poly_int: GET_MODE_PRECISION
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with modified_between_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
107
108 /* Number of attempts to combine instructions in this function. */
109
110 static int combine_attempts;
111
112 /* Number of attempts that got as far as substitution in this function. */
113
114 static int combine_merges;
115
116 /* Number of instructions combined with added SETs in this function. */
117
118 static int combine_extras;
119
120 /* Number of instructions combined in this function. */
121
122 static int combine_successes;
123
124 /* Totals over entire compilation. */
125
126 static int total_attempts, total_merges, total_extras, total_successes;
127
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
134
135 static rtx_insn *i2mod;
136
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
138
139 static rtx i2mod_old_rhs;
140
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
142
143 static rtx i2mod_new_rhs;
144 \f
145 struct reg_stat_type {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx_insn *last_death;
148
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx_insn *last_set;
151
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
157
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
160
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
164
165 Therefore, we maintain the following fields:
166
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
175
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
180
181 (The next two parameters are out of date).
182
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
194
195 /* Record last value assigned to (hard or pseudo) register n. */
196
197 rtx last_set_value;
198
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
201
202 int last_set_table_tick;
203
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
206
207 int last_set_label;
208
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
213
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
217
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
221
222 char last_set_invalid;
223
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
228
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
233
234 If an entry is zero, it means that we don't know anything special. */
235
236 unsigned char sign_bit_copies;
237
238 unsigned HOST_WIDE_INT nonzero_bits;
239
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
243
244 int truncation_label;
245
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
250
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
252 };
253
254
255 static vec<reg_stat_type> reg_stat;
256
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259 but during combine_split_insns new pseudos can be created. As we don't have
260 updated DF information in that case, it is hard to initialize the array
261 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
262 so instead of growing the arrays, just assume all newly created pseudos
263 during combine might be set multiple times. */
264
265 static unsigned int reg_n_sets_max;
266
267 /* Record the luid of the last insn that invalidated memory
268 (anything that writes memory, and subroutine calls, but not pushes). */
269
270 static int mem_last_set;
271
272 /* Record the luid of the last CALL_INSN
273 so we can tell whether a potential combination crosses any calls. */
274
275 static int last_call_luid;
276
277 /* When `subst' is called, this is the insn that is being modified
278 (by combining in a previous insn). The PATTERN of this insn
279 is still the old pattern partially modified and it should not be
280 looked at, but this may be used to examine the successors of the insn
281 to judge whether a simplification is valid. */
282
283 static rtx_insn *subst_insn;
284
285 /* This is the lowest LUID that `subst' is currently dealing with.
286 get_last_value will not return a value if the register was set at or
287 after this LUID. If not for this mechanism, we could get confused if
288 I2 or I1 in try_combine were an insn that used the old value of a register
289 to obtain a new value. In that case, we might erroneously get the
290 new value of the register when we wanted the old one. */
291
292 static int subst_low_luid;
293
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295 must consider all these registers to be always live. */
296
297 static HARD_REG_SET newpat_used_regs;
298
299 /* This is an insn to which a LOG_LINKS entry has been added. If this
300 insn is the earlier than I2 or I3, combine should rescan starting at
301 that location. */
302
303 static rtx_insn *added_links_insn;
304
305 /* And similarly, for notes. */
306
307 static rtx_insn *added_notes_insn;
308
309 /* Basic block in which we are performing combines. */
310 static basic_block this_basic_block;
311 static bool optimize_this_for_speed_p;
312
313 \f
314 /* Length of the currently allocated uid_insn_cost array. */
315
316 static int max_uid_known;
317
318 /* The following array records the insn_cost for every insn
319 in the instruction stream. */
320
321 static int *uid_insn_cost;
322
323 /* The following array records the LOG_LINKS for every insn in the
324 instruction stream as struct insn_link pointers. */
325
326 struct insn_link {
327 rtx_insn *insn;
328 unsigned int regno;
329 struct insn_link *next;
330 };
331
332 static struct insn_link **uid_log_links;
333
334 static inline int
335 insn_uid_check (const_rtx insn)
336 {
337 int uid = INSN_UID (insn);
338 gcc_checking_assert (uid <= max_uid_known);
339 return uid;
340 }
341
342 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
343 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
344
345 #define FOR_EACH_LOG_LINK(L, INSN) \
346 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
347
348 /* Links for LOG_LINKS are allocated from this obstack. */
349
350 static struct obstack insn_link_obstack;
351
352 /* Allocate a link. */
353
354 static inline struct insn_link *
355 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
356 {
357 struct insn_link *l
358 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
359 sizeof (struct insn_link));
360 l->insn = insn;
361 l->regno = regno;
362 l->next = next;
363 return l;
364 }
365
366 /* Incremented for each basic block. */
367
368 static int label_tick;
369
370 /* Reset to label_tick for each extended basic block in scanning order. */
371
372 static int label_tick_ebb_start;
373
374 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
375 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
376
377 static scalar_int_mode nonzero_bits_mode;
378
379 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
380 be safely used. It is zero while computing them and after combine has
381 completed. This former test prevents propagating values based on
382 previously set values, which can be incorrect if a variable is modified
383 in a loop. */
384
385 static int nonzero_sign_valid;
386
387 \f
388 /* Record one modification to rtl structure
389 to be undone by storing old_contents into *where. */
390
391 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
392
393 struct undo
394 {
395 struct undo *next;
396 enum undo_kind kind;
397 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
398 union { rtx *r; int *i; struct insn_link **l; } where;
399 };
400
401 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
402 num_undo says how many are currently recorded.
403
404 other_insn is nonzero if we have modified some other insn in the process
405 of working on subst_insn. It must be verified too. */
406
407 struct undobuf
408 {
409 struct undo *undos;
410 struct undo *frees;
411 rtx_insn *other_insn;
412 };
413
414 static struct undobuf undobuf;
415
416 /* Number of times the pseudo being substituted for
417 was found and replaced. */
418
419 static int n_occurrences;
420
421 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
422 scalar_int_mode,
423 unsigned HOST_WIDE_INT *);
424 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
425 scalar_int_mode,
426 unsigned int *);
427 static void do_SUBST (rtx *, rtx);
428 static void do_SUBST_INT (int *, int);
429 static void init_reg_last (void);
430 static void setup_incoming_promotions (rtx_insn *);
431 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
432 static int cant_combine_insn_p (rtx_insn *);
433 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
434 rtx_insn *, rtx_insn *, rtx *, rtx *);
435 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
436 static int contains_muldiv (rtx);
437 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
438 int *, rtx_insn *);
439 static void undo_all (void);
440 static void undo_commit (void);
441 static rtx *find_split_point (rtx *, rtx_insn *, bool);
442 static rtx subst (rtx, rtx, rtx, int, int, int);
443 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
444 static rtx simplify_if_then_else (rtx);
445 static rtx simplify_set (rtx);
446 static rtx simplify_logical (rtx);
447 static rtx expand_compound_operation (rtx);
448 static const_rtx expand_field_assignment (const_rtx);
449 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
450 rtx, unsigned HOST_WIDE_INT, int, int, int);
451 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
452 unsigned HOST_WIDE_INT *);
453 static rtx canon_reg_for_combine (rtx, rtx);
454 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
455 scalar_int_mode, unsigned HOST_WIDE_INT, int);
456 static rtx force_to_mode (rtx, machine_mode,
457 unsigned HOST_WIDE_INT, int);
458 static rtx if_then_else_cond (rtx, rtx *, rtx *);
459 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
460 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
461 static rtx make_field_assignment (rtx);
462 static rtx apply_distributive_law (rtx);
463 static rtx distribute_and_simplify_rtx (rtx, int);
464 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
465 unsigned HOST_WIDE_INT);
466 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
467 unsigned HOST_WIDE_INT);
468 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
469 HOST_WIDE_INT, machine_mode, int *);
470 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
471 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
472 int);
473 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
474 static rtx gen_lowpart_for_combine (machine_mode, rtx);
475 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
476 rtx, rtx *);
477 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
478 static void update_table_tick (rtx);
479 static void record_value_for_reg (rtx, rtx_insn *, rtx);
480 static void check_promoted_subreg (rtx_insn *, rtx);
481 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
482 static void record_dead_and_set_regs (rtx_insn *);
483 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
484 static rtx get_last_value (const_rtx);
485 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
486 static int reg_dead_at_p (rtx, rtx_insn *);
487 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
488 static int reg_bitfield_target_p (rtx, rtx);
489 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
490 static void distribute_links (struct insn_link *);
491 static void mark_used_regs_combine (rtx);
492 static void record_promoted_value (rtx_insn *, rtx);
493 static bool unmentioned_reg_p (rtx, rtx);
494 static void record_truncated_values (rtx *, void *);
495 static bool reg_truncated_to_mode (machine_mode, const_rtx);
496 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
497 \f
498
499 /* It is not safe to use ordinary gen_lowpart in combine.
500 See comments in gen_lowpart_for_combine. */
501 #undef RTL_HOOKS_GEN_LOWPART
502 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
503
504 /* Our implementation of gen_lowpart never emits a new pseudo. */
505 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
506 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
507
508 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
509 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
510
511 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
512 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
513
514 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
515 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
516
517 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
518
519 \f
520 /* Convenience wrapper for the canonicalize_comparison target hook.
521 Target hooks cannot use enum rtx_code. */
522 static inline void
523 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
524 bool op0_preserve_value)
525 {
526 int code_int = (int)*code;
527 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
528 *code = (enum rtx_code)code_int;
529 }
530
531 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
532 PATTERN can not be split. Otherwise, it returns an insn sequence.
533 This is a wrapper around split_insns which ensures that the
534 reg_stat vector is made larger if the splitter creates a new
535 register. */
536
537 static rtx_insn *
538 combine_split_insns (rtx pattern, rtx_insn *insn)
539 {
540 rtx_insn *ret;
541 unsigned int nregs;
542
543 ret = split_insns (pattern, insn);
544 nregs = max_reg_num ();
545 if (nregs > reg_stat.length ())
546 reg_stat.safe_grow_cleared (nregs);
547 return ret;
548 }
549
550 /* This is used by find_single_use to locate an rtx in LOC that
551 contains exactly one use of DEST, which is typically either a REG
552 or CC0. It returns a pointer to the innermost rtx expression
553 containing DEST. Appearances of DEST that are being used to
554 totally replace it are not counted. */
555
556 static rtx *
557 find_single_use_1 (rtx dest, rtx *loc)
558 {
559 rtx x = *loc;
560 enum rtx_code code = GET_CODE (x);
561 rtx *result = NULL;
562 rtx *this_result;
563 int i;
564 const char *fmt;
565
566 switch (code)
567 {
568 case CONST:
569 case LABEL_REF:
570 case SYMBOL_REF:
571 CASE_CONST_ANY:
572 case CLOBBER:
573 return 0;
574
575 case SET:
576 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
577 of a REG that occupies all of the REG, the insn uses DEST if
578 it is mentioned in the destination or the source. Otherwise, we
579 need just check the source. */
580 if (GET_CODE (SET_DEST (x)) != CC0
581 && GET_CODE (SET_DEST (x)) != PC
582 && !REG_P (SET_DEST (x))
583 && ! (GET_CODE (SET_DEST (x)) == SUBREG
584 && REG_P (SUBREG_REG (SET_DEST (x)))
585 && !read_modify_subreg_p (SET_DEST (x))))
586 break;
587
588 return find_single_use_1 (dest, &SET_SRC (x));
589
590 case MEM:
591 case SUBREG:
592 return find_single_use_1 (dest, &XEXP (x, 0));
593
594 default:
595 break;
596 }
597
598 /* If it wasn't one of the common cases above, check each expression and
599 vector of this code. Look for a unique usage of DEST. */
600
601 fmt = GET_RTX_FORMAT (code);
602 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
603 {
604 if (fmt[i] == 'e')
605 {
606 if (dest == XEXP (x, i)
607 || (REG_P (dest) && REG_P (XEXP (x, i))
608 && REGNO (dest) == REGNO (XEXP (x, i))))
609 this_result = loc;
610 else
611 this_result = find_single_use_1 (dest, &XEXP (x, i));
612
613 if (result == NULL)
614 result = this_result;
615 else if (this_result)
616 /* Duplicate usage. */
617 return NULL;
618 }
619 else if (fmt[i] == 'E')
620 {
621 int j;
622
623 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
624 {
625 if (XVECEXP (x, i, j) == dest
626 || (REG_P (dest)
627 && REG_P (XVECEXP (x, i, j))
628 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
629 this_result = loc;
630 else
631 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
632
633 if (result == NULL)
634 result = this_result;
635 else if (this_result)
636 return NULL;
637 }
638 }
639 }
640
641 return result;
642 }
643
644
645 /* See if DEST, produced in INSN, is used only a single time in the
646 sequel. If so, return a pointer to the innermost rtx expression in which
647 it is used.
648
649 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
650
651 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
652 care about REG_DEAD notes or LOG_LINKS.
653
654 Otherwise, we find the single use by finding an insn that has a
655 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
656 only referenced once in that insn, we know that it must be the first
657 and last insn referencing DEST. */
658
659 static rtx *
660 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
661 {
662 basic_block bb;
663 rtx_insn *next;
664 rtx *result;
665 struct insn_link *link;
666
667 if (dest == cc0_rtx)
668 {
669 next = NEXT_INSN (insn);
670 if (next == 0
671 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
672 return 0;
673
674 result = find_single_use_1 (dest, &PATTERN (next));
675 if (result && ploc)
676 *ploc = next;
677 return result;
678 }
679
680 if (!REG_P (dest))
681 return 0;
682
683 bb = BLOCK_FOR_INSN (insn);
684 for (next = NEXT_INSN (insn);
685 next && BLOCK_FOR_INSN (next) == bb;
686 next = NEXT_INSN (next))
687 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
688 {
689 FOR_EACH_LOG_LINK (link, next)
690 if (link->insn == insn && link->regno == REGNO (dest))
691 break;
692
693 if (link)
694 {
695 result = find_single_use_1 (dest, &PATTERN (next));
696 if (ploc)
697 *ploc = next;
698 return result;
699 }
700 }
701
702 return 0;
703 }
704 \f
705 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
706 insn. The substitution can be undone by undo_all. If INTO is already
707 set to NEWVAL, do not record this change. Because computing NEWVAL might
708 also call SUBST, we have to compute it before we put anything into
709 the undo table. */
710
711 static void
712 do_SUBST (rtx *into, rtx newval)
713 {
714 struct undo *buf;
715 rtx oldval = *into;
716
717 if (oldval == newval)
718 return;
719
720 /* We'd like to catch as many invalid transformations here as
721 possible. Unfortunately, there are way too many mode changes
722 that are perfectly valid, so we'd waste too much effort for
723 little gain doing the checks here. Focus on catching invalid
724 transformations involving integer constants. */
725 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
726 && CONST_INT_P (newval))
727 {
728 /* Sanity check that we're replacing oldval with a CONST_INT
729 that is a valid sign-extension for the original mode. */
730 gcc_assert (INTVAL (newval)
731 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
732
733 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
734 CONST_INT is not valid, because after the replacement, the
735 original mode would be gone. Unfortunately, we can't tell
736 when do_SUBST is called to replace the operand thereof, so we
737 perform this test on oldval instead, checking whether an
738 invalid replacement took place before we got here. */
739 gcc_assert (!(GET_CODE (oldval) == SUBREG
740 && CONST_INT_P (SUBREG_REG (oldval))));
741 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
742 && CONST_INT_P (XEXP (oldval, 0))));
743 }
744
745 if (undobuf.frees)
746 buf = undobuf.frees, undobuf.frees = buf->next;
747 else
748 buf = XNEW (struct undo);
749
750 buf->kind = UNDO_RTX;
751 buf->where.r = into;
752 buf->old_contents.r = oldval;
753 *into = newval;
754
755 buf->next = undobuf.undos, undobuf.undos = buf;
756 }
757
758 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
759
760 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
761 for the value of a HOST_WIDE_INT value (including CONST_INT) is
762 not safe. */
763
764 static void
765 do_SUBST_INT (int *into, int newval)
766 {
767 struct undo *buf;
768 int oldval = *into;
769
770 if (oldval == newval)
771 return;
772
773 if (undobuf.frees)
774 buf = undobuf.frees, undobuf.frees = buf->next;
775 else
776 buf = XNEW (struct undo);
777
778 buf->kind = UNDO_INT;
779 buf->where.i = into;
780 buf->old_contents.i = oldval;
781 *into = newval;
782
783 buf->next = undobuf.undos, undobuf.undos = buf;
784 }
785
786 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
787
788 /* Similar to SUBST, but just substitute the mode. This is used when
789 changing the mode of a pseudo-register, so that any other
790 references to the entry in the regno_reg_rtx array will change as
791 well. */
792
793 static void
794 do_SUBST_MODE (rtx *into, machine_mode newval)
795 {
796 struct undo *buf;
797 machine_mode oldval = GET_MODE (*into);
798
799 if (oldval == newval)
800 return;
801
802 if (undobuf.frees)
803 buf = undobuf.frees, undobuf.frees = buf->next;
804 else
805 buf = XNEW (struct undo);
806
807 buf->kind = UNDO_MODE;
808 buf->where.r = into;
809 buf->old_contents.m = oldval;
810 adjust_reg_mode (*into, newval);
811
812 buf->next = undobuf.undos, undobuf.undos = buf;
813 }
814
815 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
816
817 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
818
819 static void
820 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
821 {
822 struct undo *buf;
823 struct insn_link * oldval = *into;
824
825 if (oldval == newval)
826 return;
827
828 if (undobuf.frees)
829 buf = undobuf.frees, undobuf.frees = buf->next;
830 else
831 buf = XNEW (struct undo);
832
833 buf->kind = UNDO_LINKS;
834 buf->where.l = into;
835 buf->old_contents.l = oldval;
836 *into = newval;
837
838 buf->next = undobuf.undos, undobuf.undos = buf;
839 }
840
841 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
842 \f
843 /* Subroutine of try_combine. Determine whether the replacement patterns
844 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
845 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
846 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
847 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
848 of all the instructions can be estimated and the replacements are more
849 expensive than the original sequence. */
850
851 static bool
852 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
853 rtx newpat, rtx newi2pat, rtx newotherpat)
854 {
855 int i0_cost, i1_cost, i2_cost, i3_cost;
856 int new_i2_cost, new_i3_cost;
857 int old_cost, new_cost;
858
859 /* Lookup the original insn_costs. */
860 i2_cost = INSN_COST (i2);
861 i3_cost = INSN_COST (i3);
862
863 if (i1)
864 {
865 i1_cost = INSN_COST (i1);
866 if (i0)
867 {
868 i0_cost = INSN_COST (i0);
869 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
870 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
871 }
872 else
873 {
874 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
875 ? i1_cost + i2_cost + i3_cost : 0);
876 i0_cost = 0;
877 }
878 }
879 else
880 {
881 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
882 i1_cost = i0_cost = 0;
883 }
884
885 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
886 correct that. */
887 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
888 old_cost -= i1_cost;
889
890
891 /* Calculate the replacement insn_costs. */
892 rtx tmp = PATTERN (i3);
893 PATTERN (i3) = newpat;
894 int tmpi = INSN_CODE (i3);
895 INSN_CODE (i3) = -1;
896 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
897 PATTERN (i3) = tmp;
898 INSN_CODE (i3) = tmpi;
899 if (newi2pat)
900 {
901 tmp = PATTERN (i2);
902 PATTERN (i2) = newi2pat;
903 tmpi = INSN_CODE (i2);
904 INSN_CODE (i2) = -1;
905 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
906 PATTERN (i2) = tmp;
907 INSN_CODE (i2) = tmpi;
908 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
909 ? new_i2_cost + new_i3_cost : 0;
910 }
911 else
912 {
913 new_cost = new_i3_cost;
914 new_i2_cost = 0;
915 }
916
917 if (undobuf.other_insn)
918 {
919 int old_other_cost, new_other_cost;
920
921 old_other_cost = INSN_COST (undobuf.other_insn);
922 tmp = PATTERN (undobuf.other_insn);
923 PATTERN (undobuf.other_insn) = newotherpat;
924 tmpi = INSN_CODE (undobuf.other_insn);
925 INSN_CODE (undobuf.other_insn) = -1;
926 new_other_cost = insn_cost (undobuf.other_insn,
927 optimize_this_for_speed_p);
928 PATTERN (undobuf.other_insn) = tmp;
929 INSN_CODE (undobuf.other_insn) = tmpi;
930 if (old_other_cost > 0 && new_other_cost > 0)
931 {
932 old_cost += old_other_cost;
933 new_cost += new_other_cost;
934 }
935 else
936 old_cost = 0;
937 }
938
939 /* Disallow this combination if both new_cost and old_cost are greater than
940 zero, and new_cost is greater than old cost. */
941 int reject = old_cost > 0 && new_cost > old_cost;
942
943 if (dump_file)
944 {
945 fprintf (dump_file, "%s combination of insns ",
946 reject ? "rejecting" : "allowing");
947 if (i0)
948 fprintf (dump_file, "%d, ", INSN_UID (i0));
949 if (i1 && INSN_UID (i1) != INSN_UID (i2))
950 fprintf (dump_file, "%d, ", INSN_UID (i1));
951 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
952
953 fprintf (dump_file, "original costs ");
954 if (i0)
955 fprintf (dump_file, "%d + ", i0_cost);
956 if (i1 && INSN_UID (i1) != INSN_UID (i2))
957 fprintf (dump_file, "%d + ", i1_cost);
958 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
959
960 if (newi2pat)
961 fprintf (dump_file, "replacement costs %d + %d = %d\n",
962 new_i2_cost, new_i3_cost, new_cost);
963 else
964 fprintf (dump_file, "replacement cost %d\n", new_cost);
965 }
966
967 if (reject)
968 return false;
969
970 /* Update the uid_insn_cost array with the replacement costs. */
971 INSN_COST (i2) = new_i2_cost;
972 INSN_COST (i3) = new_i3_cost;
973 if (i1)
974 {
975 INSN_COST (i1) = 0;
976 if (i0)
977 INSN_COST (i0) = 0;
978 }
979
980 return true;
981 }
982
983
984 /* Delete any insns that copy a register to itself. */
985
986 static void
987 delete_noop_moves (void)
988 {
989 rtx_insn *insn, *next;
990 basic_block bb;
991
992 FOR_EACH_BB_FN (bb, cfun)
993 {
994 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
995 {
996 next = NEXT_INSN (insn);
997 if (INSN_P (insn) && noop_move_p (insn))
998 {
999 if (dump_file)
1000 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1001
1002 delete_insn_and_edges (insn);
1003 }
1004 }
1005 }
1006 }
1007
1008 \f
1009 /* Return false if we do not want to (or cannot) combine DEF. */
1010 static bool
1011 can_combine_def_p (df_ref def)
1012 {
1013 /* Do not consider if it is pre/post modification in MEM. */
1014 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1015 return false;
1016
1017 unsigned int regno = DF_REF_REGNO (def);
1018
1019 /* Do not combine frame pointer adjustments. */
1020 if ((regno == FRAME_POINTER_REGNUM
1021 && (!reload_completed || frame_pointer_needed))
1022 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1023 && regno == HARD_FRAME_POINTER_REGNUM
1024 && (!reload_completed || frame_pointer_needed))
1025 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1026 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1027 return false;
1028
1029 return true;
1030 }
1031
1032 /* Return false if we do not want to (or cannot) combine USE. */
1033 static bool
1034 can_combine_use_p (df_ref use)
1035 {
1036 /* Do not consider the usage of the stack pointer by function call. */
1037 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1038 return false;
1039
1040 return true;
1041 }
1042
1043 /* Fill in log links field for all insns. */
1044
1045 static void
1046 create_log_links (void)
1047 {
1048 basic_block bb;
1049 rtx_insn **next_use;
1050 rtx_insn *insn;
1051 df_ref def, use;
1052
1053 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1054
1055 /* Pass through each block from the end, recording the uses of each
1056 register and establishing log links when def is encountered.
