builtins.def: Fix comment formatting.
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
63
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
67
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
76
77 #include "config.h"
78 #include "system.h"
79 #include "rtl.h"
80 #include "tm_p.h"
81 #include "flags.h"
82 #include "regs.h"
83 #include "hard-reg-set.h"
84 #include "basic-block.h"
85 #include "insn-config.h"
86 #include "function.h"
87 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
88 #include "expr.h"
89 #include "insn-attr.h"
90 #include "recog.h"
91 #include "real.h"
92 #include "toplev.h"
93
94 /* It is not safe to use ordinary gen_lowpart in combine.
95 Use gen_lowpart_for_combine instead. See comments there. */
96 #define gen_lowpart dont_use_gen_lowpart_you_dummy
97
98 /* Number of attempts to combine instructions in this function. */
99
100 static int combine_attempts;
101
102 /* Number of attempts that got as far as substitution in this function. */
103
104 static int combine_merges;
105
106 /* Number of instructions combined with added SETs in this function. */
107
108 static int combine_extras;
109
110 /* Number of instructions combined in this function. */
111
112 static int combine_successes;
113
114 /* Totals over entire compilation. */
115
116 static int total_attempts, total_merges, total_extras, total_successes;
117
118 \f
119 /* Vector mapping INSN_UIDs to cuids.
120 The cuids are like uids but increase monotonically always.
121 Combine always uses cuids so that it can compare them.
122 But actually renumbering the uids, which we used to do,
123 proves to be a bad idea because it makes it hard to compare
124 the dumps produced by earlier passes with those from later passes. */
125
126 static int *uid_cuid;
127 static int max_uid_cuid;
128
129 /* Get the cuid of an insn. */
130
131 #define INSN_CUID(INSN) \
132 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
133
134 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
135 BITS_PER_WORD would invoke undefined behavior. Work around it. */
136
137 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
138 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
139
140 /* Maximum register number, which is the size of the tables below. */
141
142 static unsigned int combine_max_regno;
143
144 /* Record last point of death of (hard or pseudo) register n. */
145
146 static rtx *reg_last_death;
147
148 /* Record last point of modification of (hard or pseudo) register n. */
149
150 static rtx *reg_last_set;
151
152 /* Record the cuid of the last insn that invalidated memory
153 (anything that writes memory, and subroutine calls, but not pushes). */
154
155 static int mem_last_set;
156
157 /* Record the cuid of the last CALL_INSN
158 so we can tell whether a potential combination crosses any calls. */
159
160 static int last_call_cuid;
161
162 /* When `subst' is called, this is the insn that is being modified
163 (by combining in a previous insn). The PATTERN of this insn
164 is still the old pattern partially modified and it should not be
165 looked at, but this may be used to examine the successors of the insn
166 to judge whether a simplification is valid. */
167
168 static rtx subst_insn;
169
170 /* This is an insn that belongs before subst_insn, but is not currently
171 on the insn chain. */
172
173 static rtx subst_prev_insn;
174
175 /* This is the lowest CUID that `subst' is currently dealing with.
176 get_last_value will not return a value if the register was set at or
177 after this CUID. If not for this mechanism, we could get confused if
178 I2 or I1 in try_combine were an insn that used the old value of a register
179 to obtain a new value. In that case, we might erroneously get the
180 new value of the register when we wanted the old one. */
181
182 static int subst_low_cuid;
183
184 /* This contains any hard registers that are used in newpat; reg_dead_at_p
185 must consider all these registers to be always live. */
186
187 static HARD_REG_SET newpat_used_regs;
188
189 /* This is an insn to which a LOG_LINKS entry has been added. If this
190 insn is the earlier than I2 or I3, combine should rescan starting at
191 that location. */
192
193 static rtx added_links_insn;
194
195 /* Basic block in which we are performing combines. */
196 static basic_block this_basic_block;
197
198 /* A bitmap indicating which blocks had registers go dead at entry.
199 After combine, we'll need to re-do global life analysis with
200 those blocks as starting points. */
201 static sbitmap refresh_blocks;
202 static int need_refresh;
203 \f
204 /* The next group of arrays allows the recording of the last value assigned
205 to (hard or pseudo) register n. We use this information to see if a
206 operation being processed is redundant given a prior operation performed
207 on the register. For example, an `and' with a constant is redundant if
208 all the zero bits are already known to be turned off.
209
210 We use an approach similar to that used by cse, but change it in the
211 following ways:
212
213 (1) We do not want to reinitialize at each label.
214 (2) It is useful, but not critical, to know the actual value assigned
215 to a register. Often just its form is helpful.
216
217 Therefore, we maintain the following arrays:
218
219 reg_last_set_value the last value assigned
220 reg_last_set_label records the value of label_tick when the
221 register was assigned
222 reg_last_set_table_tick records the value of label_tick when a
223 value using the register is assigned
224 reg_last_set_invalid set to nonzero when it is not valid
225 to use the value of this register in some
226 register's value
227
228 To understand the usage of these tables, it is important to understand
229 the distinction between the value in reg_last_set_value being valid
230 and the register being validly contained in some other expression in the
231 table.
232
233 Entry I in reg_last_set_value is valid if it is nonzero, and either
234 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
235
236 Register I may validly appear in any expression returned for the value
237 of another register if reg_n_sets[i] is 1. It may also appear in the
238 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
239 reg_last_set_invalid[j] is zero.
240
241 If an expression is found in the table containing a register which may
242 not validly appear in an expression, the register is replaced by
243 something that won't match, (clobber (const_int 0)).
244
245 reg_last_set_invalid[i] is set nonzero when register I is being assigned
246 to and reg_last_set_table_tick[i] == label_tick. */
247
248 /* Record last value assigned to (hard or pseudo) register n. */
249
250 static rtx *reg_last_set_value;
251
252 /* Record the value of label_tick when the value for register n is placed in
253 reg_last_set_value[n]. */
254
255 static int *reg_last_set_label;
256
257 /* Record the value of label_tick when an expression involving register n
258 is placed in reg_last_set_value. */
259
260 static int *reg_last_set_table_tick;
261
262 /* Set nonzero if references to register n in expressions should not be
263 used. */
264
265 static char *reg_last_set_invalid;
266
267 /* Incremented for each label. */
268
269 static int label_tick;
270
271 /* Some registers that are set more than once and used in more than one
272 basic block are nevertheless always set in similar ways. For example,
273 a QImode register may be loaded from memory in two places on a machine
274 where byte loads zero extend.
275
276 We record in the following array what we know about the nonzero
277 bits of a register, specifically which bits are known to be zero.
278
279 If an entry is zero, it means that we don't know anything special. */
280
281 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
282
283 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
284 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
285
286 static enum machine_mode nonzero_bits_mode;
287
288 /* Nonzero if we know that a register has some leading bits that are always
289 equal to the sign bit. */
290
291 static unsigned char *reg_sign_bit_copies;
292
293 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
294 It is zero while computing them and after combine has completed. This
295 former test prevents propagating values based on previously set values,
296 which can be incorrect if a variable is modified in a loop. */
297
298 static int nonzero_sign_valid;
299
300 /* These arrays are maintained in parallel with reg_last_set_value
301 and are used to store the mode in which the register was last set,
302 the bits that were known to be zero when it was last set, and the
303 number of sign bits copies it was known to have when it was last set. */
304
305 static enum machine_mode *reg_last_set_mode;
306 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
307 static char *reg_last_set_sign_bit_copies;
308 \f
309 /* Record one modification to rtl structure
310 to be undone by storing old_contents into *where.
311 is_int is 1 if the contents are an int. */
312
313 struct undo
314 {
315 struct undo *next;
316 int is_int;
317 union {rtx r; int i;} old_contents;
318 union {rtx *r; int *i;} where;
319 };
320
321 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
322 num_undo says how many are currently recorded.
323
324 other_insn is nonzero if we have modified some other insn in the process
325 of working on subst_insn. It must be verified too. */
326
327 struct undobuf
328 {
329 struct undo *undos;
330 struct undo *frees;
331 rtx other_insn;
332 };
333
334 static struct undobuf undobuf;
335
336 /* Number of times the pseudo being substituted for
337 was found and replaced. */
338
339 static int n_occurrences;
340
341 static void do_SUBST PARAMS ((rtx *, rtx));
342 static void do_SUBST_INT PARAMS ((int *, int));
343 static void init_reg_last_arrays PARAMS ((void));
344 static void setup_incoming_promotions PARAMS ((void));
345 static void set_nonzero_bits_and_sign_copies PARAMS ((rtx, rtx, void *));
346 static int cant_combine_insn_p PARAMS ((rtx));
347 static int can_combine_p PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
348 static int sets_function_arg_p PARAMS ((rtx));
349 static int combinable_i3pat PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
350 static int contains_muldiv PARAMS ((rtx));
351 static rtx try_combine PARAMS ((rtx, rtx, rtx, int *));
352 static void undo_all PARAMS ((void));
353 static void undo_commit PARAMS ((void));
354 static rtx *find_split_point PARAMS ((rtx *, rtx));
355 static rtx subst PARAMS ((rtx, rtx, rtx, int, int));
356 static rtx combine_simplify_rtx PARAMS ((rtx, enum machine_mode, int, int));
357 static rtx simplify_if_then_else PARAMS ((rtx));
358 static rtx simplify_set PARAMS ((rtx));
359 static rtx simplify_logical PARAMS ((rtx, int));
360 static rtx expand_compound_operation PARAMS ((rtx));
361 static rtx expand_field_assignment PARAMS ((rtx));
362 static rtx make_extraction PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
363 rtx, unsigned HOST_WIDE_INT, int,
364 int, int));
365 static rtx extract_left_shift PARAMS ((rtx, int));
366 static rtx make_compound_operation PARAMS ((rtx, enum rtx_code));
367 static int get_pos_from_mask PARAMS ((unsigned HOST_WIDE_INT,
368 unsigned HOST_WIDE_INT *));
369 static rtx force_to_mode PARAMS ((rtx, enum machine_mode,
370 unsigned HOST_WIDE_INT, rtx, int));
371 static rtx if_then_else_cond PARAMS ((rtx, rtx *, rtx *));
372 static rtx known_cond PARAMS ((rtx, enum rtx_code, rtx, rtx));
373 static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
374 static rtx make_field_assignment PARAMS ((rtx));
375 static rtx apply_distributive_law PARAMS ((rtx));
376 static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
377 unsigned HOST_WIDE_INT));
378 static unsigned HOST_WIDE_INT nonzero_bits PARAMS ((rtx, enum machine_mode));
379 static unsigned int num_sign_bit_copies PARAMS ((rtx, enum machine_mode));
380 static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
381 enum rtx_code, HOST_WIDE_INT,
382 enum machine_mode, int *));
383 static rtx simplify_shift_const PARAMS ((rtx, enum rtx_code, enum machine_mode,
384 rtx, int));
385 static int recog_for_combine PARAMS ((rtx *, rtx, rtx *));
386 static rtx gen_lowpart_for_combine PARAMS ((enum machine_mode, rtx));
387 static rtx gen_binary PARAMS ((enum rtx_code, enum machine_mode,
388 rtx, rtx));
389 static enum rtx_code simplify_comparison PARAMS ((enum rtx_code, rtx *, rtx *));
390 static void update_table_tick PARAMS ((rtx));
391 static void record_value_for_reg PARAMS ((rtx, rtx, rtx));
392 static void check_promoted_subreg PARAMS ((rtx, rtx));
393 static void record_dead_and_set_regs_1 PARAMS ((rtx, rtx, void *));
394 static void record_dead_and_set_regs PARAMS ((rtx));
395 static int get_last_value_validate PARAMS ((rtx *, rtx, int, int));
396 static rtx get_last_value PARAMS ((rtx));
397 static int use_crosses_set_p PARAMS ((rtx, int));
398 static void reg_dead_at_p_1 PARAMS ((rtx, rtx, void *));
399 static int reg_dead_at_p PARAMS ((rtx, rtx));
400 static void move_deaths PARAMS ((rtx, rtx, int, rtx, rtx *));
401 static int reg_bitfield_target_p PARAMS ((rtx, rtx));
402 static void distribute_notes PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
403 static void distribute_links PARAMS ((rtx));
404 static void mark_used_regs_combine PARAMS ((rtx));
405 static int insn_cuid PARAMS ((rtx));
406 static void record_promoted_value PARAMS ((rtx, rtx));
407 static rtx reversed_comparison PARAMS ((rtx, enum machine_mode, rtx, rtx));
408 static enum rtx_code combine_reversed_comparison_code PARAMS ((rtx));
409 \f
410 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
411 insn. The substitution can be undone by undo_all. If INTO is already
412 set to NEWVAL, do not record this change. Because computing NEWVAL might
413 also call SUBST, we have to compute it before we put anything into
414 the undo table. */
415
416 static void
417 do_SUBST (into, newval)
418 rtx *into, newval;
419 {
420 struct undo *buf;
421 rtx oldval = *into;
422
423 if (oldval == newval)
424 return;
425
426 /* We'd like to catch as many invalid transformations here as
427 possible. Unfortunately, there are way too many mode changes
428 that are perfectly valid, so we'd waste too much effort for
429 little gain doing the checks here. Focus on catching invalid
430 transformations involving integer constants. */
431 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
432 && GET_CODE (newval) == CONST_INT)
433 {
434 /* Sanity check that we're replacing oldval with a CONST_INT
435 that is a valid sign-extension for the original mode. */
436 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
437 GET_MODE (oldval)))
438 abort ();
439
440 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
441 CONST_INT is not valid, because after the replacement, the
442 original mode would be gone. Unfortunately, we can't tell
443 when do_SUBST is called to replace the operand thereof, so we
444 perform this test on oldval instead, checking whether an
445 invalid replacement took place before we got here. */
446 if ((GET_CODE (oldval) == SUBREG
447 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
448 || (GET_CODE (oldval) == ZERO_EXTEND
449 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
450 abort ();
451 }
452
453 if (undobuf.frees)
454 buf = undobuf.frees, undobuf.frees = buf->next;
455 else
456 buf = (struct undo *) xmalloc (sizeof (struct undo));
457
458 buf->is_int = 0;
459 buf->where.r = into;
460 buf->old_contents.r = oldval;
461 *into = newval;
462
463 buf->next = undobuf.undos, undobuf.undos = buf;
464 }
465
466 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
467
468 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
469 for the value of a HOST_WIDE_INT value (including CONST_INT) is
470 not safe. */
471
472 static void
473 do_SUBST_INT (into, newval)
474 int *into, newval;
475 {
476 struct undo *buf;
477 int oldval = *into;
478
479 if (oldval == newval)
480 return;
481
482 if (undobuf.frees)
483 buf = undobuf.frees, undobuf.frees = buf->next;
484 else
485 buf = (struct undo *) xmalloc (sizeof (struct undo));
486
487 buf->is_int = 1;
488 buf->where.i = into;
489 buf->old_contents.i = oldval;
490 *into = newval;
491
492 buf->next = undobuf.undos, undobuf.undos = buf;
493 }
494
495 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
496 \f
497 /* Main entry point for combiner. F is the first insn of the function.
498 NREGS is the first unused pseudo-reg number.
499
500 Return nonzero if the combiner has turned an indirect jump
501 instruction into a direct jump. */
502 int
503 combine_instructions (f, nregs)
504 rtx f;
505 unsigned int nregs;
506 {
507 rtx insn, next;
508 #ifdef HAVE_cc0
509 rtx prev;
510 #endif
511 int i;
512 rtx links, nextlinks;
513
514 int new_direct_jump_p = 0;
515
516 combine_attempts = 0;
517 combine_merges = 0;
518 combine_extras = 0;
519 combine_successes = 0;
520
521 combine_max_regno = nregs;
522
523 reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
524 xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
525 reg_sign_bit_copies
526 = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
527
528 reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
529 reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
530 reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
531 reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
532 reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
533 reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
534 reg_last_set_mode
535 = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
536 reg_last_set_nonzero_bits
537 = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
538 reg_last_set_sign_bit_copies
539 = (char *) xmalloc (nregs * sizeof (char));
540
541 init_reg_last_arrays ();
542
543 init_recog_no_volatile ();
544
545 /* Compute maximum uid value so uid_cuid can be allocated. */
546
547 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
548 if (INSN_UID (insn) > i)
549 i = INSN_UID (insn);
550
551 uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
552 max_uid_cuid = i;
553
554 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
555
556 /* Don't use reg_nonzero_bits when computing it. This can cause problems
557 when, for example, we have j <<= 1 in a loop. */
558
559 nonzero_sign_valid = 0;
560
561 /* Compute the mapping from uids to cuids.
562 Cuids are numbers assigned to insns, like uids,
563 except that cuids increase monotonically through the code.
564
565 Scan all SETs and see if we can deduce anything about what
566 bits are known to be zero for some registers and how many copies
567 of the sign bit are known to exist for those registers.
568
569 Also set any known values so that we can use it while searching
570 for what bits are known to be set. */
571
572 label_tick = 1;
573
574 /* We need to initialize it here, because record_dead_and_set_regs may call
575 get_last_value. */
576 subst_prev_insn = NULL_RTX;
577
578 setup_incoming_promotions ();
579
580 refresh_blocks = sbitmap_alloc (last_basic_block);
581 sbitmap_zero (refresh_blocks);
582 need_refresh = 0;
583
584 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
585 {
586 uid_cuid[INSN_UID (insn)] = ++i;
587 subst_low_cuid = i;
588 subst_insn = insn;
589
590 if (INSN_P (insn))
591 {
592 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
593 NULL);
594 record_dead_and_set_regs (insn);
595
596 #ifdef AUTO_INC_DEC
597 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
598 if (REG_NOTE_KIND (links) == REG_INC)
599 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
600 NULL);
601 #endif
602 }
603
604 if (GET_CODE (insn) == CODE_LABEL)
605 label_tick++;
606 }
607
608 nonzero_sign_valid = 1;
609
610 /* Now scan all the insns in forward order. */
611
612 label_tick = 1;
613 last_call_cuid = 0;
614 mem_last_set = 0;
615 init_reg_last_arrays ();
616 setup_incoming_promotions ();
617
618 FOR_EACH_BB (this_basic_block)
619 {
620 for (insn = this_basic_block->head;
621 insn != NEXT_INSN (this_basic_block->end);
622 insn = next ? next : NEXT_INSN (insn))
623 {
624 next = 0;
625
626 if (GET_CODE (insn) == CODE_LABEL)
627 label_tick++;
628
629 else if (INSN_P (insn))
630 {
631 /* See if we know about function return values before this
632 insn based upon SUBREG flags. */
633 check_promoted_subreg (insn, PATTERN (insn));
634
635 /* Try this insn with each insn it links back to. */
636
637 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
638 if ((next = try_combine (insn, XEXP (links, 0),
639 NULL_RTX, &new_direct_jump_p)) != 0)
640 goto retry;
641
642 /* Try each sequence of three linked insns ending with this one. */
643
644 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
645 {
646 rtx link = XEXP (links, 0);
647
648 /* If the linked insn has been replaced by a note, then there
649 is no point in pursuing this chain any further. */
650 if (GET_CODE (link) == NOTE)
651 continue;
652
653 for (nextlinks = LOG_LINKS (link);
654 nextlinks;
655 nextlinks = XEXP (nextlinks, 1))
656 if ((next = try_combine (insn, link,
657 XEXP (nextlinks, 0),
658 &new_direct_jump_p)) != 0)
659 goto retry;
660 }
661
662 #ifdef HAVE_cc0
663 /* Try to combine a jump insn that uses CC0
664 with a preceding insn that sets CC0, and maybe with its
665 logical predecessor as well.
666 This is how we make decrement-and-branch insns.
667 We need this special code because data flow connections
668 via CC0 do not get entered in LOG_LINKS. */
669
670 if (GET_CODE (insn) == JUMP_INSN
671 && (prev = prev_nonnote_insn (insn)) != 0
672 && GET_CODE (prev) == INSN
673 && sets_cc0_p (PATTERN (prev)))
674 {
675 if ((next = try_combine (insn, prev,
676 NULL_RTX, &new_direct_jump_p)) != 0)
677 goto retry;
678
679 for (nextlinks = LOG_LINKS (prev); nextlinks;
680 nextlinks = XEXP (nextlinks, 1))
681 if ((next = try_combine (insn, prev,
682 XEXP (nextlinks, 0),
683 &new_direct_jump_p)) != 0)
684 goto retry;
685 }
686
687 /* Do the same for an insn that explicitly references CC0. */
688 if (GET_CODE (insn) == INSN
689 && (prev = prev_nonnote_insn (insn)) != 0
690 && GET_CODE (prev) == INSN
691 && sets_cc0_p (PATTERN (prev))
692 && GET_CODE (PATTERN (insn)) == SET
693 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
694 {
695 if ((next = try_combine (insn, prev,
696 NULL_RTX, &new_direct_jump_p)) != 0)
697 goto retry;
698
699 for (nextlinks = LOG_LINKS (prev); nextlinks;
700 nextlinks = XEXP (nextlinks, 1))
701 if ((next = try_combine (insn, prev,
702 XEXP (nextlinks, 0),
703 &new_direct_jump_p)) != 0)
704 goto retry;
705 }
706
707 /* Finally, see if any of the insns that this insn links to
708 explicitly references CC0. If so, try this insn, that insn,
709 and its predecessor if it sets CC0. */
710 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
711 if (GET_CODE (XEXP (links, 0)) == INSN
712 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
713 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
714 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
715 && GET_CODE (prev) == INSN
716 && sets_cc0_p (PATTERN (prev))
717 && (next = try_combine (insn, XEXP (links, 0),
718 prev, &new_direct_jump_p)) != 0)
719 goto retry;
720 #endif
721
722 /* Try combining an insn with two different insns whose results it
723 uses. */
724 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
725 for (nextlinks = XEXP (links, 1); nextlinks;
726 nextlinks = XEXP (nextlinks, 1))
727 if ((next = try_combine (insn, XEXP (links, 0),
728 XEXP (nextlinks, 0),
729 &new_direct_jump_p)) != 0)
730 goto retry;
731
732 if (GET_CODE (insn) != NOTE)
733 record_dead_and_set_regs (insn);
734
735 retry:
736 ;
737 }
738 }
739 }
740 clear_bb_flags ();
741
742 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
743 BASIC_BLOCK (i)->flags |= BB_DIRTY);
744 new_direct_jump_p |= purge_all_dead_edges (0);
745 delete_noop_moves (f);
746
747 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
748 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
749 | PROP_KILL_DEAD_CODE);
750
751 /* Clean up. */
752 sbitmap_free (refresh_blocks);
753 free (reg_nonzero_bits);
754 free (reg_sign_bit_copies);
755 free (reg_last_death);
756 free (reg_last_set);
757 free (reg_last_set_value);
758 free (reg_last_set_table_tick);
759 free (reg_last_set_label);
760 free (reg_last_set_invalid);
761 free (reg_last_set_mode);
762 free (reg_last_set_nonzero_bits);
763 free (reg_last_set_sign_bit_copies);
764 free (uid_cuid);
765
766 {
767 struct undo *undo, *next;
768 for (undo = undobuf.frees; undo; undo = next)
769 {
770 next = undo->next;
771 free (undo);
772 }
773 undobuf.frees = 0;
774 }
775
776 total_attempts += combine_attempts;
777 total_merges += combine_merges;
778 total_extras += combine_extras;
779 total_successes += combine_successes;
780
781 nonzero_sign_valid = 0;
782
783 /* Make recognizer allow volatile MEMs again. */
784 init_recog ();
785
786 return new_direct_jump_p;
787 }
788
789 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
790
791 static void
792 init_reg_last_arrays ()
793 {
794 unsigned int nregs = combine_max_regno;
795
796 memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
797 memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
798 memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
799 memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
800 memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
801 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
802 memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
803 memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
804 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
805 }
806 \f
807 /* Set up any promoted values for incoming argument registers. */
808
809 static void
810 setup_incoming_promotions ()
811 {
812 #ifdef PROMOTE_FUNCTION_ARGS
813 unsigned int regno;
814 rtx reg;
815 enum machine_mode mode;
816 int unsignedp;
817 rtx first = get_insns ();
818
819 #ifndef OUTGOING_REGNO
820 #define OUTGOING_REGNO(N) N
821 #endif
822 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
823 /* Check whether this register can hold an incoming pointer
824 argument. FUNCTION_ARG_REGNO_P tests outgoing register
825 numbers, so translate if necessary due to register windows. */
826 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
827 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
828 {
829 record_value_for_reg
830 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
831 : SIGN_EXTEND),
832 GET_MODE (reg),
833 gen_rtx_CLOBBER (mode, const0_rtx)));
834 }
835 #endif
836 }
837 \f
838 /* Called via note_stores. If X is a pseudo that is narrower than
839 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
840
841 If we are setting only a portion of X and we can't figure out what
842 portion, assume all bits will be used since we don't know what will
843 be happening.
844
845 Similarly, set how many bits of X are known to be copies of the sign bit
846 at all locations in the function. This is the smallest number implied
847 by any set of X. */
848
849 static void
850 set_nonzero_bits_and_sign_copies (x, set, data)
851 rtx x;
852 rtx set;
853 void *data ATTRIBUTE_UNUSED;
854 {
855 unsigned int num;
856
857 if (GET_CODE (x) == REG
858 && REGNO (x) >= FIRST_PSEUDO_REGISTER
859 /* If this register is undefined at the start of the file, we can't
860 say what its contents were. */
861 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
862 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
863 {
864 if (set == 0 || GET_CODE (set) == CLOBBER)
865 {
866 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
867 reg_sign_bit_copies[REGNO (x)] = 1;
868 return;
869 }
870
871 /* If this is a complex assignment, see if we can convert it into a
872 simple assignment. */
873 set = expand_field_assignment (set);
874
875 /* If this is a simple assignment, or we have a paradoxical SUBREG,
876 set what we know about X. */
877
878 if (SET_DEST (set) == x
879 || (GET_CODE (SET_DEST (set)) == SUBREG
880 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
881 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
882 && SUBREG_REG (SET_DEST (set)) == x))
883 {
884 rtx src = SET_SRC (set);
885
886 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
887 /* If X is narrower than a word and SRC is a non-negative
888 constant that would appear negative in the mode of X,
889 sign-extend it for use in reg_nonzero_bits because some
890 machines (maybe most) will actually do the sign-extension
891 and this is the conservative approach.
892
893 ??? For 2.5, try to tighten up the MD files in this regard
894 instead of this kludge. */
895
896 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
897 && GET_CODE (src) == CONST_INT
898 && INTVAL (src) > 0
899 && 0 != (INTVAL (src)
900 & ((HOST_WIDE_INT) 1
901 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
902 src = GEN_INT (INTVAL (src)
903 | ((HOST_WIDE_INT) (-1)
904 << GET_MODE_BITSIZE (GET_MODE (x))));
905 #endif
906
907 /* Don't call nonzero_bits if it cannot change anything. */
908 if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
909 reg_nonzero_bits[REGNO (x)]
910 |= nonzero_bits (src, nonzero_bits_mode);
911 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
912 if (reg_sign_bit_copies[REGNO (x)] == 0
913 || reg_sign_bit_copies[REGNO (x)] > num)
914 reg_sign_bit_copies[REGNO (x)] = num;
915 }
916 else
917 {
918 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
919 reg_sign_bit_copies[REGNO (x)] = 1;
920 }
921 }
922 }
923 \f
924 /* See if INSN can be combined into I3. PRED and SUCC are optionally
925 insns that were previously combined into I3 or that will be combined
926 into the merger of INSN and I3.
927
928 Return 0 if the combination is not allowed for any reason.
929
930 If the combination is allowed, *PDEST will be set to the single
931 destination of INSN and *PSRC to the single source, and this function
932 will return 1. */
933
934 static int
935 can_combine_p (insn, i3, pred, succ, pdest, psrc)
936 rtx insn;
937 rtx i3;
938 rtx pred ATTRIBUTE_UNUSED;
939 rtx succ;
940 rtx *pdest, *psrc;
941 {
942 int i;
943 rtx set = 0, src, dest;
944 rtx p;
945 #ifdef AUTO_INC_DEC
946 rtx link;
947 #endif
948 int all_adjacent = (succ ? (next_active_insn (insn) == succ
949 && next_active_insn (succ) == i3)
950 : next_active_insn (insn) == i3);
951
952 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
953 or a PARALLEL consisting of such a SET and CLOBBERs.
954
955 If INSN has CLOBBER parallel parts, ignore them for our processing.
956 By definition, these happen during the execution of the insn. When it
957 is merged with another insn, all bets are off. If they are, in fact,
958 needed and aren't also supplied in I3, they may be added by
959 recog_for_combine. Otherwise, it won't match.
960
961 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
962 note.
963
964 Get the source and destination of INSN. If more than one, can't
965 combine. */
966
967 if (GET_CODE (PATTERN (insn)) == SET)
968 set = PATTERN (insn);
969 else if (GET_CODE (PATTERN (insn)) == PARALLEL
970 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
971 {
972 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
973 {
974 rtx elt = XVECEXP (PATTERN (insn), 0, i);
975
976 switch (GET_CODE (elt))
977 {
978 /* This is important to combine floating point insns
979 for the SH4 port. */
980 case USE:
981 /* Combining an isolated USE doesn't make sense.
982 We depend here on combinable_i3pat to reject them. */
983 /* The code below this loop only verifies that the inputs of
984 the SET in INSN do not change. We call reg_set_between_p
985 to verify that the REG in the USE does not change between
986 I3 and INSN.
987 If the USE in INSN was for a pseudo register, the matching
988 insn pattern will likely match any register; combining this
989 with any other USE would only be safe if we knew that the
990 used registers have identical values, or if there was
991 something to tell them apart, e.g. different modes. For
992 now, we forgo such complicated tests and simply disallow
993 combining of USES of pseudo registers with any other USE. */
994 if (GET_CODE (XEXP (elt, 0)) == REG
995 && GET_CODE (PATTERN (i3)) == PARALLEL)
996 {
997 rtx i3pat = PATTERN (i3);
998 int i = XVECLEN (i3pat, 0) - 1;
999 unsigned int regno = REGNO (XEXP (elt, 0));
1000
1001 do
1002 {
1003 rtx i3elt = XVECEXP (i3pat, 0, i);
1004
1005 if (GET_CODE (i3elt) == USE
1006 && GET_CODE (XEXP (i3elt, 0)) == REG
1007 && (REGNO (XEXP (i3elt, 0)) == regno
1008 ? reg_set_between_p (XEXP (elt, 0),
1009 PREV_INSN (insn), i3)
1010 : regno >= FIRST_PSEUDO_REGISTER))
1011 return 0;
1012 }
1013 while (--i >= 0);
1014 }
1015 break;
1016
1017 /* We can ignore CLOBBERs. */
1018 case CLOBBER:
1019 break;
1020
1021 case SET:
1022 /* Ignore SETs whose result isn't used but not those that
1023 have side-effects. */
1024 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1025 && ! side_effects_p (elt))
1026 break;
1027
1028 /* If we have already found a SET, this is a second one and
1029 so we cannot combine with this insn. */
1030 if (set)
1031 return 0;
1032
1033 set = elt;
1034 break;
1035
1036 default:
1037 /* Anything else means we can't combine. */
1038 return 0;
1039 }
1040 }
1041
1042 if (set == 0
1043 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1044 so don't do anything with it. */
1045 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1046 return 0;
1047 }
1048 else
1049 return 0;
1050
1051 if (set == 0)
1052 return 0;
1053
1054 set = expand_field_assignment (set);
1055 src = SET_SRC (set), dest = SET_DEST (set);
1056
1057 /* Don't eliminate a store in the stack pointer. */
1058 if (dest == stack_pointer_rtx
1059 /* If we couldn't eliminate a field assignment, we can't combine. */
1060 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1061 /* Don't combine with an insn that sets a register to itself if it has
1062 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1063 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1064 /* Can't merge an ASM_OPERANDS. */
1065 || GET_CODE (src) == ASM_OPERANDS
1066 /* Can't merge a function call. */
1067 || GET_CODE (src) == CALL
1068 /* Don't eliminate a function call argument. */
1069 || (GET_CODE (i3) == CALL_INSN
1070 && (find_reg_fusage (i3, USE, dest)
1071 || (GET_CODE (dest) == REG
1072 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1073 && global_regs[REGNO (dest)])))
1074 /* Don't substitute into an incremented register. */
1075 || FIND_REG_INC_NOTE (i3, dest)
1076 || (succ && FIND_REG_INC_NOTE (succ, dest))
1077 #if 0
1078 /* Don't combine the end of a libcall into anything. */
1079 /* ??? This gives worse code, and appears to be unnecessary, since no
1080 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1081 use REG_RETVAL notes for noconflict blocks, but other code here
1082 makes sure that those insns don't disappear. */
1083 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1084 #endif
1085 /* Make sure that DEST is not used after SUCC but before I3. */
1086 || (succ && ! all_adjacent
1087 && reg_used_between_p (dest, succ, i3))
1088 /* Make sure that the value that is to be substituted for the register
1089 does not use any registers whose values alter in between. However,
1090 If the insns are adjacent, a use can't cross a set even though we
1091 think it might (this can happen for a sequence of insns each setting
1092 the same destination; reg_last_set of that register might point to
1093 a NOTE). If INSN has a REG_EQUIV note, the register is always
1094 equivalent to the memory so the substitution is valid even if there
1095 are intervening stores. Also, don't move a volatile asm or
1096 UNSPEC_VOLATILE across any other insns. */
1097 || (! all_adjacent
1098 && (((GET_CODE (src) != MEM
1099 || ! find_reg_note (insn, REG_EQUIV, src))
1100 && use_crosses_set_p (src, INSN_CUID (insn)))
1101 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1102 || GET_CODE (src) == UNSPEC_VOLATILE))
1103 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1104 better register allocation by not doing the combine. */
1105 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1106 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1107 /* Don't combine across a CALL_INSN, because that would possibly
1108 change whether the life span of some REGs crosses calls or not,
1109 and it is a pain to update that information.
1110 Exception: if source is a constant, moving it later can't hurt.
1111 Accept that special case, because it helps -fforce-addr a lot. */
1112 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1113 return 0;
1114
1115 /* DEST must either be a REG or CC0. */
1116 if (GET_CODE (dest) == REG)
1117 {
1118 /* If register alignment is being enforced for multi-word items in all
1119 cases except for parameters, it is possible to have a register copy
1120 insn referencing a hard register that is not allowed to contain the
1121 mode being copied and which would not be valid as an operand of most
1122 insns. Eliminate this problem by not combining with such an insn.
1123
1124 Also, on some machines we don't want to extend the life of a hard
1125 register. */
1126
1127 if (GET_CODE (src) == REG
1128 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1129 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1130 /* Don't extend the life of a hard register unless it is
1131 user variable (if we have few registers) or it can't
1132 fit into the desired register (meaning something special
1133 is going on).
1134 Also avoid substituting a return register into I3, because
1135 reload can't handle a conflict with constraints of other
1136 inputs. */
1137 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1138 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1139 return 0;
1140 }
1141 else if (GET_CODE (dest) != CC0)
1142 return 0;
1143
1144 /* Don't substitute for a register intended as a clobberable operand.
1145 Similarly, don't substitute an expression containing a register that
1146 will be clobbered in I3. */
1147 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1148 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1149 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1150 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1151 src)
1152 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1153 return 0;
1154
1155 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1156 or not), reject, unless nothing volatile comes between it and I3 */
1157
1158 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1159 {
1160 /* Make sure succ doesn't contain a volatile reference. */
1161 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1162 return 0;
1163
1164 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1165 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1166 return 0;
1167 }
1168
1169 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1170 to be an explicit register variable, and was chosen for a reason. */
1171
1172 if (GET_CODE (src) == ASM_OPERANDS
1173 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1174 return 0;
1175
1176 /* If there are any volatile insns between INSN and I3, reject, because
1177 they might affect machine state. */
1178
1179 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1180 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1181 return 0;
1182
1183 /* If INSN or I2 contains an autoincrement or autodecrement,
1184 make sure that register is not used between there and I3,
1185 and not already used in I3 either.
1186 Also insist that I3 not be a jump; if it were one
1187 and the incremented register were spilled, we would lose. */
1188
1189 #ifdef AUTO_INC_DEC
1190 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1191 if (REG_NOTE_KIND (link) == REG_INC
1192 && (GET_CODE (i3) == JUMP_INSN
1193 || reg_used_between_p (XEXP (link, 0), insn, i3)
1194 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1195 return 0;
1196 #endif
1197
1198 #ifdef HAVE_cc0
1199 /* Don't combine an insn that follows a CC0-setting insn.
1200 An insn that uses CC0 must not be separated from the one that sets it.
1201 We do, however, allow I2 to follow a CC0-setting insn if that insn
1202 is passed as I1; in that case it will be deleted also.
1203 We also allow combining in this case if all the insns are adjacent
1204 because that would leave the two CC0 insns adjacent as well.
1205 It would be more logical to test whether CC0 occurs inside I1 or I2,
1206 but that would be much slower, and this ought to be equivalent. */
1207
1208 p = prev_nonnote_insn (insn);
1209 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1210 && ! all_adjacent)
1211 return 0;
1212 #endif
1213
1214 /* If we get here, we have passed all the tests and the combination is
1215 to be allowed. */
1216
1217 *pdest = dest;
1218 *psrc = src;
1219
1220 return 1;
1221 }
1222 \f
1223 /* Check if PAT is an insn - or a part of it - used to set up an
1224 argument for a function in a hard register. */
1225
1226 static int
1227 sets_function_arg_p (pat)
1228 rtx pat;
1229 {
1230 int i;
1231 rtx inner_dest;
1232
1233 switch (GET_CODE (pat))
1234 {
1235 case INSN:
1236 return sets_function_arg_p (PATTERN (pat));
1237
1238 case PARALLEL:
1239 for (i = XVECLEN (pat, 0); --i >= 0;)
1240 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1241 return 1;
1242
1243 break;
1244
1245 case SET:
1246 inner_dest = SET_DEST (pat);
1247 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1248 || GET_CODE (inner_dest) == SUBREG
1249 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1250 inner_dest = XEXP (inner_dest, 0);
1251
1252 return (GET_CODE (inner_dest) == REG
1253 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1254 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1255
1256 default:
1257 break;
1258 }
1259
1260 return 0;
1261 }
1262
1263 /* LOC is the location within I3 that contains its pattern or the component
1264 of a PARALLEL of the pattern. We validate that it is valid for combining.
1265
1266 One problem is if I3 modifies its output, as opposed to replacing it
1267 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1268 so would produce an insn that is not equivalent to the original insns.
1269
1270 Consider:
1271
1272 (set (reg:DI 101) (reg:DI 100))
1273 (set (subreg:SI (reg:DI 101) 0) <foo>)
1274
1275 This is NOT equivalent to:
1276
1277 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1278 (set (reg:DI 101) (reg:DI 100))])
1279
1280 Not only does this modify 100 (in which case it might still be valid
1281 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1282
1283 We can also run into a problem if I2 sets a register that I1
1284 uses and I1 gets directly substituted into I3 (not via I2). In that
1285 case, we would be getting the wrong value of I2DEST into I3, so we
1286 must reject the combination. This case occurs when I2 and I1 both
1287 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1288 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1289 of a SET must prevent combination from occurring.
1290
1291 Before doing the above check, we first try to expand a field assignment
1292 into a set of logical operations.
1293
1294 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1295 we place a register that is both set and used within I3. If more than one
1296 such register is detected, we fail.
1297
1298 Return 1 if the combination is valid, zero otherwise. */
1299
1300 static int
1301 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1302 rtx i3;
1303 rtx *loc;
1304 rtx i2dest;
1305 rtx i1dest;
1306 int i1_not_in_src;
1307 rtx *pi3dest_killed;
1308 {
1309 rtx x = *loc;
1310
1311 if (GET_CODE (x) == SET)
1312 {
1313 rtx set = expand_field_assignment (x);
1314 rtx dest = SET_DEST (set);
1315 rtx src = SET_SRC (set);
1316 rtx inner_dest = dest;
1317
1318 #if 0
1319 rtx inner_src = src;
1320 #endif
1321
1322 SUBST (*loc, set);
1323
1324 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1325 || GET_CODE (inner_dest) == SUBREG
1326 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1327 inner_dest = XEXP (inner_dest, 0);
1328
1329 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1330 was added. */
1331 #if 0
1332 while (GET_CODE (inner_src) == STRICT_LOW_PART
1333 || GET_CODE (inner_src) == SUBREG
1334 || GET_CODE (inner_src) == ZERO_EXTRACT)
1335 inner_src = XEXP (inner_src, 0);
1336
1337 /* If it is better that two different modes keep two different pseudos,
1338 avoid combining them. This avoids producing the following pattern
1339 on a 386:
1340 (set (subreg:SI (reg/v:QI 21) 0)
1341 (lshiftrt:SI (reg/v:SI 20)
1342 (const_int 24)))
1343 If that were made, reload could not handle the pair of
1344 reg 20/21, since it would try to get any GENERAL_REGS
1345 but some of them don't handle QImode. */
1346
1347 if (rtx_equal_p (inner_src, i2dest)
1348 && GET_CODE (inner_dest) == REG
1349 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1350 return 0;
1351 #endif
1352
1353 /* Check for the case where I3 modifies its output, as
1354 discussed above. */
1355 if ((inner_dest != dest
1356 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1357 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1358
1359 /* This is the same test done in can_combine_p except we can't test
1360 all_adjacent; we don't have to, since this instruction will stay
1361 in place, thus we are not considering increasing the lifetime of
1362 INNER_DEST.
1363
1364 Also, if this insn sets a function argument, combining it with
1365 something that might need a spill could clobber a previous
1366 function argument; the all_adjacent test in can_combine_p also
1367 checks this; here, we do a more specific test for this case. */
1368
1369 || (GET_CODE (inner_dest) == REG
1370 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1371 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1372 GET_MODE (inner_dest))))
1373 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1374 return 0;
1375
1376 /* If DEST is used in I3, it is being killed in this insn,
1377 so record that for later.
1378 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1379 STACK_POINTER_REGNUM, since these are always considered to be
1380 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1381 if (pi3dest_killed && GET_CODE (dest) == REG
1382 && reg_referenced_p (dest, PATTERN (i3))
1383 && REGNO (dest) != FRAME_POINTER_REGNUM
1384 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1385 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1386 #endif
1387 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1388 && (REGNO (dest) != ARG_POINTER_REGNUM
1389 || ! fixed_regs [REGNO (dest)])
1390 #endif
1391 && REGNO (dest) != STACK_POINTER_REGNUM)
1392 {
1393 if (*pi3dest_killed)
1394 return 0;
1395
1396 *pi3dest_killed = dest;
1397 }
1398 }
1399
1400 else if (GET_CODE (x) == PARALLEL)
1401 {
1402 int i;
1403
1404 for (i = 0; i < XVECLEN (x, 0); i++)
1405 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1406 i1_not_in_src, pi3dest_killed))
1407 return 0;
1408 }
1409
1410 return 1;
1411 }
1412 \f
1413 /* Return 1 if X is an arithmetic expression that contains a multiplication
1414 and division. We don't count multiplications by powers of two here. */
1415
1416 static int
1417 contains_muldiv (x)
1418 rtx x;
1419 {
1420 switch (GET_CODE (x))
1421 {
1422 case MOD: case DIV: case UMOD: case UDIV:
1423 return 1;
1424
1425 case MULT:
1426 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1427 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1428 default:
1429 switch (GET_RTX_CLASS (GET_CODE (x)))
1430 {
1431 case 'c': case '<': case '2':
1432 return contains_muldiv (XEXP (x, 0))
1433 || contains_muldiv (XEXP (x, 1));
1434
1435 case '1':
1436 return contains_muldiv (XEXP (x, 0));
1437
1438 default:
1439 return 0;
1440 }
1441 }
1442 }
1443 \f
1444 /* Determine whether INSN can be used in a combination. Return nonzero if
1445 not. This is used in try_combine to detect early some cases where we
1446 can't perform combinations. */
1447
1448 static int
1449 cant_combine_insn_p (insn)
1450 rtx insn;
1451 {
1452 rtx set;
1453 rtx src, dest;
1454
1455 /* If this isn't really an insn, we can't do anything.
1456 This can occur when flow deletes an insn that it has merged into an
1457 auto-increment address. */
1458 if (! INSN_P (insn))
1459 return 1;
1460
1461 /* Never combine loads and stores involving hard regs. The register
1462 allocator can usually handle such reg-reg moves by tying. If we allow
1463 the combiner to make substitutions of hard regs, we risk aborting in
1464 reload on machines that have SMALL_REGISTER_CLASSES.
1465 As an exception, we allow combinations involving fixed regs; these are
1466 not available to the register allocator so there's no risk involved. */
1467
1468 set = single_set (insn);
1469 if (! set)
1470 return 0;
1471 src = SET_SRC (set);
1472 dest = SET_DEST (set);
1473 if (GET_CODE (src) == SUBREG)
1474 src = SUBREG_REG (src);
1475 if (GET_CODE (dest) == SUBREG)
1476 dest = SUBREG_REG (dest);
1477 if (REG_P (src) && REG_P (dest)
1478 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1479 && ! fixed_regs[REGNO (src)])
1480 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1481 && ! fixed_regs[REGNO (dest)])))
1482 return 1;
1483
1484 return 0;
1485 }
1486
1487 /* Try to combine the insns I1 and I2 into I3.
1488 Here I1 and I2 appear earlier than I3.
1489 I1 can be zero; then we combine just I2 into I3.
1490
1491 If we are combining three insns and the resulting insn is not recognized,
1492 try splitting it into two insns. If that happens, I2 and I3 are retained
1493 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1494 are pseudo-deleted.
1495
1496 Return 0 if the combination does not work. Then nothing is changed.
1497 If we did the combination, return the insn at which combine should
1498 resume scanning.
1499
1500 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1501 new direct jump instruction. */
1502
1503 static rtx
1504 try_combine (i3, i2, i1, new_direct_jump_p)
1505 rtx i3, i2, i1;
1506 int *new_direct_jump_p;
1507 {
1508 /* New patterns for I3 and I2, respectively. */
1509 rtx newpat, newi2pat = 0;
1510 int substed_i2 = 0, substed_i1 = 0;
1511 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1512 int added_sets_1, added_sets_2;
1513 /* Total number of SETs to put into I3. */
1514 int total_sets;
1515 /* Nonzero is I2's body now appears in I3. */
1516 int i2_is_used;
1517 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1518 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1519 /* Contains I3 if the destination of I3 is used in its source, which means
1520 that the old life of I3 is being killed. If that usage is placed into
1521 I2 and not in I3, a REG_DEAD note must be made. */
1522 rtx i3dest_killed = 0;
1523 /* SET_DEST and SET_SRC of I2 and I1. */
1524 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1525 /* PATTERN (I2), or a copy of it in certain cases. */
1526 rtx i2pat;
1527 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1528 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1529 int i1_feeds_i3 = 0;
1530 /* Notes that must be added to REG_NOTES in I3 and I2. */
1531 rtx new_i3_notes, new_i2_notes;
1532 /* Notes that we substituted I3 into I2 instead of the normal case. */
1533 int i3_subst_into_i2 = 0;
1534 /* Notes that I1, I2 or I3 is a MULT operation. */
1535 int have_mult = 0;
1536
1537 int maxreg;
1538 rtx temp;
1539 rtx link;
1540 int i;
1541
1542 /* Exit early if one of the insns involved can't be used for
1543 combinations. */
1544 if (cant_combine_insn_p (i3)
1545 || cant_combine_insn_p (i2)
1546 || (i1 && cant_combine_insn_p (i1))
1547 /* We also can't do anything if I3 has a
1548 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1549 libcall. */
1550 #if 0
1551 /* ??? This gives worse code, and appears to be unnecessary, since no
1552 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1553 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1554 #endif
1555 )
1556 return 0;
1557
1558 combine_attempts++;
1559 undobuf.other_insn = 0;
1560
1561 /* Reset the hard register usage information. */
1562 CLEAR_HARD_REG_SET (newpat_used_regs);
1563
1564 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1565 code below, set I1 to be the earlier of the two insns. */
1566 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1567 temp = i1, i1 = i2, i2 = temp;
1568
1569 added_links_insn = 0;
1570
1571 /* First check for one important special-case that the code below will
1572 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1573 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1574 we may be able to replace that destination with the destination of I3.
1575 This occurs in the common code where we compute both a quotient and
1576 remainder into a structure, in which case we want to do the computation
1577 directly into the structure to avoid register-register copies.
1578
1579 Note that this case handles both multiple sets in I2 and also
1580 cases where I2 has a number of CLOBBER or PARALLELs.
