simplify-rtx.c (simplify_const_relational_operation): New function renamed from simpl...
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
59
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
63
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
72
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
93
94 /* Number of attempts to combine instructions in this function. */
95
96 static int combine_attempts;
97
98 /* Number of attempts that got as far as substitution in this function. */
99
100 static int combine_merges;
101
102 /* Number of instructions combined with added SETs in this function. */
103
104 static int combine_extras;
105
106 /* Number of instructions combined in this function. */
107
108 static int combine_successes;
109
110 /* Totals over entire compilation. */
111
112 static int total_attempts, total_merges, total_extras, total_successes;
113
114 \f
115 /* Vector mapping INSN_UIDs to cuids.
116 The cuids are like uids but increase monotonically always.
117 Combine always uses cuids so that it can compare them.
118 But actually renumbering the uids, which we used to do,
119 proves to be a bad idea because it makes it hard to compare
120 the dumps produced by earlier passes with those from later passes. */
121
122 static int *uid_cuid;
123 static int max_uid_cuid;
124
125 /* Get the cuid of an insn. */
126
127 #define INSN_CUID(INSN) \
128 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
129
130 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
131 BITS_PER_WORD would invoke undefined behavior. Work around it. */
132
133 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
134 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
135
136 #define nonzero_bits(X, M) \
137 cached_nonzero_bits (X, M, NULL_RTX, VOIDmode, 0)
138
139 #define num_sign_bit_copies(X, M) \
140 cached_num_sign_bit_copies (X, M, NULL_RTX, VOIDmode, 0)
141
142 /* Maximum register number, which is the size of the tables below. */
143
144 static unsigned int combine_max_regno;
145
146 /* Record last point of death of (hard or pseudo) register n. */
147
148 static rtx *reg_last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151
152 static rtx *reg_last_set;
153
154 /* Record the cuid of the last insn that invalidated memory
155 (anything that writes memory, and subroutine calls, but not pushes). */
156
157 static int mem_last_set;
158
159 /* Record the cuid of the last CALL_INSN
160 so we can tell whether a potential combination crosses any calls. */
161
162 static int last_call_cuid;
163
164 /* When `subst' is called, this is the insn that is being modified
165 (by combining in a previous insn). The PATTERN of this insn
166 is still the old pattern partially modified and it should not be
167 looked at, but this may be used to examine the successors of the insn
168 to judge whether a simplification is valid. */
169
170 static rtx subst_insn;
171
172 /* This is the lowest CUID that `subst' is currently dealing with.
173 get_last_value will not return a value if the register was set at or
174 after this CUID. If not for this mechanism, we could get confused if
175 I2 or I1 in try_combine were an insn that used the old value of a register
176 to obtain a new value. In that case, we might erroneously get the
177 new value of the register when we wanted the old one. */
178
179 static int subst_low_cuid;
180
181 /* This contains any hard registers that are used in newpat; reg_dead_at_p
182 must consider all these registers to be always live. */
183
184 static HARD_REG_SET newpat_used_regs;
185
186 /* This is an insn to which a LOG_LINKS entry has been added. If this
187 insn is the earlier than I2 or I3, combine should rescan starting at
188 that location. */
189
190 static rtx added_links_insn;
191
192 /* Basic block in which we are performing combines. */
193 static basic_block this_basic_block;
194
195 /* A bitmap indicating which blocks had registers go dead at entry.
196 After combine, we'll need to re-do global life analysis with
197 those blocks as starting points. */
198 static sbitmap refresh_blocks;
199 \f
200 /* The next group of arrays allows the recording of the last value assigned
201 to (hard or pseudo) register n. We use this information to see if an
202 operation being processed is redundant given a prior operation performed
203 on the register. For example, an `and' with a constant is redundant if
204 all the zero bits are already known to be turned off.
205
206 We use an approach similar to that used by cse, but change it in the
207 following ways:
208
209 (1) We do not want to reinitialize at each label.
210 (2) It is useful, but not critical, to know the actual value assigned
211 to a register. Often just its form is helpful.
212
213 Therefore, we maintain the following arrays:
214
215 reg_last_set_value the last value assigned
216 reg_last_set_label records the value of label_tick when the
217 register was assigned
218 reg_last_set_table_tick records the value of label_tick when a
219 value using the register is assigned
220 reg_last_set_invalid set to nonzero when it is not valid
221 to use the value of this register in some
222 register's value
223
224 To understand the usage of these tables, it is important to understand
225 the distinction between the value in reg_last_set_value being valid
226 and the register being validly contained in some other expression in the
227 table.
228
229 Entry I in reg_last_set_value is valid if it is nonzero, and either
230 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
231
232 Register I may validly appear in any expression returned for the value
233 of another register if reg_n_sets[i] is 1. It may also appear in the
234 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
235 reg_last_set_invalid[j] is zero.
236
237 If an expression is found in the table containing a register which may
238 not validly appear in an expression, the register is replaced by
239 something that won't match, (clobber (const_int 0)).
240
241 reg_last_set_invalid[i] is set nonzero when register I is being assigned
242 to and reg_last_set_table_tick[i] == label_tick. */
243
244 /* Record last value assigned to (hard or pseudo) register n. */
245
246 static rtx *reg_last_set_value;
247
248 /* Record the value of label_tick when the value for register n is placed in
249 reg_last_set_value[n]. */
250
251 static int *reg_last_set_label;
252
253 /* Record the value of label_tick when an expression involving register n
254 is placed in reg_last_set_value. */
255
256 static int *reg_last_set_table_tick;
257
258 /* Set nonzero if references to register n in expressions should not be
259 used. */
260
261 static char *reg_last_set_invalid;
262
263 /* Incremented for each label. */
264
265 static int label_tick;
266
267 /* Some registers that are set more than once and used in more than one
268 basic block are nevertheless always set in similar ways. For example,
269 a QImode register may be loaded from memory in two places on a machine
270 where byte loads zero extend.
271
272 We record in the following array what we know about the nonzero
273 bits of a register, specifically which bits are known to be zero.
274
275 If an entry is zero, it means that we don't know anything special. */
276
277 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
278
279 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
280 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
281
282 static enum machine_mode nonzero_bits_mode;
283
284 /* Nonzero if we know that a register has some leading bits that are always
285 equal to the sign bit. */
286
287 static unsigned char *reg_sign_bit_copies;
288
289 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
290 It is zero while computing them and after combine has completed. This
291 former test prevents propagating values based on previously set values,
292 which can be incorrect if a variable is modified in a loop. */
293
294 static int nonzero_sign_valid;
295
296 /* These arrays are maintained in parallel with reg_last_set_value
297 and are used to store the mode in which the register was last set,
298 the bits that were known to be zero when it was last set, and the
299 number of sign bits copies it was known to have when it was last set. */
300
301 static enum machine_mode *reg_last_set_mode;
302 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
303 static char *reg_last_set_sign_bit_copies;
304 \f
305 /* Record one modification to rtl structure
306 to be undone by storing old_contents into *where.
307 is_int is 1 if the contents are an int. */
308
309 struct undo
310 {
311 struct undo *next;
312 int is_int;
313 union {rtx r; int i;} old_contents;
314 union {rtx *r; int *i;} where;
315 };
316
317 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
318 num_undo says how many are currently recorded.
319
320 other_insn is nonzero if we have modified some other insn in the process
321 of working on subst_insn. It must be verified too. */
322
323 struct undobuf
324 {
325 struct undo *undos;
326 struct undo *frees;
327 rtx other_insn;
328 };
329
330 static struct undobuf undobuf;
331
332 /* Number of times the pseudo being substituted for
333 was found and replaced. */
334
335 static int n_occurrences;
336
337 static void do_SUBST (rtx *, rtx);
338 static void do_SUBST_INT (int *, int);
339 static void init_reg_last_arrays (void);
340 static void setup_incoming_promotions (void);
341 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
342 static int cant_combine_insn_p (rtx);
343 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
344 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
345 static int contains_muldiv (rtx);
346 static rtx try_combine (rtx, rtx, rtx, int *);
347 static void undo_all (void);
348 static void undo_commit (void);
349 static rtx *find_split_point (rtx *, rtx);
350 static rtx subst (rtx, rtx, rtx, int, int);
351 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
352 static rtx simplify_if_then_else (rtx);
353 static rtx simplify_set (rtx);
354 static rtx simplify_logical (rtx, int);
355 static rtx expand_compound_operation (rtx);
356 static rtx expand_field_assignment (rtx);
357 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
358 rtx, unsigned HOST_WIDE_INT, int, int, int);
359 static rtx extract_left_shift (rtx, int);
360 static rtx make_compound_operation (rtx, enum rtx_code);
361 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
362 unsigned HOST_WIDE_INT *);
363 static rtx force_to_mode (rtx, enum machine_mode,
364 unsigned HOST_WIDE_INT, rtx, int);
365 static rtx if_then_else_cond (rtx, rtx *, rtx *);
366 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
367 static int rtx_equal_for_field_assignment_p (rtx, rtx);
368 static rtx make_field_assignment (rtx);
369 static rtx apply_distributive_law (rtx);
370 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
371 unsigned HOST_WIDE_INT);
372 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
373 rtx, enum machine_mode,
374 unsigned HOST_WIDE_INT);
375 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
376 enum machine_mode,
377 unsigned HOST_WIDE_INT);
378 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
379 enum machine_mode,
380 unsigned int);
381 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
382 enum machine_mode, unsigned int);
383 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
384 HOST_WIDE_INT, enum machine_mode, int *);
385 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
386 int);
387 static int recog_for_combine (rtx *, rtx, rtx *);
388 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
389 static rtx gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
390 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
391 static void update_table_tick (rtx);
392 static void record_value_for_reg (rtx, rtx, rtx);
393 static void check_promoted_subreg (rtx, rtx);
394 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
395 static void record_dead_and_set_regs (rtx);
396 static int get_last_value_validate (rtx *, rtx, int, int);
397 static rtx get_last_value (rtx);
398 static int use_crosses_set_p (rtx, int);
399 static void reg_dead_at_p_1 (rtx, rtx, void *);
400 static int reg_dead_at_p (rtx, rtx);
401 static void move_deaths (rtx, rtx, int, rtx, rtx *);
402 static int reg_bitfield_target_p (rtx, rtx);
403 static void distribute_notes (rtx, rtx, rtx, rtx);
404 static void distribute_links (rtx);
405 static void mark_used_regs_combine (rtx);
406 static int insn_cuid (rtx);
407 static void record_promoted_value (rtx, rtx);
408 static rtx reversed_comparison (rtx, enum machine_mode, rtx, rtx);
409 static enum rtx_code combine_reversed_comparison_code (rtx);
410 \f
411 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
412 insn. The substitution can be undone by undo_all. If INTO is already
413 set to NEWVAL, do not record this change. Because computing NEWVAL might
414 also call SUBST, we have to compute it before we put anything into
415 the undo table. */
416
417 static void
418 do_SUBST (rtx *into, rtx newval)
419 {
420 struct undo *buf;
421 rtx oldval = *into;
422
423 if (oldval == newval)
424 return;
425
426 /* We'd like to catch as many invalid transformations here as
427 possible. Unfortunately, there are way too many mode changes
428 that are perfectly valid, so we'd waste too much effort for
429 little gain doing the checks here. Focus on catching invalid
430 transformations involving integer constants. */
431 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
432 && GET_CODE (newval) == CONST_INT)
433 {
434 /* Sanity check that we're replacing oldval with a CONST_INT
435 that is a valid sign-extension for the original mode. */
436 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
437 GET_MODE (oldval)))
438 abort ();
439
440 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
441 CONST_INT is not valid, because after the replacement, the
442 original mode would be gone. Unfortunately, we can't tell
443 when do_SUBST is called to replace the operand thereof, so we
444 perform this test on oldval instead, checking whether an
445 invalid replacement took place before we got here. */
446 if ((GET_CODE (oldval) == SUBREG
447 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
448 || (GET_CODE (oldval) == ZERO_EXTEND
449 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
450 abort ();
451 }
452
453 if (undobuf.frees)
454 buf = undobuf.frees, undobuf.frees = buf->next;
455 else
456 buf = xmalloc (sizeof (struct undo));
457
458 buf->is_int = 0;
459 buf->where.r = into;
460 buf->old_contents.r = oldval;
461 *into = newval;
462
463 buf->next = undobuf.undos, undobuf.undos = buf;
464 }
465
466 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
467
468 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
469 for the value of a HOST_WIDE_INT value (including CONST_INT) is
470 not safe. */
471
472 static void
473 do_SUBST_INT (int *into, int newval)
474 {
475 struct undo *buf;
476 int oldval = *into;
477
478 if (oldval == newval)
479 return;
480
481 if (undobuf.frees)
482 buf = undobuf.frees, undobuf.frees = buf->next;
483 else
484 buf = xmalloc (sizeof (struct undo));
485
486 buf->is_int = 1;
487 buf->where.i = into;
488 buf->old_contents.i = oldval;
489 *into = newval;
490
491 buf->next = undobuf.undos, undobuf.undos = buf;
492 }
493
494 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
495 \f
496 /* Main entry point for combiner. F is the first insn of the function.
497 NREGS is the first unused pseudo-reg number.
498
499 Return nonzero if the combiner has turned an indirect jump
500 instruction into a direct jump. */
501 int
502 combine_instructions (rtx f, unsigned int nregs)
503 {
504 rtx insn, next;
505 #ifdef HAVE_cc0
506 rtx prev;
507 #endif
508 int i;
509 rtx links, nextlinks;
510
511 int new_direct_jump_p = 0;
512
513 combine_attempts = 0;
514 combine_merges = 0;
515 combine_extras = 0;
516 combine_successes = 0;
517
518 combine_max_regno = nregs;
519
520 /* It is not safe to use ordinary gen_lowpart in combine.
521 See comments in gen_lowpart_for_combine. */
522 gen_lowpart = gen_lowpart_for_combine;
523
524 reg_nonzero_bits = xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT));
525 reg_sign_bit_copies = xcalloc (nregs, sizeof (unsigned char));
526
527 reg_last_death = xmalloc (nregs * sizeof (rtx));
528 reg_last_set = xmalloc (nregs * sizeof (rtx));
529 reg_last_set_value = xmalloc (nregs * sizeof (rtx));
530 reg_last_set_table_tick = xmalloc (nregs * sizeof (int));
531 reg_last_set_label = xmalloc (nregs * sizeof (int));
532 reg_last_set_invalid = xmalloc (nregs * sizeof (char));
533 reg_last_set_mode = xmalloc (nregs * sizeof (enum machine_mode));
534 reg_last_set_nonzero_bits = xmalloc (nregs * sizeof (HOST_WIDE_INT));
535 reg_last_set_sign_bit_copies = xmalloc (nregs * sizeof (char));
536
537 init_reg_last_arrays ();
538
539 init_recog_no_volatile ();
540
541 /* Compute maximum uid value so uid_cuid can be allocated. */
542
543 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
544 if (INSN_UID (insn) > i)
545 i = INSN_UID (insn);
546
547 uid_cuid = xmalloc ((i + 1) * sizeof (int));
548 max_uid_cuid = i;
549
550 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
551
552 /* Don't use reg_nonzero_bits when computing it. This can cause problems
553 when, for example, we have j <<= 1 in a loop. */
554
555 nonzero_sign_valid = 0;
556
557 /* Compute the mapping from uids to cuids.
558 Cuids are numbers assigned to insns, like uids,
559 except that cuids increase monotonically through the code.
560
561 Scan all SETs and see if we can deduce anything about what
562 bits are known to be zero for some registers and how many copies
563 of the sign bit are known to exist for those registers.
564
565 Also set any known values so that we can use it while searching
566 for what bits are known to be set. */
567
568 label_tick = 1;
569
570 setup_incoming_promotions ();
571
572 refresh_blocks = sbitmap_alloc (last_basic_block);
573 sbitmap_zero (refresh_blocks);
574
575 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
576 {
577 uid_cuid[INSN_UID (insn)] = ++i;
578 subst_low_cuid = i;
579 subst_insn = insn;
580
581 if (INSN_P (insn))
582 {
583 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
584 NULL);
585 record_dead_and_set_regs (insn);
586
587 #ifdef AUTO_INC_DEC
588 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
589 if (REG_NOTE_KIND (links) == REG_INC)
590 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
591 NULL);
592 #endif
593 }
594
595 if (GET_CODE (insn) == CODE_LABEL)
596 label_tick++;
597 }
598
599 nonzero_sign_valid = 1;
600
601 /* Now scan all the insns in forward order. */
602
603 label_tick = 1;
604 last_call_cuid = 0;
605 mem_last_set = 0;
606 init_reg_last_arrays ();
607 setup_incoming_promotions ();
608
609 FOR_EACH_BB (this_basic_block)
610 {
611 for (insn = BB_HEAD (this_basic_block);
612 insn != NEXT_INSN (BB_END (this_basic_block));
613 insn = next ? next : NEXT_INSN (insn))
614 {
615 next = 0;
616
617 if (GET_CODE (insn) == CODE_LABEL)
618 label_tick++;
619
620 else if (INSN_P (insn))
621 {
622 /* See if we know about function return values before this
623 insn based upon SUBREG flags. */
624 check_promoted_subreg (insn, PATTERN (insn));
625
626 /* Try this insn with each insn it links back to. */
627
628 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
629 if ((next = try_combine (insn, XEXP (links, 0),
630 NULL_RTX, &new_direct_jump_p)) != 0)
631 goto retry;
632
633 /* Try each sequence of three linked insns ending with this one. */
634
635 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
636 {
637 rtx link = XEXP (links, 0);
638
639 /* If the linked insn has been replaced by a note, then there
640 is no point in pursuing this chain any further. */
641 if (GET_CODE (link) == NOTE)
642 continue;
643
644 for (nextlinks = LOG_LINKS (link);
645 nextlinks;
646 nextlinks = XEXP (nextlinks, 1))
647 if ((next = try_combine (insn, link,
648 XEXP (nextlinks, 0),
649 &new_direct_jump_p)) != 0)
650 goto retry;
651 }
652
653 #ifdef HAVE_cc0
654 /* Try to combine a jump insn that uses CC0
655 with a preceding insn that sets CC0, and maybe with its
656 logical predecessor as well.
657 This is how we make decrement-and-branch insns.
658 We need this special code because data flow connections
659 via CC0 do not get entered in LOG_LINKS. */
660
661 if (GET_CODE (insn) == JUMP_INSN
662 && (prev = prev_nonnote_insn (insn)) != 0
663 && GET_CODE (prev) == INSN
664 && sets_cc0_p (PATTERN (prev)))
665 {
666 if ((next = try_combine (insn, prev,
667 NULL_RTX, &new_direct_jump_p)) != 0)
668 goto retry;
669
670 for (nextlinks = LOG_LINKS (prev); nextlinks;
671 nextlinks = XEXP (nextlinks, 1))
672 if ((next = try_combine (insn, prev,
673 XEXP (nextlinks, 0),
674 &new_direct_jump_p)) != 0)
675 goto retry;
676 }
677
678 /* Do the same for an insn that explicitly references CC0. */
679 if (GET_CODE (insn) == INSN
680 && (prev = prev_nonnote_insn (insn)) != 0
681 && GET_CODE (prev) == INSN
682 && sets_cc0_p (PATTERN (prev))
683 && GET_CODE (PATTERN (insn)) == SET
684 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
685 {
686 if ((next = try_combine (insn, prev,
687 NULL_RTX, &new_direct_jump_p)) != 0)
688 goto retry;
689
690 for (nextlinks = LOG_LINKS (prev); nextlinks;
691 nextlinks = XEXP (nextlinks, 1))
692 if ((next = try_combine (insn, prev,
693 XEXP (nextlinks, 0),
694 &new_direct_jump_p)) != 0)
695 goto retry;
696 }
697
698 /* Finally, see if any of the insns that this insn links to
699 explicitly references CC0. If so, try this insn, that insn,
700 and its predecessor if it sets CC0. */
701 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
702 if (GET_CODE (XEXP (links, 0)) == INSN
703 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
704 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
705 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
706 && GET_CODE (prev) == INSN
707 && sets_cc0_p (PATTERN (prev))
708 && (next = try_combine (insn, XEXP (links, 0),
709 prev, &new_direct_jump_p)) != 0)
710 goto retry;
711 #endif
712
713 /* Try combining an insn with two different insns whose results it
714 uses. */
715 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
716 for (nextlinks = XEXP (links, 1); nextlinks;
717 nextlinks = XEXP (nextlinks, 1))
718 if ((next = try_combine (insn, XEXP (links, 0),
719 XEXP (nextlinks, 0),
720 &new_direct_jump_p)) != 0)
721 goto retry;
722
723 if (GET_CODE (insn) != NOTE)
724 record_dead_and_set_regs (insn);
725
726 retry:
727 ;
728 }
729 }
730 }
731 clear_bb_flags ();
732
733 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
734 BASIC_BLOCK (i)->flags |= BB_DIRTY);
735 new_direct_jump_p |= purge_all_dead_edges (0);
736 delete_noop_moves (f);
737
738 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
739 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
740 | PROP_KILL_DEAD_CODE);
741
742 /* Clean up. */
743 sbitmap_free (refresh_blocks);
744 free (reg_nonzero_bits);
745 free (reg_sign_bit_copies);
746 free (reg_last_death);
747 free (reg_last_set);
748 free (reg_last_set_value);
749 free (reg_last_set_table_tick);
750 free (reg_last_set_label);
751 free (reg_last_set_invalid);
752 free (reg_last_set_mode);
753 free (reg_last_set_nonzero_bits);
754 free (reg_last_set_sign_bit_copies);
755 free (uid_cuid);
756
757 {
758 struct undo *undo, *next;
759 for (undo = undobuf.frees; undo; undo = next)
760 {
761 next = undo->next;
762 free (undo);
763 }
764 undobuf.frees = 0;
765 }
766
767 total_attempts += combine_attempts;
768 total_merges += combine_merges;
769 total_extras += combine_extras;
770 total_successes += combine_successes;
771
772 nonzero_sign_valid = 0;
773 gen_lowpart = gen_lowpart_general;
774
775 /* Make recognizer allow volatile MEMs again. */
776 init_recog ();
777
778 return new_direct_jump_p;
779 }
780
781 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
782
783 static void
784 init_reg_last_arrays (void)
785 {
786 unsigned int nregs = combine_max_regno;
787
788 memset (reg_last_death, 0, nregs * sizeof (rtx));
789 memset (reg_last_set, 0, nregs * sizeof (rtx));
790 memset (reg_last_set_value, 0, nregs * sizeof (rtx));
791 memset (reg_last_set_table_tick, 0, nregs * sizeof (int));
792 memset (reg_last_set_label, 0, nregs * sizeof (int));
793 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
794 memset (reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
795 memset (reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
796 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
797 }
798 \f
799 /* Set up any promoted values for incoming argument registers. */
800
801 static void
802 setup_incoming_promotions (void)
803 {
804 unsigned int regno;
805 rtx reg;
806 enum machine_mode mode;
807 int unsignedp;
808 rtx first = get_insns ();
809
810 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
811 {
812 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
813 /* Check whether this register can hold an incoming pointer
814 argument. FUNCTION_ARG_REGNO_P tests outgoing register
815 numbers, so translate if necessary due to register windows. */
816 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
817 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
818 {
819 record_value_for_reg
820 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
821 : SIGN_EXTEND),
822 GET_MODE (reg),
823 gen_rtx_CLOBBER (mode, const0_rtx)));
824 }
825 }
826 }
827 \f
828 /* Called via note_stores. If X is a pseudo that is narrower than
829 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
830
831 If we are setting only a portion of X and we can't figure out what
832 portion, assume all bits will be used since we don't know what will
833 be happening.
834
835 Similarly, set how many bits of X are known to be copies of the sign bit
836 at all locations in the function. This is the smallest number implied
837 by any set of X. */
838
839 static void
840 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
841 void *data ATTRIBUTE_UNUSED)
842 {
843 unsigned int num;
844
845 if (GET_CODE (x) == REG
846 && REGNO (x) >= FIRST_PSEUDO_REGISTER
847 /* If this register is undefined at the start of the file, we can't
848 say what its contents were. */
849 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
850 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
851 {
852 if (set == 0 || GET_CODE (set) == CLOBBER)
853 {
854 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
855 reg_sign_bit_copies[REGNO (x)] = 1;
856 return;
857 }
858
859 /* If this is a complex assignment, see if we can convert it into a
860 simple assignment. */
861 set = expand_field_assignment (set);
862
863 /* If this is a simple assignment, or we have a paradoxical SUBREG,
864 set what we know about X. */
865
866 if (SET_DEST (set) == x
867 || (GET_CODE (SET_DEST (set)) == SUBREG
868 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
869 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
870 && SUBREG_REG (SET_DEST (set)) == x))
871 {
872 rtx src = SET_SRC (set);
873
874 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
875 /* If X is narrower than a word and SRC is a non-negative
876 constant that would appear negative in the mode of X,
877 sign-extend it for use in reg_nonzero_bits because some
878 machines (maybe most) will actually do the sign-extension
879 and this is the conservative approach.
880
881 ??? For 2.5, try to tighten up the MD files in this regard
882 instead of this kludge. */
883
884 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
885 && GET_CODE (src) == CONST_INT
886 && INTVAL (src) > 0
887 && 0 != (INTVAL (src)
888 & ((HOST_WIDE_INT) 1
889 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
890 src = GEN_INT (INTVAL (src)
891 | ((HOST_WIDE_INT) (-1)
892 << GET_MODE_BITSIZE (GET_MODE (x))));
893 #endif
894
895 /* Don't call nonzero_bits if it cannot change anything. */
896 if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
897 reg_nonzero_bits[REGNO (x)]
898 |= nonzero_bits (src, nonzero_bits_mode);
899 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
900 if (reg_sign_bit_copies[REGNO (x)] == 0
901 || reg_sign_bit_copies[REGNO (x)] > num)
902 reg_sign_bit_copies[REGNO (x)] = num;
903 }
904 else
905 {
906 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
907 reg_sign_bit_copies[REGNO (x)] = 1;
908 }
909 }
910 }
911 \f
912 /* See if INSN can be combined into I3. PRED and SUCC are optionally
913 insns that were previously combined into I3 or that will be combined
914 into the merger of INSN and I3.
915
916 Return 0 if the combination is not allowed for any reason.
917
918 If the combination is allowed, *PDEST will be set to the single
919 destination of INSN and *PSRC to the single source, and this function
920 will return 1. */
921
922 static int
923 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
924 rtx *pdest, rtx *psrc)
925 {
926 int i;
927 rtx set = 0, src, dest;
928 rtx p;
929 #ifdef AUTO_INC_DEC
930 rtx link;
931 #endif
932 int all_adjacent = (succ ? (next_active_insn (insn) == succ
933 && next_active_insn (succ) == i3)
934 : next_active_insn (insn) == i3);
935
936 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
937 or a PARALLEL consisting of such a SET and CLOBBERs.
938
939 If INSN has CLOBBER parallel parts, ignore them for our processing.
940 By definition, these happen during the execution of the insn. When it
941 is merged with another insn, all bets are off. If they are, in fact,
942 needed and aren't also supplied in I3, they may be added by
943 recog_for_combine. Otherwise, it won't match.
944
945 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
946 note.
947
948 Get the source and destination of INSN. If more than one, can't
949 combine. */
950
951 if (GET_CODE (PATTERN (insn)) == SET)
952 set = PATTERN (insn);
953 else if (GET_CODE (PATTERN (insn)) == PARALLEL
954 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
955 {
956 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
957 {
958 rtx elt = XVECEXP (PATTERN (insn), 0, i);
959 rtx note;
960
961 switch (GET_CODE (elt))
962 {
963 /* This is important to combine floating point insns
964 for the SH4 port. */
965 case USE:
966 /* Combining an isolated USE doesn't make sense.
967 We depend here on combinable_i3pat to reject them. */
968 /* The code below this loop only verifies that the inputs of
969 the SET in INSN do not change. We call reg_set_between_p
970 to verify that the REG in the USE does not change between
971 I3 and INSN.
972 If the USE in INSN was for a pseudo register, the matching
973 insn pattern will likely match any register; combining this
974 with any other USE would only be safe if we knew that the
975 used registers have identical values, or if there was
976 something to tell them apart, e.g. different modes. For
977 now, we forgo such complicated tests and simply disallow
978 combining of USES of pseudo registers with any other USE. */
979 if (GET_CODE (XEXP (elt, 0)) == REG
980 && GET_CODE (PATTERN (i3)) == PARALLEL)
981 {
982 rtx i3pat = PATTERN (i3);
983 int i = XVECLEN (i3pat, 0) - 1;
984 unsigned int regno = REGNO (XEXP (elt, 0));
985
986 do
987 {
988 rtx i3elt = XVECEXP (i3pat, 0, i);
989
990 if (GET_CODE (i3elt) == USE
991 && GET_CODE (XEXP (i3elt, 0)) == REG
992 && (REGNO (XEXP (i3elt, 0)) == regno
993 ? reg_set_between_p (XEXP (elt, 0),
994 PREV_INSN (insn), i3)
995 : regno >= FIRST_PSEUDO_REGISTER))
996 return 0;
997 }
998 while (--i >= 0);
999 }
1000 break;
1001
1002 /* We can ignore CLOBBERs. */
1003 case CLOBBER:
1004 break;
1005
1006 case SET:
1007 /* Ignore SETs whose result isn't used but not those that
1008 have side-effects. */
1009 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1010 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1011 || INTVAL (XEXP (note, 0)) <= 0)
1012 && ! side_effects_p (elt))
1013 break;
1014
1015 /* If we have already found a SET, this is a second one and
1016 so we cannot combine with this insn. */
1017 if (set)
1018 return 0;
1019
1020 set = elt;
1021 break;
1022
1023 default:
1024 /* Anything else means we can't combine. */
1025 return 0;
1026 }
1027 }
1028
1029 if (set == 0
1030 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1031 so don't do anything with it. */
1032 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1033 return 0;
1034 }
1035 else
1036 return 0;
1037
1038 if (set == 0)
1039 return 0;
1040
1041 set = expand_field_assignment (set);
1042 src = SET_SRC (set), dest = SET_DEST (set);
1043
1044 /* Don't eliminate a store in the stack pointer. */
1045 if (dest == stack_pointer_rtx
1046 /* Don't combine with an insn that sets a register to itself if it has
1047 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1048 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1049 /* Can't merge an ASM_OPERANDS. */
1050 || GET_CODE (src) == ASM_OPERANDS
1051 /* Can't merge a function call. */
1052 || GET_CODE (src) == CALL
1053 /* Don't eliminate a function call argument. */
1054 || (GET_CODE (i3) == CALL_INSN
1055 && (find_reg_fusage (i3, USE, dest)
1056 || (GET_CODE (dest) == REG
1057 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1058 && global_regs[REGNO (dest)])))
1059 /* Don't substitute into an incremented register. */
1060 || FIND_REG_INC_NOTE (i3, dest)
1061 || (succ && FIND_REG_INC_NOTE (succ, dest))
1062 #if 0
1063 /* Don't combine the end of a libcall into anything. */
1064 /* ??? This gives worse code, and appears to be unnecessary, since no
1065 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1066 use REG_RETVAL notes for noconflict blocks, but other code here
1067 makes sure that those insns don't disappear. */
1068 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1069 #endif
1070 /* Make sure that DEST is not used after SUCC but before I3. */
1071 || (succ && ! all_adjacent
1072 && reg_used_between_p (dest, succ, i3))
1073 /* Make sure that the value that is to be substituted for the register
1074 does not use any registers whose values alter in between. However,
1075 If the insns are adjacent, a use can't cross a set even though we
1076 think it might (this can happen for a sequence of insns each setting
1077 the same destination; reg_last_set of that register might point to
1078 a NOTE). If INSN has a REG_EQUIV note, the register is always
1079 equivalent to the memory so the substitution is valid even if there
1080 are intervening stores. Also, don't move a volatile asm or
1081 UNSPEC_VOLATILE across any other insns. */
1082 || (! all_adjacent
1083 && (((GET_CODE (src) != MEM
1084 || ! find_reg_note (insn, REG_EQUIV, src))
1085 && use_crosses_set_p (src, INSN_CUID (insn)))
1086 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1087 || GET_CODE (src) == UNSPEC_VOLATILE))
1088 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1089 better register allocation by not doing the combine. */
1090 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1091 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1092 /* Don't combine across a CALL_INSN, because that would possibly
1093 change whether the life span of some REGs crosses calls or not,
1094 and it is a pain to update that information.
1095 Exception: if source is a constant, moving it later can't hurt.
1096 Accept that special case, because it helps -fforce-addr a lot. */
1097 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1098 return 0;
1099
1100 /* DEST must either be a REG or CC0. */
1101 if (GET_CODE (dest) == REG)
1102 {
1103 /* If register alignment is being enforced for multi-word items in all
1104 cases except for parameters, it is possible to have a register copy
1105 insn referencing a hard register that is not allowed to contain the
1106 mode being copied and which would not be valid as an operand of most
1107 insns. Eliminate this problem by not combining with such an insn.
1108
1109 Also, on some machines we don't want to extend the life of a hard
1110 register. */
1111
1112 if (GET_CODE (src) == REG
1113 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1114 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1115 /* Don't extend the life of a hard register unless it is
1116 user variable (if we have few registers) or it can't
1117 fit into the desired register (meaning something special
1118 is going on).
1119 Also avoid substituting a return register into I3, because
1120 reload can't handle a conflict with constraints of other
1121 inputs. */
1122 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1123 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1124 return 0;
1125 }
1126 else if (GET_CODE (dest) != CC0)
1127 return 0;
1128
1129 /* Don't substitute for a register intended as a clobberable operand.
1130 Similarly, don't substitute an expression containing a register that
1131 will be clobbered in I3. */
1132 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1133 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1134 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1135 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1136 src)
1137 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1138 return 0;
1139
1140 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1141 or not), reject, unless nothing volatile comes between it and I3 */
1142
1143 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1144 {
1145 /* Make sure succ doesn't contain a volatile reference. */
1146 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1147 return 0;
1148
1149 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1150 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1151 return 0;
1152 }
1153
1154 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1155 to be an explicit register variable, and was chosen for a reason. */
1156
1157 if (GET_CODE (src) == ASM_OPERANDS
1158 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1159 return 0;
1160
1161 /* If there are any volatile insns between INSN and I3, reject, because
1162 they might affect machine state. */
1163
1164 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1165 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1166 return 0;
1167
1168 /* If INSN or I2 contains an autoincrement or autodecrement,
1169 make sure that register is not used between there and I3,
1170 and not already used in I3 either.
1171 Also insist that I3 not be a jump; if it were one
1172 and the incremented register were spilled, we would lose. */
1173
1174 #ifdef AUTO_INC_DEC
1175 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1176 if (REG_NOTE_KIND (link) == REG_INC
1177 && (GET_CODE (i3) == JUMP_INSN
1178 || reg_used_between_p (XEXP (link, 0), insn, i3)
1179 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1180 return 0;
1181 #endif
1182
1183 #ifdef HAVE_cc0
1184 /* Don't combine an insn that follows a CC0-setting insn.
1185 An insn that uses CC0 must not be separated from the one that sets it.
1186 We do, however, allow I2 to follow a CC0-setting insn if that insn
1187 is passed as I1; in that case it will be deleted also.
1188 We also allow combining in this case if all the insns are adjacent
1189 because that would leave the two CC0 insns adjacent as well.
1190 It would be more logical to test whether CC0 occurs inside I1 or I2,
1191 but that would be much slower, and this ought to be equivalent. */
1192
1193 p = prev_nonnote_insn (insn);
1194 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1195 && ! all_adjacent)
1196 return 0;
1197 #endif
1198
1199 /* If we get here, we have passed all the tests and the combination is
1200 to be allowed. */
1201
1202 *pdest = dest;
1203 *psrc = src;
1204
1205 return 1;
1206 }
1207 \f
1208 /* LOC is the location within I3 that contains its pattern or the component
1209 of a PARALLEL of the pattern. We validate that it is valid for combining.
1210
1211 One problem is if I3 modifies its output, as opposed to replacing it
1212 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1213 so would produce an insn that is not equivalent to the original insns.
1214
1215 Consider:
1216
1217 (set (reg:DI 101) (reg:DI 100))
1218 (set (subreg:SI (reg:DI 101) 0) <foo>)
1219
1220 This is NOT equivalent to:
1221
1222 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1223 (set (reg:DI 101) (reg:DI 100))])
1224
1225 Not only does this modify 100 (in which case it might still be valid
1226 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1227
1228 We can also run into a problem if I2 sets a register that I1
1229 uses and I1 gets directly substituted into I3 (not via I2). In that
1230 case, we would be getting the wrong value of I2DEST into I3, so we
1231 must reject the combination. This case occurs when I2 and I1 both
1232 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1233 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1234 of a SET must prevent combination from occurring.
1235
1236 Before doing the above check, we first try to expand a field assignment
1237 into a set of logical operations.
1238
1239 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1240 we place a register that is both set and used within I3. If more than one
1241 such register is detected, we fail.
1242
1243 Return 1 if the combination is valid, zero otherwise. */
1244
1245 static int
1246 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1247 int i1_not_in_src, rtx *pi3dest_killed)
1248 {
1249 rtx x = *loc;
1250
1251 if (GET_CODE (x) == SET)
1252 {
1253 rtx set = x ;
1254 rtx dest = SET_DEST (set);
1255 rtx src = SET_SRC (set);
1256 rtx inner_dest = dest;
1257
1258 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1259 || GET_CODE (inner_dest) == SUBREG
1260 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1261 inner_dest = XEXP (inner_dest, 0);
1262
1263 /* Check for the case where I3 modifies its output, as discussed
1264 above. We don't want to prevent pseudos from being combined
1265 into the address of a MEM, so only prevent the combination if
1266 i1 or i2 set the same MEM. */
1267 if ((inner_dest != dest &&
1268 (GET_CODE (inner_dest) != MEM
1269 || rtx_equal_p (i2dest, inner_dest)
1270 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1271 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1272 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1273
1274 /* This is the same test done in can_combine_p except we can't test
1275 all_adjacent; we don't have to, since this instruction will stay
1276 in place, thus we are not considering increasing the lifetime of
1277 INNER_DEST.
1278
1279 Also, if this insn sets a function argument, combining it with
1280 something that might need a spill could clobber a previous
1281 function argument; the all_adjacent test in can_combine_p also
1282 checks this; here, we do a more specific test for this case. */
1283
1284 || (GET_CODE (inner_dest) == REG
1285 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1286 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1287 GET_MODE (inner_dest))))
1288 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1289 return 0;
1290
1291 /* If DEST is used in I3, it is being killed in this insn,
1292 so record that for later.
1293 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1294 STACK_POINTER_REGNUM, since these are always considered to be
1295 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1296 if (pi3dest_killed && GET_CODE (dest) == REG
1297 && reg_referenced_p (dest, PATTERN (i3))
1298 && REGNO (dest) != FRAME_POINTER_REGNUM
1299 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1300 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1301 #endif
1302 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1303 && (REGNO (dest) != ARG_POINTER_REGNUM
1304 || ! fixed_regs [REGNO (dest)])
1305 #endif
1306 && REGNO (dest) != STACK_POINTER_REGNUM)
1307 {
1308 if (*pi3dest_killed)
1309 return 0;
1310
1311 *pi3dest_killed = dest;
1312 }
1313 }
1314
1315 else if (GET_CODE (x) == PARALLEL)
1316 {
1317 int i;
1318
1319 for (i = 0; i < XVECLEN (x, 0); i++)
1320 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1321 i1_not_in_src, pi3dest_killed))
1322 return 0;
1323 }
1324
1325 return 1;
1326 }
1327 \f
1328 /* Return 1 if X is an arithmetic expression that contains a multiplication
1329 and division. We don't count multiplications by powers of two here. */
1330
1331 static int
1332 contains_muldiv (rtx x)
1333 {
1334 switch (GET_CODE (x))
1335 {
1336 case MOD: case DIV: case UMOD: case UDIV:
1337 return 1;
1338
1339 case MULT:
1340 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1341 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1342 default:
1343 if (BINARY_P (x))
1344 return contains_muldiv (XEXP (x, 0))
1345 || contains_muldiv (XEXP (x, 1));
1346
1347 if (UNARY_P (x))
1348 return contains_muldiv (XEXP (x, 0));
1349
1350 return 0;
1351 }
1352 }
1353 \f
1354 /* Determine whether INSN can be used in a combination. Return nonzero if
1355 not. This is used in try_combine to detect early some cases where we
1356 can't perform combinations. */
1357
1358 static int
1359 cant_combine_insn_p (rtx insn)
1360 {
1361 rtx set;
1362 rtx src, dest;
1363
1364 /* If this isn't really an insn, we can't do anything.
1365 This can occur when flow deletes an insn that it has merged into an
1366 auto-increment address. */
1367 if (! INSN_P (insn))
1368 return 1;
1369
1370 /* Never combine loads and stores involving hard regs that are likely
1371 to be spilled. The register allocator can usually handle such
1372 reg-reg moves by tying. If we allow the combiner to make
1373 substitutions of likely-spilled regs, we may abort in reload.
1374 As an exception, we allow combinations involving fixed regs; these are
1375 not available to the register allocator so there's no risk involved. */
1376
1377 set = single_set (insn);
1378 if (! set)
1379 return 0;
1380 src = SET_SRC (set);
1381 dest = SET_DEST (set);
1382 if (GET_CODE (src) == SUBREG)
1383 src = SUBREG_REG (src);
1384 if (GET_CODE (dest) == SUBREG)
1385 dest = SUBREG_REG (dest);
1386 if (REG_P (src) && REG_P (dest)
1387 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1388 && ! fixed_regs[REGNO (src)]
1389 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1390 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1391 && ! fixed_regs[REGNO (dest)]
1392 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1393 return 1;
1394
1395 return 0;
1396 }
1397
1398 /* Adjust INSN after we made a change to its destination.
1399
1400 Changing the destination can invalidate notes that say something about
1401 the results of the insn and a LOG_LINK pointing to the insn. */
1402
1403 static void
1404 adjust_for_new_dest (rtx insn)
1405 {
1406 rtx *loc;
1407
1408 /* For notes, be conservative and simply remove them. */
1409 loc = &REG_NOTES (insn);
1410 while (*loc)
1411 {
1412 enum reg_note kind = REG_NOTE_KIND (*loc);
1413 if (kind == REG_EQUAL || kind == REG_EQUIV)
1414 *loc = XEXP (*loc, 1);
1415 else
1416 loc = &XEXP (*loc, 1);
1417 }
1418
1419 /* The new insn will have a destination that was previously the destination
1420 of an insn just above it. Call distribute_links to make a LOG_LINK from
1421 the next use of that destination. */
1422 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1423 }
1424
1425 /* Try to combine the insns I1 and I2 into I3.
1426 Here I1 and I2 appear earlier than I3.
1427 I1 can be zero; then we combine just I2 into I3.
1428
1429 If we are combining three insns and the resulting insn is not recognized,
1430 try splitting it into two insns. If that happens, I2 and I3 are retained
1431 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1432 are pseudo-deleted.
1433
1434 Return 0 if the combination does not work. Then nothing is changed.
1435 If we did the combination, return the insn at which combine should
1436 resume scanning.
1437
1438 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1439 new direct jump instruction. */
1440
1441 static rtx
1442 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1443 {
1444 /* New patterns for I3 and I2, respectively. */
1445 rtx newpat, newi2pat = 0;
1446 int substed_i2 = 0, substed_i1 = 0;
1447 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1448 int added_sets_1, added_sets_2;
1449 /* Total number of SETs to put into I3. */
1450 int total_sets;
1451 /* Nonzero if I2's body now appears in I3. */
1452 int i2_is_used;
1453 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1454 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1455 /* Contains I3 if the destination of I3 is used in its source, which means
1456 that the old life of I3 is being killed. If that usage is placed into
1457 I2 and not in I3, a REG_DEAD note must be made. */
1458 rtx i3dest_killed = 0;
1459 /* SET_DEST and SET_SRC of I2 and I1. */
1460 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1461 /* PATTERN (I2), or a copy of it in certain cases. */
1462 rtx i2pat;
1463 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1464 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1465 int i1_feeds_i3 = 0;
1466 /* Notes that must be added to REG_NOTES in I3 and I2. */
1467 rtx new_i3_notes, new_i2_notes;
1468 /* Notes that we substituted I3 into I2 instead of the normal case. */
1469 int i3_subst_into_i2 = 0;
1470 /* Notes that I1, I2 or I3 is a MULT operation. */
1471 int have_mult = 0;
1472
1473 int maxreg;
1474 rtx temp;
1475 rtx link;
1476 int i;
1477
1478 /* Exit early if one of the insns involved can't be used for
1479 combinations. */
1480 if (cant_combine_insn_p (i3)
1481 || cant_combine_insn_p (i2)
1482 || (i1 && cant_combine_insn_p (i1))
1483 /* We also can't do anything if I3 has a
1484 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1485 libcall. */
1486 #if 0
1487 /* ??? This gives worse code, and appears to be unnecessary, since no
1488 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1489 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1490 #endif
1491 )
1492 return 0;
1493
1494 combine_attempts++;
1495 undobuf.other_insn = 0;
1496
1497 /* Reset the hard register usage information. */
1498 CLEAR_HARD_REG_SET (newpat_used_regs);
1499
1500 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1501 code below, set I1 to be the earlier of the two insns. */
1502 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1503 temp = i1, i1 = i2, i2 = temp;
1504
1505 added_links_insn = 0;
1506
1507 /* First check for one important special-case that the code below will
1508 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1509 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1510 we may be able to replace that destination with the destination of I3.
1511 This occurs in the common code where we compute both a quotient and
1512 remainder into a structure, in which case we want to do the computation
1513 directly into the structure to avoid register-register copies.
1514
1515 Note that this case handles both multiple sets in I2 and also
1516 cases where I2 has a number of CLOBBER or PARALLELs.
1517
1518 We make very conservative checks below and only try to handle the
1519 most common cases of this. For example, we only handle the case
1520 where I2 and I3 are adjacent to avoid making difficult register
1521 usage tests. */
1522
1523 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1524 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1525 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1526 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1527 && GET_CODE (PATTERN (i2)) == PARALLEL
1528 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1529 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1530 below would need to check what is inside (and reg_overlap_mentioned_p
1531 doesn't support those codes anyway). Don't allow those destinations;
1532 the resulting insn isn't likely to be recognized anyway. */
1533 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1534 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1535 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1536 SET_DEST (PATTERN (i3)))
1537 && next_real_insn (i2) == i3)
1538 {
1539 rtx p2 = PATTERN (i2);
1540
1541 /* Make sure that the destination of I3,
1542 which we are going to substitute into one output of I2,
1543 is not used within another output of I2. We must avoid making this:
1544 (parallel [(set (mem (reg 69)) ...)
1545 (set (reg 69) ...)])
1546 which is not well-defined as to order of actions.
1547 (Besides, reload can't handle output reloads for this.)
1548
1549 The problem can also happen if the dest of I3 is a memory ref,
1550 if another dest in I2 is an indirect memory ref. */
1551 for (i = 0; i < XVECLEN (p2, 0); i++)
1552 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1553 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1554 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1555 SET_DEST (XVECEXP (p2, 0, i))))
1556 break;
1557
1558 if (i == XVECLEN (p2, 0))
1559 for (i = 0; i < XVECLEN (p2, 0); i++)
1560 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1561 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1562 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1563 {
1564 combine_merges++;
1565
1566 subst_insn = i3;
1567 subst_low_cuid = INSN_CUID (i2);
1568
1569 added_sets_2 = added_sets_1 = 0;
1570 i2dest = SET_SRC (PATTERN (i3));
1571
1572 /* Replace the dest in I2 with our dest and make the resulting
1573 insn the new pattern for I3. Then skip to where we
1574 validate the pattern. Everything was set up above. */
1575 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1576 SET_DEST (PATTERN (i3)));
1577
1578 newpat = p2;
1579 i3_subst_into_i2 = 1;
1580 goto validate_replacement;
1581 }
1582 }
1583
1584 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1585 one of those words to another constant, merge them by making a new
1586 constant. */
1587 if (i1 == 0
1588 && (temp = single_set (i2)) != 0
1589 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1590 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1591 && GET_CODE (SET_DEST (temp)) == REG
1592 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1593 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1594 && GET_CODE (PATTERN (i3)) == SET
1595 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1596 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1597 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1598 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1599 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1600 {
1601 HOST_WIDE_INT lo, hi;
1602
1603 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1604 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1605 else
1606 {
1607 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1608 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1609 }
1610
1611 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1612 {
1613 /* We don't handle the case of the target word being wider
1614 than a host wide int. */
1615 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1616 abort ();
1617
1618 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1619 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1620 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1621 }
1622 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1623 hi = INTVAL (SET_SRC (PATTERN (i3)));
1624 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1625 {
1626 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1627 >> (HOST_BITS_PER_WIDE_INT - 1));
1628
1629 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1630 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1631 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1632 (INTVAL (SET_SRC (PATTERN (i3)))));
1633 if (hi == sign)
1634 hi = lo < 0 ? -1 : 0;
1635 }
1636 else
1637 /* We don't handle the case of the higher word not fitting
1638 entirely in either hi or lo. */
1639 abort ();
1640
1641 combine_merges++;
1642 subst_insn = i3;
1643 subst_low_cuid = INSN_CUID (i2);
1644 added_sets_2 = added_sets_1 = 0;
1645 i2dest = SET_DEST (temp);
1646
1647 SUBST (SET_SRC (temp),
1648 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1649
1650 newpat = PATTERN (i2);
1651 goto validate_replacement;
1652 }
1653
1654 #ifndef HAVE_cc0
1655 /* If we have no I1 and I2 looks like:
1656 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1657 (set Y OP)])
1658 make up a dummy I1 that is
1659 (set Y OP)
1660 and change I2 to be
1661 (set (reg:CC X) (compare:CC Y (const_int 0)))
1662
1663 (We can ignore any trailing CLOBBERs.)