1057 Note that we do not clear next_use array in order to save time,
1058 so we have to test whether the use is in the same basic block as def.
1059
1060 There are a few cases below when we do not consider the definition or
1061 usage -- these are taken from original flow.c did. Don't ask me why it is
1062 done this way; I don't know and if it works, I don't want to know. */
1063
1064 FOR_EACH_BB_FN (bb, cfun)
1065 {
1066 FOR_BB_INSNS_REVERSE (bb, insn)
1067 {
1068 if (!NONDEBUG_INSN_P (insn))
1069 continue;
1070
1071 /* Log links are created only once. */
1072 gcc_assert (!LOG_LINKS (insn));
1073
1074 FOR_EACH_INSN_DEF (def, insn)
1075 {
1076 unsigned int regno = DF_REF_REGNO (def);
1077 rtx_insn *use_insn;
1078
1079 if (!next_use[regno])
1080 continue;
1081
1082 if (!can_combine_def_p (def))
1083 continue;
1084
1085 use_insn = next_use[regno];
1086 next_use[regno] = NULL;
1087
1088 if (BLOCK_FOR_INSN (use_insn) != bb)
1089 continue;
1090
1091 /* flow.c claimed:
1092
1093 We don't build a LOG_LINK for hard registers contained
1094 in ASM_OPERANDs. If these registers get replaced,
1095 we might wind up changing the semantics of the insn,
1096 even if reload can make what appear to be valid
1097 assignments later. */
1098 if (regno < FIRST_PSEUDO_REGISTER
1099 && asm_noperands (PATTERN (use_insn)) >= 0)
1100 continue;
1101
1102 /* Don't add duplicate links between instructions. */
1103 struct insn_link *links;
1104 FOR_EACH_LOG_LINK (links, use_insn)
1105 if (insn == links->insn && regno == links->regno)
1106 break;
1107
1108 if (!links)
1109 LOG_LINKS (use_insn)
1110 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1111 }
1112
1113 FOR_EACH_INSN_USE (use, insn)
1114 if (can_combine_use_p (use))
1115 next_use[DF_REF_REGNO (use)] = insn;
1116 }
1117 }
1118
1119 free (next_use);
1120 }
1121
1122 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1123 true if we found a LOG_LINK that proves that A feeds B. This only works
1124 if there are no instructions between A and B which could have a link
1125 depending on A, since in that case we would not record a link for B.
1126 We also check the implicit dependency created by a cc0 setter/user
1127 pair. */
1128
1129 static bool
1130 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1131 {
1132 struct insn_link *links;
1133 FOR_EACH_LOG_LINK (links, b)
1134 if (links->insn == a)
1135 return true;
1136 if (HAVE_cc0 && sets_cc0_p (a))
1137 return true;
1138 return false;
1139 }
1140 \f
1141 /* Main entry point for combiner. F is the first insn of the function.
1142 NREGS is the first unused pseudo-reg number.
1143
1144 Return nonzero if the combiner has turned an indirect jump
1145 instruction into a direct jump. */
1146 static int
1147 combine_instructions (rtx_insn *f, unsigned int nregs)
1148 {
1149 rtx_insn *insn, *next;
1150 rtx_insn *prev;
1151 struct insn_link *links, *nextlinks;
1152 rtx_insn *first;
1153 basic_block last_bb;
1154
1155 int new_direct_jump_p = 0;
1156
1157 for (first = f; first && !NONDEBUG_INSN_P (first); )
1158 first = NEXT_INSN (first);
1159 if (!first)
1160 return 0;
1161
1162 combine_attempts = 0;
1163 combine_merges = 0;
1164 combine_extras = 0;
1165 combine_successes = 0;
1166
1167 rtl_hooks = combine_rtl_hooks;
1168
1169 reg_stat.safe_grow_cleared (nregs);
1170
1171 init_recog_no_volatile ();
1172
1173 /* Allocate array for insn info. */
1174 max_uid_known = get_max_uid ();
1175 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1176 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1177 gcc_obstack_init (&insn_link_obstack);
1178
1179 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1180
1181 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1182 problems when, for example, we have j <<= 1 in a loop. */
1183
1184 nonzero_sign_valid = 0;
1185 label_tick = label_tick_ebb_start = 1;
1186
1187 /* Scan all SETs and see if we can deduce anything about what
1188 bits are known to be zero for some registers and how many copies
1189 of the sign bit are known to exist for those registers.
1190
1191 Also set any known values so that we can use it while searching
1192 for what bits are known to be set. */
1193
1194 setup_incoming_promotions (first);
1195 /* Allow the entry block and the first block to fall into the same EBB.
1196 Conceptually the incoming promotions are assigned to the entry block. */
1197 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1198
1199 create_log_links ();
1200 FOR_EACH_BB_FN (this_basic_block, cfun)
1201 {
1202 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1203 last_call_luid = 0;
1204 mem_last_set = -1;
1205
1206 label_tick++;
1207 if (!single_pred_p (this_basic_block)
1208 || single_pred (this_basic_block) != last_bb)
1209 label_tick_ebb_start = label_tick;
1210 last_bb = this_basic_block;
1211
1212 FOR_BB_INSNS (this_basic_block, insn)
1213 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1214 {
1215 rtx links;
1216
1217 subst_low_luid = DF_INSN_LUID (insn);
1218 subst_insn = insn;
1219
1220 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1221 insn);
1222 record_dead_and_set_regs (insn);
1223
1224 if (AUTO_INC_DEC)
1225 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1226 if (REG_NOTE_KIND (links) == REG_INC)
1227 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1228 insn);
1229
1230 /* Record the current insn_cost of this instruction. */
1231 if (NONJUMP_INSN_P (insn))
1232 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1233 if (dump_file)
1234 {
1235 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1236 dump_insn_slim (dump_file, insn);
1237 }
1238 }
1239 }
1240
1241 nonzero_sign_valid = 1;
1242
1243 /* Now scan all the insns in forward order. */
1244 label_tick = label_tick_ebb_start = 1;
1245 init_reg_last ();
1246 setup_incoming_promotions (first);
1247 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1248 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1249
1250 FOR_EACH_BB_FN (this_basic_block, cfun)
1251 {
1252 rtx_insn *last_combined_insn = NULL;
1253
1254 /* Ignore instruction combination in basic blocks that are going to
1255 be removed as unreachable anyway. See PR82386. */
1256 if (EDGE_COUNT (this_basic_block->preds) == 0)
1257 continue;
1258
1259 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1260 last_call_luid = 0;
1261 mem_last_set = -1;
1262
1263 label_tick++;
1264 if (!single_pred_p (this_basic_block)
1265 || single_pred (this_basic_block) != last_bb)
1266 label_tick_ebb_start = label_tick;
1267 last_bb = this_basic_block;
1268
1269 rtl_profile_for_bb (this_basic_block);
1270 for (insn = BB_HEAD (this_basic_block);
1271 insn != NEXT_INSN (BB_END (this_basic_block));
1272 insn = next ? next : NEXT_INSN (insn))
1273 {
1274 next = 0;
1275 if (!NONDEBUG_INSN_P (insn))
1276 continue;
1277
1278 while (last_combined_insn
1279 && (!NONDEBUG_INSN_P (last_combined_insn)
1280 || last_combined_insn->deleted ()))
1281 last_combined_insn = PREV_INSN (last_combined_insn);
1282 if (last_combined_insn == NULL_RTX
1283 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1284 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1285 last_combined_insn = insn;
1286
1287 /* See if we know about function return values before this
1288 insn based upon SUBREG flags. */
1289 check_promoted_subreg (insn, PATTERN (insn));
1290
1291 /* See if we can find hardregs and subreg of pseudos in
1292 narrower modes. This could help turning TRUNCATEs
1293 into SUBREGs. */
1294 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1295
1296 /* Try this insn with each insn it links back to. */
1297
1298 FOR_EACH_LOG_LINK (links, insn)
1299 if ((next = try_combine (insn, links->insn, NULL,
1300 NULL, &new_direct_jump_p,
1301 last_combined_insn)) != 0)
1302 {
1303 statistics_counter_event (cfun, "two-insn combine", 1);
1304 goto retry;
1305 }
1306
1307 /* Try each sequence of three linked insns ending with this one. */
1308
1309 if (max_combine >= 3)
1310 FOR_EACH_LOG_LINK (links, insn)
1311 {
1312 rtx_insn *link = links->insn;
1313
1314 /* If the linked insn has been replaced by a note, then there
1315 is no point in pursuing this chain any further. */
1316 if (NOTE_P (link))
1317 continue;
1318
1319 FOR_EACH_LOG_LINK (nextlinks, link)
1320 if ((next = try_combine (insn, link, nextlinks->insn,
1321 NULL, &new_direct_jump_p,
1322 last_combined_insn)) != 0)
1323 {
1324 statistics_counter_event (cfun, "three-insn combine", 1);
1325 goto retry;
1326 }
1327 }
1328
1329 /* Try to combine a jump insn that uses CC0
1330 with a preceding insn that sets CC0, and maybe with its
1331 logical predecessor as well.
1332 This is how we make decrement-and-branch insns.
1333 We need this special code because data flow connections
1334 via CC0 do not get entered in LOG_LINKS. */
1335
1336 if (HAVE_cc0
1337 && JUMP_P (insn)
1338 && (prev = prev_nonnote_insn (insn)) != 0
1339 && NONJUMP_INSN_P (prev)
1340 && sets_cc0_p (PATTERN (prev)))
1341 {
1342 if ((next = try_combine (insn, prev, NULL, NULL,
1343 &new_direct_jump_p,
1344 last_combined_insn)) != 0)
1345 goto retry;
1346
1347 FOR_EACH_LOG_LINK (nextlinks, prev)
1348 if ((next = try_combine (insn, prev, nextlinks->insn,
1349 NULL, &new_direct_jump_p,
1350 last_combined_insn)) != 0)
1351 goto retry;
1352 }
1353
1354 /* Do the same for an insn that explicitly references CC0. */
1355 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1356 && (prev = prev_nonnote_insn (insn)) != 0
1357 && NONJUMP_INSN_P (prev)
1358 && sets_cc0_p (PATTERN (prev))
1359 && GET_CODE (PATTERN (insn)) == SET
1360 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1361 {
1362 if ((next = try_combine (insn, prev, NULL, NULL,
1363 &new_direct_jump_p,
1364 last_combined_insn)) != 0)
1365 goto retry;
1366
1367 FOR_EACH_LOG_LINK (nextlinks, prev)
1368 if ((next = try_combine (insn, prev, nextlinks->insn,
1369 NULL, &new_direct_jump_p,
1370 last_combined_insn)) != 0)
1371 goto retry;
1372 }
1373
1374 /* Finally, see if any of the insns that this insn links to
1375 explicitly references CC0. If so, try this insn, that insn,
1376 and its predecessor if it sets CC0. */
1377 if (HAVE_cc0)
1378 {
1379 FOR_EACH_LOG_LINK (links, insn)
1380 if (NONJUMP_INSN_P (links->insn)
1381 && GET_CODE (PATTERN (links->insn)) == SET
1382 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1383 && (prev = prev_nonnote_insn (links->insn)) != 0
1384 && NONJUMP_INSN_P (prev)
1385 && sets_cc0_p (PATTERN (prev))
1386 && (next = try_combine (insn, links->insn,
1387 prev, NULL, &new_direct_jump_p,
1388 last_combined_insn)) != 0)
1389 goto retry;
1390 }
1391
1392 /* Try combining an insn with two different insns whose results it
1393 uses. */
1394 if (max_combine >= 3)
1395 FOR_EACH_LOG_LINK (links, insn)
1396 for (nextlinks = links->next; nextlinks;
1397 nextlinks = nextlinks->next)
1398 if ((next = try_combine (insn, links->insn,
1399 nextlinks->insn, NULL,
1400 &new_direct_jump_p,
1401 last_combined_insn)) != 0)
1402
1403 {
1404 statistics_counter_event (cfun, "three-insn combine", 1);
1405 goto retry;
1406 }
1407
1408 /* Try four-instruction combinations. */
1409 if (max_combine >= 4)
1410 FOR_EACH_LOG_LINK (links, insn)
1411 {
1412 struct insn_link *next1;
1413 rtx_insn *link = links->insn;
1414
1415 /* If the linked insn has been replaced by a note, then there
1416 is no point in pursuing this chain any further. */
1417 if (NOTE_P (link))
1418 continue;
1419
1420 FOR_EACH_LOG_LINK (next1, link)
1421 {
1422 rtx_insn *link1 = next1->insn;
1423 if (NOTE_P (link1))
1424 continue;
1425 /* I0 -> I1 -> I2 -> I3. */
1426 FOR_EACH_LOG_LINK (nextlinks, link1)
1427 if ((next = try_combine (insn, link, link1,
1428 nextlinks->insn,
1429 &new_direct_jump_p,
1430 last_combined_insn)) != 0)
1431 {
1432 statistics_counter_event (cfun, "four-insn combine", 1);
1433 goto retry;
1434 }
1435 /* I0, I1 -> I2, I2 -> I3. */
1436 for (nextlinks = next1->next; nextlinks;
1437 nextlinks = nextlinks->next)
1438 if ((next = try_combine (insn, link, link1,
1439 nextlinks->insn,
1440 &new_direct_jump_p,
1441 last_combined_insn)) != 0)
1442 {
1443 statistics_counter_event (cfun, "four-insn combine", 1);
1444 goto retry;
1445 }
1446 }
1447
1448 for (next1 = links->next; next1; next1 = next1->next)
1449 {
1450 rtx_insn *link1 = next1->insn;
1451 if (NOTE_P (link1))
1452 continue;
1453 /* I0 -> I2; I1, I2 -> I3. */
1454 FOR_EACH_LOG_LINK (nextlinks, link)
1455 if ((next = try_combine (insn, link, link1,
1456 nextlinks->insn,
1457 &new_direct_jump_p,
1458 last_combined_insn)) != 0)
1459 {
1460 statistics_counter_event (cfun, "four-insn combine", 1);
1461 goto retry;
1462 }
1463 /* I0 -> I1; I1, I2 -> I3. */
1464 FOR_EACH_LOG_LINK (nextlinks, link1)
1465 if ((next = try_combine (insn, link, link1,
1466 nextlinks->insn,
1467 &new_direct_jump_p,
1468 last_combined_insn)) != 0)
1469 {
1470 statistics_counter_event (cfun, "four-insn combine", 1);
1471 goto retry;
1472 }
1473 }
1474 }
1475
1476 /* Try this insn with each REG_EQUAL note it links back to. */
1477 FOR_EACH_LOG_LINK (links, insn)
1478 {
1479 rtx set, note;
1480 rtx_insn *temp = links->insn;
1481 if ((set = single_set (temp)) != 0
1482 && (note = find_reg_equal_equiv_note (temp)) != 0
1483 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1484 /* Avoid using a register that may already been marked
1485 dead by an earlier instruction. */
1486 && ! unmentioned_reg_p (note, SET_SRC (set))
1487 && (GET_MODE (note) == VOIDmode
1488 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1489 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1490 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1491 || (GET_MODE (XEXP (SET_DEST (set), 0))
1492 == GET_MODE (note))))))
1493 {
1494 /* Temporarily replace the set's source with the
1495 contents of the REG_EQUAL note. The insn will
1496 be deleted or recognized by try_combine. */
1497 rtx orig_src = SET_SRC (set);
1498 rtx orig_dest = SET_DEST (set);
1499 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1500 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1501 SET_SRC (set) = note;
1502 i2mod = temp;
1503 i2mod_old_rhs = copy_rtx (orig_src);
1504 i2mod_new_rhs = copy_rtx (note);
1505 next = try_combine (insn, i2mod, NULL, NULL,
1506 &new_direct_jump_p,
1507 last_combined_insn);
1508 i2mod = NULL;
1509 if (next)
1510 {
1511 statistics_counter_event (cfun, "insn-with-note combine", 1);
1512 goto retry;
1513 }
1514 SET_SRC (set) = orig_src;
1515 SET_DEST (set) = orig_dest;
1516 }
1517 }
1518
1519 if (!NOTE_P (insn))
1520 record_dead_and_set_regs (insn);
1521
1522 retry:
1523 ;
1524 }
1525 }
1526
1527 default_rtl_profile ();
1528 clear_bb_flags ();
1529 new_direct_jump_p |= purge_all_dead_edges ();
1530 delete_noop_moves ();
1531
1532 /* Clean up. */
1533 obstack_free (&insn_link_obstack, NULL);
1534 free (uid_log_links);
1535 free (uid_insn_cost);
1536 reg_stat.release ();
1537
1538 {
1539 struct undo *undo, *next;
1540 for (undo = undobuf.frees; undo; undo = next)
1541 {
1542 next = undo->next;
1543 free (undo);
1544 }
1545 undobuf.frees = 0;
1546 }
1547
1548 total_attempts += combine_attempts;
1549 total_merges += combine_merges;
1550 total_extras += combine_extras;
1551 total_successes += combine_successes;
1552
1553 nonzero_sign_valid = 0;
1554 rtl_hooks = general_rtl_hooks;
1555
1556 /* Make recognizer allow volatile MEMs again. */
1557 init_recog ();
1558
1559 return new_direct_jump_p;
1560 }
1561
1562 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1563
1564 static void
1565 init_reg_last (void)
1566 {
1567 unsigned int i;
1568 reg_stat_type *p;
1569
1570 FOR_EACH_VEC_ELT (reg_stat, i, p)
1571 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1572 }
1573 \f
1574 /* Set up any promoted values for incoming argument registers. */
1575
1576 static void
1577 setup_incoming_promotions (rtx_insn *first)
1578 {
1579 tree arg;
1580 bool strictly_local = false;
1581
1582 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1583 arg = DECL_CHAIN (arg))
1584 {
1585 rtx x, reg = DECL_INCOMING_RTL (arg);
1586 int uns1, uns3;
1587 machine_mode mode1, mode2, mode3, mode4;
1588
1589 /* Only continue if the incoming argument is in a register. */
1590 if (!REG_P (reg))
1591 continue;
1592
1593 /* Determine, if possible, whether all call sites of the current
1594 function lie within the current compilation unit. (This does
1595 take into account the exporting of a function via taking its
1596 address, and so forth.) */
1597 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1598
1599 /* The mode and signedness of the argument before any promotions happen
1600 (equal to the mode of the pseudo holding it at that stage). */
1601 mode1 = TYPE_MODE (TREE_TYPE (arg));
1602 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1603
1604 /* The mode and signedness of the argument after any source language and
1605 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1606 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1607 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1608
1609 /* The mode and signedness of the argument as it is actually passed,
1610 see assign_parm_setup_reg in function.c. */
1611 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1612 TREE_TYPE (cfun->decl), 0);
1613
1614 /* The mode of the register in which the argument is being passed. */
1615 mode4 = GET_MODE (reg);
1616
1617 /* Eliminate sign extensions in the callee when:
1618 (a) A mode promotion has occurred; */
1619 if (mode1 == mode3)
1620 continue;
1621 /* (b) The mode of the register is the same as the mode of
1622 the argument as it is passed; */
1623 if (mode3 != mode4)
1624 continue;
1625 /* (c) There's no language level extension; */
1626 if (mode1 == mode2)
1627 ;
1628 /* (c.1) All callers are from the current compilation unit. If that's
1629 the case we don't have to rely on an ABI, we only have to know
1630 what we're generating right now, and we know that we will do the
1631 mode1 to mode2 promotion with the given sign. */
1632 else if (!strictly_local)
1633 continue;
1634 /* (c.2) The combination of the two promotions is useful. This is
1635 true when the signs match, or if the first promotion is unsigned.
1636 In the later case, (sign_extend (zero_extend x)) is the same as
1637 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1638 else if (uns1)
1639 uns3 = true;
1640 else if (uns3)
1641 continue;
1642
1643 /* Record that the value was promoted from mode1 to mode3,
1644 so that any sign extension at the head of the current
1645 function may be eliminated. */
1646 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1647 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1648 record_value_for_reg (reg, first, x);
1649 }
1650 }
1651
1652 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1653 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1654 because some machines (maybe most) will actually do the sign-extension and
1655 this is the conservative approach.
1656
1657 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1658 kludge. */
1659
1660 static rtx
1661 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1662 {
1663 scalar_int_mode int_mode;
1664 if (CONST_INT_P (src)
1665 && is_a <scalar_int_mode> (mode, &int_mode)
1666 && GET_MODE_PRECISION (int_mode) < prec
1667 && INTVAL (src) > 0
1668 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1669 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1670
1671 return src;
1672 }
1673
1674 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1675 and SET. */
1676
1677 static void
1678 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1679 rtx x)
1680 {
1681 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1682 unsigned HOST_WIDE_INT bits = 0;
1683 rtx reg_equal = NULL, src = SET_SRC (set);
1684 unsigned int num = 0;
1685
1686 if (reg_equal_note)
1687 reg_equal = XEXP (reg_equal_note, 0);
1688
1689 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1690 {
1691 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1692 if (reg_equal)
1693 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1694 }
1695
1696 /* Don't call nonzero_bits if it cannot change anything. */
1697 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1698 {
1699 bits = nonzero_bits (src, nonzero_bits_mode);
1700 if (reg_equal && bits)
1701 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1702 rsp->nonzero_bits |= bits;
1703 }
1704
1705 /* Don't call num_sign_bit_copies if it cannot change anything. */
1706 if (rsp->sign_bit_copies != 1)
1707 {
1708 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1709 if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x))))
1710 {
1711 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1712 if (num == 0 || numeq > num)
1713 num = numeq;
1714 }
1715 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1716 rsp->sign_bit_copies = num;
1717 }
1718 }
1719
1720 /* Called via note_stores. If X is a pseudo that is narrower than
1721 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1722
1723 If we are setting only a portion of X and we can't figure out what
1724 portion, assume all bits will be used since we don't know what will
1725 be happening.
1726
1727 Similarly, set how many bits of X are known to be copies of the sign bit
1728 at all locations in the function. This is the smallest number implied
1729 by any set of X. */
1730
1731 static void
1732 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1733 {
1734 rtx_insn *insn = (rtx_insn *) data;
1735 scalar_int_mode mode;
1736
1737 if (REG_P (x)
1738 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1739 /* If this register is undefined at the start of the file, we can't
1740 say what its contents were. */
1741 && ! REGNO_REG_SET_P
1742 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1743 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1744 && HWI_COMPUTABLE_MODE_P (mode))
1745 {
1746 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1747
1748 if (set == 0 || GET_CODE (set) == CLOBBER)
1749 {
1750 rsp->nonzero_bits = GET_MODE_MASK (mode);
1751 rsp->sign_bit_copies = 1;
1752 return;
1753 }
1754
1755 /* If this register is being initialized using itself, and the
1756 register is uninitialized in this basic block, and there are
1757 no LOG_LINKS which set the register, then part of the
1758 register is uninitialized. In that case we can't assume
1759 anything about the number of nonzero bits.
