combine.c (if_then_else_cond): Simplify the comparison of rtx against -1, 0, and 1.
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
59
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
63
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
72
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tm_p.h"
79 #include "flags.h"
80 #include "regs.h"
81 #include "hard-reg-set.h"
82 #include "basic-block.h"
83 #include "insn-config.h"
84 #include "function.h"
85 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
86 #include "expr.h"
87 #include "insn-attr.h"
88 #include "recog.h"
89 #include "real.h"
90 #include "toplev.h"
91
92 /* It is not safe to use ordinary gen_lowpart in combine.
93 Use gen_lowpart_for_combine instead. See comments there. */
94 #define gen_lowpart dont_use_gen_lowpart_you_dummy
95
96 /* Number of attempts to combine instructions in this function. */
97
98 static int combine_attempts;
99
100 /* Number of attempts that got as far as substitution in this function. */
101
102 static int combine_merges;
103
104 /* Number of instructions combined with added SETs in this function. */
105
106 static int combine_extras;
107
108 /* Number of instructions combined in this function. */
109
110 static int combine_successes;
111
112 /* Totals over entire compilation. */
113
114 static int total_attempts, total_merges, total_extras, total_successes;
115
116 \f
117 /* Vector mapping INSN_UIDs to cuids.
118 The cuids are like uids but increase monotonically always.
119 Combine always uses cuids so that it can compare them.
120 But actually renumbering the uids, which we used to do,
121 proves to be a bad idea because it makes it hard to compare
122 the dumps produced by earlier passes with those from later passes. */
123
124 static int *uid_cuid;
125 static int max_uid_cuid;
126
127 /* Get the cuid of an insn. */
128
129 #define INSN_CUID(INSN) \
130 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
131
132 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
133 BITS_PER_WORD would invoke undefined behavior. Work around it. */
134
135 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
136 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
137
138 #define nonzero_bits(X, M) \
139 cached_nonzero_bits (X, M, NULL_RTX, VOIDmode, 0)
140
141 #define num_sign_bit_copies(X, M) \
142 cached_num_sign_bit_copies (X, M, NULL_RTX, VOIDmode, 0)
143
144 /* Maximum register number, which is the size of the tables below. */
145
146 static unsigned int combine_max_regno;
147
148 /* Record last point of death of (hard or pseudo) register n. */
149
150 static rtx *reg_last_death;
151
152 /* Record last point of modification of (hard or pseudo) register n. */
153
154 static rtx *reg_last_set;
155
156 /* Record the cuid of the last insn that invalidated memory
157 (anything that writes memory, and subroutine calls, but not pushes). */
158
159 static int mem_last_set;
160
161 /* Record the cuid of the last CALL_INSN
162 so we can tell whether a potential combination crosses any calls. */
163
164 static int last_call_cuid;
165
166 /* When `subst' is called, this is the insn that is being modified
167 (by combining in a previous insn). The PATTERN of this insn
168 is still the old pattern partially modified and it should not be
169 looked at, but this may be used to examine the successors of the insn
170 to judge whether a simplification is valid. */
171
172 static rtx subst_insn;
173
174 /* This is the lowest CUID that `subst' is currently dealing with.
175 get_last_value will not return a value if the register was set at or
176 after this CUID. If not for this mechanism, we could get confused if
177 I2 or I1 in try_combine were an insn that used the old value of a register
178 to obtain a new value. In that case, we might erroneously get the
179 new value of the register when we wanted the old one. */
180
181 static int subst_low_cuid;
182
183 /* This contains any hard registers that are used in newpat; reg_dead_at_p
184 must consider all these registers to be always live. */
185
186 static HARD_REG_SET newpat_used_regs;
187
188 /* This is an insn to which a LOG_LINKS entry has been added. If this
189 insn is the earlier than I2 or I3, combine should rescan starting at
190 that location. */
191
192 static rtx added_links_insn;
193
194 /* Basic block in which we are performing combines. */
195 static basic_block this_basic_block;
196
197 /* A bitmap indicating which blocks had registers go dead at entry.
198 After combine, we'll need to re-do global life analysis with
199 those blocks as starting points. */
200 static sbitmap refresh_blocks;
201 \f
202 /* The next group of arrays allows the recording of the last value assigned
203 to (hard or pseudo) register n. We use this information to see if an
204 operation being processed is redundant given a prior operation performed
205 on the register. For example, an `and' with a constant is redundant if
206 all the zero bits are already known to be turned off.
207
208 We use an approach similar to that used by cse, but change it in the
209 following ways:
210
211 (1) We do not want to reinitialize at each label.
212 (2) It is useful, but not critical, to know the actual value assigned
213 to a register. Often just its form is helpful.
214
215 Therefore, we maintain the following arrays:
216
217 reg_last_set_value the last value assigned
218 reg_last_set_label records the value of label_tick when the
219 register was assigned
220 reg_last_set_table_tick records the value of label_tick when a
221 value using the register is assigned
222 reg_last_set_invalid set to nonzero when it is not valid
223 to use the value of this register in some
224 register's value
225
226 To understand the usage of these tables, it is important to understand
227 the distinction between the value in reg_last_set_value being valid
228 and the register being validly contained in some other expression in the
229 table.
230
231 Entry I in reg_last_set_value is valid if it is nonzero, and either
232 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
233
234 Register I may validly appear in any expression returned for the value
235 of another register if reg_n_sets[i] is 1. It may also appear in the
236 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
237 reg_last_set_invalid[j] is zero.
238
239 If an expression is found in the table containing a register which may
240 not validly appear in an expression, the register is replaced by
241 something that won't match, (clobber (const_int 0)).
242
243 reg_last_set_invalid[i] is set nonzero when register I is being assigned
244 to and reg_last_set_table_tick[i] == label_tick. */
245
246 /* Record last value assigned to (hard or pseudo) register n. */
247
248 static rtx *reg_last_set_value;
249
250 /* Record the value of label_tick when the value for register n is placed in
251 reg_last_set_value[n]. */
252
253 static int *reg_last_set_label;
254
255 /* Record the value of label_tick when an expression involving register n
256 is placed in reg_last_set_value. */
257
258 static int *reg_last_set_table_tick;
259
260 /* Set nonzero if references to register n in expressions should not be
261 used. */
262
263 static char *reg_last_set_invalid;
264
265 /* Incremented for each label. */
266
267 static int label_tick;
268
269 /* Some registers that are set more than once and used in more than one
270 basic block are nevertheless always set in similar ways. For example,
271 a QImode register may be loaded from memory in two places on a machine
272 where byte loads zero extend.
273
274 We record in the following array what we know about the nonzero
275 bits of a register, specifically which bits are known to be zero.
276
277 If an entry is zero, it means that we don't know anything special. */
278
279 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
280
281 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
282 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
283
284 static enum machine_mode nonzero_bits_mode;
285
286 /* Nonzero if we know that a register has some leading bits that are always
287 equal to the sign bit. */
288
289 static unsigned char *reg_sign_bit_copies;
290
291 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
292 It is zero while computing them and after combine has completed. This
293 former test prevents propagating values based on previously set values,
294 which can be incorrect if a variable is modified in a loop. */
295
296 static int nonzero_sign_valid;
297
298 /* These arrays are maintained in parallel with reg_last_set_value
299 and are used to store the mode in which the register was last set,
300 the bits that were known to be zero when it was last set, and the
301 number of sign bits copies it was known to have when it was last set. */
302
303 static enum machine_mode *reg_last_set_mode;
304 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
305 static char *reg_last_set_sign_bit_copies;
306 \f
307 /* Record one modification to rtl structure
308 to be undone by storing old_contents into *where.
309 is_int is 1 if the contents are an int. */
310
311 struct undo
312 {
313 struct undo *next;
314 int is_int;
315 union {rtx r; int i;} old_contents;
316 union {rtx *r; int *i;} where;
317 };
318
319 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
320 num_undo says how many are currently recorded.
321
322 other_insn is nonzero if we have modified some other insn in the process
323 of working on subst_insn. It must be verified too. */
324
325 struct undobuf
326 {
327 struct undo *undos;
328 struct undo *frees;
329 rtx other_insn;
330 };
331
332 static struct undobuf undobuf;
333
334 /* Number of times the pseudo being substituted for
335 was found and replaced. */
336
337 static int n_occurrences;
338
339 static void do_SUBST (rtx *, rtx);
340 static void do_SUBST_INT (int *, int);
341 static void init_reg_last_arrays (void);
342 static void setup_incoming_promotions (void);
343 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
344 static int cant_combine_insn_p (rtx);
345 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
346 static int sets_function_arg_p (rtx);
347 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
348 static int contains_muldiv (rtx);
349 static rtx try_combine (rtx, rtx, rtx, int *);
350 static void undo_all (void);
351 static void undo_commit (void);
352 static rtx *find_split_point (rtx *, rtx);
353 static rtx subst (rtx, rtx, rtx, int, int);
354 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
355 static rtx simplify_if_then_else (rtx);
356 static rtx simplify_set (rtx);
357 static rtx simplify_logical (rtx, int);
358 static rtx expand_compound_operation (rtx);
359 static rtx expand_field_assignment (rtx);
360 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
361 rtx, unsigned HOST_WIDE_INT, int, int, int);
362 static rtx extract_left_shift (rtx, int);
363 static rtx make_compound_operation (rtx, enum rtx_code);
364 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
365 unsigned HOST_WIDE_INT *);
366 static rtx force_to_mode (rtx, enum machine_mode,
367 unsigned HOST_WIDE_INT, rtx, int);
368 static rtx if_then_else_cond (rtx, rtx *, rtx *);
369 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
370 static int rtx_equal_for_field_assignment_p (rtx, rtx);
371 static rtx make_field_assignment (rtx);
372 static rtx apply_distributive_law (rtx);
373 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
374 unsigned HOST_WIDE_INT);
375 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
376 rtx, enum machine_mode,
377 unsigned HOST_WIDE_INT);
378 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
379 enum machine_mode,
380 unsigned HOST_WIDE_INT);
381 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
382 enum machine_mode,
383 unsigned int);
384 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
385 enum machine_mode, unsigned int);
386 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
387 HOST_WIDE_INT, enum machine_mode, int *);
388 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
389 int);
390 static int recog_for_combine (rtx *, rtx, rtx *);
391 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
392 static rtx gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
393 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
394 static void update_table_tick (rtx);
395 static void record_value_for_reg (rtx, rtx, rtx);
396 static void check_promoted_subreg (rtx, rtx);
397 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
398 static void record_dead_and_set_regs (rtx);
399 static int get_last_value_validate (rtx *, rtx, int, int);
400 static rtx get_last_value (rtx);
401 static int use_crosses_set_p (rtx, int);
402 static void reg_dead_at_p_1 (rtx, rtx, void *);
403 static int reg_dead_at_p (rtx, rtx);
404 static void move_deaths (rtx, rtx, int, rtx, rtx *);
405 static int reg_bitfield_target_p (rtx, rtx);
406 static void distribute_notes (rtx, rtx, rtx, rtx);
407 static void distribute_links (rtx);
408 static void mark_used_regs_combine (rtx);
409 static int insn_cuid (rtx);
410 static void record_promoted_value (rtx, rtx);
411 static rtx reversed_comparison (rtx, enum machine_mode, rtx, rtx);
412 static enum rtx_code combine_reversed_comparison_code (rtx);
413 \f
414 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
415 insn. The substitution can be undone by undo_all. If INTO is already
416 set to NEWVAL, do not record this change. Because computing NEWVAL might
417 also call SUBST, we have to compute it before we put anything into
418 the undo table. */
419
420 static void
421 do_SUBST (rtx *into, rtx newval)
422 {
423 struct undo *buf;
424 rtx oldval = *into;
425
426 if (oldval == newval)
427 return;
428
429 /* We'd like to catch as many invalid transformations here as
430 possible. Unfortunately, there are way too many mode changes
431 that are perfectly valid, so we'd waste too much effort for
432 little gain doing the checks here. Focus on catching invalid
433 transformations involving integer constants. */
434 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
435 && GET_CODE (newval) == CONST_INT)
436 {
437 /* Sanity check that we're replacing oldval with a CONST_INT
438 that is a valid sign-extension for the original mode. */
439 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
440 GET_MODE (oldval)))
441 abort ();
442
443 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
444 CONST_INT is not valid, because after the replacement, the
445 original mode would be gone. Unfortunately, we can't tell
446 when do_SUBST is called to replace the operand thereof, so we
447 perform this test on oldval instead, checking whether an
448 invalid replacement took place before we got here. */
449 if ((GET_CODE (oldval) == SUBREG
450 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
451 || (GET_CODE (oldval) == ZERO_EXTEND
452 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
453 abort ();
454 }
455
456 if (undobuf.frees)
457 buf = undobuf.frees, undobuf.frees = buf->next;
458 else
459 buf = xmalloc (sizeof (struct undo));
460
461 buf->is_int = 0;
462 buf->where.r = into;
463 buf->old_contents.r = oldval;
464 *into = newval;
465
466 buf->next = undobuf.undos, undobuf.undos = buf;
467 }
468
469 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
470
471 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
472 for the value of a HOST_WIDE_INT value (including CONST_INT) is
473 not safe. */
474
475 static void
476 do_SUBST_INT (int *into, int newval)
477 {
478 struct undo *buf;
479 int oldval = *into;
480
481 if (oldval == newval)
482 return;
483
484 if (undobuf.frees)
485 buf = undobuf.frees, undobuf.frees = buf->next;
486 else
487 buf = xmalloc (sizeof (struct undo));
488
489 buf->is_int = 1;
490 buf->where.i = into;
491 buf->old_contents.i = oldval;
492 *into = newval;
493
494 buf->next = undobuf.undos, undobuf.undos = buf;
495 }
496
497 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
498 \f
499 /* Main entry point for combiner. F is the first insn of the function.
500 NREGS is the first unused pseudo-reg number.
501
502 Return nonzero if the combiner has turned an indirect jump
503 instruction into a direct jump. */
504 int
505 combine_instructions (rtx f, unsigned int nregs)
506 {
507 rtx insn, next;
508 #ifdef HAVE_cc0
509 rtx prev;
510 #endif
511 int i;
512 rtx links, nextlinks;
513
514 int new_direct_jump_p = 0;
515
516 combine_attempts = 0;
517 combine_merges = 0;
518 combine_extras = 0;
519 combine_successes = 0;
520
521 combine_max_regno = nregs;
522
523 reg_nonzero_bits = xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT));
524 reg_sign_bit_copies = xcalloc (nregs, sizeof (unsigned char));
525
526 reg_last_death = xmalloc (nregs * sizeof (rtx));
527 reg_last_set = xmalloc (nregs * sizeof (rtx));
528 reg_last_set_value = xmalloc (nregs * sizeof (rtx));
529 reg_last_set_table_tick = xmalloc (nregs * sizeof (int));
530 reg_last_set_label = xmalloc (nregs * sizeof (int));
531 reg_last_set_invalid = xmalloc (nregs * sizeof (char));
532 reg_last_set_mode = xmalloc (nregs * sizeof (enum machine_mode));
533 reg_last_set_nonzero_bits = xmalloc (nregs * sizeof (HOST_WIDE_INT));
534 reg_last_set_sign_bit_copies = xmalloc (nregs * sizeof (char));
535
536 init_reg_last_arrays ();
537
538 init_recog_no_volatile ();
539
540 /* Compute maximum uid value so uid_cuid can be allocated. */
541
542 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
543 if (INSN_UID (insn) > i)
544 i = INSN_UID (insn);
545
546 uid_cuid = xmalloc ((i + 1) * sizeof (int));
547 max_uid_cuid = i;
548
549 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
550
551 /* Don't use reg_nonzero_bits when computing it. This can cause problems
552 when, for example, we have j <<= 1 in a loop. */
553
554 nonzero_sign_valid = 0;
555
556 /* Compute the mapping from uids to cuids.
557 Cuids are numbers assigned to insns, like uids,
558 except that cuids increase monotonically through the code.
559
560 Scan all SETs and see if we can deduce anything about what
561 bits are known to be zero for some registers and how many copies
562 of the sign bit are known to exist for those registers.
563
564 Also set any known values so that we can use it while searching
565 for what bits are known to be set. */
566
567 label_tick = 1;
568
569 setup_incoming_promotions ();
570
571 refresh_blocks = sbitmap_alloc (last_basic_block);
572 sbitmap_zero (refresh_blocks);
573
574 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
575 {
576 uid_cuid[INSN_UID (insn)] = ++i;
577 subst_low_cuid = i;
578 subst_insn = insn;
579
580 if (INSN_P (insn))
581 {
582 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
583 NULL);
584 record_dead_and_set_regs (insn);
585
586 #ifdef AUTO_INC_DEC
587 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
588 if (REG_NOTE_KIND (links) == REG_INC)
589 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
590 NULL);
591 #endif
592 }
593
594 if (GET_CODE (insn) == CODE_LABEL)
595 label_tick++;
596 }
597
598 nonzero_sign_valid = 1;
599
600 /* Now scan all the insns in forward order. */
601
602 label_tick = 1;
603 last_call_cuid = 0;
604 mem_last_set = 0;
605 init_reg_last_arrays ();
606 setup_incoming_promotions ();
607
608 FOR_EACH_BB (this_basic_block)
609 {
610 for (insn = this_basic_block->head;
611 insn != NEXT_INSN (this_basic_block->end);
612 insn = next ? next : NEXT_INSN (insn))
613 {
614 next = 0;
615
616 if (GET_CODE (insn) == CODE_LABEL)
617 label_tick++;
618
619 else if (INSN_P (insn))
620 {
621 /* See if we know about function return values before this
622 insn based upon SUBREG flags. */
623 check_promoted_subreg (insn, PATTERN (insn));
624
625 /* Try this insn with each insn it links back to. */
626
627 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
628 if ((next = try_combine (insn, XEXP (links, 0),
629 NULL_RTX, &new_direct_jump_p)) != 0)
630 goto retry;
631
632 /* Try each sequence of three linked insns ending with this one. */
633
634 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
635 {
636 rtx link = XEXP (links, 0);
637
638 /* If the linked insn has been replaced by a note, then there
639 is no point in pursuing this chain any further. */
640 if (GET_CODE (link) == NOTE)
641 continue;
642
643 for (nextlinks = LOG_LINKS (link);
644 nextlinks;
645 nextlinks = XEXP (nextlinks, 1))
646 if ((next = try_combine (insn, link,
647 XEXP (nextlinks, 0),
648 &new_direct_jump_p)) != 0)
649 goto retry;
650 }
651
652 #ifdef HAVE_cc0
653 /* Try to combine a jump insn that uses CC0
654 with a preceding insn that sets CC0, and maybe with its
655 logical predecessor as well.
656 This is how we make decrement-and-branch insns.
657 We need this special code because data flow connections
658 via CC0 do not get entered in LOG_LINKS. */
659
660 if (GET_CODE (insn) == JUMP_INSN
661 && (prev = prev_nonnote_insn (insn)) != 0
662 && GET_CODE (prev) == INSN
663 && sets_cc0_p (PATTERN (prev)))
664 {
665 if ((next = try_combine (insn, prev,
666 NULL_RTX, &new_direct_jump_p)) != 0)
667 goto retry;
668
669 for (nextlinks = LOG_LINKS (prev); nextlinks;
670 nextlinks = XEXP (nextlinks, 1))
671 if ((next = try_combine (insn, prev,
672 XEXP (nextlinks, 0),
673 &new_direct_jump_p)) != 0)
674 goto retry;
675 }
676
677 /* Do the same for an insn that explicitly references CC0. */
678 if (GET_CODE (insn) == INSN
679 && (prev = prev_nonnote_insn (insn)) != 0
680 && GET_CODE (prev) == INSN
681 && sets_cc0_p (PATTERN (prev))
682 && GET_CODE (PATTERN (insn)) == SET
683 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
684 {
685 if ((next = try_combine (insn, prev,
686 NULL_RTX, &new_direct_jump_p)) != 0)
687 goto retry;
688
689 for (nextlinks = LOG_LINKS (prev); nextlinks;
690 nextlinks = XEXP (nextlinks, 1))
691 if ((next = try_combine (insn, prev,
692 XEXP (nextlinks, 0),
693 &new_direct_jump_p)) != 0)
694 goto retry;
695 }
696
697 /* Finally, see if any of the insns that this insn links to
698 explicitly references CC0. If so, try this insn, that insn,
699 and its predecessor if it sets CC0. */
700 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
701 if (GET_CODE (XEXP (links, 0)) == INSN
702 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
703 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
704 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
705 && GET_CODE (prev) == INSN
706 && sets_cc0_p (PATTERN (prev))
707 && (next = try_combine (insn, XEXP (links, 0),
708 prev, &new_direct_jump_p)) != 0)
709 goto retry;
710 #endif
711
712 /* Try combining an insn with two different insns whose results it
713 uses. */
714 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
715 for (nextlinks = XEXP (links, 1); nextlinks;
716 nextlinks = XEXP (nextlinks, 1))
717 if ((next = try_combine (insn, XEXP (links, 0),
718 XEXP (nextlinks, 0),
719 &new_direct_jump_p)) != 0)
720 goto retry;
721
722 if (GET_CODE (insn) != NOTE)
723 record_dead_and_set_regs (insn);
724
725 retry:
726 ;
727 }
728 }
729 }
730 clear_bb_flags ();
731
732 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
733 BASIC_BLOCK (i)->flags |= BB_DIRTY);
734 new_direct_jump_p |= purge_all_dead_edges (0);
735 delete_noop_moves (f);
736
737 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
738 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
739 | PROP_KILL_DEAD_CODE);
740
741 /* Clean up. */
742 sbitmap_free (refresh_blocks);
743 free (reg_nonzero_bits);
744 free (reg_sign_bit_copies);
745 free (reg_last_death);
746 free (reg_last_set);
747 free (reg_last_set_value);
748 free (reg_last_set_table_tick);
749 free (reg_last_set_label);
750 free (reg_last_set_invalid);
751 free (reg_last_set_mode);
752 free (reg_last_set_nonzero_bits);
753 free (reg_last_set_sign_bit_copies);
754 free (uid_cuid);
755
756 {
757 struct undo *undo, *next;
758 for (undo = undobuf.frees; undo; undo = next)
759 {
760 next = undo->next;
761 free (undo);
762 }
763 undobuf.frees = 0;
764 }
765
766 total_attempts += combine_attempts;
767 total_merges += combine_merges;
768 total_extras += combine_extras;
769 total_successes += combine_successes;
770
771 nonzero_sign_valid = 0;
772
773 /* Make recognizer allow volatile MEMs again. */
774 init_recog ();
775
776 return new_direct_jump_p;
777 }
778
779 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
780
781 static void
782 init_reg_last_arrays (void)
783 {
784 unsigned int nregs = combine_max_regno;
785
786 memset (reg_last_death, 0, nregs * sizeof (rtx));
787 memset (reg_last_set, 0, nregs * sizeof (rtx));
788 memset (reg_last_set_value, 0, nregs * sizeof (rtx));
789 memset (reg_last_set_table_tick, 0, nregs * sizeof (int));
790 memset (reg_last_set_label, 0, nregs * sizeof (int));
791 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
792 memset (reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
793 memset (reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
794 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
795 }
796 \f
797 /* Set up any promoted values for incoming argument registers. */
798
799 static void
800 setup_incoming_promotions (void)
801 {
802 #ifdef PROMOTE_FUNCTION_ARGS
803 unsigned int regno;
804 rtx reg;
805 enum machine_mode mode;
806 int unsignedp;
807 rtx first = get_insns ();
808
809 #ifndef OUTGOING_REGNO
810 #define OUTGOING_REGNO(N) N
811 #endif
812 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
813 /* Check whether this register can hold an incoming pointer
814 argument. FUNCTION_ARG_REGNO_P tests outgoing register
815 numbers, so translate if necessary due to register windows. */
816 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
817 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
818 {
819 record_value_for_reg
820 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
821 : SIGN_EXTEND),
822 GET_MODE (reg),
823 gen_rtx_CLOBBER (mode, const0_rtx)));
824 }
825 #endif
826 }
827 \f
828 /* Called via note_stores. If X is a pseudo that is narrower than
829 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
830
831 If we are setting only a portion of X and we can't figure out what
832 portion, assume all bits will be used since we don't know what will
833 be happening.
834
835 Similarly, set how many bits of X are known to be copies of the sign bit
836 at all locations in the function. This is the smallest number implied
837 by any set of X. */
838
839 static void
840 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
841 void *data ATTRIBUTE_UNUSED)
842 {
843 unsigned int num;
844
845 if (GET_CODE (x) == REG
846 && REGNO (x) >= FIRST_PSEUDO_REGISTER
847 /* If this register is undefined at the start of the file, we can't
848 say what its contents were. */
849 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
850 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
851 {
852 if (set == 0 || GET_CODE (set) == CLOBBER)
853 {
854 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
855 reg_sign_bit_copies[REGNO (x)] = 1;
856 return;
857 }
858
859 /* If this is a complex assignment, see if we can convert it into a
860 simple assignment. */
861 set = expand_field_assignment (set);
862
863 /* If this is a simple assignment, or we have a paradoxical SUBREG,
864 set what we know about X. */
865
866 if (SET_DEST (set) == x
867 || (GET_CODE (SET_DEST (set)) == SUBREG
868 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
869 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
870 && SUBREG_REG (SET_DEST (set)) == x))
871 {
872 rtx src = SET_SRC (set);
873
874 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
875 /* If X is narrower than a word and SRC is a non-negative
876 constant that would appear negative in the mode of X,
877 sign-extend it for use in reg_nonzero_bits because some
878 machines (maybe most) will actually do the sign-extension
879 and this is the conservative approach.
880
881 ??? For 2.5, try to tighten up the MD files in this regard
882 instead of this kludge. */
883
884 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
885 && GET_CODE (src) == CONST_INT
886 && INTVAL (src) > 0
887 && 0 != (INTVAL (src)
888 & ((HOST_WIDE_INT) 1
889 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
890 src = GEN_INT (INTVAL (src)
891 | ((HOST_WIDE_INT) (-1)
892 << GET_MODE_BITSIZE (GET_MODE (x))));
893 #endif
894
895 /* Don't call nonzero_bits if it cannot change anything. */
896 if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
897 reg_nonzero_bits[REGNO (x)]
898 |= nonzero_bits (src, nonzero_bits_mode);
899 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
900 if (reg_sign_bit_copies[REGNO (x)] == 0
901 || reg_sign_bit_copies[REGNO (x)] > num)
902 reg_sign_bit_copies[REGNO (x)] = num;
903 }
904 else
905 {
906 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
907 reg_sign_bit_copies[REGNO (x)] = 1;
908 }
909 }
910 }
911 \f
912 /* See if INSN can be combined into I3. PRED and SUCC are optionally
913 insns that were previously combined into I3 or that will be combined
914 into the merger of INSN and I3.
915
916 Return 0 if the combination is not allowed for any reason.
917
918 If the combination is allowed, *PDEST will be set to the single
919 destination of INSN and *PSRC to the single source, and this function
920 will return 1. */
921
922 static int
923 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
924 rtx *pdest, rtx *psrc)
925 {
926 int i;
927 rtx set = 0, src, dest;
928 rtx p;
929 #ifdef AUTO_INC_DEC
930 rtx link;
931 #endif
932 int all_adjacent = (succ ? (next_active_insn (insn) == succ
933 && next_active_insn (succ) == i3)
934 : next_active_insn (insn) == i3);
935
936 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
937 or a PARALLEL consisting of such a SET and CLOBBERs.
938
939 If INSN has CLOBBER parallel parts, ignore them for our processing.
940 By definition, these happen during the execution of the insn. When it
941 is merged with another insn, all bets are off. If they are, in fact,
942 needed and aren't also supplied in I3, they may be added by
943 recog_for_combine. Otherwise, it won't match.
944
945 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
946 note.
947
948 Get the source and destination of INSN. If more than one, can't
949 combine. */
950
951 if (GET_CODE (PATTERN (insn)) == SET)
952 set = PATTERN (insn);
953 else if (GET_CODE (PATTERN (insn)) == PARALLEL
954 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
955 {
956 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
957 {
958 rtx elt = XVECEXP (PATTERN (insn), 0, i);
959
960 switch (GET_CODE (elt))
961 {
962 /* This is important to combine floating point insns
963 for the SH4 port. */
964 case USE:
965 /* Combining an isolated USE doesn't make sense.
966 We depend here on combinable_i3pat to reject them. */
967 /* The code below this loop only verifies that the inputs of
968 the SET in INSN do not change. We call reg_set_between_p
969 to verify that the REG in the USE does not change between
970 I3 and INSN.
971 If the USE in INSN was for a pseudo register, the matching
972 insn pattern will likely match any register; combining this
973 with any other USE would only be safe if we knew that the
974 used registers have identical values, or if there was
975 something to tell them apart, e.g. different modes. For
976 now, we forgo such complicated tests and simply disallow
977 combining of USES of pseudo registers with any other USE. */
978 if (GET_CODE (XEXP (elt, 0)) == REG
979 && GET_CODE (PATTERN (i3)) == PARALLEL)
980 {
981 rtx i3pat = PATTERN (i3);
982 int i = XVECLEN (i3pat, 0) - 1;
983 unsigned int regno = REGNO (XEXP (elt, 0));
984
985 do
986 {
987 rtx i3elt = XVECEXP (i3pat, 0, i);
988
989 if (GET_CODE (i3elt) == USE
990 && GET_CODE (XEXP (i3elt, 0)) == REG
991 && (REGNO (XEXP (i3elt, 0)) == regno
992 ? reg_set_between_p (XEXP (elt, 0),
993 PREV_INSN (insn), i3)
994 : regno >= FIRST_PSEUDO_REGISTER))
995 return 0;
996 }
997 while (--i >= 0);
998 }
999 break;
1000
1001 /* We can ignore CLOBBERs. */
1002 case CLOBBER:
1003 break;
1004
1005 case SET:
1006 /* Ignore SETs whose result isn't used but not those that
1007 have side-effects. */
1008 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1009 && ! side_effects_p (elt))
1010 break;
1011
1012 /* If we have already found a SET, this is a second one and
1013 so we cannot combine with this insn. */
1014 if (set)
1015 return 0;
1016
1017 set = elt;
1018 break;
1019
1020 default:
1021 /* Anything else means we can't combine. */
1022 return 0;
1023 }
1024 }
1025
1026 if (set == 0
1027 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1028 so don't do anything with it. */
1029 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1030 return 0;
1031 }
1032 else
1033 return 0;
1034
1035 if (set == 0)
1036 return 0;
1037
1038 set = expand_field_assignment (set);
1039 src = SET_SRC (set), dest = SET_DEST (set);
1040
1041 /* Don't eliminate a store in the stack pointer. */
1042 if (dest == stack_pointer_rtx
1043 /* Don't combine with an insn that sets a register to itself if it has
1044 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1045 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1046 /* Can't merge an ASM_OPERANDS. */
1047 || GET_CODE (src) == ASM_OPERANDS
1048 /* Can't merge a function call. */
1049 || GET_CODE (src) == CALL
1050 /* Don't eliminate a function call argument. */
1051 || (GET_CODE (i3) == CALL_INSN
1052 && (find_reg_fusage (i3, USE, dest)
1053 || (GET_CODE (dest) == REG
1054 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1055 && global_regs[REGNO (dest)])))
1056 /* Don't substitute into an incremented register. */
1057 || FIND_REG_INC_NOTE (i3, dest)
1058 || (succ && FIND_REG_INC_NOTE (succ, dest))
1059 #if 0
1060 /* Don't combine the end of a libcall into anything. */
1061 /* ??? This gives worse code, and appears to be unnecessary, since no
1062 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1063 use REG_RETVAL notes for noconflict blocks, but other code here
1064 makes sure that those insns don't disappear. */
1065 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1066 #endif
1067 /* Make sure that DEST is not used after SUCC but before I3. */
1068 || (succ && ! all_adjacent
1069 && reg_used_between_p (dest, succ, i3))
1070 /* Make sure that the value that is to be substituted for the register
1071 does not use any registers whose values alter in between. However,
1072 If the insns are adjacent, a use can't cross a set even though we
1073 think it might (this can happen for a sequence of insns each setting
1074 the same destination; reg_last_set of that register might point to
1075 a NOTE). If INSN has a REG_EQUIV note, the register is always
1076 equivalent to the memory so the substitution is valid even if there
1077 are intervening stores. Also, don't move a volatile asm or
1078 UNSPEC_VOLATILE across any other insns. */
1079 || (! all_adjacent
1080 && (((GET_CODE (src) != MEM
1081 || ! find_reg_note (insn, REG_EQUIV, src))
1082 && use_crosses_set_p (src, INSN_CUID (insn)))
1083 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1084 || GET_CODE (src) == UNSPEC_VOLATILE))
1085 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1086 better register allocation by not doing the combine. */
1087 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1088 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1089 /* Don't combine across a CALL_INSN, because that would possibly
1090 change whether the life span of some REGs crosses calls or not,
1091 and it is a pain to update that information.
1092 Exception: if source is a constant, moving it later can't hurt.
1093 Accept that special case, because it helps -fforce-addr a lot. */
1094 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1095 return 0;
1096
1097 /* DEST must either be a REG or CC0. */
1098 if (GET_CODE (dest) == REG)
1099 {
1100 /* If register alignment is being enforced for multi-word items in all
1101 cases except for parameters, it is possible to have a register copy
1102 insn referencing a hard register that is not allowed to contain the
1103 mode being copied and which would not be valid as an operand of most
1104 insns. Eliminate this problem by not combining with such an insn.
1105
1106 Also, on some machines we don't want to extend the life of a hard
1107 register. */
1108
1109 if (GET_CODE (src) == REG
1110 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1111 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1112 /* Don't extend the life of a hard register unless it is
1113 user variable (if we have few registers) or it can't
1114 fit into the desired register (meaning something special
1115 is going on).
1116 Also avoid substituting a return register into I3, because
1117 reload can't handle a conflict with constraints of other
1118 inputs. */
1119 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1120 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1121 return 0;
1122 }
1123 else if (GET_CODE (dest) != CC0)
1124 return 0;
1125
1126 /* Don't substitute for a register intended as a clobberable operand.
1127 Similarly, don't substitute an expression containing a register that
1128 will be clobbered in I3. */
1129 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1130 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1131 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1132 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1133 src)
1134 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1135 return 0;
1136
1137 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1138 or not), reject, unless nothing volatile comes between it and I3 */
1139
1140 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1141 {
1142 /* Make sure succ doesn't contain a volatile reference. */
1143 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1144 return 0;
1145
1146 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1147 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1148 return 0;
1149 }
1150
1151 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1152 to be an explicit register variable, and was chosen for a reason. */
1153
1154 if (GET_CODE (src) == ASM_OPERANDS
1155 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1156 return 0;
1157
1158 /* If there are any volatile insns between INSN and I3, reject, because
1159 they might affect machine state. */
1160
1161 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1162 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1163 return 0;
1164
1165 /* If INSN or I2 contains an autoincrement or autodecrement,
1166 make sure that register is not used between there and I3,
1167 and not already used in I3 either.
1168 Also insist that I3 not be a jump; if it were one
1169 and the incremented register were spilled, we would lose. */
1170
1171 #ifdef AUTO_INC_DEC
1172 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1173 if (REG_NOTE_KIND (link) == REG_INC
1174 && (GET_CODE (i3) == JUMP_INSN
1175 || reg_used_between_p (XEXP (link, 0), insn, i3)
1176 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1177 return 0;
1178 #endif
1179
1180 #ifdef HAVE_cc0
1181 /* Don't combine an insn that follows a CC0-setting insn.
1182 An insn that uses CC0 must not be separated from the one that sets it.
1183 We do, however, allow I2 to follow a CC0-setting insn if that insn
1184 is passed as I1; in that case it will be deleted also.
1185 We also allow combining in this case if all the insns are adjacent
1186 because that would leave the two CC0 insns adjacent as well.
1187 It would be more logical to test whether CC0 occurs inside I1 or I2,
1188 but that would be much slower, and this ought to be equivalent. */
1189
1190 p = prev_nonnote_insn (insn);
1191 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1192 && ! all_adjacent)
1193 return 0;
1194 #endif
1195
1196 /* If we get here, we have passed all the tests and the combination is
1197 to be allowed. */
1198
1199 *pdest = dest;
1200 *psrc = src;
1201
1202 return 1;
1203 }
1204 \f
1205 /* Check if PAT is an insn - or a part of it - used to set up an
1206 argument for a function in a hard register. */
1207
1208 static int
1209 sets_function_arg_p (rtx pat)
1210 {
1211 int i;
1212 rtx inner_dest;
1213
1214 switch (GET_CODE (pat))
1215 {
1216 case INSN:
1217 return sets_function_arg_p (PATTERN (pat));
1218
1219 case PARALLEL:
1220 for (i = XVECLEN (pat, 0); --i >= 0;)
1221 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1222 return 1;
1223
1224 break;
1225
1226 case SET:
1227 inner_dest = SET_DEST (pat);
1228 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1229 || GET_CODE (inner_dest) == SUBREG
1230 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1231 inner_dest = XEXP (inner_dest, 0);
1232
1233 return (GET_CODE (inner_dest) == REG
1234 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1235 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1236
1237 default:
1238 break;
1239 }
1240
1241 return 0;
1242 }
1243
1244 /* LOC is the location within I3 that contains its pattern or the component
1245 of a PARALLEL of the pattern. We validate that it is valid for combining.
1246
1247 One problem is if I3 modifies its output, as opposed to replacing it
1248 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1249 so would produce an insn that is not equivalent to the original insns.
1250
1251 Consider:
1252
1253 (set (reg:DI 101) (reg:DI 100))
1254 (set (subreg:SI (reg:DI 101) 0) <foo>)
1255
1256 This is NOT equivalent to:
1257
1258 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1259 (set (reg:DI 101) (reg:DI 100))])
1260
1261 Not only does this modify 100 (in which case it might still be valid
1262 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1263
1264 We can also run into a problem if I2 sets a register that I1
1265 uses and I1 gets directly substituted into I3 (not via I2). In that
1266 case, we would be getting the wrong value of I2DEST into I3, so we
1267 must reject the combination. This case occurs when I2 and I1 both
1268 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1269 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1270 of a SET must prevent combination from occurring.
1271
1272 Before doing the above check, we first try to expand a field assignment
1273 into a set of logical operations.
1274
1275 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1276 we place a register that is both set and used within I3. If more than one
1277 such register is detected, we fail.
1278
1279 Return 1 if the combination is valid, zero otherwise. */
1280
1281 static int
1282 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1283 int i1_not_in_src, rtx *pi3dest_killed)
1284 {
1285 rtx x = *loc;
1286
1287 if (GET_CODE (x) == SET)
1288 {
1289 rtx set = x ;
1290 rtx dest = SET_DEST (set);
1291 rtx src = SET_SRC (set);
1292 rtx inner_dest = dest;
1293
1294 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1295 || GET_CODE (inner_dest) == SUBREG
1296 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1297 inner_dest = XEXP (inner_dest, 0);
1298
1299 /* Check for the case where I3 modifies its output, as discussed
1300 above. We don't want to prevent pseudos from being combined
1301 into the address of a MEM, so only prevent the combination if
1302 i1 or i2 set the same MEM. */
1303 if ((inner_dest != dest &&
1304 (GET_CODE (inner_dest) != MEM
1305 || rtx_equal_p (i2dest, inner_dest)
1306 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1307 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1308 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1309
1310 /* This is the same test done in can_combine_p except we can't test
1311 all_adjacent; we don't have to, since this instruction will stay
1312 in place, thus we are not considering increasing the lifetime of
1313 INNER_DEST.
1314
1315 Also, if this insn sets a function argument, combining it with
1316 something that might need a spill could clobber a previous
1317 function argument; the all_adjacent test in can_combine_p also
1318 checks this; here, we do a more specific test for this case. */
1319
1320 || (GET_CODE (inner_dest) == REG
1321 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1322 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1323 GET_MODE (inner_dest))))
1324 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1325 return 0;
1326
1327 /* If DEST is used in I3, it is being killed in this insn,
1328 so record that for later.
1329 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1330 STACK_POINTER_REGNUM, since these are always considered to be
1331 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1332 if (pi3dest_killed && GET_CODE (dest) == REG
1333 && reg_referenced_p (dest, PATTERN (i3))
1334 && REGNO (dest) != FRAME_POINTER_REGNUM
1335 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1336 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1337 #endif
1338 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1339 && (REGNO (dest) != ARG_POINTER_REGNUM
1340 || ! fixed_regs [REGNO (dest)])
1341 #endif
1342 && REGNO (dest) != STACK_POINTER_REGNUM)
1343 {
1344 if (*pi3dest_killed)
1345 return 0;
1346
1347 *pi3dest_killed = dest;
1348 }
1349 }
1350
1351 else if (GET_CODE (x) == PARALLEL)
1352 {
1353 int i;
1354
1355 for (i = 0; i < XVECLEN (x, 0); i++)
1356 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1357 i1_not_in_src, pi3dest_killed))
1358 return 0;
1359 }
1360
1361 return 1;
1362 }
1363 \f
1364 /* Return 1 if X is an arithmetic expression that contains a multiplication
1365 and division. We don't count multiplications by powers of two here. */
1366
1367 static int
1368 contains_muldiv (rtx x)
1369 {
1370 switch (GET_CODE (x))
1371 {
1372 case MOD: case DIV: case UMOD: case UDIV:
1373 return 1;
1374
1375 case MULT:
1376 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1377 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1378 default:
1379 switch (GET_RTX_CLASS (GET_CODE (x)))
1380 {
1381 case 'c': case '<': case '2':
1382 return contains_muldiv (XEXP (x, 0))
1383 || contains_muldiv (XEXP (x, 1));
1384
1385 case '1':
1386 return contains_muldiv (XEXP (x, 0));
1387
1388 default:
1389 return 0;
1390 }
1391 }
1392 }
1393 \f
1394 /* Determine whether INSN can be used in a combination. Return nonzero if
1395 not. This is used in try_combine to detect early some cases where we
1396 can't perform combinations. */
1397
1398 static int
1399 cant_combine_insn_p (rtx insn)
1400 {
1401 rtx set;
1402 rtx src, dest;
1403
1404 /* If this isn't really an insn, we can't do anything.
1405 This can occur when flow deletes an insn that it has merged into an
1406 auto-increment address. */
1407 if (! INSN_P (insn))
1408 return 1;
1409
1410 /* Never combine loads and stores involving hard regs that are likely
1411 to be spilled. The register allocator can usually handle such
1412 reg-reg moves by tying. If we allow the combiner to make
1413 substitutions of likely-spilled regs, we may abort in reload.
1414 As an exception, we allow combinations involving fixed regs; these are
1415 not available to the register allocator so there's no risk involved. */
1416
1417 set = single_set (insn);
1418 if (! set)
1419 return 0;
1420 src = SET_SRC (set);
1421 dest = SET_DEST (set);
1422 if (GET_CODE (src) == SUBREG)
1423 src = SUBREG_REG (src);
1424 if (GET_CODE (dest) == SUBREG)
1425 dest = SUBREG_REG (dest);
1426 if (REG_P (src) && REG_P (dest)
1427 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1428 && ! fixed_regs[REGNO (src)]
1429 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1430 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1431 && ! fixed_regs[REGNO (dest)]
1432 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1433 return 1;
1434
1435 return 0;
1436 }
1437
1438 /* Try to combine the insns I1 and I2 into I3.
1439 Here I1 and I2 appear earlier than I3.
1440 I1 can be zero; then we combine just I2 into I3.
1441
1442 If we are combining three insns and the resulting insn is not recognized,
1443 try splitting it into two insns. If that happens, I2 and I3 are retained
1444 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1445 are pseudo-deleted.
1446
1447 Return 0 if the combination does not work. Then nothing is changed.
1448 If we did the combination, return the insn at which combine should
1449 resume scanning.
1450
1451 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1452 new direct jump instruction. */
1453
1454 static rtx
1455 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1456 {
1457 /* New patterns for I3 and I2, respectively. */
1458 rtx newpat, newi2pat = 0;
1459 int substed_i2 = 0, substed_i1 = 0;
1460 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1461 int added_sets_1, added_sets_2;
1462 /* Total number of SETs to put into I3. */
1463 int total_sets;
1464 /* Nonzero is I2's body now appears in I3. */
1465 int i2_is_used;
1466 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1467 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1468 /* Contains I3 if the destination of I3 is used in its source, which means
1469 that the old life of I3 is being killed. If that usage is placed into
1470 I2 and not in I3, a REG_DEAD note must be made. */
1471 rtx i3dest_killed = 0;
1472 /* SET_DEST and SET_SRC of I2 and I1. */
1473 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1474 /* PATTERN (I2), or a copy of it in certain cases. */
1475 rtx i2pat;
1476 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1477 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1478 int i1_feeds_i3 = 0;
1479 /* Notes that must be added to REG_NOTES in I3 and I2. */
1480 rtx new_i3_notes, new_i2_notes;
1481 /* Notes that we substituted I3 into I2 instead of the normal case. */
1482 int i3_subst_into_i2 = 0;
1483 /* Notes that I1, I2 or I3 is a MULT operation. */
1484 int have_mult = 0;
1485
1486 int maxreg;
1487 rtx temp;
1488 rtx link;
1489 int i;
1490
1491 /* Exit early if one of the insns involved can't be used for
1492 combinations. */
1493 if (cant_combine_insn_p (i3)
1494 || cant_combine_insn_p (i2)
1495 || (i1 && cant_combine_insn_p (i1))
1496 /* We also can't do anything if I3 has a
1497 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1498 libcall. */
1499 #if 0
1500 /* ??? This gives worse code, and appears to be unnecessary, since no
1501 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1502 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1503 #endif
1504 )
1505 return 0;
1506
1507 combine_attempts++;
1508 undobuf.other_insn = 0;
1509
1510 /* Reset the hard register usage information. */
1511 CLEAR_HARD_REG_SET (newpat_used_regs);
1512
1513 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1514 code below, set I1 to be the earlier of the two insns. */
1515 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1516 temp = i1, i1 = i2, i2 = temp;
1517
1518 added_links_insn = 0;
1519
1520 /* First check for one important special-case that the code below will
1521 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1522 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1523 we may be able to replace that destination with the destination of I3.
1524 This occurs in the common code where we compute both a quotient and
1525 remainder into a structure, in which case we want to do the computation
1526 directly into the structure to avoid register-register copies.
1527
1528 Note that this case handles both multiple sets in I2 and also
1529 cases where I2 has a number of CLOBBER or PARALLELs.
1530
1531 We make very conservative checks below and only try to handle the
1532 most common cases of this. For example, we only handle the case
1533 where I2 and I3 are adjacent to avoid making difficult register
1534 usage tests. */
1535
1536 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1537 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1538 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1539 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1540 && GET_CODE (PATTERN (i2)) == PARALLEL
1541 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1542 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1543 below would need to check what is inside (and reg_overlap_mentioned_p
1544 doesn't support those codes anyway). Don't allow those destinations;
1545 the resulting insn isn't likely to be recognized anyway. */
1546 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1547 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1548 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1549 SET_DEST (PATTERN (i3)))
1550 && next_real_insn (i2) == i3)
1551 {
1552 rtx p2 = PATTERN (i2);
1553
1554 /* Make sure that the destination of I3,
1555 which we are going to substitute into one output of I2,
1556 is not used within another output of I2. We must avoid making this:
1557 (parallel [(set (mem (reg 69)) ...)
1558 (set (reg 69) ...)])
1559 which is not well-defined as to order of actions.
1560 (Besides, reload can't handle output reloads for this.)
1561
1562 The problem can also happen if the dest of I3 is a memory ref,
1563 if another dest in I2 is an indirect memory ref. */
1564 for (i = 0; i < XVECLEN (p2, 0); i++)
1565 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1566 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1567 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1568 SET_DEST (XVECEXP (p2, 0, i))))
1569 break;
1570
1571 if (i == XVECLEN (p2, 0))
1572 for (i = 0; i < XVECLEN (p2, 0); i++)
1573 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1574 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1575 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1576 {
1577 combine_merges++;
1578
1579 subst_insn = i3;
1580 subst_low_cuid = INSN_CUID (i2);
1581
1582 added_sets_2 = added_sets_1 = 0;
1583 i2dest = SET_SRC (PATTERN (i3));
1584
1585 /* Replace the dest in I2 with our dest and make the resulting
1586 insn the new pattern for I3. Then skip to where we
1587 validate the pattern. Everything was set up above. */
1588 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1589 SET_DEST (PATTERN (i3)));
1590
1591 newpat = p2;
1592 i3_subst_into_i2 = 1;
1593 goto validate_replacement;
1594 }
1595 }
1596
1597 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1598 one of those words to another constant, merge them by making a new
1599 constant. */
1600 if (i1 == 0
1601 && (temp = single_set (i2)) != 0
1602 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1603 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1604 && GET_CODE (SET_DEST (temp)) == REG
1605 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1606 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1607 && GET_CODE (PATTERN (i3)) == SET
1608 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1609 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1610 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1611 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1612 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1613 {
1614 HOST_WIDE_INT lo, hi;
1615
1616 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1617 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1618 else
1619 {
1620 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1621 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1622 }
1623
1624 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1625 {
1626 /* We don't handle the case of the target word being wider
1627 than a host wide int. */
1628 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1629 abort ();
1630
1631 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1632 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1633 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1634 }
1635 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1636 hi = INTVAL (SET_SRC (PATTERN (i3)));
1637 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1638 {
1639 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1640 >> (HOST_BITS_PER_WIDE_INT - 1));
1641
1642 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1643 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1644 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1645 (INTVAL (SET_SRC (PATTERN (i3)))));
1646 if (hi == sign)
1647 hi = lo < 0 ? -1 : 0;
1648 }
1649 else
1650 /* We don't handle the case of the higher word not fitting
1651 entirely in either hi or lo. */
1652 abort ();
1653
1654 combine_merges++;
1655 subst_insn = i3;
1656 subst_low_cuid = INSN_CUID (i2);
1657 added_sets_2 = added_sets_1 = 0;
1658 i2dest = SET_DEST (temp);
1659
1660 SUBST (SET_SRC (temp),
1661 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1662
1663 newpat = PATTERN (i2);
1664 goto validate_replacement;
1665 }
1666
1667 #ifndef HAVE_cc0
1668 /* If we have no I1 and I2 looks like:
1669 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1670 (set Y OP)])
1671 make up a dummy I1 that is
1672 (set Y OP)
1673 and change I2 to be
1674 (set (reg:CC X) (compare:CC Y (const_int 0)))
1675
1676 (We can ignore any trailing CLOBBERs.)