1664
1665 This undoes a previous combination and allows us to match a branch-and-
1666 decrement insn. */
1667
1668 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1669 && XVECLEN (PATTERN (i2), 0) >= 2
1670 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1671 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1672 == MODE_CC)
1673 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1674 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1675 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1676 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1677 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1678 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1679 {
1680 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1681 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1682 break;
1683
1684 if (i == 1)
1685 {
1686 /* We make I1 with the same INSN_UID as I2. This gives it
1687 the same INSN_CUID for value tracking. Our fake I1 will
1688 never appear in the insn stream so giving it the same INSN_UID
1689 as I2 will not cause a problem. */
1690
1691 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1692 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1693 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1694 NULL_RTX);
1695
1696 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1697 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1698 SET_DEST (PATTERN (i1)));
1699 }
1700 }
1701 #endif
1702
1703 /* Verify that I2 and I1 are valid for combining. */
1704 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1705 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1706 {
1707 undo_all ();
1708 return 0;
1709 }
1710
1711 /* Record whether I2DEST is used in I2SRC and similarly for the other
1712 cases. Knowing this will help in register status updating below. */
1713 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1714 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1715 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1716
1717 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1718 in I2SRC. */
1719 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1720
1721 /* Ensure that I3's pattern can be the destination of combines. */
1722 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1723 i1 && i2dest_in_i1src && i1_feeds_i3,
1724 &i3dest_killed))
1725 {
1726 undo_all ();
1727 return 0;
1728 }
1729
1730 /* See if any of the insns is a MULT operation. Unless one is, we will
1731 reject a combination that is, since it must be slower. Be conservative
1732 here. */
1733 if (GET_CODE (i2src) == MULT
1734 || (i1 != 0 && GET_CODE (i1src) == MULT)
1735 || (GET_CODE (PATTERN (i3)) == SET
1736 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1737 have_mult = 1;
1738
1739 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1740 We used to do this EXCEPT in one case: I3 has a post-inc in an
1741 output operand. However, that exception can give rise to insns like
1742 mov r3,(r3)+
1743 which is a famous insn on the PDP-11 where the value of r3 used as the
1744 source was model-dependent. Avoid this sort of thing. */
1745
1746 #if 0
1747 if (!(GET_CODE (PATTERN (i3)) == SET
1748 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1749 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1750 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1751 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1752 /* It's not the exception. */
1753 #endif
1754 #ifdef AUTO_INC_DEC
1755 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1756 if (REG_NOTE_KIND (link) == REG_INC
1757 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1758 || (i1 != 0
1759 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1760 {
1761 undo_all ();
1762 return 0;
1763 }
1764 #endif
1765
1766 /* See if the SETs in I1 or I2 need to be kept around in the merged
1767 instruction: whenever the value set there is still needed past I3.
1768 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1769
1770 For the SET in I1, we have two cases: If I1 and I2 independently
1771 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1772 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1773 in I1 needs to be kept around unless I1DEST dies or is set in either
1774 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1775 I1DEST. If so, we know I1 feeds into I2. */
1776
1777 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1778
1779 added_sets_1
1780 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1781 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1782
1783 /* If the set in I2 needs to be kept around, we must make a copy of
1784 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1785 PATTERN (I2), we are only substituting for the original I1DEST, not into
1786 an already-substituted copy. This also prevents making self-referential
1787 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1788 I2DEST. */
1789
1790 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1791 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1792 : PATTERN (i2));
1793
1794 if (added_sets_2)
1795 i2pat = copy_rtx (i2pat);
1796
1797 combine_merges++;
1798
1799 /* Substitute in the latest insn for the regs set by the earlier ones. */
1800
1801 maxreg = max_reg_num ();
1802
1803 subst_insn = i3;
1804
1805 /* It is possible that the source of I2 or I1 may be performing an
1806 unneeded operation, such as a ZERO_EXTEND of something that is known
1807 to have the high part zero. Handle that case by letting subst look at
1808 the innermost one of them.
1809
1810 Another way to do this would be to have a function that tries to
1811 simplify a single insn instead of merging two or more insns. We don't
1812 do this because of the potential of infinite loops and because
1813 of the potential extra memory required. However, doing it the way
1814 we are is a bit of a kludge and doesn't catch all cases.
1815
1816 But only do this if -fexpensive-optimizations since it slows things down
1817 and doesn't usually win. */
1818
1819 if (flag_expensive_optimizations)
1820 {
1821 /* Pass pc_rtx so no substitutions are done, just simplifications. */
1822 if (i1)
1823 {
1824 subst_low_cuid = INSN_CUID (i1);
1825 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1826 }
1827 else
1828 {
1829 subst_low_cuid = INSN_CUID (i2);
1830 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1831 }
1832 }
1833
1834 #ifndef HAVE_cc0
1835 /* Many machines that don't use CC0 have insns that can both perform an
1836 arithmetic operation and set the condition code. These operations will
1837 be represented as a PARALLEL with the first element of the vector
1838 being a COMPARE of an arithmetic operation with the constant zero.
1839 The second element of the vector will set some pseudo to the result
1840 of the same arithmetic operation. If we simplify the COMPARE, we won't
1841 match such a pattern and so will generate an extra insn. Here we test
1842 for this case, where both the comparison and the operation result are
1843 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1844 I2SRC. Later we will make the PARALLEL that contains I2. */
1845
1846 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1847 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1848 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1849 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1850 {
1851 #ifdef SELECT_CC_MODE
1852 rtx *cc_use;
1853 enum machine_mode compare_mode;
1854 #endif
1855
1856 newpat = PATTERN (i3);
1857 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1858
1859 i2_is_used = 1;
1860
1861 #ifdef SELECT_CC_MODE
1862 /* See if a COMPARE with the operand we substituted in should be done
1863 with the mode that is currently being used. If not, do the same
1864 processing we do in `subst' for a SET; namely, if the destination
1865 is used only once, try to replace it with a register of the proper
1866 mode and also replace the COMPARE. */
1867 if (undobuf.other_insn == 0
1868 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1869 &undobuf.other_insn))
1870 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1871 i2src, const0_rtx))
1872 != GET_MODE (SET_DEST (newpat))))
1873 {
1874 unsigned int regno = REGNO (SET_DEST (newpat));
1875 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1876
1877 if (regno < FIRST_PSEUDO_REGISTER
1878 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1879 && ! REG_USERVAR_P (SET_DEST (newpat))))
1880 {
1881 if (regno >= FIRST_PSEUDO_REGISTER)
1882 SUBST (regno_reg_rtx[regno], new_dest);
1883
1884 SUBST (SET_DEST (newpat), new_dest);
1885 SUBST (XEXP (*cc_use, 0), new_dest);
1886 SUBST (SET_SRC (newpat),
1887 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1888 }
1889 else
1890 undobuf.other_insn = 0;
1891 }
1892 #endif
1893 }
1894 else
1895 #endif
1896 {
1897 n_occurrences = 0; /* `subst' counts here */
1898
1899 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1900 need to make a unique copy of I2SRC each time we substitute it
1901 to avoid self-referential rtl. */
1902
1903 subst_low_cuid = INSN_CUID (i2);
1904 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1905 ! i1_feeds_i3 && i1dest_in_i1src);
1906 substed_i2 = 1;
1907
1908 /* Record whether i2's body now appears within i3's body. */
1909 i2_is_used = n_occurrences;
1910 }
1911
1912 /* If we already got a failure, don't try to do more. Otherwise,
1913 try to substitute in I1 if we have it. */
1914
1915 if (i1 && GET_CODE (newpat) != CLOBBER)
1916 {
1917 /* Before we can do this substitution, we must redo the test done
1918 above (see detailed comments there) that ensures that I1DEST
1919 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1920
1921 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1922 0, (rtx*) 0))
1923 {
1924 undo_all ();
1925 return 0;
1926 }
1927
1928 n_occurrences = 0;
1929 subst_low_cuid = INSN_CUID (i1);
1930 newpat = subst (newpat, i1dest, i1src, 0, 0);
1931 substed_i1 = 1;
1932 }
1933
1934 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1935 to count all the ways that I2SRC and I1SRC can be used. */
1936 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1937 && i2_is_used + added_sets_2 > 1)
1938 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1939 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1940 > 1))
1941 /* Fail if we tried to make a new register (we used to abort, but there's
1942 really no reason to). */
1943 || max_reg_num () != maxreg
1944 /* Fail if we couldn't do something and have a CLOBBER. */
1945 || GET_CODE (newpat) == CLOBBER
1946 /* Fail if this new pattern is a MULT and we didn't have one before
1947 at the outer level. */
1948 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
1949 && ! have_mult))
1950 {
1951 undo_all ();
1952 return 0;
1953 }
1954
1955 /* If the actions of the earlier insns must be kept
1956 in addition to substituting them into the latest one,
1957 we must make a new PARALLEL for the latest insn
1958 to hold additional the SETs. */
1959
1960 if (added_sets_1 || added_sets_2)
1961 {
1962 combine_extras++;
1963
1964 if (GET_CODE (newpat) == PARALLEL)
1965 {
1966 rtvec old = XVEC (newpat, 0);
1967 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
1968 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1969 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
1970 sizeof (old->elem[0]) * old->num_elem);
1971 }
1972 else
1973 {
1974 rtx old = newpat;
1975 total_sets = 1 + added_sets_1 + added_sets_2;
1976 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1977 XVECEXP (newpat, 0, 0) = old;
1978 }
1979
1980 if (added_sets_1)
1981 XVECEXP (newpat, 0, --total_sets)
1982 = (GET_CODE (PATTERN (i1)) == PARALLEL
1983 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
1984
1985 if (added_sets_2)
1986 {
1987 /* If there is no I1, use I2's body as is. We used to also not do
1988 the subst call below if I2 was substituted into I3,
1989 but that could lose a simplification. */
1990 if (i1 == 0)
1991 XVECEXP (newpat, 0, --total_sets) = i2pat;
1992 else
1993 /* See comment where i2pat is assigned. */
1994 XVECEXP (newpat, 0, --total_sets)
1995 = subst (i2pat, i1dest, i1src, 0, 0);
1996 }
1997 }
1998
1999 /* We come here when we are replacing a destination in I2 with the
2000 destination of I3. */
2001 validate_replacement:
2002
2003 /* Note which hard regs this insn has as inputs. */
2004 mark_used_regs_combine (newpat);
2005
2006 /* Is the result of combination a valid instruction? */
2007 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2008
2009 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2010 the second SET's destination is a register that is unused and isn't
2011 marked as an instruction that might trap in an EH region. In that case,
2012 we just need the first SET. This can occur when simplifying a divmod
2013 insn. We *must* test for this case here because the code below that
2014 splits two independent SETs doesn't handle this case correctly when it
2015 updates the register status.
2016
2017 It's pointless doing this if we originally had two sets, one from
2018 i3, and one from i2. Combining then splitting the parallel results
2019 in the original i2 again plus an invalid insn (which we delete).
2020 The net effect is only to move instructions around, which makes
2021 debug info less accurate.
2022
2023 Also check the case where the first SET's destination is unused.
2024 That would not cause incorrect code, but does cause an unneeded
2025 insn to remain. */
2026
2027 if (insn_code_number < 0
2028 && !(added_sets_2 && i1 == 0)
2029 && GET_CODE (newpat) == PARALLEL
2030 && XVECLEN (newpat, 0) == 2
2031 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2032 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2033 && asm_noperands (newpat) < 0)
2034 {
2035 rtx set0 = XVECEXP (newpat, 0, 0);
2036 rtx set1 = XVECEXP (newpat, 0, 1);
2037 rtx note;
2038
2039 if (((GET_CODE (SET_DEST (set1)) == REG
2040 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2041 || (GET_CODE (SET_DEST (set1)) == SUBREG
2042 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2043 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2044 || INTVAL (XEXP (note, 0)) <= 0)
2045 && ! side_effects_p (SET_SRC (set1)))
2046 {
2047 newpat = set0;
2048 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2049 }
2050
2051 else if (((GET_CODE (SET_DEST (set0)) == REG
2052 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2053 || (GET_CODE (SET_DEST (set0)) == SUBREG
2054 && find_reg_note (i3, REG_UNUSED,
2055 SUBREG_REG (SET_DEST (set0)))))
2056 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2057 || INTVAL (XEXP (note, 0)) <= 0)
2058 && ! side_effects_p (SET_SRC (set0)))
2059 {
2060 newpat = set1;
2061 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2062
2063 if (insn_code_number >= 0)
2064 {
2065 /* If we will be able to accept this, we have made a
2066 change to the destination of I3. This requires us to
2067 do a few adjustments. */
2068
2069 PATTERN (i3) = newpat;
2070 adjust_for_new_dest (i3);
2071 }
2072 }
2073 }
2074
2075 /* If we were combining three insns and the result is a simple SET
2076 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2077 insns. There are two ways to do this. It can be split using a
2078 machine-specific method (like when you have an addition of a large
2079 constant) or by combine in the function find_split_point. */
2080
2081 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2082 && asm_noperands (newpat) < 0)
2083 {
2084 rtx m_split, *split;
2085 rtx ni2dest = i2dest;
2086
2087 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2088 use I2DEST as a scratch register will help. In the latter case,
2089 convert I2DEST to the mode of the source of NEWPAT if we can. */
2090
2091 m_split = split_insns (newpat, i3);
2092
2093 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2094 inputs of NEWPAT. */
2095
2096 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2097 possible to try that as a scratch reg. This would require adding
2098 more code to make it work though. */
2099
2100 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2101 {
2102 /* If I2DEST is a hard register or the only use of a pseudo,
2103 we can change its mode. */
2104 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2105 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2106 && GET_CODE (i2dest) == REG
2107 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2108 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2109 && ! REG_USERVAR_P (i2dest))))
2110 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2111 REGNO (i2dest));
2112
2113 m_split = split_insns (gen_rtx_PARALLEL
2114 (VOIDmode,
2115 gen_rtvec (2, newpat,
2116 gen_rtx_CLOBBER (VOIDmode,
2117 ni2dest))),
2118 i3);
2119 /* If the split with the mode-changed register didn't work, try
2120 the original register. */
2121 if (! m_split && ni2dest != i2dest)
2122 {
2123 ni2dest = i2dest;
2124 m_split = split_insns (gen_rtx_PARALLEL
2125 (VOIDmode,
2126 gen_rtvec (2, newpat,
2127 gen_rtx_CLOBBER (VOIDmode,
2128 i2dest))),
2129 i3);
2130 }
2131 }
2132
2133 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2134 {
2135 m_split = PATTERN (m_split);
2136 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2137 if (insn_code_number >= 0)
2138 newpat = m_split;
2139 }
2140 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2141 && (next_real_insn (i2) == i3
2142 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2143 {
2144 rtx i2set, i3set;
2145 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2146 newi2pat = PATTERN (m_split);
2147
2148 i3set = single_set (NEXT_INSN (m_split));
2149 i2set = single_set (m_split);
2150
2151 /* In case we changed the mode of I2DEST, replace it in the
2152 pseudo-register table here. We can't do it above in case this
2153 code doesn't get executed and we do a split the other way. */
2154
2155 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2156 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2157
2158 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2159
2160 /* If I2 or I3 has multiple SETs, we won't know how to track
2161 register status, so don't use these insns. If I2's destination
2162 is used between I2 and I3, we also can't use these insns. */
2163
2164 if (i2_code_number >= 0 && i2set && i3set
2165 && (next_real_insn (i2) == i3
2166 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2167 insn_code_number = recog_for_combine (&newi3pat, i3,
2168 &new_i3_notes);
2169 if (insn_code_number >= 0)
2170 newpat = newi3pat;
2171
2172 /* It is possible that both insns now set the destination of I3.
2173 If so, we must show an extra use of it. */
2174
2175 if (insn_code_number >= 0)
2176 {
2177 rtx new_i3_dest = SET_DEST (i3set);
2178 rtx new_i2_dest = SET_DEST (i2set);
2179
2180 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2181 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2182 || GET_CODE (new_i3_dest) == SUBREG)
2183 new_i3_dest = XEXP (new_i3_dest, 0);
2184
2185 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2186 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2187 || GET_CODE (new_i2_dest) == SUBREG)
2188 new_i2_dest = XEXP (new_i2_dest, 0);
2189
2190 if (GET_CODE (new_i3_dest) == REG
2191 && GET_CODE (new_i2_dest) == REG
2192 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2193 REG_N_SETS (REGNO (new_i2_dest))++;
2194 }
2195 }
2196
2197 /* If we can split it and use I2DEST, go ahead and see if that
2198 helps things be recognized. Verify that none of the registers
2199 are set between I2 and I3. */
2200 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2201 #ifdef HAVE_cc0
2202 && GET_CODE (i2dest) == REG
2203 #endif
2204 /* We need I2DEST in the proper mode. If it is a hard register
2205 or the only use of a pseudo, we can change its mode. */
2206 && (GET_MODE (*split) == GET_MODE (i2dest)
2207 || GET_MODE (*split) == VOIDmode
2208 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2209 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2210 && ! REG_USERVAR_P (i2dest)))
2211 && (next_real_insn (i2) == i3
2212 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2213 /* We can't overwrite I2DEST if its value is still used by
2214 NEWPAT. */
2215 && ! reg_referenced_p (i2dest, newpat))
2216 {
2217 rtx newdest = i2dest;
2218 enum rtx_code split_code = GET_CODE (*split);
2219 enum machine_mode split_mode = GET_MODE (*split);
2220
2221 /* Get NEWDEST as a register in the proper mode. We have already
2222 validated that we can do this. */
2223 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2224 {
2225 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2226
2227 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2228 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2229 }
2230
2231 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2232 an ASHIFT. This can occur if it was inside a PLUS and hence
2233 appeared to be a memory address. This is a kludge. */
2234 if (split_code == MULT
2235 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2236 && INTVAL (XEXP (*split, 1)) > 0
2237 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2238 {
2239 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2240 XEXP (*split, 0), GEN_INT (i)));
2241 /* Update split_code because we may not have a multiply
2242 anymore. */
2243 split_code = GET_CODE (*split);
2244 }
2245
2246 #ifdef INSN_SCHEDULING
2247 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2248 be written as a ZERO_EXTEND. */
2249 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2250 {
2251 #ifdef LOAD_EXTEND_OP
2252 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2253 what it really is. */
2254 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2255 == SIGN_EXTEND)
2256 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2257 SUBREG_REG (*split)));
2258 else
2259 #endif
2260 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2261 SUBREG_REG (*split)));
2262 }
2263 #endif
2264
2265 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2266 SUBST (*split, newdest);
2267 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2268
2269 /* If the split point was a MULT and we didn't have one before,
2270 don't use one now. */
2271 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2272 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2273 }
2274 }
2275
2276 /* Check for a case where we loaded from memory in a narrow mode and
2277 then sign extended it, but we need both registers. In that case,
2278 we have a PARALLEL with both loads from the same memory location.
2279 We can split this into a load from memory followed by a register-register
2280 copy. This saves at least one insn, more if register allocation can
2281 eliminate the copy.
2282
2283 We cannot do this if the destination of the first assignment is a
2284 condition code register or cc0. We eliminate this case by making sure
2285 the SET_DEST and SET_SRC have the same mode.
2286
2287 We cannot do this if the destination of the second assignment is
2288 a register that we have already assumed is zero-extended. Similarly
2289 for a SUBREG of such a register. */
2290
2291 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2292 && GET_CODE (newpat) == PARALLEL
2293 && XVECLEN (newpat, 0) == 2
2294 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2295 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2296 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2297 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2298 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2299 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2300 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2301 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2302 INSN_CUID (i2))
2303 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2304 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2305 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2306 (GET_CODE (temp) == REG
2307 && reg_nonzero_bits[REGNO (temp)] != 0
2308 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2309 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2310 && (reg_nonzero_bits[REGNO (temp)]
2311 != GET_MODE_MASK (word_mode))))
2312 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2313 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2314 (GET_CODE (temp) == REG
2315 && reg_nonzero_bits[REGNO (temp)] != 0
2316 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2317 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2318 && (reg_nonzero_bits[REGNO (temp)]
2319 != GET_MODE_MASK (word_mode)))))
2320 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2321 SET_SRC (XVECEXP (newpat, 0, 1)))
2322 && ! find_reg_note (i3, REG_UNUSED,
2323 SET_DEST (XVECEXP (newpat, 0, 0))))
2324 {
2325 rtx ni2dest;
2326
2327 newi2pat = XVECEXP (newpat, 0, 0);
2328 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2329 newpat = XVECEXP (newpat, 0, 1);
2330 SUBST (SET_SRC (newpat),
2331 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2332 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2333
2334 if (i2_code_number >= 0)
2335 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2336
2337 if (insn_code_number >= 0)
2338 {
2339 rtx insn;
2340 rtx link;
2341
2342 /* If we will be able to accept this, we have made a change to the
2343 destination of I3. This requires us to do a few adjustments. */
2344 PATTERN (i3) = newpat;
2345 adjust_for_new_dest (i3);
2346
2347 /* I3 now uses what used to be its destination and which is
2348 now I2's destination. That means we need a LOG_LINK from
2349 I3 to I2. But we used to have one, so we still will.
2350
2351 However, some later insn might be using I2's dest and have
2352 a LOG_LINK pointing at I3. We must remove this link.
2353 The simplest way to remove the link is to point it at I1,
2354 which we know will be a NOTE. */
2355
2356 for (insn = NEXT_INSN (i3);
2357 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2358 || insn != BB_HEAD (this_basic_block->next_bb));
2359 insn = NEXT_INSN (insn))
2360 {
2361 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2362 {
2363 for (link = LOG_LINKS (insn); link;
2364 link = XEXP (link, 1))
2365 if (XEXP (link, 0) == i3)
2366 XEXP (link, 0) = i1;
2367
2368 break;
2369 }
2370 }
2371 }
2372 }
2373
2374 /* Similarly, check for a case where we have a PARALLEL of two independent
2375 SETs but we started with three insns. In this case, we can do the sets
2376 as two separate insns. This case occurs when some SET allows two
2377 other insns to combine, but the destination of that SET is still live. */
2378
2379 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2380 && GET_CODE (newpat) == PARALLEL
2381 && XVECLEN (newpat, 0) == 2
2382 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2383 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2384 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2385 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2386 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2387 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2388 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2389 INSN_CUID (i2))
2390 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2391 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2392 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2393 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2394 XVECEXP (newpat, 0, 0))
2395 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2396 XVECEXP (newpat, 0, 1))
2397 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2398 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2399 {
2400 /* Normally, it doesn't matter which of the two is done first,
2401 but it does if one references cc0. In that case, it has to
2402 be first. */
2403 #ifdef HAVE_cc0
2404 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2405 {
2406 newi2pat = XVECEXP (newpat, 0, 0);
2407 newpat = XVECEXP (newpat, 0, 1);
2408 }
2409 else
2410 #endif
2411 {
2412 newi2pat = XVECEXP (newpat, 0, 1);
2413 newpat = XVECEXP (newpat, 0, 0);
2414 }
2415
2416 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2417
2418 if (i2_code_number >= 0)
2419 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2420 }
2421
2422 /* If it still isn't recognized, fail and change things back the way they
2423 were. */
2424 if ((insn_code_number < 0
2425 /* Is the result a reasonable ASM_OPERANDS? */
2426 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2427 {
2428 undo_all ();
2429 return 0;
2430 }
2431
2432 /* If we had to change another insn, make sure it is valid also. */
2433 if (undobuf.other_insn)
2434 {
2435 rtx other_pat = PATTERN (undobuf.other_insn);
2436 rtx new_other_notes;
2437 rtx note, next;
2438
2439 CLEAR_HARD_REG_SET (newpat_used_regs);
2440
2441 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2442 &new_other_notes);
2443
2444 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2445 {
2446 undo_all ();
2447 return 0;
2448 }
2449
2450 PATTERN (undobuf.other_insn) = other_pat;
2451
2452 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2453 are still valid. Then add any non-duplicate notes added by
2454 recog_for_combine. */
2455 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2456 {
2457 next = XEXP (note, 1);
2458
2459 if (REG_NOTE_KIND (note) == REG_UNUSED
2460 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2461 {
2462 if (GET_CODE (XEXP (note, 0)) == REG)
2463 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2464
2465 remove_note (undobuf.other_insn, note);
2466 }
2467 }
2468
2469 for (note = new_other_notes; note; note = XEXP (note, 1))
2470 if (GET_CODE (XEXP (note, 0)) == REG)
2471 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2472
2473 distribute_notes (new_other_notes, undobuf.other_insn,
2474 undobuf.other_insn, NULL_RTX);
2475 }
2476 #ifdef HAVE_cc0
2477 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2478 they are adjacent to each other or not. */
2479 {
2480 rtx p = prev_nonnote_insn (i3);
2481 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2482 && sets_cc0_p (newi2pat))
2483 {
2484 undo_all ();
2485 return 0;
2486 }
2487 }
2488 #endif
2489
2490 /* We now know that we can do this combination. Merge the insns and
2491 update the status of registers and LOG_LINKS. */
2492
2493 {
2494 rtx i3notes, i2notes, i1notes = 0;
2495 rtx i3links, i2links, i1links = 0;
2496 rtx midnotes = 0;
2497 unsigned int regno;
2498
2499 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2500 clear them. */
2501 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2502 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2503 if (i1)
2504 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2505
2506 /* Ensure that we do not have something that should not be shared but
2507 occurs multiple times in the new insns. Check this by first
2508 resetting all the `used' flags and then copying anything is shared. */
2509
2510 reset_used_flags (i3notes);
2511 reset_used_flags (i2notes);
2512 reset_used_flags (i1notes);
2513 reset_used_flags (newpat);
2514 reset_used_flags (newi2pat);
2515 if (undobuf.other_insn)
2516 reset_used_flags (PATTERN (undobuf.other_insn));
2517
2518 i3notes = copy_rtx_if_shared (i3notes);
2519 i2notes = copy_rtx_if_shared (i2notes);
2520 i1notes = copy_rtx_if_shared (i1notes);
2521 newpat = copy_rtx_if_shared (newpat);
2522 newi2pat = copy_rtx_if_shared (newi2pat);
2523 if (undobuf.other_insn)
2524 reset_used_flags (PATTERN (undobuf.other_insn));
2525
2526 INSN_CODE (i3) = insn_code_number;
2527 PATTERN (i3) = newpat;
2528
2529 if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2530 {
2531 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2532
2533 reset_used_flags (call_usage);
2534 call_usage = copy_rtx (call_usage);
2535
2536 if (substed_i2)
2537 replace_rtx (call_usage, i2dest, i2src);
2538
2539 if (substed_i1)
2540 replace_rtx (call_usage, i1dest, i1src);
2541
2542 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2543 }
2544
2545 if (undobuf.other_insn)
2546 INSN_CODE (undobuf.other_insn) = other_code_number;
2547
2548 /* We had one special case above where I2 had more than one set and
2549 we replaced a destination of one of those sets with the destination
2550 of I3. In that case, we have to update LOG_LINKS of insns later
2551 in this basic block. Note that this (expensive) case is rare.
2552
2553 Also, in this case, we must pretend that all REG_NOTEs for I2
2554 actually came from I3, so that REG_UNUSED notes from I2 will be
2555 properly handled. */
2556
2557 if (i3_subst_into_i2)
2558 {
2559 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2560 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2561 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2562 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2563 && ! find_reg_note (i2, REG_UNUSED,
2564 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2565 for (temp = NEXT_INSN (i2);
2566 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2567 || BB_HEAD (this_basic_block) != temp);
2568 temp = NEXT_INSN (temp))
2569 if (temp != i3 && INSN_P (temp))
2570 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2571 if (XEXP (link, 0) == i2)
2572 XEXP (link, 0) = i3;
2573
2574 if (i3notes)
2575 {
2576 rtx link = i3notes;
2577 while (XEXP (link, 1))
2578 link = XEXP (link, 1);
2579 XEXP (link, 1) = i2notes;
2580 }
2581 else
2582 i3notes = i2notes;
2583 i2notes = 0;
2584 }
2585
2586 LOG_LINKS (i3) = 0;
2587 REG_NOTES (i3) = 0;
2588 LOG_LINKS (i2) = 0;
2589 REG_NOTES (i2) = 0;
2590
2591 if (newi2pat)
2592 {
2593 INSN_CODE (i2) = i2_code_number;
2594 PATTERN (i2) = newi2pat;
2595 }
2596 else
2597 {
2598 PUT_CODE (i2, NOTE);
2599 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2600 NOTE_SOURCE_FILE (i2) = 0;
2601 }
2602
2603 if (i1)
2604 {
2605 LOG_LINKS (i1) = 0;
2606 REG_NOTES (i1) = 0;
2607 PUT_CODE (i1, NOTE);
2608 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2609 NOTE_SOURCE_FILE (i1) = 0;
2610 }
2611
2612 /* Get death notes for everything that is now used in either I3 or
2613 I2 and used to die in a previous insn. If we built two new
2614 patterns, move from I1 to I2 then I2 to I3 so that we get the
2615 proper movement on registers that I2 modifies. */
2616
2617 if (newi2pat)
2618 {
2619 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2620 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2621 }
2622 else
2623 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2624 i3, &midnotes);
2625
2626 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2627 if (i3notes)
2628 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2629 if (i2notes)
2630 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2631 if (i1notes)
2632 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2633 if (midnotes)
2634 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2635
2636 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2637 know these are REG_UNUSED and want them to go to the desired insn,
2638 so we always pass it as i3. We have not counted the notes in
2639 reg_n_deaths yet, so we need to do so now. */
2640
2641 if (newi2pat && new_i2_notes)
2642 {
2643 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2644 if (GET_CODE (XEXP (temp, 0)) == REG)
2645 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2646
2647 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2648 }
2649
2650 if (new_i3_notes)
2651 {
2652 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2653 if (GET_CODE (XEXP (temp, 0)) == REG)
2654 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2655
2656 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2657 }
2658
2659 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2660 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2661 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2662 in that case, it might delete I2. Similarly for I2 and I1.
2663 Show an additional death due to the REG_DEAD note we make here. If
2664 we discard it in distribute_notes, we will decrement it again. */
2665
2666 if (i3dest_killed)
2667 {
2668 if (GET_CODE (i3dest_killed) == REG)
2669 REG_N_DEATHS (REGNO (i3dest_killed))++;
2670
2671 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2672 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2673 NULL_RTX),
2674 NULL_RTX, i2, NULL_RTX);
2675 else
2676 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2677 NULL_RTX),
2678 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2679 }
2680
2681 if (i2dest_in_i2src)
2682 {
2683 if (GET_CODE (i2dest) == REG)
2684 REG_N_DEATHS (REGNO (i2dest))++;
2685
2686 if (newi2pat && reg_set_p (i2dest, newi2pat))
2687 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2688 NULL_RTX, i2, NULL_RTX);
2689 else
2690 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2691 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2692 }
2693
2694 if (i1dest_in_i1src)
2695 {
2696 if (GET_CODE (i1dest) == REG)
2697 REG_N_DEATHS (REGNO (i1dest))++;
2698
2699 if (newi2pat && reg_set_p (i1dest, newi2pat))
2700 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2701 NULL_RTX, i2, NULL_RTX);
2702 else
2703 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2704 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2705 }
2706
2707 distribute_links (i3links);
2708 distribute_links (i2links);
2709 distribute_links (i1links);
2710
2711 if (GET_CODE (i2dest) == REG)
2712 {
2713 rtx link;
2714 rtx i2_insn = 0, i2_val = 0, set;
2715
2716 /* The insn that used to set this register doesn't exist, and
2717 this life of the register may not exist either. See if one of
2718 I3's links points to an insn that sets I2DEST. If it does,
2719 that is now the last known value for I2DEST. If we don't update
2720 this and I2 set the register to a value that depended on its old
2721 contents, we will get confused. If this insn is used, thing
2722 will be set correctly in combine_instructions. */
2723
2724 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2725 if ((set = single_set (XEXP (link, 0))) != 0
2726 && rtx_equal_p (i2dest, SET_DEST (set)))
2727 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2728
2729 record_value_for_reg (i2dest, i2_insn, i2_val);
2730
2731 /* If the reg formerly set in I2 died only once and that was in I3,
2732 zero its use count so it won't make `reload' do any work. */
2733 if (! added_sets_2
2734 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2735 && ! i2dest_in_i2src)
2736 {
2737 regno = REGNO (i2dest);
2738 REG_N_SETS (regno)--;
2739 }
2740 }
2741
2742 if (i1 && GET_CODE (i1dest) == REG)
2743 {
2744 rtx link;
2745 rtx i1_insn = 0, i1_val = 0, set;
2746
2747 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2748 if ((set = single_set (XEXP (link, 0))) != 0
2749 && rtx_equal_p (i1dest, SET_DEST (set)))
2750 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2751
2752 record_value_for_reg (i1dest, i1_insn, i1_val);
2753
2754 regno = REGNO (i1dest);
2755 if (! added_sets_1 && ! i1dest_in_i1src)
2756 REG_N_SETS (regno)--;
2757 }
2758
2759 /* Update reg_nonzero_bits et al for any changes that may have been made
2760 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2761 important. Because newi2pat can affect nonzero_bits of newpat */
2762 if (newi2pat)
2763 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2764 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2765
2766 /* Set new_direct_jump_p if a new return or simple jump instruction
2767 has been created.
2768
2769 If I3 is now an unconditional jump, ensure that it has a
2770 BARRIER following it since it may have initially been a
2771 conditional jump. It may also be the last nonnote insn. */
2772
2773 if (returnjump_p (i3) || any_uncondjump_p (i3))
2774 {
2775 *new_direct_jump_p = 1;
2776 mark_jump_label (PATTERN (i3), i3, 0);
2777
2778 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2779 || GET_CODE (temp) != BARRIER)
2780 emit_barrier_after (i3);
2781 }
2782
2783 if (undobuf.other_insn != NULL_RTX
2784 && (returnjump_p (undobuf.other_insn)
2785 || any_uncondjump_p (undobuf.other_insn)))
2786 {
2787 *new_direct_jump_p = 1;
2788
2789 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2790 || GET_CODE (temp) != BARRIER)
2791 emit_barrier_after (undobuf.other_insn);
2792 }
2793
2794 /* An NOOP jump does not need barrier, but it does need cleaning up
2795 of CFG. */
2796 if (GET_CODE (newpat) == SET
2797 && SET_SRC (newpat) == pc_rtx
2798 && SET_DEST (newpat) == pc_rtx)
2799 *new_direct_jump_p = 1;
2800 }
2801
2802 combine_successes++;
2803 undo_commit ();
2804
2805 if (added_links_insn
2806 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2807 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2808 return added_links_insn;
2809 else
2810 return newi2pat ? i2 : i3;
2811 }
2812 \f
2813 /* Undo all the modifications recorded in undobuf. */
2814
2815 static void
2816 undo_all (void)
2817 {
2818 struct undo *undo, *next;
2819
2820 for (undo = undobuf.undos; undo; undo = next)
2821 {
2822 next = undo->next;
2823 if (undo->is_int)
2824 *undo->where.i = undo->old_contents.i;
2825 else
2826 *undo->where.r = undo->old_contents.r;
2827
2828 undo->next = undobuf.frees;
2829 undobuf.frees = undo;
2830 }
2831
2832 undobuf.undos = 0;
2833 }
2834
2835 /* We've committed to accepting the changes we made. Move all
2836 of the undos to the free list. */
2837
2838 static void
2839 undo_commit (void)
2840 {
2841 struct undo *undo, *next;
2842
2843 for (undo = undobuf.undos; undo; undo = next)
2844 {
2845 next = undo->next;
2846 undo->next = undobuf.frees;
2847 undobuf.frees = undo;
2848 }
2849 undobuf.undos = 0;
2850 }
2851
2852 \f
2853 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2854 where we have an arithmetic expression and return that point. LOC will
2855 be inside INSN.
2856
2857 try_combine will call this function to see if an insn can be split into
2858 two insns. */
2859
2860 static rtx *
2861 find_split_point (rtx *loc, rtx insn)
2862 {
2863 rtx x = *loc;
2864 enum rtx_code code = GET_CODE (x);
2865 rtx *split;
2866 unsigned HOST_WIDE_INT len = 0;
2867 HOST_WIDE_INT pos = 0;
2868 int unsignedp = 0;
2869 rtx inner = NULL_RTX;
2870
2871 /* First special-case some codes. */
2872 switch (code)
2873 {
2874 case SUBREG:
2875 #ifdef INSN_SCHEDULING
2876 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2877 point. */
2878 if (GET_CODE (SUBREG_REG (x)) == MEM)
2879 return loc;
2880 #endif
2881 return find_split_point (&SUBREG_REG (x), insn);
2882
2883 case MEM:
2884 #ifdef HAVE_lo_sum
2885 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2886 using LO_SUM and HIGH. */
2887 if (GET_CODE (XEXP (x, 0)) == CONST
2888 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2889 {
2890 SUBST (XEXP (x, 0),
2891 gen_rtx_LO_SUM (Pmode,
2892 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2893 XEXP (x, 0)));
2894 return &XEXP (XEXP (x, 0), 0);
2895 }
2896 #endif
2897
2898 /* If we have a PLUS whose second operand is a constant and the
2899 address is not valid, perhaps will can split it up using
2900 the machine-specific way to split large constants. We use
2901 the first pseudo-reg (one of the virtual regs) as a placeholder;
2902 it will not remain in the result. */
2903 if (GET_CODE (XEXP (x, 0)) == PLUS
2904 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2905 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2906 {
2907 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2908 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2909 subst_insn);
2910
2911 /* This should have produced two insns, each of which sets our
2912 placeholder. If the source of the second is a valid address,
2913 we can make put both sources together and make a split point
2914 in the middle. */
2915
2916 if (seq
2917 && NEXT_INSN (seq) != NULL_RTX
2918 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
2919 && GET_CODE (seq) == INSN
2920 && GET_CODE (PATTERN (seq)) == SET
2921 && SET_DEST (PATTERN (seq)) == reg
2922 && ! reg_mentioned_p (reg,
2923 SET_SRC (PATTERN (seq)))
2924 && GET_CODE (NEXT_INSN (seq)) == INSN
2925 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
2926 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
2927 && memory_address_p (GET_MODE (x),
2928 SET_SRC (PATTERN (NEXT_INSN (seq)))))
2929 {
2930 rtx src1 = SET_SRC (PATTERN (seq));
2931 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
2932
2933 /* Replace the placeholder in SRC2 with SRC1. If we can
2934 find where in SRC2 it was placed, that can become our
2935 split point and we can replace this address with SRC2.
2936 Just try two obvious places. */
2937
2938 src2 = replace_rtx (src2, reg, src1);
2939 split = 0;
2940 if (XEXP (src2, 0) == src1)
2941 split = &XEXP (src2, 0);
2942 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2943 && XEXP (XEXP (src2, 0), 0) == src1)
2944 split = &XEXP (XEXP (src2, 0), 0);
2945
2946 if (split)
2947 {
2948 SUBST (XEXP (x, 0), src2);
2949 return split;
2950 }
2951 }
2952
2953 /* If that didn't work, perhaps the first operand is complex and
2954 needs to be computed separately, so make a split point there.
2955 This will occur on machines that just support REG + CONST
2956 and have a constant moved through some previous computation. */
2957
2958 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
2959 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2960 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
2961 return &XEXP (XEXP (x, 0), 0);
2962 }
2963 break;
2964
2965 case SET:
2966 #ifdef HAVE_cc0
2967 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2968 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2969 we need to put the operand into a register. So split at that
2970 point. */
2971
2972 if (SET_DEST (x) == cc0_rtx
2973 && GET_CODE (SET_SRC (x)) != COMPARE
2974 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2975 && !OBJECT_P (SET_SRC (x))
2976 && ! (GET_CODE (SET_SRC (x)) == SUBREG
2977 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
2978 return &SET_SRC (x);
2979 #endif
2980
2981 /* See if we can split SET_SRC as it stands. */
2982 split = find_split_point (&SET_SRC (x), insn);
2983 if (split && split != &SET_SRC (x))
2984 return split;
2985
2986 /* See if we can split SET_DEST as it stands. */
2987 split = find_split_point (&SET_DEST (x), insn);
2988 if (split && split != &SET_DEST (x))
2989 return split;
2990
2991 /* See if this is a bitfield assignment with everything constant. If
2992 so, this is an IOR of an AND, so split it into that. */
2993 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2994 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2995 <= HOST_BITS_PER_WIDE_INT)
2996 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2997 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2998 && GET_CODE (SET_SRC (x)) == CONST_INT
2999 && ((INTVAL (XEXP (SET_DEST (x), 1))
3000 + INTVAL (XEXP (SET_DEST (x), 2)))
3001 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3002 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3003 {
3004 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3005 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3006 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3007 rtx dest = XEXP (SET_DEST (x), 0);
3008 enum machine_mode mode = GET_MODE (dest);
3009 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3010
3011 if (BITS_BIG_ENDIAN)
3012 pos = GET_MODE_BITSIZE (mode) - len - pos;
3013
3014 if (src == mask)
3015 SUBST (SET_SRC (x),
3016 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3017 else
3018 SUBST (SET_SRC (x),
3019 gen_binary (IOR, mode,
3020 gen_binary (AND, mode, dest,
3021 gen_int_mode (~(mask << pos),
3022 mode)),
3023 GEN_INT (src << pos)));
3024
3025 SUBST (SET_DEST (x), dest);
3026
3027 split = find_split_point (&SET_SRC (x), insn);
3028 if (split && split != &SET_SRC (x))
3029 return split;
3030 }
3031
3032 /* Otherwise, see if this is an operation that we can split into two.
3033 If so, try to split that. */
3034 code = GET_CODE (SET_SRC (x));
3035
3036 switch (code)
3037 {
3038 case AND:
3039 /* If we are AND'ing with a large constant that is only a single
3040 bit and the result is only being used in a context where we
3041 need to know if it is zero or nonzero, replace it with a bit
3042 extraction. This will avoid the large constant, which might
3043 have taken more than one insn to make. If the constant were
3044 not a valid argument to the AND but took only one insn to make,
3045 this is no worse, but if it took more than one insn, it will
3046 be better. */
3047
3048 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3049 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3050 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3051 && GET_CODE (SET_DEST (x)) == REG
3052 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3053 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3054 && XEXP (*split, 0) == SET_DEST (x)
3055 && XEXP (*split, 1) == const0_rtx)
3056 {
3057 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3058 XEXP (SET_SRC (x), 0),
3059 pos, NULL_RTX, 1, 1, 0, 0);
3060 if (extraction != 0)
3061 {
3062 SUBST (SET_SRC (x), extraction);
3063 return find_split_point (loc, insn);
3064 }
3065 }
3066 break;
3067
3068 case NE:
3069 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3070 is known to be on, this can be converted into a NEG of a shift. */
3071 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3072 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3073 && 1 <= (pos = exact_log2
3074 (nonzero_bits (XEXP (SET_SRC (x), 0),
3075 GET_MODE (XEXP (SET_SRC (x), 0))))))
3076 {
3077 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3078
3079 SUBST (SET_SRC (x),
3080 gen_rtx_NEG (mode,
3081 gen_rtx_LSHIFTRT (mode,
3082 XEXP (SET_SRC (x), 0),
3083 GEN_INT (pos))));
3084
3085 split = find_split_point (&SET_SRC (x), insn);
3086 if (split && split != &SET_SRC (x))
3087 return split;
3088 }
3089 break;
3090
3091 case SIGN_EXTEND:
3092 inner = XEXP (SET_SRC (x), 0);
3093
3094 /* We can't optimize if either mode is a partial integer
3095 mode as we don't know how many bits are significant
3096 in those modes. */
3097 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3098 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3099 break;
3100
3101 pos = 0;
3102 len = GET_MODE_BITSIZE (GET_MODE (inner));
3103 unsignedp = 0;
3104 break;
3105
3106 case SIGN_EXTRACT:
3107 case ZERO_EXTRACT:
3108 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3109 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3110 {
3111 inner = XEXP (SET_SRC (x), 0);
3112 len = INTVAL (XEXP (SET_SRC (x), 1));
3113 pos = INTVAL (XEXP (SET_SRC (x), 2));
3114
3115 if (BITS_BIG_ENDIAN)
3116 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3117 unsignedp = (code == ZERO_EXTRACT);
3118 }
3119 break;
3120
3121 default:
3122 break;
3123 }
3124
3125 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3126 {
3127 enum machine_mode mode = GET_MODE (SET_SRC (x));
3128
3129 /* For unsigned, we have a choice of a shift followed by an
3130 AND or two shifts. Use two shifts for field sizes where the
3131 constant might be too large. We assume here that we can
3132 always at least get 8-bit constants in an AND insn, which is
3133 true for every current RISC. */
3134
3135 if (unsignedp && len <= 8)
3136 {
3137 SUBST (SET_SRC (x),
3138 gen_rtx_AND (mode,
3139 gen_rtx_LSHIFTRT
3140 (mode, gen_lowpart (mode, inner),
3141 GEN_INT (pos)),
3142 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3143
3144 split = find_split_point (&SET_SRC (x), insn);
3145 if (split && split != &SET_SRC (x))
3146 return split;
3147 }
3148 else
3149 {
3150 SUBST (SET_SRC (x),
3151 gen_rtx_fmt_ee
3152 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3153 gen_rtx_ASHIFT (mode,
3154 gen_lowpart (mode, inner),
3155 GEN_INT (GET_MODE_BITSIZE (mode)
3156 - len - pos)),
3157 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3158
3159 split = find_split_point (&SET_SRC (x), insn);
3160 if (split && split != &SET_SRC (x))
3161 return split;
3162 }
3163 }
3164
3165 /* See if this is a simple operation with a constant as the second
3166 operand. It might be that this constant is out of range and hence
3167 could be used as a split point. */
3168 if (BINARY_P (SET_SRC (x))
3169 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3170 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3171 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3172 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3173 return &XEXP (SET_SRC (x), 1);
3174
3175 /* Finally, see if this is a simple operation with its first operand
3176 not in a register. The operation might require this operand in a
3177 register, so return it as a split point. We can always do this
3178 because if the first operand were another operation, we would have
3179 already found it as a split point. */
3180 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3181 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3182 return &XEXP (SET_SRC (x), 0);
3183
3184 return 0;
3185
3186 case AND:
3187 case IOR:
3188 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3189 it is better to write this as (not (ior A B)) so we can split it.
3190 Similarly for IOR. */
3191 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3192 {
3193 SUBST (*loc,
3194 gen_rtx_NOT (GET_MODE (x),
3195 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3196 GET_MODE (x),
3197 XEXP (XEXP (x, 0), 0),
3198 XEXP (XEXP (x, 1), 0))));
3199 return find_split_point (loc, insn);
3200 }
3201
3202 /* Many RISC machines have a large set of logical insns. If the
3203 second operand is a NOT, put it first so we will try to split the
3204 other operand first. */
3205 if (GET_CODE (XEXP (x, 1)) == NOT)
3206 {
3207 rtx tem = XEXP (x, 0);
3208 SUBST (XEXP (x, 0), XEXP (x, 1));
3209 SUBST (XEXP (x, 1), tem);
3210 }
3211 break;
3212
3213 default:
3214 break;
3215 }
3216
3217 /* Otherwise, select our actions depending on our rtx class. */
3218 switch (GET_RTX_CLASS (code))
3219 {
3220 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3221 case RTX_TERNARY:
3222 split = find_split_point (&XEXP (x, 2), insn);
3223 if (split)
3224 return split;
3225 /* ... fall through ... */
3226 case RTX_BIN_ARITH:
3227 case RTX_COMM_ARITH:
3228 case RTX_COMPARE:
3229 case RTX_COMM_COMPARE:
3230 split = find_split_point (&XEXP (x, 1), insn);
3231 if (split)
3232 return split;
3233 /* ... fall through ... */
3234 case RTX_UNARY:
3235 /* Some machines have (and (shift ...) ...) insns. If X is not
3236 an AND, but XEXP (X, 0) is, use it as our split point. */
3237 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3238 return &XEXP (x, 0);
3239
3240 split = find_split_point (&XEXP (x, 0), insn);
3241 if (split)
3242 return split;
3243 return loc;
3244
3245 default:
3246 /* Otherwise, we don't have a split point. */
3247 return 0;
3248 }
3249 }
3250 \f
3251 /* Throughout X, replace FROM with TO, and return the result.
3252 The result is TO if X is FROM;
3253 otherwise the result is X, but its contents may have been modified.
3254 If they were modified, a record was made in undobuf so that
3255 undo_all will (among other things) return X to its original state.
