modulo the size. For other shifts, the result is
9385 zero.
9386
9387 Since these shifts are being produced by the compiler by combining
9388 multiple operations, each of which are defined, we know what the
9389 result is supposed to be. */
9390
9391 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9392 {
9393 if (code == ASHIFTRT)
9394 count = GET_MODE_BITSIZE (shift_mode) - 1;
9395 else if (code == ROTATE || code == ROTATERT)
9396 count %= GET_MODE_BITSIZE (shift_mode);
9397 else
9398 {
9399 /* We can't simply return zero because there may be an
9400 outer op. */
9401 varop = const0_rtx;
9402 count = 0;
9403 break;
9404 }
9405 }
9406
9407 /* If we discovered we had to complement VAROP, leave. Making a NOT
9408 here would cause an infinite loop. */
9409 if (complement_p)
9410 break;
9411
9412 /* An arithmetic right shift of a quantity known to be -1 or 0
9413 is a no-op. */
9414 if (code == ASHIFTRT
9415 && (num_sign_bit_copies (varop, shift_mode)
9416 == GET_MODE_BITSIZE (shift_mode)))
9417 {
9418 count = 0;
9419 break;
9420 }
9421
9422 /* If we are doing an arithmetic right shift and discarding all but
9423 the sign bit copies, this is equivalent to doing a shift by the
9424 bitsize minus one. Convert it into that shift because it will often
9425 allow other simplifications. */
9426
9427 if (code == ASHIFTRT
9428 && (count + num_sign_bit_copies (varop, shift_mode)
9429 >= GET_MODE_BITSIZE (shift_mode)))
9430 count = GET_MODE_BITSIZE (shift_mode) - 1;
9431
9432 /* We simplify the tests below and elsewhere by converting
9433 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9434 `make_compound_operation' will convert it to an ASHIFTRT for
9435 those machines (such as VAX) that don't have an LSHIFTRT. */
9436 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9437 && code == ASHIFTRT
9438 && ((nonzero_bits (varop, shift_mode)
9439 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9440 == 0))
9441 code = LSHIFTRT;
9442
9443 if (((code == LSHIFTRT
9444 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9445 && !(nonzero_bits (varop, shift_mode) >> count))
9446 || (code == ASHIFT
9447 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9448 && !((nonzero_bits (varop, shift_mode) << count)
9449 & GET_MODE_MASK (shift_mode))))
9450 && !side_effects_p (varop))
9451 varop = const0_rtx;
9452
9453 switch (GET_CODE (varop))
9454 {
9455 case SIGN_EXTEND:
9456 case ZERO_EXTEND:
9457 case SIGN_EXTRACT:
9458 case ZERO_EXTRACT:
9459 new_rtx = expand_compound_operation (varop);
9460 if (new_rtx != varop)
9461 {
9462 varop = new_rtx;
9463 continue;
9464 }
9465 break;
9466
9467 case MEM:
9468 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9469 minus the width of a smaller mode, we can do this with a
9470 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9471 if ((code == ASHIFTRT || code == LSHIFTRT)
9472 && ! mode_dependent_address_p (XEXP (varop, 0))
9473 && ! MEM_VOLATILE_P (varop)
9474 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9475 MODE_INT, 1)) != BLKmode)
9476 {
9477 new_rtx = adjust_address_nv (varop, tmode,
9478 BYTES_BIG_ENDIAN ? 0
9479 : count / BITS_PER_UNIT);
9480
9481 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9482 : ZERO_EXTEND, mode, new_rtx);
9483 count = 0;
9484 continue;
9485 }
9486 break;
9487
9488 case SUBREG:
9489 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9490 the same number of words as what we've seen so far. Then store
9491 the widest mode in MODE. */
9492 if (subreg_lowpart_p (varop)
9493 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9494 > GET_MODE_SIZE (GET_MODE (varop)))
9495 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9496 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9497 == mode_words)
9498 {
9499 varop = SUBREG_REG (varop);
9500 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9501 mode = GET_MODE (varop);
9502 continue;
9503 }
9504 break;
9505
9506 case MULT:
9507 /* Some machines use MULT instead of ASHIFT because MULT
9508 is cheaper. But it is still better on those machines to
9509 merge two shifts into one. */
9510 if (CONST_INT_P (XEXP (varop, 1))
9511 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9512 {
9513 varop
9514 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9515 XEXP (varop, 0),
9516 GEN_INT (exact_log2 (
9517 INTVAL (XEXP (varop, 1)))));
9518 continue;
9519 }
9520 break;
9521
9522 case UDIV:
9523 /* Similar, for when divides are cheaper. */
9524 if (CONST_INT_P (XEXP (varop, 1))
9525 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9526 {
9527 varop
9528 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9529 XEXP (varop, 0),
9530 GEN_INT (exact_log2 (
9531 INTVAL (XEXP (varop, 1)))));
9532 continue;
9533 }
9534 break;
9535
9536 case ASHIFTRT:
9537 /* If we are extracting just the sign bit of an arithmetic
9538 right shift, that shift is not needed. However, the sign
9539 bit of a wider mode may be different from what would be
9540 interpreted as the sign bit in a narrower mode, so, if
9541 the result is narrower, don't discard the shift. */
9542 if (code == LSHIFTRT
9543 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9544 && (GET_MODE_BITSIZE (result_mode)
9545 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9546 {
9547 varop = XEXP (varop, 0);
9548 continue;
9549 }
9550
9551 /* ... fall through ... */
9552
9553 case LSHIFTRT:
9554 case ASHIFT:
9555 case ROTATE:
9556 /* Here we have two nested shifts. The result is usually the
9557 AND of a new shift with a mask. We compute the result below. */
9558 if (CONST_INT_P (XEXP (varop, 1))
9559 && INTVAL (XEXP (varop, 1)) >= 0
9560 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9561 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9562 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9563 && !VECTOR_MODE_P (result_mode))
9564 {
9565 enum rtx_code first_code = GET_CODE (varop);
9566 unsigned int first_count = INTVAL (XEXP (varop, 1));
9567 unsigned HOST_WIDE_INT mask;
9568 rtx mask_rtx;
9569
9570 /* We have one common special case. We can't do any merging if
9571 the inner code is an ASHIFTRT of a smaller mode. However, if
9572 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9573 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9574 we can convert it to
9575 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9576 This simplifies certain SIGN_EXTEND operations. */
9577 if (code == ASHIFT && first_code == ASHIFTRT
9578 && count == (GET_MODE_BITSIZE (result_mode)
9579 - GET_MODE_BITSIZE (GET_MODE (varop))))
9580 {
9581 /* C3 has the low-order C1 bits zero. */
9582
9583 mask = (GET_MODE_MASK (mode)
9584 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9585
9586 varop = simplify_and_const_int (NULL_RTX, result_mode,
9587 XEXP (varop, 0), mask);
9588 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9589 varop, count);
9590 count = first_count;
9591 code = ASHIFTRT;
9592 continue;
9593 }
9594
9595 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9596 than C1 high-order bits equal to the sign bit, we can convert
9597 this to either an ASHIFT or an ASHIFTRT depending on the
9598 two counts.
9599
9600 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9601
9602 if (code == ASHIFTRT && first_code == ASHIFT
9603 && GET_MODE (varop) == shift_mode
9604 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9605 > first_count))
9606 {
9607 varop = XEXP (varop, 0);
9608 count -= first_count;
9609 if (count < 0)
9610 {
9611 count = -count;
9612 code = ASHIFT;
9613 }
9614
9615 continue;
9616 }
9617
9618 /* There are some cases we can't do. If CODE is ASHIFTRT,
9619 we can only do this if FIRST_CODE is also ASHIFTRT.
9620
9621 We can't do the case when CODE is ROTATE and FIRST_CODE is
9622 ASHIFTRT.
9623
9624 If the mode of this shift is not the mode of the outer shift,
9625 we can't do this if either shift is a right shift or ROTATE.
9626
9627 Finally, we can't do any of these if the mode is too wide
9628 unless the codes are the same.
9629
9630 Handle the case where the shift codes are the same
9631 first. */
9632
9633 if (code == first_code)
9634 {
9635 if (GET_MODE (varop) != result_mode
9636 && (code == ASHIFTRT || code == LSHIFTRT
9637 || code == ROTATE))
9638 break;
9639
9640 count += first_count;
9641 varop = XEXP (varop, 0);
9642 continue;
9643 }
9644
9645 if (code == ASHIFTRT
9646 || (code == ROTATE && first_code == ASHIFTRT)
9647 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9648 || (GET_MODE (varop) != result_mode
9649 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9650 || first_code == ROTATE
9651 || code == ROTATE)))
9652 break;
9653
9654 /* To compute the mask to apply after the shift, shift the
9655 nonzero bits of the inner shift the same way the
9656 outer shift will. */
9657
9658 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9659
9660 mask_rtx
9661 = simplify_const_binary_operation (code, result_mode, mask_rtx,
9662 GEN_INT (count));
9663
9664 /* Give up if we can't compute an outer operation to use. */
9665 if (mask_rtx == 0
9666 || !CONST_INT_P (mask_rtx)
9667 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9668 INTVAL (mask_rtx),
9669 result_mode, &complement_p))
9670 break;
9671
9672 /* If the shifts are in the same direction, we add the
9673 counts. Otherwise, we subtract them. */
9674 if ((code == ASHIFTRT || code == LSHIFTRT)
9675 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9676 count += first_count;
9677 else
9678 count -= first_count;
9679
9680 /* If COUNT is positive, the new shift is usually CODE,
9681 except for the two exceptions below, in which case it is
9682 FIRST_CODE. If the count is negative, FIRST_CODE should
9683 always be used */
9684 if (count > 0
9685 && ((first_code == ROTATE && code == ASHIFT)
9686 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9687 code = first_code;
9688 else if (count < 0)
9689 code = first_code, count = -count;
9690
9691 varop = XEXP (varop, 0);
9692 continue;
9693 }
9694
9695 /* If we have (A << B << C) for any shift, we can convert this to
9696 (A << C << B). This wins if A is a constant. Only try this if
9697 B is not a constant. */
9698
9699 else if (GET_CODE (varop) == code
9700 && CONST_INT_P (XEXP (varop, 0))
9701 && !CONST_INT_P (XEXP (varop, 1)))
9702 {
9703 rtx new_rtx = simplify_const_binary_operation (code, mode,
9704 XEXP (varop, 0),
9705 GEN_INT (count));
9706 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
9707 count = 0;
9708 continue;
9709 }
9710 break;
9711
9712 case NOT:
9713 if (VECTOR_MODE_P (mode))
9714 break;
9715
9716 /* Make this fit the case below. */
9717 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9718 GEN_INT (GET_MODE_MASK (mode)));
9719 continue;
9720
9721 case IOR:
9722 case AND:
9723 case XOR:
9724 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9725 with C the size of VAROP - 1 and the shift is logical if
9726 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9727 we have an (le X 0) operation. If we have an arithmetic shift
9728 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9729 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9730
9731 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9732 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9733 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9734 && (code == LSHIFTRT || code == ASHIFTRT)
9735 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9736 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9737 {
9738 count = 0;
9739 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9740 const0_rtx);
9741
9742 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9743 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9744
9745 continue;
9746 }
9747
9748 /* If we have (shift (logical)), move the logical to the outside
9749 to allow it to possibly combine with another logical and the
9750 shift to combine with another shift. This also canonicalizes to
9751 what a ZERO_EXTRACT looks like. Also, some machines have
9752 (and (shift)) insns. */
9753
9754 if (CONST_INT_P (XEXP (varop, 1))
9755 /* We can't do this if we have (ashiftrt (xor)) and the
9756 constant has its sign bit set in shift_mode. */
9757 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9758 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9759 shift_mode))
9760 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9761 XEXP (varop, 1),
9762 GEN_INT (count))) != 0
9763 && CONST_INT_P (new_rtx)
9764 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9765 INTVAL (new_rtx), result_mode, &complement_p))
9766 {
9767 varop = XEXP (varop, 0);
9768 continue;
9769 }
9770
9771 /* If we can't do that, try to simplify the shift in each arm of the
9772 logical expression, make a new logical expression, and apply
9773 the inverse distributive law. This also can't be done
9774 for some (ashiftrt (xor)). */
9775 if (CONST_INT_P (XEXP (varop, 1))
9776 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9777 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9778 shift_mode)))
9779 {
9780 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9781 XEXP (varop, 0), count);
9782 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9783 XEXP (varop, 1), count);
9784
9785 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9786 lhs, rhs);
9787 varop = apply_distributive_law (varop);
9788
9789 count = 0;
9790 continue;
9791 }
9792 break;
9793
9794 case EQ:
9795 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9796 says that the sign bit can be tested, FOO has mode MODE, C is
9797 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9798 that may be nonzero. */
9799 if (code == LSHIFTRT
9800 && XEXP (varop, 1) == const0_rtx
9801 && GET_MODE (XEXP (varop, 0)) == result_mode
9802 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9803 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9804 && STORE_FLAG_VALUE == -1
9805 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9806 && merge_outer_ops (&outer_op, &outer_const, XOR,
9807 (HOST_WIDE_INT) 1, result_mode,
9808 &complement_p))
9809 {
9810 varop = XEXP (varop, 0);
9811 count = 0;
9812 continue;
9813 }
9814 break;
9815
9816 case NEG:
9817 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9818 than the number of bits in the mode is equivalent to A. */
9819 if (code == LSHIFTRT
9820 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9821 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9822 {
9823 varop = XEXP (varop, 0);
9824 count = 0;
9825 continue;
9826 }
9827
9828 /* NEG commutes with ASHIFT since it is multiplication. Move the
9829 NEG outside to allow shifts to combine. */
9830 if (code == ASHIFT
9831 && merge_outer_ops (&outer_op, &outer_const, NEG,
9832 (HOST_WIDE_INT) 0, result_mode,
9833 &complement_p))
9834 {
9835 varop = XEXP (varop, 0);
9836 continue;
9837 }
9838 break;
9839
9840 case PLUS:
9841 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9842 is one less than the number of bits in the mode is
9843 equivalent to (xor A 1). */
9844 if (code == LSHIFTRT
9845 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9846 && XEXP (varop, 1) == constm1_rtx
9847 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9848 && merge_outer_ops (&outer_op, &outer_const, XOR,
9849 (HOST_WIDE_INT) 1, result_mode,
9850 &complement_p))
9851 {
9852 count = 0;
9853 varop = XEXP (varop, 0);
9854 continue;
9855 }
9856
9857 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9858 that might be nonzero in BAR are those being shifted out and those
9859 bits are known zero in FOO, we can replace the PLUS with FOO.