1677
1678 This undoes a previous combination and allows us to match a branch-and-
1679 decrement insn. */
1680
1681 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1682 && XVECLEN (PATTERN (i2), 0) >= 2
1683 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1684 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1685 == MODE_CC)
1686 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1687 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1688 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1689 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1690 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1691 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1692 {
1693 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1694 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1695 break;
1696
1697 if (i == 1)
1698 {
1699 /* We make I1 with the same INSN_UID as I2. This gives it
1700 the same INSN_CUID for value tracking. Our fake I1 will
1701 never appear in the insn stream so giving it the same INSN_UID
1702 as I2 will not cause a problem. */
1703
1704 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1705 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1706 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1707 NULL_RTX);
1708
1709 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1710 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1711 SET_DEST (PATTERN (i1)));
1712 }
1713 }
1714 #endif
1715
1716 /* Verify that I2 and I1 are valid for combining. */
1717 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1718 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1719 {
1720 undo_all ();
1721 return 0;
1722 }
1723
1724 /* Record whether I2DEST is used in I2SRC and similarly for the other
1725 cases. Knowing this will help in register status updating below. */
1726 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1727 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1728 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1729
1730 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1731 in I2SRC. */
1732 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1733
1734 /* Ensure that I3's pattern can be the destination of combines. */
1735 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1736 i1 && i2dest_in_i1src && i1_feeds_i3,
1737 &i3dest_killed))
1738 {
1739 undo_all ();
1740 return 0;
1741 }
1742
1743 /* See if any of the insns is a MULT operation. Unless one is, we will
1744 reject a combination that is, since it must be slower. Be conservative
1745 here. */
1746 if (GET_CODE (i2src) == MULT
1747 || (i1 != 0 && GET_CODE (i1src) == MULT)
1748 || (GET_CODE (PATTERN (i3)) == SET
1749 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1750 have_mult = 1;
1751
1752 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1753 We used to do this EXCEPT in one case: I3 has a post-inc in an
1754 output operand. However, that exception can give rise to insns like
1755 mov r3,(r3)+
1756 which is a famous insn on the PDP-11 where the value of r3 used as the
1757 source was model-dependent. Avoid this sort of thing. */
1758
1759 #if 0
1760 if (!(GET_CODE (PATTERN (i3)) == SET
1761 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1762 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1763 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1764 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1765 /* It's not the exception. */
1766 #endif
1767 #ifdef AUTO_INC_DEC
1768 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1769 if (REG_NOTE_KIND (link) == REG_INC
1770 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1771 || (i1 != 0
1772 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1773 {
1774 undo_all ();
1775 return 0;
1776 }
1777 #endif
1778
1779 /* See if the SETs in I1 or I2 need to be kept around in the merged
1780 instruction: whenever the value set there is still needed past I3.
1781 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1782
1783 For the SET in I1, we have two cases: If I1 and I2 independently
1784 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1785 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1786 in I1 needs to be kept around unless I1DEST dies or is set in either
1787 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1788 I1DEST. If so, we know I1 feeds into I2. */
1789
1790 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1791
1792 added_sets_1
1793 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1794 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1795
1796 /* If the set in I2 needs to be kept around, we must make a copy of
1797 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1798 PATTERN (I2), we are only substituting for the original I1DEST, not into
1799 an already-substituted copy. This also prevents making self-referential
1800 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1801 I2DEST. */
1802
1803 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1804 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1805 : PATTERN (i2));
1806
1807 if (added_sets_2)
1808 i2pat = copy_rtx (i2pat);
1809
1810 combine_merges++;
1811
1812 /* Substitute in the latest insn for the regs set by the earlier ones. */
1813
1814 maxreg = max_reg_num ();
1815
1816 subst_insn = i3;
1817
1818 /* It is possible that the source of I2 or I1 may be performing an
1819 unneeded operation, such as a ZERO_EXTEND of something that is known
1820 to have the high part zero. Handle that case by letting subst look at
1821 the innermost one of them.
1822
1823 Another way to do this would be to have a function that tries to
1824 simplify a single insn instead of merging two or more insns. We don't
1825 do this because of the potential of infinite loops and because
1826 of the potential extra memory required. However, doing it the way
1827 we are is a bit of a kludge and doesn't catch all cases.
1828
1829 But only do this if -fexpensive-optimizations since it slows things down
1830 and doesn't usually win. */
1831
1832 if (flag_expensive_optimizations)
1833 {
1834 /* Pass pc_rtx so no substitutions are done, just simplifications.
1835 The cases that we are interested in here do not involve the few
1836 cases were is_replaced is checked. */
1837 if (i1)
1838 {
1839 subst_low_cuid = INSN_CUID (i1);
1840 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1841 }
1842 else
1843 {
1844 subst_low_cuid = INSN_CUID (i2);
1845 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1846 }
1847 }
1848
1849 #ifndef HAVE_cc0
1850 /* Many machines that don't use CC0 have insns that can both perform an
1851 arithmetic operation and set the condition code. These operations will
1852 be represented as a PARALLEL with the first element of the vector
1853 being a COMPARE of an arithmetic operation with the constant zero.
1854 The second element of the vector will set some pseudo to the result
1855 of the same arithmetic operation. If we simplify the COMPARE, we won't
1856 match such a pattern and so will generate an extra insn. Here we test
1857 for this case, where both the comparison and the operation result are
1858 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1859 I2SRC. Later we will make the PARALLEL that contains I2. */
1860
1861 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1862 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1863 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1864 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1865 {
1866 #ifdef EXTRA_CC_MODES
1867 rtx *cc_use;
1868 enum machine_mode compare_mode;
1869 #endif
1870
1871 newpat = PATTERN (i3);
1872 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1873
1874 i2_is_used = 1;
1875
1876 #ifdef EXTRA_CC_MODES
1877 /* See if a COMPARE with the operand we substituted in should be done
1878 with the mode that is currently being used. If not, do the same
1879 processing we do in `subst' for a SET; namely, if the destination
1880 is used only once, try to replace it with a register of the proper
1881 mode and also replace the COMPARE. */
1882 if (undobuf.other_insn == 0
1883 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1884 &undobuf.other_insn))
1885 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1886 i2src, const0_rtx))
1887 != GET_MODE (SET_DEST (newpat))))
1888 {
1889 unsigned int regno = REGNO (SET_DEST (newpat));
1890 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1891
1892 if (regno < FIRST_PSEUDO_REGISTER
1893 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1894 && ! REG_USERVAR_P (SET_DEST (newpat))))
1895 {
1896 if (regno >= FIRST_PSEUDO_REGISTER)
1897 SUBST (regno_reg_rtx[regno], new_dest);
1898
1899 SUBST (SET_DEST (newpat), new_dest);
1900 SUBST (XEXP (*cc_use, 0), new_dest);
1901 SUBST (SET_SRC (newpat),
1902 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1903 }
1904 else
1905 undobuf.other_insn = 0;
1906 }
1907 #endif
1908 }
1909 else
1910 #endif
1911 {
1912 n_occurrences = 0; /* `subst' counts here */
1913
1914 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1915 need to make a unique copy of I2SRC each time we substitute it
1916 to avoid self-referential rtl. */
1917
1918 subst_low_cuid = INSN_CUID (i2);
1919 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1920 ! i1_feeds_i3 && i1dest_in_i1src);
1921 substed_i2 = 1;
1922
1923 /* Record whether i2's body now appears within i3's body. */
1924 i2_is_used = n_occurrences;
1925 }
1926
1927 /* If we already got a failure, don't try to do more. Otherwise,
1928 try to substitute in I1 if we have it. */
1929
1930 if (i1 && GET_CODE (newpat) != CLOBBER)
1931 {
1932 /* Before we can do this substitution, we must redo the test done
1933 above (see detailed comments there) that ensures that I1DEST
1934 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1935
1936 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1937 0, (rtx*) 0))
1938 {
1939 undo_all ();
1940 return 0;
1941 }
1942
1943 n_occurrences = 0;
1944 subst_low_cuid = INSN_CUID (i1);
1945 newpat = subst (newpat, i1dest, i1src, 0, 0);
1946 substed_i1 = 1;
1947 }
1948
1949 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1950 to count all the ways that I2SRC and I1SRC can be used. */
1951 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1952 && i2_is_used + added_sets_2 > 1)
1953 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1954 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1955 > 1))
1956 /* Fail if we tried to make a new register (we used to abort, but there's
1957 really no reason to). */
1958 || max_reg_num () != maxreg
1959 /* Fail if we couldn't do something and have a CLOBBER. */
1960 || GET_CODE (newpat) == CLOBBER
1961 /* Fail if this new pattern is a MULT and we didn't have one before
1962 at the outer level. */
1963 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
1964 && ! have_mult))
1965 {
1966 undo_all ();
1967 return 0;
1968 }
1969
1970 /* If the actions of the earlier insns must be kept
1971 in addition to substituting them into the latest one,
1972 we must make a new PARALLEL for the latest insn
1973 to hold additional the SETs. */
1974
1975 if (added_sets_1 || added_sets_2)
1976 {
1977 combine_extras++;
1978
1979 if (GET_CODE (newpat) == PARALLEL)
1980 {
1981 rtvec old = XVEC (newpat, 0);
1982 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
1983 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1984 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
1985 sizeof (old->elem[0]) * old->num_elem);
1986 }
1987 else
1988 {
1989 rtx old = newpat;
1990 total_sets = 1 + added_sets_1 + added_sets_2;
1991 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1992 XVECEXP (newpat, 0, 0) = old;
1993 }
1994
1995 if (added_sets_1)
1996 XVECEXP (newpat, 0, --total_sets)
1997 = (GET_CODE (PATTERN (i1)) == PARALLEL
1998 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
1999
2000 if (added_sets_2)
2001 {
2002 /* If there is no I1, use I2's body as is. We used to also not do
2003 the subst call below if I2 was substituted into I3,
2004 but that could lose a simplification. */
2005 if (i1 == 0)
2006 XVECEXP (newpat, 0, --total_sets) = i2pat;
2007 else
2008 /* See comment where i2pat is assigned. */
2009 XVECEXP (newpat, 0, --total_sets)
2010 = subst (i2pat, i1dest, i1src, 0, 0);
2011 }
2012 }
2013
2014 /* We come here when we are replacing a destination in I2 with the
2015 destination of I3. */
2016 validate_replacement:
2017
2018 /* Note which hard regs this insn has as inputs. */
2019 mark_used_regs_combine (newpat);
2020
2021 /* Is the result of combination a valid instruction? */
2022 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2023
2024 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2025 the second SET's destination is a register that is unused. In that case,
2026 we just need the first SET. This can occur when simplifying a divmod
2027 insn. We *must* test for this case here because the code below that
2028 splits two independent SETs doesn't handle this case correctly when it
2029 updates the register status. Also check the case where the first
2030 SET's destination is unused. That would not cause incorrect code, but
2031 does cause an unneeded insn to remain. */
2032
2033 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2034 && XVECLEN (newpat, 0) == 2
2035 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2036 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2037 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2038 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2039 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2040 && asm_noperands (newpat) < 0)
2041 {
2042 newpat = XVECEXP (newpat, 0, 0);
2043 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2044 }
2045
2046 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2047 && XVECLEN (newpat, 0) == 2
2048 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2049 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2050 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2051 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2052 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2053 && asm_noperands (newpat) < 0)
2054 {
2055 newpat = XVECEXP (newpat, 0, 1);
2056 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2057 }
2058
2059 /* If we were combining three insns and the result is a simple SET
2060 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2061 insns. There are two ways to do this. It can be split using a
2062 machine-specific method (like when you have an addition of a large
2063 constant) or by combine in the function find_split_point. */
2064
2065 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2066 && asm_noperands (newpat) < 0)
2067 {
2068 rtx m_split, *split;
2069 rtx ni2dest = i2dest;
2070
2071 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2072 use I2DEST as a scratch register will help. In the latter case,
2073 convert I2DEST to the mode of the source of NEWPAT if we can. */
2074
2075 m_split = split_insns (newpat, i3);
2076
2077 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2078 inputs of NEWPAT. */
2079
2080 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2081 possible to try that as a scratch reg. This would require adding
2082 more code to make it work though. */
2083
2084 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2085 {
2086 /* If I2DEST is a hard register or the only use of a pseudo,
2087 we can change its mode. */
2088 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2089 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2090 && GET_CODE (i2dest) == REG
2091 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2092 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2093 && ! REG_USERVAR_P (i2dest))))
2094 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2095 REGNO (i2dest));
2096
2097 m_split = split_insns (gen_rtx_PARALLEL
2098 (VOIDmode,
2099 gen_rtvec (2, newpat,
2100 gen_rtx_CLOBBER (VOIDmode,
2101 ni2dest))),
2102 i3);
2103 /* If the split with the mode-changed register didn't work, try
2104 the original register. */
2105 if (! m_split && ni2dest != i2dest)
2106 {
2107 ni2dest = i2dest;
2108 m_split = split_insns (gen_rtx_PARALLEL
2109 (VOIDmode,
2110 gen_rtvec (2, newpat,
2111 gen_rtx_CLOBBER (VOIDmode,
2112 i2dest))),
2113 i3);
2114 }
2115 }
2116
2117 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2118 {
2119 m_split = PATTERN (m_split);
2120 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2121 if (insn_code_number >= 0)
2122 newpat = m_split;
2123 }
2124 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2125 && (next_real_insn (i2) == i3
2126 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2127 {
2128 rtx i2set, i3set;
2129 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2130 newi2pat = PATTERN (m_split);
2131
2132 i3set = single_set (NEXT_INSN (m_split));
2133 i2set = single_set (m_split);
2134
2135 /* In case we changed the mode of I2DEST, replace it in the
2136 pseudo-register table here. We can't do it above in case this
2137 code doesn't get executed and we do a split the other way. */
2138
2139 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2140 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2141
2142 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2143
2144 /* If I2 or I3 has multiple SETs, we won't know how to track
2145 register status, so don't use these insns. If I2's destination
2146 is used between I2 and I3, we also can't use these insns. */
2147
2148 if (i2_code_number >= 0 && i2set && i3set
2149 && (next_real_insn (i2) == i3
2150 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2151 insn_code_number = recog_for_combine (&newi3pat, i3,
2152 &new_i3_notes);
2153 if (insn_code_number >= 0)
2154 newpat = newi3pat;
2155
2156 /* It is possible that both insns now set the destination of I3.
2157 If so, we must show an extra use of it. */
2158
2159 if (insn_code_number >= 0)
2160 {
2161 rtx new_i3_dest = SET_DEST (i3set);
2162 rtx new_i2_dest = SET_DEST (i2set);
2163
2164 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2165 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2166 || GET_CODE (new_i3_dest) == SUBREG)
2167 new_i3_dest = XEXP (new_i3_dest, 0);
2168
2169 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2170 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2171 || GET_CODE (new_i2_dest) == SUBREG)
2172 new_i2_dest = XEXP (new_i2_dest, 0);
2173
2174 if (GET_CODE (new_i3_dest) == REG
2175 && GET_CODE (new_i2_dest) == REG
2176 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2177 REG_N_SETS (REGNO (new_i2_dest))++;
2178 }
2179 }
2180
2181 /* If we can split it and use I2DEST, go ahead and see if that
2182 helps things be recognized. Verify that none of the registers
2183 are set between I2 and I3. */
2184 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2185 #ifdef HAVE_cc0
2186 && GET_CODE (i2dest) == REG
2187 #endif
2188 /* We need I2DEST in the proper mode. If it is a hard register
2189 or the only use of a pseudo, we can change its mode. */
2190 && (GET_MODE (*split) == GET_MODE (i2dest)
2191 || GET_MODE (*split) == VOIDmode
2192 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2193 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2194 && ! REG_USERVAR_P (i2dest)))
2195 && (next_real_insn (i2) == i3
2196 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2197 /* We can't overwrite I2DEST if its value is still used by
2198 NEWPAT. */
2199 && ! reg_referenced_p (i2dest, newpat))
2200 {
2201 rtx newdest = i2dest;
2202 enum rtx_code split_code = GET_CODE (*split);
2203 enum machine_mode split_mode = GET_MODE (*split);
2204
2205 /* Get NEWDEST as a register in the proper mode. We have already
2206 validated that we can do this. */
2207 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2208 {
2209 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2210
2211 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2212 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2213 }
2214
2215 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2216 an ASHIFT. This can occur if it was inside a PLUS and hence
2217 appeared to be a memory address. This is a kludge. */
2218 if (split_code == MULT
2219 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2220 && INTVAL (XEXP (*split, 1)) > 0
2221 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2222 {
2223 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2224 XEXP (*split, 0), GEN_INT (i)));
2225 /* Update split_code because we may not have a multiply
2226 anymore. */
2227 split_code = GET_CODE (*split);
2228 }
2229
2230 #ifdef INSN_SCHEDULING
2231 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2232 be written as a ZERO_EXTEND. */
2233 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2234 {
2235 #ifdef LOAD_EXTEND_OP
2236 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2237 what it really is. */
2238 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2239 == SIGN_EXTEND)
2240 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2241 SUBREG_REG (*split)));
2242 else
2243 #endif
2244 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2245 SUBREG_REG (*split)));
2246 }
2247 #endif
2248
2249 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2250 SUBST (*split, newdest);
2251 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2252
2253 /* If the split point was a MULT and we didn't have one before,
2254 don't use one now. */
2255 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2256 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2257 }
2258 }
2259
2260 /* Check for a case where we loaded from memory in a narrow mode and
2261 then sign extended it, but we need both registers. In that case,
2262 we have a PARALLEL with both loads from the same memory location.
2263 We can split this into a load from memory followed by a register-register
2264 copy. This saves at least one insn, more if register allocation can
2265 eliminate the copy.
2266
2267 We cannot do this if the destination of the first assignment is a
2268 condition code register or cc0. We eliminate this case by making sure
2269 the SET_DEST and SET_SRC have the same mode.
2270
2271 We cannot do this if the destination of the second assignment is
2272 a register that we have already assumed is zero-extended. Similarly
2273 for a SUBREG of such a register. */
2274
2275 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2276 && GET_CODE (newpat) == PARALLEL
2277 && XVECLEN (newpat, 0) == 2
2278 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2279 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2280 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2281 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2282 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2283 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2284 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2285 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2286 INSN_CUID (i2))
2287 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2288 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2289 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2290 (GET_CODE (temp) == REG
2291 && reg_nonzero_bits[REGNO (temp)] != 0
2292 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2293 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2294 && (reg_nonzero_bits[REGNO (temp)]
2295 != GET_MODE_MASK (word_mode))))
2296 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2297 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2298 (GET_CODE (temp) == REG
2299 && reg_nonzero_bits[REGNO (temp)] != 0
2300 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2301 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2302 && (reg_nonzero_bits[REGNO (temp)]
2303 != GET_MODE_MASK (word_mode)))))
2304 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2305 SET_SRC (XVECEXP (newpat, 0, 1)))
2306 && ! find_reg_note (i3, REG_UNUSED,
2307 SET_DEST (XVECEXP (newpat, 0, 0))))
2308 {
2309 rtx ni2dest;
2310
2311 newi2pat = XVECEXP (newpat, 0, 0);
2312 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2313 newpat = XVECEXP (newpat, 0, 1);
2314 SUBST (SET_SRC (newpat),
2315 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2316 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2317
2318 if (i2_code_number >= 0)
2319 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2320
2321 if (insn_code_number >= 0)
2322 {
2323 rtx insn;
2324 rtx link;
2325
2326 /* If we will be able to accept this, we have made a change to the
2327 destination of I3. This can invalidate a LOG_LINKS pointing
2328 to I3. No other part of combine.c makes such a transformation.
2329
2330 The new I3 will have a destination that was previously the
2331 destination of I1 or I2 and which was used in i2 or I3. Call
2332 distribute_links to make a LOG_LINK from the next use of
2333 that destination. */
2334
2335 PATTERN (i3) = newpat;
2336 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2337
2338 /* I3 now uses what used to be its destination and which is
2339 now I2's destination. That means we need a LOG_LINK from
2340 I3 to I2. But we used to have one, so we still will.
2341
2342 However, some later insn might be using I2's dest and have
2343 a LOG_LINK pointing at I3. We must remove this link.
2344 The simplest way to remove the link is to point it at I1,
2345 which we know will be a NOTE. */
2346
2347 for (insn = NEXT_INSN (i3);
2348 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2349 || insn != this_basic_block->next_bb->head);
2350 insn = NEXT_INSN (insn))
2351 {
2352 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2353 {
2354 for (link = LOG_LINKS (insn); link;
2355 link = XEXP (link, 1))
2356 if (XEXP (link, 0) == i3)
2357 XEXP (link, 0) = i1;
2358
2359 break;
2360 }
2361 }
2362 }
2363 }
2364
2365 /* Similarly, check for a case where we have a PARALLEL of two independent
2366 SETs but we started with three insns. In this case, we can do the sets
2367 as two separate insns. This case occurs when some SET allows two
2368 other insns to combine, but the destination of that SET is still live. */
2369
2370 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2371 && GET_CODE (newpat) == PARALLEL
2372 && XVECLEN (newpat, 0) == 2
2373 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2374 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2375 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2376 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2377 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2378 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2379 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2380 INSN_CUID (i2))
2381 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2382 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2383 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2384 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2385 XVECEXP (newpat, 0, 0))
2386 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2387 XVECEXP (newpat, 0, 1))
2388 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2389 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2390 {
2391 /* Normally, it doesn't matter which of the two is done first,
2392 but it does if one references cc0. In that case, it has to
2393 be first. */
2394 #ifdef HAVE_cc0
2395 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2396 {
2397 newi2pat = XVECEXP (newpat, 0, 0);
2398 newpat = XVECEXP (newpat, 0, 1);
2399 }
2400 else
2401 #endif
2402 {
2403 newi2pat = XVECEXP (newpat, 0, 1);
2404 newpat = XVECEXP (newpat, 0, 0);
2405 }
2406
2407 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2408
2409 if (i2_code_number >= 0)
2410 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2411 }
2412
2413 /* If it still isn't recognized, fail and change things back the way they
2414 were. */
2415 if ((insn_code_number < 0
2416 /* Is the result a reasonable ASM_OPERANDS? */
2417 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2418 {
2419 undo_all ();
2420 return 0;
2421 }
2422
2423 /* If we had to change another insn, make sure it is valid also. */
2424 if (undobuf.other_insn)
2425 {
2426 rtx other_pat = PATTERN (undobuf.other_insn);
2427 rtx new_other_notes;
2428 rtx note, next;
2429
2430 CLEAR_HARD_REG_SET (newpat_used_regs);
2431
2432 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2433 &new_other_notes);
2434
2435 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2436 {
2437 undo_all ();
2438 return 0;
2439 }
2440
2441 PATTERN (undobuf.other_insn) = other_pat;
2442
2443 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2444 are still valid. Then add any non-duplicate notes added by
2445 recog_for_combine. */
2446 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2447 {
2448 next = XEXP (note, 1);
2449
2450 if (REG_NOTE_KIND (note) == REG_UNUSED
2451 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2452 {
2453 if (GET_CODE (XEXP (note, 0)) == REG)
2454 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2455
2456 remove_note (undobuf.other_insn, note);
2457 }
2458 }
2459
2460 for (note = new_other_notes; note; note = XEXP (note, 1))
2461 if (GET_CODE (XEXP (note, 0)) == REG)
2462 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2463
2464 distribute_notes (new_other_notes, undobuf.other_insn,
2465 undobuf.other_insn, NULL_RTX);
2466 }
2467 #ifdef HAVE_cc0
2468 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2469 they are adjacent to each other or not. */
2470 {
2471 rtx p = prev_nonnote_insn (i3);
2472 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2473 && sets_cc0_p (newi2pat))
2474 {
2475 undo_all ();
2476 return 0;
2477 }
2478 }
2479 #endif
2480
2481 /* We now know that we can do this combination. Merge the insns and
2482 update the status of registers and LOG_LINKS. */
2483
2484 {
2485 rtx i3notes, i2notes, i1notes = 0;
2486 rtx i3links, i2links, i1links = 0;
2487 rtx midnotes = 0;
2488 unsigned int regno;
2489
2490 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2491 clear them. */
2492 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2493 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2494 if (i1)
2495 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2496
2497 /* Ensure that we do not have something that should not be shared but
2498 occurs multiple times in the new insns. Check this by first
2499 resetting all the `used' flags and then copying anything is shared. */
2500
2501 reset_used_flags (i3notes);
2502 reset_used_flags (i2notes);
2503 reset_used_flags (i1notes);
2504 reset_used_flags (newpat);
2505 reset_used_flags (newi2pat);
2506 if (undobuf.other_insn)
2507 reset_used_flags (PATTERN (undobuf.other_insn));
2508
2509 i3notes = copy_rtx_if_shared (i3notes);
2510 i2notes = copy_rtx_if_shared (i2notes);
2511 i1notes = copy_rtx_if_shared (i1notes);
2512 newpat = copy_rtx_if_shared (newpat);
2513 newi2pat = copy_rtx_if_shared (newi2pat);
2514 if (undobuf.other_insn)
2515 reset_used_flags (PATTERN (undobuf.other_insn));
2516
2517 INSN_CODE (i3) = insn_code_number;
2518 PATTERN (i3) = newpat;
2519
2520 if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2521 {
2522 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2523
2524 reset_used_flags (call_usage);
2525 call_usage = copy_rtx (call_usage);
2526
2527 if (substed_i2)
2528 replace_rtx (call_usage, i2dest, i2src);
2529
2530 if (substed_i1)
2531 replace_rtx (call_usage, i1dest, i1src);
2532
2533 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2534 }
2535
2536 if (undobuf.other_insn)
2537 INSN_CODE (undobuf.other_insn) = other_code_number;
2538
2539 /* We had one special case above where I2 had more than one set and
2540 we replaced a destination of one of those sets with the destination
2541 of I3. In that case, we have to update LOG_LINKS of insns later
2542 in this basic block. Note that this (expensive) case is rare.
2543
2544 Also, in this case, we must pretend that all REG_NOTEs for I2
2545 actually came from I3, so that REG_UNUSED notes from I2 will be
2546 properly handled. */
2547
2548 if (i3_subst_into_i2)
2549 {
2550 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2551 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2552 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2553 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2554 && ! find_reg_note (i2, REG_UNUSED,
2555 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2556 for (temp = NEXT_INSN (i2);
2557 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2558 || this_basic_block->head != temp);
2559 temp = NEXT_INSN (temp))
2560 if (temp != i3 && INSN_P (temp))
2561 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2562 if (XEXP (link, 0) == i2)
2563 XEXP (link, 0) = i3;
2564
2565 if (i3notes)
2566 {
2567 rtx link = i3notes;
2568 while (XEXP (link, 1))
2569 link = XEXP (link, 1);
2570 XEXP (link, 1) = i2notes;
2571 }
2572 else
2573 i3notes = i2notes;
2574 i2notes = 0;
2575 }
2576
2577 LOG_LINKS (i3) = 0;
2578 REG_NOTES (i3) = 0;
2579 LOG_LINKS (i2) = 0;
2580 REG_NOTES (i2) = 0;
2581
2582 if (newi2pat)
2583 {
2584 INSN_CODE (i2) = i2_code_number;
2585 PATTERN (i2) = newi2pat;
2586 }
2587 else
2588 {
2589 PUT_CODE (i2, NOTE);
2590 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2591 NOTE_SOURCE_FILE (i2) = 0;
2592 }
2593
2594 if (i1)
2595 {
2596 LOG_LINKS (i1) = 0;
2597 REG_NOTES (i1) = 0;
2598 PUT_CODE (i1, NOTE);
2599 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2600 NOTE_SOURCE_FILE (i1) = 0;
2601 }
2602
2603 /* Get death notes for everything that is now used in either I3 or
2604 I2 and used to die in a previous insn. If we built two new
2605 patterns, move from I1 to I2 then I2 to I3 so that we get the
2606 proper movement on registers that I2 modifies. */
2607
2608 if (newi2pat)
2609 {
2610 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2611 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2612 }
2613 else
2614 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2615 i3, &midnotes);
2616
2617 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2618 if (i3notes)
2619 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2620 if (i2notes)
2621 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2622 if (i1notes)
2623 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2624 if (midnotes)
2625 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2626
2627 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2628 know these are REG_UNUSED and want them to go to the desired insn,
2629 so we always pass it as i3. We have not counted the notes in
2630 reg_n_deaths yet, so we need to do so now. */
2631
2632 if (newi2pat && new_i2_notes)
2633 {
2634 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2635 if (GET_CODE (XEXP (temp, 0)) == REG)
2636 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2637
2638 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2639 }
2640
2641 if (new_i3_notes)
2642 {
2643 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2644 if (GET_CODE (XEXP (temp, 0)) == REG)
2645 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2646
2647 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2648 }
2649
2650 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2651 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2652 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2653 in that case, it might delete I2. Similarly for I2 and I1.
2654 Show an additional death due to the REG_DEAD note we make here. If
2655 we discard it in distribute_notes, we will decrement it again. */
2656
2657 if (i3dest_killed)
2658 {
2659 if (GET_CODE (i3dest_killed) == REG)
2660 REG_N_DEATHS (REGNO (i3dest_killed))++;
2661
2662 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2663 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2664 NULL_RTX),
2665 NULL_RTX, i2, NULL_RTX);
2666 else
2667 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2668 NULL_RTX),
2669 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2670 }
2671
2672 if (i2dest_in_i2src)
2673 {
2674 if (GET_CODE (i2dest) == REG)
2675 REG_N_DEATHS (REGNO (i2dest))++;
2676
2677 if (newi2pat && reg_set_p (i2dest, newi2pat))
2678 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2679 NULL_RTX, i2, NULL_RTX);
2680 else
2681 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2682 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2683 }
2684
2685 if (i1dest_in_i1src)
2686 {
2687 if (GET_CODE (i1dest) == REG)
2688 REG_N_DEATHS (REGNO (i1dest))++;
2689
2690 if (newi2pat && reg_set_p (i1dest, newi2pat))
2691 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2692 NULL_RTX, i2, NULL_RTX);
2693 else
2694 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2695 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2696 }
2697
2698 distribute_links (i3links);
2699 distribute_links (i2links);
2700 distribute_links (i1links);
2701
2702 if (GET_CODE (i2dest) == REG)
2703 {
2704 rtx link;
2705 rtx i2_insn = 0, i2_val = 0, set;
2706
2707 /* The insn that used to set this register doesn't exist, and
2708 this life of the register may not exist either. See if one of
2709 I3's links points to an insn that sets I2DEST. If it does,
2710 that is now the last known value for I2DEST. If we don't update
2711 this and I2 set the register to a value that depended on its old
2712 contents, we will get confused. If this insn is used, thing
2713 will be set correctly in combine_instructions. */
2714
2715 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2716 if ((set = single_set (XEXP (link, 0))) != 0
2717 && rtx_equal_p (i2dest, SET_DEST (set)))
2718 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2719
2720 record_value_for_reg (i2dest, i2_insn, i2_val);
2721
2722 /* If the reg formerly set in I2 died only once and that was in I3,
2723 zero its use count so it won't make `reload' do any work. */
2724 if (! added_sets_2
2725 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2726 && ! i2dest_in_i2src)
2727 {
2728 regno = REGNO (i2dest);
2729 REG_N_SETS (regno)--;
2730 }
2731 }
2732
2733 if (i1 && GET_CODE (i1dest) == REG)
2734 {
2735 rtx link;
2736 rtx i1_insn = 0, i1_val = 0, set;
2737
2738 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2739 if ((set = single_set (XEXP (link, 0))) != 0
2740 && rtx_equal_p (i1dest, SET_DEST (set)))
2741 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2742
2743 record_value_for_reg (i1dest, i1_insn, i1_val);
2744
2745 regno = REGNO (i1dest);
2746 if (! added_sets_1 && ! i1dest_in_i1src)
2747 REG_N_SETS (regno)--;
2748 }
2749
2750 /* Update reg_nonzero_bits et al for any changes that may have been made
2751 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2752 important. Because newi2pat can affect nonzero_bits of newpat */
2753 if (newi2pat)
2754 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2755 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2756
2757 /* Set new_direct_jump_p if a new return or simple jump instruction
2758 has been created.
2759
2760 If I3 is now an unconditional jump, ensure that it has a
2761 BARRIER following it since it may have initially been a
2762 conditional jump. It may also be the last nonnote insn. */
2763
2764 if (returnjump_p (i3) || any_uncondjump_p (i3))
2765 {
2766 *new_direct_jump_p = 1;
2767
2768 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2769 || GET_CODE (temp) != BARRIER)
2770 emit_barrier_after (i3);
2771 }
2772
2773 if (undobuf.other_insn != NULL_RTX
2774 && (returnjump_p (undobuf.other_insn)
2775 || any_uncondjump_p (undobuf.other_insn)))
2776 {
2777 *new_direct_jump_p = 1;
2778
2779 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2780 || GET_CODE (temp) != BARRIER)
2781 emit_barrier_after (undobuf.other_insn);
2782 }
2783
2784 /* An NOOP jump does not need barrier, but it does need cleaning up
2785 of CFG. */
2786 if (GET_CODE (newpat) == SET
2787 && SET_SRC (newpat) == pc_rtx
2788 && SET_DEST (newpat) == pc_rtx)
2789 *new_direct_jump_p = 1;
2790 }
2791
2792 combine_successes++;
2793 undo_commit ();
2794
2795 if (added_links_insn
2796 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2797 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2798 return added_links_insn;
2799 else
2800 return newi2pat ? i2 : i3;
2801 }
2802 \f
2803 /* Undo all the modifications recorded in undobuf. */
2804
2805 static void
2806 undo_all (void)
2807 {
2808 struct undo *undo, *next;
2809
2810 for (undo = undobuf.undos; undo; undo = next)
2811 {
2812 next = undo->next;
2813 if (undo->is_int)
2814 *undo->where.i = undo->old_contents.i;
2815 else
2816 *undo->where.r = undo->old_contents.r;
2817
2818 undo->next = undobuf.frees;
2819 undobuf.frees = undo;
2820 }
2821
2822 undobuf.undos = 0;
2823 }
2824
2825 /* We've committed to accepting the changes we made. Move all
2826 of the undos to the free list. */
2827
2828 static void
2829 undo_commit (void)
2830 {
2831 struct undo *undo, *next;
2832
2833 for (undo = undobuf.undos; undo; undo = next)
2834 {
2835 next = undo->next;
2836 undo->next = undobuf.frees;
2837 undobuf.frees = undo;
2838 }
2839 undobuf.undos = 0;
2840 }
2841
2842 \f
2843 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2844 where we have an arithmetic expression and return that point. LOC will
2845 be inside INSN.
2846
2847 try_combine will call this function to see if an insn can be split into
2848 two insns. */
2849
2850 static rtx *
2851 find_split_point (rtx *loc, rtx insn)
2852 {
2853 rtx x = *loc;
2854 enum rtx_code code = GET_CODE (x);
2855 rtx *split;
2856 unsigned HOST_WIDE_INT len = 0;
2857 HOST_WIDE_INT pos = 0;
2858 int unsignedp = 0;
2859 rtx inner = NULL_RTX;
2860
2861 /* First special-case some codes. */
2862 switch (code)
2863 {
2864 case SUBREG:
2865 #ifdef INSN_SCHEDULING
2866 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2867 point. */
2868 if (GET_CODE (SUBREG_REG (x)) == MEM)
2869 return loc;
2870 #endif
2871 return find_split_point (&SUBREG_REG (x), insn);
2872
2873 case MEM:
2874 #ifdef HAVE_lo_sum
2875 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2876 using LO_SUM and HIGH. */
2877 if (GET_CODE (XEXP (x, 0)) == CONST
2878 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2879 {
2880 SUBST (XEXP (x, 0),
2881 gen_rtx_LO_SUM (Pmode,
2882 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2883 XEXP (x, 0)));
2884 return &XEXP (XEXP (x, 0), 0);
2885 }
2886 #endif
2887
2888 /* If we have a PLUS whose second operand is a constant and the
2889 address is not valid, perhaps will can split it up using
2890 the machine-specific way to split large constants. We use
2891 the first pseudo-reg (one of the virtual regs) as a placeholder;
2892 it will not remain in the result. */
2893 if (GET_CODE (XEXP (x, 0)) == PLUS
2894 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2895 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2896 {
2897 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2898 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2899 subst_insn);
2900
2901 /* This should have produced two insns, each of which sets our
2902 placeholder. If the source of the second is a valid address,
2903 we can make put both sources together and make a split point
2904 in the middle. */
2905
2906 if (seq
2907 && NEXT_INSN (seq) != NULL_RTX
2908 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
2909 && GET_CODE (seq) == INSN
2910 && GET_CODE (PATTERN (seq)) == SET
2911 && SET_DEST (PATTERN (seq)) == reg
2912 && ! reg_mentioned_p (reg,
2913 SET_SRC (PATTERN (seq)))
2914 && GET_CODE (NEXT_INSN (seq)) == INSN
2915 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
2916 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
2917 && memory_address_p (GET_MODE (x),
2918 SET_SRC (PATTERN (NEXT_INSN (seq)))))
2919 {
2920 rtx src1 = SET_SRC (PATTERN (seq));
2921 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
2922
2923 /* Replace the placeholder in SRC2 with SRC1. If we can
2924 find where in SRC2 it was placed, that can become our
2925 split point and we can replace this address with SRC2.
2926 Just try two obvious places. */
2927
2928 src2 = replace_rtx (src2, reg, src1);
2929 split = 0;
2930 if (XEXP (src2, 0) == src1)
2931 split = &XEXP (src2, 0);
2932 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2933 && XEXP (XEXP (src2, 0), 0) == src1)
2934 split = &XEXP (XEXP (src2, 0), 0);
2935
2936 if (split)
2937 {
2938 SUBST (XEXP (x, 0), src2);
2939 return split;
2940 }
2941 }
2942
2943 /* If that didn't work, perhaps the first operand is complex and
2944 needs to be computed separately, so make a split point there.
2945 This will occur on machines that just support REG + CONST
2946 and have a constant moved through some previous computation. */
2947
2948 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
2949 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2950 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
2951 == 'o')))
2952 return &XEXP (XEXP (x, 0), 0);
2953 }
2954 break;
2955
2956 case SET:
2957 #ifdef HAVE_cc0
2958 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2959 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2960 we need to put the operand into a register. So split at that
2961 point. */
2962
2963 if (SET_DEST (x) == cc0_rtx
2964 && GET_CODE (SET_SRC (x)) != COMPARE
2965 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2966 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
2967 && ! (GET_CODE (SET_SRC (x)) == SUBREG
2968 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
2969 return &SET_SRC (x);
2970 #endif
2971
2972 /* See if we can split SET_SRC as it stands. */
2973 split = find_split_point (&SET_SRC (x), insn);
2974 if (split && split != &SET_SRC (x))
2975 return split;
2976
2977 /* See if we can split SET_DEST as it stands. */
2978 split = find_split_point (&SET_DEST (x), insn);
2979 if (split && split != &SET_DEST (x))
2980 return split;
2981
2982 /* See if this is a bitfield assignment with everything constant. If
2983 so, this is an IOR of an AND, so split it into that. */
2984 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2985 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2986 <= HOST_BITS_PER_WIDE_INT)
2987 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2988 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2989 && GET_CODE (SET_SRC (x)) == CONST_INT
2990 && ((INTVAL (XEXP (SET_DEST (x), 1))
2991 + INTVAL (XEXP (SET_DEST (x), 2)))
2992 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
2993 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
2994 {
2995 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
2996 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
2997 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
2998 rtx dest = XEXP (SET_DEST (x), 0);
2999 enum machine_mode mode = GET_MODE (dest);
3000 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3001
3002 if (BITS_BIG_ENDIAN)
3003 pos = GET_MODE_BITSIZE (mode) - len - pos;
3004
3005 if (src == mask)
3006 SUBST (SET_SRC (x),
3007 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3008 else
3009 SUBST (SET_SRC (x),
3010 gen_binary (IOR, mode,
3011 gen_binary (AND, mode, dest,
3012 gen_int_mode (~(mask << pos),
3013 mode)),
3014 GEN_INT (src << pos)));
3015
3016 SUBST (SET_DEST (x), dest);
3017
3018 split = find_split_point (&SET_SRC (x), insn);
3019 if (split && split != &SET_SRC (x))
3020 return split;
3021 }
3022
3023 /* Otherwise, see if this is an operation that we can split into two.
3024 If so, try to split that. */
3025 code = GET_CODE (SET_SRC (x));
3026
3027 switch (code)
3028 {
3029 case AND:
3030 /* If we are AND'ing with a large constant that is only a single
3031 bit and the result is only being used in a context where we
3032 need to know if it is zero or nonzero, replace it with a bit
3033 extraction. This will avoid the large constant, which might
3034 have taken more than one insn to make. If the constant were
3035 not a valid argument to the AND but took only one insn to make,
3036 this is no worse, but if it took more than one insn, it will
3037 be better. */
3038
3039 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3040 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3041 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3042 && GET_CODE (SET_DEST (x)) == REG
3043 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3044 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3045 && XEXP (*split, 0) == SET_DEST (x)
3046 && XEXP (*split, 1) == const0_rtx)
3047 {
3048 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3049 XEXP (SET_SRC (x), 0),
3050 pos, NULL_RTX, 1, 1, 0, 0);
3051 if (extraction != 0)
3052 {
3053 SUBST (SET_SRC (x), extraction);
3054 return find_split_point (loc, insn);
3055 }
3056 }
3057 break;
3058
3059 case NE:
3060 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3061 is known to be on, this can be converted into a NEG of a shift. */
3062 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3063 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3064 && 1 <= (pos = exact_log2
3065 (nonzero_bits (XEXP (SET_SRC (x), 0),
3066 GET_MODE (XEXP (SET_SRC (x), 0))))))
3067 {
3068 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3069
3070 SUBST (SET_SRC (x),
3071 gen_rtx_NEG (mode,
3072 gen_rtx_LSHIFTRT (mode,
3073 XEXP (SET_SRC (x), 0),
3074 GEN_INT (pos))));
3075
3076 split = find_split_point (&SET_SRC (x), insn);
3077 if (split && split != &SET_SRC (x))
3078 return split;
3079 }
3080 break;
3081
3082 case SIGN_EXTEND:
3083 inner = XEXP (SET_SRC (x), 0);
3084
3085 /* We can't optimize if either mode is a partial integer
3086 mode as we don't know how many bits are significant
3087 in those modes. */
3088 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3089 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3090 break;
3091
3092 pos = 0;
3093 len = GET_MODE_BITSIZE (GET_MODE (inner));
3094 unsignedp = 0;
3095 break;
3096
3097 case SIGN_EXTRACT:
3098 case ZERO_EXTRACT:
3099 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3100 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3101 {
3102 inner = XEXP (SET_SRC (x), 0);
3103 len = INTVAL (XEXP (SET_SRC (x), 1));
3104 pos = INTVAL (XEXP (SET_SRC (x), 2));
3105
3106 if (BITS_BIG_ENDIAN)
3107 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3108 unsignedp = (code == ZERO_EXTRACT);
3109 }
3110 break;
3111
3112 default:
3113 break;
3114 }
3115
3116 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3117 {
3118 enum machine_mode mode = GET_MODE (SET_SRC (x));
3119
3120 /* For unsigned, we have a choice of a shift followed by an
3121 AND or two shifts. Use two shifts for field sizes where the
3122 constant might be too large. We assume here that we can
3123 always at least get 8-bit constants in an AND insn, which is
3124 true for every current RISC. */
3125
3126 if (unsignedp && len <= 8)
3127 {
3128 SUBST (SET_SRC (x),
3129 gen_rtx_AND (mode,
3130 gen_rtx_LSHIFTRT
3131 (mode, gen_lowpart_for_combine (mode, inner),
3132 GEN_INT (pos)),
3133 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3134
3135 split = find_split_point (&SET_SRC (x), insn);
3136 if (split && split != &SET_SRC (x))
3137 return split;
3138 }
3139 else
3140 {
3141 SUBST (SET_SRC (x),
3142 gen_rtx_fmt_ee
3143 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3144 gen_rtx_ASHIFT (mode,
3145 gen_lowpart_for_combine (mode, inner),
3146 GEN_INT (GET_MODE_BITSIZE (mode)
3147 - len - pos)),
3148 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3149
3150 split = find_split_point (&SET_SRC (x), insn);
3151 if (split && split != &SET_SRC (x))
3152 return split;
3153 }
3154 }
3155
3156 /* See if this is a simple operation with a constant as the second
3157 operand. It might be that this constant is out of range and hence
3158 could be used as a split point. */
3159 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3160 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3161 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3162 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3163 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3164 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3165 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3166 == 'o'))))
3167 return &XEXP (SET_SRC (x), 1);
3168
3169 /* Finally, see if this is a simple operation with its first operand
3170 not in a register. The operation might require this operand in a
3171 register, so return it as a split point. We can always do this
3172 because if the first operand were another operation, we would have
3173 already found it as a split point. */
3174 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3175 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3176 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3177 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3178 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3179 return &XEXP (SET_SRC (x), 0);
3180
3181 return 0;
3182
3183 case AND:
3184 case IOR:
3185 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3186 it is better to write this as (not (ior A B)) so we can split it.
3187 Similarly for IOR. */
3188 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3189 {
3190 SUBST (*loc,
3191 gen_rtx_NOT (GET_MODE (x),
3192 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3193 GET_MODE (x),
3194 XEXP (XEXP (x, 0), 0),
3195 XEXP (XEXP (x, 1), 0))));
3196 return find_split_point (loc, insn);
3197 }
3198
3199 /* Many RISC machines have a large set of logical insns. If the
3200 second operand is a NOT, put it first so we will try to split the
3201 other operand first. */
3202 if (GET_CODE (XEXP (x, 1)) == NOT)
3203 {
3204 rtx tem = XEXP (x, 0);
3205 SUBST (XEXP (x, 0), XEXP (x, 1));
3206 SUBST (XEXP (x, 1), tem);
3207 }
3208 break;
3209
3210 default:
3211 break;
3212 }
3213
3214 /* Otherwise, select our actions depending on our rtx class. */
3215 switch (GET_RTX_CLASS (code))
3216 {
3217 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3218 case '3':
3219 split = find_split_point (&XEXP (x, 2), insn);
3220 if (split)
3221 return split;
3222 /* ... fall through ... */
3223 case '2':
3224 case 'c':
3225 case '<':
3226 split = find_split_point (&XEXP (x, 1), insn);
3227 if (split)
3228 return split;
3229 /* ... fall through ... */
3230 case '1':
3231 /* Some machines have (and (shift ...) ...) insns. If X is not
3232 an AND, but XEXP (X, 0) is, use it as our split point. */
3233 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3234 return &XEXP (x, 0);
3235
3236 split = find_split_point (&XEXP (x, 0), insn);
3237 if (split)
3238 return split;
3239 return loc;
3240 }
3241
3242 /* Otherwise, we don't have a split point. */
3243 return 0;
3244 }
3245 \f
3246 /* Throughout X, replace FROM with TO, and return the result.
3247 The result is TO if X is FROM;
3248 otherwise the result is X, but its contents may have been modified.
3249 If they were modified, a record was made in undobuf so that
3250 undo_all will (among other things) return X to its original state.
3251
3252 If the number of changes necessary is too much to record to undo,
3253 the excess changes are not made, so the result is invalid.
3254 The changes already made can still be undone.
3255 undobuf.num_undo is incremented for such changes, so by testing that
3256 the caller can tell whether the result is valid.
3257
3258 `n_occurrences' is incremented each time FROM is replaced.
3259
3260 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3261
3262 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3263 by copying if `n_occurrences' is nonzero. */
3264
3265 static rtx
3266 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3267 {
3268 enum rtx_code code = GET_CODE (x);
3269 enum machine_mode op0_mode = VOIDmode;
3270 const char *fmt;
3271 int len, i;
3272 rtx new;
3273
3274 /* Two expressions are equal if they are identical copies of a shared
3275 RTX or if they are both registers with the same register number
3276 and mode. */
3277
3278 #define COMBINE_RTX_EQUAL_P(X,Y) \
3279 ((X) == (Y) \
3280 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3281 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3282
3283 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3284 {
3285 n_occurrences++;
3286 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3287 }
3288
3289 /* If X and FROM are the same register but different modes, they will
3290 not have been seen as equal above. However, flow.c will make a
3291 LOG_LINKS entry for that case. If we do nothing, we will try to
3292 rerecognize our original insn and, when it succeeds, we will
3293 delete the feeding insn, which is incorrect.