1760
1761 ??? We could do better if we checked this in
1762 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1763 could avoid making assumptions about the insn which initially
1764 sets the register, while still using the information in other
1765 insns. We would have to be careful to check every insn
1766 involved in the combination. */
1767
1768 if (insn
1769 && reg_referenced_p (x, PATTERN (insn))
1770 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1771 REGNO (x)))
1772 {
1773 struct insn_link *link;
1774
1775 FOR_EACH_LOG_LINK (link, insn)
1776 if (dead_or_set_p (link->insn, x))
1777 break;
1778 if (!link)
1779 {
1780 rsp->nonzero_bits = GET_MODE_MASK (mode);
1781 rsp->sign_bit_copies = 1;
1782 return;
1783 }
1784 }
1785
1786 /* If this is a complex assignment, see if we can convert it into a
1787 simple assignment. */
1788 set = expand_field_assignment (set);
1789
1790 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1791 set what we know about X. */
1792
1793 if (SET_DEST (set) == x
1794 || (paradoxical_subreg_p (SET_DEST (set))
1795 && SUBREG_REG (SET_DEST (set)) == x))
1796 update_rsp_from_reg_equal (rsp, insn, set, x);
1797 else
1798 {
1799 rsp->nonzero_bits = GET_MODE_MASK (mode);
1800 rsp->sign_bit_copies = 1;
1801 }
1802 }
1803 }
1804 \f
1805 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1806 optionally insns that were previously combined into I3 or that will be
1807 combined into the merger of INSN and I3. The order is PRED, PRED2,
1808 INSN, SUCC, SUCC2, I3.
1809
1810 Return 0 if the combination is not allowed for any reason.
1811
1812 If the combination is allowed, *PDEST will be set to the single
1813 destination of INSN and *PSRC to the single source, and this function
1814 will return 1. */
1815
1816 static int
1817 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1818 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1819 rtx *pdest, rtx *psrc)
1820 {
1821 int i;
1822 const_rtx set = 0;
1823 rtx src, dest;
1824 rtx_insn *p;
1825 rtx link;
1826 bool all_adjacent = true;
1827 int (*is_volatile_p) (const_rtx);
1828
1829 if (succ)
1830 {
1831 if (succ2)
1832 {
1833 if (next_active_insn (succ2) != i3)
1834 all_adjacent = false;
1835 if (next_active_insn (succ) != succ2)
1836 all_adjacent = false;
1837 }
1838 else if (next_active_insn (succ) != i3)
1839 all_adjacent = false;
1840 if (next_active_insn (insn) != succ)
1841 all_adjacent = false;
1842 }
1843 else if (next_active_insn (insn) != i3)
1844 all_adjacent = false;
1845
1846 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1847 or a PARALLEL consisting of such a SET and CLOBBERs.
1848
1849 If INSN has CLOBBER parallel parts, ignore them for our processing.
1850 By definition, these happen during the execution of the insn. When it
1851 is merged with another insn, all bets are off. If they are, in fact,
1852 needed and aren't also supplied in I3, they may be added by
1853 recog_for_combine. Otherwise, it won't match.
1854
1855 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1856 note.
1857
1858 Get the source and destination of INSN. If more than one, can't
1859 combine. */
1860
1861 if (GET_CODE (PATTERN (insn)) == SET)
1862 set = PATTERN (insn);
1863 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1864 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1865 {
1866 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1867 {
1868 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1869
1870 switch (GET_CODE (elt))
1871 {
1872 /* This is important to combine floating point insns
1873 for the SH4 port. */
1874 case USE:
1875 /* Combining an isolated USE doesn't make sense.
1876 We depend here on combinable_i3pat to reject them. */
1877 /* The code below this loop only verifies that the inputs of
1878 the SET in INSN do not change. We call reg_set_between_p
1879 to verify that the REG in the USE does not change between
1880 I3 and INSN.
1881 If the USE in INSN was for a pseudo register, the matching
1882 insn pattern will likely match any register; combining this
1883 with any other USE would only be safe if we knew that the
1884 used registers have identical values, or if there was
1885 something to tell them apart, e.g. different modes. For
1886 now, we forgo such complicated tests and simply disallow
1887 combining of USES of pseudo registers with any other USE. */
1888 if (REG_P (XEXP (elt, 0))
1889 && GET_CODE (PATTERN (i3)) == PARALLEL)
1890 {
1891 rtx i3pat = PATTERN (i3);
1892 int i = XVECLEN (i3pat, 0) - 1;
1893 unsigned int regno = REGNO (XEXP (elt, 0));
1894
1895 do
1896 {
1897 rtx i3elt = XVECEXP (i3pat, 0, i);
1898
1899 if (GET_CODE (i3elt) == USE
1900 && REG_P (XEXP (i3elt, 0))
1901 && (REGNO (XEXP (i3elt, 0)) == regno
1902 ? reg_set_between_p (XEXP (elt, 0),
1903 PREV_INSN (insn), i3)
1904 : regno >= FIRST_PSEUDO_REGISTER))
1905 return 0;
1906 }
1907 while (--i >= 0);
1908 }
1909 break;
1910
1911 /* We can ignore CLOBBERs. */
1912 case CLOBBER:
1913 break;
1914
1915 case SET:
1916 /* Ignore SETs whose result isn't used but not those that
1917 have side-effects. */
1918 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1919 && insn_nothrow_p (insn)
1920 && !side_effects_p (elt))
1921 break;
1922
1923 /* If we have already found a SET, this is a second one and
1924 so we cannot combine with this insn. */
1925 if (set)
1926 return 0;
1927
1928 set = elt;
1929 break;
1930
1931 default:
1932 /* Anything else means we can't combine. */
1933 return 0;
1934 }
1935 }
1936
1937 if (set == 0
1938 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1939 so don't do anything with it. */
1940 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1941 return 0;
1942 }
1943 else
1944 return 0;
1945
1946 if (set == 0)
1947 return 0;
1948
1949 /* The simplification in expand_field_assignment may call back to
1950 get_last_value, so set safe guard here. */
1951 subst_low_luid = DF_INSN_LUID (insn);
1952
1953 set = expand_field_assignment (set);
1954 src = SET_SRC (set), dest = SET_DEST (set);
1955
1956 /* Do not eliminate user-specified register if it is in an
1957 asm input because we may break the register asm usage defined
1958 in GCC manual if allow to do so.
1959 Be aware that this may cover more cases than we expect but this
1960 should be harmless. */
1961 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1962 && extract_asm_operands (PATTERN (i3)))
1963 return 0;
1964
1965 /* Don't eliminate a store in the stack pointer. */
1966 if (dest == stack_pointer_rtx
1967 /* Don't combine with an insn that sets a register to itself if it has
1968 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1969 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1970 /* Can't merge an ASM_OPERANDS. */
1971 || GET_CODE (src) == ASM_OPERANDS
1972 /* Can't merge a function call. */
1973 || GET_CODE (src) == CALL
1974 /* Don't eliminate a function call argument. */
1975 || (CALL_P (i3)
1976 && (find_reg_fusage (i3, USE, dest)
1977 || (REG_P (dest)
1978 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1979 && global_regs[REGNO (dest)])))
1980 /* Don't substitute into an incremented register. */
1981 || FIND_REG_INC_NOTE (i3, dest)
1982 || (succ && FIND_REG_INC_NOTE (succ, dest))
1983 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1984 /* Don't substitute into a non-local goto, this confuses CFG. */
1985 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1986 /* Make sure that DEST is not used after INSN but before SUCC, or
1987 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1988 || (!all_adjacent
1989 && ((succ2
1990 && (reg_used_between_p (dest, succ2, i3)
1991 || reg_used_between_p (dest, succ, succ2)))
1992 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
1993 || (succ
1994 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1995 that case SUCC is not in the insn stream, so use SUCC2
1996 instead for this test. */
1997 && reg_used_between_p (dest, insn,
1998 succ2
1999 && INSN_UID (succ) == INSN_UID (succ2)
2000 ? succ2 : succ))))
2001 /* Make sure that the value that is to be substituted for the register
2002 does not use any registers whose values alter in between. However,
2003 If the insns are adjacent, a use can't cross a set even though we
2004 think it might (this can happen for a sequence of insns each setting
2005 the same destination; last_set of that register might point to
2006 a NOTE). If INSN has a REG_EQUIV note, the register is always
2007 equivalent to the memory so the substitution is valid even if there
2008 are intervening stores. Also, don't move a volatile asm or
2009 UNSPEC_VOLATILE across any other insns. */
2010 || (! all_adjacent
2011 && (((!MEM_P (src)
2012 || ! find_reg_note (insn, REG_EQUIV, src))
2013 && modified_between_p (src, insn, i3))
2014 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2015 || GET_CODE (src) == UNSPEC_VOLATILE))
2016 /* Don't combine across a CALL_INSN, because that would possibly
2017 change whether the life span of some REGs crosses calls or not,
2018 and it is a pain to update that information.
2019 Exception: if source is a constant, moving it later can't hurt.
2020 Accept that as a special case. */
2021 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2022 return 0;
2023
2024 /* DEST must either be a REG or CC0. */
2025 if (REG_P (dest))
2026 {
2027 /* If register alignment is being enforced for multi-word items in all
2028 cases except for parameters, it is possible to have a register copy
2029 insn referencing a hard register that is not allowed to contain the
2030 mode being copied and which would not be valid as an operand of most
2031 insns. Eliminate this problem by not combining with such an insn.
2032
2033 Also, on some machines we don't want to extend the life of a hard
2034 register. */
2035
2036 if (REG_P (src)
2037 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2038 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
2039 /* Don't extend the life of a hard register unless it is
2040 user variable (if we have few registers) or it can't
2041 fit into the desired register (meaning something special
2042 is going on).
2043 Also avoid substituting a return register into I3, because
2044 reload can't handle a conflict with constraints of other
2045 inputs. */
2046 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2047 && !targetm.hard_regno_mode_ok (REGNO (src),
2048 GET_MODE (src)))))
2049 return 0;
2050 }
2051 else if (GET_CODE (dest) != CC0)
2052 return 0;
2053
2054
2055 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2056 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2057 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2058 {
2059 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2060
2061 /* If the clobber represents an earlyclobber operand, we must not
2062 substitute an expression containing the clobbered register.
2063 As we do not analyze the constraint strings here, we have to
2064 make the conservative assumption. However, if the register is
2065 a fixed hard reg, the clobber cannot represent any operand;
2066 we leave it up to the machine description to either accept or
2067 reject use-and-clobber patterns. */
2068 if (!REG_P (reg)
2069 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2070 || !fixed_regs[REGNO (reg)])
2071 if (reg_overlap_mentioned_p (reg, src))
2072 return 0;
2073 }
2074
2075 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2076 or not), reject, unless nothing volatile comes between it and I3 */
2077
2078 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2079 {
2080 /* Make sure neither succ nor succ2 contains a volatile reference. */
2081 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2082 return 0;
2083 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2084 return 0;
2085 /* We'll check insns between INSN and I3 below. */
2086 }
2087
2088 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2089 to be an explicit register variable, and was chosen for a reason. */
2090
2091 if (GET_CODE (src) == ASM_OPERANDS
2092 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2093 return 0;
2094
2095 /* If INSN contains volatile references (specifically volatile MEMs),
2096 we cannot combine across any other volatile references.
2097 Even if INSN doesn't contain volatile references, any intervening
2098 volatile insn might affect machine state. */
2099
2100 is_volatile_p = volatile_refs_p (PATTERN (insn))
2101 ? volatile_refs_p
2102 : volatile_insn_p;
2103
2104 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2105 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2106 return 0;
2107
2108 /* If INSN contains an autoincrement or autodecrement, make sure that
2109 register is not used between there and I3, and not already used in
2110 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2111 Also insist that I3 not be a jump; if it were one
2112 and the incremented register were spilled, we would lose. */
2113
2114 if (AUTO_INC_DEC)
2115 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2116 if (REG_NOTE_KIND (link) == REG_INC
2117 && (JUMP_P (i3)
2118 || reg_used_between_p (XEXP (link, 0), insn, i3)
2119 || (pred != NULL_RTX
2120 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2121 || (pred2 != NULL_RTX
2122 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2123 || (succ != NULL_RTX
2124 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2125 || (succ2 != NULL_RTX
2126 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2127 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2128 return 0;
2129
2130 /* Don't combine an insn that follows a CC0-setting insn.
2131 An insn that uses CC0 must not be separated from the one that sets it.
2132 We do, however, allow I2 to follow a CC0-setting insn if that insn
2133 is passed as I1; in that case it will be deleted also.
2134 We also allow combining in this case if all the insns are adjacent
2135 because that would leave the two CC0 insns adjacent as well.
2136 It would be more logical to test whether CC0 occurs inside I1 or I2,
2137 but that would be much slower, and this ought to be equivalent. */
2138
2139 if (HAVE_cc0)
2140 {
2141 p = prev_nonnote_insn (insn);
2142 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2143 && ! all_adjacent)
2144 return 0;
2145 }
2146
2147 /* If we get here, we have passed all the tests and the combination is
2148 to be allowed. */
2149
2150 *pdest = dest;
2151 *psrc = src;
2152
2153 return 1;
2154 }
2155 \f
2156 /* LOC is the location within I3 that contains its pattern or the component
2157 of a PARALLEL of the pattern. We validate that it is valid for combining.
2158
2159 One problem is if I3 modifies its output, as opposed to replacing it
2160 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2161 doing so would produce an insn that is not equivalent to the original insns.
2162
2163 Consider:
2164
2165 (set (reg:DI 101) (reg:DI 100))
2166 (set (subreg:SI (reg:DI 101) 0) <foo>)
2167
2168 This is NOT equivalent to:
2169
2170 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2171 (set (reg:DI 101) (reg:DI 100))])
2172
2173 Not only does this modify 100 (in which case it might still be valid
2174 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2175
2176 We can also run into a problem if I2 sets a register that I1
2177 uses and I1 gets directly substituted into I3 (not via I2). In that
2178 case, we would be getting the wrong value of I2DEST into I3, so we
2179 must reject the combination. This case occurs when I2 and I1 both
2180 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2181 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2182 of a SET must prevent combination from occurring. The same situation
2183 can occur for I0, in which case I0_NOT_IN_SRC is set.
2184
2185 Before doing the above check, we first try to expand a field assignment
2186 into a set of logical operations.
2187
2188 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2189 we place a register that is both set and used within I3. If more than one
2190 such register is detected, we fail.
2191
2192 Return 1 if the combination is valid, zero otherwise. */
2193
2194 static int
2195 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2196 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2197 {
2198 rtx x = *loc;
2199
2200 if (GET_CODE (x) == SET)
2201 {
2202 rtx set = x ;
2203 rtx dest = SET_DEST (set);
2204 rtx src = SET_SRC (set);
2205 rtx inner_dest = dest;
2206 rtx subdest;
2207
2208 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2209 || GET_CODE (inner_dest) == SUBREG
2210 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2211 inner_dest = XEXP (inner_dest, 0);
2212
2213 /* Check for the case where I3 modifies its output, as discussed
2214 above. We don't want to prevent pseudos from being combined
2215 into the address of a MEM, so only prevent the combination if
2216 i1 or i2 set the same MEM. */
2217 if ((inner_dest != dest &&
2218 (!MEM_P (inner_dest)
2219 || rtx_equal_p (i2dest, inner_dest)
2220 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2221 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2222 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2223 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2224 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2225
2226 /* This is the same test done in can_combine_p except we can't test
2227 all_adjacent; we don't have to, since this instruction will stay
2228 in place, thus we are not considering increasing the lifetime of
2229 INNER_DEST.
2230
2231 Also, if this insn sets a function argument, combining it with
2232 something that might need a spill could clobber a previous
2233 function argument; the all_adjacent test in can_combine_p also
2234 checks this; here, we do a more specific test for this case. */
2235
2236 || (REG_P (inner_dest)
2237 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2238 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2239 GET_MODE (inner_dest)))
2240 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2241 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2242 return 0;
2243
2244 /* If DEST is used in I3, it is being killed in this insn, so
2245 record that for later. We have to consider paradoxical
2246 subregs here, since they kill the whole register, but we
2247 ignore partial subregs, STRICT_LOW_PART, etc.
2248 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2249 STACK_POINTER_REGNUM, since these are always considered to be
2250 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2251 subdest = dest;
2252 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2253 subdest = SUBREG_REG (subdest);
2254 if (pi3dest_killed
2255 && REG_P (subdest)
2256 && reg_referenced_p (subdest, PATTERN (i3))
2257 && REGNO (subdest) != FRAME_POINTER_REGNUM
2258 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2259 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2260 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2261 || (REGNO (subdest) != ARG_POINTER_REGNUM
2262 || ! fixed_regs [REGNO (subdest)]))
2263 && REGNO (subdest) != STACK_POINTER_REGNUM)
2264 {
2265 if (*pi3dest_killed)
2266 return 0;
2267
2268 *pi3dest_killed = subdest;
2269 }
2270 }
2271
2272 else if (GET_CODE (x) == PARALLEL)
2273 {
2274 int i;
2275
2276 for (i = 0; i < XVECLEN (x, 0); i++)
2277 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2278 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2279 return 0;
2280 }
2281
2282 return 1;
2283 }
2284 \f
2285 /* Return 1 if X is an arithmetic expression that contains a multiplication
2286 and division. We don't count multiplications by powers of two here. */
2287
2288 static int
2289 contains_muldiv (rtx x)
2290 {
2291 switch (GET_CODE (x))
2292 {
2293 case MOD: case DIV: case UMOD: case UDIV:
2294 return 1;
2295
2296 case MULT:
2297 return ! (CONST_INT_P (XEXP (x, 1))
2298 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2299 default:
2300 if (BINARY_P (x))
2301 return contains_muldiv (XEXP (x, 0))
2302 || contains_muldiv (XEXP (x, 1));
2303
2304 if (UNARY_P (x))
2305 return contains_muldiv (XEXP (x, 0));
2306
2307 return 0;
2308 }
2309 }
2310 \f
2311 /* Determine whether INSN can be used in a combination. Return nonzero if
2312 not. This is used in try_combine to detect early some cases where we
2313 can't perform combinations. */
2314
2315 static int
2316 cant_combine_insn_p (rtx_insn *insn)
2317 {
2318 rtx set;
2319 rtx src, dest;
2320
2321 /* If this isn't really an insn, we can't do anything.
2322 This can occur when flow deletes an insn that it has merged into an
2323 auto-increment address. */
2324 if (!NONDEBUG_INSN_P (insn))
2325 return 1;
2326
2327 /* Never combine loads and stores involving hard regs that are likely
2328 to be spilled. The register allocator can usually handle such
2329 reg-reg moves by tying. If we allow the combiner to make
2330 substitutions of likely-spilled regs, reload might die.
2331 As an exception, we allow combinations involving fixed regs; these are
2332 not available to the register allocator so there's no risk involved. */
2333
2334 set = single_set (insn);
2335 if (! set)
2336 return 0;
2337 src = SET_SRC (set);
2338 dest = SET_DEST (set);
2339 if (GET_CODE (src) == SUBREG)
2340 src = SUBREG_REG (src);
2341 if (GET_CODE (dest) == SUBREG)
2342 dest = SUBREG_REG (dest);
2343 if (REG_P (src) && REG_P (dest)
2344 && ((HARD_REGISTER_P (src)
2345 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2346 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2347 || (HARD_REGISTER_P (dest)
2348 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2349 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2350 return 1;
2351
2352 return 0;
2353 }
2354
2355 struct likely_spilled_retval_info
2356 {
2357 unsigned regno, nregs;
2358 unsigned mask;
2359 };
2360
2361 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2362 hard registers that are known to be written to / clobbered in full. */
2363 static void
2364 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2365 {
2366 struct likely_spilled_retval_info *const info =
2367 (struct likely_spilled_retval_info *) data;
2368 unsigned regno, nregs;
2369 unsigned new_mask;
2370
2371 if (!REG_P (XEXP (set, 0)))
2372 return;
2373 regno = REGNO (x);
2374 if (regno >= info->regno + info->nregs)
2375 return;
2376 nregs = REG_NREGS (x);
2377 if (regno + nregs <= info->regno)
2378 return;
2379 new_mask = (2U << (nregs - 1)) - 1;
2380 if (regno < info->regno)
2381 new_mask >>= info->regno - regno;
2382 else
2383 new_mask <<= regno - info->regno;
2384 info->mask &= ~new_mask;
2385 }
2386
2387 /* Return nonzero iff part of the return value is live during INSN, and
2388 it is likely spilled. This can happen when more than one insn is needed
2389 to copy the return value, e.g. when we consider to combine into the
2390 second copy insn for a complex value. */
2391
2392 static int
2393 likely_spilled_retval_p (rtx_insn *insn)
2394 {
2395 rtx_insn *use = BB_END (this_basic_block);
2396 rtx reg;
2397 rtx_insn *p;
2398 unsigned regno, nregs;
2399 /* We assume here that no machine mode needs more than
2400 32 hard registers when the value overlaps with a register
2401 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2402 unsigned mask;
2403 struct likely_spilled_retval_info info;
2404
2405 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2406 return 0;
2407 reg = XEXP (PATTERN (use), 0);
2408 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2409 return 0;
2410 regno = REGNO (reg);
2411 nregs = REG_NREGS (reg);
2412 if (nregs == 1)
2413 return 0;
2414 mask = (2U << (nregs - 1)) - 1;
2415
2416 /* Disregard parts of the return value that are set later. */
2417 info.regno = regno;
2418 info.nregs = nregs;
2419 info.mask = mask;
2420 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2421 if (INSN_P (p))
2422 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2423 mask = info.mask;
2424
2425 /* Check if any of the (probably) live return value registers is
2426 likely spilled. */
2427 nregs --;
2428 do
2429 {
2430 if ((mask & 1 << nregs)
2431 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2432 return 1;
2433 } while (nregs--);
2434 return 0;
2435 }
2436
2437 /* Adjust INSN after we made a change to its destination.
2438
2439 Changing the destination can invalidate notes that say something about
2440 the results of the insn and a LOG_LINK pointing to the insn. */
2441
2442 static void
2443 adjust_for_new_dest (rtx_insn *insn)
2444 {
2445 /* For notes, be conservative and simply remove them. */
2446 remove_reg_equal_equiv_notes (insn);
2447
2448 /* The new insn will have a destination that was previously the destination
2449 of an insn just above it. Call distribute_links to make a LOG_LINK from
2450 the next use of that destination. */
2451
2452 rtx set = single_set (insn);
2453 gcc_assert (set);
2454
2455 rtx reg = SET_DEST (set);
2456
2457 while (GET_CODE (reg) == ZERO_EXTRACT
2458 || GET_CODE (reg) == STRICT_LOW_PART
2459 || GET_CODE (reg) == SUBREG)
2460 reg = XEXP (reg, 0);
2461 gcc_assert (REG_P (reg));
2462
2463 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2464
2465 df_insn_rescan (insn);
2466 }
2467
2468 /* Return TRUE if combine can reuse reg X in mode MODE.
2469 ADDED_SETS is nonzero if the original set is still required. */
2470 static bool
2471 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2472 {
2473 unsigned int regno;
2474
2475 if (!REG_P (x))
2476 return false;
2477
2478 /* Don't change between modes with different underlying register sizes,
2479 since this could lead to invalid subregs. */
2480 if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2481 REGMODE_NATURAL_SIZE (GET_MODE (x))))
2482 return false;
2483
2484 regno = REGNO (x);
2485 /* Allow hard registers if the new mode is legal, and occupies no more
2486 registers than the old mode. */
2487 if (regno < FIRST_PSEUDO_REGISTER)
2488 return (targetm.hard_regno_mode_ok (regno, mode)
2489 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2490
2491 /* Or a pseudo that is only used once. */
2492 return (regno < reg_n_sets_max
2493 && REG_N_SETS (regno) == 1
2494 && !added_sets
2495 && !REG_USERVAR_P (x));
2496 }
2497
2498
2499 /* Check whether X, the destination of a set, refers to part of
2500 the register specified by REG. */
2501
2502 static bool
2503 reg_subword_p (rtx x, rtx reg)
2504 {
2505 /* Check that reg is an integer mode register. */
2506 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2507 return false;
2508
2509 if (GET_CODE (x) == STRICT_LOW_PART
2510 || GET_CODE (x) == ZERO_EXTRACT)
2511 x = XEXP (x, 0);
2512
2513 return GET_CODE (x) == SUBREG
2514 && SUBREG_REG (x) == reg
2515 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2516 }
2517
2518 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2519 Note that the INSN should be deleted *after* removing dead edges, so
2520 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2521 but not for a (set (pc) (label_ref FOO)). */
2522
2523 static void
2524 update_cfg_for_uncondjump (rtx_insn *insn)
2525 {
2526 basic_block bb = BLOCK_FOR_INSN (insn);
2527 gcc_assert (BB_END (bb) == insn);
2528
2529 purge_dead_edges (bb);
2530
2531 delete_insn (insn);
2532 if (EDGE_COUNT (bb->succs) == 1)
2533 {
2534 rtx_insn *insn;
2535
2536 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2537
2538 /* Remove barriers from the footer if there are any. */
2539 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2540 if (BARRIER_P (insn))
2541 {
2542 if (PREV_INSN (insn))
2543 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2544 else
2545 BB_FOOTER (bb) = NEXT_INSN (insn);
2546 if (NEXT_INSN (insn))
2547 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2548 }
2549 else if (LABEL_P (insn))
2550 break;
2551 }
2552 }
2553
2554 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2555 by an arbitrary number of CLOBBERs. */
2556 static bool
2557 is_parallel_of_n_reg_sets (rtx pat, int n)
2558 {
2559 if (GET_CODE (pat) != PARALLEL)
2560 return false;
2561
2562 int len = XVECLEN (pat, 0);
2563 if (len < n)
2564 return false;
2565
2566 int i;
2567 for (i = 0; i < n; i++)
2568 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2569 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2570 return false;
2571 for ( ; i < len; i++)
2572 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2573 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2574 return false;
2575
2576 return true;
2577 }
2578
2579 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2580 CLOBBERs), can be split into individual SETs in that order, without
2581 changing semantics. */
2582 static bool
2583 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2584 {
2585 if (!insn_nothrow_p (insn))
2586 return false;
2587
2588 rtx pat = PATTERN (insn);
2589
2590 int i, j;
2591 for (i = 0; i < n; i++)
2592 {
2593 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2594 return false;
2595
2596 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2597
2598 for (j = i + 1; j < n; j++)
2599 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2600 return false;
2601 }
2602
2603 return true;
2604 }
2605
2606 /* Try to combine the insns I0, I1 and I2 into I3.