9860 Similarly in the other operand order. This code occurs when
9861 we are computing the size of a variable-size array. */
9862
9863 if ((code == ASHIFTRT || code == LSHIFTRT)
9864 && count < HOST_BITS_PER_WIDE_INT
9865 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9866 && (nonzero_bits (XEXP (varop, 1), result_mode)
9867 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9868 {
9869 varop = XEXP (varop, 0);
9870 continue;
9871 }
9872 else if ((code == ASHIFTRT || code == LSHIFTRT)
9873 && count < HOST_BITS_PER_WIDE_INT
9874 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9875 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9876 >> count)
9877 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9878 & nonzero_bits (XEXP (varop, 1),
9879 result_mode)))
9880 {
9881 varop = XEXP (varop, 1);
9882 continue;
9883 }
9884
9885 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9886 if (code == ASHIFT
9887 && CONST_INT_P (XEXP (varop, 1))
9888 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
9889 XEXP (varop, 1),
9890 GEN_INT (count))) != 0
9891 && CONST_INT_P (new_rtx)
9892 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9893 INTVAL (new_rtx), result_mode, &complement_p))
9894 {
9895 varop = XEXP (varop, 0);
9896 continue;
9897 }
9898
9899 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9900 signbit', and attempt to change the PLUS to an XOR and move it to
9901 the outer operation as is done above in the AND/IOR/XOR case
9902 leg for shift(logical). See details in logical handling above
9903 for reasoning in doing so. */
9904 if (code == LSHIFTRT
9905 && CONST_INT_P (XEXP (varop, 1))
9906 && mode_signbit_p (result_mode, XEXP (varop, 1))
9907 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9908 XEXP (varop, 1),
9909 GEN_INT (count))) != 0
9910 && CONST_INT_P (new_rtx)
9911 && merge_outer_ops (&outer_op, &outer_const, XOR,
9912 INTVAL (new_rtx), result_mode, &complement_p))
9913 {
9914 varop = XEXP (varop, 0);
9915 continue;
9916 }
9917
9918 break;
9919
9920 case MINUS:
9921 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9922 with C the size of VAROP - 1 and the shift is logical if
9923 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9924 we have a (gt X 0) operation. If the shift is arithmetic with
9925 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9926 we have a (neg (gt X 0)) operation. */
9927
9928 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9929 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9930 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9931 && (code == LSHIFTRT || code == ASHIFTRT)
9932 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
9933 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9934 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9935 {
9936 count = 0;
9937 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9938 const0_rtx);
9939
9940 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9941 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9942
9943 continue;
9944 }
9945 break;
9946
9947 case TRUNCATE:
9948 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9949 if the truncate does not affect the value. */
9950 if (code == LSHIFTRT
9951 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9952 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
9953 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9954 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9955 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9956 {
9957 rtx varop_inner = XEXP (varop, 0);
9958
9959 varop_inner
9960 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9961 XEXP (varop_inner, 0),
9962 GEN_INT
9963 (count + INTVAL (XEXP (varop_inner, 1))));
9964 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9965 count = 0;
9966 continue;
9967 }
9968 break;
9969
9970 default:
9971 break;
9972 }
9973
9974 break;
9975 }
9976
9977 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
9978 outer_op, outer_const);
9979
9980 /* We have now finished analyzing the shift. The result should be
9981 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9982 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9983 to the result of the shift. OUTER_CONST is the relevant constant,
9984 but we must turn off all bits turned off in the shift. */
9985
9986 if (outer_op == UNKNOWN
9987 && orig_code == code && orig_count == count
9988 && varop == orig_varop
9989 && shift_mode == GET_MODE (varop))
9990 return NULL_RTX;
9991
9992 /* Make a SUBREG if necessary. If we can't make it, fail. */
9993 varop = gen_lowpart (shift_mode, varop);
9994 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9995 return NULL_RTX;
9996
9997 /* If we have an outer operation and we just made a shift, it is
9998 possible that we could have simplified the shift were it not
9999 for the outer operation. So try to do the simplification
10000 recursively. */
10001
10002 if (outer_op != UNKNOWN)
10003 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10004 else
10005 x = NULL_RTX;
10006
10007 if (x == NULL_RTX)
10008 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10009
10010 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10011 turn off all the bits that the shift would have turned off. */
10012 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10013 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10014 GET_MODE_MASK (result_mode) >> orig_count);
10015
10016 /* Do the remainder of the processing in RESULT_MODE. */
10017 x = gen_lowpart_or_truncate (result_mode, x);
10018
10019 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10020 operation. */
10021 if (complement_p)
10022 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10023
10024 if (outer_op != UNKNOWN)
10025 {
10026 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10027 && GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
10028 outer_const = trunc_int_for_mode (outer_const, result_mode);
10029
10030 if (outer_op == AND)
10031 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10032 else if (outer_op == SET)
10033 {
10034 /* This means that we have determined that the result is
10035 equivalent to a constant. This should be rare. */
10036 if (!side_effects_p (x))
10037 x = GEN_INT (outer_const);
10038 }
10039 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10040 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10041 else
10042 x = simplify_gen_binary (outer_op, result_mode, x,
10043 GEN_INT (outer_const));
10044 }
10045
10046 return x;
10047 }
10048
10049 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10050 The result of the shift is RESULT_MODE. If we cannot simplify it,
10051 return X or, if it is NULL, synthesize the expression with
10052 simplify_gen_binary. Otherwise, return a simplified value.
10053
10054 The shift is normally computed in the widest mode we find in VAROP, as
10055 long as it isn't a different number of words than RESULT_MODE. Exceptions
10056 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10057
10058 static rtx
10059 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10060 rtx varop, int count)
10061 {
10062 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10063 if (tem)
10064 return tem;
10065
10066 if (!x)
10067 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10068 if (GET_MODE (x) != result_mode)
10069 x = gen_lowpart (result_mode, x);
10070 return x;
10071 }
10072
10073 \f
10074 /* Like recog, but we receive the address of a pointer to a new pattern.
10075 We try to match the rtx that the pointer points to.
10076 If that fails, we may try to modify or replace the pattern,
10077 storing the replacement into the same pointer object.
10078
10079 Modifications include deletion or addition of CLOBBERs.
10080
10081 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10082 the CLOBBERs are placed.
10083
10084 The value is the final insn code from the pattern ultimately matched,
10085 or -1. */
10086
10087 static int
10088 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10089 {
10090 rtx pat = *pnewpat;
10091 int insn_code_number;
10092 int num_clobbers_to_add = 0;
10093 int i;
10094 rtx notes = 0;
10095 rtx old_notes, old_pat;
10096
10097 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10098 we use to indicate that something didn't match. If we find such a
10099 thing, force rejection. */
10100 if (GET_CODE (pat) == PARALLEL)
10101 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10102 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10103 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10104 return -1;
10105
10106 old_pat = PATTERN (insn);
10107 old_notes = REG_NOTES (insn);
10108 PATTERN (insn) = pat;
10109 REG_NOTES (insn) = 0;
10110
10111 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10112 if (dump_file && (dump_flags & TDF_DETAILS))
10113 {
10114 if (insn_code_number < 0)
10115 fputs ("Failed to match this instruction:\n", dump_file);
10116 else
10117 fputs ("Successfully matched this instruction:\n", dump_file);
10118 print_rtl_single (dump_file, pat);
10119 }
10120
10121 /* If it isn't, there is the possibility that we previously had an insn
10122 that clobbered some register as a side effect, but the combined
10123 insn doesn't need to do that. So try once more without the clobbers
10124 unless this represents an ASM insn. */
10125
10126 if (insn_code_number < 0 && ! check_asm_operands (pat)
10127 && GET_CODE (pat) == PARALLEL)
10128 {
10129 int pos;
10130
10131 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10132 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10133 {
10134 if (i != pos)
10135 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10136 pos++;
10137 }
10138
10139 SUBST_INT (XVECLEN (pat, 0), pos);
10140
10141 if (pos == 1)
10142 pat = XVECEXP (pat, 0, 0);
10143
10144 PATTERN (insn) = pat;
10145 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10146 if (dump_file && (dump_flags & TDF_DETAILS))
10147 {
10148 if (insn_code_number < 0)
10149 fputs ("Failed to match this instruction:\n", dump_file);
10150 else
10151 fputs ("Successfully matched this instruction:\n", dump_file);
10152 print_rtl_single (dump_file, pat);
10153 }
10154 }
10155 PATTERN (insn) = old_pat;
10156 REG_NOTES (insn) = old_notes;
10157
10158 /* Recognize all noop sets, these will be killed by followup pass. */
10159 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10160 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10161
10162 /* If we had any clobbers to add, make a new pattern than contains
10163 them. Then check to make sure that all of them are dead. */
10164 if (num_clobbers_to_add)
10165 {
10166 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10167 rtvec_alloc (GET_CODE (pat) == PARALLEL
10168 ? (XVECLEN (pat, 0)
10169 + num_clobbers_to_add)
10170 : num_clobbers_to_add + 1));
10171
10172 if (GET_CODE (pat) == PARALLEL)
10173 for (i = 0; i < XVECLEN (pat, 0); i++)
10174 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10175 else
10176 XVECEXP (newpat, 0, 0) = pat;
10177
10178 add_clobbers (newpat, insn_code_number);
10179
10180 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10181 i < XVECLEN (newpat, 0); i++)
10182 {
10183 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10184 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10185 return -1;
10186 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10187 {
10188 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10189 notes = alloc_reg_note (REG_UNUSED,
10190 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10191 }
10192 }
10193 pat = newpat;
10194 }
10195
10196 *pnewpat = pat;
10197 *pnotes = notes;
10198
10199 return insn_code_number;
10200 }
10201 \f
10202 /* Like gen_lowpart_general but for use by combine. In combine it
10203 is not possible to create any new pseudoregs. However, it is
10204 safe to create invalid memory addresses, because combine will
10205 try to recognize them and all they will do is make the combine
10206 attempt fail.
10207
10208 If for some reason this cannot do its job, an rtx
10209 (clobber (const_int 0)) is returned.
10210 An insn containing that will not be recognized. */
10211
10212 static rtx
10213 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10214 {
10215 enum machine_mode imode = GET_MODE (x);
10216 unsigned int osize = GET_MODE_SIZE (omode);
10217 unsigned int isize = GET_MODE_SIZE (imode);
10218 rtx result;
10219
10220 if (omode == imode)
10221 return x;
10222
10223 /* Return identity if this is a CONST or symbolic reference. */
10224 if (omode == Pmode
10225 && (GET_CODE (x) == CONST
10226 || GET_CODE (x) == SYMBOL_REF
10227 || GET_CODE (x) == LABEL_REF))
10228 return x;
10229
10230 /* We can only support MODE being wider than a word if X is a
10231 constant integer or has a mode the same size. */
10232 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10233 && ! ((imode == VOIDmode
10234 && (CONST_INT_P (x)
10235 || GET_CODE (x) == CONST_DOUBLE))
10236 || isize == osize))
10237 goto fail;
10238
10239 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10240 won't know what to do. So we will strip off the SUBREG here and
10241 process normally. */
10242 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10243 {
10244 x = SUBREG_REG (x);
10245
10246 /* For use in case we fall down into the address adjustments
10247 further below, we need to adjust the known mode and size of
10248 x; imode and isize, since we just adjusted x. */
10249 imode = GET_MODE (x);
10250
10251 if (imode == omode)
10252 return x;
10253
10254 isize = GET_MODE_SIZE (imode);
10255 }
10256
10257 result = gen_lowpart_common (omode, x);
10258
10259 if (result)
10260 return result;
10261
10262 if (MEM_P (x))
10263 {
10264 int offset = 0;
10265
10266 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10267 address. */
10268 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10269 goto fail;
10270
10271 /* If we want to refer to something bigger than the original memref,
10272 generate a paradoxical subreg instead. That will force a reload
10273 of the original memref X. */
10274 if (isize < osize)
10275 return gen_rtx_SUBREG (omode, x, 0);
10276
10277 if (WORDS_BIG_ENDIAN)
10278 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10279
10280 /* Adjust the address so that the address-after-the-data is
10281 unchanged. */
10282 if (BYTES_BIG_ENDIAN)
10283 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10284
10285 return adjust_address_nv (x, omode, offset);
10286 }
10287
10288 /* If X is a comparison operator, rewrite it in a new mode. This
10289 probably won't match, but may allow further simplifications. */
10290 else if (COMPARISON_P (x))
10291 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10292
10293 /* If we couldn't simplify X any other way, just enclose it in a
10294 SUBREG. Normally, this SUBREG won't match, but some patterns may
10295 include an explicit SUBREG or we may simplify it further in combine. */
10296 else
10297 {
10298 int offset = 0;
10299 rtx res;
10300
10301 offset = subreg_lowpart_offset (omode, imode);
10302 if (imode == VOIDmode)
10303 {
10304 imode = int_mode_for_mode (omode);
10305 x = gen_lowpart_common (imode, x);
10306 if (x == NULL)
10307 goto fail;
10308 }
10309 res = simplify_gen_subreg (omode, x, imode, offset);
10310 if (res)
10311 return res;
10312 }
10313
10314 fail:
10315 return gen_rtx_CLOBBER (omode, const0_rtx);
10316 }
10317 \f
10318 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10319 comparison code that will be tested.
10320
10321 The result is a possibly different comparison code to use. *POP0 and
10322 *POP1 may be updated.
10323
10324 It is possible that we might detect that a comparison is either always
10325 true or always false. However, we do not perform general constant
10326 folding in combine, so this knowledge isn't useful. Such tautologies
10327 should have been detected earlier. Hence we ignore all such cases. */
10328
10329 static enum rtx_code
10330 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10331 {
10332 rtx op0 = *pop0;
10333 rtx op1 = *pop1;
10334 rtx tem, tem1;
10335 int i;
10336 enum machine_mode mode, tmode;
10337
10338 /* Try a few ways of applying the same transformation to both operands. */
10339 while (1)
10340 {
10341 #ifndef WORD_REGISTER_OPERATIONS
10342 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10343 so check specially. */
10344 if (code != GTU && code != GEU && code != LTU && code != LEU
10345 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10346 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10347 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10348 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10349 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10350 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10351 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10352 && CONST_INT_P (XEXP (op0, 1))
10353 && XEXP (op0, 1) == XEXP (op1, 1)
10354 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10355 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10356 && (INTVAL (XEXP (op0, 1))
10357 == (GET_MODE_BITSIZE (GET_MODE (op0))
10358 - (GET_MODE_BITSIZE
10359 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10360 {
10361 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10362 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10363 }
10364 #endif
10365
10366 /* If both operands are the same constant shift, see if we can ignore the
10367 shift. We can if the shift is a rotate or if the bits shifted out of
10368 this shift are known to be zero for both inputs and if the type of
10369 comparison is compatible with the shift. */
10370 if (GET_CODE (op0) == GET_CODE (op1)
10371 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10372 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10373 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10374 && (code != GT && code != LT && code != GE && code != LE))
10375 || (GET_CODE (op0) == ASHIFTRT
10376 && (code != GTU && code != LTU
10377 && code != GEU && code != LEU)))
10378 && CONST_INT_P (XEXP (op0, 1))
10379 && INTVAL (XEXP (op0, 1)) >= 0
10380 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10381 && XEXP (op0, 1) == XEXP (op1, 1))
10382 {
10383 enum machine_mode mode = GET_MODE (op0);
10384 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10385 int shift_count = INTVAL (XEXP (op0, 1));
10386
10387 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10388 mask &= (mask >> shift_count) << shift_count;
10389 else if (GET_CODE (op0) == ASHIFT)
10390 mask = (mask & (mask << shift_count)) >> shift_count;
10391
10392 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10393 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10394 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10395 else
10396 break;
10397 }
10398
10399 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10400 SUBREGs are of the same mode, and, in both cases, the AND would
10401 be redundant if the comparison was done in the narrower mode,
10402 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10403 and the operand's possibly nonzero bits are 0xffffff01; in that case