3294
3295 So force this insn not to match in this (rare) case. */
3296 if (! in_dest && code == REG && GET_CODE (from) == REG
3297 && REGNO (x) == REGNO (from))
3298 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3299
3300 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3301 of which may contain things that can be combined. */
3302 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3303 return x;
3304
3305 /* It is possible to have a subexpression appear twice in the insn.
3306 Suppose that FROM is a register that appears within TO.
3307 Then, after that subexpression has been scanned once by `subst',
3308 the second time it is scanned, TO may be found. If we were
3309 to scan TO here, we would find FROM within it and create a
3310 self-referent rtl structure which is completely wrong. */
3311 if (COMBINE_RTX_EQUAL_P (x, to))
3312 return to;
3313
3314 /* Parallel asm_operands need special attention because all of the
3315 inputs are shared across the arms. Furthermore, unsharing the
3316 rtl results in recognition failures. Failure to handle this case
3317 specially can result in circular rtl.
3318
3319 Solve this by doing a normal pass across the first entry of the
3320 parallel, and only processing the SET_DESTs of the subsequent
3321 entries. Ug. */
3322
3323 if (code == PARALLEL
3324 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3325 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3326 {
3327 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3328
3329 /* If this substitution failed, this whole thing fails. */
3330 if (GET_CODE (new) == CLOBBER
3331 && XEXP (new, 0) == const0_rtx)
3332 return new;
3333
3334 SUBST (XVECEXP (x, 0, 0), new);
3335
3336 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3337 {
3338 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3339
3340 if (GET_CODE (dest) != REG
3341 && GET_CODE (dest) != CC0
3342 && GET_CODE (dest) != PC)
3343 {
3344 new = subst (dest, from, to, 0, unique_copy);
3345
3346 /* If this substitution failed, this whole thing fails. */
3347 if (GET_CODE (new) == CLOBBER
3348 && XEXP (new, 0) == const0_rtx)
3349 return new;
3350
3351 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3352 }
3353 }
3354 }
3355 else
3356 {
3357 len = GET_RTX_LENGTH (code);
3358 fmt = GET_RTX_FORMAT (code);
3359
3360 /* We don't need to process a SET_DEST that is a register, CC0,
3361 or PC, so set up to skip this common case. All other cases
3362 where we want to suppress replacing something inside a
3363 SET_SRC are handled via the IN_DEST operand. */
3364 if (code == SET
3365 && (GET_CODE (SET_DEST (x)) == REG
3366 || GET_CODE (SET_DEST (x)) == CC0
3367 || GET_CODE (SET_DEST (x)) == PC))
3368 fmt = "ie";
3369
3370 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3371 constant. */
3372 if (fmt[0] == 'e')
3373 op0_mode = GET_MODE (XEXP (x, 0));
3374
3375 for (i = 0; i < len; i++)
3376 {
3377 if (fmt[i] == 'E')
3378 {
3379 int j;
3380 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3381 {
3382 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3383 {
3384 new = (unique_copy && n_occurrences
3385 ? copy_rtx (to) : to);
3386 n_occurrences++;
3387 }
3388 else
3389 {
3390 new = subst (XVECEXP (x, i, j), from, to, 0,
3391 unique_copy);
3392
3393 /* If this substitution failed, this whole thing
3394 fails. */
3395 if (GET_CODE (new) == CLOBBER
3396 && XEXP (new, 0) == const0_rtx)
3397 return new;
3398 }
3399
3400 SUBST (XVECEXP (x, i, j), new);
3401 }
3402 }
3403 else if (fmt[i] == 'e')
3404 {
3405 /* If this is a register being set, ignore it. */
3406 new = XEXP (x, i);
3407 if (in_dest
3408 && (code == SUBREG || code == STRICT_LOW_PART
3409 || code == ZERO_EXTRACT)
3410 && i == 0
3411 && GET_CODE (new) == REG)
3412 ;
3413
3414 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3415 {
3416 /* In general, don't install a subreg involving two
3417 modes not tieable. It can worsen register
3418 allocation, and can even make invalid reload
3419 insns, since the reg inside may need to be copied
3420 from in the outside mode, and that may be invalid
3421 if it is an fp reg copied in integer mode.
3422
3423 We allow two exceptions to this: It is valid if
3424 it is inside another SUBREG and the mode of that
3425 SUBREG and the mode of the inside of TO is
3426 tieable and it is valid if X is a SET that copies
3427 FROM to CC0. */
3428
3429 if (GET_CODE (to) == SUBREG
3430 && ! MODES_TIEABLE_P (GET_MODE (to),
3431 GET_MODE (SUBREG_REG (to)))
3432 && ! (code == SUBREG
3433 && MODES_TIEABLE_P (GET_MODE (x),
3434 GET_MODE (SUBREG_REG (to))))
3435 #ifdef HAVE_cc0
3436 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3437 #endif
3438 )
3439 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3440
3441 #ifdef CANNOT_CHANGE_MODE_CLASS
3442 if (code == SUBREG
3443 && GET_CODE (to) == REG
3444 && REGNO (to) < FIRST_PSEUDO_REGISTER
3445 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3446 GET_MODE (to),
3447 GET_MODE (x)))
3448 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3449 #endif
3450
3451 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3452 n_occurrences++;
3453 }
3454 else
3455 /* If we are in a SET_DEST, suppress most cases unless we
3456 have gone inside a MEM, in which case we want to
3457 simplify the address. We assume here that things that
3458 are actually part of the destination have their inner
3459 parts in the first expression. This is true for SUBREG,
3460 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3461 things aside from REG and MEM that should appear in a
3462 SET_DEST. */
3463 new = subst (XEXP (x, i), from, to,
3464 (((in_dest
3465 && (code == SUBREG || code == STRICT_LOW_PART
3466 || code == ZERO_EXTRACT))
3467 || code == SET)
3468 && i == 0), unique_copy);
3469
3470 /* If we found that we will have to reject this combination,
3471 indicate that by returning the CLOBBER ourselves, rather than
3472 an expression containing it. This will speed things up as
3473 well as prevent accidents where two CLOBBERs are considered
3474 to be equal, thus producing an incorrect simplification. */
3475
3476 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3477 return new;
3478
3479 if (GET_CODE (x) == SUBREG
3480 && (GET_CODE (new) == CONST_INT
3481 || GET_CODE (new) == CONST_DOUBLE))
3482 {
3483 enum machine_mode mode = GET_MODE (x);
3484
3485 x = simplify_subreg (GET_MODE (x), new,
3486 GET_MODE (SUBREG_REG (x)),
3487 SUBREG_BYTE (x));
3488 if (! x)
3489 x = gen_rtx_CLOBBER (mode, const0_rtx);
3490 }
3491 else if (GET_CODE (new) == CONST_INT
3492 && GET_CODE (x) == ZERO_EXTEND)
3493 {
3494 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3495 new, GET_MODE (XEXP (x, 0)));
3496 if (! x)
3497 abort ();
3498 }
3499 else
3500 SUBST (XEXP (x, i), new);
3501 }
3502 }
3503 }
3504
3505 /* Try to simplify X. If the simplification changed the code, it is likely
3506 that further simplification will help, so loop, but limit the number
3507 of repetitions that will be performed. */
3508
3509 for (i = 0; i < 4; i++)
3510 {
3511 /* If X is sufficiently simple, don't bother trying to do anything
3512 with it. */
3513 if (code != CONST_INT && code != REG && code != CLOBBER)
3514 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3515
3516 if (GET_CODE (x) == code)
3517 break;
3518
3519 code = GET_CODE (x);
3520
3521 /* We no longer know the original mode of operand 0 since we
3522 have changed the form of X) */
3523 op0_mode = VOIDmode;
3524 }
3525
3526 return x;
3527 }
3528 \f
3529 /* Simplify X, a piece of RTL. We just operate on the expression at the
3530 outer level; call `subst' to simplify recursively. Return the new
3531 expression.
3532
3533 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3534 will be the iteration even if an expression with a code different from
3535 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3536
3537 static rtx
3538 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int last,
3539 int in_dest)
3540 {
3541 enum rtx_code code = GET_CODE (x);
3542 enum machine_mode mode = GET_MODE (x);
3543 rtx temp;
3544 rtx reversed;
3545 int i;
3546
3547 /* If this is a commutative operation, put a constant last and a complex
3548 expression first. We don't need to do this for comparisons here. */
3549 if (GET_RTX_CLASS (code) == 'c'
3550 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3551 {
3552 temp = XEXP (x, 0);
3553 SUBST (XEXP (x, 0), XEXP (x, 1));
3554 SUBST (XEXP (x, 1), temp);
3555 }
3556
3557 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3558 sign extension of a PLUS with a constant, reverse the order of the sign
3559 extension and the addition. Note that this not the same as the original
3560 code, but overflow is undefined for signed values. Also note that the
3561 PLUS will have been partially moved "inside" the sign-extension, so that
3562 the first operand of X will really look like:
3563 (ashiftrt (plus (ashift A C4) C5) C4).
3564 We convert this to
3565 (plus (ashiftrt (ashift A C4) C2) C4)
3566 and replace the first operand of X with that expression. Later parts
3567 of this function may simplify the expression further.
3568
3569 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3570 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3571 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3572
3573 We do this to simplify address expressions. */
3574
3575 if ((code == PLUS || code == MINUS || code == MULT)
3576 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3577 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3578 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3579 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3580 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3581 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3582 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3583 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3584 XEXP (XEXP (XEXP (x, 0), 0), 1),
3585 XEXP (XEXP (x, 0), 1))) != 0)
3586 {
3587 rtx new
3588 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3589 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3590 INTVAL (XEXP (XEXP (x, 0), 1)));
3591
3592 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3593 INTVAL (XEXP (XEXP (x, 0), 1)));
3594
3595 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3596 }
3597
3598 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3599 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3600 things. Check for cases where both arms are testing the same
3601 condition.
3602
3603 Don't do anything if all operands are very simple. */
3604
3605 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3606 || GET_RTX_CLASS (code) == '<')
3607 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3608 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3609 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3610 == 'o')))
3611 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3612 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3613 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3614 == 'o')))))
3615 || (GET_RTX_CLASS (code) == '1'
3616 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3617 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3618 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3619 == 'o'))))))
3620 {
3621 rtx cond, true_rtx, false_rtx;
3622
3623 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3624 if (cond != 0
3625 /* If everything is a comparison, what we have is highly unlikely
3626 to be simpler, so don't use it. */
3627 && ! (GET_RTX_CLASS (code) == '<'
3628 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3629 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3630 {
3631 rtx cop1 = const0_rtx;
3632 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3633
3634 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3635 return x;
3636
3637 /* Simplify the alternative arms; this may collapse the true and
3638 false arms to store-flag values. */
3639 true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
3640 false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
3641
3642 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3643 is unlikely to be simpler. */
3644 if (general_operand (true_rtx, VOIDmode)
3645 && general_operand (false_rtx, VOIDmode))
3646 {
3647 enum rtx_code reversed;
3648
3649 /* Restarting if we generate a store-flag expression will cause
3650 us to loop. Just drop through in this case. */
3651
3652 /* If the result values are STORE_FLAG_VALUE and zero, we can
3653 just make the comparison operation. */
3654 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3655 x = gen_binary (cond_code, mode, cond, cop1);
3656 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3657 && ((reversed = reversed_comparison_code_parts
3658 (cond_code, cond, cop1, NULL))
3659 != UNKNOWN))
3660 x = gen_binary (reversed, mode, cond, cop1);
3661
3662 /* Likewise, we can make the negate of a comparison operation
3663 if the result values are - STORE_FLAG_VALUE and zero. */
3664 else if (GET_CODE (true_rtx) == CONST_INT
3665 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3666 && false_rtx == const0_rtx)
3667 x = simplify_gen_unary (NEG, mode,
3668 gen_binary (cond_code, mode, cond,
3669 cop1),
3670 mode);
3671 else if (GET_CODE (false_rtx) == CONST_INT
3672 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3673 && true_rtx == const0_rtx
3674 && ((reversed = reversed_comparison_code_parts
3675 (cond_code, cond, cop1, NULL))
3676 != UNKNOWN))
3677 x = simplify_gen_unary (NEG, mode,
3678 gen_binary (reversed, mode,
3679 cond, cop1),
3680 mode);
3681 else
3682 return gen_rtx_IF_THEN_ELSE (mode,
3683 gen_binary (cond_code, VOIDmode,
3684 cond, cop1),
3685 true_rtx, false_rtx);
3686
3687 code = GET_CODE (x);
3688 op0_mode = VOIDmode;
3689 }
3690 }
3691 }
3692
3693 /* Try to fold this expression in case we have constants that weren't
3694 present before. */
3695 temp = 0;
3696 switch (GET_RTX_CLASS (code))
3697 {
3698 case '1':
3699 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3700 break;
3701 case '<':
3702 {
3703 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3704 if (cmp_mode == VOIDmode)
3705 {
3706 cmp_mode = GET_MODE (XEXP (x, 1));
3707 if (cmp_mode == VOIDmode)
3708 cmp_mode = op0_mode;
3709 }
3710 temp = simplify_relational_operation (code, cmp_mode,
3711 XEXP (x, 0), XEXP (x, 1));
3712 }
3713 #ifdef FLOAT_STORE_FLAG_VALUE
3714 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3715 {
3716 if (temp == const0_rtx)
3717 temp = CONST0_RTX (mode);
3718 else
3719 temp = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE (mode),
3720 mode);
3721 }
3722 #endif
3723 break;
3724 case 'c':
3725 case '2':
3726 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3727 break;
3728 case 'b':
3729 case '3':
3730 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3731 XEXP (x, 1), XEXP (x, 2));
3732 break;
3733 }
3734
3735 if (temp)
3736 {
3737 x = temp;
3738 code = GET_CODE (temp);
3739 op0_mode = VOIDmode;
3740 mode = GET_MODE (temp);
3741 }
3742
3743 /* First see if we can apply the inverse distributive law. */
3744 if (code == PLUS || code == MINUS
3745 || code == AND || code == IOR || code == XOR)
3746 {
3747 x = apply_distributive_law (x);
3748 code = GET_CODE (x);
3749 op0_mode = VOIDmode;
3750 }
3751
3752 /* If CODE is an associative operation not otherwise handled, see if we
3753 can associate some operands. This can win if they are constants or
3754 if they are logically related (i.e. (a & b) & a). */
3755 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3756 || code == AND || code == IOR || code == XOR
3757 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3758 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3759 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3760 {
3761 if (GET_CODE (XEXP (x, 0)) == code)
3762 {
3763 rtx other = XEXP (XEXP (x, 0), 0);
3764 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3765 rtx inner_op1 = XEXP (x, 1);
3766 rtx inner;
3767
3768 /* Make sure we pass the constant operand if any as the second
3769 one if this is a commutative operation. */
3770 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3771 {
3772 rtx tem = inner_op0;
3773 inner_op0 = inner_op1;
3774 inner_op1 = tem;
3775 }
3776 inner = simplify_binary_operation (code == MINUS ? PLUS
3777 : code == DIV ? MULT
3778 : code,
3779 mode, inner_op0, inner_op1);
3780
3781 /* For commutative operations, try the other pair if that one
3782 didn't simplify. */
3783 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3784 {
3785 other = XEXP (XEXP (x, 0), 1);
3786 inner = simplify_binary_operation (code, mode,
3787 XEXP (XEXP (x, 0), 0),
3788 XEXP (x, 1));
3789 }
3790
3791 if (inner)
3792 return gen_binary (code, mode, other, inner);
3793 }
3794 }
3795
3796 /* A little bit of algebraic simplification here. */
3797 switch (code)
3798 {
3799 case MEM:
3800 /* Ensure that our address has any ASHIFTs converted to MULT in case
3801 address-recognizing predicates are called later. */
3802 temp = make_compound_operation (XEXP (x, 0), MEM);
3803 SUBST (XEXP (x, 0), temp);
3804 break;
3805
3806 case SUBREG:
3807 if (op0_mode == VOIDmode)
3808 op0_mode = GET_MODE (SUBREG_REG (x));
3809
3810 /* simplify_subreg can't use gen_lowpart_for_combine. */
3811 if (CONSTANT_P (SUBREG_REG (x))
3812 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3813 /* Don't call gen_lowpart_for_combine if the inner mode
3814 is VOIDmode and we cannot simplify it, as SUBREG without
3815 inner mode is invalid. */
3816 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3817 || gen_lowpart_common (mode, SUBREG_REG (x))))
3818 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3819
3820 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3821 break;
3822 {
3823 rtx temp;
3824 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3825 SUBREG_BYTE (x));
3826 if (temp)
3827 return temp;
3828 }
3829
3830 /* Don't change the mode of the MEM if that would change the meaning
3831 of the address. */
3832 if (GET_CODE (SUBREG_REG (x)) == MEM
3833 && (MEM_VOLATILE_P (SUBREG_REG (x))
3834 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3835 return gen_rtx_CLOBBER (mode, const0_rtx);
3836
3837 /* Note that we cannot do any narrowing for non-constants since
3838 we might have been counting on using the fact that some bits were
3839 zero. We now do this in the SET. */
3840
3841 break;
3842
3843 case NOT:
3844 /* (not (plus X -1)) can become (neg X). */
3845 if (GET_CODE (XEXP (x, 0)) == PLUS
3846 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3847 return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
3848
3849 /* Similarly, (not (neg X)) is (plus X -1). */
3850 if (GET_CODE (XEXP (x, 0)) == NEG)
3851 return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3852
3853 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3854 if (GET_CODE (XEXP (x, 0)) == XOR
3855 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3856 && (temp = simplify_unary_operation (NOT, mode,
3857 XEXP (XEXP (x, 0), 1),
3858 mode)) != 0)
3859 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3860
3861 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3862 other than 1, but that is not valid. We could do a similar
3863 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3864 but this doesn't seem common enough to bother with. */
3865 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3866 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3867 return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3868 const1_rtx, mode),
3869 XEXP (XEXP (x, 0), 1));
3870
3871 if (GET_CODE (XEXP (x, 0)) == SUBREG
3872 && subreg_lowpart_p (XEXP (x, 0))
3873 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3874 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3875 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3876 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3877 {
3878 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3879
3880 x = gen_rtx_ROTATE (inner_mode,
3881 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3882 inner_mode),
3883 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3884 return gen_lowpart_for_combine (mode, x);
3885 }
3886
3887 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3888 reversing the comparison code if valid. */
3889 if (STORE_FLAG_VALUE == -1
3890 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3891 && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3892 XEXP (XEXP (x, 0), 1))))
3893 return reversed;
3894
3895 /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3896 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3897 perform the above simplification. */
3898
3899 if (STORE_FLAG_VALUE == -1
3900 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3901 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3902 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3903 return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3904
3905 /* Apply De Morgan's laws to reduce number of patterns for machines
3906 with negating logical insns (and-not, nand, etc.). If result has
3907 only one NOT, put it first, since that is how the patterns are
3908 coded. */
3909
3910 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3911 {
3912 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3913 enum machine_mode op_mode;
3914
3915 op_mode = GET_MODE (in1);
3916 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3917
3918 op_mode = GET_MODE (in2);
3919 if (op_mode == VOIDmode)
3920 op_mode = mode;
3921 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3922
3923 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3924 {
3925 rtx tem = in2;
3926 in2 = in1; in1 = tem;
3927 }
3928
3929 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3930 mode, in1, in2);
3931 }
3932 break;
3933
3934 case NEG:
3935 /* (neg (plus X 1)) can become (not X). */
3936 if (GET_CODE (XEXP (x, 0)) == PLUS
3937 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3938 return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
3939
3940 /* Similarly, (neg (not X)) is (plus X 1). */
3941 if (GET_CODE (XEXP (x, 0)) == NOT)
3942 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
3943
3944 /* (neg (minus X Y)) can become (minus Y X). This transformation
3945 isn't safe for modes with signed zeros, since if X and Y are
3946 both +0, (minus Y X) is the same as (minus X Y). If the rounding
3947 mode is towards +infinity (or -infinity) then the two expressions
3948 will be rounded differently. */
3949 if (GET_CODE (XEXP (x, 0)) == MINUS
3950 && !HONOR_SIGNED_ZEROS (mode)
3951 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
3952 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
3953 XEXP (XEXP (x, 0), 0));
3954
3955 /* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
3956 if (GET_CODE (XEXP (x, 0)) == PLUS
3957 && !HONOR_SIGNED_ZEROS (mode)
3958 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
3959 {
3960 temp = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 0), 0), mode);
3961 temp = combine_simplify_rtx (temp, mode, last, in_dest);
3962 return gen_binary (MINUS, mode, temp, XEXP (XEXP (x, 0), 1));
3963 }
3964
3965 /* (neg (mult A B)) becomes (mult (neg A) B).
3966 This works even for floating-point values. */
3967 if (GET_CODE (XEXP (x, 0)) == MULT)
3968 {
3969 temp = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 0), 0), mode);
3970 return gen_binary (MULT, mode, temp, XEXP (XEXP (x, 0), 1));
3971 }
3972
3973 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3974 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
3975 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
3976 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3977
3978 /* NEG commutes with ASHIFT since it is multiplication. Only do this
3979 if we can then eliminate the NEG (e.g.,
3980 if the operand is a constant). */
3981
3982 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
3983 {
3984 temp = simplify_unary_operation (NEG, mode,
3985 XEXP (XEXP (x, 0), 0), mode);
3986 if (temp)
3987 return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
3988 }
3989
3990 temp = expand_compound_operation (XEXP (x, 0));
3991
3992 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3993 replaced by (lshiftrt X C). This will convert
3994 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
3995
3996 if (GET_CODE (temp) == ASHIFTRT
3997 && GET_CODE (XEXP (temp, 1)) == CONST_INT
3998 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
3999 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4000 INTVAL (XEXP (temp, 1)));
4001
4002 /* If X has only a single bit that might be nonzero, say, bit I, convert
4003 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4004 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4005 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4006 or a SUBREG of one since we'd be making the expression more
4007 complex if it was just a register. */
4008
4009 if (GET_CODE (temp) != REG
4010 && ! (GET_CODE (temp) == SUBREG
4011 && GET_CODE (SUBREG_REG (temp)) == REG)
4012 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4013 {
4014 rtx temp1 = simplify_shift_const
4015 (NULL_RTX, ASHIFTRT, mode,
4016 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4017 GET_MODE_BITSIZE (mode) - 1 - i),
4018 GET_MODE_BITSIZE (mode) - 1 - i);
4019
4020 /* If all we did was surround TEMP with the two shifts, we
4021 haven't improved anything, so don't use it. Otherwise,
4022 we are better off with TEMP1. */
4023 if (GET_CODE (temp1) != ASHIFTRT
4024 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4025 || XEXP (XEXP (temp1, 0), 0) != temp)
4026 return temp1;
4027 }
4028 break;
4029
4030 case TRUNCATE:
4031 /* We can't handle truncation to a partial integer mode here
4032 because we don't know the real bitsize of the partial
4033 integer mode. */
4034 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4035 break;
4036
4037 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4038 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4039 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4040 SUBST (XEXP (x, 0),
4041 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4042 GET_MODE_MASK (mode), NULL_RTX, 0));
4043
4044 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4045 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4046 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4047 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4048 return XEXP (XEXP (x, 0), 0);
4049
4050 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4051 (OP:SI foo:SI) if OP is NEG or ABS. */
4052 if ((GET_CODE (XEXP (x, 0)) == ABS
4053 || GET_CODE (XEXP (x, 0)) == NEG)
4054 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4055 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4056 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4057 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4058 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4059
4060 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4061 (truncate:SI x). */
4062 if (GET_CODE (XEXP (x, 0)) == SUBREG
4063 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4064 && subreg_lowpart_p (XEXP (x, 0)))
4065 return SUBREG_REG (XEXP (x, 0));
4066
4067 /* If we know that the value is already truncated, we can
4068 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4069 is nonzero for the corresponding modes. But don't do this
4070 for an (LSHIFTRT (MULT ...)) since this will cause problems
4071 with the umulXi3_highpart patterns. */
4072 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4073 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4074 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4075 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4076 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4077 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4078 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4079
4080 /* A truncate of a comparison can be replaced with a subreg if
4081 STORE_FLAG_VALUE permits. This is like the previous test,
4082 but it works even if the comparison is done in a mode larger
4083 than HOST_BITS_PER_WIDE_INT. */
4084 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4085 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4086 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4087 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4088
4089 /* Similarly, a truncate of a register whose value is a
4090 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4091 permits. */
4092 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4093 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4094 && (temp = get_last_value (XEXP (x, 0)))
4095 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4096 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4097
4098 break;
4099
4100 case FLOAT_TRUNCATE:
4101 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4102 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4103 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4104 return XEXP (XEXP (x, 0), 0);
4105
4106 /* (float_truncate:SF (float_truncate:DF foo:XF))
4107 = (float_truncate:SF foo:XF).
4108 This may eliminate double rounding, so it is unsafe.
4109
4110 (float_truncate:SF (float_extend:XF foo:DF))
4111 = (float_truncate:SF foo:DF).
4112
4113 (float_truncate:DF (float_extend:XF foo:SF))
4114 = (float_extend:SF foo:DF). */
4115 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4116 && flag_unsafe_math_optimizations)
4117 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4118 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4119 0)))
4120 > GET_MODE_SIZE (mode)
4121 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4122 mode,
4123 XEXP (XEXP (x, 0), 0), mode);
4124
4125 /* (float_truncate (float x)) is (float x) */
4126 if (GET_CODE (XEXP (x, 0)) == FLOAT
4127 && (flag_unsafe_math_optimizations
4128 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4129 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4130 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4131 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4132 return simplify_gen_unary (FLOAT, mode,
4133 XEXP (XEXP (x, 0), 0),
4134 GET_MODE (XEXP (XEXP (x, 0), 0)));
4135
4136 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4137 (OP:SF foo:SF) if OP is NEG or ABS. */
4138 if ((GET_CODE (XEXP (x, 0)) == ABS
4139 || GET_CODE (XEXP (x, 0)) == NEG)
4140 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4141 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4142 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4143 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4144
4145 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4146 is (float_truncate:SF x). */
4147 if (GET_CODE (XEXP (x, 0)) == SUBREG
4148 && subreg_lowpart_p (XEXP (x, 0))
4149 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4150 return SUBREG_REG (XEXP (x, 0));
4151 break;
4152 case FLOAT_EXTEND:
4153 /* (float_extend (float_extend x)) is (float_extend x)
4154
4155 (float_extend (float x)) is (float x) assuming that double
4156 rounding can't happen.
4157 */
4158 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4159 || (GET_CODE (XEXP (x, 0)) == FLOAT
4160 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4161 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4162 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4163 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4164 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4165 XEXP (XEXP (x, 0), 0),
4166 GET_MODE (XEXP (XEXP (x, 0), 0)));
4167
4168 break;
4169 #ifdef HAVE_cc0
4170 case COMPARE:
4171 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4172 using cc0, in which case we want to leave it as a COMPARE
4173 so we can distinguish it from a register-register-copy. */
4174 if (XEXP (x, 1) == const0_rtx)
4175 return XEXP (x, 0);
4176
4177 /* x - 0 is the same as x unless x's mode has signed zeros and
4178 allows rounding towards -infinity. Under those conditions,
4179 0 - 0 is -0. */
4180 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4181 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4182 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4183 return XEXP (x, 0);
4184 break;
4185 #endif
4186
4187 case CONST:
4188 /* (const (const X)) can become (const X). Do it this way rather than
4189 returning the inner CONST since CONST can be shared with a
4190 REG_EQUAL note. */
4191 if (GET_CODE (XEXP (x, 0)) == CONST)
4192 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4193 break;
4194
4195 #ifdef HAVE_lo_sum
4196 case LO_SUM:
4197 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4198 can add in an offset. find_split_point will split this address up
4199 again if it doesn't match. */
4200 if (GET_CODE (XEXP (x, 0)) == HIGH
4201 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4202 return XEXP (x, 1);
4203 break;
4204 #endif
4205
4206 case PLUS:
4207 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4208 */
4209 if (GET_CODE (XEXP (x, 0)) == MULT
4210 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4211 {
4212 rtx in1, in2;
4213
4214 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4215 in2 = XEXP (XEXP (x, 0), 1);
4216 return gen_binary (MINUS, mode, XEXP (x, 1),
4217 gen_binary (MULT, mode, in1, in2));
4218 }
4219
4220 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4221 outermost. That's because that's the way indexed addresses are
4222 supposed to appear. This code used to check many more cases, but
4223 they are now checked elsewhere. */
4224 if (GET_CODE (XEXP (x, 0)) == PLUS
4225 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4226 return gen_binary (PLUS, mode,
4227 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4228 XEXP (x, 1)),
4229 XEXP (XEXP (x, 0), 1));
4230
4231 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4232 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4233 bit-field and can be replaced by either a sign_extend or a
4234 sign_extract. The `and' may be a zero_extend and the two
4235 <c>, -<c> constants may be reversed. */
4236 if (GET_CODE (XEXP (x, 0)) == XOR
4237 && GET_CODE (XEXP (x, 1)) == CONST_INT
4238 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4239 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4240 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4241 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4242 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4243 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4244 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4245 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4246 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4247 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4248 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4249 == (unsigned int) i + 1))))
4250 return simplify_shift_const
4251 (NULL_RTX, ASHIFTRT, mode,
4252 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4253 XEXP (XEXP (XEXP (x, 0), 0), 0),
4254 GET_MODE_BITSIZE (mode) - (i + 1)),
4255 GET_MODE_BITSIZE (mode) - (i + 1));
4256
4257 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4258 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4259 is 1. This produces better code than the alternative immediately
4260 below. */
4261 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4262 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4263 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4264 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4265 XEXP (XEXP (x, 0), 0),
4266 XEXP (XEXP (x, 0), 1))))
4267 return
4268 simplify_gen_unary (NEG, mode, reversed, mode);
4269
4270 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4271 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4272 the bitsize of the mode - 1. This allows simplification of
4273 "a = (b & 8) == 0;" */
4274 if (XEXP (x, 1) == constm1_rtx
4275 && GET_CODE (XEXP (x, 0)) != REG
4276 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4277 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4278 && nonzero_bits (XEXP (x, 0), mode) == 1)
4279 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4280 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4281 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4282 GET_MODE_BITSIZE (mode) - 1),
4283 GET_MODE_BITSIZE (mode) - 1);
4284
4285 /* If we are adding two things that have no bits in common, convert
4286 the addition into an IOR. This will often be further simplified,
4287 for example in cases like ((a & 1) + (a & 2)), which can
4288 become a & 3. */
4289
4290 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4291 && (nonzero_bits (XEXP (x, 0), mode)
4292 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4293 {
4294 /* Try to simplify the expression further. */
4295 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4296 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4297
4298 /* If we could, great. If not, do not go ahead with the IOR
4299 replacement, since PLUS appears in many special purpose
4300 address arithmetic instructions. */
4301 if (GET_CODE (temp) != CLOBBER && temp != tor)
4302 return temp;
4303 }
4304 break;
4305
4306 case MINUS:
4307 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4308 by reversing the comparison code if valid. */
4309 if (STORE_FLAG_VALUE == 1
4310 && XEXP (x, 0) == const1_rtx
4311 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4312 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4313 XEXP (XEXP (x, 1), 0),
4314 XEXP (XEXP (x, 1), 1))))
4315 return reversed;
4316
4317 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4318 (and <foo> (const_int pow2-1)) */
4319 if (GET_CODE (XEXP (x, 1)) == AND
4320 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4321 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4322 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4323 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4324 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4325
4326 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4327 */
4328 if (GET_CODE (XEXP (x, 1)) == MULT
4329 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4330 {
4331 rtx in1, in2;
4332
4333 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4334 in2 = XEXP (XEXP (x, 1), 1);
4335 return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4336 XEXP (x, 0));
4337 }
4338
4339 /* Canonicalize (minus (neg A) (mult B C)) to
4340 (minus (mult (neg B) C) A). */
4341 if (GET_CODE (XEXP (x, 1)) == MULT
4342 && GET_CODE (XEXP (x, 0)) == NEG)
4343 {
4344 rtx in1, in2;
4345
4346 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4347 in2 = XEXP (XEXP (x, 1), 1);
4348 return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4349 XEXP (XEXP (x, 0), 0));
4350 }
4351
4352 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4353 integers. */
4354 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4355 return gen_binary (MINUS, mode,
4356 gen_binary (MINUS, mode, XEXP (x, 0),
4357 XEXP (XEXP (x, 1), 0)),
4358 XEXP (XEXP (x, 1), 1));
4359 break;
4360
4361 case MULT:
4362 /* If we have (mult (plus A B) C), apply the distributive law and then
4363 the inverse distributive law to see if things simplify. This
4364 occurs mostly in addresses, often when unrolling loops. */
4365
4366 if (GET_CODE (XEXP (x, 0)) == PLUS)
4367 {
4368 x = apply_distributive_law
4369 (gen_binary (PLUS, mode,
4370 gen_binary (MULT, mode,
4371 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4372 gen_binary (MULT, mode,
4373 XEXP (XEXP (x, 0), 1),
4374 copy_rtx (XEXP (x, 1)))));
4375
4376 if (GET_CODE (x) != MULT)
4377 return x;
4378 }
4379 /* Try simplify a*(b/c) as (a*b)/c. */
4380 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4381 && GET_CODE (XEXP (x, 0)) == DIV)
4382 {
4383 rtx tem = simplify_binary_operation (MULT, mode,
4384 XEXP (XEXP (x, 0), 0),
4385 XEXP (x, 1));
4386 if (tem)
4387 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4388 }
4389 break;
4390
4391 case UDIV:
4392 /* If this is a divide by a power of two, treat it as a shift if
4393 its first operand is a shift. */
4394 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4395 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4396 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4397 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4398 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4399 || GET_CODE (XEXP (x, 0)) == ROTATE
4400 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4401 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4402 break;
4403
4404 case EQ: case NE:
4405 case GT: case GTU: case GE: case GEU:
4406 case LT: case LTU: case LE: case LEU:
4407 case UNEQ: case LTGT:
4408 case UNGT: case UNGE:
4409 case UNLT: case UNLE:
4410 case UNORDERED: case ORDERED:
4411 /* If the first operand is a condition code, we can't do anything
4412 with it. */
4413 if (GET_CODE (XEXP (x, 0)) == COMPARE
4414 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4415 && ! CC0_P (XEXP (x, 0))))
4416 {
4417 rtx op0 = XEXP (x, 0);
4418 rtx op1 = XEXP (x, 1);
4419 enum rtx_code new_code;
4420
4421 if (GET_CODE (op0) == COMPARE)
4422 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4423
4424 /* Simplify our comparison, if possible. */
4425 new_code = simplify_comparison (code, &op0, &op1);
4426
4427 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4428 if only the low-order bit is possibly nonzero in X (such as when
4429 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4430 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4431 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4432 (plus X 1).
4433
4434 Remove any ZERO_EXTRACT we made when thinking this was a
4435 comparison. It may now be simpler to use, e.g., an AND. If a
4436 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4437 the call to make_compound_operation in the SET case. */
4438
4439 if (STORE_FLAG_VALUE == 1
4440 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4441 && op1 == const0_rtx
4442 && mode == GET_MODE (op0)
4443 && nonzero_bits (op0, mode) == 1)
4444 return gen_lowpart_for_combine (mode,
4445 expand_compound_operation (op0));
4446
4447 else if (STORE_FLAG_VALUE == 1
4448 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4449 && op1 == const0_rtx
4450 && mode == GET_MODE (op0)
4451 && (num_sign_bit_copies (op0, mode)
4452 == GET_MODE_BITSIZE (mode)))
4453 {
4454 op0 = expand_compound_operation (op0);
4455 return simplify_gen_unary (NEG, mode,
4456 gen_lowpart_for_combine (mode, op0),
4457 mode);
4458 }
4459
4460 else if (STORE_FLAG_VALUE == 1
4461 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4462 && op1 == const0_rtx
4463 && mode == GET_MODE (op0)
4464 && nonzero_bits (op0, mode) == 1)
4465 {
4466 op0 = expand_compound_operation (op0);
4467 return gen_binary (XOR, mode,
4468 gen_lowpart_for_combine (mode, op0),
4469 const1_rtx);
4470 }
4471
4472 else if (STORE_FLAG_VALUE == 1
4473 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4474 && op1 == const0_rtx
4475 && mode == GET_MODE (op0)
4476 && (num_sign_bit_copies (op0, mode)
4477 == GET_MODE_BITSIZE (mode)))
4478 {
4479 op0 = expand_compound_operation (op0);
4480 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4481 }
4482
4483 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4484 those above. */
4485 if (STORE_FLAG_VALUE == -1
4486 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4487 && op1 == const0_rtx
4488 && (num_sign_bit_copies (op0, mode)
4489 == GET_MODE_BITSIZE (mode)))
4490 return gen_lowpart_for_combine (mode,
4491 expand_compound_operation (op0));
4492
4493 else if (STORE_FLAG_VALUE == -1
4494 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4495 && op1 == const0_rtx
4496 && mode == GET_MODE (op0)
4497 && nonzero_bits (op0, mode) == 1)
4498 {
4499 op0 = expand_compound_operation (op0);
4500 return simplify_gen_unary (NEG, mode,
4501 gen_lowpart_for_combine (mode, op0),
4502 mode);
4503 }
4504
4505 else if (STORE_FLAG_VALUE == -1
4506 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4507 && op1 == const0_rtx
4508 && mode == GET_MODE (op0)
4509 && (num_sign_bit_copies (op0, mode)
4510 == GET_MODE_BITSIZE (mode)))
4511 {
4512 op0 = expand_compound_operation (op0);
4513 return simplify_gen_unary (NOT, mode,
4514 gen_lowpart_for_combine (mode, op0),
4515 mode);
4516 }
4517
4518 /* If X is 0/1, (eq X 0) is X-1. */
4519 else if (STORE_FLAG_VALUE == -1
4520 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4521 && op1 == const0_rtx
4522 && mode == GET_MODE (op0)
4523 && nonzero_bits (op0, mode) == 1)
4524 {
4525 op0 = expand_compound_operation (op0);
4526 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4527 }
4528
4529 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4530 one bit that might be nonzero, we can convert (ne x 0) to
4531 (ashift x c) where C puts the bit in the sign bit. Remove any
4532 AND with STORE_FLAG_VALUE when we are done, since we are only
4533 going to test the sign bit. */
4534 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4535 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4536 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4537 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4538 && op1 == const0_rtx
4539 && mode == GET_MODE (op0)
4540 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4541 {
4542 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4543 expand_compound_operation (op0),
4544 GET_MODE_BITSIZE (mode) - 1 - i);
4545 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4546 return XEXP (x, 0);
4547 else
4548 return x;
4549 }
4550
4551 /* If the code changed, return a whole new comparison. */
4552 if (new_code != code)
4553 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4554
4555 /* Otherwise, keep this operation, but maybe change its operands.
4556 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4557 SUBST (XEXP (x, 0), op0);
4558 SUBST (XEXP (x, 1), op1);
4559 }
4560 break;
4561
4562 case IF_THEN_ELSE:
4563 return simplify_if_then_else (x);
4564
4565 case ZERO_EXTRACT:
4566 case SIGN_EXTRACT:
4567 case ZERO_EXTEND:
4568 case SIGN_EXTEND:
4569 /* If we are processing SET_DEST, we are done. */
4570 if (in_dest)
4571 return x;
4572
4573 return expand_compound_operation (x);
4574
4575 case SET:
4576 return simplify_set (x);
4577
4578 case AND:
4579 case IOR:
4580 case XOR:
4581 return simplify_logical (x, last);
4582
4583 case ABS:
4584 /* (abs (neg <foo>)) -> (abs <foo>) */
4585 if (GET_CODE (XEXP (x, 0)) == NEG)
4586 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4587
4588 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4589 do nothing. */
4590 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4591 break;
4592
4593 /* If operand is something known to be positive, ignore the ABS. */
4594 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4595 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4596 <= HOST_BITS_PER_WIDE_INT)
4597 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4598 & ((HOST_WIDE_INT) 1
4599 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4600 == 0)))
4601 return XEXP (x, 0);
4602
4603 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4604 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4605 return gen_rtx_NEG (mode, XEXP (x, 0));
4606
4607 break;
4608
4609 case FFS:
4610 /* (ffs (*_extend <X>)) = (ffs <X>) */
4611 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4612 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4613 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4614 break;
4615
4616 case POPCOUNT:
4617 case PARITY:
4618 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4619 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4620 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4621 break;
4622
4623 case FLOAT:
4624 /* (float (sign_extend <X>)) = (float <X>). */
4625 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4626 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4627 break;
4628
4629 case ASHIFT:
4630 case LSHIFTRT:
4631 case ASHIFTRT:
4632 case ROTATE:
4633 case ROTATERT:
4634 /* If this is a shift by a constant amount, simplify it. */
4635 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4636 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4637 INTVAL (XEXP (x, 1)));
4638
4639 #ifdef SHIFT_COUNT_TRUNCATED
4640 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4641 SUBST (XEXP (x, 1),
4642 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4643 ((HOST_WIDE_INT) 1
4644 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4645 - 1,
4646 NULL_RTX, 0));
4647 #endif
4648
4649 break;
4650
4651 case VEC_SELECT:
4652 {
4653 rtx op0 = XEXP (x, 0);
4654 rtx op1 = XEXP (x, 1);
4655 int len;
4656
4657 if (GET_CODE (op1) != PARALLEL)
4658 abort ();
4659 len = XVECLEN (op1, 0);
4660 if (len == 1
4661 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4662 && GET_CODE (op0) == VEC_CONCAT)
4663 {
4664 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4665
4666 /* Try to find the element in the VEC_CONCAT. */
4667 for (;;)
4668 {
4669 if (GET_MODE (op0) == GET_MODE (x))
4670 return op0;
4671 if (GET_CODE (op0) == VEC_CONCAT)
4672 {
4673 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4674 if (op0_size < offset)
4675 op0 = XEXP (op0, 0);
4676 else
4677 {
4678 offset -= op0_size;
4679 op0 = XEXP (op0, 1);
4680 }
4681 }
4682 else
4683 break;
4684 }
4685 }
4686 }
4687
4688 break;
4689
4690 default:
4691 break;
4692 }
4693
4694 return x;
4695 }
4696 \f
4697 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4698
4699 static rtx
4700 simplify_if_then_else (rtx x)
4701 {
4702 enum machine_mode mode = GET_MODE (x);
4703 rtx cond = XEXP (x, 0);
4704 rtx true_rtx = XEXP (x, 1);
4705 rtx false_rtx = XEXP (x, 2);
4706 enum rtx_code true_code = GET_CODE (cond);
4707 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4708 rtx temp;
4709 int i;
4710 enum rtx_code false_code;
4711 rtx reversed;
4712
4713 /* Simplify storing of the truth value. */
4714 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4715 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4716
4717 /* Also when the truth value has to be reversed. */
4718 if (comparison_p
4719 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4720 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4721 XEXP (cond, 1))))
4722 return reversed;
4723
4724 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4725 in it is being compared against certain values. Get the true and false
4726 comparisons and see if that says anything about the value of each arm. */
4727
4728 if (comparison_p
4729 && ((false_code = combine_reversed_comparison_code (cond))
4730 != UNKNOWN)
4731 && GET_CODE (XEXP (cond, 0)) == REG)
4732 {
4733 HOST_WIDE_INT nzb;
4734 rtx from = XEXP (cond, 0);
4735 rtx true_val = XEXP (cond, 1);
4736 rtx false_val = true_val;
4737 int swapped = 0;
4738
4739 /* If FALSE_CODE is EQ, swap the codes and arms. */
4740
4741 if (false_code == EQ)
4742 {
4743 swapped = 1, true_code = EQ, false_code = NE;
4744 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4745 }
4746
4747 /* If we are comparing against zero and the expression being tested has
4748 only a single bit that might be nonzero, that is its value when it is
4749 not equal to zero. Similarly if it is known to be -1 or 0. */
4750
4751 if (true_code == EQ && true_val == const0_rtx
4752 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4753 false_code = EQ, false_val = GEN_INT (nzb);
4754 else if (true_code == EQ && true_val == const0_rtx
4755 && (num_sign_bit_copies (from, GET_MODE (from))
4756 == GET_MODE_BITSIZE (GET_MODE (from))))
4757 false_code = EQ, false_val = constm1_rtx;
4758
4759 /* Now simplify an arm if we know the value of the register in the
4760 branch and it is used in the arm. Be careful due to the potential
4761 of locally-shared RTL. */
4762
4763 if (reg_mentioned_p (from, true_rtx))
4764 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4765 from, true_val),
4766 pc_rtx, pc_rtx, 0, 0);
4767 if (reg_mentioned_p (from, false_rtx))
4768 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4769 from, false_val),
4770 pc_rtx, pc_rtx, 0, 0);
4771
4772 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4773 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4774
4775 true_rtx = XEXP (x, 1);
4776 false_rtx = XEXP (x, 2);
4777 true_code = GET_CODE (cond);
4778 }
4779
4780 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4781 reversed, do so to avoid needing two sets of patterns for
4782 subtract-and-branch insns. Similarly if we have a constant in the true
4783 arm, the false arm is the same as the first operand of the comparison, or
4784 the false arm is more complicated than the true arm. */
4785
4786 if (comparison_p
4787 && combine_reversed_comparison_code (cond) != UNKNOWN
4788 && (true_rtx == pc_rtx
4789 || (CONSTANT_P (true_rtx)
4790 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4791 || true_rtx == const0_rtx
4792 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4793 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4794 || (GET_CODE (true_rtx) == SUBREG
4795 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4796 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4797 || reg_mentioned_p (true_rtx, false_rtx)
4798 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4799 {
4800 true_code = reversed_comparison_code (cond, NULL);
4801 SUBST (XEXP (x, 0),
4802 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4803 XEXP (cond, 1)));
4804
4805 SUBST (XEXP (x, 1), false_rtx);
4806 SUBST (XEXP (x, 2), true_rtx);
4807
4808 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4809 cond = XEXP (x, 0);
4810
4811 /* It is possible that the conditional has been simplified out. */
4812 true_code = GET_CODE (cond);
4813 comparison_p = GET_RTX_CLASS (true_code) == '<';
4814 }
4815
4816 /* If the two arms are identical, we don't need the comparison. */
4817
4818 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4819 return true_rtx;
4820
4821 /* Convert a == b ? b : a to "a". */
4822 if (true_code == EQ && ! side_effects_p (cond)
4823 && !HONOR_NANS (mode)
4824 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4825 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4826 return false_rtx;
4827 else if (true_code == NE && ! side_effects_p (cond)
4828 && !HONOR_NANS (mode)
4829 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4830 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4831 return true_rtx;
4832
4833 /* Look for cases where we have (abs x) or (neg (abs X)). */
4834
4835 if (GET_MODE_CLASS (mode) == MODE_INT
4836 && GET_CODE (false_rtx) == NEG
4837 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4838 && comparison_p
4839 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4840 && ! side_effects_p (true_rtx))
4841 switch (true_code)
4842 {
4843 case GT:
4844 case GE:
4845 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4846 case LT:
4847 case LE:
4848 return
4849 simplify_gen_unary (NEG, mode,
4850 simplify_gen_unary (ABS, mode, true_rtx, mode),
4851 mode);
4852 default:
4853 break;
4854 }
4855
4856 /* Look for MIN or MAX. */
4857
4858 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4859 && comparison_p
4860 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4861 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4862 && ! side_effects_p (cond))
4863 switch (true_code)
4864 {
4865 case GE:
4866 case GT:
4867 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4868 case LE:
4869 case LT:
4870 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4871 case GEU:
4872 case GTU:
4873 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4874 case LEU:
4875 case LTU:
4876 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4877 default:
4878 break;
4879 }
4880
4881 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4882 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4883 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4884 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4885 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4886 neither 1 or -1, but it isn't worth checking for. */
4887
4888 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4889 && comparison_p
4890 && GET_MODE_CLASS (mode) == MODE_INT
4891 && ! side_effects_p (x))
4892 {
4893 rtx t = make_compound_operation (true_rtx, SET);
4894 rtx f = make_compound_operation (false_rtx, SET);
4895 rtx cond_op0 = XEXP (cond, 0);
4896 rtx cond_op1 = XEXP (cond, 1);
4897 enum rtx_code op = NIL, extend_op = NIL;
4898 enum machine_mode m = mode;
4899 rtx z = 0, c1 = NULL_RTX;
4900
4901 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4902 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4903 || GET_CODE (t) == ASHIFT
4904 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4905 && rtx_equal_p (XEXP (t, 0), f))
4906 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4907
4908 /* If an identity-zero op is commutative, check whether there
4909 would be a match if we swapped the operands. */
4910 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4911 || GET_CODE (t) == XOR)
4912 && rtx_equal_p (XEXP (t, 1), f))
4913 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4914 else if (GET_CODE (t) == SIGN_EXTEND
4915 && (GET_CODE (XEXP (t, 0)) == PLUS
4916 || GET_CODE (XEXP (t, 0)) == MINUS
4917 || GET_CODE (XEXP (t, 0)) == IOR
4918 || GET_CODE (XEXP (t, 0)) == XOR
4919 || GET_CODE (XEXP (t, 0)) == ASHIFT
4920 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4921 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4922 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4923 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4924 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4925 && (num_sign_bit_copies (f, GET_MODE (f))
4926 > (unsigned int)
4927 (GET_MODE_BITSIZE (mode)
4928 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4929 {
4930 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4931 extend_op = SIGN_EXTEND;
4932 m = GET_MODE (XEXP (t, 0));
4933 }
4934 else if (GET_CODE (t) == SIGN_EXTEND
4935 && (GET_CODE (XEXP (t, 0)) == PLUS
4936 || GET_CODE (XEXP (t, 0)) == IOR
4937 || GET_CODE (XEXP (t, 0)) == XOR)
4938 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4939 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4940 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4941 && (num_sign_bit_copies (f, GET_MODE (f))
4942 > (unsigned int)
4943 (GET_MODE_BITSIZE (mode)
4944 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4945 {
4946 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4947 extend_op = SIGN_EXTEND;
4948 m = GET_MODE (XEXP (t, 0));
4949 }
4950 else if (GET_CODE (t) == ZERO_EXTEND
4951 && (GET_CODE (XEXP (t, 0)) == PLUS
4952 || GET_CODE (XEXP (t, 0)) == MINUS
4953 || GET_CODE (XEXP (t, 0)) == IOR
4954 || GET_CODE (XEXP (t, 0)) == XOR
4955 || GET_CODE (XEXP (t, 0)) == ASHIFT
4956 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4957 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4958 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4959 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4960 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4961 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4962 && ((nonzero_bits (f, GET_MODE (f))
4963 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4964 == 0))
4965 {
4966 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4967 extend_op = ZERO_EXTEND;
4968 m = GET_MODE (XEXP (t, 0));
4969 }
4970 else if (GET_CODE (t) == ZERO_EXTEND
4971 && (GET_CODE (XEXP (t, 0)) == PLUS
4972 || GET_CODE (XEXP (t, 0)) == IOR
4973 || GET_CODE (XEXP (t, 0)) == XOR)
4974 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4975 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4976 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4977 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4978 && ((nonzero_bits (f, GET_MODE (f))
4979 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4980 == 0))
4981 {
4982 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4983 extend_op = ZERO_EXTEND;
4984 m = GET_MODE (XEXP (t, 0));
4985 }
4986
4987 if (z)
4988 {
4989 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4990 pc_rtx, pc_rtx, 0, 0);
4991 temp = gen_binary (MULT, m, temp,
4992 gen_binary (MULT, m, c1, const_true_rtx));
4993 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4994 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4995
4996 if (extend_op != NIL)
4997 temp = simplify_gen_unary (extend_op, mode, temp, m);
4998
4999 return temp;
5000 }
5001 }
5002
5003 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5004 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5005 negation of a single bit, we can convert this operation to a shift. We
5006 can actually do this more generally, but it doesn't seem worth it. */
5007
5008 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5009 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5010 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5011 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5012 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5013 == GET_MODE_BITSIZE (mode))
5014 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5015 return
5016 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5017 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
5018
5019 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5020 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5021 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5022 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5023 == nonzero_bits (XEXP (cond, 0), mode)
5024 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5025 return XEXP (cond, 0);
5026
5027 return x;
5028 }
5029 \f
5030 /* Simplify X, a SET expression. Return the new expression. */
5031
5032 static rtx
5033 simplify_set (rtx x)
5034 {
5035 rtx src = SET_SRC (x);
5036 rtx dest = SET_DEST (x);
5037 enum machine_mode mode
5038 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5039 rtx other_insn;
5040 rtx *cc_use;
5041
5042 /* (set (pc) (return)) gets written as (return). */
5043 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5044 return src;
5045
5046 /* Now that we know for sure which bits of SRC we are using, see if we can
5047 simplify the expression for the object knowing that we only need the
5048 low-order bits. */
5049
5050 if (GET_MODE_CLASS (mode) == MODE_INT
5051 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5052 {
5053 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5054 SUBST (SET_SRC (x), src);
5055 }
5056
5057 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5058 the comparison result and try to simplify it unless we already have used
5059 undobuf.other_insn. */
5060 if ((GET_MODE_CLASS (mode) == MODE_CC
5061 || GET_CODE (src) == COMPARE
5062 || CC0_P (dest))
5063 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5064 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5065 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
5066 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5067 {
5068 enum rtx_code old_code = GET_CODE (*cc_use);
5069 enum rtx_code new_code;
5070 rtx op0, op1, tmp;
5071 int other_changed = 0;
5072 enum machine_mode compare_mode = GET_MODE (dest);
5073 enum machine_mode tmp_mode;
5074
5075 if (GET_CODE (src) == COMPARE)
5076 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5077 else
5078 op0 = src, op1 = const0_rtx;
5079
5080 /* Check whether the comparison is known at compile time. */
5081 if (GET_MODE (op0) != VOIDmode)
5082 tmp_mode = GET_MODE (op0);
5083 else if (GET_MODE (op1) != VOIDmode)
5084 tmp_mode = GET_MODE (op1);
5085 else
5086 tmp_mode = compare_mode;
5087 tmp = simplify_relational_operation (old_code, tmp_mode, op0, op1);
5088 if (tmp != NULL_RTX)
5089 {
5090 rtx pat = PATTERN (other_insn);
5091 undobuf.other_insn = other_insn;
5092 SUBST (*cc_use, tmp);
5093
5094 /* Attempt to simplify CC user. */
5095 if (GET_CODE (pat) == SET)
5096 {
5097 rtx new = simplify_rtx (SET_SRC (pat));
5098 if (new != NULL_RTX)
5099 SUBST (SET_SRC (pat), new);
5100 }
5101
5102 /* Convert X into a no-op move. */
5103 SUBST (SET_DEST (x), pc_rtx);
5104 SUBST (SET_SRC (x), pc_rtx);
5105 return x;
5106 }
5107
5108 /* Simplify our comparison, if possible. */
5109 new_code = simplify_comparison (old_code, &op0, &op1);
5110
5111 #ifdef EXTRA_CC_MODES
5112 /* If this machine has CC modes other than CCmode, check to see if we
5113 need to use a different CC mode here. */
5114 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5115 #endif /* EXTRA_CC_MODES */
5116
5117 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
5118 /* If the mode changed, we have to change SET_DEST, the mode in the
5119 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5120 a hard register, just build new versions with the proper mode. If it
5121 is a pseudo, we lose unless it is only time we set the pseudo, in
5122 which case we can safely change its mode. */
5123 if (compare_mode != GET_MODE (dest))
5124 {
5125 unsigned int regno = REGNO (dest);
5126 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5127
5128 if (regno < FIRST_PSEUDO_REGISTER
5129 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5130 {
5131 if (regno >= FIRST_PSEUDO_REGISTER)
5132 SUBST (regno_reg_rtx[regno], new_dest);
5133
5134 SUBST (SET_DEST (x), new_dest);
5135 SUBST (XEXP (*cc_use, 0), new_dest);
5136 other_changed = 1;
5137
5138 dest = new_dest;
5139 }
5140 }
5141 #endif
5142
5143 /* If the code changed, we have to build a new comparison in
5144 undobuf.other_insn. */
5145 if (new_code != old_code)
5146 {
5147 unsigned HOST_WIDE_INT mask;
5148
5149 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5150 dest, const0_rtx));
5151
5152 /* If the only change we made was to change an EQ into an NE or
5153 vice versa, OP0 has only one bit that might be nonzero, and OP1
5154 is zero, check if changing the user of the condition code will
5155 produce a valid insn. If it won't, we can keep the original code
5156 in that insn by surrounding our operation with an XOR. */
5157
5158 if (((old_code == NE && new_code == EQ)
5159 || (old_code == EQ && new_code == NE))
5160 && ! other_changed && op1 == const0_rtx
5161 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5162 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5163 {
5164 rtx pat = PATTERN (other_insn), note = 0;
5165
5166 if ((recog_for_combine (&pat, other_insn, &note) < 0
5167 && ! check_asm_operands (pat)))
5168 {
5169 PUT_CODE (*cc_use, old_code);
5170 other_insn = 0;
5171
5172 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5173 }
5174 }
5175
5176 other_changed = 1;
5177 }
5178
5179 if (other_changed)
5180 undobuf.other_insn = other_insn;
5181
5182 #ifdef HAVE_cc0
5183 /* If we are now comparing against zero, change our source if
5184 needed. If we do not use cc0, we always have a COMPARE. */
5185 if (op1 == const0_rtx && dest == cc0_rtx)
5186 {
5187 SUBST (SET_SRC (x), op0);
5188 src = op0;
5189 }
5190 else
5191 #endif
5192
5193 /* Otherwise, if we didn't previously have a COMPARE in the
5194 correct mode, we need one. */
5195 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5196 {
5197 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5198 src = SET_SRC (x);
5199 }
5200 else
5201 {
5202 /* Otherwise, update the COMPARE if needed. */
5203 SUBST (XEXP (src, 0), op0);
5204 SUBST (XEXP (src, 1), op1);
5205 }
5206 }
5207 else
5208 {
5209 /* Get SET_SRC in a form where we have placed back any
5210 compound expressions. Then do the checks below. */
5211 src = make_compound_operation (src, SET);
5212 SUBST (SET_SRC (x), src);
5213 }
5214
5215 #ifdef WORD_REGISTER_OPERATIONS
5216 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5217 and X being a REG or (subreg (reg)), we may be able to convert this to
5218 (set (subreg:m2 x) (op)).