1581
1582 We make very conservative checks below and only try to handle the
1583 most common cases of this. For example, we only handle the case
1584 where I2 and I3 are adjacent to avoid making difficult register
1585 usage tests. */
1586
1587 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1588 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1589 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1590 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1591 && GET_CODE (PATTERN (i2)) == PARALLEL
1592 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1593 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1594 below would need to check what is inside (and reg_overlap_mentioned_p
1595 doesn't support those codes anyway). Don't allow those destinations;
1596 the resulting insn isn't likely to be recognized anyway. */
1597 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1598 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1599 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1600 SET_DEST (PATTERN (i3)))
1601 && next_real_insn (i2) == i3)
1602 {
1603 rtx p2 = PATTERN (i2);
1604
1605 /* Make sure that the destination of I3,
1606 which we are going to substitute into one output of I2,
1607 is not used within another output of I2. We must avoid making this:
1608 (parallel [(set (mem (reg 69)) ...)
1609 (set (reg 69) ...)])
1610 which is not well-defined as to order of actions.
1611 (Besides, reload can't handle output reloads for this.)
1612
1613 The problem can also happen if the dest of I3 is a memory ref,
1614 if another dest in I2 is an indirect memory ref. */
1615 for (i = 0; i < XVECLEN (p2, 0); i++)
1616 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1617 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1618 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1619 SET_DEST (XVECEXP (p2, 0, i))))
1620 break;
1621
1622 if (i == XVECLEN (p2, 0))
1623 for (i = 0; i < XVECLEN (p2, 0); i++)
1624 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1625 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1626 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1627 {
1628 combine_merges++;
1629
1630 subst_insn = i3;
1631 subst_low_cuid = INSN_CUID (i2);
1632
1633 added_sets_2 = added_sets_1 = 0;
1634 i2dest = SET_SRC (PATTERN (i3));
1635
1636 /* Replace the dest in I2 with our dest and make the resulting
1637 insn the new pattern for I3. Then skip to where we
1638 validate the pattern. Everything was set up above. */
1639 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1640 SET_DEST (PATTERN (i3)));
1641
1642 newpat = p2;
1643 i3_subst_into_i2 = 1;
1644 goto validate_replacement;
1645 }
1646 }
1647
1648 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1649 one of those words to another constant, merge them by making a new
1650 constant. */
1651 if (i1 == 0
1652 && (temp = single_set (i2)) != 0
1653 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1654 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1655 && GET_CODE (SET_DEST (temp)) == REG
1656 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1657 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1658 && GET_CODE (PATTERN (i3)) == SET
1659 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1660 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1661 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1662 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1663 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1664 {
1665 HOST_WIDE_INT lo, hi;
1666
1667 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1668 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1669 else
1670 {
1671 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1672 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1673 }
1674
1675 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1676 {
1677 /* We don't handle the case of the target word being wider
1678 than a host wide int. */
1679 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1680 abort ();
1681
1682 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1683 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1684 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1685 }
1686 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1687 hi = INTVAL (SET_SRC (PATTERN (i3)));
1688 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1689 {
1690 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1691 >> (HOST_BITS_PER_WIDE_INT - 1));
1692
1693 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1694 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1695 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1696 (INTVAL (SET_SRC (PATTERN (i3)))));
1697 if (hi == sign)
1698 hi = lo < 0 ? -1 : 0;
1699 }
1700 else
1701 /* We don't handle the case of the higher word not fitting
1702 entirely in either hi or lo. */
1703 abort ();
1704
1705 combine_merges++;
1706 subst_insn = i3;
1707 subst_low_cuid = INSN_CUID (i2);
1708 added_sets_2 = added_sets_1 = 0;
1709 i2dest = SET_DEST (temp);
1710
1711 SUBST (SET_SRC (temp),
1712 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1713
1714 newpat = PATTERN (i2);
1715 goto validate_replacement;
1716 }
1717
1718 #ifndef HAVE_cc0
1719 /* If we have no I1 and I2 looks like:
1720 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1721 (set Y OP)])
1722 make up a dummy I1 that is
1723 (set Y OP)
1724 and change I2 to be
1725 (set (reg:CC X) (compare:CC Y (const_int 0)))
1726
1727 (We can ignore any trailing CLOBBERs.)
1728
1729 This undoes a previous combination and allows us to match a branch-and-
1730 decrement insn. */
1731
1732 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1733 && XVECLEN (PATTERN (i2), 0) >= 2
1734 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1735 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1736 == MODE_CC)
1737 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1738 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1739 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1740 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1741 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1742 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1743 {
1744 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1745 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1746 break;
1747
1748 if (i == 1)
1749 {
1750 /* We make I1 with the same INSN_UID as I2. This gives it
1751 the same INSN_CUID for value tracking. Our fake I1 will
1752 never appear in the insn stream so giving it the same INSN_UID
1753 as I2 will not cause a problem. */
1754
1755 subst_prev_insn = i1
1756 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1757 BLOCK_FOR_INSN (i2), INSN_SCOPE (i2),
1758 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1759 NULL_RTX);
1760
1761 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1762 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1763 SET_DEST (PATTERN (i1)));
1764 }
1765 }
1766 #endif
1767
1768 /* Verify that I2 and I1 are valid for combining. */
1769 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1770 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1771 {
1772 undo_all ();
1773 return 0;
1774 }
1775
1776 /* Record whether I2DEST is used in I2SRC and similarly for the other
1777 cases. Knowing this will help in register status updating below. */
1778 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1779 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1780 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1781
1782 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1783 in I2SRC. */
1784 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1785
1786 /* Ensure that I3's pattern can be the destination of combines. */
1787 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1788 i1 && i2dest_in_i1src && i1_feeds_i3,
1789 &i3dest_killed))
1790 {
1791 undo_all ();
1792 return 0;
1793 }
1794
1795 /* See if any of the insns is a MULT operation. Unless one is, we will
1796 reject a combination that is, since it must be slower. Be conservative
1797 here. */
1798 if (GET_CODE (i2src) == MULT
1799 || (i1 != 0 && GET_CODE (i1src) == MULT)
1800 || (GET_CODE (PATTERN (i3)) == SET
1801 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1802 have_mult = 1;
1803
1804 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1805 We used to do this EXCEPT in one case: I3 has a post-inc in an
1806 output operand. However, that exception can give rise to insns like
1807 mov r3,(r3)+
1808 which is a famous insn on the PDP-11 where the value of r3 used as the
1809 source was model-dependent. Avoid this sort of thing. */
1810
1811 #if 0
1812 if (!(GET_CODE (PATTERN (i3)) == SET
1813 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1814 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1815 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1816 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1817 /* It's not the exception. */
1818 #endif
1819 #ifdef AUTO_INC_DEC
1820 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1821 if (REG_NOTE_KIND (link) == REG_INC
1822 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1823 || (i1 != 0
1824 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1825 {
1826 undo_all ();
1827 return 0;
1828 }
1829 #endif
1830
1831 /* See if the SETs in I1 or I2 need to be kept around in the merged
1832 instruction: whenever the value set there is still needed past I3.
1833 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1834
1835 For the SET in I1, we have two cases: If I1 and I2 independently
1836 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1837 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1838 in I1 needs to be kept around unless I1DEST dies or is set in either
1839 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1840 I1DEST. If so, we know I1 feeds into I2. */
1841
1842 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1843
1844 added_sets_1
1845 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1846 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1847
1848 /* If the set in I2 needs to be kept around, we must make a copy of
1849 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1850 PATTERN (I2), we are only substituting for the original I1DEST, not into
1851 an already-substituted copy. This also prevents making self-referential
1852 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1853 I2DEST. */
1854
1855 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1856 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1857 : PATTERN (i2));
1858
1859 if (added_sets_2)
1860 i2pat = copy_rtx (i2pat);
1861
1862 combine_merges++;
1863
1864 /* Substitute in the latest insn for the regs set by the earlier ones. */
1865
1866 maxreg = max_reg_num ();
1867
1868 subst_insn = i3;
1869
1870 /* It is possible that the source of I2 or I1 may be performing an
1871 unneeded operation, such as a ZERO_EXTEND of something that is known
1872 to have the high part zero. Handle that case by letting subst look at
1873 the innermost one of them.
1874
1875 Another way to do this would be to have a function that tries to
1876 simplify a single insn instead of merging two or more insns. We don't
1877 do this because of the potential of infinite loops and because
1878 of the potential extra memory required. However, doing it the way
1879 we are is a bit of a kludge and doesn't catch all cases.
1880
1881 But only do this if -fexpensive-optimizations since it slows things down
1882 and doesn't usually win. */
1883
1884 if (flag_expensive_optimizations)
1885 {
1886 /* Pass pc_rtx so no substitutions are done, just simplifications.
1887 The cases that we are interested in here do not involve the few
1888 cases were is_replaced is checked. */
1889 if (i1)
1890 {
1891 subst_low_cuid = INSN_CUID (i1);
1892 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1893 }
1894 else
1895 {
1896 subst_low_cuid = INSN_CUID (i2);
1897 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1898 }
1899 }
1900
1901 #ifndef HAVE_cc0
1902 /* Many machines that don't use CC0 have insns that can both perform an
1903 arithmetic operation and set the condition code. These operations will
1904 be represented as a PARALLEL with the first element of the vector
1905 being a COMPARE of an arithmetic operation with the constant zero.
1906 The second element of the vector will set some pseudo to the result
1907 of the same arithmetic operation. If we simplify the COMPARE, we won't
1908 match such a pattern and so will generate an extra insn. Here we test
1909 for this case, where both the comparison and the operation result are
1910 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1911 I2SRC. Later we will make the PARALLEL that contains I2. */
1912
1913 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1914 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1915 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1916 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1917 {
1918 #ifdef EXTRA_CC_MODES
1919 rtx *cc_use;
1920 enum machine_mode compare_mode;
1921 #endif
1922
1923 newpat = PATTERN (i3);
1924 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1925
1926 i2_is_used = 1;
1927
1928 #ifdef EXTRA_CC_MODES
1929 /* See if a COMPARE with the operand we substituted in should be done
1930 with the mode that is currently being used. If not, do the same
1931 processing we do in `subst' for a SET; namely, if the destination
1932 is used only once, try to replace it with a register of the proper
1933 mode and also replace the COMPARE. */
1934 if (undobuf.other_insn == 0
1935 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1936 &undobuf.other_insn))
1937 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1938 i2src, const0_rtx))
1939 != GET_MODE (SET_DEST (newpat))))
1940 {
1941 unsigned int regno = REGNO (SET_DEST (newpat));
1942 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1943
1944 if (regno < FIRST_PSEUDO_REGISTER
1945 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1946 && ! REG_USERVAR_P (SET_DEST (newpat))))
1947 {
1948 if (regno >= FIRST_PSEUDO_REGISTER)
1949 SUBST (regno_reg_rtx[regno], new_dest);
1950
1951 SUBST (SET_DEST (newpat), new_dest);
1952 SUBST (XEXP (*cc_use, 0), new_dest);
1953 SUBST (SET_SRC (newpat),
1954 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1955 }
1956 else
1957 undobuf.other_insn = 0;
1958 }
1959 #endif
1960 }
1961 else
1962 #endif
1963 {
1964 n_occurrences = 0; /* `subst' counts here */
1965
1966 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1967 need to make a unique copy of I2SRC each time we substitute it
1968 to avoid self-referential rtl. */
1969
1970 subst_low_cuid = INSN_CUID (i2);
1971 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1972 ! i1_feeds_i3 && i1dest_in_i1src);
1973 substed_i2 = 1;
1974
1975 /* Record whether i2's body now appears within i3's body. */
1976 i2_is_used = n_occurrences;
1977 }
1978
1979 /* If we already got a failure, don't try to do more. Otherwise,
1980 try to substitute in I1 if we have it. */
1981
1982 if (i1 && GET_CODE (newpat) != CLOBBER)
1983 {
1984 /* Before we can do this substitution, we must redo the test done
1985 above (see detailed comments there) that ensures that I1DEST
1986 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1987
1988 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1989 0, (rtx*) 0))
1990 {
1991 undo_all ();
1992 return 0;
1993 }
1994
1995 n_occurrences = 0;
1996 subst_low_cuid = INSN_CUID (i1);
1997 newpat = subst (newpat, i1dest, i1src, 0, 0);
1998 substed_i1 = 1;
1999 }
2000
2001 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2002 to count all the ways that I2SRC and I1SRC can be used. */
2003 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2004 && i2_is_used + added_sets_2 > 1)
2005 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2006 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2007 > 1))
2008 /* Fail if we tried to make a new register (we used to abort, but there's
2009 really no reason to). */
2010 || max_reg_num () != maxreg
2011 /* Fail if we couldn't do something and have a CLOBBER. */
2012 || GET_CODE (newpat) == CLOBBER
2013 /* Fail if this new pattern is a MULT and we didn't have one before
2014 at the outer level. */
2015 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2016 && ! have_mult))
2017 {
2018 undo_all ();
2019 return 0;
2020 }
2021
2022 /* If the actions of the earlier insns must be kept
2023 in addition to substituting them into the latest one,
2024 we must make a new PARALLEL for the latest insn
2025 to hold additional the SETs. */
2026
2027 if (added_sets_1 || added_sets_2)
2028 {
2029 combine_extras++;
2030
2031 if (GET_CODE (newpat) == PARALLEL)
2032 {
2033 rtvec old = XVEC (newpat, 0);
2034 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2035 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2036 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2037 sizeof (old->elem[0]) * old->num_elem);
2038 }
2039 else
2040 {
2041 rtx old = newpat;
2042 total_sets = 1 + added_sets_1 + added_sets_2;
2043 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2044 XVECEXP (newpat, 0, 0) = old;
2045 }
2046
2047 if (added_sets_1)
2048 XVECEXP (newpat, 0, --total_sets)
2049 = (GET_CODE (PATTERN (i1)) == PARALLEL
2050 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2051
2052 if (added_sets_2)
2053 {
2054 /* If there is no I1, use I2's body as is. We used to also not do
2055 the subst call below if I2 was substituted into I3,
2056 but that could lose a simplification. */
2057 if (i1 == 0)
2058 XVECEXP (newpat, 0, --total_sets) = i2pat;
2059 else
2060 /* See comment where i2pat is assigned. */
2061 XVECEXP (newpat, 0, --total_sets)
2062 = subst (i2pat, i1dest, i1src, 0, 0);
2063 }
2064 }
2065
2066 /* We come here when we are replacing a destination in I2 with the
2067 destination of I3. */
2068 validate_replacement:
2069
2070 /* Note which hard regs this insn has as inputs. */
2071 mark_used_regs_combine (newpat);
2072
2073 /* Is the result of combination a valid instruction? */
2074 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2075
2076 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2077 the second SET's destination is a register that is unused. In that case,
2078 we just need the first SET. This can occur when simplifying a divmod
2079 insn. We *must* test for this case here because the code below that
2080 splits two independent SETs doesn't handle this case correctly when it
2081 updates the register status. Also check the case where the first
2082 SET's destination is unused. That would not cause incorrect code, but
2083 does cause an unneeded insn to remain. */
2084
2085 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2086 && XVECLEN (newpat, 0) == 2
2087 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2088 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2089 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2090 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2091 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2092 && asm_noperands (newpat) < 0)
2093 {
2094 newpat = XVECEXP (newpat, 0, 0);
2095 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2096 }
2097
2098 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2099 && XVECLEN (newpat, 0) == 2
2100 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2101 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2102 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2103 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2104 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2105 && asm_noperands (newpat) < 0)
2106 {
2107 newpat = XVECEXP (newpat, 0, 1);
2108 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2109 }
2110
2111 /* If we were combining three insns and the result is a simple SET
2112 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2113 insns. There are two ways to do this. It can be split using a
2114 machine-specific method (like when you have an addition of a large
2115 constant) or by combine in the function find_split_point. */
2116
2117 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2118 && asm_noperands (newpat) < 0)
2119 {
2120 rtx m_split, *split;
2121 rtx ni2dest = i2dest;
2122
2123 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2124 use I2DEST as a scratch register will help. In the latter case,
2125 convert I2DEST to the mode of the source of NEWPAT if we can. */
2126
2127 m_split = split_insns (newpat, i3);
2128
2129 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2130 inputs of NEWPAT. */
2131
2132 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2133 possible to try that as a scratch reg. This would require adding
2134 more code to make it work though. */
2135
2136 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2137 {
2138 /* If I2DEST is a hard register or the only use of a pseudo,
2139 we can change its mode. */
2140 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2141 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2142 && GET_CODE (i2dest) == REG
2143 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2144 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2145 && ! REG_USERVAR_P (i2dest))))
2146 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2147 REGNO (i2dest));
2148
2149 m_split = split_insns (gen_rtx_PARALLEL
2150 (VOIDmode,
2151 gen_rtvec (2, newpat,
2152 gen_rtx_CLOBBER (VOIDmode,
2153 ni2dest))),
2154 i3);
2155 /* If the split with the mode-changed register didn't work, try
2156 the original register. */
2157 if (! m_split && ni2dest != i2dest)
2158 {
2159 ni2dest = i2dest;
2160 m_split = split_insns (gen_rtx_PARALLEL
2161 (VOIDmode,
2162 gen_rtvec (2, newpat,
2163 gen_rtx_CLOBBER (VOIDmode,
2164 i2dest))),
2165 i3);
2166 }
2167 }
2168
2169 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2170 {
2171 m_split = PATTERN (m_split);
2172 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2173 if (insn_code_number >= 0)
2174 newpat = m_split;
2175 }
2176 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2177 && (next_real_insn (i2) == i3
2178 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2179 {
2180 rtx i2set, i3set;
2181 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2182 newi2pat = PATTERN (m_split);
2183
2184 i3set = single_set (NEXT_INSN (m_split));
2185 i2set = single_set (m_split);
2186
2187 /* In case we changed the mode of I2DEST, replace it in the
2188 pseudo-register table here. We can't do it above in case this
2189 code doesn't get executed and we do a split the other way. */
2190
2191 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2192 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2193
2194 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2195
2196 /* If I2 or I3 has multiple SETs, we won't know how to track
2197 register status, so don't use these insns. If I2's destination
2198 is used between I2 and I3, we also can't use these insns. */
2199
2200 if (i2_code_number >= 0 && i2set && i3set
2201 && (next_real_insn (i2) == i3
2202 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2203 insn_code_number = recog_for_combine (&newi3pat, i3,
2204 &new_i3_notes);
2205 if (insn_code_number >= 0)
2206 newpat = newi3pat;
2207
2208 /* It is possible that both insns now set the destination of I3.
2209 If so, we must show an extra use of it. */
2210
2211 if (insn_code_number >= 0)
2212 {
2213 rtx new_i3_dest = SET_DEST (i3set);
2214 rtx new_i2_dest = SET_DEST (i2set);
2215
2216 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2217 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2218 || GET_CODE (new_i3_dest) == SUBREG)
2219 new_i3_dest = XEXP (new_i3_dest, 0);
2220
2221 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2222 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2223 || GET_CODE (new_i2_dest) == SUBREG)
2224 new_i2_dest = XEXP (new_i2_dest, 0);
2225
2226 if (GET_CODE (new_i3_dest) == REG
2227 && GET_CODE (new_i2_dest) == REG
2228 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2229 REG_N_SETS (REGNO (new_i2_dest))++;
2230 }
2231 }
2232
2233 /* If we can split it and use I2DEST, go ahead and see if that
2234 helps things be recognized. Verify that none of the registers
2235 are set between I2 and I3. */
2236 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2237 #ifdef HAVE_cc0
2238 && GET_CODE (i2dest) == REG
2239 #endif
2240 /* We need I2DEST in the proper mode. If it is a hard register
2241 or the only use of a pseudo, we can change its mode. */
2242 && (GET_MODE (*split) == GET_MODE (i2dest)
2243 || GET_MODE (*split) == VOIDmode
2244 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2245 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2246 && ! REG_USERVAR_P (i2dest)))
2247 && (next_real_insn (i2) == i3
2248 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2249 /* We can't overwrite I2DEST if its value is still used by
2250 NEWPAT. */
2251 && ! reg_referenced_p (i2dest, newpat))
2252 {
2253 rtx newdest = i2dest;
2254 enum rtx_code split_code = GET_CODE (*split);
2255 enum machine_mode split_mode = GET_MODE (*split);
2256
2257 /* Get NEWDEST as a register in the proper mode. We have already
2258 validated that we can do this. */
2259 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2260 {
2261 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2262
2263 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2264 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2265 }
2266
2267 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2268 an ASHIFT. This can occur if it was inside a PLUS and hence
2269 appeared to be a memory address. This is a kludge. */
2270 if (split_code == MULT
2271 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2272 && INTVAL (XEXP (*split, 1)) > 0
2273 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2274 {
2275 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2276 XEXP (*split, 0), GEN_INT (i)));
2277 /* Update split_code because we may not have a multiply
2278 anymore. */
2279 split_code = GET_CODE (*split);
2280 }
2281
2282 #ifdef INSN_SCHEDULING
2283 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2284 be written as a ZERO_EXTEND. */
2285 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2286 {
2287 #ifdef LOAD_EXTEND_OP
2288 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2289 what it really is. */
2290 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2291 == SIGN_EXTEND)
2292 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2293 SUBREG_REG (*split)));
2294 else
2295 #endif
2296 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2297 SUBREG_REG (*split)));
2298 }
2299 #endif
2300
2301 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2302 SUBST (*split, newdest);
2303 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2304
2305 /* If the split point was a MULT and we didn't have one before,
2306 don't use one now. */
2307 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2308 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2309 }
2310 }
2311
2312 /* Check for a case where we loaded from memory in a narrow mode and
2313 then sign extended it, but we need both registers. In that case,
2314 we have a PARALLEL with both loads from the same memory location.
2315 We can split this into a load from memory followed by a register-register
2316 copy. This saves at least one insn, more if register allocation can
2317 eliminate the copy.
2318
2319 We cannot do this if the destination of the first assignment is a
2320 condition code register or cc0. We eliminate this case by making sure
2321 the SET_DEST and SET_SRC have the same mode.
2322
2323 We cannot do this if the destination of the second assignment is
2324 a register that we have already assumed is zero-extended. Similarly
2325 for a SUBREG of such a register. */
2326
2327 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2328 && GET_CODE (newpat) == PARALLEL
2329 && XVECLEN (newpat, 0) == 2
2330 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2331 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2332 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2333 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2334 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2335 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2336 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2337 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2338 INSN_CUID (i2))
2339 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2340 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2341 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2342 (GET_CODE (temp) == REG
2343 && reg_nonzero_bits[REGNO (temp)] != 0
2344 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2345 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2346 && (reg_nonzero_bits[REGNO (temp)]
2347 != GET_MODE_MASK (word_mode))))
2348 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2349 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2350 (GET_CODE (temp) == REG
2351 && reg_nonzero_bits[REGNO (temp)] != 0
2352 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2353 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2354 && (reg_nonzero_bits[REGNO (temp)]
2355 != GET_MODE_MASK (word_mode)))))
2356 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2357 SET_SRC (XVECEXP (newpat, 0, 1)))
2358 && ! find_reg_note (i3, REG_UNUSED,
2359 SET_DEST (XVECEXP (newpat, 0, 0))))
2360 {
2361 rtx ni2dest;
2362
2363 newi2pat = XVECEXP (newpat, 0, 0);
2364 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2365 newpat = XVECEXP (newpat, 0, 1);
2366 SUBST (SET_SRC (newpat),
2367 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2368 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2369
2370 if (i2_code_number >= 0)
2371 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2372
2373 if (insn_code_number >= 0)
2374 {
2375 rtx insn;
2376 rtx link;
2377
2378 /* If we will be able to accept this, we have made a change to the
2379 destination of I3. This can invalidate a LOG_LINKS pointing
2380 to I3. No other part of combine.c makes such a transformation.
2381
2382 The new I3 will have a destination that was previously the
2383 destination of I1 or I2 and which was used in i2 or I3. Call
2384 distribute_links to make a LOG_LINK from the next use of
2385 that destination. */
2386
2387 PATTERN (i3) = newpat;
2388 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2389
2390 /* I3 now uses what used to be its destination and which is
2391 now I2's destination. That means we need a LOG_LINK from
2392 I3 to I2. But we used to have one, so we still will.
2393
2394 However, some later insn might be using I2's dest and have
2395 a LOG_LINK pointing at I3. We must remove this link.
2396 The simplest way to remove the link is to point it at I1,
2397 which we know will be a NOTE. */
2398
2399 for (insn = NEXT_INSN (i3);
2400 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2401 || insn != this_basic_block->next_bb->head);
2402 insn = NEXT_INSN (insn))
2403 {
2404 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2405 {
2406 for (link = LOG_LINKS (insn); link;
2407 link = XEXP (link, 1))
2408 if (XEXP (link, 0) == i3)
2409 XEXP (link, 0) = i1;
2410
2411 break;
2412 }
2413 }
2414 }
2415 }
2416
2417 /* Similarly, check for a case where we have a PARALLEL of two independent
2418 SETs but we started with three insns. In this case, we can do the sets
2419 as two separate insns. This case occurs when some SET allows two
2420 other insns to combine, but the destination of that SET is still live. */
2421
2422 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2423 && GET_CODE (newpat) == PARALLEL
2424 && XVECLEN (newpat, 0) == 2
2425 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2426 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2427 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2428 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2429 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2430 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2431 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2432 INSN_CUID (i2))
2433 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2434 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2435 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2436 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2437 XVECEXP (newpat, 0, 0))
2438 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2439 XVECEXP (newpat, 0, 1))
2440 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2441 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2442 {
2443 /* Normally, it doesn't matter which of the two is done first,
2444 but it does if one references cc0. In that case, it has to
2445 be first. */
2446 #ifdef HAVE_cc0
2447 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2448 {
2449 newi2pat = XVECEXP (newpat, 0, 0);
2450 newpat = XVECEXP (newpat, 0, 1);
2451 }
2452 else
2453 #endif
2454 {
2455 newi2pat = XVECEXP (newpat, 0, 1);
2456 newpat = XVECEXP (newpat, 0, 0);
2457 }
2458
2459 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2460
2461 if (i2_code_number >= 0)
2462 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2463 }
2464
2465 /* If it still isn't recognized, fail and change things back the way they
2466 were. */
2467 if ((insn_code_number < 0
2468 /* Is the result a reasonable ASM_OPERANDS? */
2469 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2470 {
2471 undo_all ();
2472 return 0;
2473 }
2474
2475 /* If we had to change another insn, make sure it is valid also. */
2476 if (undobuf.other_insn)
2477 {
2478 rtx other_pat = PATTERN (undobuf.other_insn);
2479 rtx new_other_notes;
2480 rtx note, next;
2481
2482 CLEAR_HARD_REG_SET (newpat_used_regs);
2483
2484 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2485 &new_other_notes);
2486
2487 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2488 {
2489 undo_all ();
2490 return 0;
2491 }
2492
2493 PATTERN (undobuf.other_insn) = other_pat;
2494
2495 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2496 are still valid. Then add any non-duplicate notes added by
2497 recog_for_combine. */
2498 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2499 {
2500 next = XEXP (note, 1);
2501
2502 if (REG_NOTE_KIND (note) == REG_UNUSED
2503 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2504 {
2505 if (GET_CODE (XEXP (note, 0)) == REG)
2506 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2507
2508 remove_note (undobuf.other_insn, note);
2509 }
2510 }
2511
2512 for (note = new_other_notes; note; note = XEXP (note, 1))
2513 if (GET_CODE (XEXP (note, 0)) == REG)
2514 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2515
2516 distribute_notes (new_other_notes, undobuf.other_insn,
2517 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2518 }
2519 #ifdef HAVE_cc0
2520 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2521 they are adjacent to each other or not. */
2522 {
2523 rtx p = prev_nonnote_insn (i3);
2524 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2525 && sets_cc0_p (newi2pat))
2526 {
2527 undo_all ();
2528 return 0;
2529 }
2530 }
2531 #endif
2532
2533 /* We now know that we can do this combination. Merge the insns and
2534 update the status of registers and LOG_LINKS. */
2535
2536 {
2537 rtx i3notes, i2notes, i1notes = 0;
2538 rtx i3links, i2links, i1links = 0;
2539 rtx midnotes = 0;
2540 unsigned int regno;
2541 /* Compute which registers we expect to eliminate. newi2pat may be setting
2542 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2543 same as i3dest, in which case newi2pat may be setting i1dest. */
2544 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2545 || i2dest_in_i2src || i2dest_in_i1src
2546 ? 0 : i2dest);
2547 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2548 || (newi2pat && reg_set_p (i1dest, newi2pat))
2549 ? 0 : i1dest);
2550
2551 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2552 clear them. */
2553 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2554 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2555 if (i1)
2556 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2557
2558 /* Ensure that we do not have something that should not be shared but
2559 occurs multiple times in the new insns. Check this by first
2560 resetting all the `used' flags and then copying anything is shared. */
2561
2562 reset_used_flags (i3notes);
2563 reset_used_flags (i2notes);
2564 reset_used_flags (i1notes);
2565 reset_used_flags (newpat);
2566 reset_used_flags (newi2pat);
2567 if (undobuf.other_insn)
2568 reset_used_flags (PATTERN (undobuf.other_insn));
2569
2570 i3notes = copy_rtx_if_shared (i3notes);
2571 i2notes = copy_rtx_if_shared (i2notes);
2572 i1notes = copy_rtx_if_shared (i1notes);
2573 newpat = copy_rtx_if_shared (newpat);
2574 newi2pat = copy_rtx_if_shared (newi2pat);
2575 if (undobuf.other_insn)
2576 reset_used_flags (PATTERN (undobuf.other_insn));
2577
2578 INSN_CODE (i3) = insn_code_number;
2579 PATTERN (i3) = newpat;
2580
2581 if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2582 {
2583 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2584
2585 reset_used_flags (call_usage);
2586 call_usage = copy_rtx (call_usage);
2587
2588 if (substed_i2)
2589 replace_rtx (call_usage, i2dest, i2src);
2590
2591 if (substed_i1)
2592 replace_rtx (call_usage, i1dest, i1src);
2593
2594 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2595 }
2596
2597 if (undobuf.other_insn)
2598 INSN_CODE (undobuf.other_insn) = other_code_number;
2599
2600 /* We had one special case above where I2 had more than one set and
2601 we replaced a destination of one of those sets with the destination
2602 of I3. In that case, we have to update LOG_LINKS of insns later
2603 in this basic block. Note that this (expensive) case is rare.
2604
2605 Also, in this case, we must pretend that all REG_NOTEs for I2
2606 actually came from I3, so that REG_UNUSED notes from I2 will be
2607 properly handled. */
2608
2609 if (i3_subst_into_i2)
2610 {
2611 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2612 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2613 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2614 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2615 && ! find_reg_note (i2, REG_UNUSED,
2616 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2617 for (temp = NEXT_INSN (i2);
2618 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2619 || this_basic_block->head != temp);
2620 temp = NEXT_INSN (temp))
2621 if (temp != i3 && INSN_P (temp))
2622 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2623 if (XEXP (link, 0) == i2)
2624 XEXP (link, 0) = i3;
2625
2626 if (i3notes)
2627 {
2628 rtx link = i3notes;
2629 while (XEXP (link, 1))
2630 link = XEXP (link, 1);
2631 XEXP (link, 1) = i2notes;
2632 }
2633 else
2634 i3notes = i2notes;
2635 i2notes = 0;
2636 }
2637
2638 LOG_LINKS (i3) = 0;
2639 REG_NOTES (i3) = 0;
2640 LOG_LINKS (i2) = 0;
2641 REG_NOTES (i2) = 0;
2642
2643 if (newi2pat)
2644 {
2645 INSN_CODE (i2) = i2_code_number;
2646 PATTERN (i2) = newi2pat;
2647 }
2648 else
2649 {
2650 PUT_CODE (i2, NOTE);
2651 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2652 NOTE_SOURCE_FILE (i2) = 0;
2653 }
2654
2655 if (i1)
2656 {
2657 LOG_LINKS (i1) = 0;
2658 REG_NOTES (i1) = 0;
2659 PUT_CODE (i1, NOTE);
2660 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2661 NOTE_SOURCE_FILE (i1) = 0;
2662 }
2663
2664 /* Get death notes for everything that is now used in either I3 or
2665 I2 and used to die in a previous insn. If we built two new
2666 patterns, move from I1 to I2 then I2 to I3 so that we get the
2667 proper movement on registers that I2 modifies. */
2668
2669 if (newi2pat)
2670 {
2671 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2672 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2673 }
2674 else
2675 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2676 i3, &midnotes);
2677
2678 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2679 if (i3notes)
2680 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2681 elim_i2, elim_i1);
2682 if (i2notes)
2683 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2684 elim_i2, elim_i1);
2685 if (i1notes)
2686 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2687 elim_i2, elim_i1);
2688 if (midnotes)
2689 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2690 elim_i2, elim_i1);
2691
2692 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2693 know these are REG_UNUSED and want them to go to the desired insn,
2694 so we always pass it as i3. We have not counted the notes in
2695 reg_n_deaths yet, so we need to do so now. */
2696
2697 if (newi2pat && new_i2_notes)
2698 {
2699 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2700 if (GET_CODE (XEXP (temp, 0)) == REG)
2701 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2702
2703 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2704 }
2705
2706 if (new_i3_notes)
2707 {
2708 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2709 if (GET_CODE (XEXP (temp, 0)) == REG)
2710 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2711
2712 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2713 }
2714
2715 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2716 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2717 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2718 in that case, it might delete I2. Similarly for I2 and I1.
2719 Show an additional death due to the REG_DEAD note we make here. If
2720 we discard it in distribute_notes, we will decrement it again. */
2721
2722 if (i3dest_killed)
2723 {
2724 if (GET_CODE (i3dest_killed) == REG)
2725 REG_N_DEATHS (REGNO (i3dest_killed))++;
2726
2727 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2728 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2729 NULL_RTX),
2730 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2731 else
2732 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2733 NULL_RTX),
2734 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2735 elim_i2, elim_i1);
2736 }
2737
2738 if (i2dest_in_i2src)
2739 {
2740 if (GET_CODE (i2dest) == REG)
2741 REG_N_DEATHS (REGNO (i2dest))++;
2742
2743 if (newi2pat && reg_set_p (i2dest, newi2pat))
2744 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2745 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2746 else
2747 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2748 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2749 NULL_RTX, NULL_RTX);
2750 }
2751
2752 if (i1dest_in_i1src)
2753 {
2754 if (GET_CODE (i1dest) == REG)
2755 REG_N_DEATHS (REGNO (i1dest))++;
2756
2757 if (newi2pat && reg_set_p (i1dest, newi2pat))
2758 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2759 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2760 else
2761 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2762 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2763 NULL_RTX, NULL_RTX);
2764 }
2765
2766 distribute_links (i3links);
2767 distribute_links (i2links);
2768 distribute_links (i1links);
2769
2770 if (GET_CODE (i2dest) == REG)
2771 {
2772 rtx link;
2773 rtx i2_insn = 0, i2_val = 0, set;
2774
2775 /* The insn that used to set this register doesn't exist, and
2776 this life of the register may not exist either. See if one of
2777 I3's links points to an insn that sets I2DEST. If it does,
2778 that is now the last known value for I2DEST. If we don't update
2779 this and I2 set the register to a value that depended on its old
2780 contents, we will get confused. If this insn is used, thing
2781 will be set correctly in combine_instructions. */
2782
2783 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2784 if ((set = single_set (XEXP (link, 0))) != 0
2785 && rtx_equal_p (i2dest, SET_DEST (set)))
2786 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2787
2788 record_value_for_reg (i2dest, i2_insn, i2_val);
2789
2790 /* If the reg formerly set in I2 died only once and that was in I3,
2791 zero its use count so it won't make `reload' do any work. */
2792 if (! added_sets_2
2793 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2794 && ! i2dest_in_i2src)
2795 {
2796 regno = REGNO (i2dest);
2797 REG_N_SETS (regno)--;
2798 }
2799 }
2800
2801 if (i1 && GET_CODE (i1dest) == REG)
2802 {
2803 rtx link;
2804 rtx i1_insn = 0, i1_val = 0, set;
2805
2806 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2807 if ((set = single_set (XEXP (link, 0))) != 0
2808 && rtx_equal_p (i1dest, SET_DEST (set)))
2809 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2810
2811 record_value_for_reg (i1dest, i1_insn, i1_val);
2812
2813 regno = REGNO (i1dest);
2814 if (! added_sets_1 && ! i1dest_in_i1src)
2815 REG_N_SETS (regno)--;
2816 }
2817
2818 /* Update reg_nonzero_bits et al for any changes that may have been made
2819 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2820 important. Because newi2pat can affect nonzero_bits of newpat */
2821 if (newi2pat)
2822 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2823 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2824
2825 /* Set new_direct_jump_p if a new return or simple jump instruction
2826 has been created.
2827
2828 If I3 is now an unconditional jump, ensure that it has a
2829 BARRIER following it since it may have initially been a
2830 conditional jump. It may also be the last nonnote insn. */
2831
2832 if (returnjump_p (i3) || any_uncondjump_p (i3))
2833 {
2834 *new_direct_jump_p = 1;
2835
2836 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2837 || GET_CODE (temp) != BARRIER)
2838 emit_barrier_after (i3);
2839 }
2840
2841 if (undobuf.other_insn != NULL_RTX
2842 && (returnjump_p (undobuf.other_insn)
2843 || any_uncondjump_p (undobuf.other_insn)))
2844 {
2845 *new_direct_jump_p = 1;
2846
2847 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2848 || GET_CODE (temp) != BARRIER)
2849 emit_barrier_after (undobuf.other_insn);
2850 }
2851
2852 /* An NOOP jump does not need barrier, but it does need cleaning up
2853 of CFG. */
2854 if (GET_CODE (newpat) == SET
2855 && SET_SRC (newpat) == pc_rtx
2856 && SET_DEST (newpat) == pc_rtx)
2857 *new_direct_jump_p = 1;
2858 }
2859
2860 combine_successes++;
2861 undo_commit ();
2862
2863 /* Clear this here, so that subsequent get_last_value calls are not
2864 affected. */
2865 subst_prev_insn = NULL_RTX;
2866
2867 if (added_links_insn
2868 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2869 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2870 return added_links_insn;
2871 else
2872 return newi2pat ? i2 : i3;
2873 }
2874 \f
2875 /* Undo all the modifications recorded in undobuf. */
2876
2877 static void
2878 undo_all ()
2879 {
2880 struct undo *undo, *next;
2881
2882 for (undo = undobuf.undos; undo; undo = next)
2883 {
2884 next = undo->next;
2885 if (undo->is_int)
2886 *undo->where.i = undo->old_contents.i;
2887 else
2888 *undo->where.r = undo->old_contents.r;
2889
2890 undo->next = undobuf.frees;
2891 undobuf.frees = undo;
2892 }
2893
2894 undobuf.undos = 0;
2895
2896 /* Clear this here, so that subsequent get_last_value calls are not
2897 affected. */
2898 subst_prev_insn = NULL_RTX;
2899 }
2900
2901 /* We've committed to accepting the changes we made. Move all
2902 of the undos to the free list. */
2903
2904 static void
2905 undo_commit ()
2906 {
2907 struct undo *undo, *next;
2908
2909 for (undo = undobuf.undos; undo; undo = next)
2910 {
2911 next = undo->next;
2912 undo->next = undobuf.frees;
2913 undobuf.frees = undo;
2914 }
2915 undobuf.undos = 0;
2916 }
2917
2918 \f
2919 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2920 where we have an arithmetic expression and return that point. LOC will
2921 be inside INSN.
2922
2923 try_combine will call this function to see if an insn can be split into
2924 two insns. */
2925
2926 static rtx *
2927 find_split_point (loc, insn)
2928 rtx *loc;
2929 rtx insn;
2930 {
2931 rtx x = *loc;
2932 enum rtx_code code = GET_CODE (x);
2933 rtx *split;
2934 unsigned HOST_WIDE_INT len = 0;
2935 HOST_WIDE_INT pos = 0;
2936 int unsignedp = 0;
2937 rtx inner = NULL_RTX;
2938
2939 /* First special-case some codes. */
2940 switch (code)
2941 {
2942 case SUBREG:
2943 #ifdef INSN_SCHEDULING
2944 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2945 point. */
2946 if (GET_CODE (SUBREG_REG (x)) == MEM)
2947 return loc;
2948 #endif
2949 return find_split_point (&SUBREG_REG (x), insn);
2950
2951 case MEM:
2952 #ifdef HAVE_lo_sum
2953 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2954 using LO_SUM and HIGH. */
2955 if (GET_CODE (XEXP (x, 0)) == CONST
2956 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2957 {
2958 SUBST (XEXP (x, 0),
2959 gen_rtx_LO_SUM (Pmode,
2960 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2961 XEXP (x, 0)));
2962 return &XEXP (XEXP (x, 0), 0);
2963 }
2964 #endif
2965
2966 /* If we have a PLUS whose second operand is a constant and the
2967 address is not valid, perhaps will can split it up using
2968 the machine-specific way to split large constants. We use
2969 the first pseudo-reg (one of the virtual regs) as a placeholder;
2970 it will not remain in the result. */
2971 if (GET_CODE (XEXP (x, 0)) == PLUS
2972 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2973 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2974 {
2975 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2976 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2977 subst_insn);
2978
2979 /* This should have produced two insns, each of which sets our
2980 placeholder. If the source of the second is a valid address,
2981 we can make put both sources together and make a split point
2982 in the middle. */
2983
2984 if (seq
2985 && NEXT_INSN (seq) != NULL_RTX
2986 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
2987 && GET_CODE (seq) == INSN
2988 && GET_CODE (PATTERN (seq)) == SET
2989 && SET_DEST (PATTERN (seq)) == reg
2990 && ! reg_mentioned_p (reg,
2991 SET_SRC (PATTERN (seq)))
2992 && GET_CODE (NEXT_INSN (seq)) == INSN
2993 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
2994 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
2995 && memory_address_p (GET_MODE (x),
2996 SET_SRC (PATTERN (NEXT_INSN (seq)))))
2997 {
2998 rtx src1 = SET_SRC (PATTERN (seq));
2999 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3000
3001 /* Replace the placeholder in SRC2 with SRC1. If we can
3002 find where in SRC2 it was placed, that can become our
3003 split point and we can replace this address with SRC2.
3004 Just try two obvious places. */
3005
3006 src2 = replace_rtx (src2, reg, src1);
3007 split = 0;
3008 if (XEXP (src2, 0) == src1)
3009 split = &XEXP (src2, 0);
3010 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3011 && XEXP (XEXP (src2, 0), 0) == src1)
3012 split = &XEXP (XEXP (src2, 0), 0);
3013
3014 if (split)
3015 {
3016 SUBST (XEXP (x, 0), src2);
3017 return split;
3018 }
3019 }
3020
3021 /* If that didn't work, perhaps the first operand is complex and
3022 needs to be computed separately, so make a split point there.
3023 This will occur on machines that just support REG + CONST
3024 and have a constant moved through some previous computation. */
3025
3026 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
3027 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3028 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
3029 == 'o')))
3030 return &XEXP (XEXP (x, 0), 0);
3031 }
3032 break;
3033
3034 case SET:
3035 #ifdef HAVE_cc0
3036 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3037 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3038 we need to put the operand into a register. So split at that
3039 point. */
3040
3041 if (SET_DEST (x) == cc0_rtx
3042 && GET_CODE (SET_SRC (x)) != COMPARE
3043 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3044 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
3045 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3046 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
3047 return &SET_SRC (x);
3048 #endif
3049
3050 /* See if we can split SET_SRC as it stands. */
3051 split = find_split_point (&SET_SRC (x), insn);
3052 if (split && split != &SET_SRC (x))
3053 return split;
3054
3055 /* See if we can split SET_DEST as it stands. */
3056 split = find_split_point (&SET_DEST (x), insn);
3057 if (split && split != &SET_DEST (x))
3058 return split;
3059
3060 /* See if this is a bitfield assignment with everything constant. If
3061 so, this is an IOR of an AND, so split it into that. */
3062 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3063 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3064 <= HOST_BITS_PER_WIDE_INT)
3065 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3066 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3067 && GET_CODE (SET_SRC (x)) == CONST_INT
3068 && ((INTVAL (XEXP (SET_DEST (x), 1))
3069 + INTVAL (XEXP (SET_DEST (x), 2)))
3070 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3071 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3072 {
3073 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3074 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3075 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3076 rtx dest = XEXP (SET_DEST (x), 0);
3077 enum machine_mode mode = GET_MODE (dest);
3078 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3079
3080 if (BITS_BIG_ENDIAN)
3081 pos = GET_MODE_BITSIZE (mode) - len - pos;
3082
3083 if (src == mask)
3084 SUBST (SET_SRC (x),
3085 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3086 else
3087 SUBST (SET_SRC (x),
3088 gen_binary (IOR, mode,
3089 gen_binary (AND, mode, dest,
3090 gen_int_mode (~(mask << pos),
3091 mode)),
3092 GEN_INT (src << pos)));
3093
3094 SUBST (SET_DEST (x), dest);
3095
3096 split = find_split_point (&SET_SRC (x), insn);
3097 if (split && split != &SET_SRC (x))
3098 return split;
3099 }
3100
3101 /* Otherwise, see if this is an operation that we can split into two.
3102 If so, try to split that. */
3103 code = GET_CODE (SET_SRC (x));
3104
3105 switch (code)
3106 {
3107 case AND:
3108 /* If we are AND'ing with a large constant that is only a single
3109 bit and the result is only being used in a context where we
3110 need to know if it is zero or nonzero, replace it with a bit
3111 extraction. This will avoid the large constant, which might
3112 have taken more than one insn to make. If the constant were
3113 not a valid argument to the AND but took only one insn to make,
3114 this is no worse, but if it took more than one insn, it will
3115 be better. */
3116
3117 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3118 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3119 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3120 && GET_CODE (SET_DEST (x)) == REG
3121 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3122 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3123 && XEXP (*split, 0) == SET_DEST (x)
3124 && XEXP (*split, 1) == const0_rtx)
3125 {
3126 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3127 XEXP (SET_SRC (x), 0),
3128 pos, NULL_RTX, 1, 1, 0, 0);
3129 if (extraction != 0)
3130 {
3131 SUBST (SET_SRC (x), extraction);
3132 return find_split_point (loc, insn);
3133 }
3134 }
3135 break;
3136
3137 case NE:
3138 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3139 is known to be on, this can be converted into a NEG of a shift. */
3140 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3141 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3142 && 1 <= (pos = exact_log2
3143 (nonzero_bits (XEXP (SET_SRC (x), 0),
3144 GET_MODE (XEXP (SET_SRC (x), 0))))))
3145 {
3146 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3147
3148 SUBST (SET_SRC (x),
3149 gen_rtx_NEG (mode,
3150 gen_rtx_LSHIFTRT (mode,
3151 XEXP (SET_SRC (x), 0),
3152 GEN_INT (pos))));
3153
3154 split = find_split_point (&SET_SRC (x), insn);
3155 if (split && split != &SET_SRC (x))
3156 return split;
3157 }
3158 break;
3159
3160 case SIGN_EXTEND:
3161 inner = XEXP (SET_SRC (x), 0);
3162
3163 /* We can't optimize if either mode is a partial integer
3164 mode as we don't know how many bits are significant
3165 in those modes. */
3166 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3167 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3168 break;
3169
3170 pos = 0;
3171 len = GET_MODE_BITSIZE (GET_MODE (inner));
3172 unsignedp = 0;
3173 break;
3174
3175 case SIGN_EXTRACT:
3176 case ZERO_EXTRACT:
3177 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3178 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3179 {
3180 inner = XEXP (SET_SRC (x), 0);
3181 len = INTVAL (XEXP (SET_SRC (x), 1));
3182 pos = INTVAL (XEXP (SET_SRC (x), 2));
3183
3184 if (BITS_BIG_ENDIAN)
3185 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3186 unsignedp = (code == ZERO_EXTRACT);
3187 }
3188 break;
3189
3190 default:
3191 break;
3192 }
3193
3194 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3195 {
3196 enum machine_mode mode = GET_MODE (SET_SRC (x));
3197
3198 /* For unsigned, we have a choice of a shift followed by an
3199 AND or two shifts. Use two shifts for field sizes where the
3200 constant might be too large. We assume here that we can
3201 always at least get 8-bit constants in an AND insn, which is
3202 true for every current RISC. */
3203
3204 if (unsignedp && len <= 8)
3205 {
3206 SUBST (SET_SRC (x),
3207 gen_rtx_AND (mode,
3208 gen_rtx_LSHIFTRT
3209 (mode, gen_lowpart_for_combine (mode, inner),
3210 GEN_INT (pos)),
3211 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3212
3213 split = find_split_point (&SET_SRC (x), insn);
3214 if (split && split != &SET_SRC (x))
3215 return split;
3216 }
3217 else
3218 {
3219 SUBST (SET_SRC (x),
3220 gen_rtx_fmt_ee
3221 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3222 gen_rtx_ASHIFT (mode,
3223 gen_lowpart_for_combine (mode, inner),
3224 GEN_INT (GET_MODE_BITSIZE (mode)
3225 - len - pos)),
3226 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3227
3228 split = find_split_point (&SET_SRC (x), insn);
3229 if (split && split != &SET_SRC (x))
3230 return split;
3231 }
3232 }
3233
3234 /* See if this is a simple operation with a constant as the second
3235 operand. It might be that this constant is out of range and hence
3236 could be used as a split point. */
3237 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3238 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3239 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3240 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3241 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3242 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3243 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3244 == 'o'))))
3245 return &XEXP (SET_SRC (x), 1);
3246
3247 /* Finally, see if this is a simple operation with its first operand
3248 not in a register. The operation might require this operand in a
3249 register, so return it as a split point. We can always do this
3250 because if the first operand were another operation, we would have
3251 already found it as a split point. */
3252 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3253 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3254 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3255 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3256 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3257 return &XEXP (SET_SRC (x), 0);
3258
3259 return 0;
3260
3261 case AND:
3262 case IOR:
3263 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3264 it is better to write this as (not (ior A B)) so we can split it.