10404 if we only care about QImode, we don't need the AND). This case
10405 occurs if the output mode of an scc insn is not SImode and
10406 STORE_FLAG_VALUE == 1 (e.g., the 386).
10407
10408 Similarly, check for a case where the AND's are ZERO_EXTEND
10409 operations from some narrower mode even though a SUBREG is not
10410 present. */
10411
10412 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10413 && CONST_INT_P (XEXP (op0, 1))
10414 && CONST_INT_P (XEXP (op1, 1)))
10415 {
10416 rtx inner_op0 = XEXP (op0, 0);
10417 rtx inner_op1 = XEXP (op1, 0);
10418 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10419 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10420 int changed = 0;
10421
10422 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10423 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10424 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10425 && (GET_MODE (SUBREG_REG (inner_op0))
10426 == GET_MODE (SUBREG_REG (inner_op1)))
10427 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10428 <= HOST_BITS_PER_WIDE_INT)
10429 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10430 GET_MODE (SUBREG_REG (inner_op0)))))
10431 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10432 GET_MODE (SUBREG_REG (inner_op1))))))
10433 {
10434 op0 = SUBREG_REG (inner_op0);
10435 op1 = SUBREG_REG (inner_op1);
10436
10437 /* The resulting comparison is always unsigned since we masked
10438 off the original sign bit. */
10439 code = unsigned_condition (code);
10440
10441 changed = 1;
10442 }
10443
10444 else if (c0 == c1)
10445 for (tmode = GET_CLASS_NARROWEST_MODE
10446 (GET_MODE_CLASS (GET_MODE (op0)));
10447 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10448 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10449 {
10450 op0 = gen_lowpart (tmode, inner_op0);
10451 op1 = gen_lowpart (tmode, inner_op1);
10452 code = unsigned_condition (code);
10453 changed = 1;
10454 break;
10455 }
10456
10457 if (! changed)
10458 break;
10459 }
10460
10461 /* If both operands are NOT, we can strip off the outer operation
10462 and adjust the comparison code for swapped operands; similarly for
10463 NEG, except that this must be an equality comparison. */
10464 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10465 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10466 && (code == EQ || code == NE)))
10467 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10468
10469 else
10470 break;
10471 }
10472
10473 /* If the first operand is a constant, swap the operands and adjust the
10474 comparison code appropriately, but don't do this if the second operand
10475 is already a constant integer. */
10476 if (swap_commutative_operands_p (op0, op1))
10477 {
10478 tem = op0, op0 = op1, op1 = tem;
10479 code = swap_condition (code);
10480 }
10481
10482 /* We now enter a loop during which we will try to simplify the comparison.
10483 For the most part, we only are concerned with comparisons with zero,
10484 but some things may really be comparisons with zero but not start
10485 out looking that way. */
10486
10487 while (CONST_INT_P (op1))
10488 {
10489 enum machine_mode mode = GET_MODE (op0);
10490 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10491 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10492 int equality_comparison_p;
10493 int sign_bit_comparison_p;
10494 int unsigned_comparison_p;
10495 HOST_WIDE_INT const_op;
10496
10497 /* We only want to handle integral modes. This catches VOIDmode,
10498 CCmode, and the floating-point modes. An exception is that we
10499 can handle VOIDmode if OP0 is a COMPARE or a comparison
10500 operation. */
10501
10502 if (GET_MODE_CLASS (mode) != MODE_INT
10503 && ! (mode == VOIDmode
10504 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10505 break;
10506
10507 /* Get the constant we are comparing against and turn off all bits
10508 not on in our mode. */
10509 const_op = INTVAL (op1);
10510 if (mode != VOIDmode)
10511 const_op = trunc_int_for_mode (const_op, mode);
10512 op1 = GEN_INT (const_op);
10513
10514 /* If we are comparing against a constant power of two and the value
10515 being compared can only have that single bit nonzero (e.g., it was
10516 `and'ed with that bit), we can replace this with a comparison
10517 with zero. */
10518 if (const_op
10519 && (code == EQ || code == NE || code == GE || code == GEU
10520 || code == LT || code == LTU)
10521 && mode_width <= HOST_BITS_PER_WIDE_INT
10522 && exact_log2 (const_op) >= 0
10523 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10524 {
10525 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10526 op1 = const0_rtx, const_op = 0;
10527 }
10528
10529 /* Similarly, if we are comparing a value known to be either -1 or
10530 0 with -1, change it to the opposite comparison against zero. */
10531
10532 if (const_op == -1
10533 && (code == EQ || code == NE || code == GT || code == LE
10534 || code == GEU || code == LTU)
10535 && num_sign_bit_copies (op0, mode) == mode_width)
10536 {
10537 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10538 op1 = const0_rtx, const_op = 0;
10539 }
10540
10541 /* Do some canonicalizations based on the comparison code. We prefer
10542 comparisons against zero and then prefer equality comparisons.
10543 If we can reduce the size of a constant, we will do that too. */
10544
10545 switch (code)
10546 {
10547 case LT:
10548 /* < C is equivalent to <= (C - 1) */
10549 if (const_op > 0)
10550 {
10551 const_op -= 1;
10552 op1 = GEN_INT (const_op);
10553 code = LE;
10554 /* ... fall through to LE case below. */
10555 }
10556 else
10557 break;
10558
10559 case LE:
10560 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10561 if (const_op < 0)
10562 {
10563 const_op += 1;
10564 op1 = GEN_INT (const_op);
10565 code = LT;
10566 }
10567
10568 /* If we are doing a <= 0 comparison on a value known to have
10569 a zero sign bit, we can replace this with == 0. */
10570 else if (const_op == 0
10571 && mode_width <= HOST_BITS_PER_WIDE_INT
10572 && (nonzero_bits (op0, mode)
10573 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10574 code = EQ;
10575 break;
10576
10577 case GE:
10578 /* >= C is equivalent to > (C - 1). */
10579 if (const_op > 0)
10580 {
10581 const_op -= 1;
10582 op1 = GEN_INT (const_op);
10583 code = GT;
10584 /* ... fall through to GT below. */
10585 }
10586 else
10587 break;
10588
10589 case GT:
10590 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10591 if (const_op < 0)
10592 {
10593 const_op += 1;
10594 op1 = GEN_INT (const_op);
10595 code = GE;
10596 }
10597
10598 /* If we are doing a > 0 comparison on a value known to have
10599 a zero sign bit, we can replace this with != 0. */
10600 else if (const_op == 0
10601 && mode_width <= HOST_BITS_PER_WIDE_INT
10602 && (nonzero_bits (op0, mode)
10603 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10604 code = NE;
10605 break;
10606
10607 case LTU:
10608 /* < C is equivalent to <= (C - 1). */
10609 if (const_op > 0)
10610 {
10611 const_op -= 1;
10612 op1 = GEN_INT (const_op);
10613 code = LEU;
10614 /* ... fall through ... */
10615 }
10616
10617 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10618 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10619 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10620 {
10621 const_op = 0, op1 = const0_rtx;
10622 code = GE;
10623 break;
10624 }
10625 else
10626 break;
10627
10628 case LEU:
10629 /* unsigned <= 0 is equivalent to == 0 */
10630 if (const_op == 0)
10631 code = EQ;
10632
10633 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10634 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10635 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10636 {
10637 const_op = 0, op1 = const0_rtx;
10638 code = GE;
10639 }
10640 break;
10641
10642 case GEU:
10643 /* >= C is equivalent to > (C - 1). */
10644 if (const_op > 1)
10645 {
10646 const_op -= 1;
10647 op1 = GEN_INT (const_op);
10648 code = GTU;
10649 /* ... fall through ... */
10650 }
10651
10652 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10653 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10654 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10655 {
10656 const_op = 0, op1 = const0_rtx;
10657 code = LT;
10658 break;
10659 }
10660 else
10661 break;
10662
10663 case GTU:
10664 /* unsigned > 0 is equivalent to != 0 */
10665 if (const_op == 0)
10666 code = NE;
10667
10668 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10669 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10670 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10671 {
10672 const_op = 0, op1 = const0_rtx;
10673 code = LT;
10674 }
10675 break;
10676
10677 default:
10678 break;
10679 }
10680
10681 /* Compute some predicates to simplify code below. */
10682
10683 equality_comparison_p = (code == EQ || code == NE);
10684 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10685 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10686 || code == GEU);
10687
10688 /* If this is a sign bit comparison and we can do arithmetic in
10689 MODE, say that we will only be needing the sign bit of OP0. */
10690 if (sign_bit_comparison_p
10691 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10692 op0 = force_to_mode (op0, mode,
10693 ((HOST_WIDE_INT) 1
10694 << (GET_MODE_BITSIZE (mode) - 1)),
10695 0);
10696
10697 /* Now try cases based on the opcode of OP0. If none of the cases
10698 does a "continue", we exit this loop immediately after the
10699 switch. */
10700
10701 switch (GET_CODE (op0))
10702 {
10703 case ZERO_EXTRACT:
10704 /* If we are extracting a single bit from a variable position in
10705 a constant that has only a single bit set and are comparing it
10706 with zero, we can convert this into an equality comparison
10707 between the position and the location of the single bit. */
10708 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10709 have already reduced the shift count modulo the word size. */
10710 if (!SHIFT_COUNT_TRUNCATED
10711 && CONST_INT_P (XEXP (op0, 0))
10712 && XEXP (op0, 1) == const1_rtx
10713 && equality_comparison_p && const_op == 0
10714 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10715 {
10716 if (BITS_BIG_ENDIAN)
10717 {
10718 enum machine_mode new_mode
10719 = mode_for_extraction (EP_extzv, 1);
10720 if (new_mode == MAX_MACHINE_MODE)
10721 i = BITS_PER_WORD - 1 - i;
10722 else
10723 {
10724 mode = new_mode;
10725 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10726 }
10727 }
10728
10729 op0 = XEXP (op0, 2);
10730 op1 = GEN_INT (i);
10731 const_op = i;
10732
10733 /* Result is nonzero iff shift count is equal to I. */
10734 code = reverse_condition (code);
10735 continue;
10736 }
10737
10738 /* ... fall through ... */
10739
10740 case SIGN_EXTRACT:
10741 tem = expand_compound_operation (op0);
10742 if (tem != op0)
10743 {
10744 op0 = tem;
10745 continue;
10746 }
10747 break;
10748
10749 case NOT:
10750 /* If testing for equality, we can take the NOT of the constant. */
10751 if (equality_comparison_p
10752 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10753 {
10754 op0 = XEXP (op0, 0);
10755 op1 = tem;
10756 continue;
10757 }
10758
10759 /* If just looking at the sign bit, reverse the sense of the
10760 comparison. */
10761 if (sign_bit_comparison_p)
10762 {
10763 op0 = XEXP (op0, 0);
10764 code = (code == GE ? LT : GE);
10765 continue;
10766 }
10767 break;
10768
10769 case NEG:
10770 /* If testing for equality, we can take the NEG of the constant. */
10771 if (equality_comparison_p
10772 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10773 {
10774 op0 = XEXP (op0, 0);
10775 op1 = tem;
10776 continue;
10777 }
10778
10779 /* The remaining cases only apply to comparisons with zero. */
10780 if (const_op != 0)
10781 break;
10782
10783 /* When X is ABS or is known positive,
10784 (neg X) is < 0 if and only if X != 0. */
10785
10786 if (sign_bit_comparison_p
10787 && (GET_CODE (XEXP (op0, 0)) == ABS
10788 || (mode_width <= HOST_BITS_PER_WIDE_INT
10789 && (nonzero_bits (XEXP (op0, 0), mode)
10790 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10791 {
10792 op0 = XEXP (op0, 0);
10793 code = (code == LT ? NE : EQ);
10794 continue;
10795 }
10796
10797 /* If we have NEG of something whose two high-order bits are the
10798 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10799 if (num_sign_bit_copies (op0, mode) >= 2)
10800 {
10801 op0 = XEXP (op0, 0);
10802 code = swap_condition (code);
10803 continue;
10804 }
10805 break;
10806
10807 case ROTATE:
10808 /* If we are testing equality and our count is a constant, we
10809 can perform the inverse operation on our RHS. */
10810 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
10811 && (tem = simplify_binary_operation (ROTATERT, mode,
10812 op1, XEXP (op0, 1))) != 0)
10813 {
10814 op0 = XEXP (op0, 0);
10815 op1 = tem;
10816 continue;
10817 }
10818
10819 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10820 a particular bit. Convert it to an AND of a constant of that
10821 bit. This will be converted into a ZERO_EXTRACT. */
10822 if (const_op == 0 && sign_bit_comparison_p
10823 && CONST_INT_P (XEXP (op0, 1))
10824 && mode_width <= HOST_BITS_PER_WIDE_INT)
10825 {
10826 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10827 ((HOST_WIDE_INT) 1
10828 << (mode_width - 1
10829 - INTVAL (XEXP (op0, 1)))));
10830 code = (code == LT ? NE : EQ);
10831 continue;
10832 }
10833
10834 /* Fall through. */
10835
10836 case ABS:
10837 /* ABS is ignorable inside an equality comparison with zero. */
10838 if (const_op == 0 && equality_comparison_p)
10839 {
10840 op0 = XEXP (op0, 0);
10841 continue;
10842 }
10843 break;
10844
10845 case SIGN_EXTEND:
10846 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10847 (compare FOO CONST) if CONST fits in FOO's mode and we
10848 are either testing inequality or have an unsigned
10849 comparison with ZERO_EXTEND or a signed comparison with
10850 SIGN_EXTEND. But don't do it if we don't have a compare
10851 insn of the given mode, since we'd have to revert it
10852 later on, and then we wouldn't know whether to sign- or
10853 zero-extend. */
10854 mode = GET_MODE (XEXP (op0, 0));
10855 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10856 && ! unsigned_comparison_p
10857 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10858 && ((unsigned HOST_WIDE_INT) const_op
10859 < (((unsigned HOST_WIDE_INT) 1
10860 << (GET_MODE_BITSIZE (mode) - 1))))
10861 && have_insn_for (COMPARE, mode))
10862 {
10863 op0 = XEXP (op0, 0);
10864 continue;
10865 }
10866 break;
10867
10868 case SUBREG:
10869 /* Check for the case where we are comparing A - C1 with C2, that is
10870
10871 (subreg:MODE (plus (A) (-C1))) op (C2)
10872
10873 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10874 comparison in the wider mode. One of the following two conditions
10875 must be true in order for this to be valid:
10876
10877 1. The mode extension results in the same bit pattern being added
10878 on both sides and the comparison is equality or unsigned. As
10879 C2 has been truncated to fit in MODE, the pattern can only be
10880 all 0s or all 1s.
10881
10882 2. The mode extension results in the sign bit being copied on
10883 each side.