2607 Here I0, I1 and I2 appear earlier than I3.
2608 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2609 I3.
2610
2611 If we are combining more than two insns and the resulting insn is not
2612 recognized, try splitting it into two insns. If that happens, I2 and I3
2613 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2614 Otherwise, I0, I1 and I2 are pseudo-deleted.
2615
2616 Return 0 if the combination does not work. Then nothing is changed.
2617 If we did the combination, return the insn at which combine should
2618 resume scanning.
2619
2620 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2621 new direct jump instruction.
2622
2623 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2624 been I3 passed to an earlier try_combine within the same basic
2625 block. */
2626
2627 static rtx_insn *
2628 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2629 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2630 {
2631 /* New patterns for I3 and I2, respectively. */
2632 rtx newpat, newi2pat = 0;
2633 rtvec newpat_vec_with_clobbers = 0;
2634 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2635 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2636 dead. */
2637 int added_sets_0, added_sets_1, added_sets_2;
2638 /* Total number of SETs to put into I3. */
2639 int total_sets;
2640 /* Nonzero if I2's or I1's body now appears in I3. */
2641 int i2_is_used = 0, i1_is_used = 0;
2642 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2643 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2644 /* Contains I3 if the destination of I3 is used in its source, which means
2645 that the old life of I3 is being killed. If that usage is placed into
2646 I2 and not in I3, a REG_DEAD note must be made. */
2647 rtx i3dest_killed = 0;
2648 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2649 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2650 /* Copy of SET_SRC of I1 and I0, if needed. */
2651 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2652 /* Set if I2DEST was reused as a scratch register. */
2653 bool i2scratch = false;
2654 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2655 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2656 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2657 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2658 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2659 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2660 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2661 /* Notes that must be added to REG_NOTES in I3 and I2. */
2662 rtx new_i3_notes, new_i2_notes;
2663 /* Notes that we substituted I3 into I2 instead of the normal case. */
2664 int i3_subst_into_i2 = 0;
2665 /* Notes that I1, I2 or I3 is a MULT operation. */
2666 int have_mult = 0;
2667 int swap_i2i3 = 0;
2668 int changed_i3_dest = 0;
2669
2670 int maxreg;
2671 rtx_insn *temp_insn;
2672 rtx temp_expr;
2673 struct insn_link *link;
2674 rtx other_pat = 0;
2675 rtx new_other_notes;
2676 int i;
2677 scalar_int_mode dest_mode, temp_mode;
2678
2679 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2680 never be). */
2681 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2682 return 0;
2683
2684 /* Only try four-insn combinations when there's high likelihood of
2685 success. Look for simple insns, such as loads of constants or
2686 binary operations involving a constant. */
2687 if (i0)
2688 {
2689 int i;
2690 int ngood = 0;
2691 int nshift = 0;
2692 rtx set0, set3;
2693
2694 if (!flag_expensive_optimizations)
2695 return 0;
2696
2697 for (i = 0; i < 4; i++)
2698 {
2699 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2700 rtx set = single_set (insn);
2701 rtx src;
2702 if (!set)
2703 continue;
2704 src = SET_SRC (set);
2705 if (CONSTANT_P (src))
2706 {
2707 ngood += 2;
2708 break;
2709 }
2710 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2711 ngood++;
2712 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2713 || GET_CODE (src) == LSHIFTRT)
2714 nshift++;
2715 }
2716
2717 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2718 are likely manipulating its value. Ideally we'll be able to combine
2719 all four insns into a bitfield insertion of some kind.
2720
2721 Note the source in I0 might be inside a sign/zero extension and the
2722 memory modes in I0 and I3 might be different. So extract the address
2723 from the destination of I3 and search for it in the source of I0.
2724
2725 In the event that there's a match but the source/dest do not actually
2726 refer to the same memory, the worst that happens is we try some
2727 combinations that we wouldn't have otherwise. */
2728 if ((set0 = single_set (i0))
2729 /* Ensure the source of SET0 is a MEM, possibly buried inside
2730 an extension. */
2731 && (GET_CODE (SET_SRC (set0)) == MEM
2732 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2733 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2734 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2735 && (set3 = single_set (i3))
2736 /* Ensure the destination of SET3 is a MEM. */
2737 && GET_CODE (SET_DEST (set3)) == MEM
2738 /* Would it be better to extract the base address for the MEM
2739 in SET3 and look for that? I don't have cases where it matters
2740 but I could envision such cases. */
2741 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2742 ngood += 2;
2743
2744 if (ngood < 2 && nshift < 2)
2745 return 0;
2746 }
2747
2748 /* Exit early if one of the insns involved can't be used for
2749 combinations. */
2750 if (CALL_P (i2)
2751 || (i1 && CALL_P (i1))
2752 || (i0 && CALL_P (i0))
2753 || cant_combine_insn_p (i3)
2754 || cant_combine_insn_p (i2)
2755 || (i1 && cant_combine_insn_p (i1))
2756 || (i0 && cant_combine_insn_p (i0))
2757 || likely_spilled_retval_p (i3))
2758 return 0;
2759
2760 combine_attempts++;
2761 undobuf.other_insn = 0;
2762
2763 /* Reset the hard register usage information. */
2764 CLEAR_HARD_REG_SET (newpat_used_regs);
2765
2766 if (dump_file && (dump_flags & TDF_DETAILS))
2767 {
2768 if (i0)
2769 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2770 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2771 else if (i1)
2772 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2773 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2774 else
2775 fprintf (dump_file, "\nTrying %d -> %d:\n",
2776 INSN_UID (i2), INSN_UID (i3));
2777
2778 if (i0)
2779 dump_insn_slim (dump_file, i0);
2780 if (i1)
2781 dump_insn_slim (dump_file, i1);
2782 dump_insn_slim (dump_file, i2);
2783 dump_insn_slim (dump_file, i3);
2784 }
2785
2786 /* If multiple insns feed into one of I2 or I3, they can be in any
2787 order. To simplify the code below, reorder them in sequence. */
2788 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2789 std::swap (i0, i2);
2790 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2791 std::swap (i0, i1);
2792 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2793 std::swap (i1, i2);
2794
2795 added_links_insn = 0;
2796 added_notes_insn = 0;
2797
2798 /* First check for one important special case that the code below will
2799 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2800 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2801 we may be able to replace that destination with the destination of I3.
2802 This occurs in the common code where we compute both a quotient and
2803 remainder into a structure, in which case we want to do the computation
2804 directly into the structure to avoid register-register copies.
2805
2806 Note that this case handles both multiple sets in I2 and also cases
2807 where I2 has a number of CLOBBERs inside the PARALLEL.
2808
2809 We make very conservative checks below and only try to handle the
2810 most common cases of this. For example, we only handle the case
2811 where I2 and I3 are adjacent to avoid making difficult register
2812 usage tests. */
2813
2814 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2815 && REG_P (SET_SRC (PATTERN (i3)))
2816 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2817 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2818 && GET_CODE (PATTERN (i2)) == PARALLEL
2819 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2820 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2821 below would need to check what is inside (and reg_overlap_mentioned_p
2822 doesn't support those codes anyway). Don't allow those destinations;
2823 the resulting insn isn't likely to be recognized anyway. */
2824 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2825 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2826 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2827 SET_DEST (PATTERN (i3)))
2828 && next_active_insn (i2) == i3)
2829 {
2830 rtx p2 = PATTERN (i2);
2831
2832 /* Make sure that the destination of I3,
2833 which we are going to substitute into one output of I2,
2834 is not used within another output of I2. We must avoid making this:
2835 (parallel [(set (mem (reg 69)) ...)
2836 (set (reg 69) ...)])
2837 which is not well-defined as to order of actions.
2838 (Besides, reload can't handle output reloads for this.)
2839
2840 The problem can also happen if the dest of I3 is a memory ref,
2841 if another dest in I2 is an indirect memory ref.
2842
2843 Neither can this PARALLEL be an asm. We do not allow combining
2844 that usually (see can_combine_p), so do not here either. */
2845 bool ok = true;
2846 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2847 {
2848 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2849 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2850 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2851 SET_DEST (XVECEXP (p2, 0, i))))
2852 ok = false;
2853 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2854 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2855 ok = false;
2856 }
2857
2858 if (ok)
2859 for (i = 0; i < XVECLEN (p2, 0); i++)
2860 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2861 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2862 {
2863 combine_merges++;
2864
2865 subst_insn = i3;
2866 subst_low_luid = DF_INSN_LUID (i2);
2867
2868 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2869 i2src = SET_SRC (XVECEXP (p2, 0, i));
2870 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2871 i2dest_killed = dead_or_set_p (i2, i2dest);
2872
2873 /* Replace the dest in I2 with our dest and make the resulting
2874 insn the new pattern for I3. Then skip to where we validate
2875 the pattern. Everything was set up above. */
2876 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2877 newpat = p2;
2878 i3_subst_into_i2 = 1;
2879 goto validate_replacement;
2880 }
2881 }
2882
2883 /* If I2 is setting a pseudo to a constant and I3 is setting some
2884 sub-part of it to another constant, merge them by making a new
2885 constant. */
2886 if (i1 == 0
2887 && (temp_expr = single_set (i2)) != 0
2888 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2889 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2890 && GET_CODE (PATTERN (i3)) == SET
2891 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2892 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2893 {
2894 rtx dest = SET_DEST (PATTERN (i3));
2895 rtx temp_dest = SET_DEST (temp_expr);
2896 int offset = -1;
2897 int width = 0;
2898
2899 if (GET_CODE (dest) == ZERO_EXTRACT)
2900 {
2901 if (CONST_INT_P (XEXP (dest, 1))
2902 && CONST_INT_P (XEXP (dest, 2))
2903 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2904 &dest_mode))
2905 {
2906 width = INTVAL (XEXP (dest, 1));
2907 offset = INTVAL (XEXP (dest, 2));
2908 dest = XEXP (dest, 0);
2909 if (BITS_BIG_ENDIAN)
2910 offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2911 }
2912 }
2913 else
2914 {
2915 if (GET_CODE (dest) == STRICT_LOW_PART)
2916 dest = XEXP (dest, 0);
2917 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2918 {
2919 width = GET_MODE_PRECISION (dest_mode);
2920 offset = 0;
2921 }
2922 }
2923
2924 if (offset >= 0)
2925 {
2926 /* If this is the low part, we're done. */
2927 if (subreg_lowpart_p (dest))
2928 ;
2929 /* Handle the case where inner is twice the size of outer. */
2930 else if (GET_MODE_PRECISION (temp_mode)
2931 == 2 * GET_MODE_PRECISION (dest_mode))
2932 offset += GET_MODE_PRECISION (dest_mode);
2933 /* Otherwise give up for now. */
2934 else
2935 offset = -1;
2936 }
2937
2938 if (offset >= 0)
2939 {
2940 rtx inner = SET_SRC (PATTERN (i3));
2941 rtx outer = SET_SRC (temp_expr);
2942
2943 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2944 rtx_mode_t (inner, dest_mode),
2945 offset, width);
2946
2947 combine_merges++;
2948 subst_insn = i3;
2949 subst_low_luid = DF_INSN_LUID (i2);
2950 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2951 i2dest = temp_dest;
2952 i2dest_killed = dead_or_set_p (i2, i2dest);
2953
2954 /* Replace the source in I2 with the new constant and make the
2955 resulting insn the new pattern for I3. Then skip to where we
2956 validate the pattern. Everything was set up above. */
2957 SUBST (SET_SRC (temp_expr),
2958 immed_wide_int_const (o, temp_mode));
2959
2960 newpat = PATTERN (i2);
2961
2962 /* The dest of I3 has been replaced with the dest of I2. */
2963 changed_i3_dest = 1;
2964 goto validate_replacement;
2965 }
2966 }
2967
2968 /* If we have no I1 and I2 looks like:
2969 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2970 (set Y OP)])
2971 make up a dummy I1 that is
2972 (set Y OP)
2973 and change I2 to be
2974 (set (reg:CC X) (compare:CC Y (const_int 0)))
2975
2976 (We can ignore any trailing CLOBBERs.)
2977
2978 This undoes a previous combination and allows us to match a branch-and-
2979 decrement insn. */
2980
2981 if (!HAVE_cc0 && i1 == 0
2982 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2983 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2984 == MODE_CC)
2985 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2986 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2987 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2988 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2989 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2990 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2991 {
2992 /* We make I1 with the same INSN_UID as I2. This gives it
2993 the same DF_INSN_LUID for value tracking. Our fake I1 will
2994 never appear in the insn stream so giving it the same INSN_UID
2995 as I2 will not cause a problem. */
2996
2997 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2998 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2999 -1, NULL_RTX);
3000 INSN_UID (i1) = INSN_UID (i2);
3001
3002 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
3003 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
3004 SET_DEST (PATTERN (i1)));
3005 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
3006 SUBST_LINK (LOG_LINKS (i2),
3007 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
3008 }
3009
3010 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3011 make those two SETs separate I1 and I2 insns, and make an I0 that is
3012 the original I1. */
3013 if (!HAVE_cc0 && i0 == 0
3014 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3015 && can_split_parallel_of_n_reg_sets (i2, 2)
3016 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3017 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
3018 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3019 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3020 {
3021 /* If there is no I1, there is no I0 either. */
3022 i0 = i1;
3023
3024 /* We make I1 with the same INSN_UID as I2. This gives it
3025 the same DF_INSN_LUID for value tracking. Our fake I1 will
3026 never appear in the insn stream so giving it the same INSN_UID
3027 as I2 will not cause a problem. */
3028
3029 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3030 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
3031 -1, NULL_RTX);
3032 INSN_UID (i1) = INSN_UID (i2);
3033
3034 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3035 }
3036
3037 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
3038 if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
3039 {
3040 if (dump_file)
3041 fprintf (dump_file, "Can't combine i2 into i3\n");
3042 undo_all ();
3043 return 0;
3044 }
3045 if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
3046 {
3047 if (dump_file)
3048 fprintf (dump_file, "Can't combine i1 into i3\n");
3049 undo_all ();
3050 return 0;
3051 }
3052 if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
3053 {
3054 if (dump_file)
3055 fprintf (dump_file, "Can't combine i0 into i3\n");
3056 undo_all ();
3057 return 0;
3058 }
3059
3060 /* Record whether I2DEST is used in I2SRC and similarly for the other
3061 cases. Knowing this will help in register status updating below. */
3062 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3063 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3064 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3065 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3066 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3067 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3068 i2dest_killed = dead_or_set_p (i2, i2dest);
3069 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3070 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3071
3072 /* For the earlier insns, determine which of the subsequent ones they
3073 feed. */
3074 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3075 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3076 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3077 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3078 && reg_overlap_mentioned_p (i0dest, i2src))));
3079
3080 /* Ensure that I3's pattern can be the destination of combines. */
3081 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3082 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3083 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3084 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3085 &i3dest_killed))
3086 {
3087 undo_all ();
3088 return 0;
3089 }
3090
3091 /* See if any of the insns is a MULT operation. Unless one is, we will
3092 reject a combination that is, since it must be slower. Be conservative
3093 here. */
3094 if (GET_CODE (i2src) == MULT
3095 || (i1 != 0 && GET_CODE (i1src) == MULT)
3096 || (i0 != 0 && GET_CODE (i0src) == MULT)
3097 || (GET_CODE (PATTERN (i3)) == SET
3098 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3099 have_mult = 1;
3100
3101 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3102 We used to do this EXCEPT in one case: I3 has a post-inc in an
3103 output operand. However, that exception can give rise to insns like
3104 mov r3,(r3)+
3105 which is a famous insn on the PDP-11 where the value of r3 used as the
3106 source was model-dependent. Avoid this sort of thing. */
3107
3108 #if 0
3109 if (!(GET_CODE (PATTERN (i3)) == SET
3110 && REG_P (SET_SRC (PATTERN (i3)))
3111 && MEM_P (SET_DEST (PATTERN (i3)))
3112 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3113 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3114 /* It's not the exception. */
3115 #endif
3116 if (AUTO_INC_DEC)
3117 {
3118 rtx link;
3119 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3120 if (REG_NOTE_KIND (link) == REG_INC
3121 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3122 || (i1 != 0
3123 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3124 {
3125 undo_all ();
3126 return 0;
3127 }
3128 }
3129
3130 /* See if the SETs in I1 or I2 need to be kept around in the merged
3131 instruction: whenever the value set there is still needed past I3.
3132 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3133
3134 For the SET in I1, we have two cases: if I1 and I2 independently feed
3135 into I3, the set in I1 needs to be kept around unless I1DEST dies
3136 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3137 in I1 needs to be kept around unless I1DEST dies or is set in either
3138 I2 or I3. The same considerations apply to I0. */
3139
3140 added_sets_2 = !dead_or_set_p (i3, i2dest);
3141
3142 if (i1)
3143 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3144 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3145 else
3146 added_sets_1 = 0;
3147
3148 if (i0)
3149 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3150 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3151 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3152 && dead_or_set_p (i2, i0dest)));
3153 else
3154 added_sets_0 = 0;
3155
3156 /* We are about to copy insns for the case where they need to be kept
3157 around. Check that they can be copied in the merged instruction. */
3158
3159 if (targetm.cannot_copy_insn_p
3160 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3161 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3162 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3163 {
3164 undo_all ();
3165 return 0;
3166 }
3167
3168 /* If the set in I2 needs to be kept around, we must make a copy of
3169 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3170 PATTERN (I2), we are only substituting for the original I1DEST, not into
3171 an already-substituted copy. This also prevents making self-referential
3172 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3173 I2DEST. */
3174
3175 if (added_sets_2)
3176 {
3177 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3178 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3179 else
3180 i2pat = copy_rtx (PATTERN (i2));
3181 }
3182
3183 if (added_sets_1)
3184 {
3185 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3186 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3187 else
3188 i1pat = copy_rtx (PATTERN (i1));
3189 }
3190
3191 if (added_sets_0)
3192 {
3193 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3194 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3195 else
3196 i0pat = copy_rtx (PATTERN (i0));
3197 }
3198
3199 combine_merges++;
3200
3201 /* Substitute in the latest insn for the regs set by the earlier ones. */
3202
3203 maxreg = max_reg_num ();
3204
3205 subst_insn = i3;
3206
3207 /* Many machines that don't use CC0 have insns that can both perform an
3208 arithmetic operation and set the condition code. These operations will
3209 be represented as a PARALLEL with the first element of the vector
3210 being a COMPARE of an arithmetic operation with the constant zero.
3211 The second element of the vector will set some pseudo to the result
3212 of the same arithmetic operation. If we simplify the COMPARE, we won't
3213 match such a pattern and so will generate an extra insn. Here we test
3214 for this case, where both the comparison and the operation result are
3215 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3216 I2SRC. Later we will make the PARALLEL that contains I2. */
3217
3218 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3219 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3220 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3221 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3222 {
3223 rtx newpat_dest;
3224 rtx *cc_use_loc = NULL;
3225 rtx_insn *cc_use_insn = NULL;
3226 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3227 machine_mode compare_mode, orig_compare_mode;
3228 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3229 scalar_int_mode mode;
3230
3231 newpat = PATTERN (i3);
3232 newpat_dest = SET_DEST (newpat);
3233 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3234
3235 if (undobuf.other_insn == 0
3236 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3237 &cc_use_insn)))
3238 {
3239 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3240 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3241 compare_code = simplify_compare_const (compare_code, mode,
3242 op0, &op1);
3243 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3244 }
3245
3246 /* Do the rest only if op1 is const0_rtx, which may be the
3247 result of simplification. */
3248 if (op1 == const0_rtx)
3249 {
3250 /* If a single use of the CC is found, prepare to modify it
3251 when SELECT_CC_MODE returns a new CC-class mode, or when
3252 the above simplify_compare_const() returned a new comparison
3253 operator. undobuf.other_insn is assigned the CC use insn
3254 when modifying it. */
3255 if (cc_use_loc)
3256 {
3257 #ifdef SELECT_CC_MODE
3258 machine_mode new_mode
3259 = SELECT_CC_MODE (compare_code, op0, op1);
3260 if (new_mode != orig_compare_mode
3261 && can_change_dest_mode (SET_DEST (newpat),
3262 added_sets_2, new_mode))
3263 {
3264 unsigned int regno = REGNO (newpat_dest);
3265 compare_mode = new_mode;
3266 if (regno < FIRST_PSEUDO_REGISTER)
3267 newpat_dest = gen_rtx_REG (compare_mode, regno);
3268 else
3269 {
3270 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3271 newpat_dest = regno_reg_rtx[regno];
3272 }
3273 }
3274 #endif
3275 /* Cases for modifying the CC-using comparison. */
3276 if (compare_code != orig_compare_code
3277 /* ??? Do we need to verify the zero rtx? */
3278 && XEXP (*cc_use_loc, 1) == const0_rtx)
3279 {
3280 /* Replace cc_use_loc with entire new RTX. */
3281 SUBST (*cc_use_loc,
3282 gen_rtx_fmt_ee (compare_code, compare_mode,
3283 newpat_dest, const0_rtx));
3284 undobuf.other_insn = cc_use_insn;
3285 }
3286 else if (compare_mode != orig_compare_mode)
3287 {
3288 /* Just replace the CC reg with a new mode. */
3289 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3290 undobuf.other_insn = cc_use_insn;
3291 }
3292 }
3293
3294 /* Now we modify the current newpat:
3295 First, SET_DEST(newpat) is updated if the CC mode has been
3296 altered. For targets without SELECT_CC_MODE, this should be
3297 optimized away. */
3298 if (compare_mode != orig_compare_mode)
3299 SUBST (SET_DEST (newpat), newpat_dest);
3300 /* This is always done to propagate i2src into newpat. */
3301 SUBST (SET_SRC (newpat),
3302 gen_rtx_COMPARE (compare_mode, op0, op1));
3303 /* Create new version of i2pat if needed; the below PARALLEL
3304 creation needs this to work correctly. */
3305 if (! rtx_equal_p (i2src, op0))
3306 i2pat = gen_rtx_SET (i2dest, op0);
3307 i2_is_used = 1;
3308 }
3309 }
3310
3311 if (i2_is_used == 0)
3312 {
3313 /* It is possible that the source of I2 or I1 may be performing
3314 an unneeded operation, such as a ZERO_EXTEND of something
3315 that is known to have the high part zero. Handle that case
3316 by letting subst look at the inner insns.
