combine: Convert subreg-of-lshiftrt to zero_extract properly (PR78390)
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "predict.h"
86 #include "df.h"
87 #include "memmodel.h"
88 #include "tm_p.h"
89 #include "optabs.h"
90 #include "regs.h"
91 #include "emit-rtl.h"
92 #include "recog.h"
93 #include "cgraph.h"
94 #include "stor-layout.h"
95 #include "cfgrtl.h"
96 #include "cfgcleanup.h"
97 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
98 #include "explow.h"
99 #include "insn-attr.h"
100 #include "rtlhooks-def.h"
101 #include "params.h"
102 #include "tree-pass.h"
103 #include "valtrack.h"
104 #include "rtl-iter.h"
105 #include "print-rtl.h"
106
107 /* Number of attempts to combine instructions in this function. */
108
109 static int combine_attempts;
110
111 /* Number of attempts that got as far as substitution in this function. */
112
113 static int combine_merges;
114
115 /* Number of instructions combined with added SETs in this function. */
116
117 static int combine_extras;
118
119 /* Number of instructions combined in this function. */
120
121 static int combine_successes;
122
123 /* Totals over entire compilation. */
124
125 static int total_attempts, total_merges, total_extras, total_successes;
126
127 /* combine_instructions may try to replace the right hand side of the
128 second instruction with the value of an associated REG_EQUAL note
129 before throwing it at try_combine. That is problematic when there
130 is a REG_DEAD note for a register used in the old right hand side
131 and can cause distribute_notes to do wrong things. This is the
132 second instruction if it has been so modified, null otherwise. */
133
134 static rtx_insn *i2mod;
135
136 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
137
138 static rtx i2mod_old_rhs;
139
140 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
141
142 static rtx i2mod_new_rhs;
143 \f
144 struct reg_stat_type {
145 /* Record last point of death of (hard or pseudo) register n. */
146 rtx_insn *last_death;
147
148 /* Record last point of modification of (hard or pseudo) register n. */
149 rtx_insn *last_set;
150
151 /* The next group of fields allows the recording of the last value assigned
152 to (hard or pseudo) register n. We use this information to see if an
153 operation being processed is redundant given a prior operation performed
154 on the register. For example, an `and' with a constant is redundant if
155 all the zero bits are already known to be turned off.
156
157 We use an approach similar to that used by cse, but change it in the
158 following ways:
159
160 (1) We do not want to reinitialize at each label.
161 (2) It is useful, but not critical, to know the actual value assigned
162 to a register. Often just its form is helpful.
163
164 Therefore, we maintain the following fields:
165
166 last_set_value the last value assigned
167 last_set_label records the value of label_tick when the
168 register was assigned
169 last_set_table_tick records the value of label_tick when a
170 value using the register is assigned
171 last_set_invalid set to nonzero when it is not valid
172 to use the value of this register in some
173 register's value
174
175 To understand the usage of these tables, it is important to understand
176 the distinction between the value in last_set_value being valid and
177 the register being validly contained in some other expression in the
178 table.
179
180 (The next two parameters are out of date).
181
182 reg_stat[i].last_set_value is valid if it is nonzero, and either
183 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
184
185 Register I may validly appear in any expression returned for the value
186 of another register if reg_n_sets[i] is 1. It may also appear in the
187 value for register J if reg_stat[j].last_set_invalid is zero, or
188 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
189
190 If an expression is found in the table containing a register which may
191 not validly appear in an expression, the register is replaced by
192 something that won't match, (clobber (const_int 0)). */
193
194 /* Record last value assigned to (hard or pseudo) register n. */
195
196 rtx last_set_value;
197
198 /* Record the value of label_tick when an expression involving register n
199 is placed in last_set_value. */
200
201 int last_set_table_tick;
202
203 /* Record the value of label_tick when the value for register n is placed in
204 last_set_value. */
205
206 int last_set_label;
207
208 /* These fields are maintained in parallel with last_set_value and are
209 used to store the mode in which the register was last set, the bits
210 that were known to be zero when it was last set, and the number of
211 sign bits copies it was known to have when it was last set. */
212
213 unsigned HOST_WIDE_INT last_set_nonzero_bits;
214 char last_set_sign_bit_copies;
215 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
216
217 /* Set nonzero if references to register n in expressions should not be
218 used. last_set_invalid is set nonzero when this register is being
219 assigned to and last_set_table_tick == label_tick. */
220
221 char last_set_invalid;
222
223 /* Some registers that are set more than once and used in more than one
224 basic block are nevertheless always set in similar ways. For example,
225 a QImode register may be loaded from memory in two places on a machine
226 where byte loads zero extend.
227
228 We record in the following fields if a register has some leading bits
229 that are always equal to the sign bit, and what we know about the
230 nonzero bits of a register, specifically which bits are known to be
231 zero.
232
233 If an entry is zero, it means that we don't know anything special. */
234
235 unsigned char sign_bit_copies;
236
237 unsigned HOST_WIDE_INT nonzero_bits;
238
239 /* Record the value of the label_tick when the last truncation
240 happened. The field truncated_to_mode is only valid if
241 truncation_label == label_tick. */
242
243 int truncation_label;
244
245 /* Record the last truncation seen for this register. If truncation
246 is not a nop to this mode we might be able to save an explicit
247 truncation if we know that value already contains a truncated
248 value. */
249
250 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
251 };
252
253
254 static vec<reg_stat_type> reg_stat;
255
256 /* One plus the highest pseudo for which we track REG_N_SETS.
257 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
258 but during combine_split_insns new pseudos can be created. As we don't have
259 updated DF information in that case, it is hard to initialize the array
260 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
261 so instead of growing the arrays, just assume all newly created pseudos
262 during combine might be set multiple times. */
263
264 static unsigned int reg_n_sets_max;
265
266 /* Record the luid of the last insn that invalidated memory
267 (anything that writes memory, and subroutine calls, but not pushes). */
268
269 static int mem_last_set;
270
271 /* Record the luid of the last CALL_INSN
272 so we can tell whether a potential combination crosses any calls. */
273
274 static int last_call_luid;
275
276 /* When `subst' is called, this is the insn that is being modified
277 (by combining in a previous insn). The PATTERN of this insn
278 is still the old pattern partially modified and it should not be
279 looked at, but this may be used to examine the successors of the insn
280 to judge whether a simplification is valid. */
281
282 static rtx_insn *subst_insn;
283
284 /* This is the lowest LUID that `subst' is currently dealing with.
285 get_last_value will not return a value if the register was set at or
286 after this LUID. If not for this mechanism, we could get confused if
287 I2 or I1 in try_combine were an insn that used the old value of a register
288 to obtain a new value. In that case, we might erroneously get the
289 new value of the register when we wanted the old one. */
290
291 static int subst_low_luid;
292
293 /* This contains any hard registers that are used in newpat; reg_dead_at_p
294 must consider all these registers to be always live. */
295
296 static HARD_REG_SET newpat_used_regs;
297
298 /* This is an insn to which a LOG_LINKS entry has been added. If this
299 insn is the earlier than I2 or I3, combine should rescan starting at
300 that location. */
301
302 static rtx_insn *added_links_insn;
303
304 /* Basic block in which we are performing combines. */
305 static basic_block this_basic_block;
306 static bool optimize_this_for_speed_p;
307
308 \f
309 /* Length of the currently allocated uid_insn_cost array. */
310
311 static int max_uid_known;
312
313 /* The following array records the insn_rtx_cost for every insn
314 in the instruction stream. */
315
316 static int *uid_insn_cost;
317
318 /* The following array records the LOG_LINKS for every insn in the
319 instruction stream as struct insn_link pointers. */
320
321 struct insn_link {
322 rtx_insn *insn;
323 unsigned int regno;
324 struct insn_link *next;
325 };
326
327 static struct insn_link **uid_log_links;
328
329 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
330 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
331
332 #define FOR_EACH_LOG_LINK(L, INSN) \
333 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
334
335 /* Links for LOG_LINKS are allocated from this obstack. */
336
337 static struct obstack insn_link_obstack;
338
339 /* Allocate a link. */
340
341 static inline struct insn_link *
342 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
343 {
344 struct insn_link *l
345 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
346 sizeof (struct insn_link));
347 l->insn = insn;
348 l->regno = regno;
349 l->next = next;
350 return l;
351 }
352
353 /* Incremented for each basic block. */
354
355 static int label_tick;
356
357 /* Reset to label_tick for each extended basic block in scanning order. */
358
359 static int label_tick_ebb_start;
360
361 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
362 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
363
364 static machine_mode nonzero_bits_mode;
365
366 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
367 be safely used. It is zero while computing them and after combine has
368 completed. This former test prevents propagating values based on
369 previously set values, which can be incorrect if a variable is modified
370 in a loop. */
371
372 static int nonzero_sign_valid;
373
374 \f
375 /* Record one modification to rtl structure
376 to be undone by storing old_contents into *where. */
377
378 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
379
380 struct undo
381 {
382 struct undo *next;
383 enum undo_kind kind;
384 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
385 union { rtx *r; int *i; struct insn_link **l; } where;
386 };
387
388 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
389 num_undo says how many are currently recorded.
390
391 other_insn is nonzero if we have modified some other insn in the process
392 of working on subst_insn. It must be verified too. */
393
394 struct undobuf
395 {
396 struct undo *undos;
397 struct undo *frees;
398 rtx_insn *other_insn;
399 };
400
401 static struct undobuf undobuf;
402
403 /* Number of times the pseudo being substituted for
404 was found and replaced. */
405
406 static int n_occurrences;
407
408 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
409 machine_mode,
410 unsigned HOST_WIDE_INT,
411 unsigned HOST_WIDE_INT *);
412 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
413 machine_mode,
414 unsigned int, unsigned int *);
415 static void do_SUBST (rtx *, rtx);
416 static void do_SUBST_INT (int *, int);
417 static void init_reg_last (void);
418 static void setup_incoming_promotions (rtx_insn *);
419 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
420 static int cant_combine_insn_p (rtx_insn *);
421 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
422 rtx_insn *, rtx_insn *, rtx *, rtx *);
423 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
424 static int contains_muldiv (rtx);
425 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
426 int *, rtx_insn *);
427 static void undo_all (void);
428 static void undo_commit (void);
429 static rtx *find_split_point (rtx *, rtx_insn *, bool);
430 static rtx subst (rtx, rtx, rtx, int, int, int);
431 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
432 static rtx simplify_if_then_else (rtx);
433 static rtx simplify_set (rtx);
434 static rtx simplify_logical (rtx);
435 static rtx expand_compound_operation (rtx);
436 static const_rtx expand_field_assignment (const_rtx);
437 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
438 rtx, unsigned HOST_WIDE_INT, int, int, int);
439 static rtx extract_left_shift (rtx, int);
440 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
441 unsigned HOST_WIDE_INT *);
442 static rtx canon_reg_for_combine (rtx, rtx);
443 static rtx force_to_mode (rtx, machine_mode,
444 unsigned HOST_WIDE_INT, int);
445 static rtx if_then_else_cond (rtx, rtx *, rtx *);
446 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
447 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
448 static rtx make_field_assignment (rtx);
449 static rtx apply_distributive_law (rtx);
450 static rtx distribute_and_simplify_rtx (rtx, int);
451 static rtx simplify_and_const_int_1 (machine_mode, rtx,
452 unsigned HOST_WIDE_INT);
453 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
454 unsigned HOST_WIDE_INT);
455 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
456 HOST_WIDE_INT, machine_mode, int *);
457 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
458 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
459 int);
460 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
461 static rtx gen_lowpart_for_combine (machine_mode, rtx);
462 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
463 rtx, rtx *);
464 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
465 static void update_table_tick (rtx);
466 static void record_value_for_reg (rtx, rtx_insn *, rtx);
467 static void check_promoted_subreg (rtx_insn *, rtx);
468 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
469 static void record_dead_and_set_regs (rtx_insn *);
470 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
471 static rtx get_last_value (const_rtx);
472 static int use_crosses_set_p (const_rtx, int);
473 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
474 static int reg_dead_at_p (rtx, rtx_insn *);
475 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
476 static int reg_bitfield_target_p (rtx, rtx);
477 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
478 static void distribute_links (struct insn_link *);
479 static void mark_used_regs_combine (rtx);
480 static void record_promoted_value (rtx_insn *, rtx);
481 static bool unmentioned_reg_p (rtx, rtx);
482 static void record_truncated_values (rtx *, void *);
483 static bool reg_truncated_to_mode (machine_mode, const_rtx);
484 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
485 \f
486
487 /* It is not safe to use ordinary gen_lowpart in combine.
488 See comments in gen_lowpart_for_combine. */
489 #undef RTL_HOOKS_GEN_LOWPART
490 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
491
492 /* Our implementation of gen_lowpart never emits a new pseudo. */
493 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
494 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
495
496 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
497 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
498
499 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
500 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
501
502 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
503 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
504
505 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
506
507 \f
508 /* Convenience wrapper for the canonicalize_comparison target hook.
509 Target hooks cannot use enum rtx_code. */
510 static inline void
511 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
512 bool op0_preserve_value)
513 {
514 int code_int = (int)*code;
515 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
516 *code = (enum rtx_code)code_int;
517 }
518
519 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
520 PATTERN can not be split. Otherwise, it returns an insn sequence.
521 This is a wrapper around split_insns which ensures that the
522 reg_stat vector is made larger if the splitter creates a new
523 register. */
524
525 static rtx_insn *
526 combine_split_insns (rtx pattern, rtx_insn *insn)
527 {
528 rtx_insn *ret;
529 unsigned int nregs;
530
531 ret = split_insns (pattern, insn);
532 nregs = max_reg_num ();
533 if (nregs > reg_stat.length ())
534 reg_stat.safe_grow_cleared (nregs);
535 return ret;
536 }
537
538 /* This is used by find_single_use to locate an rtx in LOC that
539 contains exactly one use of DEST, which is typically either a REG
540 or CC0. It returns a pointer to the innermost rtx expression
541 containing DEST. Appearances of DEST that are being used to
542 totally replace it are not counted. */
543
544 static rtx *
545 find_single_use_1 (rtx dest, rtx *loc)
546 {
547 rtx x = *loc;
548 enum rtx_code code = GET_CODE (x);
549 rtx *result = NULL;
550 rtx *this_result;
551 int i;
552 const char *fmt;
553
554 switch (code)
555 {
556 case CONST:
557 case LABEL_REF:
558 case SYMBOL_REF:
559 CASE_CONST_ANY:
560 case CLOBBER:
561 return 0;
562
563 case SET:
564 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
565 of a REG that occupies all of the REG, the insn uses DEST if
566 it is mentioned in the destination or the source. Otherwise, we
567 need just check the source. */
568 if (GET_CODE (SET_DEST (x)) != CC0
569 && GET_CODE (SET_DEST (x)) != PC
570 && !REG_P (SET_DEST (x))
571 && ! (GET_CODE (SET_DEST (x)) == SUBREG
572 && REG_P (SUBREG_REG (SET_DEST (x)))
573 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
574 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
575 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
576 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
577 break;
578
579 return find_single_use_1 (dest, &SET_SRC (x));
580
581 case MEM:
582 case SUBREG:
583 return find_single_use_1 (dest, &XEXP (x, 0));
584
585 default:
586 break;
587 }
588
589 /* If it wasn't one of the common cases above, check each expression and
590 vector of this code. Look for a unique usage of DEST. */
591
592 fmt = GET_RTX_FORMAT (code);
593 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
594 {
595 if (fmt[i] == 'e')
596 {
597 if (dest == XEXP (x, i)
598 || (REG_P (dest) && REG_P (XEXP (x, i))
599 && REGNO (dest) == REGNO (XEXP (x, i))))
600 this_result = loc;
601 else
602 this_result = find_single_use_1 (dest, &XEXP (x, i));
603
604 if (result == NULL)
605 result = this_result;
606 else if (this_result)
607 /* Duplicate usage. */
608 return NULL;
609 }
610 else if (fmt[i] == 'E')
611 {
612 int j;
613
614 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
615 {
616 if (XVECEXP (x, i, j) == dest
617 || (REG_P (dest)
618 && REG_P (XVECEXP (x, i, j))
619 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
620 this_result = loc;
621 else
622 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
623
624 if (result == NULL)
625 result = this_result;
626 else if (this_result)
627 return NULL;
628 }
629 }
630 }
631
632 return result;
633 }
634
635
636 /* See if DEST, produced in INSN, is used only a single time in the
637 sequel. If so, return a pointer to the innermost rtx expression in which
638 it is used.
639
640 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
641
642 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
643 care about REG_DEAD notes or LOG_LINKS.
644
645 Otherwise, we find the single use by finding an insn that has a
646 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
647 only referenced once in that insn, we know that it must be the first
648 and last insn referencing DEST. */
649
650 static rtx *
651 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
652 {
653 basic_block bb;
654 rtx_insn *next;
655 rtx *result;
656 struct insn_link *link;
657
658 if (dest == cc0_rtx)
659 {
660 next = NEXT_INSN (insn);
661 if (next == 0
662 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
663 return 0;
664
665 result = find_single_use_1 (dest, &PATTERN (next));
666 if (result && ploc)
667 *ploc = next;
668 return result;
669 }
670
671 if (!REG_P (dest))
672 return 0;
673
674 bb = BLOCK_FOR_INSN (insn);
675 for (next = NEXT_INSN (insn);
676 next && BLOCK_FOR_INSN (next) == bb;
677 next = NEXT_INSN (next))
678 if (INSN_P (next) && dead_or_set_p (next, dest))
679 {
680 FOR_EACH_LOG_LINK (link, next)
681 if (link->insn == insn && link->regno == REGNO (dest))
682 break;
683
684 if (link)
685 {
686 result = find_single_use_1 (dest, &PATTERN (next));
687 if (ploc)
688 *ploc = next;
689 return result;
690 }
691 }
692
693 return 0;
694 }
695 \f
696 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
697 insn. The substitution can be undone by undo_all. If INTO is already
698 set to NEWVAL, do not record this change. Because computing NEWVAL might
699 also call SUBST, we have to compute it before we put anything into
700 the undo table. */
701
702 static void
703 do_SUBST (rtx *into, rtx newval)
704 {
705 struct undo *buf;
706 rtx oldval = *into;
707
708 if (oldval == newval)
709 return;
710
711 /* We'd like to catch as many invalid transformations here as
712 possible. Unfortunately, there are way too many mode changes
713 that are perfectly valid, so we'd waste too much effort for
714 little gain doing the checks here. Focus on catching invalid
715 transformations involving integer constants. */
716 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
717 && CONST_INT_P (newval))
718 {
719 /* Sanity check that we're replacing oldval with a CONST_INT
720 that is a valid sign-extension for the original mode. */
721 gcc_assert (INTVAL (newval)
722 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
723
724 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
725 CONST_INT is not valid, because after the replacement, the
726 original mode would be gone. Unfortunately, we can't tell
727 when do_SUBST is called to replace the operand thereof, so we
728 perform this test on oldval instead, checking whether an
729 invalid replacement took place before we got here. */
730 gcc_assert (!(GET_CODE (oldval) == SUBREG
731 && CONST_INT_P (SUBREG_REG (oldval))));
732 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
733 && CONST_INT_P (XEXP (oldval, 0))));
734 }
735
736 if (undobuf.frees)
737 buf = undobuf.frees, undobuf.frees = buf->next;
738 else
739 buf = XNEW (struct undo);
740
741 buf->kind = UNDO_RTX;
742 buf->where.r = into;
743 buf->old_contents.r = oldval;
744 *into = newval;
745
746 buf->next = undobuf.undos, undobuf.undos = buf;
747 }
748
749 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
750
751 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
752 for the value of a HOST_WIDE_INT value (including CONST_INT) is
753 not safe. */
754
755 static void
756 do_SUBST_INT (int *into, int newval)
757 {
758 struct undo *buf;
759 int oldval = *into;
760
761 if (oldval == newval)
762 return;
763
764 if (undobuf.frees)
765 buf = undobuf.frees, undobuf.frees = buf->next;
766 else
767 buf = XNEW (struct undo);
768
769 buf->kind = UNDO_INT;
770 buf->where.i = into;
771 buf->old_contents.i = oldval;
772 *into = newval;
773
774 buf->next = undobuf.undos, undobuf.undos = buf;
775 }
776
777 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
778
779 /* Similar to SUBST, but just substitute the mode. This is used when
780 changing the mode of a pseudo-register, so that any other
781 references to the entry in the regno_reg_rtx array will change as
782 well. */
783
784 static void
785 do_SUBST_MODE (rtx *into, machine_mode newval)
786 {
787 struct undo *buf;
788 machine_mode oldval = GET_MODE (*into);
789
790 if (oldval == newval)
791 return;
792
793 if (undobuf.frees)
794 buf = undobuf.frees, undobuf.frees = buf->next;
795 else
796 buf = XNEW (struct undo);
797
798 buf->kind = UNDO_MODE;
799 buf->where.r = into;
800 buf->old_contents.m = oldval;
801 adjust_reg_mode (*into, newval);
802
803 buf->next = undobuf.undos, undobuf.undos = buf;
804 }
805
806 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
807
808 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
809
810 static void
811 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
812 {
813 struct undo *buf;
814 struct insn_link * oldval = *into;
815
816 if (oldval == newval)
817 return;
818
819 if (undobuf.frees)
820 buf = undobuf.frees, undobuf.frees = buf->next;
821 else
822 buf = XNEW (struct undo);
823
824 buf->kind = UNDO_LINKS;
825 buf->where.l = into;
826 buf->old_contents.l = oldval;
827 *into = newval;
828
829 buf->next = undobuf.undos, undobuf.undos = buf;
830 }
831
832 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
833 \f
834 /* Subroutine of try_combine. Determine whether the replacement patterns
835 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
836 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
837 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
838 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
839 of all the instructions can be estimated and the replacements are more
840 expensive than the original sequence. */
841
842 static bool
843 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
844 rtx newpat, rtx newi2pat, rtx newotherpat)
845 {
846 int i0_cost, i1_cost, i2_cost, i3_cost;
847 int new_i2_cost, new_i3_cost;
848 int old_cost, new_cost;
849
850 /* Lookup the original insn_rtx_costs. */
851 i2_cost = INSN_COST (i2);
852 i3_cost = INSN_COST (i3);
853
854 if (i1)
855 {
856 i1_cost = INSN_COST (i1);
857 if (i0)
858 {
859 i0_cost = INSN_COST (i0);
860 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
861 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
862 }
863 else
864 {
865 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
866 ? i1_cost + i2_cost + i3_cost : 0);
867 i0_cost = 0;
868 }
869 }
870 else
871 {
872 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
873 i1_cost = i0_cost = 0;
874 }
875
876 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
877 correct that. */
878 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
879 old_cost -= i1_cost;
880
881
882 /* Calculate the replacement insn_rtx_costs. */
883 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
884 if (newi2pat)
885 {
886 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
887 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
888 ? new_i2_cost + new_i3_cost : 0;
889 }
890 else
891 {
892 new_cost = new_i3_cost;
893 new_i2_cost = 0;
894 }
895
896 if (undobuf.other_insn)
897 {
898 int old_other_cost, new_other_cost;
899
900 old_other_cost = INSN_COST (undobuf.other_insn);
901 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
902 if (old_other_cost > 0 && new_other_cost > 0)
903 {
904 old_cost += old_other_cost;
905 new_cost += new_other_cost;
906 }
907 else
908 old_cost = 0;
909 }
910
911 /* Disallow this combination if both new_cost and old_cost are greater than
912 zero, and new_cost is greater than old cost. */
913 int reject = old_cost > 0 && new_cost > old_cost;
914
915 if (dump_file)
916 {
917 fprintf (dump_file, "%s combination of insns ",
918 reject ? "rejecting" : "allowing");
919 if (i0)
920 fprintf (dump_file, "%d, ", INSN_UID (i0));
921 if (i1 && INSN_UID (i1) != INSN_UID (i2))
922 fprintf (dump_file, "%d, ", INSN_UID (i1));
923 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
924
925 fprintf (dump_file, "original costs ");
926 if (i0)
927 fprintf (dump_file, "%d + ", i0_cost);
928 if (i1 && INSN_UID (i1) != INSN_UID (i2))
929 fprintf (dump_file, "%d + ", i1_cost);
930 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
931
932 if (newi2pat)
933 fprintf (dump_file, "replacement costs %d + %d = %d\n",
934 new_i2_cost, new_i3_cost, new_cost);
935 else
936 fprintf (dump_file, "replacement cost %d\n", new_cost);
937 }
938
939 if (reject)
940 return false;
941
942 /* Update the uid_insn_cost array with the replacement costs. */
943 INSN_COST (i2) = new_i2_cost;
944 INSN_COST (i3) = new_i3_cost;
945 if (i1)
946 {
947 INSN_COST (i1) = 0;
948 if (i0)
949 INSN_COST (i0) = 0;
950 }
951
952 return true;
953 }
954
955
956 /* Delete any insns that copy a register to itself. */
957
958 static void
959 delete_noop_moves (void)
960 {
961 rtx_insn *insn, *next;
962 basic_block bb;
963
964 FOR_EACH_BB_FN (bb, cfun)
965 {
966 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
967 {
968 next = NEXT_INSN (insn);
969 if (INSN_P (insn) && noop_move_p (insn))
970 {
971 if (dump_file)
972 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
973
974 delete_insn_and_edges (insn);
975 }
976 }
977 }
978 }
979
980 \f
981 /* Return false if we do not want to (or cannot) combine DEF. */
982 static bool
983 can_combine_def_p (df_ref def)
984 {
985 /* Do not consider if it is pre/post modification in MEM. */
986 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
987 return false;
988
989 unsigned int regno = DF_REF_REGNO (def);
990
991 /* Do not combine frame pointer adjustments. */
992 if ((regno == FRAME_POINTER_REGNUM
993 && (!reload_completed || frame_pointer_needed))
994 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
995 && regno == HARD_FRAME_POINTER_REGNUM
996 && (!reload_completed || frame_pointer_needed))
997 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
998 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
999 return false;
1000
1001 return true;
1002 }
1003
1004 /* Return false if we do not want to (or cannot) combine USE. */
1005 static bool
1006 can_combine_use_p (df_ref use)
1007 {
1008 /* Do not consider the usage of the stack pointer by function call. */
1009 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1010 return false;
1011
1012 return true;
1013 }
1014
1015 /* Fill in log links field for all insns. */
1016
1017 static void
1018 create_log_links (void)
1019 {
1020 basic_block bb;
1021 rtx_insn **next_use;
1022 rtx_insn *insn;
1023 df_ref def, use;
1024
1025 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1026
1027 /* Pass through each block from the end, recording the uses of each
1028 register and establishing log links when def is encountered.
1029 Note that we do not clear next_use array in order to save time,
1030 so we have to test whether the use is in the same basic block as def.
1031
1032 There are a few cases below when we do not consider the definition or
1033 usage -- these are taken from original flow.c did. Don't ask me why it is
1034 done this way; I don't know and if it works, I don't want to know. */
1035
1036 FOR_EACH_BB_FN (bb, cfun)
1037 {
1038 FOR_BB_INSNS_REVERSE (bb, insn)
1039 {
1040 if (!NONDEBUG_INSN_P (insn))
1041 continue;
1042
1043 /* Log links are created only once. */
1044 gcc_assert (!LOG_LINKS (insn));
1045
1046 FOR_EACH_INSN_DEF (def, insn)
1047 {
1048 unsigned int regno = DF_REF_REGNO (def);
1049 rtx_insn *use_insn;
1050
1051 if (!next_use[regno])
1052 continue;
1053
1054 if (!can_combine_def_p (def))
1055 continue;
1056
1057 use_insn = next_use[regno];
1058 next_use[regno] = NULL;
1059
1060 if (BLOCK_FOR_INSN (use_insn) != bb)
1061 continue;
1062
1063 /* flow.c claimed:
1064
1065 We don't build a LOG_LINK for hard registers contained
1066 in ASM_OPERANDs. If these registers get replaced,
1067 we might wind up changing the semantics of the insn,
1068 even if reload can make what appear to be valid
1069 assignments later. */
1070 if (regno < FIRST_PSEUDO_REGISTER
1071 && asm_noperands (PATTERN (use_insn)) >= 0)
1072 continue;
1073
1074 /* Don't add duplicate links between instructions. */
1075 struct insn_link *links;
1076 FOR_EACH_LOG_LINK (links, use_insn)
1077 if (insn == links->insn && regno == links->regno)
1078 break;
1079
1080 if (!links)
1081 LOG_LINKS (use_insn)
1082 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1083 }
1084
1085 FOR_EACH_INSN_USE (use, insn)
1086 if (can_combine_use_p (use))
1087 next_use[DF_REF_REGNO (use)] = insn;
1088 }
1089 }
1090
1091 free (next_use);
1092 }
1093
1094 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1095 true if we found a LOG_LINK that proves that A feeds B. This only works
1096 if there are no instructions between A and B which could have a link
1097 depending on A, since in that case we would not record a link for B.
1098 We also check the implicit dependency created by a cc0 setter/user
1099 pair. */
1100
1101 static bool
1102 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1103 {
1104 struct insn_link *links;
1105 FOR_EACH_LOG_LINK (links, b)
1106 if (links->insn == a)
1107 return true;
1108 if (HAVE_cc0 && sets_cc0_p (a))
1109 return true;
1110 return false;
1111 }
1112 \f
1113 /* Main entry point for combiner. F is the first insn of the function.
1114 NREGS is the first unused pseudo-reg number.
1115
1116 Return nonzero if the combiner has turned an indirect jump
1117 instruction into a direct jump. */
1118 static int
1119 combine_instructions (rtx_insn *f, unsigned int nregs)
1120 {
1121 rtx_insn *insn, *next;
1122 rtx_insn *prev;
1123 struct insn_link *links, *nextlinks;
1124 rtx_insn *first;
1125 basic_block last_bb;
1126
1127 int new_direct_jump_p = 0;
1128
1129 for (first = f; first && !INSN_P (first); )
1130 first = NEXT_INSN (first);
1131 if (!first)
1132 return 0;
1133
1134 combine_attempts = 0;
1135 combine_merges = 0;
1136 combine_extras = 0;
1137 combine_successes = 0;
1138
1139 rtl_hooks = combine_rtl_hooks;
1140
1141 reg_stat.safe_grow_cleared (nregs);
1142
1143 init_recog_no_volatile ();
1144
1145 /* Allocate array for insn info. */
1146 max_uid_known = get_max_uid ();
1147 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1148 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1149 gcc_obstack_init (&insn_link_obstack);
1150
1151 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1152
1153 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1154 problems when, for example, we have j <<= 1 in a loop. */
1155
1156 nonzero_sign_valid = 0;
1157 label_tick = label_tick_ebb_start = 1;
1158
1159 /* Scan all SETs and see if we can deduce anything about what
1160 bits are known to be zero for some registers and how many copies
1161 of the sign bit are known to exist for those registers.
1162
1163 Also set any known values so that we can use it while searching
1164 for what bits are known to be set. */
1165
1166 setup_incoming_promotions (first);
1167 /* Allow the entry block and the first block to fall into the same EBB.
1168 Conceptually the incoming promotions are assigned to the entry block. */
1169 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1170
1171 create_log_links ();
1172 FOR_EACH_BB_FN (this_basic_block, cfun)
1173 {
1174 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1175 last_call_luid = 0;
1176 mem_last_set = -1;
1177
1178 label_tick++;
1179 if (!single_pred_p (this_basic_block)
1180 || single_pred (this_basic_block) != last_bb)
1181 label_tick_ebb_start = label_tick;
1182 last_bb = this_basic_block;
1183
1184 FOR_BB_INSNS (this_basic_block, insn)
1185 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1186 {
1187 rtx links;
1188
1189 subst_low_luid = DF_INSN_LUID (insn);
1190 subst_insn = insn;
1191
1192 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1193 insn);
1194 record_dead_and_set_regs (insn);
1195
1196 if (AUTO_INC_DEC)
1197 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1198 if (REG_NOTE_KIND (links) == REG_INC)
1199 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1200 insn);
1201
1202 /* Record the current insn_rtx_cost of this instruction. */
1203 if (NONJUMP_INSN_P (insn))
1204 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1205 optimize_this_for_speed_p);
1206 if (dump_file)
1207 fprintf (dump_file, "insn_cost %d: %d\n",
1208 INSN_UID (insn), INSN_COST (insn));
1209 }
1210 }
1211
1212 nonzero_sign_valid = 1;
1213
1214 /* Now scan all the insns in forward order. */
1215 label_tick = label_tick_ebb_start = 1;
1216 init_reg_last ();
1217 setup_incoming_promotions (first);
1218 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1219 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1220
1221 FOR_EACH_BB_FN (this_basic_block, cfun)
1222 {
1223 rtx_insn *last_combined_insn = NULL;
1224 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1225 last_call_luid = 0;
1226 mem_last_set = -1;
1227
1228 label_tick++;
1229 if (!single_pred_p (this_basic_block)
1230 || single_pred (this_basic_block) != last_bb)
1231 label_tick_ebb_start = label_tick;
1232 last_bb = this_basic_block;
1233
1234 rtl_profile_for_bb (this_basic_block);
1235 for (insn = BB_HEAD (this_basic_block);
1236 insn != NEXT_INSN (BB_END (this_basic_block));
1237 insn = next ? next : NEXT_INSN (insn))
1238 {
1239 next = 0;
1240 if (!NONDEBUG_INSN_P (insn))
1241 continue;
1242
1243 while (last_combined_insn
1244 && last_combined_insn->deleted ())
1245 last_combined_insn = PREV_INSN (last_combined_insn);
1246 if (last_combined_insn == NULL_RTX
1247 || BARRIER_P (last_combined_insn)
1248 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1249 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1250 last_combined_insn = insn;
1251
1252 /* See if we know about function return values before this
1253 insn based upon SUBREG flags. */
1254 check_promoted_subreg (insn, PATTERN (insn));
1255
1256 /* See if we can find hardregs and subreg of pseudos in
1257 narrower modes. This could help turning TRUNCATEs
1258 into SUBREGs. */
1259 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1260
1261 /* Try this insn with each insn it links back to. */
1262
1263 FOR_EACH_LOG_LINK (links, insn)
1264 if ((next = try_combine (insn, links->insn, NULL,
1265 NULL, &new_direct_jump_p,
1266 last_combined_insn)) != 0)
1267 {
1268 statistics_counter_event (cfun, "two-insn combine", 1);
1269 goto retry;
1270 }
1271
1272 /* Try each sequence of three linked insns ending with this one. */
1273
1274 if (max_combine >= 3)
1275 FOR_EACH_LOG_LINK (links, insn)
1276 {
1277 rtx_insn *link = links->insn;
1278
1279 /* If the linked insn has been replaced by a note, then there
1280 is no point in pursuing this chain any further. */
1281 if (NOTE_P (link))
1282 continue;
1283
1284 FOR_EACH_LOG_LINK (nextlinks, link)
1285 if ((next = try_combine (insn, link, nextlinks->insn,
1286 NULL, &new_direct_jump_p,
1287 last_combined_insn)) != 0)
1288 {
1289 statistics_counter_event (cfun, "three-insn combine", 1);
1290 goto retry;
1291 }
1292 }
1293
1294 /* Try to combine a jump insn that uses CC0
1295 with a preceding insn that sets CC0, and maybe with its
1296 logical predecessor as well.
1297 This is how we make decrement-and-branch insns.
1298 We need this special code because data flow connections
1299 via CC0 do not get entered in LOG_LINKS. */
1300
1301 if (HAVE_cc0
1302 && JUMP_P (insn)
1303 && (prev = prev_nonnote_insn (insn)) != 0
1304 && NONJUMP_INSN_P (prev)
1305 && sets_cc0_p (PATTERN (prev)))
1306 {
1307 if ((next = try_combine (insn, prev, NULL, NULL,
1308 &new_direct_jump_p,
1309 last_combined_insn)) != 0)
1310 goto retry;
1311
1312 FOR_EACH_LOG_LINK (nextlinks, prev)
1313 if ((next = try_combine (insn, prev, nextlinks->insn,
1314 NULL, &new_direct_jump_p,
1315 last_combined_insn)) != 0)
1316 goto retry;
1317 }
1318
1319 /* Do the same for an insn that explicitly references CC0. */
1320 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1321 && (prev = prev_nonnote_insn (insn)) != 0
1322 && NONJUMP_INSN_P (prev)
1323 && sets_cc0_p (PATTERN (prev))
1324 && GET_CODE (PATTERN (insn)) == SET
1325 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1326 {
1327 if ((next = try_combine (insn, prev, NULL, NULL,
1328 &new_direct_jump_p,
1329 last_combined_insn)) != 0)
1330 goto retry;
1331
1332 FOR_EACH_LOG_LINK (nextlinks, prev)
1333 if ((next = try_combine (insn, prev, nextlinks->insn,
1334 NULL, &new_direct_jump_p,
1335 last_combined_insn)) != 0)
1336 goto retry;
1337 }
1338
1339 /* Finally, see if any of the insns that this insn links to
1340 explicitly references CC0. If so, try this insn, that insn,
1341 and its predecessor if it sets CC0. */
1342 if (HAVE_cc0)
1343 {
1344 FOR_EACH_LOG_LINK (links, insn)
1345 if (NONJUMP_INSN_P (links->insn)
1346 && GET_CODE (PATTERN (links->insn)) == SET
1347 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1348 && (prev = prev_nonnote_insn (links->insn)) != 0
1349 && NONJUMP_INSN_P (prev)
1350 && sets_cc0_p (PATTERN (prev))
1351 && (next = try_combine (insn, links->insn,
1352 prev, NULL, &new_direct_jump_p,
1353 last_combined_insn)) != 0)
1354 goto retry;
1355 }
1356
1357 /* Try combining an insn with two different insns whose results it
1358 uses. */
1359 if (max_combine >= 3)
1360 FOR_EACH_LOG_LINK (links, insn)
1361 for (nextlinks = links->next; nextlinks;
1362 nextlinks = nextlinks->next)
1363 if ((next = try_combine (insn, links->insn,
1364 nextlinks->insn, NULL,
1365 &new_direct_jump_p,
1366 last_combined_insn)) != 0)
1367
1368 {
1369 statistics_counter_event (cfun, "three-insn combine", 1);
1370 goto retry;
1371 }
1372
1373 /* Try four-instruction combinations. */
1374 if (max_combine >= 4)
1375 FOR_EACH_LOG_LINK (links, insn)
1376 {
1377 struct insn_link *next1;
1378 rtx_insn *link = links->insn;
1379
1380 /* If the linked insn has been replaced by a note, then there
1381 is no point in pursuing this chain any further. */
1382 if (NOTE_P (link))
1383 continue;
1384
1385 FOR_EACH_LOG_LINK (next1, link)
1386 {
1387 rtx_insn *link1 = next1->insn;
1388 if (NOTE_P (link1))
1389 continue;
1390 /* I0 -> I1 -> I2 -> I3. */
1391 FOR_EACH_LOG_LINK (nextlinks, link1)
1392 if ((next = try_combine (insn, link, link1,
1393 nextlinks->insn,
1394 &new_direct_jump_p,
1395 last_combined_insn)) != 0)
1396 {
1397 statistics_counter_event (cfun, "four-insn combine", 1);
1398 goto retry;
1399 }
1400 /* I0, I1 -> I2, I2 -> I3. */
1401 for (nextlinks = next1->next; nextlinks;
1402 nextlinks = nextlinks->next)
1403 if ((next = try_combine (insn, link, link1,
1404 nextlinks->insn,
1405 &new_direct_jump_p,
1406 last_combined_insn)) != 0)
1407 {
1408 statistics_counter_event (cfun, "four-insn combine", 1);
1409 goto retry;
1410 }
1411 }
1412
1413 for (next1 = links->next; next1; next1 = next1->next)
1414 {
1415 rtx_insn *link1 = next1->insn;
1416 if (NOTE_P (link1))
1417 continue;
1418 /* I0 -> I2; I1, I2 -> I3. */
1419 FOR_EACH_LOG_LINK (nextlinks, link)
1420 if ((next = try_combine (insn, link, link1,
1421 nextlinks->insn,
1422 &new_direct_jump_p,
1423 last_combined_insn)) != 0)
1424 {
1425 statistics_counter_event (cfun, "four-insn combine", 1);
1426 goto retry;
1427 }
1428 /* I0 -> I1; I1, I2 -> I3. */
1429 FOR_EACH_LOG_LINK (nextlinks, link1)
1430 if ((next = try_combine (insn, link, link1,
1431 nextlinks->insn,
1432 &new_direct_jump_p,
1433 last_combined_insn)) != 0)
1434 {
1435 statistics_counter_event (cfun, "four-insn combine", 1);
1436 goto retry;
1437 }
1438 }
1439 }
1440
1441 /* Try this insn with each REG_EQUAL note it links back to. */
1442 FOR_EACH_LOG_LINK (links, insn)
1443 {
1444 rtx set, note;
1445 rtx_insn *temp = links->insn;
1446 if ((set = single_set (temp)) != 0
1447 && (note = find_reg_equal_equiv_note (temp)) != 0
1448 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1449 /* Avoid using a register that may already been marked
1450 dead by an earlier instruction. */
1451 && ! unmentioned_reg_p (note, SET_SRC (set))
1452 && (GET_MODE (note) == VOIDmode
1453 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1454 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1455 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1456 || (GET_MODE (XEXP (SET_DEST (set), 0))
1457 == GET_MODE (note))))))
1458 {
1459 /* Temporarily replace the set's source with the
1460 contents of the REG_EQUAL note. The insn will
1461 be deleted or recognized by try_combine. */
1462 rtx orig_src = SET_SRC (set);
1463 rtx orig_dest = SET_DEST (set);
1464 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1465 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1466 SET_SRC (set) = note;
1467 i2mod = temp;
1468 i2mod_old_rhs = copy_rtx (orig_src);
1469 i2mod_new_rhs = copy_rtx (note);
1470 next = try_combine (insn, i2mod, NULL, NULL,
1471 &new_direct_jump_p,
1472 last_combined_insn);
1473 i2mod = NULL;
1474 if (next)
1475 {
1476 statistics_counter_event (cfun, "insn-with-note combine", 1);
1477 goto retry;
1478 }
1479 SET_SRC (set) = orig_src;
1480 SET_DEST (set) = orig_dest;
1481 }
1482 }
1483
1484 if (!NOTE_P (insn))
1485 record_dead_and_set_regs (insn);
1486
1487 retry:
1488 ;
1489 }
1490 }
1491
1492 default_rtl_profile ();
1493 clear_bb_flags ();
1494 new_direct_jump_p |= purge_all_dead_edges ();
1495 delete_noop_moves ();
1496
1497 /* Clean up. */
1498 obstack_free (&insn_link_obstack, NULL);
1499 free (uid_log_links);
1500 free (uid_insn_cost);
1501 reg_stat.release ();
1502
1503 {
1504 struct undo *undo, *next;
1505 for (undo = undobuf.frees; undo; undo = next)
1506 {
1507 next = undo->next;
1508 free (undo);
1509 }
1510 undobuf.frees = 0;
1511 }
1512
1513 total_attempts += combine_attempts;
1514 total_merges += combine_merges;
1515 total_extras += combine_extras;
1516 total_successes += combine_successes;
1517
1518 nonzero_sign_valid = 0;
1519 rtl_hooks = general_rtl_hooks;
1520
1521 /* Make recognizer allow volatile MEMs again. */
1522 init_recog ();
1523
1524 return new_direct_jump_p;
1525 }
1526
1527 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1528
1529 static void
1530 init_reg_last (void)
1531 {
1532 unsigned int i;
1533 reg_stat_type *p;
1534
1535 FOR_EACH_VEC_ELT (reg_stat, i, p)
1536 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1537 }
1538 \f
1539 /* Set up any promoted values for incoming argument registers. */
1540
1541 static void
1542 setup_incoming_promotions (rtx_insn *first)
1543 {
1544 tree arg;
1545 bool strictly_local = false;
1546
1547 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1548 arg = DECL_CHAIN (arg))
1549 {
1550 rtx x, reg = DECL_INCOMING_RTL (arg);
1551 int uns1, uns3;
1552 machine_mode mode1, mode2, mode3, mode4;
1553
1554 /* Only continue if the incoming argument is in a register. */
1555 if (!REG_P (reg))
1556 continue;
1557
1558 /* Determine, if possible, whether all call sites of the current
1559 function lie within the current compilation unit. (This does
1560 take into account the exporting of a function via taking its
1561 address, and so forth.) */
1562 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1563
1564 /* The mode and signedness of the argument before any promotions happen
1565 (equal to the mode of the pseudo holding it at that stage). */
1566 mode1 = TYPE_MODE (TREE_TYPE (arg));
1567 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1568
1569 /* The mode and signedness of the argument after any source language and
1570 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1571 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1572 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1573
1574 /* The mode and signedness of the argument as it is actually passed,
1575 see assign_parm_setup_reg in function.c. */
1576 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1577 TREE_TYPE (cfun->decl), 0);
1578
1579 /* The mode of the register in which the argument is being passed. */
1580 mode4 = GET_MODE (reg);
1581
1582 /* Eliminate sign extensions in the callee when:
1583 (a) A mode promotion has occurred; */
1584 if (mode1 == mode3)
1585 continue;
1586 /* (b) The mode of the register is the same as the mode of
1587 the argument as it is passed; */
1588 if (mode3 != mode4)
1589 continue;
1590 /* (c) There's no language level extension; */
1591 if (mode1 == mode2)
1592 ;
1593 /* (c.1) All callers are from the current compilation unit. If that's
1594 the case we don't have to rely on an ABI, we only have to know
1595 what we're generating right now, and we know that we will do the
1596 mode1 to mode2 promotion with the given sign. */
1597 else if (!strictly_local)
1598 continue;
1599 /* (c.2) The combination of the two promotions is useful. This is
1600 true when the signs match, or if the first promotion is unsigned.
1601 In the later case, (sign_extend (zero_extend x)) is the same as
1602 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1603 else if (uns1)
1604 uns3 = true;
1605 else if (uns3)
1606 continue;
1607
1608 /* Record that the value was promoted from mode1 to mode3,
1609 so that any sign extension at the head of the current
1610 function may be eliminated. */
1611 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1612 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1613 record_value_for_reg (reg, first, x);
1614 }
1615 }
1616
1617 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1618 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1619 because some machines (maybe most) will actually do the sign-extension and
1620 this is the conservative approach.
1621
1622 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1623 kludge. */
1624
1625 static rtx
1626 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1627 {
1628 if (GET_MODE_PRECISION (mode) < prec
1629 && CONST_INT_P (src)
1630 && INTVAL (src) > 0
1631 && val_signbit_known_set_p (mode, INTVAL (src)))
1632 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1633
1634 return src;
1635 }
1636
1637 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1638 and SET. */
1639
1640 static void
1641 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1642 rtx x)
1643 {
1644 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1645 unsigned HOST_WIDE_INT bits = 0;
1646 rtx reg_equal = NULL, src = SET_SRC (set);
1647 unsigned int num = 0;
1648
1649 if (reg_equal_note)
1650 reg_equal = XEXP (reg_equal_note, 0);
1651
1652 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1653 {
1654 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1655 if (reg_equal)
1656 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1657 }
1658
1659 /* Don't call nonzero_bits if it cannot change anything. */
1660 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1661 {
1662 bits = nonzero_bits (src, nonzero_bits_mode);
1663 if (reg_equal && bits)
1664 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1665 rsp->nonzero_bits |= bits;
1666 }
1667
1668 /* Don't call num_sign_bit_copies if it cannot change anything. */
1669 if (rsp->sign_bit_copies != 1)
1670 {
1671 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1672 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1673 {
1674 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1675 if (num == 0 || numeq > num)
1676 num = numeq;
1677 }
1678 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1679 rsp->sign_bit_copies = num;
1680 }
1681 }
1682
1683 /* Called via note_stores. If X is a pseudo that is narrower than
1684 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1685
1686 If we are setting only a portion of X and we can't figure out what
1687 portion, assume all bits will be used since we don't know what will
1688 be happening.
1689
1690 Similarly, set how many bits of X are known to be copies of the sign bit
1691 at all locations in the function. This is the smallest number implied
1692 by any set of X. */
1693
1694 static void
1695 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1696 {
1697 rtx_insn *insn = (rtx_insn *) data;
1698
1699 if (REG_P (x)
1700 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1701 /* If this register is undefined at the start of the file, we can't
1702 say what its contents were. */
1703 && ! REGNO_REG_SET_P
1704 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1705 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1706 {
1707 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1708
1709 if (set == 0 || GET_CODE (set) == CLOBBER)
1710 {
1711 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1712 rsp->sign_bit_copies = 1;
1713 return;
1714 }
1715
1716 /* If this register is being initialized using itself, and the
1717 register is uninitialized in this basic block, and there are
1718 no LOG_LINKS which set the register, then part of the
1719 register is uninitialized. In that case we can't assume
1720 anything about the number of nonzero bits.
1721
1722 ??? We could do better if we checked this in
1723 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1724 could avoid making assumptions about the insn which initially
1725 sets the register, while still using the information in other
1726 insns. We would have to be careful to check every insn
1727 involved in the combination. */
1728
1729 if (insn
1730 && reg_referenced_p (x, PATTERN (insn))
1731 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1732 REGNO (x)))
1733 {
1734 struct insn_link *link;
1735
1736 FOR_EACH_LOG_LINK (link, insn)
1737 if (dead_or_set_p (link->insn, x))
1738 break;
1739 if (!link)
1740 {
1741 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1742 rsp->sign_bit_copies = 1;
1743 return;
1744 }
1745 }
1746
1747 /* If this is a complex assignment, see if we can convert it into a
1748 simple assignment. */
1749 set = expand_field_assignment (set);
1750
1751 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1752 set what we know about X. */
1753
1754 if (SET_DEST (set) == x
1755 || (paradoxical_subreg_p (SET_DEST (set))
1756 && SUBREG_REG (SET_DEST (set)) == x))
1757 update_rsp_from_reg_equal (rsp, insn, set, x);
1758 else
1759 {
1760 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1761 rsp->sign_bit_copies = 1;
1762 }
1763 }
1764 }
1765 \f
1766 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1767 optionally insns that were previously combined into I3 or that will be
1768 combined into the merger of INSN and I3. The order is PRED, PRED2,
1769 INSN, SUCC, SUCC2, I3.
1770
1771 Return 0 if the combination is not allowed for any reason.
1772
1773 If the combination is allowed, *PDEST will be set to the single
1774 destination of INSN and *PSRC to the single source, and this function
1775 will return 1. */
1776
1777 static int
1778 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1779 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1780 rtx *pdest, rtx *psrc)
1781 {
1782 int i;
1783 const_rtx set = 0;
1784 rtx src, dest;
1785 rtx_insn *p;
1786 rtx link;
1787 bool all_adjacent = true;
1788 int (*is_volatile_p) (const_rtx);
1789
1790 if (succ)
1791 {
1792 if (succ2)
1793 {
1794 if (next_active_insn (succ2) != i3)
1795 all_adjacent = false;
1796 if (next_active_insn (succ) != succ2)
1797 all_adjacent = false;
1798 }
1799 else if (next_active_insn (succ) != i3)
1800 all_adjacent = false;
1801 if (next_active_insn (insn) != succ)
1802 all_adjacent = false;
1803 }
1804 else if (next_active_insn (insn) != i3)
1805 all_adjacent = false;
1806
1807 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1808 or a PARALLEL consisting of such a SET and CLOBBERs.
1809
1810 If INSN has CLOBBER parallel parts, ignore them for our processing.
1811 By definition, these happen during the execution of the insn. When it
1812 is merged with another insn, all bets are off. If they are, in fact,
1813 needed and aren't also supplied in I3, they may be added by
1814 recog_for_combine. Otherwise, it won't match.
1815
1816 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1817 note.
1818
1819 Get the source and destination of INSN. If more than one, can't
1820 combine. */
1821
1822 if (GET_CODE (PATTERN (insn)) == SET)
1823 set = PATTERN (insn);
1824 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1825 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1826 {
1827 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1828 {
1829 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1830
1831 switch (GET_CODE (elt))
1832 {
1833 /* This is important to combine floating point insns
1834 for the SH4 port. */
1835 case USE:
1836 /* Combining an isolated USE doesn't make sense.
1837 We depend here on combinable_i3pat to reject them. */
1838 /* The code below this loop only verifies that the inputs of
1839 the SET in INSN do not change. We call reg_set_between_p
1840 to verify that the REG in the USE does not change between
1841 I3 and INSN.
1842 If the USE in INSN was for a pseudo register, the matching
1843 insn pattern will likely match any register; combining this
1844 with any other USE would only be safe if we knew that the
1845 used registers have identical values, or if there was
1846 something to tell them apart, e.g. different modes. For
1847 now, we forgo such complicated tests and simply disallow
1848 combining of USES of pseudo registers with any other USE. */
1849 if (REG_P (XEXP (elt, 0))
1850 && GET_CODE (PATTERN (i3)) == PARALLEL)
1851 {
1852 rtx i3pat = PATTERN (i3);
1853 int i = XVECLEN (i3pat, 0) - 1;
1854 unsigned int regno = REGNO (XEXP (elt, 0));
1855
1856 do
1857 {
1858 rtx i3elt = XVECEXP (i3pat, 0, i);
1859
1860 if (GET_CODE (i3elt) == USE
1861 && REG_P (XEXP (i3elt, 0))
1862 && (REGNO (XEXP (i3elt, 0)) == regno
1863 ? reg_set_between_p (XEXP (elt, 0),
1864 PREV_INSN (insn), i3)
1865 : regno >= FIRST_PSEUDO_REGISTER))
1866 return 0;
1867 }
1868 while (--i >= 0);
1869 }
1870 break;
1871
1872 /* We can ignore CLOBBERs. */
1873 case CLOBBER:
1874 break;
1875
1876 case SET:
1877 /* Ignore SETs whose result isn't used but not those that
1878 have side-effects. */
1879 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1880 && insn_nothrow_p (insn)
1881 && !side_effects_p (elt))
1882 break;
1883
1884 /* If we have already found a SET, this is a second one and
1885 so we cannot combine with this insn. */
1886 if (set)
1887 return 0;
1888
1889 set = elt;
1890 break;
1891
1892 default:
1893 /* Anything else means we can't combine. */
1894 return 0;
1895 }
1896 }
1897
1898 if (set == 0
1899 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1900 so don't do anything with it. */
1901 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1902 return 0;
1903 }
1904 else
1905 return 0;
1906
1907 if (set == 0)
1908 return 0;
1909
1910 /* The simplification in expand_field_assignment may call back to
1911 get_last_value, so set safe guard here. */
1912 subst_low_luid = DF_INSN_LUID (insn);
1913
1914 set = expand_field_assignment (set);
1915 src = SET_SRC (set), dest = SET_DEST (set);
1916
1917 /* Do not eliminate user-specified register if it is in an
1918 asm input because we may break the register asm usage defined
1919 in GCC manual if allow to do so.