5219
5220 On a machine where WORD_REGISTER_OPERATIONS is defined, this
5221 transformation is safe as long as M1 and M2 have the same number
5222 of words.
5223
5224 However, on a machine without WORD_REGISTER_OPERATIONS defined,
5225 we cannot apply this transformation because it would create a
5226 paradoxical subreg in SET_DEST. */
5227
5228 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5229 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5230 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5231 / UNITS_PER_WORD)
5232 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5233 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5234 #ifdef CANNOT_CHANGE_MODE_CLASS
5235 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5236 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5237 GET_MODE (SUBREG_REG (src)),
5238 GET_MODE (src)))
5239 #endif
5240 && (GET_CODE (dest) == REG
5241 || (GET_CODE (dest) == SUBREG
5242 && GET_CODE (SUBREG_REG (dest)) == REG)))
5243 {
5244 SUBST (SET_DEST (x),
5245 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5246 dest));
5247 SUBST (SET_SRC (x), SUBREG_REG (src));
5248
5249 src = SET_SRC (x), dest = SET_DEST (x);
5250 }
5251 #endif
5252
5253 #ifdef HAVE_cc0
5254 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5255 in SRC. */
5256 if (dest == cc0_rtx
5257 && GET_CODE (src) == SUBREG
5258 && subreg_lowpart_p (src)
5259 && (GET_MODE_BITSIZE (GET_MODE (src))
5260 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5261 {
5262 rtx inner = SUBREG_REG (src);
5263 enum machine_mode inner_mode = GET_MODE (inner);
5264
5265 /* Here we make sure that we don't have a sign bit on. */
5266 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5267 && (nonzero_bits (inner, inner_mode)
5268 < ((unsigned HOST_WIDE_INT) 1
5269 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5270 {
5271 SUBST (SET_SRC (x), inner);
5272 src = SET_SRC (x);
5273 }
5274 }
5275 #endif
5276
5277 #ifdef LOAD_EXTEND_OP
5278 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5279 would require a paradoxical subreg. Replace the subreg with a
5280 zero_extend to avoid the reload that would otherwise be required. */
5281
5282 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5283 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5284 && SUBREG_BYTE (src) == 0
5285 && (GET_MODE_SIZE (GET_MODE (src))
5286 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5287 && GET_CODE (SUBREG_REG (src)) == MEM)
5288 {
5289 SUBST (SET_SRC (x),
5290 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5291 GET_MODE (src), SUBREG_REG (src)));
5292
5293 src = SET_SRC (x);
5294 }
5295 #endif
5296
5297 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5298 are comparing an item known to be 0 or -1 against 0, use a logical
5299 operation instead. Check for one of the arms being an IOR of the other
5300 arm with some value. We compute three terms to be IOR'ed together. In
5301 practice, at most two will be nonzero. Then we do the IOR's. */
5302
5303 if (GET_CODE (dest) != PC
5304 && GET_CODE (src) == IF_THEN_ELSE
5305 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5306 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5307 && XEXP (XEXP (src, 0), 1) == const0_rtx
5308 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5309 #ifdef HAVE_conditional_move
5310 && ! can_conditionally_move_p (GET_MODE (src))
5311 #endif
5312 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5313 GET_MODE (XEXP (XEXP (src, 0), 0)))
5314 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5315 && ! side_effects_p (src))
5316 {
5317 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5318 ? XEXP (src, 1) : XEXP (src, 2));
5319 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5320 ? XEXP (src, 2) : XEXP (src, 1));
5321 rtx term1 = const0_rtx, term2, term3;
5322
5323 if (GET_CODE (true_rtx) == IOR
5324 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5325 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5326 else if (GET_CODE (true_rtx) == IOR
5327 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5328 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5329 else if (GET_CODE (false_rtx) == IOR
5330 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5331 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5332 else if (GET_CODE (false_rtx) == IOR
5333 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5334 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5335
5336 term2 = gen_binary (AND, GET_MODE (src),
5337 XEXP (XEXP (src, 0), 0), true_rtx);
5338 term3 = gen_binary (AND, GET_MODE (src),
5339 simplify_gen_unary (NOT, GET_MODE (src),
5340 XEXP (XEXP (src, 0), 0),
5341 GET_MODE (src)),
5342 false_rtx);
5343
5344 SUBST (SET_SRC (x),
5345 gen_binary (IOR, GET_MODE (src),
5346 gen_binary (IOR, GET_MODE (src), term1, term2),
5347 term3));
5348
5349 src = SET_SRC (x);
5350 }
5351
5352 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5353 whole thing fail. */
5354 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5355 return src;
5356 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5357 return dest;
5358 else
5359 /* Convert this into a field assignment operation, if possible. */
5360 return make_field_assignment (x);
5361 }
5362 \f
5363 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5364 result. LAST is nonzero if this is the last retry. */
5365
5366 static rtx
5367 simplify_logical (rtx x, int last)
5368 {
5369 enum machine_mode mode = GET_MODE (x);
5370 rtx op0 = XEXP (x, 0);
5371 rtx op1 = XEXP (x, 1);
5372 rtx reversed;
5373
5374 switch (GET_CODE (x))
5375 {
5376 case AND:
5377 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5378 insn (and may simplify more). */
5379 if (GET_CODE (op0) == XOR
5380 && rtx_equal_p (XEXP (op0, 0), op1)
5381 && ! side_effects_p (op1))
5382 x = gen_binary (AND, mode,
5383 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5384 op1);
5385
5386 if (GET_CODE (op0) == XOR
5387 && rtx_equal_p (XEXP (op0, 1), op1)
5388 && ! side_effects_p (op1))
5389 x = gen_binary (AND, mode,
5390 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5391 op1);
5392
5393 /* Similarly for (~(A ^ B)) & A. */
5394 if (GET_CODE (op0) == NOT
5395 && GET_CODE (XEXP (op0, 0)) == XOR
5396 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5397 && ! side_effects_p (op1))
5398 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5399
5400 if (GET_CODE (op0) == NOT
5401 && GET_CODE (XEXP (op0, 0)) == XOR
5402 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5403 && ! side_effects_p (op1))
5404 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5405
5406 /* We can call simplify_and_const_int only if we don't lose
5407 any (sign) bits when converting INTVAL (op1) to
5408 "unsigned HOST_WIDE_INT". */
5409 if (GET_CODE (op1) == CONST_INT
5410 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5411 || INTVAL (op1) > 0))
5412 {
5413 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5414
5415 /* If we have (ior (and (X C1) C2)) and the next restart would be
5416 the last, simplify this by making C1 as small as possible
5417 and then exit. */
5418 if (last
5419 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5420 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5421 && GET_CODE (op1) == CONST_INT)
5422 return gen_binary (IOR, mode,
5423 gen_binary (AND, mode, XEXP (op0, 0),
5424 GEN_INT (INTVAL (XEXP (op0, 1))
5425 & ~INTVAL (op1))), op1);
5426
5427 if (GET_CODE (x) != AND)
5428 return x;
5429
5430 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5431 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5432 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5433 }
5434
5435 /* Convert (A | B) & A to A. */
5436 if (GET_CODE (op0) == IOR
5437 && (rtx_equal_p (XEXP (op0, 0), op1)
5438 || rtx_equal_p (XEXP (op0, 1), op1))
5439 && ! side_effects_p (XEXP (op0, 0))
5440 && ! side_effects_p (XEXP (op0, 1)))
5441 return op1;
5442
5443 /* In the following group of tests (and those in case IOR below),
5444 we start with some combination of logical operations and apply
5445 the distributive law followed by the inverse distributive law.
5446 Most of the time, this results in no change. However, if some of
5447 the operands are the same or inverses of each other, simplifications
5448 will result.
5449
5450 For example, (and (ior A B) (not B)) can occur as the result of
5451 expanding a bit field assignment. When we apply the distributive
5452 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5453 which then simplifies to (and (A (not B))).
5454
5455 If we have (and (ior A B) C), apply the distributive law and then
5456 the inverse distributive law to see if things simplify. */
5457
5458 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5459 {
5460 x = apply_distributive_law
5461 (gen_binary (GET_CODE (op0), mode,
5462 gen_binary (AND, mode, XEXP (op0, 0), op1),
5463 gen_binary (AND, mode, XEXP (op0, 1),
5464 copy_rtx (op1))));
5465 if (GET_CODE (x) != AND)
5466 return x;
5467 }
5468
5469 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5470 return apply_distributive_law
5471 (gen_binary (GET_CODE (op1), mode,
5472 gen_binary (AND, mode, XEXP (op1, 0), op0),
5473 gen_binary (AND, mode, XEXP (op1, 1),
5474 copy_rtx (op0))));
5475
5476 /* Similarly, taking advantage of the fact that
5477 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5478
5479 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5480 return apply_distributive_law
5481 (gen_binary (XOR, mode,
5482 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5483 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5484 XEXP (op1, 1))));
5485
5486 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5487 return apply_distributive_law
5488 (gen_binary (XOR, mode,
5489 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5490 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5491 break;
5492
5493 case IOR:
5494 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5495 if (GET_CODE (op1) == CONST_INT
5496 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5497 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5498 return op1;
5499
5500 /* Convert (A & B) | A to A. */
5501 if (GET_CODE (op0) == AND
5502 && (rtx_equal_p (XEXP (op0, 0), op1)
5503 || rtx_equal_p (XEXP (op0, 1), op1))
5504 && ! side_effects_p (XEXP (op0, 0))
5505 && ! side_effects_p (XEXP (op0, 1)))
5506 return op1;
5507
5508 /* If we have (ior (and A B) C), apply the distributive law and then
5509 the inverse distributive law to see if things simplify. */
5510
5511 if (GET_CODE (op0) == AND)
5512 {
5513 x = apply_distributive_law
5514 (gen_binary (AND, mode,
5515 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5516 gen_binary (IOR, mode, XEXP (op0, 1),
5517 copy_rtx (op1))));
5518
5519 if (GET_CODE (x) != IOR)
5520 return x;
5521 }
5522
5523 if (GET_CODE (op1) == AND)
5524 {
5525 x = apply_distributive_law
5526 (gen_binary (AND, mode,
5527 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5528 gen_binary (IOR, mode, XEXP (op1, 1),
5529 copy_rtx (op0))));
5530
5531 if (GET_CODE (x) != IOR)
5532 return x;
5533 }
5534
5535 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5536 mode size to (rotate A CX). */
5537
5538 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5539 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5540 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5541 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5542 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5543 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5544 == GET_MODE_BITSIZE (mode)))
5545 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5546 (GET_CODE (op0) == ASHIFT
5547 ? XEXP (op0, 1) : XEXP (op1, 1)));
5548
5549 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5550 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5551 does not affect any of the bits in OP1, it can really be done
5552 as a PLUS and we can associate. We do this by seeing if OP1
5553 can be safely shifted left C bits. */
5554 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5555 && GET_CODE (XEXP (op0, 0)) == PLUS
5556 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5557 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5558 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5559 {
5560 int count = INTVAL (XEXP (op0, 1));
5561 HOST_WIDE_INT mask = INTVAL (op1) << count;
5562
5563 if (mask >> count == INTVAL (op1)
5564 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5565 {
5566 SUBST (XEXP (XEXP (op0, 0), 1),
5567 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5568 return op0;
5569 }
5570 }
5571 break;
5572
5573 case XOR:
5574 /* If we are XORing two things that have no bits in common,
5575 convert them into an IOR. This helps to detect rotation encoded
5576 using those methods and possibly other simplifications. */
5577
5578 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5579 && (nonzero_bits (op0, mode)
5580 & nonzero_bits (op1, mode)) == 0)
5581 return (gen_binary (IOR, mode, op0, op1));
5582
5583 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5584 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5585 (NOT y). */
5586 {
5587 int num_negated = 0;
5588
5589 if (GET_CODE (op0) == NOT)
5590 num_negated++, op0 = XEXP (op0, 0);
5591 if (GET_CODE (op1) == NOT)
5592 num_negated++, op1 = XEXP (op1, 0);
5593
5594 if (num_negated == 2)
5595 {
5596 SUBST (XEXP (x, 0), op0);
5597 SUBST (XEXP (x, 1), op1);
5598 }
5599 else if (num_negated == 1)
5600 return
5601 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5602 mode);
5603 }
5604
5605 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5606 correspond to a machine insn or result in further simplifications
5607 if B is a constant. */
5608
5609 if (GET_CODE (op0) == AND
5610 && rtx_equal_p (XEXP (op0, 1), op1)
5611 && ! side_effects_p (op1))
5612 return gen_binary (AND, mode,
5613 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5614 op1);
5615
5616 else if (GET_CODE (op0) == AND
5617 && rtx_equal_p (XEXP (op0, 0), op1)
5618 && ! side_effects_p (op1))
5619 return gen_binary (AND, mode,
5620 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5621 op1);
5622
5623 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5624 comparison if STORE_FLAG_VALUE is 1. */
5625 if (STORE_FLAG_VALUE == 1
5626 && op1 == const1_rtx
5627 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5628 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5629 XEXP (op0, 1))))
5630 return reversed;
5631
5632 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5633 is (lt foo (const_int 0)), so we can perform the above
5634 simplification if STORE_FLAG_VALUE is 1. */
5635
5636 if (STORE_FLAG_VALUE == 1
5637 && op1 == const1_rtx
5638 && GET_CODE (op0) == LSHIFTRT
5639 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5640 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5641 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5642
5643 /* (xor (comparison foo bar) (const_int sign-bit))
5644 when STORE_FLAG_VALUE is the sign bit. */
5645 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5646 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5647 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5648 && op1 == const_true_rtx
5649 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5650 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5651 XEXP (op0, 1))))
5652 return reversed;
5653
5654 break;
5655
5656 default:
5657 abort ();
5658 }
5659
5660 return x;
5661 }
5662 \f
5663 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5664 operations" because they can be replaced with two more basic operations.
5665 ZERO_EXTEND is also considered "compound" because it can be replaced with
5666 an AND operation, which is simpler, though only one operation.
5667
5668 The function expand_compound_operation is called with an rtx expression
5669 and will convert it to the appropriate shifts and AND operations,
5670 simplifying at each stage.
5671
5672 The function make_compound_operation is called to convert an expression
5673 consisting of shifts and ANDs into the equivalent compound expression.
5674 It is the inverse of this function, loosely speaking. */
5675
5676 static rtx
5677 expand_compound_operation (rtx x)
5678 {
5679 unsigned HOST_WIDE_INT pos = 0, len;
5680 int unsignedp = 0;
5681 unsigned int modewidth;
5682 rtx tem;
5683
5684 switch (GET_CODE (x))
5685 {
5686 case ZERO_EXTEND:
5687 unsignedp = 1;
5688 case SIGN_EXTEND:
5689 /* We can't necessarily use a const_int for a multiword mode;
5690 it depends on implicitly extending the value.
5691 Since we don't know the right way to extend it,
5692 we can't tell whether the implicit way is right.
5693
5694 Even for a mode that is no wider than a const_int,
5695 we can't win, because we need to sign extend one of its bits through
5696 the rest of it, and we don't know which bit. */
5697 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5698 return x;
5699
5700 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5701 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5702 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5703 reloaded. If not for that, MEM's would very rarely be safe.
5704
5705 Reject MODEs bigger than a word, because we might not be able
5706 to reference a two-register group starting with an arbitrary register
5707 (and currently gen_lowpart might crash for a SUBREG). */
5708
5709 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5710 return x;
5711
5712 /* Reject MODEs that aren't scalar integers because turning vector
5713 or complex modes into shifts causes problems. */
5714
5715 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5716 return x;
5717
5718 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5719 /* If the inner object has VOIDmode (the only way this can happen
5720 is if it is an ASM_OPERANDS), we can't do anything since we don't
5721 know how much masking to do. */
5722 if (len == 0)
5723 return x;
5724
5725 break;
5726
5727 case ZERO_EXTRACT:
5728 unsignedp = 1;
5729 case SIGN_EXTRACT:
5730 /* If the operand is a CLOBBER, just return it. */
5731 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5732 return XEXP (x, 0);
5733
5734 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5735 || GET_CODE (XEXP (x, 2)) != CONST_INT
5736 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5737 return x;
5738
5739 /* Reject MODEs that aren't scalar integers because turning vector
5740 or complex modes into shifts causes problems. */
5741
5742 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5743 return x;
5744
5745 len = INTVAL (XEXP (x, 1));
5746 pos = INTVAL (XEXP (x, 2));
5747
5748 /* If this goes outside the object being extracted, replace the object
5749 with a (use (mem ...)) construct that only combine understands
5750 and is used only for this purpose. */
5751 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5752 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5753
5754 if (BITS_BIG_ENDIAN)
5755 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5756
5757 break;
5758
5759 default:
5760 return x;
5761 }
5762 /* Convert sign extension to zero extension, if we know that the high
5763 bit is not set, as this is easier to optimize. It will be converted
5764 back to cheaper alternative in make_extraction. */
5765 if (GET_CODE (x) == SIGN_EXTEND
5766 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5767 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5768 & ~(((unsigned HOST_WIDE_INT)
5769 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5770 >> 1))
5771 == 0)))
5772 {
5773 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5774 rtx temp2 = expand_compound_operation (temp);
5775
5776 /* Make sure this is a profitable operation. */
5777 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5778 return temp2;
5779 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5780 return temp;
5781 else
5782 return x;
5783 }
5784
5785 /* We can optimize some special cases of ZERO_EXTEND. */
5786 if (GET_CODE (x) == ZERO_EXTEND)
5787 {
5788 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5789 know that the last value didn't have any inappropriate bits
5790 set. */
5791 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5792 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5793 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5794 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5795 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5796 return XEXP (XEXP (x, 0), 0);
5797
5798 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5799 if (GET_CODE (XEXP (x, 0)) == SUBREG
5800 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5801 && subreg_lowpart_p (XEXP (x, 0))
5802 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5803 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5804 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5805 return SUBREG_REG (XEXP (x, 0));
5806
5807 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5808 is a comparison and STORE_FLAG_VALUE permits. This is like
5809 the first case, but it works even when GET_MODE (x) is larger
5810 than HOST_WIDE_INT. */
5811 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5812 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5813 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5814 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5815 <= HOST_BITS_PER_WIDE_INT)
5816 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5817 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5818 return XEXP (XEXP (x, 0), 0);
5819
5820 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5821 if (GET_CODE (XEXP (x, 0)) == SUBREG
5822 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5823 && subreg_lowpart_p (XEXP (x, 0))
5824 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5825 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5826 <= HOST_BITS_PER_WIDE_INT)
5827 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5828 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5829 return SUBREG_REG (XEXP (x, 0));
5830
5831 }
5832
5833 /* If we reach here, we want to return a pair of shifts. The inner
5834 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5835 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5836 logical depending on the value of UNSIGNEDP.
5837
5838 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5839 converted into an AND of a shift.
5840
5841 We must check for the case where the left shift would have a negative
5842 count. This can happen in a case like (x >> 31) & 255 on machines
5843 that can't shift by a constant. On those machines, we would first
5844 combine the shift with the AND to produce a variable-position
5845 extraction. Then the constant of 31 would be substituted in to produce
5846 a such a position. */
5847
5848 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5849 if (modewidth + len >= pos)
5850 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5851 GET_MODE (x),
5852 simplify_shift_const (NULL_RTX, ASHIFT,
5853 GET_MODE (x),
5854 XEXP (x, 0),
5855 modewidth - pos - len),
5856 modewidth - len);
5857
5858 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5859 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5860 simplify_shift_const (NULL_RTX, LSHIFTRT,
5861 GET_MODE (x),
5862 XEXP (x, 0), pos),
5863 ((HOST_WIDE_INT) 1 << len) - 1);
5864 else
5865 /* Any other cases we can't handle. */
5866 return x;
5867
5868 /* If we couldn't do this for some reason, return the original
5869 expression. */
5870 if (GET_CODE (tem) == CLOBBER)
5871 return x;
5872
5873 return tem;
5874 }
5875 \f
5876 /* X is a SET which contains an assignment of one object into
5877 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5878 or certain SUBREGS). If possible, convert it into a series of
5879 logical operations.
5880
5881 We half-heartedly support variable positions, but do not at all
5882 support variable lengths. */
5883
5884 static rtx
5885 expand_field_assignment (rtx x)
5886 {
5887 rtx inner;
5888 rtx pos; /* Always counts from low bit. */
5889 int len;
5890 rtx mask;
5891 enum machine_mode compute_mode;
5892
5893 /* Loop until we find something we can't simplify. */
5894 while (1)
5895 {
5896 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5897 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5898 {
5899 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5900 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5901 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5902 }
5903 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5904 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5905 {
5906 inner = XEXP (SET_DEST (x), 0);
5907 len = INTVAL (XEXP (SET_DEST (x), 1));
5908 pos = XEXP (SET_DEST (x), 2);
5909
5910 /* If the position is constant and spans the width of INNER,
5911 surround INNER with a USE to indicate this. */
5912 if (GET_CODE (pos) == CONST_INT
5913 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5914 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5915
5916 if (BITS_BIG_ENDIAN)
5917 {
5918 if (GET_CODE (pos) == CONST_INT)
5919 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5920 - INTVAL (pos));
5921 else if (GET_CODE (pos) == MINUS
5922 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5923 && (INTVAL (XEXP (pos, 1))
5924 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5925 /* If position is ADJUST - X, new position is X. */
5926 pos = XEXP (pos, 0);
5927 else
5928 pos = gen_binary (MINUS, GET_MODE (pos),
5929 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5930 - len),
5931 pos);
5932 }
5933 }
5934
5935 /* A SUBREG between two modes that occupy the same numbers of words
5936 can be done by moving the SUBREG to the source. */
5937 else if (GET_CODE (SET_DEST (x)) == SUBREG
5938 /* We need SUBREGs to compute nonzero_bits properly. */
5939 && nonzero_sign_valid
5940 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5941 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5942 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5943 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5944 {
5945 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5946 gen_lowpart_for_combine
5947 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5948 SET_SRC (x)));
5949 continue;
5950 }
5951 else
5952 break;
5953
5954 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5955 inner = SUBREG_REG (inner);
5956
5957 compute_mode = GET_MODE (inner);
5958
5959 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5960 if (! SCALAR_INT_MODE_P (compute_mode))
5961 {
5962 enum machine_mode imode;
5963
5964 /* Don't do anything for vector or complex integral types. */
5965 if (! FLOAT_MODE_P (compute_mode))
5966 break;
5967
5968 /* Try to find an integral mode to pun with. */
5969 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5970 if (imode == BLKmode)
5971 break;
5972
5973 compute_mode = imode;
5974 inner = gen_lowpart_for_combine (imode, inner);
5975 }
5976
5977 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5978 if (len < HOST_BITS_PER_WIDE_INT)
5979 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5980 else
5981 break;
5982
5983 /* Now compute the equivalent expression. Make a copy of INNER
5984 for the SET_DEST in case it is a MEM into which we will substitute;
5985 we don't want shared RTL in that case. */
5986 x = gen_rtx_SET
5987 (VOIDmode, copy_rtx (inner),
5988 gen_binary (IOR, compute_mode,
5989 gen_binary (AND, compute_mode,
5990 simplify_gen_unary (NOT, compute_mode,
5991 gen_binary (ASHIFT,
5992 compute_mode,
5993 mask, pos),
5994 compute_mode),
5995 inner),
5996 gen_binary (ASHIFT, compute_mode,
5997 gen_binary (AND, compute_mode,
5998 gen_lowpart_for_combine
5999 (compute_mode, SET_SRC (x)),
6000 mask),
6001 pos)));
6002 }
6003
6004 return x;
6005 }
6006 \f
6007 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6008 it is an RTX that represents a variable starting position; otherwise,
6009 POS is the (constant) starting bit position (counted from the LSB).
6010
6011 INNER may be a USE. This will occur when we started with a bitfield
6012 that went outside the boundary of the object in memory, which is
6013 allowed on most machines. To isolate this case, we produce a USE
6014 whose mode is wide enough and surround the MEM with it. The only
6015 code that understands the USE is this routine. If it is not removed,
6016 it will cause the resulting insn not to match.
6017
6018 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6019 signed reference.
6020
6021 IN_DEST is nonzero if this is a reference in the destination of a
6022 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6023 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6024 be used.
6025
6026 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6027 ZERO_EXTRACT should be built even for bits starting at bit 0.
6028
6029 MODE is the desired mode of the result (if IN_DEST == 0).
6030
6031 The result is an RTX for the extraction or NULL_RTX if the target
6032 can't handle it. */
6033
6034 static rtx
6035 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6036 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6037 int in_dest, int in_compare)
6038 {
6039 /* This mode describes the size of the storage area
6040 to fetch the overall value from. Within that, we
6041 ignore the POS lowest bits, etc. */
6042 enum machine_mode is_mode = GET_MODE (inner);
6043 enum machine_mode inner_mode;
6044 enum machine_mode wanted_inner_mode = byte_mode;
6045 enum machine_mode wanted_inner_reg_mode = word_mode;
6046 enum machine_mode pos_mode = word_mode;
6047 enum machine_mode extraction_mode = word_mode;
6048 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6049 int spans_byte = 0;
6050 rtx new = 0;
6051 rtx orig_pos_rtx = pos_rtx;
6052 HOST_WIDE_INT orig_pos;
6053
6054 /* Get some information about INNER and get the innermost object. */
6055 if (GET_CODE (inner) == USE)
6056 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6057 /* We don't need to adjust the position because we set up the USE
6058 to pretend that it was a full-word object. */
6059 spans_byte = 1, inner = XEXP (inner, 0);
6060 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6061 {
6062 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6063 consider just the QI as the memory to extract from.
6064 The subreg adds or removes high bits; its mode is
6065 irrelevant to the meaning of this extraction,
6066 since POS and LEN count from the lsb. */
6067 if (GET_CODE (SUBREG_REG (inner)) == MEM)
6068 is_mode = GET_MODE (SUBREG_REG (inner));
6069 inner = SUBREG_REG (inner);
6070 }
6071 else if (GET_CODE (inner) == ASHIFT
6072 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6073 && pos_rtx == 0 && pos == 0
6074 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6075 {
6076 /* We're extracting the least significant bits of an rtx
6077 (ashift X (const_int C)), where LEN > C. Extract the
6078 least significant (LEN - C) bits of X, giving an rtx
6079 whose mode is MODE, then shift it left C times. */
6080 new = make_extraction (mode, XEXP (inner, 0),
6081 0, 0, len - INTVAL (XEXP (inner, 1)),
6082 unsignedp, in_dest, in_compare);
6083 if (new != 0)
6084 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6085 }
6086
6087 inner_mode = GET_MODE (inner);
6088
6089 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6090 pos = INTVAL (pos_rtx), pos_rtx = 0;
6091
6092 /* See if this can be done without an extraction. We never can if the
6093 width of the field is not the same as that of some integer mode. For
6094 registers, we can only avoid the extraction if the position is at the
6095 low-order bit and this is either not in the destination or we have the
6096 appropriate STRICT_LOW_PART operation available.
6097
6098 For MEM, we can avoid an extract if the field starts on an appropriate
6099 boundary and we can change the mode of the memory reference. However,
6100 we cannot directly access the MEM if we have a USE and the underlying
6101 MEM is not TMODE. This combination means that MEM was being used in a
6102 context where bits outside its mode were being referenced; that is only
6103 valid in bit-field insns. */
6104
6105 if (tmode != BLKmode
6106 && ! (spans_byte && inner_mode != tmode)
6107 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6108 && GET_CODE (inner) != MEM
6109 && (! in_dest
6110 || (GET_CODE (inner) == REG
6111 && have_insn_for (STRICT_LOW_PART, tmode))))
6112 || (GET_CODE (inner) == MEM && pos_rtx == 0
6113 && (pos
6114 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6115 : BITS_PER_UNIT)) == 0
6116 /* We can't do this if we are widening INNER_MODE (it
6117 may not be aligned, for one thing). */
6118 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6119 && (inner_mode == tmode
6120 || (! mode_dependent_address_p (XEXP (inner, 0))
6121 && ! MEM_VOLATILE_P (inner))))))
6122 {
6123 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6124 field. If the original and current mode are the same, we need not
6125 adjust the offset. Otherwise, we do if bytes big endian.
6126
6127 If INNER is not a MEM, get a piece consisting of just the field
6128 of interest (in this case POS % BITS_PER_WORD must be 0). */
6129
6130 if (GET_CODE (inner) == MEM)
6131 {
6132 HOST_WIDE_INT offset;
6133
6134 /* POS counts from lsb, but make OFFSET count in memory order. */
6135 if (BYTES_BIG_ENDIAN)
6136 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6137 else
6138 offset = pos / BITS_PER_UNIT;
6139
6140 new = adjust_address_nv (inner, tmode, offset);
6141 }
6142 else if (GET_CODE (inner) == REG)
6143 {
6144 if (tmode != inner_mode)
6145 {
6146 if (in_dest)
6147 {
6148 /* We can't call gen_lowpart_for_combine here since we always want
6149 a SUBREG and it would sometimes return a new hard register. */
6150 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6151
6152 if (WORDS_BIG_ENDIAN
6153 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6154 final_word = ((GET_MODE_SIZE (inner_mode)
6155 - GET_MODE_SIZE (tmode))
6156 / UNITS_PER_WORD) - final_word;
6157
6158 final_word *= UNITS_PER_WORD;
6159 if (BYTES_BIG_ENDIAN &&
6160 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6161 final_word += (GET_MODE_SIZE (inner_mode)
6162 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6163
6164 /* Avoid creating invalid subregs, for example when
6165 simplifying (x>>32)&255. */
6166 if (final_word >= GET_MODE_SIZE (inner_mode))
6167 return NULL_RTX;
6168
6169 new = gen_rtx_SUBREG (tmode, inner, final_word);
6170 }
6171 else
6172 new = gen_lowpart_for_combine (tmode, inner);
6173 }
6174 else
6175 new = inner;
6176 }
6177 else
6178 new = force_to_mode (inner, tmode,
6179 len >= HOST_BITS_PER_WIDE_INT
6180 ? ~(unsigned HOST_WIDE_INT) 0
6181 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6182 NULL_RTX, 0);
6183
6184 /* If this extraction is going into the destination of a SET,
6185 make a STRICT_LOW_PART unless we made a MEM. */
6186
6187 if (in_dest)
6188 return (GET_CODE (new) == MEM ? new
6189 : (GET_CODE (new) != SUBREG
6190 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6191 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6192
6193 if (mode == tmode)
6194 return new;
6195
6196 if (GET_CODE (new) == CONST_INT)
6197 return gen_int_mode (INTVAL (new), mode);
6198
6199 /* If we know that no extraneous bits are set, and that the high
6200 bit is not set, convert the extraction to the cheaper of
6201 sign and zero extension, that are equivalent in these cases. */
6202 if (flag_expensive_optimizations
6203 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6204 && ((nonzero_bits (new, tmode)
6205 & ~(((unsigned HOST_WIDE_INT)
6206 GET_MODE_MASK (tmode))
6207 >> 1))
6208 == 0)))
6209 {
6210 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6211 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6212
6213 /* Prefer ZERO_EXTENSION, since it gives more information to
6214 backends. */
6215 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6216 return temp;
6217 return temp1;
6218 }
6219
6220 /* Otherwise, sign- or zero-extend unless we already are in the
6221 proper mode. */
6222
6223 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6224 mode, new));
6225 }
6226
6227 /* Unless this is a COMPARE or we have a funny memory reference,
6228 don't do anything with zero-extending field extracts starting at
6229 the low-order bit since they are simple AND operations. */
6230 if (pos_rtx == 0 && pos == 0 && ! in_dest
6231 && ! in_compare && ! spans_byte && unsignedp)
6232 return 0;
6233
6234 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6235 we would be spanning bytes or if the position is not a constant and the
6236 length is not 1. In all other cases, we would only be going outside
6237 our object in cases when an original shift would have been
6238 undefined. */
6239 if (! spans_byte && GET_CODE (inner) == MEM
6240 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6241 || (pos_rtx != 0 && len != 1)))
6242 return 0;
6243
6244 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6245 and the mode for the result. */
6246 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6247 {
6248 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6249 pos_mode = mode_for_extraction (EP_insv, 2);
6250 extraction_mode = mode_for_extraction (EP_insv, 3);
6251 }
6252
6253 if (! in_dest && unsignedp
6254 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6255 {
6256 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6257 pos_mode = mode_for_extraction (EP_extzv, 3);
6258 extraction_mode = mode_for_extraction (EP_extzv, 0);
6259 }
6260
6261 if (! in_dest && ! unsignedp
6262 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6263 {
6264 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6265 pos_mode = mode_for_extraction (EP_extv, 3);
6266 extraction_mode = mode_for_extraction (EP_extv, 0);
6267 }
6268
6269 /* Never narrow an object, since that might not be safe. */
6270
6271 if (mode != VOIDmode
6272 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6273 extraction_mode = mode;
6274
6275 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6276 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6277 pos_mode = GET_MODE (pos_rtx);
6278
6279 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6280 if we have to change the mode of memory and cannot, the desired mode is
6281 EXTRACTION_MODE. */
6282 if (GET_CODE (inner) != MEM)
6283 wanted_inner_mode = wanted_inner_reg_mode;
6284 else if (inner_mode != wanted_inner_mode
6285 && (mode_dependent_address_p (XEXP (inner, 0))
6286 || MEM_VOLATILE_P (inner)))
6287 wanted_inner_mode = extraction_mode;
6288
6289 orig_pos = pos;
6290
6291 if (BITS_BIG_ENDIAN)
6292 {
6293 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6294 BITS_BIG_ENDIAN style. If position is constant, compute new
6295 position. Otherwise, build subtraction.
6296 Note that POS is relative to the mode of the original argument.
6297 If it's a MEM we need to recompute POS relative to that.
6298 However, if we're extracting from (or inserting into) a register,
6299 we want to recompute POS relative to wanted_inner_mode. */
6300 int width = (GET_CODE (inner) == MEM
6301 ? GET_MODE_BITSIZE (is_mode)
6302 : GET_MODE_BITSIZE (wanted_inner_mode));
6303
6304 if (pos_rtx == 0)
6305 pos = width - len - pos;
6306 else
6307 pos_rtx
6308 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6309 /* POS may be less than 0 now, but we check for that below.
6310 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6311 }
6312
6313 /* If INNER has a wider mode, make it smaller. If this is a constant
6314 extract, try to adjust the byte to point to the byte containing
6315 the value. */
6316 if (wanted_inner_mode != VOIDmode
6317 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6318 && ((GET_CODE (inner) == MEM
6319 && (inner_mode == wanted_inner_mode
6320 || (! mode_dependent_address_p (XEXP (inner, 0))
6321 && ! MEM_VOLATILE_P (inner))))))
6322 {
6323 int offset = 0;
6324
6325 /* The computations below will be correct if the machine is big
6326 endian in both bits and bytes or little endian in bits and bytes.
6327 If it is mixed, we must adjust. */
6328
6329 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6330 adjust OFFSET to compensate. */
6331 if (BYTES_BIG_ENDIAN
6332 && ! spans_byte
6333 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6334 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6335
6336 /* If this is a constant position, we can move to the desired byte. */
6337 if (pos_rtx == 0)
6338 {
6339 offset += pos / BITS_PER_UNIT;
6340 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6341 }
6342
6343 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6344 && ! spans_byte
6345 && is_mode != wanted_inner_mode)
6346 offset = (GET_MODE_SIZE (is_mode)
6347 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6348
6349 if (offset != 0 || inner_mode != wanted_inner_mode)
6350 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6351 }
6352
6353 /* If INNER is not memory, we can always get it into the proper mode. If we
6354 are changing its mode, POS must be a constant and smaller than the size
6355 of the new mode. */
6356 else if (GET_CODE (inner) != MEM)
6357 {
6358 if (GET_MODE (inner) != wanted_inner_mode
6359 && (pos_rtx != 0
6360 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6361 return 0;
6362
6363 inner = force_to_mode (inner, wanted_inner_mode,
6364 pos_rtx
6365 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6366 ? ~(unsigned HOST_WIDE_INT) 0
6367 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6368 << orig_pos),
6369 NULL_RTX, 0);
6370 }
6371
6372 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6373 have to zero extend. Otherwise, we can just use a SUBREG. */
6374 if (pos_rtx != 0
6375 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6376 {
6377 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6378
6379 /* If we know that no extraneous bits are set, and that the high
6380 bit is not set, convert extraction to cheaper one - either
6381 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6382 cases. */
6383 if (flag_expensive_optimizations
6384 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6385 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6386 & ~(((unsigned HOST_WIDE_INT)
6387 GET_MODE_MASK (GET_MODE (pos_rtx)))
6388 >> 1))
6389 == 0)))
6390 {
6391 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6392
6393 /* Prefer ZERO_EXTENSION, since it gives more information to
6394 backends. */
6395 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6396 temp = temp1;
6397 }
6398 pos_rtx = temp;
6399 }
6400 else if (pos_rtx != 0
6401 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6402 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6403
6404 /* Make POS_RTX unless we already have it and it is correct. If we don't
6405 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6406 be a CONST_INT. */
6407 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6408 pos_rtx = orig_pos_rtx;
6409
6410 else if (pos_rtx == 0)
6411 pos_rtx = GEN_INT (pos);
6412
6413 /* Make the required operation. See if we can use existing rtx. */
6414 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6415 extraction_mode, inner, GEN_INT (len), pos_rtx);
6416 if (! in_dest)
6417 new = gen_lowpart_for_combine (mode, new);
6418
6419 return new;
6420 }
6421 \f
6422 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6423 with any other operations in X. Return X without that shift if so. */
6424
6425 static rtx
6426 extract_left_shift (rtx x, int count)
6427 {
6428 enum rtx_code code = GET_CODE (x);
6429 enum machine_mode mode = GET_MODE (x);
6430 rtx tem;
6431
6432 switch (code)
6433 {
6434 case ASHIFT:
6435 /* This is the shift itself. If it is wide enough, we will return
6436 either the value being shifted if the shift count is equal to
6437 COUNT or a shift for the difference. */
6438 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6439 && INTVAL (XEXP (x, 1)) >= count)
6440 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6441 INTVAL (XEXP (x, 1)) - count);
6442 break;
6443
6444 case NEG: case NOT:
6445 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6446 return simplify_gen_unary (code, mode, tem, mode);
6447
6448 break;
6449
6450 case PLUS: case IOR: case XOR: case AND:
6451 /* If we can safely shift this constant and we find the inner shift,
6452 make a new operation. */
6453 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6454 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6455 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6456 return gen_binary (code, mode, tem,
6457 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6458
6459 break;
6460
6461 default:
6462 break;
6463 }
6464
6465 return 0;
6466 }
6467 \f
6468 /* Look at the expression rooted at X. Look for expressions
6469 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6470 Form these expressions.
6471
6472 Return the new rtx, usually just X.
6473
6474 Also, for machines like the VAX that don't have logical shift insns,
6475 try to convert logical to arithmetic shift operations in cases where
6476 they are equivalent. This undoes the canonicalizations to logical
6477 shifts done elsewhere.