3317
3318 Another way to do this would be to have a function that tries
3319 to simplify a single insn instead of merging two or more
3320 insns. We don't do this because of the potential of infinite
3321 loops and because of the potential extra memory required.
3322 However, doing it the way we are is a bit of a kludge and
3323 doesn't catch all cases.
3324
3325 But only do this if -fexpensive-optimizations since it slows
3326 things down and doesn't usually win.
3327
3328 This is not done in the COMPARE case above because the
3329 unmodified I2PAT is used in the PARALLEL and so a pattern
3330 with a modified I2SRC would not match. */
3331
3332 if (flag_expensive_optimizations)
3333 {
3334 /* Pass pc_rtx so no substitutions are done, just
3335 simplifications. */
3336 if (i1)
3337 {
3338 subst_low_luid = DF_INSN_LUID (i1);
3339 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3340 }
3341
3342 subst_low_luid = DF_INSN_LUID (i2);
3343 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3344 }
3345
3346 n_occurrences = 0; /* `subst' counts here */
3347 subst_low_luid = DF_INSN_LUID (i2);
3348
3349 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3350 copy of I2SRC each time we substitute it, in order to avoid creating
3351 self-referential RTL when we will be substituting I1SRC for I1DEST
3352 later. Likewise if I0 feeds into I2, either directly or indirectly
3353 through I1, and I0DEST is in I0SRC. */
3354 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3355 (i1_feeds_i2_n && i1dest_in_i1src)
3356 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3357 && i0dest_in_i0src));
3358 substed_i2 = 1;
3359
3360 /* Record whether I2's body now appears within I3's body. */
3361 i2_is_used = n_occurrences;
3362 }
3363
3364 /* If we already got a failure, don't try to do more. Otherwise, try to
3365 substitute I1 if we have it. */
3366
3367 if (i1 && GET_CODE (newpat) != CLOBBER)
3368 {
3369 /* Check that an autoincrement side-effect on I1 has not been lost.
3370 This happens if I1DEST is mentioned in I2 and dies there, and
3371 has disappeared from the new pattern. */
3372 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3373 && i1_feeds_i2_n
3374 && dead_or_set_p (i2, i1dest)
3375 && !reg_overlap_mentioned_p (i1dest, newpat))
3376 /* Before we can do this substitution, we must redo the test done
3377 above (see detailed comments there) that ensures I1DEST isn't
3378 mentioned in any SETs in NEWPAT that are field assignments. */
3379 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3380 0, 0, 0))
3381 {
3382 undo_all ();
3383 return 0;
3384 }
3385
3386 n_occurrences = 0;
3387 subst_low_luid = DF_INSN_LUID (i1);
3388
3389 /* If the following substitution will modify I1SRC, make a copy of it
3390 for the case where it is substituted for I1DEST in I2PAT later. */
3391 if (added_sets_2 && i1_feeds_i2_n)
3392 i1src_copy = copy_rtx (i1src);
3393
3394 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3395 copy of I1SRC each time we substitute it, in order to avoid creating
3396 self-referential RTL when we will be substituting I0SRC for I0DEST
3397 later. */
3398 newpat = subst (newpat, i1dest, i1src, 0, 0,
3399 i0_feeds_i1_n && i0dest_in_i0src);
3400 substed_i1 = 1;
3401
3402 /* Record whether I1's body now appears within I3's body. */
3403 i1_is_used = n_occurrences;
3404 }
3405
3406 /* Likewise for I0 if we have it. */
3407
3408 if (i0 && GET_CODE (newpat) != CLOBBER)
3409 {
3410 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3411 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3412 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3413 && !reg_overlap_mentioned_p (i0dest, newpat))
3414 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3415 0, 0, 0))
3416 {
3417 undo_all ();
3418 return 0;
3419 }
3420
3421 /* If the following substitution will modify I0SRC, make a copy of it
3422 for the case where it is substituted for I0DEST in I1PAT later. */
3423 if (added_sets_1 && i0_feeds_i1_n)
3424 i0src_copy = copy_rtx (i0src);
3425 /* And a copy for I0DEST in I2PAT substitution. */
3426 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3427 || (i0_feeds_i2_n)))
3428 i0src_copy2 = copy_rtx (i0src);
3429
3430 n_occurrences = 0;
3431 subst_low_luid = DF_INSN_LUID (i0);
3432 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3433 substed_i0 = 1;
3434 }
3435
3436 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3437 to count all the ways that I2SRC and I1SRC can be used. */
3438 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3439 && i2_is_used + added_sets_2 > 1)
3440 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3441 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3442 > 1))
3443 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3444 && (n_occurrences + added_sets_0
3445 + (added_sets_1 && i0_feeds_i1_n)
3446 + (added_sets_2 && i0_feeds_i2_n)
3447 > 1))
3448 /* Fail if we tried to make a new register. */
3449 || max_reg_num () != maxreg
3450 /* Fail if we couldn't do something and have a CLOBBER. */
3451 || GET_CODE (newpat) == CLOBBER
3452 /* Fail if this new pattern is a MULT and we didn't have one before
3453 at the outer level. */
3454 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3455 && ! have_mult))
3456 {
3457 undo_all ();
3458 return 0;
3459 }
3460
3461 /* If the actions of the earlier insns must be kept
3462 in addition to substituting them into the latest one,
3463 we must make a new PARALLEL for the latest insn
3464 to hold additional the SETs. */
3465
3466 if (added_sets_0 || added_sets_1 || added_sets_2)
3467 {
3468 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3469 combine_extras++;
3470
3471 if (GET_CODE (newpat) == PARALLEL)
3472 {
3473 rtvec old = XVEC (newpat, 0);
3474 total_sets = XVECLEN (newpat, 0) + extra_sets;
3475 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3476 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3477 sizeof (old->elem[0]) * old->num_elem);
3478 }
3479 else
3480 {
3481 rtx old = newpat;
3482 total_sets = 1 + extra_sets;
3483 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3484 XVECEXP (newpat, 0, 0) = old;
3485 }
3486
3487 if (added_sets_0)
3488 XVECEXP (newpat, 0, --total_sets) = i0pat;
3489
3490 if (added_sets_1)
3491 {
3492 rtx t = i1pat;
3493 if (i0_feeds_i1_n)
3494 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3495
3496 XVECEXP (newpat, 0, --total_sets) = t;
3497 }
3498 if (added_sets_2)
3499 {
3500 rtx t = i2pat;
3501 if (i1_feeds_i2_n)
3502 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3503 i0_feeds_i1_n && i0dest_in_i0src);
3504 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3505 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3506
3507 XVECEXP (newpat, 0, --total_sets) = t;
3508 }
3509 }
3510
3511 validate_replacement:
3512
3513 /* Note which hard regs this insn has as inputs. */
3514 mark_used_regs_combine (newpat);
3515
3516 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3517 consider splitting this pattern, we might need these clobbers. */
3518 if (i1 && GET_CODE (newpat) == PARALLEL
3519 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3520 {
3521 int len = XVECLEN (newpat, 0);
3522
3523 newpat_vec_with_clobbers = rtvec_alloc (len);
3524 for (i = 0; i < len; i++)
3525 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3526 }
3527
3528 /* We have recognized nothing yet. */
3529 insn_code_number = -1;
3530
3531 /* See if this is a PARALLEL of two SETs where one SET's destination is
3532 a register that is unused and this isn't marked as an instruction that
3533 might trap in an EH region. In that case, we just need the other SET.
3534 We prefer this over the PARALLEL.
3535
3536 This can occur when simplifying a divmod insn. We *must* test for this
3537 case here because the code below that splits two independent SETs doesn't
3538 handle this case correctly when it updates the register status.
3539
3540 It's pointless doing this if we originally had two sets, one from
3541 i3, and one from i2. Combining then splitting the parallel results
3542 in the original i2 again plus an invalid insn (which we delete).
3543 The net effect is only to move instructions around, which makes
3544 debug info less accurate.
3545
3546 If the remaining SET came from I2 its destination should not be used
3547 between I2 and I3. See PR82024. */
3548
3549 if (!(added_sets_2 && i1 == 0)
3550 && is_parallel_of_n_reg_sets (newpat, 2)
3551 && asm_noperands (newpat) < 0)
3552 {
3553 rtx set0 = XVECEXP (newpat, 0, 0);
3554 rtx set1 = XVECEXP (newpat, 0, 1);
3555 rtx oldpat = newpat;
3556
3557 if (((REG_P (SET_DEST (set1))
3558 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3559 || (GET_CODE (SET_DEST (set1)) == SUBREG
3560 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3561 && insn_nothrow_p (i3)
3562 && !side_effects_p (SET_SRC (set1)))
3563 {
3564 newpat = set0;
3565 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3566 }
3567
3568 else if (((REG_P (SET_DEST (set0))
3569 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3570 || (GET_CODE (SET_DEST (set0)) == SUBREG
3571 && find_reg_note (i3, REG_UNUSED,
3572 SUBREG_REG (SET_DEST (set0)))))
3573 && insn_nothrow_p (i3)
3574 && !side_effects_p (SET_SRC (set0)))
3575 {
3576 rtx dest = SET_DEST (set1);
3577 if (GET_CODE (dest) == SUBREG)
3578 dest = SUBREG_REG (dest);
3579 if (!reg_used_between_p (dest, i2, i3))
3580 {
3581 newpat = set1;
3582 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3583
3584 if (insn_code_number >= 0)
3585 changed_i3_dest = 1;
3586 }
3587 }
3588
3589 if (insn_code_number < 0)
3590 newpat = oldpat;
3591 }
3592
3593 /* Is the result of combination a valid instruction? */
3594 if (insn_code_number < 0)
3595 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3596
3597 /* If we were combining three insns and the result is a simple SET
3598 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3599 insns. There are two ways to do this. It can be split using a
3600 machine-specific method (like when you have an addition of a large
3601 constant) or by combine in the function find_split_point. */
3602
3603 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3604 && asm_noperands (newpat) < 0)
3605 {
3606 rtx parallel, *split;
3607 rtx_insn *m_split_insn;
3608
3609 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3610 use I2DEST as a scratch register will help. In the latter case,
3611 convert I2DEST to the mode of the source of NEWPAT if we can. */
3612
3613 m_split_insn = combine_split_insns (newpat, i3);
3614
3615 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3616 inputs of NEWPAT. */
3617
3618 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3619 possible to try that as a scratch reg. This would require adding
3620 more code to make it work though. */
3621
3622 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3623 {
3624 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3625
3626 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3627 (temporarily, until we are committed to this instruction
3628 combination) does not work: for example, any call to nonzero_bits
3629 on the register (from a splitter in the MD file, for example)
3630 will get the old information, which is invalid.
3631
3632 Since nowadays we can create registers during combine just fine,
3633 we should just create a new one here, not reuse i2dest. */
3634
3635 /* First try to split using the original register as a
3636 scratch register. */
3637 parallel = gen_rtx_PARALLEL (VOIDmode,
3638 gen_rtvec (2, newpat,
3639 gen_rtx_CLOBBER (VOIDmode,
3640 i2dest)));
3641 m_split_insn = combine_split_insns (parallel, i3);
3642
3643 /* If that didn't work, try changing the mode of I2DEST if
3644 we can. */
3645 if (m_split_insn == 0
3646 && new_mode != GET_MODE (i2dest)
3647 && new_mode != VOIDmode
3648 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3649 {
3650 machine_mode old_mode = GET_MODE (i2dest);
3651 rtx ni2dest;
3652
3653 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3654 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3655 else
3656 {
3657 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3658 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3659 }
3660
3661 parallel = (gen_rtx_PARALLEL
3662 (VOIDmode,
3663 gen_rtvec (2, newpat,
3664 gen_rtx_CLOBBER (VOIDmode,
3665 ni2dest))));
3666 m_split_insn = combine_split_insns (parallel, i3);
3667
3668 if (m_split_insn == 0
3669 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3670 {
3671 struct undo *buf;
3672
3673 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3674 buf = undobuf.undos;
3675 undobuf.undos = buf->next;
3676 buf->next = undobuf.frees;
3677 undobuf.frees = buf;
3678 }
3679 }
3680
3681 i2scratch = m_split_insn != 0;
3682 }
3683
3684 /* If recog_for_combine has discarded clobbers, try to use them
3685 again for the split. */
3686 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3687 {
3688 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3689 m_split_insn = combine_split_insns (parallel, i3);
3690 }
3691
3692 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3693 {
3694 rtx m_split_pat = PATTERN (m_split_insn);
3695 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3696 if (insn_code_number >= 0)
3697 newpat = m_split_pat;
3698 }
3699 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3700 && (next_nonnote_nondebug_insn (i2) == i3
3701 || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3702 {
3703 rtx i2set, i3set;
3704 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3705 newi2pat = PATTERN (m_split_insn);
3706
3707 i3set = single_set (NEXT_INSN (m_split_insn));
3708 i2set = single_set (m_split_insn);
3709
3710 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3711
3712 /* If I2 or I3 has multiple SETs, we won't know how to track
3713 register status, so don't use these insns. If I2's destination
3714 is used between I2 and I3, we also can't use these insns. */
3715
3716 if (i2_code_number >= 0 && i2set && i3set
3717 && (next_nonnote_nondebug_insn (i2) == i3
3718 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3719 insn_code_number = recog_for_combine (&newi3pat, i3,
3720 &new_i3_notes);
3721 if (insn_code_number >= 0)
3722 newpat = newi3pat;
3723
3724 /* It is possible that both insns now set the destination of I3.
3725 If so, we must show an extra use of it. */
3726
3727 if (insn_code_number >= 0)
3728 {
3729 rtx new_i3_dest = SET_DEST (i3set);
3730 rtx new_i2_dest = SET_DEST (i2set);
3731
3732 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3733 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3734 || GET_CODE (new_i3_dest) == SUBREG)
3735 new_i3_dest = XEXP (new_i3_dest, 0);
3736
3737 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3738 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3739 || GET_CODE (new_i2_dest) == SUBREG)
3740 new_i2_dest = XEXP (new_i2_dest, 0);
3741
3742 if (REG_P (new_i3_dest)
3743 && REG_P (new_i2_dest)
3744 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3745 && REGNO (new_i2_dest) < reg_n_sets_max)
3746 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3747 }
3748 }
3749
3750 /* If we can split it and use I2DEST, go ahead and see if that
3751 helps things be recognized. Verify that none of the registers
3752 are set between I2 and I3. */
3753 if (insn_code_number < 0
3754 && (split = find_split_point (&newpat, i3, false)) != 0
3755 && (!HAVE_cc0 || REG_P (i2dest))
3756 /* We need I2DEST in the proper mode. If it is a hard register
3757 or the only use of a pseudo, we can change its mode.
3758 Make sure we don't change a hard register to have a mode that
3759 isn't valid for it, or change the number of registers. */
3760 && (GET_MODE (*split) == GET_MODE (i2dest)
3761 || GET_MODE (*split) == VOIDmode
3762 || can_change_dest_mode (i2dest, added_sets_2,
3763 GET_MODE (*split)))
3764 && (next_nonnote_nondebug_insn (i2) == i3
3765 || !modified_between_p (*split, i2, i3))
3766 /* We can't overwrite I2DEST if its value is still used by
3767 NEWPAT. */
3768 && ! reg_referenced_p (i2dest, newpat))
3769 {
3770 rtx newdest = i2dest;
3771 enum rtx_code split_code = GET_CODE (*split);
3772 machine_mode split_mode = GET_MODE (*split);
3773 bool subst_done = false;
3774 newi2pat = NULL_RTX;
3775
3776 i2scratch = true;
3777
3778 /* *SPLIT may be part of I2SRC, so make sure we have the
3779 original expression around for later debug processing.
3780 We should not need I2SRC any more in other cases. */
3781 if (MAY_HAVE_DEBUG_BIND_INSNS)
3782 i2src = copy_rtx (i2src);
3783 else
3784 i2src = NULL;
3785
3786 /* Get NEWDEST as a register in the proper mode. We have already
3787 validated that we can do this. */
3788 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3789 {
3790 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3791 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3792 else
3793 {
3794 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3795 newdest = regno_reg_rtx[REGNO (i2dest)];
3796 }
3797 }
3798
3799 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3800 an ASHIFT. This can occur if it was inside a PLUS and hence
3801 appeared to be a memory address. This is a kludge. */
3802 if (split_code == MULT
3803 && CONST_INT_P (XEXP (*split, 1))
3804 && INTVAL (XEXP (*split, 1)) > 0
3805 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3806 {
3807 rtx i_rtx = gen_int_shift_amount (split_mode, i);
3808 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3809 XEXP (*split, 0), i_rtx));
3810 /* Update split_code because we may not have a multiply
3811 anymore. */
3812 split_code = GET_CODE (*split);
3813 }
3814
3815 /* Similarly for (plus (mult FOO (const_int pow2))). */
3816 if (split_code == PLUS
3817 && GET_CODE (XEXP (*split, 0)) == MULT
3818 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3819 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3820 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3821 {
3822 rtx nsplit = XEXP (*split, 0);
3823 rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3824 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3825 XEXP (nsplit, 0),
3826 i_rtx));
3827 /* Update split_code because we may not have a multiply
3828 anymore. */
3829 split_code = GET_CODE (*split);
3830 }
3831
3832 #ifdef INSN_SCHEDULING
3833 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3834 be written as a ZERO_EXTEND. */
3835 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3836 {
3837 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3838 what it really is. */
3839 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3840 == SIGN_EXTEND)
3841 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3842 SUBREG_REG (*split)));
3843 else
3844 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3845 SUBREG_REG (*split)));
3846 }
3847 #endif
3848
3849 /* Attempt to split binary operators using arithmetic identities. */
3850 if (BINARY_P (SET_SRC (newpat))
3851 && split_mode == GET_MODE (SET_SRC (newpat))
3852 && ! side_effects_p (SET_SRC (newpat)))
3853 {
3854 rtx setsrc = SET_SRC (newpat);
3855 machine_mode mode = GET_MODE (setsrc);
3856 enum rtx_code code = GET_CODE (setsrc);
3857 rtx src_op0 = XEXP (setsrc, 0);
3858 rtx src_op1 = XEXP (setsrc, 1);
3859
3860 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3861 if (rtx_equal_p (src_op0, src_op1))
3862 {
3863 newi2pat = gen_rtx_SET (newdest, src_op0);
3864 SUBST (XEXP (setsrc, 0), newdest);
3865 SUBST (XEXP (setsrc, 1), newdest);
3866 subst_done = true;
3867 }
3868 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3869 else if ((code == PLUS || code == MULT)
3870 && GET_CODE (src_op0) == code
3871 && GET_CODE (XEXP (src_op0, 0)) == code
3872 && (INTEGRAL_MODE_P (mode)
3873 || (FLOAT_MODE_P (mode)
3874 && flag_unsafe_math_optimizations)))
3875 {
3876 rtx p = XEXP (XEXP (src_op0, 0), 0);
3877 rtx q = XEXP (XEXP (src_op0, 0), 1);
3878 rtx r = XEXP (src_op0, 1);
3879 rtx s = src_op1;
3880
3881 /* Split both "((X op Y) op X) op Y" and
3882 "((X op Y) op Y) op X" as "T op T" where T is
3883 "X op Y". */
3884 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3885 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3886 {
3887 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3888 SUBST (XEXP (setsrc, 0), newdest);
3889 SUBST (XEXP (setsrc, 1), newdest);
3890 subst_done = true;
3891 }
3892 /* Split "((X op X) op Y) op Y)" as "T op T" where
3893 T is "X op Y". */
3894 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3895 {
3896 rtx tmp = simplify_gen_binary (code, mode, p, r);
3897 newi2pat = gen_rtx_SET (newdest, tmp);
3898 SUBST (XEXP (setsrc, 0), newdest);
3899 SUBST (XEXP (setsrc, 1), newdest);
3900 subst_done = true;
3901 }
3902 }
3903 }
3904
3905 if (!subst_done)
3906 {
3907 newi2pat = gen_rtx_SET (newdest, *split);
3908 SUBST (*split, newdest);
3909 }
3910
3911 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3912
3913 /* recog_for_combine might have added CLOBBERs to newi2pat.
3914 Make sure NEWPAT does not depend on the clobbered regs. */
3915 if (GET_CODE (newi2pat) == PARALLEL)
3916 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3917 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3918 {
3919 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3920 if (reg_overlap_mentioned_p (reg, newpat))
3921 {
3922 undo_all ();
3923 return 0;
3924 }
3925 }
3926
3927 /* If the split point was a MULT and we didn't have one before,
3928 don't use one now. */
3929 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3930 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3931 }
3932 }
3933
3934 /* Check for a case where we loaded from memory in a narrow mode and
3935 then sign extended it, but we need both registers. In that case,
3936 we have a PARALLEL with both loads from the same memory location.
3937 We can split this into a load from memory followed by a register-register
3938 copy. This saves at least one insn, more if register allocation can
3939 eliminate the copy.
3940
3941 We cannot do this if the destination of the first assignment is a
3942 condition code register or cc0. We eliminate this case by making sure
3943 the SET_DEST and SET_SRC have the same mode.
3944
3945 We cannot do this if the destination of the second assignment is
3946 a register that we have already assumed is zero-extended. Similarly
3947 for a SUBREG of such a register. */
3948
3949 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3950 && GET_CODE (newpat) == PARALLEL
3951 && XVECLEN (newpat, 0) == 2
3952 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3953 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3954 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3955 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3956 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3957 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3958 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3959 && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
3960 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3961 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3962 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3963 (REG_P (temp_expr)
3964 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3965 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3966 BITS_PER_WORD)
3967 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3968 HOST_BITS_PER_INT)
3969 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3970 != GET_MODE_MASK (word_mode))))
3971 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3972 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3973 (REG_P (temp_expr)
3974 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3975 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3976 BITS_PER_WORD)
3977 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3978 HOST_BITS_PER_INT)
3979 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3980 != GET_MODE_MASK (word_mode)))))
3981 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3982 SET_SRC (XVECEXP (newpat, 0, 1)))
3983 && ! find_reg_note (i3, REG_UNUSED,
3984 SET_DEST (XVECEXP (newpat, 0, 0))))
3985 {
3986 rtx ni2dest;
3987
3988 newi2pat = XVECEXP (newpat, 0, 0);
3989 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3990 newpat = XVECEXP (newpat, 0, 1);
3991 SUBST (SET_SRC (newpat),
3992 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3993 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3994
3995 if (i2_code_number >= 0)
3996 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3997
3998 if (insn_code_number >= 0)
3999 swap_i2i3 = 1;
4000 }
4001
4002 /* Similarly, check for a case where we have a PARALLEL of two independent
4003 SETs but we started with three insns. In this case, we can do the sets
4004 as two separate insns. This case occurs when some SET allows two
4005 other insns to combine, but the destination of that SET is still live.
4006
4007 Also do this if we started with two insns and (at least) one of the
4008 resulting sets is a noop; this noop will be deleted later. */
4009
4010 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
4011 && GET_CODE (newpat) == PARALLEL
4012 && XVECLEN (newpat, 0) == 2
4013 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4014 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4015 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
4016 || set_noop_p (XVECEXP (newpat, 0, 1)))
4017 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
4018 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
4019 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4020 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4021 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4022 XVECEXP (newpat, 0, 0))
4023 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
4024 XVECEXP (newpat, 0, 1))
4025 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
4026 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
4027 {
4028 rtx set0 = XVECEXP (newpat, 0, 0);
4029 rtx set1 = XVECEXP (newpat, 0, 1);
4030
4031 /* Normally, it doesn't matter which of the two is done first,
4032 but the one that references cc0 can't be the second, and
4033 one which uses any regs/memory set in between i2 and i3 can't
4034 be first. The PARALLEL might also have been pre-existing in i3,
4035 so we need to make sure that we won't wrongly hoist a SET to i2
4036 that would conflict with a death note present in there. */
4037 if (!modified_between_p (SET_SRC (set1), i2, i3)
4038 && !(REG_P (SET_DEST (set1))
4039 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4040 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4041 && find_reg_note (i2, REG_DEAD,
4042 SUBREG_REG (SET_DEST (set1))))
4043 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
4044 /* If I3 is a jump, ensure that set0 is a jump so that
4045 we do not create invalid RTL. */
4046 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4047 )
4048 {
4049 newi2pat = set1;
4050 newpat = set0;
4051 }
4052 else if (!modified_between_p (SET_SRC (set0), i2, i3)
4053 && !(REG_P (SET_DEST (set0))
4054 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4055 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4056 && find_reg_note (i2, REG_DEAD,
4057 SUBREG_REG (SET_DEST (set0))))
4058 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
4059 /* If I3 is a jump, ensure that set1 is a jump so that
4060 we do not create invalid RTL. */
4061 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4062 )
4063 {
4064 newi2pat = set0;
4065 newpat = set1;
4066 }
4067 else
4068 {
4069 undo_all ();
4070 return 0;
4071 }
4072
4073 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4074
4075 if (i2_code_number >= 0)
4076 {
4077 /* recog_for_combine might have added CLOBBERs to newi2pat.