1920 Be aware that this may cover more cases than we expect but this
1921 should be harmless. */
1922 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1923 && extract_asm_operands (PATTERN (i3)))
1924 return 0;
1925
1926 /* Don't eliminate a store in the stack pointer. */
1927 if (dest == stack_pointer_rtx
1928 /* Don't combine with an insn that sets a register to itself if it has
1929 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1930 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1931 /* Can't merge an ASM_OPERANDS. */
1932 || GET_CODE (src) == ASM_OPERANDS
1933 /* Can't merge a function call. */
1934 || GET_CODE (src) == CALL
1935 /* Don't eliminate a function call argument. */
1936 || (CALL_P (i3)
1937 && (find_reg_fusage (i3, USE, dest)
1938 || (REG_P (dest)
1939 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1940 && global_regs[REGNO (dest)])))
1941 /* Don't substitute into an incremented register. */
1942 || FIND_REG_INC_NOTE (i3, dest)
1943 || (succ && FIND_REG_INC_NOTE (succ, dest))
1944 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1945 /* Don't substitute into a non-local goto, this confuses CFG. */
1946 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1947 /* Make sure that DEST is not used after SUCC but before I3. */
1948 || (!all_adjacent
1949 && ((succ2
1950 && (reg_used_between_p (dest, succ2, i3)
1951 || reg_used_between_p (dest, succ, succ2)))
1952 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1953 /* Make sure that the value that is to be substituted for the register
1954 does not use any registers whose values alter in between. However,
1955 If the insns are adjacent, a use can't cross a set even though we
1956 think it might (this can happen for a sequence of insns each setting
1957 the same destination; last_set of that register might point to
1958 a NOTE). If INSN has a REG_EQUIV note, the register is always
1959 equivalent to the memory so the substitution is valid even if there
1960 are intervening stores. Also, don't move a volatile asm or
1961 UNSPEC_VOLATILE across any other insns. */
1962 || (! all_adjacent
1963 && (((!MEM_P (src)
1964 || ! find_reg_note (insn, REG_EQUIV, src))
1965 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1966 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1967 || GET_CODE (src) == UNSPEC_VOLATILE))
1968 /* Don't combine across a CALL_INSN, because that would possibly
1969 change whether the life span of some REGs crosses calls or not,
1970 and it is a pain to update that information.
1971 Exception: if source is a constant, moving it later can't hurt.
1972 Accept that as a special case. */
1973 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1974 return 0;
1975
1976 /* DEST must either be a REG or CC0. */
1977 if (REG_P (dest))
1978 {
1979 /* If register alignment is being enforced for multi-word items in all
1980 cases except for parameters, it is possible to have a register copy
1981 insn referencing a hard register that is not allowed to contain the
1982 mode being copied and which would not be valid as an operand of most
1983 insns. Eliminate this problem by not combining with such an insn.
1984
1985 Also, on some machines we don't want to extend the life of a hard
1986 register. */
1987
1988 if (REG_P (src)
1989 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1990 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1991 /* Don't extend the life of a hard register unless it is
1992 user variable (if we have few registers) or it can't
1993 fit into the desired register (meaning something special
1994 is going on).
1995 Also avoid substituting a return register into I3, because
1996 reload can't handle a conflict with constraints of other
1997 inputs. */
1998 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1999 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
2000 return 0;
2001 }
2002 else if (GET_CODE (dest) != CC0)
2003 return 0;
2004
2005
2006 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2007 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2008 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2009 {
2010 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2011
2012 /* If the clobber represents an earlyclobber operand, we must not
2013 substitute an expression containing the clobbered register.
2014 As we do not analyze the constraint strings here, we have to
2015 make the conservative assumption. However, if the register is
2016 a fixed hard reg, the clobber cannot represent any operand;
2017 we leave it up to the machine description to either accept or
2018 reject use-and-clobber patterns. */
2019 if (!REG_P (reg)
2020 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2021 || !fixed_regs[REGNO (reg)])
2022 if (reg_overlap_mentioned_p (reg, src))
2023 return 0;
2024 }
2025
2026 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2027 or not), reject, unless nothing volatile comes between it and I3 */
2028
2029 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2030 {
2031 /* Make sure neither succ nor succ2 contains a volatile reference. */
2032 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2033 return 0;
2034 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2035 return 0;
2036 /* We'll check insns between INSN and I3 below. */
2037 }
2038
2039 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2040 to be an explicit register variable, and was chosen for a reason. */
2041
2042 if (GET_CODE (src) == ASM_OPERANDS
2043 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2044 return 0;
2045
2046 /* If INSN contains volatile references (specifically volatile MEMs),
2047 we cannot combine across any other volatile references.
2048 Even if INSN doesn't contain volatile references, any intervening
2049 volatile insn might affect machine state. */
2050
2051 is_volatile_p = volatile_refs_p (PATTERN (insn))
2052 ? volatile_refs_p
2053 : volatile_insn_p;
2054
2055 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2056 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2057 return 0;
2058
2059 /* If INSN contains an autoincrement or autodecrement, make sure that
2060 register is not used between there and I3, and not already used in
2061 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2062 Also insist that I3 not be a jump; if it were one
2063 and the incremented register were spilled, we would lose. */
2064
2065 if (AUTO_INC_DEC)
2066 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2067 if (REG_NOTE_KIND (link) == REG_INC
2068 && (JUMP_P (i3)
2069 || reg_used_between_p (XEXP (link, 0), insn, i3)
2070 || (pred != NULL_RTX
2071 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2072 || (pred2 != NULL_RTX
2073 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2074 || (succ != NULL_RTX
2075 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2076 || (succ2 != NULL_RTX
2077 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2078 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2079 return 0;
2080
2081 /* Don't combine an insn that follows a CC0-setting insn.
2082 An insn that uses CC0 must not be separated from the one that sets it.
2083 We do, however, allow I2 to follow a CC0-setting insn if that insn
2084 is passed as I1; in that case it will be deleted also.
2085 We also allow combining in this case if all the insns are adjacent
2086 because that would leave the two CC0 insns adjacent as well.
2087 It would be more logical to test whether CC0 occurs inside I1 or I2,
2088 but that would be much slower, and this ought to be equivalent. */
2089
2090 if (HAVE_cc0)
2091 {
2092 p = prev_nonnote_insn (insn);
2093 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2094 && ! all_adjacent)
2095 return 0;
2096 }
2097
2098 /* If we get here, we have passed all the tests and the combination is
2099 to be allowed. */
2100
2101 *pdest = dest;
2102 *psrc = src;
2103
2104 return 1;
2105 }
2106 \f
2107 /* LOC is the location within I3 that contains its pattern or the component
2108 of a PARALLEL of the pattern. We validate that it is valid for combining.
2109
2110 One problem is if I3 modifies its output, as opposed to replacing it
2111 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2112 doing so would produce an insn that is not equivalent to the original insns.
2113
2114 Consider:
2115
2116 (set (reg:DI 101) (reg:DI 100))
2117 (set (subreg:SI (reg:DI 101) 0) <foo>)
2118
2119 This is NOT equivalent to:
2120
2121 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2122 (set (reg:DI 101) (reg:DI 100))])
2123
2124 Not only does this modify 100 (in which case it might still be valid
2125 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2126
2127 We can also run into a problem if I2 sets a register that I1
2128 uses and I1 gets directly substituted into I3 (not via I2). In that
2129 case, we would be getting the wrong value of I2DEST into I3, so we
2130 must reject the combination. This case occurs when I2 and I1 both
2131 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2132 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2133 of a SET must prevent combination from occurring. The same situation
2134 can occur for I0, in which case I0_NOT_IN_SRC is set.
2135
2136 Before doing the above check, we first try to expand a field assignment
2137 into a set of logical operations.
2138
2139 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2140 we place a register that is both set and used within I3. If more than one
2141 such register is detected, we fail.
2142
2143 Return 1 if the combination is valid, zero otherwise. */
2144
2145 static int
2146 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2147 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2148 {
2149 rtx x = *loc;
2150
2151 if (GET_CODE (x) == SET)
2152 {
2153 rtx set = x ;
2154 rtx dest = SET_DEST (set);
2155 rtx src = SET_SRC (set);
2156 rtx inner_dest = dest;
2157 rtx subdest;
2158
2159 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2160 || GET_CODE (inner_dest) == SUBREG
2161 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2162 inner_dest = XEXP (inner_dest, 0);
2163
2164 /* Check for the case where I3 modifies its output, as discussed
2165 above. We don't want to prevent pseudos from being combined
2166 into the address of a MEM, so only prevent the combination if
2167 i1 or i2 set the same MEM. */
2168 if ((inner_dest != dest &&
2169 (!MEM_P (inner_dest)
2170 || rtx_equal_p (i2dest, inner_dest)
2171 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2172 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2173 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2174 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2175 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2176
2177 /* This is the same test done in can_combine_p except we can't test
2178 all_adjacent; we don't have to, since this instruction will stay
2179 in place, thus we are not considering increasing the lifetime of
2180 INNER_DEST.
2181
2182 Also, if this insn sets a function argument, combining it with
2183 something that might need a spill could clobber a previous
2184 function argument; the all_adjacent test in can_combine_p also
2185 checks this; here, we do a more specific test for this case. */
2186
2187 || (REG_P (inner_dest)
2188 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2189 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2190 GET_MODE (inner_dest))))
2191 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2192 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2193 return 0;
2194
2195 /* If DEST is used in I3, it is being killed in this insn, so
2196 record that for later. We have to consider paradoxical
2197 subregs here, since they kill the whole register, but we
2198 ignore partial subregs, STRICT_LOW_PART, etc.
2199 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2200 STACK_POINTER_REGNUM, since these are always considered to be
2201 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2202 subdest = dest;
2203 if (GET_CODE (subdest) == SUBREG
2204 && (GET_MODE_SIZE (GET_MODE (subdest))
2205 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2206 subdest = SUBREG_REG (subdest);
2207 if (pi3dest_killed
2208 && REG_P (subdest)
2209 && reg_referenced_p (subdest, PATTERN (i3))
2210 && REGNO (subdest) != FRAME_POINTER_REGNUM
2211 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2212 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2213 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2214 || (REGNO (subdest) != ARG_POINTER_REGNUM
2215 || ! fixed_regs [REGNO (subdest)]))
2216 && REGNO (subdest) != STACK_POINTER_REGNUM)
2217 {
2218 if (*pi3dest_killed)
2219 return 0;
2220
2221 *pi3dest_killed = subdest;
2222 }
2223 }
2224
2225 else if (GET_CODE (x) == PARALLEL)
2226 {
2227 int i;
2228
2229 for (i = 0; i < XVECLEN (x, 0); i++)
2230 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2231 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2232 return 0;
2233 }
2234
2235 return 1;
2236 }
2237 \f
2238 /* Return 1 if X is an arithmetic expression that contains a multiplication
2239 and division. We don't count multiplications by powers of two here. */
2240
2241 static int
2242 contains_muldiv (rtx x)
2243 {
2244 switch (GET_CODE (x))
2245 {
2246 case MOD: case DIV: case UMOD: case UDIV:
2247 return 1;
2248
2249 case MULT:
2250 return ! (CONST_INT_P (XEXP (x, 1))
2251 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2252 default:
2253 if (BINARY_P (x))
2254 return contains_muldiv (XEXP (x, 0))
2255 || contains_muldiv (XEXP (x, 1));
2256
2257 if (UNARY_P (x))
2258 return contains_muldiv (XEXP (x, 0));
2259
2260 return 0;
2261 }
2262 }
2263 \f
2264 /* Determine whether INSN can be used in a combination. Return nonzero if
2265 not. This is used in try_combine to detect early some cases where we
2266 can't perform combinations. */
2267
2268 static int
2269 cant_combine_insn_p (rtx_insn *insn)
2270 {
2271 rtx set;
2272 rtx src, dest;
2273
2274 /* If this isn't really an insn, we can't do anything.
2275 This can occur when flow deletes an insn that it has merged into an
2276 auto-increment address. */
2277 if (! INSN_P (insn))
2278 return 1;
2279
2280 /* Never combine loads and stores involving hard regs that are likely
2281 to be spilled. The register allocator can usually handle such
2282 reg-reg moves by tying. If we allow the combiner to make
2283 substitutions of likely-spilled regs, reload might die.
2284 As an exception, we allow combinations involving fixed regs; these are
2285 not available to the register allocator so there's no risk involved. */
2286
2287 set = single_set (insn);
2288 if (! set)
2289 return 0;
2290 src = SET_SRC (set);
2291 dest = SET_DEST (set);
2292 if (GET_CODE (src) == SUBREG)
2293 src = SUBREG_REG (src);
2294 if (GET_CODE (dest) == SUBREG)
2295 dest = SUBREG_REG (dest);
2296 if (REG_P (src) && REG_P (dest)
2297 && ((HARD_REGISTER_P (src)
2298 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2299 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2300 || (HARD_REGISTER_P (dest)
2301 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2302 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2303 return 1;
2304
2305 return 0;
2306 }
2307
2308 struct likely_spilled_retval_info
2309 {
2310 unsigned regno, nregs;
2311 unsigned mask;
2312 };
2313
2314 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2315 hard registers that are known to be written to / clobbered in full. */
2316 static void
2317 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2318 {
2319 struct likely_spilled_retval_info *const info =
2320 (struct likely_spilled_retval_info *) data;
2321 unsigned regno, nregs;
2322 unsigned new_mask;
2323
2324 if (!REG_P (XEXP (set, 0)))
2325 return;
2326 regno = REGNO (x);
2327 if (regno >= info->regno + info->nregs)
2328 return;
2329 nregs = REG_NREGS (x);
2330 if (regno + nregs <= info->regno)
2331 return;
2332 new_mask = (2U << (nregs - 1)) - 1;
2333 if (regno < info->regno)
2334 new_mask >>= info->regno - regno;
2335 else
2336 new_mask <<= regno - info->regno;
2337 info->mask &= ~new_mask;
2338 }
2339
2340 /* Return nonzero iff part of the return value is live during INSN, and
2341 it is likely spilled. This can happen when more than one insn is needed
2342 to copy the return value, e.g. when we consider to combine into the
2343 second copy insn for a complex value. */
2344
2345 static int
2346 likely_spilled_retval_p (rtx_insn *insn)
2347 {
2348 rtx_insn *use = BB_END (this_basic_block);
2349 rtx reg;
2350 rtx_insn *p;
2351 unsigned regno, nregs;
2352 /* We assume here that no machine mode needs more than
2353 32 hard registers when the value overlaps with a register
2354 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2355 unsigned mask;
2356 struct likely_spilled_retval_info info;
2357
2358 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2359 return 0;
2360 reg = XEXP (PATTERN (use), 0);
2361 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2362 return 0;
2363 regno = REGNO (reg);
2364 nregs = REG_NREGS (reg);
2365 if (nregs == 1)
2366 return 0;
2367 mask = (2U << (nregs - 1)) - 1;
2368
2369 /* Disregard parts of the return value that are set later. */
2370 info.regno = regno;
2371 info.nregs = nregs;
2372 info.mask = mask;
2373 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2374 if (INSN_P (p))
2375 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2376 mask = info.mask;
2377
2378 /* Check if any of the (probably) live return value registers is
2379 likely spilled. */
2380 nregs --;
2381 do
2382 {
2383 if ((mask & 1 << nregs)
2384 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2385 return 1;
2386 } while (nregs--);
2387 return 0;
2388 }
2389
2390 /* Adjust INSN after we made a change to its destination.
2391
2392 Changing the destination can invalidate notes that say something about
2393 the results of the insn and a LOG_LINK pointing to the insn. */
2394
2395 static void
2396 adjust_for_new_dest (rtx_insn *insn)
2397 {
2398 /* For notes, be conservative and simply remove them. */
2399 remove_reg_equal_equiv_notes (insn);
2400
2401 /* The new insn will have a destination that was previously the destination
2402 of an insn just above it. Call distribute_links to make a LOG_LINK from
2403 the next use of that destination. */
2404
2405 rtx set = single_set (insn);
2406 gcc_assert (set);
2407
2408 rtx reg = SET_DEST (set);
2409
2410 while (GET_CODE (reg) == ZERO_EXTRACT
2411 || GET_CODE (reg) == STRICT_LOW_PART
2412 || GET_CODE (reg) == SUBREG)
2413 reg = XEXP (reg, 0);
2414 gcc_assert (REG_P (reg));
2415
2416 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2417
2418 df_insn_rescan (insn);
2419 }
2420
2421 /* Return TRUE if combine can reuse reg X in mode MODE.
2422 ADDED_SETS is nonzero if the original set is still required. */
2423 static bool
2424 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2425 {
2426 unsigned int regno;
2427
2428 if (!REG_P (x))
2429 return false;
2430
2431 regno = REGNO (x);
2432 /* Allow hard registers if the new mode is legal, and occupies no more
2433 registers than the old mode. */
2434 if (regno < FIRST_PSEUDO_REGISTER)
2435 return (HARD_REGNO_MODE_OK (regno, mode)
2436 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2437
2438 /* Or a pseudo that is only used once. */
2439 return (regno < reg_n_sets_max
2440 && REG_N_SETS (regno) == 1
2441 && !added_sets
2442 && !REG_USERVAR_P (x));
2443 }
2444
2445
2446 /* Check whether X, the destination of a set, refers to part of
2447 the register specified by REG. */
2448
2449 static bool
2450 reg_subword_p (rtx x, rtx reg)
2451 {
2452 /* Check that reg is an integer mode register. */
2453 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2454 return false;
2455
2456 if (GET_CODE (x) == STRICT_LOW_PART
2457 || GET_CODE (x) == ZERO_EXTRACT)
2458 x = XEXP (x, 0);
2459
2460 return GET_CODE (x) == SUBREG
2461 && SUBREG_REG (x) == reg
2462 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2463 }
2464
2465 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2466 Note that the INSN should be deleted *after* removing dead edges, so
2467 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2468 but not for a (set (pc) (label_ref FOO)). */
2469
2470 static void
2471 update_cfg_for_uncondjump (rtx_insn *insn)
2472 {
2473 basic_block bb = BLOCK_FOR_INSN (insn);
2474 gcc_assert (BB_END (bb) == insn);
2475
2476 purge_dead_edges (bb);
2477
2478 delete_insn (insn);
2479 if (EDGE_COUNT (bb->succs) == 1)
2480 {
2481 rtx_insn *insn;
2482
2483 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2484
2485 /* Remove barriers from the footer if there are any. */
2486 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2487 if (BARRIER_P (insn))
2488 {
2489 if (PREV_INSN (insn))
2490 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2491 else
2492 BB_FOOTER (bb) = NEXT_INSN (insn);
2493 if (NEXT_INSN (insn))
2494 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2495 }
2496 else if (LABEL_P (insn))
2497 break;
2498 }
2499 }
2500
2501 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2502 by an arbitrary number of CLOBBERs. */
2503 static bool
2504 is_parallel_of_n_reg_sets (rtx pat, int n)
2505 {
2506 if (GET_CODE (pat) != PARALLEL)
2507 return false;
2508
2509 int len = XVECLEN (pat, 0);
2510 if (len < n)
2511 return false;
2512
2513 int i;
2514 for (i = 0; i < n; i++)
2515 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2516 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2517 return false;
2518 for ( ; i < len; i++)
2519 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2520 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2521 return false;
2522
2523 return true;
2524 }
2525
2526 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2527 CLOBBERs), can be split into individual SETs in that order, without
2528 changing semantics. */
2529 static bool
2530 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2531 {
2532 if (!insn_nothrow_p (insn))
2533 return false;
2534
2535 rtx pat = PATTERN (insn);
2536
2537 int i, j;
2538 for (i = 0; i < n; i++)
2539 {
2540 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2541 return false;
2542
2543 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2544
2545 for (j = i + 1; j < n; j++)
2546 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2547 return false;
2548 }
2549
2550 return true;
2551 }
2552
2553 /* Try to combine the insns I0, I1 and I2 into I3.
2554 Here I0, I1 and I2 appear earlier than I3.
2555 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2556 I3.
2557
2558 If we are combining more than two insns and the resulting insn is not
2559 recognized, try splitting it into two insns. If that happens, I2 and I3
2560 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2561 Otherwise, I0, I1 and I2 are pseudo-deleted.
2562
2563 Return 0 if the combination does not work. Then nothing is changed.
2564 If we did the combination, return the insn at which combine should
2565 resume scanning.
2566
2567 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2568 new direct jump instruction.
2569
2570 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2571 been I3 passed to an earlier try_combine within the same basic
2572 block. */
2573
2574 static rtx_insn *
2575 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2576 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2577 {
2578 /* New patterns for I3 and I2, respectively. */
2579 rtx newpat, newi2pat = 0;
2580 rtvec newpat_vec_with_clobbers = 0;
2581 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2582 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2583 dead. */
2584 int added_sets_0, added_sets_1, added_sets_2;
2585 /* Total number of SETs to put into I3. */
2586 int total_sets;
2587 /* Nonzero if I2's or I1's body now appears in I3. */
2588 int i2_is_used = 0, i1_is_used = 0;
2589 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2590 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2591 /* Contains I3 if the destination of I3 is used in its source, which means
2592 that the old life of I3 is being killed. If that usage is placed into
2593 I2 and not in I3, a REG_DEAD note must be made. */
2594 rtx i3dest_killed = 0;
2595 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2596 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2597 /* Copy of SET_SRC of I1 and I0, if needed. */
2598 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2599 /* Set if I2DEST was reused as a scratch register. */
2600 bool i2scratch = false;
2601 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2602 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2603 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2604 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2605 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2606 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2607 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2608 /* Notes that must be added to REG_NOTES in I3 and I2. */
2609 rtx new_i3_notes, new_i2_notes;
2610 /* Notes that we substituted I3 into I2 instead of the normal case. */
2611 int i3_subst_into_i2 = 0;
2612 /* Notes that I1, I2 or I3 is a MULT operation. */
2613 int have_mult = 0;
2614 int swap_i2i3 = 0;
2615 int changed_i3_dest = 0;
2616
2617 int maxreg;
2618 rtx_insn *temp_insn;
2619 rtx temp_expr;
2620 struct insn_link *link;
2621 rtx other_pat = 0;
2622 rtx new_other_notes;
2623 int i;
2624
2625 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2626 never be). */
2627 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2628 return 0;
2629
2630 /* Only try four-insn combinations when there's high likelihood of
2631 success. Look for simple insns, such as loads of constants or
2632 binary operations involving a constant. */
2633 if (i0)
2634 {
2635 int i;
2636 int ngood = 0;
2637 int nshift = 0;
2638 rtx set0, set3;
2639
2640 if (!flag_expensive_optimizations)
2641 return 0;
2642
2643 for (i = 0; i < 4; i++)
2644 {
2645 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2646 rtx set = single_set (insn);
2647 rtx src;
2648 if (!set)
2649 continue;
2650 src = SET_SRC (set);
2651 if (CONSTANT_P (src))
2652 {
2653 ngood += 2;
2654 break;
2655 }
2656 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2657 ngood++;
2658 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2659 || GET_CODE (src) == LSHIFTRT)
2660 nshift++;
2661 }
2662
2663 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2664 are likely manipulating its value. Ideally we'll be able to combine
2665 all four insns into a bitfield insertion of some kind.
2666
2667 Note the source in I0 might be inside a sign/zero extension and the
2668 memory modes in I0 and I3 might be different. So extract the address
2669 from the destination of I3 and search for it in the source of I0.
2670
2671 In the event that there's a match but the source/dest do not actually
2672 refer to the same memory, the worst that happens is we try some
2673 combinations that we wouldn't have otherwise. */
2674 if ((set0 = single_set (i0))
2675 /* Ensure the source of SET0 is a MEM, possibly buried inside
2676 an extension. */
2677 && (GET_CODE (SET_SRC (set0)) == MEM
2678 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2679 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2680 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2681 && (set3 = single_set (i3))
2682 /* Ensure the destination of SET3 is a MEM. */
2683 && GET_CODE (SET_DEST (set3)) == MEM
2684 /* Would it be better to extract the base address for the MEM
2685 in SET3 and look for that? I don't have cases where it matters
2686 but I could envision such cases. */
2687 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2688 ngood += 2;
2689
2690 if (ngood < 2 && nshift < 2)
2691 return 0;
2692 }
2693
2694 /* Exit early if one of the insns involved can't be used for
2695 combinations. */
2696 if (CALL_P (i2)
2697 || (i1 && CALL_P (i1))
2698 || (i0 && CALL_P (i0))
2699 || cant_combine_insn_p (i3)
2700 || cant_combine_insn_p (i2)
2701 || (i1 && cant_combine_insn_p (i1))
2702 || (i0 && cant_combine_insn_p (i0))
2703 || likely_spilled_retval_p (i3))
2704 return 0;
2705
2706 combine_attempts++;
2707 undobuf.other_insn = 0;
2708
2709 /* Reset the hard register usage information. */
2710 CLEAR_HARD_REG_SET (newpat_used_regs);
2711
2712 if (dump_file && (dump_flags & TDF_DETAILS))
2713 {
2714 if (i0)
2715 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2716 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2717 else if (i1)
2718 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2719 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2720 else
2721 fprintf (dump_file, "\nTrying %d -> %d:\n",
2722 INSN_UID (i2), INSN_UID (i3));
2723 }
2724
2725 /* If multiple insns feed into one of I2 or I3, they can be in any
2726 order. To simplify the code below, reorder them in sequence. */
2727 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2728 std::swap (i0, i2);
2729 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2730 std::swap (i0, i1);
2731 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2732 std::swap (i1, i2);
2733
2734 added_links_insn = 0;
2735
2736 /* First check for one important special case that the code below will
2737 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2738 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2739 we may be able to replace that destination with the destination of I3.
2740 This occurs in the common code where we compute both a quotient and
2741 remainder into a structure, in which case we want to do the computation
2742 directly into the structure to avoid register-register copies.
2743
2744 Note that this case handles both multiple sets in I2 and also cases
2745 where I2 has a number of CLOBBERs inside the PARALLEL.
2746
2747 We make very conservative checks below and only try to handle the
2748 most common cases of this. For example, we only handle the case
2749 where I2 and I3 are adjacent to avoid making difficult register
2750 usage tests. */
2751
2752 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2753 && REG_P (SET_SRC (PATTERN (i3)))
2754 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2755 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2756 && GET_CODE (PATTERN (i2)) == PARALLEL
2757 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2758 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2759 below would need to check what is inside (and reg_overlap_mentioned_p
2760 doesn't support those codes anyway). Don't allow those destinations;
2761 the resulting insn isn't likely to be recognized anyway. */
2762 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2763 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2764 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2765 SET_DEST (PATTERN (i3)))
2766 && next_active_insn (i2) == i3)
2767 {
2768 rtx p2 = PATTERN (i2);
2769
2770 /* Make sure that the destination of I3,
2771 which we are going to substitute into one output of I2,
2772 is not used within another output of I2. We must avoid making this:
2773 (parallel [(set (mem (reg 69)) ...)
2774 (set (reg 69) ...)])
2775 which is not well-defined as to order of actions.
2776 (Besides, reload can't handle output reloads for this.)
2777
2778 The problem can also happen if the dest of I3 is a memory ref,
2779 if another dest in I2 is an indirect memory ref. */
2780 for (i = 0; i < XVECLEN (p2, 0); i++)
2781 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2782 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2783 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2784 SET_DEST (XVECEXP (p2, 0, i))))
2785 break;
2786
2787 /* Make sure this PARALLEL is not an asm. We do not allow combining
2788 that usually (see can_combine_p), so do not here either. */
2789 for (i = 0; i < XVECLEN (p2, 0); i++)
2790 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2791 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2792 break;
2793
2794 if (i == XVECLEN (p2, 0))
2795 for (i = 0; i < XVECLEN (p2, 0); i++)
2796 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2797 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2798 {
2799 combine_merges++;
2800
2801 subst_insn = i3;
2802 subst_low_luid = DF_INSN_LUID (i2);
2803
2804 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2805 i2src = SET_SRC (XVECEXP (p2, 0, i));
2806 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2807 i2dest_killed = dead_or_set_p (i2, i2dest);
2808
2809 /* Replace the dest in I2 with our dest and make the resulting
2810 insn the new pattern for I3. Then skip to where we validate
2811 the pattern. Everything was set up above. */
2812 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2813 newpat = p2;
2814 i3_subst_into_i2 = 1;
2815 goto validate_replacement;
2816 }
2817 }
2818
2819 /* If I2 is setting a pseudo to a constant and I3 is setting some
2820 sub-part of it to another constant, merge them by making a new
2821 constant. */
2822 if (i1 == 0
2823 && (temp_expr = single_set (i2)) != 0
2824 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2825 && GET_CODE (PATTERN (i3)) == SET
2826 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2827 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2828 {
2829 rtx dest = SET_DEST (PATTERN (i3));
2830 int offset = -1;
2831 int width = 0;
2832
2833 if (GET_CODE (dest) == ZERO_EXTRACT)
2834 {
2835 if (CONST_INT_P (XEXP (dest, 1))
2836 && CONST_INT_P (XEXP (dest, 2)))
2837 {
2838 width = INTVAL (XEXP (dest, 1));
2839 offset = INTVAL (XEXP (dest, 2));
2840 dest = XEXP (dest, 0);
2841 if (BITS_BIG_ENDIAN)
2842 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2843 }
2844 }
2845 else
2846 {
2847 if (GET_CODE (dest) == STRICT_LOW_PART)
2848 dest = XEXP (dest, 0);
2849 width = GET_MODE_PRECISION (GET_MODE (dest));
2850 offset = 0;
2851 }
2852
2853 if (offset >= 0)
2854 {
2855 /* If this is the low part, we're done. */
2856 if (subreg_lowpart_p (dest))
2857 ;
2858 /* Handle the case where inner is twice the size of outer. */
2859 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2860 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2861 offset += GET_MODE_PRECISION (GET_MODE (dest));
2862 /* Otherwise give up for now. */
2863 else
2864 offset = -1;
2865 }
2866
2867 if (offset >= 0)
2868 {
2869 rtx inner = SET_SRC (PATTERN (i3));
2870 rtx outer = SET_SRC (temp_expr);
2871
2872 wide_int o
2873 = wi::insert (rtx_mode_t (outer, GET_MODE (SET_DEST (temp_expr))),
2874 rtx_mode_t (inner, GET_MODE (dest)),
2875 offset, width);
2876
2877 combine_merges++;
2878 subst_insn = i3;
2879 subst_low_luid = DF_INSN_LUID (i2);
2880 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2881 i2dest = SET_DEST (temp_expr);
2882 i2dest_killed = dead_or_set_p (i2, i2dest);
2883
2884 /* Replace the source in I2 with the new constant and make the
2885 resulting insn the new pattern for I3. Then skip to where we
2886 validate the pattern. Everything was set up above. */
2887 SUBST (SET_SRC (temp_expr),
2888 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2889
2890 newpat = PATTERN (i2);
2891
2892 /* The dest of I3 has been replaced with the dest of I2. */
2893 changed_i3_dest = 1;
2894 goto validate_replacement;
2895 }
2896 }
2897
2898 /* If we have no I1 and I2 looks like:
2899 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2900 (set Y OP)])
2901 make up a dummy I1 that is
2902 (set Y OP)
2903 and change I2 to be
2904 (set (reg:CC X) (compare:CC Y (const_int 0)))
2905
2906 (We can ignore any trailing CLOBBERs.)
2907
2908 This undoes a previous combination and allows us to match a branch-and-
2909 decrement insn. */
2910
2911 if (!HAVE_cc0 && i1 == 0
2912 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2913 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2914 == MODE_CC)
2915 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2916 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2917 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2918 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2919 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2920 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2921 {
2922 /* We make I1 with the same INSN_UID as I2. This gives it
2923 the same DF_INSN_LUID for value tracking. Our fake I1 will
2924 never appear in the insn stream so giving it the same INSN_UID
2925 as I2 will not cause a problem. */
2926
2927 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2928 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2929 -1, NULL_RTX);
2930 INSN_UID (i1) = INSN_UID (i2);
2931
2932 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2933 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2934 SET_DEST (PATTERN (i1)));
2935 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2936 SUBST_LINK (LOG_LINKS (i2),
2937 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2938 }
2939
2940 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2941 make those two SETs separate I1 and I2 insns, and make an I0 that is
2942 the original I1. */
2943 if (!HAVE_cc0 && i0 == 0
2944 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2945 && can_split_parallel_of_n_reg_sets (i2, 2)
2946 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2947 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2948 {
2949 /* If there is no I1, there is no I0 either. */
2950 i0 = i1;
2951
2952 /* We make I1 with the same INSN_UID as I2. This gives it
2953 the same DF_INSN_LUID for value tracking. Our fake I1 will
2954 never appear in the insn stream so giving it the same INSN_UID
2955 as I2 will not cause a problem. */
2956
2957 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2958 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2959 -1, NULL_RTX);
2960 INSN_UID (i1) = INSN_UID (i2);
2961
2962 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2963 }
2964
2965 /* Verify that I2 and I1 are valid for combining. */
2966 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2967 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2968 &i1dest, &i1src))
2969 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2970 &i0dest, &i0src)))
2971 {
2972 undo_all ();
2973 return 0;
2974 }
2975
2976 /* Record whether I2DEST is used in I2SRC and similarly for the other
2977 cases. Knowing this will help in register status updating below. */
2978 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2979 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2980 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2981 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2982 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2983 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2984 i2dest_killed = dead_or_set_p (i2, i2dest);
2985 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2986 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2987
2988 /* For the earlier insns, determine which of the subsequent ones they
2989 feed. */
2990 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2991 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2992 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2993 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2994 && reg_overlap_mentioned_p (i0dest, i2src))));
2995
2996 /* Ensure that I3's pattern can be the destination of combines. */
2997 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2998 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2999 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3000 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3001 &i3dest_killed))
3002 {
3003 undo_all ();
3004 return 0;
3005 }
3006
3007 /* See if any of the insns is a MULT operation. Unless one is, we will
3008 reject a combination that is, since it must be slower. Be conservative
3009 here. */
3010 if (GET_CODE (i2src) == MULT
3011 || (i1 != 0 && GET_CODE (i1src) == MULT)
3012 || (i0 != 0 && GET_CODE (i0src) == MULT)
3013 || (GET_CODE (PATTERN (i3)) == SET
3014 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3015 have_mult = 1;
3016
3017 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3018 We used to do this EXCEPT in one case: I3 has a post-inc in an
3019 output operand. However, that exception can give rise to insns like
3020 mov r3,(r3)+
3021 which is a famous insn on the PDP-11 where the value of r3 used as the
3022 source was model-dependent. Avoid this sort of thing. */
3023
3024 #if 0
3025 if (!(GET_CODE (PATTERN (i3)) == SET
3026 && REG_P (SET_SRC (PATTERN (i3)))
3027 && MEM_P (SET_DEST (PATTERN (i3)))
3028 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3029 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3030 /* It's not the exception. */
3031 #endif
3032 if (AUTO_INC_DEC)
3033 {
3034 rtx link;
3035 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3036 if (REG_NOTE_KIND (link) == REG_INC
3037 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3038 || (i1 != 0
3039 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3040 {
3041 undo_all ();
3042 return 0;
3043 }
3044 }
3045
3046 /* See if the SETs in I1 or I2 need to be kept around in the merged
3047 instruction: whenever the value set there is still needed past I3.
3048 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3049
3050 For the SET in I1, we have two cases: if I1 and I2 independently feed
3051 into I3, the set in I1 needs to be kept around unless I1DEST dies
3052 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3053 in I1 needs to be kept around unless I1DEST dies or is set in either
3054 I2 or I3. The same considerations apply to I0. */
3055
3056 added_sets_2 = !dead_or_set_p (i3, i2dest);
3057
3058 if (i1)
3059 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3060 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3061 else
3062 added_sets_1 = 0;
3063
3064 if (i0)
3065 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3066 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3067 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3068 && dead_or_set_p (i2, i0dest)));
3069 else
3070 added_sets_0 = 0;
3071
3072 /* We are about to copy insns for the case where they need to be kept
3073 around. Check that they can be copied in the merged instruction. */
3074
3075 if (targetm.cannot_copy_insn_p
3076 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3077 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3078 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3079 {
3080 undo_all ();
3081 return 0;
3082 }
3083
3084 /* If the set in I2 needs to be kept around, we must make a copy of
3085 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3086 PATTERN (I2), we are only substituting for the original I1DEST, not into
3087 an already-substituted copy. This also prevents making self-referential
3088 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3089 I2DEST. */
3090
3091 if (added_sets_2)
3092 {
3093 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3094 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3095 else
3096 i2pat = copy_rtx (PATTERN (i2));
3097 }
3098
3099 if (added_sets_1)
3100 {
3101 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3102 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3103 else
3104 i1pat = copy_rtx (PATTERN (i1));
3105 }
3106
3107 if (added_sets_0)
3108 {
3109 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3110 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3111 else
3112 i0pat = copy_rtx (PATTERN (i0));
3113 }
3114
3115 combine_merges++;
3116
3117 /* Substitute in the latest insn for the regs set by the earlier ones. */
3118
3119 maxreg = max_reg_num ();
3120
3121 subst_insn = i3;
3122
3123 /* Many machines that don't use CC0 have insns that can both perform an
3124 arithmetic operation and set the condition code. These operations will
3125 be represented as a PARALLEL with the first element of the vector
3126 being a COMPARE of an arithmetic operation with the constant zero.
3127 The second element of the vector will set some pseudo to the result
3128 of the same arithmetic operation. If we simplify the COMPARE, we won't
3129 match such a pattern and so will generate an extra insn. Here we test
3130 for this case, where both the comparison and the operation result are
3131 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3132 I2SRC. Later we will make the PARALLEL that contains I2. */
3133
3134 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3135 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3136 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3137 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3138 {
3139 rtx newpat_dest;
3140 rtx *cc_use_loc = NULL;
3141 rtx_insn *cc_use_insn = NULL;
3142 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3143 machine_mode compare_mode, orig_compare_mode;
3144 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3145
3146 newpat = PATTERN (i3);
3147 newpat_dest = SET_DEST (newpat);
3148 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3149
3150 if (undobuf.other_insn == 0
3151 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3152 &cc_use_insn)))
3153 {
3154 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3155 compare_code = simplify_compare_const (compare_code,
3156 GET_MODE (i2dest), op0, &op1);
3157 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3158 }
3159
3160 /* Do the rest only if op1 is const0_rtx, which may be the
3161 result of simplification. */
3162 if (op1 == const0_rtx)
3163 {
3164 /* If a single use of the CC is found, prepare to modify it
3165 when SELECT_CC_MODE returns a new CC-class mode, or when
3166 the above simplify_compare_const() returned a new comparison
3167 operator. undobuf.other_insn is assigned the CC use insn
3168 when modifying it. */
3169 if (cc_use_loc)
3170 {
3171 #ifdef SELECT_CC_MODE
3172 machine_mode new_mode
3173 = SELECT_CC_MODE (compare_code, op0, op1);
3174 if (new_mode != orig_compare_mode
3175 && can_change_dest_mode (SET_DEST (newpat),
3176 added_sets_2, new_mode))
3177 {
3178 unsigned int regno = REGNO (newpat_dest);
3179 compare_mode = new_mode;
3180 if (regno < FIRST_PSEUDO_REGISTER)
3181 newpat_dest = gen_rtx_REG (compare_mode, regno);
3182 else
3183 {
3184 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3185 newpat_dest = regno_reg_rtx[regno];
3186 }
3187 }
3188 #endif
3189 /* Cases for modifying the CC-using comparison. */
3190 if (compare_code != orig_compare_code
3191 /* ??? Do we need to verify the zero rtx? */
3192 && XEXP (*cc_use_loc, 1) == const0_rtx)
3193 {
3194 /* Replace cc_use_loc with entire new RTX. */
3195 SUBST (*cc_use_loc,
3196 gen_rtx_fmt_ee (compare_code, compare_mode,
3197 newpat_dest, const0_rtx));
3198 undobuf.other_insn = cc_use_insn;
3199 }
3200 else if (compare_mode != orig_compare_mode)
3201 {
3202 /* Just replace the CC reg with a new mode. */
3203 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3204 undobuf.other_insn = cc_use_insn;
3205 }
3206 }
3207
3208 /* Now we modify the current newpat:
3209 First, SET_DEST(newpat) is updated if the CC mode has been
3210 altered. For targets without SELECT_CC_MODE, this should be
3211 optimized away. */
3212 if (compare_mode != orig_compare_mode)
3213 SUBST (SET_DEST (newpat), newpat_dest);
3214 /* This is always done to propagate i2src into newpat. */
3215 SUBST (SET_SRC (newpat),
3216 gen_rtx_COMPARE (compare_mode, op0, op1));
3217 /* Create new version of i2pat if needed; the below PARALLEL
3218 creation needs this to work correctly. */
3219 if (! rtx_equal_p (i2src, op0))
3220 i2pat = gen_rtx_SET (i2dest, op0);
3221 i2_is_used = 1;
3222 }
3223 }
3224
3225 if (i2_is_used == 0)
3226 {
3227 /* It is possible that the source of I2 or I1 may be performing
3228 an unneeded operation, such as a ZERO_EXTEND of something
3229 that is known to have the high part zero. Handle that case
3230 by letting subst look at the inner insns.
3231
3232 Another way to do this would be to have a function that tries
3233 to simplify a single insn instead of merging two or more
3234 insns. We don't do this because of the potential of infinite
3235 loops and because of the potential extra memory required.
3236 However, doing it the way we are is a bit of a kludge and
3237 doesn't catch all cases.
3238
3239 But only do this if -fexpensive-optimizations since it slows
3240 things down and doesn't usually win.
3241
3242 This is not done in the COMPARE case above because the
3243 unmodified I2PAT is used in the PARALLEL and so a pattern
3244 with a modified I2SRC would not match. */
3245
3246 if (flag_expensive_optimizations)
3247 {
3248 /* Pass pc_rtx so no substitutions are done, just
3249 simplifications. */
3250 if (i1)
3251 {
3252 subst_low_luid = DF_INSN_LUID (i1);
3253 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3254 }
3255
3256 subst_low_luid = DF_INSN_LUID (i2);
3257 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3258 }
3259
3260 n_occurrences = 0; /* `subst' counts here */
3261 subst_low_luid = DF_INSN_LUID (i2);
3262
3263 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3264 copy of I2SRC each time we substitute it, in order to avoid creating
3265 self-referential RTL when we will be substituting I1SRC for I1DEST
3266 later. Likewise if I0 feeds into I2, either directly or indirectly
3267 through I1, and I0DEST is in I0SRC. */
3268 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3269 (i1_feeds_i2_n && i1dest_in_i1src)
3270 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3271 && i0dest_in_i0src));
3272 substed_i2 = 1;
3273
3274 /* Record whether I2's body now appears within I3's body. */
3275 i2_is_used = n_occurrences;
3276 }
3277
3278 /* If we already got a failure, don't try to do more. Otherwise, try to
3279 substitute I1 if we have it. */
3280
3281 if (i1 && GET_CODE (newpat) != CLOBBER)
3282 {
3283 /* Check that an autoincrement side-effect on I1 has not been lost.
3284 This happens if I1DEST is mentioned in I2 and dies there, and
3285 has disappeared from the new pattern. */
3286 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3287 && i1_feeds_i2_n
3288 && dead_or_set_p (i2, i1dest)
3289 && !reg_overlap_mentioned_p (i1dest, newpat))
3290 /* Before we can do this substitution, we must redo the test done
3291 above (see detailed comments there) that ensures I1DEST isn't
3292 mentioned in any SETs in NEWPAT that are field assignments. */
3293 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3294 0, 0, 0))
3295 {
3296 undo_all ();
3297 return 0;
3298 }
3299
3300 n_occurrences = 0;
3301 subst_low_luid = DF_INSN_LUID (i1);
3302
3303 /* If the following substitution will modify I1SRC, make a copy of it
3304 for the case where it is substituted for I1DEST in I2PAT later. */
3305 if (added_sets_2 && i1_feeds_i2_n)
3306 i1src_copy = copy_rtx (i1src);
3307
3308 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3309 copy of I1SRC each time we substitute it, in order to avoid creating
3310 self-referential RTL when we will be substituting I0SRC for I0DEST
3311 later. */
3312 newpat = subst (newpat, i1dest, i1src, 0, 0,
3313 i0_feeds_i1_n && i0dest_in_i0src);
3314 substed_i1 = 1;
3315
3316 /* Record whether I1's body now appears within I3's body. */
3317 i1_is_used = n_occurrences;
3318 }
3319
3320 /* Likewise for I0 if we have it. */
3321
3322 if (i0 && GET_CODE (newpat) != CLOBBER)
3323 {
3324 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3325 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3326 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3327 && !reg_overlap_mentioned_p (i0dest, newpat))
3328 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3329 0, 0, 0))
3330 {
3331 undo_all ();
3332 return 0;
3333 }
3334
3335 /* If the following substitution will modify I0SRC, make a copy of it
3336 for the case where it is substituted for I0DEST in I1PAT later. */
3337 if (added_sets_1 && i0_feeds_i1_n)
3338 i0src_copy = copy_rtx (i0src);
3339 /* And a copy for I0DEST in I2PAT substitution. */
3340 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3341 || (i0_feeds_i2_n)))
3342 i0src_copy2 = copy_rtx (i0src);
3343
3344 n_occurrences = 0;
3345 subst_low_luid = DF_INSN_LUID (i0);
3346 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3347 substed_i0 = 1;
3348 }
3349
3350 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3351 to count all the ways that I2SRC and I1SRC can be used. */
3352 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3353 && i2_is_used + added_sets_2 > 1)
3354 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3355 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3356 > 1))
3357 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3358 && (n_occurrences + added_sets_0
3359 + (added_sets_1 && i0_feeds_i1_n)
3360 + (added_sets_2 && i0_feeds_i2_n)
3361 > 1))
3362 /* Fail if we tried to make a new register. */
3363 || max_reg_num () != maxreg
3364 /* Fail if we couldn't do something and have a CLOBBER. */
3365 || GET_CODE (newpat) == CLOBBER
3366 /* Fail if this new pattern is a MULT and we didn't have one before
3367 at the outer level. */
3368 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3369 && ! have_mult))
3370 {
3371 undo_all ();
3372 return 0;
3373 }
3374
3375 /* If the actions of the earlier insns must be kept
3376 in addition to substituting them into the latest one,
3377 we must make a new PARALLEL for the latest insn
3378 to hold additional the SETs. */
3379
3380 if (added_sets_0 || added_sets_1 || added_sets_2)
3381 {
3382 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3383 combine_extras++;
3384
3385 if (GET_CODE (newpat) == PARALLEL)
3386 {
3387 rtvec old = XVEC (newpat, 0);
3388 total_sets = XVECLEN (newpat, 0) + extra_sets;
3389 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3390 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3391 sizeof (old->elem[0]) * old->num_elem);
3392 }
3393 else
3394 {
3395 rtx old = newpat;
3396 total_sets = 1 + extra_sets;
3397 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3398 XVECEXP (newpat, 0, 0) = old;
3399 }
3400
3401 if (added_sets_0)
3402 XVECEXP (newpat, 0, --total_sets) = i0pat;
3403
3404 if (added_sets_1)
3405 {
3406 rtx t = i1pat;
3407 if (i0_feeds_i1_n)
3408 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3409
3410 XVECEXP (newpat, 0, --total_sets) = t;
3411 }
3412 if (added_sets_2)
3413 {
3414 rtx t = i2pat;
3415 if (i1_feeds_i2_n)
3416 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3417 i0_feeds_i1_n && i0dest_in_i0src);
3418 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3419 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3420
3421 XVECEXP (newpat, 0, --total_sets) = t;
3422 }
3423 }
3424
3425 validate_replacement:
3426
3427 /* Note which hard regs this insn has as inputs. */
3428 mark_used_regs_combine (newpat);
3429
3430 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3431 consider splitting this pattern, we might need these clobbers. */
3432 if (i1 && GET_CODE (newpat) == PARALLEL
3433 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3434 {
3435 int len = XVECLEN (newpat, 0);
3436
3437 newpat_vec_with_clobbers = rtvec_alloc (len);
3438 for (i = 0; i < len; i++)
3439 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3440 }
3441
3442 /* We have recognized nothing yet. */
3443 insn_code_number = -1;
3444
3445 /* See if this is a PARALLEL of two SETs where one SET's destination is
3446 a register that is unused and this isn't marked as an instruction that
3447 might trap in an EH region. In that case, we just need the other SET.
3448 We prefer this over the PARALLEL.
3449
3450 This can occur when simplifying a divmod insn. We *must* test for this
3451 case here because the code below that splits two independent SETs doesn't
3452 handle this case correctly when it updates the register status.
3453
3454 It's pointless doing this if we originally had two sets, one from
3455 i3, and one from i2. Combining then splitting the parallel results
3456 in the original i2 again plus an invalid insn (which we delete).
3457 The net effect is only to move instructions around, which makes
3458 debug info less accurate. */
3459
3460 if (!(added_sets_2 && i1 == 0)
3461 && is_parallel_of_n_reg_sets (newpat, 2)
3462 && asm_noperands (newpat) < 0)
3463 {
3464 rtx set0 = XVECEXP (newpat, 0, 0);
3465 rtx set1 = XVECEXP (newpat, 0, 1);
3466 rtx oldpat = newpat;
3467
3468 if (((REG_P (SET_DEST (set1))
3469 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3470 || (GET_CODE (SET_DEST (set1)) == SUBREG
3471 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3472 && insn_nothrow_p (i3)
3473 && !side_effects_p (SET_SRC (set1)))
3474 {
3475 newpat = set0;
3476 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3477 }
3478
3479 else if (((REG_P (SET_DEST (set0))
3480 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3481 || (GET_CODE (SET_DEST (set0)) == SUBREG
3482 && find_reg_note (i3, REG_UNUSED,
3483 SUBREG_REG (SET_DEST (set0)))))
3484 && insn_nothrow_p (i3)
3485 && !side_effects_p (SET_SRC (set0)))
3486 {
3487 newpat = set1;
3488 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3489
3490 if (insn_code_number >= 0)
3491 changed_i3_dest = 1;
3492 }
3493
3494 if (insn_code_number < 0)
3495 newpat = oldpat;
3496 }
3497
3498 /* Is the result of combination a valid instruction? */
3499 if (insn_code_number < 0)
3500 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3501
3502 /* If we were combining three insns and the result is a simple SET
3503 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3504 insns. There are two ways to do this. It can be split using a
3505 machine-specific method (like when you have an addition of a large
3506 constant) or by combine in the function find_split_point. */
3507
3508 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3509 && asm_noperands (newpat) < 0)
3510 {
3511 rtx parallel, *split;
3512 rtx_insn *m_split_insn;
3513
3514 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3515 use I2DEST as a scratch register will help. In the latter case,
3516 convert I2DEST to the mode of the source of NEWPAT if we can. */
3517
3518 m_split_insn = combine_split_insns (newpat, i3);
3519
3520 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3521 inputs of NEWPAT. */
3522
3523 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3524 possible to try that as a scratch reg. This would require adding
3525 more code to make it work though. */
3526
3527 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3528 {
3529 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3530
3531 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3532 (temporarily, until we are committed to this instruction
3533 combination) does not work: for example, any call to nonzero_bits
3534 on the register (from a splitter in the MD file, for example)
3535 will get the old information, which is invalid.
3536
3537 Since nowadays we can create registers during combine just fine,
3538 we should just create a new one here, not reuse i2dest. */
3539
3540 /* First try to split using the original register as a
3541 scratch register. */
3542 parallel = gen_rtx_PARALLEL (VOIDmode,
3543 gen_rtvec (2, newpat,
3544 gen_rtx_CLOBBER (VOIDmode,
3545 i2dest)));
3546 m_split_insn = combine_split_insns (parallel, i3);
3547
3548 /* If that didn't work, try changing the mode of I2DEST if
3549 we can. */
3550 if (m_split_insn == 0
3551 && new_mode != GET_MODE (i2dest)
3552 && new_mode != VOIDmode
3553 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3554 {
3555 machine_mode old_mode = GET_MODE (i2dest);
3556 rtx ni2dest;
3557
3558 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3559 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3560 else
3561 {
3562 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3563 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3564 }
3565
3566 parallel = (gen_rtx_PARALLEL
3567 (VOIDmode,
3568 gen_rtvec (2, newpat,
3569 gen_rtx_CLOBBER (VOIDmode,
3570 ni2dest))));
3571 m_split_insn = combine_split_insns (parallel, i3);
3572
3573 if (m_split_insn == 0
3574 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3575 {
3576 struct undo *buf;
3577
3578 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3579 buf = undobuf.undos;
3580 undobuf.undos = buf->next;
3581 buf->next = undobuf.frees;
3582 undobuf.frees = buf;
3583 }
3584 }
3585
3586 i2scratch = m_split_insn != 0;
3587 }
3588
3589 /* If recog_for_combine has discarded clobbers, try to use them
3590 again for the split. */
3591 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3592 {
3593 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3594 m_split_insn = combine_split_insns (parallel, i3);
3595 }
3596
3597 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3598 {
3599 rtx m_split_pat = PATTERN (m_split_insn);
3600 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3601 if (insn_code_number >= 0)
3602 newpat = m_split_pat;
3603 }
3604 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3605 && (next_nonnote_nondebug_insn (i2) == i3
3606 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3607 {
3608 rtx i2set, i3set;
3609 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3610 newi2pat = PATTERN (m_split_insn);
3611
3612 i3set = single_set (NEXT_INSN (m_split_insn));
3613 i2set = single_set (m_split_insn);
3614
3615 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3616
3617 /* If I2 or I3 has multiple SETs, we won't know how to track
3618 register status, so don't use these insns. If I2's destination
3619 is used between I2 and I3, we also can't use these insns. */
3620
3621 if (i2_code_number >= 0 && i2set && i3set
3622 && (next_nonnote_nondebug_insn (i2) == i3
3623 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3624 insn_code_number = recog_for_combine (&newi3pat, i3,
3625 &new_i3_notes);
3626 if (insn_code_number >= 0)
3627 newpat = newi3pat;
3628
3629 /* It is possible that both insns now set the destination of I3.
3630 If so, we must show an extra use of it. */
3631
3632 if (insn_code_number >= 0)
3633 {
3634 rtx new_i3_dest = SET_DEST (i3set);
3635 rtx new_i2_dest = SET_DEST (i2set);
3636
3637 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3638 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3639 || GET_CODE (new_i3_dest) == SUBREG)
3640 new_i3_dest = XEXP (new_i3_dest, 0);
3641
3642 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3643 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3644 || GET_CODE (new_i2_dest) == SUBREG)
3645 new_i2_dest = XEXP (new_i2_dest, 0);
3646
3647 if (REG_P (new_i3_dest)
3648 && REG_P (new_i2_dest)
3649 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3650 && REGNO (new_i2_dest) < reg_n_sets_max)
3651 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3652 }
3653 }
3654
3655 /* If we can split it and use I2DEST, go ahead and see if that
3656 helps things be recognized. Verify that none of the registers
3657 are set between I2 and I3. */
3658 if (insn_code_number < 0
3659 && (split = find_split_point (&newpat, i3, false)) != 0
3660 && (!HAVE_cc0 || REG_P (i2dest))
3661 /* We need I2DEST in the proper mode. If it is a hard register
3662 or the only use of a pseudo, we can change its mode.
3663 Make sure we don't change a hard register to have a mode that
3664 isn't valid for it, or change the number of registers. */
3665 && (GET_MODE (*split) == GET_MODE (i2dest)
3666 || GET_MODE (*split) == VOIDmode
3667 || can_change_dest_mode (i2dest, added_sets_2,
3668 GET_MODE (*split)))
3669 && (next_nonnote_nondebug_insn (i2) == i3
3670 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3671 /* We can't overwrite I2DEST if its value is still used by
3672 NEWPAT. */
3673 && ! reg_referenced_p (i2dest, newpat))
3674 {
3675 rtx newdest = i2dest;
3676 enum rtx_code split_code = GET_CODE (*split);
3677 machine_mode split_mode = GET_MODE (*split);
3678 bool subst_done = false;
3679 newi2pat = NULL_RTX;
3680
3681 i2scratch = true;
3682
3683 /* *SPLIT may be part of I2SRC, so make sure we have the
3684 original expression around for later debug processing.