3265 Similarly for IOR. */
3266 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3267 {
3268 SUBST (*loc,
3269 gen_rtx_NOT (GET_MODE (x),
3270 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3271 GET_MODE (x),
3272 XEXP (XEXP (x, 0), 0),
3273 XEXP (XEXP (x, 1), 0))));
3274 return find_split_point (loc, insn);
3275 }
3276
3277 /* Many RISC machines have a large set of logical insns. If the
3278 second operand is a NOT, put it first so we will try to split the
3279 other operand first. */
3280 if (GET_CODE (XEXP (x, 1)) == NOT)
3281 {
3282 rtx tem = XEXP (x, 0);
3283 SUBST (XEXP (x, 0), XEXP (x, 1));
3284 SUBST (XEXP (x, 1), tem);
3285 }
3286 break;
3287
3288 default:
3289 break;
3290 }
3291
3292 /* Otherwise, select our actions depending on our rtx class. */
3293 switch (GET_RTX_CLASS (code))
3294 {
3295 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3296 case '3':
3297 split = find_split_point (&XEXP (x, 2), insn);
3298 if (split)
3299 return split;
3300 /* ... fall through ... */
3301 case '2':
3302 case 'c':
3303 case '<':
3304 split = find_split_point (&XEXP (x, 1), insn);
3305 if (split)
3306 return split;
3307 /* ... fall through ... */
3308 case '1':
3309 /* Some machines have (and (shift ...) ...) insns. If X is not
3310 an AND, but XEXP (X, 0) is, use it as our split point. */
3311 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3312 return &XEXP (x, 0);
3313
3314 split = find_split_point (&XEXP (x, 0), insn);
3315 if (split)
3316 return split;
3317 return loc;
3318 }
3319
3320 /* Otherwise, we don't have a split point. */
3321 return 0;
3322 }
3323 \f
3324 /* Throughout X, replace FROM with TO, and return the result.
3325 The result is TO if X is FROM;
3326 otherwise the result is X, but its contents may have been modified.
3327 If they were modified, a record was made in undobuf so that
3328 undo_all will (among other things) return X to its original state.
3329
3330 If the number of changes necessary is too much to record to undo,
3331 the excess changes are not made, so the result is invalid.
3332 The changes already made can still be undone.
3333 undobuf.num_undo is incremented for such changes, so by testing that
3334 the caller can tell whether the result is valid.
3335
3336 `n_occurrences' is incremented each time FROM is replaced.
3337
3338 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3339
3340 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3341 by copying if `n_occurrences' is nonzero. */
3342
3343 static rtx
3344 subst (x, from, to, in_dest, unique_copy)
3345 rtx x, from, to;
3346 int in_dest;
3347 int unique_copy;
3348 {
3349 enum rtx_code code = GET_CODE (x);
3350 enum machine_mode op0_mode = VOIDmode;
3351 const char *fmt;
3352 int len, i;
3353 rtx new;
3354
3355 /* Two expressions are equal if they are identical copies of a shared
3356 RTX or if they are both registers with the same register number
3357 and mode. */
3358
3359 #define COMBINE_RTX_EQUAL_P(X,Y) \
3360 ((X) == (Y) \
3361 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3362 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3363
3364 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3365 {
3366 n_occurrences++;
3367 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3368 }
3369
3370 /* If X and FROM are the same register but different modes, they will
3371 not have been seen as equal above. However, flow.c will make a
3372 LOG_LINKS entry for that case. If we do nothing, we will try to
3373 rerecognize our original insn and, when it succeeds, we will
3374 delete the feeding insn, which is incorrect.
3375
3376 So force this insn not to match in this (rare) case. */
3377 if (! in_dest && code == REG && GET_CODE (from) == REG
3378 && REGNO (x) == REGNO (from))
3379 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3380
3381 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3382 of which may contain things that can be combined. */
3383 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3384 return x;
3385
3386 /* It is possible to have a subexpression appear twice in the insn.
3387 Suppose that FROM is a register that appears within TO.
3388 Then, after that subexpression has been scanned once by `subst',
3389 the second time it is scanned, TO may be found. If we were
3390 to scan TO here, we would find FROM within it and create a
3391 self-referent rtl structure which is completely wrong. */
3392 if (COMBINE_RTX_EQUAL_P (x, to))
3393 return to;
3394
3395 /* Parallel asm_operands need special attention because all of the
3396 inputs are shared across the arms. Furthermore, unsharing the
3397 rtl results in recognition failures. Failure to handle this case
3398 specially can result in circular rtl.
3399
3400 Solve this by doing a normal pass across the first entry of the
3401 parallel, and only processing the SET_DESTs of the subsequent
3402 entries. Ug. */
3403
3404 if (code == PARALLEL
3405 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3406 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3407 {
3408 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3409
3410 /* If this substitution failed, this whole thing fails. */
3411 if (GET_CODE (new) == CLOBBER
3412 && XEXP (new, 0) == const0_rtx)
3413 return new;
3414
3415 SUBST (XVECEXP (x, 0, 0), new);
3416
3417 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3418 {
3419 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3420
3421 if (GET_CODE (dest) != REG
3422 && GET_CODE (dest) != CC0
3423 && GET_CODE (dest) != PC)
3424 {
3425 new = subst (dest, from, to, 0, unique_copy);
3426
3427 /* If this substitution failed, this whole thing fails. */
3428 if (GET_CODE (new) == CLOBBER
3429 && XEXP (new, 0) == const0_rtx)
3430 return new;
3431
3432 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3433 }
3434 }
3435 }
3436 else
3437 {
3438 len = GET_RTX_LENGTH (code);
3439 fmt = GET_RTX_FORMAT (code);
3440
3441 /* We don't need to process a SET_DEST that is a register, CC0,
3442 or PC, so set up to skip this common case. All other cases
3443 where we want to suppress replacing something inside a
3444 SET_SRC are handled via the IN_DEST operand. */
3445 if (code == SET
3446 && (GET_CODE (SET_DEST (x)) == REG
3447 || GET_CODE (SET_DEST (x)) == CC0
3448 || GET_CODE (SET_DEST (x)) == PC))
3449 fmt = "ie";
3450
3451 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3452 constant. */
3453 if (fmt[0] == 'e')
3454 op0_mode = GET_MODE (XEXP (x, 0));
3455
3456 for (i = 0; i < len; i++)
3457 {
3458 if (fmt[i] == 'E')
3459 {
3460 int j;
3461 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3462 {
3463 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3464 {
3465 new = (unique_copy && n_occurrences
3466 ? copy_rtx (to) : to);
3467 n_occurrences++;
3468 }
3469 else
3470 {
3471 new = subst (XVECEXP (x, i, j), from, to, 0,
3472 unique_copy);
3473
3474 /* If this substitution failed, this whole thing
3475 fails. */
3476 if (GET_CODE (new) == CLOBBER
3477 && XEXP (new, 0) == const0_rtx)
3478 return new;
3479 }
3480
3481 SUBST (XVECEXP (x, i, j), new);
3482 }
3483 }
3484 else if (fmt[i] == 'e')
3485 {
3486 /* If this is a register being set, ignore it. */
3487 new = XEXP (x, i);
3488 if (in_dest
3489 && (code == SUBREG || code == STRICT_LOW_PART
3490 || code == ZERO_EXTRACT)
3491 && i == 0
3492 && GET_CODE (new) == REG)
3493 ;
3494
3495 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3496 {
3497 /* In general, don't install a subreg involving two
3498 modes not tieable. It can worsen register
3499 allocation, and can even make invalid reload
3500 insns, since the reg inside may need to be copied
3501 from in the outside mode, and that may be invalid
3502 if it is an fp reg copied in integer mode.
3503
3504 We allow two exceptions to this: It is valid if
3505 it is inside another SUBREG and the mode of that
3506 SUBREG and the mode of the inside of TO is
3507 tieable and it is valid if X is a SET that copies
3508 FROM to CC0. */
3509
3510 if (GET_CODE (to) == SUBREG
3511 && ! MODES_TIEABLE_P (GET_MODE (to),
3512 GET_MODE (SUBREG_REG (to)))
3513 && ! (code == SUBREG
3514 && MODES_TIEABLE_P (GET_MODE (x),
3515 GET_MODE (SUBREG_REG (to))))
3516 #ifdef HAVE_cc0
3517 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3518 #endif
3519 )
3520 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3521
3522 #ifdef CLASS_CANNOT_CHANGE_MODE
3523 if (code == SUBREG
3524 && GET_CODE (to) == REG
3525 && REGNO (to) < FIRST_PSEUDO_REGISTER
3526 && (TEST_HARD_REG_BIT
3527 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
3528 REGNO (to)))
3529 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (to),
3530 GET_MODE (x)))
3531 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3532 #endif
3533
3534 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3535 n_occurrences++;
3536 }
3537 else
3538 /* If we are in a SET_DEST, suppress most cases unless we
3539 have gone inside a MEM, in which case we want to
3540 simplify the address. We assume here that things that
3541 are actually part of the destination have their inner
3542 parts in the first expression. This is true for SUBREG,
3543 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3544 things aside from REG and MEM that should appear in a
3545 SET_DEST. */
3546 new = subst (XEXP (x, i), from, to,
3547 (((in_dest
3548 && (code == SUBREG || code == STRICT_LOW_PART
3549 || code == ZERO_EXTRACT))
3550 || code == SET)
3551 && i == 0), unique_copy);
3552
3553 /* If we found that we will have to reject this combination,
3554 indicate that by returning the CLOBBER ourselves, rather than
3555 an expression containing it. This will speed things up as
3556 well as prevent accidents where two CLOBBERs are considered
3557 to be equal, thus producing an incorrect simplification. */
3558
3559 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3560 return new;
3561
3562 if (GET_CODE (new) == CONST_INT && GET_CODE (x) == SUBREG)
3563 {
3564 enum machine_mode mode = GET_MODE (x);
3565
3566 x = simplify_subreg (GET_MODE (x), new,
3567 GET_MODE (SUBREG_REG (x)),
3568 SUBREG_BYTE (x));
3569 if (! x)
3570 x = gen_rtx_CLOBBER (mode, const0_rtx);
3571 }
3572 else if (GET_CODE (new) == CONST_INT
3573 && GET_CODE (x) == ZERO_EXTEND)
3574 {
3575 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3576 new, GET_MODE (XEXP (x, 0)));
3577 if (! x)
3578 abort ();
3579 }
3580 else
3581 SUBST (XEXP (x, i), new);
3582 }
3583 }
3584 }
3585
3586 /* Try to simplify X. If the simplification changed the code, it is likely
3587 that further simplification will help, so loop, but limit the number
3588 of repetitions that will be performed. */
3589
3590 for (i = 0; i < 4; i++)
3591 {
3592 /* If X is sufficiently simple, don't bother trying to do anything
3593 with it. */
3594 if (code != CONST_INT && code != REG && code != CLOBBER)
3595 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3596
3597 if (GET_CODE (x) == code)
3598 break;
3599
3600 code = GET_CODE (x);
3601
3602 /* We no longer know the original mode of operand 0 since we
3603 have changed the form of X) */
3604 op0_mode = VOIDmode;
3605 }
3606
3607 return x;
3608 }
3609 \f
3610 /* Simplify X, a piece of RTL. We just operate on the expression at the
3611 outer level; call `subst' to simplify recursively. Return the new
3612 expression.
3613
3614 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3615 will be the iteration even if an expression with a code different from
3616 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3617
3618 static rtx
3619 combine_simplify_rtx (x, op0_mode, last, in_dest)
3620 rtx x;
3621 enum machine_mode op0_mode;
3622 int last;
3623 int in_dest;
3624 {
3625 enum rtx_code code = GET_CODE (x);
3626 enum machine_mode mode = GET_MODE (x);
3627 rtx temp;
3628 rtx reversed;
3629 int i;
3630
3631 /* If this is a commutative operation, put a constant last and a complex
3632 expression first. We don't need to do this for comparisons here. */
3633 if (GET_RTX_CLASS (code) == 'c'
3634 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3635 {
3636 temp = XEXP (x, 0);
3637 SUBST (XEXP (x, 0), XEXP (x, 1));
3638 SUBST (XEXP (x, 1), temp);
3639 }
3640
3641 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3642 sign extension of a PLUS with a constant, reverse the order of the sign
3643 extension and the addition. Note that this not the same as the original
3644 code, but overflow is undefined for signed values. Also note that the
3645 PLUS will have been partially moved "inside" the sign-extension, so that
3646 the first operand of X will really look like:
3647 (ashiftrt (plus (ashift A C4) C5) C4).
3648 We convert this to
3649 (plus (ashiftrt (ashift A C4) C2) C4)
3650 and replace the first operand of X with that expression. Later parts
3651 of this function may simplify the expression further.
3652
3653 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3654 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3655 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3656
3657 We do this to simplify address expressions. */
3658
3659 if ((code == PLUS || code == MINUS || code == MULT)
3660 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3661 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3662 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3663 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3664 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3665 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3666 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3667 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3668 XEXP (XEXP (XEXP (x, 0), 0), 1),
3669 XEXP (XEXP (x, 0), 1))) != 0)
3670 {
3671 rtx new
3672 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3673 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3674 INTVAL (XEXP (XEXP (x, 0), 1)));
3675
3676 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3677 INTVAL (XEXP (XEXP (x, 0), 1)));
3678
3679 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3680 }
3681
3682 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3683 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3684 things. Check for cases where both arms are testing the same
3685 condition.
3686
3687 Don't do anything if all operands are very simple. */
3688
3689 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3690 || GET_RTX_CLASS (code) == '<')
3691 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3692 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3693 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3694 == 'o')))
3695 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3696 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3697 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3698 == 'o')))))
3699 || (GET_RTX_CLASS (code) == '1'
3700 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3701 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3702 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3703 == 'o'))))))
3704 {
3705 rtx cond, true_rtx, false_rtx;
3706
3707 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3708 if (cond != 0
3709 /* If everything is a comparison, what we have is highly unlikely
3710 to be simpler, so don't use it. */
3711 && ! (GET_RTX_CLASS (code) == '<'
3712 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3713 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3714 {
3715 rtx cop1 = const0_rtx;
3716 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3717
3718 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3719 return x;
3720
3721 /* Simplify the alternative arms; this may collapse the true and
3722 false arms to store-flag values. */
3723 true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
3724 false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
3725
3726 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3727 is unlikely to be simpler. */
3728 if (general_operand (true_rtx, VOIDmode)
3729 && general_operand (false_rtx, VOIDmode))
3730 {
3731 /* Restarting if we generate a store-flag expression will cause
3732 us to loop. Just drop through in this case. */
3733
3734 /* If the result values are STORE_FLAG_VALUE and zero, we can
3735 just make the comparison operation. */
3736 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3737 x = gen_binary (cond_code, mode, cond, cop1);
3738 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3739 && reverse_condition (cond_code) != UNKNOWN)
3740 x = gen_binary (reverse_condition (cond_code),
3741 mode, cond, cop1);
3742
3743 /* Likewise, we can make the negate of a comparison operation
3744 if the result values are - STORE_FLAG_VALUE and zero. */
3745 else if (GET_CODE (true_rtx) == CONST_INT
3746 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3747 && false_rtx == const0_rtx)
3748 x = simplify_gen_unary (NEG, mode,
3749 gen_binary (cond_code, mode, cond,
3750 cop1),
3751 mode);
3752 else if (GET_CODE (false_rtx) == CONST_INT
3753 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3754 && true_rtx == const0_rtx)
3755 x = simplify_gen_unary (NEG, mode,
3756 gen_binary (reverse_condition
3757 (cond_code),
3758 mode, cond, cop1),
3759 mode);
3760 else
3761 return gen_rtx_IF_THEN_ELSE (mode,
3762 gen_binary (cond_code, VOIDmode,
3763 cond, cop1),
3764 true_rtx, false_rtx);
3765
3766 code = GET_CODE (x);
3767 op0_mode = VOIDmode;
3768 }
3769 }
3770 }
3771
3772 /* Try to fold this expression in case we have constants that weren't
3773 present before. */
3774 temp = 0;
3775 switch (GET_RTX_CLASS (code))
3776 {
3777 case '1':
3778 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3779 break;
3780 case '<':
3781 {
3782 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3783 if (cmp_mode == VOIDmode)
3784 {
3785 cmp_mode = GET_MODE (XEXP (x, 1));
3786 if (cmp_mode == VOIDmode)
3787 cmp_mode = op0_mode;
3788 }
3789 temp = simplify_relational_operation (code, cmp_mode,
3790 XEXP (x, 0), XEXP (x, 1));
3791 }
3792 #ifdef FLOAT_STORE_FLAG_VALUE
3793 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3794 {
3795 if (temp == const0_rtx)
3796 temp = CONST0_RTX (mode);
3797 else
3798 temp = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE (mode),
3799 mode);
3800 }
3801 #endif
3802 break;
3803 case 'c':
3804 case '2':
3805 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3806 break;
3807 case 'b':
3808 case '3':
3809 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3810 XEXP (x, 1), XEXP (x, 2));
3811 break;
3812 }
3813
3814 if (temp)
3815 {
3816 x = temp;
3817 code = GET_CODE (temp);
3818 op0_mode = VOIDmode;
3819 mode = GET_MODE (temp);
3820 }
3821
3822 /* First see if we can apply the inverse distributive law. */
3823 if (code == PLUS || code == MINUS
3824 || code == AND || code == IOR || code == XOR)
3825 {
3826 x = apply_distributive_law (x);
3827 code = GET_CODE (x);
3828 op0_mode = VOIDmode;
3829 }
3830
3831 /* If CODE is an associative operation not otherwise handled, see if we
3832 can associate some operands. This can win if they are constants or
3833 if they are logically related (i.e. (a & b) & a). */
3834 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3835 || code == AND || code == IOR || code == XOR
3836 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3837 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3838 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3839 {
3840 if (GET_CODE (XEXP (x, 0)) == code)
3841 {
3842 rtx other = XEXP (XEXP (x, 0), 0);
3843 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3844 rtx inner_op1 = XEXP (x, 1);
3845 rtx inner;
3846
3847 /* Make sure we pass the constant operand if any as the second
3848 one if this is a commutative operation. */
3849 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3850 {
3851 rtx tem = inner_op0;
3852 inner_op0 = inner_op1;
3853 inner_op1 = tem;
3854 }
3855 inner = simplify_binary_operation (code == MINUS ? PLUS
3856 : code == DIV ? MULT
3857 : code,
3858 mode, inner_op0, inner_op1);
3859
3860 /* For commutative operations, try the other pair if that one
3861 didn't simplify. */
3862 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3863 {
3864 other = XEXP (XEXP (x, 0), 1);
3865 inner = simplify_binary_operation (code, mode,
3866 XEXP (XEXP (x, 0), 0),
3867 XEXP (x, 1));
3868 }
3869
3870 if (inner)
3871 return gen_binary (code, mode, other, inner);
3872 }
3873 }
3874
3875 /* A little bit of algebraic simplification here. */
3876 switch (code)
3877 {
3878 case MEM:
3879 /* Ensure that our address has any ASHIFTs converted to MULT in case
3880 address-recognizing predicates are called later. */
3881 temp = make_compound_operation (XEXP (x, 0), MEM);
3882 SUBST (XEXP (x, 0), temp);
3883 break;
3884
3885 case SUBREG:
3886 if (op0_mode == VOIDmode)
3887 op0_mode = GET_MODE (SUBREG_REG (x));
3888
3889 /* simplify_subreg can't use gen_lowpart_for_combine. */
3890 if (CONSTANT_P (SUBREG_REG (x))
3891 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3892 /* Don't call gen_lowpart_for_combine if the inner mode
3893 is VOIDmode and we cannot simplify it, as SUBREG without
3894 inner mode is invalid. */
3895 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3896 || gen_lowpart_common (mode, SUBREG_REG (x))))
3897 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3898
3899 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3900 break;
3901 {
3902 rtx temp;
3903 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3904 SUBREG_BYTE (x));
3905 if (temp)
3906 return temp;
3907 }
3908
3909 /* Don't change the mode of the MEM if that would change the meaning
3910 of the address. */
3911 if (GET_CODE (SUBREG_REG (x)) == MEM
3912 && (MEM_VOLATILE_P (SUBREG_REG (x))
3913 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3914 return gen_rtx_CLOBBER (mode, const0_rtx);
3915
3916 /* Note that we cannot do any narrowing for non-constants since
3917 we might have been counting on using the fact that some bits were
3918 zero. We now do this in the SET. */
3919
3920 break;
3921
3922 case NOT:
3923 /* (not (plus X -1)) can become (neg X). */
3924 if (GET_CODE (XEXP (x, 0)) == PLUS
3925 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3926 return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
3927
3928 /* Similarly, (not (neg X)) is (plus X -1). */
3929 if (GET_CODE (XEXP (x, 0)) == NEG)
3930 return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3931
3932 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3933 if (GET_CODE (XEXP (x, 0)) == XOR
3934 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3935 && (temp = simplify_unary_operation (NOT, mode,
3936 XEXP (XEXP (x, 0), 1),
3937 mode)) != 0)
3938 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3939
3940 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3941 other than 1, but that is not valid. We could do a similar
3942 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3943 but this doesn't seem common enough to bother with. */
3944 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3945 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3946 return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3947 const1_rtx, mode),
3948 XEXP (XEXP (x, 0), 1));
3949
3950 if (GET_CODE (XEXP (x, 0)) == SUBREG
3951 && subreg_lowpart_p (XEXP (x, 0))
3952 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3953 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3954 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3955 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3956 {
3957 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3958
3959 x = gen_rtx_ROTATE (inner_mode,
3960 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3961 inner_mode),
3962 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3963 return gen_lowpart_for_combine (mode, x);
3964 }
3965
3966 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3967 reversing the comparison code if valid. */
3968 if (STORE_FLAG_VALUE == -1
3969 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3970 && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3971 XEXP (XEXP (x, 0), 1))))
3972 return reversed;
3973
3974 /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3975 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3976 perform the above simplification. */
3977
3978 if (STORE_FLAG_VALUE == -1
3979 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3980 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3981 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3982 return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3983
3984 /* Apply De Morgan's laws to reduce number of patterns for machines
3985 with negating logical insns (and-not, nand, etc.). If result has
3986 only one NOT, put it first, since that is how the patterns are
3987 coded. */
3988
3989 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3990 {
3991 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3992 enum machine_mode op_mode;
3993
3994 op_mode = GET_MODE (in1);
3995 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3996
3997 op_mode = GET_MODE (in2);
3998 if (op_mode == VOIDmode)
3999 op_mode = mode;
4000 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4001
4002 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4003 {
4004 rtx tem = in2;
4005 in2 = in1; in1 = tem;
4006 }
4007
4008 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4009 mode, in1, in2);
4010 }
4011 break;
4012
4013 case NEG:
4014 /* (neg (plus X 1)) can become (not X). */
4015 if (GET_CODE (XEXP (x, 0)) == PLUS
4016 && XEXP (XEXP (x, 0), 1) == const1_rtx)
4017 return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
4018
4019 /* Similarly, (neg (not X)) is (plus X 1). */
4020 if (GET_CODE (XEXP (x, 0)) == NOT)
4021 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
4022
4023 /* (neg (minus X Y)) can become (minus Y X). This transformation
4024 isn't safe for modes with signed zeros, since if X and Y are
4025 both +0, (minus Y X) is the same as (minus X Y). If the rounding
4026 mode is towards +infinity (or -infinity) then the two expressions
4027 will be rounded differently. */
4028 if (GET_CODE (XEXP (x, 0)) == MINUS
4029 && !HONOR_SIGNED_ZEROS (mode)
4030 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
4031 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
4032 XEXP (XEXP (x, 0), 0));
4033
4034 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4035 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
4036 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4037 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4038
4039 /* NEG commutes with ASHIFT since it is multiplication. Only do this
4040 if we can then eliminate the NEG (e.g.,
4041 if the operand is a constant). */
4042
4043 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
4044 {
4045 temp = simplify_unary_operation (NEG, mode,
4046 XEXP (XEXP (x, 0), 0), mode);
4047 if (temp)
4048 return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
4049 }
4050
4051 temp = expand_compound_operation (XEXP (x, 0));
4052
4053 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4054 replaced by (lshiftrt X C). This will convert
4055 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4056
4057 if (GET_CODE (temp) == ASHIFTRT
4058 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4059 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4060 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4061 INTVAL (XEXP (temp, 1)));
4062
4063 /* If X has only a single bit that might be nonzero, say, bit I, convert
4064 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4065 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4066 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4067 or a SUBREG of one since we'd be making the expression more
4068 complex if it was just a register. */
4069
4070 if (GET_CODE (temp) != REG
4071 && ! (GET_CODE (temp) == SUBREG
4072 && GET_CODE (SUBREG_REG (temp)) == REG)
4073 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4074 {
4075 rtx temp1 = simplify_shift_const
4076 (NULL_RTX, ASHIFTRT, mode,
4077 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4078 GET_MODE_BITSIZE (mode) - 1 - i),
4079 GET_MODE_BITSIZE (mode) - 1 - i);
4080
4081 /* If all we did was surround TEMP with the two shifts, we
4082 haven't improved anything, so don't use it. Otherwise,
4083 we are better off with TEMP1. */
4084 if (GET_CODE (temp1) != ASHIFTRT
4085 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4086 || XEXP (XEXP (temp1, 0), 0) != temp)
4087 return temp1;
4088 }
4089 break;
4090
4091 case TRUNCATE:
4092 /* We can't handle truncation to a partial integer mode here
4093 because we don't know the real bitsize of the partial
4094 integer mode. */
4095 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4096 break;
4097
4098 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4099 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4100 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4101 SUBST (XEXP (x, 0),
4102 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4103 GET_MODE_MASK (mode), NULL_RTX, 0));
4104
4105 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4106 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4107 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4108 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4109 return XEXP (XEXP (x, 0), 0);
4110
4111 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4112 (OP:SI foo:SI) if OP is NEG or ABS. */
4113 if ((GET_CODE (XEXP (x, 0)) == ABS
4114 || GET_CODE (XEXP (x, 0)) == NEG)
4115 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4116 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4117 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4118 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4119 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4120
4121 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4122 (truncate:SI x). */
4123 if (GET_CODE (XEXP (x, 0)) == SUBREG
4124 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4125 && subreg_lowpart_p (XEXP (x, 0)))
4126 return SUBREG_REG (XEXP (x, 0));
4127
4128 /* If we know that the value is already truncated, we can
4129 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4130 is nonzero for the corresponding modes. But don't do this
4131 for an (LSHIFTRT (MULT ...)) since this will cause problems
4132 with the umulXi3_highpart patterns. */
4133 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4134 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4135 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4136 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4137 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4138 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4139 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4140
4141 /* A truncate of a comparison can be replaced with a subreg if
4142 STORE_FLAG_VALUE permits. This is like the previous test,
4143 but it works even if the comparison is done in a mode larger
4144 than HOST_BITS_PER_WIDE_INT. */
4145 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4146 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4147 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4148 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4149
4150 /* Similarly, a truncate of a register whose value is a
4151 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4152 permits. */
4153 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4154 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4155 && (temp = get_last_value (XEXP (x, 0)))
4156 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4157 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4158
4159 break;
4160
4161 case FLOAT_TRUNCATE:
4162 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4163 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4164 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4165 return XEXP (XEXP (x, 0), 0);
4166
4167 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4168 (OP:SF foo:SF) if OP is NEG or ABS. */
4169 if ((GET_CODE (XEXP (x, 0)) == ABS
4170 || GET_CODE (XEXP (x, 0)) == NEG)
4171 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4172 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4173 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4174 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4175
4176 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4177 is (float_truncate:SF x). */
4178 if (GET_CODE (XEXP (x, 0)) == SUBREG
4179 && subreg_lowpart_p (XEXP (x, 0))
4180 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4181 return SUBREG_REG (XEXP (x, 0));
4182 break;
4183
4184 #ifdef HAVE_cc0
4185 case COMPARE:
4186 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4187 using cc0, in which case we want to leave it as a COMPARE
4188 so we can distinguish it from a register-register-copy. */
4189 if (XEXP (x, 1) == const0_rtx)
4190 return XEXP (x, 0);
4191
4192 /* x - 0 is the same as x unless x's mode has signed zeros and
4193 allows rounding towards -infinity. Under those conditions,
4194 0 - 0 is -0. */
4195 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4196 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4197 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4198 return XEXP (x, 0);
4199 break;
4200 #endif
4201
4202 case CONST:
4203 /* (const (const X)) can become (const X). Do it this way rather than
4204 returning the inner CONST since CONST can be shared with a
4205 REG_EQUAL note. */
4206 if (GET_CODE (XEXP (x, 0)) == CONST)
4207 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4208 break;
4209
4210 #ifdef HAVE_lo_sum
4211 case LO_SUM:
4212 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4213 can add in an offset. find_split_point will split this address up
4214 again if it doesn't match. */
4215 if (GET_CODE (XEXP (x, 0)) == HIGH
4216 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4217 return XEXP (x, 1);
4218 break;
4219 #endif
4220
4221 case PLUS:
4222 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4223 outermost. That's because that's the way indexed addresses are
4224 supposed to appear. This code used to check many more cases, but
4225 they are now checked elsewhere. */
4226 if (GET_CODE (XEXP (x, 0)) == PLUS
4227 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4228 return gen_binary (PLUS, mode,
4229 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4230 XEXP (x, 1)),
4231 XEXP (XEXP (x, 0), 1));
4232
4233 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4234 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4235 bit-field and can be replaced by either a sign_extend or a
4236 sign_extract. The `and' may be a zero_extend and the two
4237 <c>, -<c> constants may be reversed. */
4238 if (GET_CODE (XEXP (x, 0)) == XOR
4239 && GET_CODE (XEXP (x, 1)) == CONST_INT
4240 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4241 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4242 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4243 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4244 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4245 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4246 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4247 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4248 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4249 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4250 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4251 == (unsigned int) i + 1))))
4252 return simplify_shift_const
4253 (NULL_RTX, ASHIFTRT, mode,
4254 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4255 XEXP (XEXP (XEXP (x, 0), 0), 0),
4256 GET_MODE_BITSIZE (mode) - (i + 1)),
4257 GET_MODE_BITSIZE (mode) - (i + 1));
4258
4259 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4260 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4261 is 1. This produces better code than the alternative immediately
4262 below. */
4263 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4264 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4265 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4266 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4267 XEXP (XEXP (x, 0), 0),
4268 XEXP (XEXP (x, 0), 1))))
4269 return
4270 simplify_gen_unary (NEG, mode, reversed, mode);
4271
4272 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4273 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4274 the bitsize of the mode - 1. This allows simplification of
4275 "a = (b & 8) == 0;" */
4276 if (XEXP (x, 1) == constm1_rtx
4277 && GET_CODE (XEXP (x, 0)) != REG
4278 && ! (GET_CODE (XEXP (x,0)) == SUBREG
4279 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4280 && nonzero_bits (XEXP (x, 0), mode) == 1)
4281 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4282 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4283 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4284 GET_MODE_BITSIZE (mode) - 1),
4285 GET_MODE_BITSIZE (mode) - 1);
4286
4287 /* If we are adding two things that have no bits in common, convert
4288 the addition into an IOR. This will often be further simplified,
4289 for example in cases like ((a & 1) + (a & 2)), which can
4290 become a & 3. */
4291
4292 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4293 && (nonzero_bits (XEXP (x, 0), mode)
4294 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4295 {
4296 /* Try to simplify the expression further. */
4297 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4298 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4299
4300 /* If we could, great. If not, do not go ahead with the IOR
4301 replacement, since PLUS appears in many special purpose
4302 address arithmetic instructions. */
4303 if (GET_CODE (temp) != CLOBBER && temp != tor)
4304 return temp;
4305 }
4306 break;
4307
4308 case MINUS:
4309 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4310 by reversing the comparison code if valid. */
4311 if (STORE_FLAG_VALUE == 1
4312 && XEXP (x, 0) == const1_rtx
4313 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4314 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4315 XEXP (XEXP (x, 1), 0),
4316 XEXP (XEXP (x, 1), 1))))
4317 return reversed;
4318
4319 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4320 (and <foo> (const_int pow2-1)) */
4321 if (GET_CODE (XEXP (x, 1)) == AND
4322 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4323 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4324 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4325 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4326 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4327
4328 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4329 integers. */
4330 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4331 return gen_binary (MINUS, mode,
4332 gen_binary (MINUS, mode, XEXP (x, 0),
4333 XEXP (XEXP (x, 1), 0)),
4334 XEXP (XEXP (x, 1), 1));
4335 break;
4336
4337 case MULT:
4338 /* If we have (mult (plus A B) C), apply the distributive law and then
4339 the inverse distributive law to see if things simplify. This
4340 occurs mostly in addresses, often when unrolling loops. */
4341
4342 if (GET_CODE (XEXP (x, 0)) == PLUS)
4343 {
4344 x = apply_distributive_law
4345 (gen_binary (PLUS, mode,
4346 gen_binary (MULT, mode,
4347 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4348 gen_binary (MULT, mode,
4349 XEXP (XEXP (x, 0), 1),
4350 copy_rtx (XEXP (x, 1)))));
4351
4352 if (GET_CODE (x) != MULT)
4353 return x;
4354 }
4355 /* Try simplify a*(b/c) as (a*b)/c. */
4356 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4357 && GET_CODE (XEXP (x, 0)) == DIV)
4358 {
4359 rtx tem = simplify_binary_operation (MULT, mode,
4360 XEXP (XEXP (x, 0), 0),
4361 XEXP (x, 1));
4362 if (tem)
4363 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4364 }
4365 break;
4366
4367 case UDIV:
4368 /* If this is a divide by a power of two, treat it as a shift if
4369 its first operand is a shift. */
4370 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4371 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4372 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4373 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4374 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4375 || GET_CODE (XEXP (x, 0)) == ROTATE
4376 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4377 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4378 break;
4379
4380 case EQ: case NE:
4381 case GT: case GTU: case GE: case GEU:
4382 case LT: case LTU: case LE: case LEU:
4383 case UNEQ: case LTGT:
4384 case UNGT: case UNGE:
4385 case UNLT: case UNLE:
4386 case UNORDERED: case ORDERED:
4387 /* If the first operand is a condition code, we can't do anything
4388 with it. */
4389 if (GET_CODE (XEXP (x, 0)) == COMPARE
4390 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4391 #ifdef HAVE_cc0
4392 && XEXP (x, 0) != cc0_rtx
4393 #endif
4394 ))
4395 {
4396 rtx op0 = XEXP (x, 0);
4397 rtx op1 = XEXP (x, 1);
4398 enum rtx_code new_code;
4399
4400 if (GET_CODE (op0) == COMPARE)
4401 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4402
4403 /* Simplify our comparison, if possible. */
4404 new_code = simplify_comparison (code, &op0, &op1);
4405
4406 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4407 if only the low-order bit is possibly nonzero in X (such as when
4408 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4409 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4410 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4411 (plus X 1).
4412
4413 Remove any ZERO_EXTRACT we made when thinking this was a
4414 comparison. It may now be simpler to use, e.g., an AND. If a
4415 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4416 the call to make_compound_operation in the SET case. */
4417
4418 if (STORE_FLAG_VALUE == 1
4419 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4420 && op1 == const0_rtx
4421 && mode == GET_MODE (op0)
4422 && nonzero_bits (op0, mode) == 1)
4423 return gen_lowpart_for_combine (mode,
4424 expand_compound_operation (op0));
4425
4426 else if (STORE_FLAG_VALUE == 1
4427 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4428 && op1 == const0_rtx
4429 && mode == GET_MODE (op0)
4430 && (num_sign_bit_copies (op0, mode)
4431 == GET_MODE_BITSIZE (mode)))
4432 {
4433 op0 = expand_compound_operation (op0);
4434 return simplify_gen_unary (NEG, mode,
4435 gen_lowpart_for_combine (mode, op0),
4436 mode);
4437 }
4438
4439 else if (STORE_FLAG_VALUE == 1
4440 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4441 && op1 == const0_rtx
4442 && mode == GET_MODE (op0)
4443 && nonzero_bits (op0, mode) == 1)
4444 {
4445 op0 = expand_compound_operation (op0);
4446 return gen_binary (XOR, mode,
4447 gen_lowpart_for_combine (mode, op0),
4448 const1_rtx);
4449 }
4450
4451 else if (STORE_FLAG_VALUE == 1
4452 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4453 && op1 == const0_rtx
4454 && mode == GET_MODE (op0)
4455 && (num_sign_bit_copies (op0, mode)
4456 == GET_MODE_BITSIZE (mode)))
4457 {
4458 op0 = expand_compound_operation (op0);
4459 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4460 }
4461
4462 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4463 those above. */
4464 if (STORE_FLAG_VALUE == -1
4465 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4466 && op1 == const0_rtx
4467 && (num_sign_bit_copies (op0, mode)
4468 == GET_MODE_BITSIZE (mode)))
4469 return gen_lowpart_for_combine (mode,
4470 expand_compound_operation (op0));
4471
4472 else if (STORE_FLAG_VALUE == -1
4473 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4474 && op1 == const0_rtx
4475 && mode == GET_MODE (op0)
4476 && nonzero_bits (op0, mode) == 1)
4477 {
4478 op0 = expand_compound_operation (op0);
4479 return simplify_gen_unary (NEG, mode,
4480 gen_lowpart_for_combine (mode, op0),
4481 mode);
4482 }
4483
4484 else if (STORE_FLAG_VALUE == -1
4485 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4486 && op1 == const0_rtx
4487 && mode == GET_MODE (op0)
4488 && (num_sign_bit_copies (op0, mode)
4489 == GET_MODE_BITSIZE (mode)))
4490 {
4491 op0 = expand_compound_operation (op0);
4492 return simplify_gen_unary (NOT, mode,
4493 gen_lowpart_for_combine (mode, op0),
4494 mode);
4495 }
4496
4497 /* If X is 0/1, (eq X 0) is X-1. */
4498 else if (STORE_FLAG_VALUE == -1
4499 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4500 && op1 == const0_rtx
4501 && mode == GET_MODE (op0)
4502 && nonzero_bits (op0, mode) == 1)
4503 {
4504 op0 = expand_compound_operation (op0);
4505 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4506 }
4507
4508 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4509 one bit that might be nonzero, we can convert (ne x 0) to
4510 (ashift x c) where C puts the bit in the sign bit. Remove any
4511 AND with STORE_FLAG_VALUE when we are done, since we are only
4512 going to test the sign bit. */
4513 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4514 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4515 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4516 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE(mode)-1))
4517 && op1 == const0_rtx
4518 && mode == GET_MODE (op0)
4519 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4520 {
4521 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4522 expand_compound_operation (op0),
4523 GET_MODE_BITSIZE (mode) - 1 - i);
4524 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4525 return XEXP (x, 0);
4526 else
4527 return x;
4528 }
4529
4530 /* If the code changed, return a whole new comparison. */
4531 if (new_code != code)
4532 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4533
4534 /* Otherwise, keep this operation, but maybe change its operands.