3256
3257 If the number of changes necessary is too much to record to undo,
3258 the excess changes are not made, so the result is invalid.
3259 The changes already made can still be undone.
3260 undobuf.num_undo is incremented for such changes, so by testing that
3261 the caller can tell whether the result is valid.
3262
3263 `n_occurrences' is incremented each time FROM is replaced.
3264
3265 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3266
3267 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3268 by copying if `n_occurrences' is nonzero. */
3269
3270 static rtx
3271 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3272 {
3273 enum rtx_code code = GET_CODE (x);
3274 enum machine_mode op0_mode = VOIDmode;
3275 const char *fmt;
3276 int len, i;
3277 rtx new;
3278
3279 /* Two expressions are equal if they are identical copies of a shared
3280 RTX or if they are both registers with the same register number
3281 and mode. */
3282
3283 #define COMBINE_RTX_EQUAL_P(X,Y) \
3284 ((X) == (Y) \
3285 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3286 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3287
3288 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3289 {
3290 n_occurrences++;
3291 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3292 }
3293
3294 /* If X and FROM are the same register but different modes, they will
3295 not have been seen as equal above. However, flow.c will make a
3296 LOG_LINKS entry for that case. If we do nothing, we will try to
3297 rerecognize our original insn and, when it succeeds, we will
3298 delete the feeding insn, which is incorrect.
3299
3300 So force this insn not to match in this (rare) case. */
3301 if (! in_dest && code == REG && GET_CODE (from) == REG
3302 && REGNO (x) == REGNO (from))
3303 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3304
3305 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3306 of which may contain things that can be combined. */
3307 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3308 return x;
3309
3310 /* It is possible to have a subexpression appear twice in the insn.
3311 Suppose that FROM is a register that appears within TO.
3312 Then, after that subexpression has been scanned once by `subst',
3313 the second time it is scanned, TO may be found. If we were
3314 to scan TO here, we would find FROM within it and create a
3315 self-referent rtl structure which is completely wrong. */
3316 if (COMBINE_RTX_EQUAL_P (x, to))
3317 return to;
3318
3319 /* Parallel asm_operands need special attention because all of the
3320 inputs are shared across the arms. Furthermore, unsharing the
3321 rtl results in recognition failures. Failure to handle this case
3322 specially can result in circular rtl.
3323
3324 Solve this by doing a normal pass across the first entry of the
3325 parallel, and only processing the SET_DESTs of the subsequent
3326 entries. Ug. */
3327
3328 if (code == PARALLEL
3329 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3330 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3331 {
3332 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3333
3334 /* If this substitution failed, this whole thing fails. */
3335 if (GET_CODE (new) == CLOBBER
3336 && XEXP (new, 0) == const0_rtx)
3337 return new;
3338
3339 SUBST (XVECEXP (x, 0, 0), new);
3340
3341 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3342 {
3343 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3344
3345 if (GET_CODE (dest) != REG
3346 && GET_CODE (dest) != CC0
3347 && GET_CODE (dest) != PC)
3348 {
3349 new = subst (dest, from, to, 0, unique_copy);
3350
3351 /* If this substitution failed, this whole thing fails. */
3352 if (GET_CODE (new) == CLOBBER
3353 && XEXP (new, 0) == const0_rtx)
3354 return new;
3355
3356 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3357 }
3358 }
3359 }
3360 else
3361 {
3362 len = GET_RTX_LENGTH (code);
3363 fmt = GET_RTX_FORMAT (code);
3364
3365 /* We don't need to process a SET_DEST that is a register, CC0,
3366 or PC, so set up to skip this common case. All other cases
3367 where we want to suppress replacing something inside a
3368 SET_SRC are handled via the IN_DEST operand. */
3369 if (code == SET
3370 && (GET_CODE (SET_DEST (x)) == REG
3371 || GET_CODE (SET_DEST (x)) == CC0
3372 || GET_CODE (SET_DEST (x)) == PC))
3373 fmt = "ie";
3374
3375 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3376 constant. */
3377 if (fmt[0] == 'e')
3378 op0_mode = GET_MODE (XEXP (x, 0));
3379
3380 for (i = 0; i < len; i++)
3381 {
3382 if (fmt[i] == 'E')
3383 {
3384 int j;
3385 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3386 {
3387 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3388 {
3389 new = (unique_copy && n_occurrences
3390 ? copy_rtx (to) : to);
3391 n_occurrences++;
3392 }
3393 else
3394 {
3395 new = subst (XVECEXP (x, i, j), from, to, 0,
3396 unique_copy);
3397
3398 /* If this substitution failed, this whole thing
3399 fails. */
3400 if (GET_CODE (new) == CLOBBER
3401 && XEXP (new, 0) == const0_rtx)
3402 return new;
3403 }
3404
3405 SUBST (XVECEXP (x, i, j), new);
3406 }
3407 }
3408 else if (fmt[i] == 'e')
3409 {
3410 /* If this is a register being set, ignore it. */
3411 new = XEXP (x, i);
3412 if (in_dest
3413 && (code == SUBREG || code == STRICT_LOW_PART
3414 || code == ZERO_EXTRACT)
3415 && i == 0
3416 && GET_CODE (new) == REG)
3417 ;
3418
3419 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3420 {
3421 /* In general, don't install a subreg involving two
3422 modes not tieable. It can worsen register
3423 allocation, and can even make invalid reload
3424 insns, since the reg inside may need to be copied
3425 from in the outside mode, and that may be invalid
3426 if it is an fp reg copied in integer mode.
3427
3428 We allow two exceptions to this: It is valid if
3429 it is inside another SUBREG and the mode of that
3430 SUBREG and the mode of the inside of TO is
3431 tieable and it is valid if X is a SET that copies
3432 FROM to CC0. */
3433
3434 if (GET_CODE (to) == SUBREG
3435 && ! MODES_TIEABLE_P (GET_MODE (to),
3436 GET_MODE (SUBREG_REG (to)))
3437 && ! (code == SUBREG
3438 && MODES_TIEABLE_P (GET_MODE (x),
3439 GET_MODE (SUBREG_REG (to))))
3440 #ifdef HAVE_cc0
3441 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3442 #endif
3443 )
3444 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3445
3446 #ifdef CANNOT_CHANGE_MODE_CLASS
3447 if (code == SUBREG
3448 && GET_CODE (to) == REG
3449 && REGNO (to) < FIRST_PSEUDO_REGISTER
3450 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3451 GET_MODE (to),
3452 GET_MODE (x)))
3453 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3454 #endif
3455
3456 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3457 n_occurrences++;
3458 }
3459 else
3460 /* If we are in a SET_DEST, suppress most cases unless we
3461 have gone inside a MEM, in which case we want to
3462 simplify the address. We assume here that things that
3463 are actually part of the destination have their inner
3464 parts in the first expression. This is true for SUBREG,
3465 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3466 things aside from REG and MEM that should appear in a
3467 SET_DEST. */
3468 new = subst (XEXP (x, i), from, to,
3469 (((in_dest
3470 && (code == SUBREG || code == STRICT_LOW_PART
3471 || code == ZERO_EXTRACT))
3472 || code == SET)
3473 && i == 0), unique_copy);
3474
3475 /* If we found that we will have to reject this combination,
3476 indicate that by returning the CLOBBER ourselves, rather than
3477 an expression containing it. This will speed things up as
3478 well as prevent accidents where two CLOBBERs are considered
3479 to be equal, thus producing an incorrect simplification. */
3480
3481 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3482 return new;
3483
3484 if (GET_CODE (x) == SUBREG
3485 && (GET_CODE (new) == CONST_INT
3486 || GET_CODE (new) == CONST_DOUBLE))
3487 {
3488 enum machine_mode mode = GET_MODE (x);
3489
3490 x = simplify_subreg (GET_MODE (x), new,
3491 GET_MODE (SUBREG_REG (x)),
3492 SUBREG_BYTE (x));
3493 if (! x)
3494 x = gen_rtx_CLOBBER (mode, const0_rtx);
3495 }
3496 else if (GET_CODE (new) == CONST_INT
3497 && GET_CODE (x) == ZERO_EXTEND)
3498 {
3499 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3500 new, GET_MODE (XEXP (x, 0)));
3501 if (! x)
3502 abort ();
3503 }
3504 else
3505 SUBST (XEXP (x, i), new);
3506 }
3507 }
3508 }
3509
3510 /* Try to simplify X. If the simplification changed the code, it is likely
3511 that further simplification will help, so loop, but limit the number
3512 of repetitions that will be performed. */
3513
3514 for (i = 0; i < 4; i++)
3515 {
3516 /* If X is sufficiently simple, don't bother trying to do anything
3517 with it. */
3518 if (code != CONST_INT && code != REG && code != CLOBBER)
3519 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3520
3521 if (GET_CODE (x) == code)
3522 break;
3523
3524 code = GET_CODE (x);
3525
3526 /* We no longer know the original mode of operand 0 since we
3527 have changed the form of X) */
3528 op0_mode = VOIDmode;
3529 }
3530
3531 return x;
3532 }
3533 \f
3534 /* Simplify X, a piece of RTL. We just operate on the expression at the
3535 outer level; call `subst' to simplify recursively. Return the new
3536 expression.
3537
3538 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3539 will be the iteration even if an expression with a code different from
3540 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3541
3542 static rtx
3543 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int last,
3544 int in_dest)
3545 {
3546 enum rtx_code code = GET_CODE (x);
3547 enum machine_mode mode = GET_MODE (x);
3548 rtx temp;
3549 rtx reversed;
3550 int i;
3551
3552 /* If this is a commutative operation, put a constant last and a complex
3553 expression first. We don't need to do this for comparisons here. */
3554 if (COMMUTATIVE_ARITH_P (x)
3555 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3556 {
3557 temp = XEXP (x, 0);
3558 SUBST (XEXP (x, 0), XEXP (x, 1));
3559 SUBST (XEXP (x, 1), temp);
3560 }
3561
3562 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3563 sign extension of a PLUS with a constant, reverse the order of the sign
3564 extension and the addition. Note that this not the same as the original
3565 code, but overflow is undefined for signed values. Also note that the
3566 PLUS will have been partially moved "inside" the sign-extension, so that
3567 the first operand of X will really look like:
3568 (ashiftrt (plus (ashift A C4) C5) C4).
3569 We convert this to
3570 (plus (ashiftrt (ashift A C4) C2) C4)
3571 and replace the first operand of X with that expression. Later parts
3572 of this function may simplify the expression further.
3573
3574 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3575 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3576 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3577
3578 We do this to simplify address expressions. */
3579
3580 if ((code == PLUS || code == MINUS || code == MULT)
3581 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3582 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3583 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3584 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3585 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3586 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3587 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3588 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3589 XEXP (XEXP (XEXP (x, 0), 0), 1),
3590 XEXP (XEXP (x, 0), 1))) != 0)
3591 {
3592 rtx new
3593 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3594 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3595 INTVAL (XEXP (XEXP (x, 0), 1)));
3596
3597 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3598 INTVAL (XEXP (XEXP (x, 0), 1)));
3599
3600 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3601 }
3602
3603 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3604 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3605 things. Check for cases where both arms are testing the same
3606 condition.
3607
3608 Don't do anything if all operands are very simple. */
3609
3610 if ((BINARY_P (x)
3611 && ((!OBJECT_P (XEXP (x, 0))
3612 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3613 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3614 || (!OBJECT_P (XEXP (x, 1))
3615 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3616 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3617 || (UNARY_P (x)
3618 && (!OBJECT_P (XEXP (x, 0))
3619 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3620 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3621 {
3622 rtx cond, true_rtx, false_rtx;
3623
3624 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3625 if (cond != 0
3626 /* If everything is a comparison, what we have is highly unlikely
3627 to be simpler, so don't use it. */
3628 && ! (COMPARISON_P (x)
3629 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3630 {
3631 rtx cop1 = const0_rtx;
3632 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3633
3634 if (cond_code == NE && COMPARISON_P (cond))
3635 return x;
3636
3637 /* Simplify the alternative arms; this may collapse the true and
3638 false arms to store-flag values. Be careful to use copy_rtx
3639 here since true_rtx or false_rtx might share RTL with x as a
3640 result of the if_then_else_cond call above. */
3641 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3642 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3643
3644 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3645 is unlikely to be simpler. */
3646 if (general_operand (true_rtx, VOIDmode)
3647 && general_operand (false_rtx, VOIDmode))
3648 {
3649 enum rtx_code reversed;
3650
3651 /* Restarting if we generate a store-flag expression will cause
3652 us to loop. Just drop through in this case. */
3653
3654 /* If the result values are STORE_FLAG_VALUE and zero, we can
3655 just make the comparison operation. */
3656 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3657 x = gen_binary (cond_code, mode, cond, cop1);
3658 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3659 && ((reversed = reversed_comparison_code_parts
3660 (cond_code, cond, cop1, NULL))
3661 != UNKNOWN))
3662 x = gen_binary (reversed, mode, cond, cop1);
3663
3664 /* Likewise, we can make the negate of a comparison operation
3665 if the result values are - STORE_FLAG_VALUE and zero. */
3666 else if (GET_CODE (true_rtx) == CONST_INT
3667 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3668 && false_rtx == const0_rtx)
3669 x = simplify_gen_unary (NEG, mode,
3670 gen_binary (cond_code, mode, cond,
3671 cop1),
3672 mode);
3673 else if (GET_CODE (false_rtx) == CONST_INT
3674 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3675 && true_rtx == const0_rtx
3676 && ((reversed = reversed_comparison_code_parts
3677 (cond_code, cond, cop1, NULL))
3678 != UNKNOWN))
3679 x = simplify_gen_unary (NEG, mode,
3680 gen_binary (reversed, mode,
3681 cond, cop1),
3682 mode);
3683 else
3684 return gen_rtx_IF_THEN_ELSE (mode,
3685 gen_binary (cond_code, VOIDmode,
3686 cond, cop1),
3687 true_rtx, false_rtx);
3688
3689 code = GET_CODE (x);
3690 op0_mode = VOIDmode;
3691 }
3692 }
3693 }
3694
3695 /* Try to fold this expression in case we have constants that weren't
3696 present before. */
3697 temp = 0;
3698 switch (GET_RTX_CLASS (code))
3699 {
3700 case RTX_UNARY:
3701 if (op0_mode == VOIDmode)
3702 op0_mode = GET_MODE (XEXP (x, 0));
3703 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3704 break;
3705 case RTX_COMPARE:
3706 case RTX_COMM_COMPARE:
3707 {
3708 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3709 if (cmp_mode == VOIDmode)
3710 {
3711 cmp_mode = GET_MODE (XEXP (x, 1));
3712 if (cmp_mode == VOIDmode)
3713 cmp_mode = op0_mode;
3714 }
3715 temp = simplify_relational_operation (code, mode, cmp_mode,
3716 XEXP (x, 0), XEXP (x, 1));
3717 }
3718 break;
3719 case RTX_COMM_ARITH:
3720 case RTX_BIN_ARITH:
3721 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3722 break;
3723 case RTX_BITFIELD_OPS:
3724 case RTX_TERNARY:
3725 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3726 XEXP (x, 1), XEXP (x, 2));
3727 break;
3728 default:
3729 break;
3730 }
3731
3732 if (temp)
3733 {
3734 x = temp;
3735 code = GET_CODE (temp);
3736 op0_mode = VOIDmode;
3737 mode = GET_MODE (temp);
3738 }
3739
3740 /* First see if we can apply the inverse distributive law. */
3741 if (code == PLUS || code == MINUS
3742 || code == AND || code == IOR || code == XOR)
3743 {
3744 x = apply_distributive_law (x);
3745 code = GET_CODE (x);
3746 op0_mode = VOIDmode;
3747 }
3748
3749 /* If CODE is an associative operation not otherwise handled, see if we
3750 can associate some operands. This can win if they are constants or
3751 if they are logically related (i.e. (a & b) & a). */
3752 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3753 || code == AND || code == IOR || code == XOR
3754 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3755 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3756 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3757 {
3758 if (GET_CODE (XEXP (x, 0)) == code)
3759 {
3760 rtx other = XEXP (XEXP (x, 0), 0);
3761 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3762 rtx inner_op1 = XEXP (x, 1);
3763 rtx inner;
3764
3765 /* Make sure we pass the constant operand if any as the second
3766 one if this is a commutative operation. */
3767 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
3768 {
3769 rtx tem = inner_op0;
3770 inner_op0 = inner_op1;
3771 inner_op1 = tem;
3772 }
3773 inner = simplify_binary_operation (code == MINUS ? PLUS
3774 : code == DIV ? MULT
3775 : code,
3776 mode, inner_op0, inner_op1);
3777
3778 /* For commutative operations, try the other pair if that one
3779 didn't simplify. */
3780 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
3781 {
3782 other = XEXP (XEXP (x, 0), 1);
3783 inner = simplify_binary_operation (code, mode,
3784 XEXP (XEXP (x, 0), 0),
3785 XEXP (x, 1));
3786 }
3787
3788 if (inner)
3789 return gen_binary (code, mode, other, inner);
3790 }
3791 }
3792
3793 /* A little bit of algebraic simplification here. */
3794 switch (code)
3795 {
3796 case MEM:
3797 /* Ensure that our address has any ASHIFTs converted to MULT in case
3798 address-recognizing predicates are called later. */
3799 temp = make_compound_operation (XEXP (x, 0), MEM);
3800 SUBST (XEXP (x, 0), temp);
3801 break;
3802
3803 case SUBREG:
3804 if (op0_mode == VOIDmode)
3805 op0_mode = GET_MODE (SUBREG_REG (x));
3806
3807 /* See if this can be moved to simplify_subreg. */
3808 if (CONSTANT_P (SUBREG_REG (x))
3809 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3810 /* Don't call gen_lowpart if the inner mode
3811 is VOIDmode and we cannot simplify it, as SUBREG without
3812 inner mode is invalid. */
3813 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3814 || gen_lowpart_common (mode, SUBREG_REG (x))))
3815 return gen_lowpart (mode, SUBREG_REG (x));
3816
3817 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3818 break;
3819 {
3820 rtx temp;
3821 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3822 SUBREG_BYTE (x));
3823 if (temp)
3824 return temp;
3825 }
3826
3827 /* Don't change the mode of the MEM if that would change the meaning
3828 of the address. */
3829 if (GET_CODE (SUBREG_REG (x)) == MEM
3830 && (MEM_VOLATILE_P (SUBREG_REG (x))
3831 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3832 return gen_rtx_CLOBBER (mode, const0_rtx);
3833
3834 /* Note that we cannot do any narrowing for non-constants since
3835 we might have been counting on using the fact that some bits were
3836 zero. We now do this in the SET. */
3837
3838 break;
3839
3840 case NOT:
3841 if (GET_CODE (XEXP (x, 0)) == SUBREG
3842 && subreg_lowpart_p (XEXP (x, 0))
3843 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3844 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3845 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3846 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3847 {
3848 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3849
3850 x = gen_rtx_ROTATE (inner_mode,
3851 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3852 inner_mode),
3853 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3854 return gen_lowpart (mode, x);
3855 }
3856
3857 /* Apply De Morgan's laws to reduce number of patterns for machines
3858 with negating logical insns (and-not, nand, etc.). If result has
3859 only one NOT, put it first, since that is how the patterns are
3860 coded. */
3861
3862 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3863 {
3864 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3865 enum machine_mode op_mode;
3866
3867 op_mode = GET_MODE (in1);
3868 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3869
3870 op_mode = GET_MODE (in2);
3871 if (op_mode == VOIDmode)
3872 op_mode = mode;
3873 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3874
3875 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3876 {
3877 rtx tem = in2;
3878 in2 = in1; in1 = tem;
3879 }
3880
3881 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3882 mode, in1, in2);
3883 }
3884 break;
3885
3886 case NEG:
3887 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3888 if (GET_CODE (XEXP (x, 0)) == XOR
3889 && XEXP (XEXP (x, 0), 1) == const1_rtx
3890 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
3891 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3892
3893 temp = expand_compound_operation (XEXP (x, 0));
3894
3895 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3896 replaced by (lshiftrt X C). This will convert
3897 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
3898
3899 if (GET_CODE (temp) == ASHIFTRT
3900 && GET_CODE (XEXP (temp, 1)) == CONST_INT
3901 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
3902 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
3903 INTVAL (XEXP (temp, 1)));
3904
3905 /* If X has only a single bit that might be nonzero, say, bit I, convert
3906 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
3907 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
3908 (sign_extract X 1 Y). But only do this if TEMP isn't a register
3909 or a SUBREG of one since we'd be making the expression more
3910 complex if it was just a register. */
3911
3912 if (GET_CODE (temp) != REG
3913 && ! (GET_CODE (temp) == SUBREG
3914 && GET_CODE (SUBREG_REG (temp)) == REG)
3915 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
3916 {
3917 rtx temp1 = simplify_shift_const
3918 (NULL_RTX, ASHIFTRT, mode,
3919 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
3920 GET_MODE_BITSIZE (mode) - 1 - i),
3921 GET_MODE_BITSIZE (mode) - 1 - i);
3922
3923 /* If all we did was surround TEMP with the two shifts, we
3924 haven't improved anything, so don't use it. Otherwise,
3925 we are better off with TEMP1. */
3926 if (GET_CODE (temp1) != ASHIFTRT
3927 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
3928 || XEXP (XEXP (temp1, 0), 0) != temp)
3929 return temp1;
3930 }
3931 break;
3932
3933 case TRUNCATE:
3934 /* We can't handle truncation to a partial integer mode here
3935 because we don't know the real bitsize of the partial
3936 integer mode. */
3937 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
3938 break;
3939
3940 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3941 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3942 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
3943 SUBST (XEXP (x, 0),
3944 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
3945 GET_MODE_MASK (mode), NULL_RTX, 0));
3946
3947 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
3948 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
3949 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
3950 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
3951 return XEXP (XEXP (x, 0), 0);
3952
3953 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
3954 (OP:SI foo:SI) if OP is NEG or ABS. */
3955 if ((GET_CODE (XEXP (x, 0)) == ABS
3956 || GET_CODE (XEXP (x, 0)) == NEG)
3957 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
3958 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
3959 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
3960 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
3961 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
3962
3963 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
3964 (truncate:SI x). */
3965 if (GET_CODE (XEXP (x, 0)) == SUBREG
3966 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
3967 && subreg_lowpart_p (XEXP (x, 0)))
3968 return SUBREG_REG (XEXP (x, 0));
3969
3970 /* If we know that the value is already truncated, we can
3971 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
3972 is nonzero for the corresponding modes. But don't do this
3973 for an (LSHIFTRT (MULT ...)) since this will cause problems
3974 with the umulXi3_highpart patterns. */
3975 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3976 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
3977 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
3978 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
3979 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
3980 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
3981 return gen_lowpart (mode, XEXP (x, 0));
3982
3983 /* A truncate of a comparison can be replaced with a subreg if
3984 STORE_FLAG_VALUE permits. This is like the previous test,
3985 but it works even if the comparison is done in a mode larger
3986 than HOST_BITS_PER_WIDE_INT. */
3987 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3988 && COMPARISON_P (XEXP (x, 0))
3989 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
3990 return gen_lowpart (mode, XEXP (x, 0));
3991
3992 /* Similarly, a truncate of a register whose value is a
3993 comparison can be replaced with a subreg if STORE_FLAG_VALUE
3994 permits. */
3995 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3996 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
3997 && (temp = get_last_value (XEXP (x, 0)))
3998 && COMPARISON_P (temp))
3999 return gen_lowpart (mode, XEXP (x, 0));
4000
4001 break;
4002
4003 case FLOAT_TRUNCATE:
4004 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4005 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4006 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4007 return XEXP (XEXP (x, 0), 0);
4008
4009 /* (float_truncate:SF (float_truncate:DF foo:XF))
4010 = (float_truncate:SF foo:XF).
4011 This may eliminate double rounding, so it is unsafe.
4012
4013 (float_truncate:SF (float_extend:XF foo:DF))
4014 = (float_truncate:SF foo:DF).
4015
4016 (float_truncate:DF (float_extend:XF foo:SF))
4017 = (float_extend:SF foo:DF). */
4018 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4019 && flag_unsafe_math_optimizations)
4020 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4021 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4022 0)))
4023 > GET_MODE_SIZE (mode)
4024 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4025 mode,
4026 XEXP (XEXP (x, 0), 0), mode);
4027
4028 /* (float_truncate (float x)) is (float x) */
4029 if (GET_CODE (XEXP (x, 0)) == FLOAT
4030 && (flag_unsafe_math_optimizations
4031 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4032 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4033 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4034 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4035 return simplify_gen_unary (FLOAT, mode,
4036 XEXP (XEXP (x, 0), 0),
4037 GET_MODE (XEXP (XEXP (x, 0), 0)));
4038
4039 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4040 (OP:SF foo:SF) if OP is NEG or ABS. */
4041 if ((GET_CODE (XEXP (x, 0)) == ABS
4042 || GET_CODE (XEXP (x, 0)) == NEG)
4043 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4044 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4045 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4046 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4047
4048 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4049 is (float_truncate:SF x). */
4050 if (GET_CODE (XEXP (x, 0)) == SUBREG
4051 && subreg_lowpart_p (XEXP (x, 0))
4052 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4053 return SUBREG_REG (XEXP (x, 0));
4054 break;
4055 case FLOAT_EXTEND:
4056 /* (float_extend (float_extend x)) is (float_extend x)
4057
4058 (float_extend (float x)) is (float x) assuming that double
4059 rounding can't happen.
4060 */
4061 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4062 || (GET_CODE (XEXP (x, 0)) == FLOAT
4063 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4064 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4065 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4066 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4067 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4068 XEXP (XEXP (x, 0), 0),
4069 GET_MODE (XEXP (XEXP (x, 0), 0)));
4070
4071 break;
4072 #ifdef HAVE_cc0
4073 case COMPARE:
4074 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4075 using cc0, in which case we want to leave it as a COMPARE
4076 so we can distinguish it from a register-register-copy. */
4077 if (XEXP (x, 1) == const0_rtx)
4078 return XEXP (x, 0);
4079
4080 /* x - 0 is the same as x unless x's mode has signed zeros and
4081 allows rounding towards -infinity. Under those conditions,
4082 0 - 0 is -0. */
4083 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4084 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4085 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4086 return XEXP (x, 0);
4087 break;
4088 #endif
4089
4090 case CONST:
4091 /* (const (const X)) can become (const X). Do it this way rather than
4092 returning the inner CONST since CONST can be shared with a
4093 REG_EQUAL note. */
4094 if (GET_CODE (XEXP (x, 0)) == CONST)
4095 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4096 break;
4097
4098 #ifdef HAVE_lo_sum
4099 case LO_SUM:
4100 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4101 can add in an offset. find_split_point will split this address up
4102 again if it doesn't match. */
4103 if (GET_CODE (XEXP (x, 0)) == HIGH
4104 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4105 return XEXP (x, 1);
4106 break;
4107 #endif
4108
4109 case PLUS:
4110 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4111 */
4112 if (GET_CODE (XEXP (x, 0)) == MULT
4113 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4114 {
4115 rtx in1, in2;
4116
4117 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4118 in2 = XEXP (XEXP (x, 0), 1);
4119 return gen_binary (MINUS, mode, XEXP (x, 1),
4120 gen_binary (MULT, mode, in1, in2));
4121 }
4122
4123 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4124 outermost. That's because that's the way indexed addresses are
4125 supposed to appear. This code used to check many more cases, but
4126 they are now checked elsewhere. */
4127 if (GET_CODE (XEXP (x, 0)) == PLUS
4128 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4129 return gen_binary (PLUS, mode,
4130 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4131 XEXP (x, 1)),
4132 XEXP (XEXP (x, 0), 1));
4133
4134 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4135 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4136 bit-field and can be replaced by either a sign_extend or a
4137 sign_extract. The `and' may be a zero_extend and the two
4138 <c>, -<c> constants may be reversed. */
4139 if (GET_CODE (XEXP (x, 0)) == XOR
4140 && GET_CODE (XEXP (x, 1)) == CONST_INT
4141 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4142 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4143 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4144 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4145 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4146 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4147 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4148 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4149 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4150 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4151 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4152 == (unsigned int) i + 1))))
4153 return simplify_shift_const
4154 (NULL_RTX, ASHIFTRT, mode,
4155 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4156 XEXP (XEXP (XEXP (x, 0), 0), 0),
4157 GET_MODE_BITSIZE (mode) - (i + 1)),
4158 GET_MODE_BITSIZE (mode) - (i + 1));
4159
4160 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4161 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4162 is 1. This produces better code than the alternative immediately
4163 below. */
4164 if (COMPARISON_P (XEXP (x, 0))
4165 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4166 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4167 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4168 XEXP (XEXP (x, 0), 0),
4169 XEXP (XEXP (x, 0), 1))))
4170 return
4171 simplify_gen_unary (NEG, mode, reversed, mode);
4172
4173 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4174 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4175 the bitsize of the mode - 1. This allows simplification of
4176 "a = (b & 8) == 0;" */
4177 if (XEXP (x, 1) == constm1_rtx
4178 && GET_CODE (XEXP (x, 0)) != REG
4179 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4180 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4181 && nonzero_bits (XEXP (x, 0), mode) == 1)
4182 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4183 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4184 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4185 GET_MODE_BITSIZE (mode) - 1),
4186 GET_MODE_BITSIZE (mode) - 1);
4187
4188 /* If we are adding two things that have no bits in common, convert
4189 the addition into an IOR. This will often be further simplified,
4190 for example in cases like ((a & 1) + (a & 2)), which can
4191 become a & 3. */
4192
4193 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4194 && (nonzero_bits (XEXP (x, 0), mode)
4195 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4196 {
4197 /* Try to simplify the expression further. */
4198 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4199 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4200
4201 /* If we could, great. If not, do not go ahead with the IOR
4202 replacement, since PLUS appears in many special purpose
4203 address arithmetic instructions. */
4204 if (GET_CODE (temp) != CLOBBER && temp != tor)
4205 return temp;
4206 }
4207 break;
4208
4209 case MINUS:
4210 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4211 by reversing the comparison code if valid. */
4212 if (STORE_FLAG_VALUE == 1
4213 && XEXP (x, 0) == const1_rtx
4214 && COMPARISON_P (XEXP (x, 1))
4215 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4216 XEXP (XEXP (x, 1), 0),
4217 XEXP (XEXP (x, 1), 1))))
4218 return reversed;
4219
4220 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4221 (and <foo> (const_int pow2-1)) */
4222 if (GET_CODE (XEXP (x, 1)) == AND
4223 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4224 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4225 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4226 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4227 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4228
4229 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4230 */
4231 if (GET_CODE (XEXP (x, 1)) == MULT
4232 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4233 {
4234 rtx in1, in2;
4235
4236 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4237 in2 = XEXP (XEXP (x, 1), 1);
4238 return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4239 XEXP (x, 0));
4240 }
4241
4242 /* Canonicalize (minus (neg A) (mult B C)) to
4243 (minus (mult (neg B) C) A). */
4244 if (GET_CODE (XEXP (x, 1)) == MULT
4245 && GET_CODE (XEXP (x, 0)) == NEG)
4246 {
4247 rtx in1, in2;
4248
4249 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4250 in2 = XEXP (XEXP (x, 1), 1);
4251 return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4252 XEXP (XEXP (x, 0), 0));
4253 }
4254
4255 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4256 integers. */
4257 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4258 return gen_binary (MINUS, mode,
4259 gen_binary (MINUS, mode, XEXP (x, 0),
4260 XEXP (XEXP (x, 1), 0)),
4261 XEXP (XEXP (x, 1), 1));
4262 break;
4263
4264 case MULT:
4265 /* If we have (mult (plus A B) C), apply the distributive law and then
4266 the inverse distributive law to see if things simplify. This
4267 occurs mostly in addresses, often when unrolling loops. */
4268
4269 if (GET_CODE (XEXP (x, 0)) == PLUS)
4270 {
4271 x = apply_distributive_law
4272 (gen_binary (PLUS, mode,
4273 gen_binary (MULT, mode,
4274 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4275 gen_binary (MULT, mode,
4276 XEXP (XEXP (x, 0), 1),
4277 copy_rtx (XEXP (x, 1)))));
4278
4279 if (GET_CODE (x) != MULT)
4280 return x;
4281 }
4282 /* Try simplify a*(b/c) as (a*b)/c. */
4283 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4284 && GET_CODE (XEXP (x, 0)) == DIV)
4285 {
4286 rtx tem = simplify_binary_operation (MULT, mode,
4287 XEXP (XEXP (x, 0), 0),
4288 XEXP (x, 1));
4289 if (tem)
4290 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4291 }
4292 break;
4293
4294 case UDIV:
4295 /* If this is a divide by a power of two, treat it as a shift if
4296 its first operand is a shift. */
4297 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4298 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4299 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4300 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4301 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4302 || GET_CODE (XEXP (x, 0)) == ROTATE
4303 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4304 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4305 break;
4306
4307 case EQ: case NE:
4308 case GT: case GTU: case GE: case GEU:
4309 case LT: case LTU: case LE: case LEU:
4310 case UNEQ: case LTGT:
4311 case UNGT: case UNGE:
4312 case UNLT: case UNLE:
4313 case UNORDERED: case ORDERED:
4314 /* If the first operand is a condition code, we can't do anything
4315 with it. */
4316 if (GET_CODE (XEXP (x, 0)) == COMPARE
4317 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4318 && ! CC0_P (XEXP (x, 0))))
4319 {
4320 rtx op0 = XEXP (x, 0);
4321 rtx op1 = XEXP (x, 1);
4322 enum rtx_code new_code;
4323
4324 if (GET_CODE (op0) == COMPARE)
4325 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4326
4327 /* Simplify our comparison, if possible. */
4328 new_code = simplify_comparison (code, &op0, &op1);
4329
4330 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4331 if only the low-order bit is possibly nonzero in X (such as when
4332 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4333 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4334 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4335 (plus X 1).
4336
4337 Remove any ZERO_EXTRACT we made when thinking this was a
4338 comparison. It may now be simpler to use, e.g., an AND. If a
4339 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4340 the call to make_compound_operation in the SET case. */
4341
4342 if (STORE_FLAG_VALUE == 1
4343 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4344 && op1 == const0_rtx
4345 && mode == GET_MODE (op0)
4346 && nonzero_bits (op0, mode) == 1)
4347 return gen_lowpart (mode,
4348 expand_compound_operation (op0));
4349
4350 else if (STORE_FLAG_VALUE == 1
4351 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4352 && op1 == const0_rtx
4353 && mode == GET_MODE (op0)
4354 && (num_sign_bit_copies (op0, mode)
4355 == GET_MODE_BITSIZE (mode)))
4356 {
4357 op0 = expand_compound_operation (op0);
4358 return simplify_gen_unary (NEG, mode,
4359 gen_lowpart (mode, op0),
4360 mode);
4361 }
4362
4363 else if (STORE_FLAG_VALUE == 1
4364 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4365 && op1 == const0_rtx
4366 && mode == GET_MODE (op0)
4367 && nonzero_bits (op0, mode) == 1)
4368 {
4369 op0 = expand_compound_operation (op0);
4370 return gen_binary (XOR, mode,
4371 gen_lowpart (mode, op0),
4372 const1_rtx);
4373 }
4374
4375 else if (STORE_FLAG_VALUE == 1
4376 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4377 && op1 == const0_rtx
4378 && mode == GET_MODE (op0)
4379 && (num_sign_bit_copies (op0, mode)
4380 == GET_MODE_BITSIZE (mode)))
4381 {
4382 op0 = expand_compound_operation (op0);
4383 return plus_constant (gen_lowpart (mode, op0), 1);
4384 }
4385
4386 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4387 those above. */
4388 if (STORE_FLAG_VALUE == -1
4389 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4390 && op1 == const0_rtx
4391 && (num_sign_bit_copies (op0, mode)
4392 == GET_MODE_BITSIZE (mode)))
4393 return gen_lowpart (mode,
4394 expand_compound_operation (op0));
4395
4396 else if (STORE_FLAG_VALUE == -1
4397 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4398 && op1 == const0_rtx
4399 && mode == GET_MODE (op0)
4400 && nonzero_bits (op0, mode) == 1)
4401 {
4402 op0 = expand_compound_operation (op0);
4403 return simplify_gen_unary (NEG, mode,
4404 gen_lowpart (mode, op0),
4405 mode);
4406 }
4407
4408 else if (STORE_FLAG_VALUE == -1
4409 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4410 && op1 == const0_rtx
4411 && mode == GET_MODE (op0)
4412 && (num_sign_bit_copies (op0, mode)
4413 == GET_MODE_BITSIZE (mode)))
4414 {
4415 op0 = expand_compound_operation (op0);
4416 return simplify_gen_unary (NOT, mode,
4417 gen_lowpart (mode, op0),
4418 mode);
4419 }
4420
4421 /* If X is 0/1, (eq X 0) is X-1. */
4422 else if (STORE_FLAG_VALUE == -1
4423 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4424 && op1 == const0_rtx
4425 && mode == GET_MODE (op0)
4426 && nonzero_bits (op0, mode) == 1)
4427 {
4428 op0 = expand_compound_operation (op0);
4429 return plus_constant (gen_lowpart (mode, op0), -1);
4430 }
4431
4432 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4433 one bit that might be nonzero, we can convert (ne x 0) to
4434 (ashift x c) where C puts the bit in the sign bit. Remove any
4435 AND with STORE_FLAG_VALUE when we are done, since we are only
4436 going to test the sign bit. */
4437 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4438 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4439 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4440 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4441 && op1 == const0_rtx
4442 && mode == GET_MODE (op0)
4443 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4444 {
4445 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4446 expand_compound_operation (op0),
4447 GET_MODE_BITSIZE (mode) - 1 - i);
4448 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4449 return XEXP (x, 0);
4450 else
4451 return x;
4452 }
4453
4454 /* If the code changed, return a whole new comparison. */
4455 if (new_code != code)
4456 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4457
4458 /* Otherwise, keep this operation, but maybe change its operands.
4459 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4460 SUBST (XEXP (x, 0), op0);
4461 SUBST (XEXP (x, 1), op1);
4462 }
4463 break;
4464
4465 case IF_THEN_ELSE:
4466 return simplify_if_then_else (x);
4467
4468 case ZERO_EXTRACT:
4469 case SIGN_EXTRACT:
4470 case ZERO_EXTEND:
4471 case SIGN_EXTEND:
4472 /* If we are processing SET_DEST, we are done. */
4473 if (in_dest)
4474 return x;
4475
4476 return expand_compound_operation (x);
4477
4478 case SET:
4479 return simplify_set (x);
4480
4481 case AND:
4482 case IOR:
4483 case XOR:
4484 return simplify_logical (x, last);
4485
4486 case ABS:
4487 /* (abs (neg <foo>)) -> (abs <foo>) */
4488 if (GET_CODE (XEXP (x, 0)) == NEG)
4489 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4490
4491 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4492 do nothing. */
4493 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4494 break;
4495
4496 /* If operand is something known to be positive, ignore the ABS. */
4497 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4498 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4499 <= HOST_BITS_PER_WIDE_INT)
4500 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4501 & ((HOST_WIDE_INT) 1
4502 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4503 == 0)))
4504 return XEXP (x, 0);
4505
4506 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4507 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4508 return gen_rtx_NEG (mode, XEXP (x, 0));
4509
4510 break;
4511
4512 case FFS:
4513 /* (ffs (*_extend <X>)) = (ffs <X>) */
4514 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4515 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4516 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4517 break;
4518
4519 case POPCOUNT:
4520 case PARITY:
4521 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4522 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4523 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4524 break;
4525
4526 case FLOAT:
4527 /* (float (sign_extend <X>)) = (float <X>). */
4528 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4529 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4530 break;
4531
4532 case ASHIFT:
4533 case LSHIFTRT:
4534 case ASHIFTRT:
4535 case ROTATE:
4536 case ROTATERT:
4537 /* If this is a shift by a constant amount, simplify it. */
4538 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4539 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4540 INTVAL (XEXP (x, 1)));
4541
4542 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4543 SUBST (XEXP (x, 1),
4544 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4545 ((HOST_WIDE_INT) 1
4546 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4547 - 1,
4548 NULL_RTX, 0));
4549 break;
4550
4551 case VEC_SELECT:
4552 {
4553 rtx op0 = XEXP (x, 0);
4554 rtx op1 = XEXP (x, 1);
4555 int len;
4556
4557 if (GET_CODE (op1) != PARALLEL)
4558 abort ();
4559 len = XVECLEN (op1, 0);
4560 if (len == 1
4561 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4562 && GET_CODE (op0) == VEC_CONCAT)
4563 {
4564 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4565
4566 /* Try to find the element in the VEC_CONCAT. */
4567 for (;;)
4568 {
4569 if (GET_MODE (op0) == GET_MODE (x))
4570 return op0;
4571 if (GET_CODE (op0) == VEC_CONCAT)
4572 {
4573 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4574 if (op0_size < offset)
4575 op0 = XEXP (op0, 0);
4576 else
4577 {
4578 offset -= op0_size;
4579 op0 = XEXP (op0, 1);
4580 }
4581 }
4582 else
4583 break;
4584 }
4585 }
4586 }
4587
4588 break;
4589
4590 default:
4591 break;
4592 }
4593
4594 return x;
4595 }
4596 \f
4597 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4598
4599 static rtx
4600 simplify_if_then_else (rtx x)
4601 {
4602 enum machine_mode mode = GET_MODE (x);
4603 rtx cond = XEXP (x, 0);
4604 rtx true_rtx = XEXP (x, 1);
4605 rtx false_rtx = XEXP (x, 2);
4606 enum rtx_code true_code = GET_CODE (cond);
4607 int comparison_p = COMPARISON_P (cond);
4608 rtx temp;
4609 int i;
4610 enum rtx_code false_code;
4611 rtx reversed;
4612
4613 /* Simplify storing of the truth value. */
4614 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4615 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4616
4617 /* Also when the truth value has to be reversed. */
4618 if (comparison_p
4619 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4620 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4621 XEXP (cond, 1))))
4622 return reversed;
4623
4624 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4625 in it is being compared against certain values. Get the true and false
4626 comparisons and see if that says anything about the value of each arm. */
4627
4628 if (comparison_p
4629 && ((false_code = combine_reversed_comparison_code (cond))
4630 != UNKNOWN)
4631 && GET_CODE (XEXP (cond, 0)) == REG)
4632 {
4633 HOST_WIDE_INT nzb;
4634 rtx from = XEXP (cond, 0);
4635 rtx true_val = XEXP (cond, 1);
4636 rtx false_val = true_val;
4637 int swapped = 0;
4638
4639 /* If FALSE_CODE is EQ, swap the codes and arms. */
4640
4641 if (false_code == EQ)
4642 {
4643 swapped = 1, true_code = EQ, false_code = NE;
4644 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4645 }
4646
4647 /* If we are comparing against zero and the expression being tested has
4648 only a single bit that might be nonzero, that is its value when it is
4649 not equal to zero. Similarly if it is known to be -1 or 0. */
4650
4651 if (true_code == EQ && true_val == const0_rtx
4652 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4653 false_code = EQ, false_val = GEN_INT (nzb);
4654 else if (true_code == EQ && true_val == const0_rtx
4655 && (num_sign_bit_copies (from, GET_MODE (from))
4656 == GET_MODE_BITSIZE (GET_MODE (from))))
4657 false_code = EQ, false_val = constm1_rtx;
4658
4659 /* Now simplify an arm if we know the value of the register in the
4660 branch and it is used in the arm. Be careful due to the potential
4661 of locally-shared RTL. */
4662
4663 if (reg_mentioned_p (from, true_rtx))
4664 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4665 from, true_val),
4666 pc_rtx, pc_rtx, 0, 0);
4667 if (reg_mentioned_p (from, false_rtx))
4668 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4669 from, false_val),
4670 pc_rtx, pc_rtx, 0, 0);
4671
4672 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4673 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4674
4675 true_rtx = XEXP (x, 1);
4676 false_rtx = XEXP (x, 2);
4677 true_code = GET_CODE (cond);
4678 }
4679
4680 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4681 reversed, do so to avoid needing two sets of patterns for
4682 subtract-and-branch insns. Similarly if we have a constant in the true
4683 arm, the false arm is the same as the first operand of the comparison, or
4684 the false arm is more complicated than the true arm. */
4685
4686 if (comparison_p
4687 && combine_reversed_comparison_code (cond) != UNKNOWN
4688 && (true_rtx == pc_rtx
4689 || (CONSTANT_P (true_rtx)
4690 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4691 || true_rtx == const0_rtx
4692 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4693 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4694 && !OBJECT_P (false_rtx))
4695 || reg_mentioned_p (true_rtx, false_rtx)
4696 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4697 {
4698 true_code = reversed_comparison_code (cond, NULL);
4699 SUBST (XEXP (x, 0),
4700 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4701 XEXP (cond, 1)));
4702
4703 SUBST (XEXP (x, 1), false_rtx);
4704 SUBST (XEXP (x, 2), true_rtx);
4705
4706 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4707 cond = XEXP (x, 0);
4708
4709 /* It is possible that the conditional has been simplified out. */
4710 true_code = GET_CODE (cond);
4711 comparison_p = COMPARISON_P (cond);
4712 }
4713
4714 /* If the two arms are identical, we don't need the comparison. */
4715
4716 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4717 return true_rtx;
4718
4719 /* Convert a == b ? b : a to "a". */
4720 if (true_code == EQ && ! side_effects_p (cond)
4721 && !HONOR_NANS (mode)
4722 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4723 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4724 return false_rtx;
4725 else if (true_code == NE && ! side_effects_p (cond)
4726 && !HONOR_NANS (mode)
4727 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4728 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4729 return true_rtx;
4730
4731 /* Look for cases where we have (abs x) or (neg (abs X)). */
4732
4733 if (GET_MODE_CLASS (mode) == MODE_INT
4734 && GET_CODE (false_rtx) == NEG
4735 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4736 && comparison_p
4737 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4738 && ! side_effects_p (true_rtx))
4739 switch (true_code)
4740 {
4741 case GT:
4742 case GE:
4743 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4744 case LT:
4745 case LE:
4746 return
4747 simplify_gen_unary (NEG, mode,
4748 simplify_gen_unary (ABS, mode, true_rtx, mode),
4749 mode);
4750 default:
4751 break;
4752 }
4753
4754 /* Look for MIN or MAX. */
4755
4756 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4757 && comparison_p
4758 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4759 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4760 && ! side_effects_p (cond))
4761 switch (true_code)
4762 {
4763 case GE:
4764 case GT:
4765 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4766 case LE:
4767 case LT:
4768 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4769 case GEU:
4770 case GTU:
4771 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4772 case LEU:
4773 case LTU:
4774 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4775 default:
4776 break;
4777 }
4778
4779 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4780 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4781 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4782 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4783 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4784 neither 1 or -1, but it isn't worth checking for. */
4785
4786 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4787 && comparison_p
4788 && GET_MODE_CLASS (mode) == MODE_INT
4789 && ! side_effects_p (x))
4790 {
4791 rtx t = make_compound_operation (true_rtx, SET);
4792 rtx f = make_compound_operation (false_rtx, SET);
4793 rtx cond_op0 = XEXP (cond, 0);
4794 rtx cond_op1 = XEXP (cond, 1);
4795 enum rtx_code op = NIL, extend_op = NIL;
4796 enum machine_mode m = mode;
4797 rtx z = 0, c1 = NULL_RTX;
4798
4799 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4800 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4801 || GET_CODE (t) == ASHIFT
4802 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4803 && rtx_equal_p (XEXP (t, 0), f))
4804 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4805
4806 /* If an identity-zero op is commutative, check whether there
4807 would be a match if we swapped the operands. */
4808 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4809 || GET_CODE (t) == XOR)
4810 && rtx_equal_p (XEXP (t, 1), f))
4811 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4812 else if (GET_CODE (t) == SIGN_EXTEND
4813 && (GET_CODE (XEXP (t, 0)) == PLUS
4814 || GET_CODE (XEXP (t, 0)) == MINUS
4815 || GET_CODE (XEXP (t, 0)) == IOR
4816 || GET_CODE (XEXP (t, 0)) == XOR
4817 || GET_CODE (XEXP (t, 0)) == ASHIFT
4818 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4819 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4820 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4821 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4822 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4823 && (num_sign_bit_copies (f, GET_MODE (f))
4824 > (unsigned int)
4825 (GET_MODE_BITSIZE (mode)
4826 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4827 {
4828 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4829 extend_op = SIGN_EXTEND;
4830 m = GET_MODE (XEXP (t, 0));
4831 }
4832 else if (GET_CODE (t) == SIGN_EXTEND
4833 && (GET_CODE (XEXP (t, 0)) == PLUS
4834 || GET_CODE (XEXP (t, 0)) == IOR
4835 || GET_CODE (XEXP (t, 0)) == XOR)
4836 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4837 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4838 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4839 && (num_sign_bit_copies (f, GET_MODE (f))
4840 > (unsigned int)
4841 (GET_MODE_BITSIZE (mode)
4842 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4843 {
4844 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4845 extend_op = SIGN_EXTEND;
4846 m = GET_MODE (XEXP (t, 0));
4847 }
4848 else if (GET_CODE (t) == ZERO_EXTEND
4849 && (GET_CODE (XEXP (t, 0)) == PLUS
4850 || GET_CODE (XEXP (t, 0)) == MINUS
4851 || GET_CODE (XEXP (t, 0)) == IOR
4852 || GET_CODE (XEXP (t, 0)) == XOR
4853 || GET_CODE (XEXP (t, 0)) == ASHIFT
4854 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4855 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4856 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4857 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4858 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4859 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4860 && ((nonzero_bits (f, GET_MODE (f))
4861 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4862 == 0))
4863 {
4864 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4865 extend_op = ZERO_EXTEND;
4866 m = GET_MODE (XEXP (t, 0));
4867 }
4868 else if (GET_CODE (t) == ZERO_EXTEND
4869 && (GET_CODE (XEXP (t, 0)) == PLUS
4870 || GET_CODE (XEXP (t, 0)) == IOR
4871 || GET_CODE (XEXP (t, 0)) == XOR)
4872 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4873 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4874 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4875 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4876 && ((nonzero_bits (f, GET_MODE (f))
4877 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4878 == 0))
4879 {
4880 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4881 extend_op = ZERO_EXTEND;
4882 m = GET_MODE (XEXP (t, 0));
4883 }
4884
4885 if (z)
4886 {
4887 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4888 pc_rtx, pc_rtx, 0, 0);
4889 temp = gen_binary (MULT, m, temp,
4890 gen_binary (MULT, m, c1, const_true_rtx));
4891 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4892 temp = gen_binary (op, m, gen_lowpart (m, z), temp);
4893
4894 if (extend_op != NIL)
4895 temp = simplify_gen_unary (extend_op, mode, temp, m);
4896
4897 return temp;
4898 }
4899 }
4900
4901 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4902 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4903 negation of a single bit, we can convert this operation to a shift. We
4904 can actually do this more generally, but it doesn't seem worth it. */
4905
4906 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4907 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4908 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4909 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
4910 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4911 == GET_MODE_BITSIZE (mode))
4912 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
4913 return
4914 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4915 gen_lowpart (mode, XEXP (cond, 0)), i);
4916
4917 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
4918 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4919 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4920 && GET_MODE (XEXP (cond, 0)) == mode
4921 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
4922 == nonzero_bits (XEXP (cond, 0), mode)
4923 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
4924 return XEXP (cond, 0);
4925
4926 return x;
4927 }
4928 \f
4929 /* Simplify X, a SET expression. Return the new expression. */
4930
4931 static rtx
4932 simplify_set (rtx x)
4933 {
4934 rtx src = SET_SRC (x);
4935 rtx dest = SET_DEST (x);
4936 enum machine_mode mode
4937 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4938 rtx other_insn;
4939 rtx *cc_use;
4940
4941 /* (set (pc) (return)) gets written as (return). */
4942 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4943 return src;
4944
4945 /* Now that we know for sure which bits of SRC we are using, see if we can
4946 simplify the expression for the object knowing that we only need the
4947 low-order bits. */
4948
4949 if (GET_MODE_CLASS (mode) == MODE_INT
4950 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
4951 {
4952 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
4953 SUBST (SET_SRC (x), src);
4954 }
4955
4956 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4957 the comparison result and try to simplify it unless we already have used
4958 undobuf.other_insn. */
4959 if ((GET_MODE_CLASS (mode) == MODE_CC
4960 || GET_CODE (src) == COMPARE
4961 || CC0_P (dest))
4962 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4963 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
4964 && COMPARISON_P (*cc_use)
4965 && rtx_equal_p (XEXP (*cc_use, 0), dest))
4966 {
4967 enum rtx_code old_code = GET_CODE (*cc_use);
4968 enum rtx_code new_code;
4969 rtx op0, op1, tmp;
4970 int other_changed = 0;
4971 enum machine_mode compare_mode = GET_MODE (dest);
4972 enum machine_mode tmp_mode;
4973
4974 if (GET_CODE (src) == COMPARE)
4975 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
4976 else
4977 op0 = src, op1 = const0_rtx;
4978
4979 /* Check whether the comparison is known at compile time. */
4980 if (GET_MODE (op0) != VOIDmode)
4981 tmp_mode = GET_MODE (op0);
4982 else if (GET_MODE (op1) != VOIDmode)
4983 tmp_mode = GET_MODE (op1);
4984 else
4985 tmp_mode = compare_mode;
4986 tmp = simplify_const_relational_operation (old_code, tmp_mode,
4987 op0, op1);
4988 if (tmp != NULL_RTX)
4989 {
4990 rtx pat = PATTERN (other_insn);
4991 undobuf.other_insn = other_insn;
4992 SUBST (*cc_use, tmp);
4993
4994 /* Attempt to simplify CC user. */
4995 if (GET_CODE (pat) == SET)
4996 {
4997 rtx new = simplify_rtx (SET_SRC (pat));
4998 if (new != NULL_RTX)
4999 SUBST (SET_SRC (pat), new);
5000 }
5001
5002 /* Convert X into a no-op move. */
5003 SUBST (SET_DEST (x), pc_rtx);
5004 SUBST (SET_SRC (x), pc_rtx);
5005 return x;
5006 }
5007
5008 /* Simplify our comparison, if possible. */
5009 new_code = simplify_comparison (old_code, &op0, &op1);
5010
5011 #ifdef SELECT_CC_MODE
5012 /* If this machine has CC modes other than CCmode, check to see if we
5013 need to use a different CC mode here. */
5014 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5015
5016 #ifndef HAVE_cc0
5017 /* If the mode changed, we have to change SET_DEST, the mode in the
5018 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5019 a hard register, just build new versions with the proper mode. If it
5020 is a pseudo, we lose unless it is only time we set the pseudo, in
5021 which case we can safely change its mode. */
5022 if (compare_mode != GET_MODE (dest))
5023 {
5024 unsigned int regno = REGNO (dest);
5025 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5026
5027 if (regno < FIRST_PSEUDO_REGISTER
5028 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5029 {
5030 if (regno >= FIRST_PSEUDO_REGISTER)
5031 SUBST (regno_reg_rtx[regno], new_dest);
5032
5033 SUBST (SET_DEST (x), new_dest);
5034 SUBST (XEXP (*cc_use, 0), new_dest);
5035 other_changed = 1;
5036
5037 dest = new_dest;
5038 }
5039 }
5040 #endif /* cc0 */
5041 #endif /* SELECT_CC_MODE */
5042
5043 /* If the code changed, we have to build a new comparison in
5044 undobuf.other_insn. */
5045 if (new_code != old_code)
5046 {
5047 int other_changed_previously = other_changed;
5048 unsigned HOST_WIDE_INT mask;
5049
5050 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5051 dest, const0_rtx));
5052 other_changed = 1;
5053
5054 /* If the only change we made was to change an EQ into an NE or
5055 vice versa, OP0 has only one bit that might be nonzero, and OP1
5056 is zero, check if changing the user of the condition code will
5057 produce a valid insn. If it won't, we can keep the original code
5058 in that insn by surrounding our operation with an XOR. */
5059
5060 if (((old_code == NE && new_code == EQ)
5061 || (old_code == EQ && new_code == NE))
5062 && ! other_changed_previously && op1 == const0_rtx
5063 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5064 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5065 {
5066 rtx pat = PATTERN (other_insn), note = 0;
5067
5068 if ((recog_for_combine (&pat, other_insn, &note) < 0
5069 && ! check_asm_operands (pat)))
5070 {
5071 PUT_CODE (*cc_use, old_code);
5072 other_changed = 0;
5073
5074 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5075 }
5076 }
5077 }
5078
5079 if (other_changed)
5080 undobuf.other_insn = other_insn;
5081
5082 #ifdef HAVE_cc0
5083 /* If we are now comparing against zero, change our source if
5084 needed. If we do not use cc0, we always have a COMPARE. */
5085 if (op1 == const0_rtx && dest == cc0_rtx)
5086 {
5087 SUBST (SET_SRC (x), op0);
5088 src = op0;
5089 }
5090 else
5091 #endif
5092
5093 /* Otherwise, if we didn't previously have a COMPARE in the
5094 correct mode, we need one. */
5095 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5096 {
5097 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5098 src = SET_SRC (x);
5099 }
5100 else
5101 {
5102 /* Otherwise, update the COMPARE if needed. */
5103 SUBST (XEXP (src, 0), op0);
5104 SUBST (XEXP (src, 1), op1);
5105 }
5106 }
5107 else
5108 {
5109 /* Get SET_SRC in a form where we have placed back any
5110 compound expressions. Then do the checks below. */
5111 src = make_compound_operation (src, SET);
5112 SUBST (SET_SRC (x), src);
5113 }
5114
5115 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5116 and X being a REG or (subreg (reg)), we may be able to convert this to
5117 (set (subreg:m2 x) (op)).