3685 We should not need I2SRC any more in other cases. */
3686 if (MAY_HAVE_DEBUG_INSNS)
3687 i2src = copy_rtx (i2src);
3688 else
3689 i2src = NULL;
3690
3691 /* Get NEWDEST as a register in the proper mode. We have already
3692 validated that we can do this. */
3693 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3694 {
3695 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3696 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3697 else
3698 {
3699 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3700 newdest = regno_reg_rtx[REGNO (i2dest)];
3701 }
3702 }
3703
3704 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3705 an ASHIFT. This can occur if it was inside a PLUS and hence
3706 appeared to be a memory address. This is a kludge. */
3707 if (split_code == MULT
3708 && CONST_INT_P (XEXP (*split, 1))
3709 && INTVAL (XEXP (*split, 1)) > 0
3710 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3711 {
3712 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3713 XEXP (*split, 0), GEN_INT (i)));
3714 /* Update split_code because we may not have a multiply
3715 anymore. */
3716 split_code = GET_CODE (*split);
3717 }
3718
3719 /* Similarly for (plus (mult FOO (const_int pow2))). */
3720 if (split_code == PLUS
3721 && GET_CODE (XEXP (*split, 0)) == MULT
3722 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3723 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3724 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3725 {
3726 rtx nsplit = XEXP (*split, 0);
3727 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3728 XEXP (nsplit, 0), GEN_INT (i)));
3729 /* Update split_code because we may not have a multiply
3730 anymore. */
3731 split_code = GET_CODE (*split);
3732 }
3733
3734 #ifdef INSN_SCHEDULING
3735 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3736 be written as a ZERO_EXTEND. */
3737 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3738 {
3739 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3740 what it really is. */
3741 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3742 == SIGN_EXTEND)
3743 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3744 SUBREG_REG (*split)));
3745 else
3746 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3747 SUBREG_REG (*split)));
3748 }
3749 #endif
3750
3751 /* Attempt to split binary operators using arithmetic identities. */
3752 if (BINARY_P (SET_SRC (newpat))
3753 && split_mode == GET_MODE (SET_SRC (newpat))
3754 && ! side_effects_p (SET_SRC (newpat)))
3755 {
3756 rtx setsrc = SET_SRC (newpat);
3757 machine_mode mode = GET_MODE (setsrc);
3758 enum rtx_code code = GET_CODE (setsrc);
3759 rtx src_op0 = XEXP (setsrc, 0);
3760 rtx src_op1 = XEXP (setsrc, 1);
3761
3762 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3763 if (rtx_equal_p (src_op0, src_op1))
3764 {
3765 newi2pat = gen_rtx_SET (newdest, src_op0);
3766 SUBST (XEXP (setsrc, 0), newdest);
3767 SUBST (XEXP (setsrc, 1), newdest);
3768 subst_done = true;
3769 }
3770 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3771 else if ((code == PLUS || code == MULT)
3772 && GET_CODE (src_op0) == code
3773 && GET_CODE (XEXP (src_op0, 0)) == code
3774 && (INTEGRAL_MODE_P (mode)
3775 || (FLOAT_MODE_P (mode)
3776 && flag_unsafe_math_optimizations)))
3777 {
3778 rtx p = XEXP (XEXP (src_op0, 0), 0);
3779 rtx q = XEXP (XEXP (src_op0, 0), 1);
3780 rtx r = XEXP (src_op0, 1);
3781 rtx s = src_op1;
3782
3783 /* Split both "((X op Y) op X) op Y" and
3784 "((X op Y) op Y) op X" as "T op T" where T is
3785 "X op Y". */
3786 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3787 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3788 {
3789 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3790 SUBST (XEXP (setsrc, 0), newdest);
3791 SUBST (XEXP (setsrc, 1), newdest);
3792 subst_done = true;
3793 }
3794 /* Split "((X op X) op Y) op Y)" as "T op T" where
3795 T is "X op Y". */
3796 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3797 {
3798 rtx tmp = simplify_gen_binary (code, mode, p, r);
3799 newi2pat = gen_rtx_SET (newdest, tmp);
3800 SUBST (XEXP (setsrc, 0), newdest);
3801 SUBST (XEXP (setsrc, 1), newdest);
3802 subst_done = true;
3803 }
3804 }
3805 }
3806
3807 if (!subst_done)
3808 {
3809 newi2pat = gen_rtx_SET (newdest, *split);
3810 SUBST (*split, newdest);
3811 }
3812
3813 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3814
3815 /* recog_for_combine might have added CLOBBERs to newi2pat.
3816 Make sure NEWPAT does not depend on the clobbered regs. */
3817 if (GET_CODE (newi2pat) == PARALLEL)
3818 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3819 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3820 {
3821 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3822 if (reg_overlap_mentioned_p (reg, newpat))
3823 {
3824 undo_all ();
3825 return 0;
3826 }
3827 }
3828
3829 /* If the split point was a MULT and we didn't have one before,
3830 don't use one now. */
3831 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3832 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3833 }
3834 }
3835
3836 /* Check for a case where we loaded from memory in a narrow mode and
3837 then sign extended it, but we need both registers. In that case,
3838 we have a PARALLEL with both loads from the same memory location.
3839 We can split this into a load from memory followed by a register-register
3840 copy. This saves at least one insn, more if register allocation can
3841 eliminate the copy.
3842
3843 We cannot do this if the destination of the first assignment is a
3844 condition code register or cc0. We eliminate this case by making sure
3845 the SET_DEST and SET_SRC have the same mode.
3846
3847 We cannot do this if the destination of the second assignment is
3848 a register that we have already assumed is zero-extended. Similarly
3849 for a SUBREG of such a register. */
3850
3851 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3852 && GET_CODE (newpat) == PARALLEL
3853 && XVECLEN (newpat, 0) == 2
3854 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3855 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3856 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3857 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3858 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3859 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3860 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3861 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3862 DF_INSN_LUID (i2))
3863 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3864 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3865 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3866 (REG_P (temp_expr)
3867 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3868 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3869 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3870 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3871 != GET_MODE_MASK (word_mode))))
3872 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3873 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3874 (REG_P (temp_expr)
3875 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3876 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3877 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3878 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3879 != GET_MODE_MASK (word_mode)))))
3880 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3881 SET_SRC (XVECEXP (newpat, 0, 1)))
3882 && ! find_reg_note (i3, REG_UNUSED,
3883 SET_DEST (XVECEXP (newpat, 0, 0))))
3884 {
3885 rtx ni2dest;
3886
3887 newi2pat = XVECEXP (newpat, 0, 0);
3888 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3889 newpat = XVECEXP (newpat, 0, 1);
3890 SUBST (SET_SRC (newpat),
3891 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3892 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3893
3894 if (i2_code_number >= 0)
3895 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3896
3897 if (insn_code_number >= 0)
3898 swap_i2i3 = 1;
3899 }
3900
3901 /* Similarly, check for a case where we have a PARALLEL of two independent
3902 SETs but we started with three insns. In this case, we can do the sets
3903 as two separate insns. This case occurs when some SET allows two
3904 other insns to combine, but the destination of that SET is still live.
3905
3906 Also do this if we started with two insns and (at least) one of the
3907 resulting sets is a noop; this noop will be deleted later. */
3908
3909 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3910 && GET_CODE (newpat) == PARALLEL
3911 && XVECLEN (newpat, 0) == 2
3912 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3913 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3914 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3915 || set_noop_p (XVECEXP (newpat, 0, 1)))
3916 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3917 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3918 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3919 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3920 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3921 XVECEXP (newpat, 0, 0))
3922 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3923 XVECEXP (newpat, 0, 1))
3924 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3925 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3926 {
3927 rtx set0 = XVECEXP (newpat, 0, 0);
3928 rtx set1 = XVECEXP (newpat, 0, 1);
3929
3930 /* Normally, it doesn't matter which of the two is done first,
3931 but the one that references cc0 can't be the second, and
3932 one which uses any regs/memory set in between i2 and i3 can't
3933 be first. The PARALLEL might also have been pre-existing in i3,
3934 so we need to make sure that we won't wrongly hoist a SET to i2
3935 that would conflict with a death note present in there. */
3936 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3937 && !(REG_P (SET_DEST (set1))
3938 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3939 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3940 && find_reg_note (i2, REG_DEAD,
3941 SUBREG_REG (SET_DEST (set1))))
3942 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3943 /* If I3 is a jump, ensure that set0 is a jump so that
3944 we do not create invalid RTL. */
3945 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3946 )
3947 {
3948 newi2pat = set1;
3949 newpat = set0;
3950 }
3951 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3952 && !(REG_P (SET_DEST (set0))
3953 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3954 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3955 && find_reg_note (i2, REG_DEAD,
3956 SUBREG_REG (SET_DEST (set0))))
3957 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3958 /* If I3 is a jump, ensure that set1 is a jump so that
3959 we do not create invalid RTL. */
3960 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3961 )
3962 {
3963 newi2pat = set0;
3964 newpat = set1;
3965 }
3966 else
3967 {
3968 undo_all ();
3969 return 0;
3970 }
3971
3972 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3973
3974 if (i2_code_number >= 0)
3975 {
3976 /* recog_for_combine might have added CLOBBERs to newi2pat.
3977 Make sure NEWPAT does not depend on the clobbered regs. */
3978 if (GET_CODE (newi2pat) == PARALLEL)
3979 {
3980 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3981 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3982 {
3983 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3984 if (reg_overlap_mentioned_p (reg, newpat))
3985 {
3986 undo_all ();
3987 return 0;
3988 }
3989 }
3990 }
3991
3992 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3993 }
3994 }
3995
3996 /* If it still isn't recognized, fail and change things back the way they
3997 were. */
3998 if ((insn_code_number < 0
3999 /* Is the result a reasonable ASM_OPERANDS? */
4000 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4001 {
4002 undo_all ();
4003 return 0;
4004 }
4005
4006 /* If we had to change another insn, make sure it is valid also. */
4007 if (undobuf.other_insn)
4008 {
4009 CLEAR_HARD_REG_SET (newpat_used_regs);
4010
4011 other_pat = PATTERN (undobuf.other_insn);
4012 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4013 &new_other_notes);
4014
4015 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4016 {
4017 undo_all ();
4018 return 0;
4019 }
4020 }
4021
4022 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4023 they are adjacent to each other or not. */
4024 if (HAVE_cc0)
4025 {
4026 rtx_insn *p = prev_nonnote_insn (i3);
4027 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4028 && sets_cc0_p (newi2pat))
4029 {
4030 undo_all ();
4031 return 0;
4032 }
4033 }
4034
4035 /* Only allow this combination if insn_rtx_costs reports that the
4036 replacement instructions are cheaper than the originals. */
4037 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4038 {
4039 undo_all ();
4040 return 0;
4041 }
4042
4043 if (MAY_HAVE_DEBUG_INSNS)
4044 {
4045 struct undo *undo;
4046
4047 for (undo = undobuf.undos; undo; undo = undo->next)
4048 if (undo->kind == UNDO_MODE)
4049 {
4050 rtx reg = *undo->where.r;
4051 machine_mode new_mode = GET_MODE (reg);
4052 machine_mode old_mode = undo->old_contents.m;
4053
4054 /* Temporarily revert mode back. */
4055 adjust_reg_mode (reg, old_mode);
4056
4057 if (reg == i2dest && i2scratch)
4058 {
4059 /* If we used i2dest as a scratch register with a
4060 different mode, substitute it for the original
4061 i2src while its original mode is temporarily
4062 restored, and then clear i2scratch so that we don't
4063 do it again later. */
4064 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4065 this_basic_block);
4066 i2scratch = false;
4067 /* Put back the new mode. */
4068 adjust_reg_mode (reg, new_mode);
4069 }
4070 else
4071 {
4072 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4073 rtx_insn *first, *last;
4074
4075 if (reg == i2dest)
4076 {
4077 first = i2;
4078 last = last_combined_insn;
4079 }
4080 else
4081 {
4082 first = i3;
4083 last = undobuf.other_insn;
4084 gcc_assert (last);
4085 if (DF_INSN_LUID (last)
4086 < DF_INSN_LUID (last_combined_insn))
4087 last = last_combined_insn;
4088 }
4089
4090 /* We're dealing with a reg that changed mode but not
4091 meaning, so we want to turn it into a subreg for
4092 the new mode. However, because of REG sharing and
4093 because its mode had already changed, we have to do
4094 it in two steps. First, replace any debug uses of
4095 reg, with its original mode temporarily restored,
4096 with this copy we have created; then, replace the
4097 copy with the SUBREG of the original shared reg,
4098 once again changed to the new mode. */
4099 propagate_for_debug (first, last, reg, tempreg,
4100 this_basic_block);
4101 adjust_reg_mode (reg, new_mode);
4102 propagate_for_debug (first, last, tempreg,
4103 lowpart_subreg (old_mode, reg, new_mode),
4104 this_basic_block);
4105 }
4106 }
4107 }
4108
4109 /* If we will be able to accept this, we have made a
4110 change to the destination of I3. This requires us to
4111 do a few adjustments. */
4112
4113 if (changed_i3_dest)
4114 {
4115 PATTERN (i3) = newpat;
4116 adjust_for_new_dest (i3);
4117 }
4118
4119 /* We now know that we can do this combination. Merge the insns and
4120 update the status of registers and LOG_LINKS. */
4121
4122 if (undobuf.other_insn)
4123 {
4124 rtx note, next;
4125
4126 PATTERN (undobuf.other_insn) = other_pat;
4127
4128 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4129 ensure that they are still valid. Then add any non-duplicate
4130 notes added by recog_for_combine. */
4131 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4132 {
4133 next = XEXP (note, 1);
4134
4135 if ((REG_NOTE_KIND (note) == REG_DEAD
4136 && !reg_referenced_p (XEXP (note, 0),
4137 PATTERN (undobuf.other_insn)))
4138 ||(REG_NOTE_KIND (note) == REG_UNUSED
4139 && !reg_set_p (XEXP (note, 0),
4140 PATTERN (undobuf.other_insn))))
4141 remove_note (undobuf.other_insn, note);
4142 }
4143
4144 distribute_notes (new_other_notes, undobuf.other_insn,
4145 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4146 NULL_RTX);
4147 }
4148
4149 if (swap_i2i3)
4150 {
4151 rtx_insn *insn;
4152 struct insn_link *link;
4153 rtx ni2dest;
4154
4155 /* I3 now uses what used to be its destination and which is now
4156 I2's destination. This requires us to do a few adjustments. */
4157 PATTERN (i3) = newpat;
4158 adjust_for_new_dest (i3);
4159
4160 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4161 so we still will.
4162
4163 However, some later insn might be using I2's dest and have
4164 a LOG_LINK pointing at I3. We must remove this link.
4165 The simplest way to remove the link is to point it at I1,
4166 which we know will be a NOTE. */
4167
4168 /* newi2pat is usually a SET here; however, recog_for_combine might
4169 have added some clobbers. */
4170 if (GET_CODE (newi2pat) == PARALLEL)
4171 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4172 else
4173 ni2dest = SET_DEST (newi2pat);
4174
4175 for (insn = NEXT_INSN (i3);
4176 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4177 || insn != BB_HEAD (this_basic_block->next_bb));
4178 insn = NEXT_INSN (insn))
4179 {
4180 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4181 {
4182 FOR_EACH_LOG_LINK (link, insn)
4183 if (link->insn == i3)
4184 link->insn = i1;
4185
4186 break;
4187 }
4188 }
4189 }
4190
4191 {
4192 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4193 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4194 rtx midnotes = 0;
4195 int from_luid;
4196 /* Compute which registers we expect to eliminate. newi2pat may be setting
4197 either i3dest or i2dest, so we must check it. */
4198 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4199 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4200 || !i2dest_killed
4201 ? 0 : i2dest);
4202 /* For i1, we need to compute both local elimination and global
4203 elimination information with respect to newi2pat because i1dest
4204 may be the same as i3dest, in which case newi2pat may be setting
4205 i1dest. Global information is used when distributing REG_DEAD
4206 note for i2 and i3, in which case it does matter if newi2pat sets
4207 i1dest or not.
4208
4209 Local information is used when distributing REG_DEAD note for i1,
4210 in which case it doesn't matter if newi2pat sets i1dest or not.
4211 See PR62151, if we have four insns combination:
4212 i0: r0 <- i0src
4213 i1: r1 <- i1src (using r0)
4214 REG_DEAD (r0)
4215 i2: r0 <- i2src (using r1)
4216 i3: r3 <- i3src (using r0)
4217 ix: using r0
4218 From i1's point of view, r0 is eliminated, no matter if it is set
4219 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4220 should be discarded.
4221
4222 Note local information only affects cases in forms like "I1->I2->I3",
4223 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4224 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4225 i0dest anyway. */
4226 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4227 || !i1dest_killed
4228 ? 0 : i1dest);
4229 rtx elim_i1 = (local_elim_i1 == 0
4230 || (newi2pat && reg_set_p (i1dest, newi2pat))
4231 ? 0 : i1dest);
4232 /* Same case as i1. */
4233 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4234 ? 0 : i0dest);
4235 rtx elim_i0 = (local_elim_i0 == 0
4236 || (newi2pat && reg_set_p (i0dest, newi2pat))
4237 ? 0 : i0dest);
4238
4239 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4240 clear them. */
4241 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4242 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4243 if (i1)
4244 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4245 if (i0)
4246 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4247
4248 /* Ensure that we do not have something that should not be shared but
4249 occurs multiple times in the new insns. Check this by first
4250 resetting all the `used' flags and then copying anything is shared. */
4251
4252 reset_used_flags (i3notes);
4253 reset_used_flags (i2notes);
4254 reset_used_flags (i1notes);
4255 reset_used_flags (i0notes);
4256 reset_used_flags (newpat);
4257 reset_used_flags (newi2pat);
4258 if (undobuf.other_insn)
4259 reset_used_flags (PATTERN (undobuf.other_insn));
4260
4261 i3notes = copy_rtx_if_shared (i3notes);
4262 i2notes = copy_rtx_if_shared (i2notes);
4263 i1notes = copy_rtx_if_shared (i1notes);
4264 i0notes = copy_rtx_if_shared (i0notes);
4265 newpat = copy_rtx_if_shared (newpat);
4266 newi2pat = copy_rtx_if_shared (newi2pat);
4267 if (undobuf.other_insn)
4268 reset_used_flags (PATTERN (undobuf.other_insn));
4269
4270 INSN_CODE (i3) = insn_code_number;
4271 PATTERN (i3) = newpat;
4272
4273 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4274 {
4275 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4276
4277 reset_used_flags (call_usage);
4278 call_usage = copy_rtx (call_usage);
4279
4280 if (substed_i2)
4281 {
4282 /* I2SRC must still be meaningful at this point. Some splitting
4283 operations can invalidate I2SRC, but those operations do not
4284 apply to calls. */
4285 gcc_assert (i2src);
4286 replace_rtx (call_usage, i2dest, i2src);
4287 }
4288
4289 if (substed_i1)
4290 replace_rtx (call_usage, i1dest, i1src);
4291 if (substed_i0)
4292 replace_rtx (call_usage, i0dest, i0src);
4293
4294 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4295 }
4296
4297 if (undobuf.other_insn)
4298 INSN_CODE (undobuf.other_insn) = other_code_number;
4299
4300 /* We had one special case above where I2 had more than one set and
4301 we replaced a destination of one of those sets with the destination
4302 of I3. In that case, we have to update LOG_LINKS of insns later
4303 in this basic block. Note that this (expensive) case is rare.
4304
4305 Also, in this case, we must pretend that all REG_NOTEs for I2
4306 actually came from I3, so that REG_UNUSED notes from I2 will be
4307 properly handled. */
4308
4309 if (i3_subst_into_i2)
4310 {
4311 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4312 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4313 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4314 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4315 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4316 && ! find_reg_note (i2, REG_UNUSED,
4317 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4318 for (temp_insn = NEXT_INSN (i2);
4319 temp_insn
4320 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4321 || BB_HEAD (this_basic_block) != temp_insn);
4322 temp_insn = NEXT_INSN (temp_insn))
4323 if (temp_insn != i3 && INSN_P (temp_insn))
4324 FOR_EACH_LOG_LINK (link, temp_insn)
4325 if (link->insn == i2)
4326 link->insn = i3;
4327
4328 if (i3notes)
4329 {
4330 rtx link = i3notes;
4331 while (XEXP (link, 1))
4332 link = XEXP (link, 1);
4333 XEXP (link, 1) = i2notes;
4334 }
4335 else
4336 i3notes = i2notes;
4337 i2notes = 0;
4338 }
4339
4340 LOG_LINKS (i3) = NULL;
4341 REG_NOTES (i3) = 0;
4342 LOG_LINKS (i2) = NULL;
4343 REG_NOTES (i2) = 0;
4344
4345 if (newi2pat)
4346 {
4347 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4348 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4349 this_basic_block);
4350 INSN_CODE (i2) = i2_code_number;
4351 PATTERN (i2) = newi2pat;
4352 }
4353 else
4354 {
4355 if (MAY_HAVE_DEBUG_INSNS && i2src)
4356 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4357 this_basic_block);
4358 SET_INSN_DELETED (i2);
4359 }
4360
4361 if (i1)
4362 {
4363 LOG_LINKS (i1) = NULL;
4364 REG_NOTES (i1) = 0;
4365 if (MAY_HAVE_DEBUG_INSNS)
4366 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4367 this_basic_block);
4368 SET_INSN_DELETED (i1);
4369 }
4370
4371 if (i0)
4372 {
4373 LOG_LINKS (i0) = NULL;
4374 REG_NOTES (i0) = 0;
4375 if (MAY_HAVE_DEBUG_INSNS)
4376 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4377 this_basic_block);
4378 SET_INSN_DELETED (i0);
4379 }
4380
4381 /* Get death notes for everything that is now used in either I3 or
4382 I2 and used to die in a previous insn. If we built two new
4383 patterns, move from I1 to I2 then I2 to I3 so that we get the
4384 proper movement on registers that I2 modifies. */
4385
4386 if (i0)
4387 from_luid = DF_INSN_LUID (i0);
4388 else if (i1)
4389 from_luid = DF_INSN_LUID (i1);
4390 else
4391 from_luid = DF_INSN_LUID (i2);
4392 if (newi2pat)
4393 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4394 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4395
4396 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4397 if (i3notes)
4398 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4399 elim_i2, elim_i1, elim_i0);
4400 if (i2notes)
4401 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4402 elim_i2, elim_i1, elim_i0);
4403 if (i1notes)
4404 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4405 elim_i2, local_elim_i1, local_elim_i0);
4406 if (i0notes)
4407 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4408 elim_i2, elim_i1, local_elim_i0);
4409 if (midnotes)
4410 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4411 elim_i2, elim_i1, elim_i0);
4412
4413 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4414 know these are REG_UNUSED and want them to go to the desired insn,
4415 so we always pass it as i3. */
4416
4417 if (newi2pat && new_i2_notes)
4418 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4419 NULL_RTX);
4420
4421 if (new_i3_notes)
4422 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4423 NULL_RTX);
4424
4425 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4426 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4427 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4428 in that case, it might delete I2. Similarly for I2 and I1.
4429 Show an additional death due to the REG_DEAD note we make here. If
4430 we discard it in distribute_notes, we will decrement it again. */
4431
4432 if (i3dest_killed)
4433 {
4434 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4435 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4436 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4437 elim_i1, elim_i0);
4438 else
4439 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4440 elim_i2, elim_i1, elim_i0);
4441 }
4442
4443 if (i2dest_in_i2src)
4444 {
4445 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4446 if (newi2pat && reg_set_p (i2dest, newi2pat))
4447 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4448 NULL_RTX, NULL_RTX);
4449 else
4450 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4451 NULL_RTX, NULL_RTX, NULL_RTX);
4452 }
4453
4454 if (i1dest_in_i1src)
4455 {
4456 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4457 if (newi2pat && reg_set_p (i1dest, newi2pat))
4458 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4459 NULL_RTX, NULL_RTX);
4460 else
4461 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4462 NULL_RTX, NULL_RTX, NULL_RTX);
4463 }
4464
4465 if (i0dest_in_i0src)
4466 {
4467 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4468 if (newi2pat && reg_set_p (i0dest, newi2pat))
4469 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4470 NULL_RTX, NULL_RTX);
4471 else
4472 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4473 NULL_RTX, NULL_RTX, NULL_RTX);
4474 }
4475
4476 distribute_links (i3links);
4477 distribute_links (i2links);
4478 distribute_links (i1links);
4479 distribute_links (i0links);
4480
4481 if (REG_P (i2dest))
4482 {
4483 struct insn_link *link;
4484 rtx_insn *i2_insn = 0;
4485 rtx i2_val = 0, set;
4486
4487 /* The insn that used to set this register doesn't exist, and
4488 this life of the register may not exist either. See if one of
4489 I3's links points to an insn that sets I2DEST. If it does,
4490 that is now the last known value for I2DEST. If we don't update
4491 this and I2 set the register to a value that depended on its old
4492 contents, we will get confused. If this insn is used, thing
4493 will be set correctly in combine_instructions. */
4494 FOR_EACH_LOG_LINK (link, i3)
4495 if ((set = single_set (link->insn)) != 0
4496 && rtx_equal_p (i2dest, SET_DEST (set)))
4497 i2_insn = link->insn, i2_val = SET_SRC (set);
4498
4499 record_value_for_reg (i2dest, i2_insn, i2_val);
4500
4501 /* If the reg formerly set in I2 died only once and that was in I3,
4502 zero its use count so it won't make `reload' do any work. */
4503 if (! added_sets_2
4504 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4505 && ! i2dest_in_i2src
4506 && REGNO (i2dest) < reg_n_sets_max)
4507 INC_REG_N_SETS (REGNO (i2dest), -1);
4508 }
4509
4510 if (i1 && REG_P (i1dest))
4511 {
4512 struct insn_link *link;
4513 rtx_insn *i1_insn = 0;
4514 rtx i1_val = 0, set;
4515
4516 FOR_EACH_LOG_LINK (link, i3)
4517 if ((set = single_set (link->insn)) != 0
4518 && rtx_equal_p (i1dest, SET_DEST (set)))
4519 i1_insn = link->insn, i1_val = SET_SRC (set);
4520
4521 record_value_for_reg (i1dest, i1_insn, i1_val);
4522
4523 if (! added_sets_1
4524 && ! i1dest_in_i1src
4525 && REGNO (i1dest) < reg_n_sets_max)
4526 INC_REG_N_SETS (REGNO (i1dest), -1);
4527 }
4528
4529 if (i0 && REG_P (i0dest))
4530 {
4531 struct insn_link *link;
4532 rtx_insn *i0_insn = 0;
4533 rtx i0_val = 0, set;
4534
4535 FOR_EACH_LOG_LINK (link, i3)
4536 if ((set = single_set (link->insn)) != 0
4537 && rtx_equal_p (i0dest, SET_DEST (set)))
4538 i0_insn = link->insn, i0_val = SET_SRC (set);
4539
4540 record_value_for_reg (i0dest, i0_insn, i0_val);
4541
4542 if (! added_sets_0
4543 && ! i0dest_in_i0src
4544 && REGNO (i0dest) < reg_n_sets_max)
4545 INC_REG_N_SETS (REGNO (i0dest), -1);
4546 }
4547
4548 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4549 been made to this insn. The order is important, because newi2pat
4550 can affect nonzero_bits of newpat. */
4551 if (newi2pat)
4552 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4553 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4554 }
4555
4556 if (undobuf.other_insn != NULL_RTX)
4557 {
4558 if (dump_file)
4559 {
4560 fprintf (dump_file, "modifying other_insn ");
4561 dump_insn_slim (dump_file, undobuf.other_insn);
4562 }
4563 df_insn_rescan (undobuf.other_insn);
4564 }
4565
4566 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4567 {
4568 if (dump_file)
4569 {
4570 fprintf (dump_file, "modifying insn i0 ");
4571 dump_insn_slim (dump_file, i0);
4572 }
4573 df_insn_rescan (i0);
4574 }
4575
4576 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4577 {
4578 if (dump_file)
4579 {
4580 fprintf (dump_file, "modifying insn i1 ");
4581 dump_insn_slim (dump_file, i1);
4582 }
4583 df_insn_rescan (i1);
4584 }
4585
4586 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4587 {
4588 if (dump_file)
4589 {
4590 fprintf (dump_file, "modifying insn i2 ");
4591 dump_insn_slim (dump_file, i2);
4592 }
4593 df_insn_rescan (i2);
4594 }
4595
4596 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4597 {
4598 if (dump_file)
4599 {
4600 fprintf (dump_file, "modifying insn i3 ");
4601 dump_insn_slim (dump_file, i3);
4602 }
4603 df_insn_rescan (i3);
4604 }
4605
4606 /* Set new_direct_jump_p if a new return or simple jump instruction
4607 has been created. Adjust the CFG accordingly. */
4608 if (returnjump_p (i3) || any_uncondjump_p (i3))
4609 {
4610 *new_direct_jump_p = 1;
4611 mark_jump_label (PATTERN (i3), i3, 0);
4612 update_cfg_for_uncondjump (i3);
4613 }
4614
4615 if (undobuf.other_insn != NULL_RTX
4616 && (returnjump_p (undobuf.other_insn)
4617 || any_uncondjump_p (undobuf.other_insn)))
4618 {
4619 *new_direct_jump_p = 1;
4620 update_cfg_for_uncondjump (undobuf.other_insn);
4621 }
4622
4623 /* A noop might also need cleaning up of CFG, if it comes from the
4624 simplification of a jump. */
4625 if (JUMP_P (i3)
4626 && GET_CODE (newpat) == SET
4627 && SET_SRC (newpat) == pc_rtx
4628 && SET_DEST (newpat) == pc_rtx)
4629 {
4630 *new_direct_jump_p = 1;
4631 update_cfg_for_uncondjump (i3);
4632 }
4633
4634 if (undobuf.other_insn != NULL_RTX
4635 && JUMP_P (undobuf.other_insn)
4636 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4637 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4638 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4639 {
4640 *new_direct_jump_p = 1;
4641 update_cfg_for_uncondjump (undobuf.other_insn);
4642 }
4643
4644 combine_successes++;
4645 undo_commit ();
4646
4647 if (added_links_insn
4648 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4649 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4650 return added_links_insn;
4651 else
4652 return newi2pat ? i2 : i3;
4653 }
4654 \f
4655 /* Get a marker for undoing to the current state. */
4656
4657 static void *
4658 get_undo_marker (void)
4659 {
4660 return undobuf.undos;
4661 }
4662
4663 /* Undo the modifications up to the marker. */
4664
4665 static void
4666 undo_to_marker (void *marker)
4667 {
4668 struct undo *undo, *next;
4669
4670 for (undo = undobuf.undos; undo != marker; undo = next)
4671 {
4672 gcc_assert (undo);
4673
4674 next = undo->next;
4675 switch (undo->kind)
4676 {
4677 case UNDO_RTX:
4678 *undo->where.r = undo->old_contents.r;
4679 break;
4680 case UNDO_INT:
4681 *undo->where.i = undo->old_contents.i;
4682 break;
4683 case UNDO_MODE:
4684 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4685 break;
4686 case UNDO_LINKS:
4687 *undo->where.l = undo->old_contents.l;
4688 break;
4689 default:
4690 gcc_unreachable ();
4691 }
4692
4693 undo->next = undobuf.frees;
4694 undobuf.frees = undo;
4695 }
4696
4697 undobuf.undos = (struct undo *) marker;
4698 }
4699
4700 /* Undo all the modifications recorded in undobuf. */
4701
4702 static void
4703 undo_all (void)
4704 {
4705 undo_to_marker (0);
4706 }
4707
4708 /* We've committed to accepting the changes we made. Move all
4709 of the undos to the free list. */
4710
4711 static void
4712 undo_commit (void)
4713 {
4714 struct undo *undo, *next;
4715
4716 for (undo = undobuf.undos; undo; undo = next)
4717 {
4718 next = undo->next;
4719 undo->next = undobuf.frees;
4720 undobuf.frees = undo;
4721 }
4722 undobuf.undos = 0;
4723 }
4724 \f
4725 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4726 where we have an arithmetic expression and return that point. LOC will
4727 be inside INSN.
4728
4729 try_combine will call this function to see if an insn can be split into
4730 two insns. */
4731
4732 static rtx *
4733 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4734 {
4735 rtx x = *loc;
4736 enum rtx_code code = GET_CODE (x);
4737 rtx *split;
4738 unsigned HOST_WIDE_INT len = 0;
4739 HOST_WIDE_INT pos = 0;
4740 int unsignedp = 0;
4741 rtx inner = NULL_RTX;
4742
4743 /* First special-case some codes. */
4744 switch (code)
4745 {
4746 case SUBREG:
4747 #ifdef INSN_SCHEDULING
4748 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4749 point. */
4750 if (MEM_P (SUBREG_REG (x)))
4751 return loc;
4752 #endif
4753 return find_split_point (&SUBREG_REG (x), insn, false);
4754
4755 case MEM:
4756 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4757 using LO_SUM and HIGH. */
4758 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4759 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4760 {
4761 machine_mode address_mode = get_address_mode (x);
4762
4763 SUBST (XEXP (x, 0),
4764 gen_rtx_LO_SUM (address_mode,
4765 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4766 XEXP (x, 0)));
4767 return &XEXP (XEXP (x, 0), 0);
4768 }
4769
4770 /* If we have a PLUS whose second operand is a constant and the
4771 address is not valid, perhaps will can split it up using
4772 the machine-specific way to split large constants. We use
4773 the first pseudo-reg (one of the virtual regs) as a placeholder;
4774 it will not remain in the result. */
4775 if (GET_CODE (XEXP (x, 0)) == PLUS
4776 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4777 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4778 MEM_ADDR_SPACE (x)))
4779 {
4780 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4781 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4782 subst_insn);
4783
4784 /* This should have produced two insns, each of which sets our
4785 placeholder. If the source of the second is a valid address,
4786 we can make put both sources together and make a split point
4787 in the middle. */
4788
4789 if (seq
4790 && NEXT_INSN (seq) != NULL_RTX
4791 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4792 && NONJUMP_INSN_P (seq)
4793 && GET_CODE (PATTERN (seq)) == SET
4794 && SET_DEST (PATTERN (seq)) == reg
4795 && ! reg_mentioned_p (reg,
4796 SET_SRC (PATTERN (seq)))
4797 && NONJUMP_INSN_P (NEXT_INSN (seq))
4798 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4799 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4800 && memory_address_addr_space_p
4801 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4802 MEM_ADDR_SPACE (x)))
4803 {
4804 rtx src1 = SET_SRC (PATTERN (seq));
4805 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4806
4807 /* Replace the placeholder in SRC2 with SRC1. If we can
4808 find where in SRC2 it was placed, that can become our
4809 split point and we can replace this address with SRC2.
4810 Just try two obvious places. */
4811
4812 src2 = replace_rtx (src2, reg, src1);
4813 split = 0;
4814 if (XEXP (src2, 0) == src1)
4815 split = &XEXP (src2, 0);
4816 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4817 && XEXP (XEXP (src2, 0), 0) == src1)
4818 split = &XEXP (XEXP (src2, 0), 0);
4819
4820 if (split)
4821 {
4822 SUBST (XEXP (x, 0), src2);
4823 return split;
4824 }
4825 }
4826
4827 /* If that didn't work, perhaps the first operand is complex and
4828 needs to be computed separately, so make a split point there.
4829 This will occur on machines that just support REG + CONST
4830 and have a constant moved through some previous computation. */
4831
4832 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4833 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4834 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4835 return &XEXP (XEXP (x, 0), 0);
4836 }
4837
4838 /* If we have a PLUS whose first operand is complex, try computing it
4839 separately by making a split there. */
4840 if (GET_CODE (XEXP (x, 0)) == PLUS
4841 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4842 MEM_ADDR_SPACE (x))
4843 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4844 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4845 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4846 return &XEXP (XEXP (x, 0), 0);
4847 break;
4848
4849 case SET:
4850 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4851 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4852 we need to put the operand into a register. So split at that
4853 point. */
4854
4855 if (SET_DEST (x) == cc0_rtx
4856 && GET_CODE (SET_SRC (x)) != COMPARE
4857 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4858 && !OBJECT_P (SET_SRC (x))
4859 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4860 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4861 return &SET_SRC (x);
4862
4863 /* See if we can split SET_SRC as it stands. */
4864 split = find_split_point (&SET_SRC (x), insn, true);
4865 if (split && split != &SET_SRC (x))
4866 return split;
4867
4868 /* See if we can split SET_DEST as it stands. */
4869 split = find_split_point (&SET_DEST (x), insn, false);
4870 if (split && split != &SET_DEST (x))
4871 return split;
4872
4873 /* See if this is a bitfield assignment with everything constant. If
4874 so, this is an IOR of an AND, so split it into that. */
4875 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4876 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4877 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4878 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4879 && CONST_INT_P (SET_SRC (x))
4880 && ((INTVAL (XEXP (SET_DEST (x), 1))
4881 + INTVAL (XEXP (SET_DEST (x), 2)))
4882 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4883 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4884 {
4885 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4886 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4887 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4888 rtx dest = XEXP (SET_DEST (x), 0);
4889 machine_mode mode = GET_MODE (dest);
4890 unsigned HOST_WIDE_INT mask
4891 = (HOST_WIDE_INT_1U << len) - 1;
4892 rtx or_mask;
4893
4894 if (BITS_BIG_ENDIAN)
4895 pos = GET_MODE_PRECISION (mode) - len - pos;
4896
4897 or_mask = gen_int_mode (src << pos, mode);
4898 if (src == mask)
4899 SUBST (SET_SRC (x),
4900 simplify_gen_binary (IOR, mode, dest, or_mask));
4901 else
4902 {
4903 rtx negmask = gen_int_mode (~(mask << pos), mode);
4904 SUBST (SET_SRC (x),
4905 simplify_gen_binary (IOR, mode,
4906 simplify_gen_binary (AND, mode,
4907 dest, negmask),
4908 or_mask));
4909 }
4910
4911 SUBST (SET_DEST (x), dest);
4912
4913 split = find_split_point (&SET_SRC (x), insn, true);
4914 if (split && split != &SET_SRC (x))
4915 return split;
4916 }
4917
4918 /* Otherwise, see if this is an operation that we can split into two.
4919 If so, try to split that. */
4920 code = GET_CODE (SET_SRC (x));
4921
4922 switch (code)
4923 {
4924 case AND:
4925 /* If we are AND'ing with a large constant that is only a single
4926 bit and the result is only being used in a context where we
4927 need to know if it is zero or nonzero, replace it with a bit
4928 extraction. This will avoid the large constant, which might
4929 have taken more than one insn to make. If the constant were
4930 not a valid argument to the AND but took only one insn to make,
4931 this is no worse, but if it took more than one insn, it will
4932 be better. */
4933
4934 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4935 && REG_P (XEXP (SET_SRC (x), 0))
4936 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4937 && REG_P (SET_DEST (x))
4938 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4939 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4940 && XEXP (*split, 0) == SET_DEST (x)
4941 && XEXP (*split, 1) == const0_rtx)
4942 {
4943 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4944 XEXP (SET_SRC (x), 0),
4945 pos, NULL_RTX, 1, 1, 0, 0);
4946 if (extraction != 0)
4947 {
4948 SUBST (SET_SRC (x), extraction);
4949 return find_split_point (loc, insn, false);
4950 }
4951 }
4952 break;
4953
4954 case NE:
4955 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4956 is known to be on, this can be converted into a NEG of a shift. */
4957 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4958 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4959 && 1 <= (pos = exact_log2
4960 (nonzero_bits (XEXP (SET_SRC (x), 0),
4961 GET_MODE (XEXP (SET_SRC (x), 0))))))
4962 {
4963 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4964
4965 SUBST (SET_SRC (x),
4966 gen_rtx_NEG (mode,
4967 gen_rtx_LSHIFTRT (mode,
4968 XEXP (SET_SRC (x), 0),
4969 GEN_INT (pos))));
4970
4971 split = find_split_point (&SET_SRC (x), insn, true);
4972 if (split && split != &SET_SRC (x))
4973 return split;
4974 }
4975 break;
4976
4977 case SIGN_EXTEND:
4978 inner = XEXP (SET_SRC (x), 0);
4979
4980 /* We can't optimize if either mode is a partial integer
4981 mode as we don't know how many bits are significant
4982 in those modes. */
4983 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4984 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4985 break;
4986
4987 pos = 0;
4988 len = GET_MODE_PRECISION (GET_MODE (inner));
4989 unsignedp = 0;
4990 break;
4991
4992 case SIGN_EXTRACT:
4993 case ZERO_EXTRACT:
4994 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4995 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4996 {
4997 inner = XEXP (SET_SRC (x), 0);
4998 len = INTVAL (XEXP (SET_SRC (x), 1));
4999 pos = INTVAL (XEXP (SET_SRC (x), 2));
5000
5001 if (BITS_BIG_ENDIAN)
5002 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
5003 unsignedp = (code == ZERO_EXTRACT);
5004 }
5005 break;
5006
5007 default:
5008 break;
5009 }
5010
5011 if (len && pos >= 0
5012 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
5013 {
5014 machine_mode mode = GET_MODE (SET_SRC (x));
5015
5016 /* For unsigned, we have a choice of a shift followed by an
5017 AND or two shifts. Use two shifts for field sizes where the
5018 constant might be too large. We assume here that we can
5019 always at least get 8-bit constants in an AND insn, which is
5020 true for every current RISC. */
5021
5022 if (unsignedp && len <= 8)
5023 {
5024 unsigned HOST_WIDE_INT mask
5025 = (HOST_WIDE_INT_1U << len) - 1;
5026 SUBST (SET_SRC (x),
5027 gen_rtx_AND (mode,
5028 gen_rtx_LSHIFTRT
5029 (mode, gen_lowpart (mode, inner),
5030 GEN_INT (pos)),
5031 gen_int_mode (mask, mode)));
5032
5033 split = find_split_point (&SET_SRC (x), insn, true);
5034 if (split && split != &SET_SRC (x))
5035 return split;
5036 }
5037 else
5038 {
5039 SUBST (SET_SRC (x),
5040 gen_rtx_fmt_ee
5041 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5042 gen_rtx_ASHIFT (mode,
5043 gen_lowpart (mode, inner),
5044 GEN_INT (GET_MODE_PRECISION (mode)
5045 - len - pos)),
5046 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5047
5048 split = find_split_point (&SET_SRC (x), insn, true);
5049 if (split && split != &SET_SRC (x))
5050 return split;
5051 }
5052 }
5053
5054 /* See if this is a simple operation with a constant as the second
5055 operand. It might be that this constant is out of range and hence
5056 could be used as a split point. */
5057 if (BINARY_P (SET_SRC (x))
5058 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5059 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5060 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5061 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5062 return &XEXP (SET_SRC (x), 1);
5063
5064 /* Finally, see if this is a simple operation with its first operand
5065 not in a register. The operation might require this operand in a
5066 register, so return it as a split point. We can always do this
5067 because if the first operand were another operation, we would have
5068 already found it as a split point. */
5069 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5070 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5071 return &XEXP (SET_SRC (x), 0);
5072
5073 return 0;
5074
5075 case AND:
5076 case IOR:
5077 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5078 it is better to write this as (not (ior A B)) so we can split it.
5079 Similarly for IOR. */
5080 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5081 {
5082 SUBST (*loc,
5083 gen_rtx_NOT (GET_MODE (x),
5084 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5085 GET_MODE (x),
5086 XEXP (XEXP (x, 0), 0),
5087 XEXP (XEXP (x, 1), 0))));
5088 return find_split_point (loc, insn, set_src);
5089 }
5090
5091 /* Many RISC machines have a large set of logical insns. If the
5092 second operand is a NOT, put it first so we will try to split the
5093 other operand first. */
5094 if (GET_CODE (XEXP (x, 1)) == NOT)
5095 {
5096 rtx tem = XEXP (x, 0);
5097 SUBST (XEXP (x, 0), XEXP (x, 1));
5098 SUBST (XEXP (x, 1), tem);
5099 }
5100 break;
5101
5102 case PLUS:
5103 case MINUS:
5104 /* Canonicalization can produce (minus A (mult B C)), where C is a
5105 constant. It may be better to try splitting (plus (mult B -C) A)
5106 instead if this isn't a multiply by a power of two. */
5107 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5108 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5109 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5110 {
5111 machine_mode mode = GET_MODE (x);
5112 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5113 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5114 SUBST (*loc, gen_rtx_PLUS (mode,
5115 gen_rtx_MULT (mode,
5116 XEXP (XEXP (x, 1), 0),
5117 gen_int_mode (other_int,
5118 mode)),
5119 XEXP (x, 0)));
5120 return find_split_point (loc, insn, set_src);
5121 }
5122
5123 /* Split at a multiply-accumulate instruction. However if this is
5124 the SET_SRC, we likely do not have such an instruction and it's
5125 worthless to try this split. */
5126 if (!set_src
5127 && (GET_CODE (XEXP (x, 0)) == MULT
5128 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5129 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5130 return loc;
5131
5132 default:
5133 break;
5134 }
5135
5136 /* Otherwise, select our actions depending on our rtx class. */
5137 switch (GET_RTX_CLASS (code))
5138 {
5139 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5140 case RTX_TERNARY:
5141 split = find_split_point (&XEXP (x, 2), insn, false);
5142 if (split)
5143 return split;
5144 /* fall through */
5145 case RTX_BIN_ARITH:
5146 case RTX_COMM_ARITH:
5147 case RTX_COMPARE:
5148 case RTX_COMM_COMPARE:
5149 split = find_split_point (&XEXP (x, 1), insn, false);
5150 if (split)
5151 return split;
5152 /* fall through */
5153 case RTX_UNARY:
5154 /* Some machines have (and (shift ...) ...) insns. If X is not
5155 an AND, but XEXP (X, 0) is, use it as our split point. */
5156 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5157 return &XEXP (x, 0);
5158
5159 split = find_split_point (&XEXP (x, 0), insn, false);
5160 if (split)
5161 return split;
5162 return loc;
5163
5164 default:
5165 /* Otherwise, we don't have a split point. */
5166 return 0;
5167 }
5168 }
5169 \f
5170 /* Throughout X, replace FROM with TO, and return the result.
5171 The result is TO if X is FROM;
5172 otherwise the result is X, but its contents may have been modified.
5173 If they were modified, a record was made in undobuf so that
5174 undo_all will (among other things) return X to its original state.
5175
5176 If the number of changes necessary is too much to record to undo,
5177 the excess changes are not made, so the result is invalid.
5178 The changes already made can still be undone.
5179 undobuf.num_undo is incremented for such changes, so by testing that
5180 the caller can tell whether the result is valid.
5181
5182 `n_occurrences' is incremented each time FROM is replaced.
5183
5184 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5185
5186 IN_COND is nonzero if we are at the top level of a condition.
5187
5188 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5189 by copying if `n_occurrences' is nonzero. */
5190
5191 static rtx
5192 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5193 {
5194 enum rtx_code code = GET_CODE (x);
5195 machine_mode op0_mode = VOIDmode;
5196 const char *fmt;
5197 int len, i;
5198 rtx new_rtx;
5199
5200 /* Two expressions are equal if they are identical copies of a shared
5201 RTX or if they are both registers with the same register number
5202 and mode. */
5203
5204 #define COMBINE_RTX_EQUAL_P(X,Y) \
5205 ((X) == (Y) \
5206 || (REG_P (X) && REG_P (Y) \
5207 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5208
5209 /* Do not substitute into clobbers of regs -- this will never result in
5210 valid RTL. */
5211 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5212 return x;
5213
5214 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5215 {
5216 n_occurrences++;
5217 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5218 }
5219
5220 /* If X and FROM are the same register but different modes, they
5221 will not have been seen as equal above. However, the log links code
5222 will make a LOG_LINKS entry for that case. If we do nothing, we
5223 will try to rerecognize our original insn and, when it succeeds,
5224 we will delete the feeding insn, which is incorrect.
5225
5226 So force this insn not to match in this (rare) case. */
5227 if (! in_dest && code == REG && REG_P (from)
5228 && reg_overlap_mentioned_p (x, from))
5229 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5230
5231 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5232 of which may contain things that can be combined. */
5233 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5234 return x;
5235
5236 /* It is possible to have a subexpression appear twice in the insn.
5237 Suppose that FROM is a register that appears within TO.
5238 Then, after that subexpression has been scanned once by `subst',
5239 the second time it is scanned, TO may be found. If we were
5240 to scan TO here, we would find FROM within it and create a
5241 self-referent rtl structure which is completely wrong. */
5242 if (COMBINE_RTX_EQUAL_P (x, to))
5243 return to;
5244
5245 /* Parallel asm_operands need special attention because all of the
5246 inputs are shared across the arms. Furthermore, unsharing the
5247 rtl results in recognition failures. Failure to handle this case
5248 specially can result in circular rtl.
5249
5250 Solve this by doing a normal pass across the first entry of the
5251 parallel, and only processing the SET_DESTs of the subsequent
5252 entries. Ug. */
5253
5254 if (code == PARALLEL
5255 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5256 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5257 {
5258 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5259
5260 /* If this substitution failed, this whole thing fails. */
5261 if (GET_CODE (new_rtx) == CLOBBER
5262 && XEXP (new_rtx, 0) == const0_rtx)
5263 return new_rtx;
5264
5265 SUBST (XVECEXP (x, 0, 0), new_rtx);
5266
5267 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5268 {
5269 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5270
5271 if (!REG_P (dest)
5272 && GET_CODE (dest) != CC0
5273 && GET_CODE (dest) != PC)
5274 {
5275 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5276
5277 /* If this substitution failed, this whole thing fails. */
5278 if (GET_CODE (new_rtx) == CLOBBER
5279 && XEXP (new_rtx, 0) == const0_rtx)
5280 return new_rtx;
5281
5282 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5283 }
5284 }
5285 }
5286 else
5287 {
5288 len = GET_RTX_LENGTH (code);
5289 fmt = GET_RTX_FORMAT (code);
5290
5291 /* We don't need to process a SET_DEST that is a register, CC0,
5292 or PC, so set up to skip this common case. All other cases
5293 where we want to suppress replacing something inside a
5294 SET_SRC are handled via the IN_DEST operand. */
5295 if (code == SET
5296 && (REG_P (SET_DEST (x))
5297 || GET_CODE (SET_DEST (x)) == CC0
5298 || GET_CODE (SET_DEST (x)) == PC))
5299 fmt = "ie";
5300
5301 /* Trying to simplify the operands of a widening MULT is not likely
5302 to create RTL matching a machine insn. */
5303 if (code == MULT
5304 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5305 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5306 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5307 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5308 && REG_P (XEXP (XEXP (x, 0), 0))
5309 && REG_P (XEXP (XEXP (x, 1), 0))
5310 && from == to)
5311 return x;
5312
5313
5314 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5315 constant. */
5316 if (fmt[0] == 'e')
5317 op0_mode = GET_MODE (XEXP (x, 0));
5318
5319 for (i = 0; i < len; i++)
5320 {
5321 if (fmt[i] == 'E')
5322 {
5323 int j;
5324 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5325 {
5326 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5327 {
5328 new_rtx = (unique_copy && n_occurrences
5329 ? copy_rtx (to) : to);
5330 n_occurrences++;
5331 }
5332 else
5333 {
5334 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5335 unique_copy);
5336
5337 /* If this substitution failed, this whole thing
5338 fails. */
5339 if (GET_CODE (new_rtx) == CLOBBER
5340 && XEXP (new_rtx, 0) == const0_rtx)
5341 return new_rtx;
5342 }
5343
5344 SUBST (XVECEXP (x, i, j), new_rtx);
5345 }
5346 }
5347 else if (fmt[i] == 'e')
5348 {
5349 /* If this is a register being set, ignore it. */
5350 new_rtx = XEXP (x, i);
5351 if (in_dest
5352 && i == 0
5353 && (((code == SUBREG || code == ZERO_EXTRACT)
5354 && REG_P (new_rtx))
5355 || code == STRICT_LOW_PART))
5356 ;
5357
5358 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5359 {
5360 /* In general, don't install a subreg involving two
5361 modes not tieable. It can worsen register
5362 allocation, and can even make invalid reload
5363 insns, since the reg inside may need to be copied
5364 from in the outside mode, and that may be invalid
5365 if it is an fp reg copied in integer mode.
5366
5367 We allow two exceptions to this: It is valid if
5368 it is inside another SUBREG and the mode of that
5369 SUBREG and the mode of the inside of TO is
5370 tieable and it is valid if X is a SET that copies
5371 FROM to CC0. */
5372
5373 if (GET_CODE (to) == SUBREG
5374 && ! MODES_TIEABLE_P (GET_MODE (to),
5375 GET_MODE (SUBREG_REG (to)))
5376 && ! (code == SUBREG
5377 && MODES_TIEABLE_P (GET_MODE (x),
5378 GET_MODE (SUBREG_REG (to))))
5379 && (!HAVE_cc0
5380 || (! (code == SET
5381 && i == 1
5382 && XEXP (x, 0) == cc0_rtx))))
5383 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5384
5385 if (code == SUBREG
5386 && REG_P (to)
5387 && REGNO (to) < FIRST_PSEUDO_REGISTER
5388 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5389 SUBREG_BYTE (x),
5390 GET_MODE (x)) < 0)
5391 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5392
5393 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5394 n_occurrences++;
5395 }
5396 else
5397 /* If we are in a SET_DEST, suppress most cases unless we
5398 have gone inside a MEM, in which case we want to
5399 simplify the address. We assume here that things that
5400 are actually part of the destination have their inner
5401 parts in the first expression. This is true for SUBREG,
5402 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5403 things aside from REG and MEM that should appear in a
5404 SET_DEST. */
5405 new_rtx = subst (XEXP (x, i), from, to,
5406 (((in_dest
5407 && (code == SUBREG || code == STRICT_LOW_PART
5408 || code == ZERO_EXTRACT))
5409 || code == SET)
5410 && i == 0),
5411 code == IF_THEN_ELSE && i == 0,
5412 unique_copy);
5413
5414 /* If we found that we will have to reject this combination,
5415 indicate that by returning the CLOBBER ourselves, rather than
5416 an expression containing it. This will speed things up as
5417 well as prevent accidents where two CLOBBERs are considered
5418 to be equal, thus producing an incorrect simplification. */
5419
5420 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5421 return new_rtx;
5422
5423 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5424 {
5425 machine_mode mode = GET_MODE (x);
5426
5427 x = simplify_subreg (GET_MODE (x), new_rtx,
5428 GET_MODE (SUBREG_REG (x)),
5429 SUBREG_BYTE (x));
5430 if (! x)
5431 x = gen_rtx_CLOBBER (mode, const0_rtx);
5432 }
5433 else if (CONST_SCALAR_INT_P (new_rtx)
5434 && GET_CODE (x) == ZERO_EXTEND)
5435 {
5436 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5437 new_rtx, GET_MODE (XEXP (x, 0)));
5438 gcc_assert (x);
5439 }
5440 else
5441 SUBST (XEXP (x, i), new_rtx);
5442 }
5443 }
5444 }
5445
5446 /* Check if we are loading something from the constant pool via float
5447 extension; in this case we would undo compress_float_constant
5448 optimization and degenerate constant load to an immediate value. */
5449 if (GET_CODE (x) == FLOAT_EXTEND
5450 && MEM_P (XEXP (x, 0))
5451 && MEM_READONLY_P (XEXP (x, 0)))
5452 {
5453 rtx tmp = avoid_constant_pool_reference (x);
5454 if (x != tmp)
5455 return x;
5456 }
5457
5458 /* Try to simplify X. If the simplification changed the code, it is likely
5459 that further simplification will help, so loop, but limit the number
5460 of repetitions that will be performed. */
5461
5462 for (i = 0; i < 4; i++)
5463 {
5464 /* If X is sufficiently simple, don't bother trying to do anything
5465 with it. */
5466 if (code != CONST_INT && code != REG && code != CLOBBER)
5467 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5468
5469 if (GET_CODE (x) == code)
5470 break;
5471
5472 code = GET_CODE (x);
5473
5474 /* We no longer know the original mode of operand 0 since we
5475 have changed the form of X) */
5476 op0_mode = VOIDmode;
5477 }
5478
5479 return x;
5480 }
5481 \f
5482 /* If X is a commutative operation whose operands are not in the canonical
5483 order, use substitutions to swap them. */
5484
5485 static void
5486 maybe_swap_commutative_operands (rtx x)
5487 {
5488 if (COMMUTATIVE_ARITH_P (x)
5489 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5490 {
5491 rtx temp = XEXP (x, 0);
5492 SUBST (XEXP (x, 0), XEXP (x, 1));
5493 SUBST (XEXP (x, 1), temp);
5494 }
5495 }
5496
5497 /* Simplify X, a piece of RTL. We just operate on the expression at the
5498 outer level; call `subst' to simplify recursively. Return the new
5499 expression.