4535 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4536 SUBST (XEXP (x, 0), op0);
4537 SUBST (XEXP (x, 1), op1);
4538 }
4539 break;
4540
4541 case IF_THEN_ELSE:
4542 return simplify_if_then_else (x);
4543
4544 case ZERO_EXTRACT:
4545 case SIGN_EXTRACT:
4546 case ZERO_EXTEND:
4547 case SIGN_EXTEND:
4548 /* If we are processing SET_DEST, we are done. */
4549 if (in_dest)
4550 return x;
4551
4552 return expand_compound_operation (x);
4553
4554 case SET:
4555 return simplify_set (x);
4556
4557 case AND:
4558 case IOR:
4559 case XOR:
4560 return simplify_logical (x, last);
4561
4562 case ABS:
4563 /* (abs (neg <foo>)) -> (abs <foo>) */
4564 if (GET_CODE (XEXP (x, 0)) == NEG)
4565 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4566
4567 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4568 do nothing. */
4569 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4570 break;
4571
4572 /* If operand is something known to be positive, ignore the ABS. */
4573 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4574 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4575 <= HOST_BITS_PER_WIDE_INT)
4576 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4577 & ((HOST_WIDE_INT) 1
4578 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4579 == 0)))
4580 return XEXP (x, 0);
4581
4582 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4583 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4584 return gen_rtx_NEG (mode, XEXP (x, 0));
4585
4586 break;
4587
4588 case FFS:
4589 /* (ffs (*_extend <X>)) = (ffs <X>) */
4590 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4591 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4592 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4593 break;
4594
4595 case FLOAT:
4596 /* (float (sign_extend <X>)) = (float <X>). */
4597 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4598 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4599 break;
4600
4601 case ASHIFT:
4602 case LSHIFTRT:
4603 case ASHIFTRT:
4604 case ROTATE:
4605 case ROTATERT:
4606 /* If this is a shift by a constant amount, simplify it. */
4607 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4608 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4609 INTVAL (XEXP (x, 1)));
4610
4611 #ifdef SHIFT_COUNT_TRUNCATED
4612 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4613 SUBST (XEXP (x, 1),
4614 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4615 ((HOST_WIDE_INT) 1
4616 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4617 - 1,
4618 NULL_RTX, 0));
4619 #endif
4620
4621 break;
4622
4623 case VEC_SELECT:
4624 {
4625 rtx op0 = XEXP (x, 0);
4626 rtx op1 = XEXP (x, 1);
4627 int len;
4628
4629 if (GET_CODE (op1) != PARALLEL)
4630 abort ();
4631 len = XVECLEN (op1, 0);
4632 if (len == 1
4633 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4634 && GET_CODE (op0) == VEC_CONCAT)
4635 {
4636 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4637
4638 /* Try to find the element in the VEC_CONCAT. */
4639 for (;;)
4640 {
4641 if (GET_MODE (op0) == GET_MODE (x))
4642 return op0;
4643 if (GET_CODE (op0) == VEC_CONCAT)
4644 {
4645 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4646 if (op0_size < offset)
4647 op0 = XEXP (op0, 0);
4648 else
4649 {
4650 offset -= op0_size;
4651 op0 = XEXP (op0, 1);
4652 }
4653 }
4654 else
4655 break;
4656 }
4657 }
4658 }
4659
4660 break;
4661
4662 default:
4663 break;
4664 }
4665
4666 return x;
4667 }
4668 \f
4669 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4670
4671 static rtx
4672 simplify_if_then_else (x)
4673 rtx x;
4674 {
4675 enum machine_mode mode = GET_MODE (x);
4676 rtx cond = XEXP (x, 0);
4677 rtx true_rtx = XEXP (x, 1);
4678 rtx false_rtx = XEXP (x, 2);
4679 enum rtx_code true_code = GET_CODE (cond);
4680 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4681 rtx temp;
4682 int i;
4683 enum rtx_code false_code;
4684 rtx reversed;
4685
4686 /* Simplify storing of the truth value. */
4687 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4688 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4689
4690 /* Also when the truth value has to be reversed. */
4691 if (comparison_p
4692 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4693 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4694 XEXP (cond, 1))))
4695 return reversed;
4696
4697 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4698 in it is being compared against certain values. Get the true and false
4699 comparisons and see if that says anything about the value of each arm. */
4700
4701 if (comparison_p
4702 && ((false_code = combine_reversed_comparison_code (cond))
4703 != UNKNOWN)
4704 && GET_CODE (XEXP (cond, 0)) == REG)
4705 {
4706 HOST_WIDE_INT nzb;
4707 rtx from = XEXP (cond, 0);
4708 rtx true_val = XEXP (cond, 1);
4709 rtx false_val = true_val;
4710 int swapped = 0;
4711
4712 /* If FALSE_CODE is EQ, swap the codes and arms. */
4713
4714 if (false_code == EQ)
4715 {
4716 swapped = 1, true_code = EQ, false_code = NE;
4717 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4718 }
4719
4720 /* If we are comparing against zero and the expression being tested has
4721 only a single bit that might be nonzero, that is its value when it is
4722 not equal to zero. Similarly if it is known to be -1 or 0. */
4723
4724 if (true_code == EQ && true_val == const0_rtx
4725 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4726 false_code = EQ, false_val = GEN_INT (nzb);
4727 else if (true_code == EQ && true_val == const0_rtx
4728 && (num_sign_bit_copies (from, GET_MODE (from))
4729 == GET_MODE_BITSIZE (GET_MODE (from))))
4730 false_code = EQ, false_val = constm1_rtx;
4731
4732 /* Now simplify an arm if we know the value of the register in the
4733 branch and it is used in the arm. Be careful due to the potential
4734 of locally-shared RTL. */
4735
4736 if (reg_mentioned_p (from, true_rtx))
4737 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4738 from, true_val),
4739 pc_rtx, pc_rtx, 0, 0);
4740 if (reg_mentioned_p (from, false_rtx))
4741 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4742 from, false_val),
4743 pc_rtx, pc_rtx, 0, 0);
4744
4745 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4746 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4747
4748 true_rtx = XEXP (x, 1);
4749 false_rtx = XEXP (x, 2);
4750 true_code = GET_CODE (cond);
4751 }
4752
4753 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4754 reversed, do so to avoid needing two sets of patterns for
4755 subtract-and-branch insns. Similarly if we have a constant in the true
4756 arm, the false arm is the same as the first operand of the comparison, or
4757 the false arm is more complicated than the true arm. */
4758
4759 if (comparison_p
4760 && combine_reversed_comparison_code (cond) != UNKNOWN
4761 && (true_rtx == pc_rtx
4762 || (CONSTANT_P (true_rtx)
4763 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4764 || true_rtx == const0_rtx
4765 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4766 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4767 || (GET_CODE (true_rtx) == SUBREG
4768 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4769 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4770 || reg_mentioned_p (true_rtx, false_rtx)
4771 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4772 {
4773 true_code = reversed_comparison_code (cond, NULL);
4774 SUBST (XEXP (x, 0),
4775 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4776 XEXP (cond, 1)));
4777
4778 SUBST (XEXP (x, 1), false_rtx);
4779 SUBST (XEXP (x, 2), true_rtx);
4780
4781 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4782 cond = XEXP (x, 0);
4783
4784 /* It is possible that the conditional has been simplified out. */
4785 true_code = GET_CODE (cond);
4786 comparison_p = GET_RTX_CLASS (true_code) == '<';
4787 }
4788
4789 /* If the two arms are identical, we don't need the comparison. */
4790
4791 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4792 return true_rtx;
4793
4794 /* Convert a == b ? b : a to "a". */
4795 if (true_code == EQ && ! side_effects_p (cond)
4796 && !HONOR_NANS (mode)
4797 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4798 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4799 return false_rtx;
4800 else if (true_code == NE && ! side_effects_p (cond)
4801 && !HONOR_NANS (mode)
4802 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4803 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4804 return true_rtx;
4805
4806 /* Look for cases where we have (abs x) or (neg (abs X)). */
4807
4808 if (GET_MODE_CLASS (mode) == MODE_INT
4809 && GET_CODE (false_rtx) == NEG
4810 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4811 && comparison_p
4812 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4813 && ! side_effects_p (true_rtx))
4814 switch (true_code)
4815 {
4816 case GT:
4817 case GE:
4818 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4819 case LT:
4820 case LE:
4821 return
4822 simplify_gen_unary (NEG, mode,
4823 simplify_gen_unary (ABS, mode, true_rtx, mode),
4824 mode);
4825 default:
4826 break;
4827 }
4828
4829 /* Look for MIN or MAX. */
4830
4831 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4832 && comparison_p
4833 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4834 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4835 && ! side_effects_p (cond))
4836 switch (true_code)
4837 {
4838 case GE:
4839 case GT:
4840 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4841 case LE:
4842 case LT:
4843 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4844 case GEU:
4845 case GTU:
4846 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4847 case LEU:
4848 case LTU:
4849 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4850 default:
4851 break;
4852 }
4853
4854 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4855 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4856 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4857 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4858 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4859 neither 1 or -1, but it isn't worth checking for. */
4860
4861 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4862 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4863 {
4864 rtx t = make_compound_operation (true_rtx, SET);
4865 rtx f = make_compound_operation (false_rtx, SET);
4866 rtx cond_op0 = XEXP (cond, 0);
4867 rtx cond_op1 = XEXP (cond, 1);
4868 enum rtx_code op = NIL, extend_op = NIL;
4869 enum machine_mode m = mode;
4870 rtx z = 0, c1 = NULL_RTX;
4871
4872 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4873 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4874 || GET_CODE (t) == ASHIFT
4875 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4876 && rtx_equal_p (XEXP (t, 0), f))
4877 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4878
4879 /* If an identity-zero op is commutative, check whether there
4880 would be a match if we swapped the operands. */
4881 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4882 || GET_CODE (t) == XOR)
4883 && rtx_equal_p (XEXP (t, 1), f))
4884 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4885 else if (GET_CODE (t) == SIGN_EXTEND
4886 && (GET_CODE (XEXP (t, 0)) == PLUS
4887 || GET_CODE (XEXP (t, 0)) == MINUS
4888 || GET_CODE (XEXP (t, 0)) == IOR
4889 || GET_CODE (XEXP (t, 0)) == XOR
4890 || GET_CODE (XEXP (t, 0)) == ASHIFT
4891 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4892 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4893 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4894 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4895 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4896 && (num_sign_bit_copies (f, GET_MODE (f))
4897 > (unsigned int)
4898 (GET_MODE_BITSIZE (mode)
4899 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4900 {
4901 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4902 extend_op = SIGN_EXTEND;
4903 m = GET_MODE (XEXP (t, 0));
4904 }
4905 else if (GET_CODE (t) == SIGN_EXTEND
4906 && (GET_CODE (XEXP (t, 0)) == PLUS
4907 || GET_CODE (XEXP (t, 0)) == IOR
4908 || GET_CODE (XEXP (t, 0)) == XOR)
4909 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4910 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4911 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4912 && (num_sign_bit_copies (f, GET_MODE (f))
4913 > (unsigned int)
4914 (GET_MODE_BITSIZE (mode)
4915 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4916 {
4917 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4918 extend_op = SIGN_EXTEND;
4919 m = GET_MODE (XEXP (t, 0));
4920 }
4921 else if (GET_CODE (t) == ZERO_EXTEND
4922 && (GET_CODE (XEXP (t, 0)) == PLUS
4923 || GET_CODE (XEXP (t, 0)) == MINUS
4924 || GET_CODE (XEXP (t, 0)) == IOR
4925 || GET_CODE (XEXP (t, 0)) == XOR
4926 || GET_CODE (XEXP (t, 0)) == ASHIFT
4927 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4928 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4929 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4930 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4931 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4932 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4933 && ((nonzero_bits (f, GET_MODE (f))
4934 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4935 == 0))
4936 {
4937 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4938 extend_op = ZERO_EXTEND;
4939 m = GET_MODE (XEXP (t, 0));
4940 }
4941 else if (GET_CODE (t) == ZERO_EXTEND
4942 && (GET_CODE (XEXP (t, 0)) == PLUS
4943 || GET_CODE (XEXP (t, 0)) == IOR
4944 || GET_CODE (XEXP (t, 0)) == XOR)
4945 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4946 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4947 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4948 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4949 && ((nonzero_bits (f, GET_MODE (f))
4950 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4951 == 0))
4952 {
4953 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4954 extend_op = ZERO_EXTEND;
4955 m = GET_MODE (XEXP (t, 0));
4956 }
4957
4958 if (z)
4959 {
4960 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4961 pc_rtx, pc_rtx, 0, 0);
4962 temp = gen_binary (MULT, m, temp,
4963 gen_binary (MULT, m, c1, const_true_rtx));
4964 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4965 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4966
4967 if (extend_op != NIL)
4968 temp = simplify_gen_unary (extend_op, mode, temp, m);
4969
4970 return temp;
4971 }
4972 }
4973
4974 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4975 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4976 negation of a single bit, we can convert this operation to a shift. We
4977 can actually do this more generally, but it doesn't seem worth it. */
4978
4979 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4980 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4981 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4982 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
4983 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4984 == GET_MODE_BITSIZE (mode))
4985 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
4986 return
4987 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4988 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4989
4990 return x;
4991 }
4992 \f
4993 /* Simplify X, a SET expression. Return the new expression. */
4994
4995 static rtx
4996 simplify_set (x)
4997 rtx x;
4998 {
4999 rtx src = SET_SRC (x);
5000 rtx dest = SET_DEST (x);
5001 enum machine_mode mode
5002 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5003 rtx other_insn;
5004 rtx *cc_use;
5005
5006 /* (set (pc) (return)) gets written as (return). */
5007 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5008 return src;
5009
5010 /* Now that we know for sure which bits of SRC we are using, see if we can
5011 simplify the expression for the object knowing that we only need the
5012 low-order bits. */
5013
5014 if (GET_MODE_CLASS (mode) == MODE_INT
5015 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5016 {
5017 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5018 SUBST (SET_SRC (x), src);
5019 }
5020
5021 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5022 the comparison result and try to simplify it unless we already have used
5023 undobuf.other_insn. */
5024 if ((GET_CODE (src) == COMPARE
5025 #ifdef HAVE_cc0
5026 || dest == cc0_rtx
5027 #endif
5028 )
5029 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5030 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5031 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
5032 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5033 {
5034 enum rtx_code old_code = GET_CODE (*cc_use);
5035 enum rtx_code new_code;
5036 rtx op0, op1, tmp;
5037 int other_changed = 0;
5038 enum machine_mode compare_mode = GET_MODE (dest);
5039 enum machine_mode tmp_mode;
5040
5041 if (GET_CODE (src) == COMPARE)
5042 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5043 else
5044 op0 = src, op1 = const0_rtx;
5045
5046 /* Check whether the comparison is known at compile time. */
5047 if (GET_MODE (op0) != VOIDmode)
5048 tmp_mode = GET_MODE (op0);
5049 else if (GET_MODE (op1) != VOIDmode)
5050 tmp_mode = GET_MODE (op1);
5051 else
5052 tmp_mode = compare_mode;
5053 tmp = simplify_relational_operation (old_code, tmp_mode, op0, op1);
5054 if (tmp != NULL_RTX)
5055 {
5056 rtx pat = PATTERN (other_insn);
5057 undobuf.other_insn = other_insn;
5058 SUBST (*cc_use, tmp);
5059
5060 /* Attempt to simplify CC user. */
5061 if (GET_CODE (pat) == SET)
5062 {
5063 rtx new = simplify_rtx (SET_SRC (pat));
5064 if (new != NULL_RTX)
5065 SUBST (SET_SRC (pat), new);
5066 }
5067
5068 /* Convert X into a no-op move. */
5069 SUBST (SET_DEST (x), pc_rtx);
5070 SUBST (SET_SRC (x), pc_rtx);
5071 return x;
5072 }
5073
5074 /* Simplify our comparison, if possible. */
5075 new_code = simplify_comparison (old_code, &op0, &op1);
5076
5077 #ifdef EXTRA_CC_MODES
5078 /* If this machine has CC modes other than CCmode, check to see if we
5079 need to use a different CC mode here. */
5080 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5081 #endif /* EXTRA_CC_MODES */
5082
5083 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
5084 /* If the mode changed, we have to change SET_DEST, the mode in the
5085 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5086 a hard register, just build new versions with the proper mode. If it
5087 is a pseudo, we lose unless it is only time we set the pseudo, in
5088 which case we can safely change its mode. */
5089 if (compare_mode != GET_MODE (dest))
5090 {
5091 unsigned int regno = REGNO (dest);
5092 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5093
5094 if (regno < FIRST_PSEUDO_REGISTER
5095 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5096 {
5097 if (regno >= FIRST_PSEUDO_REGISTER)
5098 SUBST (regno_reg_rtx[regno], new_dest);
5099
5100 SUBST (SET_DEST (x), new_dest);
5101 SUBST (XEXP (*cc_use, 0), new_dest);
5102 other_changed = 1;
5103
5104 dest = new_dest;
5105 }
5106 }
5107 #endif
5108
5109 /* If the code changed, we have to build a new comparison in
5110 undobuf.other_insn. */
5111 if (new_code != old_code)
5112 {
5113 unsigned HOST_WIDE_INT mask;
5114
5115 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5116 dest, const0_rtx));
5117
5118 /* If the only change we made was to change an EQ into an NE or
5119 vice versa, OP0 has only one bit that might be nonzero, and OP1
5120 is zero, check if changing the user of the condition code will
5121 produce a valid insn. If it won't, we can keep the original code
5122 in that insn by surrounding our operation with an XOR. */
5123
5124 if (((old_code == NE && new_code == EQ)
5125 || (old_code == EQ && new_code == NE))
5126 && ! other_changed && op1 == const0_rtx
5127 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5128 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5129 {
5130 rtx pat = PATTERN (other_insn), note = 0;
5131
5132 if ((recog_for_combine (&pat, other_insn, &note) < 0
5133 && ! check_asm_operands (pat)))
5134 {
5135 PUT_CODE (*cc_use, old_code);
5136 other_insn = 0;
5137
5138 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5139 }
5140 }
5141
5142 other_changed = 1;
5143 }
5144
5145 if (other_changed)
5146 undobuf.other_insn = other_insn;
5147
5148 #ifdef HAVE_cc0
5149 /* If we are now comparing against zero, change our source if
5150 needed. If we do not use cc0, we always have a COMPARE. */
5151 if (op1 == const0_rtx && dest == cc0_rtx)
5152 {
5153 SUBST (SET_SRC (x), op0);
5154 src = op0;
5155 }
5156 else
5157 #endif
5158
5159 /* Otherwise, if we didn't previously have a COMPARE in the
5160 correct mode, we need one. */
5161 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5162 {
5163 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5164 src = SET_SRC (x);
5165 }
5166 else
5167 {
5168 /* Otherwise, update the COMPARE if needed. */
5169 SUBST (XEXP (src, 0), op0);
5170 SUBST (XEXP (src, 1), op1);
5171 }
5172 }
5173 else
5174 {
5175 /* Get SET_SRC in a form where we have placed back any
5176 compound expressions. Then do the checks below. */
5177 src = make_compound_operation (src, SET);
5178 SUBST (SET_SRC (x), src);
5179 }
5180
5181 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5182 and X being a REG or (subreg (reg)), we may be able to convert this to
5183 (set (subreg:m2 x) (op)).
5184
5185 We can always do this if M1 is narrower than M2 because that means that
5186 we only care about the low bits of the result.
5187
5188 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5189 perform a narrower operation than requested since the high-order bits will
5190 be undefined. On machine where it is defined, this transformation is safe
5191 as long as M1 and M2 have the same number of words. */
5192
5193 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5194 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5195 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5196 / UNITS_PER_WORD)
5197 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5198 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5199 #ifndef WORD_REGISTER_OPERATIONS
5200 && (GET_MODE_SIZE (GET_MODE (src))
5201 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5202 #endif
5203 #ifdef CLASS_CANNOT_CHANGE_MODE
5204 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5205 && (TEST_HARD_REG_BIT
5206 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
5207 REGNO (dest)))
5208 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (src),
5209 GET_MODE (SUBREG_REG (src))))
5210 #endif
5211 && (GET_CODE (dest) == REG
5212 || (GET_CODE (dest) == SUBREG
5213 && GET_CODE (SUBREG_REG (dest)) == REG)))
5214 {
5215 SUBST (SET_DEST (x),
5216 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5217 dest));
5218 SUBST (SET_SRC (x), SUBREG_REG (src));
5219
5220 src = SET_SRC (x), dest = SET_DEST (x);
5221 }
5222
5223 #ifdef HAVE_cc0
5224 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5225 in SRC. */
5226 if (dest == cc0_rtx
5227 && GET_CODE (src) == SUBREG
5228 && subreg_lowpart_p (src)
5229 && (GET_MODE_BITSIZE (GET_MODE (src))
5230 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5231 {
5232 rtx inner = SUBREG_REG (src);
5233 enum machine_mode inner_mode = GET_MODE (inner);
5234
5235 /* Here we make sure that we don't have a sign bit on. */
5236 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5237 && (nonzero_bits (inner, inner_mode)
5238 < ((unsigned HOST_WIDE_INT) 1
5239 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5240 {
5241 SUBST (SET_SRC (x), inner);
5242 src = SET_SRC (x);
5243 }
5244 }
5245 #endif
5246
5247 #ifdef LOAD_EXTEND_OP
5248 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5249 would require a paradoxical subreg. Replace the subreg with a
5250 zero_extend to avoid the reload that would otherwise be required. */
5251
5252 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5253 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5254 && SUBREG_BYTE (src) == 0
5255 && (GET_MODE_SIZE (GET_MODE (src))
5256 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5257 && GET_CODE (SUBREG_REG (src)) == MEM)
5258 {
5259 SUBST (SET_SRC (x),
5260 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5261 GET_MODE (src), SUBREG_REG (src)));
5262
5263 src = SET_SRC (x);
5264 }
5265 #endif
5266
5267 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5268 are comparing an item known to be 0 or -1 against 0, use a logical
5269 operation instead. Check for one of the arms being an IOR of the other
5270 arm with some value. We compute three terms to be IOR'ed together. In
5271 practice, at most two will be nonzero. Then we do the IOR's. */
5272
5273 if (GET_CODE (dest) != PC
5274 && GET_CODE (src) == IF_THEN_ELSE
5275 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5276 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5277 && XEXP (XEXP (src, 0), 1) == const0_rtx
5278 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5279 #ifdef HAVE_conditional_move
5280 && ! can_conditionally_move_p (GET_MODE (src))
5281 #endif
5282 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5283 GET_MODE (XEXP (XEXP (src, 0), 0)))
5284 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5285 && ! side_effects_p (src))
5286 {
5287 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5288 ? XEXP (src, 1) : XEXP (src, 2));
5289 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5290 ? XEXP (src, 2) : XEXP (src, 1));
5291 rtx term1 = const0_rtx, term2, term3;
5292
5293 if (GET_CODE (true_rtx) == IOR
5294 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5295 term1 = false_rtx, true_rtx = XEXP(true_rtx, 1), false_rtx = const0_rtx;
5296 else if (GET_CODE (true_rtx) == IOR
5297 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5298 term1 = false_rtx, true_rtx = XEXP(true_rtx, 0), false_rtx = const0_rtx;
5299 else if (GET_CODE (false_rtx) == IOR
5300 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5301 term1 = true_rtx, false_rtx = XEXP(false_rtx, 1), true_rtx = const0_rtx;
5302 else if (GET_CODE (false_rtx) == IOR
5303 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5304 term1 = true_rtx, false_rtx = XEXP(false_rtx, 0), true_rtx = const0_rtx;
5305
5306 term2 = gen_binary (AND, GET_MODE (src),
5307 XEXP (XEXP (src, 0), 0), true_rtx);
5308 term3 = gen_binary (AND, GET_MODE (src),
5309 simplify_gen_unary (NOT, GET_MODE (src),
5310 XEXP (XEXP (src, 0), 0),
5311 GET_MODE (src)),
5312 false_rtx);
5313
5314 SUBST (SET_SRC (x),
5315 gen_binary (IOR, GET_MODE (src),
5316 gen_binary (IOR, GET_MODE (src), term1, term2),
5317 term3));
5318
5319 src = SET_SRC (x);
5320 }
5321
5322 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5323 whole thing fail. */
5324 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5325 return src;
5326 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5327 return dest;
5328 else
5329 /* Convert this into a field assignment operation, if possible. */
5330 return make_field_assignment (x);
5331 }
5332 \f
5333 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5334 result. LAST is nonzero if this is the last retry. */
5335
5336 static rtx
5337 simplify_logical (x, last)
5338 rtx x;
5339 int last;
5340 {
5341 enum machine_mode mode = GET_MODE (x);
5342 rtx op0 = XEXP (x, 0);
5343 rtx op1 = XEXP (x, 1);
5344 rtx reversed;
5345
5346 switch (GET_CODE (x))
5347 {
5348 case AND:
5349 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5350 insn (and may simplify more). */
5351 if (GET_CODE (op0) == XOR
5352 && rtx_equal_p (XEXP (op0, 0), op1)
5353 && ! side_effects_p (op1))
5354 x = gen_binary (AND, mode,
5355 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5356 op1);
5357
5358 if (GET_CODE (op0) == XOR
5359 && rtx_equal_p (XEXP (op0, 1), op1)
5360 && ! side_effects_p (op1))
5361 x = gen_binary (AND, mode,
5362 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5363 op1);
5364
5365 /* Similarly for (~(A ^ B)) & A. */
5366 if (GET_CODE (op0) == NOT
5367 && GET_CODE (XEXP (op0, 0)) == XOR
5368 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5369 && ! side_effects_p (op1))
5370 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5371
5372 if (GET_CODE (op0) == NOT
5373 && GET_CODE (XEXP (op0, 0)) == XOR
5374 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5375 && ! side_effects_p (op1))
5376 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5377
5378 /* We can call simplify_and_const_int only if we don't lose
5379 any (sign) bits when converting INTVAL (op1) to
5380 "unsigned HOST_WIDE_INT". */
5381 if (GET_CODE (op1) == CONST_INT
5382 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5383 || INTVAL (op1) > 0))
5384 {
5385 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5386
5387 /* If we have (ior (and (X C1) C2)) and the next restart would be
5388 the last, simplify this by making C1 as small as possible
5389 and then exit. */
5390 if (last
5391 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5392 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5393 && GET_CODE (op1) == CONST_INT)
5394 return gen_binary (IOR, mode,
5395 gen_binary (AND, mode, XEXP (op0, 0),
5396 GEN_INT (INTVAL (XEXP (op0, 1))
5397 & ~INTVAL (op1))), op1);
5398
5399 if (GET_CODE (x) != AND)
5400 return x;
5401
5402 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5403 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5404 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5405 }
5406
5407 /* Convert (A | B) & A to A. */
5408 if (GET_CODE (op0) == IOR
5409 && (rtx_equal_p (XEXP (op0, 0), op1)
5410 || rtx_equal_p (XEXP (op0, 1), op1))
5411 && ! side_effects_p (XEXP (op0, 0))
5412 && ! side_effects_p (XEXP (op0, 1)))
5413 return op1;
5414
5415 /* In the following group of tests (and those in case IOR below),
5416 we start with some combination of logical operations and apply
5417 the distributive law followed by the inverse distributive law.
5418 Most of the time, this results in no change. However, if some of
5419 the operands are the same or inverses of each other, simplifications
5420 will result.
5421
5422 For example, (and (ior A B) (not B)) can occur as the result of
5423 expanding a bit field assignment. When we apply the distributive
5424 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5425 which then simplifies to (and (A (not B))).
5426
5427 If we have (and (ior A B) C), apply the distributive law and then
5428 the inverse distributive law to see if things simplify. */
5429
5430 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5431 {
5432 x = apply_distributive_law
5433 (gen_binary (GET_CODE (op0), mode,
5434 gen_binary (AND, mode, XEXP (op0, 0), op1),
5435 gen_binary (AND, mode, XEXP (op0, 1),
5436 copy_rtx (op1))));
5437 if (GET_CODE (x) != AND)
5438 return x;
5439 }
5440
5441 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5442 return apply_distributive_law
5443 (gen_binary (GET_CODE (op1), mode,
5444 gen_binary (AND, mode, XEXP (op1, 0), op0),
5445 gen_binary (AND, mode, XEXP (op1, 1),
5446 copy_rtx (op0))));
5447
5448 /* Similarly, taking advantage of the fact that
5449 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5450
5451 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5452 return apply_distributive_law
5453 (gen_binary (XOR, mode,
5454 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5455 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5456 XEXP (op1, 1))));
5457
5458 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5459 return apply_distributive_law
5460 (gen_binary (XOR, mode,
5461 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5462 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5463 break;
5464
5465 case IOR:
5466 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5467 if (GET_CODE (op1) == CONST_INT
5468 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5469 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5470 return op1;
5471
5472 /* Convert (A & B) | A to A. */
5473 if (GET_CODE (op0) == AND
5474 && (rtx_equal_p (XEXP (op0, 0), op1)
5475 || rtx_equal_p (XEXP (op0, 1), op1))
5476 && ! side_effects_p (XEXP (op0, 0))
5477 && ! side_effects_p (XEXP (op0, 1)))
5478 return op1;
5479
5480 /* If we have (ior (and A B) C), apply the distributive law and then
5481 the inverse distributive law to see if things simplify. */
5482
5483 if (GET_CODE (op0) == AND)
5484 {
5485 x = apply_distributive_law
5486 (gen_binary (AND, mode,
5487 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5488 gen_binary (IOR, mode, XEXP (op0, 1),
5489 copy_rtx (op1))));
5490
5491 if (GET_CODE (x) != IOR)
5492 return x;
5493 }
5494
5495 if (GET_CODE (op1) == AND)
5496 {
5497 x = apply_distributive_law
5498 (gen_binary (AND, mode,
5499 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5500 gen_binary (IOR, mode, XEXP (op1, 1),
5501 copy_rtx (op0))));
5502
5503 if (GET_CODE (x) != IOR)
5504 return x;
5505 }
5506
5507 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5508 mode size to (rotate A CX). */
5509
5510 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5511 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5512 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5513 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5514 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5515 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5516 == GET_MODE_BITSIZE (mode)))
5517 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5518 (GET_CODE (op0) == ASHIFT
5519 ? XEXP (op0, 1) : XEXP (op1, 1)));
5520
5521 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5522 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5523 does not affect any of the bits in OP1, it can really be done
5524 as a PLUS and we can associate. We do this by seeing if OP1
5525 can be safely shifted left C bits. */
5526 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5527 && GET_CODE (XEXP (op0, 0)) == PLUS
5528 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5529 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5530 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5531 {
5532 int count = INTVAL (XEXP (op0, 1));
5533 HOST_WIDE_INT mask = INTVAL (op1) << count;
5534
5535 if (mask >> count == INTVAL (op1)
5536 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5537 {
5538 SUBST (XEXP (XEXP (op0, 0), 1),
5539 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5540 return op0;
5541 }
5542 }
5543 break;
5544
5545 case XOR:
5546 /* If we are XORing two things that have no bits in common,
5547 convert them into an IOR. This helps to detect rotation encoded
5548 using those methods and possibly other simplifications. */
5549
5550 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5551 && (nonzero_bits (op0, mode)
5552 & nonzero_bits (op1, mode)) == 0)
5553 return (gen_binary (IOR, mode, op0, op1));
5554
5555 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5556 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5557 (NOT y). */
5558 {
5559 int num_negated = 0;
5560
5561 if (GET_CODE (op0) == NOT)
5562 num_negated++, op0 = XEXP (op0, 0);
5563 if (GET_CODE (op1) == NOT)
5564 num_negated++, op1 = XEXP (op1, 0);
5565
5566 if (num_negated == 2)
5567 {
5568 SUBST (XEXP (x, 0), op0);
5569 SUBST (XEXP (x, 1), op1);
5570 }
5571 else if (num_negated == 1)
5572 return
5573 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5574 mode);
5575 }
5576
5577 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5578 correspond to a machine insn or result in further simplifications
5579 if B is a constant. */
5580
5581 if (GET_CODE (op0) == AND
5582 && rtx_equal_p (XEXP (op0, 1), op1)
5583 && ! side_effects_p (op1))
5584 return gen_binary (AND, mode,
5585 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5586 op1);
5587
5588 else if (GET_CODE (op0) == AND
5589 && rtx_equal_p (XEXP (op0, 0), op1)
5590 && ! side_effects_p (op1))
5591 return gen_binary (AND, mode,
5592 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5593 op1);
5594
5595 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5596 comparison if STORE_FLAG_VALUE is 1. */
5597 if (STORE_FLAG_VALUE == 1
5598 && op1 == const1_rtx
5599 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5600 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5601 XEXP (op0, 1))))
5602 return reversed;
5603
5604 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5605 is (lt foo (const_int 0)), so we can perform the above
5606 simplification if STORE_FLAG_VALUE is 1. */
5607
5608 if (STORE_FLAG_VALUE == 1
5609 && op1 == const1_rtx
5610 && GET_CODE (op0) == LSHIFTRT
5611 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5612 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5613 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5614
5615 /* (xor (comparison foo bar) (const_int sign-bit))
5616 when STORE_FLAG_VALUE is the sign bit. */
5617 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5618 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5619 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5620 && op1 == const_true_rtx
5621 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5622 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5623 XEXP (op0, 1))))
5624 return reversed;
5625
5626 break;
5627
5628 default:
5629 abort ();
5630 }
5631
5632 return x;
5633 }
5634 \f
5635 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5636 operations" because they can be replaced with two more basic operations.
5637 ZERO_EXTEND is also considered "compound" because it can be replaced with
5638 an AND operation, which is simpler, though only one operation.
5639
5640 The function expand_compound_operation is called with an rtx expression
5641 and will convert it to the appropriate shifts and AND operations,
5642 simplifying at each stage.
5643
5644 The function make_compound_operation is called to convert an expression
5645 consisting of shifts and ANDs into the equivalent compound expression.
5646 It is the inverse of this function, loosely speaking. */
5647
5648 static rtx
5649 expand_compound_operation (x)
5650 rtx x;
5651 {
5652 unsigned HOST_WIDE_INT pos = 0, len;
5653 int unsignedp = 0;
5654 unsigned int modewidth;
5655 rtx tem;
5656
5657 switch (GET_CODE (x))
5658 {
5659 case ZERO_EXTEND:
5660 unsignedp = 1;
5661 case SIGN_EXTEND:
5662 /* We can't necessarily use a const_int for a multiword mode;
5663 it depends on implicitly extending the value.
5664 Since we don't know the right way to extend it,
5665 we can't tell whether the implicit way is right.
5666
5667 Even for a mode that is no wider than a const_int,
5668 we can't win, because we need to sign extend one of its bits through
5669 the rest of it, and we don't know which bit. */
5670 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5671 return x;
5672
5673 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5674 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5675 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5676 reloaded. If not for that, MEM's would very rarely be safe.
5677
5678 Reject MODEs bigger than a word, because we might not be able
5679 to reference a two-register group starting with an arbitrary register
5680 (and currently gen_lowpart might crash for a SUBREG). */
5681
5682 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5683 return x;
5684
5685 /* Reject MODEs that aren't scalar integers because turning vector
5686 or complex modes into shifts causes problems. */
5687
5688 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5689 return x;
5690
5691 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5692 /* If the inner object has VOIDmode (the only way this can happen
5693 is if it is an ASM_OPERANDS), we can't do anything since we don't
5694 know how much masking to do. */
5695 if (len == 0)
5696 return x;
5697
5698 break;
5699
5700 case ZERO_EXTRACT:
5701 unsignedp = 1;
5702 case SIGN_EXTRACT:
5703 /* If the operand is a CLOBBER, just return it. */
5704 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5705 return XEXP (x, 0);
5706
5707 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5708 || GET_CODE (XEXP (x, 2)) != CONST_INT
5709 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5710 return x;
5711
5712 /* Reject MODEs that aren't scalar integers because turning vector
5713 or complex modes into shifts causes problems. */
5714
5715 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5716 return x;
5717
5718 len = INTVAL (XEXP (x, 1));
5719 pos = INTVAL (XEXP (x, 2));
5720
5721 /* If this goes outside the object being extracted, replace the object
5722 with a (use (mem ...)) construct that only combine understands
5723 and is used only for this purpose. */
5724 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5725 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5726
5727 if (BITS_BIG_ENDIAN)
5728 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5729
5730 break;
5731
5732 default:
5733 return x;
5734 }
5735 /* Convert sign extension to zero extension, if we know that the high
5736 bit is not set, as this is easier to optimize. It will be converted
5737 back to cheaper alternative in make_extraction. */
5738 if (GET_CODE (x) == SIGN_EXTEND
5739 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5740 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5741 & ~(((unsigned HOST_WIDE_INT)
5742 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5743 >> 1))
5744 == 0)))
5745 {
5746 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5747 return expand_compound_operation (temp);
5748 }
5749
5750 /* We can optimize some special cases of ZERO_EXTEND. */
5751 if (GET_CODE (x) == ZERO_EXTEND)
5752 {
5753 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5754 know that the last value didn't have any inappropriate bits
5755 set. */
5756 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5757 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5758 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5759 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5760 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5761 return XEXP (XEXP (x, 0), 0);
5762
5763 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5764 if (GET_CODE (XEXP (x, 0)) == SUBREG
5765 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5766 && subreg_lowpart_p (XEXP (x, 0))
5767 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5768 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5769 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5770 return SUBREG_REG (XEXP (x, 0));
5771
5772 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5773 is a comparison and STORE_FLAG_VALUE permits. This is like
5774 the first case, but it works even when GET_MODE (x) is larger
5775 than HOST_WIDE_INT. */
5776 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5777 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5778 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5779 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5780 <= HOST_BITS_PER_WIDE_INT)
5781 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5782 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5783 return XEXP (XEXP (x, 0), 0);
5784
5785 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5786 if (GET_CODE (XEXP (x, 0)) == SUBREG
5787 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5788 && subreg_lowpart_p (XEXP (x, 0))
5789 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5790 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5791 <= HOST_BITS_PER_WIDE_INT)
5792 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5793 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5794 return SUBREG_REG (XEXP (x, 0));
5795
5796 }
5797
5798 /* If we reach here, we want to return a pair of shifts. The inner
5799 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5800 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5801 logical depending on the value of UNSIGNEDP.
5802
5803 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5804 converted into an AND of a shift.
5805
5806 We must check for the case where the left shift would have a negative
5807 count. This can happen in a case like (x >> 31) & 255 on machines
5808 that can't shift by a constant. On those machines, we would first
5809 combine the shift with the AND to produce a variable-position
5810 extraction. Then the constant of 31 would be substituted in to produce
5811 a such a position. */
5812
5813 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5814 if (modewidth + len >= pos)
5815 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5816 GET_MODE (x),
5817 simplify_shift_const (NULL_RTX, ASHIFT,
5818 GET_MODE (x),
5819 XEXP (x, 0),
5820 modewidth - pos - len),
5821 modewidth - len);
5822
5823 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5824 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5825 simplify_shift_const (NULL_RTX, LSHIFTRT,
5826 GET_MODE (x),
5827 XEXP (x, 0), pos),
5828 ((HOST_WIDE_INT) 1 << len) - 1);
5829 else
5830 /* Any other cases we can't handle. */
5831 return x;
5832
5833 /* If we couldn't do this for some reason, return the original
5834 expression. */
5835 if (GET_CODE (tem) == CLOBBER)
5836 return x;
5837
5838 return tem;
5839 }
5840 \f
5841 /* X is a SET which contains an assignment of one object into
5842 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5843 or certain SUBREGS). If possible, convert it into a series of
5844 logical operations.
5845
5846 We half-heartedly support variable positions, but do not at all
5847 support variable lengths. */
5848
5849 static rtx
5850 expand_field_assignment (x)
5851 rtx x;
5852 {
5853 rtx inner;
5854 rtx pos; /* Always counts from low bit. */
5855 int len;
5856 rtx mask;
5857 enum machine_mode compute_mode;
5858
5859 /* Loop until we find something we can't simplify. */
5860 while (1)
5861 {
5862 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5863 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5864 {
5865 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5866 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5867 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5868 }
5869 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5870 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5871 {
5872 inner = XEXP (SET_DEST (x), 0);
5873 len = INTVAL (XEXP (SET_DEST (x), 1));
5874 pos = XEXP (SET_DEST (x), 2);
5875
5876 /* If the position is constant and spans the width of INNER,
5877 surround INNER with a USE to indicate this. */
5878 if (GET_CODE (pos) == CONST_INT
5879 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5880 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5881
5882 if (BITS_BIG_ENDIAN)
5883 {
5884 if (GET_CODE (pos) == CONST_INT)
5885 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5886 - INTVAL (pos));
5887 else if (GET_CODE (pos) == MINUS
5888 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5889 && (INTVAL (XEXP (pos, 1))
5890 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5891 /* If position is ADJUST - X, new position is X. */
5892 pos = XEXP (pos, 0);
5893 else
5894 pos = gen_binary (MINUS, GET_MODE (pos),
5895 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5896 - len),
5897 pos);
5898 }
5899 }
5900
5901 /* A SUBREG between two modes that occupy the same numbers of words
5902 can be done by moving the SUBREG to the source. */
5903 else if (GET_CODE (SET_DEST (x)) == SUBREG
5904 /* We need SUBREGs to compute nonzero_bits properly. */
5905 && nonzero_sign_valid
5906 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5907 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5908 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5909 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5910 {
5911 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5912 gen_lowpart_for_combine
5913 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5914 SET_SRC (x)));
5915 continue;
5916 }
5917 else
5918 break;
5919
5920 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5921 inner = SUBREG_REG (inner);
5922
5923 compute_mode = GET_MODE (inner);
5924
5925 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5926 if (! SCALAR_INT_MODE_P (compute_mode))
5927 {
5928 enum machine_mode imode;
5929
5930 /* Don't do anything for vector or complex integral types. */
5931 if (! FLOAT_MODE_P (compute_mode))
5932 break;
5933
5934 /* Try to find an integral mode to pun with. */
5935 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5936 if (imode == BLKmode)
5937 break;
5938
5939 compute_mode = imode;
5940 inner = gen_lowpart_for_combine (imode, inner);
5941 }
5942
5943 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5944 if (len < HOST_BITS_PER_WIDE_INT)
5945 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5946 else
5947 break;
5948
5949 /* Now compute the equivalent expression. Make a copy of INNER
5950 for the SET_DEST in case it is a MEM into which we will substitute;
5951 we don't want shared RTL in that case. */
5952 x = gen_rtx_SET
5953 (VOIDmode, copy_rtx (inner),
5954 gen_binary (IOR, compute_mode,
5955 gen_binary (AND, compute_mode,
5956 simplify_gen_unary (NOT, compute_mode,
5957 gen_binary (ASHIFT,
5958 compute_mode,
5959 mask, pos),
5960 compute_mode),
5961 inner),
5962 gen_binary (ASHIFT, compute_mode,
5963 gen_binary (AND, compute_mode,
5964 gen_lowpart_for_combine
5965 (compute_mode, SET_SRC (x)),
5966 mask),
5967 pos)));
5968 }
5969
5970 return x;
5971 }
5972 \f
5973 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5974 it is an RTX that represents a variable starting position; otherwise,
5975 POS is the (constant) starting bit position (counted from the LSB).
5976
5977 INNER may be a USE. This will occur when we started with a bitfield
5978 that went outside the boundary of the object in memory, which is
5979 allowed on most machines. To isolate this case, we produce a USE
5980 whose mode is wide enough and surround the MEM with it. The only
5981 code that understands the USE is this routine. If it is not removed,
5982 it will cause the resulting insn not to match.
5983
5984 UNSIGNEDP is nonzero for an unsigned reference and zero for a
5985 signed reference.
5986
5987 IN_DEST is nonzero if this is a reference in the destination of a
5988 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
5989 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5990 be used.
5991
5992 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
5993 ZERO_EXTRACT should be built even for bits starting at bit 0.
5994
5995 MODE is the desired mode of the result (if IN_DEST == 0).
5996
5997 The result is an RTX for the extraction or NULL_RTX if the target
5998 can't handle it. */
5999
6000 static rtx
6001 make_extraction (mode, inner, pos, pos_rtx, len,
6002 unsignedp, in_dest, in_compare)
6003 enum machine_mode mode;
6004 rtx inner;
6005 HOST_WIDE_INT pos;
6006 rtx pos_rtx;
6007 unsigned HOST_WIDE_INT len;
6008 int unsignedp;
6009 int in_dest, in_compare;
6010 {
6011 /* This mode describes the size of the storage area
6012 to fetch the overall value from. Within that, we
6013 ignore the POS lowest bits, etc. */
6014 enum machine_mode is_mode = GET_MODE (inner);
6015 enum machine_mode inner_mode;
6016 enum machine_mode wanted_inner_mode = byte_mode;
6017 enum machine_mode wanted_inner_reg_mode = word_mode;
6018 enum machine_mode pos_mode = word_mode;
6019 enum machine_mode extraction_mode = word_mode;
6020 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6021 int spans_byte = 0;
6022 rtx new = 0;
6023 rtx orig_pos_rtx = pos_rtx;
6024 HOST_WIDE_INT orig_pos;
6025
6026 /* Get some information about INNER and get the innermost object. */
6027 if (GET_CODE (inner) == USE)
6028 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6029 /* We don't need to adjust the position because we set up the USE
6030 to pretend that it was a full-word object. */
6031 spans_byte = 1, inner = XEXP (inner, 0);
6032 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6033 {
6034 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6035 consider just the QI as the memory to extract from.
6036 The subreg adds or removes high bits; its mode is
6037 irrelevant to the meaning of this extraction,
6038 since POS and LEN count from the lsb. */
6039 if (GET_CODE (SUBREG_REG (inner)) == MEM)
6040 is_mode = GET_MODE (SUBREG_REG (inner));
6041 inner = SUBREG_REG (inner);
6042 }
6043 else if (GET_CODE (inner) == ASHIFT
6044 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6045 && pos_rtx == 0 && pos == 0
6046 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6047 {
6048 /* We're extracting the least significant bits of an rtx
6049 (ashift X (const_int C)), where LEN > C. Extract the
6050 least significant (LEN - C) bits of X, giving an rtx
6051 whose mode is MODE, then shift it left C times. */
6052 new = make_extraction (mode, XEXP (inner, 0),
6053 0, 0, len - INTVAL (XEXP (inner, 1)),
6054 unsignedp, in_dest, in_compare);
6055 if (new != 0)
6056 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6057 }
6058
6059 inner_mode = GET_MODE (inner);
6060
6061 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6062 pos = INTVAL (pos_rtx), pos_rtx = 0;
6063
6064 /* See if this can be done without an extraction. We never can if the
6065 width of the field is not the same as that of some integer mode. For
6066 registers, we can only avoid the extraction if the position is at the
6067 low-order bit and this is either not in the destination or we have the
6068 appropriate STRICT_LOW_PART operation available.
6069
6070 For MEM, we can avoid an extract if the field starts on an appropriate
6071 boundary and we can change the mode of the memory reference. However,
6072 we cannot directly access the MEM if we have a USE and the underlying
6073 MEM is not TMODE. This combination means that MEM was being used in a
6074 context where bits outside its mode were being referenced; that is only
6075 valid in bit-field insns. */
6076
6077 if (tmode != BLKmode
6078 && ! (spans_byte && inner_mode != tmode)
6079 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6080 && GET_CODE (inner) != MEM
6081 && (! in_dest
6082 || (GET_CODE (inner) == REG
6083 && have_insn_for (STRICT_LOW_PART, tmode))))
6084 || (GET_CODE (inner) == MEM && pos_rtx == 0
6085 && (pos
6086 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6087 : BITS_PER_UNIT)) == 0
6088 /* We can't do this if we are widening INNER_MODE (it
6089 may not be aligned, for one thing). */
6090 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6091 && (inner_mode == tmode
6092 || (! mode_dependent_address_p (XEXP (inner, 0))
6093 && ! MEM_VOLATILE_P (inner))))))
6094 {
6095 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6096 field. If the original and current mode are the same, we need not
6097 adjust the offset. Otherwise, we do if bytes big endian.
6098
6099 If INNER is not a MEM, get a piece consisting of just the field
6100 of interest (in this case POS % BITS_PER_WORD must be 0). */
6101
6102 if (GET_CODE (inner) == MEM)
6103 {
6104 HOST_WIDE_INT offset;
6105
6106 /* POS counts from lsb, but make OFFSET count in memory order. */
6107 if (BYTES_BIG_ENDIAN)
6108 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6109 else
6110 offset = pos / BITS_PER_UNIT;
6111
6112 new = adjust_address_nv (inner, tmode, offset);
6113 }
6114 else if (GET_CODE (inner) == REG)
6115 {
6116 /* We can't call gen_lowpart_for_combine here since we always want
6117 a SUBREG and it would sometimes return a new hard register. */
6118 if (tmode != inner_mode)
6119 {
6120 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6121
6122 if (WORDS_BIG_ENDIAN
6123 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6124 final_word = ((GET_MODE_SIZE (inner_mode)
6125 - GET_MODE_SIZE (tmode))
6126 / UNITS_PER_WORD) - final_word;
6127
6128 final_word *= UNITS_PER_WORD;
6129 if (BYTES_BIG_ENDIAN &&
6130 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6131 final_word += (GET_MODE_SIZE (inner_mode)
6132 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6133
6134 /* Avoid creating invalid subregs, for example when
6135 simplifying (x>>32)&255. */
6136 if (final_word >= GET_MODE_SIZE (inner_mode))
6137 return NULL_RTX;
6138
6139 new = gen_rtx_SUBREG (tmode, inner, final_word);
6140 }
6141 else
6142 new = inner;
6143 }
6144 else
6145 new = force_to_mode (inner, tmode,
6146 len >= HOST_BITS_PER_WIDE_INT
6147 ? ~(unsigned HOST_WIDE_INT) 0
6148 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6149 NULL_RTX, 0);
6150
6151 /* If this extraction is going into the destination of a SET,
6152 make a STRICT_LOW_PART unless we made a MEM. */
6153
6154 if (in_dest)
6155 return (GET_CODE (new) == MEM ? new
6156 : (GET_CODE (new) != SUBREG
6157 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6158 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6159
6160 if (mode == tmode)
6161 return new;
6162
6163 if (GET_CODE (new) == CONST_INT)
6164 return gen_int_mode (INTVAL (new), mode);
6165
6166 /* If we know that no extraneous bits are set, and that the high
6167 bit is not set, convert the extraction to the cheaper of
6168 sign and zero extension, that are equivalent in these cases. */
6169 if (flag_expensive_optimizations
6170 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6171 && ((nonzero_bits (new, tmode)
6172 & ~(((unsigned HOST_WIDE_INT)
6173 GET_MODE_MASK (tmode))
6174 >> 1))
6175 == 0)))
6176 {
6177 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6178 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6179
6180 /* Prefer ZERO_EXTENSION, since it gives more information to
6181 backends. */
6182 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6183 return temp;
6184 return temp1;
6185 }
6186
6187 /* Otherwise, sign- or zero-extend unless we already are in the
6188 proper mode. */
6189
6190 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6191 mode, new));
6192 }
6193
6194 /* Unless this is a COMPARE or we have a funny memory reference,
6195 don't do anything with zero-extending field extracts starting at
6196 the low-order bit since they are simple AND operations. */
6197 if (pos_rtx == 0 && pos == 0 && ! in_dest
6198 && ! in_compare && ! spans_byte && unsignedp)
6199 return 0;
6200
6201 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6202 we would be spanning bytes or if the position is not a constant and the
6203 length is not 1. In all other cases, we would only be going outside
6204 our object in cases when an original shift would have been
6205 undefined. */
6206 if (! spans_byte && GET_CODE (inner) == MEM
6207 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6208 || (pos_rtx != 0 && len != 1)))
6209 return 0;
6210
6211 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6212 and the mode for the result. */
6213 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6214 {
6215 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6216 pos_mode = mode_for_extraction (EP_insv, 2);
6217 extraction_mode = mode_for_extraction (EP_insv, 3);
6218 }
6219
6220 if (! in_dest && unsignedp
6221 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6222 {
6223 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6224 pos_mode = mode_for_extraction (EP_extzv, 3);
6225 extraction_mode = mode_for_extraction (EP_extzv, 0);
6226 }
6227
6228 if (! in_dest && ! unsignedp
6229 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6230 {
6231 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6232 pos_mode = mode_for_extraction (EP_extv, 3);
6233 extraction_mode = mode_for_extraction (EP_extv, 0);
6234 }
6235
6236 /* Never narrow an object, since that might not be safe. */
6237
6238 if (mode != VOIDmode
6239 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6240 extraction_mode = mode;
6241
6242 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6243 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6244 pos_mode = GET_MODE (pos_rtx);
6245
6246 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6247 if we have to change the mode of memory and cannot, the desired mode is
6248 EXTRACTION_MODE. */
6249 if (GET_CODE (inner) != MEM)
6250 wanted_inner_mode = wanted_inner_reg_mode;
6251 else if (inner_mode != wanted_inner_mode
6252 && (mode_dependent_address_p (XEXP (inner, 0))
6253 || MEM_VOLATILE_P (inner)))
6254 wanted_inner_mode = extraction_mode;
6255
6256 orig_pos = pos;
6257
6258 if (BITS_BIG_ENDIAN)
6259 {
6260 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6261 BITS_BIG_ENDIAN style. If position is constant, compute new
6262 position. Otherwise, build subtraction.
6263 Note that POS is relative to the mode of the original argument.
6264 If it's a MEM we need to recompute POS relative to that.
6265 However, if we're extracting from (or inserting into) a register,
6266 we want to recompute POS relative to wanted_inner_mode. */
6267 int width = (GET_CODE (inner) == MEM
6268 ? GET_MODE_BITSIZE (is_mode)
6269 : GET_MODE_BITSIZE (wanted_inner_mode));
6270
6271 if (pos_rtx == 0)
6272 pos = width - len - pos;
6273 else
6274 pos_rtx
6275 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6276 /* POS may be less than 0 now, but we check for that below.
6277 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6278 }
6279
6280 /* If INNER has a wider mode, make it smaller. If this is a constant
6281 extract, try to adjust the byte to point to the byte containing
6282 the value. */
6283 if (wanted_inner_mode != VOIDmode
6284 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6285 && ((GET_CODE (inner) == MEM
6286 && (inner_mode == wanted_inner_mode
6287 || (! mode_dependent_address_p (XEXP (inner, 0))
6288 && ! MEM_VOLATILE_P (inner))))))
6289 {
6290 int offset = 0;
6291
6292 /* The computations below will be correct if the machine is big
6293 endian in both bits and bytes or little endian in bits and bytes.
6294 If it is mixed, we must adjust. */
6295
6296 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6297 adjust OFFSET to compensate. */
6298 if (BYTES_BIG_ENDIAN
6299 && ! spans_byte
6300 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6301 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6302
6303 /* If this is a constant position, we can move to the desired byte. */
6304 if (pos_rtx == 0)
6305 {
6306 offset += pos / BITS_PER_UNIT;
6307 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6308 }
6309
6310 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6311 && ! spans_byte
6312 && is_mode != wanted_inner_mode)
6313 offset = (GET_MODE_SIZE (is_mode)
6314 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6315
6316 if (offset != 0 || inner_mode != wanted_inner_mode)
6317 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6318 }
6319
6320 /* If INNER is not memory, we can always get it into the proper mode. If we
6321 are changing its mode, POS must be a constant and smaller than the size
6322 of the new mode. */
6323 else if (GET_CODE (inner) != MEM)
6324 {
6325 if (GET_MODE (inner) != wanted_inner_mode
6326 && (pos_rtx != 0
6327 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6328 return 0;
6329
6330 inner = force_to_mode (inner, wanted_inner_mode,
6331 pos_rtx
6332 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6333 ? ~(unsigned HOST_WIDE_INT) 0
6334 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6335 << orig_pos),
6336 NULL_RTX, 0);
6337 }
6338
6339 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6340 have to zero extend. Otherwise, we can just use a SUBREG. */
6341 if (pos_rtx != 0
6342 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6343 {
6344 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6345
6346 /* If we know that no extraneous bits are set, and that the high
6347 bit is not set, convert extraction to cheaper one - either
6348 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6349 cases. */
6350 if (flag_expensive_optimizations
6351 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6352 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6353 & ~(((unsigned HOST_WIDE_INT)
6354 GET_MODE_MASK (GET_MODE (pos_rtx)))
6355 >> 1))
6356 == 0)))
6357 {
6358 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6359
6360 /* Prefer ZERO_EXTENSION, since it gives more information to
6361 backends. */
6362 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6363 temp = temp1;
6364 }
6365 pos_rtx = temp;
6366 }
6367 else if (pos_rtx != 0
6368 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6369 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6370
6371 /* Make POS_RTX unless we already have it and it is correct. If we don't
6372 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6373 be a CONST_INT. */
6374 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6375 pos_rtx = orig_pos_rtx;
6376
6377 else if (pos_rtx == 0)
6378 pos_rtx = GEN_INT (pos);
6379
6380 /* Make the required operation. See if we can use existing rtx. */
6381 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6382 extraction_mode, inner, GEN_INT (len), pos_rtx);
6383 if (! in_dest)
6384 new = gen_lowpart_for_combine (mode, new);
6385
6386 return new;
6387 }
6388 \f
6389 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6390 with any other operations in X. Return X without that shift if so. */
6391
6392 static rtx
6393 extract_left_shift (x, count)
6394 rtx x;
6395 int count;
6396 {
6397 enum rtx_code code = GET_CODE (x);
6398 enum machine_mode mode = GET_MODE (x);
6399 rtx tem;
6400
6401 switch (code)
6402 {
6403 case ASHIFT:
6404 /* This is the shift itself. If it is wide enough, we will return
6405 either the value being shifted if the shift count is equal to
6406 COUNT or a shift for the difference. */
6407 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6408 && INTVAL (XEXP (x, 1)) >= count)
6409 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6410 INTVAL (XEXP (x, 1)) - count);
6411 break;
6412
6413 case NEG: case NOT:
6414 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6415 return simplify_gen_unary (code, mode, tem, mode);
6416
6417 break;
6418
6419 case PLUS: case IOR: case XOR: case AND:
6420 /* If we can safely shift this constant and we find the inner shift,
6421 make a new operation. */
6422 if (GET_CODE (XEXP (x,1)) == CONST_INT
6423 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6424 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6425 return gen_binary (code, mode, tem,
6426 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6427
6428 break;
6429
6430 default:
6431 break;
6432 }
6433
6434 return 0;
6435 }
6436 \f
6437 /* Look at the expression rooted at X. Look for expressions
6438 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6439 Form these expressions.