5118
5119 We can always do this if M1 is narrower than M2 because that means that
5120 we only care about the low bits of the result.
5121
5122 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5123 perform a narrower operation than requested since the high-order bits will
5124 be undefined. On machine where it is defined, this transformation is safe
5125 as long as M1 and M2 have the same number of words. */
5126
5127 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5128 && !OBJECT_P (SUBREG_REG (src))
5129 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5130 / UNITS_PER_WORD)
5131 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5132 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5133 #ifndef WORD_REGISTER_OPERATIONS
5134 && (GET_MODE_SIZE (GET_MODE (src))
5135 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5136 #endif
5137 #ifdef CANNOT_CHANGE_MODE_CLASS
5138 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5139 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5140 GET_MODE (SUBREG_REG (src)),
5141 GET_MODE (src)))
5142 #endif
5143 && (GET_CODE (dest) == REG
5144 || (GET_CODE (dest) == SUBREG
5145 && GET_CODE (SUBREG_REG (dest)) == REG)))
5146 {
5147 SUBST (SET_DEST (x),
5148 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5149 dest));
5150 SUBST (SET_SRC (x), SUBREG_REG (src));
5151
5152 src = SET_SRC (x), dest = SET_DEST (x);
5153 }
5154
5155 #ifdef HAVE_cc0
5156 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5157 in SRC. */
5158 if (dest == cc0_rtx
5159 && GET_CODE (src) == SUBREG
5160 && subreg_lowpart_p (src)
5161 && (GET_MODE_BITSIZE (GET_MODE (src))
5162 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5163 {
5164 rtx inner = SUBREG_REG (src);
5165 enum machine_mode inner_mode = GET_MODE (inner);
5166
5167 /* Here we make sure that we don't have a sign bit on. */
5168 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5169 && (nonzero_bits (inner, inner_mode)
5170 < ((unsigned HOST_WIDE_INT) 1
5171 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5172 {
5173 SUBST (SET_SRC (x), inner);
5174 src = SET_SRC (x);
5175 }
5176 }
5177 #endif
5178
5179 #ifdef LOAD_EXTEND_OP
5180 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5181 would require a paradoxical subreg. Replace the subreg with a
5182 zero_extend to avoid the reload that would otherwise be required. */
5183
5184 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5185 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5186 && SUBREG_BYTE (src) == 0
5187 && (GET_MODE_SIZE (GET_MODE (src))
5188 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5189 && GET_CODE (SUBREG_REG (src)) == MEM)
5190 {
5191 SUBST (SET_SRC (x),
5192 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5193 GET_MODE (src), SUBREG_REG (src)));
5194
5195 src = SET_SRC (x);
5196 }
5197 #endif
5198
5199 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5200 are comparing an item known to be 0 or -1 against 0, use a logical
5201 operation instead. Check for one of the arms being an IOR of the other
5202 arm with some value. We compute three terms to be IOR'ed together. In
5203 practice, at most two will be nonzero. Then we do the IOR's. */
5204
5205 if (GET_CODE (dest) != PC
5206 && GET_CODE (src) == IF_THEN_ELSE
5207 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5208 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5209 && XEXP (XEXP (src, 0), 1) == const0_rtx
5210 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5211 #ifdef HAVE_conditional_move
5212 && ! can_conditionally_move_p (GET_MODE (src))
5213 #endif
5214 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5215 GET_MODE (XEXP (XEXP (src, 0), 0)))
5216 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5217 && ! side_effects_p (src))
5218 {
5219 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5220 ? XEXP (src, 1) : XEXP (src, 2));
5221 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5222 ? XEXP (src, 2) : XEXP (src, 1));
5223 rtx term1 = const0_rtx, term2, term3;
5224
5225 if (GET_CODE (true_rtx) == IOR
5226 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5227 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5228 else if (GET_CODE (true_rtx) == IOR
5229 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5230 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5231 else if (GET_CODE (false_rtx) == IOR
5232 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5233 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5234 else if (GET_CODE (false_rtx) == IOR
5235 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5236 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5237
5238 term2 = gen_binary (AND, GET_MODE (src),
5239 XEXP (XEXP (src, 0), 0), true_rtx);
5240 term3 = gen_binary (AND, GET_MODE (src),
5241 simplify_gen_unary (NOT, GET_MODE (src),
5242 XEXP (XEXP (src, 0), 0),
5243 GET_MODE (src)),
5244 false_rtx);
5245
5246 SUBST (SET_SRC (x),
5247 gen_binary (IOR, GET_MODE (src),
5248 gen_binary (IOR, GET_MODE (src), term1, term2),
5249 term3));
5250
5251 src = SET_SRC (x);
5252 }
5253
5254 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5255 whole thing fail. */
5256 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5257 return src;
5258 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5259 return dest;
5260 else
5261 /* Convert this into a field assignment operation, if possible. */
5262 return make_field_assignment (x);
5263 }
5264 \f
5265 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5266 result. LAST is nonzero if this is the last retry. */
5267
5268 static rtx
5269 simplify_logical (rtx x, int last)
5270 {
5271 enum machine_mode mode = GET_MODE (x);
5272 rtx op0 = XEXP (x, 0);
5273 rtx op1 = XEXP (x, 1);
5274 rtx reversed;
5275
5276 switch (GET_CODE (x))
5277 {
5278 case AND:
5279 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5280 insn (and may simplify more). */
5281 if (GET_CODE (op0) == XOR
5282 && rtx_equal_p (XEXP (op0, 0), op1)
5283 && ! side_effects_p (op1))
5284 x = gen_binary (AND, mode,
5285 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5286 op1);
5287
5288 if (GET_CODE (op0) == XOR
5289 && rtx_equal_p (XEXP (op0, 1), op1)
5290 && ! side_effects_p (op1))
5291 x = gen_binary (AND, mode,
5292 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5293 op1);
5294
5295 /* Similarly for (~(A ^ B)) & A. */
5296 if (GET_CODE (op0) == NOT
5297 && GET_CODE (XEXP (op0, 0)) == XOR
5298 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5299 && ! side_effects_p (op1))
5300 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5301
5302 if (GET_CODE (op0) == NOT
5303 && GET_CODE (XEXP (op0, 0)) == XOR
5304 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5305 && ! side_effects_p (op1))
5306 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5307
5308 /* We can call simplify_and_const_int only if we don't lose
5309 any (sign) bits when converting INTVAL (op1) to
5310 "unsigned HOST_WIDE_INT". */
5311 if (GET_CODE (op1) == CONST_INT
5312 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5313 || INTVAL (op1) > 0))
5314 {
5315 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5316
5317 /* If we have (ior (and (X C1) C2)) and the next restart would be
5318 the last, simplify this by making C1 as small as possible
5319 and then exit. */
5320 if (last
5321 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5322 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5323 && GET_CODE (op1) == CONST_INT)
5324 return gen_binary (IOR, mode,
5325 gen_binary (AND, mode, XEXP (op0, 0),
5326 GEN_INT (INTVAL (XEXP (op0, 1))
5327 & ~INTVAL (op1))), op1);
5328
5329 if (GET_CODE (x) != AND)
5330 return x;
5331
5332 op0 = XEXP (x, 0);
5333 op1 = XEXP (x, 1);
5334 }
5335
5336 /* Convert (A | B) & A to A. */
5337 if (GET_CODE (op0) == IOR
5338 && (rtx_equal_p (XEXP (op0, 0), op1)
5339 || rtx_equal_p (XEXP (op0, 1), op1))
5340 && ! side_effects_p (XEXP (op0, 0))
5341 && ! side_effects_p (XEXP (op0, 1)))
5342 return op1;
5343
5344 /* In the following group of tests (and those in case IOR below),
5345 we start with some combination of logical operations and apply
5346 the distributive law followed by the inverse distributive law.
5347 Most of the time, this results in no change. However, if some of
5348 the operands are the same or inverses of each other, simplifications
5349 will result.
5350
5351 For example, (and (ior A B) (not B)) can occur as the result of
5352 expanding a bit field assignment. When we apply the distributive
5353 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5354 which then simplifies to (and (A (not B))).
5355
5356 If we have (and (ior A B) C), apply the distributive law and then
5357 the inverse distributive law to see if things simplify. */
5358
5359 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5360 {
5361 x = apply_distributive_law
5362 (gen_binary (GET_CODE (op0), mode,
5363 gen_binary (AND, mode, XEXP (op0, 0), op1),
5364 gen_binary (AND, mode, XEXP (op0, 1),
5365 copy_rtx (op1))));
5366 if (GET_CODE (x) != AND)
5367 return x;
5368 }
5369
5370 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5371 return apply_distributive_law
5372 (gen_binary (GET_CODE (op1), mode,
5373 gen_binary (AND, mode, XEXP (op1, 0), op0),
5374 gen_binary (AND, mode, XEXP (op1, 1),
5375 copy_rtx (op0))));
5376
5377 /* Similarly, taking advantage of the fact that
5378 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5379
5380 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5381 return apply_distributive_law
5382 (gen_binary (XOR, mode,
5383 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5384 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5385 XEXP (op1, 1))));
5386
5387 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5388 return apply_distributive_law
5389 (gen_binary (XOR, mode,
5390 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5391 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5392 break;
5393
5394 case IOR:
5395 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5396 if (GET_CODE (op1) == CONST_INT
5397 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5398 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5399 return op1;
5400
5401 /* Convert (A & B) | A to A. */
5402 if (GET_CODE (op0) == AND
5403 && (rtx_equal_p (XEXP (op0, 0), op1)
5404 || rtx_equal_p (XEXP (op0, 1), op1))
5405 && ! side_effects_p (XEXP (op0, 0))
5406 && ! side_effects_p (XEXP (op0, 1)))
5407 return op1;
5408
5409 /* If we have (ior (and A B) C), apply the distributive law and then
5410 the inverse distributive law to see if things simplify. */
5411
5412 if (GET_CODE (op0) == AND)
5413 {
5414 x = apply_distributive_law
5415 (gen_binary (AND, mode,
5416 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5417 gen_binary (IOR, mode, XEXP (op0, 1),
5418 copy_rtx (op1))));
5419
5420 if (GET_CODE (x) != IOR)
5421 return x;
5422 }
5423
5424 if (GET_CODE (op1) == AND)
5425 {
5426 x = apply_distributive_law
5427 (gen_binary (AND, mode,
5428 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5429 gen_binary (IOR, mode, XEXP (op1, 1),
5430 copy_rtx (op0))));
5431
5432 if (GET_CODE (x) != IOR)
5433 return x;
5434 }
5435
5436 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5437 mode size to (rotate A CX). */
5438
5439 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5440 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5441 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5442 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5443 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5444 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5445 == GET_MODE_BITSIZE (mode)))
5446 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5447 (GET_CODE (op0) == ASHIFT
5448 ? XEXP (op0, 1) : XEXP (op1, 1)));
5449
5450 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5451 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5452 does not affect any of the bits in OP1, it can really be done
5453 as a PLUS and we can associate. We do this by seeing if OP1
5454 can be safely shifted left C bits. */
5455 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5456 && GET_CODE (XEXP (op0, 0)) == PLUS
5457 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5458 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5459 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5460 {
5461 int count = INTVAL (XEXP (op0, 1));
5462 HOST_WIDE_INT mask = INTVAL (op1) << count;
5463
5464 if (mask >> count == INTVAL (op1)
5465 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5466 {
5467 SUBST (XEXP (XEXP (op0, 0), 1),
5468 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5469 return op0;
5470 }
5471 }
5472 break;
5473
5474 case XOR:
5475 /* If we are XORing two things that have no bits in common,
5476 convert them into an IOR. This helps to detect rotation encoded
5477 using those methods and possibly other simplifications. */
5478
5479 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5480 && (nonzero_bits (op0, mode)
5481 & nonzero_bits (op1, mode)) == 0)
5482 return (gen_binary (IOR, mode, op0, op1));
5483
5484 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5485 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5486 (NOT y). */
5487 {
5488 int num_negated = 0;
5489
5490 if (GET_CODE (op0) == NOT)
5491 num_negated++, op0 = XEXP (op0, 0);
5492 if (GET_CODE (op1) == NOT)
5493 num_negated++, op1 = XEXP (op1, 0);
5494
5495 if (num_negated == 2)
5496 {
5497 SUBST (XEXP (x, 0), op0);
5498 SUBST (XEXP (x, 1), op1);
5499 }
5500 else if (num_negated == 1)
5501 return
5502 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5503 mode);
5504 }
5505
5506 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5507 correspond to a machine insn or result in further simplifications
5508 if B is a constant. */
5509
5510 if (GET_CODE (op0) == AND
5511 && rtx_equal_p (XEXP (op0, 1), op1)
5512 && ! side_effects_p (op1))
5513 return gen_binary (AND, mode,
5514 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5515 op1);
5516
5517 else if (GET_CODE (op0) == AND
5518 && rtx_equal_p (XEXP (op0, 0), op1)
5519 && ! side_effects_p (op1))
5520 return gen_binary (AND, mode,
5521 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5522 op1);
5523
5524 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5525 comparison if STORE_FLAG_VALUE is 1. */
5526 if (STORE_FLAG_VALUE == 1
5527 && op1 == const1_rtx
5528 && COMPARISON_P (op0)
5529 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5530 XEXP (op0, 1))))
5531 return reversed;
5532
5533 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5534 is (lt foo (const_int 0)), so we can perform the above
5535 simplification if STORE_FLAG_VALUE is 1. */
5536
5537 if (STORE_FLAG_VALUE == 1
5538 && op1 == const1_rtx
5539 && GET_CODE (op0) == LSHIFTRT
5540 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5541 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5542 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5543
5544 /* (xor (comparison foo bar) (const_int sign-bit))
5545 when STORE_FLAG_VALUE is the sign bit. */
5546 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5547 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5548 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5549 && op1 == const_true_rtx
5550 && COMPARISON_P (op0)
5551 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5552 XEXP (op0, 1))))
5553 return reversed;
5554
5555 break;
5556
5557 default:
5558 abort ();
5559 }
5560
5561 return x;
5562 }
5563 \f
5564 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5565 operations" because they can be replaced with two more basic operations.
5566 ZERO_EXTEND is also considered "compound" because it can be replaced with
5567 an AND operation, which is simpler, though only one operation.
5568
5569 The function expand_compound_operation is called with an rtx expression
5570 and will convert it to the appropriate shifts and AND operations,
5571 simplifying at each stage.
5572
5573 The function make_compound_operation is called to convert an expression
5574 consisting of shifts and ANDs into the equivalent compound expression.
5575 It is the inverse of this function, loosely speaking. */
5576
5577 static rtx
5578 expand_compound_operation (rtx x)
5579 {
5580 unsigned HOST_WIDE_INT pos = 0, len;
5581 int unsignedp = 0;
5582 unsigned int modewidth;
5583 rtx tem;
5584
5585 switch (GET_CODE (x))
5586 {
5587 case ZERO_EXTEND:
5588 unsignedp = 1;
5589 case SIGN_EXTEND:
5590 /* We can't necessarily use a const_int for a multiword mode;
5591 it depends on implicitly extending the value.
5592 Since we don't know the right way to extend it,
5593 we can't tell whether the implicit way is right.
5594
5595 Even for a mode that is no wider than a const_int,
5596 we can't win, because we need to sign extend one of its bits through
5597 the rest of it, and we don't know which bit. */
5598 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5599 return x;
5600
5601 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5602 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5603 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5604 reloaded. If not for that, MEM's would very rarely be safe.
5605
5606 Reject MODEs bigger than a word, because we might not be able
5607 to reference a two-register group starting with an arbitrary register
5608 (and currently gen_lowpart might crash for a SUBREG). */
5609
5610 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5611 return x;
5612
5613 /* Reject MODEs that aren't scalar integers because turning vector
5614 or complex modes into shifts causes problems. */
5615
5616 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5617 return x;
5618
5619 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5620 /* If the inner object has VOIDmode (the only way this can happen
5621 is if it is an ASM_OPERANDS), we can't do anything since we don't
5622 know how much masking to do. */
5623 if (len == 0)
5624 return x;
5625
5626 break;
5627
5628 case ZERO_EXTRACT:
5629 unsignedp = 1;
5630 case SIGN_EXTRACT:
5631 /* If the operand is a CLOBBER, just return it. */
5632 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5633 return XEXP (x, 0);
5634
5635 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5636 || GET_CODE (XEXP (x, 2)) != CONST_INT
5637 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5638 return x;
5639
5640 /* Reject MODEs that aren't scalar integers because turning vector
5641 or complex modes into shifts causes problems. */
5642
5643 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5644 return x;
5645
5646 len = INTVAL (XEXP (x, 1));
5647 pos = INTVAL (XEXP (x, 2));
5648
5649 /* If this goes outside the object being extracted, replace the object
5650 with a (use (mem ...)) construct that only combine understands
5651 and is used only for this purpose. */
5652 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5653 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5654
5655 if (BITS_BIG_ENDIAN)
5656 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5657
5658 break;
5659
5660 default:
5661 return x;
5662 }
5663 /* Convert sign extension to zero extension, if we know that the high
5664 bit is not set, as this is easier to optimize. It will be converted
5665 back to cheaper alternative in make_extraction. */
5666 if (GET_CODE (x) == SIGN_EXTEND
5667 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5668 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5669 & ~(((unsigned HOST_WIDE_INT)
5670 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5671 >> 1))
5672 == 0)))
5673 {
5674 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5675 rtx temp2 = expand_compound_operation (temp);
5676
5677 /* Make sure this is a profitable operation. */
5678 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5679 return temp2;
5680 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5681 return temp;
5682 else
5683 return x;
5684 }
5685
5686 /* We can optimize some special cases of ZERO_EXTEND. */
5687 if (GET_CODE (x) == ZERO_EXTEND)
5688 {
5689 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5690 know that the last value didn't have any inappropriate bits
5691 set. */
5692 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5693 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5694 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5695 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5696 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5697 return XEXP (XEXP (x, 0), 0);
5698
5699 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5700 if (GET_CODE (XEXP (x, 0)) == SUBREG
5701 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5702 && subreg_lowpart_p (XEXP (x, 0))
5703 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5704 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5705 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5706 return SUBREG_REG (XEXP (x, 0));
5707
5708 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5709 is a comparison and STORE_FLAG_VALUE permits. This is like
5710 the first case, but it works even when GET_MODE (x) is larger
5711 than HOST_WIDE_INT. */
5712 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5713 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5714 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5715 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5716 <= HOST_BITS_PER_WIDE_INT)
5717 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5718 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5719 return XEXP (XEXP (x, 0), 0);
5720
5721 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5722 if (GET_CODE (XEXP (x, 0)) == SUBREG
5723 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5724 && subreg_lowpart_p (XEXP (x, 0))
5725 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5726 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5727 <= HOST_BITS_PER_WIDE_INT)
5728 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5729 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5730 return SUBREG_REG (XEXP (x, 0));
5731
5732 }
5733
5734 /* If we reach here, we want to return a pair of shifts. The inner
5735 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5736 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5737 logical depending on the value of UNSIGNEDP.
5738
5739 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5740 converted into an AND of a shift.
5741
5742 We must check for the case where the left shift would have a negative
5743 count. This can happen in a case like (x >> 31) & 255 on machines
5744 that can't shift by a constant. On those machines, we would first
5745 combine the shift with the AND to produce a variable-position
5746 extraction. Then the constant of 31 would be substituted in to produce
5747 a such a position. */
5748
5749 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5750 if (modewidth + len >= pos)
5751 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5752 GET_MODE (x),
5753 simplify_shift_const (NULL_RTX, ASHIFT,
5754 GET_MODE (x),
5755 XEXP (x, 0),
5756 modewidth - pos - len),
5757 modewidth - len);
5758
5759 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5760 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5761 simplify_shift_const (NULL_RTX, LSHIFTRT,
5762 GET_MODE (x),
5763 XEXP (x, 0), pos),
5764 ((HOST_WIDE_INT) 1 << len) - 1);
5765 else
5766 /* Any other cases we can't handle. */
5767 return x;
5768
5769 /* If we couldn't do this for some reason, return the original
5770 expression. */
5771 if (GET_CODE (tem) == CLOBBER)
5772 return x;
5773
5774 return tem;
5775 }
5776 \f
5777 /* X is a SET which contains an assignment of one object into
5778 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5779 or certain SUBREGS). If possible, convert it into a series of
5780 logical operations.
5781
5782 We half-heartedly support variable positions, but do not at all
5783 support variable lengths. */
5784
5785 static rtx
5786 expand_field_assignment (rtx x)
5787 {
5788 rtx inner;
5789 rtx pos; /* Always counts from low bit. */
5790 int len;
5791 rtx mask;
5792 enum machine_mode compute_mode;
5793
5794 /* Loop until we find something we can't simplify. */
5795 while (1)
5796 {
5797 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5798 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5799 {
5800 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5801 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5802 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5803 }
5804 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5805 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5806 {
5807 inner = XEXP (SET_DEST (x), 0);
5808 len = INTVAL (XEXP (SET_DEST (x), 1));
5809 pos = XEXP (SET_DEST (x), 2);
5810
5811 /* If the position is constant and spans the width of INNER,
5812 surround INNER with a USE to indicate this. */
5813 if (GET_CODE (pos) == CONST_INT
5814 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5815 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5816
5817 if (BITS_BIG_ENDIAN)
5818 {
5819 if (GET_CODE (pos) == CONST_INT)
5820 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5821 - INTVAL (pos));
5822 else if (GET_CODE (pos) == MINUS
5823 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5824 && (INTVAL (XEXP (pos, 1))
5825 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5826 /* If position is ADJUST - X, new position is X. */
5827 pos = XEXP (pos, 0);
5828 else
5829 pos = gen_binary (MINUS, GET_MODE (pos),
5830 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5831 - len),
5832 pos);
5833 }
5834 }
5835
5836 /* A SUBREG between two modes that occupy the same numbers of words
5837 can be done by moving the SUBREG to the source. */
5838 else if (GET_CODE (SET_DEST (x)) == SUBREG
5839 /* We need SUBREGs to compute nonzero_bits properly. */
5840 && nonzero_sign_valid
5841 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5842 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5843 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5844 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5845 {
5846 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5847 gen_lowpart
5848 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5849 SET_SRC (x)));
5850 continue;
5851 }
5852 else
5853 break;
5854
5855 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5856 inner = SUBREG_REG (inner);
5857
5858 compute_mode = GET_MODE (inner);
5859
5860 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5861 if (! SCALAR_INT_MODE_P (compute_mode))
5862 {
5863 enum machine_mode imode;
5864
5865 /* Don't do anything for vector or complex integral types. */
5866 if (! FLOAT_MODE_P (compute_mode))
5867 break;
5868
5869 /* Try to find an integral mode to pun with. */
5870 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5871 if (imode == BLKmode)
5872 break;
5873
5874 compute_mode = imode;
5875 inner = gen_lowpart (imode, inner);
5876 }
5877
5878 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5879 if (len < HOST_BITS_PER_WIDE_INT)
5880 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5881 else
5882 break;
5883
5884 /* Now compute the equivalent expression. Make a copy of INNER
5885 for the SET_DEST in case it is a MEM into which we will substitute;
5886 we don't want shared RTL in that case. */
5887 x = gen_rtx_SET
5888 (VOIDmode, copy_rtx (inner),
5889 gen_binary (IOR, compute_mode,
5890 gen_binary (AND, compute_mode,
5891 simplify_gen_unary (NOT, compute_mode,
5892 gen_binary (ASHIFT,
5893 compute_mode,
5894 mask, pos),
5895 compute_mode),
5896 inner),
5897 gen_binary (ASHIFT, compute_mode,
5898 gen_binary (AND, compute_mode,
5899 gen_lowpart
5900 (compute_mode, SET_SRC (x)),
5901 mask),
5902 pos)));
5903 }
5904
5905 return x;
5906 }
5907 \f
5908 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5909 it is an RTX that represents a variable starting position; otherwise,
5910 POS is the (constant) starting bit position (counted from the LSB).
5911
5912 INNER may be a USE. This will occur when we started with a bitfield
5913 that went outside the boundary of the object in memory, which is
5914 allowed on most machines. To isolate this case, we produce a USE
5915 whose mode is wide enough and surround the MEM with it. The only
5916 code that understands the USE is this routine. If it is not removed,
5917 it will cause the resulting insn not to match.
5918
5919 UNSIGNEDP is nonzero for an unsigned reference and zero for a
5920 signed reference.
5921
5922 IN_DEST is nonzero if this is a reference in the destination of a
5923 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
5924 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5925 be used.
5926
5927 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
5928 ZERO_EXTRACT should be built even for bits starting at bit 0.
5929
5930 MODE is the desired mode of the result (if IN_DEST == 0).
5931
5932 The result is an RTX for the extraction or NULL_RTX if the target
5933 can't handle it. */
5934
5935 static rtx
5936 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
5937 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
5938 int in_dest, int in_compare)
5939 {
5940 /* This mode describes the size of the storage area
5941 to fetch the overall value from. Within that, we
5942 ignore the POS lowest bits, etc. */
5943 enum machine_mode is_mode = GET_MODE (inner);
5944 enum machine_mode inner_mode;
5945 enum machine_mode wanted_inner_mode = byte_mode;
5946 enum machine_mode wanted_inner_reg_mode = word_mode;
5947 enum machine_mode pos_mode = word_mode;
5948 enum machine_mode extraction_mode = word_mode;
5949 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5950 int spans_byte = 0;
5951 rtx new = 0;
5952 rtx orig_pos_rtx = pos_rtx;
5953 HOST_WIDE_INT orig_pos;
5954
5955 /* Get some information about INNER and get the innermost object. */
5956 if (GET_CODE (inner) == USE)
5957 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5958 /* We don't need to adjust the position because we set up the USE
5959 to pretend that it was a full-word object. */
5960 spans_byte = 1, inner = XEXP (inner, 0);
5961 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5962 {
5963 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5964 consider just the QI as the memory to extract from.
5965 The subreg adds or removes high bits; its mode is
5966 irrelevant to the meaning of this extraction,
5967 since POS and LEN count from the lsb. */
5968 if (GET_CODE (SUBREG_REG (inner)) == MEM)
5969 is_mode = GET_MODE (SUBREG_REG (inner));
5970 inner = SUBREG_REG (inner);
5971 }
5972 else if (GET_CODE (inner) == ASHIFT
5973 && GET_CODE (XEXP (inner, 1)) == CONST_INT
5974 && pos_rtx == 0 && pos == 0
5975 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
5976 {
5977 /* We're extracting the least significant bits of an rtx
5978 (ashift X (const_int C)), where LEN > C. Extract the
5979 least significant (LEN - C) bits of X, giving an rtx
5980 whose mode is MODE, then shift it left C times. */
5981 new = make_extraction (mode, XEXP (inner, 0),
5982 0, 0, len - INTVAL (XEXP (inner, 1)),
5983 unsignedp, in_dest, in_compare);
5984 if (new != 0)
5985 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
5986 }
5987
5988 inner_mode = GET_MODE (inner);
5989
5990 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5991 pos = INTVAL (pos_rtx), pos_rtx = 0;
5992
5993 /* See if this can be done without an extraction. We never can if the
5994 width of the field is not the same as that of some integer mode. For
5995 registers, we can only avoid the extraction if the position is at the
5996 low-order bit and this is either not in the destination or we have the
5997 appropriate STRICT_LOW_PART operation available.
5998
5999 For MEM, we can avoid an extract if the field starts on an appropriate
6000 boundary and we can change the mode of the memory reference. However,
6001 we cannot directly access the MEM if we have a USE and the underlying
6002 MEM is not TMODE. This combination means that MEM was being used in a
6003 context where bits outside its mode were being referenced; that is only
6004 valid in bit-field insns. */
6005
6006 if (tmode != BLKmode
6007 && ! (spans_byte && inner_mode != tmode)
6008 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6009 && GET_CODE (inner) != MEM
6010 && (! in_dest
6011 || (GET_CODE (inner) == REG
6012 && have_insn_for (STRICT_LOW_PART, tmode))))
6013 || (GET_CODE (inner) == MEM && pos_rtx == 0
6014 && (pos
6015 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6016 : BITS_PER_UNIT)) == 0
6017 /* We can't do this if we are widening INNER_MODE (it
6018 may not be aligned, for one thing). */
6019 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6020 && (inner_mode == tmode
6021 || (! mode_dependent_address_p (XEXP (inner, 0))
6022 && ! MEM_VOLATILE_P (inner))))))
6023 {
6024 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6025 field. If the original and current mode are the same, we need not
6026 adjust the offset. Otherwise, we do if bytes big endian.
6027
6028 If INNER is not a MEM, get a piece consisting of just the field
6029 of interest (in this case POS % BITS_PER_WORD must be 0). */
6030
6031 if (GET_CODE (inner) == MEM)
6032 {
6033 HOST_WIDE_INT offset;
6034
6035 /* POS counts from lsb, but make OFFSET count in memory order. */
6036 if (BYTES_BIG_ENDIAN)
6037 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6038 else
6039 offset = pos / BITS_PER_UNIT;
6040
6041 new = adjust_address_nv (inner, tmode, offset);
6042 }
6043 else if (GET_CODE (inner) == REG)
6044 {
6045 if (tmode != inner_mode)
6046 {
6047 /* We can't call gen_lowpart in a DEST since we
6048 always want a SUBREG (see below) and it would sometimes
6049 return a new hard register. */
6050 if (pos || in_dest)
6051 {
6052 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6053
6054 if (WORDS_BIG_ENDIAN
6055 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6056 final_word = ((GET_MODE_SIZE (inner_mode)
6057 - GET_MODE_SIZE (tmode))
6058 / UNITS_PER_WORD) - final_word;
6059
6060 final_word *= UNITS_PER_WORD;
6061 if (BYTES_BIG_ENDIAN &&
6062 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6063 final_word += (GET_MODE_SIZE (inner_mode)
6064 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6065
6066 /* Avoid creating invalid subregs, for example when
6067 simplifying (x>>32)&255. */
6068 if (final_word >= GET_MODE_SIZE (inner_mode))
6069 return NULL_RTX;
6070
6071 new = gen_rtx_SUBREG (tmode, inner, final_word);
6072 }
6073 else
6074 new = gen_lowpart (tmode, inner);
6075 }
6076 else
6077 new = inner;
6078 }
6079 else
6080 new = force_to_mode (inner, tmode,
6081 len >= HOST_BITS_PER_WIDE_INT
6082 ? ~(unsigned HOST_WIDE_INT) 0
6083 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6084 NULL_RTX, 0);
6085
6086 /* If this extraction is going into the destination of a SET,
6087 make a STRICT_LOW_PART unless we made a MEM. */
6088
6089 if (in_dest)
6090 return (GET_CODE (new) == MEM ? new
6091 : (GET_CODE (new) != SUBREG
6092 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6093 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6094
6095 if (mode == tmode)
6096 return new;
6097
6098 if (GET_CODE (new) == CONST_INT)
6099 return gen_int_mode (INTVAL (new), mode);
6100
6101 /* If we know that no extraneous bits are set, and that the high
6102 bit is not set, convert the extraction to the cheaper of
6103 sign and zero extension, that are equivalent in these cases. */
6104 if (flag_expensive_optimizations
6105 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6106 && ((nonzero_bits (new, tmode)
6107 & ~(((unsigned HOST_WIDE_INT)
6108 GET_MODE_MASK (tmode))
6109 >> 1))
6110 == 0)))
6111 {
6112 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6113 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6114
6115 /* Prefer ZERO_EXTENSION, since it gives more information to
6116 backends. */
6117 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6118 return temp;
6119 return temp1;
6120 }
6121
6122 /* Otherwise, sign- or zero-extend unless we already are in the
6123 proper mode. */
6124
6125 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6126 mode, new));
6127 }
6128
6129 /* Unless this is a COMPARE or we have a funny memory reference,
6130 don't do anything with zero-extending field extracts starting at
6131 the low-order bit since they are simple AND operations. */
6132 if (pos_rtx == 0 && pos == 0 && ! in_dest
6133 && ! in_compare && ! spans_byte && unsignedp)
6134 return 0;
6135
6136 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6137 we would be spanning bytes or if the position is not a constant and the
6138 length is not 1. In all other cases, we would only be going outside
6139 our object in cases when an original shift would have been
6140 undefined. */
6141 if (! spans_byte && GET_CODE (inner) == MEM
6142 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6143 || (pos_rtx != 0 && len != 1)))
6144 return 0;
6145
6146 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6147 and the mode for the result. */
6148 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6149 {
6150 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6151 pos_mode = mode_for_extraction (EP_insv, 2);
6152 extraction_mode = mode_for_extraction (EP_insv, 3);
6153 }
6154
6155 if (! in_dest && unsignedp
6156 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6157 {
6158 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6159 pos_mode = mode_for_extraction (EP_extzv, 3);
6160 extraction_mode = mode_for_extraction (EP_extzv, 0);
6161 }
6162
6163 if (! in_dest && ! unsignedp
6164 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6165 {
6166 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6167 pos_mode = mode_for_extraction (EP_extv, 3);
6168 extraction_mode = mode_for_extraction (EP_extv, 0);
6169 }
6170
6171 /* Never narrow an object, since that might not be safe. */
6172
6173 if (mode != VOIDmode
6174 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6175 extraction_mode = mode;
6176
6177 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6178 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6179 pos_mode = GET_MODE (pos_rtx);
6180
6181 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6182 if we have to change the mode of memory and cannot, the desired mode is
6183 EXTRACTION_MODE. */
6184 if (GET_CODE (inner) != MEM)
6185 wanted_inner_mode = wanted_inner_reg_mode;
6186 else if (inner_mode != wanted_inner_mode
6187 && (mode_dependent_address_p (XEXP (inner, 0))
6188 || MEM_VOLATILE_P (inner)))
6189 wanted_inner_mode = extraction_mode;
6190
6191 orig_pos = pos;
6192
6193 if (BITS_BIG_ENDIAN)
6194 {
6195 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6196 BITS_BIG_ENDIAN style. If position is constant, compute new
6197 position. Otherwise, build subtraction.
6198 Note that POS is relative to the mode of the original argument.
6199 If it's a MEM we need to recompute POS relative to that.
6200 However, if we're extracting from (or inserting into) a register,
6201 we want to recompute POS relative to wanted_inner_mode. */
6202 int width = (GET_CODE (inner) == MEM
6203 ? GET_MODE_BITSIZE (is_mode)
6204 : GET_MODE_BITSIZE (wanted_inner_mode));
6205
6206 if (pos_rtx == 0)
6207 pos = width - len - pos;
6208 else
6209 pos_rtx
6210 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6211 /* POS may be less than 0 now, but we check for that below.
6212 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6213 }
6214
6215 /* If INNER has a wider mode, make it smaller. If this is a constant
6216 extract, try to adjust the byte to point to the byte containing
6217 the value. */
6218 if (wanted_inner_mode != VOIDmode
6219 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6220 && ((GET_CODE (inner) == MEM
6221 && (inner_mode == wanted_inner_mode
6222 || (! mode_dependent_address_p (XEXP (inner, 0))
6223 && ! MEM_VOLATILE_P (inner))))))
6224 {
6225 int offset = 0;
6226
6227 /* The computations below will be correct if the machine is big
6228 endian in both bits and bytes or little endian in bits and bytes.
6229 If it is mixed, we must adjust. */
6230
6231 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6232 adjust OFFSET to compensate. */
6233 if (BYTES_BIG_ENDIAN
6234 && ! spans_byte
6235 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6236 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6237
6238 /* If this is a constant position, we can move to the desired byte. */
6239 if (pos_rtx == 0)
6240 {
6241 offset += pos / BITS_PER_UNIT;
6242 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6243 }
6244
6245 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6246 && ! spans_byte
6247 && is_mode != wanted_inner_mode)
6248 offset = (GET_MODE_SIZE (is_mode)
6249 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6250
6251 if (offset != 0 || inner_mode != wanted_inner_mode)
6252 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6253 }
6254
6255 /* If INNER is not memory, we can always get it into the proper mode. If we
6256 are changing its mode, POS must be a constant and smaller than the size
6257 of the new mode. */
6258 else if (GET_CODE (inner) != MEM)
6259 {
6260 if (GET_MODE (inner) != wanted_inner_mode
6261 && (pos_rtx != 0
6262 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6263 return 0;
6264
6265 inner = force_to_mode (inner, wanted_inner_mode,
6266 pos_rtx
6267 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6268 ? ~(unsigned HOST_WIDE_INT) 0
6269 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6270 << orig_pos),
6271 NULL_RTX, 0);
6272 }
6273
6274 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6275 have to zero extend. Otherwise, we can just use a SUBREG. */
6276 if (pos_rtx != 0
6277 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6278 {
6279 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6280
6281 /* If we know that no extraneous bits are set, and that the high
6282 bit is not set, convert extraction to cheaper one - either
6283 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6284 cases. */
6285 if (flag_expensive_optimizations
6286 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6287 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6288 & ~(((unsigned HOST_WIDE_INT)
6289 GET_MODE_MASK (GET_MODE (pos_rtx)))
6290 >> 1))
6291 == 0)))
6292 {
6293 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6294
6295 /* Prefer ZERO_EXTENSION, since it gives more information to
6296 backends. */
6297 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6298 temp = temp1;
6299 }
6300 pos_rtx = temp;
6301 }
6302 else if (pos_rtx != 0
6303 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6304 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6305
6306 /* Make POS_RTX unless we already have it and it is correct. If we don't
6307 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6308 be a CONST_INT. */
6309 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6310 pos_rtx = orig_pos_rtx;
6311
6312 else if (pos_rtx == 0)
6313 pos_rtx = GEN_INT (pos);
6314
6315 /* Make the required operation. See if we can use existing rtx. */
6316 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6317 extraction_mode, inner, GEN_INT (len), pos_rtx);
6318 if (! in_dest)
6319 new = gen_lowpart (mode, new);
6320
6321 return new;
6322 }
6323 \f
6324 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6325 with any other operations in X. Return X without that shift if so. */
6326
6327 static rtx
6328 extract_left_shift (rtx x, int count)
6329 {
6330 enum rtx_code code = GET_CODE (x);
6331 enum machine_mode mode = GET_MODE (x);
6332 rtx tem;
6333
6334 switch (code)
6335 {
6336 case ASHIFT:
6337 /* This is the shift itself. If it is wide enough, we will return
6338 either the value being shifted if the shift count is equal to
6339 COUNT or a shift for the difference. */
6340 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6341 && INTVAL (XEXP (x, 1)) >= count)
6342 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6343 INTVAL (XEXP (x, 1)) - count);
6344 break;
6345
6346 case NEG: case NOT:
6347 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6348 return simplify_gen_unary (code, mode, tem, mode);
6349
6350 break;
6351
6352 case PLUS: case IOR: case XOR: case AND:
6353 /* If we can safely shift this constant and we find the inner shift,
6354 make a new operation. */
6355 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6356 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6357 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6358 return gen_binary (code, mode, tem,
6359 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6360
6361 break;
6362
6363 default:
6364 break;
6365 }
6366
6367 return 0;
6368 }
6369 \f
6370 /* Look at the expression rooted at X. Look for expressions
6371 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6372 Form these expressions.
6373
6374 Return the new rtx, usually just X.
6375
6376 Also, for machines like the VAX that don't have logical shift insns,
6377 try to convert logical to arithmetic shift operations in cases where
6378 they are equivalent. This undoes the canonicalizations to logical
6379 shifts done elsewhere.