6478
6479 We try, as much as possible, to re-use rtl expressions to save memory.
6480
6481 IN_CODE says what kind of expression we are processing. Normally, it is
6482 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6483 being kludges), it is MEM. When processing the arguments of a comparison
6484 or a COMPARE against zero, it is COMPARE. */
6485
6486 static rtx
6487 make_compound_operation (rtx x, enum rtx_code in_code)
6488 {
6489 enum rtx_code code = GET_CODE (x);
6490 enum machine_mode mode = GET_MODE (x);
6491 int mode_width = GET_MODE_BITSIZE (mode);
6492 rtx rhs, lhs;
6493 enum rtx_code next_code;
6494 int i;
6495 rtx new = 0;
6496 rtx tem;
6497 const char *fmt;
6498
6499 /* Select the code to be used in recursive calls. Once we are inside an
6500 address, we stay there. If we have a comparison, set to COMPARE,
6501 but once inside, go back to our default of SET. */
6502
6503 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6504 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6505 && XEXP (x, 1) == const0_rtx) ? COMPARE
6506 : in_code == COMPARE ? SET : in_code);
6507
6508 /* Process depending on the code of this operation. If NEW is set
6509 nonzero, it will be returned. */
6510
6511 switch (code)
6512 {
6513 case ASHIFT:
6514 /* Convert shifts by constants into multiplications if inside
6515 an address. */
6516 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6517 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6518 && INTVAL (XEXP (x, 1)) >= 0)
6519 {
6520 new = make_compound_operation (XEXP (x, 0), next_code);
6521 new = gen_rtx_MULT (mode, new,
6522 GEN_INT ((HOST_WIDE_INT) 1
6523 << INTVAL (XEXP (x, 1))));
6524 }
6525 break;
6526
6527 case AND:
6528 /* If the second operand is not a constant, we can't do anything
6529 with it. */
6530 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6531 break;
6532
6533 /* If the constant is a power of two minus one and the first operand
6534 is a logical right shift, make an extraction. */
6535 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6536 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6537 {
6538 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6539 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6540 0, in_code == COMPARE);
6541 }
6542
6543 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6544 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6545 && subreg_lowpart_p (XEXP (x, 0))
6546 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6547 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6548 {
6549 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6550 next_code);
6551 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6552 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6553 0, in_code == COMPARE);
6554 }
6555 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6556 else if ((GET_CODE (XEXP (x, 0)) == XOR
6557 || GET_CODE (XEXP (x, 0)) == IOR)
6558 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6559 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6560 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6561 {
6562 /* Apply the distributive law, and then try to make extractions. */
6563 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6564 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6565 XEXP (x, 1)),
6566 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6567 XEXP (x, 1)));
6568 new = make_compound_operation (new, in_code);
6569 }
6570
6571 /* If we are have (and (rotate X C) M) and C is larger than the number
6572 of bits in M, this is an extraction. */
6573
6574 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6575 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6576 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6577 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6578 {
6579 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6580 new = make_extraction (mode, new,
6581 (GET_MODE_BITSIZE (mode)
6582 - INTVAL (XEXP (XEXP (x, 0), 1))),
6583 NULL_RTX, i, 1, 0, in_code == COMPARE);
6584 }
6585
6586 /* On machines without logical shifts, if the operand of the AND is
6587 a logical shift and our mask turns off all the propagated sign
6588 bits, we can replace the logical shift with an arithmetic shift. */
6589 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6590 && !have_insn_for (LSHIFTRT, mode)
6591 && have_insn_for (ASHIFTRT, mode)
6592 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6593 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6594 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6595 && mode_width <= HOST_BITS_PER_WIDE_INT)
6596 {
6597 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6598
6599 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6600 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6601 SUBST (XEXP (x, 0),
6602 gen_rtx_ASHIFTRT (mode,
6603 make_compound_operation
6604 (XEXP (XEXP (x, 0), 0), next_code),
6605 XEXP (XEXP (x, 0), 1)));
6606 }
6607
6608 /* If the constant is one less than a power of two, this might be
6609 representable by an extraction even if no shift is present.
6610 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6611 we are in a COMPARE. */
6612 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6613 new = make_extraction (mode,
6614 make_compound_operation (XEXP (x, 0),
6615 next_code),
6616 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6617
6618 /* If we are in a comparison and this is an AND with a power of two,
6619 convert this into the appropriate bit extract. */
6620 else if (in_code == COMPARE
6621 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6622 new = make_extraction (mode,
6623 make_compound_operation (XEXP (x, 0),
6624 next_code),
6625 i, NULL_RTX, 1, 1, 0, 1);
6626
6627 break;
6628
6629 case LSHIFTRT:
6630 /* If the sign bit is known to be zero, replace this with an
6631 arithmetic shift. */
6632 if (have_insn_for (ASHIFTRT, mode)
6633 && ! have_insn_for (LSHIFTRT, mode)
6634 && mode_width <= HOST_BITS_PER_WIDE_INT
6635 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6636 {
6637 new = gen_rtx_ASHIFTRT (mode,
6638 make_compound_operation (XEXP (x, 0),
6639 next_code),
6640 XEXP (x, 1));
6641 break;
6642 }
6643
6644 /* ... fall through ... */
6645
6646 case ASHIFTRT:
6647 lhs = XEXP (x, 0);
6648 rhs = XEXP (x, 1);
6649
6650 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6651 this is a SIGN_EXTRACT. */
6652 if (GET_CODE (rhs) == CONST_INT
6653 && GET_CODE (lhs) == ASHIFT
6654 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6655 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6656 {
6657 new = make_compound_operation (XEXP (lhs, 0), next_code);
6658 new = make_extraction (mode, new,
6659 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6660 NULL_RTX, mode_width - INTVAL (rhs),
6661 code == LSHIFTRT, 0, in_code == COMPARE);
6662 break;
6663 }
6664
6665 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6666 If so, try to merge the shifts into a SIGN_EXTEND. We could
6667 also do this for some cases of SIGN_EXTRACT, but it doesn't
6668 seem worth the effort; the case checked for occurs on Alpha. */
6669
6670 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6671 && ! (GET_CODE (lhs) == SUBREG
6672 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6673 && GET_CODE (rhs) == CONST_INT
6674 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6675 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6676 new = make_extraction (mode, make_compound_operation (new, next_code),
6677 0, NULL_RTX, mode_width - INTVAL (rhs),
6678 code == LSHIFTRT, 0, in_code == COMPARE);
6679
6680 break;
6681
6682 case SUBREG:
6683 /* Call ourselves recursively on the inner expression. If we are
6684 narrowing the object and it has a different RTL code from
6685 what it originally did, do this SUBREG as a force_to_mode. */
6686
6687 tem = make_compound_operation (SUBREG_REG (x), in_code);
6688 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6689 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6690 && subreg_lowpart_p (x))
6691 {
6692 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6693 NULL_RTX, 0);
6694
6695 /* If we have something other than a SUBREG, we might have
6696 done an expansion, so rerun ourselves. */
6697 if (GET_CODE (newer) != SUBREG)
6698 newer = make_compound_operation (newer, in_code);
6699
6700 return newer;
6701 }
6702
6703 /* If this is a paradoxical subreg, and the new code is a sign or
6704 zero extension, omit the subreg and widen the extension. If it
6705 is a regular subreg, we can still get rid of the subreg by not
6706 widening so much, or in fact removing the extension entirely. */
6707 if ((GET_CODE (tem) == SIGN_EXTEND
6708 || GET_CODE (tem) == ZERO_EXTEND)
6709 && subreg_lowpart_p (x))
6710 {
6711 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6712 || (GET_MODE_SIZE (mode) >
6713 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6714 {
6715 if (! SCALAR_INT_MODE_P (mode))
6716 break;
6717 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6718 }
6719 else
6720 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6721 return tem;
6722 }
6723 break;
6724
6725 default:
6726 break;
6727 }
6728
6729 if (new)
6730 {
6731 x = gen_lowpart_for_combine (mode, new);
6732 code = GET_CODE (x);
6733 }
6734
6735 /* Now recursively process each operand of this operation. */
6736 fmt = GET_RTX_FORMAT (code);
6737 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6738 if (fmt[i] == 'e')
6739 {
6740 new = make_compound_operation (XEXP (x, i), next_code);
6741 SUBST (XEXP (x, i), new);
6742 }
6743
6744 return x;
6745 }
6746 \f
6747 /* Given M see if it is a value that would select a field of bits
6748 within an item, but not the entire word. Return -1 if not.
6749 Otherwise, return the starting position of the field, where 0 is the
6750 low-order bit.
6751
6752 *PLEN is set to the length of the field. */
6753
6754 static int
6755 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6756 {
6757 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6758 int pos = exact_log2 (m & -m);
6759 int len;
6760
6761 if (pos < 0)
6762 return -1;
6763
6764 /* Now shift off the low-order zero bits and see if we have a power of
6765 two minus 1. */
6766 len = exact_log2 ((m >> pos) + 1);
6767
6768 if (len <= 0)
6769 return -1;
6770
6771 *plen = len;
6772 return pos;
6773 }
6774 \f
6775 /* See if X can be simplified knowing that we will only refer to it in
6776 MODE and will only refer to those bits that are nonzero in MASK.
6777 If other bits are being computed or if masking operations are done
6778 that select a superset of the bits in MASK, they can sometimes be
6779 ignored.
6780
6781 Return a possibly simplified expression, but always convert X to
6782 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6783
6784 Also, if REG is nonzero and X is a register equal in value to REG,
6785 replace X with REG.
6786
6787 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6788 are all off in X. This is used when X will be complemented, by either
6789 NOT, NEG, or XOR. */
6790
6791 static rtx
6792 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6793 rtx reg, int just_select)
6794 {
6795 enum rtx_code code = GET_CODE (x);
6796 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6797 enum machine_mode op_mode;
6798 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6799 rtx op0, op1, temp;
6800
6801 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6802 code below will do the wrong thing since the mode of such an
6803 expression is VOIDmode.
6804
6805 Also do nothing if X is a CLOBBER; this can happen if X was
6806 the return value from a call to gen_lowpart_for_combine. */
6807 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6808 return x;
6809
6810 /* We want to perform the operation is its present mode unless we know
6811 that the operation is valid in MODE, in which case we do the operation
6812 in MODE. */
6813 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6814 && have_insn_for (code, mode))
6815 ? mode : GET_MODE (x));
6816
6817 /* It is not valid to do a right-shift in a narrower mode
6818 than the one it came in with. */
6819 if ((code == LSHIFTRT || code == ASHIFTRT)
6820 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6821 op_mode = GET_MODE (x);
6822
6823 /* Truncate MASK to fit OP_MODE. */
6824 if (op_mode)
6825 mask &= GET_MODE_MASK (op_mode);
6826
6827 /* When we have an arithmetic operation, or a shift whose count we
6828 do not know, we need to assume that all bit the up to the highest-order
6829 bit in MASK will be needed. This is how we form such a mask. */
6830 if (op_mode)
6831 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6832 ? GET_MODE_MASK (op_mode)
6833 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6834 - 1));
6835 else
6836 fuller_mask = ~(HOST_WIDE_INT) 0;
6837
6838 /* Determine what bits of X are guaranteed to be (non)zero. */
6839 nonzero = nonzero_bits (x, mode);
6840
6841 /* If none of the bits in X are needed, return a zero. */
6842 if (! just_select && (nonzero & mask) == 0)
6843 x = const0_rtx;
6844
6845 /* If X is a CONST_INT, return a new one. Do this here since the
6846 test below will fail. */
6847 if (GET_CODE (x) == CONST_INT)
6848 {
6849 if (SCALAR_INT_MODE_P (mode))
6850 return gen_int_mode (INTVAL (x) & mask, mode);
6851 else
6852 {
6853 x = GEN_INT (INTVAL (x) & mask);
6854 return gen_lowpart_common (mode, x);
6855 }
6856 }
6857
6858 /* If X is narrower than MODE and we want all the bits in X's mode, just
6859 get X in the proper mode. */
6860 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6861 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6862 return gen_lowpart_for_combine (mode, x);
6863
6864 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6865 MASK are already known to be zero in X, we need not do anything. */
6866 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6867 return x;
6868
6869 switch (code)
6870 {
6871 case CLOBBER:
6872 /* If X is a (clobber (const_int)), return it since we know we are
6873 generating something that won't match. */
6874 return x;
6875
6876 case USE:
6877 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6878 spanned the boundary of the MEM. If we are now masking so it is
6879 within that boundary, we don't need the USE any more. */
6880 if (! BITS_BIG_ENDIAN
6881 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6882 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6883 break;
6884
6885 case SIGN_EXTEND:
6886 case ZERO_EXTEND:
6887 case ZERO_EXTRACT:
6888 case SIGN_EXTRACT:
6889 x = expand_compound_operation (x);
6890 if (GET_CODE (x) != code)
6891 return force_to_mode (x, mode, mask, reg, next_select);
6892 break;
6893
6894 case REG:
6895 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6896 || rtx_equal_p (reg, get_last_value (x))))
6897 x = reg;
6898 break;
6899
6900 case SUBREG:
6901 if (subreg_lowpart_p (x)
6902 /* We can ignore the effect of this SUBREG if it narrows the mode or
6903 if the constant masks to zero all the bits the mode doesn't
6904 have. */
6905 && ((GET_MODE_SIZE (GET_MODE (x))
6906 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6907 || (0 == (mask
6908 & GET_MODE_MASK (GET_MODE (x))
6909 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6910 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6911 break;
6912
6913 case AND:
6914 /* If this is an AND with a constant, convert it into an AND
6915 whose constant is the AND of that constant with MASK. If it
6916 remains an AND of MASK, delete it since it is redundant. */
6917
6918 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6919 {
6920 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6921 mask & INTVAL (XEXP (x, 1)));
6922
6923 /* If X is still an AND, see if it is an AND with a mask that
6924 is just some low-order bits. If so, and it is MASK, we don't
6925 need it. */
6926
6927 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6928 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6929 == mask))
6930 x = XEXP (x, 0);
6931
6932 /* If it remains an AND, try making another AND with the bits
6933 in the mode mask that aren't in MASK turned on. If the
6934 constant in the AND is wide enough, this might make a
6935 cheaper constant. */
6936
6937 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6938 && GET_MODE_MASK (GET_MODE (x)) != mask
6939 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6940 {
6941 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6942 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6943 int width = GET_MODE_BITSIZE (GET_MODE (x));
6944 rtx y;
6945
6946 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6947 number, sign extend it. */
6948 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6949 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6950 cval |= (HOST_WIDE_INT) -1 << width;
6951
6952 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6953 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6954 x = y;
6955 }
6956
6957 break;
6958 }
6959
6960 goto binop;
6961
6962 case PLUS:
6963 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6964 low-order bits (as in an alignment operation) and FOO is already
6965 aligned to that boundary, mask C1 to that boundary as well.
6966 This may eliminate that PLUS and, later, the AND. */
6967
6968 {
6969 unsigned int width = GET_MODE_BITSIZE (mode);
6970 unsigned HOST_WIDE_INT smask = mask;
6971
6972 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6973 number, sign extend it. */
6974
6975 if (width < HOST_BITS_PER_WIDE_INT
6976 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6977 smask |= (HOST_WIDE_INT) -1 << width;
6978
6979 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6980 && exact_log2 (- smask) >= 0
6981 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6982 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6983 return force_to_mode (plus_constant (XEXP (x, 0),
6984 (INTVAL (XEXP (x, 1)) & smask)),
6985 mode, smask, reg, next_select);
6986 }
6987
6988 /* ... fall through ... */
6989
6990 case MULT:
6991 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6992 most significant bit in MASK since carries from those bits will
6993 affect the bits we are interested in. */
6994 mask = fuller_mask;
6995 goto binop;
6996
6997 case MINUS:
6998 /* If X is (minus C Y) where C's least set bit is larger than any bit
6999 in the mask, then we may replace with (neg Y). */
7000 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7001 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7002 & -INTVAL (XEXP (x, 0))))
7003 > mask))
7004 {
7005 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7006 GET_MODE (x));
7007 return force_to_mode (x, mode, mask, reg, next_select);
7008 }
7009
7010 /* Similarly, if C contains every bit in the fuller_mask, then we may
7011 replace with (not Y). */
7012 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7013 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7014 == INTVAL (XEXP (x, 0))))
7015 {
7016 x = simplify_gen_unary (NOT, GET_MODE (x),
7017 XEXP (x, 1), GET_MODE (x));
7018 return force_to_mode (x, mode, mask, reg, next_select);
7019 }
7020
7021 mask = fuller_mask;
7022 goto binop;
7023
7024 case IOR:
7025 case XOR:
7026 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7027 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7028 operation which may be a bitfield extraction. Ensure that the
7029 constant we form is not wider than the mode of X. */
7030
7031 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7032 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7033 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7034 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7035 && GET_CODE (XEXP (x, 1)) == CONST_INT
7036 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7037 + floor_log2 (INTVAL (XEXP (x, 1))))
7038 < GET_MODE_BITSIZE (GET_MODE (x)))
7039 && (INTVAL (XEXP (x, 1))
7040 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7041 {
7042 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7043 << INTVAL (XEXP (XEXP (x, 0), 1)));
7044 temp = gen_binary (GET_CODE (x), GET_MODE (x),
7045 XEXP (XEXP (x, 0), 0), temp);
7046 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
7047 XEXP (XEXP (x, 0), 1));
7048 return force_to_mode (x, mode, mask, reg, next_select);
7049 }
7050
7051 binop:
7052 /* For most binary operations, just propagate into the operation and
7053 change the mode if we have an operation of that mode. */
7054
7055 op0 = gen_lowpart_for_combine (op_mode,
7056 force_to_mode (XEXP (x, 0), mode, mask,
7057 reg, next_select));
7058 op1 = gen_lowpart_for_combine (op_mode,
7059 force_to_mode (XEXP (x, 1), mode, mask,
7060 reg, next_select));
7061
7062 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7063 x = gen_binary (code, op_mode, op0, op1);
7064 break;
7065
7066 case ASHIFT:
7067 /* For left shifts, do the same, but just for the first operand.
7068 However, we cannot do anything with shifts where we cannot
7069 guarantee that the counts are smaller than the size of the mode
7070 because such a count will have a different meaning in a
7071 wider mode. */
7072
7073 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7074 && INTVAL (XEXP (x, 1)) >= 0
7075 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7076 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7077 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7078 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7079 break;
7080
7081 /* If the shift count is a constant and we can do arithmetic in
7082 the mode of the shift, refine which bits we need. Otherwise, use the
7083 conservative form of the mask. */
7084 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7085 && INTVAL (XEXP (x, 1)) >= 0
7086 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7087 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7088 mask >>= INTVAL (XEXP (x, 1));
7089 else
7090 mask = fuller_mask;
7091
7092 op0 = gen_lowpart_for_combine (op_mode,
7093 force_to_mode (XEXP (x, 0), op_mode,
7094 mask, reg, next_select));
7095
7096 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7097 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7098 break;
7099
7100 case LSHIFTRT:
7101 /* Here we can only do something if the shift count is a constant,
7102 this shift constant is valid for the host, and we can do arithmetic
7103 in OP_MODE. */
7104
7105 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7106 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7107 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7108 {
7109 rtx inner = XEXP (x, 0);
7110 unsigned HOST_WIDE_INT inner_mask;
7111
7112 /* Select the mask of the bits we need for the shift operand. */
7113 inner_mask = mask << INTVAL (XEXP (x, 1));
7114
7115 /* We can only change the mode of the shift if we can do arithmetic
7116 in the mode of the shift and INNER_MASK is no wider than the
7117 width of OP_MODE. */
7118 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
7119 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
7120 op_mode = GET_MODE (x);
7121
7122 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7123
7124 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7125 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7126 }
7127
7128 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7129 shift and AND produces only copies of the sign bit (C2 is one less
7130 than a power of two), we can do this with just a shift. */
7131
7132 if (GET_CODE (x) == LSHIFTRT
7133 && GET_CODE (XEXP (x, 1)) == CONST_INT
7134 /* The shift puts one of the sign bit copies in the least significant
7135 bit. */
7136 && ((INTVAL (XEXP (x, 1))
7137 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7138 >= GET_MODE_BITSIZE (GET_MODE (x)))
7139 && exact_log2 (mask + 1) >= 0
7140 /* Number of bits left after the shift must be more than the mask
7141 needs. */
7142 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7143 <= GET_MODE_BITSIZE (GET_MODE (x)))
7144 /* Must be more sign bit copies than the mask needs. */
7145 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7146 >= exact_log2 (mask + 1)))
7147 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7148 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7149 - exact_log2 (mask + 1)));
7150
7151 goto shiftrt;
7152
7153 case ASHIFTRT:
7154 /* If we are just looking for the sign bit, we don't need this shift at
7155 all, even if it has a variable count. */
7156 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7157 && (mask == ((unsigned HOST_WIDE_INT) 1
7158 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7159 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7160
7161 /* If this is a shift by a constant, get a mask that contains those bits
7162 that are not copies of the sign bit. We then have two cases: If
7163 MASK only includes those bits, this can be a logical shift, which may
7164 allow simplifications. If MASK is a single-bit field not within
7165 those bits, we are requesting a copy of the sign bit and hence can
7166 shift the sign bit to the appropriate location. */
7167
7168 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7169 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7170 {
7171 int i = -1;
7172
7173 /* If the considered data is wider than HOST_WIDE_INT, we can't
7174 represent a mask for all its bits in a single scalar.
7175 But we only care about the lower bits, so calculate these. */
7176
7177 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7178 {
7179 nonzero = ~(HOST_WIDE_INT) 0;
7180
7181 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7182 is the number of bits a full-width mask would have set.
7183 We need only shift if these are fewer than nonzero can
7184 hold. If not, we must keep all bits set in nonzero. */
7185
7186 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7187 < HOST_BITS_PER_WIDE_INT)
7188 nonzero >>= INTVAL (XEXP (x, 1))
7189 + HOST_BITS_PER_WIDE_INT
7190 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7191 }
7192 else
7193 {
7194 nonzero = GET_MODE_MASK (GET_MODE (x));
7195 nonzero >>= INTVAL (XEXP (x, 1));
7196 }
7197
7198 if ((mask & ~nonzero) == 0
7199 || (i = exact_log2 (mask)) >= 0)
7200 {
7201 x = simplify_shift_const
7202 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7203 i < 0 ? INTVAL (XEXP (x, 1))
7204 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7205
7206 if (GET_CODE (x) != ASHIFTRT)
7207 return force_to_mode (x, mode, mask, reg, next_select);
7208 }
7209 }
7210
7211 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7212 even if the shift count isn't a constant. */
7213 if (mask == 1)
7214 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7215
7216 shiftrt:
7217
7218 /* If this is a zero- or sign-extension operation that just affects bits
7219 we don't care about, remove it. Be sure the call above returned
7220 something that is still a shift. */
7221
7222 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7223 && GET_CODE (XEXP (x, 1)) == CONST_INT
7224 && INTVAL (XEXP (x, 1)) >= 0
7225 && (INTVAL (XEXP (x, 1))
7226 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7227 && GET_CODE (XEXP (x, 0)) == ASHIFT
7228 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7229 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7230 reg, next_select);
7231
7232 break;
7233
7234 case ROTATE:
7235 case ROTATERT:
7236 /* If the shift count is constant and we can do computations
7237 in the mode of X, compute where the bits we care about are.
7238 Otherwise, we can't do anything. Don't change the mode of
7239 the shift or propagate MODE into the shift, though. */
7240 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7241 && INTVAL (XEXP (x, 1)) >= 0)
7242 {
7243 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7244 GET_MODE (x), GEN_INT (mask),
7245 XEXP (x, 1));
7246 if (temp && GET_CODE (temp) == CONST_INT)
7247 SUBST (XEXP (x, 0),
7248 force_to_mode (XEXP (x, 0), GET_MODE (x),
7249 INTVAL (temp), reg, next_select));
7250 }
7251 break;
7252
7253 case NEG:
7254 /* If we just want the low-order bit, the NEG isn't needed since it
7255 won't change the low-order bit. */
7256 if (mask == 1)
7257 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7258
7259 /* We need any bits less significant than the most significant bit in
7260 MASK since carries from those bits will affect the bits we are
7261 interested in. */
7262 mask = fuller_mask;
7263 goto unop;
7264
7265 case NOT:
7266 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7267 same as the XOR case above. Ensure that the constant we form is not
7268 wider than the mode of X. */
7269
7270 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7271 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7272 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7273 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7274 < GET_MODE_BITSIZE (GET_MODE (x)))
7275 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7276 {
7277 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7278 GET_MODE (x));
7279 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7280 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7281
7282 return force_to_mode (x, mode, mask, reg, next_select);
7283 }
7284
7285 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7286 use the full mask inside the NOT. */
7287 mask = fuller_mask;
7288
7289 unop:
7290 op0 = gen_lowpart_for_combine (op_mode,
7291 force_to_mode (XEXP (x, 0), mode, mask,
7292 reg, next_select));
7293 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7294 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7295 break;
7296
7297 case NE:
7298 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7299 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7300 which is equal to STORE_FLAG_VALUE. */
7301 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7302 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7303 && (nonzero_bits (XEXP (x, 0), mode)
7304 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7305 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7306
7307 break;
7308
7309 case IF_THEN_ELSE:
7310 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7311 written in a narrower mode. We play it safe and do not do so. */
7312
7313 SUBST (XEXP (x, 1),
7314 gen_lowpart_for_combine (GET_MODE (x),
7315 force_to_mode (XEXP (x, 1), mode,
7316 mask, reg, next_select)));
7317 SUBST (XEXP (x, 2),
7318 gen_lowpart_for_combine (GET_MODE (x),
7319 force_to_mode (XEXP (x, 2), mode,
7320 mask, reg, next_select)));
7321 break;
7322
7323 default:
7324 break;
7325 }
7326
7327 /* Ensure we return a value of the proper mode. */
7328 return gen_lowpart_for_combine (mode, x);
7329 }
7330 \f
7331 /* Return nonzero if X is an expression that has one of two values depending on
7332 whether some other value is zero or nonzero. In that case, we return the
7333 value that is being tested, *PTRUE is set to the value if the rtx being
7334 returned has a nonzero value, and *PFALSE is set to the other alternative.
7335
7336 If we return zero, we set *PTRUE and *PFALSE to X. */
7337
7338 static rtx
7339 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7340 {
7341 enum machine_mode mode = GET_MODE (x);
7342 enum rtx_code code = GET_CODE (x);
7343 rtx cond0, cond1, true0, true1, false0, false1;
7344 unsigned HOST_WIDE_INT nz;
7345
7346 /* If we are comparing a value against zero, we are done. */
7347 if ((code == NE || code == EQ)
7348 && XEXP (x, 1) == const0_rtx)
7349 {
7350 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7351 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7352 return XEXP (x, 0);
7353 }
7354
7355 /* If this is a unary operation whose operand has one of two values, apply
7356 our opcode to compute those values. */
7357 else if (GET_RTX_CLASS (code) == '1'
7358 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7359 {
7360 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7361 *pfalse = simplify_gen_unary (code, mode, false0,
7362 GET_MODE (XEXP (x, 0)));
7363 return cond0;
7364 }
7365
7366 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7367 make can't possibly match and would suppress other optimizations. */
7368 else if (code == COMPARE)
7369 ;
7370
7371 /* If this is a binary operation, see if either side has only one of two
7372 values. If either one does or if both do and they are conditional on
7373 the same value, compute the new true and false values. */
7374 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7375 || GET_RTX_CLASS (code) == '<')
7376 {
7377 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7378 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7379
7380 if ((cond0 != 0 || cond1 != 0)
7381 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7382 {
7383 /* If if_then_else_cond returned zero, then true/false are the
7384 same rtl. We must copy one of them to prevent invalid rtl
7385 sharing. */
7386 if (cond0 == 0)
7387 true0 = copy_rtx (true0);
7388 else if (cond1 == 0)
7389 true1 = copy_rtx (true1);
7390
7391 *ptrue = gen_binary (code, mode, true0, true1);
7392 *pfalse = gen_binary (code, mode, false0, false1);
7393 return cond0 ? cond0 : cond1;
7394 }
7395
7396 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7397 operands is zero when the other is nonzero, and vice-versa,
7398 and STORE_FLAG_VALUE is 1 or -1. */
7399
7400 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7401 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7402 || code == UMAX)
7403 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7404 {
7405 rtx op0 = XEXP (XEXP (x, 0), 1);
7406 rtx op1 = XEXP (XEXP (x, 1), 1);
7407
7408 cond0 = XEXP (XEXP (x, 0), 0);
7409 cond1 = XEXP (XEXP (x, 1), 0);
7410
7411 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7412 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7413 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7414 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7415 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7416 || ((swap_condition (GET_CODE (cond0))
7417 == combine_reversed_comparison_code (cond1))
7418 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7419 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7420 && ! side_effects_p (x))
7421 {
7422 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7423 *pfalse = gen_binary (MULT, mode,
7424 (code == MINUS
7425 ? simplify_gen_unary (NEG, mode, op1,
7426 mode)
7427 : op1),
7428 const_true_rtx);
7429 return cond0;
7430 }
7431 }
7432
7433 /* Similarly for MULT, AND and UMIN, except that for these the result
7434 is always zero. */
7435 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7436 && (code == MULT || code == AND || code == UMIN)
7437 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7438 {
7439 cond0 = XEXP (XEXP (x, 0), 0);
7440 cond1 = XEXP (XEXP (x, 1), 0);
7441
7442 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7443 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7444 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7445 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7446 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7447 || ((swap_condition (GET_CODE (cond0))
7448 == combine_reversed_comparison_code (cond1))
7449 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7450 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7451 && ! side_effects_p (x))
7452 {
7453 *ptrue = *pfalse = const0_rtx;
7454 return cond0;
7455 }
7456 }
7457 }
7458
7459 else if (code == IF_THEN_ELSE)
7460 {
7461 /* If we have IF_THEN_ELSE already, extract the condition and
7462 canonicalize it if it is NE or EQ. */
7463 cond0 = XEXP (x, 0);
7464 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7465 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7466 return XEXP (cond0, 0);
7467 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7468 {
7469 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7470 return XEXP (cond0, 0);
7471 }
7472 else
7473 return cond0;
7474 }
7475
7476 /* If X is a SUBREG, we can narrow both the true and false values
7477 if the inner expression, if there is a condition. */
7478 else if (code == SUBREG
7479 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7480 &true0, &false0)))
7481 {
7482 *ptrue = simplify_gen_subreg (mode, true0,
7483 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7484 *pfalse = simplify_gen_subreg (mode, false0,
7485 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7486
7487 return cond0;
7488 }
7489
7490 /* If X is a constant, this isn't special and will cause confusions
7491 if we treat it as such. Likewise if it is equivalent to a constant. */
7492 else if (CONSTANT_P (x)
7493 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7494 ;
7495
7496 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7497 will be least confusing to the rest of the compiler. */
7498 else if (mode == BImode)
7499 {
7500 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7501 return x;
7502 }
7503
7504 /* If X is known to be either 0 or -1, those are the true and
7505 false values when testing X. */
7506 else if (x == constm1_rtx || x == const0_rtx
7507 || (mode != VOIDmode
7508 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7509 {
7510 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7511 return x;
7512 }
7513
7514 /* Likewise for 0 or a single bit. */
7515 else if (mode != VOIDmode
7516 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7517 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7518 {
7519 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7520 return x;
7521 }
7522
7523 /* Otherwise fail; show no condition with true and false values the same. */
7524 *ptrue = *pfalse = x;
7525 return 0;
7526 }
7527 \f
7528 /* Return the value of expression X given the fact that condition COND
7529 is known to be true when applied to REG as its first operand and VAL
7530 as its second. X is known to not be shared and so can be modified in
7531 place.
7532
7533 We only handle the simplest cases, and specifically those cases that
7534 arise with IF_THEN_ELSE expressions. */
7535
7536 static rtx
7537 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7538 {
7539 enum rtx_code code = GET_CODE (x);
7540 rtx temp;
7541 const char *fmt;
7542 int i, j;
7543
7544 if (side_effects_p (x))
7545 return x;
7546
7547 /* If either operand of the condition is a floating point value,
7548 then we have to avoid collapsing an EQ comparison. */
7549 if (cond == EQ
7550 && rtx_equal_p (x, reg)
7551 && ! FLOAT_MODE_P (GET_MODE (x))
7552 && ! FLOAT_MODE_P (GET_MODE (val)))
7553 return val;
7554
7555 if (cond == UNEQ && rtx_equal_p (x, reg))
7556 return val;
7557
7558 /* If X is (abs REG) and we know something about REG's relationship
7559 with zero, we may be able to simplify this. */
7560
7561 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7562 switch (cond)
7563 {
7564 case GE: case GT: case EQ:
7565 return XEXP (x, 0);
7566 case LT: case LE:
7567 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7568 XEXP (x, 0),
7569 GET_MODE (XEXP (x, 0)));
7570 default:
7571 break;
7572 }
7573
7574 /* The only other cases we handle are MIN, MAX, and comparisons if the
7575 operands are the same as REG and VAL. */
7576
7577 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7578 {
7579 if (rtx_equal_p (XEXP (x, 0), val))
7580 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7581
7582 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7583 {
7584 if (GET_RTX_CLASS (code) == '<')
7585 {
7586 if (comparison_dominates_p (cond, code))
7587 return const_true_rtx;
7588
7589 code = combine_reversed_comparison_code (x);
7590 if (code != UNKNOWN
7591 && comparison_dominates_p (cond, code))
7592 return const0_rtx;
7593 else
7594 return x;
7595 }
7596 else if (code == SMAX || code == SMIN
7597 || code == UMIN || code == UMAX)
7598 {
7599 int unsignedp = (code == UMIN || code == UMAX);
7600
7601 /* Do not reverse the condition when it is NE or EQ.
7602 This is because we cannot conclude anything about
7603 the value of 'SMAX (x, y)' when x is not equal to y,
7604 but we can when x equals y. */
7605 if ((code == SMAX || code == UMAX)
7606 && ! (cond == EQ || cond == NE))
7607 cond = reverse_condition (cond);
7608
7609 switch (cond)
7610 {
7611 case GE: case GT:
7612 return unsignedp ? x : XEXP (x, 1);
7613 case LE: case LT:
7614 return unsignedp ? x : XEXP (x, 0);
7615 case GEU: case GTU:
7616 return unsignedp ? XEXP (x, 1) : x;
7617 case LEU: case LTU:
7618 return unsignedp ? XEXP (x, 0) : x;
7619 default:
7620 break;
7621 }
7622 }
7623 }
7624 }
7625 else if (code == SUBREG)
7626 {
7627 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7628 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7629
7630 if (SUBREG_REG (x) != r)
7631 {
7632 /* We must simplify subreg here, before we lose track of the
7633 original inner_mode. */
7634 new = simplify_subreg (GET_MODE (x), r,
7635 inner_mode, SUBREG_BYTE (x));
7636 if (new)
7637 return new;
7638 else
7639 SUBST (SUBREG_REG (x), r);
7640 }
7641
7642 return x;
7643 }
7644 /* We don't have to handle SIGN_EXTEND here, because even in the
7645 case of replacing something with a modeless CONST_INT, a
7646 CONST_INT is already (supposed to be) a valid sign extension for
7647 its narrower mode, which implies it's already properly
7648 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7649 story is different. */
7650 else if (code == ZERO_EXTEND)
7651 {
7652 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7653 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7654
7655 if (XEXP (x, 0) != r)
7656 {
7657 /* We must simplify the zero_extend here, before we lose
7658 track of the original inner_mode. */
7659 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7660 r, inner_mode);
7661 if (new)
7662 return new;
7663 else
7664 SUBST (XEXP (x, 0), r);
7665 }
7666
7667 return x;
7668 }
7669
7670 fmt = GET_RTX_FORMAT (code);
7671 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7672 {
7673 if (fmt[i] == 'e')
7674 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7675 else if (fmt[i] == 'E')
7676 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7677 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7678 cond, reg, val));
7679 }
7680
7681 return x;
7682 }
7683 \f
7684 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7685 assignment as a field assignment. */
7686
7687 static int
7688 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7689 {
7690 if (x == y || rtx_equal_p (x, y))
7691 return 1;
7692
7693 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7694 return 0;
7695
7696 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7697 Note that all SUBREGs of MEM are paradoxical; otherwise they
7698 would have been rewritten. */
7699 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7700 && GET_CODE (SUBREG_REG (y)) == MEM
7701 && rtx_equal_p (SUBREG_REG (y),
7702 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7703 return 1;
7704
7705 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7706 && GET_CODE (SUBREG_REG (x)) == MEM
7707 && rtx_equal_p (SUBREG_REG (x),
7708 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7709 return 1;
7710
7711 /* We used to see if get_last_value of X and Y were the same but that's
7712 not correct. In one direction, we'll cause the assignment to have
7713 the wrong destination and in the case, we'll import a register into this
7714 insn that might have already have been dead. So fail if none of the
7715 above cases are true. */
7716 return 0;
7717 }
7718 \f
7719 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7720 Return that assignment if so.
7721
7722 We only handle the most common cases. */
7723
7724 static rtx
7725 make_field_assignment (rtx x)
7726 {
7727 rtx dest = SET_DEST (x);
7728 rtx src = SET_SRC (x);
7729 rtx assign;
7730 rtx rhs, lhs;
7731 HOST_WIDE_INT c1;
7732 HOST_WIDE_INT pos;
7733 unsigned HOST_WIDE_INT len;
7734 rtx other;
7735 enum machine_mode mode;
7736
7737 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7738 a clear of a one-bit field. We will have changed it to
7739 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7740 for a SUBREG. */
7741
7742 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7743 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7744 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7745 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7746 {
7747 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7748 1, 1, 1, 0);
7749 if (assign != 0)
7750 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7751 return x;
7752 }
7753
7754 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7755 && subreg_lowpart_p (XEXP (src, 0))
7756 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7757 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7758 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7759 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7760 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7761 {
7762 assign = make_extraction (VOIDmode, dest, 0,
7763 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7764 1, 1, 1, 0);
7765 if (assign != 0)
7766 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7767 return x;
7768 }
7769
7770 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7771 one-bit field. */
7772 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7773 && XEXP (XEXP (src, 0), 0) == const1_rtx
7774 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7775 {
7776 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7777 1, 1, 1, 0);
7778 if (assign != 0)
7779 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7780 return x;
7781 }
7782
7783 /* The other case we handle is assignments into a constant-position
7784 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7785 a mask that has all one bits except for a group of zero bits and
7786 OTHER is known to have zeros where C1 has ones, this is such an
7787 assignment. Compute the position and length from C1. Shift OTHER
7788 to the appropriate position, force it to the required mode, and
7789 make the extraction. Check for the AND in both operands. */
7790
7791 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7792 return x;
7793
7794 rhs = expand_compound_operation (XEXP (src, 0));
7795 lhs = expand_compound_operation (XEXP (src, 1));
7796
7797 if (GET_CODE (rhs) == AND
7798 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7799 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7800 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7801 else if (GET_CODE (lhs) == AND
7802 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7803 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7804 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7805 else
7806 return x;
7807
7808 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7809 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7810 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7811 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7812 return x;
7813
7814 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7815 if (assign == 0)
7816 return x;
7817
7818 /* The mode to use for the source is the mode of the assignment, or of
7819 what is inside a possible STRICT_LOW_PART. */
7820 mode = (GET_CODE (assign) == STRICT_LOW_PART
7821 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7822
7823 /* Shift OTHER right POS places and make it the source, restricting it
7824 to the proper length and mode. */
7825
7826 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7827 GET_MODE (src), other, pos),
7828 mode,
7829 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7830 ? ~(unsigned HOST_WIDE_INT) 0
7831 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7832 dest, 0);
7833
7834 /* If SRC is masked by an AND that does not make a difference in
7835 the value being stored, strip it. */
7836 if (GET_CODE (assign) == ZERO_EXTRACT
7837 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7838 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7839 && GET_CODE (src) == AND
7840 && GET_CODE (XEXP (src, 1)) == CONST_INT
7841 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7842 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7843 src = XEXP (src, 0);
7844
7845 return gen_rtx_SET (VOIDmode, assign, src);
7846 }
7847 \f
7848 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7849 if so. */
7850
7851 static rtx
7852 apply_distributive_law (rtx x)
7853 {
7854 enum rtx_code code = GET_CODE (x);
7855 rtx lhs, rhs, other;
7856 rtx tem;
7857 enum rtx_code inner_code;
7858
7859 /* Distributivity is not true for floating point.
7860 It can change the value. So don't do it.
7861 -- rms and moshier@world.std.com. */
7862 if (FLOAT_MODE_P (GET_MODE (x)))
7863 return x;
7864
7865 /* The outer operation can only be one of the following: */
7866 if (code != IOR && code != AND && code != XOR
7867 && code != PLUS && code != MINUS)
7868 return x;
7869
7870 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7871
7872 /* If either operand is a primitive we can't do anything, so get out
7873 fast. */
7874 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7875 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7876 return x;
7877
7878 lhs = expand_compound_operation (lhs);
7879 rhs = expand_compound_operation (rhs);
7880 inner_code = GET_CODE (lhs);
7881 if (inner_code != GET_CODE (rhs))
7882 return x;
7883
7884 /* See if the inner and outer operations distribute. */
7885 switch (inner_code)
7886 {
7887 case LSHIFTRT:
7888 case ASHIFTRT:
7889 case AND:
7890 case IOR:
7891 /* These all distribute except over PLUS. */
7892 if (code == PLUS || code == MINUS)
7893 return x;
7894 break;
7895
7896 case MULT:
7897 if (code != PLUS && code != MINUS)
7898 return x;
7899 break;
7900
7901 case ASHIFT:
7902 /* This is also a multiply, so it distributes over everything. */
7903 break;
7904
7905 case SUBREG:
7906 /* Non-paradoxical SUBREGs distributes over all operations, provided
7907 the inner modes and byte offsets are the same, this is an extraction
7908 of a low-order part, we don't convert an fp operation to int or
7909 vice versa, and we would not be converting a single-word
7910 operation into a multi-word operation. The latter test is not
7911 required, but it prevents generating unneeded multi-word operations.
7912 Some of the previous tests are redundant given the latter test, but
7913 are retained because they are required for correctness.
7914
7915 We produce the result slightly differently in this case. */
7916
7917 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7918 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7919 || ! subreg_lowpart_p (lhs)
7920 || (GET_MODE_CLASS (GET_MODE (lhs))
7921 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7922 || (GET_MODE_SIZE (GET_MODE (lhs))
7923 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7924 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7925 return x;
7926
7927 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7928 SUBREG_REG (lhs), SUBREG_REG (rhs));
7929 return gen_lowpart_for_combine (GET_MODE (x), tem);
7930
7931 default:
7932 return x;
7933 }
7934
7935 /* Set LHS and RHS to the inner operands (A and B in the example
7936 above) and set OTHER to the common operand (C in the example).
7937 These is only one way to do this unless the inner operation is
7938 commutative. */
7939 if (GET_RTX_CLASS (inner_code) == 'c'
7940 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7941 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7942 else if (GET_RTX_CLASS (inner_code) == 'c'
7943 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7944 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7945 else if (GET_RTX_CLASS (inner_code) == 'c'
7946 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7947 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7948 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7949 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7950 else
7951 return x;
7952
7953 /* Form the new inner operation, seeing if it simplifies first. */
7954 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7955
7956 /* There is one exception to the general way of distributing:
7957 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7958 if (code == XOR && inner_code == IOR)
7959 {
7960 inner_code = AND;
7961 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7962 }
7963
7964 /* We may be able to continuing distributing the result, so call
7965 ourselves recursively on the inner operation before forming the
7966 outer operation, which we return. */
7967 return gen_binary (inner_code, GET_MODE (x),
7968 apply_distributive_law (tem), other);
7969 }
7970 \f
7971 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7972 in MODE.
7973
7974 Return an equivalent form, if different from X. Otherwise, return X. If
7975 X is zero, we are to always construct the equivalent form. */
7976
7977 static rtx
7978 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
7979 unsigned HOST_WIDE_INT constop)
7980 {
7981 unsigned HOST_WIDE_INT nonzero;
7982 int i;
7983
7984 /* Simplify VAROP knowing that we will be only looking at some of the
7985 bits in it.
7986
7987 Note by passing in CONSTOP, we guarantee that the bits not set in
7988 CONSTOP are not significant and will never be examined. We must
7989 ensure that is the case by explicitly masking out those bits
7990 before returning. */
7991 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7992
7993 /* If VAROP is a CLOBBER, we will fail so return it. */
7994 if (GET_CODE (varop) == CLOBBER)
7995 return varop;
7996
7997 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
7998 to VAROP and return the new constant. */
7999 if (GET_CODE (varop) == CONST_INT)
8000 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
8001
8002 /* See what bits may be nonzero in VAROP. Unlike the general case of
8003 a call to nonzero_bits, here we don't care about bits outside
8004 MODE. */
8005
8006 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8007
8008 /* Turn off all bits in the constant that are known to already be zero.
8009 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8010 which is tested below. */
8011
8012 constop &= nonzero;
8013
8014 /* If we don't have any bits left, return zero. */
8015 if (constop == 0)
8016 return const0_rtx;
8017
8018 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8019 a power of two, we can replace this with an ASHIFT. */
8020 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8021 && (i = exact_log2 (constop)) >= 0)
8022 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8023
8024 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8025 or XOR, then try to apply the distributive law. This may eliminate
8026 operations if either branch can be simplified because of the AND.
8027 It may also make some cases more complex, but those cases probably
8028 won't match a pattern either with or without this. */
8029
8030 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8031 return
8032 gen_lowpart_for_combine
8033 (mode,
8034 apply_distributive_law
8035 (gen_binary (GET_CODE (varop), GET_MODE (varop),
8036 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8037 XEXP (varop, 0), constop),
8038 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8039 XEXP (varop, 1), constop))));
8040
8041 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8042 the AND and see if one of the operands simplifies to zero. If so, we
8043 may eliminate it. */
8044
8045 if (GET_CODE (varop) == PLUS
8046 && exact_log2 (constop + 1) >= 0)
8047 {
8048 rtx o0, o1;
8049
8050 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8051 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8052 if (o0 == const0_rtx)
8053 return o1;
8054 if (o1 == const0_rtx)
8055 return o0;
8056 }
8057
8058 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8059 if we already had one (just check for the simplest cases). */
8060 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8061 && GET_MODE (XEXP (x, 0)) == mode
8062 && SUBREG_REG (XEXP (x, 0)) == varop)
8063 varop = XEXP (x, 0);
8064 else
8065 varop = gen_lowpart_for_combine (mode, varop);
8066
8067 /* If we can't make the SUBREG, try to return what we were given. */
8068 if (GET_CODE (varop) == CLOBBER)
8069 return x ? x : varop;
8070
8071 /* If we are only masking insignificant bits, return VAROP. */
8072 if (constop == nonzero)
8073 x = varop;
8074 else
8075 {
8076 /* Otherwise, return an AND. */
8077 constop = trunc_int_for_mode (constop, mode);
8078 /* See how much, if any, of X we can use. */
8079 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8080 x = gen_binary (AND, mode, varop, GEN_INT (constop));
8081
8082 else
8083 {
8084 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8085 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8086 SUBST (XEXP (x, 1), GEN_INT (constop));
8087
8088 SUBST (XEXP (x, 0), varop);
8089 }
8090 }
8091
8092 return x;
8093 }
8094 \f
8095 #define nonzero_bits_with_known(X, MODE) \
8096 cached_nonzero_bits (X, MODE, known_x, known_mode, known_ret)
8097
8098 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
8099 It avoids exponential behavior in nonzero_bits1 when X has
8100 identical subexpressions on the first or the second level. */
8101
8102 static unsigned HOST_WIDE_INT
8103 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
8104 enum machine_mode known_mode,
8105 unsigned HOST_WIDE_INT known_ret)
8106 {
8107 if (x == known_x && mode == known_mode)
8108 return known_ret;
8109
8110 /* Try to find identical subexpressions. If found call
8111 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
8112 precomputed value for the subexpression as KNOWN_RET. */
8113
8114 if (GET_RTX_CLASS (GET_CODE (x)) == '2'
8115 || GET_RTX_CLASS (GET_CODE (x)) == 'c')
8116 {
8117 rtx x0 = XEXP (x, 0);
8118 rtx x1 = XEXP (x, 1);
8119
8120 /* Check the first level. */
8121 if (x0 == x1)
8122 return nonzero_bits1 (x, mode, x0, mode,
8123 nonzero_bits_with_known (x0, mode));
8124
8125 /* Check the second level. */
8126 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
8127 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
8128 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
8129 return nonzero_bits1 (x, mode, x1, mode,
8130 nonzero_bits_with_known (x1, mode));
8131
8132 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
8133 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
8134 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
8135 return nonzero_bits1 (x, mode, x0, mode,
8136 nonzero_bits_with_known (x0, mode));
8137 }
8138
8139 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
8140 }
8141
8142 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
8143 We don't let nonzero_bits recur into num_sign_bit_copies, because that
8144 is less useful. We can't allow both, because that results in exponential
8145 run time recursion. There is a nullstone testcase that triggered
8146 this. This macro avoids accidental uses of num_sign_bit_copies. */
8147 #define cached_num_sign_bit_copies()
8148
8149 /* Given an expression, X, compute which bits in X can be nonzero.