5500
5501 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5502 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5503 of a condition. */
5504
5505 static rtx
5506 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5507 int in_cond)
5508 {
5509 enum rtx_code code = GET_CODE (x);
5510 machine_mode mode = GET_MODE (x);
5511 rtx temp;
5512 int i;
5513
5514 /* If this is a commutative operation, put a constant last and a complex
5515 expression first. We don't need to do this for comparisons here. */
5516 maybe_swap_commutative_operands (x);
5517
5518 /* Try to fold this expression in case we have constants that weren't
5519 present before. */
5520 temp = 0;
5521 switch (GET_RTX_CLASS (code))
5522 {
5523 case RTX_UNARY:
5524 if (op0_mode == VOIDmode)
5525 op0_mode = GET_MODE (XEXP (x, 0));
5526 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5527 break;
5528 case RTX_COMPARE:
5529 case RTX_COMM_COMPARE:
5530 {
5531 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5532 if (cmp_mode == VOIDmode)
5533 {
5534 cmp_mode = GET_MODE (XEXP (x, 1));
5535 if (cmp_mode == VOIDmode)
5536 cmp_mode = op0_mode;
5537 }
5538 temp = simplify_relational_operation (code, mode, cmp_mode,
5539 XEXP (x, 0), XEXP (x, 1));
5540 }
5541 break;
5542 case RTX_COMM_ARITH:
5543 case RTX_BIN_ARITH:
5544 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5545 break;
5546 case RTX_BITFIELD_OPS:
5547 case RTX_TERNARY:
5548 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5549 XEXP (x, 1), XEXP (x, 2));
5550 break;
5551 default:
5552 break;
5553 }
5554
5555 if (temp)
5556 {
5557 x = temp;
5558 code = GET_CODE (temp);
5559 op0_mode = VOIDmode;
5560 mode = GET_MODE (temp);
5561 }
5562
5563 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5564 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5565 things. Check for cases where both arms are testing the same
5566 condition.
5567
5568 Don't do anything if all operands are very simple. */
5569
5570 if ((BINARY_P (x)
5571 && ((!OBJECT_P (XEXP (x, 0))
5572 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5573 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5574 || (!OBJECT_P (XEXP (x, 1))
5575 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5576 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5577 || (UNARY_P (x)
5578 && (!OBJECT_P (XEXP (x, 0))
5579 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5580 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5581 {
5582 rtx cond, true_rtx, false_rtx;
5583
5584 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5585 if (cond != 0
5586 /* If everything is a comparison, what we have is highly unlikely
5587 to be simpler, so don't use it. */
5588 && ! (COMPARISON_P (x)
5589 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5590 {
5591 rtx cop1 = const0_rtx;
5592 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5593
5594 if (cond_code == NE && COMPARISON_P (cond))
5595 return x;
5596
5597 /* Simplify the alternative arms; this may collapse the true and
5598 false arms to store-flag values. Be careful to use copy_rtx
5599 here since true_rtx or false_rtx might share RTL with x as a
5600 result of the if_then_else_cond call above. */
5601 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5602 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5603
5604 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5605 is unlikely to be simpler. */
5606 if (general_operand (true_rtx, VOIDmode)
5607 && general_operand (false_rtx, VOIDmode))
5608 {
5609 enum rtx_code reversed;
5610
5611 /* Restarting if we generate a store-flag expression will cause
5612 us to loop. Just drop through in this case. */
5613
5614 /* If the result values are STORE_FLAG_VALUE and zero, we can
5615 just make the comparison operation. */
5616 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5617 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5618 cond, cop1);
5619 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5620 && ((reversed = reversed_comparison_code_parts
5621 (cond_code, cond, cop1, NULL))
5622 != UNKNOWN))
5623 x = simplify_gen_relational (reversed, mode, VOIDmode,
5624 cond, cop1);
5625
5626 /* Likewise, we can make the negate of a comparison operation
5627 if the result values are - STORE_FLAG_VALUE and zero. */
5628 else if (CONST_INT_P (true_rtx)
5629 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5630 && false_rtx == const0_rtx)
5631 x = simplify_gen_unary (NEG, mode,
5632 simplify_gen_relational (cond_code,
5633 mode, VOIDmode,
5634 cond, cop1),
5635 mode);
5636 else if (CONST_INT_P (false_rtx)
5637 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5638 && true_rtx == const0_rtx
5639 && ((reversed = reversed_comparison_code_parts
5640 (cond_code, cond, cop1, NULL))
5641 != UNKNOWN))
5642 x = simplify_gen_unary (NEG, mode,
5643 simplify_gen_relational (reversed,
5644 mode, VOIDmode,
5645 cond, cop1),
5646 mode);
5647 else
5648 return gen_rtx_IF_THEN_ELSE (mode,
5649 simplify_gen_relational (cond_code,
5650 mode,
5651 VOIDmode,
5652 cond,
5653 cop1),
5654 true_rtx, false_rtx);
5655
5656 code = GET_CODE (x);
5657 op0_mode = VOIDmode;
5658 }
5659 }
5660 }
5661
5662 /* First see if we can apply the inverse distributive law. */
5663 if (code == PLUS || code == MINUS
5664 || code == AND || code == IOR || code == XOR)
5665 {
5666 x = apply_distributive_law (x);
5667 code = GET_CODE (x);
5668 op0_mode = VOIDmode;
5669 }
5670
5671 /* If CODE is an associative operation not otherwise handled, see if we
5672 can associate some operands. This can win if they are constants or
5673 if they are logically related (i.e. (a & b) & a). */
5674 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5675 || code == AND || code == IOR || code == XOR
5676 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5677 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5678 || (flag_associative_math && FLOAT_MODE_P (mode))))
5679 {
5680 if (GET_CODE (XEXP (x, 0)) == code)
5681 {
5682 rtx other = XEXP (XEXP (x, 0), 0);
5683 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5684 rtx inner_op1 = XEXP (x, 1);
5685 rtx inner;
5686
5687 /* Make sure we pass the constant operand if any as the second
5688 one if this is a commutative operation. */
5689 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5690 std::swap (inner_op0, inner_op1);
5691 inner = simplify_binary_operation (code == MINUS ? PLUS
5692 : code == DIV ? MULT
5693 : code,
5694 mode, inner_op0, inner_op1);
5695
5696 /* For commutative operations, try the other pair if that one
5697 didn't simplify. */
5698 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5699 {
5700 other = XEXP (XEXP (x, 0), 1);
5701 inner = simplify_binary_operation (code, mode,
5702 XEXP (XEXP (x, 0), 0),
5703 XEXP (x, 1));
5704 }
5705
5706 if (inner)
5707 return simplify_gen_binary (code, mode, other, inner);
5708 }
5709 }
5710
5711 /* A little bit of algebraic simplification here. */
5712 switch (code)
5713 {
5714 case MEM:
5715 /* Ensure that our address has any ASHIFTs converted to MULT in case
5716 address-recognizing predicates are called later. */
5717 temp = make_compound_operation (XEXP (x, 0), MEM);
5718 SUBST (XEXP (x, 0), temp);
5719 break;
5720
5721 case SUBREG:
5722 if (op0_mode == VOIDmode)
5723 op0_mode = GET_MODE (SUBREG_REG (x));
5724
5725 /* See if this can be moved to simplify_subreg. */
5726 if (CONSTANT_P (SUBREG_REG (x))
5727 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5728 /* Don't call gen_lowpart if the inner mode
5729 is VOIDmode and we cannot simplify it, as SUBREG without
5730 inner mode is invalid. */
5731 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5732 || gen_lowpart_common (mode, SUBREG_REG (x))))
5733 return gen_lowpart (mode, SUBREG_REG (x));
5734
5735 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5736 break;
5737 {
5738 rtx temp;
5739 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5740 SUBREG_BYTE (x));
5741 if (temp)
5742 return temp;
5743
5744 /* If op is known to have all lower bits zero, the result is zero. */
5745 if (!in_dest
5746 && SCALAR_INT_MODE_P (mode)
5747 && SCALAR_INT_MODE_P (op0_mode)
5748 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5749 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5750 && HWI_COMPUTABLE_MODE_P (op0_mode)
5751 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5752 & GET_MODE_MASK (mode)) == 0)
5753 return CONST0_RTX (mode);
5754 }
5755
5756 /* Don't change the mode of the MEM if that would change the meaning
5757 of the address. */
5758 if (MEM_P (SUBREG_REG (x))
5759 && (MEM_VOLATILE_P (SUBREG_REG (x))
5760 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5761 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5762 return gen_rtx_CLOBBER (mode, const0_rtx);
5763
5764 /* Note that we cannot do any narrowing for non-constants since
5765 we might have been counting on using the fact that some bits were
5766 zero. We now do this in the SET. */
5767
5768 break;
5769
5770 case NEG:
5771 temp = expand_compound_operation (XEXP (x, 0));
5772
5773 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5774 replaced by (lshiftrt X C). This will convert
5775 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5776
5777 if (GET_CODE (temp) == ASHIFTRT
5778 && CONST_INT_P (XEXP (temp, 1))
5779 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5780 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5781 INTVAL (XEXP (temp, 1)));
5782
5783 /* If X has only a single bit that might be nonzero, say, bit I, convert
5784 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5785 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5786 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5787 or a SUBREG of one since we'd be making the expression more
5788 complex if it was just a register. */
5789
5790 if (!REG_P (temp)
5791 && ! (GET_CODE (temp) == SUBREG
5792 && REG_P (SUBREG_REG (temp)))
5793 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5794 {
5795 rtx temp1 = simplify_shift_const
5796 (NULL_RTX, ASHIFTRT, mode,
5797 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5798 GET_MODE_PRECISION (mode) - 1 - i),
5799 GET_MODE_PRECISION (mode) - 1 - i);
5800
5801 /* If all we did was surround TEMP with the two shifts, we
5802 haven't improved anything, so don't use it. Otherwise,
5803 we are better off with TEMP1. */
5804 if (GET_CODE (temp1) != ASHIFTRT
5805 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5806 || XEXP (XEXP (temp1, 0), 0) != temp)
5807 return temp1;
5808 }
5809 break;
5810
5811 case TRUNCATE:
5812 /* We can't handle truncation to a partial integer mode here
5813 because we don't know the real bitsize of the partial
5814 integer mode. */
5815 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5816 break;
5817
5818 if (HWI_COMPUTABLE_MODE_P (mode))
5819 SUBST (XEXP (x, 0),
5820 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5821 GET_MODE_MASK (mode), 0));
5822
5823 /* We can truncate a constant value and return it. */
5824 if (CONST_INT_P (XEXP (x, 0)))
5825 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5826
5827 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5828 whose value is a comparison can be replaced with a subreg if
5829 STORE_FLAG_VALUE permits. */
5830 if (HWI_COMPUTABLE_MODE_P (mode)
5831 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5832 && (temp = get_last_value (XEXP (x, 0)))
5833 && COMPARISON_P (temp))
5834 return gen_lowpart (mode, XEXP (x, 0));
5835 break;
5836
5837 case CONST:
5838 /* (const (const X)) can become (const X). Do it this way rather than
5839 returning the inner CONST since CONST can be shared with a
5840 REG_EQUAL note. */
5841 if (GET_CODE (XEXP (x, 0)) == CONST)
5842 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5843 break;
5844
5845 case LO_SUM:
5846 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5847 can add in an offset. find_split_point will split this address up
5848 again if it doesn't match. */
5849 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5850 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5851 return XEXP (x, 1);
5852 break;
5853
5854 case PLUS:
5855 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5856 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5857 bit-field and can be replaced by either a sign_extend or a
5858 sign_extract. The `and' may be a zero_extend and the two
5859 <c>, -<c> constants may be reversed. */
5860 if (GET_CODE (XEXP (x, 0)) == XOR
5861 && CONST_INT_P (XEXP (x, 1))
5862 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5863 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5864 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5865 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5866 && HWI_COMPUTABLE_MODE_P (mode)
5867 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5868 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5869 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5870 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
5871 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5872 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5873 == (unsigned int) i + 1))))
5874 return simplify_shift_const
5875 (NULL_RTX, ASHIFTRT, mode,
5876 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5877 XEXP (XEXP (XEXP (x, 0), 0), 0),
5878 GET_MODE_PRECISION (mode) - (i + 1)),
5879 GET_MODE_PRECISION (mode) - (i + 1));
5880
5881 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5882 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5883 the bitsize of the mode - 1. This allows simplification of
5884 "a = (b & 8) == 0;" */
5885 if (XEXP (x, 1) == constm1_rtx
5886 && !REG_P (XEXP (x, 0))
5887 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5888 && REG_P (SUBREG_REG (XEXP (x, 0))))
5889 && nonzero_bits (XEXP (x, 0), mode) == 1)
5890 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5891 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5892 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5893 GET_MODE_PRECISION (mode) - 1),
5894 GET_MODE_PRECISION (mode) - 1);
5895
5896 /* If we are adding two things that have no bits in common, convert
5897 the addition into an IOR. This will often be further simplified,
5898 for example in cases like ((a & 1) + (a & 2)), which can
5899 become a & 3. */
5900
5901 if (HWI_COMPUTABLE_MODE_P (mode)
5902 && (nonzero_bits (XEXP (x, 0), mode)
5903 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5904 {
5905 /* Try to simplify the expression further. */
5906 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5907 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5908
5909 /* If we could, great. If not, do not go ahead with the IOR
5910 replacement, since PLUS appears in many special purpose
5911 address arithmetic instructions. */
5912 if (GET_CODE (temp) != CLOBBER
5913 && (GET_CODE (temp) != IOR
5914 || ((XEXP (temp, 0) != XEXP (x, 0)
5915 || XEXP (temp, 1) != XEXP (x, 1))
5916 && (XEXP (temp, 0) != XEXP (x, 1)
5917 || XEXP (temp, 1) != XEXP (x, 0)))))
5918 return temp;
5919 }
5920
5921 /* Canonicalize x + x into x << 1. */
5922 if (GET_MODE_CLASS (mode) == MODE_INT
5923 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
5924 && !side_effects_p (XEXP (x, 0)))
5925 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
5926
5927 break;
5928
5929 case MINUS:
5930 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5931 (and <foo> (const_int pow2-1)) */
5932 if (GET_CODE (XEXP (x, 1)) == AND
5933 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5934 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
5935 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5936 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5937 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5938 break;
5939
5940 case MULT:
5941 /* If we have (mult (plus A B) C), apply the distributive law and then
5942 the inverse distributive law to see if things simplify. This
5943 occurs mostly in addresses, often when unrolling loops. */
5944
5945 if (GET_CODE (XEXP (x, 0)) == PLUS)
5946 {
5947 rtx result = distribute_and_simplify_rtx (x, 0);
5948 if (result)
5949 return result;
5950 }
5951
5952 /* Try simplify a*(b/c) as (a*b)/c. */
5953 if (FLOAT_MODE_P (mode) && flag_associative_math
5954 && GET_CODE (XEXP (x, 0)) == DIV)
5955 {
5956 rtx tem = simplify_binary_operation (MULT, mode,
5957 XEXP (XEXP (x, 0), 0),
5958 XEXP (x, 1));
5959 if (tem)
5960 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5961 }
5962 break;
5963
5964 case UDIV:
5965 /* If this is a divide by a power of two, treat it as a shift if
5966 its first operand is a shift. */
5967 if (CONST_INT_P (XEXP (x, 1))
5968 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5969 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5970 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5971 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5972 || GET_CODE (XEXP (x, 0)) == ROTATE
5973 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5974 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5975 break;
5976
5977 case EQ: case NE:
5978 case GT: case GTU: case GE: case GEU:
5979 case LT: case LTU: case LE: case LEU:
5980 case UNEQ: case LTGT:
5981 case UNGT: case UNGE:
5982 case UNLT: case UNLE:
5983 case UNORDERED: case ORDERED:
5984 /* If the first operand is a condition code, we can't do anything
5985 with it. */
5986 if (GET_CODE (XEXP (x, 0)) == COMPARE
5987 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5988 && ! CC0_P (XEXP (x, 0))))
5989 {
5990 rtx op0 = XEXP (x, 0);
5991 rtx op1 = XEXP (x, 1);
5992 enum rtx_code new_code;
5993
5994 if (GET_CODE (op0) == COMPARE)
5995 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5996
5997 /* Simplify our comparison, if possible. */
5998 new_code = simplify_comparison (code, &op0, &op1);
5999
6000 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6001 if only the low-order bit is possibly nonzero in X (such as when
6002 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6003 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6004 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6005 (plus X 1).
6006
6007 Remove any ZERO_EXTRACT we made when thinking this was a
6008 comparison. It may now be simpler to use, e.g., an AND. If a
6009 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6010 the call to make_compound_operation in the SET case.
6011
6012 Don't apply these optimizations if the caller would
6013 prefer a comparison rather than a value.
6014 E.g., for the condition in an IF_THEN_ELSE most targets need
6015 an explicit comparison. */
6016
6017 if (in_cond)
6018 ;
6019
6020 else if (STORE_FLAG_VALUE == 1
6021 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6022 && op1 == const0_rtx
6023 && mode == GET_MODE (op0)
6024 && nonzero_bits (op0, mode) == 1)
6025 return gen_lowpart (mode,
6026 expand_compound_operation (op0));
6027
6028 else if (STORE_FLAG_VALUE == 1
6029 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6030 && op1 == const0_rtx
6031 && mode == GET_MODE (op0)
6032 && (num_sign_bit_copies (op0, mode)
6033 == GET_MODE_PRECISION (mode)))
6034 {
6035 op0 = expand_compound_operation (op0);
6036 return simplify_gen_unary (NEG, mode,
6037 gen_lowpart (mode, op0),
6038 mode);
6039 }
6040
6041 else if (STORE_FLAG_VALUE == 1
6042 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6043 && op1 == const0_rtx
6044 && mode == GET_MODE (op0)
6045 && nonzero_bits (op0, mode) == 1)
6046 {
6047 op0 = expand_compound_operation (op0);
6048 return simplify_gen_binary (XOR, mode,
6049 gen_lowpart (mode, op0),
6050 const1_rtx);
6051 }
6052
6053 else if (STORE_FLAG_VALUE == 1
6054 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6055 && op1 == const0_rtx
6056 && mode == GET_MODE (op0)
6057 && (num_sign_bit_copies (op0, mode)
6058 == GET_MODE_PRECISION (mode)))
6059 {
6060 op0 = expand_compound_operation (op0);
6061 return plus_constant (mode, gen_lowpart (mode, op0), 1);
6062 }
6063
6064 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6065 those above. */
6066 if (in_cond)
6067 ;
6068
6069 else if (STORE_FLAG_VALUE == -1
6070 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6071 && op1 == const0_rtx
6072 && mode == GET_MODE (op0)
6073 && (num_sign_bit_copies (op0, mode)
6074 == GET_MODE_PRECISION (mode)))
6075 return gen_lowpart (mode,
6076 expand_compound_operation (op0));
6077
6078 else if (STORE_FLAG_VALUE == -1
6079 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6080 && op1 == const0_rtx
6081 && mode == GET_MODE (op0)
6082 && nonzero_bits (op0, mode) == 1)
6083 {
6084 op0 = expand_compound_operation (op0);
6085 return simplify_gen_unary (NEG, mode,
6086 gen_lowpart (mode, op0),
6087 mode);
6088 }
6089
6090 else if (STORE_FLAG_VALUE == -1
6091 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6092 && op1 == const0_rtx
6093 && mode == GET_MODE (op0)
6094 && (num_sign_bit_copies (op0, mode)
6095 == GET_MODE_PRECISION (mode)))
6096 {
6097 op0 = expand_compound_operation (op0);
6098 return simplify_gen_unary (NOT, mode,
6099 gen_lowpart (mode, op0),
6100 mode);
6101 }
6102
6103 /* If X is 0/1, (eq X 0) is X-1. */
6104 else if (STORE_FLAG_VALUE == -1
6105 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6106 && op1 == const0_rtx
6107 && mode == GET_MODE (op0)
6108 && nonzero_bits (op0, mode) == 1)
6109 {
6110 op0 = expand_compound_operation (op0);
6111 return plus_constant (mode, gen_lowpart (mode, op0), -1);
6112 }
6113
6114 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6115 one bit that might be nonzero, we can convert (ne x 0) to
6116 (ashift x c) where C puts the bit in the sign bit. Remove any
6117 AND with STORE_FLAG_VALUE when we are done, since we are only
6118 going to test the sign bit. */
6119 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6120 && HWI_COMPUTABLE_MODE_P (mode)
6121 && val_signbit_p (mode, STORE_FLAG_VALUE)
6122 && op1 == const0_rtx
6123 && mode == GET_MODE (op0)
6124 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6125 {
6126 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6127 expand_compound_operation (op0),
6128 GET_MODE_PRECISION (mode) - 1 - i);
6129 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6130 return XEXP (x, 0);
6131 else
6132 return x;
6133 }
6134
6135 /* If the code changed, return a whole new comparison.
6136 We also need to avoid using SUBST in cases where
6137 simplify_comparison has widened a comparison with a CONST_INT,
6138 since in that case the wider CONST_INT may fail the sanity
6139 checks in do_SUBST. */
6140 if (new_code != code
6141 || (CONST_INT_P (op1)
6142 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6143 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6144 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6145
6146 /* Otherwise, keep this operation, but maybe change its operands.
6147 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6148 SUBST (XEXP (x, 0), op0);
6149 SUBST (XEXP (x, 1), op1);
6150 }
6151 break;
6152
6153 case IF_THEN_ELSE:
6154 return simplify_if_then_else (x);
6155
6156 case ZERO_EXTRACT:
6157 case SIGN_EXTRACT:
6158 case ZERO_EXTEND:
6159 case SIGN_EXTEND:
6160 /* If we are processing SET_DEST, we are done. */
6161 if (in_dest)
6162 return x;
6163
6164 return expand_compound_operation (x);
6165
6166 case SET:
6167 return simplify_set (x);
6168
6169 case AND:
6170 case IOR:
6171 return simplify_logical (x);
6172
6173 case ASHIFT:
6174 case LSHIFTRT:
6175 case ASHIFTRT:
6176 case ROTATE:
6177 case ROTATERT:
6178 /* If this is a shift by a constant amount, simplify it. */
6179 if (CONST_INT_P (XEXP (x, 1)))
6180 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6181 INTVAL (XEXP (x, 1)));
6182
6183 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6184 SUBST (XEXP (x, 1),
6185 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6186 (HOST_WIDE_INT_1U
6187 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6188 - 1,
6189 0));
6190 break;
6191
6192 default:
6193 break;
6194 }
6195
6196 return x;
6197 }
6198 \f
6199 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6200
6201 static rtx
6202 simplify_if_then_else (rtx x)
6203 {
6204 machine_mode mode = GET_MODE (x);
6205 rtx cond = XEXP (x, 0);
6206 rtx true_rtx = XEXP (x, 1);
6207 rtx false_rtx = XEXP (x, 2);
6208 enum rtx_code true_code = GET_CODE (cond);
6209 int comparison_p = COMPARISON_P (cond);
6210 rtx temp;
6211 int i;
6212 enum rtx_code false_code;
6213 rtx reversed;
6214
6215 /* Simplify storing of the truth value. */
6216 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6217 return simplify_gen_relational (true_code, mode, VOIDmode,
6218 XEXP (cond, 0), XEXP (cond, 1));
6219
6220 /* Also when the truth value has to be reversed. */
6221 if (comparison_p
6222 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6223 && (reversed = reversed_comparison (cond, mode)))
6224 return reversed;
6225
6226 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6227 in it is being compared against certain values. Get the true and false
6228 comparisons and see if that says anything about the value of each arm. */
6229
6230 if (comparison_p
6231 && ((false_code = reversed_comparison_code (cond, NULL))
6232 != UNKNOWN)
6233 && REG_P (XEXP (cond, 0)))
6234 {
6235 HOST_WIDE_INT nzb;
6236 rtx from = XEXP (cond, 0);
6237 rtx true_val = XEXP (cond, 1);
6238 rtx false_val = true_val;
6239 int swapped = 0;
6240
6241 /* If FALSE_CODE is EQ, swap the codes and arms. */
6242
6243 if (false_code == EQ)
6244 {
6245 swapped = 1, true_code = EQ, false_code = NE;
6246 std::swap (true_rtx, false_rtx);
6247 }
6248
6249 /* If we are comparing against zero and the expression being tested has
6250 only a single bit that might be nonzero, that is its value when it is
6251 not equal to zero. Similarly if it is known to be -1 or 0. */
6252
6253 if (true_code == EQ && true_val == const0_rtx
6254 && pow2p_hwi (nzb = nonzero_bits (from, GET_MODE (from))))
6255 {
6256 false_code = EQ;
6257 false_val = gen_int_mode (nzb, GET_MODE (from));
6258 }
6259 else if (true_code == EQ && true_val == const0_rtx
6260 && (num_sign_bit_copies (from, GET_MODE (from))
6261 == GET_MODE_PRECISION (GET_MODE (from))))
6262 {
6263 false_code = EQ;
6264 false_val = constm1_rtx;
6265 }
6266
6267 /* Now simplify an arm if we know the value of the register in the
6268 branch and it is used in the arm. Be careful due to the potential
6269 of locally-shared RTL. */
6270
6271 if (reg_mentioned_p (from, true_rtx))
6272 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6273 from, true_val),
6274 pc_rtx, pc_rtx, 0, 0, 0);
6275 if (reg_mentioned_p (from, false_rtx))
6276 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6277 from, false_val),
6278 pc_rtx, pc_rtx, 0, 0, 0);
6279
6280 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6281 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6282
6283 true_rtx = XEXP (x, 1);
6284 false_rtx = XEXP (x, 2);
6285 true_code = GET_CODE (cond);
6286 }
6287
6288 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6289 reversed, do so to avoid needing two sets of patterns for
6290 subtract-and-branch insns. Similarly if we have a constant in the true
6291 arm, the false arm is the same as the first operand of the comparison, or
6292 the false arm is more complicated than the true arm. */
6293
6294 if (comparison_p
6295 && reversed_comparison_code (cond, NULL) != UNKNOWN
6296 && (true_rtx == pc_rtx
6297 || (CONSTANT_P (true_rtx)
6298 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6299 || true_rtx == const0_rtx
6300 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6301 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6302 && !OBJECT_P (false_rtx))
6303 || reg_mentioned_p (true_rtx, false_rtx)
6304 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6305 {
6306 true_code = reversed_comparison_code (cond, NULL);
6307 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6308 SUBST (XEXP (x, 1), false_rtx);
6309 SUBST (XEXP (x, 2), true_rtx);
6310
6311 std::swap (true_rtx, false_rtx);
6312 cond = XEXP (x, 0);
6313
6314 /* It is possible that the conditional has been simplified out. */
6315 true_code = GET_CODE (cond);
6316 comparison_p = COMPARISON_P (cond);
6317 }
6318
6319 /* If the two arms are identical, we don't need the comparison. */
6320
6321 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6322 return true_rtx;
6323
6324 /* Convert a == b ? b : a to "a". */
6325 if (true_code == EQ && ! side_effects_p (cond)
6326 && !HONOR_NANS (mode)
6327 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6328 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6329 return false_rtx;
6330 else if (true_code == NE && ! side_effects_p (cond)
6331 && !HONOR_NANS (mode)
6332 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6333 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6334 return true_rtx;
6335
6336 /* Look for cases where we have (abs x) or (neg (abs X)). */
6337
6338 if (GET_MODE_CLASS (mode) == MODE_INT
6339 && comparison_p
6340 && XEXP (cond, 1) == const0_rtx
6341 && GET_CODE (false_rtx) == NEG
6342 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6343 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6344 && ! side_effects_p (true_rtx))
6345 switch (true_code)
6346 {
6347 case GT:
6348 case GE:
6349 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6350 case LT:
6351 case LE:
6352 return
6353 simplify_gen_unary (NEG, mode,
6354 simplify_gen_unary (ABS, mode, true_rtx, mode),
6355 mode);
6356 default:
6357 break;
6358 }
6359
6360 /* Look for MIN or MAX. */
6361
6362 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6363 && comparison_p
6364 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6365 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6366 && ! side_effects_p (cond))
6367 switch (true_code)
6368 {
6369 case GE:
6370 case GT:
6371 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6372 case LE:
6373 case LT:
6374 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6375 case GEU:
6376 case GTU:
6377 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6378 case LEU:
6379 case LTU:
6380 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6381 default:
6382 break;
6383 }
6384
6385 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6386 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6387 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6388 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6389 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6390 neither 1 or -1, but it isn't worth checking for. */
6391
6392 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6393 && comparison_p
6394 && GET_MODE_CLASS (mode) == MODE_INT
6395 && ! side_effects_p (x))
6396 {
6397 rtx t = make_compound_operation (true_rtx, SET);
6398 rtx f = make_compound_operation (false_rtx, SET);
6399 rtx cond_op0 = XEXP (cond, 0);
6400 rtx cond_op1 = XEXP (cond, 1);
6401 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6402 machine_mode m = mode;
6403 rtx z = 0, c1 = NULL_RTX;
6404
6405 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6406 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6407 || GET_CODE (t) == ASHIFT
6408 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6409 && rtx_equal_p (XEXP (t, 0), f))
6410 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6411
6412 /* If an identity-zero op is commutative, check whether there
6413 would be a match if we swapped the operands. */
6414 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6415 || GET_CODE (t) == XOR)
6416 && rtx_equal_p (XEXP (t, 1), f))
6417 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6418 else if (GET_CODE (t) == SIGN_EXTEND
6419 && (GET_CODE (XEXP (t, 0)) == PLUS
6420 || GET_CODE (XEXP (t, 0)) == MINUS
6421 || GET_CODE (XEXP (t, 0)) == IOR
6422 || GET_CODE (XEXP (t, 0)) == XOR
6423 || GET_CODE (XEXP (t, 0)) == ASHIFT
6424 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6425 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6426 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6427 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6428 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6429 && (num_sign_bit_copies (f, GET_MODE (f))
6430 > (unsigned int)
6431 (GET_MODE_PRECISION (mode)
6432 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6433 {
6434 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6435 extend_op = SIGN_EXTEND;
6436 m = GET_MODE (XEXP (t, 0));
6437 }
6438 else if (GET_CODE (t) == SIGN_EXTEND
6439 && (GET_CODE (XEXP (t, 0)) == PLUS
6440 || GET_CODE (XEXP (t, 0)) == IOR
6441 || GET_CODE (XEXP (t, 0)) == XOR)
6442 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6443 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6444 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6445 && (num_sign_bit_copies (f, GET_MODE (f))
6446 > (unsigned int)
6447 (GET_MODE_PRECISION (mode)
6448 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6449 {
6450 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6451 extend_op = SIGN_EXTEND;
6452 m = GET_MODE (XEXP (t, 0));
6453 }
6454 else if (GET_CODE (t) == ZERO_EXTEND
6455 && (GET_CODE (XEXP (t, 0)) == PLUS
6456 || GET_CODE (XEXP (t, 0)) == MINUS
6457 || GET_CODE (XEXP (t, 0)) == IOR
6458 || GET_CODE (XEXP (t, 0)) == XOR
6459 || GET_CODE (XEXP (t, 0)) == ASHIFT
6460 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6461 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6462 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6463 && HWI_COMPUTABLE_MODE_P (mode)
6464 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6465 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6466 && ((nonzero_bits (f, GET_MODE (f))
6467 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6468 == 0))
6469 {
6470 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6471 extend_op = ZERO_EXTEND;
6472 m = GET_MODE (XEXP (t, 0));
6473 }
6474 else if (GET_CODE (t) == ZERO_EXTEND
6475 && (GET_CODE (XEXP (t, 0)) == PLUS
6476 || GET_CODE (XEXP (t, 0)) == IOR
6477 || GET_CODE (XEXP (t, 0)) == XOR)
6478 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6479 && HWI_COMPUTABLE_MODE_P (mode)
6480 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6481 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6482 && ((nonzero_bits (f, GET_MODE (f))
6483 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6484 == 0))
6485 {
6486 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6487 extend_op = ZERO_EXTEND;
6488 m = GET_MODE (XEXP (t, 0));
6489 }
6490
6491 if (z)
6492 {
6493 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6494 cond_op0, cond_op1),
6495 pc_rtx, pc_rtx, 0, 0, 0);
6496 temp = simplify_gen_binary (MULT, m, temp,
6497 simplify_gen_binary (MULT, m, c1,
6498 const_true_rtx));
6499 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6500 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6501
6502 if (extend_op != UNKNOWN)
6503 temp = simplify_gen_unary (extend_op, mode, temp, m);
6504
6505 return temp;
6506 }
6507 }
6508
6509 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6510 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6511 negation of a single bit, we can convert this operation to a shift. We
6512 can actually do this more generally, but it doesn't seem worth it. */
6513
6514 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6515 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6516 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6517 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6518 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6519 == GET_MODE_PRECISION (mode))
6520 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6521 return
6522 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6523 gen_lowpart (mode, XEXP (cond, 0)), i);
6524
6525 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6526 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6527 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6528 && GET_MODE (XEXP (cond, 0)) == mode
6529 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6530 == nonzero_bits (XEXP (cond, 0), mode)
6531 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6532 return XEXP (cond, 0);
6533
6534 return x;
6535 }
6536 \f
6537 /* Simplify X, a SET expression. Return the new expression. */
6538
6539 static rtx
6540 simplify_set (rtx x)
6541 {
6542 rtx src = SET_SRC (x);
6543 rtx dest = SET_DEST (x);
6544 machine_mode mode
6545 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6546 rtx_insn *other_insn;
6547 rtx *cc_use;
6548
6549 /* (set (pc) (return)) gets written as (return). */
6550 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6551 return src;
6552
6553 /* Now that we know for sure which bits of SRC we are using, see if we can
6554 simplify the expression for the object knowing that we only need the
6555 low-order bits. */
6556
6557 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6558 {
6559 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6560 SUBST (SET_SRC (x), src);
6561 }
6562
6563 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6564 the comparison result and try to simplify it unless we already have used
6565 undobuf.other_insn. */
6566 if ((GET_MODE_CLASS (mode) == MODE_CC
6567 || GET_CODE (src) == COMPARE
6568 || CC0_P (dest))
6569 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6570 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6571 && COMPARISON_P (*cc_use)
6572 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6573 {
6574 enum rtx_code old_code = GET_CODE (*cc_use);
6575 enum rtx_code new_code;
6576 rtx op0, op1, tmp;
6577 int other_changed = 0;
6578 rtx inner_compare = NULL_RTX;
6579 machine_mode compare_mode = GET_MODE (dest);
6580
6581 if (GET_CODE (src) == COMPARE)
6582 {
6583 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6584 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6585 {
6586 inner_compare = op0;
6587 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6588 }
6589 }
6590 else
6591 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6592
6593 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6594 op0, op1);
6595 if (!tmp)
6596 new_code = old_code;
6597 else if (!CONSTANT_P (tmp))
6598 {
6599 new_code = GET_CODE (tmp);
6600 op0 = XEXP (tmp, 0);
6601 op1 = XEXP (tmp, 1);
6602 }
6603 else
6604 {
6605 rtx pat = PATTERN (other_insn);
6606 undobuf.other_insn = other_insn;
6607 SUBST (*cc_use, tmp);
6608
6609 /* Attempt to simplify CC user. */
6610 if (GET_CODE (pat) == SET)
6611 {
6612 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6613 if (new_rtx != NULL_RTX)
6614 SUBST (SET_SRC (pat), new_rtx);
6615 }
6616
6617 /* Convert X into a no-op move. */
6618 SUBST (SET_DEST (x), pc_rtx);
6619 SUBST (SET_SRC (x), pc_rtx);
6620 return x;
6621 }
6622
6623 /* Simplify our comparison, if possible. */
6624 new_code = simplify_comparison (new_code, &op0, &op1);
6625
6626 #ifdef SELECT_CC_MODE
6627 /* If this machine has CC modes other than CCmode, check to see if we
6628 need to use a different CC mode here. */
6629 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6630 compare_mode = GET_MODE (op0);
6631 else if (inner_compare
6632 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6633 && new_code == old_code
6634 && op0 == XEXP (inner_compare, 0)
6635 && op1 == XEXP (inner_compare, 1))
6636 compare_mode = GET_MODE (inner_compare);
6637 else
6638 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6639
6640 /* If the mode changed, we have to change SET_DEST, the mode in the
6641 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6642 a hard register, just build new versions with the proper mode. If it
6643 is a pseudo, we lose unless it is only time we set the pseudo, in
6644 which case we can safely change its mode. */
6645 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6646 {
6647 if (can_change_dest_mode (dest, 0, compare_mode))
6648 {
6649 unsigned int regno = REGNO (dest);
6650 rtx new_dest;
6651
6652 if (regno < FIRST_PSEUDO_REGISTER)
6653 new_dest = gen_rtx_REG (compare_mode, regno);
6654 else
6655 {
6656 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6657 new_dest = regno_reg_rtx[regno];
6658 }
6659
6660 SUBST (SET_DEST (x), new_dest);
6661 SUBST (XEXP (*cc_use, 0), new_dest);
6662 other_changed = 1;
6663
6664 dest = new_dest;
6665 }
6666 }
6667 #endif /* SELECT_CC_MODE */
6668
6669 /* If the code changed, we have to build a new comparison in
6670 undobuf.other_insn. */
6671 if (new_code != old_code)
6672 {
6673 int other_changed_previously = other_changed;
6674 unsigned HOST_WIDE_INT mask;
6675 rtx old_cc_use = *cc_use;
6676
6677 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6678 dest, const0_rtx));
6679 other_changed = 1;
6680
6681 /* If the only change we made was to change an EQ into an NE or
6682 vice versa, OP0 has only one bit that might be nonzero, and OP1
6683 is zero, check if changing the user of the condition code will
6684 produce a valid insn. If it won't, we can keep the original code
6685 in that insn by surrounding our operation with an XOR. */
6686
6687 if (((old_code == NE && new_code == EQ)
6688 || (old_code == EQ && new_code == NE))
6689 && ! other_changed_previously && op1 == const0_rtx
6690 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6691 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6692 {
6693 rtx pat = PATTERN (other_insn), note = 0;
6694
6695 if ((recog_for_combine (&pat, other_insn, &note) < 0
6696 && ! check_asm_operands (pat)))
6697 {
6698 *cc_use = old_cc_use;
6699 other_changed = 0;
6700
6701 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6702 gen_int_mode (mask,
6703 GET_MODE (op0)));
6704 }
6705 }
6706 }
6707
6708 if (other_changed)
6709 undobuf.other_insn = other_insn;
6710
6711 /* Don't generate a compare of a CC with 0, just use that CC. */
6712 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6713 {
6714 SUBST (SET_SRC (x), op0);
6715 src = SET_SRC (x);
6716 }
6717 /* Otherwise, if we didn't previously have the same COMPARE we
6718 want, create it from scratch. */
6719 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6720 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6721 {
6722 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6723 src = SET_SRC (x);
6724 }
6725 }
6726 else
6727 {
6728 /* Get SET_SRC in a form where we have placed back any
6729 compound expressions. Then do the checks below. */
6730 src = make_compound_operation (src, SET);
6731 SUBST (SET_SRC (x), src);
6732 }
6733
6734 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6735 and X being a REG or (subreg (reg)), we may be able to convert this to
6736 (set (subreg:m2 x) (op)).
6737
6738 We can always do this if M1 is narrower than M2 because that means that
6739 we only care about the low bits of the result.
6740
6741 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6742 perform a narrower operation than requested since the high-order bits will
6743 be undefined. On machine where it is defined, this transformation is safe
6744 as long as M1 and M2 have the same number of words. */
6745
6746 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6747 && !OBJECT_P (SUBREG_REG (src))
6748 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6749 / UNITS_PER_WORD)
6750 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6751 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6752 && (WORD_REGISTER_OPERATIONS
6753 || (GET_MODE_SIZE (GET_MODE (src))
6754 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
6755 #ifdef CANNOT_CHANGE_MODE_CLASS
6756 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6757 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6758 GET_MODE (SUBREG_REG (src)),
6759 GET_MODE (src)))
6760 #endif
6761 && (REG_P (dest)
6762 || (GET_CODE (dest) == SUBREG
6763 && REG_P (SUBREG_REG (dest)))))
6764 {
6765 SUBST (SET_DEST (x),
6766 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6767 dest));
6768 SUBST (SET_SRC (x), SUBREG_REG (src));
6769
6770 src = SET_SRC (x), dest = SET_DEST (x);
6771 }
6772
6773 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6774 in SRC. */
6775 if (dest == cc0_rtx
6776 && GET_CODE (src) == SUBREG
6777 && subreg_lowpart_p (src)
6778 && (GET_MODE_PRECISION (GET_MODE (src))
6779 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6780 {
6781 rtx inner = SUBREG_REG (src);
6782 machine_mode inner_mode = GET_MODE (inner);
6783
6784 /* Here we make sure that we don't have a sign bit on. */
6785 if (val_signbit_known_clear_p (GET_MODE (src),
6786 nonzero_bits (inner, inner_mode)))
6787 {
6788 SUBST (SET_SRC (x), inner);
6789 src = SET_SRC (x);
6790 }
6791 }
6792
6793 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6794 would require a paradoxical subreg. Replace the subreg with a
6795 zero_extend to avoid the reload that would otherwise be required. */
6796
6797 enum rtx_code extend_op;
6798 if (paradoxical_subreg_p (src)
6799 && MEM_P (SUBREG_REG (src))
6800 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
6801 {
6802 SUBST (SET_SRC (x),
6803 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
6804
6805 src = SET_SRC (x);
6806 }
6807
6808 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6809 are comparing an item known to be 0 or -1 against 0, use a logical
6810 operation instead. Check for one of the arms being an IOR of the other
6811 arm with some value. We compute three terms to be IOR'ed together. In
6812 practice, at most two will be nonzero. Then we do the IOR's. */
6813
6814 if (GET_CODE (dest) != PC
6815 && GET_CODE (src) == IF_THEN_ELSE
6816 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6817 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6818 && XEXP (XEXP (src, 0), 1) == const0_rtx
6819 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6820 && (!HAVE_conditional_move
6821 || ! can_conditionally_move_p (GET_MODE (src)))
6822 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6823 GET_MODE (XEXP (XEXP (src, 0), 0)))
6824 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6825 && ! side_effects_p (src))
6826 {
6827 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6828 ? XEXP (src, 1) : XEXP (src, 2));
6829 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6830 ? XEXP (src, 2) : XEXP (src, 1));
6831 rtx term1 = const0_rtx, term2, term3;
6832
6833 if (GET_CODE (true_rtx) == IOR
6834 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6835 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6836 else if (GET_CODE (true_rtx) == IOR
6837 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6838 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6839 else if (GET_CODE (false_rtx) == IOR
6840 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6841 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6842 else if (GET_CODE (false_rtx) == IOR
6843 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6844 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6845
6846 term2 = simplify_gen_binary (AND, GET_MODE (src),
6847 XEXP (XEXP (src, 0), 0), true_rtx);
6848 term3 = simplify_gen_binary (AND, GET_MODE (src),
6849 simplify_gen_unary (NOT, GET_MODE (src),
6850 XEXP (XEXP (src, 0), 0),
6851 GET_MODE (src)),
6852 false_rtx);
6853
6854 SUBST (SET_SRC (x),
6855 simplify_gen_binary (IOR, GET_MODE (src),
6856 simplify_gen_binary (IOR, GET_MODE (src),
6857 term1, term2),
6858 term3));
6859
6860 src = SET_SRC (x);
6861 }
6862
6863 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6864 whole thing fail. */
6865 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6866 return src;
6867 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6868 return dest;
6869 else
6870 /* Convert this into a field assignment operation, if possible. */
6871 return make_field_assignment (x);
6872 }
6873 \f
6874 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6875 result. */
6876
6877 static rtx
6878 simplify_logical (rtx x)
6879 {
6880 machine_mode mode = GET_MODE (x);
6881 rtx op0 = XEXP (x, 0);
6882 rtx op1 = XEXP (x, 1);
6883
6884 switch (GET_CODE (x))
6885 {
6886 case AND:
6887 /* We can call simplify_and_const_int only if we don't lose
6888 any (sign) bits when converting INTVAL (op1) to
6889 "unsigned HOST_WIDE_INT". */
6890 if (CONST_INT_P (op1)
6891 && (HWI_COMPUTABLE_MODE_P (mode)
6892 || INTVAL (op1) > 0))
6893 {
6894 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6895 if (GET_CODE (x) != AND)
6896 return x;
6897
6898 op0 = XEXP (x, 0);
6899 op1 = XEXP (x, 1);
6900 }
6901
6902 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6903 apply the distributive law and then the inverse distributive
6904 law to see if things simplify. */
6905 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6906 {
6907 rtx result = distribute_and_simplify_rtx (x, 0);
6908 if (result)
6909 return result;
6910 }
6911 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6912 {
6913 rtx result = distribute_and_simplify_rtx (x, 1);
6914 if (result)
6915 return result;
6916 }
6917 break;
6918
6919 case IOR:
6920 /* If we have (ior (and A B) C), apply the distributive law and then
6921 the inverse distributive law to see if things simplify. */
6922
6923 if (GET_CODE (op0) == AND)
6924 {
6925 rtx result = distribute_and_simplify_rtx (x, 0);
6926 if (result)
6927 return result;
6928 }
6929
6930 if (GET_CODE (op1) == AND)
6931 {
6932 rtx result = distribute_and_simplify_rtx (x, 1);
6933 if (result)
6934 return result;
6935 }
6936 break;
6937
6938 default:
6939 gcc_unreachable ();
6940 }
6941
6942 return x;
6943 }
6944 \f
6945 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6946 operations" because they can be replaced with two more basic operations.
6947 ZERO_EXTEND is also considered "compound" because it can be replaced with
6948 an AND operation, which is simpler, though only one operation.
6949
6950 The function expand_compound_operation is called with an rtx expression
6951 and will convert it to the appropriate shifts and AND operations,
6952 simplifying at each stage.
6953
6954 The function make_compound_operation is called to convert an expression
6955 consisting of shifts and ANDs into the equivalent compound expression.
6956 It is the inverse of this function, loosely speaking. */
6957
6958 static rtx
6959 expand_compound_operation (rtx x)
6960 {
6961 unsigned HOST_WIDE_INT pos = 0, len;
6962 int unsignedp = 0;
6963 unsigned int modewidth;
6964 rtx tem;
6965
6966 switch (GET_CODE (x))
6967 {
6968 case ZERO_EXTEND:
6969 unsignedp = 1;
6970 /* FALLTHRU */
6971 case SIGN_EXTEND:
6972 /* We can't necessarily use a const_int for a multiword mode;
6973 it depends on implicitly extending the value.
6974 Since we don't know the right way to extend it,
6975 we can't tell whether the implicit way is right.
6976
6977 Even for a mode that is no wider than a const_int,
6978 we can't win, because we need to sign extend one of its bits through
6979 the rest of it, and we don't know which bit. */
6980 if (CONST_INT_P (XEXP (x, 0)))
6981 return x;
6982
6983 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6984 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6985 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6986 reloaded. If not for that, MEM's would very rarely be safe.
6987
6988 Reject MODEs bigger than a word, because we might not be able
6989 to reference a two-register group starting with an arbitrary register
6990 (and currently gen_lowpart might crash for a SUBREG). */
6991
6992 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6993 return x;
6994
6995 /* Reject MODEs that aren't scalar integers because turning vector
6996 or complex modes into shifts causes problems. */
6997
6998 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6999 return x;
7000
7001 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
7002 /* If the inner object has VOIDmode (the only way this can happen
7003 is if it is an ASM_OPERANDS), we can't do anything since we don't
7004 know how much masking to do. */
7005 if (len == 0)
7006 return x;
7007
7008 break;
7009
7010 case ZERO_EXTRACT:
7011 unsignedp = 1;
7012
7013 /* fall through */
7014
7015 case SIGN_EXTRACT:
7016 /* If the operand is a CLOBBER, just return it. */
7017 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7018 return XEXP (x, 0);
7019
7020 if (!CONST_INT_P (XEXP (x, 1))
7021 || !CONST_INT_P (XEXP (x, 2))
7022 || GET_MODE (XEXP (x, 0)) == VOIDmode)
7023 return x;
7024
7025 /* Reject MODEs that aren't scalar integers because turning vector
7026 or complex modes into shifts causes problems. */
7027
7028 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7029 return x;
7030
7031 len = INTVAL (XEXP (x, 1));
7032 pos = INTVAL (XEXP (x, 2));
7033
7034 /* This should stay within the object being extracted, fail otherwise. */
7035 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
7036 return x;
7037
7038 if (BITS_BIG_ENDIAN)
7039 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7040
7041 break;
7042
7043 default:
7044 return x;
7045 }
7046 /* Convert sign extension to zero extension, if we know that the high
7047 bit is not set, as this is easier to optimize. It will be converted
7048 back to cheaper alternative in make_extraction. */
7049 if (GET_CODE (x) == SIGN_EXTEND
7050 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7051 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7052 & ~(((unsigned HOST_WIDE_INT)
7053 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7054 >> 1))
7055 == 0)))
7056 {
7057 machine_mode mode = GET_MODE (x);
7058 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7059 rtx temp2 = expand_compound_operation (temp);
7060
7061 /* Make sure this is a profitable operation. */
7062 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7063 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7064 return temp2;
7065 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7066 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7067 return temp;
7068 else
7069 return x;
7070 }
7071
7072 /* We can optimize some special cases of ZERO_EXTEND. */
7073 if (GET_CODE (x) == ZERO_EXTEND)
7074 {
7075 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7076 know that the last value didn't have any inappropriate bits
7077 set. */
7078 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7079 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7080 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7081 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7082 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7083 return XEXP (XEXP (x, 0), 0);
7084
7085 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7086 if (GET_CODE (XEXP (x, 0)) == SUBREG
7087 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7088 && subreg_lowpart_p (XEXP (x, 0))
7089 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7090 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7091 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7092 return SUBREG_REG (XEXP (x, 0));
7093
7094 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7095 is a comparison and STORE_FLAG_VALUE permits. This is like
7096 the first case, but it works even when GET_MODE (x) is larger
7097 than HOST_WIDE_INT. */
7098 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7099 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7100 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7101 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7102 <= HOST_BITS_PER_WIDE_INT)
7103 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7104 return XEXP (XEXP (x, 0), 0);
7105
7106 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7107 if (GET_CODE (XEXP (x, 0)) == SUBREG
7108 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7109 && subreg_lowpart_p (XEXP (x, 0))
7110 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7111 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7112 <= HOST_BITS_PER_WIDE_INT)
7113 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7114 return SUBREG_REG (XEXP (x, 0));
7115
7116 }
7117
7118 /* If we reach here, we want to return a pair of shifts. The inner
7119 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7120 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7121 logical depending on the value of UNSIGNEDP.
7122
7123 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7124 converted into an AND of a shift.
7125
7126 We must check for the case where the left shift would have a negative
7127 count. This can happen in a case like (x >> 31) & 255 on machines
7128 that can't shift by a constant. On those machines, we would first
7129 combine the shift with the AND to produce a variable-position
7130 extraction. Then the constant of 31 would be substituted in
7131 to produce such a position. */
7132
7133 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7134 if (modewidth >= pos + len)
7135 {
7136 machine_mode mode = GET_MODE (x);
7137 tem = gen_lowpart (mode, XEXP (x, 0));
7138 if (!tem || GET_CODE (tem) == CLOBBER)
7139 return x;
7140 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7141 tem, modewidth - pos - len);
7142 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7143 mode, tem, modewidth - len);
7144 }
7145 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7146 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7147 simplify_shift_const (NULL_RTX, LSHIFTRT,
7148 GET_MODE (x),
7149 XEXP (x, 0), pos),
7150 (HOST_WIDE_INT_1U << len) - 1);
7151 else
7152 /* Any other cases we can't handle. */
7153 return x;
7154
7155 /* If we couldn't do this for some reason, return the original
7156 expression. */
7157 if (GET_CODE (tem) == CLOBBER)
7158 return x;
7159
7160 return tem;
7161 }
7162 \f
7163 /* X is a SET which contains an assignment of one object into
7164 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7165 or certain SUBREGS). If possible, convert it into a series of
7166 logical operations.
7167
7168 We half-heartedly support variable positions, but do not at all
7169 support variable lengths. */
7170
7171 static const_rtx
7172 expand_field_assignment (const_rtx x)
7173 {
7174 rtx inner;
7175 rtx pos; /* Always counts from low bit. */
7176 int len;
7177 rtx mask, cleared, masked;
7178 machine_mode compute_mode;
7179
7180 /* Loop until we find something we can't simplify. */
7181 while (1)
7182 {
7183 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7184 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7185 {
7186 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7187 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7188 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7189 }
7190 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7191 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7192 {
7193 inner = XEXP (SET_DEST (x), 0);
7194 len = INTVAL (XEXP (SET_DEST (x), 1));
7195 pos = XEXP (SET_DEST (x), 2);
7196
7197 /* A constant position should stay within the width of INNER. */
7198 if (CONST_INT_P (pos)
7199 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7200 break;
7201
7202 if (BITS_BIG_ENDIAN)
7203 {
7204 if (CONST_INT_P (pos))
7205 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7206 - INTVAL (pos));
7207 else if (GET_CODE (pos) == MINUS
7208 && CONST_INT_P (XEXP (pos, 1))
7209 && (INTVAL (XEXP (pos, 1))
7210 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7211 /* If position is ADJUST - X, new position is X. */
7212 pos = XEXP (pos, 0);
7213 else
7214 {
7215 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7216 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7217 gen_int_mode (prec - len,
7218 GET_MODE (pos)),
7219 pos);
7220 }
7221 }
7222 }
7223
7224 /* A SUBREG between two modes that occupy the same numbers of words
7225 can be done by moving the SUBREG to the source. */
7226 else if (GET_CODE (SET_DEST (x)) == SUBREG
7227 /* We need SUBREGs to compute nonzero_bits properly. */
7228 && nonzero_sign_valid
7229 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7230 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7231 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7232 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7233 {
7234 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7235 gen_lowpart
7236 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7237 SET_SRC (x)));
7238 continue;
7239 }
7240 else
7241 break;
7242
7243 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7244 inner = SUBREG_REG (inner);
7245
7246 compute_mode = GET_MODE (inner);
7247
7248 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7249 if (! SCALAR_INT_MODE_P (compute_mode))
7250 {
7251 machine_mode imode;
7252
7253 /* Don't do anything for vector or complex integral types. */
7254 if (! FLOAT_MODE_P (compute_mode))
7255 break;
7256
7257 /* Try to find an integral mode to pun with. */
7258 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7259 if (imode == BLKmode)
7260 break;
7261
7262 compute_mode = imode;
7263 inner = gen_lowpart (imode, inner);
7264 }
7265
7266 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7267 if (len >= HOST_BITS_PER_WIDE_INT)
7268 break;
7269
7270 /* Don't try to compute in too wide unsupported modes. */
7271 if (!targetm.scalar_mode_supported_p (compute_mode))
7272 break;
7273
7274 /* Now compute the equivalent expression. Make a copy of INNER
7275 for the SET_DEST in case it is a MEM into which we will substitute;
7276 we don't want shared RTL in that case. */
7277 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7278 compute_mode);
7279 cleared = simplify_gen_binary (AND, compute_mode,
7280 simplify_gen_unary (NOT, compute_mode,
7281 simplify_gen_binary (ASHIFT,
7282 compute_mode,
7283 mask, pos),
7284 compute_mode),
7285 inner);
7286 masked = simplify_gen_binary (ASHIFT, compute_mode,
7287 simplify_gen_binary (
7288 AND, compute_mode,
7289 gen_lowpart (compute_mode, SET_SRC (x)),
7290 mask),
7291 pos);
7292
7293 x = gen_rtx_SET (copy_rtx (inner),
7294 simplify_gen_binary (IOR, compute_mode,
7295 cleared, masked));
7296 }
7297
7298 return x;
7299 }
7300 \f
7301 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7302 it is an RTX that represents the (variable) starting position; otherwise,
7303 POS is the (constant) starting bit position. Both are counted from the LSB.
7304
7305 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7306
7307 IN_DEST is nonzero if this is a reference in the destination of a SET.
7308 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7309 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7310 be used.