4078 Make sure NEWPAT does not depend on the clobbered regs. */
4079 if (GET_CODE (newi2pat) == PARALLEL)
4080 {
4081 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4082 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4083 {
4084 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4085 if (reg_overlap_mentioned_p (reg, newpat))
4086 {
4087 undo_all ();
4088 return 0;
4089 }
4090 }
4091 }
4092
4093 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4094 }
4095 }
4096
4097 /* If it still isn't recognized, fail and change things back the way they
4098 were. */
4099 if ((insn_code_number < 0
4100 /* Is the result a reasonable ASM_OPERANDS? */
4101 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4102 {
4103 undo_all ();
4104 return 0;
4105 }
4106
4107 /* If we had to change another insn, make sure it is valid also. */
4108 if (undobuf.other_insn)
4109 {
4110 CLEAR_HARD_REG_SET (newpat_used_regs);
4111
4112 other_pat = PATTERN (undobuf.other_insn);
4113 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4114 &new_other_notes);
4115
4116 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4117 {
4118 undo_all ();
4119 return 0;
4120 }
4121 }
4122
4123 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4124 they are adjacent to each other or not. */
4125 if (HAVE_cc0)
4126 {
4127 rtx_insn *p = prev_nonnote_insn (i3);
4128 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4129 && sets_cc0_p (newi2pat))
4130 {
4131 undo_all ();
4132 return 0;
4133 }
4134 }
4135
4136 /* Only allow this combination if insn_cost reports that the
4137 replacement instructions are cheaper than the originals. */
4138 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4139 {
4140 undo_all ();
4141 return 0;
4142 }
4143
4144 if (MAY_HAVE_DEBUG_BIND_INSNS)
4145 {
4146 struct undo *undo;
4147
4148 for (undo = undobuf.undos; undo; undo = undo->next)
4149 if (undo->kind == UNDO_MODE)
4150 {
4151 rtx reg = *undo->where.r;
4152 machine_mode new_mode = GET_MODE (reg);
4153 machine_mode old_mode = undo->old_contents.m;
4154
4155 /* Temporarily revert mode back. */
4156 adjust_reg_mode (reg, old_mode);
4157
4158 if (reg == i2dest && i2scratch)
4159 {
4160 /* If we used i2dest as a scratch register with a
4161 different mode, substitute it for the original
4162 i2src while its original mode is temporarily
4163 restored, and then clear i2scratch so that we don't
4164 do it again later. */
4165 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4166 this_basic_block);
4167 i2scratch = false;
4168 /* Put back the new mode. */
4169 adjust_reg_mode (reg, new_mode);
4170 }
4171 else
4172 {
4173 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4174 rtx_insn *first, *last;
4175
4176 if (reg == i2dest)
4177 {
4178 first = i2;
4179 last = last_combined_insn;
4180 }
4181 else
4182 {
4183 first = i3;
4184 last = undobuf.other_insn;
4185 gcc_assert (last);
4186 if (DF_INSN_LUID (last)
4187 < DF_INSN_LUID (last_combined_insn))
4188 last = last_combined_insn;
4189 }
4190
4191 /* We're dealing with a reg that changed mode but not
4192 meaning, so we want to turn it into a subreg for
4193 the new mode. However, because of REG sharing and
4194 because its mode had already changed, we have to do
4195 it in two steps. First, replace any debug uses of
4196 reg, with its original mode temporarily restored,
4197 with this copy we have created; then, replace the
4198 copy with the SUBREG of the original shared reg,
4199 once again changed to the new mode. */
4200 propagate_for_debug (first, last, reg, tempreg,
4201 this_basic_block);
4202 adjust_reg_mode (reg, new_mode);
4203 propagate_for_debug (first, last, tempreg,
4204 lowpart_subreg (old_mode, reg, new_mode),
4205 this_basic_block);
4206 }
4207 }
4208 }
4209
4210 /* If we will be able to accept this, we have made a
4211 change to the destination of I3. This requires us to
4212 do a few adjustments. */
4213
4214 if (changed_i3_dest)
4215 {
4216 PATTERN (i3) = newpat;
4217 adjust_for_new_dest (i3);
4218 }
4219
4220 /* We now know that we can do this combination. Merge the insns and
4221 update the status of registers and LOG_LINKS. */
4222
4223 if (undobuf.other_insn)
4224 {
4225 rtx note, next;
4226
4227 PATTERN (undobuf.other_insn) = other_pat;
4228
4229 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4230 ensure that they are still valid. Then add any non-duplicate
4231 notes added by recog_for_combine. */
4232 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4233 {
4234 next = XEXP (note, 1);
4235
4236 if ((REG_NOTE_KIND (note) == REG_DEAD
4237 && !reg_referenced_p (XEXP (note, 0),
4238 PATTERN (undobuf.other_insn)))
4239 ||(REG_NOTE_KIND (note) == REG_UNUSED
4240 && !reg_set_p (XEXP (note, 0),
4241 PATTERN (undobuf.other_insn)))
4242 /* Simply drop equal note since it may be no longer valid
4243 for other_insn. It may be possible to record that CC
4244 register is changed and only discard those notes, but
4245 in practice it's unnecessary complication and doesn't
4246 give any meaningful improvement.
4247
4248 See PR78559. */
4249 || REG_NOTE_KIND (note) == REG_EQUAL
4250 || REG_NOTE_KIND (note) == REG_EQUIV)
4251 remove_note (undobuf.other_insn, note);
4252 }
4253
4254 distribute_notes (new_other_notes, undobuf.other_insn,
4255 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4256 NULL_RTX);
4257 }
4258
4259 if (swap_i2i3)
4260 {
4261 rtx_insn *insn;
4262 struct insn_link *link;
4263 rtx ni2dest;
4264
4265 /* I3 now uses what used to be its destination and which is now
4266 I2's destination. This requires us to do a few adjustments. */
4267 PATTERN (i3) = newpat;
4268 adjust_for_new_dest (i3);
4269
4270 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4271 so we still will.
4272
4273 However, some later insn might be using I2's dest and have
4274 a LOG_LINK pointing at I3. We must remove this link.
4275 The simplest way to remove the link is to point it at I1,
4276 which we know will be a NOTE. */
4277
4278 /* newi2pat is usually a SET here; however, recog_for_combine might
4279 have added some clobbers. */
4280 if (GET_CODE (newi2pat) == PARALLEL)
4281 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4282 else
4283 ni2dest = SET_DEST (newi2pat);
4284
4285 for (insn = NEXT_INSN (i3);
4286 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4287 || insn != BB_HEAD (this_basic_block->next_bb));
4288 insn = NEXT_INSN (insn))
4289 {
4290 if (NONDEBUG_INSN_P (insn)
4291 && reg_referenced_p (ni2dest, PATTERN (insn)))
4292 {
4293 FOR_EACH_LOG_LINK (link, insn)
4294 if (link->insn == i3)
4295 link->insn = i1;
4296
4297 break;
4298 }
4299 }
4300 }
4301
4302 {
4303 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4304 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4305 rtx midnotes = 0;
4306 int from_luid;
4307 /* Compute which registers we expect to eliminate. newi2pat may be setting
4308 either i3dest or i2dest, so we must check it. */
4309 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4310 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4311 || !i2dest_killed
4312 ? 0 : i2dest);
4313 /* For i1, we need to compute both local elimination and global
4314 elimination information with respect to newi2pat because i1dest
4315 may be the same as i3dest, in which case newi2pat may be setting
4316 i1dest. Global information is used when distributing REG_DEAD
4317 note for i2 and i3, in which case it does matter if newi2pat sets
4318 i1dest or not.
4319
4320 Local information is used when distributing REG_DEAD note for i1,
4321 in which case it doesn't matter if newi2pat sets i1dest or not.
4322 See PR62151, if we have four insns combination:
4323 i0: r0 <- i0src
4324 i1: r1 <- i1src (using r0)
4325 REG_DEAD (r0)
4326 i2: r0 <- i2src (using r1)
4327 i3: r3 <- i3src (using r0)
4328 ix: using r0
4329 From i1's point of view, r0 is eliminated, no matter if it is set
4330 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4331 should be discarded.
4332
4333 Note local information only affects cases in forms like "I1->I2->I3",
4334 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4335 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4336 i0dest anyway. */
4337 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4338 || !i1dest_killed
4339 ? 0 : i1dest);
4340 rtx elim_i1 = (local_elim_i1 == 0
4341 || (newi2pat && reg_set_p (i1dest, newi2pat))
4342 ? 0 : i1dest);
4343 /* Same case as i1. */
4344 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4345 ? 0 : i0dest);
4346 rtx elim_i0 = (local_elim_i0 == 0
4347 || (newi2pat && reg_set_p (i0dest, newi2pat))
4348 ? 0 : i0dest);
4349
4350 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4351 clear them. */
4352 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4353 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4354 if (i1)
4355 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4356 if (i0)
4357 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4358
4359 /* Ensure that we do not have something that should not be shared but
4360 occurs multiple times in the new insns. Check this by first
4361 resetting all the `used' flags and then copying anything is shared. */
4362
4363 reset_used_flags (i3notes);
4364 reset_used_flags (i2notes);
4365 reset_used_flags (i1notes);
4366 reset_used_flags (i0notes);
4367 reset_used_flags (newpat);
4368 reset_used_flags (newi2pat);
4369 if (undobuf.other_insn)
4370 reset_used_flags (PATTERN (undobuf.other_insn));
4371
4372 i3notes = copy_rtx_if_shared (i3notes);
4373 i2notes = copy_rtx_if_shared (i2notes);
4374 i1notes = copy_rtx_if_shared (i1notes);
4375 i0notes = copy_rtx_if_shared (i0notes);
4376 newpat = copy_rtx_if_shared (newpat);
4377 newi2pat = copy_rtx_if_shared (newi2pat);
4378 if (undobuf.other_insn)
4379 reset_used_flags (PATTERN (undobuf.other_insn));
4380
4381 INSN_CODE (i3) = insn_code_number;
4382 PATTERN (i3) = newpat;
4383
4384 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4385 {
4386 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4387 link = XEXP (link, 1))
4388 {
4389 if (substed_i2)
4390 {
4391 /* I2SRC must still be meaningful at this point. Some
4392 splitting operations can invalidate I2SRC, but those
4393 operations do not apply to calls. */
4394 gcc_assert (i2src);
4395 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4396 i2dest, i2src);
4397 }
4398 if (substed_i1)
4399 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4400 i1dest, i1src);
4401 if (substed_i0)
4402 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4403 i0dest, i0src);
4404 }
4405 }
4406
4407 if (undobuf.other_insn)
4408 INSN_CODE (undobuf.other_insn) = other_code_number;
4409
4410 /* We had one special case above where I2 had more than one set and
4411 we replaced a destination of one of those sets with the destination
4412 of I3. In that case, we have to update LOG_LINKS of insns later
4413 in this basic block. Note that this (expensive) case is rare.
4414
4415 Also, in this case, we must pretend that all REG_NOTEs for I2
4416 actually came from I3, so that REG_UNUSED notes from I2 will be
4417 properly handled. */
4418
4419 if (i3_subst_into_i2)
4420 {
4421 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4422 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4423 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4424 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4425 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4426 && ! find_reg_note (i2, REG_UNUSED,
4427 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4428 for (temp_insn = NEXT_INSN (i2);
4429 temp_insn
4430 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4431 || BB_HEAD (this_basic_block) != temp_insn);
4432 temp_insn = NEXT_INSN (temp_insn))
4433 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4434 FOR_EACH_LOG_LINK (link, temp_insn)
4435 if (link->insn == i2)
4436 link->insn = i3;
4437
4438 if (i3notes)
4439 {
4440 rtx link = i3notes;
4441 while (XEXP (link, 1))
4442 link = XEXP (link, 1);
4443 XEXP (link, 1) = i2notes;
4444 }
4445 else
4446 i3notes = i2notes;
4447 i2notes = 0;
4448 }
4449
4450 LOG_LINKS (i3) = NULL;
4451 REG_NOTES (i3) = 0;
4452 LOG_LINKS (i2) = NULL;
4453 REG_NOTES (i2) = 0;
4454
4455 if (newi2pat)
4456 {
4457 if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4458 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4459 this_basic_block);
4460 INSN_CODE (i2) = i2_code_number;
4461 PATTERN (i2) = newi2pat;
4462 }
4463 else
4464 {
4465 if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4466 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4467 this_basic_block);
4468 SET_INSN_DELETED (i2);
4469 }
4470
4471 if (i1)
4472 {
4473 LOG_LINKS (i1) = NULL;
4474 REG_NOTES (i1) = 0;
4475 if (MAY_HAVE_DEBUG_BIND_INSNS)
4476 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4477 this_basic_block);
4478 SET_INSN_DELETED (i1);
4479 }
4480
4481 if (i0)
4482 {
4483 LOG_LINKS (i0) = NULL;
4484 REG_NOTES (i0) = 0;
4485 if (MAY_HAVE_DEBUG_BIND_INSNS)
4486 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4487 this_basic_block);
4488 SET_INSN_DELETED (i0);
4489 }
4490
4491 /* Get death notes for everything that is now used in either I3 or
4492 I2 and used to die in a previous insn. If we built two new
4493 patterns, move from I1 to I2 then I2 to I3 so that we get the
4494 proper movement on registers that I2 modifies. */
4495
4496 if (i0)
4497 from_luid = DF_INSN_LUID (i0);
4498 else if (i1)
4499 from_luid = DF_INSN_LUID (i1);
4500 else
4501 from_luid = DF_INSN_LUID (i2);
4502 if (newi2pat)
4503 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4504 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4505
4506 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4507 if (i3notes)
4508 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4509 elim_i2, elim_i1, elim_i0);
4510 if (i2notes)
4511 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4512 elim_i2, elim_i1, elim_i0);
4513 if (i1notes)
4514 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4515 elim_i2, local_elim_i1, local_elim_i0);
4516 if (i0notes)
4517 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4518 elim_i2, elim_i1, local_elim_i0);
4519 if (midnotes)
4520 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4521 elim_i2, elim_i1, elim_i0);
4522
4523 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4524 know these are REG_UNUSED and want them to go to the desired insn,
4525 so we always pass it as i3. */
4526
4527 if (newi2pat && new_i2_notes)
4528 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4529 NULL_RTX);
4530
4531 if (new_i3_notes)
4532 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4533 NULL_RTX);
4534
4535 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4536 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4537 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4538 in that case, it might delete I2. Similarly for I2 and I1.
4539 Show an additional death due to the REG_DEAD note we make here. If
4540 we discard it in distribute_notes, we will decrement it again. */
4541
4542 if (i3dest_killed)
4543 {
4544 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4545 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4546 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4547 elim_i1, elim_i0);
4548 else
4549 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4550 elim_i2, elim_i1, elim_i0);
4551 }
4552
4553 if (i2dest_in_i2src)
4554 {
4555 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4556 if (newi2pat && reg_set_p (i2dest, newi2pat))
4557 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4558 NULL_RTX, NULL_RTX);
4559 else
4560 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4561 NULL_RTX, NULL_RTX, NULL_RTX);
4562 }
4563
4564 if (i1dest_in_i1src)
4565 {
4566 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4567 if (newi2pat && reg_set_p (i1dest, newi2pat))
4568 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4569 NULL_RTX, NULL_RTX);
4570 else
4571 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4572 NULL_RTX, NULL_RTX, NULL_RTX);
4573 }
4574
4575 if (i0dest_in_i0src)
4576 {
4577 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4578 if (newi2pat && reg_set_p (i0dest, newi2pat))
4579 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4580 NULL_RTX, NULL_RTX);
4581 else
4582 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4583 NULL_RTX, NULL_RTX, NULL_RTX);
4584 }
4585
4586 distribute_links (i3links);
4587 distribute_links (i2links);
4588 distribute_links (i1links);
4589 distribute_links (i0links);
4590
4591 if (REG_P (i2dest))
4592 {
4593 struct insn_link *link;
4594 rtx_insn *i2_insn = 0;
4595 rtx i2_val = 0, set;
4596
4597 /* The insn that used to set this register doesn't exist, and
4598 this life of the register may not exist either. See if one of
4599 I3's links points to an insn that sets I2DEST. If it does,
4600 that is now the last known value for I2DEST. If we don't update
4601 this and I2 set the register to a value that depended on its old
4602 contents, we will get confused. If this insn is used, thing
4603 will be set correctly in combine_instructions. */
4604 FOR_EACH_LOG_LINK (link, i3)
4605 if ((set = single_set (link->insn)) != 0
4606 && rtx_equal_p (i2dest, SET_DEST (set)))
4607 i2_insn = link->insn, i2_val = SET_SRC (set);
4608
4609 record_value_for_reg (i2dest, i2_insn, i2_val);
4610
4611 /* If the reg formerly set in I2 died only once and that was in I3,
4612 zero its use count so it won't make `reload' do any work. */
4613 if (! added_sets_2
4614 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4615 && ! i2dest_in_i2src
4616 && REGNO (i2dest) < reg_n_sets_max)
4617 INC_REG_N_SETS (REGNO (i2dest), -1);
4618 }
4619
4620 if (i1 && REG_P (i1dest))
4621 {
4622 struct insn_link *link;
4623 rtx_insn *i1_insn = 0;
4624 rtx i1_val = 0, set;
4625
4626 FOR_EACH_LOG_LINK (link, i3)
4627 if ((set = single_set (link->insn)) != 0
4628 && rtx_equal_p (i1dest, SET_DEST (set)))
4629 i1_insn = link->insn, i1_val = SET_SRC (set);
4630
4631 record_value_for_reg (i1dest, i1_insn, i1_val);
4632
4633 if (! added_sets_1
4634 && ! i1dest_in_i1src
4635 && REGNO (i1dest) < reg_n_sets_max)
4636 INC_REG_N_SETS (REGNO (i1dest), -1);
4637 }
4638
4639 if (i0 && REG_P (i0dest))
4640 {
4641 struct insn_link *link;
4642 rtx_insn *i0_insn = 0;
4643 rtx i0_val = 0, set;
4644
4645 FOR_EACH_LOG_LINK (link, i3)
4646 if ((set = single_set (link->insn)) != 0
4647 && rtx_equal_p (i0dest, SET_DEST (set)))
4648 i0_insn = link->insn, i0_val = SET_SRC (set);
4649
4650 record_value_for_reg (i0dest, i0_insn, i0_val);
4651
4652 if (! added_sets_0
4653 && ! i0dest_in_i0src
4654 && REGNO (i0dest) < reg_n_sets_max)
4655 INC_REG_N_SETS (REGNO (i0dest), -1);
4656 }
4657
4658 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4659 been made to this insn. The order is important, because newi2pat
4660 can affect nonzero_bits of newpat. */
4661 if (newi2pat)
4662 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4663 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4664 }
4665
4666 if (undobuf.other_insn != NULL_RTX)
4667 {
4668 if (dump_file)
4669 {
4670 fprintf (dump_file, "modifying other_insn ");
4671 dump_insn_slim (dump_file, undobuf.other_insn);
4672 }
4673 df_insn_rescan (undobuf.other_insn);
4674 }
4675
4676 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4677 {
4678 if (dump_file)
4679 {
4680 fprintf (dump_file, "modifying insn i0 ");
4681 dump_insn_slim (dump_file, i0);
4682 }
4683 df_insn_rescan (i0);
4684 }
4685
4686 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4687 {
4688 if (dump_file)
4689 {
4690 fprintf (dump_file, "modifying insn i1 ");
4691 dump_insn_slim (dump_file, i1);
4692 }
4693 df_insn_rescan (i1);
4694 }
4695
4696 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4697 {
4698 if (dump_file)
4699 {
4700 fprintf (dump_file, "modifying insn i2 ");
4701 dump_insn_slim (dump_file, i2);
4702 }
4703 df_insn_rescan (i2);
4704 }
4705
4706 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4707 {
4708 if (dump_file)
4709 {
4710 fprintf (dump_file, "modifying insn i3 ");
4711 dump_insn_slim (dump_file, i3);
4712 }
4713 df_insn_rescan (i3);
4714 }
4715
4716 /* Set new_direct_jump_p if a new return or simple jump instruction
4717 has been created. Adjust the CFG accordingly. */
4718 if (returnjump_p (i3) || any_uncondjump_p (i3))
4719 {
4720 *new_direct_jump_p = 1;
4721 mark_jump_label (PATTERN (i3), i3, 0);
4722 update_cfg_for_uncondjump (i3);
4723 }
4724
4725 if (undobuf.other_insn != NULL_RTX
4726 && (returnjump_p (undobuf.other_insn)
4727 || any_uncondjump_p (undobuf.other_insn)))
4728 {
4729 *new_direct_jump_p = 1;
4730 update_cfg_for_uncondjump (undobuf.other_insn);
4731 }
4732
4733 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4734 && XEXP (PATTERN (i3), 0) == const1_rtx)
4735 {
4736 basic_block bb = BLOCK_FOR_INSN (i3);
4737 gcc_assert (bb);
4738 remove_edge (split_block (bb, i3));
4739 emit_barrier_after_bb (bb);
4740 *new_direct_jump_p = 1;
4741 }
4742
4743 if (undobuf.other_insn
4744 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4745 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4746 {
4747 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4748 gcc_assert (bb);
4749 remove_edge (split_block (bb, undobuf.other_insn));
4750 emit_barrier_after_bb (bb);
4751 *new_direct_jump_p = 1;
4752 }
4753
4754 /* A noop might also need cleaning up of CFG, if it comes from the
4755 simplification of a jump. */
4756 if (JUMP_P (i3)
4757 && GET_CODE (newpat) == SET
4758 && SET_SRC (newpat) == pc_rtx
4759 && SET_DEST (newpat) == pc_rtx)
4760 {
4761 *new_direct_jump_p = 1;
4762 update_cfg_for_uncondjump (i3);
4763 }
4764
4765 if (undobuf.other_insn != NULL_RTX
4766 && JUMP_P (undobuf.other_insn)
4767 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4768 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4769 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4770 {
4771 *new_direct_jump_p = 1;
4772 update_cfg_for_uncondjump (undobuf.other_insn);
4773 }
4774
4775 combine_successes++;
4776 undo_commit ();
4777
4778 rtx_insn *ret = newi2pat ? i2 : i3;
4779 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4780 ret = added_links_insn;
4781 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4782 ret = added_notes_insn;
4783
4784 return ret;
4785 }
4786 \f
4787 /* Get a marker for undoing to the current state. */
4788
4789 static void *
4790 get_undo_marker (void)
4791 {
4792 return undobuf.undos;
4793 }
4794
4795 /* Undo the modifications up to the marker. */
4796
4797 static void
4798 undo_to_marker (void *marker)
4799 {
4800 struct undo *undo, *next;
4801
4802 for (undo = undobuf.undos; undo != marker; undo = next)
4803 {
4804 gcc_assert (undo);
4805
4806 next = undo->next;
4807 switch (undo->kind)
4808 {
4809 case UNDO_RTX:
4810 *undo->where.r = undo->old_contents.r;
4811 break;
4812 case UNDO_INT:
4813 *undo->where.i = undo->old_contents.i;
4814 break;
4815 case UNDO_MODE:
4816 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4817 break;
4818 case UNDO_LINKS:
4819 *undo->where.l = undo->old_contents.l;
4820 break;
4821 default:
4822 gcc_unreachable ();
4823 }
4824
4825 undo->next = undobuf.frees;
4826 undobuf.frees = undo;
4827 }
4828
4829 undobuf.undos = (struct undo *) marker;
4830 }
4831
4832 /* Undo all the modifications recorded in undobuf. */
4833
4834 static void
4835 undo_all (void)
4836 {
4837 undo_to_marker (0);
4838 }
4839
4840 /* We've committed to accepting the changes we made. Move all
4841 of the undos to the free list. */
4842
4843 static void
4844 undo_commit (void)
4845 {
4846 struct undo *undo, *next;
4847
4848 for (undo = undobuf.undos; undo; undo = next)
4849 {
4850 next = undo->next;
4851 undo->next = undobuf.frees;
4852 undobuf.frees = undo;
4853 }
4854 undobuf.undos = 0;
4855 }
4856 \f
4857 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4858 where we have an arithmetic expression and return that point. LOC will
4859 be inside INSN.