8150 We don't care about bits outside of those defined in MODE.
8151
8152 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8153 a shift, AND, or zero_extract, we can do better. */
8154
8155 static unsigned HOST_WIDE_INT
8156 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
8157 enum machine_mode known_mode,
8158 unsigned HOST_WIDE_INT known_ret)
8159 {
8160 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
8161 unsigned HOST_WIDE_INT inner_nz;
8162 enum rtx_code code;
8163 unsigned int mode_width = GET_MODE_BITSIZE (mode);
8164 rtx tem;
8165
8166 /* For floating-point values, assume all bits are needed. */
8167 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
8168 return nonzero;
8169
8170 /* If X is wider than MODE, use its mode instead. */
8171 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
8172 {
8173 mode = GET_MODE (x);
8174 nonzero = GET_MODE_MASK (mode);
8175 mode_width = GET_MODE_BITSIZE (mode);
8176 }
8177
8178 if (mode_width > HOST_BITS_PER_WIDE_INT)
8179 /* Our only callers in this case look for single bit values. So
8180 just return the mode mask. Those tests will then be false. */
8181 return nonzero;
8182
8183 #ifndef WORD_REGISTER_OPERATIONS
8184 /* If MODE is wider than X, but both are a single word for both the host
8185 and target machines, we can compute this from which bits of the
8186 object might be nonzero in its own mode, taking into account the fact
8187 that on many CISC machines, accessing an object in a wider mode
8188 causes the high-order bits to become undefined. So they are
8189 not known to be zero. */
8190
8191 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8192 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8193 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8194 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
8195 {
8196 nonzero &= nonzero_bits_with_known (x, GET_MODE (x));
8197 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
8198 return nonzero;
8199 }
8200 #endif
8201
8202 code = GET_CODE (x);
8203 switch (code)
8204 {
8205 case REG:
8206 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8207 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8208 all the bits above ptr_mode are known to be zero. */
8209 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8210 && REG_POINTER (x))
8211 nonzero &= GET_MODE_MASK (ptr_mode);
8212 #endif
8213
8214 /* Include declared information about alignment of pointers. */
8215 /* ??? We don't properly preserve REG_POINTER changes across
8216 pointer-to-integer casts, so we can't trust it except for
8217 things that we know must be pointers. See execute/960116-1.c. */
8218 if ((x == stack_pointer_rtx
8219 || x == frame_pointer_rtx
8220 || x == arg_pointer_rtx)
8221 && REGNO_POINTER_ALIGN (REGNO (x)))
8222 {
8223 unsigned HOST_WIDE_INT alignment
8224 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
8225
8226 #ifdef PUSH_ROUNDING
8227 /* If PUSH_ROUNDING is defined, it is possible for the
8228 stack to be momentarily aligned only to that amount,
8229 so we pick the least alignment. */
8230 if (x == stack_pointer_rtx && PUSH_ARGS)
8231 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
8232 alignment);
8233 #endif
8234
8235 nonzero &= ~(alignment - 1);
8236 }
8237
8238 /* If X is a register whose nonzero bits value is current, use it.
8239 Otherwise, if X is a register whose value we can find, use that
8240 value. Otherwise, use the previously-computed global nonzero bits
8241 for this register. */
8242
8243 if (reg_last_set_value[REGNO (x)] != 0
8244 && (reg_last_set_mode[REGNO (x)] == mode
8245 || (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
8246 && GET_MODE_CLASS (mode) == MODE_INT))
8247 && (reg_last_set_label[REGNO (x)] == label_tick
8248 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8249 && REG_N_SETS (REGNO (x)) == 1
8250 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8251 REGNO (x))))
8252 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8253 return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
8254
8255 tem = get_last_value (x);
8256
8257 if (tem)
8258 {
8259 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8260 /* If X is narrower than MODE and TEM is a non-negative
8261 constant that would appear negative in the mode of X,
8262 sign-extend it for use in reg_nonzero_bits because some
8263 machines (maybe most) will actually do the sign-extension
8264 and this is the conservative approach.
8265
8266 ??? For 2.5, try to tighten up the MD files in this regard
8267 instead of this kludge. */
8268
8269 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8270 && GET_CODE (tem) == CONST_INT
8271 && INTVAL (tem) > 0
8272 && 0 != (INTVAL (tem)
8273 & ((HOST_WIDE_INT) 1
8274 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8275 tem = GEN_INT (INTVAL (tem)
8276 | ((HOST_WIDE_INT) (-1)
8277 << GET_MODE_BITSIZE (GET_MODE (x))));
8278 #endif
8279 return nonzero_bits_with_known (tem, mode) & nonzero;
8280 }
8281 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8282 {
8283 unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
8284
8285 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8286 /* We don't know anything about the upper bits. */
8287 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8288 return nonzero & mask;
8289 }
8290 else
8291 return nonzero;
8292
8293 case CONST_INT:
8294 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8295 /* If X is negative in MODE, sign-extend the value. */
8296 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8297 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8298 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8299 #endif
8300
8301 return INTVAL (x);
8302
8303 case MEM:
8304 #ifdef LOAD_EXTEND_OP
8305 /* In many, if not most, RISC machines, reading a byte from memory
8306 zeros the rest of the register. Noticing that fact saves a lot
8307 of extra zero-extends. */
8308 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8309 nonzero &= GET_MODE_MASK (GET_MODE (x));
8310 #endif
8311 break;
8312
8313 case EQ: case NE:
8314 case UNEQ: case LTGT:
8315 case GT: case GTU: case UNGT:
8316 case LT: case LTU: case UNLT:
8317 case GE: case GEU: case UNGE:
8318 case LE: case LEU: case UNLE:
8319 case UNORDERED: case ORDERED:
8320
8321 /* If this produces an integer result, we know which bits are set.
8322 Code here used to clear bits outside the mode of X, but that is
8323 now done above. */
8324
8325 if (GET_MODE_CLASS (mode) == MODE_INT
8326 && mode_width <= HOST_BITS_PER_WIDE_INT)
8327 nonzero = STORE_FLAG_VALUE;
8328 break;
8329
8330 case NEG:
8331 #if 0
8332 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8333 and num_sign_bit_copies. */
8334 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8335 == GET_MODE_BITSIZE (GET_MODE (x)))
8336 nonzero = 1;
8337 #endif
8338
8339 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8340 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8341 break;
8342
8343 case ABS:
8344 #if 0
8345 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8346 and num_sign_bit_copies. */
8347 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8348 == GET_MODE_BITSIZE (GET_MODE (x)))
8349 nonzero = 1;
8350 #endif
8351 break;
8352
8353 case TRUNCATE:
8354 nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
8355 & GET_MODE_MASK (mode));
8356 break;
8357
8358 case ZERO_EXTEND:
8359 nonzero &= nonzero_bits_with_known (XEXP (x, 0), mode);
8360 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8361 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8362 break;
8363
8364 case SIGN_EXTEND:
8365 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8366 Otherwise, show all the bits in the outer mode but not the inner
8367 may be nonzero. */
8368 inner_nz = nonzero_bits_with_known (XEXP (x, 0), mode);
8369 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8370 {
8371 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8372 if (inner_nz
8373 & (((HOST_WIDE_INT) 1
8374 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8375 inner_nz |= (GET_MODE_MASK (mode)
8376 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8377 }
8378
8379 nonzero &= inner_nz;
8380 break;
8381
8382 case AND:
8383 nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
8384 & nonzero_bits_with_known (XEXP (x, 1), mode));
8385 break;
8386
8387 case XOR: case IOR:
8388 case UMIN: case UMAX: case SMIN: case SMAX:
8389 {
8390 unsigned HOST_WIDE_INT nonzero0 =
8391 nonzero_bits_with_known (XEXP (x, 0), mode);
8392
8393 /* Don't call nonzero_bits for the second time if it cannot change
8394 anything. */
8395 if ((nonzero & nonzero0) != nonzero)
8396 nonzero &= (nonzero0
8397 | nonzero_bits_with_known (XEXP (x, 1), mode));
8398 }
8399 break;
8400
8401 case PLUS: case MINUS:
8402 case MULT:
8403 case DIV: case UDIV:
8404 case MOD: case UMOD:
8405 /* We can apply the rules of arithmetic to compute the number of
8406 high- and low-order zero bits of these operations. We start by
8407 computing the width (position of the highest-order nonzero bit)
8408 and the number of low-order zero bits for each value. */
8409 {
8410 unsigned HOST_WIDE_INT nz0 =
8411 nonzero_bits_with_known (XEXP (x, 0), mode);
8412 unsigned HOST_WIDE_INT nz1 =
8413 nonzero_bits_with_known (XEXP (x, 1), mode);
8414 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
8415 int width0 = floor_log2 (nz0) + 1;
8416 int width1 = floor_log2 (nz1) + 1;
8417 int low0 = floor_log2 (nz0 & -nz0);
8418 int low1 = floor_log2 (nz1 & -nz1);
8419 HOST_WIDE_INT op0_maybe_minusp
8420 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
8421 HOST_WIDE_INT op1_maybe_minusp
8422 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
8423 unsigned int result_width = mode_width;
8424 int result_low = 0;
8425
8426 switch (code)
8427 {
8428 case PLUS:
8429 result_width = MAX (width0, width1) + 1;
8430 result_low = MIN (low0, low1);
8431 break;
8432 case MINUS:
8433 result_low = MIN (low0, low1);
8434 break;
8435 case MULT:
8436 result_width = width0 + width1;
8437 result_low = low0 + low1;
8438 break;
8439 case DIV:
8440 if (width1 == 0)
8441 break;
8442 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8443 result_width = width0;
8444 break;
8445 case UDIV:
8446 if (width1 == 0)
8447 break;
8448 result_width = width0;
8449 break;
8450 case MOD:
8451 if (width1 == 0)
8452 break;
8453 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8454 result_width = MIN (width0, width1);
8455 result_low = MIN (low0, low1);
8456 break;
8457 case UMOD:
8458 if (width1 == 0)
8459 break;
8460 result_width = MIN (width0, width1);
8461 result_low = MIN (low0, low1);
8462 break;
8463 default:
8464 abort ();
8465 }
8466
8467 if (result_width < mode_width)
8468 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8469
8470 if (result_low > 0)
8471 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8472
8473 #ifdef POINTERS_EXTEND_UNSIGNED
8474 /* If pointers extend unsigned and this is an addition or subtraction
8475 to a pointer in Pmode, all the bits above ptr_mode are known to be
8476 zero. */
8477 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8478 && (code == PLUS || code == MINUS)
8479 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8480 nonzero &= GET_MODE_MASK (ptr_mode);
8481 #endif
8482 }
8483 break;
8484
8485 case ZERO_EXTRACT:
8486 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8487 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8488 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8489 break;
8490
8491 case SUBREG:
8492 /* If this is a SUBREG formed for a promoted variable that has
8493 been zero-extended, we know that at least the high-order bits
8494 are zero, though others might be too. */
8495
8496 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
8497 nonzero = (GET_MODE_MASK (GET_MODE (x))
8498 & nonzero_bits_with_known (SUBREG_REG (x), GET_MODE (x)));
8499
8500 /* If the inner mode is a single word for both the host and target
8501 machines, we can compute this from which bits of the inner
8502 object might be nonzero. */
8503 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8504 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8505 <= HOST_BITS_PER_WIDE_INT))
8506 {
8507 nonzero &= nonzero_bits_with_known (SUBREG_REG (x), mode);
8508
8509 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8510 /* If this is a typical RISC machine, we only have to worry
8511 about the way loads are extended. */
8512 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8513 ? (((nonzero
8514 & (((unsigned HOST_WIDE_INT) 1
8515 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8516 != 0))
8517 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8518 || GET_CODE (SUBREG_REG (x)) != MEM)
8519 #endif
8520 {
8521 /* On many CISC machines, accessing an object in a wider mode
8522 causes the high-order bits to become undefined. So they are
8523 not known to be zero. */
8524 if (GET_MODE_SIZE (GET_MODE (x))
8525 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8526 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8527 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8528 }
8529 }
8530 break;
8531
8532 case ASHIFTRT:
8533 case LSHIFTRT:
8534 case ASHIFT:
8535 case ROTATE:
8536 /* The nonzero bits are in two classes: any bits within MODE
8537 that aren't in GET_MODE (x) are always significant. The rest of the
8538 nonzero bits are those that are significant in the operand of
8539 the shift when shifted the appropriate number of bits. This
8540 shows that high-order bits are cleared by the right shift and
8541 low-order bits by left shifts. */
8542 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8543 && INTVAL (XEXP (x, 1)) >= 0
8544 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8545 {
8546 enum machine_mode inner_mode = GET_MODE (x);
8547 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8548 int count = INTVAL (XEXP (x, 1));
8549 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8550 unsigned HOST_WIDE_INT op_nonzero =
8551 nonzero_bits_with_known (XEXP (x, 0), mode);
8552 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8553 unsigned HOST_WIDE_INT outer = 0;
8554
8555 if (mode_width > width)
8556 outer = (op_nonzero & nonzero & ~mode_mask);
8557
8558 if (code == LSHIFTRT)
8559 inner >>= count;
8560 else if (code == ASHIFTRT)
8561 {
8562 inner >>= count;
8563
8564 /* If the sign bit may have been nonzero before the shift, we
8565 need to mark all the places it could have been copied to
8566 by the shift as possibly nonzero. */
8567 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8568 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8569 }
8570 else if (code == ASHIFT)
8571 inner <<= count;
8572 else
8573 inner = ((inner << (count % width)
8574 | (inner >> (width - (count % width)))) & mode_mask);
8575
8576 nonzero &= (outer | inner);
8577 }
8578 break;
8579
8580 case FFS:
8581 case POPCOUNT:
8582 /* This is at most the number of bits in the mode. */
8583 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
8584 break;
8585
8586 case CLZ:
8587 /* If CLZ has a known value at zero, then the nonzero bits are
8588 that value, plus the number of bits in the mode minus one. */
8589 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
8590 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
8591 else
8592 nonzero = -1;
8593 break;
8594
8595 case CTZ:
8596 /* If CTZ has a known value at zero, then the nonzero bits are
8597 that value, plus the number of bits in the mode minus one. */
8598 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
8599 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
8600 else
8601 nonzero = -1;
8602 break;
8603
8604 case PARITY:
8605 nonzero = 1;
8606 break;
8607
8608 case IF_THEN_ELSE:
8609 nonzero &= (nonzero_bits_with_known (XEXP (x, 1), mode)
8610 | nonzero_bits_with_known (XEXP (x, 2), mode));
8611 break;
8612
8613 default:
8614 break;
8615 }
8616
8617 return nonzero;
8618 }
8619
8620 /* See the macro definition above. */
8621 #undef cached_num_sign_bit_copies
8622 \f
8623 #define num_sign_bit_copies_with_known(X, M) \
8624 cached_num_sign_bit_copies (X, M, known_x, known_mode, known_ret)
8625
8626 /* The function cached_num_sign_bit_copies is a wrapper around
8627 num_sign_bit_copies1. It avoids exponential behavior in
8628 num_sign_bit_copies1 when X has identical subexpressions on the
8629 first or the second level. */
8630
8631 static unsigned int
8632 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
8633 enum machine_mode known_mode,
8634 unsigned int known_ret)
8635 {
8636 if (x == known_x && mode == known_mode)
8637 return known_ret;
8638
8639 /* Try to find identical subexpressions. If found call
8640 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
8641 the precomputed value for the subexpression as KNOWN_RET. */
8642
8643 if (GET_RTX_CLASS (GET_CODE (x)) == '2'
8644 || GET_RTX_CLASS (GET_CODE (x)) == 'c')
8645 {
8646 rtx x0 = XEXP (x, 0);
8647 rtx x1 = XEXP (x, 1);
8648
8649 /* Check the first level. */
8650 if (x0 == x1)
8651 return
8652 num_sign_bit_copies1 (x, mode, x0, mode,
8653 num_sign_bit_copies_with_known (x0, mode));
8654
8655 /* Check the second level. */
8656 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
8657 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
8658 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
8659 return
8660 num_sign_bit_copies1 (x, mode, x1, mode,
8661 num_sign_bit_copies_with_known (x1, mode));
8662
8663 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
8664 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
8665 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
8666 return
8667 num_sign_bit_copies1 (x, mode, x0, mode,
8668 num_sign_bit_copies_with_known (x0, mode));
8669 }
8670
8671 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
8672 }
8673
8674 /* Return the number of bits at the high-order end of X that are known to
8675 be equal to the sign bit. X will be used in mode MODE; if MODE is
8676 VOIDmode, X will be used in its own mode. The returned value will always
8677 be between 1 and the number of bits in MODE. */
8678
8679 static unsigned int
8680 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
8681 enum machine_mode known_mode,
8682 unsigned int known_ret)
8683 {
8684 enum rtx_code code = GET_CODE (x);
8685 unsigned int bitwidth;
8686 int num0, num1, result;
8687 unsigned HOST_WIDE_INT nonzero;
8688 rtx tem;
8689
8690 /* If we weren't given a mode, use the mode of X. If the mode is still
8691 VOIDmode, we don't know anything. Likewise if one of the modes is
8692 floating-point. */
8693
8694 if (mode == VOIDmode)
8695 mode = GET_MODE (x);
8696
8697 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8698 return 1;
8699
8700 bitwidth = GET_MODE_BITSIZE (mode);
8701
8702 /* For a smaller object, just ignore the high bits. */
8703 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8704 {
8705 num0 = num_sign_bit_copies_with_known (x, GET_MODE (x));
8706 return MAX (1,
8707 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8708 }
8709
8710 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8711 {
8712 #ifndef WORD_REGISTER_OPERATIONS
8713 /* If this machine does not do all register operations on the entire
8714 register and MODE is wider than the mode of X, we can say nothing
8715 at all about the high-order bits. */
8716 return 1;
8717 #else
8718 /* Likewise on machines that do, if the mode of the object is smaller
8719 than a word and loads of that size don't sign extend, we can say
8720 nothing about the high order bits. */
8721 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8722 #ifdef LOAD_EXTEND_OP
8723 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8724 #endif
8725 )
8726 return 1;
8727 #endif
8728 }
8729
8730 switch (code)
8731 {
8732 case REG:
8733
8734 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8735 /* If pointers extend signed and this is a pointer in Pmode, say that
8736 all the bits above ptr_mode are known to be sign bit copies. */
8737 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8738 && REG_POINTER (x))
8739 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8740 #endif
8741
8742 if (reg_last_set_value[REGNO (x)] != 0
8743 && reg_last_set_mode[REGNO (x)] == mode
8744 && (reg_last_set_label[REGNO (x)] == label_tick
8745 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8746 && REG_N_SETS (REGNO (x)) == 1
8747 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8748 REGNO (x))))
8749 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8750 return reg_last_set_sign_bit_copies[REGNO (x)];
8751
8752 tem = get_last_value (x);
8753 if (tem != 0)
8754 return num_sign_bit_copies_with_known (tem, mode);
8755
8756 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8757 && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8758 return reg_sign_bit_copies[REGNO (x)];
8759 break;
8760
8761 case MEM:
8762 #ifdef LOAD_EXTEND_OP
8763 /* Some RISC machines sign-extend all loads of smaller than a word. */
8764 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8765 return MAX (1, ((int) bitwidth
8766 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8767 #endif
8768 break;
8769
8770 case CONST_INT:
8771 /* If the constant is negative, take its 1's complement and remask.
8772 Then see how many zero bits we have. */
8773 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8774 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8775 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8776 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8777
8778 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8779
8780 case SUBREG:
8781 /* If this is a SUBREG for a promoted object that is sign-extended
8782 and we are looking at it in a wider mode, we know that at least the
8783 high-order bits are known to be sign bit copies. */
8784
8785 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8786 {
8787 num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
8788 return MAX ((int) bitwidth
8789 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8790 num0);
8791 }
8792
8793 /* For a smaller object, just ignore the high bits. */
8794 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8795 {
8796 num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), VOIDmode);
8797 return MAX (1, (num0
8798 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8799 - bitwidth)));
8800 }
8801
8802 #ifdef WORD_REGISTER_OPERATIONS
8803 #ifdef LOAD_EXTEND_OP
8804 /* For paradoxical SUBREGs on machines where all register operations
8805 affect the entire register, just look inside. Note that we are
8806 passing MODE to the recursive call, so the number of sign bit copies
8807 will remain relative to that mode, not the inner mode. */
8808
8809 /* This works only if loads sign extend. Otherwise, if we get a
8810 reload for the inner part, it may be loaded from the stack, and
8811 then we lose all sign bit copies that existed before the store
8812 to the stack. */
8813
8814 if ((GET_MODE_SIZE (GET_MODE (x))
8815 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8816 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8817 && GET_CODE (SUBREG_REG (x)) == MEM)
8818 return num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
8819 #endif
8820 #endif
8821 break;
8822
8823 case SIGN_EXTRACT:
8824 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8825 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8826 break;
8827
8828 case SIGN_EXTEND:
8829 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8830 + num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode));
8831
8832 case TRUNCATE:
8833 /* For a smaller object, just ignore the high bits. */
8834 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode);
8835 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8836 - bitwidth)));
8837
8838 case NOT:
8839 return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8840
8841 case ROTATE: case ROTATERT:
8842 /* If we are rotating left by a number of bits less than the number
8843 of sign bit copies, we can just subtract that amount from the
8844 number. */
8845 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8846 && INTVAL (XEXP (x, 1)) >= 0
8847 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8848 {
8849 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8850 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8851 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8852 }
8853 break;
8854
8855 case NEG:
8856 /* In general, this subtracts one sign bit copy. But if the value
8857 is known to be positive, the number of sign bit copies is the
8858 same as that of the input. Finally, if the input has just one bit
8859 that might be nonzero, all the bits are copies of the sign bit. */
8860 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8861 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8862 return num0 > 1 ? num0 - 1 : 1;
8863
8864 nonzero = nonzero_bits (XEXP (x, 0), mode);
8865 if (nonzero == 1)
8866 return bitwidth;
8867
8868 if (num0 > 1
8869 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8870 num0--;
8871
8872 return num0;
8873
8874 case IOR: case AND: case XOR:
8875 case SMIN: case SMAX: case UMIN: case UMAX:
8876 /* Logical operations will preserve the number of sign-bit copies.
8877 MIN and MAX operations always return one of the operands. */
8878 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8879 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8880 return MIN (num0, num1);
8881
8882 case PLUS: case MINUS:
8883 /* For addition and subtraction, we can have a 1-bit carry. However,
8884 if we are subtracting 1 from a positive number, there will not
8885 be such a carry. Furthermore, if the positive number is known to
8886 be 0 or 1, we know the result is either -1 or 0. */
8887
8888 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8889 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8890 {
8891 nonzero = nonzero_bits (XEXP (x, 0), mode);
8892 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8893 return (nonzero == 1 || nonzero == 0 ? bitwidth
8894 : bitwidth - floor_log2 (nonzero) - 1);
8895 }
8896
8897 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8898 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8899 result = MAX (1, MIN (num0, num1) - 1);
8900
8901 #ifdef POINTERS_EXTEND_UNSIGNED
8902 /* If pointers extend signed and this is an addition or subtraction
8903 to a pointer in Pmode, all the bits above ptr_mode are known to be
8904 sign bit copies. */
8905 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8906 && (code == PLUS || code == MINUS)
8907 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8908 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8909 - GET_MODE_BITSIZE (ptr_mode) + 1),
8910 result);
8911 #endif
8912 return result;
8913
8914 case MULT:
8915 /* The number of bits of the product is the sum of the number of
8916 bits of both terms. However, unless one of the terms if known
8917 to be positive, we must allow for an additional bit since negating
8918 a negative number can remove one sign bit copy. */
8919
8920 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8921 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8922
8923 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8924 if (result > 0
8925 && (bitwidth > HOST_BITS_PER_WIDE_INT
8926 || (((nonzero_bits (XEXP (x, 0), mode)
8927 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8928 && ((nonzero_bits (XEXP (x, 1), mode)
8929 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8930 result--;
8931
8932 return MAX (1, result);
8933
8934 case UDIV:
8935 /* The result must be <= the first operand. If the first operand
8936 has the high bit set, we know nothing about the number of sign
8937 bit copies. */
8938 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8939 return 1;
8940 else if ((nonzero_bits (XEXP (x, 0), mode)
8941 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8942 return 1;
8943 else
8944 return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8945
8946 case UMOD:
8947 /* The result must be <= the second operand. */
8948 return num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8949
8950 case DIV:
8951 /* Similar to unsigned division, except that we have to worry about
8952 the case where the divisor is negative, in which case we have
8953 to add 1. */
8954 result = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8955 if (result > 1
8956 && (bitwidth > HOST_BITS_PER_WIDE_INT
8957 || (nonzero_bits (XEXP (x, 1), mode)
8958 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8959 result--;
8960
8961 return result;
8962
8963 case MOD:
8964 result = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8965 if (result > 1
8966 && (bitwidth > HOST_BITS_PER_WIDE_INT
8967 || (nonzero_bits (XEXP (x, 1), mode)
8968 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8969 result--;
8970
8971 return result;
8972
8973 case ASHIFTRT:
8974 /* Shifts by a constant add to the number of bits equal to the
8975 sign bit. */
8976 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8977 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8978 && INTVAL (XEXP (x, 1)) > 0)
8979 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8980
8981 return num0;
8982
8983 case ASHIFT:
8984 /* Left shifts destroy copies. */
8985 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8986 || INTVAL (XEXP (x, 1)) < 0
8987 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8988 return 1;
8989
8990 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8991 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8992
8993 case IF_THEN_ELSE:
8994 num0 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8995 num1 = num_sign_bit_copies_with_known (XEXP (x, 2), mode);
8996 return MIN (num0, num1);
8997
8998 case EQ: case NE: case GE: case GT: case LE: case LT:
8999 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
9000 case GEU: case GTU: case LEU: case LTU:
9001 case UNORDERED: case ORDERED:
9002 /* If the constant is negative, take its 1's complement and remask.
9003 Then see how many zero bits we have. */
9004 nonzero = STORE_FLAG_VALUE;
9005 if (bitwidth <= HOST_BITS_PER_WIDE_INT
9006 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
9007 nonzero = (~nonzero) & GET_MODE_MASK (mode);
9008
9009 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
9010 break;
9011
9012 default:
9013 break;
9014 }
9015
9016 /* If we haven't been able to figure it out by one of the above rules,
9017 see if some of the high-order bits are known to be zero. If so,
9018 count those bits and return one less than that amount. If we can't
9019 safely compute the mask for this mode, always return BITWIDTH. */
9020
9021 if (bitwidth > HOST_BITS_PER_WIDE_INT)
9022 return 1;
9023
9024 nonzero = nonzero_bits (x, mode);
9025 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
9026 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
9027 }
9028 \f
9029 /* Return the number of "extended" bits there are in X, when interpreted
9030 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9031 unsigned quantities, this is the number of high-order zero bits.
9032 For signed quantities, this is the number of copies of the sign bit
9033 minus 1. In both case, this function returns the number of "spare"
9034 bits. For example, if two quantities for which this function returns
9035 at least 1 are added, the addition is known not to overflow.
9036
9037 This function will always return 0 unless called during combine, which
9038 implies that it must be called from a define_split. */
9039
9040 unsigned int
9041 extended_count (rtx x, enum machine_mode mode, int unsignedp)
9042 {
9043 if (nonzero_sign_valid == 0)
9044 return 0;
9045
9046 return (unsignedp
9047 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9048 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
9049 - floor_log2 (nonzero_bits (x, mode)))
9050 : 0)
9051 : num_sign_bit_copies (x, mode) - 1);
9052 }
9053 \f
9054 /* This function is called from `simplify_shift_const' to merge two
9055 outer operations. Specifically, we have already found that we need
9056 to perform operation *POP0 with constant *PCONST0 at the outermost
9057 position. We would now like to also perform OP1 with constant CONST1
9058 (with *POP0 being done last).
9059
9060 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9061 the resulting operation. *PCOMP_P is set to 1 if we would need to
9062 complement the innermost operand, otherwise it is unchanged.
9063
9064 MODE is the mode in which the operation will be done. No bits outside
9065 the width of this mode matter. It is assumed that the width of this mode
9066 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9067
9068 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
9069 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9070 result is simply *PCONST0.
9071
9072 If the resulting operation cannot be expressed as one operation, we
9073 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9074
9075 static int
9076 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9077 {
9078 enum rtx_code op0 = *pop0;
9079 HOST_WIDE_INT const0 = *pconst0;
9080
9081 const0 &= GET_MODE_MASK (mode);
9082 const1 &= GET_MODE_MASK (mode);
9083
9084 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9085 if (op0 == AND)
9086 const1 &= const0;
9087
9088 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
9089 if OP0 is SET. */
9090
9091 if (op1 == NIL || op0 == SET)
9092 return 1;
9093
9094 else if (op0 == NIL)
9095 op0 = op1, const0 = const1;
9096
9097 else if (op0 == op1)
9098 {
9099 switch (op0)
9100 {
9101 case AND:
9102 const0 &= const1;
9103 break;
9104 case IOR:
9105 const0 |= const1;
9106 break;
9107 case XOR:
9108 const0 ^= const1;
9109 break;
9110 case PLUS:
9111 const0 += const1;
9112 break;
9113 case NEG:
9114 op0 = NIL;
9115 break;
9116 default:
9117 break;
9118 }
9119 }
9120
9121 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9122 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9123 return 0;
9124
9125 /* If the two constants aren't the same, we can't do anything. The
9126 remaining six cases can all be done. */
9127 else if (const0 != const1)
9128 return 0;
9129
9130 else
9131 switch (op0)
9132 {
9133 case IOR:
9134 if (op1 == AND)
9135 /* (a & b) | b == b */
9136 op0 = SET;
9137 else /* op1 == XOR */
9138 /* (a ^ b) | b == a | b */
9139 {;}
9140 break;
9141
9142 case XOR:
9143 if (op1 == AND)
9144 /* (a & b) ^ b == (~a) & b */
9145 op0 = AND, *pcomp_p = 1;
9146 else /* op1 == IOR */
9147 /* (a | b) ^ b == a & ~b */
9148 op0 = AND, const0 = ~const0;
9149 break;
9150
9151 case AND:
9152 if (op1 == IOR)
9153 /* (a | b) & b == b */
9154 op0 = SET;
9155 else /* op1 == XOR */
9156 /* (a ^ b) & b) == (~a) & b */
9157 *pcomp_p = 1;
9158 break;
9159 default:
9160 break;
9161 }
9162
9163 /* Check for NO-OP cases. */
9164 const0 &= GET_MODE_MASK (mode);
9165 if (const0 == 0
9166 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9167 op0 = NIL;
9168 else if (const0 == 0 && op0 == AND)
9169 op0 = SET;
9170 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9171 && op0 == AND)
9172 op0 = NIL;
9173
9174 /* ??? Slightly redundant with the above mask, but not entirely.
9175 Moving this above means we'd have to sign-extend the mode mask
9176 for the final test. */
9177 const0 = trunc_int_for_mode (const0, mode);
9178
9179 *pop0 = op0;
9180 *pconst0 = const0;
9181
9182 return 1;
9183 }
9184 \f
9185 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9186 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
9187 that we started with.
9188
9189 The shift is normally computed in the widest mode we find in VAROP, as
9190 long as it isn't a different number of words than RESULT_MODE. Exceptions
9191 are ASHIFTRT and ROTATE, which are always done in their original mode, */
9192
9193 static rtx
9194 simplify_shift_const (rtx x, enum rtx_code code,
9195 enum machine_mode result_mode, rtx varop,
9196 int orig_count)
9197 {
9198 enum rtx_code orig_code = code;
9199 unsigned int count;
9200 int signed_count;
9201 enum machine_mode mode = result_mode;
9202 enum machine_mode shift_mode, tmode;
9203 unsigned int mode_words
9204 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9205 /* We form (outer_op (code varop count) (outer_const)). */
9206 enum rtx_code outer_op = NIL;
9207 HOST_WIDE_INT outer_const = 0;
9208 rtx const_rtx;
9209 int complement_p = 0;
9210 rtx new;
9211
9212 /* Make sure and truncate the "natural" shift on the way in. We don't
9213 want to do this inside the loop as it makes it more difficult to
9214 combine shifts. */
9215 #ifdef SHIFT_COUNT_TRUNCATED
9216 if (SHIFT_COUNT_TRUNCATED)
9217 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9218 #endif
9219
9220 /* If we were given an invalid count, don't do anything except exactly
9221 what was requested. */
9222
9223 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9224 {
9225 if (x)
9226 return x;
9227
9228 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
9229 }
9230
9231 count = orig_count;
9232
9233 /* Unless one of the branches of the `if' in this loop does a `continue',
9234 we will `break' the loop after the `if'. */
9235
9236 while (count != 0)
9237 {
9238 /* If we have an operand of (clobber (const_int 0)), just return that
9239 value. */
9240 if (GET_CODE (varop) == CLOBBER)
9241 return varop;
9242
9243 /* If we discovered we had to complement VAROP, leave. Making a NOT
9244 here would cause an infinite loop. */
9245 if (complement_p)
9246 break;
9247
9248 /* Convert ROTATERT to ROTATE. */
9249 if (code == ROTATERT)
9250 {
9251 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9252 code = ROTATE;
9253 if (VECTOR_MODE_P (result_mode))
9254 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9255 else
9256 count = bitsize - count;
9257 }
9258
9259 /* We need to determine what mode we will do the shift in. If the
9260 shift is a right shift or a ROTATE, we must always do it in the mode
9261 it was originally done in. Otherwise, we can do it in MODE, the
9262 widest mode encountered. */
9263 shift_mode
9264 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9265 ? result_mode : mode);
9266
9267 /* Handle cases where the count is greater than the size of the mode
9268 minus 1. For ASHIFT, use the size minus one as the count (this can
9269 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9270 take the count modulo the size. For other shifts, the result is
9271 zero.
9272
9273 Since these shifts are being produced by the compiler by combining
9274 multiple operations, each of which are defined, we know what the
9275 result is supposed to be. */
9276
9277 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
9278 {
9279 if (code == ASHIFTRT)
9280 count = GET_MODE_BITSIZE (shift_mode) - 1;
9281 else if (code == ROTATE || code == ROTATERT)
9282 count %= GET_MODE_BITSIZE (shift_mode);
9283 else
9284 {
9285 /* We can't simply return zero because there may be an
9286 outer op. */
9287 varop = const0_rtx;
9288 count = 0;
9289 break;
9290 }
9291 }
9292
9293 /* An arithmetic right shift of a quantity known to be -1 or 0
9294 is a no-op. */
9295 if (code == ASHIFTRT
9296 && (num_sign_bit_copies (varop, shift_mode)
9297 == GET_MODE_BITSIZE (shift_mode)))
9298 {
9299 count = 0;
9300 break;
9301 }
9302
9303 /* If we are doing an arithmetic right shift and discarding all but
9304 the sign bit copies, this is equivalent to doing a shift by the
9305 bitsize minus one. Convert it into that shift because it will often
9306 allow other simplifications. */
9307
9308 if (code == ASHIFTRT
9309 && (count + num_sign_bit_copies (varop, shift_mode)
9310 >= GET_MODE_BITSIZE (shift_mode)))
9311 count = GET_MODE_BITSIZE (shift_mode) - 1;
9312
9313 /* We simplify the tests below and elsewhere by converting
9314 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9315 `make_compound_operation' will convert it to an ASHIFTRT for
9316 those machines (such as VAX) that don't have an LSHIFTRT. */
9317 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9318 && code == ASHIFTRT
9319 && ((nonzero_bits (varop, shift_mode)
9320 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9321 == 0))
9322 code = LSHIFTRT;
9323
9324 if (code == LSHIFTRT
9325 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9326 && !(nonzero_bits (varop, shift_mode) >> count))
9327 varop = const0_rtx;
9328 if (code == ASHIFT
9329 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9330 && !((nonzero_bits (varop, shift_mode) << count)
9331 & GET_MODE_MASK (shift_mode)))
9332 varop = const0_rtx;
9333
9334 switch (GET_CODE (varop))
9335 {
9336 case SIGN_EXTEND:
9337 case ZERO_EXTEND:
9338 case SIGN_EXTRACT:
9339 case ZERO_EXTRACT:
9340 new = expand_compound_operation (varop);
9341 if (new != varop)
9342 {
9343 varop = new;
9344 continue;
9345 }
9346 break;
9347
9348 case MEM:
9349 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9350 minus the width of a smaller mode, we can do this with a
9351 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9352 if ((code == ASHIFTRT || code == LSHIFTRT)
9353 && ! mode_dependent_address_p (XEXP (varop, 0))
9354 && ! MEM_VOLATILE_P (varop)
9355 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9356 MODE_INT, 1)) != BLKmode)
9357 {
9358 new = adjust_address_nv (varop, tmode,
9359 BYTES_BIG_ENDIAN ? 0
9360 : count / BITS_PER_UNIT);
9361
9362 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9363 : ZERO_EXTEND, mode, new);
9364 count = 0;
9365 continue;
9366 }
9367 break;
9368
9369 case USE:
9370 /* Similar to the case above, except that we can only do this if
9371 the resulting mode is the same as that of the underlying
9372 MEM and adjust the address depending on the *bits* endianness
9373 because of the way that bit-field extract insns are defined. */
9374 if ((code == ASHIFTRT || code == LSHIFTRT)
9375 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9376 MODE_INT, 1)) != BLKmode
9377 && tmode == GET_MODE (XEXP (varop, 0)))
9378 {
9379 if (BITS_BIG_ENDIAN)
9380 new = XEXP (varop, 0);
9381 else
9382 {
9383 new = copy_rtx (XEXP (varop, 0));
9384 SUBST (XEXP (new, 0),
9385 plus_constant (XEXP (new, 0),
9386 count / BITS_PER_UNIT));
9387 }
9388
9389 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9390 : ZERO_EXTEND, mode, new);
9391 count = 0;
9392 continue;
9393 }
9394 break;
9395
9396 case SUBREG:
9397 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9398 the same number of words as what we've seen so far. Then store
9399 the widest mode in MODE. */
9400 if (subreg_lowpart_p (varop)
9401 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9402 > GET_MODE_SIZE (GET_MODE (varop)))
9403 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9404 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9405 == mode_words)
9406 {
9407 varop = SUBREG_REG (varop);
9408 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9409 mode = GET_MODE (varop);
9410 continue;
9411 }
9412 break;
9413
9414 case MULT:
9415 /* Some machines use MULT instead of ASHIFT because MULT
9416 is cheaper. But it is still better on those machines to
9417 merge two shifts into one. */
9418 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9419 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9420 {
9421 varop
9422 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9423 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9424 continue;
9425 }
9426 break;
9427
9428 case UDIV:
9429 /* Similar, for when divides are cheaper. */
9430 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9431 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9432 {
9433 varop
9434 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9435 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9436 continue;
9437 }
9438 break;
9439
9440 case ASHIFTRT:
9441 /* If we are extracting just the sign bit of an arithmetic
9442 right shift, that shift is not needed. However, the sign
9443 bit of a wider mode may be different from what would be
9444 interpreted as the sign bit in a narrower mode, so, if
9445 the result is narrower, don't discard the shift. */
9446 if (code == LSHIFTRT
9447 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9448 && (GET_MODE_BITSIZE (result_mode)
9449 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9450 {
9451 varop = XEXP (varop, 0);
9452 continue;
9453 }
9454
9455 /* ... fall through ... */
9456
9457 case LSHIFTRT:
9458 case ASHIFT:
9459 case ROTATE:
9460 /* Here we have two nested shifts. The result is usually the
9461 AND of a new shift with a mask. We compute the result below. */
9462 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9463 && INTVAL (XEXP (varop, 1)) >= 0
9464 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9465 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9466 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9467 {
9468 enum rtx_code first_code = GET_CODE (varop);
9469 unsigned int first_count = INTVAL (XEXP (varop, 1));
9470 unsigned HOST_WIDE_INT mask;
9471 rtx mask_rtx;
9472
9473 /* We have one common special case. We can't do any merging if
9474 the inner code is an ASHIFTRT of a smaller mode. However, if
9475 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9476 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9477 we can convert it to
9478 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9479 This simplifies certain SIGN_EXTEND operations. */
9480 if (code == ASHIFT && first_code == ASHIFTRT
9481 && count == (unsigned int)
9482 (GET_MODE_BITSIZE (result_mode)
9483 - GET_MODE_BITSIZE (GET_MODE (varop))))
9484 {
9485 /* C3 has the low-order C1 bits zero. */
9486
9487 mask = (GET_MODE_MASK (mode)
9488 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9489
9490 varop = simplify_and_const_int (NULL_RTX, result_mode,
9491 XEXP (varop, 0), mask);
9492 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9493 varop, count);
9494 count = first_count;
9495 code = ASHIFTRT;
9496 continue;
9497 }
9498
9499 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9500 than C1 high-order bits equal to the sign bit, we can convert
9501 this to either an ASHIFT or an ASHIFTRT depending on the
9502 two counts.
9503
9504 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9505
9506 if (code == ASHIFTRT && first_code == ASHIFT
9507 && GET_MODE (varop) == shift_mode
9508 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9509 > first_count))
9510 {
9511 varop = XEXP (varop, 0);
9512
9513 signed_count = count - first_count;
9514 if (signed_count < 0)
9515 count = -signed_count, code = ASHIFT;
9516 else
9517 count = signed_count;
9518
9519 continue;
9520 }
9521
9522 /* There are some cases we can't do. If CODE is ASHIFTRT,
9523 we can only do this if FIRST_CODE is also ASHIFTRT.
9524
9525 We can't do the case when CODE is ROTATE and FIRST_CODE is
9526 ASHIFTRT.
9527
9528 If the mode of this shift is not the mode of the outer shift,
9529 we can't do this if either shift is a right shift or ROTATE.
9530
9531 Finally, we can't do any of these if the mode is too wide
9532 unless the codes are the same.
9533
9534 Handle the case where the shift codes are the same
9535 first. */
9536
9537 if (code == first_code)
9538 {
9539 if (GET_MODE (varop) != result_mode
9540 && (code == ASHIFTRT || code == LSHIFTRT
9541 || code == ROTATE))
9542 break;
9543
9544 count += first_count;
9545 varop = XEXP (varop, 0);
9546 continue;
9547 }
9548
9549 if (code == ASHIFTRT
9550 || (code == ROTATE && first_code == ASHIFTRT)
9551 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9552 || (GET_MODE (varop) != result_mode
9553 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9554 || first_code == ROTATE
9555 || code == ROTATE)))
9556 break;
9557
9558 /* To compute the mask to apply after the shift, shift the
9559 nonzero bits of the inner shift the same way the
9560 outer shift will. */
9561
9562 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9563
9564 mask_rtx
9565 = simplify_binary_operation (code, result_mode, mask_rtx,
9566 GEN_INT (count));
9567
9568 /* Give up if we can't compute an outer operation to use. */
9569 if (mask_rtx == 0
9570 || GET_CODE (mask_rtx) != CONST_INT
9571 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9572 INTVAL (mask_rtx),
9573 result_mode, &complement_p))
9574 break;
9575
9576 /* If the shifts are in the same direction, we add the
9577 counts. Otherwise, we subtract them. */
9578 signed_count = count;
9579 if ((code == ASHIFTRT || code == LSHIFTRT)
9580 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9581 signed_count += first_count;
9582 else
9583 signed_count -= first_count;
9584
9585 /* If COUNT is positive, the new shift is usually CODE,
9586 except for the two exceptions below, in which case it is
9587 FIRST_CODE. If the count is negative, FIRST_CODE should
9588 always be used */
9589 if (signed_count > 0
9590 && ((first_code == ROTATE && code == ASHIFT)
9591 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9592 code = first_code, count = signed_count;
9593 else if (signed_count < 0)
9594 code = first_code, count = -signed_count;
9595 else
9596 count = signed_count;
9597
9598 varop = XEXP (varop, 0);
9599 continue;
9600 }
9601
9602 /* If we have (A << B << C) for any shift, we can convert this to
9603 (A << C << B). This wins if A is a constant. Only try this if
9604 B is not a constant. */
9605
9606 else if (GET_CODE (varop) == code
9607 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9608 && 0 != (new
9609 = simplify_binary_operation (code, mode,
9610 XEXP (varop, 0),
9611 GEN_INT (count))))
9612 {
9613 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9614 count = 0;
9615 continue;
9616 }
9617 break;
9618
9619 case NOT:
9620 /* Make this fit the case below. */
9621 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9622 GEN_INT (GET_MODE_MASK (mode)));
9623 continue;
9624
9625 case IOR:
9626 case AND:
9627 case XOR:
9628 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9629 with C the size of VAROP - 1 and the shift is logical if
9630 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9631 we have an (le X 0) operation. If we have an arithmetic shift
9632 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9633 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9634
9635 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9636 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9637 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9638 && (code == LSHIFTRT || code == ASHIFTRT)
9639 && count == (unsigned int)
9640 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9641 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9642 {
9643 count = 0;
9644 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9645 const0_rtx);
9646
9647 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9648 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9649
9650 continue;
9651 }
9652
9653 /* If we have (shift (logical)), move the logical to the outside
9654 to allow it to possibly combine with another logical and the
9655 shift to combine with another shift. This also canonicalizes to
9656 what a ZERO_EXTRACT looks like. Also, some machines have
9657 (and (shift)) insns. */
9658
9659 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9660 && (new = simplify_binary_operation (code, result_mode,
9661 XEXP (varop, 1),
9662 GEN_INT (count))) != 0
9663 && GET_CODE (new) == CONST_INT
9664 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9665 INTVAL (new), result_mode, &complement_p))
9666 {
9667 varop = XEXP (varop, 0);
9668 continue;
9669 }
9670
9671 /* If we can't do that, try to simplify the shift in each arm of the
9672 logical expression, make a new logical expression, and apply
9673 the inverse distributive law. */
9674 {
9675 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9676 XEXP (varop, 0), count);
9677 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9678 XEXP (varop, 1), count);
9679
9680 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9681 varop = apply_distributive_law (varop);
9682
9683 count = 0;
9684 }
9685 break;
9686
9687 case EQ:
9688 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9689 says that the sign bit can be tested, FOO has mode MODE, C is
9690 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9691 that may be nonzero. */
9692 if (code == LSHIFTRT
9693 && XEXP (varop, 1) == const0_rtx
9694 && GET_MODE (XEXP (varop, 0)) == result_mode
9695 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9696 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9697 && ((STORE_FLAG_VALUE
9698 & ((HOST_WIDE_INT) 1
9699 < (GET_MODE_BITSIZE (result_mode) - 1))))
9700 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9701 && merge_outer_ops (&outer_op, &outer_const, XOR,
9702 (HOST_WIDE_INT) 1, result_mode,
9703 &complement_p))
9704 {
9705 varop = XEXP (varop, 0);
9706 count = 0;
9707 continue;
9708 }
9709 break;
9710
9711 case NEG:
9712 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9713 than the number of bits in the mode is equivalent to A. */
9714 if (code == LSHIFTRT
9715 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9716 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9717 {
9718 varop = XEXP (varop, 0);
9719 count = 0;
9720 continue;
9721 }
9722
9723 /* NEG commutes with ASHIFT since it is multiplication. Move the
9724 NEG outside to allow shifts to combine. */
9725 if (code == ASHIFT
9726 && merge_outer_ops (&outer_op, &outer_const, NEG,
9727 (HOST_WIDE_INT) 0, result_mode,
9728 &complement_p))
9729 {
9730 varop = XEXP (varop, 0);
9731 continue;
9732 }
9733 break;
9734
9735 case PLUS:
9736 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9737 is one less than the number of bits in the mode is
9738 equivalent to (xor A 1). */
9739 if (code == LSHIFTRT
9740 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9741 && XEXP (varop, 1) == constm1_rtx
9742 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9743 && merge_outer_ops (&outer_op, &outer_const, XOR,
9744 (HOST_WIDE_INT) 1, result_mode,
9745 &complement_p))
9746 {
9747 count = 0;
9748 varop = XEXP (varop, 0);
9749 continue;
9750 }
9751
9752 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9753 that might be nonzero in BAR are those being shifted out and those
9754 bits are known zero in FOO, we can replace the PLUS with FOO.
9755 Similarly in the other operand order. This code occurs when
9756 we are computing the size of a variable-size array. */
9757
9758 if ((code == ASHIFTRT || code == LSHIFTRT)
9759 && count < HOST_BITS_PER_WIDE_INT
9760 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9761 && (nonzero_bits (XEXP (varop, 1), result_mode)
9762 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9763 {
9764 varop = XEXP (varop, 0);
9765 continue;
9766 }
9767 else if ((code == ASHIFTRT || code == LSHIFTRT)
9768 && count < HOST_BITS_PER_WIDE_INT
9769 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9770 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9771 >> count)
9772 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9773 & nonzero_bits (XEXP (varop, 1),
9774 result_mode)))
9775 {
9776 varop = XEXP (varop, 1);
9777 continue;
9778 }
9779
9780 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9781 if (code == ASHIFT
9782 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9783 && (new = simplify_binary_operation (ASHIFT, result_mode,
9784 XEXP (varop, 1),
9785 GEN_INT (count))) != 0
9786 && GET_CODE (new) == CONST_INT
9787 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9788 INTVAL (new), result_mode, &complement_p))
9789 {
9790 varop = XEXP (varop, 0);
9791 continue;
9792 }
9793 break;
9794
9795 case MINUS:
9796 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9797 with C the size of VAROP - 1 and the shift is logical if
9798 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9799 we have a (gt X 0) operation. If the shift is arithmetic with
9800 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9801 we have a (neg (gt X 0)) operation. */
9802
9803 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9804 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9805 && count == (unsigned int)
9806 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9807 && (code == LSHIFTRT || code == ASHIFTRT)
9808 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9809 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9810 == count
9811 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9812 {
9813 count = 0;
9814 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9815 const0_rtx);
9816
9817 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9818 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9819
9820 continue;
9821 }
9822 break;
9823
9824 case TRUNCATE:
9825 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9826 if the truncate does not affect the value. */
9827 if (code == LSHIFTRT
9828 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9829 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9830 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9831 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9832 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9833 {
9834 rtx varop_inner = XEXP (varop, 0);
9835
9836 varop_inner
9837 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9838 XEXP (varop_inner, 0),
9839 GEN_INT
9840 (count + INTVAL (XEXP (varop_inner, 1))));
9841 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9842 count = 0;
9843 continue;
9844 }
9845 break;
9846
9847 default:
9848 break;
9849 }
9850
9851 break;
9852 }
9853
9854 /* We need to determine what mode to do the shift in. If the shift is
9855 a right shift or ROTATE, we must always do it in the mode it was
9856 originally done in. Otherwise, we can do it in MODE, the widest mode
9857 encountered. The code we care about is that of the shift that will
9858 actually be done, not the shift that was originally requested. */
9859 shift_mode
9860 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9861 ? result_mode : mode);
9862
9863 /* We have now finished analyzing the shift. The result should be
9864 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9865 OUTER_OP is non-NIL, it is an operation that needs to be applied
9866 to the result of the shift. OUTER_CONST is the relevant constant,
9867 but we must turn off all bits turned off in the shift.