7311
7312 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7313 ZERO_EXTRACT should be built even for bits starting at bit 0.
7314
7315 MODE is the desired mode of the result (if IN_DEST == 0).
7316
7317 The result is an RTX for the extraction or NULL_RTX if the target
7318 can't handle it. */
7319
7320 static rtx
7321 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7322 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7323 int in_dest, int in_compare)
7324 {
7325 /* This mode describes the size of the storage area
7326 to fetch the overall value from. Within that, we
7327 ignore the POS lowest bits, etc. */
7328 machine_mode is_mode = GET_MODE (inner);
7329 machine_mode inner_mode;
7330 machine_mode wanted_inner_mode;
7331 machine_mode wanted_inner_reg_mode = word_mode;
7332 machine_mode pos_mode = word_mode;
7333 machine_mode extraction_mode = word_mode;
7334 machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7335 rtx new_rtx = 0;
7336 rtx orig_pos_rtx = pos_rtx;
7337 HOST_WIDE_INT orig_pos;
7338
7339 if (pos_rtx && CONST_INT_P (pos_rtx))
7340 pos = INTVAL (pos_rtx), pos_rtx = 0;
7341
7342 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7343 {
7344 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7345 consider just the QI as the memory to extract from.
7346 The subreg adds or removes high bits; its mode is
7347 irrelevant to the meaning of this extraction,
7348 since POS and LEN count from the lsb. */
7349 if (MEM_P (SUBREG_REG (inner)))
7350 is_mode = GET_MODE (SUBREG_REG (inner));
7351 inner = SUBREG_REG (inner);
7352 }
7353 else if (GET_CODE (inner) == ASHIFT
7354 && CONST_INT_P (XEXP (inner, 1))
7355 && pos_rtx == 0 && pos == 0
7356 && len > UINTVAL (XEXP (inner, 1)))
7357 {
7358 /* We're extracting the least significant bits of an rtx
7359 (ashift X (const_int C)), where LEN > C. Extract the
7360 least significant (LEN - C) bits of X, giving an rtx
7361 whose mode is MODE, then shift it left C times. */
7362 new_rtx = make_extraction (mode, XEXP (inner, 0),
7363 0, 0, len - INTVAL (XEXP (inner, 1)),
7364 unsignedp, in_dest, in_compare);
7365 if (new_rtx != 0)
7366 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7367 }
7368 else if (GET_CODE (inner) == TRUNCATE)
7369 inner = XEXP (inner, 0);
7370
7371 inner_mode = GET_MODE (inner);
7372
7373 /* See if this can be done without an extraction. We never can if the
7374 width of the field is not the same as that of some integer mode. For
7375 registers, we can only avoid the extraction if the position is at the
7376 low-order bit and this is either not in the destination or we have the
7377 appropriate STRICT_LOW_PART operation available.
7378
7379 For MEM, we can avoid an extract if the field starts on an appropriate
7380 boundary and we can change the mode of the memory reference. */
7381
7382 if (tmode != BLKmode
7383 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7384 && !MEM_P (inner)
7385 && (pos == 0 || REG_P (inner))
7386 && (inner_mode == tmode
7387 || !REG_P (inner)
7388 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7389 || reg_truncated_to_mode (tmode, inner))
7390 && (! in_dest
7391 || (REG_P (inner)
7392 && have_insn_for (STRICT_LOW_PART, tmode))))
7393 || (MEM_P (inner) && pos_rtx == 0
7394 && (pos
7395 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7396 : BITS_PER_UNIT)) == 0
7397 /* We can't do this if we are widening INNER_MODE (it
7398 may not be aligned, for one thing). */
7399 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7400 && (inner_mode == tmode
7401 || (! mode_dependent_address_p (XEXP (inner, 0),
7402 MEM_ADDR_SPACE (inner))
7403 && ! MEM_VOLATILE_P (inner))))))
7404 {
7405 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7406 field. If the original and current mode are the same, we need not
7407 adjust the offset. Otherwise, we do if bytes big endian.
7408
7409 If INNER is not a MEM, get a piece consisting of just the field
7410 of interest (in this case POS % BITS_PER_WORD must be 0). */
7411
7412 if (MEM_P (inner))
7413 {
7414 HOST_WIDE_INT offset;
7415
7416 /* POS counts from lsb, but make OFFSET count in memory order. */
7417 if (BYTES_BIG_ENDIAN)
7418 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7419 else
7420 offset = pos / BITS_PER_UNIT;
7421
7422 new_rtx = adjust_address_nv (inner, tmode, offset);
7423 }
7424 else if (REG_P (inner))
7425 {
7426 if (tmode != inner_mode)
7427 {
7428 /* We can't call gen_lowpart in a DEST since we
7429 always want a SUBREG (see below) and it would sometimes
7430 return a new hard register. */
7431 if (pos || in_dest)
7432 {
7433 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7434
7435 if (WORDS_BIG_ENDIAN
7436 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7437 final_word = ((GET_MODE_SIZE (inner_mode)
7438 - GET_MODE_SIZE (tmode))
7439 / UNITS_PER_WORD) - final_word;
7440
7441 final_word *= UNITS_PER_WORD;
7442 if (BYTES_BIG_ENDIAN &&
7443 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7444 final_word += (GET_MODE_SIZE (inner_mode)
7445 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7446
7447 /* Avoid creating invalid subregs, for example when
7448 simplifying (x>>32)&255. */
7449 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7450 return NULL_RTX;
7451
7452 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7453 }
7454 else
7455 new_rtx = gen_lowpart (tmode, inner);
7456 }
7457 else
7458 new_rtx = inner;
7459 }
7460 else
7461 new_rtx = force_to_mode (inner, tmode,
7462 len >= HOST_BITS_PER_WIDE_INT
7463 ? HOST_WIDE_INT_M1U
7464 : (HOST_WIDE_INT_1U << len) - 1, 0);
7465
7466 /* If this extraction is going into the destination of a SET,
7467 make a STRICT_LOW_PART unless we made a MEM. */
7468
7469 if (in_dest)
7470 return (MEM_P (new_rtx) ? new_rtx
7471 : (GET_CODE (new_rtx) != SUBREG
7472 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7473 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7474
7475 if (mode == tmode)
7476 return new_rtx;
7477
7478 if (CONST_SCALAR_INT_P (new_rtx))
7479 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7480 mode, new_rtx, tmode);
7481
7482 /* If we know that no extraneous bits are set, and that the high
7483 bit is not set, convert the extraction to the cheaper of
7484 sign and zero extension, that are equivalent in these cases. */
7485 if (flag_expensive_optimizations
7486 && (HWI_COMPUTABLE_MODE_P (tmode)
7487 && ((nonzero_bits (new_rtx, tmode)
7488 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7489 == 0)))
7490 {
7491 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7492 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7493
7494 /* Prefer ZERO_EXTENSION, since it gives more information to
7495 backends. */
7496 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7497 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7498 return temp;
7499 return temp1;
7500 }
7501
7502 /* Otherwise, sign- or zero-extend unless we already are in the
7503 proper mode. */
7504
7505 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7506 mode, new_rtx));
7507 }
7508
7509 /* Unless this is a COMPARE or we have a funny memory reference,
7510 don't do anything with zero-extending field extracts starting at
7511 the low-order bit since they are simple AND operations. */
7512 if (pos_rtx == 0 && pos == 0 && ! in_dest
7513 && ! in_compare && unsignedp)
7514 return 0;
7515
7516 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7517 if the position is not a constant and the length is not 1. In all
7518 other cases, we would only be going outside our object in cases when
7519 an original shift would have been undefined. */
7520 if (MEM_P (inner)
7521 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7522 || (pos_rtx != 0 && len != 1)))
7523 return 0;
7524
7525 enum extraction_pattern pattern = (in_dest ? EP_insv
7526 : unsignedp ? EP_extzv : EP_extv);
7527
7528 /* If INNER is not from memory, we want it to have the mode of a register
7529 extraction pattern's structure operand, or word_mode if there is no
7530 such pattern. The same applies to extraction_mode and pos_mode
7531 and their respective operands.
7532
7533 For memory, assume that the desired extraction_mode and pos_mode
7534 are the same as for a register operation, since at present we don't
7535 have named patterns for aligned memory structures. */
7536 struct extraction_insn insn;
7537 if (get_best_reg_extraction_insn (&insn, pattern,
7538 GET_MODE_BITSIZE (inner_mode), mode))
7539 {
7540 wanted_inner_reg_mode = insn.struct_mode;
7541 pos_mode = insn.pos_mode;
7542 extraction_mode = insn.field_mode;
7543 }
7544
7545 /* Never narrow an object, since that might not be safe. */
7546
7547 if (mode != VOIDmode
7548 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7549 extraction_mode = mode;
7550
7551 if (!MEM_P (inner))
7552 wanted_inner_mode = wanted_inner_reg_mode;
7553 else
7554 {
7555 /* Be careful not to go beyond the extracted object and maintain the
7556 natural alignment of the memory. */
7557 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7558 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7559 > GET_MODE_BITSIZE (wanted_inner_mode))
7560 {
7561 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7562 gcc_assert (wanted_inner_mode != VOIDmode);
7563 }
7564 }
7565
7566 orig_pos = pos;
7567
7568 if (BITS_BIG_ENDIAN)
7569 {
7570 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7571 BITS_BIG_ENDIAN style. If position is constant, compute new
7572 position. Otherwise, build subtraction.
7573 Note that POS is relative to the mode of the original argument.
7574 If it's a MEM we need to recompute POS relative to that.
7575 However, if we're extracting from (or inserting into) a register,
7576 we want to recompute POS relative to wanted_inner_mode. */
7577 int width = (MEM_P (inner)
7578 ? GET_MODE_BITSIZE (is_mode)
7579 : GET_MODE_BITSIZE (wanted_inner_mode));
7580
7581 if (pos_rtx == 0)
7582 pos = width - len - pos;
7583 else
7584 pos_rtx
7585 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7586 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7587 pos_rtx);
7588 /* POS may be less than 0 now, but we check for that below.
7589 Note that it can only be less than 0 if !MEM_P (inner). */
7590 }
7591
7592 /* If INNER has a wider mode, and this is a constant extraction, try to
7593 make it smaller and adjust the byte to point to the byte containing
7594 the value. */
7595 if (wanted_inner_mode != VOIDmode
7596 && inner_mode != wanted_inner_mode
7597 && ! pos_rtx
7598 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7599 && MEM_P (inner)
7600 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7601 && ! MEM_VOLATILE_P (inner))
7602 {
7603 int offset = 0;
7604
7605 /* The computations below will be correct if the machine is big
7606 endian in both bits and bytes or little endian in bits and bytes.
7607 If it is mixed, we must adjust. */
7608
7609 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7610 adjust OFFSET to compensate. */
7611 if (BYTES_BIG_ENDIAN
7612 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7613 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7614
7615 /* We can now move to the desired byte. */
7616 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7617 * GET_MODE_SIZE (wanted_inner_mode);
7618 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7619
7620 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7621 && is_mode != wanted_inner_mode)
7622 offset = (GET_MODE_SIZE (is_mode)
7623 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7624
7625 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7626 }
7627
7628 /* If INNER is not memory, get it into the proper mode. If we are changing
7629 its mode, POS must be a constant and smaller than the size of the new
7630 mode. */
7631 else if (!MEM_P (inner))
7632 {
7633 /* On the LHS, don't create paradoxical subregs implicitely truncating
7634 the register unless TRULY_NOOP_TRUNCATION. */
7635 if (in_dest
7636 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7637 wanted_inner_mode))
7638 return NULL_RTX;
7639
7640 if (GET_MODE (inner) != wanted_inner_mode
7641 && (pos_rtx != 0
7642 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7643 return NULL_RTX;
7644
7645 if (orig_pos < 0)
7646 return NULL_RTX;
7647
7648 inner = force_to_mode (inner, wanted_inner_mode,
7649 pos_rtx
7650 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7651 ? HOST_WIDE_INT_M1U
7652 : (((HOST_WIDE_INT_1U << len) - 1)
7653 << orig_pos),
7654 0);
7655 }
7656
7657 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7658 have to zero extend. Otherwise, we can just use a SUBREG. */
7659 if (pos_rtx != 0
7660 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7661 {
7662 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7663 GET_MODE (pos_rtx));
7664
7665 /* If we know that no extraneous bits are set, and that the high
7666 bit is not set, convert extraction to cheaper one - either
7667 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7668 cases. */
7669 if (flag_expensive_optimizations
7670 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7671 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7672 & ~(((unsigned HOST_WIDE_INT)
7673 GET_MODE_MASK (GET_MODE (pos_rtx)))
7674 >> 1))
7675 == 0)))
7676 {
7677 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7678 GET_MODE (pos_rtx));
7679
7680 /* Prefer ZERO_EXTENSION, since it gives more information to
7681 backends. */
7682 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7683 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7684 temp = temp1;
7685 }
7686 pos_rtx = temp;
7687 }
7688
7689 /* Make POS_RTX unless we already have it and it is correct. If we don't
7690 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7691 be a CONST_INT. */
7692 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7693 pos_rtx = orig_pos_rtx;
7694
7695 else if (pos_rtx == 0)
7696 pos_rtx = GEN_INT (pos);
7697
7698 /* Make the required operation. See if we can use existing rtx. */
7699 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7700 extraction_mode, inner, GEN_INT (len), pos_rtx);
7701 if (! in_dest)
7702 new_rtx = gen_lowpart (mode, new_rtx);
7703
7704 return new_rtx;
7705 }
7706 \f
7707 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7708 with any other operations in X. Return X without that shift if so. */
7709
7710 static rtx
7711 extract_left_shift (rtx x, int count)
7712 {
7713 enum rtx_code code = GET_CODE (x);
7714 machine_mode mode = GET_MODE (x);
7715 rtx tem;
7716
7717 switch (code)
7718 {
7719 case ASHIFT:
7720 /* This is the shift itself. If it is wide enough, we will return
7721 either the value being shifted if the shift count is equal to
7722 COUNT or a shift for the difference. */
7723 if (CONST_INT_P (XEXP (x, 1))
7724 && INTVAL (XEXP (x, 1)) >= count)
7725 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7726 INTVAL (XEXP (x, 1)) - count);
7727 break;
7728
7729 case NEG: case NOT:
7730 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7731 return simplify_gen_unary (code, mode, tem, mode);
7732
7733 break;
7734
7735 case PLUS: case IOR: case XOR: case AND:
7736 /* If we can safely shift this constant and we find the inner shift,
7737 make a new operation. */
7738 if (CONST_INT_P (XEXP (x, 1))
7739 && (UINTVAL (XEXP (x, 1))
7740 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7741 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7742 {
7743 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7744 return simplify_gen_binary (code, mode, tem,
7745 gen_int_mode (val, mode));
7746 }
7747 break;
7748
7749 default:
7750 break;
7751 }
7752
7753 return 0;
7754 }
7755 \f
7756 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7757 level of the expression and MODE is its mode. IN_CODE is as for
7758 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7759 that should be used when recursing on operands of *X_PTR.
7760
7761 There are two possible actions:
7762
7763 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7764 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7765
7766 - Return a new rtx, which the caller returns directly. */
7767
7768 static rtx
7769 make_compound_operation_int (machine_mode mode, rtx *x_ptr,
7770 enum rtx_code in_code,
7771 enum rtx_code *next_code_ptr)
7772 {
7773 rtx x = *x_ptr;
7774 enum rtx_code next_code = *next_code_ptr;
7775 enum rtx_code code = GET_CODE (x);
7776 int mode_width = GET_MODE_PRECISION (mode);
7777 rtx rhs, lhs;
7778 rtx new_rtx = 0;
7779 int i;
7780 rtx tem;
7781 bool equality_comparison = false;
7782
7783 if (in_code == EQ)
7784 {
7785 equality_comparison = true;
7786 in_code = COMPARE;
7787 }
7788
7789 /* Process depending on the code of this operation. If NEW is set
7790 nonzero, it will be returned. */
7791
7792 switch (code)
7793 {
7794 case ASHIFT:
7795 /* Convert shifts by constants into multiplications if inside
7796 an address. */
7797 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7798 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7799 && INTVAL (XEXP (x, 1)) >= 0)
7800 {
7801 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7802 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7803
7804 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7805 if (GET_CODE (new_rtx) == NEG)
7806 {
7807 new_rtx = XEXP (new_rtx, 0);
7808 multval = -multval;
7809 }
7810 multval = trunc_int_for_mode (multval, mode);
7811 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7812 }
7813 break;
7814
7815 case PLUS:
7816 lhs = XEXP (x, 0);
7817 rhs = XEXP (x, 1);
7818 lhs = make_compound_operation (lhs, next_code);
7819 rhs = make_compound_operation (rhs, next_code);
7820 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
7821 {
7822 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7823 XEXP (lhs, 1));
7824 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7825 }
7826 else if (GET_CODE (lhs) == MULT
7827 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7828 {
7829 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7830 simplify_gen_unary (NEG, mode,
7831 XEXP (lhs, 1),
7832 mode));
7833 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7834 }
7835 else
7836 {
7837 SUBST (XEXP (x, 0), lhs);
7838 SUBST (XEXP (x, 1), rhs);
7839 }
7840 maybe_swap_commutative_operands (x);
7841 return x;
7842
7843 case MINUS:
7844 lhs = XEXP (x, 0);
7845 rhs = XEXP (x, 1);
7846 lhs = make_compound_operation (lhs, next_code);
7847 rhs = make_compound_operation (rhs, next_code);
7848 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
7849 {
7850 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7851 XEXP (rhs, 1));
7852 return simplify_gen_binary (PLUS, mode, tem, lhs);
7853 }
7854 else if (GET_CODE (rhs) == MULT
7855 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7856 {
7857 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7858 simplify_gen_unary (NEG, mode,
7859 XEXP (rhs, 1),
7860 mode));
7861 return simplify_gen_binary (PLUS, mode, tem, lhs);
7862 }
7863 else
7864 {
7865 SUBST (XEXP (x, 0), lhs);
7866 SUBST (XEXP (x, 1), rhs);
7867 return x;
7868 }
7869
7870 case AND:
7871 /* If the second operand is not a constant, we can't do anything
7872 with it. */
7873 if (!CONST_INT_P (XEXP (x, 1)))
7874 break;
7875
7876 /* If the constant is a power of two minus one and the first operand
7877 is a logical right shift, make an extraction. */
7878 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7879 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7880 {
7881 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7882 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7883 0, in_code == COMPARE);
7884 }
7885
7886 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7887 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7888 && subreg_lowpart_p (XEXP (x, 0))
7889 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7890 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7891 {
7892 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
7893 machine_mode inner_mode = GET_MODE (inner_x0);
7894 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
7895 new_rtx = make_extraction (inner_mode, new_rtx, 0,
7896 XEXP (inner_x0, 1),
7897 i, 1, 0, in_code == COMPARE);
7898
7899 if (new_rtx)
7900 {
7901 /* If we narrowed the mode when dropping the subreg, then
7902 we must zero-extend to keep the semantics of the AND. */
7903 if (GET_MODE_SIZE (inner_mode) >= GET_MODE_SIZE (mode))
7904 ;
7905 else if (SCALAR_INT_MODE_P (inner_mode))
7906 new_rtx = simplify_gen_unary (ZERO_EXTEND, mode,
7907 new_rtx, inner_mode);
7908 else
7909 new_rtx = NULL;
7910 }
7911
7912 /* If that didn't give anything, see if the AND simplifies on
7913 its own. */
7914 if (!new_rtx && i >= 0)
7915 {
7916 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7917 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
7918 0, in_code == COMPARE);
7919 }
7920 }
7921 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7922 else if ((GET_CODE (XEXP (x, 0)) == XOR
7923 || GET_CODE (XEXP (x, 0)) == IOR)
7924 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7925 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7926 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7927 {
7928 /* Apply the distributive law, and then try to make extractions. */
7929 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7930 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7931 XEXP (x, 1)),
7932 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7933 XEXP (x, 1)));
7934 new_rtx = make_compound_operation (new_rtx, in_code);
7935 }
7936
7937 /* If we are have (and (rotate X C) M) and C is larger than the number
7938 of bits in M, this is an extraction. */
7939
7940 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7941 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7942 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7943 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7944 {
7945 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7946 new_rtx = make_extraction (mode, new_rtx,
7947 (GET_MODE_PRECISION (mode)
7948 - INTVAL (XEXP (XEXP (x, 0), 1))),
7949 NULL_RTX, i, 1, 0, in_code == COMPARE);
7950 }
7951
7952 /* On machines without logical shifts, if the operand of the AND is
7953 a logical shift and our mask turns off all the propagated sign
7954 bits, we can replace the logical shift with an arithmetic shift. */
7955 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7956 && !have_insn_for (LSHIFTRT, mode)
7957 && have_insn_for (ASHIFTRT, mode)
7958 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7959 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7960 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7961 && mode_width <= HOST_BITS_PER_WIDE_INT)
7962 {
7963 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7964
7965 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7966 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7967 SUBST (XEXP (x, 0),
7968 gen_rtx_ASHIFTRT (mode,
7969 make_compound_operation
7970 (XEXP (XEXP (x, 0), 0), next_code),
7971 XEXP (XEXP (x, 0), 1)));
7972 }
7973
7974 /* If the constant is one less than a power of two, this might be
7975 representable by an extraction even if no shift is present.
7976 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7977 we are in a COMPARE. */
7978 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7979 new_rtx = make_extraction (mode,
7980 make_compound_operation (XEXP (x, 0),
7981 next_code),
7982 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7983
7984 /* If we are in a comparison and this is an AND with a power of two,
7985 convert this into the appropriate bit extract. */
7986 else if (in_code == COMPARE
7987 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
7988 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
7989 new_rtx = make_extraction (mode,
7990 make_compound_operation (XEXP (x, 0),
7991 next_code),
7992 i, NULL_RTX, 1, 1, 0, 1);
7993
7994 /* If the one operand is a paradoxical subreg of a register or memory and
7995 the constant (limited to the smaller mode) has only zero bits where
7996 the sub expression has known zero bits, this can be expressed as
7997 a zero_extend. */
7998 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
7999 {
8000 rtx sub;
8001
8002 sub = XEXP (XEXP (x, 0), 0);
8003 machine_mode sub_mode = GET_MODE (sub);
8004 if ((REG_P (sub) || MEM_P (sub))
8005 && GET_MODE_PRECISION (sub_mode) < mode_width)
8006 {
8007 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8008 unsigned HOST_WIDE_INT mask;
8009
8010 /* original AND constant with all the known zero bits set */
8011 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8012 if ((mask & mode_mask) == mode_mask)
8013 {
8014 new_rtx = make_compound_operation (sub, next_code);
8015 new_rtx = make_extraction (mode, new_rtx, 0, 0,
8016 GET_MODE_PRECISION (sub_mode),
8017 1, 0, in_code == COMPARE);
8018 }
8019 }
8020 }
8021
8022 break;
8023
8024 case LSHIFTRT:
8025 /* If the sign bit is known to be zero, replace this with an
8026 arithmetic shift. */
8027 if (have_insn_for (ASHIFTRT, mode)
8028 && ! have_insn_for (LSHIFTRT, mode)
8029 && mode_width <= HOST_BITS_PER_WIDE_INT
8030 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8031 {
8032 new_rtx = gen_rtx_ASHIFTRT (mode,
8033 make_compound_operation (XEXP (x, 0),
8034 next_code),
8035 XEXP (x, 1));
8036 break;
8037 }
8038
8039 /* fall through */
8040
8041 case ASHIFTRT:
8042 lhs = XEXP (x, 0);
8043 rhs = XEXP (x, 1);
8044
8045 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8046 this is a SIGN_EXTRACT. */
8047 if (CONST_INT_P (rhs)
8048 && GET_CODE (lhs) == ASHIFT
8049 && CONST_INT_P (XEXP (lhs, 1))
8050 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8051 && INTVAL (XEXP (lhs, 1)) >= 0
8052 && INTVAL (rhs) < mode_width)
8053 {
8054 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8055 new_rtx = make_extraction (mode, new_rtx,
8056 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8057 NULL_RTX, mode_width - INTVAL (rhs),
8058 code == LSHIFTRT, 0, in_code == COMPARE);
8059 break;
8060 }
8061
8062 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8063 If so, try to merge the shifts into a SIGN_EXTEND. We could
8064 also do this for some cases of SIGN_EXTRACT, but it doesn't
8065 seem worth the effort; the case checked for occurs on Alpha. */
8066
8067 if (!OBJECT_P (lhs)
8068 && ! (GET_CODE (lhs) == SUBREG
8069 && (OBJECT_P (SUBREG_REG (lhs))))
8070 && CONST_INT_P (rhs)
8071 && INTVAL (rhs) >= 0
8072 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8073 && INTVAL (rhs) < mode_width
8074 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8075 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8076 0, NULL_RTX, mode_width - INTVAL (rhs),
8077 code == LSHIFTRT, 0, in_code == COMPARE);
8078
8079 break;
8080
8081 case SUBREG:
8082 /* Call ourselves recursively on the inner expression. If we are
8083 narrowing the object and it has a different RTL code from
8084 what it originally did, do this SUBREG as a force_to_mode. */
8085 {
8086 rtx inner = SUBREG_REG (x), simplified;
8087 enum rtx_code subreg_code = in_code;
8088
8089 /* If the SUBREG is masking of a logical right shift,
8090 make an extraction. */
8091 if (GET_CODE (inner) == LSHIFTRT
8092 && CONST_INT_P (XEXP (inner, 1))
8093 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8094 && subreg_lowpart_p (x))
8095 {
8096 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8097 int width = GET_MODE_PRECISION (GET_MODE (inner))
8098 - INTVAL (XEXP (inner, 1));
8099 if (width > mode_width)
8100 width = mode_width;
8101 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8102 width, 1, 0, in_code == COMPARE);
8103 break;
8104 }
8105
8106 /* If in_code is COMPARE, it isn't always safe to pass it through
8107 to the recursive make_compound_operation call. */
8108 if (subreg_code == COMPARE
8109 && (!subreg_lowpart_p (x)
8110 || GET_CODE (inner) == SUBREG
8111 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8112 is (const_int 0), rather than
8113 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
8114 || (GET_CODE (inner) == AND
8115 && CONST_INT_P (XEXP (inner, 1))
8116 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8117 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8118 >= GET_MODE_BITSIZE (mode))))
8119 subreg_code = SET;
8120
8121 tem = make_compound_operation (inner, subreg_code);
8122
8123 simplified
8124 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8125 if (simplified)
8126 tem = simplified;
8127
8128 if (GET_CODE (tem) != GET_CODE (inner)
8129 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8130 && subreg_lowpart_p (x))
8131 {
8132 rtx newer
8133 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8134
8135 /* If we have something other than a SUBREG, we might have
8136 done an expansion, so rerun ourselves. */
8137 if (GET_CODE (newer) != SUBREG)
8138 newer = make_compound_operation (newer, in_code);
8139
8140 /* force_to_mode can expand compounds. If it just re-expanded the
8141 compound, use gen_lowpart to convert to the desired mode. */
8142 if (rtx_equal_p (newer, x)
8143 /* Likewise if it re-expanded the compound only partially.
8144 This happens for SUBREG of ZERO_EXTRACT if they extract
8145 the same number of bits. */
8146 || (GET_CODE (newer) == SUBREG
8147 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8148 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8149 && GET_CODE (inner) == AND
8150 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8151 return gen_lowpart (GET_MODE (x), tem);
8152
8153 return newer;
8154 }
8155
8156 if (simplified)
8157 return tem;
8158 }
8159 break;
8160
8161 default:
8162 break;
8163 }
8164
8165 if (new_rtx)
8166 *x_ptr = gen_lowpart (mode, new_rtx);
8167 *next_code_ptr = next_code;
8168 return NULL_RTX;
8169 }
8170
8171 /* Look at the expression rooted at X. Look for expressions
8172 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8173 Form these expressions.
8174
8175 Return the new rtx, usually just X.
8176
8177 Also, for machines like the VAX that don't have logical shift insns,
8178 try to convert logical to arithmetic shift operations in cases where
8179 they are equivalent. This undoes the canonicalizations to logical
8180 shifts done elsewhere.
8181
8182 We try, as much as possible, to re-use rtl expressions to save memory.
8183
8184 IN_CODE says what kind of expression we are processing. Normally, it is
8185 SET. In a memory address it is MEM. When processing the arguments of
8186 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8187 precisely it is an equality comparison against zero. */
8188
8189 rtx
8190 make_compound_operation (rtx x, enum rtx_code in_code)
8191 {
8192 enum rtx_code code = GET_CODE (x);
8193 const char *fmt;
8194 int i, j;
8195 enum rtx_code next_code;
8196 rtx new_rtx, tem;
8197
8198 /* Select the code to be used in recursive calls. Once we are inside an
8199 address, we stay there. If we have a comparison, set to COMPARE,
8200 but once inside, go back to our default of SET. */
8201
8202 next_code = (code == MEM ? MEM
8203 : ((code == COMPARE || COMPARISON_P (x))
8204 && XEXP (x, 1) == const0_rtx) ? COMPARE
8205 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8206
8207 if (SCALAR_INT_MODE_P (GET_MODE (x)))
8208 {
8209 rtx new_rtx = make_compound_operation_int (GET_MODE (x), &x,
8210 in_code, &next_code);
8211 if (new_rtx)
8212 return new_rtx;
8213 code = GET_CODE (x);
8214 }
8215
8216 /* Now recursively process each operand of this operation. We need to
8217 handle ZERO_EXTEND specially so that we don't lose track of the
8218 inner mode. */
8219 if (code == ZERO_EXTEND)
8220 {
8221 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8222 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8223 new_rtx, GET_MODE (XEXP (x, 0)));
8224 if (tem)
8225 return tem;
8226 SUBST (XEXP (x, 0), new_rtx);
8227 return x;
8228 }
8229
8230 fmt = GET_RTX_FORMAT (code);
8231 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8232 if (fmt[i] == 'e')
8233 {
8234 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8235 SUBST (XEXP (x, i), new_rtx);
8236 }
8237 else if (fmt[i] == 'E')
8238 for (j = 0; j < XVECLEN (x, i); j++)
8239 {
8240 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8241 SUBST (XVECEXP (x, i, j), new_rtx);
8242 }
8243
8244 maybe_swap_commutative_operands (x);
8245 return x;
8246 }
8247 \f
8248 /* Given M see if it is a value that would select a field of bits
8249 within an item, but not the entire word. Return -1 if not.
8250 Otherwise, return the starting position of the field, where 0 is the
8251 low-order bit.
8252
8253 *PLEN is set to the length of the field. */
8254
8255 static int
8256 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8257 {
8258 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8259 int pos = m ? ctz_hwi (m) : -1;
8260 int len = 0;
8261
8262 if (pos >= 0)
8263 /* Now shift off the low-order zero bits and see if we have a
8264 power of two minus 1. */
8265 len = exact_log2 ((m >> pos) + 1);
8266
8267 if (len <= 0)
8268 pos = -1;
8269
8270 *plen = len;
8271 return pos;
8272 }
8273 \f
8274 /* If X refers to a register that equals REG in value, replace these
8275 references with REG. */
8276 static rtx
8277 canon_reg_for_combine (rtx x, rtx reg)
8278 {
8279 rtx op0, op1, op2;
8280 const char *fmt;
8281 int i;
8282 bool copied;
8283
8284 enum rtx_code code = GET_CODE (x);
8285 switch (GET_RTX_CLASS (code))
8286 {
8287 case RTX_UNARY:
8288 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8289 if (op0 != XEXP (x, 0))
8290 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8291 GET_MODE (reg));
8292 break;
8293
8294 case RTX_BIN_ARITH:
8295 case RTX_COMM_ARITH:
8296 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8297 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8298 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8299 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8300 break;
8301
8302 case RTX_COMPARE:
8303 case RTX_COMM_COMPARE:
8304 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8305 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8306 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8307 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8308 GET_MODE (op0), op0, op1);
8309 break;
8310
8311 case RTX_TERNARY:
8312 case RTX_BITFIELD_OPS:
8313 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8314 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8315 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8316 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8317 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8318 GET_MODE (op0), op0, op1, op2);
8319 /* FALLTHRU */
8320
8321 case RTX_OBJ:
8322 if (REG_P (x))
8323 {
8324 if (rtx_equal_p (get_last_value (reg), x)
8325 || rtx_equal_p (reg, get_last_value (x)))
8326 return reg;
8327 else
8328 break;
8329 }
8330
8331 /* fall through */
8332
8333 default:
8334 fmt = GET_RTX_FORMAT (code);
8335 copied = false;
8336 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8337 if (fmt[i] == 'e')
8338 {
8339 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8340 if (op != XEXP (x, i))
8341 {
8342 if (!copied)
8343 {
8344 copied = true;
8345 x = copy_rtx (x);
8346 }
8347 XEXP (x, i) = op;
8348 }
8349 }
8350 else if (fmt[i] == 'E')
8351 {
8352 int j;
8353 for (j = 0; j < XVECLEN (x, i); j++)
8354 {
8355 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8356 if (op != XVECEXP (x, i, j))
8357 {
8358 if (!copied)
8359 {
8360 copied = true;
8361 x = copy_rtx (x);
8362 }
8363 XVECEXP (x, i, j) = op;
8364 }
8365 }
8366 }
8367
8368 break;
8369 }
8370
8371 return x;
8372 }
8373
8374 /* Return X converted to MODE. If the value is already truncated to
8375 MODE we can just return a subreg even though in the general case we
8376 would need an explicit truncation. */
8377
8378 static rtx
8379 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8380 {
8381 if (!CONST_INT_P (x)
8382 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8383 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8384 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8385 {
8386 /* Bit-cast X into an integer mode. */
8387 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8388 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8389 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8390 x, GET_MODE (x));
8391 }
8392
8393 return gen_lowpart (mode, x);
8394 }
8395
8396 /* See if X can be simplified knowing that we will only refer to it in
8397 MODE and will only refer to those bits that are nonzero in MASK.
8398 If other bits are being computed or if masking operations are done
8399 that select a superset of the bits in MASK, they can sometimes be
8400 ignored.
8401
8402 Return a possibly simplified expression, but always convert X to
8403 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8404
8405 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8406 are all off in X. This is used when X will be complemented, by either
8407 NOT, NEG, or XOR. */
8408
8409 static rtx
8410 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8411 int just_select)
8412 {
8413 enum rtx_code code = GET_CODE (x);
8414 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8415 machine_mode op_mode;
8416 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8417 rtx op0, op1, temp;
8418
8419 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8420 code below will do the wrong thing since the mode of such an
8421 expression is VOIDmode.
8422
8423 Also do nothing if X is a CLOBBER; this can happen if X was
8424 the return value from a call to gen_lowpart. */
8425 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8426 return x;
8427
8428 /* We want to perform the operation in its present mode unless we know
8429 that the operation is valid in MODE, in which case we do the operation
8430 in MODE. */
8431 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8432 && have_insn_for (code, mode))
8433 ? mode : GET_MODE (x));
8434
8435 /* It is not valid to do a right-shift in a narrower mode
8436 than the one it came in with. */
8437 if ((code == LSHIFTRT || code == ASHIFTRT)
8438 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8439 op_mode = GET_MODE (x);
8440
8441 /* Truncate MASK to fit OP_MODE. */
8442 if (op_mode)
8443 mask &= GET_MODE_MASK (op_mode);
8444
8445 /* When we have an arithmetic operation, or a shift whose count we
8446 do not know, we need to assume that all bits up to the highest-order
8447 bit in MASK will be needed. This is how we form such a mask. */
8448 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8449 fuller_mask = HOST_WIDE_INT_M1U;
8450 else
8451 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8452 - 1);
8453
8454 /* Determine what bits of X are guaranteed to be (non)zero. */
8455 nonzero = nonzero_bits (x, mode);
8456
8457 /* If none of the bits in X are needed, return a zero. */
8458 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8459 x = const0_rtx;
8460
8461 /* If X is a CONST_INT, return a new one. Do this here since the
8462 test below will fail. */
8463 if (CONST_INT_P (x))
8464 {
8465 if (SCALAR_INT_MODE_P (mode))
8466 return gen_int_mode (INTVAL (x) & mask, mode);
8467 else
8468 {
8469 x = GEN_INT (INTVAL (x) & mask);
8470 return gen_lowpart_common (mode, x);
8471 }
8472 }
8473
8474 /* If X is narrower than MODE and we want all the bits in X's mode, just
8475 get X in the proper mode. */
8476 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8477 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8478 return gen_lowpart (mode, x);
8479
8480 /* We can ignore the effect of a SUBREG if it narrows the mode or
8481 if the constant masks to zero all the bits the mode doesn't have. */
8482 if (GET_CODE (x) == SUBREG
8483 && subreg_lowpart_p (x)
8484 && ((GET_MODE_SIZE (GET_MODE (x))
8485 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8486 || (0 == (mask
8487 & GET_MODE_MASK (GET_MODE (x))
8488 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8489 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8490
8491 /* The arithmetic simplifications here only work for scalar integer modes. */
8492 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8493 return gen_lowpart_or_truncate (mode, x);
8494
8495 switch (code)
8496 {
8497 case CLOBBER:
8498 /* If X is a (clobber (const_int)), return it since we know we are
8499 generating something that won't match. */
8500 return x;
8501
8502 case SIGN_EXTEND:
8503 case ZERO_EXTEND:
8504 case ZERO_EXTRACT:
8505 case SIGN_EXTRACT:
8506 x = expand_compound_operation (x);
8507 if (GET_CODE (x) != code)
8508 return force_to_mode (x, mode, mask, next_select);
8509 break;
8510
8511 case TRUNCATE:
8512 /* Similarly for a truncate. */
8513 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8514
8515 case AND:
8516 /* If this is an AND with a constant, convert it into an AND
8517 whose constant is the AND of that constant with MASK. If it
8518 remains an AND of MASK, delete it since it is redundant. */
8519
8520 if (CONST_INT_P (XEXP (x, 1)))
8521 {
8522 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8523 mask & INTVAL (XEXP (x, 1)));
8524
8525 /* If X is still an AND, see if it is an AND with a mask that
8526 is just some low-order bits. If so, and it is MASK, we don't
8527 need it. */
8528
8529 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8530 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8531 == mask))
8532 x = XEXP (x, 0);
8533
8534 /* If it remains an AND, try making another AND with the bits
8535 in the mode mask that aren't in MASK turned on. If the
8536 constant in the AND is wide enough, this might make a
8537 cheaper constant. */
8538
8539 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8540 && GET_MODE_MASK (GET_MODE (x)) != mask
8541 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8542 {
8543 unsigned HOST_WIDE_INT cval
8544 = UINTVAL (XEXP (x, 1))
8545 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8546 rtx y;
8547
8548 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8549 gen_int_mode (cval, GET_MODE (x)));
8550 if (set_src_cost (y, GET_MODE (x), optimize_this_for_speed_p)
8551 < set_src_cost (x, GET_MODE (x), optimize_this_for_speed_p))
8552 x = y;
8553 }
8554
8555 break;
8556 }
8557
8558 goto binop;
8559
8560 case PLUS:
8561 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8562 low-order bits (as in an alignment operation) and FOO is already
8563 aligned to that boundary, mask C1 to that boundary as well.
8564 This may eliminate that PLUS and, later, the AND. */
8565
8566 {
8567 unsigned int width = GET_MODE_PRECISION (mode);
8568 unsigned HOST_WIDE_INT smask = mask;
8569
8570 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8571 number, sign extend it. */
8572
8573 if (width < HOST_BITS_PER_WIDE_INT
8574 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8575 smask |= HOST_WIDE_INT_M1U << width;
8576
8577 if (CONST_INT_P (XEXP (x, 1))
8578 && pow2p_hwi (- smask)
8579 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8580 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8581 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8582 (INTVAL (XEXP (x, 1)) & smask)),
8583 mode, smask, next_select);
8584 }
8585
8586 /* fall through */
8587
8588 case MULT:
8589 /* Substituting into the operands of a widening MULT is not likely to
8590 create RTL matching a machine insn. */
8591 if (code == MULT
8592 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8593 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8594 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8595 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8596 && REG_P (XEXP (XEXP (x, 0), 0))
8597 && REG_P (XEXP (XEXP (x, 1), 0)))
8598 return gen_lowpart_or_truncate (mode, x);
8599
8600 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8601 most significant bit in MASK since carries from those bits will
8602 affect the bits we are interested in. */
8603 mask = fuller_mask;
8604 goto binop;
8605
8606 case MINUS:
8607 /* If X is (minus C Y) where C's least set bit is larger than any bit
8608 in the mask, then we may replace with (neg Y). */
8609 if (CONST_INT_P (XEXP (x, 0))
8610 && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8611 {
8612 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8613 GET_MODE (x));
8614 return force_to_mode (x, mode, mask, next_select);
8615 }
8616
8617 /* Similarly, if C contains every bit in the fuller_mask, then we may
8618 replace with (not Y). */
8619 if (CONST_INT_P (XEXP (x, 0))
8620 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8621 {
8622 x = simplify_gen_unary (NOT, GET_MODE (x),
8623 XEXP (x, 1), GET_MODE (x));
8624 return force_to_mode (x, mode, mask, next_select);
8625 }
8626
8627 mask = fuller_mask;
8628 goto binop;
8629
8630 case IOR:
8631 case XOR:
8632 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8633 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8634 operation which may be a bitfield extraction. Ensure that the
8635 constant we form is not wider than the mode of X. */
8636
8637 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8638 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8639 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8640 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8641 && CONST_INT_P (XEXP (x, 1))
8642 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8643 + floor_log2 (INTVAL (XEXP (x, 1))))
8644 < GET_MODE_PRECISION (GET_MODE (x)))
8645 && (UINTVAL (XEXP (x, 1))
8646 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8647 {
8648 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8649 << INTVAL (XEXP (XEXP (x, 0), 1)),
8650 GET_MODE (x));
8651 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8652 XEXP (XEXP (x, 0), 0), temp);
8653 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8654 XEXP (XEXP (x, 0), 1));
8655 return force_to_mode (x, mode, mask, next_select);
8656 }
8657
8658 binop:
8659 /* For most binary operations, just propagate into the operation and
8660 change the mode if we have an operation of that mode. */
8661
8662 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8663 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8664
8665 /* If we ended up truncating both operands, truncate the result of the
8666 operation instead. */
8667 if (GET_CODE (op0) == TRUNCATE
8668 && GET_CODE (op1) == TRUNCATE)
8669 {
8670 op0 = XEXP (op0, 0);
8671 op1 = XEXP (op1, 0);
8672 }
8673
8674 op0 = gen_lowpart_or_truncate (op_mode, op0);
8675 op1 = gen_lowpart_or_truncate (op_mode, op1);
8676
8677 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8678 x = simplify_gen_binary (code, op_mode, op0, op1);
8679 break;
8680
8681 case ASHIFT:
8682 /* For left shifts, do the same, but just for the first operand.
8683 However, we cannot do anything with shifts where we cannot
8684 guarantee that the counts are smaller than the size of the mode
8685 because such a count will have a different meaning in a
8686 wider mode. */
8687
8688 if (! (CONST_INT_P (XEXP (x, 1))
8689 && INTVAL (XEXP (x, 1)) >= 0
8690 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8691 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8692 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8693 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8694 break;
8695
8696 /* If the shift count is a constant and we can do arithmetic in
8697 the mode of the shift, refine which bits we need. Otherwise, use the
8698 conservative form of the mask. */
8699 if (CONST_INT_P (XEXP (x, 1))
8700 && INTVAL (XEXP (x, 1)) >= 0
8701 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8702 && HWI_COMPUTABLE_MODE_P (op_mode))
8703 mask >>= INTVAL (XEXP (x, 1));
8704 else
8705 mask = fuller_mask;
8706
8707 op0 = gen_lowpart_or_truncate (op_mode,
8708 force_to_mode (XEXP (x, 0), op_mode,
8709 mask, next_select));
8710
8711 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8712 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8713 break;
8714
8715 case LSHIFTRT:
8716 /* Here we can only do something if the shift count is a constant,
8717 this shift constant is valid for the host, and we can do arithmetic
8718 in OP_MODE. */
8719
8720 if (CONST_INT_P (XEXP (x, 1))
8721 && INTVAL (XEXP (x, 1)) >= 0
8722 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8723 && HWI_COMPUTABLE_MODE_P (op_mode))
8724 {
8725 rtx inner = XEXP (x, 0);
8726 unsigned HOST_WIDE_INT inner_mask;
8727
8728 /* Select the mask of the bits we need for the shift operand. */
8729 inner_mask = mask << INTVAL (XEXP (x, 1));
8730
8731 /* We can only change the mode of the shift if we can do arithmetic
8732 in the mode of the shift and INNER_MASK is no wider than the
8733 width of X's mode. */
8734 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8735 op_mode = GET_MODE (x);
8736
8737 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8738
8739 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8740 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8741 }
8742
8743 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8744 shift and AND produces only copies of the sign bit (C2 is one less
8745 than a power of two), we can do this with just a shift. */
8746
8747 if (GET_CODE (x) == LSHIFTRT
8748 && CONST_INT_P (XEXP (x, 1))
8749 /* The shift puts one of the sign bit copies in the least significant
8750 bit. */
8751 && ((INTVAL (XEXP (x, 1))
8752 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8753 >= GET_MODE_PRECISION (GET_MODE (x)))
8754 && pow2p_hwi (mask + 1)
8755 /* Number of bits left after the shift must be more than the mask
8756 needs. */
8757 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8758 <= GET_MODE_PRECISION (GET_MODE (x)))
8759 /* Must be more sign bit copies than the mask needs. */
8760 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8761 >= exact_log2 (mask + 1)))
8762 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8763 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8764 - exact_log2 (mask + 1)));
8765
8766 goto shiftrt;
8767
8768 case ASHIFTRT:
8769 /* If we are just looking for the sign bit, we don't need this shift at
8770 all, even if it has a variable count. */
8771 if (val_signbit_p (GET_MODE (x), mask))
8772 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8773
8774 /* If this is a shift by a constant, get a mask that contains those bits
8775 that are not copies of the sign bit. We then have two cases: If
8776 MASK only includes those bits, this can be a logical shift, which may
8777 allow simplifications. If MASK is a single-bit field not within
8778 those bits, we are requesting a copy of the sign bit and hence can
8779 shift the sign bit to the appropriate location. */
8780
8781 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8782 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8783 {
8784 int i;
8785
8786 /* If the considered data is wider than HOST_WIDE_INT, we can't
8787 represent a mask for all its bits in a single scalar.
8788 But we only care about the lower bits, so calculate these. */
8789
8790 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8791 {
8792 nonzero = HOST_WIDE_INT_M1U;
8793
8794 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8795 is the number of bits a full-width mask would have set.
8796 We need only shift if these are fewer than nonzero can
8797 hold. If not, we must keep all bits set in nonzero. */
8798
8799 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8800 < HOST_BITS_PER_WIDE_INT)
8801 nonzero >>= INTVAL (XEXP (x, 1))
8802 + HOST_BITS_PER_WIDE_INT
8803 - GET_MODE_PRECISION (GET_MODE (x)) ;
8804 }
8805 else
8806 {
8807 nonzero = GET_MODE_MASK (GET_MODE (x));
8808 nonzero >>= INTVAL (XEXP (x, 1));
8809 }
8810
8811 if ((mask & ~nonzero) == 0)
8812 {
8813 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8814 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8815 if (GET_CODE (x) != ASHIFTRT)
8816 return force_to_mode (x, mode, mask, next_select);
8817 }
8818
8819 else if ((i = exact_log2 (mask)) >= 0)
8820 {
8821 x = simplify_shift_const
8822 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8823 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8824
8825 if (GET_CODE (x) != ASHIFTRT)
8826 return force_to_mode (x, mode, mask, next_select);
8827 }
8828 }
8829
8830 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8831 even if the shift count isn't a constant. */
8832 if (mask == 1)
8833 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8834 XEXP (x, 0), XEXP (x, 1));
8835
8836 shiftrt:
8837
8838 /* If this is a zero- or sign-extension operation that just affects bits
8839 we don't care about, remove it. Be sure the call above returned
8840 something that is still a shift. */
8841
8842 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8843 && CONST_INT_P (XEXP (x, 1))
8844 && INTVAL (XEXP (x, 1)) >= 0
8845 && (INTVAL (XEXP (x, 1))
8846 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8847 && GET_CODE (XEXP (x, 0)) == ASHIFT
8848 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8849 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8850 next_select);
8851
8852 break;
8853
8854 case ROTATE:
8855 case ROTATERT:
8856 /* If the shift count is constant and we can do computations
8857 in the mode of X, compute where the bits we care about are.
8858 Otherwise, we can't do anything. Don't change the mode of
8859 the shift or propagate MODE into the shift, though. */
8860 if (CONST_INT_P (XEXP (x, 1))
8861 && INTVAL (XEXP (x, 1)) >= 0)
8862 {
8863 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8864 GET_MODE (x),
8865 gen_int_mode (mask, GET_MODE (x)),
8866 XEXP (x, 1));
8867 if (temp && CONST_INT_P (temp))
8868 x = simplify_gen_binary (code, GET_MODE (x),
8869 force_to_mode (XEXP (x, 0), GET_MODE (x),
8870 INTVAL (temp), next_select),
8871 XEXP (x, 1));
8872 }
8873 break;
8874
8875 case NEG:
8876 /* If we just want the low-order bit, the NEG isn't needed since it
8877 won't change the low-order bit. */
8878 if (mask == 1)
8879 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8880
8881 /* We need any bits less significant than the most significant bit in
8882 MASK since carries from those bits will affect the bits we are
8883 interested in. */
8884 mask = fuller_mask;
8885 goto unop;
8886
8887 case NOT:
8888 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8889 same as the XOR case above. Ensure that the constant we form is not
8890 wider than the mode of X. */
8891
8892 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8893 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8894 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8895 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8896 < GET_MODE_PRECISION (GET_MODE (x)))
8897 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8898 {
8899 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8900 GET_MODE (x));
8901 temp = simplify_gen_binary (XOR, GET_MODE (x),
8902 XEXP (XEXP (x, 0), 0), temp);
8903 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8904 temp, XEXP (XEXP (x, 0), 1));
8905
8906 return force_to_mode (x, mode, mask, next_select);
8907 }
8908
8909 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8910 use the full mask inside the NOT. */
8911 mask = fuller_mask;
8912
8913 unop:
8914 op0 = gen_lowpart_or_truncate (op_mode,
8915 force_to_mode (XEXP (x, 0), mode, mask,
8916 next_select));
8917 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8918 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8919 break;
8920
8921 case NE:
8922 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8923 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8924 which is equal to STORE_FLAG_VALUE. */
8925 if ((mask & ~STORE_FLAG_VALUE) == 0
8926 && XEXP (x, 1) == const0_rtx
8927 && GET_MODE (XEXP (x, 0)) == mode
8928 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
8929 && (nonzero_bits (XEXP (x, 0), mode)
8930 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8931 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8932
8933 break;
8934
8935 case IF_THEN_ELSE:
8936 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8937 written in a narrower mode. We play it safe and do not do so. */
8938
8939 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8940 force_to_mode (XEXP (x, 1), mode,
8941 mask, next_select));
8942 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8943 force_to_mode (XEXP (x, 2), mode,
8944 mask, next_select));
8945 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
8946 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
8947 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
8948 op0, op1);
8949 break;
8950
8951 default:
8952 break;
8953 }
8954
8955 /* Ensure we return a value of the proper mode. */
8956 return gen_lowpart_or_truncate (mode, x);
8957 }
8958 \f
8959 /* Return nonzero if X is an expression that has one of two values depending on
8960 whether some other value is zero or nonzero. In that case, we return the
8961 value that is being tested, *PTRUE is set to the value if the rtx being
8962 returned has a nonzero value, and *PFALSE is set to the other alternative.
8963
8964 If we return zero, we set *PTRUE and *PFALSE to X. */
8965
8966 static rtx
8967 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8968 {
8969 machine_mode mode = GET_MODE (x);
8970 enum rtx_code code = GET_CODE (x);
8971 rtx cond0, cond1, true0, true1, false0, false1;
8972 unsigned HOST_WIDE_INT nz;
8973
8974 /* If we are comparing a value against zero, we are done. */
8975 if ((code == NE || code == EQ)
8976 && XEXP (x, 1) == const0_rtx)
8977 {
8978 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8979 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8980 return XEXP (x, 0);
8981 }
8982
8983 /* If this is a unary operation whose operand has one of two values, apply
8984 our opcode to compute those values. */
8985 else if (UNARY_P (x)
8986 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8987 {
8988 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8989 *pfalse = simplify_gen_unary (code, mode, false0,
8990 GET_MODE (XEXP (x, 0)));
8991 return cond0;
8992 }
8993
8994 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8995 make can't possibly match and would suppress other optimizations. */
8996 else if (code == COMPARE)
8997 ;
8998
8999 /* If this is a binary operation, see if either side has only one of two
9000 values. If either one does or if both do and they are conditional on
9001 the same value, compute the new true and false values. */
9002 else if (BINARY_P (x))
9003 {
9004 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
9005 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
9006
9007 if ((cond0 != 0 || cond1 != 0)
9008 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
9009 {
9010 /* If if_then_else_cond returned zero, then true/false are the
9011 same rtl. We must copy one of them to prevent invalid rtl
9012 sharing. */
9013 if (cond0 == 0)
9014 true0 = copy_rtx (true0);
9015 else if (cond1 == 0)
9016 true1 = copy_rtx (true1);
9017
9018 if (COMPARISON_P (x))
9019 {
9020 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9021 true0, true1);
9022 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9023 false0, false1);
9024 }
9025 else
9026 {
9027 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9028 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9029 }
9030
9031 return cond0 ? cond0 : cond1;
9032 }
9033
9034 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9035 operands is zero when the other is nonzero, and vice-versa,
9036 and STORE_FLAG_VALUE is 1 or -1. */
9037
9038 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9039 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9040 || code == UMAX)
9041 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9042 {
9043 rtx op0 = XEXP (XEXP (x, 0), 1);
9044 rtx op1 = XEXP (XEXP (x, 1), 1);
9045
9046 cond0 = XEXP (XEXP (x, 0), 0);
9047 cond1 = XEXP (XEXP (x, 1), 0);
9048
9049 if (COMPARISON_P (cond0)
9050 && COMPARISON_P (cond1)
9051 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9052 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9053 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9054 || ((swap_condition (GET_CODE (cond0))
9055 == reversed_comparison_code (cond1, NULL))
9056 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9057 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9058 && ! side_effects_p (x))
9059 {
9060 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9061 *pfalse = simplify_gen_binary (MULT, mode,
9062 (code == MINUS
9063 ? simplify_gen_unary (NEG, mode,
9064 op1, mode)
9065 : op1),
9066 const_true_rtx);
9067 return cond0;
9068 }
9069 }
9070
9071 /* Similarly for MULT, AND and UMIN, except that for these the result
9072 is always zero. */
9073 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9074 && (code == MULT || code == AND || code == UMIN)
9075 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9076 {
9077 cond0 = XEXP (XEXP (x, 0), 0);
9078 cond1 = XEXP (XEXP (x, 1), 0);
9079
9080 if (COMPARISON_P (cond0)
9081 && COMPARISON_P (cond1)
9082 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9083 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9084 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9085 || ((swap_condition (GET_CODE (cond0))
9086 == reversed_comparison_code (cond1, NULL))
9087 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9088 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9089 && ! side_effects_p (x))
9090 {
9091 *ptrue = *pfalse = const0_rtx;
9092 return cond0;
9093 }
9094 }
9095 }
9096
9097 else if (code == IF_THEN_ELSE)
9098 {
9099 /* If we have IF_THEN_ELSE already, extract the condition and
9100 canonicalize it if it is NE or EQ. */
9101 cond0 = XEXP (x, 0);
9102 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9103 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9104 return XEXP (cond0, 0);
9105 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9106 {
9107 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9108 return XEXP (cond0, 0);
9109 }
9110 else
9111 return cond0;
9112 }
9113
9114 /* If X is a SUBREG, we can narrow both the true and false values
9115 if the inner expression, if there is a condition. */
9116 else if (code == SUBREG
9117 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9118 &true0, &false0)))
9119 {
9120 true0 = simplify_gen_subreg (mode, true0,
9121 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9122 false0 = simplify_gen_subreg (mode, false0,
9123 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9124 if (true0 && false0)
9125 {
9126 *ptrue = true0;
9127 *pfalse = false0;
9128 return cond0;
9129 }
9130 }
9131
9132 /* If X is a constant, this isn't special and will cause confusions
9133 if we treat it as such. Likewise if it is equivalent to a constant. */
9134 else if (CONSTANT_P (x)
9135 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9136 ;
9137
9138 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9139 will be least confusing to the rest of the compiler. */
9140 else if (mode == BImode)
9141 {
9142 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9143 return x;
9144 }
9145
9146 /* If X is known to be either 0 or -1, those are the true and
9147 false values when testing X. */
9148 else if (x == constm1_rtx || x == const0_rtx
9149 || (mode != VOIDmode
9150 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9151 {
9152 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9153 return x;
9154 }
9155
9156 /* Likewise for 0 or a single bit. */
9157 else if (HWI_COMPUTABLE_MODE_P (mode)
9158 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9159 {
9160 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9161 return x;
9162 }
9163
9164 /* Otherwise fail; show no condition with true and false values the same. */
9165 *ptrue = *pfalse = x;
9166 return 0;
9167 }
9168 \f
9169 /* Return the value of expression X given the fact that condition COND
9170 is known to be true when applied to REG as its first operand and VAL
9171 as its second. X is known to not be shared and so can be modified in
9172 place.