10884
10885 The difficulty here is that we have predicates for A but not for
10886 (A - C1) so we need to check that C1 is within proper bounds so
10887 as to perturbate A as little as possible. */
10888
10889 if (mode_width <= HOST_BITS_PER_WIDE_INT
10890 && subreg_lowpart_p (op0)
10891 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10892 && GET_CODE (SUBREG_REG (op0)) == PLUS
10893 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
10894 {
10895 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10896 rtx a = XEXP (SUBREG_REG (op0), 0);
10897 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10898
10899 if ((c1 > 0
10900 && (unsigned HOST_WIDE_INT) c1
10901 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10902 && (equality_comparison_p || unsigned_comparison_p)
10903 /* (A - C1) zero-extends if it is positive and sign-extends
10904 if it is negative, C2 both zero- and sign-extends. */
10905 && ((0 == (nonzero_bits (a, inner_mode)
10906 & ~GET_MODE_MASK (mode))
10907 && const_op >= 0)
10908 /* (A - C1) sign-extends if it is positive and 1-extends
10909 if it is negative, C2 both sign- and 1-extends. */
10910 || (num_sign_bit_copies (a, inner_mode)
10911 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10912 - mode_width)
10913 && const_op < 0)))
10914 || ((unsigned HOST_WIDE_INT) c1
10915 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10916 /* (A - C1) always sign-extends, like C2. */
10917 && num_sign_bit_copies (a, inner_mode)
10918 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10919 - (mode_width - 1))))
10920 {
10921 op0 = SUBREG_REG (op0);
10922 continue;
10923 }
10924 }
10925
10926 /* If the inner mode is narrower and we are extracting the low part,
10927 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10928 if (subreg_lowpart_p (op0)
10929 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10930 /* Fall through */ ;
10931 else
10932 break;
10933
10934 /* ... fall through ... */
10935
10936 case ZERO_EXTEND:
10937 mode = GET_MODE (XEXP (op0, 0));
10938 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10939 && (unsigned_comparison_p || equality_comparison_p)
10940 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10941 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10942 && have_insn_for (COMPARE, mode))
10943 {
10944 op0 = XEXP (op0, 0);
10945 continue;
10946 }
10947 break;
10948
10949 case PLUS:
10950 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10951 this for equality comparisons due to pathological cases involving
10952 overflows. */
10953 if (equality_comparison_p
10954 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10955 op1, XEXP (op0, 1))))
10956 {
10957 op0 = XEXP (op0, 0);
10958 op1 = tem;
10959 continue;
10960 }
10961
10962 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10963 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10964 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10965 {
10966 op0 = XEXP (XEXP (op0, 0), 0);
10967 code = (code == LT ? EQ : NE);
10968 continue;
10969 }
10970 break;
10971
10972 case MINUS:
10973 /* We used to optimize signed comparisons against zero, but that
10974 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10975 arrive here as equality comparisons, or (GEU, LTU) are
10976 optimized away. No need to special-case them. */
10977
10978 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10979 (eq B (minus A C)), whichever simplifies. We can only do
10980 this for equality comparisons due to pathological cases involving
10981 overflows. */
10982 if (equality_comparison_p
10983 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10984 XEXP (op0, 1), op1)))
10985 {
10986 op0 = XEXP (op0, 0);
10987 op1 = tem;
10988 continue;
10989 }
10990
10991 if (equality_comparison_p
10992 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10993 XEXP (op0, 0), op1)))
10994 {
10995 op0 = XEXP (op0, 1);
10996 op1 = tem;
10997 continue;
10998 }
10999
11000 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11001 of bits in X minus 1, is one iff X > 0. */
11002 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11003 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11004 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
11005 == mode_width - 1
11006 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11007 {
11008 op0 = XEXP (op0, 1);
11009 code = (code == GE ? LE : GT);
11010 continue;
11011 }
11012 break;
11013
11014 case XOR:
11015 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11016 if C is zero or B is a constant. */
11017 if (equality_comparison_p
11018 && 0 != (tem = simplify_binary_operation (XOR, mode,
11019 XEXP (op0, 1), op1)))
11020 {
11021 op0 = XEXP (op0, 0);
11022 op1 = tem;
11023 continue;
11024 }
11025 break;
11026
11027 case EQ: case NE:
11028 case UNEQ: case LTGT:
11029 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11030 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11031 case UNORDERED: case ORDERED:
11032 /* We can't do anything if OP0 is a condition code value, rather
11033 than an actual data value. */
11034 if (const_op != 0
11035 || CC0_P (XEXP (op0, 0))
11036 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11037 break;
11038
11039 /* Get the two operands being compared. */
11040 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11041 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11042 else
11043 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11044
11045 /* Check for the cases where we simply want the result of the
11046 earlier test or the opposite of that result. */
11047 if (code == NE || code == EQ
11048 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
11049 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11050 && (STORE_FLAG_VALUE
11051 & (((HOST_WIDE_INT) 1
11052 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
11053 && (code == LT || code == GE)))
11054 {
11055 enum rtx_code new_code;
11056 if (code == LT || code == NE)
11057 new_code = GET_CODE (op0);
11058 else
11059 new_code = reversed_comparison_code (op0, NULL);
11060
11061 if (new_code != UNKNOWN)
11062 {
11063 code = new_code;
11064 op0 = tem;
11065 op1 = tem1;
11066 continue;
11067 }
11068 }
11069 break;
11070
11071 case IOR:
11072 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11073 iff X <= 0. */
11074 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11075 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11076 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11077 {
11078 op0 = XEXP (op0, 1);
11079 code = (code == GE ? GT : LE);
11080 continue;
11081 }
11082 break;
11083
11084 case AND:
11085 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11086 will be converted to a ZERO_EXTRACT later. */
11087 if (const_op == 0 && equality_comparison_p
11088 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11089 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11090 {
11091 op0 = simplify_and_const_int
11092 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
11093 XEXP (op0, 1),
11094 XEXP (XEXP (op0, 0), 1)),
11095 (HOST_WIDE_INT) 1);
11096 continue;
11097 }
11098
11099 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11100 zero and X is a comparison and C1 and C2 describe only bits set
11101 in STORE_FLAG_VALUE, we can compare with X. */
11102 if (const_op == 0 && equality_comparison_p
11103 && mode_width <= HOST_BITS_PER_WIDE_INT
11104 && CONST_INT_P (XEXP (op0, 1))
11105 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11106 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11107 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11108 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11109 {
11110 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11111 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11112 if ((~STORE_FLAG_VALUE & mask) == 0
11113 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11114 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11115 && COMPARISON_P (tem))))
11116 {
11117 op0 = XEXP (XEXP (op0, 0), 0);
11118 continue;
11119 }
11120 }
11121
11122 /* If we are doing an equality comparison of an AND of a bit equal
11123 to the sign bit, replace this with a LT or GE comparison of
11124 the underlying value. */
11125 if (equality_comparison_p
11126 && const_op == 0
11127 && CONST_INT_P (XEXP (op0, 1))
11128 && mode_width <= HOST_BITS_PER_WIDE_INT
11129 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11130 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11131 {
11132 op0 = XEXP (op0, 0);
11133 code = (code == EQ ? GE : LT);
11134 continue;
11135 }
11136
11137 /* If this AND operation is really a ZERO_EXTEND from a narrower
11138 mode, the constant fits within that mode, and this is either an
11139 equality or unsigned comparison, try to do this comparison in
11140 the narrower mode.
11141
11142 Note that in:
11143
11144 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11145 -> (ne:DI (reg:SI 4) (const_int 0))
11146
11147 unless TRULY_NOOP_TRUNCATION allows it or the register is
11148 known to hold a value of the required mode the
11149 transformation is invalid. */
11150 if ((equality_comparison_p || unsigned_comparison_p)
11151 && CONST_INT_P (XEXP (op0, 1))
11152 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
11153 & GET_MODE_MASK (mode))
11154 + 1)) >= 0
11155 && const_op >> i == 0
11156 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11157 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
11158 GET_MODE_BITSIZE (GET_MODE (op0)))
11159 || (REG_P (XEXP (op0, 0))
11160 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11161 {
11162 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11163 continue;
11164 }
11165
11166 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11167 fits in both M1 and M2 and the SUBREG is either paradoxical
11168 or represents the low part, permute the SUBREG and the AND
11169 and try again. */
11170 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11171 {
11172 unsigned HOST_WIDE_INT c1;
11173 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11174 /* Require an integral mode, to avoid creating something like
11175 (AND:SF ...). */
11176 if (SCALAR_INT_MODE_P (tmode)
11177 /* It is unsafe to commute the AND into the SUBREG if the
11178 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11179 not defined. As originally written the upper bits
11180 have a defined value due to the AND operation.
11181 However, if we commute the AND inside the SUBREG then
11182 they no longer have defined values and the meaning of
11183 the code has been changed. */
11184 && (0
11185 #ifdef WORD_REGISTER_OPERATIONS
11186 || (mode_width > GET_MODE_BITSIZE (tmode)
11187 && mode_width <= BITS_PER_WORD)
11188 #endif
11189 || (mode_width <= GET_MODE_BITSIZE (tmode)
11190 && subreg_lowpart_p (XEXP (op0, 0))))
11191 && CONST_INT_P (XEXP (op0, 1))
11192 && mode_width <= HOST_BITS_PER_WIDE_INT
11193 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
11194 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11195 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11196 && c1 != mask
11197 && c1 != GET_MODE_MASK (tmode))
11198 {
11199 op0 = simplify_gen_binary (AND, tmode,
11200 SUBREG_REG (XEXP (op0, 0)),
11201 gen_int_mode (c1, tmode));
11202 op0 = gen_lowpart (mode, op0);
11203 continue;
11204 }
11205 }
11206
11207 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11208 if (const_op == 0 && equality_comparison_p
11209 && XEXP (op0, 1) == const1_rtx
11210 && GET_CODE (XEXP (op0, 0)) == NOT)
11211 {
11212 op0 = simplify_and_const_int
11213 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
11214 code = (code == NE ? EQ : NE);
11215 continue;
11216 }
11217
11218 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11219 (eq (and (lshiftrt X) 1) 0).
11220 Also handle the case where (not X) is expressed using xor. */
11221 if (const_op == 0 && equality_comparison_p
11222 && XEXP (op0, 1) == const1_rtx
11223 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11224 {
11225 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11226 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11227
11228 if (GET_CODE (shift_op) == NOT
11229 || (GET_CODE (shift_op) == XOR
11230 && CONST_INT_P (XEXP (shift_op, 1))
11231 && CONST_INT_P (shift_count)
11232 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
11233 && (INTVAL (XEXP (shift_op, 1))
11234 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
11235 {
11236 op0 = simplify_and_const_int
11237 (NULL_RTX, mode,
11238 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
11239 (HOST_WIDE_INT) 1);
11240 code = (code == NE ? EQ : NE);
11241 continue;
11242 }
11243 }
11244 break;
11245
11246 case ASHIFT:
11247 /* If we have (compare (ashift FOO N) (const_int C)) and
11248 the high order N bits of FOO (N+1 if an inequality comparison)
11249 are known to be zero, we can do this by comparing FOO with C
11250 shifted right N bits so long as the low-order N bits of C are
11251 zero. */
11252 if (CONST_INT_P (XEXP (op0, 1))
11253 && INTVAL (XEXP (op0, 1)) >= 0
11254 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11255 < HOST_BITS_PER_WIDE_INT)
11256 && ((const_op
11257 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
11258 && mode_width <= HOST_BITS_PER_WIDE_INT
11259 && (nonzero_bits (XEXP (op0, 0), mode)
11260 & ~(mask >> (INTVAL (XEXP (op0, 1))
11261 + ! equality_comparison_p))) == 0)
11262 {
11263 /* We must perform a logical shift, not an arithmetic one,
11264 as we want the top N bits of C to be zero. */
11265 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11266
11267 temp >>= INTVAL (XEXP (op0, 1));
11268 op1 = gen_int_mode (temp, mode);
11269 op0 = XEXP (op0, 0);
11270 continue;
11271 }
11272
11273 /* If we are doing a sign bit comparison, it means we are testing
11274 a particular bit. Convert it to the appropriate AND. */
11275 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11276 && mode_width <= HOST_BITS_PER_WIDE_INT)
11277 {
11278 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11279 ((HOST_WIDE_INT) 1
11280 << (mode_width - 1
11281 - INTVAL (XEXP (op0, 1)))));
11282 code = (code == LT ? NE : EQ);
11283 continue;
11284 }
11285
11286 /* If this an equality comparison with zero and we are shifting
11287 the low bit to the sign bit, we can convert this to an AND of the
11288 low-order bit. */
11289 if (const_op == 0 && equality_comparison_p
11290 && CONST_INT_P (XEXP (op0, 1))
11291 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11292 == mode_width - 1)
11293 {
11294 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11295 (HOST_WIDE_INT) 1);
11296 continue;
11297 }
11298 break;
11299
11300 case ASHIFTRT:
11301 /* If this is an equality comparison with zero, we can do this
11302 as a logical shift, which might be much simpler. */
11303 if (equality_comparison_p && const_op == 0
11304 && CONST_INT_P (XEXP (op0, 1)))
11305 {
11306 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11307 XEXP (op0, 0),
11308 INTVAL (XEXP (op0, 1)));
11309 continue;
11310 }
11311
11312 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11313 do the comparison in a narrower mode. */
11314 if (! unsigned_comparison_p
11315 && CONST_INT_P (XEXP (op0, 1))
11316 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11317 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11318 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11319 MODE_INT, 1)) != BLKmode
11320 && (((unsigned HOST_WIDE_INT) const_op
11321 + (GET_MODE_MASK (tmode) >> 1) + 1)
11322 <= GET_MODE_MASK (tmode)))
11323 {
11324 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11325 continue;
11326 }
11327
11328 /* Likewise if OP0 is a PLUS of a sign extension with a
11329 constant, which is usually represented with the PLUS
11330 between the shifts. */
11331 if (! unsigned_comparison_p
11332 && CONST_INT_P (XEXP (op0, 1))
11333 && GET_CODE (XEXP (op0, 0)) == PLUS
11334 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11335 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11336 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11337 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11338 MODE_INT, 1)) != BLKmode
11339 && (((unsigned HOST_WIDE_INT) const_op
11340 + (GET_MODE_MASK (tmode) >> 1) + 1)
11341 <= GET_MODE_MASK (tmode)))
11342 {
11343 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11344 rtx add_const = XEXP (XEXP (op0, 0), 1);
11345 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11346 add_const, XEXP (op0, 1));
11347
11348 op0 = simplify_gen_binary (PLUS, tmode,
11349 gen_lowpart (tmode, inner),
11350 new_const);
11351 continue;
11352 }
11353
11354 /* ... fall through ... */
11355 case LSHIFTRT:
11356 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11357 the low order N bits of FOO are known to be zero, we can do this
11358 by comparing FOO with C shifted left N bits so long as no
11359 overflow occurs. */
11360 if (CONST_INT_P (XEXP (op0, 1))
11361 && INTVAL (XEXP (op0, 1)) >= 0
11362 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11363 && mode_width <= HOST_BITS_PER_WIDE_INT
11364 && (nonzero_bits (XEXP (op0, 0), mode)
11365 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11366 && (((unsigned HOST_WIDE_INT) const_op
11367 + (GET_CODE (op0) != LSHIFTRT
11368 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11369 + 1)
11370 : 0))
11371 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11372 {
11373 /* If the shift was logical, then we must make the condition
11374 unsigned. */
11375 if (GET_CODE (op0) == LSHIFTRT)
11376 code = unsigned_condition (code);
11377
11378 const_op <<= INTVAL (XEXP (op0, 1));
11379 op1 = GEN_INT (const_op);
11380 op0 = XEXP (op0, 0);
11381 continue;
11382 }
11383
11384 /* If we are using this shift to extract just the sign bit, we
11385 can replace this with an LT or GE comparison. */
11386 if (const_op == 0
11387 && (equality_comparison_p || sign_bit_comparison_p)
11388 && CONST_INT_P (XEXP (op0, 1))
11389 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11390 == mode_width - 1)
11391 {
11392 op0 = XEXP (op0, 0);
11393 code = (code == NE || code == GT ? LT : GE);
11394 continue;
11395 }
11396 break;
11397
11398 default:
11399 break;
11400 }
11401
11402 break;
11403 }
11404
11405 /* Now make any compound operations involved in this comparison. Then,
11406 check for an outmost SUBREG on OP0 that is not doing anything or is
11407 paradoxical. The latter transformation must only be performed when
11408 it is known that the "extra" bits will be the same in op0 and op1 or
11409 that they don't matter. There are three cases to consider:
11410
11411 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11412 care bits and we can assume they have any convenient value. So
11413 making the transformation is safe.