9868
9869 If we were passed a value for X, see if we can use any pieces of
9870 it. If not, make new rtx. */
9871
9872 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9873 && GET_CODE (XEXP (x, 1)) == CONST_INT
9874 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9875 const_rtx = XEXP (x, 1);
9876 else
9877 const_rtx = GEN_INT (count);
9878
9879 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9880 && GET_MODE (XEXP (x, 0)) == shift_mode
9881 && SUBREG_REG (XEXP (x, 0)) == varop)
9882 varop = XEXP (x, 0);
9883 else if (GET_MODE (varop) != shift_mode)
9884 varop = gen_lowpart_for_combine (shift_mode, varop);
9885
9886 /* If we can't make the SUBREG, try to return what we were given. */
9887 if (GET_CODE (varop) == CLOBBER)
9888 return x ? x : varop;
9889
9890 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9891 if (new != 0)
9892 x = new;
9893 else
9894 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9895
9896 /* If we have an outer operation and we just made a shift, it is
9897 possible that we could have simplified the shift were it not
9898 for the outer operation. So try to do the simplification
9899 recursively. */
9900
9901 if (outer_op != NIL && GET_CODE (x) == code
9902 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9903 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9904 INTVAL (XEXP (x, 1)));
9905
9906 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9907 turn off all the bits that the shift would have turned off. */
9908 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9909 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9910 GET_MODE_MASK (result_mode) >> orig_count);
9911
9912 /* Do the remainder of the processing in RESULT_MODE. */
9913 x = gen_lowpart_for_combine (result_mode, x);
9914
9915 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9916 operation. */
9917 if (complement_p)
9918 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9919
9920 if (outer_op != NIL)
9921 {
9922 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9923 outer_const = trunc_int_for_mode (outer_const, result_mode);
9924
9925 if (outer_op == AND)
9926 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9927 else if (outer_op == SET)
9928 /* This means that we have determined that the result is
9929 equivalent to a constant. This should be rare. */
9930 x = GEN_INT (outer_const);
9931 else if (GET_RTX_CLASS (outer_op) == '1')
9932 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9933 else
9934 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9935 }
9936
9937 return x;
9938 }
9939 \f
9940 /* Like recog, but we receive the address of a pointer to a new pattern.
9941 We try to match the rtx that the pointer points to.
9942 If that fails, we may try to modify or replace the pattern,
9943 storing the replacement into the same pointer object.
9944
9945 Modifications include deletion or addition of CLOBBERs.
9946
9947 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9948 the CLOBBERs are placed.
9949
9950 The value is the final insn code from the pattern ultimately matched,
9951 or -1. */
9952
9953 static int
9954 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9955 {
9956 rtx pat = *pnewpat;
9957 int insn_code_number;
9958 int num_clobbers_to_add = 0;
9959 int i;
9960 rtx notes = 0;
9961 rtx dummy_insn;
9962
9963 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9964 we use to indicate that something didn't match. If we find such a
9965 thing, force rejection. */
9966 if (GET_CODE (pat) == PARALLEL)
9967 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9968 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9969 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9970 return -1;
9971
9972 /* *pnewpat does not have to be actual PATTERN (insn), so make a dummy
9973 instruction for pattern recognition. */
9974 dummy_insn = shallow_copy_rtx (insn);
9975 PATTERN (dummy_insn) = pat;
9976 REG_NOTES (dummy_insn) = 0;
9977
9978 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9979
9980 /* If it isn't, there is the possibility that we previously had an insn
9981 that clobbered some register as a side effect, but the combined
9982 insn doesn't need to do that. So try once more without the clobbers
9983 unless this represents an ASM insn. */
9984
9985 if (insn_code_number < 0 && ! check_asm_operands (pat)
9986 && GET_CODE (pat) == PARALLEL)
9987 {
9988 int pos;
9989
9990 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9991 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9992 {
9993 if (i != pos)
9994 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9995 pos++;
9996 }
9997
9998 SUBST_INT (XVECLEN (pat, 0), pos);
9999
10000 if (pos == 1)
10001 pat = XVECEXP (pat, 0, 0);
10002
10003 PATTERN (dummy_insn) = pat;
10004 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
10005 }
10006
10007 /* Recognize all noop sets, these will be killed by followup pass. */
10008 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10009 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10010
10011 /* If we had any clobbers to add, make a new pattern than contains
10012 them. Then check to make sure that all of them are dead. */
10013 if (num_clobbers_to_add)
10014 {
10015 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10016 rtvec_alloc (GET_CODE (pat) == PARALLEL
10017 ? (XVECLEN (pat, 0)
10018 + num_clobbers_to_add)
10019 : num_clobbers_to_add + 1));
10020
10021 if (GET_CODE (pat) == PARALLEL)
10022 for (i = 0; i < XVECLEN (pat, 0); i++)
10023 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10024 else
10025 XVECEXP (newpat, 0, 0) = pat;
10026
10027 add_clobbers (newpat, insn_code_number);
10028
10029 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10030 i < XVECLEN (newpat, 0); i++)
10031 {
10032 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
10033 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10034 return -1;
10035 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
10036 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10037 }
10038 pat = newpat;
10039 }
10040
10041 *pnewpat = pat;
10042 *pnotes = notes;
10043
10044 return insn_code_number;
10045 }
10046 \f
10047 /* Like gen_lowpart but for use by combine. In combine it is not possible
10048 to create any new pseudoregs. However, it is safe to create
10049 invalid memory addresses, because combine will try to recognize
10050 them and all they will do is make the combine attempt fail.
10051
10052 If for some reason this cannot do its job, an rtx
10053 (clobber (const_int 0)) is returned.
10054 An insn containing that will not be recognized. */
10055
10056 #undef gen_lowpart
10057
10058 static rtx
10059 gen_lowpart_for_combine (enum machine_mode mode, rtx x)
10060 {
10061 rtx result;
10062
10063 if (GET_MODE (x) == mode)
10064 return x;
10065
10066 /* Return identity if this is a CONST or symbolic
10067 reference. */
10068 if (mode == Pmode
10069 && (GET_CODE (x) == CONST
10070 || GET_CODE (x) == SYMBOL_REF
10071 || GET_CODE (x) == LABEL_REF))
10072 return x;
10073
10074 /* We can only support MODE being wider than a word if X is a
10075 constant integer or has a mode the same size. */
10076
10077 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
10078 && ! ((GET_MODE (x) == VOIDmode
10079 && (GET_CODE (x) == CONST_INT
10080 || GET_CODE (x) == CONST_DOUBLE))
10081 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
10082 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10083
10084 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10085 won't know what to do. So we will strip off the SUBREG here and
10086 process normally. */
10087 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
10088 {
10089 x = SUBREG_REG (x);
10090 if (GET_MODE (x) == mode)
10091 return x;
10092 }
10093
10094 result = gen_lowpart_common (mode, x);
10095 #ifdef CANNOT_CHANGE_MODE_CLASS
10096 if (result != 0
10097 && GET_CODE (result) == SUBREG
10098 && GET_CODE (SUBREG_REG (result)) == REG
10099 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER)
10100 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (result))
10101 * MAX_MACHINE_MODE
10102 + GET_MODE (result));
10103 #endif
10104
10105 if (result)
10106 return result;
10107
10108 if (GET_CODE (x) == MEM)
10109 {
10110 int offset = 0;
10111
10112 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10113 address. */
10114 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10115 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10116
10117 /* If we want to refer to something bigger than the original memref,
10118 generate a perverse subreg instead. That will force a reload
10119 of the original memref X. */
10120 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
10121 return gen_rtx_SUBREG (mode, x, 0);
10122
10123 if (WORDS_BIG_ENDIAN)
10124 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
10125 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
10126
10127 if (BYTES_BIG_ENDIAN)
10128 {
10129 /* Adjust the address so that the address-after-the-data is
10130 unchanged. */
10131 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
10132 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
10133 }
10134
10135 return adjust_address_nv (x, mode, offset);
10136 }
10137
10138 /* If X is a comparison operator, rewrite it in a new mode. This
10139 probably won't match, but may allow further simplifications. */
10140 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
10141 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
10142
10143 /* If we couldn't simplify X any other way, just enclose it in a
10144 SUBREG. Normally, this SUBREG won't match, but some patterns may
10145 include an explicit SUBREG or we may simplify it further in combine. */
10146 else
10147 {
10148 int offset = 0;
10149 rtx res;
10150 enum machine_mode sub_mode = GET_MODE (x);
10151
10152 offset = subreg_lowpart_offset (mode, sub_mode);
10153 if (sub_mode == VOIDmode)
10154 {
10155 sub_mode = int_mode_for_mode (mode);
10156 x = gen_lowpart_common (sub_mode, x);
10157 if (x == 0)
10158 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
10159 }
10160 res = simplify_gen_subreg (mode, x, sub_mode, offset);
10161 if (res)
10162 return res;
10163 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10164 }
10165 }
10166 \f
10167 /* These routines make binary and unary operations by first seeing if they
10168 fold; if not, a new expression is allocated. */
10169
10170 static rtx
10171 gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0, rtx op1)
10172 {
10173 rtx result;
10174 rtx tem;
10175
10176 if (GET_CODE (op0) == CLOBBER)
10177 return op0;
10178 else if (GET_CODE (op1) == CLOBBER)
10179 return op1;
10180
10181 if (GET_RTX_CLASS (code) == 'c'
10182 && swap_commutative_operands_p (op0, op1))
10183 tem = op0, op0 = op1, op1 = tem;
10184
10185 if (GET_RTX_CLASS (code) == '<')
10186 {
10187 enum machine_mode op_mode = GET_MODE (op0);
10188
10189 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
10190 just (REL_OP X Y). */
10191 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
10192 {
10193 op1 = XEXP (op0, 1);
10194 op0 = XEXP (op0, 0);
10195 op_mode = GET_MODE (op0);
10196 }
10197
10198 if (op_mode == VOIDmode)
10199 op_mode = GET_MODE (op1);
10200 result = simplify_relational_operation (code, op_mode, op0, op1);
10201 }
10202 else
10203 result = simplify_binary_operation (code, mode, op0, op1);
10204
10205 if (result)
10206 return result;
10207
10208 /* Put complex operands first and constants second. */
10209 if (GET_RTX_CLASS (code) == 'c'
10210 && swap_commutative_operands_p (op0, op1))
10211 return gen_rtx_fmt_ee (code, mode, op1, op0);
10212
10213 /* If we are turning off bits already known off in OP0, we need not do
10214 an AND. */
10215 else if (code == AND && GET_CODE (op1) == CONST_INT
10216 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10217 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
10218 return op0;
10219
10220 return gen_rtx_fmt_ee (code, mode, op0, op1);
10221 }
10222 \f
10223 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10224 comparison code that will be tested.
10225
10226 The result is a possibly different comparison code to use. *POP0 and
10227 *POP1 may be updated.
10228
10229 It is possible that we might detect that a comparison is either always
10230 true or always false. However, we do not perform general constant
10231 folding in combine, so this knowledge isn't useful. Such tautologies
10232 should have been detected earlier. Hence we ignore all such cases. */
10233
10234 static enum rtx_code
10235 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10236 {
10237 rtx op0 = *pop0;
10238 rtx op1 = *pop1;
10239 rtx tem, tem1;
10240 int i;
10241 enum machine_mode mode, tmode;
10242
10243 /* Try a few ways of applying the same transformation to both operands. */
10244 while (1)
10245 {
10246 #ifndef WORD_REGISTER_OPERATIONS
10247 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10248 so check specially. */
10249 if (code != GTU && code != GEU && code != LTU && code != LEU
10250 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10251 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10252 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10253 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10254 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10255 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10256 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10257 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10258 && XEXP (op0, 1) == XEXP (op1, 1)
10259 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10260 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10261 && (INTVAL (XEXP (op0, 1))
10262 == (GET_MODE_BITSIZE (GET_MODE (op0))
10263 - (GET_MODE_BITSIZE
10264 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10265 {
10266 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10267 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10268 }
10269 #endif
10270
10271 /* If both operands are the same constant shift, see if we can ignore the
10272 shift. We can if the shift is a rotate or if the bits shifted out of
10273 this shift are known to be zero for both inputs and if the type of
10274 comparison is compatible with the shift. */
10275 if (GET_CODE (op0) == GET_CODE (op1)
10276 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10277 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10278 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10279 && (code != GT && code != LT && code != GE && code != LE))
10280 || (GET_CODE (op0) == ASHIFTRT
10281 && (code != GTU && code != LTU
10282 && code != GEU && code != LEU)))
10283 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10284 && INTVAL (XEXP (op0, 1)) >= 0
10285 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10286 && XEXP (op0, 1) == XEXP (op1, 1))
10287 {
10288 enum machine_mode mode = GET_MODE (op0);
10289 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10290 int shift_count = INTVAL (XEXP (op0, 1));
10291
10292 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10293 mask &= (mask >> shift_count) << shift_count;
10294 else if (GET_CODE (op0) == ASHIFT)
10295 mask = (mask & (mask << shift_count)) >> shift_count;
10296
10297 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10298 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10299 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10300 else
10301 break;
10302 }
10303
10304 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10305 SUBREGs are of the same mode, and, in both cases, the AND would
10306 be redundant if the comparison was done in the narrower mode,
10307 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10308 and the operand's possibly nonzero bits are 0xffffff01; in that case
10309 if we only care about QImode, we don't need the AND). This case
10310 occurs if the output mode of an scc insn is not SImode and
10311 STORE_FLAG_VALUE == 1 (e.g., the 386).
10312
10313 Similarly, check for a case where the AND's are ZERO_EXTEND
10314 operations from some narrower mode even though a SUBREG is not
10315 present. */
10316
10317 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10318 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10319 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10320 {
10321 rtx inner_op0 = XEXP (op0, 0);
10322 rtx inner_op1 = XEXP (op1, 0);
10323 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10324 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10325 int changed = 0;
10326
10327 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10328 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10329 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10330 && (GET_MODE (SUBREG_REG (inner_op0))
10331 == GET_MODE (SUBREG_REG (inner_op1)))
10332 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10333 <= HOST_BITS_PER_WIDE_INT)
10334 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10335 GET_MODE (SUBREG_REG (inner_op0)))))
10336 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10337 GET_MODE (SUBREG_REG (inner_op1))))))
10338 {
10339 op0 = SUBREG_REG (inner_op0);
10340 op1 = SUBREG_REG (inner_op1);
10341
10342 /* The resulting comparison is always unsigned since we masked
10343 off the original sign bit. */
10344 code = unsigned_condition (code);
10345
10346 changed = 1;
10347 }
10348
10349 else if (c0 == c1)
10350 for (tmode = GET_CLASS_NARROWEST_MODE
10351 (GET_MODE_CLASS (GET_MODE (op0)));
10352 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10353 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10354 {
10355 op0 = gen_lowpart_for_combine (tmode, inner_op0);
10356 op1 = gen_lowpart_for_combine (tmode, inner_op1);
10357 code = unsigned_condition (code);
10358 changed = 1;
10359 break;
10360 }
10361
10362 if (! changed)
10363 break;
10364 }
10365
10366 /* If both operands are NOT, we can strip off the outer operation
10367 and adjust the comparison code for swapped operands; similarly for
10368 NEG, except that this must be an equality comparison. */
10369 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10370 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10371 && (code == EQ || code == NE)))
10372 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10373
10374 else
10375 break;
10376 }
10377
10378 /* If the first operand is a constant, swap the operands and adjust the
10379 comparison code appropriately, but don't do this if the second operand
10380 is already a constant integer. */
10381 if (swap_commutative_operands_p (op0, op1))
10382 {
10383 tem = op0, op0 = op1, op1 = tem;
10384 code = swap_condition (code);
10385 }
10386
10387 /* We now enter a loop during which we will try to simplify the comparison.
10388 For the most part, we only are concerned with comparisons with zero,
10389 but some things may really be comparisons with zero but not start
10390 out looking that way. */
10391
10392 while (GET_CODE (op1) == CONST_INT)
10393 {
10394 enum machine_mode mode = GET_MODE (op0);
10395 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10396 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10397 int equality_comparison_p;
10398 int sign_bit_comparison_p;
10399 int unsigned_comparison_p;
10400 HOST_WIDE_INT const_op;
10401
10402 /* We only want to handle integral modes. This catches VOIDmode,
10403 CCmode, and the floating-point modes. An exception is that we
10404 can handle VOIDmode if OP0 is a COMPARE or a comparison
10405 operation. */
10406
10407 if (GET_MODE_CLASS (mode) != MODE_INT
10408 && ! (mode == VOIDmode
10409 && (GET_CODE (op0) == COMPARE
10410 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10411 break;
10412
10413 /* Get the constant we are comparing against and turn off all bits
10414 not on in our mode. */
10415 const_op = INTVAL (op1);
10416 if (mode != VOIDmode)
10417 const_op = trunc_int_for_mode (const_op, mode);
10418 op1 = GEN_INT (const_op);
10419
10420 /* If we are comparing against a constant power of two and the value
10421 being compared can only have that single bit nonzero (e.g., it was
10422 `and'ed with that bit), we can replace this with a comparison
10423 with zero. */
10424 if (const_op
10425 && (code == EQ || code == NE || code == GE || code == GEU
10426 || code == LT || code == LTU)
10427 && mode_width <= HOST_BITS_PER_WIDE_INT
10428 && exact_log2 (const_op) >= 0
10429 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10430 {
10431 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10432 op1 = const0_rtx, const_op = 0;
10433 }
10434
10435 /* Similarly, if we are comparing a value known to be either -1 or
10436 0 with -1, change it to the opposite comparison against zero. */
10437
10438 if (const_op == -1
10439 && (code == EQ || code == NE || code == GT || code == LE
10440 || code == GEU || code == LTU)
10441 && num_sign_bit_copies (op0, mode) == mode_width)
10442 {
10443 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10444 op1 = const0_rtx, const_op = 0;
10445 }
10446
10447 /* Do some canonicalizations based on the comparison code. We prefer
10448 comparisons against zero and then prefer equality comparisons.
10449 If we can reduce the size of a constant, we will do that too. */
10450
10451 switch (code)
10452 {
10453 case LT:
10454 /* < C is equivalent to <= (C - 1) */
10455 if (const_op > 0)
10456 {
10457 const_op -= 1;
10458 op1 = GEN_INT (const_op);
10459 code = LE;
10460 /* ... fall through to LE case below. */
10461 }
10462 else
10463 break;
10464
10465 case LE:
10466 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10467 if (const_op < 0)
10468 {
10469 const_op += 1;
10470 op1 = GEN_INT (const_op);
10471 code = LT;
10472 }
10473
10474 /* If we are doing a <= 0 comparison on a value known to have
10475 a zero sign bit, we can replace this with == 0. */
10476 else if (const_op == 0
10477 && mode_width <= HOST_BITS_PER_WIDE_INT
10478 && (nonzero_bits (op0, mode)
10479 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10480 code = EQ;
10481 break;
10482
10483 case GE:
10484 /* >= C is equivalent to > (C - 1). */
10485 if (const_op > 0)
10486 {
10487 const_op -= 1;
10488 op1 = GEN_INT (const_op);
10489 code = GT;
10490 /* ... fall through to GT below. */
10491 }
10492 else
10493 break;
10494
10495 case GT:
10496 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10497 if (const_op < 0)
10498 {
10499 const_op += 1;
10500 op1 = GEN_INT (const_op);
10501 code = GE;
10502 }
10503
10504 /* If we are doing a > 0 comparison on a value known to have
10505 a zero sign bit, we can replace this with != 0. */
10506 else if (const_op == 0
10507 && mode_width <= HOST_BITS_PER_WIDE_INT
10508 && (nonzero_bits (op0, mode)
10509 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10510 code = NE;
10511 break;
10512
10513 case LTU:
10514 /* < C is equivalent to <= (C - 1). */
10515 if (const_op > 0)
10516 {
10517 const_op -= 1;
10518 op1 = GEN_INT (const_op);
10519 code = LEU;
10520 /* ... fall through ... */
10521 }
10522
10523 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10524 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10525 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10526 {
10527 const_op = 0, op1 = const0_rtx;
10528 code = GE;
10529 break;
10530 }
10531 else
10532 break;
10533
10534 case LEU:
10535 /* unsigned <= 0 is equivalent to == 0 */
10536 if (const_op == 0)
10537 code = EQ;
10538
10539 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10540 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10541 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10542 {
10543 const_op = 0, op1 = const0_rtx;
10544 code = GE;
10545 }
10546 break;
10547
10548 case GEU:
10549 /* >= C is equivalent to < (C - 1). */
10550 if (const_op > 1)
10551 {
10552 const_op -= 1;
10553 op1 = GEN_INT (const_op);
10554 code = GTU;
10555 /* ... fall through ... */
10556 }
10557
10558 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10559 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10560 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10561 {
10562 const_op = 0, op1 = const0_rtx;
10563 code = LT;
10564 break;
10565 }
10566 else
10567 break;
10568
10569 case GTU:
10570 /* unsigned > 0 is equivalent to != 0 */
10571 if (const_op == 0)
10572 code = NE;
10573
10574 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10575 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10576 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10577 {
10578 const_op = 0, op1 = const0_rtx;
10579 code = LT;
10580 }
10581 break;
10582
10583 default:
10584 break;
10585 }
10586
10587 /* Compute some predicates to simplify code below. */
10588
10589 equality_comparison_p = (code == EQ || code == NE);
10590 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10591 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10592 || code == GEU);
10593
10594 /* If this is a sign bit comparison and we can do arithmetic in
10595 MODE, say that we will only be needing the sign bit of OP0. */
10596 if (sign_bit_comparison_p
10597 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10598 op0 = force_to_mode (op0, mode,
10599 ((HOST_WIDE_INT) 1
10600 << (GET_MODE_BITSIZE (mode) - 1)),
10601 NULL_RTX, 0);
10602
10603 /* Now try cases based on the opcode of OP0. If none of the cases
10604 does a "continue", we exit this loop immediately after the
10605 switch. */
10606
10607 switch (GET_CODE (op0))
10608 {
10609 case ZERO_EXTRACT:
10610 /* If we are extracting a single bit from a variable position in
10611 a constant that has only a single bit set and are comparing it
10612 with zero, we can convert this into an equality comparison
10613 between the position and the location of the single bit. */
10614
10615 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10616 && XEXP (op0, 1) == const1_rtx
10617 && equality_comparison_p && const_op == 0
10618 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10619 {
10620 if (BITS_BIG_ENDIAN)
10621 {
10622 enum machine_mode new_mode
10623 = mode_for_extraction (EP_extzv, 1);
10624 if (new_mode == MAX_MACHINE_MODE)
10625 i = BITS_PER_WORD - 1 - i;
10626 else
10627 {
10628 mode = new_mode;
10629 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10630 }
10631 }
10632
10633 op0 = XEXP (op0, 2);
10634 op1 = GEN_INT (i);
10635 const_op = i;
10636
10637 /* Result is nonzero iff shift count is equal to I. */
10638 code = reverse_condition (code);
10639 continue;
10640 }
10641
10642 /* ... fall through ... */
10643
10644 case SIGN_EXTRACT:
10645 tem = expand_compound_operation (op0);
10646 if (tem != op0)
10647 {
10648 op0 = tem;
10649 continue;
10650 }
10651 break;
10652
10653 case NOT:
10654 /* If testing for equality, we can take the NOT of the constant. */
10655 if (equality_comparison_p
10656 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10657 {
10658 op0 = XEXP (op0, 0);
10659 op1 = tem;
10660 continue;
10661 }
10662
10663 /* If just looking at the sign bit, reverse the sense of the
10664 comparison. */
10665 if (sign_bit_comparison_p)
10666 {
10667 op0 = XEXP (op0, 0);
10668 code = (code == GE ? LT : GE);
10669 continue;
10670 }
10671 break;
10672
10673 case NEG:
10674 /* If testing for equality, we can take the NEG of the constant. */
10675 if (equality_comparison_p
10676 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10677 {
10678 op0 = XEXP (op0, 0);
10679 op1 = tem;
10680 continue;
10681 }
10682
10683 /* The remaining cases only apply to comparisons with zero. */
10684 if (const_op != 0)
10685 break;
10686
10687 /* When X is ABS or is known positive,
10688 (neg X) is < 0 if and only if X != 0. */
10689
10690 if (sign_bit_comparison_p
10691 && (GET_CODE (XEXP (op0, 0)) == ABS
10692 || (mode_width <= HOST_BITS_PER_WIDE_INT
10693 && (nonzero_bits (XEXP (op0, 0), mode)
10694 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10695 {
10696 op0 = XEXP (op0, 0);
10697 code = (code == LT ? NE : EQ);
10698 continue;
10699 }
10700
10701 /* If we have NEG of something whose two high-order bits are the
10702 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10703 if (num_sign_bit_copies (op0, mode) >= 2)
10704 {
10705 op0 = XEXP (op0, 0);
10706 code = swap_condition (code);
10707 continue;
10708 }
10709 break;
10710
10711 case ROTATE:
10712 /* If we are testing equality and our count is a constant, we
10713 can perform the inverse operation on our RHS. */
10714 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10715 && (tem = simplify_binary_operation (ROTATERT, mode,
10716 op1, XEXP (op0, 1))) != 0)
10717 {
10718 op0 = XEXP (op0, 0);
10719 op1 = tem;
10720 continue;
10721 }
10722
10723 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10724 a particular bit. Convert it to an AND of a constant of that
10725 bit. This will be converted into a ZERO_EXTRACT. */
10726 if (const_op == 0 && sign_bit_comparison_p
10727 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10728 && mode_width <= HOST_BITS_PER_WIDE_INT)
10729 {
10730 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10731 ((HOST_WIDE_INT) 1
10732 << (mode_width - 1
10733 - INTVAL (XEXP (op0, 1)))));
10734 code = (code == LT ? NE : EQ);
10735 continue;
10736 }
10737
10738 /* Fall through. */
10739
10740 case ABS:
10741 /* ABS is ignorable inside an equality comparison with zero. */
10742 if (const_op == 0 && equality_comparison_p)
10743 {
10744 op0 = XEXP (op0, 0);
10745 continue;
10746 }
10747 break;
10748
10749 case SIGN_EXTEND:
10750 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10751 to (compare FOO CONST) if CONST fits in FOO's mode and we
10752 are either testing inequality or have an unsigned comparison
10753 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10754 if (! unsigned_comparison_p
10755 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10756 <= HOST_BITS_PER_WIDE_INT)
10757 && ((unsigned HOST_WIDE_INT) const_op
10758 < (((unsigned HOST_WIDE_INT) 1
10759 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10760 {
10761 op0 = XEXP (op0, 0);
10762 continue;
10763 }
10764 break;
10765
10766 case SUBREG:
10767 /* Check for the case where we are comparing A - C1 with C2,
10768 both constants are smaller than 1/2 the maximum positive
10769 value in MODE, and the comparison is equality or unsigned.
10770 In that case, if A is either zero-extended to MODE or has
10771 sufficient sign bits so that the high-order bit in MODE
10772 is a copy of the sign in the inner mode, we can prove that it is
10773 safe to do the operation in the wider mode. This simplifies
10774 many range checks. */
10775
10776 if (mode_width <= HOST_BITS_PER_WIDE_INT
10777 && subreg_lowpart_p (op0)
10778 && GET_CODE (SUBREG_REG (op0)) == PLUS
10779 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10780 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10781 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10782 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10783 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10784 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10785 GET_MODE (SUBREG_REG (op0)))
10786 & ~GET_MODE_MASK (mode))
10787 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10788 GET_MODE (SUBREG_REG (op0)))
10789 > (unsigned int)
10790 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10791 - GET_MODE_BITSIZE (mode)))))
10792 {
10793 op0 = SUBREG_REG (op0);
10794 continue;
10795 }
10796
10797 /* If the inner mode is narrower and we are extracting the low part,
10798 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10799 if (subreg_lowpart_p (op0)
10800 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10801 /* Fall through */ ;
10802 else
10803 break;
10804
10805 /* ... fall through ... */
10806
10807 case ZERO_EXTEND:
10808 if ((unsigned_comparison_p || equality_comparison_p)
10809 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10810 <= HOST_BITS_PER_WIDE_INT)
10811 && ((unsigned HOST_WIDE_INT) const_op
10812 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10813 {
10814 op0 = XEXP (op0, 0);
10815 continue;
10816 }
10817 break;
10818
10819 case PLUS:
10820 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10821 this for equality comparisons due to pathological cases involving
10822 overflows. */
10823 if (equality_comparison_p
10824 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10825 op1, XEXP (op0, 1))))
10826 {
10827 op0 = XEXP (op0, 0);
10828 op1 = tem;
10829 continue;
10830 }
10831
10832 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10833 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10834 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10835 {
10836 op0 = XEXP (XEXP (op0, 0), 0);
10837 code = (code == LT ? EQ : NE);
10838 continue;
10839 }
10840 break;
10841
10842 case MINUS:
10843 /* We used to optimize signed comparisons against zero, but that
10844 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10845 arrive here as equality comparisons, or (GEU, LTU) are
10846 optimized away. No need to special-case them. */
10847
10848 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10849 (eq B (minus A C)), whichever simplifies. We can only do
10850 this for equality comparisons due to pathological cases involving
10851 overflows. */
10852 if (equality_comparison_p
10853 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10854 XEXP (op0, 1), op1)))
10855 {
10856 op0 = XEXP (op0, 0);
10857 op1 = tem;
10858 continue;
10859 }
10860
10861 if (equality_comparison_p
10862 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10863 XEXP (op0, 0), op1)))
10864 {
10865 op0 = XEXP (op0, 1);
10866 op1 = tem;
10867 continue;
10868 }
10869
10870 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10871 of bits in X minus 1, is one iff X > 0. */
10872 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10873 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10874 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10875 == mode_width - 1
10876 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10877 {
10878 op0 = XEXP (op0, 1);
10879 code = (code == GE ? LE : GT);
10880 continue;
10881 }
10882 break;
10883
10884 case XOR:
10885 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10886 if C is zero or B is a constant. */
10887 if (equality_comparison_p
10888 && 0 != (tem = simplify_binary_operation (XOR, mode,
10889 XEXP (op0, 1), op1)))
10890 {
10891 op0 = XEXP (op0, 0);
10892 op1 = tem;
10893 continue;
10894 }
10895 break;
10896
10897 case EQ: case NE:
10898 case UNEQ: case LTGT:
10899 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10900 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10901 case UNORDERED: case ORDERED:
10902 /* We can't do anything if OP0 is a condition code value, rather
10903 than an actual data value. */
10904 if (const_op != 0
10905 || CC0_P (XEXP (op0, 0))
10906 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10907 break;
10908
10909 /* Get the two operands being compared. */
10910 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10911 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10912 else
10913 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10914
10915 /* Check for the cases where we simply want the result of the
10916 earlier test or the opposite of that result. */
10917 if (code == NE || code == EQ
10918 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10919 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10920 && (STORE_FLAG_VALUE
10921 & (((HOST_WIDE_INT) 1
10922 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10923 && (code == LT || code == GE)))
10924 {
10925 enum rtx_code new_code;
10926 if (code == LT || code == NE)
10927 new_code = GET_CODE (op0);
10928 else
10929 new_code = combine_reversed_comparison_code (op0);
10930
10931 if (new_code != UNKNOWN)
10932 {
10933 code = new_code;
10934 op0 = tem;
10935 op1 = tem1;
10936 continue;
10937 }
10938 }
10939 break;
10940
10941 case IOR:
10942 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10943 iff X <= 0. */
10944 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10945 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10946 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10947 {
10948 op0 = XEXP (op0, 1);
10949 code = (code == GE ? GT : LE);
10950 continue;
10951 }
10952 break;
10953
10954 case AND:
10955 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10956 will be converted to a ZERO_EXTRACT later. */
10957 if (const_op == 0 && equality_comparison_p
10958 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10959 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10960 {
10961 op0 = simplify_and_const_int
10962 (op0, mode, gen_rtx_LSHIFTRT (mode,
10963 XEXP (op0, 1),
10964 XEXP (XEXP (op0, 0), 1)),
10965 (HOST_WIDE_INT) 1);
10966 continue;
10967 }
10968
10969 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10970 zero and X is a comparison and C1 and C2 describe only bits set
10971 in STORE_FLAG_VALUE, we can compare with X. */
10972 if (const_op == 0 && equality_comparison_p
10973 && mode_width <= HOST_BITS_PER_WIDE_INT
10974 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10975 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10976 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10977 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10978 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10979 {
10980 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10981 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10982 if ((~STORE_FLAG_VALUE & mask) == 0
10983 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10984 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10985 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10986 {
10987 op0 = XEXP (XEXP (op0, 0), 0);
10988 continue;
10989 }
10990 }
10991
10992 /* If we are doing an equality comparison of an AND of a bit equal
10993 to the sign bit, replace this with a LT or GE comparison of
10994 the underlying value. */
10995 if (equality_comparison_p
10996 && const_op == 0
10997 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10998 && mode_width <= HOST_BITS_PER_WIDE_INT
10999 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11000 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11001 {
11002 op0 = XEXP (op0, 0);
11003 code = (code == EQ ? GE : LT);
11004 continue;
11005 }
11006
11007 /* If this AND operation is really a ZERO_EXTEND from a narrower
11008 mode, the constant fits within that mode, and this is either an
11009 equality or unsigned comparison, try to do this comparison in
11010 the narrower mode. */
11011 if ((equality_comparison_p || unsigned_comparison_p)
11012 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11013 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
11014 & GET_MODE_MASK (mode))
11015 + 1)) >= 0
11016 && const_op >> i == 0
11017 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
11018 {
11019 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
11020 continue;
11021 }
11022
11023 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11024 fits in both M1 and M2 and the SUBREG is either paradoxical
11025 or represents the low part, permute the SUBREG and the AND
11026 and try again. */
11027 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11028 {
11029 unsigned HOST_WIDE_INT c1;
11030 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11031 /* Require an integral mode, to avoid creating something like
11032 (AND:SF ...). */
11033 if (SCALAR_INT_MODE_P (tmode)
11034 /* It is unsafe to commute the AND into the SUBREG if the
11035 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11036 not defined. As originally written the upper bits
11037 have a defined value due to the AND operation.
11038 However, if we commute the AND inside the SUBREG then
11039 they no longer have defined values and the meaning of
11040 the code has been changed. */
11041 && (0
11042 #ifdef WORD_REGISTER_OPERATIONS
11043 || (mode_width > GET_MODE_BITSIZE (tmode)
11044 && mode_width <= BITS_PER_WORD)
11045 #endif
11046 || (mode_width <= GET_MODE_BITSIZE (tmode)
11047 && subreg_lowpart_p (XEXP (op0, 0))))
11048 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11049 && mode_width <= HOST_BITS_PER_WIDE_INT
11050 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
11051 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11052 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11053 && c1 != mask
11054 && c1 != GET_MODE_MASK (tmode))
11055 {
11056 op0 = gen_binary (AND, tmode,
11057 SUBREG_REG (XEXP (op0, 0)),
11058 gen_int_mode (c1, tmode));
11059 op0 = gen_lowpart_for_combine (mode, op0);
11060 continue;
11061 }
11062 }
11063
11064 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11065 if (const_op == 0 && equality_comparison_p
11066 && XEXP (op0, 1) == const1_rtx
11067 && GET_CODE (XEXP (op0, 0)) == NOT)
11068 {
11069 op0 = simplify_and_const_int
11070 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
11071 code = (code == NE ? EQ : NE);
11072 continue;
11073 }
11074
11075 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11076 (eq (and (lshiftrt X) 1) 0). */
11077 if (const_op == 0 && equality_comparison_p
11078 && XEXP (op0, 1) == const1_rtx
11079 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11080 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
11081 {
11082 op0 = simplify_and_const_int
11083 (op0, mode,
11084 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
11085 XEXP (XEXP (op0, 0), 1)),
11086 (HOST_WIDE_INT) 1);
11087 code = (code == NE ? EQ : NE);
11088 continue;
11089 }
11090 break;
11091
11092 case ASHIFT:
11093 /* If we have (compare (ashift FOO N) (const_int C)) and
11094 the high order N bits of FOO (N+1 if an inequality comparison)
11095 are known to be zero, we can do this by comparing FOO with C
11096 shifted right N bits so long as the low-order N bits of C are
11097 zero. */
11098 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11099 && INTVAL (XEXP (op0, 1)) >= 0
11100 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11101 < HOST_BITS_PER_WIDE_INT)
11102 && ((const_op
11103 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
11104 && mode_width <= HOST_BITS_PER_WIDE_INT
11105 && (nonzero_bits (XEXP (op0, 0), mode)
11106 & ~(mask >> (INTVAL (XEXP (op0, 1))
11107 + ! equality_comparison_p))) == 0)
11108 {
11109 /* We must perform a logical shift, not an arithmetic one,
11110 as we want the top N bits of C to be zero. */
11111 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11112
11113 temp >>= INTVAL (XEXP (op0, 1));
11114 op1 = gen_int_mode (temp, mode);
11115 op0 = XEXP (op0, 0);
11116 continue;
11117 }
11118
11119 /* If we are doing a sign bit comparison, it means we are testing
11120 a particular bit. Convert it to the appropriate AND. */
11121 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
11122 && mode_width <= HOST_BITS_PER_WIDE_INT)
11123 {
11124 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11125 ((HOST_WIDE_INT) 1
11126 << (mode_width - 1
11127 - INTVAL (XEXP (op0, 1)))));
11128 code = (code == LT ? NE : EQ);
11129 continue;
11130 }
11131
11132 /* If this an equality comparison with zero and we are shifting
11133 the low bit to the sign bit, we can convert this to an AND of the
11134 low-order bit. */
11135 if (const_op == 0 && equality_comparison_p
11136 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11137 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11138 == mode_width - 1)
11139 {
11140 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11141 (HOST_WIDE_INT) 1);
11142 continue;
11143 }
11144 break;
11145
11146 case ASHIFTRT:
11147 /* If this is an equality comparison with zero, we can do this
11148 as a logical shift, which might be much simpler. */
11149 if (equality_comparison_p && const_op == 0
11150 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
11151 {
11152 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11153 XEXP (op0, 0),
11154 INTVAL (XEXP (op0, 1)));
11155 continue;
11156 }
11157
11158 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11159 do the comparison in a narrower mode. */
11160 if (! unsigned_comparison_p
11161 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11162 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11163 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11164 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11165 MODE_INT, 1)) != BLKmode
11166 && (((unsigned HOST_WIDE_INT) const_op
11167 + (GET_MODE_MASK (tmode) >> 1) + 1)
11168 <= GET_MODE_MASK (tmode)))
11169 {
11170 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
11171 continue;
11172 }
11173
11174 /* Likewise if OP0 is a PLUS of a sign extension with a
11175 constant, which is usually represented with the PLUS
11176 between the shifts. */
11177 if (! unsigned_comparison_p
11178 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11179 && GET_CODE (XEXP (op0, 0)) == PLUS
11180 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
11181 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11182 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11183 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11184 MODE_INT, 1)) != BLKmode
11185 && (((unsigned HOST_WIDE_INT) const_op
11186 + (GET_MODE_MASK (tmode) >> 1) + 1)
11187 <= GET_MODE_MASK (tmode)))
11188 {
11189 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11190 rtx add_const = XEXP (XEXP (op0, 0), 1);
11191 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
11192 XEXP (op0, 1));
11193
11194 op0 = gen_binary (PLUS, tmode,
11195 gen_lowpart_for_combine (tmode, inner),
11196 new_const);
11197 continue;
11198 }
11199
11200 /* ... fall through ... */
11201 case LSHIFTRT:
11202 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11203 the low order N bits of FOO are known to be zero, we can do this
11204 by comparing FOO with C shifted left N bits so long as no
11205 overflow occurs. */
11206 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11207 && INTVAL (XEXP (op0, 1)) >= 0
11208 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11209 && mode_width <= HOST_BITS_PER_WIDE_INT
11210 && (nonzero_bits (XEXP (op0, 0), mode)
11211 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11212 && (((unsigned HOST_WIDE_INT) const_op
11213 + (GET_CODE (op0) != LSHIFTRT
11214 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11215 + 1)
11216 : 0))
11217 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11218 {
11219 /* If the shift was logical, then we must make the condition
11220 unsigned. */
11221 if (GET_CODE (op0) == LSHIFTRT)
11222 code = unsigned_condition (code);
11223
11224 const_op <<= INTVAL (XEXP (op0, 1));
11225 op1 = GEN_INT (const_op);
11226 op0 = XEXP (op0, 0);
11227 continue;
11228 }
11229
11230 /* If we are using this shift to extract just the sign bit, we
11231 can replace this with an LT or GE comparison. */
11232 if (const_op == 0
11233 && (equality_comparison_p || sign_bit_comparison_p)
11234 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11235 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11236 == mode_width - 1)
11237 {
11238 op0 = XEXP (op0, 0);
11239 code = (code == NE || code == GT ? LT : GE);
11240 continue;
11241 }
11242 break;
11243
11244 default:
11245 break;
11246 }
11247
11248 break;
11249 }
11250
11251 /* Now make any compound operations involved in this comparison. Then,
11252 check for an outmost SUBREG on OP0 that is not doing anything or is
11253 paradoxical. The latter transformation must only be performed when
11254 it is known that the "extra" bits will be the same in op0 and op1 or
11255 that they don't matter. There are three cases to consider:
11256
11257 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11258 care bits and we can assume they have any convenient value. So
11259 making the transformation is safe.
11260
11261 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11262 In this case the upper bits of op0 are undefined. We should not make
11263 the simplification in that case as we do not know the contents of
11264 those bits.
11265
11266 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11267 NIL. In that case we know those bits are zeros or ones. We must
11268 also be sure that they are the same as the upper bits of op1.
11269
11270 We can never remove a SUBREG for a non-equality comparison because
11271 the sign bit is in a different place in the underlying object. */
11272
11273 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11274 op1 = make_compound_operation (op1, SET);
11275
11276 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11277 /* Case 3 above, to sometimes allow (subreg (mem x)), isn't
11278 implemented. */
11279 && GET_CODE (SUBREG_REG (op0)) == REG
11280 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11281 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11282 && (code == NE || code == EQ))
11283 {
11284 if (GET_MODE_SIZE (GET_MODE (op0))
11285 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11286 {
11287 op0 = SUBREG_REG (op0);
11288 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
11289 }
11290 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11291 <= HOST_BITS_PER_WIDE_INT)
11292 && (nonzero_bits (SUBREG_REG (op0),
11293 GET_MODE (SUBREG_REG (op0)))
11294 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11295 {
11296 tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)), op1);
11297
11298 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11299 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11300 op0 = SUBREG_REG (op0), op1 = tem;
11301 }
11302 }
11303
11304 /* We now do the opposite procedure: Some machines don't have compare
11305 insns in all modes. If OP0's mode is an integer mode smaller than a
11306 word and we can't do a compare in that mode, see if there is a larger
11307 mode for which we can do the compare. There are a number of cases in
11308 which we can use the wider mode. */
11309
11310 mode = GET_MODE (op0);
11311 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11312 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11313 && ! have_insn_for (COMPARE, mode))
11314 for (tmode = GET_MODE_WIDER_MODE (mode);
11315 (tmode != VOIDmode
11316 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11317 tmode = GET_MODE_WIDER_MODE (tmode))
11318 if (have_insn_for (COMPARE, tmode))
11319 {
11320 int zero_extended;
11321
11322 /* If the only nonzero bits in OP0 and OP1 are those in the
11323 narrower mode and this is an equality or unsigned comparison,
11324 we can use the wider mode. Similarly for sign-extended
11325 values, in which case it is true for all comparisons. */
11326 zero_extended = ((code == EQ || code == NE
11327 || code == GEU || code == GTU
11328 || code == LEU || code == LTU)
11329 && (nonzero_bits (op0, tmode)
11330 & ~GET_MODE_MASK (mode)) == 0
11331 && ((GET_CODE (op1) == CONST_INT
11332 || (nonzero_bits (op1, tmode)
11333 & ~GET_MODE_MASK (mode)) == 0)));
11334
11335 if (zero_extended
11336 || ((num_sign_bit_copies (op0, tmode)
11337 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11338 - GET_MODE_BITSIZE (mode)))
11339 && (num_sign_bit_copies (op1, tmode)
11340 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11341 - GET_MODE_BITSIZE (mode)))))
11342 {
11343 /* If OP0 is an AND and we don't have an AND in MODE either,
11344 make a new AND in the proper mode. */
11345 if (GET_CODE (op0) == AND
11346 && !have_insn_for (AND, mode))
11347 op0 = gen_binary (AND, tmode,
11348 gen_lowpart_for_combine (tmode,
11349 XEXP (op0, 0)),
11350 gen_lowpart_for_combine (tmode,
11351 XEXP (op0, 1)));
11352
11353 op0 = gen_lowpart_for_combine (tmode, op0);
11354 if (zero_extended && GET_CODE (op1) == CONST_INT)
11355 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11356 op1 = gen_lowpart_for_combine (tmode, op1);
11357 break;
11358 }
11359
11360 /* If this is a test for negative, we can make an explicit
11361 test of the sign bit. */
11362
11363 if (op1 == const0_rtx && (code == LT || code == GE)
11364 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11365 {
11366 op0 = gen_binary (AND, tmode,
11367 gen_lowpart_for_combine (tmode, op0),
11368 GEN_INT ((HOST_WIDE_INT) 1
11369 << (GET_MODE_BITSIZE (mode) - 1)));
11370 code = (code == LT) ? NE : EQ;
11371 break;
11372 }
11373 }
11374
11375 #ifdef CANONICALIZE_COMPARISON
11376 /* If this machine only supports a subset of valid comparisons, see if we
11377 can convert an unsupported one into a supported one. */
11378 CANONICALIZE_COMPARISON (code, op0, op1);
11379 #endif
11380
11381 *pop0 = op0;
11382 *pop1 = op1;
11383
11384 return code;
11385 }
11386 \f
11387 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11388 searching backward. */
11389 static enum rtx_code
11390 combine_reversed_comparison_code (rtx exp)
11391 {
11392 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11393 rtx x;
11394
11395 if (code1 != UNKNOWN
11396 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11397 return code1;
11398 /* Otherwise try and find where the condition codes were last set and
11399 use that. */
11400 x = get_last_value (XEXP (exp, 0));
11401 if (!x || GET_CODE (x) != COMPARE)
11402 return UNKNOWN;
11403 return reversed_comparison_code_parts (GET_CODE (exp),
11404 XEXP (x, 0), XEXP (x, 1), NULL);
11405 }
11406
11407 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11408 Return NULL_RTX in case we fail to do the reversal. */
11409 static rtx
11410 reversed_comparison (rtx exp, enum machine_mode mode, rtx op0, rtx op1)
11411 {
11412 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11413 if (reversed_code == UNKNOWN)
11414 return NULL_RTX;
11415 else
11416 return gen_binary (reversed_code, mode, op0, op1);
11417 }
11418 \f
11419 /* Utility function for following routine. Called when X is part of a value
11420 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11421 for each register mentioned. Similar to mention_regs in cse.c */
11422
11423 static void
11424 update_table_tick (rtx x)
11425 {
11426 enum rtx_code code = GET_CODE (x);
11427 const char *fmt = GET_RTX_FORMAT (code);
11428 int i;
11429
11430 if (code == REG)
11431 {
11432 unsigned int regno = REGNO (x);
11433 unsigned int endregno
11434 = regno + (regno < FIRST_PSEUDO_REGISTER
11435 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11436 unsigned int r;
11437
11438 for (r = regno; r < endregno; r++)
11439 reg_last_set_table_tick[r] = label_tick;
11440
11441 return;
11442 }
11443
11444 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11445 /* Note that we can't have an "E" in values stored; see
11446 get_last_value_validate. */
11447 if (fmt[i] == 'e')
11448 {
11449 /* Check for identical subexpressions. If x contains
11450 identical subexpression we only have to traverse one of
11451 them. */
11452 if (i == 0
11453 && (GET_RTX_CLASS (code) == '2'
11454 || GET_RTX_CLASS (code) == 'c'))
11455 {
11456 /* Note that at this point x1 has already been
11457 processed. */
11458 rtx x0 = XEXP (x, 0);
11459 rtx x1 = XEXP (x, 1);
11460
11461 /* If x0 and x1 are identical then there is no need to
11462 process x0. */
11463 if (x0 == x1)
11464 break;
11465
11466 /* If x0 is identical to a subexpression of x1 then while
11467 processing x1, x0 has already been processed. Thus we
11468 are done with x. */
11469 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11470 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11471 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11472 break;
11473
11474 /* If x1 is identical to a subexpression of x0 then we
11475 still have to process the rest of x0. */
11476 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11477 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11478 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11479 {
11480 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11481 break;
11482 }
11483 }
11484
11485 update_table_tick (XEXP (x, i));
11486 }
11487 }
11488
11489 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11490 are saying that the register is clobbered and we no longer know its
11491 value. If INSN is zero, don't update reg_last_set; this is only permitted
11492 with VALUE also zero and is used to invalidate the register. */
11493
11494 static void
11495 record_value_for_reg (rtx reg, rtx insn, rtx value)
11496 {
11497 unsigned int regno = REGNO (reg);
11498 unsigned int endregno
11499 = regno + (regno < FIRST_PSEUDO_REGISTER
11500 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11501 unsigned int i;
11502
11503 /* If VALUE contains REG and we have a previous value for REG, substitute
11504 the previous value. */
11505 if (value && insn && reg_overlap_mentioned_p (reg, value))
11506 {
11507 rtx tem;
11508
11509 /* Set things up so get_last_value is allowed to see anything set up to
11510 our insn. */
11511 subst_low_cuid = INSN_CUID (insn);
11512 tem = get_last_value (reg);
11513
11514 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11515 it isn't going to be useful and will take a lot of time to process,
11516 so just use the CLOBBER. */
11517
11518 if (tem)
11519 {
11520 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11521 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11522 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11523 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11524 tem = XEXP (tem, 0);
11525
11526 value = replace_rtx (copy_rtx (value), reg, tem);
11527 }
11528 }
11529
11530 /* For each register modified, show we don't know its value, that
11531 we don't know about its bitwise content, that its value has been
11532 updated, and that we don't know the location of the death of the
11533 register. */
11534 for (i = regno; i < endregno; i++)
11535 {
11536 if (insn)
11537 reg_last_set[i] = insn;
11538
11539 reg_last_set_value[i] = 0;
11540 reg_last_set_mode[i] = 0;
11541 reg_last_set_nonzero_bits[i] = 0;
11542 reg_last_set_sign_bit_copies[i] = 0;
11543 reg_last_death[i] = 0;
11544 }
11545
11546 /* Mark registers that are being referenced in this value. */
11547 if (value)
11548 update_table_tick (value);
11549
11550 /* Now update the status of each register being set.