9173
9174 We only handle the simplest cases, and specifically those cases that
9175 arise with IF_THEN_ELSE expressions. */
9176
9177 static rtx
9178 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9179 {
9180 enum rtx_code code = GET_CODE (x);
9181 const char *fmt;
9182 int i, j;
9183
9184 if (side_effects_p (x))
9185 return x;
9186
9187 /* If either operand of the condition is a floating point value,
9188 then we have to avoid collapsing an EQ comparison. */
9189 if (cond == EQ
9190 && rtx_equal_p (x, reg)
9191 && ! FLOAT_MODE_P (GET_MODE (x))
9192 && ! FLOAT_MODE_P (GET_MODE (val)))
9193 return val;
9194
9195 if (cond == UNEQ && rtx_equal_p (x, reg))
9196 return val;
9197
9198 /* If X is (abs REG) and we know something about REG's relationship
9199 with zero, we may be able to simplify this. */
9200
9201 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9202 switch (cond)
9203 {
9204 case GE: case GT: case EQ:
9205 return XEXP (x, 0);
9206 case LT: case LE:
9207 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9208 XEXP (x, 0),
9209 GET_MODE (XEXP (x, 0)));
9210 default:
9211 break;
9212 }
9213
9214 /* The only other cases we handle are MIN, MAX, and comparisons if the
9215 operands are the same as REG and VAL. */
9216
9217 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9218 {
9219 if (rtx_equal_p (XEXP (x, 0), val))
9220 {
9221 std::swap (val, reg);
9222 cond = swap_condition (cond);
9223 }
9224
9225 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9226 {
9227 if (COMPARISON_P (x))
9228 {
9229 if (comparison_dominates_p (cond, code))
9230 return const_true_rtx;
9231
9232 code = reversed_comparison_code (x, NULL);
9233 if (code != UNKNOWN
9234 && comparison_dominates_p (cond, code))
9235 return const0_rtx;
9236 else
9237 return x;
9238 }
9239 else if (code == SMAX || code == SMIN
9240 || code == UMIN || code == UMAX)
9241 {
9242 int unsignedp = (code == UMIN || code == UMAX);
9243
9244 /* Do not reverse the condition when it is NE or EQ.
9245 This is because we cannot conclude anything about
9246 the value of 'SMAX (x, y)' when x is not equal to y,
9247 but we can when x equals y. */
9248 if ((code == SMAX || code == UMAX)
9249 && ! (cond == EQ || cond == NE))
9250 cond = reverse_condition (cond);
9251
9252 switch (cond)
9253 {
9254 case GE: case GT:
9255 return unsignedp ? x : XEXP (x, 1);
9256 case LE: case LT:
9257 return unsignedp ? x : XEXP (x, 0);
9258 case GEU: case GTU:
9259 return unsignedp ? XEXP (x, 1) : x;
9260 case LEU: case LTU:
9261 return unsignedp ? XEXP (x, 0) : x;
9262 default:
9263 break;
9264 }
9265 }
9266 }
9267 }
9268 else if (code == SUBREG)
9269 {
9270 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9271 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9272
9273 if (SUBREG_REG (x) != r)
9274 {
9275 /* We must simplify subreg here, before we lose track of the
9276 original inner_mode. */
9277 new_rtx = simplify_subreg (GET_MODE (x), r,
9278 inner_mode, SUBREG_BYTE (x));
9279 if (new_rtx)
9280 return new_rtx;
9281 else
9282 SUBST (SUBREG_REG (x), r);
9283 }
9284
9285 return x;
9286 }
9287 /* We don't have to handle SIGN_EXTEND here, because even in the
9288 case of replacing something with a modeless CONST_INT, a
9289 CONST_INT is already (supposed to be) a valid sign extension for
9290 its narrower mode, which implies it's already properly
9291 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9292 story is different. */
9293 else if (code == ZERO_EXTEND)
9294 {
9295 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9296 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9297
9298 if (XEXP (x, 0) != r)
9299 {
9300 /* We must simplify the zero_extend here, before we lose
9301 track of the original inner_mode. */
9302 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9303 r, inner_mode);
9304 if (new_rtx)
9305 return new_rtx;
9306 else
9307 SUBST (XEXP (x, 0), r);
9308 }
9309
9310 return x;
9311 }
9312
9313 fmt = GET_RTX_FORMAT (code);
9314 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9315 {
9316 if (fmt[i] == 'e')
9317 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9318 else if (fmt[i] == 'E')
9319 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9320 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9321 cond, reg, val));
9322 }
9323
9324 return x;
9325 }
9326 \f
9327 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9328 assignment as a field assignment. */
9329
9330 static int
9331 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9332 {
9333 if (widen_x && GET_MODE (x) != GET_MODE (y))
9334 {
9335 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9336 return 0;
9337 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9338 return 0;
9339 /* For big endian, adjust the memory offset. */
9340 if (BYTES_BIG_ENDIAN)
9341 x = adjust_address_nv (x, GET_MODE (y),
9342 -subreg_lowpart_offset (GET_MODE (x),
9343 GET_MODE (y)));
9344 else
9345 x = adjust_address_nv (x, GET_MODE (y), 0);
9346 }
9347
9348 if (x == y || rtx_equal_p (x, y))
9349 return 1;
9350
9351 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9352 return 0;
9353
9354 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9355 Note that all SUBREGs of MEM are paradoxical; otherwise they
9356 would have been rewritten. */
9357 if (MEM_P (x) && GET_CODE (y) == SUBREG
9358 && MEM_P (SUBREG_REG (y))
9359 && rtx_equal_p (SUBREG_REG (y),
9360 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9361 return 1;
9362
9363 if (MEM_P (y) && GET_CODE (x) == SUBREG
9364 && MEM_P (SUBREG_REG (x))
9365 && rtx_equal_p (SUBREG_REG (x),
9366 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9367 return 1;
9368
9369 /* We used to see if get_last_value of X and Y were the same but that's
9370 not correct. In one direction, we'll cause the assignment to have
9371 the wrong destination and in the case, we'll import a register into this
9372 insn that might have already have been dead. So fail if none of the
9373 above cases are true. */
9374 return 0;
9375 }
9376 \f
9377 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9378 Return that assignment if so.
9379
9380 We only handle the most common cases. */
9381
9382 static rtx
9383 make_field_assignment (rtx x)
9384 {
9385 rtx dest = SET_DEST (x);
9386 rtx src = SET_SRC (x);
9387 rtx assign;
9388 rtx rhs, lhs;
9389 HOST_WIDE_INT c1;
9390 HOST_WIDE_INT pos;
9391 unsigned HOST_WIDE_INT len;
9392 rtx other;
9393 machine_mode mode;
9394
9395 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9396 a clear of a one-bit field. We will have changed it to
9397 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9398 for a SUBREG. */
9399
9400 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9401 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9402 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9403 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9404 {
9405 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9406 1, 1, 1, 0);
9407 if (assign != 0)
9408 return gen_rtx_SET (assign, const0_rtx);
9409 return x;
9410 }
9411
9412 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9413 && subreg_lowpart_p (XEXP (src, 0))
9414 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9415 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9416 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9417 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9418 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9419 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9420 {
9421 assign = make_extraction (VOIDmode, dest, 0,
9422 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9423 1, 1, 1, 0);
9424 if (assign != 0)
9425 return gen_rtx_SET (assign, const0_rtx);
9426 return x;
9427 }
9428
9429 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9430 one-bit field. */
9431 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9432 && XEXP (XEXP (src, 0), 0) == const1_rtx
9433 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9434 {
9435 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9436 1, 1, 1, 0);
9437 if (assign != 0)
9438 return gen_rtx_SET (assign, const1_rtx);
9439 return x;
9440 }
9441
9442 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9443 SRC is an AND with all bits of that field set, then we can discard
9444 the AND. */
9445 if (GET_CODE (dest) == ZERO_EXTRACT
9446 && CONST_INT_P (XEXP (dest, 1))
9447 && GET_CODE (src) == AND
9448 && CONST_INT_P (XEXP (src, 1)))
9449 {
9450 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9451 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9452 unsigned HOST_WIDE_INT ze_mask;
9453
9454 if (width >= HOST_BITS_PER_WIDE_INT)
9455 ze_mask = -1;
9456 else
9457 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9458
9459 /* Complete overlap. We can remove the source AND. */
9460 if ((and_mask & ze_mask) == ze_mask)
9461 return gen_rtx_SET (dest, XEXP (src, 0));
9462
9463 /* Partial overlap. We can reduce the source AND. */
9464 if ((and_mask & ze_mask) != and_mask)
9465 {
9466 mode = GET_MODE (src);
9467 src = gen_rtx_AND (mode, XEXP (src, 0),
9468 gen_int_mode (and_mask & ze_mask, mode));
9469 return gen_rtx_SET (dest, src);
9470 }
9471 }
9472
9473 /* The other case we handle is assignments into a constant-position
9474 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9475 a mask that has all one bits except for a group of zero bits and
9476 OTHER is known to have zeros where C1 has ones, this is such an
9477 assignment. Compute the position and length from C1. Shift OTHER
9478 to the appropriate position, force it to the required mode, and
9479 make the extraction. Check for the AND in both operands. */
9480
9481 /* One or more SUBREGs might obscure the constant-position field
9482 assignment. The first one we are likely to encounter is an outer
9483 narrowing SUBREG, which we can just strip for the purposes of
9484 identifying the constant-field assignment. */
9485 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9486 src = SUBREG_REG (src);
9487
9488 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9489 return x;
9490
9491 rhs = expand_compound_operation (XEXP (src, 0));
9492 lhs = expand_compound_operation (XEXP (src, 1));
9493
9494 if (GET_CODE (rhs) == AND
9495 && CONST_INT_P (XEXP (rhs, 1))
9496 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9497 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9498 /* The second SUBREG that might get in the way is a paradoxical
9499 SUBREG around the first operand of the AND. We want to
9500 pretend the operand is as wide as the destination here. We
9501 do this by adjusting the MEM to wider mode for the sole
9502 purpose of the call to rtx_equal_for_field_assignment_p. Also
9503 note this trick only works for MEMs. */
9504 else if (GET_CODE (rhs) == AND
9505 && paradoxical_subreg_p (XEXP (rhs, 0))
9506 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9507 && CONST_INT_P (XEXP (rhs, 1))
9508 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9509 dest, true))
9510 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9511 else if (GET_CODE (lhs) == AND
9512 && CONST_INT_P (XEXP (lhs, 1))
9513 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9514 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9515 /* The second SUBREG that might get in the way is a paradoxical
9516 SUBREG around the first operand of the AND. We want to
9517 pretend the operand is as wide as the destination here. We
9518 do this by adjusting the MEM to wider mode for the sole
9519 purpose of the call to rtx_equal_for_field_assignment_p. Also
9520 note this trick only works for MEMs. */
9521 else if (GET_CODE (lhs) == AND
9522 && paradoxical_subreg_p (XEXP (lhs, 0))
9523 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9524 && CONST_INT_P (XEXP (lhs, 1))
9525 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9526 dest, true))
9527 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9528 else
9529 return x;
9530
9531 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9532 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9533 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9534 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9535 return x;
9536
9537 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9538 if (assign == 0)
9539 return x;
9540
9541 /* The mode to use for the source is the mode of the assignment, or of
9542 what is inside a possible STRICT_LOW_PART. */
9543 mode = (GET_CODE (assign) == STRICT_LOW_PART
9544 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9545
9546 /* Shift OTHER right POS places and make it the source, restricting it
9547 to the proper length and mode. */
9548
9549 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9550 GET_MODE (src),
9551 other, pos),
9552 dest);
9553 src = force_to_mode (src, mode,
9554 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9555 ? HOST_WIDE_INT_M1U
9556 : (HOST_WIDE_INT_1U << len) - 1,
9557 0);
9558
9559 /* If SRC is masked by an AND that does not make a difference in
9560 the value being stored, strip it. */
9561 if (GET_CODE (assign) == ZERO_EXTRACT
9562 && CONST_INT_P (XEXP (assign, 1))
9563 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9564 && GET_CODE (src) == AND
9565 && CONST_INT_P (XEXP (src, 1))
9566 && UINTVAL (XEXP (src, 1))
9567 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9568 src = XEXP (src, 0);
9569
9570 return gen_rtx_SET (assign, src);
9571 }
9572 \f
9573 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9574 if so. */
9575
9576 static rtx
9577 apply_distributive_law (rtx x)
9578 {
9579 enum rtx_code code = GET_CODE (x);
9580 enum rtx_code inner_code;
9581 rtx lhs, rhs, other;
9582 rtx tem;
9583
9584 /* Distributivity is not true for floating point as it can change the
9585 value. So we don't do it unless -funsafe-math-optimizations. */
9586 if (FLOAT_MODE_P (GET_MODE (x))
9587 && ! flag_unsafe_math_optimizations)
9588 return x;
9589
9590 /* The outer operation can only be one of the following: */
9591 if (code != IOR && code != AND && code != XOR
9592 && code != PLUS && code != MINUS)
9593 return x;
9594
9595 lhs = XEXP (x, 0);
9596 rhs = XEXP (x, 1);
9597
9598 /* If either operand is a primitive we can't do anything, so get out
9599 fast. */
9600 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9601 return x;
9602
9603 lhs = expand_compound_operation (lhs);
9604 rhs = expand_compound_operation (rhs);
9605 inner_code = GET_CODE (lhs);
9606 if (inner_code != GET_CODE (rhs))
9607 return x;
9608
9609 /* See if the inner and outer operations distribute. */
9610 switch (inner_code)
9611 {
9612 case LSHIFTRT:
9613 case ASHIFTRT:
9614 case AND:
9615 case IOR:
9616 /* These all distribute except over PLUS. */
9617 if (code == PLUS || code == MINUS)
9618 return x;
9619 break;
9620
9621 case MULT:
9622 if (code != PLUS && code != MINUS)
9623 return x;
9624 break;
9625
9626 case ASHIFT:
9627 /* This is also a multiply, so it distributes over everything. */
9628 break;
9629
9630 /* This used to handle SUBREG, but this turned out to be counter-
9631 productive, since (subreg (op ...)) usually is not handled by
9632 insn patterns, and this "optimization" therefore transformed
9633 recognizable patterns into unrecognizable ones. Therefore the
9634 SUBREG case was removed from here.
9635
9636 It is possible that distributing SUBREG over arithmetic operations
9637 leads to an intermediate result than can then be optimized further,
9638 e.g. by moving the outer SUBREG to the other side of a SET as done
9639 in simplify_set. This seems to have been the original intent of
9640 handling SUBREGs here.
9641
9642 However, with current GCC this does not appear to actually happen,
9643 at least on major platforms. If some case is found where removing
9644 the SUBREG case here prevents follow-on optimizations, distributing
9645 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9646
9647 default:
9648 return x;
9649 }
9650
9651 /* Set LHS and RHS to the inner operands (A and B in the example
9652 above) and set OTHER to the common operand (C in the example).
9653 There is only one way to do this unless the inner operation is
9654 commutative. */
9655 if (COMMUTATIVE_ARITH_P (lhs)
9656 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9657 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9658 else if (COMMUTATIVE_ARITH_P (lhs)
9659 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9660 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9661 else if (COMMUTATIVE_ARITH_P (lhs)
9662 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9663 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9664 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9665 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9666 else
9667 return x;
9668
9669 /* Form the new inner operation, seeing if it simplifies first. */
9670 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9671
9672 /* There is one exception to the general way of distributing:
9673 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9674 if (code == XOR && inner_code == IOR)
9675 {
9676 inner_code = AND;
9677 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9678 }
9679
9680 /* We may be able to continuing distributing the result, so call
9681 ourselves recursively on the inner operation before forming the
9682 outer operation, which we return. */
9683 return simplify_gen_binary (inner_code, GET_MODE (x),
9684 apply_distributive_law (tem), other);
9685 }
9686
9687 /* See if X is of the form (* (+ A B) C), and if so convert to
9688 (+ (* A C) (* B C)) and try to simplify.
9689
9690 Most of the time, this results in no change. However, if some of
9691 the operands are the same or inverses of each other, simplifications
9692 will result.
9693
9694 For example, (and (ior A B) (not B)) can occur as the result of
9695 expanding a bit field assignment. When we apply the distributive
9696 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9697 which then simplifies to (and (A (not B))).
9698
9699 Note that no checks happen on the validity of applying the inverse
9700 distributive law. This is pointless since we can do it in the
9701 few places where this routine is called.
9702
9703 N is the index of the term that is decomposed (the arithmetic operation,
9704 i.e. (+ A B) in the first example above). !N is the index of the term that
9705 is distributed, i.e. of C in the first example above. */
9706 static rtx
9707 distribute_and_simplify_rtx (rtx x, int n)
9708 {
9709 machine_mode mode;
9710 enum rtx_code outer_code, inner_code;
9711 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9712
9713 /* Distributivity is not true for floating point as it can change the
9714 value. So we don't do it unless -funsafe-math-optimizations. */
9715 if (FLOAT_MODE_P (GET_MODE (x))
9716 && ! flag_unsafe_math_optimizations)
9717 return NULL_RTX;
9718
9719 decomposed = XEXP (x, n);
9720 if (!ARITHMETIC_P (decomposed))
9721 return NULL_RTX;
9722
9723 mode = GET_MODE (x);
9724 outer_code = GET_CODE (x);
9725 distributed = XEXP (x, !n);
9726
9727 inner_code = GET_CODE (decomposed);
9728 inner_op0 = XEXP (decomposed, 0);
9729 inner_op1 = XEXP (decomposed, 1);
9730
9731 /* Special case (and (xor B C) (not A)), which is equivalent to
9732 (xor (ior A B) (ior A C)) */
9733 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9734 {
9735 distributed = XEXP (distributed, 0);
9736 outer_code = IOR;
9737 }
9738
9739 if (n == 0)
9740 {
9741 /* Distribute the second term. */
9742 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9743 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9744 }
9745 else
9746 {
9747 /* Distribute the first term. */
9748 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9749 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9750 }
9751
9752 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9753 new_op0, new_op1));
9754 if (GET_CODE (tmp) != outer_code
9755 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9756 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9757 return tmp;
9758
9759 return NULL_RTX;
9760 }
9761 \f
9762 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9763 in MODE. Return an equivalent form, if different from (and VAROP
9764 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9765
9766 static rtx
9767 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9768 unsigned HOST_WIDE_INT constop)
9769 {
9770 unsigned HOST_WIDE_INT nonzero;
9771 unsigned HOST_WIDE_INT orig_constop;
9772 rtx orig_varop;
9773 int i;
9774
9775 orig_varop = varop;
9776 orig_constop = constop;
9777 if (GET_CODE (varop) == CLOBBER)
9778 return NULL_RTX;
9779
9780 /* Simplify VAROP knowing that we will be only looking at some of the
9781 bits in it.
9782
9783 Note by passing in CONSTOP, we guarantee that the bits not set in
9784 CONSTOP are not significant and will never be examined. We must
9785 ensure that is the case by explicitly masking out those bits
9786 before returning. */
9787 varop = force_to_mode (varop, mode, constop, 0);
9788
9789 /* If VAROP is a CLOBBER, we will fail so return it. */
9790 if (GET_CODE (varop) == CLOBBER)
9791 return varop;
9792
9793 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9794 to VAROP and return the new constant. */
9795 if (CONST_INT_P (varop))
9796 return gen_int_mode (INTVAL (varop) & constop, mode);
9797
9798 /* See what bits may be nonzero in VAROP. Unlike the general case of
9799 a call to nonzero_bits, here we don't care about bits outside
9800 MODE. */
9801
9802 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9803
9804 /* Turn off all bits in the constant that are known to already be zero.
9805 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9806 which is tested below. */
9807
9808 constop &= nonzero;
9809
9810 /* If we don't have any bits left, return zero. */
9811 if (constop == 0)
9812 return const0_rtx;
9813
9814 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9815 a power of two, we can replace this with an ASHIFT. */
9816 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9817 && (i = exact_log2 (constop)) >= 0)
9818 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9819
9820 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9821 or XOR, then try to apply the distributive law. This may eliminate
9822 operations if either branch can be simplified because of the AND.
9823 It may also make some cases more complex, but those cases probably
9824 won't match a pattern either with or without this. */
9825
9826 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9827 return
9828 gen_lowpart
9829 (mode,
9830 apply_distributive_law
9831 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9832 simplify_and_const_int (NULL_RTX,
9833 GET_MODE (varop),
9834 XEXP (varop, 0),
9835 constop),
9836 simplify_and_const_int (NULL_RTX,
9837 GET_MODE (varop),
9838 XEXP (varop, 1),
9839 constop))));
9840
9841 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9842 the AND and see if one of the operands simplifies to zero. If so, we
9843 may eliminate it. */
9844
9845 if (GET_CODE (varop) == PLUS
9846 && pow2p_hwi (constop + 1))
9847 {
9848 rtx o0, o1;
9849
9850 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9851 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9852 if (o0 == const0_rtx)
9853 return o1;
9854 if (o1 == const0_rtx)
9855 return o0;
9856 }
9857
9858 /* Make a SUBREG if necessary. If we can't make it, fail. */
9859 varop = gen_lowpart (mode, varop);
9860 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9861 return NULL_RTX;
9862
9863 /* If we are only masking insignificant bits, return VAROP. */
9864 if (constop == nonzero)
9865 return varop;
9866
9867 if (varop == orig_varop && constop == orig_constop)
9868 return NULL_RTX;
9869
9870 /* Otherwise, return an AND. */
9871 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9872 }
9873
9874
9875 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9876 in MODE.
9877
9878 Return an equivalent form, if different from X. Otherwise, return X. If
9879 X is zero, we are to always construct the equivalent form. */
9880
9881 static rtx
9882 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9883 unsigned HOST_WIDE_INT constop)
9884 {
9885 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9886 if (tem)
9887 return tem;
9888
9889 if (!x)
9890 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9891 gen_int_mode (constop, mode));
9892 if (GET_MODE (x) != mode)
9893 x = gen_lowpart (mode, x);
9894 return x;
9895 }
9896 \f
9897 /* Given a REG, X, compute which bits in X can be nonzero.
9898 We don't care about bits outside of those defined in MODE.
9899
9900 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9901 a shift, AND, or zero_extract, we can do better. */
9902
9903 static rtx
9904 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9905 const_rtx known_x ATTRIBUTE_UNUSED,
9906 machine_mode known_mode ATTRIBUTE_UNUSED,
9907 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9908 unsigned HOST_WIDE_INT *nonzero)
9909 {
9910 rtx tem;
9911 reg_stat_type *rsp;
9912
9913 /* If X is a register whose nonzero bits value is current, use it.
9914 Otherwise, if X is a register whose value we can find, use that
9915 value. Otherwise, use the previously-computed global nonzero bits
9916 for this register. */
9917
9918 rsp = &reg_stat[REGNO (x)];
9919 if (rsp->last_set_value != 0
9920 && (rsp->last_set_mode == mode
9921 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9922 && GET_MODE_CLASS (mode) == MODE_INT))
9923 && ((rsp->last_set_label >= label_tick_ebb_start
9924 && rsp->last_set_label < label_tick)
9925 || (rsp->last_set_label == label_tick
9926 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9927 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9928 && REGNO (x) < reg_n_sets_max
9929 && REG_N_SETS (REGNO (x)) == 1
9930 && !REGNO_REG_SET_P
9931 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9932 REGNO (x)))))
9933 {
9934 /* Note that, even if the precision of last_set_mode is lower than that
9935 of mode, record_value_for_reg invoked nonzero_bits on the register
9936 with nonzero_bits_mode (because last_set_mode is necessarily integral
9937 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
9938 are all valid, hence in mode too since nonzero_bits_mode is defined
9939 to the largest HWI_COMPUTABLE_MODE_P mode. */
9940 *nonzero &= rsp->last_set_nonzero_bits;
9941 return NULL;
9942 }
9943
9944 tem = get_last_value (x);
9945 if (tem)
9946 {
9947 if (SHORT_IMMEDIATES_SIGN_EXTEND)
9948 tem = sign_extend_short_imm (tem, GET_MODE (x),
9949 GET_MODE_PRECISION (mode));
9950
9951 return tem;
9952 }
9953
9954 if (nonzero_sign_valid && rsp->nonzero_bits)
9955 {
9956 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9957
9958 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9959 /* We don't know anything about the upper bits. */
9960 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9961
9962 *nonzero &= mask;
9963 }
9964
9965 return NULL;
9966 }
9967
9968 /* Return the number of bits at the high-order end of X that are known to
9969 be equal to the sign bit. X will be used in mode MODE; if MODE is
9970 VOIDmode, X will be used in its own mode. The returned value will always
9971 be between 1 and the number of bits in MODE. */
9972
9973 static rtx
9974 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
9975 const_rtx known_x ATTRIBUTE_UNUSED,
9976 machine_mode known_mode
9977 ATTRIBUTE_UNUSED,
9978 unsigned int known_ret ATTRIBUTE_UNUSED,
9979 unsigned int *result)
9980 {
9981 rtx tem;
9982 reg_stat_type *rsp;
9983
9984 rsp = &reg_stat[REGNO (x)];
9985 if (rsp->last_set_value != 0
9986 && rsp->last_set_mode == mode
9987 && ((rsp->last_set_label >= label_tick_ebb_start
9988 && rsp->last_set_label < label_tick)
9989 || (rsp->last_set_label == label_tick
9990 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9991 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9992 && REGNO (x) < reg_n_sets_max
9993 && REG_N_SETS (REGNO (x)) == 1
9994 && !REGNO_REG_SET_P
9995 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9996 REGNO (x)))))
9997 {
9998 *result = rsp->last_set_sign_bit_copies;
9999 return NULL;
10000 }
10001
10002 tem = get_last_value (x);
10003 if (tem != 0)
10004 return tem;
10005
10006 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10007 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
10008 *result = rsp->sign_bit_copies;
10009
10010 return NULL;
10011 }
10012 \f
10013 /* Return the number of "extended" bits there are in X, when interpreted
10014 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10015 unsigned quantities, this is the number of high-order zero bits.
10016 For signed quantities, this is the number of copies of the sign bit
10017 minus 1. In both case, this function returns the number of "spare"
10018 bits. For example, if two quantities for which this function returns
10019 at least 1 are added, the addition is known not to overflow.
10020
10021 This function will always return 0 unless called during combine, which
10022 implies that it must be called from a define_split. */
10023
10024 unsigned int
10025 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10026 {
10027 if (nonzero_sign_valid == 0)
10028 return 0;
10029
10030 return (unsignedp
10031 ? (HWI_COMPUTABLE_MODE_P (mode)
10032 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
10033 - floor_log2 (nonzero_bits (x, mode)))
10034 : 0)
10035 : num_sign_bit_copies (x, mode) - 1);
10036 }
10037
10038 /* This function is called from `simplify_shift_const' to merge two
10039 outer operations. Specifically, we have already found that we need
10040 to perform operation *POP0 with constant *PCONST0 at the outermost
10041 position. We would now like to also perform OP1 with constant CONST1
10042 (with *POP0 being done last).
10043
10044 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10045 the resulting operation. *PCOMP_P is set to 1 if we would need to
10046 complement the innermost operand, otherwise it is unchanged.
10047
10048 MODE is the mode in which the operation will be done. No bits outside
10049 the width of this mode matter. It is assumed that the width of this mode
10050 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10051
10052 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10053 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10054 result is simply *PCONST0.
10055
10056 If the resulting operation cannot be expressed as one operation, we
10057 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10058
10059 static int
10060 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10061 {
10062 enum rtx_code op0 = *pop0;
10063 HOST_WIDE_INT const0 = *pconst0;
10064
10065 const0 &= GET_MODE_MASK (mode);
10066 const1 &= GET_MODE_MASK (mode);
10067
10068 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10069 if (op0 == AND)
10070 const1 &= const0;
10071
10072 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10073 if OP0 is SET. */
10074
10075 if (op1 == UNKNOWN || op0 == SET)
10076 return 1;
10077
10078 else if (op0 == UNKNOWN)
10079 op0 = op1, const0 = const1;
10080
10081 else if (op0 == op1)
10082 {
10083 switch (op0)
10084 {
10085 case AND:
10086 const0 &= const1;
10087 break;
10088 case IOR:
10089 const0 |= const1;
10090 break;
10091 case XOR:
10092 const0 ^= const1;
10093 break;
10094 case PLUS:
10095 const0 += const1;
10096 break;
10097 case NEG:
10098 op0 = UNKNOWN;
10099 break;
10100 default:
10101 break;
10102 }
10103 }
10104
10105 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10106 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10107 return 0;
10108
10109 /* If the two constants aren't the same, we can't do anything. The
10110 remaining six cases can all be done. */
10111 else if (const0 != const1)
10112 return 0;
10113
10114 else
10115 switch (op0)
10116 {
10117 case IOR:
10118 if (op1 == AND)
10119 /* (a & b) | b == b */
10120 op0 = SET;
10121 else /* op1 == XOR */
10122 /* (a ^ b) | b == a | b */
10123 {;}
10124 break;
10125
10126 case XOR:
10127 if (op1 == AND)
10128 /* (a & b) ^ b == (~a) & b */
10129 op0 = AND, *pcomp_p = 1;
10130 else /* op1 == IOR */
10131 /* (a | b) ^ b == a & ~b */
10132 op0 = AND, const0 = ~const0;
10133 break;
10134
10135 case AND:
10136 if (op1 == IOR)
10137 /* (a | b) & b == b */
10138 op0 = SET;
10139 else /* op1 == XOR */
10140 /* (a ^ b) & b) == (~a) & b */
10141 *pcomp_p = 1;
10142 break;
10143 default:
10144 break;
10145 }
10146
10147 /* Check for NO-OP cases. */
10148 const0 &= GET_MODE_MASK (mode);
10149 if (const0 == 0
10150 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10151 op0 = UNKNOWN;
10152 else if (const0 == 0 && op0 == AND)
10153 op0 = SET;
10154 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10155 && op0 == AND)
10156 op0 = UNKNOWN;
10157
10158 *pop0 = op0;
10159
10160 /* ??? Slightly redundant with the above mask, but not entirely.
10161 Moving this above means we'd have to sign-extend the mode mask
10162 for the final test. */
10163 if (op0 != UNKNOWN && op0 != NEG)
10164 *pconst0 = trunc_int_for_mode (const0, mode);
10165
10166 return 1;
10167 }
10168 \f
10169 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10170 the shift in. The original shift operation CODE is performed on OP in
10171 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10172 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10173 result of the shift is subject to operation OUTER_CODE with operand
10174 OUTER_CONST. */
10175
10176 static machine_mode
10177 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10178 machine_mode orig_mode, machine_mode mode,
10179 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10180 {
10181 if (orig_mode == mode)
10182 return mode;
10183 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10184
10185 /* In general we can't perform in wider mode for right shift and rotate. */
10186 switch (code)
10187 {
10188 case ASHIFTRT:
10189 /* We can still widen if the bits brought in from the left are identical
10190 to the sign bit of ORIG_MODE. */
10191 if (num_sign_bit_copies (op, mode)
10192 > (unsigned) (GET_MODE_PRECISION (mode)
10193 - GET_MODE_PRECISION (orig_mode)))
10194 return mode;
10195 return orig_mode;
10196
10197 case LSHIFTRT:
10198 /* Similarly here but with zero bits. */
10199 if (HWI_COMPUTABLE_MODE_P (mode)
10200 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10201 return mode;
10202
10203 /* We can also widen if the bits brought in will be masked off. This
10204 operation is performed in ORIG_MODE. */
10205 if (outer_code == AND)
10206 {
10207 int care_bits = low_bitmask_len (orig_mode, outer_const);
10208
10209 if (care_bits >= 0
10210 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10211 return mode;
10212 }
10213 /* fall through */
10214
10215 case ROTATE:
10216 return orig_mode;
10217
10218 case ROTATERT:
10219 gcc_unreachable ();
10220
10221 default:
10222 return mode;
10223 }
10224 }
10225
10226 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10227 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10228 if we cannot simplify it. Otherwise, return a simplified value.
10229
10230 The shift is normally computed in the widest mode we find in VAROP, as
10231 long as it isn't a different number of words than RESULT_MODE. Exceptions
10232 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10233
10234 static rtx
10235 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10236 rtx varop, int orig_count)
10237 {
10238 enum rtx_code orig_code = code;
10239 rtx orig_varop = varop;
10240 int count;
10241 machine_mode mode = result_mode;
10242 machine_mode shift_mode, tmode;
10243 unsigned int mode_words
10244 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10245 /* We form (outer_op (code varop count) (outer_const)). */
10246 enum rtx_code outer_op = UNKNOWN;
10247 HOST_WIDE_INT outer_const = 0;
10248 int complement_p = 0;
10249 rtx new_rtx, x;
10250
10251 /* Make sure and truncate the "natural" shift on the way in. We don't
10252 want to do this inside the loop as it makes it more difficult to
10253 combine shifts. */
10254 if (SHIFT_COUNT_TRUNCATED)
10255 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10256
10257 /* If we were given an invalid count, don't do anything except exactly
10258 what was requested. */
10259
10260 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10261 return NULL_RTX;
10262
10263 count = orig_count;
10264
10265 /* Unless one of the branches of the `if' in this loop does a `continue',
10266 we will `break' the loop after the `if'. */
10267
10268 while (count != 0)
10269 {
10270 /* If we have an operand of (clobber (const_int 0)), fail. */
10271 if (GET_CODE (varop) == CLOBBER)
10272 return NULL_RTX;
10273
10274 /* Convert ROTATERT to ROTATE. */
10275 if (code == ROTATERT)
10276 {
10277 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10278 code = ROTATE;
10279 count = bitsize - count;
10280 }
10281
10282 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10283 mode, outer_op, outer_const);
10284 machine_mode shift_unit_mode = GET_MODE_INNER (shift_mode);
10285
10286 /* Handle cases where the count is greater than the size of the mode
10287 minus 1. For ASHIFT, use the size minus one as the count (this can
10288 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10289 take the count modulo the size. For other shifts, the result is
10290 zero.
10291
10292 Since these shifts are being produced by the compiler by combining
10293 multiple operations, each of which are defined, we know what the
10294 result is supposed to be. */
10295
10296 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10297 {
10298 if (code == ASHIFTRT)
10299 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10300 else if (code == ROTATE || code == ROTATERT)
10301 count %= GET_MODE_PRECISION (shift_unit_mode);
10302 else
10303 {
10304 /* We can't simply return zero because there may be an
10305 outer op. */
10306 varop = const0_rtx;
10307 count = 0;
10308 break;
10309 }
10310 }
10311
10312 /* If we discovered we had to complement VAROP, leave. Making a NOT
10313 here would cause an infinite loop. */
10314 if (complement_p)
10315 break;
10316
10317 if (shift_mode == shift_unit_mode)
10318 {
10319 /* An arithmetic right shift of a quantity known to be -1 or 0
10320 is a no-op. */
10321 if (code == ASHIFTRT
10322 && (num_sign_bit_copies (varop, shift_unit_mode)
10323 == GET_MODE_PRECISION (shift_unit_mode)))
10324 {
10325 count = 0;
10326 break;
10327 }
10328
10329 /* If we are doing an arithmetic right shift and discarding all but
10330 the sign bit copies, this is equivalent to doing a shift by the
10331 bitsize minus one. Convert it into that shift because it will
10332 often allow other simplifications. */
10333
10334 if (code == ASHIFTRT
10335 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10336 >= GET_MODE_PRECISION (shift_unit_mode)))
10337 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10338
10339 /* We simplify the tests below and elsewhere by converting
10340 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10341 `make_compound_operation' will convert it to an ASHIFTRT for
10342 those machines (such as VAX) that don't have an LSHIFTRT. */
10343 if (code == ASHIFTRT
10344 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10345 && val_signbit_known_clear_p (shift_unit_mode,
10346 nonzero_bits (varop,
10347 shift_unit_mode)))
10348 code = LSHIFTRT;
10349
10350 if (((code == LSHIFTRT
10351 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10352 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10353 || (code == ASHIFT
10354 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10355 && !((nonzero_bits (varop, shift_unit_mode) << count)
10356 & GET_MODE_MASK (shift_unit_mode))))
10357 && !side_effects_p (varop))
10358 varop = const0_rtx;
10359 }
10360
10361 switch (GET_CODE (varop))
10362 {
10363 case SIGN_EXTEND:
10364 case ZERO_EXTEND:
10365 case SIGN_EXTRACT:
10366 case ZERO_EXTRACT:
10367 new_rtx = expand_compound_operation (varop);
10368 if (new_rtx != varop)
10369 {
10370 varop = new_rtx;
10371 continue;
10372 }
10373 break;
10374
10375 case MEM:
10376 /* The following rules apply only to scalars. */
10377 if (shift_mode != shift_unit_mode)
10378 break;
10379
10380 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10381 minus the width of a smaller mode, we can do this with a
10382 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10383 if ((code == ASHIFTRT || code == LSHIFTRT)
10384 && ! mode_dependent_address_p (XEXP (varop, 0),
10385 MEM_ADDR_SPACE (varop))
10386 && ! MEM_VOLATILE_P (varop)
10387 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10388 MODE_INT, 1)) != BLKmode)
10389 {
10390 new_rtx = adjust_address_nv (varop, tmode,
10391 BYTES_BIG_ENDIAN ? 0
10392 : count / BITS_PER_UNIT);
10393
10394 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10395 : ZERO_EXTEND, mode, new_rtx);
10396 count = 0;
10397 continue;
10398 }
10399 break;
10400
10401 case SUBREG:
10402 /* The following rules apply only to scalars. */
10403 if (shift_mode != shift_unit_mode)
10404 break;
10405
10406 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10407 the same number of words as what we've seen so far. Then store
10408 the widest mode in MODE. */
10409 if (subreg_lowpart_p (varop)
10410 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10411 > GET_MODE_SIZE (GET_MODE (varop)))
10412 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10413 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10414 == mode_words
10415 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10416 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10417 {
10418 varop = SUBREG_REG (varop);
10419 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10420 mode = GET_MODE (varop);
10421 continue;
10422 }
10423 break;
10424
10425 case MULT:
10426 /* Some machines use MULT instead of ASHIFT because MULT
10427 is cheaper. But it is still better on those machines to
10428 merge two shifts into one. */
10429 if (CONST_INT_P (XEXP (varop, 1))
10430 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10431 {
10432 varop
10433 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10434 XEXP (varop, 0),
10435 GEN_INT (exact_log2 (
10436 UINTVAL (XEXP (varop, 1)))));
10437 continue;
10438 }
10439 break;
10440
10441 case UDIV:
10442 /* Similar, for when divides are cheaper. */
10443 if (CONST_INT_P (XEXP (varop, 1))
10444 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10445 {
10446 varop
10447 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10448 XEXP (varop, 0),
10449 GEN_INT (exact_log2 (
10450 UINTVAL (XEXP (varop, 1)))));
10451 continue;
10452 }
10453 break;
10454
10455 case ASHIFTRT:
10456 /* If we are extracting just the sign bit of an arithmetic
10457 right shift, that shift is not needed. However, the sign
10458 bit of a wider mode may be different from what would be
10459 interpreted as the sign bit in a narrower mode, so, if
10460 the result is narrower, don't discard the shift. */
10461 if (code == LSHIFTRT
10462 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10463 && (GET_MODE_UNIT_BITSIZE (result_mode)
10464 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10465 {
10466 varop = XEXP (varop, 0);
10467 continue;
10468 }
10469
10470 /* fall through */
10471
10472 case LSHIFTRT:
10473 case ASHIFT:
10474 case ROTATE:
10475 /* The following rules apply only to scalars. */
10476 if (shift_mode != shift_unit_mode)
10477 break;
10478
10479 /* Here we have two nested shifts. The result is usually the
10480 AND of a new shift with a mask. We compute the result below. */
10481 if (CONST_INT_P (XEXP (varop, 1))
10482 && INTVAL (XEXP (varop, 1)) >= 0
10483 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10484 && HWI_COMPUTABLE_MODE_P (result_mode)
10485 && HWI_COMPUTABLE_MODE_P (mode))
10486 {
10487 enum rtx_code first_code = GET_CODE (varop);
10488 unsigned int first_count = INTVAL (XEXP (varop, 1));
10489 unsigned HOST_WIDE_INT mask;
10490 rtx mask_rtx;
10491
10492 /* We have one common special case. We can't do any merging if
10493 the inner code is an ASHIFTRT of a smaller mode. However, if
10494 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10495 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10496 we can convert it to
10497 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10498 This simplifies certain SIGN_EXTEND operations. */
10499 if (code == ASHIFT && first_code == ASHIFTRT
10500 && count == (GET_MODE_PRECISION (result_mode)
10501 - GET_MODE_PRECISION (GET_MODE (varop))))
10502 {
10503 /* C3 has the low-order C1 bits zero. */
10504
10505 mask = GET_MODE_MASK (mode)
10506 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10507
10508 varop = simplify_and_const_int (NULL_RTX, result_mode,
10509 XEXP (varop, 0), mask);
10510 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10511 varop, count);
10512 count = first_count;
10513 code = ASHIFTRT;
10514 continue;
10515 }
10516
10517 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10518 than C1 high-order bits equal to the sign bit, we can convert
10519 this to either an ASHIFT or an ASHIFTRT depending on the
10520 two counts.
10521
10522 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10523
10524 if (code == ASHIFTRT && first_code == ASHIFT
10525 && GET_MODE (varop) == shift_mode
10526 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10527 > first_count))
10528 {
10529 varop = XEXP (varop, 0);
10530 count -= first_count;
10531 if (count < 0)
10532 {
10533 count = -count;
10534 code = ASHIFT;
10535 }
10536
10537 continue;
10538 }
10539
10540 /* There are some cases we can't do. If CODE is ASHIFTRT,
10541 we can only do this if FIRST_CODE is also ASHIFTRT.
10542
10543 We can't do the case when CODE is ROTATE and FIRST_CODE is
10544 ASHIFTRT.
10545
10546 If the mode of this shift is not the mode of the outer shift,
10547 we can't do this if either shift is a right shift or ROTATE.
10548
10549 Finally, we can't do any of these if the mode is too wide
10550 unless the codes are the same.
10551
10552 Handle the case where the shift codes are the same
10553 first. */
10554
10555 if (code == first_code)
10556 {
10557 if (GET_MODE (varop) != result_mode
10558 && (code == ASHIFTRT || code == LSHIFTRT
10559 || code == ROTATE))
10560 break;
10561
10562 count += first_count;
10563 varop = XEXP (varop, 0);
10564 continue;
10565 }
10566
10567 if (code == ASHIFTRT
10568 || (code == ROTATE && first_code == ASHIFTRT)
10569 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10570 || (GET_MODE (varop) != result_mode
10571 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10572 || first_code == ROTATE
10573 || code == ROTATE)))
10574 break;
10575
10576 /* To compute the mask to apply after the shift, shift the
10577 nonzero bits of the inner shift the same way the
10578 outer shift will. */
10579
10580 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10581 result_mode);
10582
10583 mask_rtx
10584 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10585 GEN_INT (count));
10586
10587 /* Give up if we can't compute an outer operation to use. */
10588 if (mask_rtx == 0
10589 || !CONST_INT_P (mask_rtx)
10590 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10591 INTVAL (mask_rtx),
10592 result_mode, &complement_p))
10593 break;
10594
10595 /* If the shifts are in the same direction, we add the
10596 counts. Otherwise, we subtract them. */
10597 if ((code == ASHIFTRT || code == LSHIFTRT)
10598 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10599 count += first_count;
10600 else
10601 count -= first_count;
10602
10603 /* If COUNT is positive, the new shift is usually CODE,
10604 except for the two exceptions below, in which case it is
10605 FIRST_CODE. If the count is negative, FIRST_CODE should
10606 always be used */
10607 if (count > 0
10608 && ((first_code == ROTATE && code == ASHIFT)
10609 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10610 code = first_code;
10611 else if (count < 0)
10612 code = first_code, count = -count;
10613
10614 varop = XEXP (varop, 0);
10615 continue;
10616 }
10617
10618 /* If we have (A << B << C) for any shift, we can convert this to
10619 (A << C << B). This wins if A is a constant. Only try this if
10620 B is not a constant. */
10621
10622 else if (GET_CODE (varop) == code
10623 && CONST_INT_P (XEXP (varop, 0))
10624 && !CONST_INT_P (XEXP (varop, 1)))
10625 {
10626 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10627 sure the result will be masked. See PR70222. */
10628 if (code == LSHIFTRT
10629 && mode != result_mode
10630 && !merge_outer_ops (&outer_op, &outer_const, AND,
10631 GET_MODE_MASK (result_mode)
10632 >> orig_count, result_mode,
10633 &complement_p))
10634 break;
10635 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10636 up outer sign extension (often left and right shift) is
10637 hardly more efficient than the original. See PR70429. */
10638 if (code == ASHIFTRT && mode != result_mode)
10639 break;
10640
10641 rtx new_rtx = simplify_const_binary_operation (code, mode,
10642 XEXP (varop, 0),
10643 GEN_INT (count));
10644 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10645 count = 0;
10646 continue;
10647 }
10648 break;
10649
10650 case NOT:
10651 /* The following rules apply only to scalars. */
10652 if (shift_mode != shift_unit_mode)
10653 break;
10654
10655 /* Make this fit the case below. */
10656 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10657 continue;
10658
10659 case IOR:
10660 case AND:
10661 case XOR:
10662 /* The following rules apply only to scalars. */
10663 if (shift_mode != shift_unit_mode)
10664 break;
10665
10666 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10667 with C the size of VAROP - 1 and the shift is logical if
10668 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10669 we have an (le X 0) operation. If we have an arithmetic shift
10670 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10671 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10672
10673 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10674 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10675 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10676 && (code == LSHIFTRT || code == ASHIFTRT)
10677 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10678 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10679 {
10680 count = 0;
10681 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10682 const0_rtx);
10683
10684 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10685 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10686
10687 continue;
10688 }
10689
10690 /* If we have (shift (logical)), move the logical to the outside
10691 to allow it to possibly combine with another logical and the
10692 shift to combine with another shift. This also canonicalizes to
10693 what a ZERO_EXTRACT looks like. Also, some machines have
10694 (and (shift)) insns. */
10695
10696 if (CONST_INT_P (XEXP (varop, 1))
10697 /* We can't do this if we have (ashiftrt (xor)) and the
10698 constant has its sign bit set in shift_mode with shift_mode
10699 wider than result_mode. */
10700 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10701 && result_mode != shift_mode
10702 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10703 shift_mode))
10704 && (new_rtx = simplify_const_binary_operation
10705 (code, result_mode,
10706 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10707 GEN_INT (count))) != 0
10708 && CONST_INT_P (new_rtx)
10709 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10710 INTVAL (new_rtx), result_mode, &complement_p))
10711 {
10712 varop = XEXP (varop, 0);
10713 continue;
10714 }
10715
10716 /* If we can't do that, try to simplify the shift in each arm of the
10717 logical expression, make a new logical expression, and apply
10718 the inverse distributive law. This also can't be done for
10719 (ashiftrt (xor)) where we've widened the shift and the constant
10720 changes the sign bit. */
10721 if (CONST_INT_P (XEXP (varop, 1))
10722 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10723 && result_mode != shift_mode
10724 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10725 shift_mode)))
10726 {
10727 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10728 XEXP (varop, 0), count);
10729 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10730 XEXP (varop, 1), count);
10731
10732 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10733 lhs, rhs);
10734 varop = apply_distributive_law (varop);
10735
10736 count = 0;
10737 continue;
10738 }
10739 break;
10740
10741 case EQ:
10742 /* The following rules apply only to scalars. */
10743 if (shift_mode != shift_unit_mode)
10744 break;
10745
10746 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10747 says that the sign bit can be tested, FOO has mode MODE, C is
10748 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10749 that may be nonzero. */
10750 if (code == LSHIFTRT
10751 && XEXP (varop, 1) == const0_rtx
10752 && GET_MODE (XEXP (varop, 0)) == result_mode
10753 && count == (GET_MODE_PRECISION (result_mode) - 1)
10754 && HWI_COMPUTABLE_MODE_P (result_mode)
10755 && STORE_FLAG_VALUE == -1
10756 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10757 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10758 &complement_p))
10759 {
10760 varop = XEXP (varop, 0);
10761 count = 0;
10762 continue;
10763 }
10764 break;
10765
10766 case NEG:
10767 /* The following rules apply only to scalars. */
10768 if (shift_mode != shift_unit_mode)
10769 break;
10770
10771 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10772 than the number of bits in the mode is equivalent to A. */
10773 if (code == LSHIFTRT
10774 && count == (GET_MODE_PRECISION (result_mode) - 1)
10775 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10776 {
10777 varop = XEXP (varop, 0);
10778 count = 0;
10779 continue;
10780 }
10781
10782 /* NEG commutes with ASHIFT since it is multiplication. Move the
10783 NEG outside to allow shifts to combine. */
10784 if (code == ASHIFT
10785 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10786 &complement_p))
10787 {
10788 varop = XEXP (varop, 0);
10789 continue;
10790 }
10791 break;
10792
10793 case PLUS:
10794 /* The following rules apply only to scalars. */
10795 if (shift_mode != shift_unit_mode)
10796 break;
10797
10798 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10799 is one less than the number of bits in the mode is
10800 equivalent to (xor A 1). */
10801 if (code == LSHIFTRT
10802 && count == (GET_MODE_PRECISION (result_mode) - 1)
10803 && XEXP (varop, 1) == constm1_rtx
10804 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10805 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10806 &complement_p))
10807 {
10808 count = 0;
10809 varop = XEXP (varop, 0);
10810 continue;
10811 }
10812
10813 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10814 that might be nonzero in BAR are those being shifted out and those
10815 bits are known zero in FOO, we can replace the PLUS with FOO.
10816 Similarly in the other operand order. This code occurs when
10817 we are computing the size of a variable-size array. */
10818
10819 if ((code == ASHIFTRT || code == LSHIFTRT)
10820 && count < HOST_BITS_PER_WIDE_INT
10821 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10822 && (nonzero_bits (XEXP (varop, 1), result_mode)
10823 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10824 {
10825 varop = XEXP (varop, 0);
10826 continue;
10827 }
10828 else if ((code == ASHIFTRT || code == LSHIFTRT)
10829 && count < HOST_BITS_PER_WIDE_INT
10830 && HWI_COMPUTABLE_MODE_P (result_mode)
10831 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10832 >> count)
10833 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10834 & nonzero_bits (XEXP (varop, 1),
10835 result_mode)))
10836 {
10837 varop = XEXP (varop, 1);
10838 continue;
10839 }
10840
10841 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10842 if (code == ASHIFT
10843 && CONST_INT_P (XEXP (varop, 1))
10844 && (new_rtx = simplify_const_binary_operation
10845 (ASHIFT, result_mode,
10846 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10847 GEN_INT (count))) != 0
10848 && CONST_INT_P (new_rtx)
10849 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10850 INTVAL (new_rtx), result_mode, &complement_p))
10851 {
10852 varop = XEXP (varop, 0);
10853 continue;
10854 }
10855
10856 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10857 signbit', and attempt to change the PLUS to an XOR and move it to
10858 the outer operation as is done above in the AND/IOR/XOR case
10859 leg for shift(logical). See details in logical handling above
10860 for reasoning in doing so. */
10861 if (code == LSHIFTRT
10862 && CONST_INT_P (XEXP (varop, 1))
10863 && mode_signbit_p (result_mode, XEXP (varop, 1))
10864 && (new_rtx = simplify_const_binary_operation
10865 (code, result_mode,
10866 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10867 GEN_INT (count))) != 0
10868 && CONST_INT_P (new_rtx)
10869 && merge_outer_ops (&outer_op, &outer_const, XOR,
10870 INTVAL (new_rtx), result_mode, &complement_p))
10871 {
10872 varop = XEXP (varop, 0);
10873 continue;
10874 }
10875
10876 break;
10877
10878 case MINUS:
10879 /* The following rules apply only to scalars. */
10880 if (shift_mode != shift_unit_mode)
10881 break;
10882
10883 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10884 with C the size of VAROP - 1 and the shift is logical if
10885 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10886 we have a (gt X 0) operation. If the shift is arithmetic with
10887 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10888 we have a (neg (gt X 0)) operation. */
10889
10890 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10891 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10892 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10893 && (code == LSHIFTRT || code == ASHIFTRT)
10894 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10895 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10896 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10897 {
10898 count = 0;
10899 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10900 const0_rtx);
10901
10902 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10903 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10904
10905 continue;
10906 }
10907 break;
10908
10909 case TRUNCATE:
10910 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10911 if the truncate does not affect the value. */
10912 if (code == LSHIFTRT
10913 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10914 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10915 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10916 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
10917 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
10918 {
10919 rtx varop_inner = XEXP (varop, 0);
10920
10921 varop_inner
10922 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10923 XEXP (varop_inner, 0),
10924 GEN_INT
10925 (count + INTVAL (XEXP (varop_inner, 1))));
10926 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10927 count = 0;
10928 continue;
10929 }
10930 break;
10931
10932 default:
10933 break;
10934 }
10935
10936 break;
10937 }
10938
10939 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10940 outer_op, outer_const);
10941
10942 /* We have now finished analyzing the shift. The result should be
10943 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10944 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10945 to the result of the shift. OUTER_CONST is the relevant constant,
10946 but we must turn off all bits turned off in the shift. */
10947
10948 if (outer_op == UNKNOWN
10949 && orig_code == code && orig_count == count
10950 && varop == orig_varop
10951 && shift_mode == GET_MODE (varop))
10952 return NULL_RTX;
10953
10954 /* Make a SUBREG if necessary. If we can't make it, fail. */
10955 varop = gen_lowpart (shift_mode, varop);
10956 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10957 return NULL_RTX;
10958
10959 /* If we have an outer operation and we just made a shift, it is
10960 possible that we could have simplified the shift were it not
10961 for the outer operation. So try to do the simplification
10962 recursively. */
10963
10964 if (outer_op != UNKNOWN)
10965 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10966 else
10967 x = NULL_RTX;
10968
10969 if (x == NULL_RTX)
10970 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10971
10972 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10973 turn off all the bits that the shift would have turned off. */
10974 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10975 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10976 GET_MODE_MASK (result_mode) >> orig_count);
10977
10978 /* Do the remainder of the processing in RESULT_MODE. */
10979 x = gen_lowpart_or_truncate (result_mode, x);
10980
10981 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10982 operation. */
10983 if (complement_p)
10984 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10985
10986 if (outer_op != UNKNOWN)
10987 {
10988 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10989 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10990 outer_const = trunc_int_for_mode (outer_const, result_mode);
10991
10992 if (outer_op == AND)
10993 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10994 else if (outer_op == SET)
10995 {
10996 /* This means that we have determined that the result is
10997 equivalent to a constant. This should be rare. */
10998 if (!side_effects_p (x))
10999 x = GEN_INT (outer_const);
11000 }
11001 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11002 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
11003 else
11004 x = simplify_gen_binary (outer_op, result_mode, x,
11005 GEN_INT (outer_const));
11006 }
11007
11008 return x;
11009 }
11010
11011 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11012 The result of the shift is RESULT_MODE. If we cannot simplify it,
11013 return X or, if it is NULL, synthesize the expression with
11014 simplify_gen_binary. Otherwise, return a simplified value.