11414
11415 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11416 In this case the upper bits of op0 are undefined. We should not make
11417 the simplification in that case as we do not know the contents of
11418 those bits.
11419
11420 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11421 UNKNOWN. In that case we know those bits are zeros or ones. We must
11422 also be sure that they are the same as the upper bits of op1.
11423
11424 We can never remove a SUBREG for a non-equality comparison because
11425 the sign bit is in a different place in the underlying object. */
11426
11427 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11428 op1 = make_compound_operation (op1, SET);
11429
11430 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11431 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11432 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11433 && (code == NE || code == EQ))
11434 {
11435 if (GET_MODE_SIZE (GET_MODE (op0))
11436 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11437 {
11438 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11439 implemented. */
11440 if (REG_P (SUBREG_REG (op0)))
11441 {
11442 op0 = SUBREG_REG (op0);
11443 op1 = gen_lowpart (GET_MODE (op0), op1);
11444 }
11445 }
11446 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11447 <= HOST_BITS_PER_WIDE_INT)
11448 && (nonzero_bits (SUBREG_REG (op0),
11449 GET_MODE (SUBREG_REG (op0)))
11450 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11451 {
11452 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11453
11454 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11455 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11456 op0 = SUBREG_REG (op0), op1 = tem;
11457 }
11458 }
11459
11460 /* We now do the opposite procedure: Some machines don't have compare
11461 insns in all modes. If OP0's mode is an integer mode smaller than a
11462 word and we can't do a compare in that mode, see if there is a larger
11463 mode for which we can do the compare. There are a number of cases in
11464 which we can use the wider mode. */
11465
11466 mode = GET_MODE (op0);
11467 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11468 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11469 && ! have_insn_for (COMPARE, mode))
11470 for (tmode = GET_MODE_WIDER_MODE (mode);
11471 (tmode != VOIDmode
11472 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11473 tmode = GET_MODE_WIDER_MODE (tmode))
11474 if (have_insn_for (COMPARE, tmode))
11475 {
11476 int zero_extended;
11477
11478 /* If this is a test for negative, we can make an explicit
11479 test of the sign bit. Test this first so we can use
11480 a paradoxical subreg to extend OP0. */
11481
11482 if (op1 == const0_rtx && (code == LT || code == GE)
11483 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11484 {
11485 op0 = simplify_gen_binary (AND, tmode,
11486 gen_lowpart (tmode, op0),
11487 GEN_INT ((HOST_WIDE_INT) 1
11488 << (GET_MODE_BITSIZE (mode)
11489 - 1)));
11490 code = (code == LT) ? NE : EQ;
11491 break;
11492 }
11493
11494 /* If the only nonzero bits in OP0 and OP1 are those in the
11495 narrower mode and this is an equality or unsigned comparison,
11496 we can use the wider mode. Similarly for sign-extended
11497 values, in which case it is true for all comparisons. */
11498 zero_extended = ((code == EQ || code == NE
11499 || code == GEU || code == GTU
11500 || code == LEU || code == LTU)
11501 && (nonzero_bits (op0, tmode)
11502 & ~GET_MODE_MASK (mode)) == 0
11503 && ((CONST_INT_P (op1)
11504 || (nonzero_bits (op1, tmode)
11505 & ~GET_MODE_MASK (mode)) == 0)));
11506
11507 if (zero_extended
11508 || ((num_sign_bit_copies (op0, tmode)
11509 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11510 - GET_MODE_BITSIZE (mode)))
11511 && (num_sign_bit_copies (op1, tmode)
11512 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11513 - GET_MODE_BITSIZE (mode)))))
11514 {
11515 /* If OP0 is an AND and we don't have an AND in MODE either,
11516 make a new AND in the proper mode. */
11517 if (GET_CODE (op0) == AND
11518 && !have_insn_for (AND, mode))
11519 op0 = simplify_gen_binary (AND, tmode,
11520 gen_lowpart (tmode,
11521 XEXP (op0, 0)),
11522 gen_lowpart (tmode,
11523 XEXP (op0, 1)));
11524 else
11525 {
11526 if (zero_extended)
11527 {
11528 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
11529 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
11530 }
11531 else
11532 {
11533 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
11534 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
11535 }
11536 break;
11537 }
11538 }
11539 }
11540
11541 #ifdef CANONICALIZE_COMPARISON
11542 /* If this machine only supports a subset of valid comparisons, see if we
11543 can convert an unsupported one into a supported one. */
11544 CANONICALIZE_COMPARISON (code, op0, op1);
11545 #endif
11546
11547 *pop0 = op0;
11548 *pop1 = op1;
11549
11550 return code;
11551 }
11552 \f
11553 /* Utility function for record_value_for_reg. Count number of
11554 rtxs in X. */
11555 static int
11556 count_rtxs (rtx x)
11557 {
11558 enum rtx_code code = GET_CODE (x);
11559 const char *fmt;
11560 int i, j, ret = 1;
11561
11562 if (GET_RTX_CLASS (code) == '2'
11563 || GET_RTX_CLASS (code) == 'c')
11564 {
11565 rtx x0 = XEXP (x, 0);
11566 rtx x1 = XEXP (x, 1);
11567
11568 if (x0 == x1)
11569 return 1 + 2 * count_rtxs (x0);
11570
11571 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11572 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11573 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11574 return 2 + 2 * count_rtxs (x0)
11575 + count_rtxs (x == XEXP (x1, 0)
11576 ? XEXP (x1, 1) : XEXP (x1, 0));
11577
11578 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11579 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11580 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11581 return 2 + 2 * count_rtxs (x1)
11582 + count_rtxs (x == XEXP (x0, 0)
11583 ? XEXP (x0, 1) : XEXP (x0, 0));
11584 }
11585
11586 fmt = GET_RTX_FORMAT (code);
11587 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11588 if (fmt[i] == 'e')
11589 ret += count_rtxs (XEXP (x, i));
11590 else if (fmt[i] == 'E')
11591 for (j = 0; j < XVECLEN (x, i); j++)
11592 ret += count_rtxs (XVECEXP (x, i, j));
11593
11594 return ret;
11595 }
11596 \f
11597 /* Utility function for following routine. Called when X is part of a value
11598 being stored into last_set_value. Sets last_set_table_tick
11599 for each register mentioned. Similar to mention_regs in cse.c */
11600
11601 static void
11602 update_table_tick (rtx x)
11603 {
11604 enum rtx_code code = GET_CODE (x);
11605 const char *fmt = GET_RTX_FORMAT (code);
11606 int i, j;
11607
11608 if (code == REG)
11609 {
11610 unsigned int regno = REGNO (x);
11611 unsigned int endregno = END_REGNO (x);
11612 unsigned int r;
11613
11614 for (r = regno; r < endregno; r++)
11615 {
11616 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
11617 rsp->last_set_table_tick = label_tick;
11618 }
11619
11620 return;
11621 }
11622
11623 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11624 if (fmt[i] == 'e')
11625 {
11626 /* Check for identical subexpressions. If x contains
11627 identical subexpression we only have to traverse one of
11628 them. */
11629 if (i == 0 && ARITHMETIC_P (x))
11630 {
11631 /* Note that at this point x1 has already been
11632 processed. */
11633 rtx x0 = XEXP (x, 0);
11634 rtx x1 = XEXP (x, 1);
11635
11636 /* If x0 and x1 are identical then there is no need to
11637 process x0. */
11638 if (x0 == x1)
11639 break;
11640
11641 /* If x0 is identical to a subexpression of x1 then while
11642 processing x1, x0 has already been processed. Thus we
11643 are done with x. */
11644 if (ARITHMETIC_P (x1)
11645 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11646 break;
11647
11648 /* If x1 is identical to a subexpression of x0 then we
11649 still have to process the rest of x0. */
11650 if (ARITHMETIC_P (x0)
11651 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11652 {
11653 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11654 break;
11655 }
11656 }
11657
11658 update_table_tick (XEXP (x, i));
11659 }
11660 else if (fmt[i] == 'E')
11661 for (j = 0; j < XVECLEN (x, i); j++)
11662 update_table_tick (XVECEXP (x, i, j));
11663 }
11664
11665 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11666 are saying that the register is clobbered and we no longer know its
11667 value. If INSN is zero, don't update reg_stat[].last_set; this is
11668 only permitted with VALUE also zero and is used to invalidate the
11669 register. */
11670
11671 static void
11672 record_value_for_reg (rtx reg, rtx insn, rtx value)
11673 {
11674 unsigned int regno = REGNO (reg);
11675 unsigned int endregno = END_REGNO (reg);
11676 unsigned int i;
11677 reg_stat_type *rsp;
11678
11679 /* If VALUE contains REG and we have a previous value for REG, substitute
11680 the previous value. */
11681 if (value && insn && reg_overlap_mentioned_p (reg, value))
11682 {
11683 rtx tem;
11684
11685 /* Set things up so get_last_value is allowed to see anything set up to
11686 our insn. */
11687 subst_low_luid = DF_INSN_LUID (insn);
11688 tem = get_last_value (reg);
11689
11690 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11691 it isn't going to be useful and will take a lot of time to process,
11692 so just use the CLOBBER. */
11693
11694 if (tem)
11695 {
11696 if (ARITHMETIC_P (tem)
11697 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11698 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11699 tem = XEXP (tem, 0);
11700 else if (count_occurrences (value, reg, 1) >= 2)
11701 {
11702 /* If there are two or more occurrences of REG in VALUE,
11703 prevent the value from growing too much. */
11704 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
11705 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
11706 }
11707
11708 value = replace_rtx (copy_rtx (value), reg, tem);
11709 }
11710 }
11711
11712 /* For each register modified, show we don't know its value, that
11713 we don't know about its bitwise content, that its value has been
11714 updated, and that we don't know the location of the death of the
11715 register. */
11716 for (i = regno; i < endregno; i++)
11717 {
11718 rsp = VEC_index (reg_stat_type, reg_stat, i);
11719
11720 if (insn)
11721 rsp->last_set = insn;
11722
11723 rsp->last_set_value = 0;
11724 rsp->last_set_mode = VOIDmode;
11725 rsp->last_set_nonzero_bits = 0;
11726 rsp->last_set_sign_bit_copies = 0;
11727 rsp->last_death = 0;
11728 rsp->truncated_to_mode = VOIDmode;
11729 }
11730
11731 /* Mark registers that are being referenced in this value. */
11732 if (value)
11733 update_table_tick (value);
11734
11735 /* Now update the status of each register being set.
11736 If someone is using this register in this block, set this register
11737 to invalid since we will get confused between the two lives in this
11738 basic block. This makes using this register always invalid. In cse, we
11739 scan the table to invalidate all entries using this register, but this
11740 is too much work for us. */
11741
11742 for (i = regno; i < endregno; i++)
11743 {
11744 rsp = VEC_index (reg_stat_type, reg_stat, i);
11745 rsp->last_set_label = label_tick;
11746 if (!insn
11747 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
11748 rsp->last_set_invalid = 1;
11749 else
11750 rsp->last_set_invalid = 0;
11751 }
11752
11753 /* The value being assigned might refer to X (like in "x++;"). In that
11754 case, we must replace it with (clobber (const_int 0)) to prevent
11755 infinite loops. */
11756 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11757 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
11758 {
11759 value = copy_rtx (value);
11760 if (!get_last_value_validate (&value, insn, label_tick, 1))
11761 value = 0;
11762 }
11763
11764 /* For the main register being modified, update the value, the mode, the
11765 nonzero bits, and the number of sign bit copies. */
11766
11767 rsp->last_set_value = value;
11768
11769 if (value)
11770 {
11771 enum machine_mode mode = GET_MODE (reg);
11772 subst_low_luid = DF_INSN_LUID (insn);
11773 rsp->last_set_mode = mode;
11774 if (GET_MODE_CLASS (mode) == MODE_INT
11775 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11776 mode = nonzero_bits_mode;
11777 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
11778 rsp->last_set_sign_bit_copies
11779 = num_sign_bit_copies (value, GET_MODE (reg));
11780 }
11781 }
11782
11783 /* Called via note_stores from record_dead_and_set_regs to handle one
11784 SET or CLOBBER in an insn. DATA is the instruction in which the
11785 set is occurring. */
11786
11787 static void
11788 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
11789 {
11790 rtx record_dead_insn = (rtx) data;
11791
11792 if (GET_CODE (dest) == SUBREG)
11793 dest = SUBREG_REG (dest);
11794
11795 if (!record_dead_insn)
11796 {
11797 if (REG_P (dest))
11798 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
11799 return;
11800 }
11801
11802 if (REG_P (dest))
11803 {
11804 /* If we are setting the whole register, we know its value. Otherwise
11805 show that we don't know the value. We can handle SUBREG in
11806 some cases. */
11807 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11808 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11809 else if (GET_CODE (setter) == SET
11810 && GET_CODE (SET_DEST (setter)) == SUBREG
11811 && SUBREG_REG (SET_DEST (setter)) == dest
11812 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11813 && subreg_lowpart_p (SET_DEST (setter)))
11814 record_value_for_reg (dest, record_dead_insn,
11815 gen_lowpart (GET_MODE (dest),
11816 SET_SRC (setter)));
11817 else
11818 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11819 }
11820 else if (MEM_P (dest)
11821 /* Ignore pushes, they clobber nothing. */
11822 && ! push_operand (dest, GET_MODE (dest)))
11823 mem_last_set = DF_INSN_LUID (record_dead_insn);
11824 }
11825
11826 /* Update the records of when each REG was most recently set or killed
11827 for the things done by INSN. This is the last thing done in processing
11828 INSN in the combiner loop.
11829
11830 We update reg_stat[], in particular fields last_set, last_set_value,
11831 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11832 last_death, and also the similar information mem_last_set (which insn
11833 most recently modified memory) and last_call_luid (which insn was the
11834 most recent subroutine call). */
11835
11836 static void
11837 record_dead_and_set_regs (rtx insn)
11838 {
11839 rtx link;
11840 unsigned int i;
11841
11842 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11843 {
11844 if (REG_NOTE_KIND (link) == REG_DEAD
11845 && REG_P (XEXP (link, 0)))
11846 {
11847 unsigned int regno = REGNO (XEXP (link, 0));
11848 unsigned int endregno = END_REGNO (XEXP (link, 0));
11849
11850 for (i = regno; i < endregno; i++)
11851 {
11852 reg_stat_type *rsp;
11853
11854 rsp = VEC_index (reg_stat_type, reg_stat, i);
11855 rsp->last_death = insn;
11856 }
11857 }
11858 else if (REG_NOTE_KIND (link) == REG_INC)
11859 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11860 }
11861
11862 if (CALL_P (insn))
11863 {
11864 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11865 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11866 {
11867 reg_stat_type *rsp;
11868
11869 rsp = VEC_index (reg_stat_type, reg_stat, i);
11870 rsp->last_set_invalid = 1;
11871 rsp->last_set = insn;
11872 rsp->last_set_value = 0;
11873 rsp->last_set_mode = VOIDmode;
11874 rsp->last_set_nonzero_bits = 0;
11875 rsp->last_set_sign_bit_copies = 0;
11876 rsp->last_death = 0;
11877 rsp->truncated_to_mode = VOIDmode;
11878 }
11879
11880 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
11881
11882 /* We can't combine into a call pattern. Remember, though, that
11883 the return value register is set at this LUID. We could
11884 still replace a register with the return value from the
11885 wrong subroutine call! */
11886 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11887 }
11888 else
11889 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11890 }
11891
11892 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11893 register present in the SUBREG, so for each such SUBREG go back and
11894 adjust nonzero and sign bit information of the registers that are
11895 known to have some zero/sign bits set.