4860
4861 try_combine will call this function to see if an insn can be split into
4862 two insns. */
4863
4864 static rtx *
4865 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4866 {
4867 rtx x = *loc;
4868 enum rtx_code code = GET_CODE (x);
4869 rtx *split;
4870 unsigned HOST_WIDE_INT len = 0;
4871 HOST_WIDE_INT pos = 0;
4872 int unsignedp = 0;
4873 rtx inner = NULL_RTX;
4874 scalar_int_mode mode, inner_mode;
4875
4876 /* First special-case some codes. */
4877 switch (code)
4878 {
4879 case SUBREG:
4880 #ifdef INSN_SCHEDULING
4881 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4882 point. */
4883 if (MEM_P (SUBREG_REG (x)))
4884 return loc;
4885 #endif
4886 return find_split_point (&SUBREG_REG (x), insn, false);
4887
4888 case MEM:
4889 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4890 using LO_SUM and HIGH. */
4891 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4892 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4893 {
4894 machine_mode address_mode = get_address_mode (x);
4895
4896 SUBST (XEXP (x, 0),
4897 gen_rtx_LO_SUM (address_mode,
4898 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4899 XEXP (x, 0)));
4900 return &XEXP (XEXP (x, 0), 0);
4901 }
4902
4903 /* If we have a PLUS whose second operand is a constant and the
4904 address is not valid, perhaps will can split it up using
4905 the machine-specific way to split large constants. We use
4906 the first pseudo-reg (one of the virtual regs) as a placeholder;
4907 it will not remain in the result. */
4908 if (GET_CODE (XEXP (x, 0)) == PLUS
4909 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4910 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4911 MEM_ADDR_SPACE (x)))
4912 {
4913 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4914 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4915 subst_insn);
4916
4917 /* This should have produced two insns, each of which sets our
4918 placeholder. If the source of the second is a valid address,
4919 we can make put both sources together and make a split point
4920 in the middle. */
4921
4922 if (seq
4923 && NEXT_INSN (seq) != NULL_RTX
4924 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4925 && NONJUMP_INSN_P (seq)
4926 && GET_CODE (PATTERN (seq)) == SET
4927 && SET_DEST (PATTERN (seq)) == reg
4928 && ! reg_mentioned_p (reg,
4929 SET_SRC (PATTERN (seq)))
4930 && NONJUMP_INSN_P (NEXT_INSN (seq))
4931 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4932 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4933 && memory_address_addr_space_p
4934 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4935 MEM_ADDR_SPACE (x)))
4936 {
4937 rtx src1 = SET_SRC (PATTERN (seq));
4938 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4939
4940 /* Replace the placeholder in SRC2 with SRC1. If we can
4941 find where in SRC2 it was placed, that can become our
4942 split point and we can replace this address with SRC2.
4943 Just try two obvious places. */
4944
4945 src2 = replace_rtx (src2, reg, src1);
4946 split = 0;
4947 if (XEXP (src2, 0) == src1)
4948 split = &XEXP (src2, 0);
4949 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4950 && XEXP (XEXP (src2, 0), 0) == src1)
4951 split = &XEXP (XEXP (src2, 0), 0);
4952
4953 if (split)
4954 {
4955 SUBST (XEXP (x, 0), src2);
4956 return split;
4957 }
4958 }
4959
4960 /* If that didn't work, perhaps the first operand is complex and
4961 needs to be computed separately, so make a split point there.
4962 This will occur on machines that just support REG + CONST
4963 and have a constant moved through some previous computation. */
4964
4965 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4966 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4967 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4968 return &XEXP (XEXP (x, 0), 0);
4969 }
4970
4971 /* If we have a PLUS whose first operand is complex, try computing it
4972 separately by making a split there. */
4973 if (GET_CODE (XEXP (x, 0)) == PLUS
4974 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4975 MEM_ADDR_SPACE (x))
4976 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4977 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4978 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4979 return &XEXP (XEXP (x, 0), 0);
4980 break;
4981
4982 case SET:
4983 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4984 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4985 we need to put the operand into a register. So split at that
4986 point. */
4987
4988 if (SET_DEST (x) == cc0_rtx
4989 && GET_CODE (SET_SRC (x)) != COMPARE
4990 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4991 && !OBJECT_P (SET_SRC (x))
4992 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4993 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4994 return &SET_SRC (x);
4995
4996 /* See if we can split SET_SRC as it stands. */
4997 split = find_split_point (&SET_SRC (x), insn, true);
4998 if (split && split != &SET_SRC (x))
4999 return split;
5000
5001 /* See if we can split SET_DEST as it stands. */
5002 split = find_split_point (&SET_DEST (x), insn, false);
5003 if (split && split != &SET_DEST (x))
5004 return split;
5005
5006 /* See if this is a bitfield assignment with everything constant. If
5007 so, this is an IOR of an AND, so split it into that. */
5008 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5009 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5010 &inner_mode)
5011 && HWI_COMPUTABLE_MODE_P (inner_mode)
5012 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5013 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5014 && CONST_INT_P (SET_SRC (x))
5015 && ((INTVAL (XEXP (SET_DEST (x), 1))
5016 + INTVAL (XEXP (SET_DEST (x), 2)))
5017 <= GET_MODE_PRECISION (inner_mode))
5018 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5019 {
5020 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5021 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5022 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
5023 rtx dest = XEXP (SET_DEST (x), 0);
5024 unsigned HOST_WIDE_INT mask
5025 = (HOST_WIDE_INT_1U << len) - 1;
5026 rtx or_mask;
5027
5028 if (BITS_BIG_ENDIAN)
5029 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5030
5031 or_mask = gen_int_mode (src << pos, inner_mode);
5032 if (src == mask)
5033 SUBST (SET_SRC (x),
5034 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5035 else
5036 {
5037 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5038 SUBST (SET_SRC (x),
5039 simplify_gen_binary (IOR, inner_mode,
5040 simplify_gen_binary (AND, inner_mode,
5041 dest, negmask),
5042 or_mask));
5043 }
5044
5045 SUBST (SET_DEST (x), dest);
5046
5047 split = find_split_point (&SET_SRC (x), insn, true);
5048 if (split && split != &SET_SRC (x))
5049 return split;
5050 }
5051
5052 /* Otherwise, see if this is an operation that we can split into two.
5053 If so, try to split that. */
5054 code = GET_CODE (SET_SRC (x));
5055
5056 switch (code)
5057 {
5058 case AND:
5059 /* If we are AND'ing with a large constant that is only a single
5060 bit and the result is only being used in a context where we
5061 need to know if it is zero or nonzero, replace it with a bit
5062 extraction. This will avoid the large constant, which might
5063 have taken more than one insn to make. If the constant were
5064 not a valid argument to the AND but took only one insn to make,
5065 this is no worse, but if it took more than one insn, it will
5066 be better. */
5067
5068 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5069 && REG_P (XEXP (SET_SRC (x), 0))
5070 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5071 && REG_P (SET_DEST (x))
5072 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5073 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5074 && XEXP (*split, 0) == SET_DEST (x)
5075 && XEXP (*split, 1) == const0_rtx)
5076 {
5077 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5078 XEXP (SET_SRC (x), 0),
5079 pos, NULL_RTX, 1, 1, 0, 0);
5080 if (extraction != 0)
5081 {
5082 SUBST (SET_SRC (x), extraction);
5083 return find_split_point (loc, insn, false);
5084 }
5085 }
5086 break;
5087
5088 case NE:
5089 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5090 is known to be on, this can be converted into a NEG of a shift. */
5091 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5092 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5093 && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
5094 GET_MODE (XEXP (SET_SRC (x),
5095 0))))) >= 1))
5096 {
5097 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5098 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5099 SUBST (SET_SRC (x),
5100 gen_rtx_NEG (mode,
5101 gen_rtx_LSHIFTRT (mode,
5102 XEXP (SET_SRC (x), 0),
5103 pos_rtx)));
5104
5105 split = find_split_point (&SET_SRC (x), insn, true);
5106 if (split && split != &SET_SRC (x))
5107 return split;
5108 }
5109 break;
5110
5111 case SIGN_EXTEND:
5112 inner = XEXP (SET_SRC (x), 0);
5113
5114 /* We can't optimize if either mode is a partial integer
5115 mode as we don't know how many bits are significant
5116 in those modes. */
5117 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5118 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5119 break;
5120
5121 pos = 0;
5122 len = GET_MODE_PRECISION (inner_mode);
5123 unsignedp = 0;
5124 break;
5125
5126 case SIGN_EXTRACT:
5127 case ZERO_EXTRACT:
5128 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5129 &inner_mode)
5130 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5131 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5132 {
5133 inner = XEXP (SET_SRC (x), 0);
5134 len = INTVAL (XEXP (SET_SRC (x), 1));
5135 pos = INTVAL (XEXP (SET_SRC (x), 2));
5136
5137 if (BITS_BIG_ENDIAN)
5138 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5139 unsignedp = (code == ZERO_EXTRACT);
5140 }
5141 break;
5142
5143 default:
5144 break;
5145 }
5146
5147 if (len
5148 && known_subrange_p (pos, len,
5149 0, GET_MODE_PRECISION (GET_MODE (inner)))
5150 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5151 {
5152 /* For unsigned, we have a choice of a shift followed by an
5153 AND or two shifts. Use two shifts for field sizes where the
5154 constant might be too large. We assume here that we can
5155 always at least get 8-bit constants in an AND insn, which is
5156 true for every current RISC. */
5157
5158 if (unsignedp && len <= 8)
5159 {
5160 unsigned HOST_WIDE_INT mask
5161 = (HOST_WIDE_INT_1U << len) - 1;
5162 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5163 SUBST (SET_SRC (x),
5164 gen_rtx_AND (mode,
5165 gen_rtx_LSHIFTRT
5166 (mode, gen_lowpart (mode, inner), pos_rtx),
5167 gen_int_mode (mask, mode)));
5168
5169 split = find_split_point (&SET_SRC (x), insn, true);
5170 if (split && split != &SET_SRC (x))
5171 return split;
5172 }
5173 else
5174 {
5175 int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5176 int right_bits = GET_MODE_PRECISION (mode) - len;
5177 SUBST (SET_SRC (x),
5178 gen_rtx_fmt_ee
5179 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5180 gen_rtx_ASHIFT (mode,
5181 gen_lowpart (mode, inner),
5182 gen_int_shift_amount (mode, left_bits)),
5183 gen_int_shift_amount (mode, right_bits)));
5184
5185 split = find_split_point (&SET_SRC (x), insn, true);
5186 if (split && split != &SET_SRC (x))
5187 return split;
5188 }
5189 }
5190
5191 /* See if this is a simple operation with a constant as the second
5192 operand. It might be that this constant is out of range and hence
5193 could be used as a split point. */
5194 if (BINARY_P (SET_SRC (x))
5195 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5196 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5197 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5198 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5199 return &XEXP (SET_SRC (x), 1);
5200
5201 /* Finally, see if this is a simple operation with its first operand
5202 not in a register. The operation might require this operand in a
5203 register, so return it as a split point. We can always do this
5204 because if the first operand were another operation, we would have
5205 already found it as a split point. */
5206 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5207 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5208 return &XEXP (SET_SRC (x), 0);
5209
5210 return 0;
5211
5212 case AND:
5213 case IOR:
5214 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5215 it is better to write this as (not (ior A B)) so we can split it.
5216 Similarly for IOR. */
5217 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5218 {
5219 SUBST (*loc,
5220 gen_rtx_NOT (GET_MODE (x),
5221 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5222 GET_MODE (x),
5223 XEXP (XEXP (x, 0), 0),
5224 XEXP (XEXP (x, 1), 0))));
5225 return find_split_point (loc, insn, set_src);
5226 }
5227
5228 /* Many RISC machines have a large set of logical insns. If the
5229 second operand is a NOT, put it first so we will try to split the
5230 other operand first. */
5231 if (GET_CODE (XEXP (x, 1)) == NOT)
5232 {
5233 rtx tem = XEXP (x, 0);
5234 SUBST (XEXP (x, 0), XEXP (x, 1));
5235 SUBST (XEXP (x, 1), tem);
5236 }
5237 break;
5238
5239 case PLUS:
5240 case MINUS:
5241 /* Canonicalization can produce (minus A (mult B C)), where C is a
5242 constant. It may be better to try splitting (plus (mult B -C) A)
5243 instead if this isn't a multiply by a power of two. */
5244 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5245 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5246 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5247 {
5248 machine_mode mode = GET_MODE (x);
5249 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5250 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5251 SUBST (*loc, gen_rtx_PLUS (mode,
5252 gen_rtx_MULT (mode,
5253 XEXP (XEXP (x, 1), 0),
5254 gen_int_mode (other_int,
5255 mode)),
5256 XEXP (x, 0)));
5257 return find_split_point (loc, insn, set_src);
5258 }
5259
5260 /* Split at a multiply-accumulate instruction. However if this is
5261 the SET_SRC, we likely do not have such an instruction and it's
5262 worthless to try this split. */
5263 if (!set_src
5264 && (GET_CODE (XEXP (x, 0)) == MULT
5265 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5266 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5267 return loc;
5268
5269 default:
5270 break;
5271 }
5272
5273 /* Otherwise, select our actions depending on our rtx class. */
5274 switch (GET_RTX_CLASS (code))
5275 {
5276 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5277 case RTX_TERNARY:
5278 split = find_split_point (&XEXP (x, 2), insn, false);
5279 if (split)
5280 return split;
5281 /* fall through */
5282 case RTX_BIN_ARITH:
5283 case RTX_COMM_ARITH:
5284 case RTX_COMPARE:
5285 case RTX_COMM_COMPARE:
5286 split = find_split_point (&XEXP (x, 1), insn, false);
5287 if (split)
5288 return split;
5289 /* fall through */
5290 case RTX_UNARY:
5291 /* Some machines have (and (shift ...) ...) insns. If X is not
5292 an AND, but XEXP (X, 0) is, use it as our split point. */
5293 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5294 return &XEXP (x, 0);
5295
5296 split = find_split_point (&XEXP (x, 0), insn, false);
5297 if (split)
5298 return split;
5299 return loc;
5300
5301 default:
5302 /* Otherwise, we don't have a split point. */
5303 return 0;
5304 }
5305 }
5306 \f
5307 /* Throughout X, replace FROM with TO, and return the result.
5308 The result is TO if X is FROM;
5309 otherwise the result is X, but its contents may have been modified.
5310 If they were modified, a record was made in undobuf so that
5311 undo_all will (among other things) return X to its original state.
5312
5313 If the number of changes necessary is too much to record to undo,
5314 the excess changes are not made, so the result is invalid.
5315 The changes already made can still be undone.
5316 undobuf.num_undo is incremented for such changes, so by testing that
5317 the caller can tell whether the result is valid.
5318
5319 `n_occurrences' is incremented each time FROM is replaced.
5320
5321 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5322
5323 IN_COND is nonzero if we are at the top level of a condition.
5324
5325 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5326 by copying if `n_occurrences' is nonzero. */
5327
5328 static rtx
5329 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5330 {
5331 enum rtx_code code = GET_CODE (x);
5332 machine_mode op0_mode = VOIDmode;
5333 const char *fmt;
5334 int len, i;
5335 rtx new_rtx;
5336
5337 /* Two expressions are equal if they are identical copies of a shared
5338 RTX or if they are both registers with the same register number
5339 and mode. */
5340
5341 #define COMBINE_RTX_EQUAL_P(X,Y) \
5342 ((X) == (Y) \
5343 || (REG_P (X) && REG_P (Y) \
5344 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5345
5346 /* Do not substitute into clobbers of regs -- this will never result in
5347 valid RTL. */
5348 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5349 return x;
5350
5351 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5352 {
5353 n_occurrences++;
5354 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5355 }
5356
5357 /* If X and FROM are the same register but different modes, they
5358 will not have been seen as equal above. However, the log links code
5359 will make a LOG_LINKS entry for that case. If we do nothing, we
5360 will try to rerecognize our original insn and, when it succeeds,
5361 we will delete the feeding insn, which is incorrect.
5362
5363 So force this insn not to match in this (rare) case. */
5364 if (! in_dest && code == REG && REG_P (from)
5365 && reg_overlap_mentioned_p (x, from))
5366 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5367
5368 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5369 of which may contain things that can be combined. */
5370 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5371 return x;
5372
5373 /* It is possible to have a subexpression appear twice in the insn.
5374 Suppose that FROM is a register that appears within TO.
5375 Then, after that subexpression has been scanned once by `subst',
5376 the second time it is scanned, TO may be found. If we were
5377 to scan TO here, we would find FROM within it and create a
5378 self-referent rtl structure which is completely wrong. */
5379 if (COMBINE_RTX_EQUAL_P (x, to))
5380 return to;
5381
5382 /* Parallel asm_operands need special attention because all of the
5383 inputs are shared across the arms. Furthermore, unsharing the
5384 rtl results in recognition failures. Failure to handle this case
5385 specially can result in circular rtl.
5386
5387 Solve this by doing a normal pass across the first entry of the
5388 parallel, and only processing the SET_DESTs of the subsequent
5389 entries. Ug. */
5390
5391 if (code == PARALLEL
5392 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5393 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5394 {
5395 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5396
5397 /* If this substitution failed, this whole thing fails. */
5398 if (GET_CODE (new_rtx) == CLOBBER
5399 && XEXP (new_rtx, 0) == const0_rtx)
5400 return new_rtx;
5401
5402 SUBST (XVECEXP (x, 0, 0), new_rtx);
5403
5404 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5405 {
5406 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5407
5408 if (!REG_P (dest)
5409 && GET_CODE (dest) != CC0
5410 && GET_CODE (dest) != PC)
5411 {
5412 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5413
5414 /* If this substitution failed, this whole thing fails. */
5415 if (GET_CODE (new_rtx) == CLOBBER
5416 && XEXP (new_rtx, 0) == const0_rtx)
5417 return new_rtx;
5418
5419 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5420 }
5421 }
5422 }
5423 else
5424 {
5425 len = GET_RTX_LENGTH (code);
5426 fmt = GET_RTX_FORMAT (code);
5427
5428 /* We don't need to process a SET_DEST that is a register, CC0,
5429 or PC, so set up to skip this common case. All other cases
5430 where we want to suppress replacing something inside a
5431 SET_SRC are handled via the IN_DEST operand. */
5432 if (code == SET
5433 && (REG_P (SET_DEST (x))
5434 || GET_CODE (SET_DEST (x)) == CC0
5435 || GET_CODE (SET_DEST (x)) == PC))
5436 fmt = "ie";
5437
5438 /* Trying to simplify the operands of a widening MULT is not likely
5439 to create RTL matching a machine insn. */
5440 if (code == MULT
5441 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5442 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5443 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5444 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5445 && REG_P (XEXP (XEXP (x, 0), 0))
5446 && REG_P (XEXP (XEXP (x, 1), 0))
5447 && from == to)
5448 return x;
5449
5450
5451 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5452 constant. */
5453 if (fmt[0] == 'e')
5454 op0_mode = GET_MODE (XEXP (x, 0));
5455
5456 for (i = 0; i < len; i++)
5457 {
5458 if (fmt[i] == 'E')
5459 {
5460 int j;
5461 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5462 {
5463 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5464 {
5465 new_rtx = (unique_copy && n_occurrences
5466 ? copy_rtx (to) : to);
5467 n_occurrences++;
5468 }
5469 else
5470 {
5471 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5472 unique_copy);
5473
5474 /* If this substitution failed, this whole thing
5475 fails. */
5476 if (GET_CODE (new_rtx) == CLOBBER
5477 && XEXP (new_rtx, 0) == const0_rtx)
5478 return new_rtx;
5479 }
5480
5481 SUBST (XVECEXP (x, i, j), new_rtx);
5482 }
5483 }
5484 else if (fmt[i] == 'e')
5485 {
5486 /* If this is a register being set, ignore it. */
5487 new_rtx = XEXP (x, i);
5488 if (in_dest
5489 && i == 0
5490 && (((code == SUBREG || code == ZERO_EXTRACT)
5491 && REG_P (new_rtx))
5492 || code == STRICT_LOW_PART))
5493 ;
5494
5495 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5496 {
5497 /* In general, don't install a subreg involving two
5498 modes not tieable. It can worsen register
5499 allocation, and can even make invalid reload
5500 insns, since the reg inside may need to be copied
5501 from in the outside mode, and that may be invalid
5502 if it is an fp reg copied in integer mode.