11015
11016 The shift is normally computed in the widest mode we find in VAROP, as
11017 long as it isn't a different number of words than RESULT_MODE. Exceptions
11018 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11019
11020 static rtx
11021 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11022 rtx varop, int count)
11023 {
11024 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11025 if (tem)
11026 return tem;
11027
11028 if (!x)
11029 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
11030 if (GET_MODE (x) != result_mode)
11031 x = gen_lowpart (result_mode, x);
11032 return x;
11033 }
11034
11035 \f
11036 /* A subroutine of recog_for_combine. See there for arguments and
11037 return value. */
11038
11039 static int
11040 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11041 {
11042 rtx pat = *pnewpat;
11043 rtx pat_without_clobbers;
11044 int insn_code_number;
11045 int num_clobbers_to_add = 0;
11046 int i;
11047 rtx notes = NULL_RTX;
11048 rtx old_notes, old_pat;
11049 int old_icode;
11050
11051 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11052 we use to indicate that something didn't match. If we find such a
11053 thing, force rejection. */
11054 if (GET_CODE (pat) == PARALLEL)
11055 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11056 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11057 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11058 return -1;
11059
11060 old_pat = PATTERN (insn);
11061 old_notes = REG_NOTES (insn);
11062 PATTERN (insn) = pat;
11063 REG_NOTES (insn) = NULL_RTX;
11064
11065 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11066 if (dump_file && (dump_flags & TDF_DETAILS))
11067 {
11068 if (insn_code_number < 0)
11069 fputs ("Failed to match this instruction:\n", dump_file);
11070 else
11071 fputs ("Successfully matched this instruction:\n", dump_file);
11072 print_rtl_single (dump_file, pat);
11073 }
11074
11075 /* If it isn't, there is the possibility that we previously had an insn
11076 that clobbered some register as a side effect, but the combined
11077 insn doesn't need to do that. So try once more without the clobbers
11078 unless this represents an ASM insn. */
11079
11080 if (insn_code_number < 0 && ! check_asm_operands (pat)
11081 && GET_CODE (pat) == PARALLEL)
11082 {
11083 int pos;
11084
11085 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11086 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11087 {
11088 if (i != pos)
11089 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11090 pos++;
11091 }
11092
11093 SUBST_INT (XVECLEN (pat, 0), pos);
11094
11095 if (pos == 1)
11096 pat = XVECEXP (pat, 0, 0);
11097
11098 PATTERN (insn) = pat;
11099 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11100 if (dump_file && (dump_flags & TDF_DETAILS))
11101 {
11102 if (insn_code_number < 0)
11103 fputs ("Failed to match this instruction:\n", dump_file);
11104 else
11105 fputs ("Successfully matched this instruction:\n", dump_file);
11106 print_rtl_single (dump_file, pat);
11107 }
11108 }
11109
11110 pat_without_clobbers = pat;
11111
11112 PATTERN (insn) = old_pat;
11113 REG_NOTES (insn) = old_notes;
11114
11115 /* Recognize all noop sets, these will be killed by followup pass. */
11116 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11117 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11118
11119 /* If we had any clobbers to add, make a new pattern than contains
11120 them. Then check to make sure that all of them are dead. */
11121 if (num_clobbers_to_add)
11122 {
11123 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11124 rtvec_alloc (GET_CODE (pat) == PARALLEL
11125 ? (XVECLEN (pat, 0)
11126 + num_clobbers_to_add)
11127 : num_clobbers_to_add + 1));
11128
11129 if (GET_CODE (pat) == PARALLEL)
11130 for (i = 0; i < XVECLEN (pat, 0); i++)
11131 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11132 else
11133 XVECEXP (newpat, 0, 0) = pat;
11134
11135 add_clobbers (newpat, insn_code_number);
11136
11137 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11138 i < XVECLEN (newpat, 0); i++)
11139 {
11140 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11141 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11142 return -1;
11143 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11144 {
11145 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11146 notes = alloc_reg_note (REG_UNUSED,
11147 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11148 }
11149 }
11150 pat = newpat;
11151 }
11152
11153 if (insn_code_number >= 0
11154 && insn_code_number != NOOP_MOVE_INSN_CODE)
11155 {
11156 old_pat = PATTERN (insn);
11157 old_notes = REG_NOTES (insn);
11158 old_icode = INSN_CODE (insn);
11159 PATTERN (insn) = pat;
11160 REG_NOTES (insn) = notes;
11161
11162 /* Allow targets to reject combined insn. */
11163 if (!targetm.legitimate_combined_insn (insn))
11164 {
11165 if (dump_file && (dump_flags & TDF_DETAILS))
11166 fputs ("Instruction not appropriate for target.",
11167 dump_file);
11168
11169 /* Callers expect recog_for_combine to strip
11170 clobbers from the pattern on failure. */
11171 pat = pat_without_clobbers;
11172 notes = NULL_RTX;
11173
11174 insn_code_number = -1;
11175 }
11176
11177 PATTERN (insn) = old_pat;
11178 REG_NOTES (insn) = old_notes;
11179 INSN_CODE (insn) = old_icode;
11180 }
11181
11182 *pnewpat = pat;
11183 *pnotes = notes;
11184
11185 return insn_code_number;
11186 }
11187
11188 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11189 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11190 Return whether anything was so changed. */
11191
11192 static bool
11193 change_zero_ext (rtx pat)
11194 {
11195 bool changed = false;
11196 rtx *src = &SET_SRC (pat);
11197
11198 subrtx_ptr_iterator::array_type array;
11199 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11200 {
11201 rtx x = **iter;
11202 machine_mode mode = GET_MODE (x);
11203 int size;
11204
11205 if (GET_CODE (x) == ZERO_EXTRACT
11206 && CONST_INT_P (XEXP (x, 1))
11207 && CONST_INT_P (XEXP (x, 2))
11208 && GET_MODE (XEXP (x, 0)) == mode)
11209 {
11210 size = INTVAL (XEXP (x, 1));
11211
11212 int start = INTVAL (XEXP (x, 2));
11213 if (BITS_BIG_ENDIAN)
11214 start = GET_MODE_PRECISION (mode) - size - start;
11215
11216 if (start)
11217 x = gen_rtx_LSHIFTRT (mode, XEXP (x, 0), GEN_INT (start));
11218 else
11219 x = XEXP (x, 0);
11220 }
11221 else if (GET_CODE (x) == ZERO_EXTEND
11222 && SCALAR_INT_MODE_P (mode)
11223 && GET_CODE (XEXP (x, 0)) == SUBREG
11224 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
11225 && subreg_lowpart_p (XEXP (x, 0)))
11226 {
11227 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11228 x = SUBREG_REG (XEXP (x, 0));
11229 }
11230 else if (GET_CODE (x) == ZERO_EXTEND
11231 && SCALAR_INT_MODE_P (mode)
11232 && REG_P (XEXP (x, 0))
11233 && HARD_REGISTER_P (XEXP (x, 0)))
11234 {
11235 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11236 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11237 }
11238 else
11239 continue;
11240
11241 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11242 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11243
11244 SUBST (**iter, x);
11245 changed = true;
11246 }
11247
11248 if (changed)
11249 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11250 maybe_swap_commutative_operands (**iter);
11251
11252 rtx *dst = &SET_DEST (pat);
11253 if (GET_CODE (*dst) == ZERO_EXTRACT
11254 && REG_P (XEXP (*dst, 0))
11255 && CONST_INT_P (XEXP (*dst, 1))
11256 && CONST_INT_P (XEXP (*dst, 2)))
11257 {
11258 rtx reg = XEXP (*dst, 0);
11259 int width = INTVAL (XEXP (*dst, 1));
11260 int offset = INTVAL (XEXP (*dst, 2));
11261 machine_mode mode = GET_MODE (reg);
11262 int reg_width = GET_MODE_PRECISION (mode);
11263 if (BITS_BIG_ENDIAN)
11264 offset = reg_width - width - offset;
11265
11266 rtx x, y, z, w;
11267 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11268 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11269 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11270 if (offset)
11271 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11272 else
11273 y = SET_SRC (pat);
11274 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11275 w = gen_rtx_IOR (mode, x, z);
11276 SUBST (SET_DEST (pat), reg);
11277 SUBST (SET_SRC (pat), w);
11278
11279 changed = true;
11280 }
11281
11282 return changed;
11283 }
11284
11285 /* Like recog, but we receive the address of a pointer to a new pattern.
11286 We try to match the rtx that the pointer points to.
11287 If that fails, we may try to modify or replace the pattern,
11288 storing the replacement into the same pointer object.
11289
11290 Modifications include deletion or addition of CLOBBERs. If the
11291 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11292 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11293 (and undo if that fails).
11294
11295 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11296 the CLOBBERs are placed.
11297
11298 The value is the final insn code from the pattern ultimately matched,
11299 or -1. */
11300
11301 static int
11302 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11303 {
11304 rtx pat = *pnewpat;
11305 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11306 if (insn_code_number >= 0 || check_asm_operands (pat))
11307 return insn_code_number;
11308
11309 void *marker = get_undo_marker ();
11310 bool changed = false;
11311
11312 if (GET_CODE (pat) == SET)
11313 changed = change_zero_ext (pat);
11314 else if (GET_CODE (pat) == PARALLEL)
11315 {
11316 int i;
11317 for (i = 0; i < XVECLEN (pat, 0); i++)
11318 {
11319 rtx set = XVECEXP (pat, 0, i);
11320 if (GET_CODE (set) == SET)
11321 changed |= change_zero_ext (set);
11322 }
11323 }
11324
11325 if (changed)
11326 {
11327 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11328
11329 if (insn_code_number < 0)
11330 undo_to_marker (marker);
11331 }
11332
11333 return insn_code_number;
11334 }
11335 \f
11336 /* Like gen_lowpart_general but for use by combine. In combine it
11337 is not possible to create any new pseudoregs. However, it is
11338 safe to create invalid memory addresses, because combine will
11339 try to recognize them and all they will do is make the combine
11340 attempt fail.
11341
11342 If for some reason this cannot do its job, an rtx
11343 (clobber (const_int 0)) is returned.
11344 An insn containing that will not be recognized. */
11345
11346 static rtx
11347 gen_lowpart_for_combine (machine_mode omode, rtx x)
11348 {
11349 machine_mode imode = GET_MODE (x);
11350 unsigned int osize = GET_MODE_SIZE (omode);
11351 unsigned int isize = GET_MODE_SIZE (imode);
11352 rtx result;
11353
11354 if (omode == imode)
11355 return x;
11356
11357 /* We can only support MODE being wider than a word if X is a
11358 constant integer or has a mode the same size. */
11359 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11360 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11361 goto fail;
11362
11363 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11364 won't know what to do. So we will strip off the SUBREG here and
11365 process normally. */
11366 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11367 {
11368 x = SUBREG_REG (x);
11369
11370 /* For use in case we fall down into the address adjustments
11371 further below, we need to adjust the known mode and size of
11372 x; imode and isize, since we just adjusted x. */
11373 imode = GET_MODE (x);
11374
11375 if (imode == omode)
11376 return x;
11377
11378 isize = GET_MODE_SIZE (imode);
11379 }
11380
11381 result = gen_lowpart_common (omode, x);
11382
11383 if (result)
11384 return result;
11385
11386 if (MEM_P (x))
11387 {
11388 int offset = 0;
11389
11390 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11391 address. */
11392 if (MEM_VOLATILE_P (x)
11393 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11394 goto fail;
11395
11396 /* If we want to refer to something bigger than the original memref,
11397 generate a paradoxical subreg instead. That will force a reload
11398 of the original memref X. */
11399 if (isize < osize)
11400 return gen_rtx_SUBREG (omode, x, 0);
11401
11402 if (WORDS_BIG_ENDIAN)
11403 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11404
11405 /* Adjust the address so that the address-after-the-data is
11406 unchanged. */
11407 if (BYTES_BIG_ENDIAN)
11408 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11409
11410 return adjust_address_nv (x, omode, offset);
11411 }
11412
11413 /* If X is a comparison operator, rewrite it in a new mode. This
11414 probably won't match, but may allow further simplifications. */
11415 else if (COMPARISON_P (x))
11416 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11417
11418 /* If we couldn't simplify X any other way, just enclose it in a
11419 SUBREG. Normally, this SUBREG won't match, but some patterns may
11420 include an explicit SUBREG or we may simplify it further in combine. */
11421 else
11422 {
11423 rtx res;
11424
11425 if (imode == VOIDmode)
11426 {
11427 imode = int_mode_for_mode (omode);
11428 x = gen_lowpart_common (imode, x);
11429 if (x == NULL)
11430 goto fail;
11431 }
11432 res = lowpart_subreg (omode, x, imode);
11433 if (res)
11434 return res;
11435 }
11436
11437 fail:
11438 return gen_rtx_CLOBBER (omode, const0_rtx);
11439 }
11440 \f
11441 /* Try to simplify a comparison between OP0 and a constant OP1,
11442 where CODE is the comparison code that will be tested, into a
11443 (CODE OP0 const0_rtx) form.
11444
11445 The result is a possibly different comparison code to use.
11446 *POP1 may be updated. */
11447
11448 static enum rtx_code
11449 simplify_compare_const (enum rtx_code code, machine_mode mode,
11450 rtx op0, rtx *pop1)
11451 {
11452 unsigned int mode_width = GET_MODE_PRECISION (mode);
11453 HOST_WIDE_INT const_op = INTVAL (*pop1);
11454
11455 /* Get the constant we are comparing against and turn off all bits
11456 not on in our mode. */
11457 if (mode != VOIDmode)
11458 const_op = trunc_int_for_mode (const_op, mode);
11459
11460 /* If we are comparing against a constant power of two and the value
11461 being compared can only have that single bit nonzero (e.g., it was
11462 `and'ed with that bit), we can replace this with a comparison
11463 with zero. */
11464 if (const_op
11465 && (code == EQ || code == NE || code == GE || code == GEU
11466 || code == LT || code == LTU)
11467 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11468 && pow2p_hwi (const_op & GET_MODE_MASK (mode))
11469 && (nonzero_bits (op0, mode)
11470 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11471 {
11472 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11473 const_op = 0;
11474 }
11475
11476 /* Similarly, if we are comparing a value known to be either -1 or
11477 0 with -1, change it to the opposite comparison against zero. */
11478 if (const_op == -1
11479 && (code == EQ || code == NE || code == GT || code == LE
11480 || code == GEU || code == LTU)
11481 && num_sign_bit_copies (op0, mode) == mode_width)
11482 {
11483 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11484 const_op = 0;
11485 }
11486
11487 /* Do some canonicalizations based on the comparison code. We prefer
11488 comparisons against zero and then prefer equality comparisons.
11489 If we can reduce the size of a constant, we will do that too. */
11490 switch (code)
11491 {
11492 case LT:
11493 /* < C is equivalent to <= (C - 1) */
11494 if (const_op > 0)
11495 {
11496 const_op -= 1;
11497 code = LE;
11498 /* ... fall through to LE case below. */
11499 gcc_fallthrough ();
11500 }
11501 else
11502 break;
11503
11504 case LE:
11505 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11506 if (const_op < 0)
11507 {
11508 const_op += 1;
11509 code = LT;
11510 }
11511
11512 /* If we are doing a <= 0 comparison on a value known to have
11513 a zero sign bit, we can replace this with == 0. */
11514 else if (const_op == 0
11515 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11516 && (nonzero_bits (op0, mode)
11517 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11518 == 0)
11519 code = EQ;
11520 break;
11521
11522 case GE:
11523 /* >= C is equivalent to > (C - 1). */
11524 if (const_op > 0)
11525 {
11526 const_op -= 1;
11527 code = GT;
11528 /* ... fall through to GT below. */
11529 gcc_fallthrough ();
11530 }
11531 else
11532 break;
11533
11534 case GT:
11535 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11536 if (const_op < 0)
11537 {
11538 const_op += 1;
11539 code = GE;
11540 }
11541
11542 /* If we are doing a > 0 comparison on a value known to have
11543 a zero sign bit, we can replace this with != 0. */
11544 else if (const_op == 0
11545 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11546 && (nonzero_bits (op0, mode)
11547 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11548 == 0)
11549 code = NE;
11550 break;
11551
11552 case LTU:
11553 /* < C is equivalent to <= (C - 1). */
11554 if (const_op > 0)
11555 {
11556 const_op -= 1;
11557 code = LEU;
11558 /* ... fall through ... */
11559 }
11560 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11561 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11562 && (unsigned HOST_WIDE_INT) const_op
11563 == HOST_WIDE_INT_1U << (mode_width - 1))
11564 {
11565 const_op = 0;
11566 code = GE;
11567 break;
11568 }
11569 else
11570 break;
11571
11572 case LEU:
11573 /* unsigned <= 0 is equivalent to == 0 */
11574 if (const_op == 0)
11575 code = EQ;
11576 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11577 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11578 && (unsigned HOST_WIDE_INT) const_op
11579 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11580 {
11581 const_op = 0;
11582 code = GE;
11583 }
11584 break;
11585
11586 case GEU:
11587 /* >= C is equivalent to > (C - 1). */
11588 if (const_op > 1)
11589 {
11590 const_op -= 1;
11591 code = GTU;
11592 /* ... fall through ... */
11593 }
11594
11595 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11596 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11597 && (unsigned HOST_WIDE_INT) const_op
11598 == HOST_WIDE_INT_1U << (mode_width - 1))
11599 {
11600 const_op = 0;
11601 code = LT;
11602 break;
11603 }
11604 else
11605 break;
11606
11607 case GTU:
11608 /* unsigned > 0 is equivalent to != 0 */
11609 if (const_op == 0)
11610 code = NE;
11611 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11612 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11613 && (unsigned HOST_WIDE_INT) const_op
11614 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11615 {
11616 const_op = 0;
11617 code = LT;
11618 }
11619 break;
11620
11621 default:
11622 break;
11623 }
11624
11625 *pop1 = GEN_INT (const_op);
11626 return code;
11627 }
11628 \f
11629 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11630 comparison code that will be tested.
11631
11632 The result is a possibly different comparison code to use. *POP0 and
11633 *POP1 may be updated.
11634
11635 It is possible that we might detect that a comparison is either always
11636 true or always false. However, we do not perform general constant
11637 folding in combine, so this knowledge isn't useful. Such tautologies
11638 should have been detected earlier. Hence we ignore all such cases. */
11639
11640 static enum rtx_code
11641 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11642 {
11643 rtx op0 = *pop0;
11644 rtx op1 = *pop1;
11645 rtx tem, tem1;
11646 int i;
11647 machine_mode mode, tmode;
11648
11649 /* Try a few ways of applying the same transformation to both operands. */
11650 while (1)
11651 {
11652 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11653 so check specially. */
11654 if (!WORD_REGISTER_OPERATIONS
11655 && code != GTU && code != GEU && code != LTU && code != LEU
11656 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11657 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11658 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11659 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11660 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11661 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11662 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11663 && CONST_INT_P (XEXP (op0, 1))
11664 && XEXP (op0, 1) == XEXP (op1, 1)
11665 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11666 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11667 && (INTVAL (XEXP (op0, 1))
11668 == (GET_MODE_PRECISION (GET_MODE (op0))
11669 - (GET_MODE_PRECISION
11670 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11671 {
11672 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11673 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11674 }
11675
11676 /* If both operands are the same constant shift, see if we can ignore the
11677 shift. We can if the shift is a rotate or if the bits shifted out of
11678 this shift are known to be zero for both inputs and if the type of
11679 comparison is compatible with the shift. */
11680 if (GET_CODE (op0) == GET_CODE (op1)
11681 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11682 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11683 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11684 && (code != GT && code != LT && code != GE && code != LE))
11685 || (GET_CODE (op0) == ASHIFTRT
11686 && (code != GTU && code != LTU
11687 && code != GEU && code != LEU)))
11688 && CONST_INT_P (XEXP (op0, 1))
11689 && INTVAL (XEXP (op0, 1)) >= 0
11690 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11691 && XEXP (op0, 1) == XEXP (op1, 1))
11692 {
11693 machine_mode mode = GET_MODE (op0);
11694 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11695 int shift_count = INTVAL (XEXP (op0, 1));
11696
11697 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11698 mask &= (mask >> shift_count) << shift_count;
11699 else if (GET_CODE (op0) == ASHIFT)
11700 mask = (mask & (mask << shift_count)) >> shift_count;
11701
11702 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11703 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11704 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11705 else
11706 break;
11707 }
11708
11709 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11710 SUBREGs are of the same mode, and, in both cases, the AND would
11711 be redundant if the comparison was done in the narrower mode,
11712 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11713 and the operand's possibly nonzero bits are 0xffffff01; in that case
11714 if we only care about QImode, we don't need the AND). This case
11715 occurs if the output mode of an scc insn is not SImode and
11716 STORE_FLAG_VALUE == 1 (e.g., the 386).
11717
11718 Similarly, check for a case where the AND's are ZERO_EXTEND
11719 operations from some narrower mode even though a SUBREG is not
11720 present. */
11721
11722 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11723 && CONST_INT_P (XEXP (op0, 1))
11724 && CONST_INT_P (XEXP (op1, 1)))
11725 {
11726 rtx inner_op0 = XEXP (op0, 0);
11727 rtx inner_op1 = XEXP (op1, 0);
11728 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11729 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11730 int changed = 0;
11731
11732 if (paradoxical_subreg_p (inner_op0)
11733 && GET_CODE (inner_op1) == SUBREG
11734 && (GET_MODE (SUBREG_REG (inner_op0))
11735 == GET_MODE (SUBREG_REG (inner_op1)))
11736 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11737 <= HOST_BITS_PER_WIDE_INT)
11738 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11739 GET_MODE (SUBREG_REG (inner_op0)))))
11740 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11741 GET_MODE (SUBREG_REG (inner_op1))))))
11742 {
11743 op0 = SUBREG_REG (inner_op0);
11744 op1 = SUBREG_REG (inner_op1);
11745
11746 /* The resulting comparison is always unsigned since we masked
11747 off the original sign bit. */
11748 code = unsigned_condition (code);
11749
11750 changed = 1;
11751 }
11752
11753 else if (c0 == c1)
11754 for (tmode = GET_CLASS_NARROWEST_MODE
11755 (GET_MODE_CLASS (GET_MODE (op0)));
11756 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11757 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11758 {
11759 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
11760 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
11761 code = unsigned_condition (code);
11762 changed = 1;
11763 break;
11764 }
11765
11766 if (! changed)
11767 break;
11768 }
11769
11770 /* If both operands are NOT, we can strip off the outer operation
11771 and adjust the comparison code for swapped operands; similarly for
11772 NEG, except that this must be an equality comparison. */
11773 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11774 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11775 && (code == EQ || code == NE)))
11776 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11777
11778 else
11779 break;
11780 }
11781
11782 /* If the first operand is a constant, swap the operands and adjust the
11783 comparison code appropriately, but don't do this if the second operand
11784 is already a constant integer. */
11785 if (swap_commutative_operands_p (op0, op1))
11786 {
11787 std::swap (op0, op1);
11788 code = swap_condition (code);
11789 }
11790
11791 /* We now enter a loop during which we will try to simplify the comparison.
11792 For the most part, we only are concerned with comparisons with zero,
11793 but some things may really be comparisons with zero but not start
11794 out looking that way. */
11795
11796 while (CONST_INT_P (op1))
11797 {
11798 machine_mode mode = GET_MODE (op0);
11799 unsigned int mode_width = GET_MODE_PRECISION (mode);
11800 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11801 int equality_comparison_p;
11802 int sign_bit_comparison_p;
11803 int unsigned_comparison_p;
11804 HOST_WIDE_INT const_op;
11805
11806 /* We only want to handle integral modes. This catches VOIDmode,
11807 CCmode, and the floating-point modes. An exception is that we
11808 can handle VOIDmode if OP0 is a COMPARE or a comparison
11809 operation. */
11810
11811 if (GET_MODE_CLASS (mode) != MODE_INT
11812 && ! (mode == VOIDmode
11813 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11814 break;
11815
11816 /* Try to simplify the compare to constant, possibly changing the
11817 comparison op, and/or changing op1 to zero. */
11818 code = simplify_compare_const (code, mode, op0, &op1);
11819 const_op = INTVAL (op1);
11820
11821 /* Compute some predicates to simplify code below. */
11822
11823 equality_comparison_p = (code == EQ || code == NE);
11824 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11825 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11826 || code == GEU);
11827
11828 /* If this is a sign bit comparison and we can do arithmetic in
11829 MODE, say that we will only be needing the sign bit of OP0. */
11830 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11831 op0 = force_to_mode (op0, mode,
11832 HOST_WIDE_INT_1U
11833 << (GET_MODE_PRECISION (mode) - 1),
11834 0);
11835
11836 /* Now try cases based on the opcode of OP0. If none of the cases
11837 does a "continue", we exit this loop immediately after the
11838 switch. */
11839
11840 switch (GET_CODE (op0))
11841 {
11842 case ZERO_EXTRACT:
11843 /* If we are extracting a single bit from a variable position in
11844 a constant that has only a single bit set and are comparing it
11845 with zero, we can convert this into an equality comparison
11846 between the position and the location of the single bit. */
11847 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11848 have already reduced the shift count modulo the word size. */
11849 if (!SHIFT_COUNT_TRUNCATED
11850 && CONST_INT_P (XEXP (op0, 0))
11851 && XEXP (op0, 1) == const1_rtx
11852 && equality_comparison_p && const_op == 0
11853 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11854 {
11855 if (BITS_BIG_ENDIAN)
11856 i = BITS_PER_WORD - 1 - i;
11857
11858 op0 = XEXP (op0, 2);
11859 op1 = GEN_INT (i);
11860 const_op = i;
11861
11862 /* Result is nonzero iff shift count is equal to I. */
11863 code = reverse_condition (code);
11864 continue;
11865 }
11866
11867 /* fall through */
11868
11869 case SIGN_EXTRACT:
11870 tem = expand_compound_operation (op0);
11871 if (tem != op0)
11872 {
11873 op0 = tem;
11874 continue;
11875 }
11876 break;
11877
11878 case NOT:
11879 /* If testing for equality, we can take the NOT of the constant. */
11880 if (equality_comparison_p
11881 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11882 {
11883 op0 = XEXP (op0, 0);
11884 op1 = tem;
11885 continue;
11886 }
11887
11888 /* If just looking at the sign bit, reverse the sense of the
11889 comparison. */
11890 if (sign_bit_comparison_p)
11891 {
11892 op0 = XEXP (op0, 0);
11893 code = (code == GE ? LT : GE);
11894 continue;
11895 }
11896 break;
11897
11898 case NEG:
11899 /* If testing for equality, we can take the NEG of the constant. */
11900 if (equality_comparison_p
11901 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11902 {
11903 op0 = XEXP (op0, 0);
11904 op1 = tem;
11905 continue;
11906 }
11907
11908 /* The remaining cases only apply to comparisons with zero. */
11909 if (const_op != 0)
11910 break;
11911
11912 /* When X is ABS or is known positive,
11913 (neg X) is < 0 if and only if X != 0. */
11914
11915 if (sign_bit_comparison_p
11916 && (GET_CODE (XEXP (op0, 0)) == ABS
11917 || (mode_width <= HOST_BITS_PER_WIDE_INT
11918 && (nonzero_bits (XEXP (op0, 0), mode)
11919 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11920 == 0)))
11921 {
11922 op0 = XEXP (op0, 0);
11923 code = (code == LT ? NE : EQ);
11924 continue;
11925 }
11926
11927 /* If we have NEG of something whose two high-order bits are the
11928 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11929 if (num_sign_bit_copies (op0, mode) >= 2)
11930 {
11931 op0 = XEXP (op0, 0);
11932 code = swap_condition (code);
11933 continue;
11934 }
11935 break;
11936
11937 case ROTATE:
11938 /* If we are testing equality and our count is a constant, we
11939 can perform the inverse operation on our RHS. */
11940 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11941 && (tem = simplify_binary_operation (ROTATERT, mode,
11942 op1, XEXP (op0, 1))) != 0)
11943 {
11944 op0 = XEXP (op0, 0);
11945 op1 = tem;
11946 continue;
11947 }
11948
11949 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11950 a particular bit. Convert it to an AND of a constant of that
11951 bit. This will be converted into a ZERO_EXTRACT. */
11952 if (const_op == 0 && sign_bit_comparison_p
11953 && CONST_INT_P (XEXP (op0, 1))
11954 && mode_width <= HOST_BITS_PER_WIDE_INT)
11955 {
11956 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11957 (HOST_WIDE_INT_1U
11958 << (mode_width - 1
11959 - INTVAL (XEXP (op0, 1)))));
11960 code = (code == LT ? NE : EQ);
11961 continue;
11962 }
11963
11964 /* Fall through. */
11965
11966 case ABS:
11967 /* ABS is ignorable inside an equality comparison with zero. */
11968 if (const_op == 0 && equality_comparison_p)
11969 {
11970 op0 = XEXP (op0, 0);
11971 continue;
11972 }
11973 break;
11974
11975 case SIGN_EXTEND:
11976 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11977 (compare FOO CONST) if CONST fits in FOO's mode and we
11978 are either testing inequality or have an unsigned
11979 comparison with ZERO_EXTEND or a signed comparison with
11980 SIGN_EXTEND. But don't do it if we don't have a compare
11981 insn of the given mode, since we'd have to revert it
11982 later on, and then we wouldn't know whether to sign- or
11983 zero-extend. */
11984 mode = GET_MODE (XEXP (op0, 0));
11985 if (GET_MODE_CLASS (mode) == MODE_INT
11986 && ! unsigned_comparison_p
11987 && HWI_COMPUTABLE_MODE_P (mode)
11988 && trunc_int_for_mode (const_op, mode) == const_op
11989 && have_insn_for (COMPARE, mode))
11990 {
11991 op0 = XEXP (op0, 0);
11992 continue;
11993 }
11994 break;
11995
11996 case SUBREG:
11997 /* Check for the case where we are comparing A - C1 with C2, that is
11998
11999 (subreg:MODE (plus (A) (-C1))) op (C2)
12000
12001 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12002 comparison in the wider mode. One of the following two conditions
12003 must be true in order for this to be valid:
12004
12005 1. The mode extension results in the same bit pattern being added
12006 on both sides and the comparison is equality or unsigned. As
12007 C2 has been truncated to fit in MODE, the pattern can only be
12008 all 0s or all 1s.
12009
12010 2. The mode extension results in the sign bit being copied on
12011 each side.
12012
12013 The difficulty here is that we have predicates for A but not for
12014 (A - C1) so we need to check that C1 is within proper bounds so
12015 as to perturbate A as little as possible. */
12016
12017 if (mode_width <= HOST_BITS_PER_WIDE_INT
12018 && subreg_lowpart_p (op0)
12019 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
12020 && GET_CODE (SUBREG_REG (op0)) == PLUS
12021 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12022 {
12023 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
12024 rtx a = XEXP (SUBREG_REG (op0), 0);
12025 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12026
12027 if ((c1 > 0
12028 && (unsigned HOST_WIDE_INT) c1
12029 < HOST_WIDE_INT_1U << (mode_width - 1)
12030 && (equality_comparison_p || unsigned_comparison_p)
12031 /* (A - C1) zero-extends if it is positive and sign-extends
12032 if it is negative, C2 both zero- and sign-extends. */
12033 && ((0 == (nonzero_bits (a, inner_mode)
12034 & ~GET_MODE_MASK (mode))
12035 && const_op >= 0)
12036 /* (A - C1) sign-extends if it is positive and 1-extends
12037 if it is negative, C2 both sign- and 1-extends. */
12038 || (num_sign_bit_copies (a, inner_mode)
12039 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12040 - mode_width)
12041 && const_op < 0)))
12042 || ((unsigned HOST_WIDE_INT) c1
12043 < HOST_WIDE_INT_1U << (mode_width - 2)
12044 /* (A - C1) always sign-extends, like C2. */
12045 && num_sign_bit_copies (a, inner_mode)
12046 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12047 - (mode_width - 1))))
12048 {
12049 op0 = SUBREG_REG (op0);
12050 continue;
12051 }
12052 }
12053
12054 /* If the inner mode is narrower and we are extracting the low part,
12055 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12056 if (subreg_lowpart_p (op0)
12057 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
12058 ;
12059 else if (subreg_lowpart_p (op0)
12060 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12061 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12062 && (code == NE || code == EQ)
12063 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12064 <= HOST_BITS_PER_WIDE_INT)
12065 && !paradoxical_subreg_p (op0)
12066 && (nonzero_bits (SUBREG_REG (op0),
12067 GET_MODE (SUBREG_REG (op0)))
12068 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12069 {
12070 /* Remove outer subregs that don't do anything. */
12071 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12072
12073 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12074 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12075 {
12076 op0 = SUBREG_REG (op0);
12077 op1 = tem;
12078 continue;
12079 }
12080 break;
12081 }
12082 else
12083 break;
12084
12085 /* FALLTHROUGH */
12086
12087 case ZERO_EXTEND:
12088 mode = GET_MODE (XEXP (op0, 0));
12089 if (GET_MODE_CLASS (mode) == MODE_INT
12090 && (unsigned_comparison_p || equality_comparison_p)
12091 && HWI_COMPUTABLE_MODE_P (mode)
12092 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12093 && const_op >= 0
12094 && have_insn_for (COMPARE, mode))
12095 {
12096 op0 = XEXP (op0, 0);
12097 continue;
12098 }
12099 break;
12100
12101 case PLUS:
12102 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12103 this for equality comparisons due to pathological cases involving
12104 overflows. */
12105 if (equality_comparison_p
12106 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12107 op1, XEXP (op0, 1))))
12108 {
12109 op0 = XEXP (op0, 0);
12110 op1 = tem;
12111 continue;
12112 }
12113
12114 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12115 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12116 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12117 {
12118 op0 = XEXP (XEXP (op0, 0), 0);
12119 code = (code == LT ? EQ : NE);
12120 continue;
12121 }
12122 break;
12123
12124 case MINUS:
12125 /* We used to optimize signed comparisons against zero, but that
12126 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12127 arrive here as equality comparisons, or (GEU, LTU) are
12128 optimized away. No need to special-case them. */
12129
12130 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12131 (eq B (minus A C)), whichever simplifies. We can only do
12132 this for equality comparisons due to pathological cases involving
12133 overflows. */
12134 if (equality_comparison_p
12135 && 0 != (tem = simplify_binary_operation (PLUS, mode,
12136 XEXP (op0, 1), op1)))
12137 {
12138 op0 = XEXP (op0, 0);
12139 op1 = tem;
12140 continue;
12141 }
12142
12143 if (equality_comparison_p
12144 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12145 XEXP (op0, 0), op1)))
12146 {
12147 op0 = XEXP (op0, 1);
12148 op1 = tem;
12149 continue;
12150 }
12151
12152 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12153 of bits in X minus 1, is one iff X > 0. */
12154 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12155 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12156 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12157 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12158 {
12159 op0 = XEXP (op0, 1);
12160 code = (code == GE ? LE : GT);
12161 continue;
12162 }
12163 break;
12164
12165 case XOR:
12166 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12167 if C is zero or B is a constant. */
12168 if (equality_comparison_p
12169 && 0 != (tem = simplify_binary_operation (XOR, mode,
12170 XEXP (op0, 1), op1)))
12171 {
12172 op0 = XEXP (op0, 0);
12173 op1 = tem;
12174 continue;
12175 }
12176 break;
12177
12178 case EQ: case NE:
12179 case UNEQ: case LTGT:
12180 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
12181 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
12182 case UNORDERED: case ORDERED:
12183 /* We can't do anything if OP0 is a condition code value, rather
12184 than an actual data value. */
12185 if (const_op != 0
12186 || CC0_P (XEXP (op0, 0))
12187 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12188 break;
12189
12190 /* Get the two operands being compared. */
12191 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12192 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12193 else
12194 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12195
12196 /* Check for the cases where we simply want the result of the
12197 earlier test or the opposite of that result. */
12198 if (code == NE || code == EQ
12199 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
12200 && (code == LT || code == GE)))
12201 {
12202 enum rtx_code new_code;
12203 if (code == LT || code == NE)
12204 new_code = GET_CODE (op0);
12205 else
12206 new_code = reversed_comparison_code (op0, NULL);
12207
12208 if (new_code != UNKNOWN)
12209 {
12210 code = new_code;
12211 op0 = tem;
12212 op1 = tem1;
12213 continue;
12214 }
12215 }
12216 break;
12217
12218 case IOR:
12219 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12220 iff X <= 0. */
12221 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12222 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12223 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12224 {
12225 op0 = XEXP (op0, 1);
12226 code = (code == GE ? GT : LE);
12227 continue;
12228 }
12229 break;
12230
12231 case AND:
12232 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12233 will be converted to a ZERO_EXTRACT later. */
12234 if (const_op == 0 && equality_comparison_p
12235 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12236 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12237 {
12238 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12239 XEXP (XEXP (op0, 0), 1));
12240 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12241 continue;
12242 }
12243
12244 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12245 zero and X is a comparison and C1 and C2 describe only bits set
12246 in STORE_FLAG_VALUE, we can compare with X. */
12247 if (const_op == 0 && equality_comparison_p
12248 && mode_width <= HOST_BITS_PER_WIDE_INT
12249 && CONST_INT_P (XEXP (op0, 1))
12250 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12251 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12252 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12253 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12254 {
12255 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12256 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12257 if ((~STORE_FLAG_VALUE & mask) == 0
12258 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12259 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12260 && COMPARISON_P (tem))))
12261 {
12262 op0 = XEXP (XEXP (op0, 0), 0);
12263 continue;
12264 }
12265 }
12266
12267 /* If we are doing an equality comparison of an AND of a bit equal
12268 to the sign bit, replace this with a LT or GE comparison of
12269 the underlying value. */
12270 if (equality_comparison_p
12271 && const_op == 0
12272 && CONST_INT_P (XEXP (op0, 1))
12273 && mode_width <= HOST_BITS_PER_WIDE_INT
12274 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12275 == HOST_WIDE_INT_1U << (mode_width - 1)))
12276 {
12277 op0 = XEXP (op0, 0);
12278 code = (code == EQ ? GE : LT);
12279 continue;
12280 }
12281
12282 /* If this AND operation is really a ZERO_EXTEND from a narrower
12283 mode, the constant fits within that mode, and this is either an
12284 equality or unsigned comparison, try to do this comparison in
12285 the narrower mode.
12286
12287 Note that in:
12288
12289 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12290 -> (ne:DI (reg:SI 4) (const_int 0))
12291
12292 unless TRULY_NOOP_TRUNCATION allows it or the register is
12293 known to hold a value of the required mode the
12294 transformation is invalid. */
12295 if ((equality_comparison_p || unsigned_comparison_p)
12296 && CONST_INT_P (XEXP (op0, 1))
12297 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12298 & GET_MODE_MASK (mode))
12299 + 1)) >= 0
12300 && const_op >> i == 0
12301 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
12302 {
12303 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12304 continue;
12305 }
12306
12307 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12308 fits in both M1 and M2 and the SUBREG is either paradoxical
12309 or represents the low part, permute the SUBREG and the AND
12310 and try again. */
12311 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12312 && CONST_INT_P (XEXP (op0, 1)))
12313 {
12314 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12315 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12316 /* Require an integral mode, to avoid creating something like
12317 (AND:SF ...). */
12318 if (SCALAR_INT_MODE_P (tmode)
12319 /* It is unsafe to commute the AND into the SUBREG if the
12320 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12321 not defined. As originally written the upper bits
12322 have a defined value due to the AND operation.
12323 However, if we commute the AND inside the SUBREG then
12324 they no longer have defined values and the meaning of
12325 the code has been changed.
12326 Also C1 should not change value in the smaller mode,
12327 see PR67028 (a positive C1 can become negative in the
12328 smaller mode, so that the AND does no longer mask the
12329 upper bits). */
12330 && ((WORD_REGISTER_OPERATIONS
12331 && mode_width > GET_MODE_PRECISION (tmode)
12332 && mode_width <= BITS_PER_WORD
12333 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12334 || (mode_width <= GET_MODE_PRECISION (tmode)
12335 && subreg_lowpart_p (XEXP (op0, 0))))
12336 && mode_width <= HOST_BITS_PER_WIDE_INT
12337 && HWI_COMPUTABLE_MODE_P (tmode)
12338 && (c1 & ~mask) == 0
12339 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12340 && c1 != mask
12341 && c1 != GET_MODE_MASK (tmode))
12342 {
12343 op0 = simplify_gen_binary (AND, tmode,
12344 SUBREG_REG (XEXP (op0, 0)),
12345 gen_int_mode (c1, tmode));
12346 op0 = gen_lowpart (mode, op0);
12347 continue;
12348 }
12349 }
12350
12351 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12352 if (const_op == 0 && equality_comparison_p
12353 && XEXP (op0, 1) == const1_rtx
12354 && GET_CODE (XEXP (op0, 0)) == NOT)
12355 {
12356 op0 = simplify_and_const_int (NULL_RTX, mode,
12357 XEXP (XEXP (op0, 0), 0), 1);
12358 code = (code == NE ? EQ : NE);
12359 continue;
12360 }
12361
12362 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12363 (eq (and (lshiftrt X) 1) 0).
12364 Also handle the case where (not X) is expressed using xor. */
12365 if (const_op == 0 && equality_comparison_p
12366 && XEXP (op0, 1) == const1_rtx
12367 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12368 {
12369 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12370 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12371
12372 if (GET_CODE (shift_op) == NOT
12373 || (GET_CODE (shift_op) == XOR
12374 && CONST_INT_P (XEXP (shift_op, 1))
12375 && CONST_INT_P (shift_count)
12376 && HWI_COMPUTABLE_MODE_P (mode)
12377 && (UINTVAL (XEXP (shift_op, 1))
12378 == HOST_WIDE_INT_1U
12379 << INTVAL (shift_count))))
12380 {
12381 op0
12382 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12383 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12384 code = (code == NE ? EQ : NE);
12385 continue;
12386 }
12387 }
12388 break;
12389
12390 case ASHIFT:
12391 /* If we have (compare (ashift FOO N) (const_int C)) and
12392 the high order N bits of FOO (N+1 if an inequality comparison)
12393 are known to be zero, we can do this by comparing FOO with C
12394 shifted right N bits so long as the low-order N bits of C are
12395 zero. */
12396 if (CONST_INT_P (XEXP (op0, 1))
12397 && INTVAL (XEXP (op0, 1)) >= 0
12398 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12399 < HOST_BITS_PER_WIDE_INT)
12400 && (((unsigned HOST_WIDE_INT) const_op
12401 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12402 - 1)) == 0)
12403 && mode_width <= HOST_BITS_PER_WIDE_INT
12404 && (nonzero_bits (XEXP (op0, 0), mode)
12405 & ~(mask >> (INTVAL (XEXP (op0, 1))
12406 + ! equality_comparison_p))) == 0)
12407 {
12408 /* We must perform a logical shift, not an arithmetic one,
12409 as we want the top N bits of C to be zero. */
12410 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12411
12412 temp >>= INTVAL (XEXP (op0, 1));
12413 op1 = gen_int_mode (temp, mode);
12414 op0 = XEXP (op0, 0);
12415 continue;
12416 }
12417
12418 /* If we are doing a sign bit comparison, it means we are testing
12419 a particular bit. Convert it to the appropriate AND. */
12420 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12421 && mode_width <= HOST_BITS_PER_WIDE_INT)
12422 {
12423 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12424 (HOST_WIDE_INT_1U
12425 << (mode_width - 1
12426 - INTVAL (XEXP (op0, 1)))));
12427 code = (code == LT ? NE : EQ);
12428 continue;
12429 }
12430
12431 /* If this an equality comparison with zero and we are shifting
12432 the low bit to the sign bit, we can convert this to an AND of the
12433 low-order bit. */
12434 if (const_op == 0 && equality_comparison_p
12435 && CONST_INT_P (XEXP (op0, 1))
12436 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12437 {
12438 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12439 continue;
12440 }
12441 break;
12442
12443 case ASHIFTRT:
12444 /* If this is an equality comparison with zero, we can do this
12445 as a logical shift, which might be much simpler. */
12446 if (equality_comparison_p && const_op == 0
12447 && CONST_INT_P (XEXP (op0, 1)))
12448 {
12449 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12450 XEXP (op0, 0),
12451 INTVAL (XEXP (op0, 1)));
12452 continue;
12453 }
12454
12455 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12456 do the comparison in a narrower mode. */
12457 if (! unsigned_comparison_p
12458 && CONST_INT_P (XEXP (op0, 1))
12459 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12460 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12461 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12462 MODE_INT, 1)) != BLKmode
12463 && (((unsigned HOST_WIDE_INT) const_op
12464 + (GET_MODE_MASK (tmode) >> 1) + 1)
12465 <= GET_MODE_MASK (tmode)))
12466 {
12467 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12468 continue;
12469 }
12470
12471 /* Likewise if OP0 is a PLUS of a sign extension with a
12472 constant, which is usually represented with the PLUS
12473 between the shifts. */
12474 if (! unsigned_comparison_p
12475 && CONST_INT_P (XEXP (op0, 1))
12476 && GET_CODE (XEXP (op0, 0)) == PLUS
12477 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12478 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12479 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12480 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12481 MODE_INT, 1)) != BLKmode
12482 && (((unsigned HOST_WIDE_INT) const_op
12483 + (GET_MODE_MASK (tmode) >> 1) + 1)
12484 <= GET_MODE_MASK (tmode)))
12485 {
12486 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12487 rtx add_const = XEXP (XEXP (op0, 0), 1);
12488 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12489 add_const, XEXP (op0, 1));
12490
12491 op0 = simplify_gen_binary (PLUS, tmode,
12492 gen_lowpart (tmode, inner),
12493 new_const);
12494 continue;
12495 }
12496
12497 /* FALLTHROUGH */
12498 case LSHIFTRT:
12499 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12500 the low order N bits of FOO are known to be zero, we can do this
12501 by comparing FOO with C shifted left N bits so long as no
12502 overflow occurs. Even if the low order N bits of FOO aren't known
12503 to be zero, if the comparison is >= or < we can use the same
12504 optimization and for > or <= by setting all the low
12505 order N bits in the comparison constant. */
12506 if (CONST_INT_P (XEXP (op0, 1))
12507 && INTVAL (XEXP (op0, 1)) > 0
12508 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12509 && mode_width <= HOST_BITS_PER_WIDE_INT
12510 && (((unsigned HOST_WIDE_INT) const_op
12511 + (GET_CODE (op0) != LSHIFTRT
12512 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12513 + 1)
12514 : 0))
12515 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12516 {
12517 unsigned HOST_WIDE_INT low_bits
12518 = (nonzero_bits (XEXP (op0, 0), mode)
12519 & ((HOST_WIDE_INT_1U
12520 << INTVAL (XEXP (op0, 1))) - 1));
12521 if (low_bits == 0 || !equality_comparison_p)
12522 {
12523 /* If the shift was logical, then we must make the condition
12524 unsigned. */
12525 if (GET_CODE (op0) == LSHIFTRT)
12526 code = unsigned_condition (code);
12527
12528 const_op <<= INTVAL (XEXP (op0, 1));
12529 if (low_bits != 0
12530 && (code == GT || code == GTU
12531 || code == LE || code == LEU))
12532 const_op
12533 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12534 op1 = GEN_INT (const_op);
12535 op0 = XEXP (op0, 0);
12536 continue;
12537 }
12538 }
12539
12540 /* If we are using this shift to extract just the sign bit, we
12541 can replace this with an LT or GE comparison. */
12542 if (const_op == 0
12543 && (equality_comparison_p || sign_bit_comparison_p)
12544 && CONST_INT_P (XEXP (op0, 1))
12545 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12546 {
12547 op0 = XEXP (op0, 0);
12548 code = (code == NE || code == GT ? LT : GE);
12549 continue;
12550 }
12551 break;
12552
12553 default:
12554 break;
12555 }
12556
12557 break;
12558 }
12559
12560 /* Now make any compound operations involved in this comparison. Then,
12561 check for an outmost SUBREG on OP0 that is not doing anything or is
12562 paradoxical. The latter transformation must only be performed when
12563 it is known that the "extra" bits will be the same in op0 and op1 or
12564 that they don't matter. There are three cases to consider:
12565
12566 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12567 care bits and we can assume they have any convenient value. So
12568 making the transformation is safe.
12569
12570 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12571 In this case the upper bits of op0 are undefined. We should not make
12572 the simplification in that case as we do not know the contents of
12573 those bits.
12574
12575 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12576 In that case we know those bits are zeros or ones. We must also be
12577 sure that they are the same as the upper bits of op1.
12578
12579 We can never remove a SUBREG for a non-equality comparison because
12580 the sign bit is in a different place in the underlying object. */
12581
12582 rtx_code op0_mco_code = SET;
12583 if (op1 == const0_rtx)
12584 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12585
12586 op0 = make_compound_operation (op0, op0_mco_code);
12587 op1 = make_compound_operation (op1, SET);
12588
12589 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12590 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12591 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12592 && (code == NE || code == EQ))
12593 {
12594 if (paradoxical_subreg_p (op0))
12595 {
12596 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12597 implemented. */
12598 if (REG_P (SUBREG_REG (op0)))
12599 {
12600 op0 = SUBREG_REG (op0);
12601 op1 = gen_lowpart (GET_MODE (op0), op1);
12602 }
12603 }
12604 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12605 <= HOST_BITS_PER_WIDE_INT)
12606 && (nonzero_bits (SUBREG_REG (op0),
12607 GET_MODE (SUBREG_REG (op0)))
12608 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12609 {
12610 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12611
12612 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12613 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12614 op0 = SUBREG_REG (op0), op1 = tem;
12615 }
12616 }
12617
12618 /* We now do the opposite procedure: Some machines don't have compare
12619 insns in all modes. If OP0's mode is an integer mode smaller than a
12620 word and we can't do a compare in that mode, see if there is a larger
12621 mode for which we can do the compare. There are a number of cases in
12622 which we can use the wider mode. */
12623
12624 mode = GET_MODE (op0);
12625 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12626 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12627 && ! have_insn_for (COMPARE, mode))
12628 for (tmode = GET_MODE_WIDER_MODE (mode);
12629 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12630 tmode = GET_MODE_WIDER_MODE (tmode))
12631 if (have_insn_for (COMPARE, tmode))
12632 {
12633 int zero_extended;
12634
12635 /* If this is a test for negative, we can make an explicit
12636 test of the sign bit. Test this first so we can use
12637 a paradoxical subreg to extend OP0. */
12638
12639 if (op1 == const0_rtx && (code == LT || code == GE)
12640 && HWI_COMPUTABLE_MODE_P (mode))
12641 {
12642 unsigned HOST_WIDE_INT sign
12643 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12644 op0 = simplify_gen_binary (AND, tmode,
12645 gen_lowpart (tmode, op0),
12646 gen_int_mode (sign, tmode));
12647 code = (code == LT) ? NE : EQ;
12648 break;
12649 }
12650
12651 /* If the only nonzero bits in OP0 and OP1 are those in the
12652 narrower mode and this is an equality or unsigned comparison,
12653 we can use the wider mode. Similarly for sign-extended
12654 values, in which case it is true for all comparisons. */
12655 zero_extended = ((code == EQ || code == NE
12656 || code == GEU || code == GTU
12657 || code == LEU || code == LTU)
12658 && (nonzero_bits (op0, tmode)
12659 & ~GET_MODE_MASK (mode)) == 0
12660 && ((CONST_INT_P (op1)
12661 || (nonzero_bits (op1, tmode)
12662 & ~GET_MODE_MASK (mode)) == 0)));
12663
12664 if (zero_extended
12665 || ((num_sign_bit_copies (op0, tmode)
12666 > (unsigned int) (GET_MODE_PRECISION (tmode)
12667 - GET_MODE_PRECISION (mode)))
12668 && (num_sign_bit_copies (op1, tmode)
12669 > (unsigned int) (GET_MODE_PRECISION (tmode)
12670 - GET_MODE_PRECISION (mode)))))
12671 {
12672 /* If OP0 is an AND and we don't have an AND in MODE either,
12673 make a new AND in the proper mode. */
12674 if (GET_CODE (op0) == AND
12675 && !have_insn_for (AND, mode))
12676 op0 = simplify_gen_binary (AND, tmode,
12677 gen_lowpart (tmode,
12678 XEXP (op0, 0)),
12679 gen_lowpart (tmode,
12680 XEXP (op0, 1)));
12681 else
12682 {
12683 if (zero_extended)
12684 {
12685 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12686 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12687 }
12688 else
12689 {
12690 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12691 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12692 }
12693 break;
12694 }
12695 }
12696 }
12697
12698 /* We may have changed the comparison operands. Re-canonicalize. */
12699 if (swap_commutative_operands_p (op0, op1))
12700 {
12701 std::swap (op0, op1);
12702 code = swap_condition (code);
12703 }
12704
12705 /* If this machine only supports a subset of valid comparisons, see if we
12706 can convert an unsupported one into a supported one. */
12707 target_canonicalize_comparison (&code, &op0, &op1, 0);
12708
12709 *pop0 = op0;
12710 *pop1 = op1;
12711
12712 return code;
12713 }
12714 \f
12715 /* Utility function for record_value_for_reg. Count number of
12716 rtxs in X. */
12717 static int
12718 count_rtxs (rtx x)
12719 {
12720 enum rtx_code code = GET_CODE (x);
12721 const char *fmt;
12722 int i, j, ret = 1;
12723
12724 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12725 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12726 {
12727 rtx x0 = XEXP (x, 0);
12728 rtx x1 = XEXP (x, 1);
12729
12730 if (x0 == x1)
12731 return 1 + 2 * count_rtxs (x0);
12732
12733 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12734 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12735 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12736 return 2 + 2 * count_rtxs (x0)
12737 + count_rtxs (x == XEXP (x1, 0)
12738 ? XEXP (x1, 1) : XEXP (x1, 0));
12739
12740 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12741 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12742 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12743 return 2 + 2 * count_rtxs (x1)
12744 + count_rtxs (x == XEXP (x0, 0)
12745 ? XEXP (x0, 1) : XEXP (x0, 0));
12746 }
12747
12748 fmt = GET_RTX_FORMAT (code);
12749 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12750 if (fmt[i] == 'e')
12751 ret += count_rtxs (XEXP (x, i));
12752 else if (fmt[i] == 'E')
12753 for (j = 0; j < XVECLEN (x, i); j++)
12754 ret += count_rtxs (XVECEXP (x, i, j));
12755
12756 return ret;
12757 }
12758 \f
12759 /* Utility function for following routine. Called when X is part of a value
12760 being stored into last_set_value. Sets last_set_table_tick
12761 for each register mentioned. Similar to mention_regs in cse.c */
12762
12763 static void
12764 update_table_tick (rtx x)
12765 {
12766 enum rtx_code code = GET_CODE (x);
12767 const char *fmt = GET_RTX_FORMAT (code);
12768 int i, j;
12769
12770 if (code == REG)
12771 {
12772 unsigned int regno = REGNO (x);
12773 unsigned int endregno = END_REGNO (x);
12774 unsigned int r;
12775
12776 for (r = regno; r < endregno; r++)
12777 {
12778 reg_stat_type *rsp = &reg_stat[r];
12779 rsp->last_set_table_tick = label_tick;
12780 }
12781
12782 return;
12783 }
12784
12785 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12786 if (fmt[i] == 'e')
12787 {
12788 /* Check for identical subexpressions. If x contains
12789 identical subexpression we only have to traverse one of
12790 them. */
12791 if (i == 0 && ARITHMETIC_P (x))
12792 {
12793 /* Note that at this point x1 has already been
12794 processed. */
12795 rtx x0 = XEXP (x, 0);
12796 rtx x1 = XEXP (x, 1);
12797
12798 /* If x0 and x1 are identical then there is no need to
12799 process x0. */
12800 if (x0 == x1)
12801 break;
12802
12803 /* If x0 is identical to a subexpression of x1 then while
12804 processing x1, x0 has already been processed. Thus we
12805 are done with x. */
12806 if (ARITHMETIC_P (x1)
12807 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12808 break;
12809
12810 /* If x1 is identical to a subexpression of x0 then we
12811 still have to process the rest of x0. */
12812 if (ARITHMETIC_P (x0)
12813 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12814 {
12815 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12816 break;
12817 }
12818 }
12819
12820 update_table_tick (XEXP (x, i));
12821 }
12822 else if (fmt[i] == 'E')
12823 for (j = 0; j < XVECLEN (x, i); j++)
12824 update_table_tick (XVECEXP (x, i, j));
12825 }
12826
12827 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12828 are saying that the register is clobbered and we no longer know its
12829 value. If INSN is zero, don't update reg_stat[].last_set; this is
12830 only permitted with VALUE also zero and is used to invalidate the
12831 register. */
12832
12833 static void
12834 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12835 {
12836 unsigned int regno = REGNO (reg);
12837 unsigned int endregno = END_REGNO (reg);
12838 unsigned int i;
12839 reg_stat_type *rsp;
12840
12841 /* If VALUE contains REG and we have a previous value for REG, substitute
12842 the previous value. */
12843 if (value && insn && reg_overlap_mentioned_p (reg, value))
12844 {
12845 rtx tem;
12846
12847 /* Set things up so get_last_value is allowed to see anything set up to
12848 our insn. */
12849 subst_low_luid = DF_INSN_LUID (insn);
12850 tem = get_last_value (reg);
12851
12852 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12853 it isn't going to be useful and will take a lot of time to process,
12854 so just use the CLOBBER. */
12855
12856 if (tem)
12857 {
12858 if (ARITHMETIC_P (tem)
12859 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12860 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12861 tem = XEXP (tem, 0);
12862 else if (count_occurrences (value, reg, 1) >= 2)
12863 {
12864 /* If there are two or more occurrences of REG in VALUE,
12865 prevent the value from growing too much. */
12866 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12867 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12868 }
12869
12870 value = replace_rtx (copy_rtx (value), reg, tem);
12871 }
12872 }
12873
12874 /* For each register modified, show we don't know its value, that
12875 we don't know about its bitwise content, that its value has been
12876 updated, and that we don't know the location of the death of the
12877 register. */
12878 for (i = regno; i < endregno; i++)
12879 {
12880 rsp = &reg_stat[i];
12881
12882 if (insn)
12883 rsp->last_set = insn;
12884
12885 rsp->last_set_value = 0;
12886 rsp->last_set_mode = VOIDmode;
12887 rsp->last_set_nonzero_bits = 0;
12888 rsp->last_set_sign_bit_copies = 0;
12889 rsp->last_death = 0;
12890 rsp->truncated_to_mode = VOIDmode;
12891 }
12892
12893 /* Mark registers that are being referenced in this value. */
12894 if (value)
12895 update_table_tick (value);
12896
12897 /* Now update the status of each register being set.