11896
11897 This is needed because when combine blows the SUBREGs away, the
11898 information on zero/sign bits is lost and further combines can be
11899 missed because of that. */
11900
11901 static void
11902 record_promoted_value (rtx insn, rtx subreg)
11903 {
11904 rtx links, set;
11905 unsigned int regno = REGNO (SUBREG_REG (subreg));
11906 enum machine_mode mode = GET_MODE (subreg);
11907
11908 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11909 return;
11910
11911 for (links = LOG_LINKS (insn); links;)
11912 {
11913 reg_stat_type *rsp;
11914
11915 insn = XEXP (links, 0);
11916 set = single_set (insn);
11917
11918 if (! set || !REG_P (SET_DEST (set))
11919 || REGNO (SET_DEST (set)) != regno
11920 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11921 {
11922 links = XEXP (links, 1);
11923 continue;
11924 }
11925
11926 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11927 if (rsp->last_set == insn)
11928 {
11929 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11930 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
11931 }
11932
11933 if (REG_P (SET_SRC (set)))
11934 {
11935 regno = REGNO (SET_SRC (set));
11936 links = LOG_LINKS (insn);
11937 }
11938 else
11939 break;
11940 }
11941 }
11942
11943 /* Check if X, a register, is known to contain a value already
11944 truncated to MODE. In this case we can use a subreg to refer to
11945 the truncated value even though in the generic case we would need
11946 an explicit truncation. */
11947
11948 static bool
11949 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
11950 {
11951 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11952 enum machine_mode truncated = rsp->truncated_to_mode;
11953
11954 if (truncated == 0
11955 || rsp->truncation_label < label_tick_ebb_start)
11956 return false;
11957 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11958 return true;
11959 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11960 GET_MODE_BITSIZE (truncated)))
11961 return true;
11962 return false;
11963 }
11964
11965 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
11966 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
11967 might be able to turn a truncate into a subreg using this information.
11968 Return -1 if traversing *P is complete or 0 otherwise. */
11969
11970 static int
11971 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
11972 {
11973 rtx x = *p;
11974 enum machine_mode truncated_mode;
11975 reg_stat_type *rsp;
11976
11977 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11978 {
11979 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11980 truncated_mode = GET_MODE (x);
11981
11982 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11983 return -1;
11984
11985 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11986 GET_MODE_BITSIZE (original_mode)))
11987 return -1;
11988
11989 x = SUBREG_REG (x);
11990 }
11991 /* ??? For hard-regs we now record everything. We might be able to
11992 optimize this using last_set_mode. */
11993 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
11994 truncated_mode = GET_MODE (x);
11995 else
11996 return 0;
11997
11998 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11999 if (rsp->truncated_to_mode == 0
12000 || rsp->truncation_label < label_tick_ebb_start
12001 || (GET_MODE_SIZE (truncated_mode)
12002 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12003 {
12004 rsp->truncated_to_mode = truncated_mode;
12005 rsp->truncation_label = label_tick;
12006 }
12007
12008 return -1;
12009 }
12010
12011 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12012 the modes they are used in. This can help truning TRUNCATEs into
12013 SUBREGs. */
12014
12015 static void
12016 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12017 {
12018 for_each_rtx (x, record_truncated_value, NULL);
12019 }
12020
12021 /* Scan X for promoted SUBREGs. For each one found,
12022 note what it implies to the registers used in it. */
12023
12024 static void
12025 check_promoted_subreg (rtx insn, rtx x)
12026 {
12027 if (GET_CODE (x) == SUBREG
12028 && SUBREG_PROMOTED_VAR_P (x)
12029 && REG_P (SUBREG_REG (x)))
12030 record_promoted_value (insn, x);
12031 else
12032 {
12033 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12034 int i, j;
12035
12036 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12037 switch (format[i])
12038 {
12039 case 'e':
12040 check_promoted_subreg (insn, XEXP (x, i));
12041 break;
12042 case 'V':
12043 case 'E':
12044 if (XVEC (x, i) != 0)
12045 for (j = 0; j < XVECLEN (x, i); j++)
12046 check_promoted_subreg (insn, XVECEXP (x, i, j));
12047 break;
12048 }
12049 }
12050 }
12051 \f
12052 /* Verify that all the registers and memory references mentioned in *LOC are
12053 still valid. *LOC was part of a value set in INSN when label_tick was
12054 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12055 the invalid references with (clobber (const_int 0)) and return 1. This
12056 replacement is useful because we often can get useful information about
12057 the form of a value (e.g., if it was produced by a shift that always
12058 produces -1 or 0) even though we don't know exactly what registers it
12059 was produced from. */
12060
12061 static int
12062 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12063 {
12064 rtx x = *loc;
12065 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12066 int len = GET_RTX_LENGTH (GET_CODE (x));
12067 int i, j;
12068
12069 if (REG_P (x))
12070 {
12071 unsigned int regno = REGNO (x);
12072 unsigned int endregno = END_REGNO (x);
12073 unsigned int j;
12074
12075 for (j = regno; j < endregno; j++)
12076 {
12077 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
12078 if (rsp->last_set_invalid
12079 /* If this is a pseudo-register that was only set once and not
12080 live at the beginning of the function, it is always valid. */
12081 || (! (regno >= FIRST_PSEUDO_REGISTER
12082 && REG_N_SETS (regno) == 1
12083 && (!REGNO_REG_SET_P
12084 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12085 && rsp->last_set_label > tick))
12086 {
12087 if (replace)
12088 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12089 return replace;
12090 }
12091 }
12092
12093 return 1;
12094 }
12095 /* If this is a memory reference, make sure that there were no stores after
12096 it that might have clobbered the value. We don't have alias info, so we
12097 assume any store invalidates it. Moreover, we only have local UIDs, so
12098 we also assume that there were stores in the intervening basic blocks. */
12099 else if (MEM_P (x) && !MEM_READONLY_P (x)
12100 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12101 {
12102 if (replace)
12103 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12104 return replace;
12105 }
12106
12107 for (i = 0; i < len; i++)
12108 {
12109 if (fmt[i] == 'e')
12110 {
12111 /* Check for identical subexpressions. If x contains
12112 identical subexpression we only have to traverse one of
12113 them. */
12114 if (i == 1 && ARITHMETIC_P (x))
12115 {
12116 /* Note that at this point x0 has already been checked
12117 and found valid. */
12118 rtx x0 = XEXP (x, 0);
12119 rtx x1 = XEXP (x, 1);
12120
12121 /* If x0 and x1 are identical then x is also valid. */
12122 if (x0 == x1)
12123 return 1;
12124
12125 /* If x1 is identical to a subexpression of x0 then
12126 while checking x0, x1 has already been checked. Thus
12127 it is valid and so as x. */
12128 if (ARITHMETIC_P (x0)
12129 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12130 return 1;
12131
12132 /* If x0 is identical to a subexpression of x1 then x is
12133 valid iff the rest of x1 is valid. */
12134 if (ARITHMETIC_P (x1)
12135 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12136 return
12137 get_last_value_validate (&XEXP (x1,
12138 x0 == XEXP (x1, 0) ? 1 : 0),
12139 insn, tick, replace);
12140 }
12141
12142 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12143 replace) == 0)
12144 return 0;
12145 }
12146 else if (fmt[i] == 'E')
12147 for (j = 0; j < XVECLEN (x, i); j++)
12148 if (get_last_value_validate (&XVECEXP (x, i, j),
12149 insn, tick, replace) == 0)
12150 return 0;
12151 }
12152
12153 /* If we haven't found a reason for it to be invalid, it is valid. */
12154 return 1;
12155 }
12156
12157 /* Get the last value assigned to X, if known. Some registers
12158 in the value may be replaced with (clobber (const_int 0)) if their value
12159 is known longer known reliably. */
12160
12161 static rtx
12162 get_last_value (const_rtx x)
12163 {
12164 unsigned int regno;
12165 rtx value;
12166 reg_stat_type *rsp;
12167
12168 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12169 then convert it to the desired mode. If this is a paradoxical SUBREG,
12170 we cannot predict what values the "extra" bits might have. */
12171 if (GET_CODE (x) == SUBREG
12172 && subreg_lowpart_p (x)
12173 && (GET_MODE_SIZE (GET_MODE (x))
12174 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
12175 && (value = get_last_value (SUBREG_REG (x))) != 0)
12176 return gen_lowpart (GET_MODE (x), value);
12177
12178 if (!REG_P (x))
12179 return 0;
12180
12181 regno = REGNO (x);
12182 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12183 value = rsp->last_set_value;
12184
12185 /* If we don't have a value, or if it isn't for this basic block and
12186 it's either a hard register, set more than once, or it's a live
12187 at the beginning of the function, return 0.
12188
12189 Because if it's not live at the beginning of the function then the reg
12190 is always set before being used (is never used without being set).
12191 And, if it's set only once, and it's always set before use, then all
12192 uses must have the same last value, even if it's not from this basic
12193 block. */
12194
12195 if (value == 0
12196 || (rsp->last_set_label < label_tick_ebb_start
12197 && (regno < FIRST_PSEUDO_REGISTER
12198 || REG_N_SETS (regno) != 1
12199 || REGNO_REG_SET_P
12200 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12201 return 0;
12202
12203 /* If the value was set in a later insn than the ones we are processing,
12204 we can't use it even if the register was only set once. */
12205 if (rsp->last_set_label == label_tick
12206 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12207 return 0;
12208
12209 /* If the value has all its registers valid, return it. */
12210 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12211 return value;
12212
12213 /* Otherwise, make a copy and replace any invalid register with
12214 (clobber (const_int 0)). If that fails for some reason, return 0. */
12215
12216 value = copy_rtx (value);
12217 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12218 return value;
12219
12220 return 0;
12221 }
12222 \f
12223 /* Return nonzero if expression X refers to a REG or to memory
12224 that is set in an instruction more recent than FROM_LUID. */
12225
12226 static int
12227 use_crosses_set_p (const_rtx x, int from_luid)
12228 {
12229 const char *fmt;
12230 int i;
12231 enum rtx_code code = GET_CODE (x);
12232
12233 if (code == REG)
12234 {
12235 unsigned int regno = REGNO (x);
12236 unsigned endreg = END_REGNO (x);
12237
12238 #ifdef PUSH_ROUNDING
12239 /* Don't allow uses of the stack pointer to be moved,
12240 because we don't know whether the move crosses a push insn. */
12241 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12242 return 1;
12243 #endif
12244 for (; regno < endreg; regno++)
12245 {
12246 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12247 if (rsp->last_set
12248 && rsp->last_set_label == label_tick
12249 && DF_INSN_LUID (rsp->last_set) > from_luid)
12250 return 1;
12251 }
12252 return 0;
12253 }
12254
12255 if (code == MEM && mem_last_set > from_luid)
12256 return 1;
12257
12258 fmt = GET_RTX_FORMAT (code);
12259
12260 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12261 {
12262 if (fmt[i] == 'E')
12263 {
12264 int j;
12265 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12266 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12267 return 1;
12268 }
12269 else if (fmt[i] == 'e'
12270 && use_crosses_set_p (XEXP (x, i), from_luid))
12271 return 1;
12272 }
12273 return 0;
12274 }
12275 \f
12276 /* Define three variables used for communication between the following
12277 routines. */
12278
12279 static unsigned int reg_dead_regno, reg_dead_endregno;
12280 static int reg_dead_flag;
12281
12282 /* Function called via note_stores from reg_dead_at_p.
12283
12284 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12285 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12286
12287 static void
12288 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12289 {
12290 unsigned int regno, endregno;
12291
12292 if (!REG_P (dest))
12293 return;
12294
12295 regno = REGNO (dest);
12296 endregno = END_REGNO (dest);
12297 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12298 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12299 }
12300
12301 /* Return nonzero if REG is known to be dead at INSN.
12302
12303 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12304 referencing REG, it is dead. If we hit a SET referencing REG, it is
12305 live. Otherwise, see if it is live or dead at the start of the basic
12306 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12307 must be assumed to be always live. */
12308
12309 static int
12310 reg_dead_at_p (rtx reg, rtx insn)
12311 {
12312 basic_block block;
12313 unsigned int i;
12314
12315 /* Set variables for reg_dead_at_p_1. */
12316 reg_dead_regno = REGNO (reg);
12317 reg_dead_endregno = END_REGNO (reg);
12318
12319 reg_dead_flag = 0;
12320
12321 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12322 we allow the machine description to decide whether use-and-clobber
12323 patterns are OK. */
12324 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12325 {
12326 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12327 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12328 return 0;
12329 }
12330
12331 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12332 beginning of basic block. */
12333 block = BLOCK_FOR_INSN (insn);
12334 for (;;)
12335 {
12336 if (INSN_P (insn))
12337 {
12338 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12339 if (reg_dead_flag)
12340 return reg_dead_flag == 1 ? 1 : 0;
12341
12342 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12343 return 1;
12344 }
12345
12346 if (insn == BB_HEAD (block))
12347 break;
12348
12349 insn = PREV_INSN (insn);
12350 }
12351
12352 /* Look at live-in sets for the basic block that we were in. */
12353 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12354 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12355 return 0;
12356
12357 return 1;
12358 }
12359 \f
12360 /* Note hard registers in X that are used. */
12361
12362 static void
12363 mark_used_regs_combine (rtx x)
12364 {
12365 RTX_CODE code = GET_CODE (x);
12366 unsigned int regno;
12367 int i;
12368
12369 switch (code)
12370 {
12371 case LABEL_REF:
12372 case SYMBOL_REF:
12373 case CONST_INT:
12374 case CONST:
12375 case CONST_DOUBLE:
12376 case CONST_VECTOR:
12377 case PC:
12378 case ADDR_VEC:
12379 case ADDR_DIFF_VEC:
12380 case ASM_INPUT:
12381 #ifdef HAVE_cc0
12382 /* CC0 must die in the insn after it is set, so we don't need to take
12383 special note of it here. */
12384 case CC0:
12385 #endif
12386 return;
12387
12388 case CLOBBER:
12389 /* If we are clobbering a MEM, mark any hard registers inside the
12390 address as used. */
12391 if (MEM_P (XEXP (x, 0)))
12392 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12393 return;
12394
12395 case REG:
12396 regno = REGNO (x);
12397 /* A hard reg in a wide mode may really be multiple registers.