6380
6381 We try, as much as possible, to re-use rtl expressions to save memory.
6382
6383 IN_CODE says what kind of expression we are processing. Normally, it is
6384 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6385 being kludges), it is MEM. When processing the arguments of a comparison
6386 or a COMPARE against zero, it is COMPARE. */
6387
6388 static rtx
6389 make_compound_operation (rtx x, enum rtx_code in_code)
6390 {
6391 enum rtx_code code = GET_CODE (x);
6392 enum machine_mode mode = GET_MODE (x);
6393 int mode_width = GET_MODE_BITSIZE (mode);
6394 rtx rhs, lhs;
6395 enum rtx_code next_code;
6396 int i;
6397 rtx new = 0;
6398 rtx tem;
6399 const char *fmt;
6400
6401 /* Select the code to be used in recursive calls. Once we are inside an
6402 address, we stay there. If we have a comparison, set to COMPARE,
6403 but once inside, go back to our default of SET. */
6404
6405 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6406 : ((code == COMPARE || COMPARISON_P (x))
6407 && XEXP (x, 1) == const0_rtx) ? COMPARE
6408 : in_code == COMPARE ? SET : in_code);
6409
6410 /* Process depending on the code of this operation. If NEW is set
6411 nonzero, it will be returned. */
6412
6413 switch (code)
6414 {
6415 case ASHIFT:
6416 /* Convert shifts by constants into multiplications if inside
6417 an address. */
6418 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6419 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6420 && INTVAL (XEXP (x, 1)) >= 0)
6421 {
6422 new = make_compound_operation (XEXP (x, 0), next_code);
6423 new = gen_rtx_MULT (mode, new,
6424 GEN_INT ((HOST_WIDE_INT) 1
6425 << INTVAL (XEXP (x, 1))));
6426 }
6427 break;
6428
6429 case AND:
6430 /* If the second operand is not a constant, we can't do anything
6431 with it. */
6432 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6433 break;
6434
6435 /* If the constant is a power of two minus one and the first operand
6436 is a logical right shift, make an extraction. */
6437 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6438 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6439 {
6440 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6441 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6442 0, in_code == COMPARE);
6443 }
6444
6445 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6446 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6447 && subreg_lowpart_p (XEXP (x, 0))
6448 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6449 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6450 {
6451 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6452 next_code);
6453 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6454 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6455 0, in_code == COMPARE);
6456 }
6457 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6458 else if ((GET_CODE (XEXP (x, 0)) == XOR
6459 || GET_CODE (XEXP (x, 0)) == IOR)
6460 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6461 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6462 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6463 {
6464 /* Apply the distributive law, and then try to make extractions. */
6465 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6466 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6467 XEXP (x, 1)),
6468 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6469 XEXP (x, 1)));
6470 new = make_compound_operation (new, in_code);
6471 }
6472
6473 /* If we are have (and (rotate X C) M) and C is larger than the number
6474 of bits in M, this is an extraction. */
6475
6476 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6477 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6478 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6479 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6480 {
6481 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6482 new = make_extraction (mode, new,
6483 (GET_MODE_BITSIZE (mode)
6484 - INTVAL (XEXP (XEXP (x, 0), 1))),
6485 NULL_RTX, i, 1, 0, in_code == COMPARE);
6486 }
6487
6488 /* On machines without logical shifts, if the operand of the AND is
6489 a logical shift and our mask turns off all the propagated sign
6490 bits, we can replace the logical shift with an arithmetic shift. */
6491 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6492 && !have_insn_for (LSHIFTRT, mode)
6493 && have_insn_for (ASHIFTRT, mode)
6494 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6495 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6496 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6497 && mode_width <= HOST_BITS_PER_WIDE_INT)
6498 {
6499 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6500
6501 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6502 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6503 SUBST (XEXP (x, 0),
6504 gen_rtx_ASHIFTRT (mode,
6505 make_compound_operation
6506 (XEXP (XEXP (x, 0), 0), next_code),
6507 XEXP (XEXP (x, 0), 1)));
6508 }
6509
6510 /* If the constant is one less than a power of two, this might be
6511 representable by an extraction even if no shift is present.
6512 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6513 we are in a COMPARE. */
6514 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6515 new = make_extraction (mode,
6516 make_compound_operation (XEXP (x, 0),
6517 next_code),
6518 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6519
6520 /* If we are in a comparison and this is an AND with a power of two,
6521 convert this into the appropriate bit extract. */
6522 else if (in_code == COMPARE
6523 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6524 new = make_extraction (mode,
6525 make_compound_operation (XEXP (x, 0),
6526 next_code),
6527 i, NULL_RTX, 1, 1, 0, 1);
6528
6529 break;
6530
6531 case LSHIFTRT:
6532 /* If the sign bit is known to be zero, replace this with an
6533 arithmetic shift. */
6534 if (have_insn_for (ASHIFTRT, mode)
6535 && ! have_insn_for (LSHIFTRT, mode)
6536 && mode_width <= HOST_BITS_PER_WIDE_INT
6537 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6538 {
6539 new = gen_rtx_ASHIFTRT (mode,
6540 make_compound_operation (XEXP (x, 0),
6541 next_code),
6542 XEXP (x, 1));
6543 break;
6544 }
6545
6546 /* ... fall through ... */
6547
6548 case ASHIFTRT:
6549 lhs = XEXP (x, 0);
6550 rhs = XEXP (x, 1);
6551
6552 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6553 this is a SIGN_EXTRACT. */
6554 if (GET_CODE (rhs) == CONST_INT
6555 && GET_CODE (lhs) == ASHIFT
6556 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6557 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6558 {
6559 new = make_compound_operation (XEXP (lhs, 0), next_code);
6560 new = make_extraction (mode, new,
6561 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6562 NULL_RTX, mode_width - INTVAL (rhs),
6563 code == LSHIFTRT, 0, in_code == COMPARE);
6564 break;
6565 }
6566
6567 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6568 If so, try to merge the shifts into a SIGN_EXTEND. We could
6569 also do this for some cases of SIGN_EXTRACT, but it doesn't
6570 seem worth the effort; the case checked for occurs on Alpha. */
6571
6572 if (!OBJECT_P (lhs)
6573 && ! (GET_CODE (lhs) == SUBREG
6574 && (OBJECT_P (SUBREG_REG (lhs))))
6575 && GET_CODE (rhs) == CONST_INT
6576 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6577 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6578 new = make_extraction (mode, make_compound_operation (new, next_code),
6579 0, NULL_RTX, mode_width - INTVAL (rhs),
6580 code == LSHIFTRT, 0, in_code == COMPARE);
6581
6582 break;
6583
6584 case SUBREG:
6585 /* Call ourselves recursively on the inner expression. If we are
6586 narrowing the object and it has a different RTL code from
6587 what it originally did, do this SUBREG as a force_to_mode. */
6588
6589 tem = make_compound_operation (SUBREG_REG (x), in_code);
6590 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6591 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6592 && subreg_lowpart_p (x))
6593 {
6594 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6595 NULL_RTX, 0);
6596
6597 /* If we have something other than a SUBREG, we might have
6598 done an expansion, so rerun ourselves. */
6599 if (GET_CODE (newer) != SUBREG)
6600 newer = make_compound_operation (newer, in_code);
6601
6602 return newer;
6603 }
6604
6605 /* If this is a paradoxical subreg, and the new code is a sign or
6606 zero extension, omit the subreg and widen the extension. If it
6607 is a regular subreg, we can still get rid of the subreg by not
6608 widening so much, or in fact removing the extension entirely. */
6609 if ((GET_CODE (tem) == SIGN_EXTEND
6610 || GET_CODE (tem) == ZERO_EXTEND)
6611 && subreg_lowpart_p (x))
6612 {
6613 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6614 || (GET_MODE_SIZE (mode) >
6615 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6616 {
6617 if (! SCALAR_INT_MODE_P (mode))
6618 break;
6619 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6620 }
6621 else
6622 tem = gen_lowpart (mode, XEXP (tem, 0));
6623 return tem;
6624 }
6625 break;
6626
6627 default:
6628 break;
6629 }
6630
6631 if (new)
6632 {
6633 x = gen_lowpart (mode, new);
6634 code = GET_CODE (x);
6635 }
6636
6637 /* Now recursively process each operand of this operation. */
6638 fmt = GET_RTX_FORMAT (code);
6639 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6640 if (fmt[i] == 'e')
6641 {
6642 new = make_compound_operation (XEXP (x, i), next_code);
6643 SUBST (XEXP (x, i), new);
6644 }
6645
6646 return x;
6647 }
6648 \f
6649 /* Given M see if it is a value that would select a field of bits
6650 within an item, but not the entire word. Return -1 if not.
6651 Otherwise, return the starting position of the field, where 0 is the
6652 low-order bit.
6653
6654 *PLEN is set to the length of the field. */
6655
6656 static int
6657 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6658 {
6659 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6660 int pos = exact_log2 (m & -m);
6661 int len;
6662
6663 if (pos < 0)
6664 return -1;
6665
6666 /* Now shift off the low-order zero bits and see if we have a power of
6667 two minus 1. */
6668 len = exact_log2 ((m >> pos) + 1);
6669
6670 if (len <= 0)
6671 return -1;
6672
6673 *plen = len;
6674 return pos;
6675 }
6676 \f
6677 /* See if X can be simplified knowing that we will only refer to it in
6678 MODE and will only refer to those bits that are nonzero in MASK.
6679 If other bits are being computed or if masking operations are done
6680 that select a superset of the bits in MASK, they can sometimes be
6681 ignored.
6682
6683 Return a possibly simplified expression, but always convert X to
6684 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6685
6686 Also, if REG is nonzero and X is a register equal in value to REG,
6687 replace X with REG.
6688
6689 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6690 are all off in X. This is used when X will be complemented, by either
6691 NOT, NEG, or XOR. */
6692
6693 static rtx
6694 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6695 rtx reg, int just_select)
6696 {
6697 enum rtx_code code = GET_CODE (x);
6698 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6699 enum machine_mode op_mode;
6700 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6701 rtx op0, op1, temp;
6702
6703 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6704 code below will do the wrong thing since the mode of such an
6705 expression is VOIDmode.
6706
6707 Also do nothing if X is a CLOBBER; this can happen if X was
6708 the return value from a call to gen_lowpart. */
6709 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6710 return x;
6711
6712 /* We want to perform the operation is its present mode unless we know
6713 that the operation is valid in MODE, in which case we do the operation
6714 in MODE. */
6715 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6716 && have_insn_for (code, mode))
6717 ? mode : GET_MODE (x));
6718
6719 /* It is not valid to do a right-shift in a narrower mode
6720 than the one it came in with. */
6721 if ((code == LSHIFTRT || code == ASHIFTRT)
6722 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6723 op_mode = GET_MODE (x);
6724
6725 /* Truncate MASK to fit OP_MODE. */
6726 if (op_mode)
6727 mask &= GET_MODE_MASK (op_mode);
6728
6729 /* When we have an arithmetic operation, or a shift whose count we
6730 do not know, we need to assume that all bits up to the highest-order
6731 bit in MASK will be needed. This is how we form such a mask. */
6732 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6733 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6734 else
6735 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6736 - 1);
6737
6738 /* Determine what bits of X are guaranteed to be (non)zero. */
6739 nonzero = nonzero_bits (x, mode);
6740
6741 /* If none of the bits in X are needed, return a zero. */
6742 if (! just_select && (nonzero & mask) == 0)
6743 x = const0_rtx;
6744
6745 /* If X is a CONST_INT, return a new one. Do this here since the
6746 test below will fail. */
6747 if (GET_CODE (x) == CONST_INT)
6748 {
6749 if (SCALAR_INT_MODE_P (mode))
6750 return gen_int_mode (INTVAL (x) & mask, mode);
6751 else
6752 {
6753 x = GEN_INT (INTVAL (x) & mask);
6754 return gen_lowpart_common (mode, x);
6755 }
6756 }
6757
6758 /* If X is narrower than MODE and we want all the bits in X's mode, just
6759 get X in the proper mode. */
6760 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6761 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6762 return gen_lowpart (mode, x);
6763
6764 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6765 MASK are already known to be zero in X, we need not do anything. */
6766 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6767 return x;
6768
6769 switch (code)
6770 {
6771 case CLOBBER:
6772 /* If X is a (clobber (const_int)), return it since we know we are
6773 generating something that won't match. */
6774 return x;
6775
6776 case USE:
6777 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6778 spanned the boundary of the MEM. If we are now masking so it is
6779 within that boundary, we don't need the USE any more. */
6780 if (! BITS_BIG_ENDIAN
6781 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6782 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6783 break;
6784
6785 case SIGN_EXTEND:
6786 case ZERO_EXTEND:
6787 case ZERO_EXTRACT:
6788 case SIGN_EXTRACT:
6789 x = expand_compound_operation (x);
6790 if (GET_CODE (x) != code)
6791 return force_to_mode (x, mode, mask, reg, next_select);
6792 break;
6793
6794 case REG:
6795 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6796 || rtx_equal_p (reg, get_last_value (x))))
6797 x = reg;
6798 break;
6799
6800 case SUBREG:
6801 if (subreg_lowpart_p (x)
6802 /* We can ignore the effect of this SUBREG if it narrows the mode or
6803 if the constant masks to zero all the bits the mode doesn't
6804 have. */
6805 && ((GET_MODE_SIZE (GET_MODE (x))
6806 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6807 || (0 == (mask
6808 & GET_MODE_MASK (GET_MODE (x))
6809 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6810 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6811 break;
6812
6813 case AND:
6814 /* If this is an AND with a constant, convert it into an AND
6815 whose constant is the AND of that constant with MASK. If it
6816 remains an AND of MASK, delete it since it is redundant. */
6817
6818 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6819 {
6820 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6821 mask & INTVAL (XEXP (x, 1)));
6822
6823 /* If X is still an AND, see if it is an AND with a mask that
6824 is just some low-order bits. If so, and it is MASK, we don't
6825 need it. */
6826
6827 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6828 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6829 == mask))
6830 x = XEXP (x, 0);
6831
6832 /* If it remains an AND, try making another AND with the bits
6833 in the mode mask that aren't in MASK turned on. If the
6834 constant in the AND is wide enough, this might make a
6835 cheaper constant. */
6836
6837 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6838 && GET_MODE_MASK (GET_MODE (x)) != mask
6839 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6840 {
6841 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6842 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6843 int width = GET_MODE_BITSIZE (GET_MODE (x));
6844 rtx y;
6845
6846 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6847 number, sign extend it. */
6848 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6849 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6850 cval |= (HOST_WIDE_INT) -1 << width;
6851
6852 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6853 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6854 x = y;
6855 }
6856
6857 break;
6858 }
6859
6860 goto binop;
6861
6862 case PLUS:
6863 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6864 low-order bits (as in an alignment operation) and FOO is already
6865 aligned to that boundary, mask C1 to that boundary as well.
6866 This may eliminate that PLUS and, later, the AND. */
6867
6868 {
6869 unsigned int width = GET_MODE_BITSIZE (mode);
6870 unsigned HOST_WIDE_INT smask = mask;
6871
6872 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6873 number, sign extend it. */
6874
6875 if (width < HOST_BITS_PER_WIDE_INT
6876 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6877 smask |= (HOST_WIDE_INT) -1 << width;
6878
6879 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6880 && exact_log2 (- smask) >= 0
6881 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6882 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6883 return force_to_mode (plus_constant (XEXP (x, 0),
6884 (INTVAL (XEXP (x, 1)) & smask)),
6885 mode, smask, reg, next_select);
6886 }
6887
6888 /* ... fall through ... */
6889
6890 case MULT:
6891 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6892 most significant bit in MASK since carries from those bits will
6893 affect the bits we are interested in. */
6894 mask = fuller_mask;
6895 goto binop;
6896
6897 case MINUS:
6898 /* If X is (minus C Y) where C's least set bit is larger than any bit
6899 in the mask, then we may replace with (neg Y). */
6900 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6901 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6902 & -INTVAL (XEXP (x, 0))))
6903 > mask))
6904 {
6905 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6906 GET_MODE (x));
6907 return force_to_mode (x, mode, mask, reg, next_select);
6908 }
6909
6910 /* Similarly, if C contains every bit in the fuller_mask, then we may
6911 replace with (not Y). */
6912 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6913 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
6914 == INTVAL (XEXP (x, 0))))
6915 {
6916 x = simplify_gen_unary (NOT, GET_MODE (x),
6917 XEXP (x, 1), GET_MODE (x));
6918 return force_to_mode (x, mode, mask, reg, next_select);
6919 }
6920
6921 mask = fuller_mask;
6922 goto binop;
6923
6924 case IOR:
6925 case XOR:
6926 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6927 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6928 operation which may be a bitfield extraction. Ensure that the
6929 constant we form is not wider than the mode of X. */
6930
6931 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6932 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6933 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6934 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6935 && GET_CODE (XEXP (x, 1)) == CONST_INT
6936 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6937 + floor_log2 (INTVAL (XEXP (x, 1))))
6938 < GET_MODE_BITSIZE (GET_MODE (x)))
6939 && (INTVAL (XEXP (x, 1))
6940 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6941 {
6942 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6943 << INTVAL (XEXP (XEXP (x, 0), 1)));
6944 temp = gen_binary (GET_CODE (x), GET_MODE (x),
6945 XEXP (XEXP (x, 0), 0), temp);
6946 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6947 XEXP (XEXP (x, 0), 1));
6948 return force_to_mode (x, mode, mask, reg, next_select);
6949 }
6950
6951 binop:
6952 /* For most binary operations, just propagate into the operation and
6953 change the mode if we have an operation of that mode. */
6954
6955 op0 = gen_lowpart (op_mode,
6956 force_to_mode (XEXP (x, 0), mode, mask,
6957 reg, next_select));
6958 op1 = gen_lowpart (op_mode,
6959 force_to_mode (XEXP (x, 1), mode, mask,
6960 reg, next_select));
6961
6962 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6963 x = gen_binary (code, op_mode, op0, op1);
6964 break;
6965
6966 case ASHIFT:
6967 /* For left shifts, do the same, but just for the first operand.
6968 However, we cannot do anything with shifts where we cannot
6969 guarantee that the counts are smaller than the size of the mode
6970 because such a count will have a different meaning in a
6971 wider mode. */
6972
6973 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6974 && INTVAL (XEXP (x, 1)) >= 0
6975 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6976 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6977 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6978 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6979 break;
6980
6981 /* If the shift count is a constant and we can do arithmetic in
6982 the mode of the shift, refine which bits we need. Otherwise, use the
6983 conservative form of the mask. */
6984 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6985 && INTVAL (XEXP (x, 1)) >= 0
6986 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6987 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6988 mask >>= INTVAL (XEXP (x, 1));
6989 else
6990 mask = fuller_mask;
6991
6992 op0 = gen_lowpart (op_mode,
6993 force_to_mode (XEXP (x, 0), op_mode,
6994 mask, reg, next_select));
6995
6996 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6997 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
6998 break;
6999
7000 case LSHIFTRT:
7001 /* Here we can only do something if the shift count is a constant,
7002 this shift constant is valid for the host, and we can do arithmetic
7003 in OP_MODE. */
7004
7005 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7006 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7007 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7008 {
7009 rtx inner = XEXP (x, 0);
7010 unsigned HOST_WIDE_INT inner_mask;
7011
7012 /* Select the mask of the bits we need for the shift operand. */
7013 inner_mask = mask << INTVAL (XEXP (x, 1));
7014
7015 /* We can only change the mode of the shift if we can do arithmetic
7016 in the mode of the shift and INNER_MASK is no wider than the
7017 width of OP_MODE. */
7018 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
7019 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
7020 op_mode = GET_MODE (x);
7021
7022 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7023
7024 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7025 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7026 }
7027
7028 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7029 shift and AND produces only copies of the sign bit (C2 is one less
7030 than a power of two), we can do this with just a shift. */
7031
7032 if (GET_CODE (x) == LSHIFTRT
7033 && GET_CODE (XEXP (x, 1)) == CONST_INT
7034 /* The shift puts one of the sign bit copies in the least significant
7035 bit. */
7036 && ((INTVAL (XEXP (x, 1))
7037 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7038 >= GET_MODE_BITSIZE (GET_MODE (x)))
7039 && exact_log2 (mask + 1) >= 0
7040 /* Number of bits left after the shift must be more than the mask
7041 needs. */
7042 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7043 <= GET_MODE_BITSIZE (GET_MODE (x)))
7044 /* Must be more sign bit copies than the mask needs. */
7045 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7046 >= exact_log2 (mask + 1)))
7047 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7048 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7049 - exact_log2 (mask + 1)));
7050
7051 goto shiftrt;
7052
7053 case ASHIFTRT:
7054 /* If we are just looking for the sign bit, we don't need this shift at
7055 all, even if it has a variable count. */
7056 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7057 && (mask == ((unsigned HOST_WIDE_INT) 1
7058 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7059 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7060
7061 /* If this is a shift by a constant, get a mask that contains those bits
7062 that are not copies of the sign bit. We then have two cases: If
7063 MASK only includes those bits, this can be a logical shift, which may
7064 allow simplifications. If MASK is a single-bit field not within
7065 those bits, we are requesting a copy of the sign bit and hence can
7066 shift the sign bit to the appropriate location. */
7067
7068 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7069 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7070 {
7071 int i = -1;
7072
7073 /* If the considered data is wider than HOST_WIDE_INT, we can't
7074 represent a mask for all its bits in a single scalar.
7075 But we only care about the lower bits, so calculate these. */
7076
7077 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7078 {
7079 nonzero = ~(HOST_WIDE_INT) 0;
7080
7081 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7082 is the number of bits a full-width mask would have set.
7083 We need only shift if these are fewer than nonzero can
7084 hold. If not, we must keep all bits set in nonzero. */
7085
7086 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7087 < HOST_BITS_PER_WIDE_INT)
7088 nonzero >>= INTVAL (XEXP (x, 1))
7089 + HOST_BITS_PER_WIDE_INT
7090 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7091 }
7092 else
7093 {
7094 nonzero = GET_MODE_MASK (GET_MODE (x));
7095 nonzero >>= INTVAL (XEXP (x, 1));
7096 }
7097
7098 if ((mask & ~nonzero) == 0
7099 || (i = exact_log2 (mask)) >= 0)
7100 {
7101 x = simplify_shift_const
7102 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7103 i < 0 ? INTVAL (XEXP (x, 1))
7104 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7105
7106 if (GET_CODE (x) != ASHIFTRT)
7107 return force_to_mode (x, mode, mask, reg, next_select);
7108 }
7109 }
7110
7111 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7112 even if the shift count isn't a constant. */
7113 if (mask == 1)
7114 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7115
7116 shiftrt:
7117
7118 /* If this is a zero- or sign-extension operation that just affects bits
7119 we don't care about, remove it. Be sure the call above returned
7120 something that is still a shift. */
7121
7122 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7123 && GET_CODE (XEXP (x, 1)) == CONST_INT
7124 && INTVAL (XEXP (x, 1)) >= 0
7125 && (INTVAL (XEXP (x, 1))
7126 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7127 && GET_CODE (XEXP (x, 0)) == ASHIFT
7128 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7129 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7130 reg, next_select);
7131
7132 break;
7133
7134 case ROTATE:
7135 case ROTATERT:
7136 /* If the shift count is constant and we can do computations
7137 in the mode of X, compute where the bits we care about are.
7138 Otherwise, we can't do anything. Don't change the mode of
7139 the shift or propagate MODE into the shift, though. */
7140 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7141 && INTVAL (XEXP (x, 1)) >= 0)
7142 {
7143 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7144 GET_MODE (x), GEN_INT (mask),
7145 XEXP (x, 1));
7146 if (temp && GET_CODE (temp) == CONST_INT)
7147 SUBST (XEXP (x, 0),
7148 force_to_mode (XEXP (x, 0), GET_MODE (x),
7149 INTVAL (temp), reg, next_select));
7150 }
7151 break;
7152
7153 case NEG:
7154 /* If we just want the low-order bit, the NEG isn't needed since it
7155 won't change the low-order bit. */
7156 if (mask == 1)
7157 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7158
7159 /* We need any bits less significant than the most significant bit in
7160 MASK since carries from those bits will affect the bits we are
7161 interested in. */
7162 mask = fuller_mask;
7163 goto unop;
7164
7165 case NOT:
7166 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7167 same as the XOR case above. Ensure that the constant we form is not
7168 wider than the mode of X. */
7169
7170 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7171 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7172 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7173 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7174 < GET_MODE_BITSIZE (GET_MODE (x)))
7175 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7176 {
7177 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7178 GET_MODE (x));
7179 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7180 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7181
7182 return force_to_mode (x, mode, mask, reg, next_select);
7183 }
7184
7185 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7186 use the full mask inside the NOT. */
7187 mask = fuller_mask;
7188
7189 unop:
7190 op0 = gen_lowpart (op_mode,
7191 force_to_mode (XEXP (x, 0), mode, mask,
7192 reg, next_select));
7193 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7194 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7195 break;
7196
7197 case NE:
7198 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7199 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7200 which is equal to STORE_FLAG_VALUE. */
7201 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7202 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7203 && (nonzero_bits (XEXP (x, 0), mode)
7204 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7205 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7206
7207 break;
7208
7209 case IF_THEN_ELSE:
7210 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7211 written in a narrower mode. We play it safe and do not do so. */
7212
7213 SUBST (XEXP (x, 1),
7214 gen_lowpart (GET_MODE (x),
7215 force_to_mode (XEXP (x, 1), mode,
7216 mask, reg, next_select)));
7217 SUBST (XEXP (x, 2),
7218 gen_lowpart (GET_MODE (x),
7219 force_to_mode (XEXP (x, 2), mode,
7220 mask, reg, next_select)));
7221 break;
7222
7223 default:
7224 break;
7225 }
7226
7227 /* Ensure we return a value of the proper mode. */
7228 return gen_lowpart (mode, x);
7229 }
7230 \f
7231 /* Return nonzero if X is an expression that has one of two values depending on
7232 whether some other value is zero or nonzero. In that case, we return the
7233 value that is being tested, *PTRUE is set to the value if the rtx being
7234 returned has a nonzero value, and *PFALSE is set to the other alternative.
7235
7236 If we return zero, we set *PTRUE and *PFALSE to X. */
7237
7238 static rtx
7239 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7240 {
7241 enum machine_mode mode = GET_MODE (x);
7242 enum rtx_code code = GET_CODE (x);
7243 rtx cond0, cond1, true0, true1, false0, false1;
7244 unsigned HOST_WIDE_INT nz;
7245
7246 /* If we are comparing a value against zero, we are done. */
7247 if ((code == NE || code == EQ)
7248 && XEXP (x, 1) == const0_rtx)
7249 {
7250 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7251 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7252 return XEXP (x, 0);
7253 }
7254
7255 /* If this is a unary operation whose operand has one of two values, apply
7256 our opcode to compute those values. */
7257 else if (UNARY_P (x)
7258 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7259 {
7260 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7261 *pfalse = simplify_gen_unary (code, mode, false0,
7262 GET_MODE (XEXP (x, 0)));
7263 return cond0;
7264 }
7265
7266 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7267 make can't possibly match and would suppress other optimizations. */
7268 else if (code == COMPARE)
7269 ;
7270
7271 /* If this is a binary operation, see if either side has only one of two
7272 values. If either one does or if both do and they are conditional on
7273 the same value, compute the new true and false values. */
7274 else if (BINARY_P (x))
7275 {
7276 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7277 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7278
7279 if ((cond0 != 0 || cond1 != 0)
7280 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7281 {
7282 /* If if_then_else_cond returned zero, then true/false are the
7283 same rtl. We must copy one of them to prevent invalid rtl
7284 sharing. */
7285 if (cond0 == 0)
7286 true0 = copy_rtx (true0);
7287 else if (cond1 == 0)
7288 true1 = copy_rtx (true1);
7289
7290 *ptrue = gen_binary (code, mode, true0, true1);
7291 *pfalse = gen_binary (code, mode, false0, false1);
7292 return cond0 ? cond0 : cond1;
7293 }
7294
7295 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7296 operands is zero when the other is nonzero, and vice-versa,
7297 and STORE_FLAG_VALUE is 1 or -1. */
7298
7299 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7300 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7301 || code == UMAX)
7302 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7303 {
7304 rtx op0 = XEXP (XEXP (x, 0), 1);
7305 rtx op1 = XEXP (XEXP (x, 1), 1);
7306
7307 cond0 = XEXP (XEXP (x, 0), 0);
7308 cond1 = XEXP (XEXP (x, 1), 0);
7309
7310 if (COMPARISON_P (cond0)
7311 && COMPARISON_P (cond1)
7312 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7313 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7314 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7315 || ((swap_condition (GET_CODE (cond0))
7316 == combine_reversed_comparison_code (cond1))
7317 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7318 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7319 && ! side_effects_p (x))
7320 {
7321 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7322 *pfalse = gen_binary (MULT, mode,
7323 (code == MINUS
7324 ? simplify_gen_unary (NEG, mode, op1,
7325 mode)
7326 : op1),
7327 const_true_rtx);
7328 return cond0;
7329 }
7330 }
7331
7332 /* Similarly for MULT, AND and UMIN, except that for these the result
7333 is always zero. */
7334 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7335 && (code == MULT || code == AND || code == UMIN)
7336 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7337 {
7338 cond0 = XEXP (XEXP (x, 0), 0);
7339 cond1 = XEXP (XEXP (x, 1), 0);
7340
7341 if (COMPARISON_P (cond0)
7342 && COMPARISON_P (cond1)
7343 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7344 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7345 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7346 || ((swap_condition (GET_CODE (cond0))
7347 == combine_reversed_comparison_code (cond1))
7348 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7349 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7350 && ! side_effects_p (x))
7351 {
7352 *ptrue = *pfalse = const0_rtx;
7353 return cond0;
7354 }
7355 }
7356 }
7357
7358 else if (code == IF_THEN_ELSE)
7359 {
7360 /* If we have IF_THEN_ELSE already, extract the condition and
7361 canonicalize it if it is NE or EQ. */
7362 cond0 = XEXP (x, 0);
7363 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7364 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7365 return XEXP (cond0, 0);
7366 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7367 {
7368 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7369 return XEXP (cond0, 0);
7370 }
7371 else
7372 return cond0;
7373 }
7374
7375 /* If X is a SUBREG, we can narrow both the true and false values
7376 if the inner expression, if there is a condition. */
7377 else if (code == SUBREG
7378 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7379 &true0, &false0)))
7380 {
7381 *ptrue = simplify_gen_subreg (mode, true0,
7382 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7383 *pfalse = simplify_gen_subreg (mode, false0,
7384 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7385
7386 return cond0;
7387 }
7388
7389 /* If X is a constant, this isn't special and will cause confusions
7390 if we treat it as such. Likewise if it is equivalent to a constant. */
7391 else if (CONSTANT_P (x)
7392 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7393 ;
7394
7395 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7396 will be least confusing to the rest of the compiler. */
7397 else if (mode == BImode)
7398 {
7399 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7400 return x;
7401 }
7402
7403 /* If X is known to be either 0 or -1, those are the true and
7404 false values when testing X. */
7405 else if (x == constm1_rtx || x == const0_rtx
7406 || (mode != VOIDmode
7407 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7408 {
7409 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7410 return x;
7411 }
7412
7413 /* Likewise for 0 or a single bit. */
7414 else if (SCALAR_INT_MODE_P (mode)
7415 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7416 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7417 {
7418 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7419 return x;
7420 }
7421
7422 /* Otherwise fail; show no condition with true and false values the same. */
7423 *ptrue = *pfalse = x;
7424 return 0;
7425 }
7426 \f
7427 /* Return the value of expression X given the fact that condition COND
7428 is known to be true when applied to REG as its first operand and VAL
7429 as its second. X is known to not be shared and so can be modified in
7430 place.
7431
7432 We only handle the simplest cases, and specifically those cases that
7433 arise with IF_THEN_ELSE expressions. */
7434
7435 static rtx
7436 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7437 {
7438 enum rtx_code code = GET_CODE (x);
7439 rtx temp;
7440 const char *fmt;
7441 int i, j;
7442
7443 if (side_effects_p (x))
7444 return x;
7445
7446 /* If either operand of the condition is a floating point value,
7447 then we have to avoid collapsing an EQ comparison. */
7448 if (cond == EQ
7449 && rtx_equal_p (x, reg)
7450 && ! FLOAT_MODE_P (GET_MODE (x))
7451 && ! FLOAT_MODE_P (GET_MODE (val)))
7452 return val;
7453
7454 if (cond == UNEQ && rtx_equal_p (x, reg))
7455 return val;
7456
7457 /* If X is (abs REG) and we know something about REG's relationship
7458 with zero, we may be able to simplify this. */
7459
7460 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7461 switch (cond)
7462 {
7463 case GE: case GT: case EQ:
7464 return XEXP (x, 0);
7465 case LT: case LE:
7466 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7467 XEXP (x, 0),
7468 GET_MODE (XEXP (x, 0)));
7469 default:
7470 break;
7471 }
7472
7473 /* The only other cases we handle are MIN, MAX, and comparisons if the
7474 operands are the same as REG and VAL. */
7475
7476 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7477 {
7478 if (rtx_equal_p (XEXP (x, 0), val))
7479 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7480
7481 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7482 {
7483 if (COMPARISON_P (x))
7484 {
7485 if (comparison_dominates_p (cond, code))
7486 return const_true_rtx;
7487
7488 code = combine_reversed_comparison_code (x);
7489 if (code != UNKNOWN
7490 && comparison_dominates_p (cond, code))
7491 return const0_rtx;
7492 else
7493 return x;
7494 }
7495 else if (code == SMAX || code == SMIN
7496 || code == UMIN || code == UMAX)
7497 {
7498 int unsignedp = (code == UMIN || code == UMAX);
7499
7500 /* Do not reverse the condition when it is NE or EQ.
7501 This is because we cannot conclude anything about
7502 the value of 'SMAX (x, y)' when x is not equal to y,
7503 but we can when x equals y. */
7504 if ((code == SMAX || code == UMAX)
7505 && ! (cond == EQ || cond == NE))
7506 cond = reverse_condition (cond);
7507
7508 switch (cond)
7509 {
7510 case GE: case GT:
7511 return unsignedp ? x : XEXP (x, 1);
7512 case LE: case LT:
7513 return unsignedp ? x : XEXP (x, 0);
7514 case GEU: case GTU:
7515 return unsignedp ? XEXP (x, 1) : x;
7516 case LEU: case LTU:
7517 return unsignedp ? XEXP (x, 0) : x;
7518 default:
7519 break;
7520 }
7521 }
7522 }
7523 }
7524 else if (code == SUBREG)
7525 {
7526 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7527 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7528
7529 if (SUBREG_REG (x) != r)
7530 {
7531 /* We must simplify subreg here, before we lose track of the
7532 original inner_mode. */
7533 new = simplify_subreg (GET_MODE (x), r,
7534 inner_mode, SUBREG_BYTE (x));
7535 if (new)
7536 return new;
7537 else
7538 SUBST (SUBREG_REG (x), r);
7539 }
7540
7541 return x;
7542 }
7543 /* We don't have to handle SIGN_EXTEND here, because even in the
7544 case of replacing something with a modeless CONST_INT, a
7545 CONST_INT is already (supposed to be) a valid sign extension for
7546 its narrower mode, which implies it's already properly
7547 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7548 story is different. */
7549 else if (code == ZERO_EXTEND)
7550 {
7551 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7552 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7553
7554 if (XEXP (x, 0) != r)
7555 {
7556 /* We must simplify the zero_extend here, before we lose
7557 track of the original inner_mode. */
7558 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7559 r, inner_mode);
7560 if (new)
7561 return new;
7562 else
7563 SUBST (XEXP (x, 0), r);
7564 }
7565
7566 return x;
7567 }
7568
7569 fmt = GET_RTX_FORMAT (code);
7570 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7571 {
7572 if (fmt[i] == 'e')
7573 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7574 else if (fmt[i] == 'E')
7575 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7576 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7577 cond, reg, val));
7578 }
7579
7580 return x;
7581 }
7582 \f
7583 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7584 assignment as a field assignment. */
7585
7586 static int
7587 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7588 {
7589 if (x == y || rtx_equal_p (x, y))
7590 return 1;
7591
7592 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7593 return 0;
7594
7595 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7596 Note that all SUBREGs of MEM are paradoxical; otherwise they
7597 would have been rewritten. */
7598 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7599 && GET_CODE (SUBREG_REG (y)) == MEM
7600 && rtx_equal_p (SUBREG_REG (y),
7601 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7602 return 1;
7603
7604 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7605 && GET_CODE (SUBREG_REG (x)) == MEM
7606 && rtx_equal_p (SUBREG_REG (x),
7607 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7608 return 1;
7609
7610 /* We used to see if get_last_value of X and Y were the same but that's
7611 not correct. In one direction, we'll cause the assignment to have
7612 the wrong destination and in the case, we'll import a register into this
7613 insn that might have already have been dead. So fail if none of the
7614 above cases are true. */
7615 return 0;
7616 }
7617 \f
7618 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7619 Return that assignment if so.
7620
7621 We only handle the most common cases. */
7622
7623 static rtx
7624 make_field_assignment (rtx x)
7625 {
7626 rtx dest = SET_DEST (x);
7627 rtx src = SET_SRC (x);
7628 rtx assign;
7629 rtx rhs, lhs;
7630 HOST_WIDE_INT c1;
7631 HOST_WIDE_INT pos;
7632 unsigned HOST_WIDE_INT len;
7633 rtx other;
7634 enum machine_mode mode;
7635
7636 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7637 a clear of a one-bit field. We will have changed it to
7638 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7639 for a SUBREG. */
7640
7641 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7642 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7643 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7644 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7645 {
7646 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7647 1, 1, 1, 0);
7648 if (assign != 0)
7649 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7650 return x;
7651 }
7652
7653 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7654 && subreg_lowpart_p (XEXP (src, 0))
7655 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7656 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7657 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7658 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7659 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7660 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7661 {
7662 assign = make_extraction (VOIDmode, dest, 0,
7663 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7664 1, 1, 1, 0);
7665 if (assign != 0)
7666 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7667 return x;
7668 }
7669
7670 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7671 one-bit field. */
7672 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7673 && XEXP (XEXP (src, 0), 0) == const1_rtx
7674 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7675 {
7676 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7677 1, 1, 1, 0);
7678 if (assign != 0)
7679 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7680 return x;
7681 }
7682
7683 /* The other case we handle is assignments into a constant-position
7684 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7685 a mask that has all one bits except for a group of zero bits and
7686 OTHER is known to have zeros where C1 has ones, this is such an
7687 assignment. Compute the position and length from C1. Shift OTHER
7688 to the appropriate position, force it to the required mode, and
7689 make the extraction. Check for the AND in both operands. */
7690
7691 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7692 return x;
7693
7694 rhs = expand_compound_operation (XEXP (src, 0));
7695 lhs = expand_compound_operation (XEXP (src, 1));
7696
7697 if (GET_CODE (rhs) == AND
7698 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7699 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7700 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7701 else if (GET_CODE (lhs) == AND
7702 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7703 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7704 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7705 else
7706 return x;
7707
7708 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7709 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7710 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7711 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7712 return x;
7713
7714 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7715 if (assign == 0)
7716 return x;
7717
7718 /* The mode to use for the source is the mode of the assignment, or of
7719 what is inside a possible STRICT_LOW_PART. */
7720 mode = (GET_CODE (assign) == STRICT_LOW_PART
7721 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7722
7723 /* Shift OTHER right POS places and make it the source, restricting it
7724 to the proper length and mode. */
7725
7726 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7727 GET_MODE (src), other, pos),
7728 mode,
7729 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7730 ? ~(unsigned HOST_WIDE_INT) 0
7731 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7732 dest, 0);
7733
7734 /* If SRC is masked by an AND that does not make a difference in
7735 the value being stored, strip it. */
7736 if (GET_CODE (assign) == ZERO_EXTRACT
7737 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7738 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7739 && GET_CODE (src) == AND
7740 && GET_CODE (XEXP (src, 1)) == CONST_INT
7741 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7742 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7743 src = XEXP (src, 0);
7744
7745 return gen_rtx_SET (VOIDmode, assign, src);
7746 }
7747 \f
7748 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7749 if so. */
7750
7751 static rtx
7752 apply_distributive_law (rtx x)
7753 {
7754 enum rtx_code code = GET_CODE (x);
7755 enum rtx_code inner_code;
7756 rtx lhs, rhs, other;
7757 rtx tem;
7758
7759 /* Distributivity is not true for floating point as it can change the
7760 value. So we don't do it unless -funsafe-math-optimizations. */
7761 if (FLOAT_MODE_P (GET_MODE (x))
7762 && ! flag_unsafe_math_optimizations)
7763 return x;
7764
7765 /* The outer operation can only be one of the following: */
7766 if (code != IOR && code != AND && code != XOR
7767 && code != PLUS && code != MINUS)
7768 return x;
7769
7770 lhs = XEXP (x, 0);
7771 rhs = XEXP (x, 1);
7772
7773 /* If either operand is a primitive we can't do anything, so get out
7774 fast. */
7775 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7776 return x;
7777
7778 lhs = expand_compound_operation (lhs);
7779 rhs = expand_compound_operation (rhs);
7780 inner_code = GET_CODE (lhs);
7781 if (inner_code != GET_CODE (rhs))
7782 return x;
7783
7784 /* See if the inner and outer operations distribute. */
7785 switch (inner_code)
7786 {
7787 case LSHIFTRT:
7788 case ASHIFTRT:
7789 case AND:
7790 case IOR:
7791 /* These all distribute except over PLUS. */
7792 if (code == PLUS || code == MINUS)
7793 return x;
7794 break;
7795
7796 case MULT:
7797 if (code != PLUS && code != MINUS)
7798 return x;
7799 break;
7800
7801 case ASHIFT:
7802 /* This is also a multiply, so it distributes over everything. */
7803 break;
7804
7805 case SUBREG:
7806 /* Non-paradoxical SUBREGs distributes over all operations, provided
7807 the inner modes and byte offsets are the same, this is an extraction
7808 of a low-order part, we don't convert an fp operation to int or
7809 vice versa, and we would not be converting a single-word
7810 operation into a multi-word operation. The latter test is not
7811 required, but it prevents generating unneeded multi-word operations.
7812 Some of the previous tests are redundant given the latter test, but
7813 are retained because they are required for correctness.
7814
7815 We produce the result slightly differently in this case. */
7816
7817 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7818 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7819 || ! subreg_lowpart_p (lhs)
7820 || (GET_MODE_CLASS (GET_MODE (lhs))
7821 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7822 || (GET_MODE_SIZE (GET_MODE (lhs))
7823 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7824 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7825 return x;
7826
7827 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7828 SUBREG_REG (lhs), SUBREG_REG (rhs));
7829 return gen_lowpart (GET_MODE (x), tem);
7830
7831 default:
7832 return x;
7833 }
7834
7835 /* Set LHS and RHS to the inner operands (A and B in the example
7836 above) and set OTHER to the common operand (C in the example).
7837 There is only one way to do this unless the inner operation is
7838 commutative. */
7839 if (COMMUTATIVE_ARITH_P (lhs)
7840 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7841 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7842 else if (COMMUTATIVE_ARITH_P (lhs)
7843 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7844 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7845 else if (COMMUTATIVE_ARITH_P (lhs)
7846 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7847 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7848 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7849 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7850 else
7851 return x;
7852
7853 /* Form the new inner operation, seeing if it simplifies first. */
7854 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7855
7856 /* There is one exception to the general way of distributing:
7857 (a | c) ^ (b | c) -> (a ^ b) & ~c */
7858 if (code == XOR && inner_code == IOR)
7859 {
7860 inner_code = AND;
7861 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7862 }
7863
7864 /* We may be able to continuing distributing the result, so call
7865 ourselves recursively on the inner operation before forming the
7866 outer operation, which we return. */
7867 return gen_binary (inner_code, GET_MODE (x),
7868 apply_distributive_law (tem), other);
7869 }
7870 \f
7871 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7872 in MODE.
7873
7874 Return an equivalent form, if different from X. Otherwise, return X. If
7875 X is zero, we are to always construct the equivalent form. */
7876
7877 static rtx
7878 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
7879 unsigned HOST_WIDE_INT constop)
7880 {
7881 unsigned HOST_WIDE_INT nonzero;
7882 int i;
7883
7884 /* Simplify VAROP knowing that we will be only looking at some of the
7885 bits in it.
7886
7887 Note by passing in CONSTOP, we guarantee that the bits not set in
7888 CONSTOP are not significant and will never be examined. We must
7889 ensure that is the case by explicitly masking out those bits
7890 before returning. */
7891 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7892
7893 /* If VAROP is a CLOBBER, we will fail so return it. */
7894 if (GET_CODE (varop) == CLOBBER)
7895 return varop;
7896
7897 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
7898 to VAROP and return the new constant. */
7899 if (GET_CODE (varop) == CONST_INT)
7900 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
7901
7902 /* See what bits may be nonzero in VAROP. Unlike the general case of
7903 a call to nonzero_bits, here we don't care about bits outside
7904 MODE. */
7905
7906 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7907
7908 /* Turn off all bits in the constant that are known to already be zero.
7909 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7910 which is tested below. */
7911
7912 constop &= nonzero;
7913
7914 /* If we don't have any bits left, return zero. */
7915 if (constop == 0)
7916 return const0_rtx;
7917
7918 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7919 a power of two, we can replace this with an ASHIFT. */
7920 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7921 && (i = exact_log2 (constop)) >= 0)
7922 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7923
7924 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7925 or XOR, then try to apply the distributive law. This may eliminate
7926 operations if either branch can be simplified because of the AND.
7927 It may also make some cases more complex, but those cases probably
7928 won't match a pattern either with or without this. */
7929
7930 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7931 return
7932 gen_lowpart
7933 (mode,
7934 apply_distributive_law
7935 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7936 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7937 XEXP (varop, 0), constop),
7938 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7939 XEXP (varop, 1), constop))));
7940
7941 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
7942 the AND and see if one of the operands simplifies to zero. If so, we
7943 may eliminate it. */
7944
7945 if (GET_CODE (varop) == PLUS
7946 && exact_log2 (constop + 1) >= 0)
7947 {
7948 rtx o0, o1;
7949
7950 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
7951 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
7952 if (o0 == const0_rtx)
7953 return o1;
7954 if (o1 == const0_rtx)
7955 return o0;
7956 }
7957
7958 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7959 if we already had one (just check for the simplest cases). */
7960 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7961 && GET_MODE (XEXP (x, 0)) == mode
7962 && SUBREG_REG (XEXP (x, 0)) == varop)
7963 varop = XEXP (x, 0);
7964 else
7965 varop = gen_lowpart (mode, varop);
7966
7967 /* If we can't make the SUBREG, try to return what we were given. */
7968 if (GET_CODE (varop) == CLOBBER)
7969 return x ? x : varop;
7970
7971 /* If we are only masking insignificant bits, return VAROP. */
7972 if (constop == nonzero)
7973 x = varop;
7974 else
7975 {
7976 /* Otherwise, return an AND. */
7977 constop = trunc_int_for_mode (constop, mode);
7978 /* See how much, if any, of X we can use. */
7979 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7980 x = gen_binary (AND, mode, varop, GEN_INT (constop));
7981
7982 else
7983 {
7984 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7985 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
7986 SUBST (XEXP (x, 1), GEN_INT (constop));
7987
7988 SUBST (XEXP (x, 0), varop);
7989 }
7990 }
7991
7992 return x;
7993 }
7994 \f
7995 #define nonzero_bits_with_known(X, MODE) \
7996 cached_nonzero_bits (X, MODE, known_x, known_mode, known_ret)
7997
7998 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
7999 It avoids exponential behavior in nonzero_bits1 when X has
8000 identical subexpressions on the first or the second level. */
8001
8002 static unsigned HOST_WIDE_INT
8003 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
8004 enum machine_mode known_mode,
8005 unsigned HOST_WIDE_INT known_ret)
8006 {
8007 if (x == known_x && mode == known_mode)
8008 return known_ret;
8009
8010 /* Try to find identical subexpressions. If found call
8011 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
8012 precomputed value for the subexpression as KNOWN_RET. */
8013
8014 if (ARITHMETIC_P (x))
8015 {
8016 rtx x0 = XEXP (x, 0);
8017 rtx x1 = XEXP (x, 1);
8018
8019 /* Check the first level. */
8020 if (x0 == x1)
8021 return nonzero_bits1 (x, mode, x0, mode,
8022 nonzero_bits_with_known (x0, mode));
8023
8024 /* Check the second level. */
8025 if (ARITHMETIC_P (x0)
8026 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
8027 return nonzero_bits1 (x, mode, x1, mode,
8028 nonzero_bits_with_known (x1, mode));
8029
8030 if (ARITHMETIC_P (x1)
8031 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
8032 return nonzero_bits1 (x, mode, x0, mode,
8033 nonzero_bits_with_known (x0, mode));
8034 }
8035
8036 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
8037 }
8038
8039 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
8040 We don't let nonzero_bits recur into num_sign_bit_copies, because that
8041 is less useful. We can't allow both, because that results in exponential
8042 run time recursion. There is a nullstone testcase that triggered
8043 this. This macro avoids accidental uses of num_sign_bit_copies. */
8044 #define cached_num_sign_bit_copies()
8045
8046 /* Given an expression, X, compute which bits in X can be nonzero.