6440
6441 Return the new rtx, usually just X.
6442
6443 Also, for machines like the VAX that don't have logical shift insns,
6444 try to convert logical to arithmetic shift operations in cases where
6445 they are equivalent. This undoes the canonicalizations to logical
6446 shifts done elsewhere.
6447
6448 We try, as much as possible, to re-use rtl expressions to save memory.
6449
6450 IN_CODE says what kind of expression we are processing. Normally, it is
6451 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6452 being kludges), it is MEM. When processing the arguments of a comparison
6453 or a COMPARE against zero, it is COMPARE. */
6454
6455 static rtx
6456 make_compound_operation (x, in_code)
6457 rtx x;
6458 enum rtx_code in_code;
6459 {
6460 enum rtx_code code = GET_CODE (x);
6461 enum machine_mode mode = GET_MODE (x);
6462 int mode_width = GET_MODE_BITSIZE (mode);
6463 rtx rhs, lhs;
6464 enum rtx_code next_code;
6465 int i;
6466 rtx new = 0;
6467 rtx tem;
6468 const char *fmt;
6469
6470 /* Select the code to be used in recursive calls. Once we are inside an
6471 address, we stay there. If we have a comparison, set to COMPARE,
6472 but once inside, go back to our default of SET. */
6473
6474 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6475 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6476 && XEXP (x, 1) == const0_rtx) ? COMPARE
6477 : in_code == COMPARE ? SET : in_code);
6478
6479 /* Process depending on the code of this operation. If NEW is set
6480 nonzero, it will be returned. */
6481
6482 switch (code)
6483 {
6484 case ASHIFT:
6485 /* Convert shifts by constants into multiplications if inside
6486 an address. */
6487 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6488 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6489 && INTVAL (XEXP (x, 1)) >= 0)
6490 {
6491 new = make_compound_operation (XEXP (x, 0), next_code);
6492 new = gen_rtx_MULT (mode, new,
6493 GEN_INT ((HOST_WIDE_INT) 1
6494 << INTVAL (XEXP (x, 1))));
6495 }
6496 break;
6497
6498 case AND:
6499 /* If the second operand is not a constant, we can't do anything
6500 with it. */
6501 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6502 break;
6503
6504 /* If the constant is a power of two minus one and the first operand
6505 is a logical right shift, make an extraction. */
6506 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6507 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6508 {
6509 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6510 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6511 0, in_code == COMPARE);
6512 }
6513
6514 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6515 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6516 && subreg_lowpart_p (XEXP (x, 0))
6517 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6518 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6519 {
6520 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6521 next_code);
6522 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6523 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6524 0, in_code == COMPARE);
6525 }
6526 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6527 else if ((GET_CODE (XEXP (x, 0)) == XOR
6528 || GET_CODE (XEXP (x, 0)) == IOR)
6529 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6530 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6531 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6532 {
6533 /* Apply the distributive law, and then try to make extractions. */
6534 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6535 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6536 XEXP (x, 1)),
6537 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6538 XEXP (x, 1)));
6539 new = make_compound_operation (new, in_code);
6540 }
6541
6542 /* If we are have (and (rotate X C) M) and C is larger than the number
6543 of bits in M, this is an extraction. */
6544
6545 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6546 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6547 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6548 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6549 {
6550 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6551 new = make_extraction (mode, new,
6552 (GET_MODE_BITSIZE (mode)
6553 - INTVAL (XEXP (XEXP (x, 0), 1))),
6554 NULL_RTX, i, 1, 0, in_code == COMPARE);
6555 }
6556
6557 /* On machines without logical shifts, if the operand of the AND is
6558 a logical shift and our mask turns off all the propagated sign
6559 bits, we can replace the logical shift with an arithmetic shift. */
6560 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6561 && !have_insn_for (LSHIFTRT, mode)
6562 && have_insn_for (ASHIFTRT, mode)
6563 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6564 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6565 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6566 && mode_width <= HOST_BITS_PER_WIDE_INT)
6567 {
6568 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6569
6570 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6571 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6572 SUBST (XEXP (x, 0),
6573 gen_rtx_ASHIFTRT (mode,
6574 make_compound_operation
6575 (XEXP (XEXP (x, 0), 0), next_code),
6576 XEXP (XEXP (x, 0), 1)));
6577 }
6578
6579 /* If the constant is one less than a power of two, this might be
6580 representable by an extraction even if no shift is present.
6581 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6582 we are in a COMPARE. */
6583 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6584 new = make_extraction (mode,
6585 make_compound_operation (XEXP (x, 0),
6586 next_code),
6587 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6588
6589 /* If we are in a comparison and this is an AND with a power of two,
6590 convert this into the appropriate bit extract. */
6591 else if (in_code == COMPARE
6592 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6593 new = make_extraction (mode,
6594 make_compound_operation (XEXP (x, 0),
6595 next_code),
6596 i, NULL_RTX, 1, 1, 0, 1);
6597
6598 break;
6599
6600 case LSHIFTRT:
6601 /* If the sign bit is known to be zero, replace this with an
6602 arithmetic shift. */
6603 if (have_insn_for (ASHIFTRT, mode)
6604 && ! have_insn_for (LSHIFTRT, mode)
6605 && mode_width <= HOST_BITS_PER_WIDE_INT
6606 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6607 {
6608 new = gen_rtx_ASHIFTRT (mode,
6609 make_compound_operation (XEXP (x, 0),
6610 next_code),
6611 XEXP (x, 1));
6612 break;
6613 }
6614
6615 /* ... fall through ... */
6616
6617 case ASHIFTRT:
6618 lhs = XEXP (x, 0);
6619 rhs = XEXP (x, 1);
6620
6621 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6622 this is a SIGN_EXTRACT. */
6623 if (GET_CODE (rhs) == CONST_INT
6624 && GET_CODE (lhs) == ASHIFT
6625 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6626 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6627 {
6628 new = make_compound_operation (XEXP (lhs, 0), next_code);
6629 new = make_extraction (mode, new,
6630 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6631 NULL_RTX, mode_width - INTVAL (rhs),
6632 code == LSHIFTRT, 0, in_code == COMPARE);
6633 break;
6634 }
6635
6636 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6637 If so, try to merge the shifts into a SIGN_EXTEND. We could
6638 also do this for some cases of SIGN_EXTRACT, but it doesn't
6639 seem worth the effort; the case checked for occurs on Alpha. */
6640
6641 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6642 && ! (GET_CODE (lhs) == SUBREG
6643 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6644 && GET_CODE (rhs) == CONST_INT
6645 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6646 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6647 new = make_extraction (mode, make_compound_operation (new, next_code),
6648 0, NULL_RTX, mode_width - INTVAL (rhs),
6649 code == LSHIFTRT, 0, in_code == COMPARE);
6650
6651 break;
6652
6653 case SUBREG:
6654 /* Call ourselves recursively on the inner expression. If we are
6655 narrowing the object and it has a different RTL code from
6656 what it originally did, do this SUBREG as a force_to_mode. */
6657
6658 tem = make_compound_operation (SUBREG_REG (x), in_code);
6659 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6660 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6661 && subreg_lowpart_p (x))
6662 {
6663 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6664 NULL_RTX, 0);
6665
6666 /* If we have something other than a SUBREG, we might have
6667 done an expansion, so rerun ourselves. */
6668 if (GET_CODE (newer) != SUBREG)
6669 newer = make_compound_operation (newer, in_code);
6670
6671 return newer;
6672 }
6673
6674 /* If this is a paradoxical subreg, and the new code is a sign or
6675 zero extension, omit the subreg and widen the extension. If it
6676 is a regular subreg, we can still get rid of the subreg by not
6677 widening so much, or in fact removing the extension entirely. */
6678 if ((GET_CODE (tem) == SIGN_EXTEND
6679 || GET_CODE (tem) == ZERO_EXTEND)
6680 && subreg_lowpart_p (x))
6681 {
6682 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6683 || (GET_MODE_SIZE (mode) >
6684 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6685 {
6686 if (! INTEGRAL_MODE_P (mode))
6687 break;
6688 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6689 }
6690 else
6691 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6692 return tem;
6693 }
6694 break;
6695
6696 default:
6697 break;
6698 }
6699
6700 if (new)
6701 {
6702 x = gen_lowpart_for_combine (mode, new);
6703 code = GET_CODE (x);
6704 }
6705
6706 /* Now recursively process each operand of this operation. */
6707 fmt = GET_RTX_FORMAT (code);
6708 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6709 if (fmt[i] == 'e')
6710 {
6711 new = make_compound_operation (XEXP (x, i), next_code);
6712 SUBST (XEXP (x, i), new);
6713 }
6714
6715 return x;
6716 }
6717 \f
6718 /* Given M see if it is a value that would select a field of bits
6719 within an item, but not the entire word. Return -1 if not.
6720 Otherwise, return the starting position of the field, where 0 is the
6721 low-order bit.
6722
6723 *PLEN is set to the length of the field. */
6724
6725 static int
6726 get_pos_from_mask (m, plen)
6727 unsigned HOST_WIDE_INT m;
6728 unsigned HOST_WIDE_INT *plen;
6729 {
6730 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6731 int pos = exact_log2 (m & -m);
6732 int len;
6733
6734 if (pos < 0)
6735 return -1;
6736
6737 /* Now shift off the low-order zero bits and see if we have a power of
6738 two minus 1. */
6739 len = exact_log2 ((m >> pos) + 1);
6740
6741 if (len <= 0)
6742 return -1;
6743
6744 *plen = len;
6745 return pos;
6746 }
6747 \f
6748 /* See if X can be simplified knowing that we will only refer to it in
6749 MODE and will only refer to those bits that are nonzero in MASK.
6750 If other bits are being computed or if masking operations are done
6751 that select a superset of the bits in MASK, they can sometimes be
6752 ignored.
6753
6754 Return a possibly simplified expression, but always convert X to
6755 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6756
6757 Also, if REG is nonzero and X is a register equal in value to REG,
6758 replace X with REG.
6759
6760 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6761 are all off in X. This is used when X will be complemented, by either
6762 NOT, NEG, or XOR. */
6763
6764 static rtx
6765 force_to_mode (x, mode, mask, reg, just_select)
6766 rtx x;
6767 enum machine_mode mode;
6768 unsigned HOST_WIDE_INT mask;
6769 rtx reg;
6770 int just_select;
6771 {
6772 enum rtx_code code = GET_CODE (x);
6773 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6774 enum machine_mode op_mode;
6775 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6776 rtx op0, op1, temp;
6777
6778 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6779 code below will do the wrong thing since the mode of such an
6780 expression is VOIDmode.
6781
6782 Also do nothing if X is a CLOBBER; this can happen if X was
6783 the return value from a call to gen_lowpart_for_combine. */
6784 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6785 return x;
6786
6787 /* We want to perform the operation is its present mode unless we know
6788 that the operation is valid in MODE, in which case we do the operation
6789 in MODE. */
6790 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6791 && have_insn_for (code, mode))
6792 ? mode : GET_MODE (x));
6793
6794 /* It is not valid to do a right-shift in a narrower mode
6795 than the one it came in with. */
6796 if ((code == LSHIFTRT || code == ASHIFTRT)
6797 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6798 op_mode = GET_MODE (x);
6799
6800 /* Truncate MASK to fit OP_MODE. */
6801 if (op_mode)
6802 mask &= GET_MODE_MASK (op_mode);
6803
6804 /* When we have an arithmetic operation, or a shift whose count we
6805 do not know, we need to assume that all bit the up to the highest-order
6806 bit in MASK will be needed. This is how we form such a mask. */
6807 if (op_mode)
6808 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6809 ? GET_MODE_MASK (op_mode)
6810 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6811 - 1));
6812 else
6813 fuller_mask = ~(HOST_WIDE_INT) 0;
6814
6815 /* Determine what bits of X are guaranteed to be (non)zero. */
6816 nonzero = nonzero_bits (x, mode);
6817
6818 /* If none of the bits in X are needed, return a zero. */
6819 if (! just_select && (nonzero & mask) == 0)
6820 return const0_rtx;
6821
6822 /* If X is a CONST_INT, return a new one. Do this here since the
6823 test below will fail. */
6824 if (GET_CODE (x) == CONST_INT)
6825 return gen_int_mode (INTVAL (x) & mask, mode);
6826
6827 /* If X is narrower than MODE and we want all the bits in X's mode, just
6828 get X in the proper mode. */
6829 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6830 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6831 return gen_lowpart_for_combine (mode, x);
6832
6833 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6834 MASK are already known to be zero in X, we need not do anything. */
6835 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6836 return x;
6837
6838 switch (code)
6839 {
6840 case CLOBBER:
6841 /* If X is a (clobber (const_int)), return it since we know we are
6842 generating something that won't match. */
6843 return x;
6844
6845 case USE:
6846 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6847 spanned the boundary of the MEM. If we are now masking so it is
6848 within that boundary, we don't need the USE any more. */
6849 if (! BITS_BIG_ENDIAN
6850 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6851 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6852 break;
6853
6854 case SIGN_EXTEND:
6855 case ZERO_EXTEND:
6856 case ZERO_EXTRACT:
6857 case SIGN_EXTRACT:
6858 x = expand_compound_operation (x);
6859 if (GET_CODE (x) != code)
6860 return force_to_mode (x, mode, mask, reg, next_select);
6861 break;
6862
6863 case REG:
6864 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6865 || rtx_equal_p (reg, get_last_value (x))))
6866 x = reg;
6867 break;
6868
6869 case SUBREG:
6870 if (subreg_lowpart_p (x)
6871 /* We can ignore the effect of this SUBREG if it narrows the mode or
6872 if the constant masks to zero all the bits the mode doesn't
6873 have. */
6874 && ((GET_MODE_SIZE (GET_MODE (x))
6875 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6876 || (0 == (mask
6877 & GET_MODE_MASK (GET_MODE (x))
6878 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6879 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6880 break;
6881
6882 case AND:
6883 /* If this is an AND with a constant, convert it into an AND
6884 whose constant is the AND of that constant with MASK. If it
6885 remains an AND of MASK, delete it since it is redundant. */
6886
6887 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6888 {
6889 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6890 mask & INTVAL (XEXP (x, 1)));
6891
6892 /* If X is still an AND, see if it is an AND with a mask that
6893 is just some low-order bits. If so, and it is MASK, we don't
6894 need it. */
6895
6896 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6897 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6898 == mask))
6899 x = XEXP (x, 0);
6900
6901 /* If it remains an AND, try making another AND with the bits
6902 in the mode mask that aren't in MASK turned on. If the
6903 constant in the AND is wide enough, this might make a
6904 cheaper constant. */
6905
6906 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6907 && GET_MODE_MASK (GET_MODE (x)) != mask
6908 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6909 {
6910 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6911 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6912 int width = GET_MODE_BITSIZE (GET_MODE (x));
6913 rtx y;
6914
6915 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6916 number, sign extend it. */
6917 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6918 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6919 cval |= (HOST_WIDE_INT) -1 << width;
6920
6921 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6922 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6923 x = y;
6924 }
6925
6926 break;
6927 }
6928
6929 goto binop;
6930
6931 case PLUS:
6932 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6933 low-order bits (as in an alignment operation) and FOO is already
6934 aligned to that boundary, mask C1 to that boundary as well.
6935 This may eliminate that PLUS and, later, the AND. */
6936
6937 {
6938 unsigned int width = GET_MODE_BITSIZE (mode);
6939 unsigned HOST_WIDE_INT smask = mask;
6940
6941 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6942 number, sign extend it. */
6943
6944 if (width < HOST_BITS_PER_WIDE_INT
6945 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6946 smask |= (HOST_WIDE_INT) -1 << width;
6947
6948 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6949 && exact_log2 (- smask) >= 0
6950 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6951 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6952 return force_to_mode (plus_constant (XEXP (x, 0),
6953 (INTVAL (XEXP (x, 1)) & smask)),
6954 mode, smask, reg, next_select);
6955 }
6956
6957 /* ... fall through ... */
6958
6959 case MULT:
6960 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6961 most significant bit in MASK since carries from those bits will
6962 affect the bits we are interested in. */
6963 mask = fuller_mask;
6964 goto binop;
6965
6966 case MINUS:
6967 /* If X is (minus C Y) where C's least set bit is larger than any bit
6968 in the mask, then we may replace with (neg Y). */
6969 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6970 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6971 & -INTVAL (XEXP (x, 0))))
6972 > mask))
6973 {
6974 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6975 GET_MODE (x));
6976 return force_to_mode (x, mode, mask, reg, next_select);
6977 }
6978
6979 /* Similarly, if C contains every bit in the mask, then we may
6980 replace with (not Y). */
6981 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6982 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) mask)
6983 == INTVAL (XEXP (x, 0))))
6984 {
6985 x = simplify_gen_unary (NOT, GET_MODE (x),
6986 XEXP (x, 1), GET_MODE (x));
6987 return force_to_mode (x, mode, mask, reg, next_select);
6988 }
6989
6990 mask = fuller_mask;
6991 goto binop;
6992
6993 case IOR:
6994 case XOR:
6995 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6996 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6997 operation which may be a bitfield extraction. Ensure that the
6998 constant we form is not wider than the mode of X. */
6999
7000 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7001 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7002 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7003 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7004 && GET_CODE (XEXP (x, 1)) == CONST_INT
7005 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7006 + floor_log2 (INTVAL (XEXP (x, 1))))
7007 < GET_MODE_BITSIZE (GET_MODE (x)))
7008 && (INTVAL (XEXP (x, 1))
7009 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7010 {
7011 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7012 << INTVAL (XEXP (XEXP (x, 0), 1)));
7013 temp = gen_binary (GET_CODE (x), GET_MODE (x),
7014 XEXP (XEXP (x, 0), 0), temp);
7015 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
7016 XEXP (XEXP (x, 0), 1));
7017 return force_to_mode (x, mode, mask, reg, next_select);
7018 }
7019
7020 binop:
7021 /* For most binary operations, just propagate into the operation and
7022 change the mode if we have an operation of that mode. */
7023
7024 op0 = gen_lowpart_for_combine (op_mode,
7025 force_to_mode (XEXP (x, 0), mode, mask,
7026 reg, next_select));
7027 op1 = gen_lowpart_for_combine (op_mode,
7028 force_to_mode (XEXP (x, 1), mode, mask,
7029 reg, next_select));
7030
7031 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7032 x = gen_binary (code, op_mode, op0, op1);
7033 break;
7034
7035 case ASHIFT:
7036 /* For left shifts, do the same, but just for the first operand.
7037 However, we cannot do anything with shifts where we cannot
7038 guarantee that the counts are smaller than the size of the mode
7039 because such a count will have a different meaning in a
7040 wider mode. */
7041
7042 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7043 && INTVAL (XEXP (x, 1)) >= 0
7044 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7045 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7046 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7047 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7048 break;
7049
7050 /* If the shift count is a constant and we can do arithmetic in
7051 the mode of the shift, refine which bits we need. Otherwise, use the
7052 conservative form of the mask. */
7053 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7054 && INTVAL (XEXP (x, 1)) >= 0
7055 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7056 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7057 mask >>= INTVAL (XEXP (x, 1));
7058 else
7059 mask = fuller_mask;
7060
7061 op0 = gen_lowpart_for_combine (op_mode,
7062 force_to_mode (XEXP (x, 0), op_mode,
7063 mask, reg, next_select));
7064
7065 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7066 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7067 break;
7068
7069 case LSHIFTRT:
7070 /* Here we can only do something if the shift count is a constant,
7071 this shift constant is valid for the host, and we can do arithmetic
7072 in OP_MODE. */
7073
7074 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7075 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7076 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7077 {
7078 rtx inner = XEXP (x, 0);
7079 unsigned HOST_WIDE_INT inner_mask;
7080
7081 /* Select the mask of the bits we need for the shift operand. */
7082 inner_mask = mask << INTVAL (XEXP (x, 1));
7083
7084 /* We can only change the mode of the shift if we can do arithmetic
7085 in the mode of the shift and INNER_MASK is no wider than the
7086 width of OP_MODE. */
7087 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
7088 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
7089 op_mode = GET_MODE (x);
7090
7091 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7092
7093 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7094 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7095 }
7096
7097 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7098 shift and AND produces only copies of the sign bit (C2 is one less
7099 than a power of two), we can do this with just a shift. */
7100
7101 if (GET_CODE (x) == LSHIFTRT
7102 && GET_CODE (XEXP (x, 1)) == CONST_INT
7103 /* The shift puts one of the sign bit copies in the least significant
7104 bit. */
7105 && ((INTVAL (XEXP (x, 1))
7106 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7107 >= GET_MODE_BITSIZE (GET_MODE (x)))
7108 && exact_log2 (mask + 1) >= 0
7109 /* Number of bits left after the shift must be more than the mask
7110 needs. */
7111 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7112 <= GET_MODE_BITSIZE (GET_MODE (x)))
7113 /* Must be more sign bit copies than the mask needs. */
7114 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7115 >= exact_log2 (mask + 1)))
7116 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7117 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7118 - exact_log2 (mask + 1)));
7119
7120 goto shiftrt;
7121
7122 case ASHIFTRT:
7123 /* If we are just looking for the sign bit, we don't need this shift at
7124 all, even if it has a variable count. */
7125 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7126 && (mask == ((unsigned HOST_WIDE_INT) 1
7127 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7128 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7129
7130 /* If this is a shift by a constant, get a mask that contains those bits
7131 that are not copies of the sign bit. We then have two cases: If
7132 MASK only includes those bits, this can be a logical shift, which may
7133 allow simplifications. If MASK is a single-bit field not within
7134 those bits, we are requesting a copy of the sign bit and hence can
7135 shift the sign bit to the appropriate location. */
7136
7137 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7138 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7139 {
7140 int i = -1;
7141
7142 /* If the considered data is wider than HOST_WIDE_INT, we can't
7143 represent a mask for all its bits in a single scalar.
7144 But we only care about the lower bits, so calculate these. */
7145
7146 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7147 {
7148 nonzero = ~(HOST_WIDE_INT) 0;
7149
7150 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7151 is the number of bits a full-width mask would have set.
7152 We need only shift if these are fewer than nonzero can
7153 hold. If not, we must keep all bits set in nonzero. */
7154
7155 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7156 < HOST_BITS_PER_WIDE_INT)
7157 nonzero >>= INTVAL (XEXP (x, 1))
7158 + HOST_BITS_PER_WIDE_INT
7159 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7160 }
7161 else
7162 {
7163 nonzero = GET_MODE_MASK (GET_MODE (x));
7164 nonzero >>= INTVAL (XEXP (x, 1));
7165 }
7166
7167 if ((mask & ~nonzero) == 0
7168 || (i = exact_log2 (mask)) >= 0)
7169 {
7170 x = simplify_shift_const
7171 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7172 i < 0 ? INTVAL (XEXP (x, 1))
7173 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7174
7175 if (GET_CODE (x) != ASHIFTRT)
7176 return force_to_mode (x, mode, mask, reg, next_select);
7177 }
7178 }
7179
7180 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7181 even if the shift count isn't a constant. */
7182 if (mask == 1)
7183 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7184
7185 shiftrt:
7186
7187 /* If this is a zero- or sign-extension operation that just affects bits
7188 we don't care about, remove it. Be sure the call above returned
7189 something that is still a shift. */
7190
7191 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7192 && GET_CODE (XEXP (x, 1)) == CONST_INT
7193 && INTVAL (XEXP (x, 1)) >= 0
7194 && (INTVAL (XEXP (x, 1))
7195 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7196 && GET_CODE (XEXP (x, 0)) == ASHIFT
7197 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7198 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7199 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7200 reg, next_select);
7201
7202 break;
7203
7204 case ROTATE:
7205 case ROTATERT:
7206 /* If the shift count is constant and we can do computations
7207 in the mode of X, compute where the bits we care about are.
7208 Otherwise, we can't do anything. Don't change the mode of
7209 the shift or propagate MODE into the shift, though. */
7210 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7211 && INTVAL (XEXP (x, 1)) >= 0)
7212 {
7213 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7214 GET_MODE (x), GEN_INT (mask),
7215 XEXP (x, 1));
7216 if (temp && GET_CODE(temp) == CONST_INT)
7217 SUBST (XEXP (x, 0),
7218 force_to_mode (XEXP (x, 0), GET_MODE (x),
7219 INTVAL (temp), reg, next_select));
7220 }
7221 break;
7222
7223 case NEG:
7224 /* If we just want the low-order bit, the NEG isn't needed since it
7225 won't change the low-order bit. */
7226 if (mask == 1)
7227 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7228
7229 /* We need any bits less significant than the most significant bit in
7230 MASK since carries from those bits will affect the bits we are
7231 interested in. */
7232 mask = fuller_mask;
7233 goto unop;
7234
7235 case NOT:
7236 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7237 same as the XOR case above. Ensure that the constant we form is not
7238 wider than the mode of X. */
7239
7240 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7241 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7242 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7243 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7244 < GET_MODE_BITSIZE (GET_MODE (x)))
7245 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7246 {
7247 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7248 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7249 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7250
7251 return force_to_mode (x, mode, mask, reg, next_select);
7252 }
7253
7254 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7255 use the full mask inside the NOT. */
7256 mask = fuller_mask;
7257
7258 unop:
7259 op0 = gen_lowpart_for_combine (op_mode,
7260 force_to_mode (XEXP (x, 0), mode, mask,
7261 reg, next_select));
7262 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7263 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7264 break;
7265
7266 case NE:
7267 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7268 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7269 which is equal to STORE_FLAG_VALUE. */
7270 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7271 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7272 && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
7273 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7274
7275 break;
7276
7277 case IF_THEN_ELSE:
7278 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7279 written in a narrower mode. We play it safe and do not do so. */
7280
7281 SUBST (XEXP (x, 1),
7282 gen_lowpart_for_combine (GET_MODE (x),
7283 force_to_mode (XEXP (x, 1), mode,
7284 mask, reg, next_select)));
7285 SUBST (XEXP (x, 2),
7286 gen_lowpart_for_combine (GET_MODE (x),
7287 force_to_mode (XEXP (x, 2), mode,
7288 mask, reg,next_select)));
7289 break;
7290
7291 default:
7292 break;
7293 }
7294
7295 /* Ensure we return a value of the proper mode. */
7296 return gen_lowpart_for_combine (mode, x);
7297 }
7298 \f
7299 /* Return nonzero if X is an expression that has one of two values depending on
7300 whether some other value is zero or nonzero. In that case, we return the
7301 value that is being tested, *PTRUE is set to the value if the rtx being
7302 returned has a nonzero value, and *PFALSE is set to the other alternative.
7303
7304 If we return zero, we set *PTRUE and *PFALSE to X. */
7305
7306 static rtx
7307 if_then_else_cond (x, ptrue, pfalse)
7308 rtx x;
7309 rtx *ptrue, *pfalse;
7310 {
7311 enum machine_mode mode = GET_MODE (x);
7312 enum rtx_code code = GET_CODE (x);
7313 rtx cond0, cond1, true0, true1, false0, false1;
7314 unsigned HOST_WIDE_INT nz;
7315
7316 /* If we are comparing a value against zero, we are done. */
7317 if ((code == NE || code == EQ)
7318 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7319 {
7320 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7321 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7322 return XEXP (x, 0);
7323 }
7324
7325 /* If this is a unary operation whose operand has one of two values, apply
7326 our opcode to compute those values. */
7327 else if (GET_RTX_CLASS (code) == '1'
7328 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7329 {
7330 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7331 *pfalse = simplify_gen_unary (code, mode, false0,
7332 GET_MODE (XEXP (x, 0)));
7333 return cond0;
7334 }
7335
7336 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7337 make can't possibly match and would suppress other optimizations. */
7338 else if (code == COMPARE)
7339 ;
7340
7341 /* If this is a binary operation, see if either side has only one of two
7342 values. If either one does or if both do and they are conditional on
7343 the same value, compute the new true and false values. */
7344 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7345 || GET_RTX_CLASS (code) == '<')
7346 {
7347 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7348 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7349
7350 if ((cond0 != 0 || cond1 != 0)
7351 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7352 {
7353 /* If if_then_else_cond returned zero, then true/false are the
7354 same rtl. We must copy one of them to prevent invalid rtl
7355 sharing. */
7356 if (cond0 == 0)
7357 true0 = copy_rtx (true0);
7358 else if (cond1 == 0)
7359 true1 = copy_rtx (true1);
7360
7361 *ptrue = gen_binary (code, mode, true0, true1);
7362 *pfalse = gen_binary (code, mode, false0, false1);
7363 return cond0 ? cond0 : cond1;
7364 }
7365
7366 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7367 operands is zero when the other is nonzero, and vice-versa,
7368 and STORE_FLAG_VALUE is 1 or -1. */
7369
7370 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7371 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7372 || code == UMAX)
7373 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7374 {
7375 rtx op0 = XEXP (XEXP (x, 0), 1);
7376 rtx op1 = XEXP (XEXP (x, 1), 1);
7377
7378 cond0 = XEXP (XEXP (x, 0), 0);
7379 cond1 = XEXP (XEXP (x, 1), 0);
7380
7381 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7382 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7383 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7384 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7385 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7386 || ((swap_condition (GET_CODE (cond0))
7387 == combine_reversed_comparison_code (cond1))
7388 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7389 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7390 && ! side_effects_p (x))
7391 {
7392 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7393 *pfalse = gen_binary (MULT, mode,
7394 (code == MINUS
7395 ? simplify_gen_unary (NEG, mode, op1,
7396 mode)
7397 : op1),
7398 const_true_rtx);
7399 return cond0;
7400 }
7401 }
7402
7403 /* Similarly for MULT, AND and UMIN, except that for these the result
7404 is always zero. */
7405 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7406 && (code == MULT || code == AND || code == UMIN)
7407 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7408 {
7409 cond0 = XEXP (XEXP (x, 0), 0);
7410 cond1 = XEXP (XEXP (x, 1), 0);
7411
7412 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7413 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7414 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7415 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7416 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7417 || ((swap_condition (GET_CODE (cond0))
7418 == combine_reversed_comparison_code (cond1))
7419 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7420 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7421 && ! side_effects_p (x))
7422 {
7423 *ptrue = *pfalse = const0_rtx;
7424 return cond0;
7425 }
7426 }
7427 }
7428
7429 else if (code == IF_THEN_ELSE)
7430 {
7431 /* If we have IF_THEN_ELSE already, extract the condition and
7432 canonicalize it if it is NE or EQ. */
7433 cond0 = XEXP (x, 0);
7434 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7435 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7436 return XEXP (cond0, 0);
7437 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7438 {
7439 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7440 return XEXP (cond0, 0);
7441 }
7442 else
7443 return cond0;
7444 }
7445
7446 /* If X is a SUBREG, we can narrow both the true and false values
7447 if the inner expression, if there is a condition. */
7448 else if (code == SUBREG
7449 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7450 &true0, &false0)))
7451 {
7452 *ptrue = simplify_gen_subreg (mode, true0,
7453 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7454 *pfalse = simplify_gen_subreg (mode, false0,
7455 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7456
7457 return cond0;
7458 }
7459
7460 /* If X is a constant, this isn't special and will cause confusions
7461 if we treat it as such. Likewise if it is equivalent to a constant. */
7462 else if (CONSTANT_P (x)
7463 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7464 ;
7465
7466 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7467 will be least confusing to the rest of the compiler. */
7468 else if (mode == BImode)
7469 {
7470 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7471 return x;
7472 }
7473
7474 /* If X is known to be either 0 or -1, those are the true and
7475 false values when testing X. */
7476 else if (x == constm1_rtx || x == const0_rtx
7477 || (mode != VOIDmode
7478 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7479 {
7480 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7481 return x;
7482 }
7483
7484 /* Likewise for 0 or a single bit. */
7485 else if (mode != VOIDmode
7486 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7487 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7488 {
7489 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7490 return x;
7491 }
7492
7493 /* Otherwise fail; show no condition with true and false values the same. */
7494 *ptrue = *pfalse = x;
7495 return 0;
7496 }
7497 \f
7498 /* Return the value of expression X given the fact that condition COND
7499 is known to be true when applied to REG as its first operand and VAL
7500 as its second. X is known to not be shared and so can be modified in
7501 place.
7502
7503 We only handle the simplest cases, and specifically those cases that
7504 arise with IF_THEN_ELSE expressions. */
7505
7506 static rtx
7507 known_cond (x, cond, reg, val)
7508 rtx x;
7509 enum rtx_code cond;
7510 rtx reg, val;
7511 {
7512 enum rtx_code code = GET_CODE (x);
7513 rtx temp;
7514 const char *fmt;
7515 int i, j;
7516
7517 if (side_effects_p (x))
7518 return x;
7519
7520 /* If either operand of the condition is a floating point value,
7521 then we have to avoid collapsing an EQ comparison. */
7522 if (cond == EQ
7523 && rtx_equal_p (x, reg)
7524 && ! FLOAT_MODE_P (GET_MODE (x))
7525 && ! FLOAT_MODE_P (GET_MODE (val)))
7526 return val;
7527
7528 if (cond == UNEQ && rtx_equal_p (x, reg))
7529 return val;
7530
7531 /* If X is (abs REG) and we know something about REG's relationship
7532 with zero, we may be able to simplify this. */
7533
7534 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7535 switch (cond)
7536 {
7537 case GE: case GT: case EQ:
7538 return XEXP (x, 0);
7539 case LT: case LE:
7540 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7541 XEXP (x, 0),
7542 GET_MODE (XEXP (x, 0)));
7543 default:
7544 break;
7545 }
7546
7547 /* The only other cases we handle are MIN, MAX, and comparisons if the
7548 operands are the same as REG and VAL. */
7549
7550 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7551 {
7552 if (rtx_equal_p (XEXP (x, 0), val))
7553 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7554
7555 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7556 {
7557 if (GET_RTX_CLASS (code) == '<')
7558 {
7559 if (comparison_dominates_p (cond, code))
7560 return const_true_rtx;
7561
7562 code = combine_reversed_comparison_code (x);
7563 if (code != UNKNOWN
7564 && comparison_dominates_p (cond, code))
7565 return const0_rtx;
7566 else
7567 return x;
7568 }
7569 else if (code == SMAX || code == SMIN
7570 || code == UMIN || code == UMAX)
7571 {
7572 int unsignedp = (code == UMIN || code == UMAX);
7573
7574 /* Do not reverse the condition when it is NE or EQ.
7575 This is because we cannot conclude anything about
7576 the value of 'SMAX (x, y)' when x is not equal to y,
7577 but we can when x equals y. */
7578 if ((code == SMAX || code == UMAX)
7579 && ! (cond == EQ || cond == NE))
7580 cond = reverse_condition (cond);
7581
7582 switch (cond)
7583 {
7584 case GE: case GT:
7585 return unsignedp ? x : XEXP (x, 1);
7586 case LE: case LT:
7587 return unsignedp ? x : XEXP (x, 0);
7588 case GEU: case GTU:
7589 return unsignedp ? XEXP (x, 1) : x;
7590 case LEU: case LTU:
7591 return unsignedp ? XEXP (x, 0) : x;
7592 default:
7593 break;
7594 }
7595 }
7596 }
7597 }
7598 else if (code == SUBREG)
7599 {
7600 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7601 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7602
7603 if (SUBREG_REG (x) != r)
7604 {
7605 /* We must simplify subreg here, before we lose track of the
7606 original inner_mode. */
7607 new = simplify_subreg (GET_MODE (x), r,
7608 inner_mode, SUBREG_BYTE (x));
7609 if (new)
7610 return new;
7611 else
7612 SUBST (SUBREG_REG (x), r);
7613 }
7614
7615 return x;
7616 }
7617 /* We don't have to handle SIGN_EXTEND here, because even in the
7618 case of replacing something with a modeless CONST_INT, a
7619 CONST_INT is already (supposed to be) a valid sign extension for
7620 its narrower mode, which implies it's already properly
7621 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7622 story is different. */
7623 else if (code == ZERO_EXTEND)
7624 {
7625 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7626 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7627
7628 if (XEXP (x, 0) != r)
7629 {
7630 /* We must simplify the zero_extend here, before we lose
7631 track of the original inner_mode. */
7632 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7633 r, inner_mode);
7634 if (new)
7635 return new;
7636 else
7637 SUBST (XEXP (x, 0), r);
7638 }
7639
7640 return x;
7641 }
7642
7643 fmt = GET_RTX_FORMAT (code);
7644 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7645 {
7646 if (fmt[i] == 'e')
7647 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7648 else if (fmt[i] == 'E')
7649 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7650 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7651 cond, reg, val));
7652 }
7653
7654 return x;
7655 }
7656 \f
7657 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7658 assignment as a field assignment. */
7659
7660 static int
7661 rtx_equal_for_field_assignment_p (x, y)
7662 rtx x;
7663 rtx y;
7664 {
7665 if (x == y || rtx_equal_p (x, y))
7666 return 1;
7667
7668 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7669 return 0;
7670
7671 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7672 Note that all SUBREGs of MEM are paradoxical; otherwise they
7673 would have been rewritten. */
7674 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7675 && GET_CODE (SUBREG_REG (y)) == MEM
7676 && rtx_equal_p (SUBREG_REG (y),
7677 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7678 return 1;
7679
7680 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7681 && GET_CODE (SUBREG_REG (x)) == MEM
7682 && rtx_equal_p (SUBREG_REG (x),
7683 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7684 return 1;
7685
7686 /* We used to see if get_last_value of X and Y were the same but that's
7687 not correct. In one direction, we'll cause the assignment to have
7688 the wrong destination and in the case, we'll import a register into this
7689 insn that might have already have been dead. So fail if none of the
7690 above cases are true. */
7691 return 0;
7692 }
7693 \f
7694 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7695 Return that assignment if so.
7696
7697 We only handle the most common cases. */
7698
7699 static rtx
7700 make_field_assignment (x)
7701 rtx x;
7702 {
7703 rtx dest = SET_DEST (x);
7704 rtx src = SET_SRC (x);
7705 rtx assign;
7706 rtx rhs, lhs;
7707 HOST_WIDE_INT c1;
7708 HOST_WIDE_INT pos;
7709 unsigned HOST_WIDE_INT len;
7710 rtx other;
7711 enum machine_mode mode;
7712
7713 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7714 a clear of a one-bit field. We will have changed it to
7715 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7716 for a SUBREG. */
7717
7718 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7719 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7720 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7721 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7722 {
7723 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7724 1, 1, 1, 0);
7725 if (assign != 0)
7726 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7727 return x;
7728 }
7729
7730 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7731 && subreg_lowpart_p (XEXP (src, 0))
7732 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7733 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7734 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7735 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7736 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7737 {
7738 assign = make_extraction (VOIDmode, dest, 0,
7739 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7740 1, 1, 1, 0);
7741 if (assign != 0)
7742 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7743 return x;
7744 }
7745
7746 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7747 one-bit field. */
7748 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7749 && XEXP (XEXP (src, 0), 0) == const1_rtx
7750 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7751 {
7752 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7753 1, 1, 1, 0);
7754 if (assign != 0)
7755 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7756 return x;
7757 }
7758
7759 /* The other case we handle is assignments into a constant-position
7760 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7761 a mask that has all one bits except for a group of zero bits and
7762 OTHER is known to have zeros where C1 has ones, this is such an
7763 assignment. Compute the position and length from C1. Shift OTHER
7764 to the appropriate position, force it to the required mode, and
7765 make the extraction. Check for the AND in both operands. */
7766
7767 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7768 return x;
7769
7770 rhs = expand_compound_operation (XEXP (src, 0));
7771 lhs = expand_compound_operation (XEXP (src, 1));
7772
7773 if (GET_CODE (rhs) == AND
7774 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7775 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7776 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7777 else if (GET_CODE (lhs) == AND
7778 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7779 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7780 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7781 else
7782 return x;
7783
7784 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7785 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7786 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7787 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7788 return x;
7789
7790 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7791 if (assign == 0)
7792 return x;
7793
7794 /* The mode to use for the source is the mode of the assignment, or of
7795 what is inside a possible STRICT_LOW_PART. */
7796 mode = (GET_CODE (assign) == STRICT_LOW_PART
7797 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7798
7799 /* Shift OTHER right POS places and make it the source, restricting it
7800 to the proper length and mode. */
7801
7802 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7803 GET_MODE (src), other, pos),
7804 mode,
7805 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7806 ? ~(unsigned HOST_WIDE_INT) 0
7807 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7808 dest, 0);
7809
7810 return gen_rtx_SET (VOIDmode, assign, src);
7811 }
7812 \f
7813 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7814 if so. */
7815
7816 static rtx
7817 apply_distributive_law (x)
7818 rtx x;
7819 {
7820 enum rtx_code code = GET_CODE (x);
7821 rtx lhs, rhs, other;
7822 rtx tem;
7823 enum rtx_code inner_code;
7824
7825 /* Distributivity is not true for floating point.
7826 It can change the value. So don't do it.
7827 -- rms and moshier@world.std.com. */
7828 if (FLOAT_MODE_P (GET_MODE (x)))
7829 return x;
7830
7831 /* The outer operation can only be one of the following: */
7832 if (code != IOR && code != AND && code != XOR
7833 && code != PLUS && code != MINUS)
7834 return x;
7835
7836 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7837
7838 /* If either operand is a primitive we can't do anything, so get out
7839 fast. */
7840 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7841 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7842 return x;
7843
7844 lhs = expand_compound_operation (lhs);
7845 rhs = expand_compound_operation (rhs);
7846 inner_code = GET_CODE (lhs);
7847 if (inner_code != GET_CODE (rhs))
7848 return x;
7849
7850 /* See if the inner and outer operations distribute. */
7851 switch (inner_code)
7852 {
7853 case LSHIFTRT:
7854 case ASHIFTRT:
7855 case AND:
7856 case IOR:
7857 /* These all distribute except over PLUS. */
7858 if (code == PLUS || code == MINUS)
7859 return x;
7860 break;
7861
7862 case MULT:
7863 if (code != PLUS && code != MINUS)
7864 return x;
7865 break;
7866
7867 case ASHIFT:
7868 /* This is also a multiply, so it distributes over everything. */
7869 break;
7870
7871 case SUBREG:
7872 /* Non-paradoxical SUBREGs distributes over all operations, provided
7873 the inner modes and byte offsets are the same, this is an extraction
7874 of a low-order part, we don't convert an fp operation to int or
7875 vice versa, and we would not be converting a single-word
7876 operation into a multi-word operation. The latter test is not
7877 required, but it prevents generating unneeded multi-word operations.
7878 Some of the previous tests are redundant given the latter test, but
7879 are retained because they are required for correctness.
7880
7881 We produce the result slightly differently in this case. */
7882
7883 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7884 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7885 || ! subreg_lowpart_p (lhs)
7886 || (GET_MODE_CLASS (GET_MODE (lhs))
7887 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7888 || (GET_MODE_SIZE (GET_MODE (lhs))
7889 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7890 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7891 return x;
7892
7893 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7894 SUBREG_REG (lhs), SUBREG_REG (rhs));
7895 return gen_lowpart_for_combine (GET_MODE (x), tem);
7896
7897 default:
7898 return x;
7899 }
7900
7901 /* Set LHS and RHS to the inner operands (A and B in the example
7902 above) and set OTHER to the common operand (C in the example).
7903 These is only one way to do this unless the inner operation is
7904 commutative. */
7905 if (GET_RTX_CLASS (inner_code) == 'c'
7906 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7907 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7908 else if (GET_RTX_CLASS (inner_code) == 'c'
7909 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7910 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7911 else if (GET_RTX_CLASS (inner_code) == 'c'
7912 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7913 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7914 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7915 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7916 else
7917 return x;
7918
7919 /* Form the new inner operation, seeing if it simplifies first. */
7920 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7921
7922 /* There is one exception to the general way of distributing:
7923 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7924 if (code == XOR && inner_code == IOR)
7925 {
7926 inner_code = AND;
7927 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7928 }
7929
7930 /* We may be able to continuing distributing the result, so call
7931 ourselves recursively on the inner operation before forming the
7932 outer operation, which we return. */
7933 return gen_binary (inner_code, GET_MODE (x),
7934 apply_distributive_law (tem), other);
7935 }
7936 \f
7937 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7938 in MODE.
7939
7940 Return an equivalent form, if different from X. Otherwise, return X. If
7941 X is zero, we are to always construct the equivalent form. */
7942
7943 static rtx
7944 simplify_and_const_int (x, mode, varop, constop)
7945 rtx x;
7946 enum machine_mode mode;
7947 rtx varop;
7948 unsigned HOST_WIDE_INT constop;
7949 {
7950 unsigned HOST_WIDE_INT nonzero;
7951 int i;
7952
7953 /* Simplify VAROP knowing that we will be only looking at some of the
7954 bits in it.
7955
7956 Note by passing in CONSTOP, we guarantee that the bits not set in
7957 CONSTOP are not significant and will never be examined. We must
7958 ensure that is the case by explicitly masking out those bits
7959 before returning. */
7960 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7961
7962 /* If VAROP is a CLOBBER, we will fail so return it. */
7963 if (GET_CODE (varop) == CLOBBER)
7964 return varop;
7965
7966 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
7967 to VAROP and return the new constant. */
7968 if (GET_CODE (varop) == CONST_INT)
7969 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
7970
7971 /* See what bits may be nonzero in VAROP. Unlike the general case of
7972 a call to nonzero_bits, here we don't care about bits outside
7973 MODE. */
7974
7975 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7976
7977 /* Turn off all bits in the constant that are known to already be zero.
7978 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7979 which is tested below. */
7980
7981 constop &= nonzero;
7982
7983 /* If we don't have any bits left, return zero. */
7984 if (constop == 0)
7985 return const0_rtx;
7986
7987 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7988 a power of two, we can replace this with an ASHIFT. */
7989 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7990 && (i = exact_log2 (constop)) >= 0)
7991 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7992
7993 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7994 or XOR, then try to apply the distributive law. This may eliminate
7995 operations if either branch can be simplified because of the AND.