12398 If so, mark all of them just like the first. */
12399 if (regno < FIRST_PSEUDO_REGISTER)
12400 {
12401 /* None of this applies to the stack, frame or arg pointers. */
12402 if (regno == STACK_POINTER_REGNUM
12403 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12404 || regno == HARD_FRAME_POINTER_REGNUM
12405 #endif
12406 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12407 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12408 #endif
12409 || regno == FRAME_POINTER_REGNUM)
12410 return;
12411
12412 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12413 }
12414 return;
12415
12416 case SET:
12417 {
12418 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12419 the address. */
12420 rtx testreg = SET_DEST (x);
12421
12422 while (GET_CODE (testreg) == SUBREG
12423 || GET_CODE (testreg) == ZERO_EXTRACT
12424 || GET_CODE (testreg) == STRICT_LOW_PART)
12425 testreg = XEXP (testreg, 0);
12426
12427 if (MEM_P (testreg))
12428 mark_used_regs_combine (XEXP (testreg, 0));
12429
12430 mark_used_regs_combine (SET_SRC (x));
12431 }
12432 return;
12433
12434 default:
12435 break;
12436 }
12437
12438 /* Recursively scan the operands of this expression. */
12439
12440 {
12441 const char *fmt = GET_RTX_FORMAT (code);
12442
12443 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12444 {
12445 if (fmt[i] == 'e')
12446 mark_used_regs_combine (XEXP (x, i));
12447 else if (fmt[i] == 'E')
12448 {
12449 int j;
12450
12451 for (j = 0; j < XVECLEN (x, i); j++)
12452 mark_used_regs_combine (XVECEXP (x, i, j));
12453 }
12454 }
12455 }
12456 }
12457 \f
12458 /* Remove register number REGNO from the dead registers list of INSN.
12459
12460 Return the note used to record the death, if there was one. */
12461
12462 rtx
12463 remove_death (unsigned int regno, rtx insn)
12464 {
12465 rtx note = find_regno_note (insn, REG_DEAD, regno);
12466
12467 if (note)
12468 remove_note (insn, note);
12469
12470 return note;
12471 }
12472
12473 /* For each register (hardware or pseudo) used within expression X, if its
12474 death is in an instruction with luid between FROM_LUID (inclusive) and
12475 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12476 list headed by PNOTES.
12477
12478 That said, don't move registers killed by maybe_kill_insn.
12479
12480 This is done when X is being merged by combination into TO_INSN. These
12481 notes will then be distributed as needed. */
12482
12483 static void
12484 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12485 rtx *pnotes)
12486 {
12487 const char *fmt;
12488 int len, i;
12489 enum rtx_code code = GET_CODE (x);
12490
12491 if (code == REG)
12492 {
12493 unsigned int regno = REGNO (x);
12494 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12495
12496 /* Don't move the register if it gets killed in between from and to. */
12497 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12498 && ! reg_referenced_p (x, maybe_kill_insn))
12499 return;
12500
12501 if (where_dead
12502 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12503 && DF_INSN_LUID (where_dead) >= from_luid
12504 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12505 {
12506 rtx note = remove_death (regno, where_dead);
12507
12508 /* It is possible for the call above to return 0. This can occur
12509 when last_death points to I2 or I1 that we combined with.
12510 In that case make a new note.
12511
12512 We must also check for the case where X is a hard register
12513 and NOTE is a death note for a range of hard registers
12514 including X. In that case, we must put REG_DEAD notes for
12515 the remaining registers in place of NOTE. */
12516
12517 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12518 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12519 > GET_MODE_SIZE (GET_MODE (x))))
12520 {
12521 unsigned int deadregno = REGNO (XEXP (note, 0));
12522 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12523 unsigned int ourend = END_HARD_REGNO (x);
12524 unsigned int i;
12525
12526 for (i = deadregno; i < deadend; i++)
12527 if (i < regno || i >= ourend)
12528 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12529 }
12530
12531 /* If we didn't find any note, or if we found a REG_DEAD note that
12532 covers only part of the given reg, and we have a multi-reg hard
12533 register, then to be safe we must check for REG_DEAD notes
12534 for each register other than the first. They could have
12535 their own REG_DEAD notes lying around. */
12536 else if ((note == 0
12537 || (note != 0
12538 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12539 < GET_MODE_SIZE (GET_MODE (x)))))
12540 && regno < FIRST_PSEUDO_REGISTER
12541 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12542 {
12543 unsigned int ourend = END_HARD_REGNO (x);
12544 unsigned int i, offset;
12545 rtx oldnotes = 0;
12546
12547 if (note)
12548 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12549 else
12550 offset = 1;
12551
12552 for (i = regno + offset; i < ourend; i++)
12553 move_deaths (regno_reg_rtx[i],
12554 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12555 }
12556
12557 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12558 {
12559 XEXP (note, 1) = *pnotes;
12560 *pnotes = note;
12561 }
12562 else
12563 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
12564 }
12565
12566 return;
12567 }
12568
12569 else if (GET_CODE (x) == SET)
12570 {
12571 rtx dest = SET_DEST (x);
12572
12573 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
12574
12575 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12576 that accesses one word of a multi-word item, some
12577 piece of everything register in the expression is used by
12578 this insn, so remove any old death. */
12579 /* ??? So why do we test for equality of the sizes? */
12580
12581 if (GET_CODE (dest) == ZERO_EXTRACT
12582 || GET_CODE (dest) == STRICT_LOW_PART
12583 || (GET_CODE (dest) == SUBREG
12584 && (((GET_MODE_SIZE (GET_MODE (dest))
12585 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12586 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12587 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12588 {
12589 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
12590 return;
12591 }
12592
12593 /* If this is some other SUBREG, we know it replaces the entire
12594 value, so use that as the destination. */
12595 if (GET_CODE (dest) == SUBREG)
12596 dest = SUBREG_REG (dest);
12597
12598 /* If this is a MEM, adjust deaths of anything used in the address.
12599 For a REG (the only other possibility), the entire value is
12600 being replaced so the old value is not used in this insn. */
12601
12602 if (MEM_P (dest))
12603 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
12604 to_insn, pnotes);
12605 return;
12606 }
12607
12608 else if (GET_CODE (x) == CLOBBER)
12609 return;
12610
12611 len = GET_RTX_LENGTH (code);
12612 fmt = GET_RTX_FORMAT (code);
12613
12614 for (i = 0; i < len; i++)
12615 {
12616 if (fmt[i] == 'E')
12617 {
12618 int j;
12619 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12620 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
12621 to_insn, pnotes);
12622 }
12623 else if (fmt[i] == 'e')
12624 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
12625 }
12626 }
12627 \f
12628 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12629 pattern of an insn. X must be a REG. */
12630
12631 static int
12632 reg_bitfield_target_p (rtx x, rtx body)
12633 {
12634 int i;
12635
12636 if (GET_CODE (body) == SET)
12637 {
12638 rtx dest = SET_DEST (body);
12639 rtx target;
12640 unsigned int regno, tregno, endregno, endtregno;
12641
12642 if (GET_CODE (dest) == ZERO_EXTRACT)
12643 target = XEXP (dest, 0);
12644 else if (GET_CODE (dest) == STRICT_LOW_PART)
12645 target = SUBREG_REG (XEXP (dest, 0));
12646 else
12647 return 0;
12648
12649 if (GET_CODE (target) == SUBREG)
12650 target = SUBREG_REG (target);
12651
12652 if (!REG_P (target))
12653 return 0;
12654
12655 tregno = REGNO (target), regno = REGNO (x);
12656 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12657 return target == x;
12658
12659 endtregno = end_hard_regno (GET_MODE (target), tregno);
12660 endregno = end_hard_regno (GET_MODE (x), regno);
12661
12662 return endregno > tregno && regno < endtregno;
12663 }
12664
12665 else if (GET_CODE (body) == PARALLEL)
12666 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12667 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12668 return 1;
12669
12670 return 0;
12671 }
12672
12673 /* Return the next insn after INSN that is neither a NOTE nor a
12674 DEBUG_INSN. This routine does not look inside SEQUENCEs. */
12675
12676 static rtx
12677 next_nonnote_nondebug_insn (rtx insn)
12678 {
12679 while (insn)
12680 {
12681 insn = NEXT_INSN (insn);
12682 if (insn == 0)
12683 break;
12684 if (NOTE_P (insn))
12685 continue;
12686 if (DEBUG_INSN_P (insn))
12687 continue;
12688 break;
12689 }
12690
12691 return insn;
12692 }
12693
12694
12695 \f
12696 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12697 as appropriate. I3 and I2 are the insns resulting from the combination
12698 insns including FROM (I2 may be zero).
12699
12700 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12701 not need REG_DEAD notes because they are being substituted for. This
12702 saves searching in the most common cases.
12703
12704 Each note in the list is either ignored or placed on some insns, depending
12705 on the type of note. */
12706
12707 static void
12708 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
12709 rtx elim_i1)
12710 {
12711 rtx note, next_note;
12712 rtx tem;
12713
12714 for (note = notes; note; note = next_note)
12715 {
12716 rtx place = 0, place2 = 0;
12717
12718 next_note = XEXP (note, 1);
12719 switch (REG_NOTE_KIND (note))
12720 {
12721 case REG_BR_PROB:
12722 case REG_BR_PRED:
12723 /* Doesn't matter much where we put this, as long as it's somewhere.
12724 It is preferable to keep these notes on branches, which is most
12725 likely to be i3. */
12726 place = i3;
12727 break;
12728
12729 case REG_VALUE_PROFILE:
12730 /* Just get rid of this note, as it is unused later anyway. */
12731 break;
12732
12733 case REG_NON_LOCAL_GOTO:
12734 if (JUMP_P (i3))
12735 place = i3;
12736 else
12737 {
12738 gcc_assert (i2 && JUMP_P (i2));
12739 place = i2;
12740 }
12741 break;
12742
12743 case REG_EH_REGION:
12744 /* These notes must remain with the call or trapping instruction. */
12745 if (CALL_P (i3))
12746 place = i3;
12747 else if (i2 && CALL_P (i2))
12748 place = i2;
12749 else
12750 {
12751 gcc_assert (flag_non_call_exceptions);
12752 if (may_trap_p (i3))
12753 place = i3;
12754 else if (i2 && may_trap_p (i2))
12755 place = i2;
12756 /* ??? Otherwise assume we've combined things such that we
12757 can now prove that the instructions can't trap. Drop the
12758 note in this case. */
12759 }
12760 break;
12761
12762 case REG_NORETURN:
12763 case REG_SETJMP:
12764 /* These notes must remain with the call. It should not be
12765 possible for both I2 and I3 to be a call. */
12766 if (CALL_P (i3))
12767 place = i3;
12768 else
12769 {
12770 gcc_assert (i2 && CALL_P (i2));
12771 place = i2;
12772 }
12773 break;
12774
12775 case REG_UNUSED:
12776 /* Any clobbers for i3 may still exist, and so we must process
12777 REG_UNUSED notes from that insn.
12778
12779 Any clobbers from i2 or i1 can only exist if they were added by
12780 recog_for_combine. In that case, recog_for_combine created the
12781 necessary REG_UNUSED notes. Trying to keep any original
12782 REG_UNUSED notes from these insns can cause incorrect output
12783 if it is for the same register as the original i3 dest.
12784 In that case, we will notice that the register is set in i3,
12785 and then add a REG_UNUSED note for the destination of i3, which
12786 is wrong. However, it is possible to have REG_UNUSED notes from
12787 i2 or i1 for register which were both used and clobbered, so
12788 we keep notes from i2 or i1 if they will turn into REG_DEAD
12789 notes. */
12790
12791 /* If this register is set or clobbered in I3, put the note there
12792 unless there is one already. */
12793 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12794 {
12795 if (from_insn != i3)
12796 break;
12797
12798 if (! (REG_P (XEXP (note, 0))
12799 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12800 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12801 place = i3;
12802 }
12803 /* Otherwise, if this register is used by I3, then this register
12804 now dies here, so we must put a REG_DEAD note here unless there
12805 is one already. */
12806 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12807 && ! (REG_P (XEXP (note, 0))
12808 ? find_regno_note (i3, REG_DEAD,
12809 REGNO (XEXP (note, 0)))
12810 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12811 {
12812 PUT_REG_NOTE_KIND (note, REG_DEAD);
12813 place = i3;
12814 }
12815 break;
12816
12817 case REG_EQUAL:
12818 case REG_EQUIV:
12819 case REG_NOALIAS:
12820 /* These notes say something about results of an insn. We can
12821 only support them if they used to be on I3 in which case they
12822 remain on I3. Otherwise they are ignored.
12823
12824 If the note refers to an expression that is not a constant, we
12825 must also ignore the note since we cannot tell whether the
12826 equivalence is still true. It might be possible to do
12827 slightly better than this (we only have a problem if I2DEST
12828 or I1DEST is present in the expression), but it doesn't
12829 seem worth the trouble. */
12830
12831 if (from_insn == i3
12832 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12833 place = i3;
12834 break;
12835
12836 case REG_INC:
12837 /* These notes say something about how a register is used. They must
12838 be present on any use of the register in I2 or I3. */
12839 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12840 place = i3;
12841
12842 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12843 {
12844 if (place)
12845 place2 = i2;
12846 else
12847 place = i2;
12848 }
12849 break;
12850
12851 case REG_LABEL_TARGET:
12852 case REG_LABEL_OPERAND:
12853 /* This can show up in several ways -- either directly in the
12854 pattern, or hidden off in the constant pool with (or without?)
12855 a REG_EQUAL note. */
12856 /* ??? Ignore the without-reg_equal-note problem for now. */
12857 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12858 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12859 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12860 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12861 place = i3;
12862
12863 if (i2
12864 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12865 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12866 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12867 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12868 {
12869 if (place)
12870 place2 = i2;
12871 else
12872 place = i2;
12873 }
12874
12875 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
12876 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
12877 there. */
12878 if (place && JUMP_P (place)
12879 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12880 && (JUMP_LABEL (place) == NULL
12881 || JUMP_LABEL (place) == XEXP (note, 0)))
12882 {
12883 rtx label = JUMP_LABEL (place);
12884
12885 if (!label)
12886 JUMP_LABEL (place) = XEXP (note, 0);
12887 else if (LABEL_P (label))
12888 LABEL_NUSES (label)--;
12889 }
12890
12891 if (place2 && JUMP_P (place2)
12892 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12893 && (JUMP_LABEL (place2) == NULL
12894 || JUMP_LABEL (place2) == XEXP (note, 0)))
12895 {
12896 rtx label = JUMP_LABEL (place2);
12897
12898 if (!label)
12899 JUMP_LABEL (place2) = XEXP (note, 0);
12900 else if (LABEL_P (label))
12901 LABEL_NUSES (label)--;
12902 place2 = 0;
12903 }
12904 break;
12905
12906 case REG_NONNEG:
12907 /* This note says something about the value of a register prior
12908 to the execution of an insn. It is too much trouble to see
12909 if the note is still correct in all situations. It is better
12910 to simply delete it. */
12911 break;
12912
12913 case REG_DEAD:
12914 /* If we replaced the right hand side of FROM_INSN with a
12915 REG_EQUAL note, the original use of the dying register
12916 will not have been combined into I3 and I2. In such cases,
12917 FROM_INSN is guaranteed to be the first of the combined
12918 instructions, so we simply need to search back before
12919 FROM_INSN for the previous use or set of this register,
12920 then alter the notes there appropriately.