8047 We don't care about bits outside of those defined in MODE.
8048
8049 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8050 a shift, AND, or zero_extract, we can do better. */
8051
8052 static unsigned HOST_WIDE_INT
8053 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
8054 enum machine_mode known_mode,
8055 unsigned HOST_WIDE_INT known_ret)
8056 {
8057 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
8058 unsigned HOST_WIDE_INT inner_nz;
8059 enum rtx_code code;
8060 unsigned int mode_width = GET_MODE_BITSIZE (mode);
8061 rtx tem;
8062
8063 /* For floating-point values, assume all bits are needed. */
8064 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
8065 return nonzero;
8066
8067 /* If X is wider than MODE, use its mode instead. */
8068 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
8069 {
8070 mode = GET_MODE (x);
8071 nonzero = GET_MODE_MASK (mode);
8072 mode_width = GET_MODE_BITSIZE (mode);
8073 }
8074
8075 if (mode_width > HOST_BITS_PER_WIDE_INT)
8076 /* Our only callers in this case look for single bit values. So
8077 just return the mode mask. Those tests will then be false. */
8078 return nonzero;
8079
8080 #ifndef WORD_REGISTER_OPERATIONS
8081 /* If MODE is wider than X, but both are a single word for both the host
8082 and target machines, we can compute this from which bits of the
8083 object might be nonzero in its own mode, taking into account the fact
8084 that on many CISC machines, accessing an object in a wider mode
8085 causes the high-order bits to become undefined. So they are
8086 not known to be zero. */
8087
8088 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8089 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8090 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8091 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
8092 {
8093 nonzero &= nonzero_bits_with_known (x, GET_MODE (x));
8094 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
8095 return nonzero;
8096 }
8097 #endif
8098
8099 code = GET_CODE (x);
8100 switch (code)
8101 {
8102 case REG:
8103 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8104 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8105 all the bits above ptr_mode are known to be zero. */
8106 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8107 && REG_POINTER (x))
8108 nonzero &= GET_MODE_MASK (ptr_mode);
8109 #endif
8110
8111 /* Include declared information about alignment of pointers. */
8112 /* ??? We don't properly preserve REG_POINTER changes across
8113 pointer-to-integer casts, so we can't trust it except for
8114 things that we know must be pointers. See execute/960116-1.c. */
8115 if ((x == stack_pointer_rtx
8116 || x == frame_pointer_rtx
8117 || x == arg_pointer_rtx)
8118 && REGNO_POINTER_ALIGN (REGNO (x)))
8119 {
8120 unsigned HOST_WIDE_INT alignment
8121 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
8122
8123 #ifdef PUSH_ROUNDING
8124 /* If PUSH_ROUNDING is defined, it is possible for the
8125 stack to be momentarily aligned only to that amount,
8126 so we pick the least alignment. */
8127 if (x == stack_pointer_rtx && PUSH_ARGS)
8128 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
8129 alignment);
8130 #endif
8131
8132 nonzero &= ~(alignment - 1);
8133 }
8134
8135 /* If X is a register whose nonzero bits value is current, use it.
8136 Otherwise, if X is a register whose value we can find, use that
8137 value. Otherwise, use the previously-computed global nonzero bits
8138 for this register. */
8139
8140 if (reg_last_set_value[REGNO (x)] != 0
8141 && (reg_last_set_mode[REGNO (x)] == mode
8142 || (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
8143 && GET_MODE_CLASS (mode) == MODE_INT))
8144 && (reg_last_set_label[REGNO (x)] == label_tick
8145 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8146 && REG_N_SETS (REGNO (x)) == 1
8147 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8148 REGNO (x))))
8149 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8150 return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
8151
8152 tem = get_last_value (x);
8153
8154 if (tem)
8155 {
8156 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8157 /* If X is narrower than MODE and TEM is a non-negative
8158 constant that would appear negative in the mode of X,
8159 sign-extend it for use in reg_nonzero_bits because some
8160 machines (maybe most) will actually do the sign-extension
8161 and this is the conservative approach.
8162
8163 ??? For 2.5, try to tighten up the MD files in this regard
8164 instead of this kludge. */
8165
8166 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8167 && GET_CODE (tem) == CONST_INT
8168 && INTVAL (tem) > 0
8169 && 0 != (INTVAL (tem)
8170 & ((HOST_WIDE_INT) 1
8171 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8172 tem = GEN_INT (INTVAL (tem)
8173 | ((HOST_WIDE_INT) (-1)
8174 << GET_MODE_BITSIZE (GET_MODE (x))));
8175 #endif
8176 return nonzero_bits_with_known (tem, mode) & nonzero;
8177 }
8178 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8179 {
8180 unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
8181
8182 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8183 /* We don't know anything about the upper bits. */
8184 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8185 return nonzero & mask;
8186 }
8187 else
8188 return nonzero;
8189
8190 case CONST_INT:
8191 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8192 /* If X is negative in MODE, sign-extend the value. */
8193 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8194 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8195 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8196 #endif
8197
8198 return INTVAL (x);
8199
8200 case MEM:
8201 #ifdef LOAD_EXTEND_OP
8202 /* In many, if not most, RISC machines, reading a byte from memory
8203 zeros the rest of the register. Noticing that fact saves a lot
8204 of extra zero-extends. */
8205 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8206 nonzero &= GET_MODE_MASK (GET_MODE (x));
8207 #endif
8208 break;
8209
8210 case EQ: case NE:
8211 case UNEQ: case LTGT:
8212 case GT: case GTU: case UNGT:
8213 case LT: case LTU: case UNLT:
8214 case GE: case GEU: case UNGE:
8215 case LE: case LEU: case UNLE:
8216 case UNORDERED: case ORDERED:
8217
8218 /* If this produces an integer result, we know which bits are set.
8219 Code here used to clear bits outside the mode of X, but that is
8220 now done above. */
8221
8222 if (GET_MODE_CLASS (mode) == MODE_INT
8223 && mode_width <= HOST_BITS_PER_WIDE_INT)
8224 nonzero = STORE_FLAG_VALUE;
8225 break;
8226
8227 case NEG:
8228 #if 0
8229 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8230 and num_sign_bit_copies. */
8231 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8232 == GET_MODE_BITSIZE (GET_MODE (x)))
8233 nonzero = 1;
8234 #endif
8235
8236 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8237 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8238 break;
8239
8240 case ABS:
8241 #if 0
8242 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8243 and num_sign_bit_copies. */
8244 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8245 == GET_MODE_BITSIZE (GET_MODE (x)))
8246 nonzero = 1;
8247 #endif
8248 break;
8249
8250 case TRUNCATE:
8251 nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
8252 & GET_MODE_MASK (mode));
8253 break;
8254
8255 case ZERO_EXTEND:
8256 nonzero &= nonzero_bits_with_known (XEXP (x, 0), mode);
8257 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8258 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8259 break;
8260
8261 case SIGN_EXTEND:
8262 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8263 Otherwise, show all the bits in the outer mode but not the inner
8264 may be nonzero. */
8265 inner_nz = nonzero_bits_with_known (XEXP (x, 0), mode);
8266 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8267 {
8268 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8269 if (inner_nz
8270 & (((HOST_WIDE_INT) 1
8271 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8272 inner_nz |= (GET_MODE_MASK (mode)
8273 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8274 }
8275
8276 nonzero &= inner_nz;
8277 break;
8278
8279 case AND:
8280 nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
8281 & nonzero_bits_with_known (XEXP (x, 1), mode));
8282 break;
8283
8284 case XOR: case IOR:
8285 case UMIN: case UMAX: case SMIN: case SMAX:
8286 {
8287 unsigned HOST_WIDE_INT nonzero0 =
8288 nonzero_bits_with_known (XEXP (x, 0), mode);
8289
8290 /* Don't call nonzero_bits for the second time if it cannot change
8291 anything. */
8292 if ((nonzero & nonzero0) != nonzero)
8293 nonzero &= (nonzero0
8294 | nonzero_bits_with_known (XEXP (x, 1), mode));
8295 }
8296 break;
8297
8298 case PLUS: case MINUS:
8299 case MULT:
8300 case DIV: case UDIV:
8301 case MOD: case UMOD:
8302 /* We can apply the rules of arithmetic to compute the number of
8303 high- and low-order zero bits of these operations. We start by
8304 computing the width (position of the highest-order nonzero bit)
8305 and the number of low-order zero bits for each value. */
8306 {
8307 unsigned HOST_WIDE_INT nz0 =
8308 nonzero_bits_with_known (XEXP (x, 0), mode);
8309 unsigned HOST_WIDE_INT nz1 =
8310 nonzero_bits_with_known (XEXP (x, 1), mode);
8311 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
8312 int width0 = floor_log2 (nz0) + 1;
8313 int width1 = floor_log2 (nz1) + 1;
8314 int low0 = floor_log2 (nz0 & -nz0);
8315 int low1 = floor_log2 (nz1 & -nz1);
8316 HOST_WIDE_INT op0_maybe_minusp
8317 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
8318 HOST_WIDE_INT op1_maybe_minusp
8319 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
8320 unsigned int result_width = mode_width;
8321 int result_low = 0;
8322
8323 switch (code)
8324 {
8325 case PLUS:
8326 result_width = MAX (width0, width1) + 1;
8327 result_low = MIN (low0, low1);
8328 break;
8329 case MINUS:
8330 result_low = MIN (low0, low1);
8331 break;
8332 case MULT:
8333 result_width = width0 + width1;
8334 result_low = low0 + low1;
8335 break;
8336 case DIV:
8337 if (width1 == 0)
8338 break;
8339 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8340 result_width = width0;
8341 break;
8342 case UDIV:
8343 if (width1 == 0)
8344 break;
8345 result_width = width0;
8346 break;
8347 case MOD:
8348 if (width1 == 0)
8349 break;
8350 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8351 result_width = MIN (width0, width1);
8352 result_low = MIN (low0, low1);
8353 break;
8354 case UMOD:
8355 if (width1 == 0)
8356 break;
8357 result_width = MIN (width0, width1);
8358 result_low = MIN (low0, low1);
8359 break;
8360 default:
8361 abort ();
8362 }
8363
8364 if (result_width < mode_width)
8365 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8366
8367 if (result_low > 0)
8368 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8369
8370 #ifdef POINTERS_EXTEND_UNSIGNED
8371 /* If pointers extend unsigned and this is an addition or subtraction
8372 to a pointer in Pmode, all the bits above ptr_mode are known to be
8373 zero. */
8374 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8375 && (code == PLUS || code == MINUS)
8376 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8377 nonzero &= GET_MODE_MASK (ptr_mode);
8378 #endif
8379 }
8380 break;
8381
8382 case ZERO_EXTRACT:
8383 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8384 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8385 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8386 break;
8387
8388 case SUBREG:
8389 /* If this is a SUBREG formed for a promoted variable that has
8390 been zero-extended, we know that at least the high-order bits
8391 are zero, though others might be too. */
8392
8393 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
8394 nonzero = (GET_MODE_MASK (GET_MODE (x))
8395 & nonzero_bits_with_known (SUBREG_REG (x), GET_MODE (x)));
8396
8397 /* If the inner mode is a single word for both the host and target
8398 machines, we can compute this from which bits of the inner
8399 object might be nonzero. */
8400 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8401 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8402 <= HOST_BITS_PER_WIDE_INT))
8403 {
8404 nonzero &= nonzero_bits_with_known (SUBREG_REG (x), mode);
8405
8406 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8407 /* If this is a typical RISC machine, we only have to worry
8408 about the way loads are extended. */
8409 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8410 ? (((nonzero
8411 & (((unsigned HOST_WIDE_INT) 1
8412 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8413 != 0))
8414 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8415 || GET_CODE (SUBREG_REG (x)) != MEM)
8416 #endif
8417 {
8418 /* On many CISC machines, accessing an object in a wider mode
8419 causes the high-order bits to become undefined. So they are
8420 not known to be zero. */
8421 if (GET_MODE_SIZE (GET_MODE (x))
8422 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8423 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8424 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8425 }
8426 }
8427 break;
8428
8429 case ASHIFTRT:
8430 case LSHIFTRT:
8431 case ASHIFT:
8432 case ROTATE:
8433 /* The nonzero bits are in two classes: any bits within MODE
8434 that aren't in GET_MODE (x) are always significant. The rest of the
8435 nonzero bits are those that are significant in the operand of
8436 the shift when shifted the appropriate number of bits. This
8437 shows that high-order bits are cleared by the right shift and
8438 low-order bits by left shifts. */
8439 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8440 && INTVAL (XEXP (x, 1)) >= 0
8441 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8442 {
8443 enum machine_mode inner_mode = GET_MODE (x);
8444 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8445 int count = INTVAL (XEXP (x, 1));
8446 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8447 unsigned HOST_WIDE_INT op_nonzero =
8448 nonzero_bits_with_known (XEXP (x, 0), mode);
8449 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8450 unsigned HOST_WIDE_INT outer = 0;
8451
8452 if (mode_width > width)
8453 outer = (op_nonzero & nonzero & ~mode_mask);
8454
8455 if (code == LSHIFTRT)
8456 inner >>= count;
8457 else if (code == ASHIFTRT)
8458 {
8459 inner >>= count;
8460
8461 /* If the sign bit may have been nonzero before the shift, we
8462 need to mark all the places it could have been copied to
8463 by the shift as possibly nonzero. */
8464 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8465 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8466 }
8467 else if (code == ASHIFT)
8468 inner <<= count;
8469 else
8470 inner = ((inner << (count % width)
8471 | (inner >> (width - (count % width)))) & mode_mask);
8472
8473 nonzero &= (outer | inner);
8474 }
8475 break;
8476
8477 case FFS:
8478 case POPCOUNT:
8479 /* This is at most the number of bits in the mode. */
8480 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
8481 break;
8482
8483 case CLZ:
8484 /* If CLZ has a known value at zero, then the nonzero bits are
8485 that value, plus the number of bits in the mode minus one. */
8486 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
8487 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
8488 else
8489 nonzero = -1;
8490 break;
8491
8492 case CTZ:
8493 /* If CTZ has a known value at zero, then the nonzero bits are
8494 that value, plus the number of bits in the mode minus one. */
8495 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
8496 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
8497 else
8498 nonzero = -1;
8499 break;
8500
8501 case PARITY:
8502 nonzero = 1;
8503 break;
8504
8505 case IF_THEN_ELSE:
8506 nonzero &= (nonzero_bits_with_known (XEXP (x, 1), mode)
8507 | nonzero_bits_with_known (XEXP (x, 2), mode));
8508 break;
8509
8510 default:
8511 break;
8512 }
8513
8514 return nonzero;
8515 }
8516
8517 /* See the macro definition above. */
8518 #undef cached_num_sign_bit_copies
8519 \f
8520 #define num_sign_bit_copies_with_known(X, M) \
8521 cached_num_sign_bit_copies (X, M, known_x, known_mode, known_ret)
8522
8523 /* The function cached_num_sign_bit_copies is a wrapper around
8524 num_sign_bit_copies1. It avoids exponential behavior in
8525 num_sign_bit_copies1 when X has identical subexpressions on the
8526 first or the second level. */
8527
8528 static unsigned int
8529 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
8530 enum machine_mode known_mode,
8531 unsigned int known_ret)
8532 {
8533 if (x == known_x && mode == known_mode)
8534 return known_ret;
8535
8536 /* Try to find identical subexpressions. If found call
8537 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
8538 the precomputed value for the subexpression as KNOWN_RET. */
8539
8540 if (ARITHMETIC_P (x))
8541 {
8542 rtx x0 = XEXP (x, 0);
8543 rtx x1 = XEXP (x, 1);
8544
8545 /* Check the first level. */
8546 if (x0 == x1)
8547 return
8548 num_sign_bit_copies1 (x, mode, x0, mode,
8549 num_sign_bit_copies_with_known (x0, mode));
8550
8551 /* Check the second level. */
8552 if (ARITHMETIC_P (x0)
8553 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
8554 return
8555 num_sign_bit_copies1 (x, mode, x1, mode,
8556 num_sign_bit_copies_with_known (x1, mode));
8557
8558 if (ARITHMETIC_P (x1)
8559 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
8560 return
8561 num_sign_bit_copies1 (x, mode, x0, mode,
8562 num_sign_bit_copies_with_known (x0, mode));
8563 }
8564
8565 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
8566 }
8567
8568 /* Return the number of bits at the high-order end of X that are known to
8569 be equal to the sign bit. X will be used in mode MODE; if MODE is
8570 VOIDmode, X will be used in its own mode. The returned value will always
8571 be between 1 and the number of bits in MODE. */
8572
8573 static unsigned int
8574 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
8575 enum machine_mode known_mode,
8576 unsigned int known_ret)
8577 {
8578 enum rtx_code code = GET_CODE (x);
8579 unsigned int bitwidth;
8580 int num0, num1, result;
8581 unsigned HOST_WIDE_INT nonzero;
8582 rtx tem;
8583
8584 /* If we weren't given a mode, use the mode of X. If the mode is still
8585 VOIDmode, we don't know anything. Likewise if one of the modes is
8586 floating-point. */
8587
8588 if (mode == VOIDmode)
8589 mode = GET_MODE (x);
8590
8591 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8592 return 1;
8593
8594 bitwidth = GET_MODE_BITSIZE (mode);
8595
8596 /* For a smaller object, just ignore the high bits. */
8597 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8598 {
8599 num0 = num_sign_bit_copies_with_known (x, GET_MODE (x));
8600 return MAX (1,
8601 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8602 }
8603
8604 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8605 {
8606 #ifndef WORD_REGISTER_OPERATIONS
8607 /* If this machine does not do all register operations on the entire
8608 register and MODE is wider than the mode of X, we can say nothing
8609 at all about the high-order bits. */
8610 return 1;
8611 #else
8612 /* Likewise on machines that do, if the mode of the object is smaller
8613 than a word and loads of that size don't sign extend, we can say
8614 nothing about the high order bits. */
8615 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8616 #ifdef LOAD_EXTEND_OP
8617 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8618 #endif
8619 )
8620 return 1;
8621 #endif
8622 }
8623
8624 switch (code)
8625 {
8626 case REG:
8627
8628 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8629 /* If pointers extend signed and this is a pointer in Pmode, say that
8630 all the bits above ptr_mode are known to be sign bit copies. */
8631 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8632 && REG_POINTER (x))
8633 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8634 #endif
8635
8636 if (reg_last_set_value[REGNO (x)] != 0
8637 && reg_last_set_mode[REGNO (x)] == mode
8638 && (reg_last_set_label[REGNO (x)] == label_tick
8639 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8640 && REG_N_SETS (REGNO (x)) == 1
8641 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8642 REGNO (x))))
8643 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8644 return reg_last_set_sign_bit_copies[REGNO (x)];
8645
8646 tem = get_last_value (x);
8647 if (tem != 0)
8648 return num_sign_bit_copies_with_known (tem, mode);
8649
8650 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8651 && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8652 return reg_sign_bit_copies[REGNO (x)];
8653 break;
8654
8655 case MEM:
8656 #ifdef LOAD_EXTEND_OP
8657 /* Some RISC machines sign-extend all loads of smaller than a word. */
8658 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8659 return MAX (1, ((int) bitwidth
8660 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8661 #endif
8662 break;
8663
8664 case CONST_INT:
8665 /* If the constant is negative, take its 1's complement and remask.
8666 Then see how many zero bits we have. */
8667 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8668 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8669 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8670 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8671
8672 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8673
8674 case SUBREG:
8675 /* If this is a SUBREG for a promoted object that is sign-extended
8676 and we are looking at it in a wider mode, we know that at least the
8677 high-order bits are known to be sign bit copies. */
8678
8679 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8680 {
8681 num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
8682 return MAX ((int) bitwidth
8683 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8684 num0);
8685 }
8686
8687 /* For a smaller object, just ignore the high bits. */
8688 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8689 {
8690 num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), VOIDmode);
8691 return MAX (1, (num0
8692 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8693 - bitwidth)));
8694 }
8695
8696 #ifdef WORD_REGISTER_OPERATIONS
8697 #ifdef LOAD_EXTEND_OP
8698 /* For paradoxical SUBREGs on machines where all register operations
8699 affect the entire register, just look inside. Note that we are
8700 passing MODE to the recursive call, so the number of sign bit copies
8701 will remain relative to that mode, not the inner mode. */
8702
8703 /* This works only if loads sign extend. Otherwise, if we get a
8704 reload for the inner part, it may be loaded from the stack, and
8705 then we lose all sign bit copies that existed before the store
8706 to the stack. */
8707
8708 if ((GET_MODE_SIZE (GET_MODE (x))
8709 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8710 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8711 && GET_CODE (SUBREG_REG (x)) == MEM)
8712 return num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
8713 #endif
8714 #endif
8715 break;
8716
8717 case SIGN_EXTRACT:
8718 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8719 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8720 break;
8721
8722 case SIGN_EXTEND:
8723 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8724 + num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode));
8725
8726 case TRUNCATE:
8727 /* For a smaller object, just ignore the high bits. */
8728 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode);
8729 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8730 - bitwidth)));
8731
8732 case NOT:
8733 return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8734
8735 case ROTATE: case ROTATERT:
8736 /* If we are rotating left by a number of bits less than the number
8737 of sign bit copies, we can just subtract that amount from the
8738 number. */
8739 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8740 && INTVAL (XEXP (x, 1)) >= 0
8741 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8742 {
8743 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8744 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8745 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8746 }
8747 break;
8748
8749 case NEG:
8750 /* In general, this subtracts one sign bit copy. But if the value
8751 is known to be positive, the number of sign bit copies is the
8752 same as that of the input. Finally, if the input has just one bit
8753 that might be nonzero, all the bits are copies of the sign bit. */
8754 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8755 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8756 return num0 > 1 ? num0 - 1 : 1;
8757
8758 nonzero = nonzero_bits (XEXP (x, 0), mode);
8759 if (nonzero == 1)
8760 return bitwidth;
8761
8762 if (num0 > 1
8763 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8764 num0--;
8765
8766 return num0;
8767
8768 case IOR: case AND: case XOR:
8769 case SMIN: case SMAX: case UMIN: case UMAX:
8770 /* Logical operations will preserve the number of sign-bit copies.
8771 MIN and MAX operations always return one of the operands. */
8772 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8773 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8774 return MIN (num0, num1);
8775
8776 case PLUS: case MINUS:
8777 /* For addition and subtraction, we can have a 1-bit carry. However,
8778 if we are subtracting 1 from a positive number, there will not
8779 be such a carry. Furthermore, if the positive number is known to
8780 be 0 or 1, we know the result is either -1 or 0. */
8781
8782 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8783 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8784 {
8785 nonzero = nonzero_bits (XEXP (x, 0), mode);
8786 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8787 return (nonzero == 1 || nonzero == 0 ? bitwidth
8788 : bitwidth - floor_log2 (nonzero) - 1);
8789 }
8790
8791 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8792 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8793 result = MAX (1, MIN (num0, num1) - 1);
8794
8795 #ifdef POINTERS_EXTEND_UNSIGNED
8796 /* If pointers extend signed and this is an addition or subtraction
8797 to a pointer in Pmode, all the bits above ptr_mode are known to be
8798 sign bit copies. */
8799 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8800 && (code == PLUS || code == MINUS)
8801 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8802 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8803 - GET_MODE_BITSIZE (ptr_mode) + 1),
8804 result);
8805 #endif
8806 return result;
8807
8808 case MULT:
8809 /* The number of bits of the product is the sum of the number of
8810 bits of both terms. However, unless one of the terms if known
8811 to be positive, we must allow for an additional bit since negating
8812 a negative number can remove one sign bit copy. */
8813
8814 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8815 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8816
8817 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8818 if (result > 0
8819 && (bitwidth > HOST_BITS_PER_WIDE_INT
8820 || (((nonzero_bits (XEXP (x, 0), mode)
8821 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8822 && ((nonzero_bits (XEXP (x, 1), mode)
8823 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8824 result--;
8825
8826 return MAX (1, result);
8827
8828 case UDIV:
8829 /* The result must be <= the first operand. If the first operand
8830 has the high bit set, we know nothing about the number of sign
8831 bit copies. */
8832 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8833 return 1;
8834 else if ((nonzero_bits (XEXP (x, 0), mode)
8835 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8836 return 1;
8837 else
8838 return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8839
8840 case UMOD:
8841 /* The result must be <= the second operand. */
8842 return num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8843
8844 case DIV:
8845 /* Similar to unsigned division, except that we have to worry about
8846 the case where the divisor is negative, in which case we have
8847 to add 1. */
8848 result = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8849 if (result > 1
8850 && (bitwidth > HOST_BITS_PER_WIDE_INT
8851 || (nonzero_bits (XEXP (x, 1), mode)
8852 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8853 result--;
8854
8855 return result;
8856
8857 case MOD:
8858 result = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8859 if (result > 1
8860 && (bitwidth > HOST_BITS_PER_WIDE_INT
8861 || (nonzero_bits (XEXP (x, 1), mode)
8862 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8863 result--;
8864
8865 return result;
8866
8867 case ASHIFTRT:
8868 /* Shifts by a constant add to the number of bits equal to the
8869 sign bit. */
8870 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8871 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8872 && INTVAL (XEXP (x, 1)) > 0)
8873 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8874
8875 return num0;
8876
8877 case ASHIFT:
8878 /* Left shifts destroy copies. */
8879 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8880 || INTVAL (XEXP (x, 1)) < 0
8881 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8882 return 1;
8883
8884 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8885 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8886
8887 case IF_THEN_ELSE:
8888 num0 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8889 num1 = num_sign_bit_copies_with_known (XEXP (x, 2), mode);
8890 return MIN (num0, num1);
8891
8892 case EQ: case NE: case GE: case GT: case LE: case LT:
8893 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
8894 case GEU: case GTU: case LEU: case LTU:
8895 case UNORDERED: case ORDERED:
8896 /* If the constant is negative, take its 1's complement and remask.
8897 Then see how many zero bits we have. */
8898 nonzero = STORE_FLAG_VALUE;
8899 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8900 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8901 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8902
8903 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8904 break;
8905
8906 default:
8907 break;
8908 }
8909
8910 /* If we haven't been able to figure it out by one of the above rules,
8911 see if some of the high-order bits are known to be zero. If so,
8912 count those bits and return one less than that amount. If we can't
8913 safely compute the mask for this mode, always return BITWIDTH. */
8914
8915 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8916 return 1;
8917
8918 nonzero = nonzero_bits (x, mode);
8919 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8920 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8921 }
8922 \f
8923 /* Return the number of "extended" bits there are in X, when interpreted
8924 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8925 unsigned quantities, this is the number of high-order zero bits.
8926 For signed quantities, this is the number of copies of the sign bit
8927 minus 1. In both case, this function returns the number of "spare"
8928 bits. For example, if two quantities for which this function returns
8929 at least 1 are added, the addition is known not to overflow.
8930
8931 This function will always return 0 unless called during combine, which
8932 implies that it must be called from a define_split. */
8933
8934 unsigned int
8935 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8936 {
8937 if (nonzero_sign_valid == 0)
8938 return 0;
8939
8940 return (unsignedp
8941 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8942 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8943 - floor_log2 (nonzero_bits (x, mode)))
8944 : 0)
8945 : num_sign_bit_copies (x, mode) - 1);
8946 }
8947 \f
8948 /* This function is called from `simplify_shift_const' to merge two
8949 outer operations. Specifically, we have already found that we need
8950 to perform operation *POP0 with constant *PCONST0 at the outermost
8951 position. We would now like to also perform OP1 with constant CONST1
8952 (with *POP0 being done last).
8953
8954 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8955 the resulting operation. *PCOMP_P is set to 1 if we would need to
8956 complement the innermost operand, otherwise it is unchanged.
8957
8958 MODE is the mode in which the operation will be done. No bits outside
8959 the width of this mode matter. It is assumed that the width of this mode
8960 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8961
8962 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8963 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8964 result is simply *PCONST0.
8965
8966 If the resulting operation cannot be expressed as one operation, we
8967 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8968
8969 static int
8970 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8971 {
8972 enum rtx_code op0 = *pop0;
8973 HOST_WIDE_INT const0 = *pconst0;
8974
8975 const0 &= GET_MODE_MASK (mode);
8976 const1 &= GET_MODE_MASK (mode);
8977
8978 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8979 if (op0 == AND)
8980 const1 &= const0;
8981
8982 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8983 if OP0 is SET. */
8984
8985 if (op1 == NIL || op0 == SET)
8986 return 1;
8987
8988 else if (op0 == NIL)
8989 op0 = op1, const0 = const1;
8990
8991 else if (op0 == op1)
8992 {
8993 switch (op0)
8994 {
8995 case AND:
8996 const0 &= const1;
8997 break;
8998 case IOR:
8999 const0 |= const1;
9000 break;
9001 case XOR:
9002 const0 ^= const1;
9003 break;
9004 case PLUS:
9005 const0 += const1;
9006 break;
9007 case NEG:
9008 op0 = NIL;
9009 break;
9010 default:
9011 break;
9012 }
9013 }
9014
9015 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9016 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9017 return 0;
9018
9019 /* If the two constants aren't the same, we can't do anything. The
9020 remaining six cases can all be done. */
9021 else if (const0 != const1)
9022 return 0;
9023
9024 else
9025 switch (op0)
9026 {
9027 case IOR:
9028 if (op1 == AND)
9029 /* (a & b) | b == b */
9030 op0 = SET;
9031 else /* op1 == XOR */
9032 /* (a ^ b) | b == a | b */
9033 {;}
9034 break;
9035
9036 case XOR:
9037 if (op1 == AND)
9038 /* (a & b) ^ b == (~a) & b */
9039 op0 = AND, *pcomp_p = 1;
9040 else /* op1 == IOR */
9041 /* (a | b) ^ b == a & ~b */
9042 op0 = AND, const0 = ~const0;
9043 break;
9044
9045 case AND:
9046 if (op1 == IOR)
9047 /* (a | b) & b == b */
9048 op0 = SET;
9049 else /* op1 == XOR */
9050 /* (a ^ b) & b) == (~a) & b */
9051 *pcomp_p = 1;
9052 break;
9053 default:
9054 break;
9055 }
9056
9057 /* Check for NO-OP cases. */
9058 const0 &= GET_MODE_MASK (mode);
9059 if (const0 == 0
9060 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9061 op0 = NIL;
9062 else if (const0 == 0 && op0 == AND)
9063 op0 = SET;
9064 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9065 && op0 == AND)
9066 op0 = NIL;
9067
9068 /* ??? Slightly redundant with the above mask, but not entirely.
9069 Moving this above means we'd have to sign-extend the mode mask
9070 for the final test. */
9071 const0 = trunc_int_for_mode (const0, mode);
9072
9073 *pop0 = op0;
9074 *pconst0 = const0;
9075
9076 return 1;
9077 }
9078 \f
9079 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9080 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
9081 that we started with.
9082
9083 The shift is normally computed in the widest mode we find in VAROP, as
9084 long as it isn't a different number of words than RESULT_MODE. Exceptions
9085 are ASHIFTRT and ROTATE, which are always done in their original mode, */
9086
9087 static rtx
9088 simplify_shift_const (rtx x, enum rtx_code code,
9089 enum machine_mode result_mode, rtx varop,
9090 int orig_count)
9091 {
9092 enum rtx_code orig_code = code;
9093 unsigned int count;
9094 int signed_count;
9095 enum machine_mode mode = result_mode;
9096 enum machine_mode shift_mode, tmode;
9097 unsigned int mode_words
9098 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9099 /* We form (outer_op (code varop count) (outer_const)). */
9100 enum rtx_code outer_op = NIL;
9101 HOST_WIDE_INT outer_const = 0;
9102 rtx const_rtx;
9103 int complement_p = 0;
9104 rtx new;
9105
9106 /* Make sure and truncate the "natural" shift on the way in. We don't
9107 want to do this inside the loop as it makes it more difficult to
9108 combine shifts. */
9109 if (SHIFT_COUNT_TRUNCATED)
9110 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9111
9112 /* If we were given an invalid count, don't do anything except exactly
9113 what was requested. */
9114
9115 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9116 {
9117 if (x)
9118 return x;
9119
9120 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
9121 }
9122
9123 count = orig_count;
9124
9125 /* Unless one of the branches of the `if' in this loop does a `continue',
9126 we will `break' the loop after the `if'. */
9127
9128 while (count != 0)
9129 {
9130 /* If we have an operand of (clobber (const_int 0)), just return that
9131 value. */
9132 if (GET_CODE (varop) == CLOBBER)
9133 return varop;
9134
9135 /* If we discovered we had to complement VAROP, leave. Making a NOT
9136 here would cause an infinite loop. */
9137 if (complement_p)
9138 break;
9139
9140 /* Convert ROTATERT to ROTATE. */
9141 if (code == ROTATERT)
9142 {
9143 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9144 code = ROTATE;
9145 if (VECTOR_MODE_P (result_mode))
9146 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9147 else
9148 count = bitsize - count;
9149 }
9150
9151 /* We need to determine what mode we will do the shift in. If the
9152 shift is a right shift or a ROTATE, we must always do it in the mode
9153 it was originally done in. Otherwise, we can do it in MODE, the
9154 widest mode encountered. */
9155 shift_mode
9156 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9157 ? result_mode : mode);
9158
9159 /* Handle cases where the count is greater than the size of the mode
9160 minus 1. For ASHIFT, use the size minus one as the count (this can
9161 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9162 take the count modulo the size. For other shifts, the result is
9163 zero.
9164
9165 Since these shifts are being produced by the compiler by combining
9166 multiple operations, each of which are defined, we know what the
9167 result is supposed to be. */
9168
9169 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
9170 {
9171 if (code == ASHIFTRT)
9172 count = GET_MODE_BITSIZE (shift_mode) - 1;
9173 else if (code == ROTATE || code == ROTATERT)
9174 count %= GET_MODE_BITSIZE (shift_mode);
9175 else
9176 {
9177 /* We can't simply return zero because there may be an
9178 outer op. */
9179 varop = const0_rtx;
9180 count = 0;
9181 break;
9182 }
9183 }
9184
9185 /* An arithmetic right shift of a quantity known to be -1 or 0
9186 is a no-op. */
9187 if (code == ASHIFTRT
9188 && (num_sign_bit_copies (varop, shift_mode)
9189 == GET_MODE_BITSIZE (shift_mode)))
9190 {
9191 count = 0;
9192 break;
9193 }
9194
9195 /* If we are doing an arithmetic right shift and discarding all but
9196 the sign bit copies, this is equivalent to doing a shift by the
9197 bitsize minus one. Convert it into that shift because it will often
9198 allow other simplifications. */
9199
9200 if (code == ASHIFTRT
9201 && (count + num_sign_bit_copies (varop, shift_mode)
9202 >= GET_MODE_BITSIZE (shift_mode)))
9203 count = GET_MODE_BITSIZE (shift_mode) - 1;
9204
9205 /* We simplify the tests below and elsewhere by converting
9206 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9207 `make_compound_operation' will convert it to an ASHIFTRT for
9208 those machines (such as VAX) that don't have an LSHIFTRT. */
9209 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9210 && code == ASHIFTRT
9211 && ((nonzero_bits (varop, shift_mode)
9212 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9213 == 0))
9214 code = LSHIFTRT;
9215
9216 if (code == LSHIFTRT
9217 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9218 && !(nonzero_bits (varop, shift_mode) >> count))
9219 varop = const0_rtx;
9220 if (code == ASHIFT
9221 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9222 && !((nonzero_bits (varop, shift_mode) << count)
9223 & GET_MODE_MASK (shift_mode)))
9224 varop = const0_rtx;
9225
9226 switch (GET_CODE (varop))
9227 {
9228 case SIGN_EXTEND:
9229 case ZERO_EXTEND:
9230 case SIGN_EXTRACT:
9231 case ZERO_EXTRACT:
9232 new = expand_compound_operation (varop);
9233 if (new != varop)
9234 {
9235 varop = new;
9236 continue;
9237 }
9238 break;
9239
9240 case MEM:
9241 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9242 minus the width of a smaller mode, we can do this with a
9243 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9244 if ((code == ASHIFTRT || code == LSHIFTRT)
9245 && ! mode_dependent_address_p (XEXP (varop, 0))
9246 && ! MEM_VOLATILE_P (varop)
9247 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9248 MODE_INT, 1)) != BLKmode)
9249 {
9250 new = adjust_address_nv (varop, tmode,
9251 BYTES_BIG_ENDIAN ? 0
9252 : count / BITS_PER_UNIT);
9253
9254 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9255 : ZERO_EXTEND, mode, new);
9256 count = 0;
9257 continue;
9258 }
9259 break;
9260
9261 case USE:
9262 /* Similar to the case above, except that we can only do this if
9263 the resulting mode is the same as that of the underlying
9264 MEM and adjust the address depending on the *bits* endianness
9265 because of the way that bit-field extract insns are defined. */
9266 if ((code == ASHIFTRT || code == LSHIFTRT)
9267 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9268 MODE_INT, 1)) != BLKmode
9269 && tmode == GET_MODE (XEXP (varop, 0)))
9270 {
9271 if (BITS_BIG_ENDIAN)
9272 new = XEXP (varop, 0);
9273 else
9274 {
9275 new = copy_rtx (XEXP (varop, 0));
9276 SUBST (XEXP (new, 0),
9277 plus_constant (XEXP (new, 0),
9278 count / BITS_PER_UNIT));
9279 }
9280
9281 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9282 : ZERO_EXTEND, mode, new);
9283 count = 0;
9284 continue;
9285 }
9286 break;
9287
9288 case SUBREG:
9289 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9290 the same number of words as what we've seen so far. Then store
9291 the widest mode in MODE. */
9292 if (subreg_lowpart_p (varop)
9293 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9294 > GET_MODE_SIZE (GET_MODE (varop)))
9295 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9296 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9297 == mode_words)
9298 {
9299 varop = SUBREG_REG (varop);
9300 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9301 mode = GET_MODE (varop);
9302 continue;
9303 }
9304 break;
9305
9306 case MULT:
9307 /* Some machines use MULT instead of ASHIFT because MULT
9308 is cheaper. But it is still better on those machines to
9309 merge two shifts into one. */
9310 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9311 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9312 {
9313 varop
9314 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9315 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9316 continue;
9317 }
9318 break;
9319
9320 case UDIV:
9321 /* Similar, for when divides are cheaper. */
9322 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9323 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9324 {
9325 varop
9326 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9327 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9328 continue;
9329 }
9330 break;
9331
9332 case ASHIFTRT:
9333 /* If we are extracting just the sign bit of an arithmetic
9334 right shift, that shift is not needed. However, the sign
9335 bit of a wider mode may be different from what would be
9336 interpreted as the sign bit in a narrower mode, so, if
9337 the result is narrower, don't discard the shift. */
9338 if (code == LSHIFTRT
9339 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9340 && (GET_MODE_BITSIZE (result_mode)
9341 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9342 {
9343 varop = XEXP (varop, 0);
9344 continue;
9345 }
9346
9347 /* ... fall through ... */
9348
9349 case LSHIFTRT:
9350 case ASHIFT:
9351 case ROTATE:
9352 /* Here we have two nested shifts. The result is usually the
9353 AND of a new shift with a mask. We compute the result below. */
9354 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9355 && INTVAL (XEXP (varop, 1)) >= 0
9356 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9357 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9358 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9359 {
9360 enum rtx_code first_code = GET_CODE (varop);
9361 unsigned int first_count = INTVAL (XEXP (varop, 1));
9362 unsigned HOST_WIDE_INT mask;
9363 rtx mask_rtx;
9364
9365 /* We have one common special case. We can't do any merging if
9366 the inner code is an ASHIFTRT of a smaller mode. However, if
9367 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9368 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9369 we can convert it to
9370 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9371 This simplifies certain SIGN_EXTEND operations. */
9372 if (code == ASHIFT && first_code == ASHIFTRT
9373 && count == (unsigned int)
9374 (GET_MODE_BITSIZE (result_mode)
9375 - GET_MODE_BITSIZE (GET_MODE (varop))))
9376 {
9377 /* C3 has the low-order C1 bits zero. */
9378
9379 mask = (GET_MODE_MASK (mode)
9380 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9381
9382 varop = simplify_and_const_int (NULL_RTX, result_mode,
9383 XEXP (varop, 0), mask);
9384 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9385 varop, count);
9386 count = first_count;
9387 code = ASHIFTRT;
9388 continue;
9389 }
9390
9391 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9392 than C1 high-order bits equal to the sign bit, we can convert
9393 this to either an ASHIFT or an ASHIFTRT depending on the
9394 two counts.
9395
9396 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9397
9398 if (code == ASHIFTRT && first_code == ASHIFT
9399 && GET_MODE (varop) == shift_mode
9400 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9401 > first_count))
9402 {
9403 varop = XEXP (varop, 0);
9404
9405 signed_count = count - first_count;
9406 if (signed_count < 0)
9407 count = -signed_count, code = ASHIFT;
9408 else
9409 count = signed_count;
9410
9411 continue;
9412 }
9413
9414 /* There are some cases we can't do. If CODE is ASHIFTRT,
9415 we can only do this if FIRST_CODE is also ASHIFTRT.
9416
9417 We can't do the case when CODE is ROTATE and FIRST_CODE is
9418 ASHIFTRT.
9419
9420 If the mode of this shift is not the mode of the outer shift,
9421 we can't do this if either shift is a right shift or ROTATE.
9422
9423 Finally, we can't do any of these if the mode is too wide
9424 unless the codes are the same.
9425
9426 Handle the case where the shift codes are the same
9427 first. */
9428
9429 if (code == first_code)
9430 {
9431 if (GET_MODE (varop) != result_mode
9432 && (code == ASHIFTRT || code == LSHIFTRT
9433 || code == ROTATE))
9434 break;
9435
9436 count += first_count;
9437 varop = XEXP (varop, 0);
9438 continue;
9439 }
9440
9441 if (code == ASHIFTRT
9442 || (code == ROTATE && first_code == ASHIFTRT)
9443 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9444 || (GET_MODE (varop) != result_mode
9445 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9446 || first_code == ROTATE
9447 || code == ROTATE)))
9448 break;
9449
9450 /* To compute the mask to apply after the shift, shift the
9451 nonzero bits of the inner shift the same way the
9452 outer shift will. */
9453
9454 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9455
9456 mask_rtx
9457 = simplify_binary_operation (code, result_mode, mask_rtx,
9458 GEN_INT (count));
9459
9460 /* Give up if we can't compute an outer operation to use. */
9461 if (mask_rtx == 0
9462 || GET_CODE (mask_rtx) != CONST_INT
9463 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9464 INTVAL (mask_rtx),
9465 result_mode, &complement_p))
9466 break;
9467
9468 /* If the shifts are in the same direction, we add the
9469 counts. Otherwise, we subtract them. */
9470 signed_count = count;
9471 if ((code == ASHIFTRT || code == LSHIFTRT)
9472 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9473 signed_count += first_count;
9474 else
9475 signed_count -= first_count;
9476
9477 /* If COUNT is positive, the new shift is usually CODE,
9478 except for the two exceptions below, in which case it is
9479 FIRST_CODE. If the count is negative, FIRST_CODE should
9480 always be used */
9481 if (signed_count > 0
9482 && ((first_code == ROTATE && code == ASHIFT)
9483 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9484 code = first_code, count = signed_count;
9485 else if (signed_count < 0)
9486 code = first_code, count = -signed_count;
9487 else
9488 count = signed_count;
9489
9490 varop = XEXP (varop, 0);
9491 continue;
9492 }
9493
9494 /* If we have (A << B << C) for any shift, we can convert this to
9495 (A << C << B). This wins if A is a constant. Only try this if
9496 B is not a constant. */
9497
9498 else if (GET_CODE (varop) == code
9499 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9500 && 0 != (new
9501 = simplify_binary_operation (code, mode,
9502 XEXP (varop, 0),
9503 GEN_INT (count))))
9504 {
9505 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9506 count = 0;
9507 continue;
9508 }
9509 break;
9510
9511 case NOT:
9512 /* Make this fit the case below. */
9513 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9514 GEN_INT (GET_MODE_MASK (mode)));
9515 continue;
9516
9517 case IOR:
9518 case AND:
9519 case XOR:
9520 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9521 with C the size of VAROP - 1 and the shift is logical if
9522 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9523 we have an (le X 0) operation. If we have an arithmetic shift
9524 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9525 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9526
9527 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9528 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9529 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9530 && (code == LSHIFTRT || code == ASHIFTRT)
9531 && count == (unsigned int)
9532 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9533 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9534 {
9535 count = 0;
9536 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9537 const0_rtx);
9538
9539 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9540 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9541
9542 continue;
9543 }
9544
9545 /* If we have (shift (logical)), move the logical to the outside
9546 to allow it to possibly combine with another logical and the
9547 shift to combine with another shift. This also canonicalizes to
9548 what a ZERO_EXTRACT looks like. Also, some machines have
9549 (and (shift)) insns. */
9550
9551 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9552 /* We can't do this if we have (ashiftrt (xor)) and the
9553 constant has its sign bit set in shift_mode. */
9554 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9555 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9556 shift_mode))
9557 && (new = simplify_binary_operation (code, result_mode,
9558 XEXP (varop, 1),
9559 GEN_INT (count))) != 0
9560 && GET_CODE (new) == CONST_INT
9561 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9562 INTVAL (new), result_mode, &complement_p))
9563 {
9564 varop = XEXP (varop, 0);
9565 continue;
9566 }
9567
9568 /* If we can't do that, try to simplify the shift in each arm of the
9569 logical expression, make a new logical expression, and apply
9570 the inverse distributive law. This also can't be done
9571 for some (ashiftrt (xor)). */
9572 if (code != ASHIFTRT || GET_CODE (varop)!= XOR
9573 || 0 <= trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9574 shift_mode))
9575 {
9576 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9577 XEXP (varop, 0), count);
9578 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9579 XEXP (varop, 1), count);
9580
9581 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9582 varop = apply_distributive_law (varop);
9583
9584 count = 0;
9585 }
9586 break;
9587
9588 case EQ:
9589 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9590 says that the sign bit can be tested, FOO has mode MODE, C is
9591 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9592 that may be nonzero. */
9593 if (code == LSHIFTRT
9594 && XEXP (varop, 1) == const0_rtx
9595 && GET_MODE (XEXP (varop, 0)) == result_mode
9596 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9597 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9598 && ((STORE_FLAG_VALUE
9599 & ((HOST_WIDE_INT) 1
9600 < (GET_MODE_BITSIZE (result_mode) - 1))))
9601 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9602 && merge_outer_ops (&outer_op, &outer_const, XOR,
9603 (HOST_WIDE_INT) 1, result_mode,
9604 &complement_p))
9605 {
9606 varop = XEXP (varop, 0);
9607 count = 0;
9608 continue;
9609 }
9610 break;
9611
9612 case NEG:
9613 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9614 than the number of bits in the mode is equivalent to A. */
9615 if (code == LSHIFTRT
9616 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9617 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9618 {
9619 varop = XEXP (varop, 0);
9620 count = 0;
9621 continue;
9622 }
9623
9624 /* NEG commutes with ASHIFT since it is multiplication. Move the
9625 NEG outside to allow shifts to combine. */
9626 if (code == ASHIFT
9627 && merge_outer_ops (&outer_op, &outer_const, NEG,
9628 (HOST_WIDE_INT) 0, result_mode,
9629 &complement_p))
9630 {
9631 varop = XEXP (varop, 0);
9632 continue;
9633 }
9634 break;
9635
9636 case PLUS:
9637 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9638 is one less than the number of bits in the mode is
9639 equivalent to (xor A 1). */
9640 if (code == LSHIFTRT
9641 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9642 && XEXP (varop, 1) == constm1_rtx
9643 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9644 && merge_outer_ops (&outer_op, &outer_const, XOR,
9645 (HOST_WIDE_INT) 1, result_mode,
9646 &complement_p))
9647 {
9648 count = 0;
9649 varop = XEXP (varop, 0);
9650 continue;
9651 }
9652
9653 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9654 that might be nonzero in BAR are those being shifted out and those
9655 bits are known zero in FOO, we can replace the PLUS with FOO.
9656 Similarly in the other operand order. This code occurs when
9657 we are computing the size of a variable-size array. */
9658
9659 if ((code == ASHIFTRT || code == LSHIFTRT)
9660 && count < HOST_BITS_PER_WIDE_INT
9661 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9662 && (nonzero_bits (XEXP (varop, 1), result_mode)
9663 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9664 {
9665 varop = XEXP (varop, 0);
9666 continue;
9667 }
9668 else if ((code == ASHIFTRT || code == LSHIFTRT)
9669 && count < HOST_BITS_PER_WIDE_INT
9670 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9671 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9672 >> count)
9673 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9674 & nonzero_bits (XEXP (varop, 1),
9675 result_mode)))
9676 {
9677 varop = XEXP (varop, 1);
9678 continue;
9679 }
9680
9681 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9682 if (code == ASHIFT
9683 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9684 && (new = simplify_binary_operation (ASHIFT, result_mode,
9685 XEXP (varop, 1),
9686 GEN_INT (count))) != 0
9687 && GET_CODE (new) == CONST_INT
9688 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9689 INTVAL (new), result_mode, &complement_p))
9690 {
9691 varop = XEXP (varop, 0);
9692 continue;
9693 }
9694 break;
9695
9696 case MINUS:
9697 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9698 with C the size of VAROP - 1 and the shift is logical if
9699 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9700 we have a (gt X 0) operation. If the shift is arithmetic with
9701 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9702 we have a (neg (gt X 0)) operation. */
9703
9704 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9705 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9706 && count == (unsigned int)
9707 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9708 && (code == LSHIFTRT || code == ASHIFTRT)
9709 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9710 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9711 == count
9712 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9713 {
9714 count = 0;
9715 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9716 const0_rtx);
9717
9718 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9719 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9720
9721 continue;
9722 }
9723 break;
9724
9725 case TRUNCATE:
9726 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9727 if the truncate does not affect the value. */
9728 if (code == LSHIFTRT
9729 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9730 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9731 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9732 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9733 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9734 {
9735 rtx varop_inner = XEXP (varop, 0);
9736
9737 varop_inner
9738 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9739 XEXP (varop_inner, 0),
9740 GEN_INT
9741 (count + INTVAL (XEXP (varop_inner, 1))));
9742 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9743 count = 0;
9744 continue;
9745 }
9746 break;
9747
9748 default:
9749 break;
9750 }
9751
9752 break;
9753 }
9754
9755 /* We need to determine what mode to do the shift in. If the shift is
9756 a right shift or ROTATE, we must always do it in the mode it was
9757 originally done in. Otherwise, we can do it in MODE, the widest mode
9758 encountered. The code we care about is that of the shift that will
9759 actually be done, not the shift that was originally requested. */
9760 shift_mode
9761 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9762 ? result_mode : mode);
9763
9764 /* We have now finished analyzing the shift. The result should be
9765 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9766 OUTER_OP is non-NIL, it is an operation that needs to be applied
9767 to the result of the shift. OUTER_CONST is the relevant constant,
9768 but we must turn off all bits turned off in the shift.