7996 It may also make some cases more complex, but those cases probably
7997 won't match a pattern either with or without this. */
7998
7999 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8000 return
8001 gen_lowpart_for_combine
8002 (mode,
8003 apply_distributive_law
8004 (gen_binary (GET_CODE (varop), GET_MODE (varop),
8005 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8006 XEXP (varop, 0), constop),
8007 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8008 XEXP (varop, 1), constop))));
8009
8010 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8011 the AND and see if one of the operands simplifies to zero. If so, we
8012 may eliminate it. */
8013
8014 if (GET_CODE (varop) == PLUS
8015 && exact_log2 (constop + 1) >= 0)
8016 {
8017 rtx o0, o1;
8018
8019 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8020 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8021 if (o0 == const0_rtx)
8022 return o1;
8023 if (o1 == const0_rtx)
8024 return o0;
8025 }
8026
8027 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8028 if we already had one (just check for the simplest cases). */
8029 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8030 && GET_MODE (XEXP (x, 0)) == mode
8031 && SUBREG_REG (XEXP (x, 0)) == varop)
8032 varop = XEXP (x, 0);
8033 else
8034 varop = gen_lowpart_for_combine (mode, varop);
8035
8036 /* If we can't make the SUBREG, try to return what we were given. */
8037 if (GET_CODE (varop) == CLOBBER)
8038 return x ? x : varop;
8039
8040 /* If we are only masking insignificant bits, return VAROP. */
8041 if (constop == nonzero)
8042 x = varop;
8043 else
8044 {
8045 /* Otherwise, return an AND. */
8046 constop = trunc_int_for_mode (constop, mode);
8047 /* See how much, if any, of X we can use. */
8048 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8049 x = gen_binary (AND, mode, varop, GEN_INT (constop));
8050
8051 else
8052 {
8053 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8054 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8055 SUBST (XEXP (x, 1), GEN_INT (constop));
8056
8057 SUBST (XEXP (x, 0), varop);
8058 }
8059 }
8060
8061 return x;
8062 }
8063 \f
8064 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
8065 We don't let nonzero_bits recur into num_sign_bit_copies, because that
8066 is less useful. We can't allow both, because that results in exponential
8067 run time recursion. There is a nullstone testcase that triggered
8068 this. This macro avoids accidental uses of num_sign_bit_copies. */
8069 #define num_sign_bit_copies()
8070
8071 /* Given an expression, X, compute which bits in X can be nonzero.
8072 We don't care about bits outside of those defined in MODE.
8073
8074 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8075 a shift, AND, or zero_extract, we can do better. */
8076
8077 static unsigned HOST_WIDE_INT
8078 nonzero_bits (x, mode)
8079 rtx x;
8080 enum machine_mode mode;
8081 {
8082 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
8083 unsigned HOST_WIDE_INT inner_nz;
8084 enum rtx_code code;
8085 unsigned int mode_width = GET_MODE_BITSIZE (mode);
8086 rtx tem;
8087
8088 /* For floating-point values, assume all bits are needed. */
8089 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
8090 return nonzero;
8091
8092 /* If X is wider than MODE, use its mode instead. */
8093 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
8094 {
8095 mode = GET_MODE (x);
8096 nonzero = GET_MODE_MASK (mode);
8097 mode_width = GET_MODE_BITSIZE (mode);
8098 }
8099
8100 if (mode_width > HOST_BITS_PER_WIDE_INT)
8101 /* Our only callers in this case look for single bit values. So
8102 just return the mode mask. Those tests will then be false. */
8103 return nonzero;
8104
8105 #ifndef WORD_REGISTER_OPERATIONS
8106 /* If MODE is wider than X, but both are a single word for both the host
8107 and target machines, we can compute this from which bits of the
8108 object might be nonzero in its own mode, taking into account the fact
8109 that on many CISC machines, accessing an object in a wider mode
8110 causes the high-order bits to become undefined. So they are
8111 not known to be zero. */
8112
8113 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8114 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8115 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8116 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
8117 {
8118 nonzero &= nonzero_bits (x, GET_MODE (x));
8119 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
8120 return nonzero;
8121 }
8122 #endif
8123
8124 code = GET_CODE (x);
8125 switch (code)
8126 {
8127 case REG:
8128 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8129 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8130 all the bits above ptr_mode are known to be zero. */
8131 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8132 && REG_POINTER (x))
8133 nonzero &= GET_MODE_MASK (ptr_mode);
8134 #endif
8135
8136 /* Include declared information about alignment of pointers. */
8137 /* ??? We don't properly preserve REG_POINTER changes across
8138 pointer-to-integer casts, so we can't trust it except for
8139 things that we know must be pointers. See execute/960116-1.c. */
8140 if ((x == stack_pointer_rtx
8141 || x == frame_pointer_rtx
8142 || x == arg_pointer_rtx)
8143 && REGNO_POINTER_ALIGN (REGNO (x)))
8144 {
8145 unsigned HOST_WIDE_INT alignment
8146 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
8147
8148 #ifdef PUSH_ROUNDING
8149 /* If PUSH_ROUNDING is defined, it is possible for the
8150 stack to be momentarily aligned only to that amount,
8151 so we pick the least alignment. */
8152 if (x == stack_pointer_rtx && PUSH_ARGS)
8153 alignment = MIN (PUSH_ROUNDING (1), alignment);
8154 #endif
8155
8156 nonzero &= ~(alignment - 1);
8157 }
8158
8159 /* If X is a register whose nonzero bits value is current, use it.
8160 Otherwise, if X is a register whose value we can find, use that
8161 value. Otherwise, use the previously-computed global nonzero bits
8162 for this register. */
8163
8164 if (reg_last_set_value[REGNO (x)] != 0
8165 && (reg_last_set_mode[REGNO (x)] == mode
8166 || (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
8167 && GET_MODE_CLASS (mode) == MODE_INT))
8168 && (reg_last_set_label[REGNO (x)] == label_tick
8169 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8170 && REG_N_SETS (REGNO (x)) == 1
8171 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8172 REGNO (x))))
8173 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8174 return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
8175
8176 tem = get_last_value (x);
8177
8178 if (tem)
8179 {
8180 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8181 /* If X is narrower than MODE and TEM is a non-negative
8182 constant that would appear negative in the mode of X,
8183 sign-extend it for use in reg_nonzero_bits because some
8184 machines (maybe most) will actually do the sign-extension
8185 and this is the conservative approach.
8186
8187 ??? For 2.5, try to tighten up the MD files in this regard
8188 instead of this kludge. */
8189
8190 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8191 && GET_CODE (tem) == CONST_INT
8192 && INTVAL (tem) > 0
8193 && 0 != (INTVAL (tem)
8194 & ((HOST_WIDE_INT) 1
8195 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8196 tem = GEN_INT (INTVAL (tem)
8197 | ((HOST_WIDE_INT) (-1)
8198 << GET_MODE_BITSIZE (GET_MODE (x))));
8199 #endif
8200 return nonzero_bits (tem, mode) & nonzero;
8201 }
8202 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8203 {
8204 unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
8205
8206 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8207 /* We don't know anything about the upper bits. */
8208 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8209 return nonzero & mask;
8210 }
8211 else
8212 return nonzero;
8213
8214 case CONST_INT:
8215 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8216 /* If X is negative in MODE, sign-extend the value. */
8217 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8218 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8219 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8220 #endif
8221
8222 return INTVAL (x);
8223
8224 case MEM:
8225 #ifdef LOAD_EXTEND_OP
8226 /* In many, if not most, RISC machines, reading a byte from memory
8227 zeros the rest of the register. Noticing that fact saves a lot
8228 of extra zero-extends. */
8229 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8230 nonzero &= GET_MODE_MASK (GET_MODE (x));
8231 #endif
8232 break;
8233
8234 case EQ: case NE:
8235 case UNEQ: case LTGT:
8236 case GT: case GTU: case UNGT:
8237 case LT: case LTU: case UNLT:
8238 case GE: case GEU: case UNGE:
8239 case LE: case LEU: case UNLE:
8240 case UNORDERED: case ORDERED:
8241
8242 /* If this produces an integer result, we know which bits are set.
8243 Code here used to clear bits outside the mode of X, but that is
8244 now done above. */
8245
8246 if (GET_MODE_CLASS (mode) == MODE_INT
8247 && mode_width <= HOST_BITS_PER_WIDE_INT)
8248 nonzero = STORE_FLAG_VALUE;
8249 break;
8250
8251 case NEG:
8252 #if 0
8253 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8254 and num_sign_bit_copies. */
8255 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8256 == GET_MODE_BITSIZE (GET_MODE (x)))
8257 nonzero = 1;
8258 #endif
8259
8260 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8261 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8262 break;
8263
8264 case ABS:
8265 #if 0
8266 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8267 and num_sign_bit_copies. */
8268 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8269 == GET_MODE_BITSIZE (GET_MODE (x)))
8270 nonzero = 1;
8271 #endif
8272 break;
8273
8274 case TRUNCATE:
8275 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
8276 break;
8277
8278 case ZERO_EXTEND:
8279 nonzero &= nonzero_bits (XEXP (x, 0), mode);
8280 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8281 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8282 break;
8283
8284 case SIGN_EXTEND:
8285 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8286 Otherwise, show all the bits in the outer mode but not the inner
8287 may be nonzero. */
8288 inner_nz = nonzero_bits (XEXP (x, 0), mode);
8289 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8290 {
8291 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8292 if (inner_nz
8293 & (((HOST_WIDE_INT) 1
8294 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8295 inner_nz |= (GET_MODE_MASK (mode)
8296 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8297 }
8298
8299 nonzero &= inner_nz;
8300 break;
8301
8302 case AND:
8303 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8304 & nonzero_bits (XEXP (x, 1), mode));
8305 break;
8306
8307 case XOR: case IOR:
8308 case UMIN: case UMAX: case SMIN: case SMAX:
8309 {
8310 unsigned HOST_WIDE_INT nonzero0 = nonzero_bits (XEXP (x, 0), mode);
8311
8312 /* Don't call nonzero_bits for the second time if it cannot change
8313 anything. */
8314 if ((nonzero & nonzero0) != nonzero)
8315 nonzero &= (nonzero0 | nonzero_bits (XEXP (x, 1), mode));
8316 }
8317 break;
8318
8319 case PLUS: case MINUS:
8320 case MULT:
8321 case DIV: case UDIV:
8322 case MOD: case UMOD:
8323 /* We can apply the rules of arithmetic to compute the number of
8324 high- and low-order zero bits of these operations. We start by
8325 computing the width (position of the highest-order nonzero bit)
8326 and the number of low-order zero bits for each value. */
8327 {
8328 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
8329 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
8330 int width0 = floor_log2 (nz0) + 1;
8331 int width1 = floor_log2 (nz1) + 1;
8332 int low0 = floor_log2 (nz0 & -nz0);
8333 int low1 = floor_log2 (nz1 & -nz1);
8334 HOST_WIDE_INT op0_maybe_minusp
8335 = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8336 HOST_WIDE_INT op1_maybe_minusp
8337 = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8338 unsigned int result_width = mode_width;
8339 int result_low = 0;
8340
8341 switch (code)
8342 {
8343 case PLUS:
8344 result_width = MAX (width0, width1) + 1;
8345 result_low = MIN (low0, low1);
8346 break;
8347 case MINUS:
8348 result_low = MIN (low0, low1);
8349 break;
8350 case MULT:
8351 result_width = width0 + width1;
8352 result_low = low0 + low1;
8353 break;
8354 case DIV:
8355 if (width1 == 0)
8356 break;
8357 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8358 result_width = width0;
8359 break;
8360 case UDIV:
8361 if (width1 == 0)
8362 break;
8363 result_width = width0;
8364 break;
8365 case MOD:
8366 if (width1 == 0)
8367 break;
8368 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8369 result_width = MIN (width0, width1);
8370 result_low = MIN (low0, low1);
8371 break;
8372 case UMOD:
8373 if (width1 == 0)
8374 break;
8375 result_width = MIN (width0, width1);
8376 result_low = MIN (low0, low1);
8377 break;
8378 default:
8379 abort ();
8380 }
8381
8382 if (result_width < mode_width)
8383 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8384
8385 if (result_low > 0)
8386 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8387
8388 #ifdef POINTERS_EXTEND_UNSIGNED
8389 /* If pointers extend unsigned and this is an addition or subtraction
8390 to a pointer in Pmode, all the bits above ptr_mode are known to be
8391 zero. */
8392 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8393 && (code == PLUS || code == MINUS)
8394 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8395 nonzero &= GET_MODE_MASK (ptr_mode);
8396 #endif
8397 }
8398 break;
8399
8400 case ZERO_EXTRACT:
8401 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8402 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8403 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8404 break;
8405
8406 case SUBREG:
8407 /* If this is a SUBREG formed for a promoted variable that has
8408 been zero-extended, we know that at least the high-order bits
8409 are zero, though others might be too. */
8410
8411 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
8412 nonzero = (GET_MODE_MASK (GET_MODE (x))
8413 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
8414
8415 /* If the inner mode is a single word for both the host and target
8416 machines, we can compute this from which bits of the inner
8417 object might be nonzero. */
8418 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8419 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8420 <= HOST_BITS_PER_WIDE_INT))
8421 {
8422 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
8423
8424 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8425 /* If this is a typical RISC machine, we only have to worry
8426 about the way loads are extended. */
8427 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8428 ? (((nonzero
8429 & (((unsigned HOST_WIDE_INT) 1
8430 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8431 != 0))
8432 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8433 || GET_CODE (SUBREG_REG (x)) != MEM)
8434 #endif
8435 {
8436 /* On many CISC machines, accessing an object in a wider mode
8437 causes the high-order bits to become undefined. So they are
8438 not known to be zero. */
8439 if (GET_MODE_SIZE (GET_MODE (x))
8440 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8441 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8442 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8443 }
8444 }
8445 break;
8446
8447 case ASHIFTRT:
8448 case LSHIFTRT:
8449 case ASHIFT:
8450 case ROTATE:
8451 /* The nonzero bits are in two classes: any bits within MODE
8452 that aren't in GET_MODE (x) are always significant. The rest of the
8453 nonzero bits are those that are significant in the operand of
8454 the shift when shifted the appropriate number of bits. This
8455 shows that high-order bits are cleared by the right shift and
8456 low-order bits by left shifts. */
8457 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8458 && INTVAL (XEXP (x, 1)) >= 0
8459 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8460 {
8461 enum machine_mode inner_mode = GET_MODE (x);
8462 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8463 int count = INTVAL (XEXP (x, 1));
8464 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8465 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
8466 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8467 unsigned HOST_WIDE_INT outer = 0;
8468
8469 if (mode_width > width)
8470 outer = (op_nonzero & nonzero & ~mode_mask);
8471
8472 if (code == LSHIFTRT)
8473 inner >>= count;
8474 else if (code == ASHIFTRT)
8475 {
8476 inner >>= count;
8477
8478 /* If the sign bit may have been nonzero before the shift, we
8479 need to mark all the places it could have been copied to
8480 by the shift as possibly nonzero. */
8481 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8482 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8483 }
8484 else if (code == ASHIFT)
8485 inner <<= count;
8486 else
8487 inner = ((inner << (count % width)
8488 | (inner >> (width - (count % width)))) & mode_mask);
8489
8490 nonzero &= (outer | inner);
8491 }
8492 break;
8493
8494 case FFS:
8495 /* This is at most the number of bits in the mode. */
8496 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
8497 break;
8498
8499 case IF_THEN_ELSE:
8500 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
8501 | nonzero_bits (XEXP (x, 2), mode));
8502 break;
8503
8504 default:
8505 break;
8506 }
8507
8508 return nonzero;
8509 }
8510
8511 /* See the macro definition above. */
8512 #undef num_sign_bit_copies
8513 \f
8514 /* Return the number of bits at the high-order end of X that are known to
8515 be equal to the sign bit. X will be used in mode MODE; if MODE is
8516 VOIDmode, X will be used in its own mode. The returned value will always
8517 be between 1 and the number of bits in MODE. */
8518
8519 static unsigned int
8520 num_sign_bit_copies (x, mode)
8521 rtx x;
8522 enum machine_mode mode;
8523 {
8524 enum rtx_code code = GET_CODE (x);
8525 unsigned int bitwidth;
8526 int num0, num1, result;
8527 unsigned HOST_WIDE_INT nonzero;
8528 rtx tem;
8529
8530 /* If we weren't given a mode, use the mode of X. If the mode is still
8531 VOIDmode, we don't know anything. Likewise if one of the modes is
8532 floating-point. */
8533
8534 if (mode == VOIDmode)
8535 mode = GET_MODE (x);
8536
8537 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8538 return 1;
8539
8540 bitwidth = GET_MODE_BITSIZE (mode);
8541
8542 /* For a smaller object, just ignore the high bits. */
8543 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8544 {
8545 num0 = num_sign_bit_copies (x, GET_MODE (x));
8546 return MAX (1,
8547 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8548 }
8549
8550 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8551 {
8552 #ifndef WORD_REGISTER_OPERATIONS
8553 /* If this machine does not do all register operations on the entire
8554 register and MODE is wider than the mode of X, we can say nothing
8555 at all about the high-order bits. */
8556 return 1;
8557 #else
8558 /* Likewise on machines that do, if the mode of the object is smaller
8559 than a word and loads of that size don't sign extend, we can say
8560 nothing about the high order bits. */
8561 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8562 #ifdef LOAD_EXTEND_OP
8563 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8564 #endif
8565 )
8566 return 1;
8567 #endif
8568 }
8569
8570 switch (code)
8571 {
8572 case REG:
8573
8574 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8575 /* If pointers extend signed and this is a pointer in Pmode, say that
8576 all the bits above ptr_mode are known to be sign bit copies. */
8577 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8578 && REG_POINTER (x))
8579 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8580 #endif
8581
8582 if (reg_last_set_value[REGNO (x)] != 0
8583 && reg_last_set_mode[REGNO (x)] == mode
8584 && (reg_last_set_label[REGNO (x)] == label_tick
8585 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8586 && REG_N_SETS (REGNO (x)) == 1
8587 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8588 REGNO (x))))
8589 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8590 return reg_last_set_sign_bit_copies[REGNO (x)];
8591
8592 tem = get_last_value (x);
8593 if (tem != 0)
8594 return num_sign_bit_copies (tem, mode);
8595
8596 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8597 && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8598 return reg_sign_bit_copies[REGNO (x)];
8599 break;
8600
8601 case MEM:
8602 #ifdef LOAD_EXTEND_OP
8603 /* Some RISC machines sign-extend all loads of smaller than a word. */
8604 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8605 return MAX (1, ((int) bitwidth
8606 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8607 #endif
8608 break;
8609
8610 case CONST_INT:
8611 /* If the constant is negative, take its 1's complement and remask.
8612 Then see how many zero bits we have. */
8613 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8614 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8615 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8616 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8617
8618 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8619
8620 case SUBREG:
8621 /* If this is a SUBREG for a promoted object that is sign-extended
8622 and we are looking at it in a wider mode, we know that at least the
8623 high-order bits are known to be sign bit copies. */
8624
8625 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8626 {
8627 num0 = num_sign_bit_copies (SUBREG_REG (x), mode);
8628 return MAX ((int) bitwidth
8629 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8630 num0);
8631 }
8632
8633 /* For a smaller object, just ignore the high bits. */
8634 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8635 {
8636 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
8637 return MAX (1, (num0
8638 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8639 - bitwidth)));
8640 }
8641
8642 #ifdef WORD_REGISTER_OPERATIONS
8643 #ifdef LOAD_EXTEND_OP
8644 /* For paradoxical SUBREGs on machines where all register operations
8645 affect the entire register, just look inside. Note that we are
8646 passing MODE to the recursive call, so the number of sign bit copies
8647 will remain relative to that mode, not the inner mode. */
8648
8649 /* This works only if loads sign extend. Otherwise, if we get a
8650 reload for the inner part, it may be loaded from the stack, and
8651 then we lose all sign bit copies that existed before the store
8652 to the stack. */
8653
8654 if ((GET_MODE_SIZE (GET_MODE (x))
8655 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8656 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8657 && GET_CODE (SUBREG_REG (x)) == MEM)
8658 return num_sign_bit_copies (SUBREG_REG (x), mode);
8659 #endif
8660 #endif
8661 break;
8662
8663 case SIGN_EXTRACT:
8664 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8665 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8666 break;
8667
8668 case SIGN_EXTEND:
8669 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8670 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
8671
8672 case TRUNCATE:
8673 /* For a smaller object, just ignore the high bits. */
8674 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
8675 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8676 - bitwidth)));
8677
8678 case NOT:
8679 return num_sign_bit_copies (XEXP (x, 0), mode);
8680
8681 case ROTATE: case ROTATERT:
8682 /* If we are rotating left by a number of bits less than the number
8683 of sign bit copies, we can just subtract that amount from the
8684 number. */
8685 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8686 && INTVAL (XEXP (x, 1)) >= 0
8687 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8688 {
8689 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8690 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8691 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8692 }
8693 break;
8694
8695 case NEG:
8696 /* In general, this subtracts one sign bit copy. But if the value
8697 is known to be positive, the number of sign bit copies is the
8698 same as that of the input. Finally, if the input has just one bit
8699 that might be nonzero, all the bits are copies of the sign bit. */
8700 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8701 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8702 return num0 > 1 ? num0 - 1 : 1;
8703
8704 nonzero = nonzero_bits (XEXP (x, 0), mode);
8705 if (nonzero == 1)
8706 return bitwidth;
8707
8708 if (num0 > 1
8709 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8710 num0--;
8711
8712 return num0;
8713
8714 case IOR: case AND: case XOR:
8715 case SMIN: case SMAX: case UMIN: case UMAX:
8716 /* Logical operations will preserve the number of sign-bit copies.
8717 MIN and MAX operations always return one of the operands. */
8718 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8719 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8720 return MIN (num0, num1);
8721
8722 case PLUS: case MINUS:
8723 /* For addition and subtraction, we can have a 1-bit carry. However,
8724 if we are subtracting 1 from a positive number, there will not
8725 be such a carry. Furthermore, if the positive number is known to
8726 be 0 or 1, we know the result is either -1 or 0. */
8727
8728 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8729 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8730 {
8731 nonzero = nonzero_bits (XEXP (x, 0), mode);
8732 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8733 return (nonzero == 1 || nonzero == 0 ? bitwidth
8734 : bitwidth - floor_log2 (nonzero) - 1);
8735 }
8736
8737 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8738 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8739 result = MAX (1, MIN (num0, num1) - 1);
8740
8741 #ifdef POINTERS_EXTEND_UNSIGNED
8742 /* If pointers extend signed and this is an addition or subtraction
8743 to a pointer in Pmode, all the bits above ptr_mode are known to be
8744 sign bit copies. */
8745 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8746 && (code == PLUS || code == MINUS)
8747 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8748 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8749 - GET_MODE_BITSIZE (ptr_mode) + 1),
8750 result);
8751 #endif
8752 return result;
8753
8754 case MULT:
8755 /* The number of bits of the product is the sum of the number of
8756 bits of both terms. However, unless one of the terms if known
8757 to be positive, we must allow for an additional bit since negating
8758 a negative number can remove one sign bit copy. */
8759
8760 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8761 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8762
8763 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8764 if (result > 0
8765 && (bitwidth > HOST_BITS_PER_WIDE_INT
8766 || (((nonzero_bits (XEXP (x, 0), mode)
8767 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8768 && ((nonzero_bits (XEXP (x, 1), mode)
8769 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8770 result--;
8771
8772 return MAX (1, result);
8773
8774 case UDIV:
8775 /* The result must be <= the first operand. If the first operand
8776 has the high bit set, we know nothing about the number of sign
8777 bit copies. */
8778 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8779 return 1;
8780 else if ((nonzero_bits (XEXP (x, 0), mode)
8781 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8782 return 1;
8783 else
8784 return num_sign_bit_copies (XEXP (x, 0), mode);
8785
8786 case UMOD:
8787 /* The result must be <= the second operand. */
8788 return num_sign_bit_copies (XEXP (x, 1), mode);
8789
8790 case DIV:
8791 /* Similar to unsigned division, except that we have to worry about
8792 the case where the divisor is negative, in which case we have
8793 to add 1. */
8794 result = num_sign_bit_copies (XEXP (x, 0), mode);
8795 if (result > 1
8796 && (bitwidth > HOST_BITS_PER_WIDE_INT
8797 || (nonzero_bits (XEXP (x, 1), mode)
8798 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8799 result--;
8800
8801 return result;
8802
8803 case MOD:
8804 result = num_sign_bit_copies (XEXP (x, 1), mode);
8805 if (result > 1
8806 && (bitwidth > HOST_BITS_PER_WIDE_INT
8807 || (nonzero_bits (XEXP (x, 1), mode)
8808 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8809 result--;
8810
8811 return result;
8812
8813 case ASHIFTRT:
8814 /* Shifts by a constant add to the number of bits equal to the
8815 sign bit. */
8816 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8817 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8818 && INTVAL (XEXP (x, 1)) > 0)
8819 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8820
8821 return num0;
8822
8823 case ASHIFT:
8824 /* Left shifts destroy copies. */
8825 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8826 || INTVAL (XEXP (x, 1)) < 0
8827 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8828 return 1;
8829
8830 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8831 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8832
8833 case IF_THEN_ELSE:
8834 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8835 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8836 return MIN (num0, num1);
8837
8838 case EQ: case NE: case GE: case GT: case LE: case LT:
8839 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
8840 case GEU: case GTU: case LEU: case LTU:
8841 case UNORDERED: case ORDERED:
8842 /* If the constant is negative, take its 1's complement and remask.
8843 Then see how many zero bits we have. */
8844 nonzero = STORE_FLAG_VALUE;
8845 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8846 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8847 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8848
8849 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8850 break;
8851
8852 default:
8853 break;
8854 }
8855
8856 /* If we haven't been able to figure it out by one of the above rules,
8857 see if some of the high-order bits are known to be zero. If so,
8858 count those bits and return one less than that amount. If we can't
8859 safely compute the mask for this mode, always return BITWIDTH. */
8860
8861 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8862 return 1;
8863
8864 nonzero = nonzero_bits (x, mode);
8865 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8866 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8867 }
8868 \f
8869 /* Return the number of "extended" bits there are in X, when interpreted
8870 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8871 unsigned quantities, this is the number of high-order zero bits.
8872 For signed quantities, this is the number of copies of the sign bit
8873 minus 1. In both case, this function returns the number of "spare"
8874 bits. For example, if two quantities for which this function returns
8875 at least 1 are added, the addition is known not to overflow.
8876
8877 This function will always return 0 unless called during combine, which
8878 implies that it must be called from a define_split. */
8879
8880 unsigned int
8881 extended_count (x, mode, unsignedp)
8882 rtx x;
8883 enum machine_mode mode;
8884 int unsignedp;
8885 {
8886 if (nonzero_sign_valid == 0)
8887 return 0;
8888
8889 return (unsignedp
8890 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8891 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8892 - floor_log2 (nonzero_bits (x, mode)))
8893 : 0)
8894 : num_sign_bit_copies (x, mode) - 1);
8895 }
8896 \f
8897 /* This function is called from `simplify_shift_const' to merge two
8898 outer operations. Specifically, we have already found that we need
8899 to perform operation *POP0 with constant *PCONST0 at the outermost
8900 position. We would now like to also perform OP1 with constant CONST1
8901 (with *POP0 being done last).
8902
8903 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8904 the resulting operation. *PCOMP_P is set to 1 if we would need to
8905 complement the innermost operand, otherwise it is unchanged.
8906
8907 MODE is the mode in which the operation will be done. No bits outside
8908 the width of this mode matter. It is assumed that the width of this mode
8909 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8910
8911 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8912 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8913 result is simply *PCONST0.
8914
8915 If the resulting operation cannot be expressed as one operation, we
8916 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8917
8918 static int
8919 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8920 enum rtx_code *pop0;
8921 HOST_WIDE_INT *pconst0;
8922 enum rtx_code op1;
8923 HOST_WIDE_INT const1;
8924 enum machine_mode mode;
8925 int *pcomp_p;
8926 {
8927 enum rtx_code op0 = *pop0;
8928 HOST_WIDE_INT const0 = *pconst0;
8929
8930 const0 &= GET_MODE_MASK (mode);
8931 const1 &= GET_MODE_MASK (mode);
8932
8933 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8934 if (op0 == AND)
8935 const1 &= const0;
8936
8937 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8938 if OP0 is SET. */
8939
8940 if (op1 == NIL || op0 == SET)
8941 return 1;
8942
8943 else if (op0 == NIL)
8944 op0 = op1, const0 = const1;
8945
8946 else if (op0 == op1)
8947 {
8948 switch (op0)
8949 {
8950 case AND:
8951 const0 &= const1;
8952 break;
8953 case IOR:
8954 const0 |= const1;
8955 break;
8956 case XOR:
8957 const0 ^= const1;
8958 break;
8959 case PLUS:
8960 const0 += const1;
8961 break;
8962 case NEG:
8963 op0 = NIL;
8964 break;
8965 default:
8966 break;
8967 }
8968 }
8969
8970 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8971 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8972 return 0;
8973
8974 /* If the two constants aren't the same, we can't do anything. The
8975 remaining six cases can all be done. */
8976 else if (const0 != const1)
8977 return 0;
8978
8979 else
8980 switch (op0)
8981 {
8982 case IOR:
8983 if (op1 == AND)
8984 /* (a & b) | b == b */
8985 op0 = SET;
8986 else /* op1 == XOR */
8987 /* (a ^ b) | b == a | b */
8988 {;}
8989 break;
8990
8991 case XOR:
8992 if (op1 == AND)
8993 /* (a & b) ^ b == (~a) & b */
8994 op0 = AND, *pcomp_p = 1;
8995 else /* op1 == IOR */
8996 /* (a | b) ^ b == a & ~b */
8997 op0 = AND, *pconst0 = ~const0;
8998 break;
8999
9000 case AND:
9001 if (op1 == IOR)
9002 /* (a | b) & b == b */
9003 op0 = SET;
9004 else /* op1 == XOR */
9005 /* (a ^ b) & b) == (~a) & b */
9006 *pcomp_p = 1;
9007 break;
9008 default:
9009 break;
9010 }
9011
9012 /* Check for NO-OP cases. */
9013 const0 &= GET_MODE_MASK (mode);
9014 if (const0 == 0
9015 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9016 op0 = NIL;
9017 else if (const0 == 0 && op0 == AND)
9018 op0 = SET;
9019 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9020 && op0 == AND)
9021 op0 = NIL;
9022
9023 /* ??? Slightly redundant with the above mask, but not entirely.
9024 Moving this above means we'd have to sign-extend the mode mask
9025 for the final test. */
9026 const0 = trunc_int_for_mode (const0, mode);
9027
9028 *pop0 = op0;
9029 *pconst0 = const0;
9030
9031 return 1;
9032 }
9033 \f
9034 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9035 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
9036 that we started with.
9037
9038 The shift is normally computed in the widest mode we find in VAROP, as
9039 long as it isn't a different number of words than RESULT_MODE. Exceptions
9040 are ASHIFTRT and ROTATE, which are always done in their original mode, */
9041
9042 static rtx
9043 simplify_shift_const (x, code, result_mode, varop, orig_count)
9044 rtx x;
9045 enum rtx_code code;
9046 enum machine_mode result_mode;
9047 rtx varop;
9048 int orig_count;
9049 {
9050 enum rtx_code orig_code = code;
9051 unsigned int count;
9052 int signed_count;
9053 enum machine_mode mode = result_mode;
9054 enum machine_mode shift_mode, tmode;
9055 unsigned int mode_words
9056 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9057 /* We form (outer_op (code varop count) (outer_const)). */
9058 enum rtx_code outer_op = NIL;
9059 HOST_WIDE_INT outer_const = 0;
9060 rtx const_rtx;
9061 int complement_p = 0;
9062 rtx new;
9063
9064 /* Make sure and truncate the "natural" shift on the way in. We don't
9065 want to do this inside the loop as it makes it more difficult to
9066 combine shifts. */
9067 #ifdef SHIFT_COUNT_TRUNCATED
9068 if (SHIFT_COUNT_TRUNCATED)
9069 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9070 #endif
9071
9072 /* If we were given an invalid count, don't do anything except exactly
9073 what was requested. */
9074
9075 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9076 {
9077 if (x)
9078 return x;
9079
9080 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
9081 }
9082
9083 count = orig_count;
9084
9085 /* Unless one of the branches of the `if' in this loop does a `continue',
9086 we will `break' the loop after the `if'. */
9087
9088 while (count != 0)
9089 {
9090 /* If we have an operand of (clobber (const_int 0)), just return that
9091 value. */
9092 if (GET_CODE (varop) == CLOBBER)
9093 return varop;
9094
9095 /* If we discovered we had to complement VAROP, leave. Making a NOT
9096 here would cause an infinite loop. */
9097 if (complement_p)
9098 break;
9099
9100 /* Convert ROTATERT to ROTATE. */
9101 if (code == ROTATERT)
9102 {
9103 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9104 code = ROTATE;
9105 if (VECTOR_MODE_P (result_mode))
9106 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9107 else
9108 count = bitsize - count;
9109 }
9110
9111 /* We need to determine what mode we will do the shift in. If the
9112 shift is a right shift or a ROTATE, we must always do it in the mode
9113 it was originally done in. Otherwise, we can do it in MODE, the
9114 widest mode encountered. */
9115 shift_mode
9116 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9117 ? result_mode : mode);
9118
9119 /* Handle cases where the count is greater than the size of the mode
9120 minus 1. For ASHIFT, use the size minus one as the count (this can
9121 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9122 take the count modulo the size. For other shifts, the result is
9123 zero.
9124
9125 Since these shifts are being produced by the compiler by combining
9126 multiple operations, each of which are defined, we know what the
9127 result is supposed to be. */
9128
9129 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
9130 {
9131 if (code == ASHIFTRT)
9132 count = GET_MODE_BITSIZE (shift_mode) - 1;
9133 else if (code == ROTATE || code == ROTATERT)
9134 count %= GET_MODE_BITSIZE (shift_mode);
9135 else
9136 {
9137 /* We can't simply return zero because there may be an
9138 outer op. */
9139 varop = const0_rtx;
9140 count = 0;
9141 break;
9142 }
9143 }
9144
9145 /* An arithmetic right shift of a quantity known to be -1 or 0
9146 is a no-op. */
9147 if (code == ASHIFTRT
9148 && (num_sign_bit_copies (varop, shift_mode)
9149 == GET_MODE_BITSIZE (shift_mode)))
9150 {
9151 count = 0;
9152 break;
9153 }
9154
9155 /* If we are doing an arithmetic right shift and discarding all but
9156 the sign bit copies, this is equivalent to doing a shift by the
9157 bitsize minus one. Convert it into that shift because it will often
9158 allow other simplifications. */
9159
9160 if (code == ASHIFTRT
9161 && (count + num_sign_bit_copies (varop, shift_mode)
9162 >= GET_MODE_BITSIZE (shift_mode)))
9163 count = GET_MODE_BITSIZE (shift_mode) - 1;
9164
9165 /* We simplify the tests below and elsewhere by converting
9166 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9167 `make_compound_operation' will convert it to an ASHIFTRT for
9168 those machines (such as VAX) that don't have an LSHIFTRT. */
9169 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9170 && code == ASHIFTRT
9171 && ((nonzero_bits (varop, shift_mode)
9172 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9173 == 0))
9174 code = LSHIFTRT;
9175
9176 switch (GET_CODE (varop))
9177 {
9178 case SIGN_EXTEND:
9179 case ZERO_EXTEND:
9180 case SIGN_EXTRACT:
9181 case ZERO_EXTRACT:
9182 new = expand_compound_operation (varop);
9183 if (new != varop)
9184 {
9185 varop = new;
9186 continue;
9187 }
9188 break;
9189
9190 case MEM:
9191 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9192 minus the width of a smaller mode, we can do this with a
9193 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9194 if ((code == ASHIFTRT || code == LSHIFTRT)
9195 && ! mode_dependent_address_p (XEXP (varop, 0))
9196 && ! MEM_VOLATILE_P (varop)
9197 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9198 MODE_INT, 1)) != BLKmode)
9199 {
9200 new = adjust_address_nv (varop, tmode,
9201 BYTES_BIG_ENDIAN ? 0
9202 : count / BITS_PER_UNIT);
9203
9204 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9205 : ZERO_EXTEND, mode, new);
9206 count = 0;
9207 continue;
9208 }
9209 break;
9210
9211 case USE:
9212 /* Similar to the case above, except that we can only do this if
9213 the resulting mode is the same as that of the underlying
9214 MEM and adjust the address depending on the *bits* endianness
9215 because of the way that bit-field extract insns are defined. */
9216 if ((code == ASHIFTRT || code == LSHIFTRT)
9217 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9218 MODE_INT, 1)) != BLKmode
9219 && tmode == GET_MODE (XEXP (varop, 0)))
9220 {
9221 if (BITS_BIG_ENDIAN)
9222 new = XEXP (varop, 0);
9223 else
9224 {
9225 new = copy_rtx (XEXP (varop, 0));
9226 SUBST (XEXP (new, 0),
9227 plus_constant (XEXP (new, 0),
9228 count / BITS_PER_UNIT));
9229 }
9230
9231 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9232 : ZERO_EXTEND, mode, new);
9233 count = 0;
9234 continue;
9235 }
9236 break;
9237
9238 case SUBREG:
9239 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9240 the same number of words as what we've seen so far. Then store
9241 the widest mode in MODE. */
9242 if (subreg_lowpart_p (varop)
9243 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9244 > GET_MODE_SIZE (GET_MODE (varop)))
9245 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9246 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9247 == mode_words)
9248 {
9249 varop = SUBREG_REG (varop);
9250 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9251 mode = GET_MODE (varop);
9252 continue;
9253 }
9254 break;
9255
9256 case MULT:
9257 /* Some machines use MULT instead of ASHIFT because MULT
9258 is cheaper. But it is still better on those machines to
9259 merge two shifts into one. */
9260 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9261 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9262 {
9263 varop
9264 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9265 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9266 continue;
9267 }
9268 break;
9269
9270 case UDIV:
9271 /* Similar, for when divides are cheaper. */
9272 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9273 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9274 {
9275 varop
9276 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9277 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9278 continue;
9279 }
9280 break;
9281
9282 case ASHIFTRT:
9283 /* If we are extracting just the sign bit of an arithmetic
9284 right shift, that shift is not needed. However, the sign
9285 bit of a wider mode may be different from what would be
9286 interpreted as the sign bit in a narrower mode, so, if
9287 the result is narrower, don't discard the shift. */
9288 if (code == LSHIFTRT
9289 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9290 && (GET_MODE_BITSIZE (result_mode)
9291 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9292 {
9293 varop = XEXP (varop, 0);
9294 continue;
9295 }
9296
9297 /* ... fall through ... */
9298
9299 case LSHIFTRT:
9300 case ASHIFT:
9301 case ROTATE:
9302 /* Here we have two nested shifts. The result is usually the
9303 AND of a new shift with a mask. We compute the result below. */
9304 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9305 && INTVAL (XEXP (varop, 1)) >= 0
9306 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9307 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9308 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9309 {
9310 enum rtx_code first_code = GET_CODE (varop);
9311 unsigned int first_count = INTVAL (XEXP (varop, 1));
9312 unsigned HOST_WIDE_INT mask;
9313 rtx mask_rtx;
9314
9315 /* We have one common special case. We can't do any merging if
9316 the inner code is an ASHIFTRT of a smaller mode. However, if
9317 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9318 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9319 we can convert it to
9320 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9321 This simplifies certain SIGN_EXTEND operations. */
9322 if (code == ASHIFT && first_code == ASHIFTRT
9323 && count == (unsigned int)
9324 (GET_MODE_BITSIZE (result_mode)
9325 - GET_MODE_BITSIZE (GET_MODE (varop))))
9326 {
9327 /* C3 has the low-order C1 bits zero. */
9328
9329 mask = (GET_MODE_MASK (mode)
9330 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9331
9332 varop = simplify_and_const_int (NULL_RTX, result_mode,
9333 XEXP (varop, 0), mask);
9334 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9335 varop, count);
9336 count = first_count;
9337 code = ASHIFTRT;
9338 continue;
9339 }
9340
9341 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9342 than C1 high-order bits equal to the sign bit, we can convert
9343 this to either an ASHIFT or an ASHIFTRT depending on the
9344 two counts.
9345
9346 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9347
9348 if (code == ASHIFTRT && first_code == ASHIFT
9349 && GET_MODE (varop) == shift_mode
9350 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9351 > first_count))
9352 {
9353 varop = XEXP (varop, 0);
9354
9355 signed_count = count - first_count;
9356 if (signed_count < 0)
9357 count = -signed_count, code = ASHIFT;
9358 else
9359 count = signed_count;
9360
9361 continue;
9362 }
9363
9364 /* There are some cases we can't do. If CODE is ASHIFTRT,
9365 we can only do this if FIRST_CODE is also ASHIFTRT.
9366
9367 We can't do the case when CODE is ROTATE and FIRST_CODE is
9368 ASHIFTRT.
9369
9370 If the mode of this shift is not the mode of the outer shift,
9371 we can't do this if either shift is a right shift or ROTATE.
9372
9373 Finally, we can't do any of these if the mode is too wide
9374 unless the codes are the same.
9375
9376 Handle the case where the shift codes are the same
9377 first. */
9378
9379 if (code == first_code)
9380 {
9381 if (GET_MODE (varop) != result_mode
9382 && (code == ASHIFTRT || code == LSHIFTRT
9383 || code == ROTATE))
9384 break;
9385
9386 count += first_count;
9387 varop = XEXP (varop, 0);
9388 continue;
9389 }
9390
9391 if (code == ASHIFTRT
9392 || (code == ROTATE && first_code == ASHIFTRT)
9393 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9394 || (GET_MODE (varop) != result_mode
9395 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9396 || first_code == ROTATE
9397 || code == ROTATE)))
9398 break;
9399
9400 /* To compute the mask to apply after the shift, shift the
9401 nonzero bits of the inner shift the same way the
9402 outer shift will. */
9403
9404 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9405
9406 mask_rtx
9407 = simplify_binary_operation (code, result_mode, mask_rtx,
9408 GEN_INT (count));
9409
9410 /* Give up if we can't compute an outer operation to use. */
9411 if (mask_rtx == 0
9412 || GET_CODE (mask_rtx) != CONST_INT
9413 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9414 INTVAL (mask_rtx),
9415 result_mode, &complement_p))
9416 break;
9417
9418 /* If the shifts are in the same direction, we add the
9419 counts. Otherwise, we subtract them. */
9420 signed_count = count;
9421 if ((code == ASHIFTRT || code == LSHIFTRT)
9422 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9423 signed_count += first_count;
9424 else
9425 signed_count -= first_count;
9426
9427 /* If COUNT is positive, the new shift is usually CODE,
9428 except for the two exceptions below, in which case it is
9429 FIRST_CODE. If the count is negative, FIRST_CODE should
9430 always be used */
9431 if (signed_count > 0
9432 && ((first_code == ROTATE && code == ASHIFT)
9433 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9434 code = first_code, count = signed_count;
9435 else if (signed_count < 0)
9436 code = first_code, count = -signed_count;
9437 else
9438 count = signed_count;
9439
9440 varop = XEXP (varop, 0);
9441 continue;
9442 }
9443
9444 /* If we have (A << B << C) for any shift, we can convert this to
9445 (A << C << B). This wins if A is a constant. Only try this if
9446 B is not a constant. */
9447
9448 else if (GET_CODE (varop) == code
9449 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9450 && 0 != (new
9451 = simplify_binary_operation (code, mode,
9452 XEXP (varop, 0),
9453 GEN_INT (count))))
9454 {
9455 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9456 count = 0;
9457 continue;
9458 }
9459 break;
9460
9461 case NOT:
9462 /* Make this fit the case below. */
9463 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9464 GEN_INT (GET_MODE_MASK (mode)));
9465 continue;
9466
9467 case IOR:
9468 case AND:
9469 case XOR:
9470 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9471 with C the size of VAROP - 1 and the shift is logical if
9472 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9473 we have an (le X 0) operation. If we have an arithmetic shift
9474 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9475 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9476
9477 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9478 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9479 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9480 && (code == LSHIFTRT || code == ASHIFTRT)
9481 && count == (unsigned int)
9482 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9483 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9484 {
9485 count = 0;
9486 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9487 const0_rtx);
9488
9489 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9490 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9491
9492 continue;
9493 }
9494
9495 /* If we have (shift (logical)), move the logical to the outside
9496 to allow it to possibly combine with another logical and the
9497 shift to combine with another shift. This also canonicalizes to
9498 what a ZERO_EXTRACT looks like. Also, some machines have
9499 (and (shift)) insns. */
9500
9501 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9502 && (new = simplify_binary_operation (code, result_mode,
9503 XEXP (varop, 1),
9504 GEN_INT (count))) != 0
9505 && GET_CODE (new) == CONST_INT
9506 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9507 INTVAL (new), result_mode, &complement_p))
9508 {
9509 varop = XEXP (varop, 0);
9510 continue;
9511 }
9512
9513 /* If we can't do that, try to simplify the shift in each arm of the
9514 logical expression, make a new logical expression, and apply
9515 the inverse distributive law. */
9516 {
9517 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9518 XEXP (varop, 0), count);
9519 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9520 XEXP (varop, 1), count);
9521
9522 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9523 varop = apply_distributive_law (varop);
9524
9525 count = 0;
9526 }
9527 break;
9528
9529 case EQ:
9530 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9531 says that the sign bit can be tested, FOO has mode MODE, C is
9532 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9533 that may be nonzero. */
9534 if (code == LSHIFTRT
9535 && XEXP (varop, 1) == const0_rtx
9536 && GET_MODE (XEXP (varop, 0)) == result_mode
9537 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9538 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9539 && ((STORE_FLAG_VALUE
9540 & ((HOST_WIDE_INT) 1
9541 < (GET_MODE_BITSIZE (result_mode) - 1))))
9542 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9543 && merge_outer_ops (&outer_op, &outer_const, XOR,
9544 (HOST_WIDE_INT) 1, result_mode,
9545 &complement_p))
9546 {
9547 varop = XEXP (varop, 0);
9548 count = 0;
9549 continue;
9550 }
9551 break;
9552
9553 case NEG:
9554 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9555 than the number of bits in the mode is equivalent to A. */
9556 if (code == LSHIFTRT
9557 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9558 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9559 {
9560 varop = XEXP (varop, 0);
9561 count = 0;
9562 continue;
9563 }
9564
9565 /* NEG commutes with ASHIFT since it is multiplication. Move the
9566 NEG outside to allow shifts to combine. */
9567 if (code == ASHIFT
9568 && merge_outer_ops (&outer_op, &outer_const, NEG,
9569 (HOST_WIDE_INT) 0, result_mode,
9570 &complement_p))
9571 {
9572 varop = XEXP (varop, 0);
9573 continue;
9574 }
9575 break;
9576
9577 case PLUS:
9578 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9579 is one less than the number of bits in the mode is
9580 equivalent to (xor A 1). */
9581 if (code == LSHIFTRT
9582 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9583 && XEXP (varop, 1) == constm1_rtx
9584 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9585 && merge_outer_ops (&outer_op, &outer_const, XOR,
9586 (HOST_WIDE_INT) 1, result_mode,
9587 &complement_p))
9588 {
9589 count = 0;
9590 varop = XEXP (varop, 0);
9591 continue;
9592 }
9593
9594 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9595 that might be nonzero in BAR are those being shifted out and those
9596 bits are known zero in FOO, we can replace the PLUS with FOO.
9597 Similarly in the other operand order. This code occurs when
9598 we are computing the size of a variable-size array. */
9599
9600 if ((code == ASHIFTRT || code == LSHIFTRT)
9601 && count < HOST_BITS_PER_WIDE_INT
9602 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9603 && (nonzero_bits (XEXP (varop, 1), result_mode)
9604 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9605 {
9606 varop = XEXP (varop, 0);
9607 continue;
9608 }
9609 else if ((code == ASHIFTRT || code == LSHIFTRT)
9610 && count < HOST_BITS_PER_WIDE_INT
9611 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9612 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9613 >> count)
9614 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9615 & nonzero_bits (XEXP (varop, 1),
9616 result_mode)))
9617 {
9618 varop = XEXP (varop, 1);
9619 continue;
9620 }
9621
9622 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9623 if (code == ASHIFT
9624 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9625 && (new = simplify_binary_operation (ASHIFT, result_mode,
9626 XEXP (varop, 1),
9627 GEN_INT (count))) != 0
9628 && GET_CODE (new) == CONST_INT
9629 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9630 INTVAL (new), result_mode, &complement_p))
9631 {
9632 varop = XEXP (varop, 0);
9633 continue;
9634 }
9635 break;
9636
9637 case MINUS:
9638 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9639 with C the size of VAROP - 1 and the shift is logical if
9640 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9641 we have a (gt X 0) operation. If the shift is arithmetic with
9642 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9643 we have a (neg (gt X 0)) operation. */
9644
9645 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9646 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9647 && count == (unsigned int)
9648 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9649 && (code == LSHIFTRT || code == ASHIFTRT)
9650 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9651 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9652 == count
9653 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9654 {
9655 count = 0;
9656 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9657 const0_rtx);
9658
9659 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9660 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9661
9662 continue;
9663 }
9664 break;
9665
9666 case TRUNCATE:
9667 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9668 if the truncate does not affect the value. */
9669 if (code == LSHIFTRT
9670 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9671 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9672 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9673 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9674 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9675 {
9676 rtx varop_inner = XEXP (varop, 0);
9677
9678 varop_inner
9679 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9680 XEXP (varop_inner, 0),
9681 GEN_INT
9682 (count + INTVAL (XEXP (varop_inner, 1))));
9683 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9684 count = 0;
9685 continue;
9686 }
9687 break;
9688
9689 default:
9690 break;
9691 }
9692
9693 break;
9694 }
9695
9696 /* We need to determine what mode to do the shift in. If the shift is
9697 a right shift or ROTATE, we must always do it in the mode it was
9698 originally done in. Otherwise, we can do it in MODE, the widest mode
9699 encountered. The code we care about is that of the shift that will
9700 actually be done, not the shift that was originally requested. */
9701 shift_mode
9702 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9703 ? result_mode : mode);
9704
9705 /* We have now finished analyzing the shift. The result should be
9706 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9707 OUTER_OP is non-NIL, it is an operation that needs to be applied
9708 to the result of the shift. OUTER_CONST is the relevant constant,
9709 but we must turn off all bits turned off in the shift.