12921
12922 If the register is used as an input in I3, it dies there.
12923 Similarly for I2, if it is nonzero and adjacent to I3.
12924
12925 If the register is not used as an input in either I3 or I2
12926 and it is not one of the registers we were supposed to eliminate,
12927 there are two possibilities. We might have a non-adjacent I2
12928 or we might have somehow eliminated an additional register
12929 from a computation. For example, we might have had A & B where
12930 we discover that B will always be zero. In this case we will
12931 eliminate the reference to A.
12932
12933 In both cases, we must search to see if we can find a previous
12934 use of A and put the death note there. */
12935
12936 if (from_insn
12937 && from_insn == i2mod
12938 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
12939 tem = from_insn;
12940 else
12941 {
12942 if (from_insn
12943 && CALL_P (from_insn)
12944 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12945 place = from_insn;
12946 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12947 place = i3;
12948 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
12949 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12950 place = i2;
12951 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
12952 && !(i2mod
12953 && reg_overlap_mentioned_p (XEXP (note, 0),
12954 i2mod_old_rhs)))
12955 || rtx_equal_p (XEXP (note, 0), elim_i1))
12956 break;
12957 tem = i3;
12958 }
12959
12960 if (place == 0)
12961 {
12962 basic_block bb = this_basic_block;
12963
12964 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
12965 {
12966 if (!NONDEBUG_INSN_P (tem))
12967 {
12968 if (tem == BB_HEAD (bb))
12969 break;
12970 continue;
12971 }
12972
12973 /* If the register is being set at TEM, see if that is all
12974 TEM is doing. If so, delete TEM. Otherwise, make this
12975 into a REG_UNUSED note instead. Don't delete sets to
12976 global register vars. */
12977 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12978 || !global_regs[REGNO (XEXP (note, 0))])
12979 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12980 {
12981 rtx set = single_set (tem);
12982 rtx inner_dest = 0;
12983 #ifdef HAVE_cc0
12984 rtx cc0_setter = NULL_RTX;
12985 #endif
12986
12987 if (set != 0)
12988 for (inner_dest = SET_DEST (set);
12989 (GET_CODE (inner_dest) == STRICT_LOW_PART
12990 || GET_CODE (inner_dest) == SUBREG
12991 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12992 inner_dest = XEXP (inner_dest, 0))
12993 ;
12994
12995 /* Verify that it was the set, and not a clobber that
12996 modified the register.
12997
12998 CC0 targets must be careful to maintain setter/user
12999 pairs. If we cannot delete the setter due to side
13000 effects, mark the user with an UNUSED note instead
13001 of deleting it. */
13002
13003 if (set != 0 && ! side_effects_p (SET_SRC (set))
13004 && rtx_equal_p (XEXP (note, 0), inner_dest)
13005 #ifdef HAVE_cc0
13006 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13007 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13008 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13009 #endif
13010 )
13011 {
13012 /* Move the notes and links of TEM elsewhere.
13013 This might delete other dead insns recursively.
13014 First set the pattern to something that won't use
13015 any register. */
13016 rtx old_notes = REG_NOTES (tem);
13017
13018 PATTERN (tem) = pc_rtx;
13019 REG_NOTES (tem) = NULL;
13020
13021 distribute_notes (old_notes, tem, tem, NULL_RTX,
13022 NULL_RTX, NULL_RTX);
13023 distribute_links (LOG_LINKS (tem));
13024
13025 SET_INSN_DELETED (tem);
13026 if (tem == i2)
13027 i2 = NULL_RTX;
13028
13029 #ifdef HAVE_cc0
13030 /* Delete the setter too. */
13031 if (cc0_setter)
13032 {
13033 PATTERN (cc0_setter) = pc_rtx;
13034 old_notes = REG_NOTES (cc0_setter);
13035 REG_NOTES (cc0_setter) = NULL;
13036
13037 distribute_notes (old_notes, cc0_setter,
13038 cc0_setter, NULL_RTX,
13039 NULL_RTX, NULL_RTX);
13040 distribute_links (LOG_LINKS (cc0_setter));
13041
13042 SET_INSN_DELETED (cc0_setter);
13043 if (cc0_setter == i2)
13044 i2 = NULL_RTX;
13045 }
13046 #endif
13047 }
13048 else
13049 {
13050 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13051
13052 /* If there isn't already a REG_UNUSED note, put one
13053 here. Do not place a REG_DEAD note, even if
13054 the register is also used here; that would not
13055 match the algorithm used in lifetime analysis
13056 and can cause the consistency check in the
13057 scheduler to fail. */
13058 if (! find_regno_note (tem, REG_UNUSED,
13059 REGNO (XEXP (note, 0))))
13060 place = tem;
13061 break;
13062 }
13063 }
13064 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13065 || (CALL_P (tem)
13066 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13067 {
13068 place = tem;
13069
13070 /* If we are doing a 3->2 combination, and we have a
13071 register which formerly died in i3 and was not used
13072 by i2, which now no longer dies in i3 and is used in
13073 i2 but does not die in i2, and place is between i2
13074 and i3, then we may need to move a link from place to
13075 i2. */
13076 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13077 && from_insn
13078 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13079 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13080 {
13081 rtx links = LOG_LINKS (place);
13082 LOG_LINKS (place) = 0;
13083 distribute_links (links);
13084 }
13085 break;
13086 }
13087
13088 if (tem == BB_HEAD (bb))
13089 break;
13090 }
13091
13092 }
13093
13094 /* If the register is set or already dead at PLACE, we needn't do
13095 anything with this note if it is still a REG_DEAD note.
13096 We check here if it is set at all, not if is it totally replaced,
13097 which is what `dead_or_set_p' checks, so also check for it being
13098 set partially. */
13099
13100 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13101 {
13102 unsigned int regno = REGNO (XEXP (note, 0));
13103 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
13104
13105 if (dead_or_set_p (place, XEXP (note, 0))
13106 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13107 {
13108 /* Unless the register previously died in PLACE, clear
13109 last_death. [I no longer understand why this is
13110 being done.] */
13111 if (rsp->last_death != place)
13112 rsp->last_death = 0;
13113 place = 0;
13114 }
13115 else
13116 rsp->last_death = place;
13117
13118 /* If this is a death note for a hard reg that is occupying
13119 multiple registers, ensure that we are still using all
13120 parts of the object. If we find a piece of the object
13121 that is unused, we must arrange for an appropriate REG_DEAD
13122 note to be added for it. However, we can't just emit a USE
13123 and tag the note to it, since the register might actually
13124 be dead; so we recourse, and the recursive call then finds
13125 the previous insn that used this register. */
13126
13127 if (place && regno < FIRST_PSEUDO_REGISTER
13128 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13129 {
13130 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13131 int all_used = 1;
13132 unsigned int i;
13133
13134 for (i = regno; i < endregno; i++)
13135 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13136 && ! find_regno_fusage (place, USE, i))
13137 || dead_or_set_regno_p (place, i))
13138 all_used = 0;
13139
13140 if (! all_used)
13141 {
13142 /* Put only REG_DEAD notes for pieces that are
13143 not already dead or set. */
13144
13145 for (i = regno; i < endregno;
13146 i += hard_regno_nregs[i][reg_raw_mode[i]])
13147 {
13148 rtx piece = regno_reg_rtx[i];
13149 basic_block bb = this_basic_block;
13150
13151 if (! dead_or_set_p (place, piece)
13152 && ! reg_bitfield_target_p (piece,
13153 PATTERN (place)))
13154 {
13155 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13156 NULL_RTX);
13157
13158 distribute_notes (new_note, place, place,
13159 NULL_RTX, NULL_RTX, NULL_RTX);
13160 }
13161 else if (! refers_to_regno_p (i, i + 1,
13162 PATTERN (place), 0)
13163 && ! find_regno_fusage (place, USE, i))
13164 for (tem = PREV_INSN (place); ;
13165 tem = PREV_INSN (tem))
13166 {
13167 if (!NONDEBUG_INSN_P (tem))
13168 {
13169 if (tem == BB_HEAD (bb))
13170 break;
13171 continue;
13172 }
13173 if (dead_or_set_p (tem, piece)
13174 || reg_bitfield_target_p (piece,
13175 PATTERN (tem)))
13176 {
13177 add_reg_note (tem, REG_UNUSED, piece);
13178 break;
13179 }
13180 }
13181
13182 }
13183
13184 place = 0;
13185 }
13186 }
13187 }
13188 break;
13189
13190 default:
13191 /* Any other notes should not be present at this point in the
13192 compilation. */
13193 gcc_unreachable ();
13194 }
13195
13196 if (place)
13197 {
13198 XEXP (note, 1) = REG_NOTES (place);
13199 REG_NOTES (place) = note;
13200 }
13201
13202 if (place2)
13203 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13204 }
13205 }
13206 \f
13207 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13208 I3, I2, and I1 to new locations. This is also called to add a link
13209 pointing at I3 when I3's destination is changed. */
13210
13211 static void
13212 distribute_links (rtx links)
13213 {
13214 rtx link, next_link;
13215
13216 for (link = links; link; link = next_link)
13217 {
13218 rtx place = 0;
13219 rtx insn;
13220 rtx set, reg;
13221
13222 next_link = XEXP (link, 1);
13223
13224 /* If the insn that this link points to is a NOTE or isn't a single
13225 set, ignore it. In the latter case, it isn't clear what we
13226 can do other than ignore the link, since we can't tell which
13227 register it was for. Such links wouldn't be used by combine
13228 anyway.
13229
13230 It is not possible for the destination of the target of the link to
13231 have been changed by combine. The only potential of this is if we
13232 replace I3, I2, and I1 by I3 and I2. But in that case the
13233 destination of I2 also remains unchanged. */
13234
13235 if (NOTE_P (XEXP (link, 0))
13236 || (set = single_set (XEXP (link, 0))) == 0)
13237 continue;
13238
13239 reg = SET_DEST (set);
13240 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13241 || GET_CODE (reg) == STRICT_LOW_PART)
13242 reg = XEXP (reg, 0);
13243
13244 /* A LOG_LINK is defined as being placed on the first insn that uses
13245 a register and points to the insn that sets the register. Start
13246 searching at the next insn after the target of the link and stop
13247 when we reach a set of the register or the end of the basic block.
13248
13249 Note that this correctly handles the link that used to point from
13250 I3 to I2. Also note that not much searching is typically done here
13251 since most links don't point very far away. */
13252
13253 for (insn = NEXT_INSN (XEXP (link, 0));
13254 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13255 || BB_HEAD (this_basic_block->next_bb) != insn));
13256 insn = NEXT_INSN (insn))
13257 if (DEBUG_INSN_P (insn))
13258 continue;
13259 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13260 {
13261 if (reg_referenced_p (reg, PATTERN (insn)))
13262 place = insn;
13263 break;
13264 }
13265 else if (CALL_P (insn)
13266 && find_reg_fusage (insn, USE, reg))
13267 {
13268 place = insn;
13269 break;
13270 }
13271 else if (INSN_P (insn) && reg_set_p (reg, insn))
13272 break;
13273
13274 /* If we found a place to put the link, place it there unless there
13275 is already a link to the same insn as LINK at that point. */
13276
13277 if (place)
13278 {
13279 rtx link2;
13280
13281 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
13282 if (XEXP (link2, 0) == XEXP (link, 0))
13283 break;
13284
13285 if (link2 == 0)
13286 {
13287 XEXP (link, 1) = LOG_LINKS (place);
13288 LOG_LINKS (place) = link;
13289
13290 /* Set added_links_insn to the earliest insn we added a
13291 link to. */
13292 if (added_links_insn == 0
13293 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13294 added_links_insn = place;
13295 }
13296 }
13297 }
13298 }
13299 \f
13300 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13301 Check whether the expression pointer to by LOC is a register or
13302 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13303 Otherwise return zero. */
13304
13305 static int
13306 unmentioned_reg_p_1 (rtx *loc, void *expr)
13307 {
13308 rtx x = *loc;
13309
13310 if (x != NULL_RTX
13311 && (REG_P (x) || MEM_P (x))
13312 && ! reg_mentioned_p (x, (rtx) expr))
13313 return 1;
13314 return 0;
13315 }
13316
13317 /* Check for any register or memory mentioned in EQUIV that is not
13318 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13319 of EXPR where some registers may have been replaced by constants. */
13320
13321 static bool
13322 unmentioned_reg_p (rtx equiv, rtx expr)
13323 {
13324 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13325 }
13326 \f
13327 void
13328 dump_combine_stats (FILE *file)
13329 {
13330 fprintf
13331 (file,
13332 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13333 combine_attempts, combine_merges, combine_extras, combine_successes);
13334 }
13335
13336 void
13337 dump_combine_total_stats (FILE *file)
13338 {
13339 fprintf
13340 (file,
13341 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13342 total_attempts, total_merges, total_extras, total_successes);
13343 }
13344 \f
13345 static bool
13346 gate_handle_combine (void)
13347 {
13348 return (optimize > 0);
13349 }
13350
13351 /* Try combining insns through substitution. */
13352 static unsigned int
13353 rest_of_handle_combine (void)
13354 {
13355 int rebuild_jump_labels_after_combine;
13356
13357 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13358 df_note_add_problem ();
13359 df_analyze ();
13360
13361 regstat_init_n_sets_and_refs ();
13362
13363 rebuild_jump_labels_after_combine
13364 = combine_instructions (get_insns (), max_reg_num ());
13365
13366 /* Combining insns may have turned an indirect jump into a
13367 direct jump. Rebuild the JUMP_LABEL fields of jumping
13368 instructions. */
13369 if (rebuild_jump_labels_after_combine)
13370 {
13371 timevar_push (TV_JUMP);
13372 rebuild_jump_labels (get_insns ());
13373 cleanup_cfg (0);
13374 timevar_pop (TV_JUMP);
13375 }
13376
13377 regstat_free_n_sets_and_refs ();
13378 return 0;
13379 }
13380
13381 struct rtl_opt_pass pass_combine =
13382 {
13383 {
13384 RTL_PASS,
13385 "combine", /* name */
13386 gate_handle_combine, /* gate */
13387 rest_of_handle_combine, /* execute */
13388 NULL, /* sub */
13389 NULL, /* next */
13390 0, /* static_pass_number */
13391 TV_COMBINE, /* tv_id */
13392 PROP_cfglayout, /* properties_required */
13393 0, /* properties_provided */
13394 0, /* properties_destroyed */
13395 0, /* todo_flags_start */
13396 TODO_dump_func |
13397 TODO_df_finish | TODO_verify_rtl_sharing |
13398 TODO_ggc_collect, /* todo_flags_finish */
13399 }
13400 };