12898 If someone is using this register in this block, set this register
12899 to invalid since we will get confused between the two lives in this
12900 basic block. This makes using this register always invalid. In cse, we
12901 scan the table to invalidate all entries using this register, but this
12902 is too much work for us. */
12903
12904 for (i = regno; i < endregno; i++)
12905 {
12906 rsp = &reg_stat[i];
12907 rsp->last_set_label = label_tick;
12908 if (!insn
12909 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12910 rsp->last_set_invalid = 1;
12911 else
12912 rsp->last_set_invalid = 0;
12913 }
12914
12915 /* The value being assigned might refer to X (like in "x++;"). In that
12916 case, we must replace it with (clobber (const_int 0)) to prevent
12917 infinite loops. */
12918 rsp = &reg_stat[regno];
12919 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12920 {
12921 value = copy_rtx (value);
12922 if (!get_last_value_validate (&value, insn, label_tick, 1))
12923 value = 0;
12924 }
12925
12926 /* For the main register being modified, update the value, the mode, the
12927 nonzero bits, and the number of sign bit copies. */
12928
12929 rsp->last_set_value = value;
12930
12931 if (value)
12932 {
12933 machine_mode mode = GET_MODE (reg);
12934 subst_low_luid = DF_INSN_LUID (insn);
12935 rsp->last_set_mode = mode;
12936 if (GET_MODE_CLASS (mode) == MODE_INT
12937 && HWI_COMPUTABLE_MODE_P (mode))
12938 mode = nonzero_bits_mode;
12939 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12940 rsp->last_set_sign_bit_copies
12941 = num_sign_bit_copies (value, GET_MODE (reg));
12942 }
12943 }
12944
12945 /* Called via note_stores from record_dead_and_set_regs to handle one
12946 SET or CLOBBER in an insn. DATA is the instruction in which the
12947 set is occurring. */
12948
12949 static void
12950 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12951 {
12952 rtx_insn *record_dead_insn = (rtx_insn *) data;
12953
12954 if (GET_CODE (dest) == SUBREG)
12955 dest = SUBREG_REG (dest);
12956
12957 if (!record_dead_insn)
12958 {
12959 if (REG_P (dest))
12960 record_value_for_reg (dest, NULL, NULL_RTX);
12961 return;
12962 }
12963
12964 if (REG_P (dest))
12965 {
12966 /* If we are setting the whole register, we know its value. Otherwise
12967 show that we don't know the value. We can handle SUBREG in
12968 some cases. */
12969 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12970 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12971 else if (GET_CODE (setter) == SET
12972 && GET_CODE (SET_DEST (setter)) == SUBREG
12973 && SUBREG_REG (SET_DEST (setter)) == dest
12974 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12975 && subreg_lowpart_p (SET_DEST (setter)))
12976 record_value_for_reg (dest, record_dead_insn,
12977 gen_lowpart (GET_MODE (dest),
12978 SET_SRC (setter)));
12979 else
12980 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12981 }
12982 else if (MEM_P (dest)
12983 /* Ignore pushes, they clobber nothing. */
12984 && ! push_operand (dest, GET_MODE (dest)))
12985 mem_last_set = DF_INSN_LUID (record_dead_insn);
12986 }
12987
12988 /* Update the records of when each REG was most recently set or killed
12989 for the things done by INSN. This is the last thing done in processing
12990 INSN in the combiner loop.
12991
12992 We update reg_stat[], in particular fields last_set, last_set_value,
12993 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12994 last_death, and also the similar information mem_last_set (which insn
12995 most recently modified memory) and last_call_luid (which insn was the
12996 most recent subroutine call). */
12997
12998 static void
12999 record_dead_and_set_regs (rtx_insn *insn)
13000 {
13001 rtx link;
13002 unsigned int i;
13003
13004 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13005 {
13006 if (REG_NOTE_KIND (link) == REG_DEAD
13007 && REG_P (XEXP (link, 0)))
13008 {
13009 unsigned int regno = REGNO (XEXP (link, 0));
13010 unsigned int endregno = END_REGNO (XEXP (link, 0));
13011
13012 for (i = regno; i < endregno; i++)
13013 {
13014 reg_stat_type *rsp;
13015
13016 rsp = &reg_stat[i];
13017 rsp->last_death = insn;
13018 }
13019 }
13020 else if (REG_NOTE_KIND (link) == REG_INC)
13021 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13022 }
13023
13024 if (CALL_P (insn))
13025 {
13026 hard_reg_set_iterator hrsi;
13027 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13028 {
13029 reg_stat_type *rsp;
13030
13031 rsp = &reg_stat[i];
13032 rsp->last_set_invalid = 1;
13033 rsp->last_set = insn;
13034 rsp->last_set_value = 0;
13035 rsp->last_set_mode = VOIDmode;
13036 rsp->last_set_nonzero_bits = 0;
13037 rsp->last_set_sign_bit_copies = 0;
13038 rsp->last_death = 0;
13039 rsp->truncated_to_mode = VOIDmode;
13040 }
13041
13042 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13043
13044 /* We can't combine into a call pattern. Remember, though, that
13045 the return value register is set at this LUID. We could
13046 still replace a register with the return value from the
13047 wrong subroutine call! */
13048 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13049 }
13050 else
13051 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13052 }
13053
13054 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13055 register present in the SUBREG, so for each such SUBREG go back and
13056 adjust nonzero and sign bit information of the registers that are
13057 known to have some zero/sign bits set.
13058
13059 This is needed because when combine blows the SUBREGs away, the
13060 information on zero/sign bits is lost and further combines can be
13061 missed because of that. */
13062
13063 static void
13064 record_promoted_value (rtx_insn *insn, rtx subreg)
13065 {
13066 struct insn_link *links;
13067 rtx set;
13068 unsigned int regno = REGNO (SUBREG_REG (subreg));
13069 machine_mode mode = GET_MODE (subreg);
13070
13071 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
13072 return;
13073
13074 for (links = LOG_LINKS (insn); links;)
13075 {
13076 reg_stat_type *rsp;
13077
13078 insn = links->insn;
13079 set = single_set (insn);
13080
13081 if (! set || !REG_P (SET_DEST (set))
13082 || REGNO (SET_DEST (set)) != regno
13083 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13084 {
13085 links = links->next;
13086 continue;
13087 }
13088
13089 rsp = &reg_stat[regno];
13090 if (rsp->last_set == insn)
13091 {
13092 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13093 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13094 }
13095
13096 if (REG_P (SET_SRC (set)))
13097 {
13098 regno = REGNO (SET_SRC (set));
13099 links = LOG_LINKS (insn);
13100 }
13101 else
13102 break;
13103 }
13104 }
13105
13106 /* Check if X, a register, is known to contain a value already
13107 truncated to MODE. In this case we can use a subreg to refer to
13108 the truncated value even though in the generic case we would need
13109 an explicit truncation. */
13110
13111 static bool
13112 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13113 {
13114 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13115 machine_mode truncated = rsp->truncated_to_mode;
13116
13117 if (truncated == 0
13118 || rsp->truncation_label < label_tick_ebb_start)
13119 return false;
13120 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
13121 return true;
13122 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13123 return true;
13124 return false;
13125 }
13126
13127 /* If X is a hard reg or a subreg record the mode that the register is
13128 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
13129 to turn a truncate into a subreg using this information. Return true
13130 if traversing X is complete. */
13131
13132 static bool
13133 record_truncated_value (rtx x)
13134 {
13135 machine_mode truncated_mode;
13136 reg_stat_type *rsp;
13137
13138 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13139 {
13140 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13141 truncated_mode = GET_MODE (x);
13142
13143 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
13144 return true;
13145
13146 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13147 return true;
13148
13149 x = SUBREG_REG (x);
13150 }
13151 /* ??? For hard-regs we now record everything. We might be able to
13152 optimize this using last_set_mode. */
13153 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13154 truncated_mode = GET_MODE (x);
13155 else
13156 return false;
13157
13158 rsp = &reg_stat[REGNO (x)];
13159 if (rsp->truncated_to_mode == 0
13160 || rsp->truncation_label < label_tick_ebb_start
13161 || (GET_MODE_SIZE (truncated_mode)
13162 < GET_MODE_SIZE (rsp->truncated_to_mode)))
13163 {
13164 rsp->truncated_to_mode = truncated_mode;
13165 rsp->truncation_label = label_tick;
13166 }
13167
13168 return true;
13169 }
13170
13171 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13172 the modes they are used in. This can help truning TRUNCATEs into
13173 SUBREGs. */
13174
13175 static void
13176 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13177 {
13178 subrtx_var_iterator::array_type array;
13179 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13180 if (record_truncated_value (*iter))
13181 iter.skip_subrtxes ();
13182 }
13183
13184 /* Scan X for promoted SUBREGs. For each one found,
13185 note what it implies to the registers used in it. */
13186
13187 static void
13188 check_promoted_subreg (rtx_insn *insn, rtx x)
13189 {
13190 if (GET_CODE (x) == SUBREG
13191 && SUBREG_PROMOTED_VAR_P (x)
13192 && REG_P (SUBREG_REG (x)))
13193 record_promoted_value (insn, x);
13194 else
13195 {
13196 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13197 int i, j;
13198
13199 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13200 switch (format[i])
13201 {
13202 case 'e':
13203 check_promoted_subreg (insn, XEXP (x, i));
13204 break;
13205 case 'V':
13206 case 'E':
13207 if (XVEC (x, i) != 0)
13208 for (j = 0; j < XVECLEN (x, i); j++)
13209 check_promoted_subreg (insn, XVECEXP (x, i, j));
13210 break;
13211 }
13212 }
13213 }
13214 \f
13215 /* Verify that all the registers and memory references mentioned in *LOC are
13216 still valid. *LOC was part of a value set in INSN when label_tick was
13217 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13218 the invalid references with (clobber (const_int 0)) and return 1. This
13219 replacement is useful because we often can get useful information about
13220 the form of a value (e.g., if it was produced by a shift that always
13221 produces -1 or 0) even though we don't know exactly what registers it
13222 was produced from. */
13223
13224 static int
13225 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13226 {
13227 rtx x = *loc;
13228 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13229 int len = GET_RTX_LENGTH (GET_CODE (x));
13230 int i, j;
13231
13232 if (REG_P (x))
13233 {
13234 unsigned int regno = REGNO (x);
13235 unsigned int endregno = END_REGNO (x);
13236 unsigned int j;
13237
13238 for (j = regno; j < endregno; j++)
13239 {
13240 reg_stat_type *rsp = &reg_stat[j];
13241 if (rsp->last_set_invalid
13242 /* If this is a pseudo-register that was only set once and not
13243 live at the beginning of the function, it is always valid. */
13244 || (! (regno >= FIRST_PSEUDO_REGISTER
13245 && regno < reg_n_sets_max
13246 && REG_N_SETS (regno) == 1
13247 && (!REGNO_REG_SET_P
13248 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13249 regno)))
13250 && rsp->last_set_label > tick))
13251 {
13252 if (replace)
13253 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13254 return replace;
13255 }
13256 }
13257
13258 return 1;
13259 }
13260 /* If this is a memory reference, make sure that there were no stores after
13261 it that might have clobbered the value. We don't have alias info, so we
13262 assume any store invalidates it. Moreover, we only have local UIDs, so
13263 we also assume that there were stores in the intervening basic blocks. */
13264 else if (MEM_P (x) && !MEM_READONLY_P (x)
13265 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13266 {
13267 if (replace)
13268 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13269 return replace;
13270 }
13271
13272 for (i = 0; i < len; i++)
13273 {
13274 if (fmt[i] == 'e')
13275 {
13276 /* Check for identical subexpressions. If x contains
13277 identical subexpression we only have to traverse one of
13278 them. */
13279 if (i == 1 && ARITHMETIC_P (x))
13280 {
13281 /* Note that at this point x0 has already been checked
13282 and found valid. */
13283 rtx x0 = XEXP (x, 0);
13284 rtx x1 = XEXP (x, 1);
13285
13286 /* If x0 and x1 are identical then x is also valid. */
13287 if (x0 == x1)
13288 return 1;
13289
13290 /* If x1 is identical to a subexpression of x0 then
13291 while checking x0, x1 has already been checked. Thus
13292 it is valid and so as x. */
13293 if (ARITHMETIC_P (x0)
13294 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13295 return 1;
13296
13297 /* If x0 is identical to a subexpression of x1 then x is
13298 valid iff the rest of x1 is valid. */
13299 if (ARITHMETIC_P (x1)
13300 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13301 return
13302 get_last_value_validate (&XEXP (x1,
13303 x0 == XEXP (x1, 0) ? 1 : 0),
13304 insn, tick, replace);
13305 }
13306
13307 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13308 replace) == 0)
13309 return 0;
13310 }
13311 else if (fmt[i] == 'E')
13312 for (j = 0; j < XVECLEN (x, i); j++)
13313 if (get_last_value_validate (&XVECEXP (x, i, j),
13314 insn, tick, replace) == 0)
13315 return 0;
13316 }
13317
13318 /* If we haven't found a reason for it to be invalid, it is valid. */
13319 return 1;
13320 }
13321
13322 /* Get the last value assigned to X, if known. Some registers
13323 in the value may be replaced with (clobber (const_int 0)) if their value
13324 is known longer known reliably. */
13325
13326 static rtx
13327 get_last_value (const_rtx x)
13328 {
13329 unsigned int regno;
13330 rtx value;
13331 reg_stat_type *rsp;
13332
13333 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13334 then convert it to the desired mode. If this is a paradoxical SUBREG,
13335 we cannot predict what values the "extra" bits might have. */
13336 if (GET_CODE (x) == SUBREG
13337 && subreg_lowpart_p (x)
13338 && !paradoxical_subreg_p (x)
13339 && (value = get_last_value (SUBREG_REG (x))) != 0)
13340 return gen_lowpart (GET_MODE (x), value);
13341
13342 if (!REG_P (x))
13343 return 0;
13344
13345 regno = REGNO (x);
13346 rsp = &reg_stat[regno];
13347 value = rsp->last_set_value;
13348
13349 /* If we don't have a value, or if it isn't for this basic block and
13350 it's either a hard register, set more than once, or it's a live
13351 at the beginning of the function, return 0.
13352
13353 Because if it's not live at the beginning of the function then the reg
13354 is always set before being used (is never used without being set).
13355 And, if it's set only once, and it's always set before use, then all
13356 uses must have the same last value, even if it's not from this basic
13357 block. */
13358
13359 if (value == 0
13360 || (rsp->last_set_label < label_tick_ebb_start
13361 && (regno < FIRST_PSEUDO_REGISTER
13362 || regno >= reg_n_sets_max
13363 || REG_N_SETS (regno) != 1
13364 || REGNO_REG_SET_P
13365 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13366 return 0;
13367
13368 /* If the value was set in a later insn than the ones we are processing,
13369 we can't use it even if the register was only set once. */
13370 if (rsp->last_set_label == label_tick
13371 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13372 return 0;
13373
13374 /* If fewer bits were set than what we are asked for now, we cannot use
13375 the value. */
13376 if (GET_MODE_PRECISION (rsp->last_set_mode)
13377 < GET_MODE_PRECISION (GET_MODE (x)))
13378 return 0;
13379
13380 /* If the value has all its registers valid, return it. */
13381 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13382 return value;
13383
13384 /* Otherwise, make a copy and replace any invalid register with
13385 (clobber (const_int 0)). If that fails for some reason, return 0. */
13386
13387 value = copy_rtx (value);
13388 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13389 return value;
13390
13391 return 0;
13392 }
13393 \f
13394 /* Return nonzero if expression X refers to a REG or to memory
13395 that is set in an instruction more recent than FROM_LUID. */
13396
13397 static int
13398 use_crosses_set_p (const_rtx x, int from_luid)
13399 {
13400 const char *fmt;
13401 int i;
13402 enum rtx_code code = GET_CODE (x);
13403
13404 if (code == REG)
13405 {
13406 unsigned int regno = REGNO (x);
13407 unsigned endreg = END_REGNO (x);
13408
13409 #ifdef PUSH_ROUNDING
13410 /* Don't allow uses of the stack pointer to be moved,
13411 because we don't know whether the move crosses a push insn. */
13412 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13413 return 1;
13414 #endif
13415 for (; regno < endreg; regno++)
13416 {
13417 reg_stat_type *rsp = &reg_stat[regno];
13418 if (rsp->last_set
13419 && rsp->last_set_label == label_tick
13420 && DF_INSN_LUID (rsp->last_set) > from_luid)
13421 return 1;
13422 }
13423 return 0;
13424 }
13425
13426 if (code == MEM && mem_last_set > from_luid)
13427 return 1;
13428
13429 fmt = GET_RTX_FORMAT (code);
13430
13431 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13432 {
13433 if (fmt[i] == 'E')
13434 {
13435 int j;
13436 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13437 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13438 return 1;
13439 }
13440 else if (fmt[i] == 'e'
13441 && use_crosses_set_p (XEXP (x, i), from_luid))
13442 return 1;
13443 }
13444 return 0;
13445 }
13446 \f
13447 /* Define three variables used for communication between the following
13448 routines. */
13449
13450 static unsigned int reg_dead_regno, reg_dead_endregno;
13451 static int reg_dead_flag;
13452
13453 /* Function called via note_stores from reg_dead_at_p.
13454
13455 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13456 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13457
13458 static void
13459 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13460 {
13461 unsigned int regno, endregno;
13462
13463 if (!REG_P (dest))
13464 return;
13465
13466 regno = REGNO (dest);
13467 endregno = END_REGNO (dest);
13468 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13469 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13470 }
13471
13472 /* Return nonzero if REG is known to be dead at INSN.
13473
13474 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13475 referencing REG, it is dead. If we hit a SET referencing REG, it is
13476 live. Otherwise, see if it is live or dead at the start of the basic
13477 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13478 must be assumed to be always live. */
13479
13480 static int
13481 reg_dead_at_p (rtx reg, rtx_insn *insn)
13482 {
13483 basic_block block;
13484 unsigned int i;
13485
13486 /* Set variables for reg_dead_at_p_1. */
13487 reg_dead_regno = REGNO (reg);
13488 reg_dead_endregno = END_REGNO (reg);
13489
13490 reg_dead_flag = 0;
13491
13492 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13493 we allow the machine description to decide whether use-and-clobber
13494 patterns are OK. */
13495 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13496 {
13497 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13498 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13499 return 0;
13500 }
13501
13502 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13503 beginning of basic block. */
13504 block = BLOCK_FOR_INSN (insn);
13505 for (;;)
13506 {
13507 if (INSN_P (insn))
13508 {
13509 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13510 return 1;
13511
13512 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13513 if (reg_dead_flag)
13514 return reg_dead_flag == 1 ? 1 : 0;
13515
13516 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13517 return 1;
13518 }
13519
13520 if (insn == BB_HEAD (block))
13521 break;
13522
13523 insn = PREV_INSN (insn);
13524 }
13525
13526 /* Look at live-in sets for the basic block that we were in. */
13527 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13528 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13529 return 0;
13530
13531 return 1;
13532 }
13533 \f
13534 /* Note hard registers in X that are used. */
13535
13536 static void
13537 mark_used_regs_combine (rtx x)
13538 {
13539 RTX_CODE code = GET_CODE (x);
13540 unsigned int regno;
13541 int i;
13542
13543 switch (code)
13544 {
13545 case LABEL_REF:
13546 case SYMBOL_REF:
13547 case CONST:
13548 CASE_CONST_ANY:
13549 case PC:
13550 case ADDR_VEC:
13551 case ADDR_DIFF_VEC:
13552 case ASM_INPUT:
13553 /* CC0 must die in the insn after it is set, so we don't need to take
13554 special note of it here. */
13555 case CC0:
13556 return;
13557
13558 case CLOBBER:
13559 /* If we are clobbering a MEM, mark any hard registers inside the
13560 address as used. */
13561 if (MEM_P (XEXP (x, 0)))
13562 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13563 return;
13564
13565 case REG:
13566 regno = REGNO (x);
13567 /* A hard reg in a wide mode may really be multiple registers.
13568 If so, mark all of them just like the first. */
13569 if (regno < FIRST_PSEUDO_REGISTER)
13570 {
13571 /* None of this applies to the stack, frame or arg pointers. */
13572 if (regno == STACK_POINTER_REGNUM
13573 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13574 && regno == HARD_FRAME_POINTER_REGNUM)
13575 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13576 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13577 || regno == FRAME_POINTER_REGNUM)
13578 return;
13579
13580 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13581 }
13582 return;
13583
13584 case SET:
13585 {
13586 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13587 the address. */
13588 rtx testreg = SET_DEST (x);
13589
13590 while (GET_CODE (testreg) == SUBREG
13591 || GET_CODE (testreg) == ZERO_EXTRACT
13592 || GET_CODE (testreg) == STRICT_LOW_PART)
13593 testreg = XEXP (testreg, 0);
13594
13595 if (MEM_P (testreg))
13596 mark_used_regs_combine (XEXP (testreg, 0));
13597
13598 mark_used_regs_combine (SET_SRC (x));
13599 }
13600 return;
13601
13602 default:
13603 break;
13604 }
13605
13606 /* Recursively scan the operands of this expression. */
13607
13608 {
13609 const char *fmt = GET_RTX_FORMAT (code);
13610
13611 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13612 {
13613 if (fmt[i] == 'e')
13614 mark_used_regs_combine (XEXP (x, i));
13615 else if (fmt[i] == 'E')
13616 {
13617 int j;
13618
13619 for (j = 0; j < XVECLEN (x, i); j++)
13620 mark_used_regs_combine (XVECEXP (x, i, j));
13621 }
13622 }
13623 }
13624 }
13625 \f
13626 /* Remove register number REGNO from the dead registers list of INSN.
13627
13628 Return the note used to record the death, if there was one. */
13629
13630 rtx
13631 remove_death (unsigned int regno, rtx_insn *insn)
13632 {
13633 rtx note = find_regno_note (insn, REG_DEAD, regno);
13634
13635 if (note)
13636 remove_note (insn, note);
13637
13638 return note;
13639 }
13640
13641 /* For each register (hardware or pseudo) used within expression X, if its
13642 death is in an instruction with luid between FROM_LUID (inclusive) and
13643 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13644 list headed by PNOTES.
13645
13646 That said, don't move registers killed by maybe_kill_insn.
13647
13648 This is done when X is being merged by combination into TO_INSN. These
13649 notes will then be distributed as needed. */
13650
13651 static void
13652 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13653 rtx *pnotes)
13654 {
13655 const char *fmt;
13656 int len, i;
13657 enum rtx_code code = GET_CODE (x);
13658
13659 if (code == REG)
13660 {
13661 unsigned int regno = REGNO (x);
13662 rtx_insn *where_dead = reg_stat[regno].last_death;
13663
13664 /* Don't move the register if it gets killed in between from and to. */
13665 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13666 && ! reg_referenced_p (x, maybe_kill_insn))
13667 return;
13668
13669 if (where_dead
13670 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13671 && DF_INSN_LUID (where_dead) >= from_luid
13672 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13673 {
13674 rtx note = remove_death (regno, where_dead);
13675
13676 /* It is possible for the call above to return 0. This can occur
13677 when last_death points to I2 or I1 that we combined with.
13678 In that case make a new note.
13679
13680 We must also check for the case where X is a hard register
13681 and NOTE is a death note for a range of hard registers
13682 including X. In that case, we must put REG_DEAD notes for
13683 the remaining registers in place of NOTE. */
13684
13685 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13686 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13687 > GET_MODE_SIZE (GET_MODE (x))))
13688 {
13689 unsigned int deadregno = REGNO (XEXP (note, 0));
13690 unsigned int deadend = END_REGNO (XEXP (note, 0));
13691 unsigned int ourend = END_REGNO (x);
13692 unsigned int i;
13693
13694 for (i = deadregno; i < deadend; i++)
13695 if (i < regno || i >= ourend)
13696 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13697 }
13698
13699 /* If we didn't find any note, or if we found a REG_DEAD note that
13700 covers only part of the given reg, and we have a multi-reg hard
13701 register, then to be safe we must check for REG_DEAD notes
13702 for each register other than the first. They could have
13703 their own REG_DEAD notes lying around. */
13704 else if ((note == 0
13705 || (note != 0
13706 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13707 < GET_MODE_SIZE (GET_MODE (x)))))
13708 && regno < FIRST_PSEUDO_REGISTER
13709 && REG_NREGS (x) > 1)
13710 {
13711 unsigned int ourend = END_REGNO (x);
13712 unsigned int i, offset;
13713 rtx oldnotes = 0;
13714
13715 if (note)
13716 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13717 else
13718 offset = 1;
13719
13720 for (i = regno + offset; i < ourend; i++)
13721 move_deaths (regno_reg_rtx[i],
13722 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13723 }
13724
13725 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13726 {
13727 XEXP (note, 1) = *pnotes;
13728 *pnotes = note;
13729 }
13730 else
13731 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13732 }
13733
13734 return;
13735 }
13736
13737 else if (GET_CODE (x) == SET)
13738 {
13739 rtx dest = SET_DEST (x);
13740
13741 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13742
13743 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13744 that accesses one word of a multi-word item, some
13745 piece of everything register in the expression is used by
13746 this insn, so remove any old death. */
13747 /* ??? So why do we test for equality of the sizes? */
13748
13749 if (GET_CODE (dest) == ZERO_EXTRACT
13750 || GET_CODE (dest) == STRICT_LOW_PART
13751 || (GET_CODE (dest) == SUBREG
13752 && (((GET_MODE_SIZE (GET_MODE (dest))
13753 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13754 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13755 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13756 {
13757 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13758 return;
13759 }
13760
13761 /* If this is some other SUBREG, we know it replaces the entire
13762 value, so use that as the destination. */
13763 if (GET_CODE (dest) == SUBREG)
13764 dest = SUBREG_REG (dest);
13765
13766 /* If this is a MEM, adjust deaths of anything used in the address.
13767 For a REG (the only other possibility), the entire value is
13768 being replaced so the old value is not used in this insn. */
13769
13770 if (MEM_P (dest))
13771 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13772 to_insn, pnotes);
13773 return;
13774 }
13775
13776 else if (GET_CODE (x) == CLOBBER)
13777 return;
13778
13779 len = GET_RTX_LENGTH (code);
13780 fmt = GET_RTX_FORMAT (code);
13781
13782 for (i = 0; i < len; i++)
13783 {
13784 if (fmt[i] == 'E')
13785 {
13786 int j;
13787 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13788 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13789 to_insn, pnotes);
13790 }
13791 else if (fmt[i] == 'e')
13792 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13793 }
13794 }
13795 \f
13796 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13797 pattern of an insn. X must be a REG. */
13798
13799 static int
13800 reg_bitfield_target_p (rtx x, rtx body)
13801 {
13802 int i;
13803
13804 if (GET_CODE (body) == SET)
13805 {
13806 rtx dest = SET_DEST (body);
13807 rtx target;
13808 unsigned int regno, tregno, endregno, endtregno;
13809
13810 if (GET_CODE (dest) == ZERO_EXTRACT)
13811 target = XEXP (dest, 0);
13812 else if (GET_CODE (dest) == STRICT_LOW_PART)
13813 target = SUBREG_REG (XEXP (dest, 0));
13814 else
13815 return 0;
13816
13817 if (GET_CODE (target) == SUBREG)
13818 target = SUBREG_REG (target);
13819
13820 if (!REG_P (target))
13821 return 0;
13822
13823 tregno = REGNO (target), regno = REGNO (x);
13824 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13825 return target == x;
13826
13827 endtregno = end_hard_regno (GET_MODE (target), tregno);
13828 endregno = end_hard_regno (GET_MODE (x), regno);
13829
13830 return endregno > tregno && regno < endtregno;
13831 }
13832
13833 else if (GET_CODE (body) == PARALLEL)
13834 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13835 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13836 return 1;
13837
13838 return 0;
13839 }
13840 \f
13841 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13842 as appropriate. I3 and I2 are the insns resulting from the combination
13843 insns including FROM (I2 may be zero).
13844
13845 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13846 not need REG_DEAD notes because they are being substituted for. This
13847 saves searching in the most common cases.
13848
13849 Each note in the list is either ignored or placed on some insns, depending
13850 on the type of note. */
13851
13852 static void
13853 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13854 rtx elim_i2, rtx elim_i1, rtx elim_i0)
13855 {
13856 rtx note, next_note;
13857 rtx tem_note;
13858 rtx_insn *tem_insn;
13859
13860 for (note = notes; note; note = next_note)
13861 {
13862 rtx_insn *place = 0, *place2 = 0;
13863
13864 next_note = XEXP (note, 1);
13865 switch (REG_NOTE_KIND (note))
13866 {
13867 case REG_BR_PROB:
13868 case REG_BR_PRED:
13869 /* Doesn't matter much where we put this, as long as it's somewhere.
13870 It is preferable to keep these notes on branches, which is most
13871 likely to be i3. */
13872 place = i3;
13873 break;
13874
13875 case REG_NON_LOCAL_GOTO:
13876 if (JUMP_P (i3))
13877 place = i3;
13878 else
13879 {
13880 gcc_assert (i2 && JUMP_P (i2));
13881 place = i2;
13882 }
13883 break;
13884
13885 case REG_EH_REGION:
13886 /* These notes must remain with the call or trapping instruction. */
13887 if (CALL_P (i3))
13888 place = i3;
13889 else if (i2 && CALL_P (i2))
13890 place = i2;
13891 else
13892 {
13893 gcc_assert (cfun->can_throw_non_call_exceptions);
13894 if (may_trap_p (i3))
13895 place = i3;
13896 else if (i2 && may_trap_p (i2))
13897 place = i2;
13898 /* ??? Otherwise assume we've combined things such that we
13899 can now prove that the instructions can't trap. Drop the
13900 note in this case. */
13901 }
13902 break;
13903
13904 case REG_ARGS_SIZE:
13905 /* ??? How to distribute between i3-i1. Assume i3 contains the
13906 entire adjustment. Assert i3 contains at least some adjust. */
13907 if (!noop_move_p (i3))
13908 {
13909 int old_size, args_size = INTVAL (XEXP (note, 0));
13910 /* fixup_args_size_notes looks at REG_NORETURN note,
13911 so ensure the note is placed there first. */
13912 if (CALL_P (i3))
13913 {
13914 rtx *np;
13915 for (np = &next_note; *np; np = &XEXP (*np, 1))
13916 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13917 {
13918 rtx n = *np;
13919 *np = XEXP (n, 1);
13920 XEXP (n, 1) = REG_NOTES (i3);
13921 REG_NOTES (i3) = n;
13922 break;
13923 }
13924 }
13925 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13926 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13927 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13928 gcc_assert (old_size != args_size
13929 || (CALL_P (i3)
13930 && !ACCUMULATE_OUTGOING_ARGS
13931 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13932 }
13933 break;
13934
13935 case REG_NORETURN:
13936 case REG_SETJMP:
13937 case REG_TM:
13938 case REG_CALL_DECL:
13939 /* These notes must remain with the call. It should not be
13940 possible for both I2 and I3 to be a call. */
13941 if (CALL_P (i3))
13942 place = i3;
13943 else
13944 {
13945 gcc_assert (i2 && CALL_P (i2));
13946 place = i2;
13947 }
13948 break;
13949
13950 case REG_UNUSED:
13951 /* Any clobbers for i3 may still exist, and so we must process
13952 REG_UNUSED notes from that insn.
13953
13954 Any clobbers from i2 or i1 can only exist if they were added by
13955 recog_for_combine. In that case, recog_for_combine created the
13956 necessary REG_UNUSED notes. Trying to keep any original
13957 REG_UNUSED notes from these insns can cause incorrect output
13958 if it is for the same register as the original i3 dest.
13959 In that case, we will notice that the register is set in i3,
13960 and then add a REG_UNUSED note for the destination of i3, which
13961 is wrong. However, it is possible to have REG_UNUSED notes from
13962 i2 or i1 for register which were both used and clobbered, so
13963 we keep notes from i2 or i1 if they will turn into REG_DEAD
13964 notes. */
13965
13966 /* If this register is set or clobbered in I3, put the note there
13967 unless there is one already. */
13968 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13969 {
13970 if (from_insn != i3)
13971 break;
13972
13973 if (! (REG_P (XEXP (note, 0))
13974 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13975 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13976 place = i3;
13977 }
13978 /* Otherwise, if this register is used by I3, then this register
13979 now dies here, so we must put a REG_DEAD note here unless there
13980 is one already. */
13981 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13982 && ! (REG_P (XEXP (note, 0))
13983 ? find_regno_note (i3, REG_DEAD,
13984 REGNO (XEXP (note, 0)))
13985 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13986 {
13987 PUT_REG_NOTE_KIND (note, REG_DEAD);
13988 place = i3;
13989 }
13990 break;
13991
13992 case REG_EQUAL:
13993 case REG_EQUIV:
13994 case REG_NOALIAS:
13995 /* These notes say something about results of an insn. We can
13996 only support them if they used to be on I3 in which case they
13997 remain on I3. Otherwise they are ignored.
13998
13999 If the note refers to an expression that is not a constant, we
14000 must also ignore the note since we cannot tell whether the
14001 equivalence is still true. It might be possible to do
14002 slightly better than this (we only have a problem if I2DEST
14003 or I1DEST is present in the expression), but it doesn't
14004 seem worth the trouble. */
14005
14006 if (from_insn == i3
14007 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14008 place = i3;
14009 break;
14010
14011 case REG_INC:
14012 /* These notes say something about how a register is used. They must
14013 be present on any use of the register in I2 or I3. */
14014 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14015 place = i3;
14016
14017 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14018 {
14019 if (place)
14020 place2 = i2;
14021 else
14022 place = i2;
14023 }
14024 break;
14025
14026 case REG_LABEL_TARGET:
14027 case REG_LABEL_OPERAND:
14028 /* This can show up in several ways -- either directly in the
14029 pattern, or hidden off in the constant pool with (or without?)
14030 a REG_EQUAL note. */
14031 /* ??? Ignore the without-reg_equal-note problem for now. */
14032 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14033 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14034 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14035 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14036 place = i3;
14037
14038 if (i2
14039 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14040 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14041 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14042 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14043 {
14044 if (place)
14045 place2 = i2;
14046 else
14047 place = i2;
14048 }
14049
14050 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14051 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14052 there. */
14053 if (place && JUMP_P (place)
14054 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14055 && (JUMP_LABEL (place) == NULL
14056 || JUMP_LABEL (place) == XEXP (note, 0)))
14057 {
14058 rtx label = JUMP_LABEL (place);
14059
14060 if (!label)
14061 JUMP_LABEL (place) = XEXP (note, 0);
14062 else if (LABEL_P (label))
14063 LABEL_NUSES (label)--;
14064 }
14065
14066 if (place2 && JUMP_P (place2)
14067 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14068 && (JUMP_LABEL (place2) == NULL
14069 || JUMP_LABEL (place2) == XEXP (note, 0)))
14070 {
14071 rtx label = JUMP_LABEL (place2);
14072
14073 if (!label)
14074 JUMP_LABEL (place2) = XEXP (note, 0);
14075 else if (LABEL_P (label))
14076 LABEL_NUSES (label)--;
14077 place2 = 0;
14078 }
14079 break;
14080
14081 case REG_NONNEG:
14082 /* This note says something about the value of a register prior
14083 to the execution of an insn. It is too much trouble to see
14084 if the note is still correct in all situations. It is better
14085 to simply delete it. */
14086 break;
14087
14088 case REG_DEAD:
14089 /* If we replaced the right hand side of FROM_INSN with a
14090 REG_EQUAL note, the original use of the dying register
14091 will not have been combined into I3 and I2. In such cases,
14092 FROM_INSN is guaranteed to be the first of the combined
14093 instructions, so we simply need to search back before
14094 FROM_INSN for the previous use or set of this register,
14095 then alter the notes there appropriately.
14096
14097 If the register is used as an input in I3, it dies there.
14098 Similarly for I2, if it is nonzero and adjacent to I3.
14099
14100 If the register is not used as an input in either I3 or I2
14101 and it is not one of the registers we were supposed to eliminate,
14102 there are two possibilities. We might have a non-adjacent I2
14103 or we might have somehow eliminated an additional register
14104 from a computation. For example, we might have had A & B where
14105 we discover that B will always be zero. In this case we will
14106 eliminate the reference to A.
14107
14108 In both cases, we must search to see if we can find a previous
14109 use of A and put the death note there. */
14110
14111 if (from_insn
14112 && from_insn == i2mod
14113 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14114 tem_insn = from_insn;
14115 else
14116 {
14117 if (from_insn
14118 && CALL_P (from_insn)
14119 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14120 place = from_insn;
14121 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14122 place = i3;
14123 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14124 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14125 place = i2;
14126 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14127 && !(i2mod
14128 && reg_overlap_mentioned_p (XEXP (note, 0),
14129 i2mod_old_rhs)))
14130 || rtx_equal_p (XEXP (note, 0), elim_i1)
14131 || rtx_equal_p (XEXP (note, 0), elim_i0))
14132 break;
14133 tem_insn = i3;
14134 /* If the new I2 sets the same register that is marked dead
14135 in the note, we do not know where to put the note.
14136 Give up. */
14137 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14138 break;
14139 }
14140
14141 if (place == 0)
14142 {
14143 basic_block bb = this_basic_block;
14144
14145 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14146 {
14147 if (!NONDEBUG_INSN_P (tem_insn))
14148 {
14149 if (tem_insn == BB_HEAD (bb))
14150 break;
14151 continue;
14152 }
14153
14154 /* If the register is being set at TEM_INSN, see if that is all
14155 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14156 into a REG_UNUSED note instead. Don't delete sets to
14157 global register vars. */
14158 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14159 || !global_regs[REGNO (XEXP (note, 0))])
14160 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14161 {
14162 rtx set = single_set (tem_insn);
14163 rtx inner_dest = 0;
14164 rtx_insn *cc0_setter = NULL;
14165
14166 if (set != 0)
14167 for (inner_dest = SET_DEST (set);
14168 (GET_CODE (inner_dest) == STRICT_LOW_PART
14169 || GET_CODE (inner_dest) == SUBREG
14170 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14171 inner_dest = XEXP (inner_dest, 0))
14172 ;
14173
14174 /* Verify that it was the set, and not a clobber that
14175 modified the register.
14176
14177 CC0 targets must be careful to maintain setter/user
14178 pairs. If we cannot delete the setter due to side
14179 effects, mark the user with an UNUSED note instead
14180 of deleting it. */
14181
14182 if (set != 0 && ! side_effects_p (SET_SRC (set))
14183 && rtx_equal_p (XEXP (note, 0), inner_dest)
14184 && (!HAVE_cc0
14185 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14186 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14187 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14188 {
14189 /* Move the notes and links of TEM_INSN elsewhere.
14190 This might delete other dead insns recursively.
14191 First set the pattern to something that won't use
14192 any register. */
14193 rtx old_notes = REG_NOTES (tem_insn);
14194
14195 PATTERN (tem_insn) = pc_rtx;
14196 REG_NOTES (tem_insn) = NULL;
14197
14198 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14199 NULL_RTX, NULL_RTX, NULL_RTX);
14200 distribute_links (LOG_LINKS (tem_insn));
14201
14202 SET_INSN_DELETED (tem_insn);
14203 if (tem_insn == i2)
14204 i2 = NULL;
14205
14206 /* Delete the setter too. */
14207 if (cc0_setter)
14208 {
14209 PATTERN (cc0_setter) = pc_rtx;
14210 old_notes = REG_NOTES (cc0_setter);
14211 REG_NOTES (cc0_setter) = NULL;
14212
14213 distribute_notes (old_notes, cc0_setter,
14214 cc0_setter, NULL,
14215 NULL_RTX, NULL_RTX, NULL_RTX);
14216 distribute_links (LOG_LINKS (cc0_setter));
14217
14218 SET_INSN_DELETED (cc0_setter);
14219 if (cc0_setter == i2)
14220 i2 = NULL;
14221 }
14222 }
14223 else
14224 {
14225 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14226
14227 /* If there isn't already a REG_UNUSED note, put one
14228 here. Do not place a REG_DEAD note, even if
14229 the register is also used here; that would not
14230 match the algorithm used in lifetime analysis
14231 and can cause the consistency check in the
14232 scheduler to fail. */
14233 if (! find_regno_note (tem_insn, REG_UNUSED,
14234 REGNO (XEXP (note, 0))))
14235 place = tem_insn;
14236 break;
14237 }
14238 }
14239 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14240 || (CALL_P (tem_insn)
14241 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14242 {
14243 place = tem_insn;
14244
14245 /* If we are doing a 3->2 combination, and we have a
14246 register which formerly died in i3 and was not used
14247 by i2, which now no longer dies in i3 and is used in
14248 i2 but does not die in i2, and place is between i2
14249 and i3, then we may need to move a link from place to
14250 i2. */
14251 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14252 && from_insn
14253 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14254 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14255 {
14256 struct insn_link *links = LOG_LINKS (place);
14257 LOG_LINKS (place) = NULL;
14258 distribute_links (links);
14259 }
14260 break;
14261 }
14262
14263 if (tem_insn == BB_HEAD (bb))
14264 break;
14265 }
14266
14267 }
14268
14269 /* If the register is set or already dead at PLACE, we needn't do
14270 anything with this note if it is still a REG_DEAD note.
14271 We check here if it is set at all, not if is it totally replaced,
14272 which is what `dead_or_set_p' checks, so also check for it being
14273 set partially. */
14274
14275 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14276 {
14277 unsigned int regno = REGNO (XEXP (note, 0));
14278 reg_stat_type *rsp = &reg_stat[regno];
14279
14280 if (dead_or_set_p (place, XEXP (note, 0))
14281 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14282 {
14283 /* Unless the register previously died in PLACE, clear
14284 last_death. [I no longer understand why this is
14285 being done.] */
14286 if (rsp->last_death != place)
14287 rsp->last_death = 0;
14288 place = 0;
14289 }
14290 else
14291 rsp->last_death = place;
14292
14293 /* If this is a death note for a hard reg that is occupying
14294 multiple registers, ensure that we are still using all
14295 parts of the object. If we find a piece of the object
14296 that is unused, we must arrange for an appropriate REG_DEAD
14297 note to be added for it. However, we can't just emit a USE
14298 and tag the note to it, since the register might actually
14299 be dead; so we recourse, and the recursive call then finds
14300 the previous insn that used this register. */
14301
14302 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14303 {
14304 unsigned int endregno = END_REGNO (XEXP (note, 0));
14305 bool all_used = true;
14306 unsigned int i;
14307
14308 for (i = regno; i < endregno; i++)
14309 if ((! refers_to_regno_p (i, PATTERN (place))
14310 && ! find_regno_fusage (place, USE, i))
14311 || dead_or_set_regno_p (place, i))
14312 {
14313 all_used = false;
14314 break;
14315 }
14316
14317 if (! all_used)
14318 {
14319 /* Put only REG_DEAD notes for pieces that are
14320 not already dead or set. */
14321
14322 for (i = regno; i < endregno;
14323 i += hard_regno_nregs[i][reg_raw_mode[i]])
14324 {
14325 rtx piece = regno_reg_rtx[i];
14326 basic_block bb = this_basic_block;
14327
14328 if (! dead_or_set_p (place, piece)
14329 && ! reg_bitfield_target_p (piece,
14330 PATTERN (place)))
14331 {
14332 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14333 NULL_RTX);
14334
14335 distribute_notes (new_note, place, place,
14336 NULL, NULL_RTX, NULL_RTX,
14337 NULL_RTX);
14338 }
14339 else if (! refers_to_regno_p (i, PATTERN (place))
14340 && ! find_regno_fusage (place, USE, i))
14341 for (tem_insn = PREV_INSN (place); ;
14342 tem_insn = PREV_INSN (tem_insn))
14343 {
14344 if (!NONDEBUG_INSN_P (tem_insn))
14345 {
14346 if (tem_insn == BB_HEAD (bb))
14347 break;
14348 continue;
14349 }
14350 if (dead_or_set_p (tem_insn, piece)
14351 || reg_bitfield_target_p (piece,
14352 PATTERN (tem_insn)))
14353 {
14354 add_reg_note (tem_insn, REG_UNUSED, piece);
14355 break;
14356 }
14357 }
14358 }
14359
14360 place = 0;
14361 }
14362 }
14363 }
14364 break;
14365
14366 default:
14367 /* Any other notes should not be present at this point in the
14368 compilation. */
14369 gcc_unreachable ();
14370 }
14371
14372 if (place)
14373 {
14374 XEXP (note, 1) = REG_NOTES (place);
14375 REG_NOTES (place) = note;
14376 }
14377
14378 if (place2)
14379 add_shallow_copy_of_reg_note (place2, note);
14380 }
14381 }
14382 \f
14383 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14384 I3, I2, and I1 to new locations. This is also called to add a link
14385 pointing at I3 when I3's destination is changed. */
14386
14387 static void
14388 distribute_links (struct insn_link *links)
14389 {
14390 struct insn_link *link, *next_link;
14391
14392 for (link = links; link; link = next_link)
14393 {
14394 rtx_insn *place = 0;
14395 rtx_insn *insn;
14396 rtx set, reg;
14397
14398 next_link = link->next;
14399
14400 /* If the insn that this link points to is a NOTE, ignore it. */
14401 if (NOTE_P (link->insn))
14402 continue;
14403
14404 set = 0;
14405 rtx pat = PATTERN (link->insn);
14406 if (GET_CODE (pat) == SET)
14407 set = pat;
14408 else if (GET_CODE (pat) == PARALLEL)
14409 {
14410 int i;
14411 for (i = 0; i < XVECLEN (pat, 0); i++)
14412 {
14413 set = XVECEXP (pat, 0, i);
14414 if (GET_CODE (set) != SET)
14415 continue;
14416
14417 reg = SET_DEST (set);
14418 while (GET_CODE (reg) == ZERO_EXTRACT
14419 || GET_CODE (reg) == STRICT_LOW_PART
14420 || GET_CODE (reg) == SUBREG)
14421 reg = XEXP (reg, 0);
14422
14423 if (!REG_P (reg))
14424 continue;
14425
14426 if (REGNO (reg) == link->regno)
14427 break;
14428 }
14429 if (i == XVECLEN (pat, 0))
14430 continue;
14431 }
14432 else
14433 continue;
14434
14435 reg = SET_DEST (set);
14436
14437 while (GET_CODE (reg) == ZERO_EXTRACT
14438 || GET_CODE (reg) == STRICT_LOW_PART
14439 || GET_CODE (reg) == SUBREG)
14440 reg = XEXP (reg, 0);
14441
14442 /* A LOG_LINK is defined as being placed on the first insn that uses
14443 a register and points to the insn that sets the register. Start
14444 searching at the next insn after the target of the link and stop
14445 when we reach a set of the register or the end of the basic block.
14446
14447 Note that this correctly handles the link that used to point from
14448 I3 to I2. Also note that not much searching is typically done here
14449 since most links don't point very far away. */
14450
14451 for (insn = NEXT_INSN (link->insn);
14452 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14453 || BB_HEAD (this_basic_block->next_bb) != insn));
14454 insn = NEXT_INSN (insn))
14455 if (DEBUG_INSN_P (insn))
14456 continue;
14457 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14458 {
14459 if (reg_referenced_p (reg, PATTERN (insn)))
14460 place = insn;
14461 break;
14462 }
14463 else if (CALL_P (insn)
14464 && find_reg_fusage (insn, USE, reg))
14465 {
14466 place = insn;
14467 break;
14468 }
14469 else if (INSN_P (insn) && reg_set_p (reg, insn))
14470 break;
14471
14472 /* If we found a place to put the link, place it there unless there
14473 is already a link to the same insn as LINK at that point. */
14474
14475 if (place)
14476 {
14477 struct insn_link *link2;
14478
14479 FOR_EACH_LOG_LINK (link2, place)
14480 if (link2->insn == link->insn && link2->regno == link->regno)
14481 break;
14482
14483 if (link2 == NULL)
14484 {
14485 link->next = LOG_LINKS (place);
14486 LOG_LINKS (place) = link;
14487
14488 /* Set added_links_insn to the earliest insn we added a
14489 link to. */
14490 if (added_links_insn == 0
14491 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14492 added_links_insn = place;
14493 }
14494 }
14495 }
14496 }
14497 \f
14498 /* Check for any register or memory mentioned in EQUIV that is not
14499 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14500 of EXPR where some registers may have been replaced by constants. */
14501
14502 static bool
14503 unmentioned_reg_p (rtx equiv, rtx expr)
14504 {
14505 subrtx_iterator::array_type array;
14506 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14507 {
14508 const_rtx x = *iter;
14509 if ((REG_P (x) || MEM_P (x))
14510 && !reg_mentioned_p (x, expr))
14511 return true;
14512 }
14513 return false;
14514 }
14515 \f
14516 DEBUG_FUNCTION void
14517 dump_combine_stats (FILE *file)
14518 {
14519 fprintf
14520 (file,
14521 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14522 combine_attempts, combine_merges, combine_extras, combine_successes);
14523 }
14524
14525 void
14526 dump_combine_total_stats (FILE *file)
14527 {
14528 fprintf
14529 (file,
14530 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14531 total_attempts, total_merges, total_extras, total_successes);
14532 }
14533 \f
14534 /* Try combining insns through substitution. */
14535 static unsigned int
14536 rest_of_handle_combine (void)
14537 {
14538 int rebuild_jump_labels_after_combine;
14539
14540 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14541 df_note_add_problem ();
14542 df_analyze ();
14543
14544 regstat_init_n_sets_and_refs ();
14545 reg_n_sets_max = max_reg_num ();
14546
14547 rebuild_jump_labels_after_combine
14548 = combine_instructions (get_insns (), max_reg_num ());
14549
14550 /* Combining insns may have turned an indirect jump into a
14551 direct jump. Rebuild the JUMP_LABEL fields of jumping
14552 instructions. */
14553 if (rebuild_jump_labels_after_combine)
14554 {
14555 if (dom_info_available_p (CDI_DOMINATORS))
14556 free_dominance_info (CDI_DOMINATORS);
14557 timevar_push (TV_JUMP);
14558 rebuild_jump_labels (get_insns ());
14559 cleanup_cfg (0);
14560 timevar_pop (TV_JUMP);
14561 }
14562
14563 regstat_free_n_sets_and_refs ();
14564 return 0;
14565 }
14566
14567 namespace {
14568
14569 const pass_data pass_data_combine =
14570 {
14571 RTL_PASS, /* type */
14572 "combine", /* name */
14573 OPTGROUP_NONE, /* optinfo_flags */
14574 TV_COMBINE, /* tv_id */
14575 PROP_cfglayout, /* properties_required */
14576 0, /* properties_provided */
14577 0, /* properties_destroyed */
14578 0, /* todo_flags_start */
14579 TODO_df_finish, /* todo_flags_finish */
14580 };
14581
14582 class pass_combine : public rtl_opt_pass
14583 {
14584 public:
14585 pass_combine (gcc::context *ctxt)
14586 : rtl_opt_pass (pass_data_combine, ctxt)
14587 {}
14588
14589 /* opt_pass methods: */
14590 virtual bool gate (function *) { return (optimize > 0); }
14591 virtual unsigned int execute (function *)
14592 {
14593 return rest_of_handle_combine ();
14594 }
14595
14596 }; // class pass_combine
14597
14598 } // anon namespace
14599
14600 rtl_opt_pass *
14601 make_pass_combine (gcc::context *ctxt)
14602 {
14603 return new pass_combine (ctxt);
14604 }