9710
9711 If we were passed a value for X, see if we can use any pieces of
9712 it. If not, make new rtx. */
9713
9714 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9715 && GET_CODE (XEXP (x, 1)) == CONST_INT
9716 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9717 const_rtx = XEXP (x, 1);
9718 else
9719 const_rtx = GEN_INT (count);
9720
9721 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9722 && GET_MODE (XEXP (x, 0)) == shift_mode
9723 && SUBREG_REG (XEXP (x, 0)) == varop)
9724 varop = XEXP (x, 0);
9725 else if (GET_MODE (varop) != shift_mode)
9726 varop = gen_lowpart_for_combine (shift_mode, varop);
9727
9728 /* If we can't make the SUBREG, try to return what we were given. */
9729 if (GET_CODE (varop) == CLOBBER)
9730 return x ? x : varop;
9731
9732 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9733 if (new != 0)
9734 x = new;
9735 else
9736 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9737
9738 /* If we have an outer operation and we just made a shift, it is
9739 possible that we could have simplified the shift were it not
9740 for the outer operation. So try to do the simplification
9741 recursively. */
9742
9743 if (outer_op != NIL && GET_CODE (x) == code
9744 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9745 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9746 INTVAL (XEXP (x, 1)));
9747
9748 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9749 turn off all the bits that the shift would have turned off. */
9750 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9751 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9752 GET_MODE_MASK (result_mode) >> orig_count);
9753
9754 /* Do the remainder of the processing in RESULT_MODE. */
9755 x = gen_lowpart_for_combine (result_mode, x);
9756
9757 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9758 operation. */
9759 if (complement_p)
9760 x =simplify_gen_unary (NOT, result_mode, x, result_mode);
9761
9762 if (outer_op != NIL)
9763 {
9764 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9765 outer_const = trunc_int_for_mode (outer_const, result_mode);
9766
9767 if (outer_op == AND)
9768 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9769 else if (outer_op == SET)
9770 /* This means that we have determined that the result is
9771 equivalent to a constant. This should be rare. */
9772 x = GEN_INT (outer_const);
9773 else if (GET_RTX_CLASS (outer_op) == '1')
9774 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9775 else
9776 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9777 }
9778
9779 return x;
9780 }
9781 \f
9782 /* Like recog, but we receive the address of a pointer to a new pattern.
9783 We try to match the rtx that the pointer points to.
9784 If that fails, we may try to modify or replace the pattern,
9785 storing the replacement into the same pointer object.
9786
9787 Modifications include deletion or addition of CLOBBERs.
9788
9789 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9790 the CLOBBERs are placed.
9791
9792 The value is the final insn code from the pattern ultimately matched,
9793 or -1. */
9794
9795 static int
9796 recog_for_combine (pnewpat, insn, pnotes)
9797 rtx *pnewpat;
9798 rtx insn;
9799 rtx *pnotes;
9800 {
9801 rtx pat = *pnewpat;
9802 int insn_code_number;
9803 int num_clobbers_to_add = 0;
9804 int i;
9805 rtx notes = 0;
9806 rtx dummy_insn;
9807
9808 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9809 we use to indicate that something didn't match. If we find such a
9810 thing, force rejection. */
9811 if (GET_CODE (pat) == PARALLEL)
9812 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9813 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9814 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9815 return -1;
9816
9817 /* *pnewpat does not have to be actual PATTERN (insn), so make a dummy
9818 instruction for pattern recognition. */
9819 dummy_insn = shallow_copy_rtx (insn);
9820 PATTERN (dummy_insn) = pat;
9821 REG_NOTES (dummy_insn) = 0;
9822
9823 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9824
9825 /* If it isn't, there is the possibility that we previously had an insn
9826 that clobbered some register as a side effect, but the combined
9827 insn doesn't need to do that. So try once more without the clobbers
9828 unless this represents an ASM insn. */
9829
9830 if (insn_code_number < 0 && ! check_asm_operands (pat)
9831 && GET_CODE (pat) == PARALLEL)
9832 {
9833 int pos;
9834
9835 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9836 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9837 {
9838 if (i != pos)
9839 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9840 pos++;
9841 }
9842
9843 SUBST_INT (XVECLEN (pat, 0), pos);
9844
9845 if (pos == 1)
9846 pat = XVECEXP (pat, 0, 0);
9847
9848 PATTERN (dummy_insn) = pat;
9849 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9850 }
9851
9852 /* Recognize all noop sets, these will be killed by followup pass. */
9853 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9854 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9855
9856 /* If we had any clobbers to add, make a new pattern than contains
9857 them. Then check to make sure that all of them are dead. */
9858 if (num_clobbers_to_add)
9859 {
9860 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9861 rtvec_alloc (GET_CODE (pat) == PARALLEL
9862 ? (XVECLEN (pat, 0)
9863 + num_clobbers_to_add)
9864 : num_clobbers_to_add + 1));
9865
9866 if (GET_CODE (pat) == PARALLEL)
9867 for (i = 0; i < XVECLEN (pat, 0); i++)
9868 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9869 else
9870 XVECEXP (newpat, 0, 0) = pat;
9871
9872 add_clobbers (newpat, insn_code_number);
9873
9874 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9875 i < XVECLEN (newpat, 0); i++)
9876 {
9877 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9878 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9879 return -1;
9880 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9881 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9882 }
9883 pat = newpat;
9884 }
9885
9886 *pnewpat = pat;
9887 *pnotes = notes;
9888
9889 return insn_code_number;
9890 }
9891 \f
9892 /* Like gen_lowpart but for use by combine. In combine it is not possible
9893 to create any new pseudoregs. However, it is safe to create
9894 invalid memory addresses, because combine will try to recognize
9895 them and all they will do is make the combine attempt fail.
9896
9897 If for some reason this cannot do its job, an rtx
9898 (clobber (const_int 0)) is returned.
9899 An insn containing that will not be recognized. */
9900
9901 #undef gen_lowpart
9902
9903 static rtx
9904 gen_lowpart_for_combine (mode, x)
9905 enum machine_mode mode;
9906 rtx x;
9907 {
9908 rtx result;
9909
9910 if (GET_MODE (x) == mode)
9911 return x;
9912
9913 /* We can only support MODE being wider than a word if X is a
9914 constant integer or has a mode the same size. */
9915
9916 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9917 && ! ((GET_MODE (x) == VOIDmode
9918 && (GET_CODE (x) == CONST_INT
9919 || GET_CODE (x) == CONST_DOUBLE))
9920 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9921 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9922
9923 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9924 won't know what to do. So we will strip off the SUBREG here and
9925 process normally. */
9926 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9927 {
9928 x = SUBREG_REG (x);
9929 if (GET_MODE (x) == mode)
9930 return x;
9931 }
9932
9933 result = gen_lowpart_common (mode, x);
9934 #ifdef CLASS_CANNOT_CHANGE_MODE
9935 if (result != 0
9936 && GET_CODE (result) == SUBREG
9937 && GET_CODE (SUBREG_REG (result)) == REG
9938 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
9939 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (result),
9940 GET_MODE (SUBREG_REG (result))))
9941 REG_CHANGES_MODE (REGNO (SUBREG_REG (result))) = 1;
9942 #endif
9943
9944 if (result)
9945 return result;
9946
9947 if (GET_CODE (x) == MEM)
9948 {
9949 int offset = 0;
9950
9951 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9952 address. */
9953 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9954 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9955
9956 /* If we want to refer to something bigger than the original memref,
9957 generate a perverse subreg instead. That will force a reload
9958 of the original memref X. */
9959 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9960 return gen_rtx_SUBREG (mode, x, 0);
9961
9962 if (WORDS_BIG_ENDIAN)
9963 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9964 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9965
9966 if (BYTES_BIG_ENDIAN)
9967 {
9968 /* Adjust the address so that the address-after-the-data is
9969 unchanged. */
9970 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9971 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9972 }
9973
9974 return adjust_address_nv (x, mode, offset);
9975 }
9976
9977 /* If X is a comparison operator, rewrite it in a new mode. This
9978 probably won't match, but may allow further simplifications. */
9979 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9980 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9981
9982 /* If we couldn't simplify X any other way, just enclose it in a
9983 SUBREG. Normally, this SUBREG won't match, but some patterns may
9984 include an explicit SUBREG or we may simplify it further in combine. */
9985 else
9986 {
9987 int offset = 0;
9988 rtx res;
9989 enum machine_mode sub_mode = GET_MODE (x);
9990
9991 offset = subreg_lowpart_offset (mode, sub_mode);
9992 if (sub_mode == VOIDmode)
9993 {
9994 sub_mode = int_mode_for_mode (mode);
9995 x = gen_lowpart_common (sub_mode, x);
9996 }
9997 res = simplify_gen_subreg (mode, x, sub_mode, offset);
9998 if (res)
9999 return res;
10000 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10001 }
10002 }
10003 \f
10004 /* These routines make binary and unary operations by first seeing if they
10005 fold; if not, a new expression is allocated. */
10006
10007 static rtx
10008 gen_binary (code, mode, op0, op1)
10009 enum rtx_code code;
10010 enum machine_mode mode;
10011 rtx op0, op1;
10012 {
10013 rtx result;
10014 rtx tem;
10015
10016 if (GET_RTX_CLASS (code) == 'c'
10017 && swap_commutative_operands_p (op0, op1))
10018 tem = op0, op0 = op1, op1 = tem;
10019
10020 if (GET_RTX_CLASS (code) == '<')
10021 {
10022 enum machine_mode op_mode = GET_MODE (op0);
10023
10024 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
10025 just (REL_OP X Y). */
10026 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
10027 {
10028 op1 = XEXP (op0, 1);
10029 op0 = XEXP (op0, 0);
10030 op_mode = GET_MODE (op0);
10031 }
10032
10033 if (op_mode == VOIDmode)
10034 op_mode = GET_MODE (op1);
10035 result = simplify_relational_operation (code, op_mode, op0, op1);
10036 }
10037 else
10038 result = simplify_binary_operation (code, mode, op0, op1);
10039
10040 if (result)
10041 return result;
10042
10043 /* Put complex operands first and constants second. */
10044 if (GET_RTX_CLASS (code) == 'c'
10045 && swap_commutative_operands_p (op0, op1))
10046 return gen_rtx_fmt_ee (code, mode, op1, op0);
10047
10048 /* If we are turning off bits already known off in OP0, we need not do
10049 an AND. */
10050 else if (code == AND && GET_CODE (op1) == CONST_INT
10051 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10052 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
10053 return op0;
10054
10055 return gen_rtx_fmt_ee (code, mode, op0, op1);
10056 }
10057 \f
10058 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10059 comparison code that will be tested.
10060
10061 The result is a possibly different comparison code to use. *POP0 and
10062 *POP1 may be updated.
10063
10064 It is possible that we might detect that a comparison is either always
10065 true or always false. However, we do not perform general constant
10066 folding in combine, so this knowledge isn't useful. Such tautologies
10067 should have been detected earlier. Hence we ignore all such cases. */
10068
10069 static enum rtx_code
10070 simplify_comparison (code, pop0, pop1)
10071 enum rtx_code code;
10072 rtx *pop0;
10073 rtx *pop1;
10074 {
10075 rtx op0 = *pop0;
10076 rtx op1 = *pop1;
10077 rtx tem, tem1;
10078 int i;
10079 enum machine_mode mode, tmode;
10080
10081 /* Try a few ways of applying the same transformation to both operands. */
10082 while (1)
10083 {
10084 #ifndef WORD_REGISTER_OPERATIONS
10085 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10086 so check specially. */
10087 if (code != GTU && code != GEU && code != LTU && code != LEU
10088 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10089 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10090 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10091 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10092 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10093 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10094 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10095 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10096 && GET_CODE (XEXP (op1, 1)) == CONST_INT
10097 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10098 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
10099 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
10100 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
10101 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
10102 && (INTVAL (XEXP (op0, 1))
10103 == (GET_MODE_BITSIZE (GET_MODE (op0))
10104 - (GET_MODE_BITSIZE
10105 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10106 {
10107 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10108 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10109 }
10110 #endif
10111
10112 /* If both operands are the same constant shift, see if we can ignore the
10113 shift. We can if the shift is a rotate or if the bits shifted out of
10114 this shift are known to be zero for both inputs and if the type of
10115 comparison is compatible with the shift. */
10116 if (GET_CODE (op0) == GET_CODE (op1)
10117 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10118 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10119 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10120 && (code != GT && code != LT && code != GE && code != LE))
10121 || (GET_CODE (op0) == ASHIFTRT
10122 && (code != GTU && code != LTU
10123 && code != GEU && code != LEU)))
10124 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10125 && INTVAL (XEXP (op0, 1)) >= 0
10126 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10127 && XEXP (op0, 1) == XEXP (op1, 1))
10128 {
10129 enum machine_mode mode = GET_MODE (op0);
10130 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10131 int shift_count = INTVAL (XEXP (op0, 1));
10132
10133 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10134 mask &= (mask >> shift_count) << shift_count;
10135 else if (GET_CODE (op0) == ASHIFT)
10136 mask = (mask & (mask << shift_count)) >> shift_count;
10137
10138 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10139 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10140 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10141 else
10142 break;
10143 }
10144
10145 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10146 SUBREGs are of the same mode, and, in both cases, the AND would
10147 be redundant if the comparison was done in the narrower mode,
10148 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10149 and the operand's possibly nonzero bits are 0xffffff01; in that case
10150 if we only care about QImode, we don't need the AND). This case
10151 occurs if the output mode of an scc insn is not SImode and
10152 STORE_FLAG_VALUE == 1 (e.g., the 386).
10153
10154 Similarly, check for a case where the AND's are ZERO_EXTEND
10155 operations from some narrower mode even though a SUBREG is not
10156 present. */
10157
10158 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10159 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10160 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10161 {
10162 rtx inner_op0 = XEXP (op0, 0);
10163 rtx inner_op1 = XEXP (op1, 0);
10164 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10165 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10166 int changed = 0;
10167
10168 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10169 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10170 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10171 && (GET_MODE (SUBREG_REG (inner_op0))
10172 == GET_MODE (SUBREG_REG (inner_op1)))
10173 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10174 <= HOST_BITS_PER_WIDE_INT)
10175 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10176 GET_MODE (SUBREG_REG (inner_op0)))))
10177 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10178 GET_MODE (SUBREG_REG (inner_op1))))))
10179 {
10180 op0 = SUBREG_REG (inner_op0);
10181 op1 = SUBREG_REG (inner_op1);
10182
10183 /* The resulting comparison is always unsigned since we masked
10184 off the original sign bit. */
10185 code = unsigned_condition (code);
10186
10187 changed = 1;
10188 }
10189
10190 else if (c0 == c1)
10191 for (tmode = GET_CLASS_NARROWEST_MODE
10192 (GET_MODE_CLASS (GET_MODE (op0)));
10193 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10194 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10195 {
10196 op0 = gen_lowpart_for_combine (tmode, inner_op0);
10197 op1 = gen_lowpart_for_combine (tmode, inner_op1);
10198 code = unsigned_condition (code);
10199 changed = 1;
10200 break;
10201 }
10202
10203 if (! changed)
10204 break;
10205 }
10206
10207 /* If both operands are NOT, we can strip off the outer operation
10208 and adjust the comparison code for swapped operands; similarly for
10209 NEG, except that this must be an equality comparison. */
10210 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10211 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10212 && (code == EQ || code == NE)))
10213 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10214
10215 else
10216 break;
10217 }
10218
10219 /* If the first operand is a constant, swap the operands and adjust the
10220 comparison code appropriately, but don't do this if the second operand
10221 is already a constant integer. */
10222 if (swap_commutative_operands_p (op0, op1))
10223 {
10224 tem = op0, op0 = op1, op1 = tem;
10225 code = swap_condition (code);
10226 }
10227
10228 /* We now enter a loop during which we will try to simplify the comparison.
10229 For the most part, we only are concerned with comparisons with zero,
10230 but some things may really be comparisons with zero but not start
10231 out looking that way. */
10232
10233 while (GET_CODE (op1) == CONST_INT)
10234 {
10235 enum machine_mode mode = GET_MODE (op0);
10236 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10237 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10238 int equality_comparison_p;
10239 int sign_bit_comparison_p;
10240 int unsigned_comparison_p;
10241 HOST_WIDE_INT const_op;
10242
10243 /* We only want to handle integral modes. This catches VOIDmode,
10244 CCmode, and the floating-point modes. An exception is that we
10245 can handle VOIDmode if OP0 is a COMPARE or a comparison
10246 operation. */
10247
10248 if (GET_MODE_CLASS (mode) != MODE_INT
10249 && ! (mode == VOIDmode
10250 && (GET_CODE (op0) == COMPARE
10251 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10252 break;
10253
10254 /* Get the constant we are comparing against and turn off all bits
10255 not on in our mode. */
10256 const_op = INTVAL (op1);
10257 if (mode != VOIDmode)
10258 const_op = trunc_int_for_mode (const_op, mode);
10259 op1 = GEN_INT (const_op);
10260
10261 /* If we are comparing against a constant power of two and the value
10262 being compared can only have that single bit nonzero (e.g., it was
10263 `and'ed with that bit), we can replace this with a comparison
10264 with zero. */
10265 if (const_op
10266 && (code == EQ || code == NE || code == GE || code == GEU
10267 || code == LT || code == LTU)
10268 && mode_width <= HOST_BITS_PER_WIDE_INT
10269 && exact_log2 (const_op) >= 0
10270 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10271 {
10272 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10273 op1 = const0_rtx, const_op = 0;
10274 }
10275
10276 /* Similarly, if we are comparing a value known to be either -1 or
10277 0 with -1, change it to the opposite comparison against zero. */
10278
10279 if (const_op == -1
10280 && (code == EQ || code == NE || code == GT || code == LE
10281 || code == GEU || code == LTU)
10282 && num_sign_bit_copies (op0, mode) == mode_width)
10283 {
10284 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10285 op1 = const0_rtx, const_op = 0;
10286 }
10287
10288 /* Do some canonicalizations based on the comparison code. We prefer
10289 comparisons against zero and then prefer equality comparisons.
10290 If we can reduce the size of a constant, we will do that too. */
10291
10292 switch (code)
10293 {
10294 case LT:
10295 /* < C is equivalent to <= (C - 1) */
10296 if (const_op > 0)
10297 {
10298 const_op -= 1;
10299 op1 = GEN_INT (const_op);
10300 code = LE;
10301 /* ... fall through to LE case below. */
10302 }
10303 else
10304 break;
10305
10306 case LE:
10307 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10308 if (const_op < 0)
10309 {
10310 const_op += 1;
10311 op1 = GEN_INT (const_op);
10312 code = LT;
10313 }
10314
10315 /* If we are doing a <= 0 comparison on a value known to have
10316 a zero sign bit, we can replace this with == 0. */
10317 else if (const_op == 0
10318 && mode_width <= HOST_BITS_PER_WIDE_INT
10319 && (nonzero_bits (op0, mode)
10320 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10321 code = EQ;
10322 break;
10323
10324 case GE:
10325 /* >= C is equivalent to > (C - 1). */
10326 if (const_op > 0)
10327 {
10328 const_op -= 1;
10329 op1 = GEN_INT (const_op);
10330 code = GT;
10331 /* ... fall through to GT below. */
10332 }
10333 else
10334 break;
10335
10336 case GT:
10337 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10338 if (const_op < 0)
10339 {
10340 const_op += 1;
10341 op1 = GEN_INT (const_op);
10342 code = GE;
10343 }
10344
10345 /* If we are doing a > 0 comparison on a value known to have
10346 a zero sign bit, we can replace this with != 0. */
10347 else if (const_op == 0
10348 && mode_width <= HOST_BITS_PER_WIDE_INT
10349 && (nonzero_bits (op0, mode)
10350 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10351 code = NE;
10352 break;
10353
10354 case LTU:
10355 /* < C is equivalent to <= (C - 1). */
10356 if (const_op > 0)
10357 {
10358 const_op -= 1;
10359 op1 = GEN_INT (const_op);
10360 code = LEU;
10361 /* ... fall through ... */
10362 }
10363
10364 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10365 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10366 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10367 {
10368 const_op = 0, op1 = const0_rtx;
10369 code = GE;
10370 break;
10371 }
10372 else
10373 break;
10374
10375 case LEU:
10376 /* unsigned <= 0 is equivalent to == 0 */
10377 if (const_op == 0)
10378 code = EQ;
10379
10380 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10381 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10382 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10383 {
10384 const_op = 0, op1 = const0_rtx;
10385 code = GE;
10386 }
10387 break;
10388
10389 case GEU:
10390 /* >= C is equivalent to < (C - 1). */
10391 if (const_op > 1)
10392 {
10393 const_op -= 1;
10394 op1 = GEN_INT (const_op);
10395 code = GTU;
10396 /* ... fall through ... */
10397 }
10398
10399 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10400 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10401 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10402 {
10403 const_op = 0, op1 = const0_rtx;
10404 code = LT;
10405 break;
10406 }
10407 else
10408 break;
10409
10410 case GTU:
10411 /* unsigned > 0 is equivalent to != 0 */
10412 if (const_op == 0)
10413 code = NE;
10414
10415 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10416 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10417 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10418 {
10419 const_op = 0, op1 = const0_rtx;
10420 code = LT;
10421 }
10422 break;
10423
10424 default:
10425 break;
10426 }
10427
10428 /* Compute some predicates to simplify code below. */
10429
10430 equality_comparison_p = (code == EQ || code == NE);
10431 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10432 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10433 || code == GEU);
10434
10435 /* If this is a sign bit comparison and we can do arithmetic in
10436 MODE, say that we will only be needing the sign bit of OP0. */
10437 if (sign_bit_comparison_p
10438 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10439 op0 = force_to_mode (op0, mode,
10440 ((HOST_WIDE_INT) 1
10441 << (GET_MODE_BITSIZE (mode) - 1)),
10442 NULL_RTX, 0);
10443
10444 /* Now try cases based on the opcode of OP0. If none of the cases
10445 does a "continue", we exit this loop immediately after the
10446 switch. */
10447
10448 switch (GET_CODE (op0))
10449 {
10450 case ZERO_EXTRACT:
10451 /* If we are extracting a single bit from a variable position in
10452 a constant that has only a single bit set and are comparing it
10453 with zero, we can convert this into an equality comparison
10454 between the position and the location of the single bit. */
10455
10456 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10457 && XEXP (op0, 1) == const1_rtx
10458 && equality_comparison_p && const_op == 0
10459 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10460 {
10461 if (BITS_BIG_ENDIAN)
10462 {
10463 enum machine_mode new_mode
10464 = mode_for_extraction (EP_extzv, 1);
10465 if (new_mode == MAX_MACHINE_MODE)
10466 i = BITS_PER_WORD - 1 - i;
10467 else
10468 {
10469 mode = new_mode;
10470 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10471 }
10472 }
10473
10474 op0 = XEXP (op0, 2);
10475 op1 = GEN_INT (i);
10476 const_op = i;
10477
10478 /* Result is nonzero iff shift count is equal to I. */
10479 code = reverse_condition (code);
10480 continue;
10481 }
10482
10483 /* ... fall through ... */
10484
10485 case SIGN_EXTRACT:
10486 tem = expand_compound_operation (op0);
10487 if (tem != op0)
10488 {
10489 op0 = tem;
10490 continue;
10491 }
10492 break;
10493
10494 case NOT:
10495 /* If testing for equality, we can take the NOT of the constant. */
10496 if (equality_comparison_p
10497 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10498 {
10499 op0 = XEXP (op0, 0);
10500 op1 = tem;
10501 continue;
10502 }
10503
10504 /* If just looking at the sign bit, reverse the sense of the
10505 comparison. */
10506 if (sign_bit_comparison_p)
10507 {
10508 op0 = XEXP (op0, 0);
10509 code = (code == GE ? LT : GE);
10510 continue;
10511 }
10512 break;
10513
10514 case NEG:
10515 /* If testing for equality, we can take the NEG of the constant. */
10516 if (equality_comparison_p
10517 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10518 {
10519 op0 = XEXP (op0, 0);
10520 op1 = tem;
10521 continue;
10522 }
10523
10524 /* The remaining cases only apply to comparisons with zero. */
10525 if (const_op != 0)
10526 break;
10527
10528 /* When X is ABS or is known positive,
10529 (neg X) is < 0 if and only if X != 0. */
10530
10531 if (sign_bit_comparison_p
10532 && (GET_CODE (XEXP (op0, 0)) == ABS
10533 || (mode_width <= HOST_BITS_PER_WIDE_INT
10534 && (nonzero_bits (XEXP (op0, 0), mode)
10535 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10536 {
10537 op0 = XEXP (op0, 0);
10538 code = (code == LT ? NE : EQ);
10539 continue;
10540 }
10541
10542 /* If we have NEG of something whose two high-order bits are the
10543 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10544 if (num_sign_bit_copies (op0, mode) >= 2)
10545 {
10546 op0 = XEXP (op0, 0);
10547 code = swap_condition (code);
10548 continue;
10549 }
10550 break;
10551
10552 case ROTATE:
10553 /* If we are testing equality and our count is a constant, we
10554 can perform the inverse operation on our RHS. */
10555 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10556 && (tem = simplify_binary_operation (ROTATERT, mode,
10557 op1, XEXP (op0, 1))) != 0)
10558 {
10559 op0 = XEXP (op0, 0);
10560 op1 = tem;
10561 continue;
10562 }
10563
10564 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10565 a particular bit. Convert it to an AND of a constant of that
10566 bit. This will be converted into a ZERO_EXTRACT. */
10567 if (const_op == 0 && sign_bit_comparison_p
10568 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10569 && mode_width <= HOST_BITS_PER_WIDE_INT)
10570 {
10571 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10572 ((HOST_WIDE_INT) 1
10573 << (mode_width - 1
10574 - INTVAL (XEXP (op0, 1)))));
10575 code = (code == LT ? NE : EQ);
10576 continue;
10577 }
10578
10579 /* Fall through. */
10580
10581 case ABS:
10582 /* ABS is ignorable inside an equality comparison with zero. */
10583 if (const_op == 0 && equality_comparison_p)
10584 {
10585 op0 = XEXP (op0, 0);
10586 continue;
10587 }
10588 break;
10589
10590 case SIGN_EXTEND:
10591 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10592 to (compare FOO CONST) if CONST fits in FOO's mode and we
10593 are either testing inequality or have an unsigned comparison
10594 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10595 if (! unsigned_comparison_p
10596 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10597 <= HOST_BITS_PER_WIDE_INT)
10598 && ((unsigned HOST_WIDE_INT) const_op
10599 < (((unsigned HOST_WIDE_INT) 1
10600 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10601 {
10602 op0 = XEXP (op0, 0);
10603 continue;
10604 }
10605 break;
10606
10607 case SUBREG:
10608 /* Check for the case where we are comparing A - C1 with C2,
10609 both constants are smaller than 1/2 the maximum positive
10610 value in MODE, and the comparison is equality or unsigned.
10611 In that case, if A is either zero-extended to MODE or has
10612 sufficient sign bits so that the high-order bit in MODE
10613 is a copy of the sign in the inner mode, we can prove that it is
10614 safe to do the operation in the wider mode. This simplifies
10615 many range checks. */
10616
10617 if (mode_width <= HOST_BITS_PER_WIDE_INT
10618 && subreg_lowpart_p (op0)
10619 && GET_CODE (SUBREG_REG (op0)) == PLUS
10620 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10621 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10622 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10623 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10624 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10625 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10626 GET_MODE (SUBREG_REG (op0)))
10627 & ~GET_MODE_MASK (mode))
10628 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10629 GET_MODE (SUBREG_REG (op0)))
10630 > (unsigned int)
10631 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10632 - GET_MODE_BITSIZE (mode)))))
10633 {
10634 op0 = SUBREG_REG (op0);
10635 continue;
10636 }
10637
10638 /* If the inner mode is narrower and we are extracting the low part,
10639 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10640 if (subreg_lowpart_p (op0)
10641 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10642 /* Fall through */ ;
10643 else
10644 break;
10645
10646 /* ... fall through ... */
10647
10648 case ZERO_EXTEND:
10649 if ((unsigned_comparison_p || equality_comparison_p)
10650 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10651 <= HOST_BITS_PER_WIDE_INT)
10652 && ((unsigned HOST_WIDE_INT) const_op
10653 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10654 {
10655 op0 = XEXP (op0, 0);
10656 continue;
10657 }
10658 break;
10659
10660 case PLUS:
10661 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10662 this for equality comparisons due to pathological cases involving
10663 overflows. */
10664 if (equality_comparison_p
10665 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10666 op1, XEXP (op0, 1))))
10667 {
10668 op0 = XEXP (op0, 0);
10669 op1 = tem;
10670 continue;
10671 }
10672
10673 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10674 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10675 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10676 {
10677 op0 = XEXP (XEXP (op0, 0), 0);
10678 code = (code == LT ? EQ : NE);
10679 continue;
10680 }
10681 break;
10682
10683 case MINUS:
10684 /* We used to optimize signed comparisons against zero, but that
10685 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10686 arrive here as equality comparisons, or (GEU, LTU) are
10687 optimized away. No need to special-case them. */
10688
10689 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10690 (eq B (minus A C)), whichever simplifies. We can only do
10691 this for equality comparisons due to pathological cases involving
10692 overflows. */
10693 if (equality_comparison_p
10694 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10695 XEXP (op0, 1), op1)))
10696 {
10697 op0 = XEXP (op0, 0);
10698 op1 = tem;
10699 continue;
10700 }
10701
10702 if (equality_comparison_p
10703 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10704 XEXP (op0, 0), op1)))
10705 {
10706 op0 = XEXP (op0, 1);
10707 op1 = tem;
10708 continue;
10709 }
10710
10711 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10712 of bits in X minus 1, is one iff X > 0. */
10713 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10714 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10715 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10716 == mode_width - 1
10717 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10718 {
10719 op0 = XEXP (op0, 1);
10720 code = (code == GE ? LE : GT);
10721 continue;
10722 }
10723 break;
10724
10725 case XOR:
10726 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10727 if C is zero or B is a constant. */
10728 if (equality_comparison_p
10729 && 0 != (tem = simplify_binary_operation (XOR, mode,
10730 XEXP (op0, 1), op1)))
10731 {
10732 op0 = XEXP (op0, 0);
10733 op1 = tem;
10734 continue;
10735 }
10736 break;
10737
10738 case EQ: case NE:
10739 case UNEQ: case LTGT:
10740 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10741 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10742 case UNORDERED: case ORDERED:
10743 /* We can't do anything if OP0 is a condition code value, rather
10744 than an actual data value. */
10745 if (const_op != 0
10746 #ifdef HAVE_cc0
10747 || XEXP (op0, 0) == cc0_rtx
10748 #endif
10749 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10750 break;
10751
10752 /* Get the two operands being compared. */
10753 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10754 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10755 else
10756 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10757
10758 /* Check for the cases where we simply want the result of the
10759 earlier test or the opposite of that result. */
10760 if (code == NE || code == EQ
10761 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10762 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10763 && (STORE_FLAG_VALUE
10764 & (((HOST_WIDE_INT) 1
10765 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10766 && (code == LT || code == GE)))
10767 {
10768 enum rtx_code new_code;
10769 if (code == LT || code == NE)
10770 new_code = GET_CODE (op0);
10771 else
10772 new_code = combine_reversed_comparison_code (op0);
10773
10774 if (new_code != UNKNOWN)
10775 {
10776 code = new_code;
10777 op0 = tem;
10778 op1 = tem1;
10779 continue;
10780 }
10781 }
10782 break;
10783
10784 case IOR:
10785 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10786 iff X <= 0. */
10787 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10788 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10789 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10790 {
10791 op0 = XEXP (op0, 1);
10792 code = (code == GE ? GT : LE);
10793 continue;
10794 }
10795 break;
10796
10797 case AND:
10798 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10799 will be converted to a ZERO_EXTRACT later. */
10800 if (const_op == 0 && equality_comparison_p
10801 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10802 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10803 {
10804 op0 = simplify_and_const_int
10805 (op0, mode, gen_rtx_LSHIFTRT (mode,
10806 XEXP (op0, 1),
10807 XEXP (XEXP (op0, 0), 1)),
10808 (HOST_WIDE_INT) 1);
10809 continue;
10810 }
10811
10812 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10813 zero and X is a comparison and C1 and C2 describe only bits set
10814 in STORE_FLAG_VALUE, we can compare with X. */
10815 if (const_op == 0 && equality_comparison_p
10816 && mode_width <= HOST_BITS_PER_WIDE_INT
10817 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10818 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10819 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10820 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10821 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10822 {
10823 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10824 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10825 if ((~STORE_FLAG_VALUE & mask) == 0
10826 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10827 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10828 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10829 {
10830 op0 = XEXP (XEXP (op0, 0), 0);
10831 continue;
10832 }
10833 }
10834
10835 /* If we are doing an equality comparison of an AND of a bit equal
10836 to the sign bit, replace this with a LT or GE comparison of
10837 the underlying value. */
10838 if (equality_comparison_p
10839 && const_op == 0
10840 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10841 && mode_width <= HOST_BITS_PER_WIDE_INT
10842 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10843 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10844 {
10845 op0 = XEXP (op0, 0);
10846 code = (code == EQ ? GE : LT);
10847 continue;
10848 }
10849
10850 /* If this AND operation is really a ZERO_EXTEND from a narrower
10851 mode, the constant fits within that mode, and this is either an
10852 equality or unsigned comparison, try to do this comparison in
10853 the narrower mode. */
10854 if ((equality_comparison_p || unsigned_comparison_p)
10855 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10856 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10857 & GET_MODE_MASK (mode))
10858 + 1)) >= 0
10859 && const_op >> i == 0
10860 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10861 {
10862 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10863 continue;
10864 }
10865
10866 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10867 in both M1 and M2 and the SUBREG is either paradoxical or
10868 represents the low part, permute the SUBREG and the AND and
10869 try again. */
10870 if (GET_CODE (XEXP (op0, 0)) == SUBREG
10871 && (0
10872 #ifdef WORD_REGISTER_OPERATIONS
10873 || ((mode_width
10874 > (GET_MODE_BITSIZE
10875 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10876 && mode_width <= BITS_PER_WORD)
10877 #endif
10878 || ((mode_width
10879 <= (GET_MODE_BITSIZE
10880 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10881 && subreg_lowpart_p (XEXP (op0, 0))))
10882 #ifndef WORD_REGISTER_OPERATIONS
10883 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10884 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10885 As originally written the upper bits have a defined value
10886 due to the AND operation. However, if we commute the AND
10887 inside the SUBREG then they no longer have defined values
10888 and the meaning of the code has been changed. */
10889 && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
10890 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10891 #endif
10892 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10893 && mode_width <= HOST_BITS_PER_WIDE_INT
10894 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10895 <= HOST_BITS_PER_WIDE_INT)
10896 && (INTVAL (XEXP (op0, 1)) & ~mask) == 0
10897 && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10898 & INTVAL (XEXP (op0, 1)))
10899 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
10900 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10901 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10902
10903 {
10904 op0
10905 = gen_lowpart_for_combine
10906 (mode,
10907 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10908 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10909 continue;
10910 }
10911
10912 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10913 (eq (and (lshiftrt X) 1) 0). */
10914 if (const_op == 0 && equality_comparison_p
10915 && XEXP (op0, 1) == const1_rtx
10916 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10917 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
10918 {
10919 op0 = simplify_and_const_int
10920 (op0, mode,
10921 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
10922 XEXP (XEXP (op0, 0), 1)),
10923 (HOST_WIDE_INT) 1);
10924 code = (code == NE ? EQ : NE);
10925 continue;
10926 }
10927 break;
10928
10929 case ASHIFT:
10930 /* If we have (compare (ashift FOO N) (const_int C)) and
10931 the high order N bits of FOO (N+1 if an inequality comparison)
10932 are known to be zero, we can do this by comparing FOO with C
10933 shifted right N bits so long as the low-order N bits of C are
10934 zero. */
10935 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10936 && INTVAL (XEXP (op0, 1)) >= 0
10937 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10938 < HOST_BITS_PER_WIDE_INT)
10939 && ((const_op
10940 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10941 && mode_width <= HOST_BITS_PER_WIDE_INT
10942 && (nonzero_bits (XEXP (op0, 0), mode)
10943 & ~(mask >> (INTVAL (XEXP (op0, 1))
10944 + ! equality_comparison_p))) == 0)
10945 {
10946 /* We must perform a logical shift, not an arithmetic one,
10947 as we want the top N bits of C to be zero. */
10948 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10949
10950 temp >>= INTVAL (XEXP (op0, 1));
10951 op1 = gen_int_mode (temp, mode);
10952 op0 = XEXP (op0, 0);
10953 continue;
10954 }
10955
10956 /* If we are doing a sign bit comparison, it means we are testing
10957 a particular bit. Convert it to the appropriate AND. */
10958 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10959 && mode_width <= HOST_BITS_PER_WIDE_INT)
10960 {
10961 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10962 ((HOST_WIDE_INT) 1
10963 << (mode_width - 1
10964 - INTVAL (XEXP (op0, 1)))));
10965 code = (code == LT ? NE : EQ);
10966 continue;
10967 }
10968
10969 /* If this an equality comparison with zero and we are shifting
10970 the low bit to the sign bit, we can convert this to an AND of the
10971 low-order bit. */
10972 if (const_op == 0 && equality_comparison_p
10973 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10974 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10975 == mode_width - 1)
10976 {
10977 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10978 (HOST_WIDE_INT) 1);
10979 continue;
10980 }
10981 break;
10982
10983 case ASHIFTRT:
10984 /* If this is an equality comparison with zero, we can do this
10985 as a logical shift, which might be much simpler. */
10986 if (equality_comparison_p && const_op == 0
10987 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10988 {
10989 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10990 XEXP (op0, 0),
10991 INTVAL (XEXP (op0, 1)));
10992 continue;
10993 }
10994
10995 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10996 do the comparison in a narrower mode. */
10997 if (! unsigned_comparison_p
10998 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10999 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11000 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11001 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11002 MODE_INT, 1)) != BLKmode
11003 && (((unsigned HOST_WIDE_INT) const_op
11004 + (GET_MODE_MASK (tmode) >> 1) + 1)
11005 <= GET_MODE_MASK (tmode)))
11006 {
11007 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
11008 continue;
11009 }
11010
11011 /* Likewise if OP0 is a PLUS of a sign extension with a
11012 constant, which is usually represented with the PLUS
11013 between the shifts. */
11014 if (! unsigned_comparison_p
11015 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11016 && GET_CODE (XEXP (op0, 0)) == PLUS
11017 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
11018 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11019 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11020 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11021 MODE_INT, 1)) != BLKmode
11022 && (((unsigned HOST_WIDE_INT) const_op
11023 + (GET_MODE_MASK (tmode) >> 1) + 1)
11024 <= GET_MODE_MASK (tmode)))
11025 {
11026 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11027 rtx add_const = XEXP (XEXP (op0, 0), 1);
11028 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
11029 XEXP (op0, 1));
11030
11031 op0 = gen_binary (PLUS, tmode,
11032 gen_lowpart_for_combine (tmode, inner),
11033 new_const);
11034 continue;
11035 }
11036
11037 /* ... fall through ... */
11038 case LSHIFTRT:
11039 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11040 the low order N bits of FOO are known to be zero, we can do this
11041 by comparing FOO with C shifted left N bits so long as no
11042 overflow occurs. */
11043 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11044 && INTVAL (XEXP (op0, 1)) >= 0
11045 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11046 && mode_width <= HOST_BITS_PER_WIDE_INT
11047 && (nonzero_bits (XEXP (op0, 0), mode)
11048 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11049 && (((unsigned HOST_WIDE_INT) const_op
11050 + (GET_CODE (op0) != LSHIFTRT
11051 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11052 + 1)
11053 : 0))
11054 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11055 {
11056 /* If the shift was logical, then we must make the condition
11057 unsigned. */
11058 if (GET_CODE (op0) == LSHIFTRT)
11059 code = unsigned_condition (code);
11060
11061 const_op <<= INTVAL (XEXP (op0, 1));
11062 op1 = GEN_INT (const_op);
11063 op0 = XEXP (op0, 0);
11064 continue;
11065 }
11066
11067 /* If we are using this shift to extract just the sign bit, we
11068 can replace this with an LT or GE comparison. */
11069 if (const_op == 0
11070 && (equality_comparison_p || sign_bit_comparison_p)
11071 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11072 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11073 == mode_width - 1)
11074 {
11075 op0 = XEXP (op0, 0);
11076 code = (code == NE || code == GT ? LT : GE);
11077 continue;
11078 }
11079 break;
11080
11081 default:
11082 break;
11083 }
11084
11085 break;
11086 }
11087
11088 /* Now make any compound operations involved in this comparison. Then,
11089 check for an outmost SUBREG on OP0 that is not doing anything or is
11090 paradoxical. The latter transformation must only be performed when
11091 it is known that the "extra" bits will be the same in op0 and op1 or
11092 that they don't matter. There are three cases to consider:
11093
11094 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11095 care bits and we can assume they have any convenient value. So
11096 making the transformation is safe.
11097
11098 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11099 In this case the upper bits of op0 are undefined. We should not make
11100 the simplification in that case as we do not know the contents of
11101 those bits.
11102
11103 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11104 NIL. In that case we know those bits are zeros or ones. We must
11105 also be sure that they are the same as the upper bits of op1.
11106
11107 We can never remove a SUBREG for a non-equality comparison because
11108 the sign bit is in a different place in the underlying object. */
11109
11110 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11111 op1 = make_compound_operation (op1, SET);
11112
11113 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11114 /* Case 3 above, to sometimes allow (subreg (mem x)), isn't
11115 implemented. */
11116 && GET_CODE (SUBREG_REG (op0)) == REG
11117 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11118 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11119 && (code == NE || code == EQ))
11120 {
11121 if (GET_MODE_SIZE (GET_MODE (op0))
11122 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11123 {
11124 op0 = SUBREG_REG (op0);
11125 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
11126 }
11127 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11128 <= HOST_BITS_PER_WIDE_INT)
11129 && (nonzero_bits (SUBREG_REG (op0),
11130 GET_MODE (SUBREG_REG (op0)))
11131 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11132 {
11133 tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)), op1);
11134
11135 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11136 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11137 op0 = SUBREG_REG (op0), op1 = tem;
11138 }
11139 }
11140
11141 /* We now do the opposite procedure: Some machines don't have compare
11142 insns in all modes. If OP0's mode is an integer mode smaller than a
11143 word and we can't do a compare in that mode, see if there is a larger
11144 mode for which we can do the compare. There are a number of cases in
11145 which we can use the wider mode. */
11146
11147 mode = GET_MODE (op0);
11148 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11149 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11150 && ! have_insn_for (COMPARE, mode))
11151 for (tmode = GET_MODE_WIDER_MODE (mode);
11152 (tmode != VOIDmode
11153 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11154 tmode = GET_MODE_WIDER_MODE (tmode))
11155 if (have_insn_for (COMPARE, tmode))
11156 {
11157 int zero_extended;
11158
11159 /* If the only nonzero bits in OP0 and OP1 are those in the
11160 narrower mode and this is an equality or unsigned comparison,
11161 we can use the wider mode. Similarly for sign-extended
11162 values, in which case it is true for all comparisons. */
11163 zero_extended = ((code == EQ || code == NE
11164 || code == GEU || code == GTU
11165 || code == LEU || code == LTU)
11166 && (nonzero_bits (op0, tmode)
11167 & ~GET_MODE_MASK (mode)) == 0
11168 && ((GET_CODE (op1) == CONST_INT
11169 || (nonzero_bits (op1, tmode)
11170 & ~GET_MODE_MASK (mode)) == 0)));
11171
11172 if (zero_extended
11173 || ((num_sign_bit_copies (op0, tmode)
11174 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11175 - GET_MODE_BITSIZE (mode)))
11176 && (num_sign_bit_copies (op1, tmode)
11177 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11178 - GET_MODE_BITSIZE (mode)))))
11179 {
11180 /* If OP0 is an AND and we don't have an AND in MODE either,
11181 make a new AND in the proper mode. */
11182 if (GET_CODE (op0) == AND
11183 && !have_insn_for (AND, mode))
11184 op0 = gen_binary (AND, tmode,
11185 gen_lowpart_for_combine (tmode,
11186 XEXP (op0, 0)),
11187 gen_lowpart_for_combine (tmode,
11188 XEXP (op0, 1)));
11189
11190 op0 = gen_lowpart_for_combine (tmode, op0);
11191 if (zero_extended && GET_CODE (op1) == CONST_INT)
11192 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11193 op1 = gen_lowpart_for_combine (tmode, op1);
11194 break;
11195 }
11196
11197 /* If this is a test for negative, we can make an explicit
11198 test of the sign bit. */
11199
11200 if (op1 == const0_rtx && (code == LT || code == GE)
11201 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11202 {
11203 op0 = gen_binary (AND, tmode,
11204 gen_lowpart_for_combine (tmode, op0),
11205 GEN_INT ((HOST_WIDE_INT) 1
11206 << (GET_MODE_BITSIZE (mode) - 1)));
11207 code = (code == LT) ? NE : EQ;
11208 break;
11209 }
11210 }
11211
11212 #ifdef CANONICALIZE_COMPARISON
11213 /* If this machine only supports a subset of valid comparisons, see if we
11214 can convert an unsupported one into a supported one. */
11215 CANONICALIZE_COMPARISON (code, op0, op1);
11216 #endif
11217
11218 *pop0 = op0;
11219 *pop1 = op1;
11220
11221 return code;
11222 }
11223 \f
11224 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11225 searching backward. */
11226 static enum rtx_code
11227 combine_reversed_comparison_code (exp)
11228 rtx exp;
11229 {
11230 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11231 rtx x;
11232
11233 if (code1 != UNKNOWN
11234 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11235 return code1;
11236 /* Otherwise try and find where the condition codes were last set and
11237 use that. */
11238 x = get_last_value (XEXP (exp, 0));
11239 if (!x || GET_CODE (x) != COMPARE)
11240 return UNKNOWN;
11241 return reversed_comparison_code_parts (GET_CODE (exp),
11242 XEXP (x, 0), XEXP (x, 1), NULL);
11243 }
11244 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11245 Return NULL_RTX in case we fail to do the reversal. */
11246 static rtx
11247 reversed_comparison (exp, mode, op0, op1)
11248 rtx exp, op0, op1;
11249 enum machine_mode mode;
11250 {
11251 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11252 if (reversed_code == UNKNOWN)
11253 return NULL_RTX;
11254 else
11255 return gen_binary (reversed_code, mode, op0, op1);
11256 }
11257 \f
11258 /* Utility function for following routine. Called when X is part of a value
11259 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11260 for each register mentioned. Similar to mention_regs in cse.c */
11261
11262 static void
11263 update_table_tick (x)
11264 rtx x;
11265 {
11266 enum rtx_code code = GET_CODE (x);
11267 const char *fmt = GET_RTX_FORMAT (code);
11268 int i;
11269
11270 if (code == REG)
11271 {
11272 unsigned int regno = REGNO (x);
11273 unsigned int endregno
11274 = regno + (regno < FIRST_PSEUDO_REGISTER
11275 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11276 unsigned int r;
11277
11278 for (r = regno; r < endregno; r++)
11279 reg_last_set_table_tick[r] = label_tick;
11280
11281 return;
11282 }
11283
11284 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11285 /* Note that we can't have an "E" in values stored; see
11286 get_last_value_validate. */
11287 if (fmt[i] == 'e')
11288 update_table_tick (XEXP (x, i));
11289 }
11290
11291 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11292 are saying that the register is clobbered and we no longer know its
11293 value. If INSN is zero, don't update reg_last_set; this is only permitted
11294 with VALUE also zero and is used to invalidate the register. */
11295
11296 static void
11297 record_value_for_reg (reg, insn, value)
11298 rtx reg;
11299 rtx insn;
11300 rtx value;
11301 {
11302 unsigned int regno = REGNO (reg);
11303 unsigned int endregno
11304 = regno + (regno < FIRST_PSEUDO_REGISTER
11305 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11306 unsigned int i;
11307
11308 /* If VALUE contains REG and we have a previous value for REG, substitute
11309 the previous value. */
11310 if (value && insn && reg_overlap_mentioned_p (reg, value))
11311 {
11312 rtx tem;
11313
11314 /* Set things up so get_last_value is allowed to see anything set up to
11315 our insn. */
11316 subst_low_cuid = INSN_CUID (insn);
11317 tem = get_last_value (reg);
11318
11319 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11320 it isn't going to be useful and will take a lot of time to process,
11321 so just use the CLOBBER. */
11322
11323 if (tem)
11324 {
11325 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11326 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11327 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11328 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11329 tem = XEXP (tem, 0);
11330
11331 value = replace_rtx (copy_rtx (value), reg, tem);
11332 }
11333 }
11334
11335 /* For each register modified, show we don't know its value, that
11336 we don't know about its bitwise content, that its value has been
11337 updated, and that we don't know the location of the death of the
11338 register. */
11339 for (i = regno; i < endregno; i++)
11340 {
11341 if (insn)
11342 reg_last_set[i] = insn;
11343
11344 reg_last_set_value[i] = 0;
11345 reg_last_set_mode[i] = 0;
11346 reg_last_set_nonzero_bits[i] = 0;
11347 reg_last_set_sign_bit_copies[i] = 0;
11348 reg_last_death[i] = 0;
11349 }
11350
11351 /* Mark registers that are being referenced in this value. */
11352 if (value)
11353 update_table_tick (value);
11354
11355 /* Now update the status of each register being set.