11551 If someone is using this register in this block, set this register
11552 to invalid since we will get confused between the two lives in this
11553 basic block. This makes using this register always invalid. In cse, we
11554 scan the table to invalidate all entries using this register, but this
11555 is too much work for us. */
11556
11557 for (i = regno; i < endregno; i++)
11558 {
11559 reg_last_set_label[i] = label_tick;
11560 if (value && reg_last_set_table_tick[i] == label_tick)
11561 reg_last_set_invalid[i] = 1;
11562 else
11563 reg_last_set_invalid[i] = 0;
11564 }
11565
11566 /* The value being assigned might refer to X (like in "x++;"). In that
11567 case, we must replace it with (clobber (const_int 0)) to prevent
11568 infinite loops. */
11569 if (value && ! get_last_value_validate (&value, insn,
11570 reg_last_set_label[regno], 0))
11571 {
11572 value = copy_rtx (value);
11573 if (! get_last_value_validate (&value, insn,
11574 reg_last_set_label[regno], 1))
11575 value = 0;
11576 }
11577
11578 /* For the main register being modified, update the value, the mode, the
11579 nonzero bits, and the number of sign bit copies. */
11580
11581 reg_last_set_value[regno] = value;
11582
11583 if (value)
11584 {
11585 enum machine_mode mode = GET_MODE (reg);
11586 subst_low_cuid = INSN_CUID (insn);
11587 reg_last_set_mode[regno] = mode;
11588 if (GET_MODE_CLASS (mode) == MODE_INT
11589 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11590 mode = nonzero_bits_mode;
11591 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
11592 reg_last_set_sign_bit_copies[regno]
11593 = num_sign_bit_copies (value, GET_MODE (reg));
11594 }
11595 }
11596
11597 /* Called via note_stores from record_dead_and_set_regs to handle one
11598 SET or CLOBBER in an insn. DATA is the instruction in which the
11599 set is occurring. */
11600
11601 static void
11602 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
11603 {
11604 rtx record_dead_insn = (rtx) data;
11605
11606 if (GET_CODE (dest) == SUBREG)
11607 dest = SUBREG_REG (dest);
11608
11609 if (GET_CODE (dest) == REG)
11610 {
11611 /* If we are setting the whole register, we know its value. Otherwise
11612 show that we don't know the value. We can handle SUBREG in
11613 some cases. */
11614 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11615 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11616 else if (GET_CODE (setter) == SET
11617 && GET_CODE (SET_DEST (setter)) == SUBREG
11618 && SUBREG_REG (SET_DEST (setter)) == dest
11619 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11620 && subreg_lowpart_p (SET_DEST (setter)))
11621 record_value_for_reg (dest, record_dead_insn,
11622 gen_lowpart_for_combine (GET_MODE (dest),
11623 SET_SRC (setter)));
11624 else
11625 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11626 }
11627 else if (GET_CODE (dest) == MEM
11628 /* Ignore pushes, they clobber nothing. */
11629 && ! push_operand (dest, GET_MODE (dest)))
11630 mem_last_set = INSN_CUID (record_dead_insn);
11631 }
11632
11633 /* Update the records of when each REG was most recently set or killed
11634 for the things done by INSN. This is the last thing done in processing
11635 INSN in the combiner loop.
11636
11637 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11638 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11639 and also the similar information mem_last_set (which insn most recently
11640 modified memory) and last_call_cuid (which insn was the most recent
11641 subroutine call). */
11642
11643 static void
11644 record_dead_and_set_regs (rtx insn)
11645 {
11646 rtx link;
11647 unsigned int i;
11648
11649 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11650 {
11651 if (REG_NOTE_KIND (link) == REG_DEAD
11652 && GET_CODE (XEXP (link, 0)) == REG)
11653 {
11654 unsigned int regno = REGNO (XEXP (link, 0));
11655 unsigned int endregno
11656 = regno + (regno < FIRST_PSEUDO_REGISTER
11657 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11658 : 1);
11659
11660 for (i = regno; i < endregno; i++)
11661 reg_last_death[i] = insn;
11662 }
11663 else if (REG_NOTE_KIND (link) == REG_INC)
11664 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11665 }
11666
11667 if (GET_CODE (insn) == CALL_INSN)
11668 {
11669 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11670 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11671 {
11672 reg_last_set_value[i] = 0;
11673 reg_last_set_mode[i] = 0;
11674 reg_last_set_nonzero_bits[i] = 0;
11675 reg_last_set_sign_bit_copies[i] = 0;
11676 reg_last_death[i] = 0;
11677 }
11678
11679 last_call_cuid = mem_last_set = INSN_CUID (insn);
11680
11681 /* Don't bother recording what this insn does. It might set the
11682 return value register, but we can't combine into a call
11683 pattern anyway, so there's no point trying (and it may cause
11684 a crash, if e.g. we wind up asking for last_set_value of a
11685 SUBREG of the return value register). */
11686 return;
11687 }
11688
11689 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11690 }
11691
11692 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11693 register present in the SUBREG, so for each such SUBREG go back and
11694 adjust nonzero and sign bit information of the registers that are
11695 known to have some zero/sign bits set.
11696
11697 This is needed because when combine blows the SUBREGs away, the
11698 information on zero/sign bits is lost and further combines can be
11699 missed because of that. */
11700
11701 static void
11702 record_promoted_value (rtx insn, rtx subreg)
11703 {
11704 rtx links, set;
11705 unsigned int regno = REGNO (SUBREG_REG (subreg));
11706 enum machine_mode mode = GET_MODE (subreg);
11707
11708 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11709 return;
11710
11711 for (links = LOG_LINKS (insn); links;)
11712 {
11713 insn = XEXP (links, 0);
11714 set = single_set (insn);
11715
11716 if (! set || GET_CODE (SET_DEST (set)) != REG
11717 || REGNO (SET_DEST (set)) != regno
11718 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11719 {
11720 links = XEXP (links, 1);
11721 continue;
11722 }
11723
11724 if (reg_last_set[regno] == insn)
11725 {
11726 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11727 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11728 }
11729
11730 if (GET_CODE (SET_SRC (set)) == REG)
11731 {
11732 regno = REGNO (SET_SRC (set));
11733 links = LOG_LINKS (insn);
11734 }
11735 else
11736 break;
11737 }
11738 }
11739
11740 /* Scan X for promoted SUBREGs. For each one found,
11741 note what it implies to the registers used in it. */
11742
11743 static void
11744 check_promoted_subreg (rtx insn, rtx x)
11745 {
11746 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11747 && GET_CODE (SUBREG_REG (x)) == REG)
11748 record_promoted_value (insn, x);
11749 else
11750 {
11751 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11752 int i, j;
11753
11754 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11755 switch (format[i])
11756 {
11757 case 'e':
11758 check_promoted_subreg (insn, XEXP (x, i));
11759 break;
11760 case 'V':
11761 case 'E':
11762 if (XVEC (x, i) != 0)
11763 for (j = 0; j < XVECLEN (x, i); j++)
11764 check_promoted_subreg (insn, XVECEXP (x, i, j));
11765 break;
11766 }
11767 }
11768 }
11769 \f
11770 /* Utility routine for the following function. Verify that all the registers
11771 mentioned in *LOC are valid when *LOC was part of a value set when
11772 label_tick == TICK. Return 0 if some are not.
11773
11774 If REPLACE is nonzero, replace the invalid reference with
11775 (clobber (const_int 0)) and return 1. This replacement is useful because
11776 we often can get useful information about the form of a value (e.g., if
11777 it was produced by a shift that always produces -1 or 0) even though
11778 we don't know exactly what registers it was produced from. */
11779
11780 static int
11781 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11782 {
11783 rtx x = *loc;
11784 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11785 int len = GET_RTX_LENGTH (GET_CODE (x));
11786 int i;
11787
11788 if (GET_CODE (x) == REG)
11789 {
11790 unsigned int regno = REGNO (x);
11791 unsigned int endregno
11792 = regno + (regno < FIRST_PSEUDO_REGISTER
11793 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11794 unsigned int j;
11795
11796 for (j = regno; j < endregno; j++)
11797 if (reg_last_set_invalid[j]
11798 /* If this is a pseudo-register that was only set once and not
11799 live at the beginning of the function, it is always valid. */
11800 || (! (regno >= FIRST_PSEUDO_REGISTER
11801 && REG_N_SETS (regno) == 1
11802 && (! REGNO_REG_SET_P
11803 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11804 && reg_last_set_label[j] > tick))
11805 {
11806 if (replace)
11807 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11808 return replace;
11809 }
11810
11811 return 1;
11812 }
11813 /* If this is a memory reference, make sure that there were
11814 no stores after it that might have clobbered the value. We don't
11815 have alias info, so we assume any store invalidates it. */
11816 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11817 && INSN_CUID (insn) <= mem_last_set)
11818 {
11819 if (replace)
11820 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11821 return replace;
11822 }
11823
11824 for (i = 0; i < len; i++)
11825 {
11826 if (fmt[i] == 'e')
11827 {
11828 /* Check for identical subexpressions. If x contains
11829 identical subexpression we only have to traverse one of
11830 them. */
11831 if (i == 1
11832 && (GET_RTX_CLASS (GET_CODE (x)) == '2'
11833 || GET_RTX_CLASS (GET_CODE (x)) == 'c'))
11834 {
11835 /* Note that at this point x0 has already been checked
11836 and found valid. */
11837 rtx x0 = XEXP (x, 0);
11838 rtx x1 = XEXP (x, 1);
11839
11840 /* If x0 and x1 are identical then x is also valid. */
11841 if (x0 == x1)
11842 return 1;
11843
11844 /* If x1 is identical to a subexpression of x0 then
11845 while checking x0, x1 has already been checked. Thus
11846 it is valid and so as x. */
11847 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11848 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11849 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11850 return 1;
11851
11852 /* If x0 is identical to a subexpression of x1 then x is
11853 valid iff the rest of x1 is valid. */
11854 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11855 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11856 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11857 return
11858 get_last_value_validate (&XEXP (x1,
11859 x0 == XEXP (x1, 0) ? 1 : 0),
11860 insn, tick, replace);
11861 }
11862
11863 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11864 replace) == 0)
11865 return 0;
11866 }
11867 /* Don't bother with these. They shouldn't occur anyway. */
11868 else if (fmt[i] == 'E')
11869 return 0;
11870 }
11871
11872 /* If we haven't found a reason for it to be invalid, it is valid. */
11873 return 1;
11874 }
11875
11876 /* Get the last value assigned to X, if known. Some registers
11877 in the value may be replaced with (clobber (const_int 0)) if their value
11878 is known longer known reliably. */
11879
11880 static rtx
11881 get_last_value (rtx x)
11882 {
11883 unsigned int regno;
11884 rtx value;
11885
11886 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11887 then convert it to the desired mode. If this is a paradoxical SUBREG,
11888 we cannot predict what values the "extra" bits might have. */
11889 if (GET_CODE (x) == SUBREG
11890 && subreg_lowpart_p (x)
11891 && (GET_MODE_SIZE (GET_MODE (x))
11892 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11893 && (value = get_last_value (SUBREG_REG (x))) != 0)
11894 return gen_lowpart_for_combine (GET_MODE (x), value);
11895
11896 if (GET_CODE (x) != REG)
11897 return 0;
11898
11899 regno = REGNO (x);
11900 value = reg_last_set_value[regno];
11901
11902 /* If we don't have a value, or if it isn't for this basic block and
11903 it's either a hard register, set more than once, or it's a live
11904 at the beginning of the function, return 0.
11905
11906 Because if it's not live at the beginning of the function then the reg
11907 is always set before being used (is never used without being set).
11908 And, if it's set only once, and it's always set before use, then all
11909 uses must have the same last value, even if it's not from this basic
11910 block. */
11911
11912 if (value == 0
11913 || (reg_last_set_label[regno] != label_tick
11914 && (regno < FIRST_PSEUDO_REGISTER
11915 || REG_N_SETS (regno) != 1
11916 || (REGNO_REG_SET_P
11917 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11918 return 0;
11919
11920 /* If the value was set in a later insn than the ones we are processing,
11921 we can't use it even if the register was only set once. */
11922 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11923 return 0;
11924
11925 /* If the value has all its registers valid, return it. */
11926 if (get_last_value_validate (&value, reg_last_set[regno],
11927 reg_last_set_label[regno], 0))
11928 return value;
11929
11930 /* Otherwise, make a copy and replace any invalid register with
11931 (clobber (const_int 0)). If that fails for some reason, return 0. */
11932
11933 value = copy_rtx (value);
11934 if (get_last_value_validate (&value, reg_last_set[regno],
11935 reg_last_set_label[regno], 1))
11936 return value;
11937
11938 return 0;
11939 }
11940 \f
11941 /* Return nonzero if expression X refers to a REG or to memory
11942 that is set in an instruction more recent than FROM_CUID. */
11943
11944 static int
11945 use_crosses_set_p (rtx x, int from_cuid)
11946 {
11947 const char *fmt;
11948 int i;
11949 enum rtx_code code = GET_CODE (x);
11950
11951 if (code == REG)
11952 {
11953 unsigned int regno = REGNO (x);
11954 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11955 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11956
11957 #ifdef PUSH_ROUNDING
11958 /* Don't allow uses of the stack pointer to be moved,
11959 because we don't know whether the move crosses a push insn. */
11960 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11961 return 1;
11962 #endif
11963 for (; regno < endreg; regno++)
11964 if (reg_last_set[regno]
11965 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11966 return 1;
11967 return 0;
11968 }
11969
11970 if (code == MEM && mem_last_set > from_cuid)
11971 return 1;
11972
11973 fmt = GET_RTX_FORMAT (code);
11974
11975 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11976 {
11977 if (fmt[i] == 'E')
11978 {
11979 int j;
11980 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11981 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11982 return 1;
11983 }
11984 else if (fmt[i] == 'e'
11985 && use_crosses_set_p (XEXP (x, i), from_cuid))
11986 return 1;
11987 }
11988 return 0;
11989 }
11990 \f
11991 /* Define three variables used for communication between the following
11992 routines. */
11993
11994 static unsigned int reg_dead_regno, reg_dead_endregno;
11995 static int reg_dead_flag;
11996
11997 /* Function called via note_stores from reg_dead_at_p.
11998
11999 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12000 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12001
12002 static void
12003 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
12004 {
12005 unsigned int regno, endregno;
12006
12007 if (GET_CODE (dest) != REG)
12008 return;
12009
12010 regno = REGNO (dest);
12011 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
12012 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
12013
12014 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12015 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12016 }
12017
12018 /* Return nonzero if REG is known to be dead at INSN.
12019
12020 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12021 referencing REG, it is dead. If we hit a SET referencing REG, it is
12022 live. Otherwise, see if it is live or dead at the start of the basic
12023 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12024 must be assumed to be always live. */
12025
12026 static int
12027 reg_dead_at_p (rtx reg, rtx insn)
12028 {
12029 basic_block block;
12030 unsigned int i;
12031
12032 /* Set variables for reg_dead_at_p_1. */
12033 reg_dead_regno = REGNO (reg);
12034 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
12035 ? HARD_REGNO_NREGS (reg_dead_regno,
12036 GET_MODE (reg))
12037 : 1);
12038
12039 reg_dead_flag = 0;
12040
12041 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
12042 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12043 {
12044 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12045 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
12046 return 0;
12047 }
12048
12049 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
12050 beginning of function. */
12051 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
12052 insn = prev_nonnote_insn (insn))
12053 {
12054 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12055 if (reg_dead_flag)
12056 return reg_dead_flag == 1 ? 1 : 0;
12057
12058 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12059 return 1;
12060 }
12061
12062 /* Get the basic block that we were in. */
12063 if (insn == 0)
12064 block = ENTRY_BLOCK_PTR->next_bb;
12065 else
12066 {
12067 FOR_EACH_BB (block)
12068 if (insn == block->head)
12069 break;
12070
12071 if (block == EXIT_BLOCK_PTR)
12072 return 0;
12073 }
12074
12075 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12076 if (REGNO_REG_SET_P (block->global_live_at_start, i))
12077 return 0;
12078
12079 return 1;
12080 }
12081 \f
12082 /* Note hard registers in X that are used. This code is similar to
12083 that in flow.c, but much simpler since we don't care about pseudos. */
12084
12085 static void
12086 mark_used_regs_combine (rtx x)
12087 {
12088 RTX_CODE code = GET_CODE (x);
12089 unsigned int regno;
12090 int i;
12091
12092 switch (code)
12093 {
12094 case LABEL_REF:
12095 case SYMBOL_REF:
12096 case CONST_INT:
12097 case CONST:
12098 case CONST_DOUBLE:
12099 case CONST_VECTOR:
12100 case PC:
12101 case ADDR_VEC:
12102 case ADDR_DIFF_VEC:
12103 case ASM_INPUT:
12104 #ifdef HAVE_cc0
12105 /* CC0 must die in the insn after it is set, so we don't need to take
12106 special note of it here. */
12107 case CC0:
12108 #endif
12109 return;
12110
12111 case CLOBBER:
12112 /* If we are clobbering a MEM, mark any hard registers inside the
12113 address as used. */
12114 if (GET_CODE (XEXP (x, 0)) == MEM)
12115 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12116 return;
12117
12118 case REG:
12119 regno = REGNO (x);
12120 /* A hard reg in a wide mode may really be multiple registers.
12121 If so, mark all of them just like the first. */
12122 if (regno < FIRST_PSEUDO_REGISTER)
12123 {
12124 unsigned int endregno, r;
12125
12126 /* None of this applies to the stack, frame or arg pointers. */
12127 if (regno == STACK_POINTER_REGNUM
12128 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12129 || regno == HARD_FRAME_POINTER_REGNUM
12130 #endif
12131 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12132 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12133 #endif
12134 || regno == FRAME_POINTER_REGNUM)
12135 return;
12136
12137 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12138 for (r = regno; r < endregno; r++)
12139 SET_HARD_REG_BIT (newpat_used_regs, r);
12140 }
12141 return;
12142
12143 case SET:
12144 {
12145 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12146 the address. */
12147 rtx testreg = SET_DEST (x);
12148
12149 while (GET_CODE (testreg) == SUBREG
12150 || GET_CODE (testreg) == ZERO_EXTRACT
12151 || GET_CODE (testreg) == SIGN_EXTRACT
12152 || GET_CODE (testreg) == STRICT_LOW_PART)
12153 testreg = XEXP (testreg, 0);
12154
12155 if (GET_CODE (testreg) == MEM)
12156 mark_used_regs_combine (XEXP (testreg, 0));
12157
12158 mark_used_regs_combine (SET_SRC (x));
12159 }
12160 return;
12161
12162 default:
12163 break;
12164 }
12165
12166 /* Recursively scan the operands of this expression. */
12167
12168 {
12169 const char *fmt = GET_RTX_FORMAT (code);
12170
12171 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12172 {
12173 if (fmt[i] == 'e')
12174 mark_used_regs_combine (XEXP (x, i));
12175 else if (fmt[i] == 'E')
12176 {
12177 int j;
12178
12179 for (j = 0; j < XVECLEN (x, i); j++)
12180 mark_used_regs_combine (XVECEXP (x, i, j));
12181 }
12182 }
12183 }
12184 }
12185 \f
12186 /* Remove register number REGNO from the dead registers list of INSN.
12187
12188 Return the note used to record the death, if there was one. */
12189
12190 rtx
12191 remove_death (unsigned int regno, rtx insn)
12192 {
12193 rtx note = find_regno_note (insn, REG_DEAD, regno);
12194
12195 if (note)
12196 {
12197 REG_N_DEATHS (regno)--;
12198 remove_note (insn, note);
12199 }
12200
12201 return note;
12202 }
12203
12204 /* For each register (hardware or pseudo) used within expression X, if its
12205 death is in an instruction with cuid between FROM_CUID (inclusive) and
12206 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12207 list headed by PNOTES.
12208
12209 That said, don't move registers killed by maybe_kill_insn.
12210
12211 This is done when X is being merged by combination into TO_INSN. These
12212 notes will then be distributed as needed. */
12213
12214 static void
12215 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
12216 rtx *pnotes)
12217 {
12218 const char *fmt;
12219 int len, i;
12220 enum rtx_code code = GET_CODE (x);
12221
12222 if (code == REG)
12223 {
12224 unsigned int regno = REGNO (x);
12225 rtx where_dead = reg_last_death[regno];
12226 rtx before_dead, after_dead;
12227
12228 /* Don't move the register if it gets killed in between from and to. */
12229 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12230 && ! reg_referenced_p (x, maybe_kill_insn))
12231 return;
12232
12233 /* WHERE_DEAD could be a USE insn made by combine, so first we
12234 make sure that we have insns with valid INSN_CUID values. */
12235 before_dead = where_dead;
12236 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
12237 before_dead = PREV_INSN (before_dead);
12238
12239 after_dead = where_dead;
12240 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
12241 after_dead = NEXT_INSN (after_dead);
12242
12243 if (before_dead && after_dead
12244 && INSN_CUID (before_dead) >= from_cuid
12245 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
12246 || (where_dead != after_dead
12247 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
12248 {
12249 rtx note = remove_death (regno, where_dead);
12250
12251 /* It is possible for the call above to return 0. This can occur
12252 when reg_last_death points to I2 or I1 that we combined with.
12253 In that case make a new note.
12254
12255 We must also check for the case where X is a hard register
12256 and NOTE is a death note for a range of hard registers
12257 including X. In that case, we must put REG_DEAD notes for
12258 the remaining registers in place of NOTE. */
12259
12260 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12261 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12262 > GET_MODE_SIZE (GET_MODE (x))))
12263 {
12264 unsigned int deadregno = REGNO (XEXP (note, 0));
12265 unsigned int deadend
12266 = (deadregno + HARD_REGNO_NREGS (deadregno,
12267 GET_MODE (XEXP (note, 0))));
12268 unsigned int ourend
12269 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12270 unsigned int i;
12271
12272 for (i = deadregno; i < deadend; i++)
12273 if (i < regno || i >= ourend)
12274 REG_NOTES (where_dead)
12275 = gen_rtx_EXPR_LIST (REG_DEAD,
12276 regno_reg_rtx[i],
12277 REG_NOTES (where_dead));
12278 }
12279
12280 /* If we didn't find any note, or if we found a REG_DEAD note that
12281 covers only part of the given reg, and we have a multi-reg hard
12282 register, then to be safe we must check for REG_DEAD notes
12283 for each register other than the first. They could have
12284 their own REG_DEAD notes lying around. */
12285 else if ((note == 0
12286 || (note != 0
12287 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12288 < GET_MODE_SIZE (GET_MODE (x)))))
12289 && regno < FIRST_PSEUDO_REGISTER
12290 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
12291 {
12292 unsigned int ourend
12293 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12294 unsigned int i, offset;
12295 rtx oldnotes = 0;
12296
12297 if (note)
12298 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
12299 else
12300 offset = 1;
12301
12302 for (i = regno + offset; i < ourend; i++)
12303 move_deaths (regno_reg_rtx[i],
12304 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
12305 }
12306
12307 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12308 {
12309 XEXP (note, 1) = *pnotes;
12310 *pnotes = note;
12311 }
12312 else
12313 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12314
12315 REG_N_DEATHS (regno)++;
12316 }
12317
12318 return;
12319 }
12320
12321 else if (GET_CODE (x) == SET)
12322 {
12323 rtx dest = SET_DEST (x);
12324
12325 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
12326
12327 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12328 that accesses one word of a multi-word item, some
12329 piece of everything register in the expression is used by
12330 this insn, so remove any old death. */
12331 /* ??? So why do we test for equality of the sizes? */
12332
12333 if (GET_CODE (dest) == ZERO_EXTRACT
12334 || GET_CODE (dest) == STRICT_LOW_PART
12335 || (GET_CODE (dest) == SUBREG
12336 && (((GET_MODE_SIZE (GET_MODE (dest))
12337 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12338 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12339 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12340 {
12341 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
12342 return;
12343 }
12344
12345 /* If this is some other SUBREG, we know it replaces the entire
12346 value, so use that as the destination. */
12347 if (GET_CODE (dest) == SUBREG)
12348 dest = SUBREG_REG (dest);
12349
12350 /* If this is a MEM, adjust deaths of anything used in the address.
12351 For a REG (the only other possibility), the entire value is
12352 being replaced so the old value is not used in this insn. */
12353
12354 if (GET_CODE (dest) == MEM)
12355 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12356 to_insn, pnotes);
12357 return;
12358 }
12359
12360 else if (GET_CODE (x) == CLOBBER)
12361 return;
12362
12363 len = GET_RTX_LENGTH (code);
12364 fmt = GET_RTX_FORMAT (code);
12365
12366 for (i = 0; i < len; i++)
12367 {
12368 if (fmt[i] == 'E')
12369 {
12370 int j;
12371 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12372 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12373 to_insn, pnotes);
12374 }
12375 else if (fmt[i] == 'e')
12376 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12377 }
12378 }
12379 \f
12380 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12381 pattern of an insn. X must be a REG. */
12382
12383 static int
12384 reg_bitfield_target_p (rtx x, rtx body)
12385 {
12386 int i;
12387
12388 if (GET_CODE (body) == SET)
12389 {
12390 rtx dest = SET_DEST (body);
12391 rtx target;
12392 unsigned int regno, tregno, endregno, endtregno;
12393
12394 if (GET_CODE (dest) == ZERO_EXTRACT)
12395 target = XEXP (dest, 0);
12396 else if (GET_CODE (dest) == STRICT_LOW_PART)
12397 target = SUBREG_REG (XEXP (dest, 0));
12398 else
12399 return 0;
12400
12401 if (GET_CODE (target) == SUBREG)
12402 target = SUBREG_REG (target);
12403
12404 if (GET_CODE (target) != REG)
12405 return 0;
12406
12407 tregno = REGNO (target), regno = REGNO (x);
12408 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12409 return target == x;
12410
12411 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
12412 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12413
12414 return endregno > tregno && regno < endtregno;
12415 }
12416
12417 else if (GET_CODE (body) == PARALLEL)
12418 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12419 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12420 return 1;
12421
12422 return 0;
12423 }
12424 \f
12425 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12426 as appropriate. I3 and I2 are the insns resulting from the combination
12427 insns including FROM (I2 may be zero).
12428
12429 Each note in the list is either ignored or placed on some insns, depending
12430 on the type of note. */
12431
12432 static void
12433 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
12434 {
12435 rtx note, next_note;
12436 rtx tem;
12437
12438 for (note = notes; note; note = next_note)
12439 {
12440 rtx place = 0, place2 = 0;
12441
12442 /* If this NOTE references a pseudo register, ensure it references
12443 the latest copy of that register. */
12444 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12445 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12446 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12447
12448 next_note = XEXP (note, 1);
12449 switch (REG_NOTE_KIND (note))
12450 {
12451 case REG_BR_PROB:
12452 case REG_BR_PRED:
12453 /* Doesn't matter much where we put this, as long as it's somewhere.
12454 It is preferable to keep these notes on branches, which is most
12455 likely to be i3. */
12456 place = i3;
12457 break;
12458
12459 case REG_VTABLE_REF:
12460 /* ??? Should remain with *a particular* memory load. Given the
12461 nature of vtable data, the last insn seems relatively safe. */
12462 place = i3;
12463 break;
12464
12465 case REG_NON_LOCAL_GOTO:
12466 if (GET_CODE (i3) == JUMP_INSN)
12467 place = i3;
12468 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12469 place = i2;
12470 else
12471 abort ();
12472 break;
12473
12474 case REG_EH_REGION:
12475 /* These notes must remain with the call or trapping instruction. */
12476 if (GET_CODE (i3) == CALL_INSN)
12477 place = i3;
12478 else if (i2 && GET_CODE (i2) == CALL_INSN)
12479 place = i2;
12480 else if (flag_non_call_exceptions)
12481 {
12482 if (may_trap_p (i3))
12483 place = i3;
12484 else if (i2 && may_trap_p (i2))
12485 place = i2;
12486 /* ??? Otherwise assume we've combined things such that we
12487 can now prove that the instructions can't trap. Drop the
12488 note in this case. */
12489 }
12490 else
12491 abort ();
12492 break;
12493
12494 case REG_NORETURN:
12495 case REG_SETJMP:
12496 /* These notes must remain with the call. It should not be
12497 possible for both I2 and I3 to be a call. */
12498 if (GET_CODE (i3) == CALL_INSN)
12499 place = i3;
12500 else if (i2 && GET_CODE (i2) == CALL_INSN)
12501 place = i2;
12502 else
12503 abort ();
12504 break;
12505
12506 case REG_UNUSED:
12507 /* Any clobbers for i3 may still exist, and so we must process
12508 REG_UNUSED notes from that insn.
12509
12510 Any clobbers from i2 or i1 can only exist if they were added by
12511 recog_for_combine. In that case, recog_for_combine created the
12512 necessary REG_UNUSED notes. Trying to keep any original
12513 REG_UNUSED notes from these insns can cause incorrect output
12514 if it is for the same register as the original i3 dest.
12515 In that case, we will notice that the register is set in i3,
12516 and then add a REG_UNUSED note for the destination of i3, which
12517 is wrong. However, it is possible to have REG_UNUSED notes from
12518 i2 or i1 for register which were both used and clobbered, so
12519 we keep notes from i2 or i1 if they will turn into REG_DEAD
12520 notes. */
12521
12522 /* If this register is set or clobbered in I3, put the note there
12523 unless there is one already. */
12524 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12525 {
12526 if (from_insn != i3)
12527 break;
12528
12529 if (! (GET_CODE (XEXP (note, 0)) == REG
12530 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12531 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12532 place = i3;
12533 }
12534 /* Otherwise, if this register is used by I3, then this register
12535 now dies here, so we must put a REG_DEAD note here unless there
12536 is one already. */
12537 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12538 && ! (GET_CODE (XEXP (note, 0)) == REG
12539 ? find_regno_note (i3, REG_DEAD,
12540 REGNO (XEXP (note, 0)))
12541 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12542 {
12543 PUT_REG_NOTE_KIND (note, REG_DEAD);
12544 place = i3;
12545 }
12546 break;
12547
12548 case REG_EQUAL:
12549 case REG_EQUIV:
12550 case REG_NOALIAS:
12551 /* These notes say something about results of an insn. We can
12552 only support them if they used to be on I3 in which case they
12553 remain on I3. Otherwise they are ignored.
12554
12555 If the note refers to an expression that is not a constant, we
12556 must also ignore the note since we cannot tell whether the
12557 equivalence is still true. It might be possible to do
12558 slightly better than this (we only have a problem if I2DEST
12559 or I1DEST is present in the expression), but it doesn't
12560 seem worth the trouble. */
12561
12562 if (from_insn == i3
12563 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12564 place = i3;
12565 break;
12566
12567 case REG_INC:
12568 case REG_NO_CONFLICT:
12569 /* These notes say something about how a register is used. They must
12570 be present on any use of the register in I2 or I3. */
12571 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12572 place = i3;
12573
12574 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12575 {
12576 if (place)
12577 place2 = i2;
12578 else
12579 place = i2;
12580 }
12581 break;
12582
12583 case REG_LABEL:
12584 /* This can show up in several ways -- either directly in the
12585 pattern, or hidden off in the constant pool with (or without?)
12586 a REG_EQUAL note. */
12587 /* ??? Ignore the without-reg_equal-note problem for now. */
12588 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12589 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12590 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12591 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12592 place = i3;
12593
12594 if (i2
12595 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12596 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12597 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12598 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12599 {
12600 if (place)
12601 place2 = i2;
12602 else
12603 place = i2;
12604 }
12605
12606 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12607 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12608 if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12609 {
12610 if (JUMP_LABEL (place) != XEXP (note, 0))
12611 abort ();
12612 if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12613 LABEL_NUSES (JUMP_LABEL (place))--;
12614 place = 0;
12615 }
12616 if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12617 {
12618 if (JUMP_LABEL (place2) != XEXP (note, 0))
12619 abort ();
12620 if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12621 LABEL_NUSES (JUMP_LABEL (place2))--;
12622 place2 = 0;
12623 }
12624 break;
12625
12626 case REG_NONNEG:
12627 /* This note says something about the value of a register prior
12628 to the execution of an insn. It is too much trouble to see
12629 if the note is still correct in all situations. It is better
12630 to simply delete it. */
12631 break;
12632
12633 case REG_RETVAL:
12634 /* If the insn previously containing this note still exists,
12635 put it back where it was. Otherwise move it to the previous
12636 insn. Adjust the corresponding REG_LIBCALL note. */
12637 if (GET_CODE (from_insn) != NOTE)
12638 place = from_insn;
12639 else
12640 {
12641 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12642 place = prev_real_insn (from_insn);
12643 if (tem && place)
12644 XEXP (tem, 0) = place;
12645 /* If we're deleting the last remaining instruction of a
12646 libcall sequence, don't add the notes. */
12647 else if (XEXP (note, 0) == from_insn)
12648 tem = place = 0;
12649 }
12650 break;
12651
12652 case REG_LIBCALL:
12653 /* This is handled similarly to REG_RETVAL. */
12654 if (GET_CODE (from_insn) != NOTE)
12655 place = from_insn;
12656 else
12657 {
12658 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12659 place = next_real_insn (from_insn);
12660 if (tem && place)
12661 XEXP (tem, 0) = place;
12662 /* If we're deleting the last remaining instruction of a
12663 libcall sequence, don't add the notes. */
12664 else if (XEXP (note, 0) == from_insn)
12665 tem = place = 0;
12666 }
12667 break;
12668
12669 case REG_DEAD:
12670 /* If the register is used as an input in I3, it dies there.
12671 Similarly for I2, if it is nonzero and adjacent to I3.
12672
12673 If the register is not used as an input in either I3 or I2
12674 and it is not one of the registers we were supposed to eliminate,
12675 there are two possibilities. We might have a non-adjacent I2
12676 or we might have somehow eliminated an additional register
12677 from a computation. For example, we might have had A & B where
12678 we discover that B will always be zero. In this case we will
12679 eliminate the reference to A.
12680
12681 In both cases, we must search to see if we can find a previous
12682 use of A and put the death note there. */
12683
12684 if (from_insn
12685 && GET_CODE (from_insn) == CALL_INSN
12686 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12687 place = from_insn;
12688 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12689 place = i3;
12690 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12691 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12692 place = i2;
12693
12694 if (place == 0)
12695 {
12696 basic_block bb = this_basic_block;
12697
12698 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12699 {
12700 if (! INSN_P (tem))
12701 {
12702 if (tem == bb->head)
12703 break;
12704 continue;
12705 }
12706
12707 /* If the register is being set at TEM, see if that is all
12708 TEM is doing. If so, delete TEM. Otherwise, make this
12709 into a REG_UNUSED note instead. */
12710 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12711 {
12712 rtx set = single_set (tem);
12713 rtx inner_dest = 0;
12714 #ifdef HAVE_cc0
12715 rtx cc0_setter = NULL_RTX;
12716 #endif
12717
12718 if (set != 0)
12719 for (inner_dest = SET_DEST (set);
12720 (GET_CODE (inner_dest) == STRICT_LOW_PART
12721 || GET_CODE (inner_dest) == SUBREG
12722 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12723 inner_dest = XEXP (inner_dest, 0))
12724 ;
12725
12726 /* Verify that it was the set, and not a clobber that
12727 modified the register.
12728
12729 CC0 targets must be careful to maintain setter/user
12730 pairs. If we cannot delete the setter due to side
12731 effects, mark the user with an UNUSED note instead
12732 of deleting it. */
12733
12734 if (set != 0 && ! side_effects_p (SET_SRC (set))
12735 && rtx_equal_p (XEXP (note, 0), inner_dest)
12736 #ifdef HAVE_cc0
12737 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12738 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12739 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12740 #endif
12741 )
12742 {
12743 /* Move the notes and links of TEM elsewhere.
12744 This might delete other dead insns recursively.
12745 First set the pattern to something that won't use
12746 any register. */
12747
12748 PATTERN (tem) = pc_rtx;
12749
12750 distribute_notes (REG_NOTES (tem), tem, tem,
12751 NULL_RTX);
12752 distribute_links (LOG_LINKS (tem));
12753
12754 PUT_CODE (tem, NOTE);
12755 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12756 NOTE_SOURCE_FILE (tem) = 0;
12757
12758 #ifdef HAVE_cc0
12759 /* Delete the setter too. */
12760 if (cc0_setter)
12761 {
12762 PATTERN (cc0_setter) = pc_rtx;
12763
12764 distribute_notes (REG_NOTES (cc0_setter),
12765 cc0_setter, cc0_setter,
12766 NULL_RTX);
12767 distribute_links (LOG_LINKS (cc0_setter));
12768
12769 PUT_CODE (cc0_setter, NOTE);
12770 NOTE_LINE_NUMBER (cc0_setter)
12771 = NOTE_INSN_DELETED;
12772 NOTE_SOURCE_FILE (cc0_setter) = 0;
12773 }
12774 #endif
12775 }
12776 /* If the register is both set and used here, put the
12777 REG_DEAD note here, but place a REG_UNUSED note
12778 here too unless there already is one. */
12779 else if (reg_referenced_p (XEXP (note, 0),
12780 PATTERN (tem)))
12781 {
12782 place = tem;
12783
12784 if (! find_regno_note (tem, REG_UNUSED,
12785 REGNO (XEXP (note, 0))))
12786 REG_NOTES (tem)
12787 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12788 REG_NOTES (tem));
12789 }
12790 else
12791 {
12792 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12793
12794 /* If there isn't already a REG_UNUSED note, put one
12795 here. */
12796 if (! find_regno_note (tem, REG_UNUSED,
12797 REGNO (XEXP (note, 0))))
12798 place = tem;
12799 break;
12800 }
12801 }
12802 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12803 || (GET_CODE (tem) == CALL_INSN
12804 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12805 {
12806 place = tem;
12807
12808 /* If we are doing a 3->2 combination, and we have a
12809 register which formerly died in i3 and was not used
12810 by i2, which now no longer dies in i3 and is used in
12811 i2 but does not die in i2, and place is between i2
12812 and i3, then we may need to move a link from place to
12813 i2. */
12814 if (i2 && INSN_UID (place) <= max_uid_cuid
12815 && INSN_CUID (place) > INSN_CUID (i2)
12816 && from_insn
12817 && INSN_CUID (from_insn) > INSN_CUID (i2)
12818 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12819 {
12820 rtx links = LOG_LINKS (place);
12821 LOG_LINKS (place) = 0;
12822 distribute_links (links);
12823 }
12824 break;
12825 }
12826
12827 if (tem == bb->head)
12828 break;
12829 }
12830
12831 /* We haven't found an insn for the death note and it
12832 is still a REG_DEAD note, but we have hit the beginning
12833 of the block. If the existing life info says the reg
12834 was dead, there's nothing left to do. Otherwise, we'll
12835 need to do a global life update after combine. */
12836 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12837 && REGNO_REG_SET_P (bb->global_live_at_start,
12838 REGNO (XEXP (note, 0))))
12839 SET_BIT (refresh_blocks, this_basic_block->index);
12840 }
12841
12842 /* If the register is set or already dead at PLACE, we needn't do
12843 anything with this note if it is still a REG_DEAD note.
12844 We can here if it is set at all, not if is it totally replace,
12845 which is what `dead_or_set_p' checks, so also check for it being
12846 set partially. */
12847
12848 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12849 {
12850 unsigned int regno = REGNO (XEXP (note, 0));
12851
12852 /* Similarly, if the instruction on which we want to place
12853 the note is a noop, we'll need do a global live update
12854 after we remove them in delete_noop_moves. */
12855 if (noop_move_p (place))
12856 SET_BIT (refresh_blocks, this_basic_block->index);
12857
12858 if (dead_or_set_p (place, XEXP (note, 0))
12859 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12860 {
12861 /* Unless the register previously died in PLACE, clear
12862 reg_last_death. [I no longer understand why this is
12863 being done.] */
12864 if (reg_last_death[regno] != place)
12865 reg_last_death[regno] = 0;
12866 place = 0;
12867 }
12868 else
12869 reg_last_death[regno] = place;
12870
12871 /* If this is a death note for a hard reg that is occupying
12872 multiple registers, ensure that we are still using all
12873 parts of the object. If we find a piece of the object
12874 that is unused, we must arrange for an appropriate REG_DEAD
12875 note to be added for it. However, we can't just emit a USE
12876 and tag the note to it, since the register might actually
12877 be dead; so we recourse, and the recursive call then finds
12878 the previous insn that used this register. */
12879
12880 if (place && regno < FIRST_PSEUDO_REGISTER
12881 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12882 {
12883 unsigned int endregno
12884 = regno + HARD_REGNO_NREGS (regno,
12885 GET_MODE (XEXP (note, 0)));
12886 int all_used = 1;
12887 unsigned int i;
12888
12889 for (i = regno; i < endregno; i++)
12890 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12891 && ! find_regno_fusage (place, USE, i))
12892 || dead_or_set_regno_p (place, i))
12893 all_used = 0;
12894
12895 if (! all_used)
12896 {
12897 /* Put only REG_DEAD notes for pieces that are
12898 not already dead or set. */
12899
12900 for (i = regno; i < endregno;
12901 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12902 {
12903 rtx piece = regno_reg_rtx[i];
12904 basic_block bb = this_basic_block;
12905
12906 if (! dead_or_set_p (place, piece)
12907 && ! reg_bitfield_target_p (piece,
12908 PATTERN (place)))
12909 {
12910 rtx new_note
12911 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12912
12913 distribute_notes (new_note, place, place,
12914 NULL_RTX);
12915 }
12916 else if (! refers_to_regno_p (i, i + 1,
12917 PATTERN (place), 0)
12918 && ! find_regno_fusage (place, USE, i))
12919 for (tem = PREV_INSN (place); ;
12920 tem = PREV_INSN (tem))
12921 {
12922 if (! INSN_P (tem))
12923 {
12924 if (tem == bb->head)
12925 {
12926 SET_BIT (refresh_blocks,
12927 this_basic_block->index);
12928 break;
12929 }
12930 continue;
12931 }
12932 if (dead_or_set_p (tem, piece)
12933 || reg_bitfield_target_p (piece,
12934 PATTERN (tem)))
12935 {
12936 REG_NOTES (tem)
12937 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12938 REG_NOTES (tem));
12939 break;
12940 }
12941 }
12942
12943 }
12944
12945 place = 0;
12946 }
12947 }
12948 }
12949 break;
12950
12951 default:
12952 /* Any other notes should not be present at this point in the
12953 compilation. */
12954 abort ();
12955 }
12956
12957 if (place)
12958 {
12959 XEXP (note, 1) = REG_NOTES (place);
12960 REG_NOTES (place) = note;
12961 }
12962 else if ((REG_NOTE_KIND (note) == REG_DEAD
12963 || REG_NOTE_KIND (note) == REG_UNUSED)
12964 && GET_CODE (XEXP (note, 0)) == REG)
12965 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12966
12967 if (place2)
12968 {
12969 if ((REG_NOTE_KIND (note) == REG_DEAD
12970 || REG_NOTE_KIND (note) == REG_UNUSED)
12971 && GET_CODE (XEXP (note, 0)) == REG)
12972 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12973
12974 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12975 REG_NOTE_KIND (note),
12976 XEXP (note, 0),
12977 REG_NOTES (place2));
12978 }
12979 }
12980 }
12981 \f
12982 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12983 I3, I2, and I1 to new locations. This is also called in one case to
12984 add a link pointing at I3 when I3's destination is changed. */
12985
12986 static void
12987 distribute_links (rtx links)
12988 {
12989 rtx link, next_link;
12990
12991 for (link = links; link; link = next_link)
12992 {
12993 rtx place = 0;
12994 rtx insn;
12995 rtx set, reg;
12996
12997 next_link = XEXP (link, 1);
12998
12999 /* If the insn that this link points to is a NOTE or isn't a single
13000 set, ignore it. In the latter case, it isn't clear what we
13001 can do other than ignore the link, since we can't tell which
13002 register it was for. Such links wouldn't be used by combine
13003 anyway.
13004
13005 It is not possible for the destination of the target of the link to
13006 have been changed by combine. The only potential of this is if we
13007 replace I3, I2, and I1 by I3 and I2. But in that case the
13008 destination of I2 also remains unchanged. */
13009
13010 if (GET_CODE (XEXP (link, 0)) == NOTE
13011 || (set = single_set (XEXP (link, 0))) == 0)
13012 continue;
13013
13014 reg = SET_DEST (set);
13015 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13016 || GET_CODE (reg) == SIGN_EXTRACT
13017 || GET_CODE (reg) == STRICT_LOW_PART)
13018 reg = XEXP (reg, 0);
13019
13020 /* A LOG_LINK is defined as being placed on the first insn that uses
13021 a register and points to the insn that sets the register. Start
13022 searching at the next insn after the target of the link and stop
13023 when we reach a set of the register or the end of the basic block.
13024
13025 Note that this correctly handles the link that used to point from
13026 I3 to I2. Also note that not much searching is typically done here
13027 since most links don't point very far away. */
13028
13029 for (insn = NEXT_INSN (XEXP (link, 0));
13030 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13031 || this_basic_block->next_bb->head != insn));
13032 insn = NEXT_INSN (insn))
13033 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13034 {
13035 if (reg_referenced_p (reg, PATTERN (insn)))
13036 place = insn;
13037 break;
13038 }
13039 else if (GET_CODE (insn) == CALL_INSN
13040 && find_reg_fusage (insn, USE, reg))
13041 {
13042 place = insn;
13043 break;
13044 }
13045
13046 /* If we found a place to put the link, place it there unless there
13047 is already a link to the same insn as LINK at that point. */
13048
13049 if (place)
13050 {
13051 rtx link2;
13052
13053 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
13054 if (XEXP (link2, 0) == XEXP (link, 0))
13055 break;
13056
13057 if (link2 == 0)
13058 {
13059 XEXP (link, 1) = LOG_LINKS (place);
13060 LOG_LINKS (place) = link;
13061
13062 /* Set added_links_insn to the earliest insn we added a
13063 link to. */
13064 if (added_links_insn == 0
13065 || INSN_CUID (added_links_insn) > INSN_CUID (place))
13066 added_links_insn = place;
13067 }
13068 }
13069 }
13070 }
13071 \f
13072 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
13073
13074 static int
13075 insn_cuid (rtx insn)
13076 {
13077 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
13078 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
13079 insn = NEXT_INSN (insn);
13080
13081 if (INSN_UID (insn) > max_uid_cuid)
13082 abort ();
13083
13084 return INSN_CUID (insn);
13085 }
13086 \f
13087 void
13088 dump_combine_stats (FILE *file)
13089 {
13090 fnotice
13091 (file,
13092 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13093 combine_attempts, combine_merges, combine_extras, combine_successes);
13094 }
13095
13096 void
13097 dump_combine_total_stats (FILE *file)
13098 {
13099 fnotice
13100 (file,
13101 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13102 total_attempts, total_merges, total_extras, total_successes);
13103 }