9769
9770 If we were passed a value for X, see if we can use any pieces of
9771 it. If not, make new rtx. */
9772
9773 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9774 && GET_CODE (XEXP (x, 1)) == CONST_INT
9775 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9776 const_rtx = XEXP (x, 1);
9777 else
9778 const_rtx = GEN_INT (count);
9779
9780 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9781 && GET_MODE (XEXP (x, 0)) == shift_mode
9782 && SUBREG_REG (XEXP (x, 0)) == varop)
9783 varop = XEXP (x, 0);
9784 else if (GET_MODE (varop) != shift_mode)
9785 varop = gen_lowpart (shift_mode, varop);
9786
9787 /* If we can't make the SUBREG, try to return what we were given. */
9788 if (GET_CODE (varop) == CLOBBER)
9789 return x ? x : varop;
9790
9791 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9792 if (new != 0)
9793 x = new;
9794 else
9795 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9796
9797 /* If we have an outer operation and we just made a shift, it is
9798 possible that we could have simplified the shift were it not
9799 for the outer operation. So try to do the simplification
9800 recursively. */
9801
9802 if (outer_op != NIL && GET_CODE (x) == code
9803 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9804 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9805 INTVAL (XEXP (x, 1)));
9806
9807 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9808 turn off all the bits that the shift would have turned off. */
9809 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9810 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9811 GET_MODE_MASK (result_mode) >> orig_count);
9812
9813 /* Do the remainder of the processing in RESULT_MODE. */
9814 x = gen_lowpart (result_mode, x);
9815
9816 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9817 operation. */
9818 if (complement_p)
9819 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9820
9821 if (outer_op != NIL)
9822 {
9823 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9824 outer_const = trunc_int_for_mode (outer_const, result_mode);
9825
9826 if (outer_op == AND)
9827 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9828 else if (outer_op == SET)
9829 /* This means that we have determined that the result is
9830 equivalent to a constant. This should be rare. */
9831 x = GEN_INT (outer_const);
9832 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9833 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9834 else
9835 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9836 }
9837
9838 return x;
9839 }
9840 \f
9841 /* Like recog, but we receive the address of a pointer to a new pattern.
9842 We try to match the rtx that the pointer points to.
9843 If that fails, we may try to modify or replace the pattern,
9844 storing the replacement into the same pointer object.
9845
9846 Modifications include deletion or addition of CLOBBERs.
9847
9848 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9849 the CLOBBERs are placed.
9850
9851 The value is the final insn code from the pattern ultimately matched,
9852 or -1. */
9853
9854 static int
9855 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9856 {
9857 rtx pat = *pnewpat;
9858 int insn_code_number;
9859 int num_clobbers_to_add = 0;
9860 int i;
9861 rtx notes = 0;
9862 rtx old_notes, old_pat;
9863
9864 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9865 we use to indicate that something didn't match. If we find such a
9866 thing, force rejection. */
9867 if (GET_CODE (pat) == PARALLEL)
9868 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9869 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9870 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9871 return -1;
9872
9873 old_pat = PATTERN (insn);
9874 old_notes = REG_NOTES (insn);
9875 PATTERN (insn) = pat;
9876 REG_NOTES (insn) = 0;
9877
9878 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9879
9880 /* If it isn't, there is the possibility that we previously had an insn
9881 that clobbered some register as a side effect, but the combined
9882 insn doesn't need to do that. So try once more without the clobbers
9883 unless this represents an ASM insn. */
9884
9885 if (insn_code_number < 0 && ! check_asm_operands (pat)
9886 && GET_CODE (pat) == PARALLEL)
9887 {
9888 int pos;
9889
9890 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9891 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9892 {
9893 if (i != pos)
9894 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9895 pos++;
9896 }
9897
9898 SUBST_INT (XVECLEN (pat, 0), pos);
9899
9900 if (pos == 1)
9901 pat = XVECEXP (pat, 0, 0);
9902
9903 PATTERN (insn) = pat;
9904 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9905 }
9906 PATTERN (insn) = old_pat;
9907 REG_NOTES (insn) = old_notes;
9908
9909 /* Recognize all noop sets, these will be killed by followup pass. */
9910 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9911 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9912
9913 /* If we had any clobbers to add, make a new pattern than contains
9914 them. Then check to make sure that all of them are dead. */
9915 if (num_clobbers_to_add)
9916 {
9917 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9918 rtvec_alloc (GET_CODE (pat) == PARALLEL
9919 ? (XVECLEN (pat, 0)
9920 + num_clobbers_to_add)
9921 : num_clobbers_to_add + 1));
9922
9923 if (GET_CODE (pat) == PARALLEL)
9924 for (i = 0; i < XVECLEN (pat, 0); i++)
9925 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9926 else
9927 XVECEXP (newpat, 0, 0) = pat;
9928
9929 add_clobbers (newpat, insn_code_number);
9930
9931 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9932 i < XVECLEN (newpat, 0); i++)
9933 {
9934 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9935 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9936 return -1;
9937 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9938 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9939 }
9940 pat = newpat;
9941 }
9942
9943 *pnewpat = pat;
9944 *pnotes = notes;
9945
9946 return insn_code_number;
9947 }
9948 \f
9949 /* Like gen_lowpart_general but for use by combine. In combine it
9950 is not possible to create any new pseudoregs. However, it is
9951 safe to create invalid memory addresses, because combine will
9952 try to recognize them and all they will do is make the combine
9953 attempt fail.
9954
9955 If for some reason this cannot do its job, an rtx
9956 (clobber (const_int 0)) is returned.
9957 An insn containing that will not be recognized. */
9958
9959 static rtx
9960 gen_lowpart_for_combine (enum machine_mode mode, rtx x)
9961 {
9962 rtx result;
9963
9964 if (GET_MODE (x) == mode)
9965 return x;
9966
9967 /* Return identity if this is a CONST or symbolic
9968 reference. */
9969 if (mode == Pmode
9970 && (GET_CODE (x) == CONST
9971 || GET_CODE (x) == SYMBOL_REF
9972 || GET_CODE (x) == LABEL_REF))
9973 return x;
9974
9975 /* We can only support MODE being wider than a word if X is a
9976 constant integer or has a mode the same size. */
9977
9978 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9979 && ! ((GET_MODE (x) == VOIDmode
9980 && (GET_CODE (x) == CONST_INT
9981 || GET_CODE (x) == CONST_DOUBLE))
9982 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9983 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9984
9985 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9986 won't know what to do. So we will strip off the SUBREG here and
9987 process normally. */
9988 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9989 {
9990 x = SUBREG_REG (x);
9991 if (GET_MODE (x) == mode)
9992 return x;
9993 }
9994
9995 result = gen_lowpart_common (mode, x);
9996 #ifdef CANNOT_CHANGE_MODE_CLASS
9997 if (result != 0
9998 && GET_CODE (result) == SUBREG
9999 && GET_CODE (SUBREG_REG (result)) == REG
10000 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER)
10001 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (result))
10002 * MAX_MACHINE_MODE
10003 + GET_MODE (result));
10004 #endif
10005
10006 if (result)
10007 return result;
10008
10009 if (GET_CODE (x) == MEM)
10010 {
10011 int offset = 0;
10012
10013 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10014 address. */
10015 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10016 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10017
10018 /* If we want to refer to something bigger than the original memref,
10019 generate a paradoxical subreg instead. That will force a reload
10020 of the original memref X. */
10021 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
10022 return gen_rtx_SUBREG (mode, x, 0);
10023
10024 if (WORDS_BIG_ENDIAN)
10025 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
10026 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
10027
10028 if (BYTES_BIG_ENDIAN)
10029 {
10030 /* Adjust the address so that the address-after-the-data is
10031 unchanged. */
10032 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
10033 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
10034 }
10035
10036 return adjust_address_nv (x, mode, offset);
10037 }
10038
10039 /* If X is a comparison operator, rewrite it in a new mode. This
10040 probably won't match, but may allow further simplifications. */
10041 else if (COMPARISON_P (x))
10042 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
10043
10044 /* If we couldn't simplify X any other way, just enclose it in a
10045 SUBREG. Normally, this SUBREG won't match, but some patterns may
10046 include an explicit SUBREG or we may simplify it further in combine. */
10047 else
10048 {
10049 int offset = 0;
10050 rtx res;
10051 enum machine_mode sub_mode = GET_MODE (x);
10052
10053 offset = subreg_lowpart_offset (mode, sub_mode);
10054 if (sub_mode == VOIDmode)
10055 {
10056 sub_mode = int_mode_for_mode (mode);
10057 x = gen_lowpart_common (sub_mode, x);
10058 if (x == 0)
10059 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
10060 }
10061 res = simplify_gen_subreg (mode, x, sub_mode, offset);
10062 if (res)
10063 return res;
10064 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10065 }
10066 }
10067 \f
10068 /* These routines make binary and unary operations by first seeing if they
10069 fold; if not, a new expression is allocated. */
10070
10071 static rtx
10072 gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0, rtx op1)
10073 {
10074 rtx result;
10075 rtx tem;
10076
10077 if (GET_CODE (op0) == CLOBBER)
10078 return op0;
10079 else if (GET_CODE (op1) == CLOBBER)
10080 return op1;
10081
10082 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
10083 && swap_commutative_operands_p (op0, op1))
10084 tem = op0, op0 = op1, op1 = tem;
10085
10086 if (GET_RTX_CLASS (code) == RTX_COMPARE
10087 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
10088 {
10089 enum machine_mode op_mode = GET_MODE (op0);
10090
10091 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
10092 just (REL_OP X Y). */
10093 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
10094 {
10095 op1 = XEXP (op0, 1);
10096 op0 = XEXP (op0, 0);
10097 op_mode = GET_MODE (op0);
10098 }
10099
10100 if (op_mode == VOIDmode)
10101 op_mode = GET_MODE (op1);
10102 result = simplify_relational_operation (code, mode, op_mode, op0, op1);
10103 }
10104 else
10105 result = simplify_binary_operation (code, mode, op0, op1);
10106
10107 if (result)
10108 return result;
10109
10110 /* Put complex operands first and constants second. */
10111 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
10112 && swap_commutative_operands_p (op0, op1))
10113 return gen_rtx_fmt_ee (code, mode, op1, op0);
10114
10115 /* If we are turning off bits already known off in OP0, we need not do
10116 an AND. */
10117 else if (code == AND && GET_CODE (op1) == CONST_INT
10118 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10119 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
10120 return op0;
10121
10122 return gen_rtx_fmt_ee (code, mode, op0, op1);
10123 }
10124 \f
10125 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10126 comparison code that will be tested.
10127
10128 The result is a possibly different comparison code to use. *POP0 and
10129 *POP1 may be updated.
10130
10131 It is possible that we might detect that a comparison is either always
10132 true or always false. However, we do not perform general constant
10133 folding in combine, so this knowledge isn't useful. Such tautologies
10134 should have been detected earlier. Hence we ignore all such cases. */
10135
10136 static enum rtx_code
10137 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10138 {
10139 rtx op0 = *pop0;
10140 rtx op1 = *pop1;
10141 rtx tem, tem1;
10142 int i;
10143 enum machine_mode mode, tmode;
10144
10145 /* Try a few ways of applying the same transformation to both operands. */
10146 while (1)
10147 {
10148 #ifndef WORD_REGISTER_OPERATIONS
10149 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10150 so check specially. */
10151 if (code != GTU && code != GEU && code != LTU && code != LEU
10152 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10153 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10154 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10155 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10156 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10157 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10158 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10159 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10160 && XEXP (op0, 1) == XEXP (op1, 1)
10161 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10162 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10163 && (INTVAL (XEXP (op0, 1))
10164 == (GET_MODE_BITSIZE (GET_MODE (op0))
10165 - (GET_MODE_BITSIZE
10166 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10167 {
10168 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10169 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10170 }
10171 #endif
10172
10173 /* If both operands are the same constant shift, see if we can ignore the
10174 shift. We can if the shift is a rotate or if the bits shifted out of
10175 this shift are known to be zero for both inputs and if the type of
10176 comparison is compatible with the shift. */
10177 if (GET_CODE (op0) == GET_CODE (op1)
10178 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10179 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10180 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10181 && (code != GT && code != LT && code != GE && code != LE))
10182 || (GET_CODE (op0) == ASHIFTRT
10183 && (code != GTU && code != LTU
10184 && code != GEU && code != LEU)))
10185 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10186 && INTVAL (XEXP (op0, 1)) >= 0
10187 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10188 && XEXP (op0, 1) == XEXP (op1, 1))
10189 {
10190 enum machine_mode mode = GET_MODE (op0);
10191 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10192 int shift_count = INTVAL (XEXP (op0, 1));
10193
10194 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10195 mask &= (mask >> shift_count) << shift_count;
10196 else if (GET_CODE (op0) == ASHIFT)
10197 mask = (mask & (mask << shift_count)) >> shift_count;
10198
10199 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10200 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10201 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10202 else
10203 break;
10204 }
10205
10206 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10207 SUBREGs are of the same mode, and, in both cases, the AND would
10208 be redundant if the comparison was done in the narrower mode,
10209 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10210 and the operand's possibly nonzero bits are 0xffffff01; in that case
10211 if we only care about QImode, we don't need the AND). This case
10212 occurs if the output mode of an scc insn is not SImode and
10213 STORE_FLAG_VALUE == 1 (e.g., the 386).
10214
10215 Similarly, check for a case where the AND's are ZERO_EXTEND
10216 operations from some narrower mode even though a SUBREG is not
10217 present. */
10218
10219 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10220 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10221 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10222 {
10223 rtx inner_op0 = XEXP (op0, 0);
10224 rtx inner_op1 = XEXP (op1, 0);
10225 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10226 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10227 int changed = 0;
10228
10229 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10230 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10231 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10232 && (GET_MODE (SUBREG_REG (inner_op0))
10233 == GET_MODE (SUBREG_REG (inner_op1)))
10234 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10235 <= HOST_BITS_PER_WIDE_INT)
10236 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10237 GET_MODE (SUBREG_REG (inner_op0)))))
10238 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10239 GET_MODE (SUBREG_REG (inner_op1))))))
10240 {
10241 op0 = SUBREG_REG (inner_op0);
10242 op1 = SUBREG_REG (inner_op1);
10243
10244 /* The resulting comparison is always unsigned since we masked
10245 off the original sign bit. */
10246 code = unsigned_condition (code);
10247
10248 changed = 1;
10249 }
10250
10251 else if (c0 == c1)
10252 for (tmode = GET_CLASS_NARROWEST_MODE
10253 (GET_MODE_CLASS (GET_MODE (op0)));
10254 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10255 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10256 {
10257 op0 = gen_lowpart (tmode, inner_op0);
10258 op1 = gen_lowpart (tmode, inner_op1);
10259 code = unsigned_condition (code);
10260 changed = 1;
10261 break;
10262 }
10263
10264 if (! changed)
10265 break;
10266 }
10267
10268 /* If both operands are NOT, we can strip off the outer operation
10269 and adjust the comparison code for swapped operands; similarly for
10270 NEG, except that this must be an equality comparison. */
10271 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10272 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10273 && (code == EQ || code == NE)))
10274 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10275
10276 else
10277 break;
10278 }
10279
10280 /* If the first operand is a constant, swap the operands and adjust the
10281 comparison code appropriately, but don't do this if the second operand
10282 is already a constant integer. */
10283 if (swap_commutative_operands_p (op0, op1))
10284 {
10285 tem = op0, op0 = op1, op1 = tem;
10286 code = swap_condition (code);
10287 }
10288
10289 /* We now enter a loop during which we will try to simplify the comparison.
10290 For the most part, we only are concerned with comparisons with zero,
10291 but some things may really be comparisons with zero but not start
10292 out looking that way. */
10293
10294 while (GET_CODE (op1) == CONST_INT)
10295 {
10296 enum machine_mode mode = GET_MODE (op0);
10297 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10298 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10299 int equality_comparison_p;
10300 int sign_bit_comparison_p;
10301 int unsigned_comparison_p;
10302 HOST_WIDE_INT const_op;
10303
10304 /* We only want to handle integral modes. This catches VOIDmode,
10305 CCmode, and the floating-point modes. An exception is that we
10306 can handle VOIDmode if OP0 is a COMPARE or a comparison
10307 operation. */
10308
10309 if (GET_MODE_CLASS (mode) != MODE_INT
10310 && ! (mode == VOIDmode
10311 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10312 break;
10313
10314 /* Get the constant we are comparing against and turn off all bits
10315 not on in our mode. */
10316 const_op = INTVAL (op1);
10317 if (mode != VOIDmode)
10318 const_op = trunc_int_for_mode (const_op, mode);
10319 op1 = GEN_INT (const_op);
10320
10321 /* If we are comparing against a constant power of two and the value
10322 being compared can only have that single bit nonzero (e.g., it was
10323 `and'ed with that bit), we can replace this with a comparison
10324 with zero. */
10325 if (const_op
10326 && (code == EQ || code == NE || code == GE || code == GEU
10327 || code == LT || code == LTU)
10328 && mode_width <= HOST_BITS_PER_WIDE_INT
10329 && exact_log2 (const_op) >= 0
10330 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10331 {
10332 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10333 op1 = const0_rtx, const_op = 0;
10334 }
10335
10336 /* Similarly, if we are comparing a value known to be either -1 or
10337 0 with -1, change it to the opposite comparison against zero. */
10338
10339 if (const_op == -1
10340 && (code == EQ || code == NE || code == GT || code == LE
10341 || code == GEU || code == LTU)
10342 && num_sign_bit_copies (op0, mode) == mode_width)
10343 {
10344 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10345 op1 = const0_rtx, const_op = 0;
10346 }
10347
10348 /* Do some canonicalizations based on the comparison code. We prefer
10349 comparisons against zero and then prefer equality comparisons.
10350 If we can reduce the size of a constant, we will do that too. */
10351
10352 switch (code)
10353 {
10354 case LT:
10355 /* < C is equivalent to <= (C - 1) */
10356 if (const_op > 0)
10357 {
10358 const_op -= 1;
10359 op1 = GEN_INT (const_op);
10360 code = LE;
10361 /* ... fall through to LE case below. */
10362 }
10363 else
10364 break;
10365
10366 case LE:
10367 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10368 if (const_op < 0)
10369 {
10370 const_op += 1;
10371 op1 = GEN_INT (const_op);
10372 code = LT;
10373 }
10374
10375 /* If we are doing a <= 0 comparison on a value known to have
10376 a zero sign bit, we can replace this with == 0. */
10377 else if (const_op == 0
10378 && mode_width <= HOST_BITS_PER_WIDE_INT
10379 && (nonzero_bits (op0, mode)
10380 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10381 code = EQ;
10382 break;
10383
10384 case GE:
10385 /* >= C is equivalent to > (C - 1). */
10386 if (const_op > 0)
10387 {
10388 const_op -= 1;
10389 op1 = GEN_INT (const_op);
10390 code = GT;
10391 /* ... fall through to GT below. */
10392 }
10393 else
10394 break;
10395
10396 case GT:
10397 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10398 if (const_op < 0)
10399 {
10400 const_op += 1;
10401 op1 = GEN_INT (const_op);
10402 code = GE;
10403 }
10404
10405 /* If we are doing a > 0 comparison on a value known to have
10406 a zero sign bit, we can replace this with != 0. */
10407 else if (const_op == 0
10408 && mode_width <= HOST_BITS_PER_WIDE_INT
10409 && (nonzero_bits (op0, mode)
10410 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10411 code = NE;
10412 break;
10413
10414 case LTU:
10415 /* < C is equivalent to <= (C - 1). */
10416 if (const_op > 0)
10417 {
10418 const_op -= 1;
10419 op1 = GEN_INT (const_op);
10420 code = LEU;
10421 /* ... fall through ... */
10422 }
10423
10424 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10425 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10426 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10427 {
10428 const_op = 0, op1 = const0_rtx;
10429 code = GE;
10430 break;
10431 }
10432 else
10433 break;
10434
10435 case LEU:
10436 /* unsigned <= 0 is equivalent to == 0 */
10437 if (const_op == 0)
10438 code = EQ;
10439
10440 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10441 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10442 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10443 {
10444 const_op = 0, op1 = const0_rtx;
10445 code = GE;
10446 }
10447 break;
10448
10449 case GEU:
10450 /* >= C is equivalent to < (C - 1). */
10451 if (const_op > 1)
10452 {
10453 const_op -= 1;
10454 op1 = GEN_INT (const_op);
10455 code = GTU;
10456 /* ... fall through ... */
10457 }
10458
10459 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10460 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10461 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10462 {
10463 const_op = 0, op1 = const0_rtx;
10464 code = LT;
10465 break;
10466 }
10467 else
10468 break;
10469
10470 case GTU:
10471 /* unsigned > 0 is equivalent to != 0 */
10472 if (const_op == 0)
10473 code = NE;
10474
10475 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10476 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10477 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10478 {
10479 const_op = 0, op1 = const0_rtx;
10480 code = LT;
10481 }
10482 break;
10483
10484 default:
10485 break;
10486 }
10487
10488 /* Compute some predicates to simplify code below. */
10489
10490 equality_comparison_p = (code == EQ || code == NE);
10491 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10492 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10493 || code == GEU);
10494
10495 /* If this is a sign bit comparison and we can do arithmetic in
10496 MODE, say that we will only be needing the sign bit of OP0. */
10497 if (sign_bit_comparison_p
10498 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10499 op0 = force_to_mode (op0, mode,
10500 ((HOST_WIDE_INT) 1
10501 << (GET_MODE_BITSIZE (mode) - 1)),
10502 NULL_RTX, 0);
10503
10504 /* Now try cases based on the opcode of OP0. If none of the cases
10505 does a "continue", we exit this loop immediately after the
10506 switch. */
10507
10508 switch (GET_CODE (op0))
10509 {
10510 case ZERO_EXTRACT:
10511 /* If we are extracting a single bit from a variable position in
10512 a constant that has only a single bit set and are comparing it
10513 with zero, we can convert this into an equality comparison
10514 between the position and the location of the single bit. */
10515 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10516 have already reduced the shift count modulo the word size. */
10517 if (!SHIFT_COUNT_TRUNCATED
10518 && GET_CODE (XEXP (op0, 0)) == CONST_INT
10519 && XEXP (op0, 1) == const1_rtx
10520 && equality_comparison_p && const_op == 0
10521 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10522 {
10523 if (BITS_BIG_ENDIAN)
10524 {
10525 enum machine_mode new_mode
10526 = mode_for_extraction (EP_extzv, 1);
10527 if (new_mode == MAX_MACHINE_MODE)
10528 i = BITS_PER_WORD - 1 - i;
10529 else
10530 {
10531 mode = new_mode;
10532 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10533 }
10534 }
10535
10536 op0 = XEXP (op0, 2);
10537 op1 = GEN_INT (i);
10538 const_op = i;
10539
10540 /* Result is nonzero iff shift count is equal to I. */
10541 code = reverse_condition (code);
10542 continue;
10543 }
10544
10545 /* ... fall through ... */
10546
10547 case SIGN_EXTRACT:
10548 tem = expand_compound_operation (op0);
10549 if (tem != op0)
10550 {
10551 op0 = tem;
10552 continue;
10553 }
10554 break;
10555
10556 case NOT:
10557 /* If testing for equality, we can take the NOT of the constant. */
10558 if (equality_comparison_p
10559 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10560 {
10561 op0 = XEXP (op0, 0);
10562 op1 = tem;
10563 continue;
10564 }
10565
10566 /* If just looking at the sign bit, reverse the sense of the
10567 comparison. */
10568 if (sign_bit_comparison_p)
10569 {
10570 op0 = XEXP (op0, 0);
10571 code = (code == GE ? LT : GE);
10572 continue;
10573 }
10574 break;
10575
10576 case NEG:
10577 /* If testing for equality, we can take the NEG of the constant. */
10578 if (equality_comparison_p
10579 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10580 {
10581 op0 = XEXP (op0, 0);
10582 op1 = tem;
10583 continue;
10584 }
10585
10586 /* The remaining cases only apply to comparisons with zero. */
10587 if (const_op != 0)
10588 break;
10589
10590 /* When X is ABS or is known positive,
10591 (neg X) is < 0 if and only if X != 0. */
10592
10593 if (sign_bit_comparison_p
10594 && (GET_CODE (XEXP (op0, 0)) == ABS
10595 || (mode_width <= HOST_BITS_PER_WIDE_INT
10596 && (nonzero_bits (XEXP (op0, 0), mode)
10597 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10598 {
10599 op0 = XEXP (op0, 0);
10600 code = (code == LT ? NE : EQ);
10601 continue;
10602 }
10603
10604 /* If we have NEG of something whose two high-order bits are the
10605 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10606 if (num_sign_bit_copies (op0, mode) >= 2)
10607 {
10608 op0 = XEXP (op0, 0);
10609 code = swap_condition (code);
10610 continue;
10611 }
10612 break;
10613
10614 case ROTATE:
10615 /* If we are testing equality and our count is a constant, we
10616 can perform the inverse operation on our RHS. */
10617 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10618 && (tem = simplify_binary_operation (ROTATERT, mode,
10619 op1, XEXP (op0, 1))) != 0)
10620 {
10621 op0 = XEXP (op0, 0);
10622 op1 = tem;
10623 continue;
10624 }
10625
10626 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10627 a particular bit. Convert it to an AND of a constant of that
10628 bit. This will be converted into a ZERO_EXTRACT. */
10629 if (const_op == 0 && sign_bit_comparison_p
10630 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10631 && mode_width <= HOST_BITS_PER_WIDE_INT)
10632 {
10633 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10634 ((HOST_WIDE_INT) 1
10635 << (mode_width - 1
10636 - INTVAL (XEXP (op0, 1)))));
10637 code = (code == LT ? NE : EQ);
10638 continue;
10639 }
10640
10641 /* Fall through. */
10642
10643 case ABS:
10644 /* ABS is ignorable inside an equality comparison with zero. */
10645 if (const_op == 0 && equality_comparison_p)
10646 {
10647 op0 = XEXP (op0, 0);
10648 continue;
10649 }
10650 break;
10651
10652 case SIGN_EXTEND:
10653 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10654 to (compare FOO CONST) if CONST fits in FOO's mode and we
10655 are either testing inequality or have an unsigned comparison
10656 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10657 if (! unsigned_comparison_p
10658 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10659 <= HOST_BITS_PER_WIDE_INT)
10660 && ((unsigned HOST_WIDE_INT) const_op
10661 < (((unsigned HOST_WIDE_INT) 1
10662 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10663 {
10664 op0 = XEXP (op0, 0);
10665 continue;
10666 }
10667 break;
10668
10669 case SUBREG:
10670 /* Check for the case where we are comparing A - C1 with C2,
10671 both constants are smaller than 1/2 the maximum positive
10672 value in MODE, and the comparison is equality or unsigned.
10673 In that case, if A is either zero-extended to MODE or has
10674 sufficient sign bits so that the high-order bit in MODE
10675 is a copy of the sign in the inner mode, we can prove that it is
10676 safe to do the operation in the wider mode. This simplifies
10677 many range checks. */
10678
10679 if (mode_width <= HOST_BITS_PER_WIDE_INT
10680 && subreg_lowpart_p (op0)
10681 && GET_CODE (SUBREG_REG (op0)) == PLUS
10682 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10683 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10684 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10685 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10686 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10687 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10688 GET_MODE (SUBREG_REG (op0)))
10689 & ~GET_MODE_MASK (mode))
10690 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10691 GET_MODE (SUBREG_REG (op0)))
10692 > (unsigned int)
10693 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10694 - GET_MODE_BITSIZE (mode)))))
10695 {
10696 op0 = SUBREG_REG (op0);
10697 continue;
10698 }
10699
10700 /* If the inner mode is narrower and we are extracting the low part,
10701 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10702 if (subreg_lowpart_p (op0)
10703 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10704 /* Fall through */ ;
10705 else
10706 break;
10707
10708 /* ... fall through ... */
10709
10710 case ZERO_EXTEND:
10711 if ((unsigned_comparison_p || equality_comparison_p)
10712 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10713 <= HOST_BITS_PER_WIDE_INT)
10714 && ((unsigned HOST_WIDE_INT) const_op
10715 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10716 {
10717 op0 = XEXP (op0, 0);
10718 continue;
10719 }
10720 break;
10721
10722 case PLUS:
10723 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10724 this for equality comparisons due to pathological cases involving
10725 overflows. */
10726 if (equality_comparison_p
10727 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10728 op1, XEXP (op0, 1))))
10729 {
10730 op0 = XEXP (op0, 0);
10731 op1 = tem;
10732 continue;
10733 }
10734
10735 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10736 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10737 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10738 {
10739 op0 = XEXP (XEXP (op0, 0), 0);
10740 code = (code == LT ? EQ : NE);
10741 continue;
10742 }
10743 break;
10744
10745 case MINUS:
10746 /* We used to optimize signed comparisons against zero, but that
10747 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10748 arrive here as equality comparisons, or (GEU, LTU) are
10749 optimized away. No need to special-case them. */
10750
10751 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10752 (eq B (minus A C)), whichever simplifies. We can only do
10753 this for equality comparisons due to pathological cases involving
10754 overflows. */
10755 if (equality_comparison_p
10756 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10757 XEXP (op0, 1), op1)))
10758 {
10759 op0 = XEXP (op0, 0);
10760 op1 = tem;
10761 continue;
10762 }
10763
10764 if (equality_comparison_p
10765 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10766 XEXP (op0, 0), op1)))
10767 {
10768 op0 = XEXP (op0, 1);
10769 op1 = tem;
10770 continue;
10771 }
10772
10773 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10774 of bits in X minus 1, is one iff X > 0. */
10775 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10776 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10777 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10778 == mode_width - 1
10779 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10780 {
10781 op0 = XEXP (op0, 1);
10782 code = (code == GE ? LE : GT);
10783 continue;
10784 }
10785 break;
10786
10787 case XOR:
10788 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10789 if C is zero or B is a constant. */
10790 if (equality_comparison_p
10791 && 0 != (tem = simplify_binary_operation (XOR, mode,
10792 XEXP (op0, 1), op1)))
10793 {
10794 op0 = XEXP (op0, 0);
10795 op1 = tem;
10796 continue;
10797 }
10798 break;
10799
10800 case EQ: case NE:
10801 case UNEQ: case LTGT:
10802 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10803 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10804 case UNORDERED: case ORDERED:
10805 /* We can't do anything if OP0 is a condition code value, rather
10806 than an actual data value. */
10807 if (const_op != 0
10808 || CC0_P (XEXP (op0, 0))
10809 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10810 break;
10811
10812 /* Get the two operands being compared. */
10813 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10814 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10815 else
10816 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10817
10818 /* Check for the cases where we simply want the result of the
10819 earlier test or the opposite of that result. */
10820 if (code == NE || code == EQ
10821 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10822 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10823 && (STORE_FLAG_VALUE
10824 & (((HOST_WIDE_INT) 1
10825 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10826 && (code == LT || code == GE)))
10827 {
10828 enum rtx_code new_code;
10829 if (code == LT || code == NE)
10830 new_code = GET_CODE (op0);
10831 else
10832 new_code = combine_reversed_comparison_code (op0);
10833
10834 if (new_code != UNKNOWN)
10835 {
10836 code = new_code;
10837 op0 = tem;
10838 op1 = tem1;
10839 continue;
10840 }
10841 }
10842 break;
10843
10844 case IOR:
10845 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10846 iff X <= 0. */
10847 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10848 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10849 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10850 {
10851 op0 = XEXP (op0, 1);
10852 code = (code == GE ? GT : LE);
10853 continue;
10854 }
10855 break;
10856
10857 case AND:
10858 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10859 will be converted to a ZERO_EXTRACT later. */
10860 if (const_op == 0 && equality_comparison_p
10861 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10862 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10863 {
10864 op0 = simplify_and_const_int
10865 (op0, mode, gen_rtx_LSHIFTRT (mode,
10866 XEXP (op0, 1),
10867 XEXP (XEXP (op0, 0), 1)),
10868 (HOST_WIDE_INT) 1);
10869 continue;
10870 }
10871
10872 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10873 zero and X is a comparison and C1 and C2 describe only bits set
10874 in STORE_FLAG_VALUE, we can compare with X. */
10875 if (const_op == 0 && equality_comparison_p
10876 && mode_width <= HOST_BITS_PER_WIDE_INT
10877 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10878 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10879 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10880 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10881 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10882 {
10883 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10884 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10885 if ((~STORE_FLAG_VALUE & mask) == 0
10886 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10887 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10888 && COMPARISON_P (tem))))
10889 {
10890 op0 = XEXP (XEXP (op0, 0), 0);
10891 continue;
10892 }
10893 }
10894
10895 /* If we are doing an equality comparison of an AND of a bit equal
10896 to the sign bit, replace this with a LT or GE comparison of
10897 the underlying value. */
10898 if (equality_comparison_p
10899 && const_op == 0
10900 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10901 && mode_width <= HOST_BITS_PER_WIDE_INT
10902 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10903 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10904 {
10905 op0 = XEXP (op0, 0);
10906 code = (code == EQ ? GE : LT);
10907 continue;
10908 }
10909
10910 /* If this AND operation is really a ZERO_EXTEND from a narrower
10911 mode, the constant fits within that mode, and this is either an
10912 equality or unsigned comparison, try to do this comparison in
10913 the narrower mode. */
10914 if ((equality_comparison_p || unsigned_comparison_p)
10915 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10916 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10917 & GET_MODE_MASK (mode))
10918 + 1)) >= 0
10919 && const_op >> i == 0
10920 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10921 {
10922 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10923 continue;
10924 }
10925
10926 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10927 fits in both M1 and M2 and the SUBREG is either paradoxical
10928 or represents the low part, permute the SUBREG and the AND
10929 and try again. */
10930 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10931 {
10932 unsigned HOST_WIDE_INT c1;
10933 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10934 /* Require an integral mode, to avoid creating something like
10935 (AND:SF ...). */
10936 if (SCALAR_INT_MODE_P (tmode)
10937 /* It is unsafe to commute the AND into the SUBREG if the
10938 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10939 not defined. As originally written the upper bits
10940 have a defined value due to the AND operation.
10941 However, if we commute the AND inside the SUBREG then
10942 they no longer have defined values and the meaning of
10943 the code has been changed. */
10944 && (0
10945 #ifdef WORD_REGISTER_OPERATIONS
10946 || (mode_width > GET_MODE_BITSIZE (tmode)
10947 && mode_width <= BITS_PER_WORD)
10948 #endif
10949 || (mode_width <= GET_MODE_BITSIZE (tmode)
10950 && subreg_lowpart_p (XEXP (op0, 0))))
10951 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10952 && mode_width <= HOST_BITS_PER_WIDE_INT
10953 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10954 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10955 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10956 && c1 != mask
10957 && c1 != GET_MODE_MASK (tmode))
10958 {
10959 op0 = gen_binary (AND, tmode,
10960 SUBREG_REG (XEXP (op0, 0)),
10961 gen_int_mode (c1, tmode));
10962 op0 = gen_lowpart (mode, op0);
10963 continue;
10964 }
10965 }
10966
10967 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10968 if (const_op == 0 && equality_comparison_p
10969 && XEXP (op0, 1) == const1_rtx
10970 && GET_CODE (XEXP (op0, 0)) == NOT)
10971 {
10972 op0 = simplify_and_const_int
10973 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10974 code = (code == NE ? EQ : NE);
10975 continue;
10976 }
10977
10978 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10979 (eq (and (lshiftrt X) 1) 0).
10980 Also handle the case where (not X) is expressed using xor. */
10981 if (const_op == 0 && equality_comparison_p
10982 && XEXP (op0, 1) == const1_rtx
10983 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10984 {
10985 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10986 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10987
10988 if (GET_CODE (shift_op) == NOT
10989 || (GET_CODE (shift_op) == XOR
10990 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10991 && GET_CODE (shift_count) == CONST_INT
10992 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10993 && (INTVAL (XEXP (shift_op, 1))
10994 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10995 {
10996 op0 = simplify_and_const_int
10997 (NULL_RTX, mode,
10998 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10999 (HOST_WIDE_INT) 1);
11000 code = (code == NE ? EQ : NE);
11001 continue;
11002 }
11003 }
11004 break;
11005
11006 case ASHIFT:
11007 /* If we have (compare (ashift FOO N) (const_int C)) and
11008 the high order N bits of FOO (N+1 if an inequality comparison)
11009 are known to be zero, we can do this by comparing FOO with C
11010 shifted right N bits so long as the low-order N bits of C are
11011 zero. */
11012 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11013 && INTVAL (XEXP (op0, 1)) >= 0
11014 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11015 < HOST_BITS_PER_WIDE_INT)
11016 && ((const_op
11017 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
11018 && mode_width <= HOST_BITS_PER_WIDE_INT
11019 && (nonzero_bits (XEXP (op0, 0), mode)
11020 & ~(mask >> (INTVAL (XEXP (op0, 1))
11021 + ! equality_comparison_p))) == 0)
11022 {
11023 /* We must perform a logical shift, not an arithmetic one,
11024 as we want the top N bits of C to be zero. */
11025 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11026
11027 temp >>= INTVAL (XEXP (op0, 1));
11028 op1 = gen_int_mode (temp, mode);
11029 op0 = XEXP (op0, 0);
11030 continue;
11031 }
11032
11033 /* If we are doing a sign bit comparison, it means we are testing
11034 a particular bit. Convert it to the appropriate AND. */
11035 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
11036 && mode_width <= HOST_BITS_PER_WIDE_INT)
11037 {
11038 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11039 ((HOST_WIDE_INT) 1
11040 << (mode_width - 1
11041 - INTVAL (XEXP (op0, 1)))));
11042 code = (code == LT ? NE : EQ);
11043 continue;
11044 }
11045
11046 /* If this an equality comparison with zero and we are shifting
11047 the low bit to the sign bit, we can convert this to an AND of the
11048 low-order bit. */
11049 if (const_op == 0 && equality_comparison_p
11050 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11051 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11052 == mode_width - 1)
11053 {
11054 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11055 (HOST_WIDE_INT) 1);
11056 continue;
11057 }
11058 break;
11059
11060 case ASHIFTRT:
11061 /* If this is an equality comparison with zero, we can do this
11062 as a logical shift, which might be much simpler. */
11063 if (equality_comparison_p && const_op == 0
11064 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
11065 {
11066 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11067 XEXP (op0, 0),
11068 INTVAL (XEXP (op0, 1)));
11069 continue;
11070 }
11071
11072 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11073 do the comparison in a narrower mode. */
11074 if (! unsigned_comparison_p
11075 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11076 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11077 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11078 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11079 MODE_INT, 1)) != BLKmode
11080 && (((unsigned HOST_WIDE_INT) const_op
11081 + (GET_MODE_MASK (tmode) >> 1) + 1)
11082 <= GET_MODE_MASK (tmode)))
11083 {
11084 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11085 continue;
11086 }
11087
11088 /* Likewise if OP0 is a PLUS of a sign extension with a
11089 constant, which is usually represented with the PLUS
11090 between the shifts. */
11091 if (! unsigned_comparison_p
11092 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11093 && GET_CODE (XEXP (op0, 0)) == PLUS
11094 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
11095 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11096 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11097 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11098 MODE_INT, 1)) != BLKmode
11099 && (((unsigned HOST_WIDE_INT) const_op
11100 + (GET_MODE_MASK (tmode) >> 1) + 1)
11101 <= GET_MODE_MASK (tmode)))
11102 {
11103 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11104 rtx add_const = XEXP (XEXP (op0, 0), 1);
11105 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
11106 XEXP (op0, 1));
11107
11108 op0 = gen_binary (PLUS, tmode,
11109 gen_lowpart (tmode, inner),
11110 new_const);
11111 continue;
11112 }
11113
11114 /* ... fall through ... */
11115 case LSHIFTRT:
11116 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11117 the low order N bits of FOO are known to be zero, we can do this
11118 by comparing FOO with C shifted left N bits so long as no
11119 overflow occurs. */
11120 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11121 && INTVAL (XEXP (op0, 1)) >= 0
11122 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11123 && mode_width <= HOST_BITS_PER_WIDE_INT
11124 && (nonzero_bits (XEXP (op0, 0), mode)
11125 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11126 && (((unsigned HOST_WIDE_INT) const_op
11127 + (GET_CODE (op0) != LSHIFTRT
11128 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11129 + 1)
11130 : 0))
11131 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11132 {
11133 /* If the shift was logical, then we must make the condition
11134 unsigned. */
11135 if (GET_CODE (op0) == LSHIFTRT)
11136 code = unsigned_condition (code);
11137
11138 const_op <<= INTVAL (XEXP (op0, 1));
11139 op1 = GEN_INT (const_op);
11140 op0 = XEXP (op0, 0);
11141 continue;
11142 }
11143
11144 /* If we are using this shift to extract just the sign bit, we
11145 can replace this with an LT or GE comparison. */
11146 if (const_op == 0
11147 && (equality_comparison_p || sign_bit_comparison_p)
11148 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11149 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11150 == mode_width - 1)
11151 {
11152 op0 = XEXP (op0, 0);
11153 code = (code == NE || code == GT ? LT : GE);
11154 continue;
11155 }
11156 break;
11157
11158 default:
11159 break;
11160 }
11161
11162 break;
11163 }
11164
11165 /* Now make any compound operations involved in this comparison. Then,
11166 check for an outmost SUBREG on OP0 that is not doing anything or is
11167 paradoxical. The latter transformation must only be performed when
11168 it is known that the "extra" bits will be the same in op0 and op1 or
11169 that they don't matter. There are three cases to consider:
11170
11171 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11172 care bits and we can assume they have any convenient value. So
11173 making the transformation is safe.
11174
11175 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11176 In this case the upper bits of op0 are undefined. We should not make
11177 the simplification in that case as we do not know the contents of
11178 those bits.
11179
11180 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11181 NIL. In that case we know those bits are zeros or ones. We must
11182 also be sure that they are the same as the upper bits of op1.
11183
11184 We can never remove a SUBREG for a non-equality comparison because
11185 the sign bit is in a different place in the underlying object. */
11186
11187 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11188 op1 = make_compound_operation (op1, SET);
11189
11190 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11191 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11192 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11193 && (code == NE || code == EQ))
11194 {
11195 if (GET_MODE_SIZE (GET_MODE (op0))
11196 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11197 {
11198 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11199 implemented. */
11200 if (GET_CODE (SUBREG_REG (op0)) == REG)
11201 {
11202 op0 = SUBREG_REG (op0);
11203 op1 = gen_lowpart (GET_MODE (op0), op1);
11204 }
11205 }
11206 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11207 <= HOST_BITS_PER_WIDE_INT)
11208 && (nonzero_bits (SUBREG_REG (op0),
11209 GET_MODE (SUBREG_REG (op0)))
11210 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11211 {
11212 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11213
11214 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11215 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11216 op0 = SUBREG_REG (op0), op1 = tem;
11217 }
11218 }
11219
11220 /* We now do the opposite procedure: Some machines don't have compare
11221 insns in all modes. If OP0's mode is an integer mode smaller than a
11222 word and we can't do a compare in that mode, see if there is a larger
11223 mode for which we can do the compare. There are a number of cases in
11224 which we can use the wider mode. */
11225
11226 mode = GET_MODE (op0);
11227 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11228 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11229 && ! have_insn_for (COMPARE, mode))
11230 for (tmode = GET_MODE_WIDER_MODE (mode);
11231 (tmode != VOIDmode
11232 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11233 tmode = GET_MODE_WIDER_MODE (tmode))
11234 if (have_insn_for (COMPARE, tmode))
11235 {
11236 int zero_extended;
11237
11238 /* If the only nonzero bits in OP0 and OP1 are those in the
11239 narrower mode and this is an equality or unsigned comparison,
11240 we can use the wider mode. Similarly for sign-extended
11241 values, in which case it is true for all comparisons. */
11242 zero_extended = ((code == EQ || code == NE
11243 || code == GEU || code == GTU
11244 || code == LEU || code == LTU)
11245 && (nonzero_bits (op0, tmode)
11246 & ~GET_MODE_MASK (mode)) == 0
11247 && ((GET_CODE (op1) == CONST_INT
11248 || (nonzero_bits (op1, tmode)
11249 & ~GET_MODE_MASK (mode)) == 0)));
11250
11251 if (zero_extended
11252 || ((num_sign_bit_copies (op0, tmode)
11253 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11254 - GET_MODE_BITSIZE (mode)))
11255 && (num_sign_bit_copies (op1, tmode)
11256 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11257 - GET_MODE_BITSIZE (mode)))))
11258 {
11259 /* If OP0 is an AND and we don't have an AND in MODE either,
11260 make a new AND in the proper mode. */
11261 if (GET_CODE (op0) == AND
11262 && !have_insn_for (AND, mode))
11263 op0 = gen_binary (AND, tmode,
11264 gen_lowpart (tmode,
11265 XEXP (op0, 0)),
11266 gen_lowpart (tmode,
11267 XEXP (op0, 1)));
11268
11269 op0 = gen_lowpart (tmode, op0);
11270 if (zero_extended && GET_CODE (op1) == CONST_INT)
11271 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11272 op1 = gen_lowpart (tmode, op1);
11273 break;
11274 }
11275
11276 /* If this is a test for negative, we can make an explicit
11277 test of the sign bit. */
11278
11279 if (op1 == const0_rtx && (code == LT || code == GE)
11280 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11281 {
11282 op0 = gen_binary (AND, tmode,
11283 gen_lowpart (tmode, op0),
11284 GEN_INT ((HOST_WIDE_INT) 1
11285 << (GET_MODE_BITSIZE (mode) - 1)));
11286 code = (code == LT) ? NE : EQ;
11287 break;
11288 }
11289 }
11290
11291 #ifdef CANONICALIZE_COMPARISON
11292 /* If this machine only supports a subset of valid comparisons, see if we
11293 can convert an unsupported one into a supported one. */
11294 CANONICALIZE_COMPARISON (code, op0, op1);
11295 #endif
11296
11297 *pop0 = op0;
11298 *pop1 = op1;
11299
11300 return code;
11301 }
11302 \f
11303 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11304 searching backward. */
11305 static enum rtx_code
11306 combine_reversed_comparison_code (rtx exp)
11307 {
11308 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11309 rtx x;
11310
11311 if (code1 != UNKNOWN
11312 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11313 return code1;
11314 /* Otherwise try and find where the condition codes were last set and
11315 use that. */
11316 x = get_last_value (XEXP (exp, 0));
11317 if (!x || GET_CODE (x) != COMPARE)
11318 return UNKNOWN;
11319 return reversed_comparison_code_parts (GET_CODE (exp),
11320 XEXP (x, 0), XEXP (x, 1), NULL);
11321 }
11322
11323 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11324 Return NULL_RTX in case we fail to do the reversal. */
11325 static rtx
11326 reversed_comparison (rtx exp, enum machine_mode mode, rtx op0, rtx op1)
11327 {
11328 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11329 if (reversed_code == UNKNOWN)
11330 return NULL_RTX;
11331 else
11332 return gen_binary (reversed_code, mode, op0, op1);
11333 }
11334 \f
11335 /* Utility function for following routine. Called when X is part of a value
11336 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11337 for each register mentioned. Similar to mention_regs in cse.c */
11338
11339 static void
11340 update_table_tick (rtx x)
11341 {
11342 enum rtx_code code = GET_CODE (x);
11343 const char *fmt = GET_RTX_FORMAT (code);
11344 int i;
11345
11346 if (code == REG)
11347 {
11348 unsigned int regno = REGNO (x);
11349 unsigned int endregno
11350 = regno + (regno < FIRST_PSEUDO_REGISTER
11351 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11352 unsigned int r;
11353
11354 for (r = regno; r < endregno; r++)
11355 reg_last_set_table_tick[r] = label_tick;
11356
11357 return;
11358 }
11359
11360 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11361 /* Note that we can't have an "E" in values stored; see
11362 get_last_value_validate. */
11363 if (fmt[i] == 'e')
11364 {
11365 /* Check for identical subexpressions. If x contains
11366 identical subexpression we only have to traverse one of
11367 them. */
11368 if (i == 0 && ARITHMETIC_P (x))
11369 {
11370 /* Note that at this point x1 has already been
11371 processed. */
11372 rtx x0 = XEXP (x, 0);
11373 rtx x1 = XEXP (x, 1);
11374
11375 /* If x0 and x1 are identical then there is no need to
11376 process x0. */
11377 if (x0 == x1)
11378 break;
11379
11380 /* If x0 is identical to a subexpression of x1 then while
11381 processing x1, x0 has already been processed. Thus we
11382 are done with x. */
11383 if (ARITHMETIC_P (x1)
11384 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11385 break;
11386
11387 /* If x1 is identical to a subexpression of x0 then we
11388 still have to process the rest of x0. */
11389 if (ARITHMETIC_P (x0)
11390 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11391 {
11392 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11393 break;
11394 }
11395 }
11396
11397 update_table_tick (XEXP (x, i));
11398 }
11399 }
11400
11401 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11402 are saying that the register is clobbered and we no longer know its
11403 value. If INSN is zero, don't update reg_last_set; this is only permitted
11404 with VALUE also zero and is used to invalidate the register. */
11405
11406 static void
11407 record_value_for_reg (rtx reg, rtx insn, rtx value)
11408 {
11409 unsigned int regno = REGNO (reg);
11410 unsigned int endregno
11411 = regno + (regno < FIRST_PSEUDO_REGISTER
11412 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
11413 unsigned int i;
11414
11415 /* If VALUE contains REG and we have a previous value for REG, substitute
11416 the previous value. */
11417 if (value && insn && reg_overlap_mentioned_p (reg, value))
11418 {
11419 rtx tem;
11420
11421 /* Set things up so get_last_value is allowed to see anything set up to
11422 our insn. */
11423 subst_low_cuid = INSN_CUID (insn);
11424 tem = get_last_value (reg);
11425
11426 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11427 it isn't going to be useful and will take a lot of time to process,
11428 so just use the CLOBBER. */
11429
11430 if (tem)
11431 {
11432 if (ARITHMETIC_P (tem)
11433 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11434 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11435 tem = XEXP (tem, 0);
11436
11437 value = replace_rtx (copy_rtx (value), reg, tem);
11438 }
11439 }
11440
11441 /* For each register modified, show we don't know its value, that
11442 we don't know about its bitwise content, that its value has been
11443 updated, and that we don't know the location of the death of the
11444 register. */
11445 for (i = regno; i < endregno; i++)
11446 {
11447 if (insn)
11448 reg_last_set[i] = insn;
11449
11450 reg_last_set_value[i] = 0;
11451 reg_last_set_mode[i] = 0;
11452 reg_last_set_nonzero_bits[i] = 0;
11453 reg_last_set_sign_bit_copies[i] = 0;
11454 reg_last_death[i] = 0;
11455 }
11456
11457 /* Mark registers that are being referenced in this value. */
11458 if (value)
11459 update_table_tick (value);
11460
11461 /* Now update the status of each register being set.