11356 If someone is using this register in this block, set this register
11357 to invalid since we will get confused between the two lives in this
11358 basic block. This makes using this register always invalid. In cse, we
11359 scan the table to invalidate all entries using this register, but this
11360 is too much work for us. */
11361
11362 for (i = regno; i < endregno; i++)
11363 {
11364 reg_last_set_label[i] = label_tick;
11365 if (value && reg_last_set_table_tick[i] == label_tick)
11366 reg_last_set_invalid[i] = 1;
11367 else
11368 reg_last_set_invalid[i] = 0;
11369 }
11370
11371 /* The value being assigned might refer to X (like in "x++;"). In that
11372 case, we must replace it with (clobber (const_int 0)) to prevent
11373 infinite loops. */
11374 if (value && ! get_last_value_validate (&value, insn,
11375 reg_last_set_label[regno], 0))
11376 {
11377 value = copy_rtx (value);
11378 if (! get_last_value_validate (&value, insn,
11379 reg_last_set_label[regno], 1))
11380 value = 0;
11381 }
11382
11383 /* For the main register being modified, update the value, the mode, the
11384 nonzero bits, and the number of sign bit copies. */
11385
11386 reg_last_set_value[regno] = value;
11387
11388 if (value)
11389 {
11390 enum machine_mode mode = GET_MODE (reg);
11391 subst_low_cuid = INSN_CUID (insn);
11392 reg_last_set_mode[regno] = mode;
11393 if (GET_MODE_CLASS (mode) == MODE_INT
11394 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11395 mode = nonzero_bits_mode;
11396 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
11397 reg_last_set_sign_bit_copies[regno]
11398 = num_sign_bit_copies (value, GET_MODE (reg));
11399 }
11400 }
11401
11402 /* Called via note_stores from record_dead_and_set_regs to handle one
11403 SET or CLOBBER in an insn. DATA is the instruction in which the
11404 set is occurring. */
11405
11406 static void
11407 record_dead_and_set_regs_1 (dest, setter, data)
11408 rtx dest, setter;
11409 void *data;
11410 {
11411 rtx record_dead_insn = (rtx) data;
11412
11413 if (GET_CODE (dest) == SUBREG)
11414 dest = SUBREG_REG (dest);
11415
11416 if (GET_CODE (dest) == REG)
11417 {
11418 /* If we are setting the whole register, we know its value. Otherwise
11419 show that we don't know the value. We can handle SUBREG in
11420 some cases. */
11421 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11422 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11423 else if (GET_CODE (setter) == SET
11424 && GET_CODE (SET_DEST (setter)) == SUBREG
11425 && SUBREG_REG (SET_DEST (setter)) == dest
11426 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11427 && subreg_lowpart_p (SET_DEST (setter)))
11428 record_value_for_reg (dest, record_dead_insn,
11429 gen_lowpart_for_combine (GET_MODE (dest),
11430 SET_SRC (setter)));
11431 else
11432 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11433 }
11434 else if (GET_CODE (dest) == MEM
11435 /* Ignore pushes, they clobber nothing. */
11436 && ! push_operand (dest, GET_MODE (dest)))
11437 mem_last_set = INSN_CUID (record_dead_insn);
11438 }
11439
11440 /* Update the records of when each REG was most recently set or killed
11441 for the things done by INSN. This is the last thing done in processing
11442 INSN in the combiner loop.
11443
11444 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11445 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11446 and also the similar information mem_last_set (which insn most recently
11447 modified memory) and last_call_cuid (which insn was the most recent
11448 subroutine call). */
11449
11450 static void
11451 record_dead_and_set_regs (insn)
11452 rtx insn;
11453 {
11454 rtx link;
11455 unsigned int i;
11456
11457 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11458 {
11459 if (REG_NOTE_KIND (link) == REG_DEAD
11460 && GET_CODE (XEXP (link, 0)) == REG)
11461 {
11462 unsigned int regno = REGNO (XEXP (link, 0));
11463 unsigned int endregno
11464 = regno + (regno < FIRST_PSEUDO_REGISTER
11465 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11466 : 1);
11467
11468 for (i = regno; i < endregno; i++)
11469 reg_last_death[i] = insn;
11470 }
11471 else if (REG_NOTE_KIND (link) == REG_INC)
11472 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11473 }
11474
11475 if (GET_CODE (insn) == CALL_INSN)
11476 {
11477 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11478 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11479 {
11480 reg_last_set_value[i] = 0;
11481 reg_last_set_mode[i] = 0;
11482 reg_last_set_nonzero_bits[i] = 0;
11483 reg_last_set_sign_bit_copies[i] = 0;
11484 reg_last_death[i] = 0;
11485 }
11486
11487 last_call_cuid = mem_last_set = INSN_CUID (insn);
11488
11489 /* Don't bother recording what this insn does. It might set the
11490 return value register, but we can't combine into a call
11491 pattern anyway, so there's no point trying (and it may cause
11492 a crash, if e.g. we wind up asking for last_set_value of a
11493 SUBREG of the return value register). */
11494 return;
11495 }
11496
11497 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11498 }
11499
11500 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11501 register present in the SUBREG, so for each such SUBREG go back and
11502 adjust nonzero and sign bit information of the registers that are
11503 known to have some zero/sign bits set.
11504
11505 This is needed because when combine blows the SUBREGs away, the
11506 information on zero/sign bits is lost and further combines can be
11507 missed because of that. */
11508
11509 static void
11510 record_promoted_value (insn, subreg)
11511 rtx insn;
11512 rtx subreg;
11513 {
11514 rtx links, set;
11515 unsigned int regno = REGNO (SUBREG_REG (subreg));
11516 enum machine_mode mode = GET_MODE (subreg);
11517
11518 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11519 return;
11520
11521 for (links = LOG_LINKS (insn); links;)
11522 {
11523 insn = XEXP (links, 0);
11524 set = single_set (insn);
11525
11526 if (! set || GET_CODE (SET_DEST (set)) != REG
11527 || REGNO (SET_DEST (set)) != regno
11528 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11529 {
11530 links = XEXP (links, 1);
11531 continue;
11532 }
11533
11534 if (reg_last_set[regno] == insn)
11535 {
11536 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11537 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11538 }
11539
11540 if (GET_CODE (SET_SRC (set)) == REG)
11541 {
11542 regno = REGNO (SET_SRC (set));
11543 links = LOG_LINKS (insn);
11544 }
11545 else
11546 break;
11547 }
11548 }
11549
11550 /* Scan X for promoted SUBREGs. For each one found,
11551 note what it implies to the registers used in it. */
11552
11553 static void
11554 check_promoted_subreg (insn, x)
11555 rtx insn;
11556 rtx x;
11557 {
11558 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11559 && GET_CODE (SUBREG_REG (x)) == REG)
11560 record_promoted_value (insn, x);
11561 else
11562 {
11563 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11564 int i, j;
11565
11566 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11567 switch (format[i])
11568 {
11569 case 'e':
11570 check_promoted_subreg (insn, XEXP (x, i));
11571 break;
11572 case 'V':
11573 case 'E':
11574 if (XVEC (x, i) != 0)
11575 for (j = 0; j < XVECLEN (x, i); j++)
11576 check_promoted_subreg (insn, XVECEXP (x, i, j));
11577 break;
11578 }
11579 }
11580 }
11581 \f
11582 /* Utility routine for the following function. Verify that all the registers
11583 mentioned in *LOC are valid when *LOC was part of a value set when
11584 label_tick == TICK. Return 0 if some are not.
11585
11586 If REPLACE is nonzero, replace the invalid reference with
11587 (clobber (const_int 0)) and return 1. This replacement is useful because
11588 we often can get useful information about the form of a value (e.g., if
11589 it was produced by a shift that always produces -1 or 0) even though
11590 we don't know exactly what registers it was produced from. */
11591
11592 static int
11593 get_last_value_validate (loc, insn, tick, replace)
11594 rtx *loc;
11595 rtx insn;
11596 int tick;
11597 int replace;
11598 {
11599 rtx x = *loc;
11600 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11601 int len = GET_RTX_LENGTH (GET_CODE (x));
11602 int i;
11603
11604 if (GET_CODE (x) == REG)
11605 {
11606 unsigned int regno = REGNO (x);
11607 unsigned int endregno
11608 = regno + (regno < FIRST_PSEUDO_REGISTER
11609 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11610 unsigned int j;
11611
11612 for (j = regno; j < endregno; j++)
11613 if (reg_last_set_invalid[j]
11614 /* If this is a pseudo-register that was only set once and not
11615 live at the beginning of the function, it is always valid. */
11616 || (! (regno >= FIRST_PSEUDO_REGISTER
11617 && REG_N_SETS (regno) == 1
11618 && (! REGNO_REG_SET_P
11619 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11620 && reg_last_set_label[j] > tick))
11621 {
11622 if (replace)
11623 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11624 return replace;
11625 }
11626
11627 return 1;
11628 }
11629 /* If this is a memory reference, make sure that there were
11630 no stores after it that might have clobbered the value. We don't
11631 have alias info, so we assume any store invalidates it. */
11632 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11633 && INSN_CUID (insn) <= mem_last_set)
11634 {
11635 if (replace)
11636 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11637 return replace;
11638 }
11639
11640 for (i = 0; i < len; i++)
11641 if ((fmt[i] == 'e'
11642 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
11643 /* Don't bother with these. They shouldn't occur anyway. */
11644 || fmt[i] == 'E')
11645 return 0;
11646
11647 /* If we haven't found a reason for it to be invalid, it is valid. */
11648 return 1;
11649 }
11650
11651 /* Get the last value assigned to X, if known. Some registers
11652 in the value may be replaced with (clobber (const_int 0)) if their value
11653 is known longer known reliably. */
11654
11655 static rtx
11656 get_last_value (x)
11657 rtx x;
11658 {
11659 unsigned int regno;
11660 rtx value;
11661
11662 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11663 then convert it to the desired mode. If this is a paradoxical SUBREG,
11664 we cannot predict what values the "extra" bits might have. */
11665 if (GET_CODE (x) == SUBREG
11666 && subreg_lowpart_p (x)
11667 && (GET_MODE_SIZE (GET_MODE (x))
11668 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11669 && (value = get_last_value (SUBREG_REG (x))) != 0)
11670 return gen_lowpart_for_combine (GET_MODE (x), value);
11671
11672 if (GET_CODE (x) != REG)
11673 return 0;
11674
11675 regno = REGNO (x);
11676 value = reg_last_set_value[regno];
11677
11678 /* If we don't have a value, or if it isn't for this basic block and
11679 it's either a hard register, set more than once, or it's a live
11680 at the beginning of the function, return 0.
11681
11682 Because if it's not live at the beginning of the function then the reg
11683 is always set before being used (is never used without being set).
11684 And, if it's set only once, and it's always set before use, then all
11685 uses must have the same last value, even if it's not from this basic
11686 block. */
11687
11688 if (value == 0
11689 || (reg_last_set_label[regno] != label_tick
11690 && (regno < FIRST_PSEUDO_REGISTER
11691 || REG_N_SETS (regno) != 1
11692 || (REGNO_REG_SET_P
11693 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11694 return 0;
11695
11696 /* If the value was set in a later insn than the ones we are processing,
11697 we can't use it even if the register was only set once. */
11698 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11699 return 0;
11700
11701 /* If the value has all its registers valid, return it. */
11702 if (get_last_value_validate (&value, reg_last_set[regno],
11703 reg_last_set_label[regno], 0))
11704 return value;
11705
11706 /* Otherwise, make a copy and replace any invalid register with
11707 (clobber (const_int 0)). If that fails for some reason, return 0. */
11708
11709 value = copy_rtx (value);
11710 if (get_last_value_validate (&value, reg_last_set[regno],
11711 reg_last_set_label[regno], 1))
11712 return value;
11713
11714 return 0;
11715 }
11716 \f
11717 /* Return nonzero if expression X refers to a REG or to memory
11718 that is set in an instruction more recent than FROM_CUID. */
11719
11720 static int
11721 use_crosses_set_p (x, from_cuid)
11722 rtx x;
11723 int from_cuid;
11724 {
11725 const char *fmt;
11726 int i;
11727 enum rtx_code code = GET_CODE (x);
11728
11729 if (code == REG)
11730 {
11731 unsigned int regno = REGNO (x);
11732 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11733 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11734
11735 #ifdef PUSH_ROUNDING
11736 /* Don't allow uses of the stack pointer to be moved,
11737 because we don't know whether the move crosses a push insn. */
11738 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11739 return 1;
11740 #endif
11741 for (; regno < endreg; regno++)
11742 if (reg_last_set[regno]
11743 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11744 return 1;
11745 return 0;
11746 }
11747
11748 if (code == MEM && mem_last_set > from_cuid)
11749 return 1;
11750
11751 fmt = GET_RTX_FORMAT (code);
11752
11753 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11754 {
11755 if (fmt[i] == 'E')
11756 {
11757 int j;
11758 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11759 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11760 return 1;
11761 }
11762 else if (fmt[i] == 'e'
11763 && use_crosses_set_p (XEXP (x, i), from_cuid))
11764 return 1;
11765 }
11766 return 0;
11767 }
11768 \f
11769 /* Define three variables used for communication between the following
11770 routines. */
11771
11772 static unsigned int reg_dead_regno, reg_dead_endregno;
11773 static int reg_dead_flag;
11774
11775 /* Function called via note_stores from reg_dead_at_p.
11776
11777 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11778 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11779
11780 static void
11781 reg_dead_at_p_1 (dest, x, data)
11782 rtx dest;
11783 rtx x;
11784 void *data ATTRIBUTE_UNUSED;
11785 {
11786 unsigned int regno, endregno;
11787
11788 if (GET_CODE (dest) != REG)
11789 return;
11790
11791 regno = REGNO (dest);
11792 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11793 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11794
11795 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11796 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11797 }
11798
11799 /* Return nonzero if REG is known to be dead at INSN.
11800
11801 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11802 referencing REG, it is dead. If we hit a SET referencing REG, it is
11803 live. Otherwise, see if it is live or dead at the start of the basic
11804 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11805 must be assumed to be always live. */
11806
11807 static int
11808 reg_dead_at_p (reg, insn)
11809 rtx reg;
11810 rtx insn;
11811 {
11812 basic_block block;
11813 unsigned int i;
11814
11815 /* Set variables for reg_dead_at_p_1. */
11816 reg_dead_regno = REGNO (reg);
11817 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11818 ? HARD_REGNO_NREGS (reg_dead_regno,
11819 GET_MODE (reg))
11820 : 1);
11821
11822 reg_dead_flag = 0;
11823
11824 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11825 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11826 {
11827 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11828 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11829 return 0;
11830 }
11831
11832 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11833 beginning of function. */
11834 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11835 insn = prev_nonnote_insn (insn))
11836 {
11837 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11838 if (reg_dead_flag)
11839 return reg_dead_flag == 1 ? 1 : 0;
11840
11841 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11842 return 1;
11843 }
11844
11845 /* Get the basic block that we were in. */
11846 if (insn == 0)
11847 block = ENTRY_BLOCK_PTR->next_bb;
11848 else
11849 {
11850 FOR_EACH_BB (block)
11851 if (insn == block->head)
11852 break;
11853
11854 if (block == EXIT_BLOCK_PTR)
11855 return 0;
11856 }
11857
11858 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11859 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11860 return 0;
11861
11862 return 1;
11863 }
11864 \f
11865 /* Note hard registers in X that are used. This code is similar to
11866 that in flow.c, but much simpler since we don't care about pseudos. */
11867
11868 static void
11869 mark_used_regs_combine (x)
11870 rtx x;
11871 {
11872 RTX_CODE code = GET_CODE (x);
11873 unsigned int regno;
11874 int i;
11875
11876 switch (code)
11877 {
11878 case LABEL_REF:
11879 case SYMBOL_REF:
11880 case CONST_INT:
11881 case CONST:
11882 case CONST_DOUBLE:
11883 case CONST_VECTOR:
11884 case PC:
11885 case ADDR_VEC:
11886 case ADDR_DIFF_VEC:
11887 case ASM_INPUT:
11888 #ifdef HAVE_cc0
11889 /* CC0 must die in the insn after it is set, so we don't need to take
11890 special note of it here. */
11891 case CC0:
11892 #endif
11893 return;
11894
11895 case CLOBBER:
11896 /* If we are clobbering a MEM, mark any hard registers inside the
11897 address as used. */
11898 if (GET_CODE (XEXP (x, 0)) == MEM)
11899 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11900 return;
11901
11902 case REG:
11903 regno = REGNO (x);
11904 /* A hard reg in a wide mode may really be multiple registers.
11905 If so, mark all of them just like the first. */
11906 if (regno < FIRST_PSEUDO_REGISTER)
11907 {
11908 unsigned int endregno, r;
11909
11910 /* None of this applies to the stack, frame or arg pointers */
11911 if (regno == STACK_POINTER_REGNUM
11912 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11913 || regno == HARD_FRAME_POINTER_REGNUM
11914 #endif
11915 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11916 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11917 #endif
11918 || regno == FRAME_POINTER_REGNUM)
11919 return;
11920
11921 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11922 for (r = regno; r < endregno; r++)
11923 SET_HARD_REG_BIT (newpat_used_regs, r);
11924 }
11925 return;
11926
11927 case SET:
11928 {
11929 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11930 the address. */
11931 rtx testreg = SET_DEST (x);
11932
11933 while (GET_CODE (testreg) == SUBREG
11934 || GET_CODE (testreg) == ZERO_EXTRACT
11935 || GET_CODE (testreg) == SIGN_EXTRACT
11936 || GET_CODE (testreg) == STRICT_LOW_PART)
11937 testreg = XEXP (testreg, 0);
11938
11939 if (GET_CODE (testreg) == MEM)
11940 mark_used_regs_combine (XEXP (testreg, 0));
11941
11942 mark_used_regs_combine (SET_SRC (x));
11943 }
11944 return;
11945
11946 default:
11947 break;
11948 }
11949
11950 /* Recursively scan the operands of this expression. */
11951
11952 {
11953 const char *fmt = GET_RTX_FORMAT (code);
11954
11955 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11956 {
11957 if (fmt[i] == 'e')
11958 mark_used_regs_combine (XEXP (x, i));
11959 else if (fmt[i] == 'E')
11960 {
11961 int j;
11962
11963 for (j = 0; j < XVECLEN (x, i); j++)
11964 mark_used_regs_combine (XVECEXP (x, i, j));
11965 }
11966 }
11967 }
11968 }
11969 \f
11970 /* Remove register number REGNO from the dead registers list of INSN.
11971
11972 Return the note used to record the death, if there was one. */
11973
11974 rtx
11975 remove_death (regno, insn)
11976 unsigned int regno;
11977 rtx insn;
11978 {
11979 rtx note = find_regno_note (insn, REG_DEAD, regno);
11980
11981 if (note)
11982 {
11983 REG_N_DEATHS (regno)--;
11984 remove_note (insn, note);
11985 }
11986
11987 return note;
11988 }
11989
11990 /* For each register (hardware or pseudo) used within expression X, if its
11991 death is in an instruction with cuid between FROM_CUID (inclusive) and
11992 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11993 list headed by PNOTES.
11994
11995 That said, don't move registers killed by maybe_kill_insn.
11996
11997 This is done when X is being merged by combination into TO_INSN. These
11998 notes will then be distributed as needed. */
11999
12000 static void
12001 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
12002 rtx x;
12003 rtx maybe_kill_insn;
12004 int from_cuid;
12005 rtx to_insn;
12006 rtx *pnotes;
12007 {
12008 const char *fmt;
12009 int len, i;
12010 enum rtx_code code = GET_CODE (x);
12011
12012 if (code == REG)
12013 {
12014 unsigned int regno = REGNO (x);
12015 rtx where_dead = reg_last_death[regno];
12016 rtx before_dead, after_dead;
12017
12018 /* Don't move the register if it gets killed in between from and to */
12019 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12020 && ! reg_referenced_p (x, maybe_kill_insn))
12021 return;
12022
12023 /* WHERE_DEAD could be a USE insn made by combine, so first we
12024 make sure that we have insns with valid INSN_CUID values. */
12025 before_dead = where_dead;
12026 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
12027 before_dead = PREV_INSN (before_dead);
12028
12029 after_dead = where_dead;
12030 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
12031 after_dead = NEXT_INSN (after_dead);
12032
12033 if (before_dead && after_dead
12034 && INSN_CUID (before_dead) >= from_cuid
12035 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
12036 || (where_dead != after_dead
12037 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
12038 {
12039 rtx note = remove_death (regno, where_dead);
12040
12041 /* It is possible for the call above to return 0. This can occur
12042 when reg_last_death points to I2 or I1 that we combined with.
12043 In that case make a new note.
12044
12045 We must also check for the case where X is a hard register
12046 and NOTE is a death note for a range of hard registers
12047 including X. In that case, we must put REG_DEAD notes for
12048 the remaining registers in place of NOTE. */
12049
12050 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12051 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12052 > GET_MODE_SIZE (GET_MODE (x))))
12053 {
12054 unsigned int deadregno = REGNO (XEXP (note, 0));
12055 unsigned int deadend
12056 = (deadregno + HARD_REGNO_NREGS (deadregno,
12057 GET_MODE (XEXP (note, 0))));
12058 unsigned int ourend
12059 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12060 unsigned int i;
12061
12062 for (i = deadregno; i < deadend; i++)
12063 if (i < regno || i >= ourend)
12064 REG_NOTES (where_dead)
12065 = gen_rtx_EXPR_LIST (REG_DEAD,
12066 regno_reg_rtx[i],
12067 REG_NOTES (where_dead));
12068 }
12069
12070 /* If we didn't find any note, or if we found a REG_DEAD note that
12071 covers only part of the given reg, and we have a multi-reg hard
12072 register, then to be safe we must check for REG_DEAD notes
12073 for each register other than the first. They could have
12074 their own REG_DEAD notes lying around. */
12075 else if ((note == 0
12076 || (note != 0
12077 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12078 < GET_MODE_SIZE (GET_MODE (x)))))
12079 && regno < FIRST_PSEUDO_REGISTER
12080 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
12081 {
12082 unsigned int ourend
12083 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12084 unsigned int i, offset;
12085 rtx oldnotes = 0;
12086
12087 if (note)
12088 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
12089 else
12090 offset = 1;
12091
12092 for (i = regno + offset; i < ourend; i++)
12093 move_deaths (regno_reg_rtx[i],
12094 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
12095 }
12096
12097 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12098 {
12099 XEXP (note, 1) = *pnotes;
12100 *pnotes = note;
12101 }
12102 else
12103 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12104
12105 REG_N_DEATHS (regno)++;
12106 }
12107
12108 return;
12109 }
12110
12111 else if (GET_CODE (x) == SET)
12112 {
12113 rtx dest = SET_DEST (x);
12114
12115 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
12116
12117 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12118 that accesses one word of a multi-word item, some
12119 piece of everything register in the expression is used by
12120 this insn, so remove any old death. */
12121 /* ??? So why do we test for equality of the sizes? */
12122
12123 if (GET_CODE (dest) == ZERO_EXTRACT
12124 || GET_CODE (dest) == STRICT_LOW_PART
12125 || (GET_CODE (dest) == SUBREG
12126 && (((GET_MODE_SIZE (GET_MODE (dest))
12127 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12128 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12129 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12130 {
12131 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
12132 return;
12133 }
12134
12135 /* If this is some other SUBREG, we know it replaces the entire
12136 value, so use that as the destination. */
12137 if (GET_CODE (dest) == SUBREG)
12138 dest = SUBREG_REG (dest);
12139
12140 /* If this is a MEM, adjust deaths of anything used in the address.
12141 For a REG (the only other possibility), the entire value is
12142 being replaced so the old value is not used in this insn. */
12143
12144 if (GET_CODE (dest) == MEM)
12145 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12146 to_insn, pnotes);
12147 return;
12148 }
12149
12150 else if (GET_CODE (x) == CLOBBER)
12151 return;
12152
12153 len = GET_RTX_LENGTH (code);
12154 fmt = GET_RTX_FORMAT (code);
12155
12156 for (i = 0; i < len; i++)
12157 {
12158 if (fmt[i] == 'E')
12159 {
12160 int j;
12161 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12162 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12163 to_insn, pnotes);
12164 }
12165 else if (fmt[i] == 'e')
12166 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12167 }
12168 }
12169 \f
12170 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12171 pattern of an insn. X must be a REG. */
12172
12173 static int
12174 reg_bitfield_target_p (x, body)
12175 rtx x;
12176 rtx body;
12177 {
12178 int i;
12179
12180 if (GET_CODE (body) == SET)
12181 {
12182 rtx dest = SET_DEST (body);
12183 rtx target;
12184 unsigned int regno, tregno, endregno, endtregno;
12185
12186 if (GET_CODE (dest) == ZERO_EXTRACT)
12187 target = XEXP (dest, 0);
12188 else if (GET_CODE (dest) == STRICT_LOW_PART)
12189 target = SUBREG_REG (XEXP (dest, 0));
12190 else
12191 return 0;
12192
12193 if (GET_CODE (target) == SUBREG)
12194 target = SUBREG_REG (target);
12195
12196 if (GET_CODE (target) != REG)
12197 return 0;
12198
12199 tregno = REGNO (target), regno = REGNO (x);
12200 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12201 return target == x;
12202
12203 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
12204 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12205
12206 return endregno > tregno && regno < endtregno;
12207 }
12208
12209 else if (GET_CODE (body) == PARALLEL)
12210 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12211 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12212 return 1;
12213
12214 return 0;
12215 }
12216 \f
12217 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12218 as appropriate. I3 and I2 are the insns resulting from the combination
12219 insns including FROM (I2 may be zero).
12220
12221 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12222 not need REG_DEAD notes because they are being substituted for. This
12223 saves searching in the most common cases.
12224
12225 Each note in the list is either ignored or placed on some insns, depending
12226 on the type of note. */
12227
12228 static void
12229 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
12230 rtx notes;
12231 rtx from_insn;
12232 rtx i3, i2;
12233 rtx elim_i2, elim_i1;
12234 {
12235 rtx note, next_note;
12236 rtx tem;
12237
12238 for (note = notes; note; note = next_note)
12239 {
12240 rtx place = 0, place2 = 0;
12241
12242 /* If this NOTE references a pseudo register, ensure it references
12243 the latest copy of that register. */
12244 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12245 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12246 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12247
12248 next_note = XEXP (note, 1);
12249 switch (REG_NOTE_KIND (note))
12250 {
12251 case REG_BR_PROB:
12252 case REG_BR_PRED:
12253 case REG_EXEC_COUNT:
12254 /* Doesn't matter much where we put this, as long as it's somewhere.
12255 It is preferable to keep these notes on branches, which is most
12256 likely to be i3. */
12257 place = i3;
12258 break;
12259
12260 case REG_VTABLE_REF:
12261 /* ??? Should remain with *a particular* memory load. Given the
12262 nature of vtable data, the last insn seems relatively safe. */
12263 place = i3;
12264 break;
12265
12266 case REG_NON_LOCAL_GOTO:
12267 if (GET_CODE (i3) == JUMP_INSN)
12268 place = i3;
12269 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12270 place = i2;
12271 else
12272 abort ();
12273 break;
12274
12275 case REG_EH_REGION:
12276 /* These notes must remain with the call or trapping instruction. */
12277 if (GET_CODE (i3) == CALL_INSN)
12278 place = i3;
12279 else if (i2 && GET_CODE (i2) == CALL_INSN)
12280 place = i2;
12281 else if (flag_non_call_exceptions)
12282 {
12283 if (may_trap_p (i3))
12284 place = i3;
12285 else if (i2 && may_trap_p (i2))
12286 place = i2;
12287 /* ??? Otherwise assume we've combined things such that we
12288 can now prove that the instructions can't trap. Drop the
12289 note in this case. */
12290 }
12291 else
12292 abort ();
12293 break;
12294
12295 case REG_NORETURN:
12296 case REG_SETJMP:
12297 /* These notes must remain with the call. It should not be
12298 possible for both I2 and I3 to be a call. */
12299 if (GET_CODE (i3) == CALL_INSN)
12300 place = i3;
12301 else if (i2 && GET_CODE (i2) == CALL_INSN)
12302 place = i2;
12303 else
12304 abort ();
12305 break;
12306
12307 case REG_UNUSED:
12308 /* Any clobbers for i3 may still exist, and so we must process
12309 REG_UNUSED notes from that insn.
12310
12311 Any clobbers from i2 or i1 can only exist if they were added by
12312 recog_for_combine. In that case, recog_for_combine created the
12313 necessary REG_UNUSED notes. Trying to keep any original
12314 REG_UNUSED notes from these insns can cause incorrect output
12315 if it is for the same register as the original i3 dest.
12316 In that case, we will notice that the register is set in i3,
12317 and then add a REG_UNUSED note for the destination of i3, which
12318 is wrong. However, it is possible to have REG_UNUSED notes from
12319 i2 or i1 for register which were both used and clobbered, so
12320 we keep notes from i2 or i1 if they will turn into REG_DEAD
12321 notes. */
12322
12323 /* If this register is set or clobbered in I3, put the note there
12324 unless there is one already. */
12325 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12326 {
12327 if (from_insn != i3)
12328 break;
12329
12330 if (! (GET_CODE (XEXP (note, 0)) == REG
12331 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12332 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12333 place = i3;
12334 }
12335 /* Otherwise, if this register is used by I3, then this register
12336 now dies here, so we must put a REG_DEAD note here unless there
12337 is one already. */
12338 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12339 && ! (GET_CODE (XEXP (note, 0)) == REG
12340 ? find_regno_note (i3, REG_DEAD,
12341 REGNO (XEXP (note, 0)))
12342 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12343 {
12344 PUT_REG_NOTE_KIND (note, REG_DEAD);
12345 place = i3;
12346 }
12347 break;
12348
12349 case REG_EQUAL:
12350 case REG_EQUIV:
12351 case REG_NOALIAS:
12352 /* These notes say something about results of an insn. We can
12353 only support them if they used to be on I3 in which case they
12354 remain on I3. Otherwise they are ignored.
12355
12356 If the note refers to an expression that is not a constant, we
12357 must also ignore the note since we cannot tell whether the
12358 equivalence is still true. It might be possible to do
12359 slightly better than this (we only have a problem if I2DEST
12360 or I1DEST is present in the expression), but it doesn't
12361 seem worth the trouble. */
12362
12363 if (from_insn == i3
12364 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12365 place = i3;
12366 break;
12367
12368 case REG_INC:
12369 case REG_NO_CONFLICT:
12370 /* These notes say something about how a register is used. They must
12371 be present on any use of the register in I2 or I3. */
12372 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12373 place = i3;
12374
12375 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12376 {
12377 if (place)
12378 place2 = i2;
12379 else
12380 place = i2;
12381 }
12382 break;
12383
12384 case REG_LABEL:
12385 /* This can show up in several ways -- either directly in the
12386 pattern, or hidden off in the constant pool with (or without?)
12387 a REG_EQUAL note. */
12388 /* ??? Ignore the without-reg_equal-note problem for now. */
12389 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12390 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12391 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12392 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12393 place = i3;
12394
12395 if (i2
12396 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12397 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12398 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12399 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12400 {
12401 if (place)
12402 place2 = i2;
12403 else
12404 place = i2;
12405 }
12406
12407 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12408 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12409 if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12410 {
12411 if (JUMP_LABEL (place) != XEXP (note, 0))
12412 abort ();
12413 if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12414 LABEL_NUSES (JUMP_LABEL (place))--;
12415 place = 0;
12416 }
12417 if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12418 {
12419 if (JUMP_LABEL (place2) != XEXP (note, 0))
12420 abort ();
12421 if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12422 LABEL_NUSES (JUMP_LABEL (place2))--;
12423 place2 = 0;
12424 }
12425 break;
12426
12427 case REG_NONNEG:
12428 case REG_WAS_0:
12429 /* These notes say something about the value of a register prior
12430 to the execution of an insn. It is too much trouble to see
12431 if the note is still correct in all situations. It is better
12432 to simply delete it. */
12433 break;
12434
12435 case REG_RETVAL:
12436 /* If the insn previously containing this note still exists,
12437 put it back where it was. Otherwise move it to the previous
12438 insn. Adjust the corresponding REG_LIBCALL note. */
12439 if (GET_CODE (from_insn) != NOTE)
12440 place = from_insn;
12441 else
12442 {
12443 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12444 place = prev_real_insn (from_insn);
12445 if (tem && place)
12446 XEXP (tem, 0) = place;
12447 /* If we're deleting the last remaining instruction of a
12448 libcall sequence, don't add the notes. */
12449 else if (XEXP (note, 0) == from_insn)
12450 tem = place = 0;
12451 }
12452 break;
12453
12454 case REG_LIBCALL:
12455 /* This is handled similarly to REG_RETVAL. */
12456 if (GET_CODE (from_insn) != NOTE)
12457 place = from_insn;
12458 else
12459 {
12460 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12461 place = next_real_insn (from_insn);
12462 if (tem && place)
12463 XEXP (tem, 0) = place;
12464 /* If we're deleting the last remaining instruction of a
12465 libcall sequence, don't add the notes. */
12466 else if (XEXP (note, 0) == from_insn)
12467 tem = place = 0;
12468 }
12469 break;
12470
12471 case REG_DEAD:
12472 /* If the register is used as an input in I3, it dies there.
12473 Similarly for I2, if it is nonzero and adjacent to I3.
12474
12475 If the register is not used as an input in either I3 or I2
12476 and it is not one of the registers we were supposed to eliminate,
12477 there are two possibilities. We might have a non-adjacent I2
12478 or we might have somehow eliminated an additional register
12479 from a computation. For example, we might have had A & B where
12480 we discover that B will always be zero. In this case we will
12481 eliminate the reference to A.
12482
12483 In both cases, we must search to see if we can find a previous
12484 use of A and put the death note there. */
12485
12486 if (from_insn
12487 && GET_CODE (from_insn) == CALL_INSN
12488 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12489 place = from_insn;
12490 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12491 place = i3;
12492 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12493 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12494 place = i2;
12495
12496 if (rtx_equal_p (XEXP (note, 0), elim_i2)
12497 || rtx_equal_p (XEXP (note, 0), elim_i1))
12498 break;
12499
12500 if (place == 0)
12501 {
12502 basic_block bb = this_basic_block;
12503
12504 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12505 {
12506 if (! INSN_P (tem))
12507 {
12508 if (tem == bb->head)
12509 break;
12510 continue;
12511 }
12512
12513 /* If the register is being set at TEM, see if that is all
12514 TEM is doing. If so, delete TEM. Otherwise, make this
12515 into a REG_UNUSED note instead. */
12516 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12517 {
12518 rtx set = single_set (tem);
12519 rtx inner_dest = 0;
12520 #ifdef HAVE_cc0
12521 rtx cc0_setter = NULL_RTX;
12522 #endif
12523
12524 if (set != 0)
12525 for (inner_dest = SET_DEST (set);
12526 (GET_CODE (inner_dest) == STRICT_LOW_PART
12527 || GET_CODE (inner_dest) == SUBREG
12528 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12529 inner_dest = XEXP (inner_dest, 0))
12530 ;
12531
12532 /* Verify that it was the set, and not a clobber that
12533 modified the register.
12534
12535 CC0 targets must be careful to maintain setter/user
12536 pairs. If we cannot delete the setter due to side
12537 effects, mark the user with an UNUSED note instead
12538 of deleting it. */
12539
12540 if (set != 0 && ! side_effects_p (SET_SRC (set))
12541 && rtx_equal_p (XEXP (note, 0), inner_dest)
12542 #ifdef HAVE_cc0
12543 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12544 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12545 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12546 #endif
12547 )
12548 {
12549 /* Move the notes and links of TEM elsewhere.
12550 This might delete other dead insns recursively.
12551 First set the pattern to something that won't use
12552 any register. */
12553
12554 PATTERN (tem) = pc_rtx;
12555
12556 distribute_notes (REG_NOTES (tem), tem, tem,
12557 NULL_RTX, NULL_RTX, NULL_RTX);
12558 distribute_links (LOG_LINKS (tem));
12559
12560 PUT_CODE (tem, NOTE);
12561 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12562 NOTE_SOURCE_FILE (tem) = 0;
12563
12564 #ifdef HAVE_cc0
12565 /* Delete the setter too. */
12566 if (cc0_setter)
12567 {
12568 PATTERN (cc0_setter) = pc_rtx;
12569
12570 distribute_notes (REG_NOTES (cc0_setter),
12571 cc0_setter, cc0_setter,
12572 NULL_RTX, NULL_RTX, NULL_RTX);
12573 distribute_links (LOG_LINKS (cc0_setter));
12574
12575 PUT_CODE (cc0_setter, NOTE);
12576 NOTE_LINE_NUMBER (cc0_setter)
12577 = NOTE_INSN_DELETED;
12578 NOTE_SOURCE_FILE (cc0_setter) = 0;
12579 }
12580 #endif
12581 }
12582 /* If the register is both set and used here, put the
12583 REG_DEAD note here, but place a REG_UNUSED note
12584 here too unless there already is one. */
12585 else if (reg_referenced_p (XEXP (note, 0),
12586 PATTERN (tem)))
12587 {
12588 place = tem;
12589
12590 if (! find_regno_note (tem, REG_UNUSED,
12591 REGNO (XEXP (note, 0))))
12592 REG_NOTES (tem)
12593 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12594 REG_NOTES (tem));
12595 }
12596 else
12597 {
12598 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12599
12600 /* If there isn't already a REG_UNUSED note, put one
12601 here. */
12602 if (! find_regno_note (tem, REG_UNUSED,
12603 REGNO (XEXP (note, 0))))
12604 place = tem;
12605 break;
12606 }
12607 }
12608 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12609 || (GET_CODE (tem) == CALL_INSN
12610 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12611 {
12612 place = tem;
12613
12614 /* If we are doing a 3->2 combination, and we have a
12615 register which formerly died in i3 and was not used
12616 by i2, which now no longer dies in i3 and is used in
12617 i2 but does not die in i2, and place is between i2
12618 and i3, then we may need to move a link from place to
12619 i2. */
12620 if (i2 && INSN_UID (place) <= max_uid_cuid
12621 && INSN_CUID (place) > INSN_CUID (i2)
12622 && from_insn
12623 && INSN_CUID (from_insn) > INSN_CUID (i2)
12624 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12625 {
12626 rtx links = LOG_LINKS (place);
12627 LOG_LINKS (place) = 0;
12628 distribute_links (links);
12629 }
12630 break;
12631 }
12632
12633 if (tem == bb->head)
12634 break;
12635 }
12636
12637 /* We haven't found an insn for the death note and it
12638 is still a REG_DEAD note, but we have hit the beginning
12639 of the block. If the existing life info says the reg
12640 was dead, there's nothing left to do. Otherwise, we'll
12641 need to do a global life update after combine. */
12642 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12643 && REGNO_REG_SET_P (bb->global_live_at_start,
12644 REGNO (XEXP (note, 0))))
12645 {
12646 SET_BIT (refresh_blocks, this_basic_block->index);
12647 need_refresh = 1;
12648 }
12649 }
12650
12651 /* If the register is set or already dead at PLACE, we needn't do
12652 anything with this note if it is still a REG_DEAD note.
12653 We can here if it is set at all, not if is it totally replace,
12654 which is what `dead_or_set_p' checks, so also check for it being
12655 set partially. */
12656
12657 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12658 {
12659 unsigned int regno = REGNO (XEXP (note, 0));
12660
12661 /* Similarly, if the instruction on which we want to place
12662 the note is a noop, we'll need do a global live update
12663 after we remove them in delete_noop_moves. */
12664 if (noop_move_p (place))
12665 {
12666 SET_BIT (refresh_blocks, this_basic_block->index);
12667 need_refresh = 1;
12668 }
12669
12670 if (dead_or_set_p (place, XEXP (note, 0))
12671 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12672 {
12673 /* Unless the register previously died in PLACE, clear
12674 reg_last_death. [I no longer understand why this is
12675 being done.] */
12676 if (reg_last_death[regno] != place)
12677 reg_last_death[regno] = 0;
12678 place = 0;
12679 }
12680 else
12681 reg_last_death[regno] = place;
12682
12683 /* If this is a death note for a hard reg that is occupying
12684 multiple registers, ensure that we are still using all
12685 parts of the object. If we find a piece of the object
12686 that is unused, we must arrange for an appropriate REG_DEAD
12687 note to be added for it. However, we can't just emit a USE
12688 and tag the note to it, since the register might actually
12689 be dead; so we recourse, and the recursive call then finds
12690 the previous insn that used this register. */
12691
12692 if (place && regno < FIRST_PSEUDO_REGISTER
12693 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12694 {
12695 unsigned int endregno
12696 = regno + HARD_REGNO_NREGS (regno,
12697 GET_MODE (XEXP (note, 0)));
12698 int all_used = 1;
12699 unsigned int i;
12700
12701 for (i = regno; i < endregno; i++)
12702 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12703 && ! find_regno_fusage (place, USE, i))
12704 || dead_or_set_regno_p (place, i))
12705 all_used = 0;
12706
12707 if (! all_used)
12708 {
12709 /* Put only REG_DEAD notes for pieces that are
12710 not already dead or set. */
12711
12712 for (i = regno; i < endregno;
12713 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12714 {
12715 rtx piece = regno_reg_rtx[i];
12716 basic_block bb = this_basic_block;
12717
12718 if (! dead_or_set_p (place, piece)
12719 && ! reg_bitfield_target_p (piece,
12720 PATTERN (place)))
12721 {
12722 rtx new_note
12723 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12724
12725 distribute_notes (new_note, place, place,
12726 NULL_RTX, NULL_RTX, NULL_RTX);
12727 }
12728 else if (! refers_to_regno_p (i, i + 1,
12729 PATTERN (place), 0)
12730 && ! find_regno_fusage (place, USE, i))
12731 for (tem = PREV_INSN (place); ;
12732 tem = PREV_INSN (tem))
12733 {
12734 if (! INSN_P (tem))
12735 {
12736 if (tem == bb->head)
12737 {
12738 SET_BIT (refresh_blocks,
12739 this_basic_block->index);
12740 need_refresh = 1;
12741 break;
12742 }
12743 continue;
12744 }
12745 if (dead_or_set_p (tem, piece)
12746 || reg_bitfield_target_p (piece,
12747 PATTERN (tem)))
12748 {
12749 REG_NOTES (tem)
12750 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12751 REG_NOTES (tem));
12752 break;
12753 }
12754 }
12755
12756 }
12757
12758 place = 0;
12759 }
12760 }
12761 }
12762 break;
12763
12764 default:
12765 /* Any other notes should not be present at this point in the
12766 compilation. */
12767 abort ();
12768 }
12769
12770 if (place)
12771 {
12772 XEXP (note, 1) = REG_NOTES (place);
12773 REG_NOTES (place) = note;
12774 }
12775 else if ((REG_NOTE_KIND (note) == REG_DEAD
12776 || REG_NOTE_KIND (note) == REG_UNUSED)
12777 && GET_CODE (XEXP (note, 0)) == REG)
12778 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12779
12780 if (place2)
12781 {
12782 if ((REG_NOTE_KIND (note) == REG_DEAD
12783 || REG_NOTE_KIND (note) == REG_UNUSED)
12784 && GET_CODE (XEXP (note, 0)) == REG)
12785 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12786
12787 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12788 REG_NOTE_KIND (note),
12789 XEXP (note, 0),
12790 REG_NOTES (place2));
12791 }
12792 }
12793 }
12794 \f
12795 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12796 I3, I2, and I1 to new locations. This is also called in one case to
12797 add a link pointing at I3 when I3's destination is changed. */
12798
12799 static void
12800 distribute_links (links)
12801 rtx links;
12802 {
12803 rtx link, next_link;
12804
12805 for (link = links; link; link = next_link)
12806 {
12807 rtx place = 0;
12808 rtx insn;
12809 rtx set, reg;
12810
12811 next_link = XEXP (link, 1);
12812
12813 /* If the insn that this link points to is a NOTE or isn't a single
12814 set, ignore it. In the latter case, it isn't clear what we
12815 can do other than ignore the link, since we can't tell which
12816 register it was for. Such links wouldn't be used by combine
12817 anyway.
12818
12819 It is not possible for the destination of the target of the link to
12820 have been changed by combine. The only potential of this is if we
12821 replace I3, I2, and I1 by I3 and I2. But in that case the
12822 destination of I2 also remains unchanged. */
12823
12824 if (GET_CODE (XEXP (link, 0)) == NOTE
12825 || (set = single_set (XEXP (link, 0))) == 0)
12826 continue;
12827
12828 reg = SET_DEST (set);
12829 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12830 || GET_CODE (reg) == SIGN_EXTRACT
12831 || GET_CODE (reg) == STRICT_LOW_PART)
12832 reg = XEXP (reg, 0);
12833
12834 /* A LOG_LINK is defined as being placed on the first insn that uses
12835 a register and points to the insn that sets the register. Start
12836 searching at the next insn after the target of the link and stop
12837 when we reach a set of the register or the end of the basic block.
12838
12839 Note that this correctly handles the link that used to point from
12840 I3 to I2. Also note that not much searching is typically done here
12841 since most links don't point very far away. */
12842
12843 for (insn = NEXT_INSN (XEXP (link, 0));
12844 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12845 || this_basic_block->next_bb->head != insn));
12846 insn = NEXT_INSN (insn))
12847 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12848 {
12849 if (reg_referenced_p (reg, PATTERN (insn)))
12850 place = insn;
12851 break;
12852 }
12853 else if (GET_CODE (insn) == CALL_INSN
12854 && find_reg_fusage (insn, USE, reg))
12855 {
12856 place = insn;
12857 break;
12858 }
12859
12860 /* If we found a place to put the link, place it there unless there
12861 is already a link to the same insn as LINK at that point. */
12862
12863 if (place)
12864 {
12865 rtx link2;
12866
12867 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12868 if (XEXP (link2, 0) == XEXP (link, 0))
12869 break;
12870
12871 if (link2 == 0)
12872 {
12873 XEXP (link, 1) = LOG_LINKS (place);
12874 LOG_LINKS (place) = link;
12875
12876 /* Set added_links_insn to the earliest insn we added a
12877 link to. */
12878 if (added_links_insn == 0
12879 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12880 added_links_insn = place;
12881 }
12882 }
12883 }
12884 }
12885 \f
12886 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12887
12888 static int
12889 insn_cuid (insn)
12890 rtx insn;
12891 {
12892 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12893 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12894 insn = NEXT_INSN (insn);
12895
12896 if (INSN_UID (insn) > max_uid_cuid)
12897 abort ();
12898
12899 return INSN_CUID (insn);
12900 }
12901 \f
12902 void
12903 dump_combine_stats (file)
12904 FILE *file;
12905 {
12906 fnotice
12907 (file,
12908 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12909 combine_attempts, combine_merges, combine_extras, combine_successes);
12910 }
12911
12912 void
12913 dump_combine_total_stats (file)
12914 FILE *file;
12915 {
12916 fnotice
12917 (file,
12918 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12919 total_attempts, total_merges, total_extras, total_successes);
12920 }