11462 If someone is using this register in this block, set this register
11463 to invalid since we will get confused between the two lives in this
11464 basic block. This makes using this register always invalid. In cse, we
11465 scan the table to invalidate all entries using this register, but this
11466 is too much work for us. */
11467
11468 for (i = regno; i < endregno; i++)
11469 {
11470 reg_last_set_label[i] = label_tick;
11471 if (value && reg_last_set_table_tick[i] == label_tick)
11472 reg_last_set_invalid[i] = 1;
11473 else
11474 reg_last_set_invalid[i] = 0;
11475 }
11476
11477 /* The value being assigned might refer to X (like in "x++;"). In that
11478 case, we must replace it with (clobber (const_int 0)) to prevent
11479 infinite loops. */
11480 if (value && ! get_last_value_validate (&value, insn,
11481 reg_last_set_label[regno], 0))
11482 {
11483 value = copy_rtx (value);
11484 if (! get_last_value_validate (&value, insn,
11485 reg_last_set_label[regno], 1))
11486 value = 0;
11487 }
11488
11489 /* For the main register being modified, update the value, the mode, the
11490 nonzero bits, and the number of sign bit copies. */
11491
11492 reg_last_set_value[regno] = value;
11493
11494 if (value)
11495 {
11496 enum machine_mode mode = GET_MODE (reg);
11497 subst_low_cuid = INSN_CUID (insn);
11498 reg_last_set_mode[regno] = mode;
11499 if (GET_MODE_CLASS (mode) == MODE_INT
11500 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11501 mode = nonzero_bits_mode;
11502 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
11503 reg_last_set_sign_bit_copies[regno]
11504 = num_sign_bit_copies (value, GET_MODE (reg));
11505 }
11506 }
11507
11508 /* Called via note_stores from record_dead_and_set_regs to handle one
11509 SET or CLOBBER in an insn. DATA is the instruction in which the
11510 set is occurring. */
11511
11512 static void
11513 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
11514 {
11515 rtx record_dead_insn = (rtx) data;
11516
11517 if (GET_CODE (dest) == SUBREG)
11518 dest = SUBREG_REG (dest);
11519
11520 if (GET_CODE (dest) == REG)
11521 {
11522 /* If we are setting the whole register, we know its value. Otherwise
11523 show that we don't know the value. We can handle SUBREG in
11524 some cases. */
11525 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11526 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11527 else if (GET_CODE (setter) == SET
11528 && GET_CODE (SET_DEST (setter)) == SUBREG
11529 && SUBREG_REG (SET_DEST (setter)) == dest
11530 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11531 && subreg_lowpart_p (SET_DEST (setter)))
11532 record_value_for_reg (dest, record_dead_insn,
11533 gen_lowpart (GET_MODE (dest),
11534 SET_SRC (setter)));
11535 else
11536 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11537 }
11538 else if (GET_CODE (dest) == MEM
11539 /* Ignore pushes, they clobber nothing. */
11540 && ! push_operand (dest, GET_MODE (dest)))
11541 mem_last_set = INSN_CUID (record_dead_insn);
11542 }
11543
11544 /* Update the records of when each REG was most recently set or killed
11545 for the things done by INSN. This is the last thing done in processing
11546 INSN in the combiner loop.
11547
11548 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11549 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11550 and also the similar information mem_last_set (which insn most recently
11551 modified memory) and last_call_cuid (which insn was the most recent
11552 subroutine call). */
11553
11554 static void
11555 record_dead_and_set_regs (rtx insn)
11556 {
11557 rtx link;
11558 unsigned int i;
11559
11560 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11561 {
11562 if (REG_NOTE_KIND (link) == REG_DEAD
11563 && GET_CODE (XEXP (link, 0)) == REG)
11564 {
11565 unsigned int regno = REGNO (XEXP (link, 0));
11566 unsigned int endregno
11567 = regno + (regno < FIRST_PSEUDO_REGISTER
11568 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11569 : 1);
11570
11571 for (i = regno; i < endregno; i++)
11572 reg_last_death[i] = insn;
11573 }
11574 else if (REG_NOTE_KIND (link) == REG_INC)
11575 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11576 }
11577
11578 if (GET_CODE (insn) == CALL_INSN)
11579 {
11580 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11581 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11582 {
11583 reg_last_set_value[i] = 0;
11584 reg_last_set_mode[i] = 0;
11585 reg_last_set_nonzero_bits[i] = 0;
11586 reg_last_set_sign_bit_copies[i] = 0;
11587 reg_last_death[i] = 0;
11588 }
11589
11590 last_call_cuid = mem_last_set = INSN_CUID (insn);
11591
11592 /* Don't bother recording what this insn does. It might set the
11593 return value register, but we can't combine into a call
11594 pattern anyway, so there's no point trying (and it may cause
11595 a crash, if e.g. we wind up asking for last_set_value of a
11596 SUBREG of the return value register). */
11597 return;
11598 }
11599
11600 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11601 }
11602
11603 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11604 register present in the SUBREG, so for each such SUBREG go back and
11605 adjust nonzero and sign bit information of the registers that are
11606 known to have some zero/sign bits set.
11607
11608 This is needed because when combine blows the SUBREGs away, the
11609 information on zero/sign bits is lost and further combines can be
11610 missed because of that. */
11611
11612 static void
11613 record_promoted_value (rtx insn, rtx subreg)
11614 {
11615 rtx links, set;
11616 unsigned int regno = REGNO (SUBREG_REG (subreg));
11617 enum machine_mode mode = GET_MODE (subreg);
11618
11619 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11620 return;
11621
11622 for (links = LOG_LINKS (insn); links;)
11623 {
11624 insn = XEXP (links, 0);
11625 set = single_set (insn);
11626
11627 if (! set || GET_CODE (SET_DEST (set)) != REG
11628 || REGNO (SET_DEST (set)) != regno
11629 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11630 {
11631 links = XEXP (links, 1);
11632 continue;
11633 }
11634
11635 if (reg_last_set[regno] == insn)
11636 {
11637 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11638 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11639 }
11640
11641 if (GET_CODE (SET_SRC (set)) == REG)
11642 {
11643 regno = REGNO (SET_SRC (set));
11644 links = LOG_LINKS (insn);
11645 }
11646 else
11647 break;
11648 }
11649 }
11650
11651 /* Scan X for promoted SUBREGs. For each one found,
11652 note what it implies to the registers used in it. */
11653
11654 static void
11655 check_promoted_subreg (rtx insn, rtx x)
11656 {
11657 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11658 && GET_CODE (SUBREG_REG (x)) == REG)
11659 record_promoted_value (insn, x);
11660 else
11661 {
11662 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11663 int i, j;
11664
11665 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11666 switch (format[i])
11667 {
11668 case 'e':
11669 check_promoted_subreg (insn, XEXP (x, i));
11670 break;
11671 case 'V':
11672 case 'E':
11673 if (XVEC (x, i) != 0)
11674 for (j = 0; j < XVECLEN (x, i); j++)
11675 check_promoted_subreg (insn, XVECEXP (x, i, j));
11676 break;
11677 }
11678 }
11679 }
11680 \f
11681 /* Utility routine for the following function. Verify that all the registers
11682 mentioned in *LOC are valid when *LOC was part of a value set when
11683 label_tick == TICK. Return 0 if some are not.
11684
11685 If REPLACE is nonzero, replace the invalid reference with
11686 (clobber (const_int 0)) and return 1. This replacement is useful because
11687 we often can get useful information about the form of a value (e.g., if
11688 it was produced by a shift that always produces -1 or 0) even though
11689 we don't know exactly what registers it was produced from. */
11690
11691 static int
11692 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11693 {
11694 rtx x = *loc;
11695 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11696 int len = GET_RTX_LENGTH (GET_CODE (x));
11697 int i;
11698
11699 if (GET_CODE (x) == REG)
11700 {
11701 unsigned int regno = REGNO (x);
11702 unsigned int endregno
11703 = regno + (regno < FIRST_PSEUDO_REGISTER
11704 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11705 unsigned int j;
11706
11707 for (j = regno; j < endregno; j++)
11708 if (reg_last_set_invalid[j]
11709 /* If this is a pseudo-register that was only set once and not
11710 live at the beginning of the function, it is always valid. */
11711 || (! (regno >= FIRST_PSEUDO_REGISTER
11712 && REG_N_SETS (regno) == 1
11713 && (! REGNO_REG_SET_P
11714 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11715 && reg_last_set_label[j] > tick))
11716 {
11717 if (replace)
11718 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11719 return replace;
11720 }
11721
11722 return 1;
11723 }
11724 /* If this is a memory reference, make sure that there were
11725 no stores after it that might have clobbered the value. We don't
11726 have alias info, so we assume any store invalidates it. */
11727 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11728 && INSN_CUID (insn) <= mem_last_set)
11729 {
11730 if (replace)
11731 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11732 return replace;
11733 }
11734
11735 for (i = 0; i < len; i++)
11736 {
11737 if (fmt[i] == 'e')
11738 {
11739 /* Check for identical subexpressions. If x contains
11740 identical subexpression we only have to traverse one of
11741 them. */
11742 if (i == 1 && ARITHMETIC_P (x))
11743 {
11744 /* Note that at this point x0 has already been checked
11745 and found valid. */
11746 rtx x0 = XEXP (x, 0);
11747 rtx x1 = XEXP (x, 1);
11748
11749 /* If x0 and x1 are identical then x is also valid. */
11750 if (x0 == x1)
11751 return 1;
11752
11753 /* If x1 is identical to a subexpression of x0 then
11754 while checking x0, x1 has already been checked. Thus
11755 it is valid and so as x. */
11756 if (ARITHMETIC_P (x0)
11757 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11758 return 1;
11759
11760 /* If x0 is identical to a subexpression of x1 then x is
11761 valid iff the rest of x1 is valid. */
11762 if (ARITHMETIC_P (x1)
11763 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11764 return
11765 get_last_value_validate (&XEXP (x1,
11766 x0 == XEXP (x1, 0) ? 1 : 0),
11767 insn, tick, replace);
11768 }
11769
11770 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11771 replace) == 0)
11772 return 0;
11773 }
11774 /* Don't bother with these. They shouldn't occur anyway. */
11775 else if (fmt[i] == 'E')
11776 return 0;
11777 }
11778
11779 /* If we haven't found a reason for it to be invalid, it is valid. */
11780 return 1;
11781 }
11782
11783 /* Get the last value assigned to X, if known. Some registers
11784 in the value may be replaced with (clobber (const_int 0)) if their value
11785 is known longer known reliably. */
11786
11787 static rtx
11788 get_last_value (rtx x)
11789 {
11790 unsigned int regno;
11791 rtx value;
11792
11793 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11794 then convert it to the desired mode. If this is a paradoxical SUBREG,
11795 we cannot predict what values the "extra" bits might have. */
11796 if (GET_CODE (x) == SUBREG
11797 && subreg_lowpart_p (x)
11798 && (GET_MODE_SIZE (GET_MODE (x))
11799 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11800 && (value = get_last_value (SUBREG_REG (x))) != 0)
11801 return gen_lowpart (GET_MODE (x), value);
11802
11803 if (GET_CODE (x) != REG)
11804 return 0;
11805
11806 regno = REGNO (x);
11807 value = reg_last_set_value[regno];
11808
11809 /* If we don't have a value, or if it isn't for this basic block and
11810 it's either a hard register, set more than once, or it's a live
11811 at the beginning of the function, return 0.
11812
11813 Because if it's not live at the beginning of the function then the reg
11814 is always set before being used (is never used without being set).
11815 And, if it's set only once, and it's always set before use, then all
11816 uses must have the same last value, even if it's not from this basic
11817 block. */
11818
11819 if (value == 0
11820 || (reg_last_set_label[regno] != label_tick
11821 && (regno < FIRST_PSEUDO_REGISTER
11822 || REG_N_SETS (regno) != 1
11823 || (REGNO_REG_SET_P
11824 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11825 return 0;
11826
11827 /* If the value was set in a later insn than the ones we are processing,
11828 we can't use it even if the register was only set once. */
11829 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11830 return 0;
11831
11832 /* If the value has all its registers valid, return it. */
11833 if (get_last_value_validate (&value, reg_last_set[regno],
11834 reg_last_set_label[regno], 0))
11835 return value;
11836
11837 /* Otherwise, make a copy and replace any invalid register with
11838 (clobber (const_int 0)). If that fails for some reason, return 0. */
11839
11840 value = copy_rtx (value);
11841 if (get_last_value_validate (&value, reg_last_set[regno],
11842 reg_last_set_label[regno], 1))
11843 return value;
11844
11845 return 0;
11846 }
11847 \f
11848 /* Return nonzero if expression X refers to a REG or to memory
11849 that is set in an instruction more recent than FROM_CUID. */
11850
11851 static int
11852 use_crosses_set_p (rtx x, int from_cuid)
11853 {
11854 const char *fmt;
11855 int i;
11856 enum rtx_code code = GET_CODE (x);
11857
11858 if (code == REG)
11859 {
11860 unsigned int regno = REGNO (x);
11861 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11862 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11863
11864 #ifdef PUSH_ROUNDING
11865 /* Don't allow uses of the stack pointer to be moved,
11866 because we don't know whether the move crosses a push insn. */
11867 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11868 return 1;
11869 #endif
11870 for (; regno < endreg; regno++)
11871 if (reg_last_set[regno]
11872 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11873 return 1;
11874 return 0;
11875 }
11876
11877 if (code == MEM && mem_last_set > from_cuid)
11878 return 1;
11879
11880 fmt = GET_RTX_FORMAT (code);
11881
11882 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11883 {
11884 if (fmt[i] == 'E')
11885 {
11886 int j;
11887 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11888 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11889 return 1;
11890 }
11891 else if (fmt[i] == 'e'
11892 && use_crosses_set_p (XEXP (x, i), from_cuid))
11893 return 1;
11894 }
11895 return 0;
11896 }
11897 \f
11898 /* Define three variables used for communication between the following
11899 routines. */
11900
11901 static unsigned int reg_dead_regno, reg_dead_endregno;
11902 static int reg_dead_flag;
11903
11904 /* Function called via note_stores from reg_dead_at_p.
11905
11906 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11907 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11908
11909 static void
11910 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11911 {
11912 unsigned int regno, endregno;
11913
11914 if (GET_CODE (dest) != REG)
11915 return;
11916
11917 regno = REGNO (dest);
11918 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11919 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11920
11921 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11922 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11923 }
11924
11925 /* Return nonzero if REG is known to be dead at INSN.
11926
11927 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11928 referencing REG, it is dead. If we hit a SET referencing REG, it is
11929 live. Otherwise, see if it is live or dead at the start of the basic
11930 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11931 must be assumed to be always live. */
11932
11933 static int
11934 reg_dead_at_p (rtx reg, rtx insn)
11935 {
11936 basic_block block;
11937 unsigned int i;
11938
11939 /* Set variables for reg_dead_at_p_1. */
11940 reg_dead_regno = REGNO (reg);
11941 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11942 ? hard_regno_nregs[reg_dead_regno]
11943 [GET_MODE (reg)]
11944 : 1);
11945
11946 reg_dead_flag = 0;
11947
11948 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11949 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11950 {
11951 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11952 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11953 return 0;
11954 }
11955
11956 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11957 beginning of function. */
11958 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11959 insn = prev_nonnote_insn (insn))
11960 {
11961 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11962 if (reg_dead_flag)
11963 return reg_dead_flag == 1 ? 1 : 0;
11964
11965 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11966 return 1;
11967 }
11968
11969 /* Get the basic block that we were in. */
11970 if (insn == 0)
11971 block = ENTRY_BLOCK_PTR->next_bb;
11972 else
11973 {
11974 FOR_EACH_BB (block)
11975 if (insn == BB_HEAD (block))
11976 break;
11977
11978 if (block == EXIT_BLOCK_PTR)
11979 return 0;
11980 }
11981
11982 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11983 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11984 return 0;
11985
11986 return 1;
11987 }
11988 \f
11989 /* Note hard registers in X that are used. This code is similar to
11990 that in flow.c, but much simpler since we don't care about pseudos. */
11991
11992 static void
11993 mark_used_regs_combine (rtx x)
11994 {
11995 RTX_CODE code = GET_CODE (x);
11996 unsigned int regno;
11997 int i;
11998
11999 switch (code)
12000 {
12001 case LABEL_REF:
12002 case SYMBOL_REF:
12003 case CONST_INT:
12004 case CONST:
12005 case CONST_DOUBLE:
12006 case CONST_VECTOR:
12007 case PC:
12008 case ADDR_VEC:
12009 case ADDR_DIFF_VEC:
12010 case ASM_INPUT:
12011 #ifdef HAVE_cc0
12012 /* CC0 must die in the insn after it is set, so we don't need to take
12013 special note of it here. */
12014 case CC0:
12015 #endif
12016 return;
12017
12018 case CLOBBER:
12019 /* If we are clobbering a MEM, mark any hard registers inside the
12020 address as used. */
12021 if (GET_CODE (XEXP (x, 0)) == MEM)
12022 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12023 return;
12024
12025 case REG:
12026 regno = REGNO (x);
12027 /* A hard reg in a wide mode may really be multiple registers.
12028 If so, mark all of them just like the first. */
12029 if (regno < FIRST_PSEUDO_REGISTER)
12030 {
12031 unsigned int endregno, r;
12032
12033 /* None of this applies to the stack, frame or arg pointers. */
12034 if (regno == STACK_POINTER_REGNUM
12035 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12036 || regno == HARD_FRAME_POINTER_REGNUM
12037 #endif
12038 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12039 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12040 #endif
12041 || regno == FRAME_POINTER_REGNUM)
12042 return;
12043
12044 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
12045 for (r = regno; r < endregno; r++)
12046 SET_HARD_REG_BIT (newpat_used_regs, r);
12047 }
12048 return;
12049
12050 case SET:
12051 {
12052 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12053 the address. */
12054 rtx testreg = SET_DEST (x);
12055
12056 while (GET_CODE (testreg) == SUBREG
12057 || GET_CODE (testreg) == ZERO_EXTRACT
12058 || GET_CODE (testreg) == SIGN_EXTRACT
12059 || GET_CODE (testreg) == STRICT_LOW_PART)
12060 testreg = XEXP (testreg, 0);
12061
12062 if (GET_CODE (testreg) == MEM)
12063 mark_used_regs_combine (XEXP (testreg, 0));
12064
12065 mark_used_regs_combine (SET_SRC (x));
12066 }
12067 return;
12068
12069 default:
12070 break;
12071 }
12072
12073 /* Recursively scan the operands of this expression. */
12074
12075 {
12076 const char *fmt = GET_RTX_FORMAT (code);
12077
12078 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12079 {
12080 if (fmt[i] == 'e')
12081 mark_used_regs_combine (XEXP (x, i));
12082 else if (fmt[i] == 'E')
12083 {
12084 int j;
12085
12086 for (j = 0; j < XVECLEN (x, i); j++)
12087 mark_used_regs_combine (XVECEXP (x, i, j));
12088 }
12089 }
12090 }
12091 }
12092 \f
12093 /* Remove register number REGNO from the dead registers list of INSN.
12094
12095 Return the note used to record the death, if there was one. */
12096
12097 rtx
12098 remove_death (unsigned int regno, rtx insn)
12099 {
12100 rtx note = find_regno_note (insn, REG_DEAD, regno);
12101
12102 if (note)
12103 {
12104 REG_N_DEATHS (regno)--;
12105 remove_note (insn, note);
12106 }
12107
12108 return note;
12109 }
12110
12111 /* For each register (hardware or pseudo) used within expression X, if its
12112 death is in an instruction with cuid between FROM_CUID (inclusive) and
12113 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12114 list headed by PNOTES.
12115
12116 That said, don't move registers killed by maybe_kill_insn.
12117
12118 This is done when X is being merged by combination into TO_INSN. These
12119 notes will then be distributed as needed. */
12120
12121 static void
12122 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
12123 rtx *pnotes)
12124 {
12125 const char *fmt;
12126 int len, i;
12127 enum rtx_code code = GET_CODE (x);
12128
12129 if (code == REG)
12130 {
12131 unsigned int regno = REGNO (x);
12132 rtx where_dead = reg_last_death[regno];
12133 rtx before_dead, after_dead;
12134
12135 /* Don't move the register if it gets killed in between from and to. */
12136 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12137 && ! reg_referenced_p (x, maybe_kill_insn))
12138 return;
12139
12140 /* WHERE_DEAD could be a USE insn made by combine, so first we
12141 make sure that we have insns with valid INSN_CUID values. */
12142 before_dead = where_dead;
12143 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
12144 before_dead = PREV_INSN (before_dead);
12145
12146 after_dead = where_dead;
12147 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
12148 after_dead = NEXT_INSN (after_dead);
12149
12150 if (before_dead && after_dead
12151 && INSN_CUID (before_dead) >= from_cuid
12152 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
12153 || (where_dead != after_dead
12154 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
12155 {
12156 rtx note = remove_death (regno, where_dead);
12157
12158 /* It is possible for the call above to return 0. This can occur
12159 when reg_last_death points to I2 or I1 that we combined with.
12160 In that case make a new note.
12161
12162 We must also check for the case where X is a hard register
12163 and NOTE is a death note for a range of hard registers
12164 including X. In that case, we must put REG_DEAD notes for
12165 the remaining registers in place of NOTE. */
12166
12167 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12168 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12169 > GET_MODE_SIZE (GET_MODE (x))))
12170 {
12171 unsigned int deadregno = REGNO (XEXP (note, 0));
12172 unsigned int deadend
12173 = (deadregno + hard_regno_nregs[deadregno]
12174 [GET_MODE (XEXP (note, 0))]);
12175 unsigned int ourend
12176 = regno + hard_regno_nregs[regno][GET_MODE (x)];
12177 unsigned int i;
12178
12179 for (i = deadregno; i < deadend; i++)
12180 if (i < regno || i >= ourend)
12181 REG_NOTES (where_dead)
12182 = gen_rtx_EXPR_LIST (REG_DEAD,
12183 regno_reg_rtx[i],
12184 REG_NOTES (where_dead));
12185 }
12186
12187 /* If we didn't find any note, or if we found a REG_DEAD note that
12188 covers only part of the given reg, and we have a multi-reg hard
12189 register, then to be safe we must check for REG_DEAD notes
12190 for each register other than the first. They could have
12191 their own REG_DEAD notes lying around. */
12192 else if ((note == 0
12193 || (note != 0
12194 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12195 < GET_MODE_SIZE (GET_MODE (x)))))
12196 && regno < FIRST_PSEUDO_REGISTER
12197 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12198 {
12199 unsigned int ourend
12200 = regno + hard_regno_nregs[regno][GET_MODE (x)];
12201 unsigned int i, offset;
12202 rtx oldnotes = 0;
12203
12204 if (note)
12205 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12206 else
12207 offset = 1;
12208
12209 for (i = regno + offset; i < ourend; i++)
12210 move_deaths (regno_reg_rtx[i],
12211 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
12212 }
12213
12214 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12215 {
12216 XEXP (note, 1) = *pnotes;
12217 *pnotes = note;
12218 }
12219 else
12220 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12221
12222 REG_N_DEATHS (regno)++;
12223 }
12224
12225 return;
12226 }
12227
12228 else if (GET_CODE (x) == SET)
12229 {
12230 rtx dest = SET_DEST (x);
12231
12232 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
12233
12234 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12235 that accesses one word of a multi-word item, some
12236 piece of everything register in the expression is used by
12237 this insn, so remove any old death. */
12238 /* ??? So why do we test for equality of the sizes? */
12239
12240 if (GET_CODE (dest) == ZERO_EXTRACT
12241 || GET_CODE (dest) == STRICT_LOW_PART
12242 || (GET_CODE (dest) == SUBREG
12243 && (((GET_MODE_SIZE (GET_MODE (dest))
12244 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12245 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12246 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12247 {
12248 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
12249 return;
12250 }
12251
12252 /* If this is some other SUBREG, we know it replaces the entire
12253 value, so use that as the destination. */
12254 if (GET_CODE (dest) == SUBREG)
12255 dest = SUBREG_REG (dest);
12256
12257 /* If this is a MEM, adjust deaths of anything used in the address.
12258 For a REG (the only other possibility), the entire value is
12259 being replaced so the old value is not used in this insn. */
12260
12261 if (GET_CODE (dest) == MEM)
12262 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12263 to_insn, pnotes);
12264 return;
12265 }
12266
12267 else if (GET_CODE (x) == CLOBBER)
12268 return;
12269
12270 len = GET_RTX_LENGTH (code);
12271 fmt = GET_RTX_FORMAT (code);
12272
12273 for (i = 0; i < len; i++)
12274 {
12275 if (fmt[i] == 'E')
12276 {
12277 int j;
12278 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12279 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12280 to_insn, pnotes);
12281 }
12282 else if (fmt[i] == 'e')
12283 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12284 }
12285 }
12286 \f
12287 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12288 pattern of an insn. X must be a REG. */
12289
12290 static int
12291 reg_bitfield_target_p (rtx x, rtx body)
12292 {
12293 int i;
12294
12295 if (GET_CODE (body) == SET)
12296 {
12297 rtx dest = SET_DEST (body);
12298 rtx target;
12299 unsigned int regno, tregno, endregno, endtregno;
12300
12301 if (GET_CODE (dest) == ZERO_EXTRACT)
12302 target = XEXP (dest, 0);
12303 else if (GET_CODE (dest) == STRICT_LOW_PART)
12304 target = SUBREG_REG (XEXP (dest, 0));
12305 else
12306 return 0;
12307
12308 if (GET_CODE (target) == SUBREG)
12309 target = SUBREG_REG (target);
12310
12311 if (GET_CODE (target) != REG)
12312 return 0;
12313
12314 tregno = REGNO (target), regno = REGNO (x);
12315 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12316 return target == x;
12317
12318 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
12319 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
12320
12321 return endregno > tregno && regno < endtregno;
12322 }
12323
12324 else if (GET_CODE (body) == PARALLEL)
12325 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12326 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12327 return 1;
12328
12329 return 0;
12330 }
12331 \f
12332 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12333 as appropriate. I3 and I2 are the insns resulting from the combination
12334 insns including FROM (I2 may be zero).
12335
12336 Each note in the list is either ignored or placed on some insns, depending
12337 on the type of note. */
12338
12339 static void
12340 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
12341 {
12342 rtx note, next_note;
12343 rtx tem;
12344
12345 for (note = notes; note; note = next_note)
12346 {
12347 rtx place = 0, place2 = 0;
12348
12349 /* If this NOTE references a pseudo register, ensure it references
12350 the latest copy of that register. */
12351 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12352 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12353 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12354
12355 next_note = XEXP (note, 1);
12356 switch (REG_NOTE_KIND (note))
12357 {
12358 case REG_BR_PROB:
12359 case REG_BR_PRED:
12360 /* Doesn't matter much where we put this, as long as it's somewhere.
12361 It is preferable to keep these notes on branches, which is most
12362 likely to be i3. */
12363 place = i3;
12364 break;
12365
12366 case REG_VALUE_PROFILE:
12367 /* Just get rid of this note, as it is unused later anyway. */
12368 break;
12369
12370 case REG_VTABLE_REF:
12371 /* ??? Should remain with *a particular* memory load. Given the
12372 nature of vtable data, the last insn seems relatively safe. */
12373 place = i3;
12374 break;
12375
12376 case REG_NON_LOCAL_GOTO:
12377 if (GET_CODE (i3) == JUMP_INSN)
12378 place = i3;
12379 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12380 place = i2;
12381 else
12382 abort ();
12383 break;
12384
12385 case REG_EH_REGION:
12386 /* These notes must remain with the call or trapping instruction. */
12387 if (GET_CODE (i3) == CALL_INSN)
12388 place = i3;
12389 else if (i2 && GET_CODE (i2) == CALL_INSN)
12390 place = i2;
12391 else if (flag_non_call_exceptions)
12392 {
12393 if (may_trap_p (i3))
12394 place = i3;
12395 else if (i2 && may_trap_p (i2))
12396 place = i2;
12397 /* ??? Otherwise assume we've combined things such that we
12398 can now prove that the instructions can't trap. Drop the
12399 note in this case. */
12400 }
12401 else
12402 abort ();
12403 break;
12404
12405 case REG_ALWAYS_RETURN:
12406 case REG_NORETURN:
12407 case REG_SETJMP:
12408 /* These notes must remain with the call. It should not be
12409 possible for both I2 and I3 to be a call. */
12410 if (GET_CODE (i3) == CALL_INSN)
12411 place = i3;
12412 else if (i2 && GET_CODE (i2) == CALL_INSN)
12413 place = i2;
12414 else
12415 abort ();
12416 break;
12417
12418 case REG_UNUSED:
12419 /* Any clobbers for i3 may still exist, and so we must process
12420 REG_UNUSED notes from that insn.
12421
12422 Any clobbers from i2 or i1 can only exist if they were added by
12423 recog_for_combine. In that case, recog_for_combine created the
12424 necessary REG_UNUSED notes. Trying to keep any original
12425 REG_UNUSED notes from these insns can cause incorrect output
12426 if it is for the same register as the original i3 dest.
12427 In that case, we will notice that the register is set in i3,
12428 and then add a REG_UNUSED note for the destination of i3, which
12429 is wrong. However, it is possible to have REG_UNUSED notes from
12430 i2 or i1 for register which were both used and clobbered, so
12431 we keep notes from i2 or i1 if they will turn into REG_DEAD
12432 notes. */
12433
12434 /* If this register is set or clobbered in I3, put the note there
12435 unless there is one already. */
12436 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12437 {
12438 if (from_insn != i3)
12439 break;
12440
12441 if (! (GET_CODE (XEXP (note, 0)) == REG
12442 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12443 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12444 place = i3;
12445 }
12446 /* Otherwise, if this register is used by I3, then this register
12447 now dies here, so we must put a REG_DEAD note here unless there
12448 is one already. */
12449 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12450 && ! (GET_CODE (XEXP (note, 0)) == REG
12451 ? find_regno_note (i3, REG_DEAD,
12452 REGNO (XEXP (note, 0)))
12453 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12454 {
12455 PUT_REG_NOTE_KIND (note, REG_DEAD);
12456 place = i3;
12457 }
12458 break;
12459
12460 case REG_EQUAL:
12461 case REG_EQUIV:
12462 case REG_NOALIAS:
12463 /* These notes say something about results of an insn. We can
12464 only support them if they used to be on I3 in which case they
12465 remain on I3. Otherwise they are ignored.
12466
12467 If the note refers to an expression that is not a constant, we
12468 must also ignore the note since we cannot tell whether the
12469 equivalence is still true. It might be possible to do
12470 slightly better than this (we only have a problem if I2DEST
12471 or I1DEST is present in the expression), but it doesn't
12472 seem worth the trouble. */
12473
12474 if (from_insn == i3
12475 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12476 place = i3;
12477 break;
12478
12479 case REG_INC:
12480 case REG_NO_CONFLICT:
12481 /* These notes say something about how a register is used. They must
12482 be present on any use of the register in I2 or I3. */
12483 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12484 place = i3;
12485
12486 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12487 {
12488 if (place)
12489 place2 = i2;
12490 else
12491 place = i2;
12492 }
12493 break;
12494
12495 case REG_LABEL:
12496 /* This can show up in several ways -- either directly in the
12497 pattern, or hidden off in the constant pool with (or without?)
12498 a REG_EQUAL note. */
12499 /* ??? Ignore the without-reg_equal-note problem for now. */
12500 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12501 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12502 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12503 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12504 place = i3;
12505
12506 if (i2
12507 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12508 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12509 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12510 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12511 {
12512 if (place)
12513 place2 = i2;
12514 else
12515 place = i2;
12516 }
12517
12518 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12519 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12520 if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12521 {
12522 if (JUMP_LABEL (place) != XEXP (note, 0))
12523 abort ();
12524 if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12525 LABEL_NUSES (JUMP_LABEL (place))--;
12526 place = 0;
12527 }
12528 if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12529 {
12530 if (JUMP_LABEL (place2) != XEXP (note, 0))
12531 abort ();
12532 if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12533 LABEL_NUSES (JUMP_LABEL (place2))--;
12534 place2 = 0;
12535 }
12536 break;
12537
12538 case REG_NONNEG:
12539 /* This note says something about the value of a register prior
12540 to the execution of an insn. It is too much trouble to see
12541 if the note is still correct in all situations. It is better
12542 to simply delete it. */
12543 break;
12544
12545 case REG_RETVAL:
12546 /* If the insn previously containing this note still exists,
12547 put it back where it was. Otherwise move it to the previous
12548 insn. Adjust the corresponding REG_LIBCALL note. */
12549 if (GET_CODE (from_insn) != NOTE)
12550 place = from_insn;
12551 else
12552 {
12553 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12554 place = prev_real_insn (from_insn);
12555 if (tem && place)
12556 XEXP (tem, 0) = place;
12557 /* If we're deleting the last remaining instruction of a
12558 libcall sequence, don't add the notes. */
12559 else if (XEXP (note, 0) == from_insn)
12560 tem = place = 0;
12561 }
12562 break;
12563
12564 case REG_LIBCALL:
12565 /* This is handled similarly to REG_RETVAL. */
12566 if (GET_CODE (from_insn) != NOTE)
12567 place = from_insn;
12568 else
12569 {
12570 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12571 place = next_real_insn (from_insn);
12572 if (tem && place)
12573 XEXP (tem, 0) = place;
12574 /* If we're deleting the last remaining instruction of a
12575 libcall sequence, don't add the notes. */
12576 else if (XEXP (note, 0) == from_insn)
12577 tem = place = 0;
12578 }
12579 break;
12580
12581 case REG_DEAD:
12582 /* If the register is used as an input in I3, it dies there.
12583 Similarly for I2, if it is nonzero and adjacent to I3.
12584
12585 If the register is not used as an input in either I3 or I2
12586 and it is not one of the registers we were supposed to eliminate,
12587 there are two possibilities. We might have a non-adjacent I2
12588 or we might have somehow eliminated an additional register
12589 from a computation. For example, we might have had A & B where
12590 we discover that B will always be zero. In this case we will
12591 eliminate the reference to A.
12592
12593 In both cases, we must search to see if we can find a previous
12594 use of A and put the death note there. */
12595
12596 if (from_insn
12597 && GET_CODE (from_insn) == CALL_INSN
12598 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12599 place = from_insn;
12600 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12601 place = i3;
12602 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12603 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12604 place = i2;
12605
12606 if (place == 0)
12607 {
12608 basic_block bb = this_basic_block;
12609
12610 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12611 {
12612 if (! INSN_P (tem))
12613 {
12614 if (tem == BB_HEAD (bb))
12615 break;
12616 continue;
12617 }
12618
12619 /* If the register is being set at TEM, see if that is all
12620 TEM is doing. If so, delete TEM. Otherwise, make this
12621 into a REG_UNUSED note instead. */
12622 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12623 {
12624 rtx set = single_set (tem);
12625 rtx inner_dest = 0;
12626 #ifdef HAVE_cc0
12627 rtx cc0_setter = NULL_RTX;
12628 #endif
12629
12630 if (set != 0)
12631 for (inner_dest = SET_DEST (set);
12632 (GET_CODE (inner_dest) == STRICT_LOW_PART
12633 || GET_CODE (inner_dest) == SUBREG
12634 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12635 inner_dest = XEXP (inner_dest, 0))
12636 ;
12637
12638 /* Verify that it was the set, and not a clobber that
12639 modified the register.
12640
12641 CC0 targets must be careful to maintain setter/user
12642 pairs. If we cannot delete the setter due to side
12643 effects, mark the user with an UNUSED note instead
12644 of deleting it. */
12645
12646 if (set != 0 && ! side_effects_p (SET_SRC (set))
12647 && rtx_equal_p (XEXP (note, 0), inner_dest)
12648 #ifdef HAVE_cc0
12649 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12650 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12651 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12652 #endif
12653 )
12654 {
12655 /* Move the notes and links of TEM elsewhere.
12656 This might delete other dead insns recursively.
12657 First set the pattern to something that won't use
12658 any register. */
12659 rtx old_notes = REG_NOTES (tem);
12660
12661 PATTERN (tem) = pc_rtx;
12662 REG_NOTES (tem) = NULL;
12663
12664 distribute_notes (old_notes, tem, tem, NULL_RTX);
12665 distribute_links (LOG_LINKS (tem));
12666
12667 PUT_CODE (tem, NOTE);
12668 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12669 NOTE_SOURCE_FILE (tem) = 0;
12670
12671 #ifdef HAVE_cc0
12672 /* Delete the setter too. */
12673 if (cc0_setter)
12674 {
12675 PATTERN (cc0_setter) = pc_rtx;
12676 old_notes = REG_NOTES (cc0_setter);
12677 REG_NOTES (cc0_setter) = NULL;
12678
12679 distribute_notes (old_notes, cc0_setter,
12680 cc0_setter, NULL_RTX);
12681 distribute_links (LOG_LINKS (cc0_setter));
12682
12683 PUT_CODE (cc0_setter, NOTE);
12684 NOTE_LINE_NUMBER (cc0_setter)
12685 = NOTE_INSN_DELETED;
12686 NOTE_SOURCE_FILE (cc0_setter) = 0;
12687 }
12688 #endif
12689 }
12690 else
12691 {
12692 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12693
12694 /* If there isn't already a REG_UNUSED note, put one
12695 here. Do not place a REG_DEAD note, even if
12696 the register is also used here; that would not
12697 match the algorithm used in lifetime analysis
12698 and can cause the consistency check in the
12699 scheduler to fail. */
12700 if (! find_regno_note (tem, REG_UNUSED,
12701 REGNO (XEXP (note, 0))))
12702 place = tem;
12703 break;
12704 }
12705 }
12706 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12707 || (GET_CODE (tem) == CALL_INSN
12708 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12709 {
12710 place = tem;
12711
12712 /* If we are doing a 3->2 combination, and we have a
12713 register which formerly died in i3 and was not used
12714 by i2, which now no longer dies in i3 and is used in
12715 i2 but does not die in i2, and place is between i2
12716 and i3, then we may need to move a link from place to
12717 i2. */
12718 if (i2 && INSN_UID (place) <= max_uid_cuid
12719 && INSN_CUID (place) > INSN_CUID (i2)
12720 && from_insn
12721 && INSN_CUID (from_insn) > INSN_CUID (i2)
12722 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12723 {
12724 rtx links = LOG_LINKS (place);
12725 LOG_LINKS (place) = 0;
12726 distribute_links (links);
12727 }
12728 break;
12729 }
12730
12731 if (tem == BB_HEAD (bb))
12732 break;
12733 }
12734
12735 /* We haven't found an insn for the death note and it
12736 is still a REG_DEAD note, but we have hit the beginning
12737 of the block. If the existing life info says the reg
12738 was dead, there's nothing left to do. Otherwise, we'll
12739 need to do a global life update after combine. */
12740 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12741 && REGNO_REG_SET_P (bb->global_live_at_start,
12742 REGNO (XEXP (note, 0))))
12743 SET_BIT (refresh_blocks, this_basic_block->index);
12744 }
12745
12746 /* If the register is set or already dead at PLACE, we needn't do
12747 anything with this note if it is still a REG_DEAD note.
12748 We can here if it is set at all, not if is it totally replace,
12749 which is what `dead_or_set_p' checks, so also check for it being
12750 set partially. */
12751
12752 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12753 {
12754 unsigned int regno = REGNO (XEXP (note, 0));
12755
12756 /* Similarly, if the instruction on which we want to place
12757 the note is a noop, we'll need do a global live update
12758 after we remove them in delete_noop_moves. */
12759 if (noop_move_p (place))
12760 SET_BIT (refresh_blocks, this_basic_block->index);
12761
12762 if (dead_or_set_p (place, XEXP (note, 0))
12763 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12764 {
12765 /* Unless the register previously died in PLACE, clear
12766 reg_last_death. [I no longer understand why this is
12767 being done.] */
12768 if (reg_last_death[regno] != place)
12769 reg_last_death[regno] = 0;
12770 place = 0;
12771 }
12772 else
12773 reg_last_death[regno] = place;
12774
12775 /* If this is a death note for a hard reg that is occupying
12776 multiple registers, ensure that we are still using all
12777 parts of the object. If we find a piece of the object
12778 that is unused, we must arrange for an appropriate REG_DEAD
12779 note to be added for it. However, we can't just emit a USE
12780 and tag the note to it, since the register might actually
12781 be dead; so we recourse, and the recursive call then finds
12782 the previous insn that used this register. */
12783
12784 if (place && regno < FIRST_PSEUDO_REGISTER
12785 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12786 {
12787 unsigned int endregno
12788 = regno + hard_regno_nregs[regno]
12789 [GET_MODE (XEXP (note, 0))];
12790 int all_used = 1;
12791 unsigned int i;
12792
12793 for (i = regno; i < endregno; i++)
12794 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12795 && ! find_regno_fusage (place, USE, i))
12796 || dead_or_set_regno_p (place, i))
12797 all_used = 0;
12798
12799 if (! all_used)
12800 {
12801 /* Put only REG_DEAD notes for pieces that are
12802 not already dead or set. */
12803
12804 for (i = regno; i < endregno;
12805 i += hard_regno_nregs[i][reg_raw_mode[i]])
12806 {
12807 rtx piece = regno_reg_rtx[i];
12808 basic_block bb = this_basic_block;
12809
12810 if (! dead_or_set_p (place, piece)
12811 && ! reg_bitfield_target_p (piece,
12812 PATTERN (place)))
12813 {
12814 rtx new_note
12815 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12816
12817 distribute_notes (new_note, place, place,
12818 NULL_RTX);
12819 }
12820 else if (! refers_to_regno_p (i, i + 1,
12821 PATTERN (place), 0)
12822 && ! find_regno_fusage (place, USE, i))
12823 for (tem = PREV_INSN (place); ;
12824 tem = PREV_INSN (tem))
12825 {
12826 if (! INSN_P (tem))
12827 {
12828 if (tem == BB_HEAD (bb))
12829 {
12830 SET_BIT (refresh_blocks,
12831 this_basic_block->index);
12832 break;
12833 }
12834 continue;
12835 }
12836 if (dead_or_set_p (tem, piece)
12837 || reg_bitfield_target_p (piece,
12838 PATTERN (tem)))
12839 {
12840 REG_NOTES (tem)
12841 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12842 REG_NOTES (tem));
12843 break;
12844 }
12845 }
12846
12847 }
12848
12849 place = 0;
12850 }
12851 }
12852 }
12853 break;
12854
12855 default:
12856 /* Any other notes should not be present at this point in the
12857 compilation. */
12858 abort ();
12859 }
12860
12861 if (place)
12862 {
12863 XEXP (note, 1) = REG_NOTES (place);
12864 REG_NOTES (place) = note;
12865 }
12866 else if ((REG_NOTE_KIND (note) == REG_DEAD
12867 || REG_NOTE_KIND (note) == REG_UNUSED)
12868 && GET_CODE (XEXP (note, 0)) == REG)
12869 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12870
12871 if (place2)
12872 {
12873 if ((REG_NOTE_KIND (note) == REG_DEAD
12874 || REG_NOTE_KIND (note) == REG_UNUSED)
12875 && GET_CODE (XEXP (note, 0)) == REG)
12876 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12877
12878 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12879 REG_NOTE_KIND (note),
12880 XEXP (note, 0),
12881 REG_NOTES (place2));
12882 }
12883 }
12884 }
12885 \f
12886 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12887 I3, I2, and I1 to new locations. This is also called to add a link
12888 pointing at I3 when I3's destination is changed. */
12889
12890 static void
12891 distribute_links (rtx links)
12892 {
12893 rtx link, next_link;
12894
12895 for (link = links; link; link = next_link)
12896 {
12897 rtx place = 0;
12898 rtx insn;
12899 rtx set, reg;
12900
12901 next_link = XEXP (link, 1);
12902
12903 /* If the insn that this link points to is a NOTE or isn't a single
12904 set, ignore it. In the latter case, it isn't clear what we
12905 can do other than ignore the link, since we can't tell which
12906 register it was for. Such links wouldn't be used by combine
12907 anyway.
12908
12909 It is not possible for the destination of the target of the link to
12910 have been changed by combine. The only potential of this is if we
12911 replace I3, I2, and I1 by I3 and I2. But in that case the
12912 destination of I2 also remains unchanged. */
12913
12914 if (GET_CODE (XEXP (link, 0)) == NOTE
12915 || (set = single_set (XEXP (link, 0))) == 0)
12916 continue;
12917
12918 reg = SET_DEST (set);
12919 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12920 || GET_CODE (reg) == SIGN_EXTRACT
12921 || GET_CODE (reg) == STRICT_LOW_PART)
12922 reg = XEXP (reg, 0);
12923
12924 /* A LOG_LINK is defined as being placed on the first insn that uses
12925 a register and points to the insn that sets the register. Start
12926 searching at the next insn after the target of the link and stop
12927 when we reach a set of the register or the end of the basic block.
12928
12929 Note that this correctly handles the link that used to point from
12930 I3 to I2. Also note that not much searching is typically done here
12931 since most links don't point very far away. */
12932
12933 for (insn = NEXT_INSN (XEXP (link, 0));
12934 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12935 || BB_HEAD (this_basic_block->next_bb) != insn));
12936 insn = NEXT_INSN (insn))
12937 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12938 {
12939 if (reg_referenced_p (reg, PATTERN (insn)))
12940 place = insn;
12941 break;
12942 }
12943 else if (GET_CODE (insn) == CALL_INSN
12944 && find_reg_fusage (insn, USE, reg))
12945 {
12946 place = insn;
12947 break;
12948 }
12949 else if (INSN_P (insn) && reg_set_p (reg, insn))
12950 break;
12951
12952 /* If we found a place to put the link, place it there unless there
12953 is already a link to the same insn as LINK at that point. */
12954
12955 if (place)
12956 {
12957 rtx link2;
12958
12959 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12960 if (XEXP (link2, 0) == XEXP (link, 0))
12961 break;
12962
12963 if (link2 == 0)
12964 {
12965 XEXP (link, 1) = LOG_LINKS (place);
12966 LOG_LINKS (place) = link;
12967
12968 /* Set added_links_insn to the earliest insn we added a
12969 link to. */
12970 if (added_links_insn == 0
12971 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12972 added_links_insn = place;
12973 }
12974 }
12975 }
12976 }
12977 \f
12978 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12979
12980 static int
12981 insn_cuid (rtx insn)
12982 {
12983 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12984 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12985 insn = NEXT_INSN (insn);
12986
12987 if (INSN_UID (insn) > max_uid_cuid)
12988 abort ();
12989
12990 return INSN_CUID (insn);
12991 }
12992 \f
12993 void
12994 dump_combine_stats (FILE *file)
12995 {
12996 fnotice
12997 (file,
12998 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12999 combine_attempts, combine_merges, combine_extras, combine_successes);
13000 }
13001
13002 void
13003 dump_combine_total_stats (FILE *file)
13004 {
13005 fnotice
13006 (file,
13007 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13008 total_attempts, total_merges, total_extras, total_successes);
13009 }