5503
5504 We allow two exceptions to this: It is valid if
5505 it is inside another SUBREG and the mode of that
5506 SUBREG and the mode of the inside of TO is
5507 tieable and it is valid if X is a SET that copies
5508 FROM to CC0. */
5509
5510 if (GET_CODE (to) == SUBREG
5511 && !targetm.modes_tieable_p (GET_MODE (to),
5512 GET_MODE (SUBREG_REG (to)))
5513 && ! (code == SUBREG
5514 && (targetm.modes_tieable_p
5515 (GET_MODE (x), GET_MODE (SUBREG_REG (to)))))
5516 && (!HAVE_cc0
5517 || (! (code == SET
5518 && i == 1
5519 && XEXP (x, 0) == cc0_rtx))))
5520 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5521
5522 if (code == SUBREG
5523 && REG_P (to)
5524 && REGNO (to) < FIRST_PSEUDO_REGISTER
5525 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5526 SUBREG_BYTE (x),
5527 GET_MODE (x)) < 0)
5528 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5529
5530 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5531 n_occurrences++;
5532 }
5533 else
5534 /* If we are in a SET_DEST, suppress most cases unless we
5535 have gone inside a MEM, in which case we want to
5536 simplify the address. We assume here that things that
5537 are actually part of the destination have their inner
5538 parts in the first expression. This is true for SUBREG,
5539 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5540 things aside from REG and MEM that should appear in a
5541 SET_DEST. */
5542 new_rtx = subst (XEXP (x, i), from, to,
5543 (((in_dest
5544 && (code == SUBREG || code == STRICT_LOW_PART
5545 || code == ZERO_EXTRACT))
5546 || code == SET)
5547 && i == 0),
5548 code == IF_THEN_ELSE && i == 0,
5549 unique_copy);
5550
5551 /* If we found that we will have to reject this combination,
5552 indicate that by returning the CLOBBER ourselves, rather than
5553 an expression containing it. This will speed things up as
5554 well as prevent accidents where two CLOBBERs are considered
5555 to be equal, thus producing an incorrect simplification. */
5556
5557 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5558 return new_rtx;
5559
5560 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5561 {
5562 machine_mode mode = GET_MODE (x);
5563
5564 x = simplify_subreg (GET_MODE (x), new_rtx,
5565 GET_MODE (SUBREG_REG (x)),
5566 SUBREG_BYTE (x));
5567 if (! x)
5568 x = gen_rtx_CLOBBER (mode, const0_rtx);
5569 }
5570 else if (CONST_SCALAR_INT_P (new_rtx)
5571 && GET_CODE (x) == ZERO_EXTEND)
5572 {
5573 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5574 new_rtx, GET_MODE (XEXP (x, 0)));
5575 gcc_assert (x);
5576 }
5577 else
5578 SUBST (XEXP (x, i), new_rtx);
5579 }
5580 }
5581 }
5582
5583 /* Check if we are loading something from the constant pool via float
5584 extension; in this case we would undo compress_float_constant
5585 optimization and degenerate constant load to an immediate value. */
5586 if (GET_CODE (x) == FLOAT_EXTEND
5587 && MEM_P (XEXP (x, 0))
5588 && MEM_READONLY_P (XEXP (x, 0)))
5589 {
5590 rtx tmp = avoid_constant_pool_reference (x);
5591 if (x != tmp)
5592 return x;
5593 }
5594
5595 /* Try to simplify X. If the simplification changed the code, it is likely
5596 that further simplification will help, so loop, but limit the number
5597 of repetitions that will be performed. */
5598
5599 for (i = 0; i < 4; i++)
5600 {
5601 /* If X is sufficiently simple, don't bother trying to do anything
5602 with it. */
5603 if (code != CONST_INT && code != REG && code != CLOBBER)
5604 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5605
5606 if (GET_CODE (x) == code)
5607 break;
5608
5609 code = GET_CODE (x);
5610
5611 /* We no longer know the original mode of operand 0 since we
5612 have changed the form of X) */
5613 op0_mode = VOIDmode;
5614 }
5615
5616 return x;
5617 }
5618 \f
5619 /* If X is a commutative operation whose operands are not in the canonical
5620 order, use substitutions to swap them. */
5621
5622 static void
5623 maybe_swap_commutative_operands (rtx x)
5624 {
5625 if (COMMUTATIVE_ARITH_P (x)
5626 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5627 {
5628 rtx temp = XEXP (x, 0);
5629 SUBST (XEXP (x, 0), XEXP (x, 1));
5630 SUBST (XEXP (x, 1), temp);
5631 }
5632 }
5633
5634 /* Simplify X, a piece of RTL. We just operate on the expression at the
5635 outer level; call `subst' to simplify recursively. Return the new
5636 expression.
5637
5638 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5639 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5640 of a condition. */
5641
5642 static rtx
5643 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5644 int in_cond)
5645 {
5646 enum rtx_code code = GET_CODE (x);
5647 machine_mode mode = GET_MODE (x);
5648 scalar_int_mode int_mode;
5649 rtx temp;
5650 int i;
5651
5652 /* If this is a commutative operation, put a constant last and a complex
5653 expression first. We don't need to do this for comparisons here. */
5654 maybe_swap_commutative_operands (x);
5655
5656 /* Try to fold this expression in case we have constants that weren't
5657 present before. */
5658 temp = 0;
5659 switch (GET_RTX_CLASS (code))
5660 {
5661 case RTX_UNARY:
5662 if (op0_mode == VOIDmode)
5663 op0_mode = GET_MODE (XEXP (x, 0));
5664 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5665 break;
5666 case RTX_COMPARE:
5667 case RTX_COMM_COMPARE:
5668 {
5669 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5670 if (cmp_mode == VOIDmode)
5671 {
5672 cmp_mode = GET_MODE (XEXP (x, 1));
5673 if (cmp_mode == VOIDmode)
5674 cmp_mode = op0_mode;
5675 }
5676 temp = simplify_relational_operation (code, mode, cmp_mode,
5677 XEXP (x, 0), XEXP (x, 1));
5678 }
5679 break;
5680 case RTX_COMM_ARITH:
5681 case RTX_BIN_ARITH:
5682 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5683 break;
5684 case RTX_BITFIELD_OPS:
5685 case RTX_TERNARY:
5686 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5687 XEXP (x, 1), XEXP (x, 2));
5688 break;
5689 default:
5690 break;
5691 }
5692
5693 if (temp)
5694 {
5695 x = temp;
5696 code = GET_CODE (temp);
5697 op0_mode = VOIDmode;
5698 mode = GET_MODE (temp);
5699 }
5700
5701 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5702 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5703 things. Check for cases where both arms are testing the same
5704 condition.
5705
5706 Don't do anything if all operands are very simple. */
5707
5708 if ((BINARY_P (x)
5709 && ((!OBJECT_P (XEXP (x, 0))
5710 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5711 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5712 || (!OBJECT_P (XEXP (x, 1))
5713 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5714 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5715 || (UNARY_P (x)
5716 && (!OBJECT_P (XEXP (x, 0))
5717 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5718 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5719 {
5720 rtx cond, true_rtx, false_rtx;
5721
5722 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5723 if (cond != 0
5724 /* If everything is a comparison, what we have is highly unlikely
5725 to be simpler, so don't use it. */
5726 && ! (COMPARISON_P (x)
5727 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5728 {
5729 rtx cop1 = const0_rtx;
5730 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5731
5732 if (cond_code == NE && COMPARISON_P (cond))
5733 return x;
5734
5735 /* Simplify the alternative arms; this may collapse the true and
5736 false arms to store-flag values. Be careful to use copy_rtx
5737 here since true_rtx or false_rtx might share RTL with x as a
5738 result of the if_then_else_cond call above. */
5739 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5740 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5741
5742 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5743 is unlikely to be simpler. */
5744 if (general_operand (true_rtx, VOIDmode)
5745 && general_operand (false_rtx, VOIDmode))
5746 {
5747 enum rtx_code reversed;
5748
5749 /* Restarting if we generate a store-flag expression will cause
5750 us to loop. Just drop through in this case. */
5751
5752 /* If the result values are STORE_FLAG_VALUE and zero, we can
5753 just make the comparison operation. */
5754 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5755 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5756 cond, cop1);
5757 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5758 && ((reversed = reversed_comparison_code_parts
5759 (cond_code, cond, cop1, NULL))
5760 != UNKNOWN))
5761 x = simplify_gen_relational (reversed, mode, VOIDmode,
5762 cond, cop1);
5763
5764 /* Likewise, we can make the negate of a comparison operation
5765 if the result values are - STORE_FLAG_VALUE and zero. */
5766 else if (CONST_INT_P (true_rtx)
5767 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5768 && false_rtx == const0_rtx)
5769 x = simplify_gen_unary (NEG, mode,
5770 simplify_gen_relational (cond_code,
5771 mode, VOIDmode,
5772 cond, cop1),
5773 mode);
5774 else if (CONST_INT_P (false_rtx)
5775 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5776 && true_rtx == const0_rtx
5777 && ((reversed = reversed_comparison_code_parts
5778 (cond_code, cond, cop1, NULL))
5779 != UNKNOWN))
5780 x = simplify_gen_unary (NEG, mode,
5781 simplify_gen_relational (reversed,
5782 mode, VOIDmode,
5783 cond, cop1),
5784 mode);
5785 else
5786 return gen_rtx_IF_THEN_ELSE (mode,
5787 simplify_gen_relational (cond_code,
5788 mode,
5789 VOIDmode,
5790 cond,
5791 cop1),
5792 true_rtx, false_rtx);
5793
5794 code = GET_CODE (x);
5795 op0_mode = VOIDmode;
5796 }
5797 }
5798 }
5799
5800 /* First see if we can apply the inverse distributive law. */
5801 if (code == PLUS || code == MINUS
5802 || code == AND || code == IOR || code == XOR)
5803 {
5804 x = apply_distributive_law (x);
5805 code = GET_CODE (x);
5806 op0_mode = VOIDmode;
5807 }
5808
5809 /* If CODE is an associative operation not otherwise handled, see if we
5810 can associate some operands. This can win if they are constants or
5811 if they are logically related (i.e. (a & b) & a). */
5812 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5813 || code == AND || code == IOR || code == XOR
5814 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5815 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5816 || (flag_associative_math && FLOAT_MODE_P (mode))))
5817 {
5818 if (GET_CODE (XEXP (x, 0)) == code)
5819 {
5820 rtx other = XEXP (XEXP (x, 0), 0);
5821 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5822 rtx inner_op1 = XEXP (x, 1);
5823 rtx inner;
5824
5825 /* Make sure we pass the constant operand if any as the second
5826 one if this is a commutative operation. */
5827 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5828 std::swap (inner_op0, inner_op1);
5829 inner = simplify_binary_operation (code == MINUS ? PLUS
5830 : code == DIV ? MULT
5831 : code,
5832 mode, inner_op0, inner_op1);
5833
5834 /* For commutative operations, try the other pair if that one
5835 didn't simplify. */
5836 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5837 {
5838 other = XEXP (XEXP (x, 0), 1);
5839 inner = simplify_binary_operation (code, mode,
5840 XEXP (XEXP (x, 0), 0),
5841 XEXP (x, 1));
5842 }
5843
5844 if (inner)
5845 return simplify_gen_binary (code, mode, other, inner);
5846 }
5847 }
5848
5849 /* A little bit of algebraic simplification here. */
5850 switch (code)
5851 {
5852 case MEM:
5853 /* Ensure that our address has any ASHIFTs converted to MULT in case
5854 address-recognizing predicates are called later. */
5855 temp = make_compound_operation (XEXP (x, 0), MEM);
5856 SUBST (XEXP (x, 0), temp);
5857 break;
5858
5859 case SUBREG:
5860 if (op0_mode == VOIDmode)
5861 op0_mode = GET_MODE (SUBREG_REG (x));
5862
5863 /* See if this can be moved to simplify_subreg. */
5864 if (CONSTANT_P (SUBREG_REG (x))
5865 && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5866 /* Don't call gen_lowpart if the inner mode
5867 is VOIDmode and we cannot simplify it, as SUBREG without
5868 inner mode is invalid. */
5869 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5870 || gen_lowpart_common (mode, SUBREG_REG (x))))
5871 return gen_lowpart (mode, SUBREG_REG (x));
5872
5873 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5874 break;
5875 {
5876 rtx temp;
5877 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5878 SUBREG_BYTE (x));
5879 if (temp)
5880 return temp;
5881
5882 /* If op is known to have all lower bits zero, the result is zero. */
5883 scalar_int_mode int_mode, int_op0_mode;
5884 if (!in_dest
5885 && is_a <scalar_int_mode> (mode, &int_mode)
5886 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
5887 && (GET_MODE_PRECISION (int_mode)
5888 < GET_MODE_PRECISION (int_op0_mode))
5889 && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
5890 SUBREG_BYTE (x))
5891 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
5892 && (nonzero_bits (SUBREG_REG (x), int_op0_mode)
5893 & GET_MODE_MASK (int_mode)) == 0)
5894 return CONST0_RTX (int_mode);
5895 }
5896
5897 /* Don't change the mode of the MEM if that would change the meaning
5898 of the address. */
5899 if (MEM_P (SUBREG_REG (x))
5900 && (MEM_VOLATILE_P (SUBREG_REG (x))
5901 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5902 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5903 return gen_rtx_CLOBBER (mode, const0_rtx);
5904
5905 /* Note that we cannot do any narrowing for non-constants since
5906 we might have been counting on using the fact that some bits were
5907 zero. We now do this in the SET. */
5908
5909 break;
5910
5911 case NEG:
5912 temp = expand_compound_operation (XEXP (x, 0));
5913
5914 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5915 replaced by (lshiftrt X C). This will convert
5916 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5917
5918 if (GET_CODE (temp) == ASHIFTRT
5919 && CONST_INT_P (XEXP (temp, 1))
5920 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
5921 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5922 INTVAL (XEXP (temp, 1)));
5923
5924 /* If X has only a single bit that might be nonzero, say, bit I, convert
5925 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5926 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5927 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5928 or a SUBREG of one since we'd be making the expression more
5929 complex if it was just a register. */
5930
5931 if (!REG_P (temp)
5932 && ! (GET_CODE (temp) == SUBREG
5933 && REG_P (SUBREG_REG (temp)))
5934 && is_a <scalar_int_mode> (mode, &int_mode)
5935 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
5936 {
5937 rtx temp1 = simplify_shift_const
5938 (NULL_RTX, ASHIFTRT, int_mode,
5939 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
5940 GET_MODE_PRECISION (int_mode) - 1 - i),
5941 GET_MODE_PRECISION (int_mode) - 1 - i);
5942
5943 /* If all we did was surround TEMP with the two shifts, we
5944 haven't improved anything, so don't use it. Otherwise,
5945 we are better off with TEMP1. */
5946 if (GET_CODE (temp1) != ASHIFTRT
5947 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5948 || XEXP (XEXP (temp1, 0), 0) != temp)
5949 return temp1;
5950 }
5951 break;
5952
5953 case TRUNCATE:
5954 /* We can't handle truncation to a partial integer mode here
5955 because we don't know the real bitsize of the partial
5956 integer mode. */
5957 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5958 break;
5959
5960 if (HWI_COMPUTABLE_MODE_P (mode))
5961 SUBST (XEXP (x, 0),
5962 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5963 GET_MODE_MASK (mode), 0));
5964
5965 /* We can truncate a constant value and return it. */
5966 if (CONST_INT_P (XEXP (x, 0)))
5967 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5968
5969 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5970 whose value is a comparison can be replaced with a subreg if
5971 STORE_FLAG_VALUE permits. */
5972 if (HWI_COMPUTABLE_MODE_P (mode)
5973 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5974 && (temp = get_last_value (XEXP (x, 0)))
5975 && COMPARISON_P (temp))
5976 return gen_lowpart (mode, XEXP (x, 0));
5977 break;
5978
5979 case CONST:
5980 /* (const (const X)) can become (const X). Do it this way rather than
5981 returning the inner CONST since CONST can be shared with a
5982 REG_EQUAL note. */
5983 if (GET_CODE (XEXP (x, 0)) == CONST)
5984 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5985 break;
5986
5987 case LO_SUM:
5988 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5989 can add in an offset. find_split_point will split this address up
5990 again if it doesn't match. */
5991 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5992 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5993 return XEXP (x, 1);
5994 break;
5995
5996 case PLUS:
5997 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5998 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5999 bit-field and can be replaced by either a sign_extend or a
6000 sign_extract. The `and' may be a zero_extend and the two
6001 <c>, -<c> constants may be reversed. */
6002 if (GET_CODE (XEXP (x, 0)) == XOR
6003 && is_a <scalar_int_mode> (mode, &int_mode)
6004 && CONST_INT_P (XEXP (x, 1))
6005 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6006 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6007 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6008 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6009 && HWI_COMPUTABLE_MODE_P (int_mode)
6010 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6011 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6012 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6013 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6014 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6015 && known_eq ((GET_MODE_PRECISION
6016 (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6017 (unsigned int) i + 1))))
6018 return simplify_shift_const
6019 (NULL_RTX, ASHIFTRT, int_mode,
6020 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6021 XEXP (XEXP (XEXP (x, 0), 0), 0),
6022 GET_MODE_PRECISION (int_mode) - (i + 1)),
6023 GET_MODE_PRECISION (int_mode) - (i + 1));
6024
6025 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6026 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6027 the bitsize of the mode - 1. This allows simplification of
6028 "a = (b & 8) == 0;" */
6029 if (XEXP (x, 1) == constm1_rtx
6030 && !REG_P (XEXP (x, 0))
6031 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6032 && REG_P (SUBREG_REG (XEXP (x, 0))))
6033 && is_a <scalar_int_mode> (mode, &int_mode)
6034 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6035 return simplify_shift_const
6036 (NULL_RTX, ASHIFTRT, int_mode,
6037 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6038 gen_rtx_XOR (int_mode, XEXP (x, 0),
6039 const1_rtx),
6040 GET_MODE_PRECISION (int_mode) - 1),
6041 GET_MODE_PRECISION (int_mode) - 1);
6042
6043 /* If we are adding two things that have no bits in common, convert
6044 the addition into an IOR. This will often be further simplified,
6045 for example in cases like ((a & 1) + (a & 2)), which can
6046 become a & 3. */
6047
6048 if (HWI_COMPUTABLE_MODE_P (mode)
6049 && (nonzero_bits (XEXP (x, 0), mode)
6050 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6051 {
6052 /* Try to simplify the expression further. */
6053 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6054 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6055
6056 /* If we could, great. If not, do not go ahead with the IOR
6057 replacement, since PLUS appears in many special purpose
6058 address arithmetic instructions. */
6059 if (GET_CODE (temp) != CLOBBER
6060 && (GET_CODE (temp) != IOR
6061 || ((XEXP (temp, 0) != XEXP (x, 0)
6062 || XEXP (temp, 1) != XEXP (x, 1))
6063 && (XEXP (temp, 0) != XEXP (x, 1)
6064 || XEXP (temp, 1) != XEXP (x, 0)))))
6065 return temp;
6066 }
6067
6068 /* Canonicalize x + x into x << 1. */
6069 if (GET_MODE_CLASS (mode) == MODE_INT
6070 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6071 && !side_effects_p (XEXP (x, 0)))
6072 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6073
6074 break;
6075
6076 case MINUS:
6077 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6078 (and <foo> (const_int pow2-1)) */
6079 if (is_a <scalar_int_mode> (mode, &int_mode)
6080 && GET_CODE (XEXP (x, 1)) == AND
6081 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6082 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6083 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6084 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6085 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6086 break;
6087
6088 case MULT:
6089 /* If we have (mult (plus A B) C), apply the distributive law and then
6090 the inverse distributive law to see if things simplify. This
6091 occurs mostly in addresses, often when unrolling loops. */
6092
6093 if (GET_CODE (XEXP (x, 0)) == PLUS)
6094 {
6095 rtx result = distribute_and_simplify_rtx (x, 0);
6096 if (result)
6097 return result;
6098 }
6099
6100 /* Try simplify a*(b/c) as (a*b)/c. */
6101 if (FLOAT_MODE_P (mode) && flag_associative_math
6102 && GET_CODE (XEXP (x, 0)) == DIV)
6103 {
6104 rtx tem = simplify_binary_operation (MULT, mode,
6105 XEXP (XEXP (x, 0), 0),
6106 XEXP (x, 1));
6107 if (tem)
6108 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6109 }
6110 break;
6111
6112 case UDIV:
6113 /* If this is a divide by a power of two, treat it as a shift if
6114 its first operand is a shift. */
6115 if (is_a <scalar_int_mode> (mode, &int_mode)
6116 && CONST_INT_P (XEXP (x, 1))
6117 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6118 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6119 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6120 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6121 || GET_CODE (XEXP (x, 0)) == ROTATE
6122 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6123 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6124 XEXP (x, 0), i);
6125 break;
6126
6127 case EQ: case NE:
6128 case GT: case GTU: case GE: case GEU:
6129 case LT: case LTU: case LE: case LEU:
6130 case UNEQ: case LTGT:
6131 case UNGT: case UNGE:
6132 case UNLT: case UNLE:
6133 case UNORDERED: case ORDERED:
6134 /* If the first operand is a condition code, we can't do anything
6135 with it. */
6136 if (GET_CODE (XEXP (x, 0)) == COMPARE
6137 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6138 && ! CC0_P (XEXP (x, 0))))
6139 {
6140 rtx op0 = XEXP (x, 0);
6141 rtx op1 = XEXP (x, 1);
6142 enum rtx_code new_code;
6143
6144 if (GET_CODE (op0) == COMPARE)
6145 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6146
6147 /* Simplify our comparison, if possible. */
6148 new_code = simplify_comparison (code, &op0, &op1);
6149
6150 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6151 if only the low-order bit is possibly nonzero in X (such as when
6152 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6153 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6154 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6155 (plus X 1).
6156
6157 Remove any ZERO_EXTRACT we made when thinking this was a
6158 comparison. It may now be simpler to use, e.g., an AND. If a
6159 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6160 the call to make_compound_operation in the SET case.
6161
6162 Don't apply these optimizations if the caller would
6163 prefer a comparison rather than a value.
6164 E.g., for the condition in an IF_THEN_ELSE most targets need
6165 an explicit comparison. */
6166
6167 if (in_cond)
6168 ;
6169
6170 else if (STORE_FLAG_VALUE == 1
6171 && new_code == NE
6172 && is_int_mode (mode, &int_mode)
6173 && op1 == const0_rtx
6174 && int_mode == GET_MODE (op0)
6175 && nonzero_bits (op0, int_mode) == 1)
6176 return gen_lowpart (int_mode,
6177 expand_compound_operation (op0));
6178
6179 else if (STORE_FLAG_VALUE == 1
6180 && new_code == NE
6181 && is_int_mode (mode, &int_mode)
6182 && op1 == const0_rtx
6183 && int_mode == GET_MODE (op0)
6184 && (num_sign_bit_copies (op0, int_mode)
6185 == GET_MODE_PRECISION (int_mode)))
6186 {
6187 op0 = expand_compound_operation (op0);
6188 return simplify_gen_unary (NEG, int_mode,
6189 gen_lowpart (int_mode, op0),
6190 int_mode);
6191 }
6192
6193 else if (STORE_FLAG_VALUE == 1
6194 && new_code == EQ
6195 && is_int_mode (mode, &int_mode)
6196 && op1 == const0_rtx
6197 && int_mode == GET_MODE (op0)
6198 && nonzero_bits (op0, int_mode) == 1)
6199 {
6200 op0 = expand_compound_operation (op0);
6201 return simplify_gen_binary (XOR, int_mode,
6202 gen_lowpart (int_mode, op0),
6203 const1_rtx);
6204 }
6205
6206 else if (STORE_FLAG_VALUE == 1
6207 && new_code == EQ
6208 && is_int_mode (mode, &int_mode)
6209 && op1 == const0_rtx
6210 && int_mode == GET_MODE (op0)
6211 && (num_sign_bit_copies (op0, int_mode)
6212 == GET_MODE_PRECISION (int_mode)))
6213 {
6214 op0 = expand_compound_operation (op0);
6215 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6216 }
6217
6218 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6219 those above. */
6220 if (in_cond)
6221 ;
6222
6223 else if (STORE_FLAG_VALUE == -1
6224 && new_code == NE
6225 && is_int_mode (mode, &int_mode)
6226 && op1 == const0_rtx
6227 && int_mode == GET_MODE (op0)
6228 && (num_sign_bit_copies (op0, int_mode)
6229 == GET_MODE_PRECISION (int_mode)))
6230 return gen_lowpart (int_mode, expand_compound_operation (op0));
6231
6232 else if (STORE_FLAG_VALUE == -1
6233 && new_code == NE
6234 && is_int_mode (mode, &int_mode)
6235 && op1 == const0_rtx
6236 && int_mode == GET_MODE (op0)
6237 && nonzero_bits (op0, int_mode) == 1)
6238 {
6239 op0 = expand_compound_operation (op0);
6240 return simplify_gen_unary (NEG, int_mode,
6241 gen_lowpart (int_mode, op0),
6242 int_mode);
6243 }
6244
6245 else if (STORE_FLAG_VALUE == -1
6246 && new_code == EQ
6247 && is_int_mode (mode, &int_mode)
6248 && op1 == const0_rtx
6249 && int_mode == GET_MODE (op0)
6250 && (num_sign_bit_copies (op0, int_mode)
6251 == GET_MODE_PRECISION (int_mode)))
6252 {
6253 op0 = expand_compound_operation (op0);
6254 return simplify_gen_unary (NOT, int_mode,
6255 gen_lowpart (int_mode, op0),
6256 int_mode);
6257 }
6258
6259 /* If X is 0/1, (eq X 0) is X-1. */
6260 else if (STORE_FLAG_VALUE == -1
6261 && new_code == EQ
6262 && is_int_mode (mode, &int_mode)
6263 && op1 == const0_rtx
6264 && int_mode == GET_MODE (op0)
6265 && nonzero_bits (op0, int_mode) == 1)
6266 {
6267 op0 = expand_compound_operation (op0);
6268 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6269 }
6270
6271 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6272 one bit that might be nonzero, we can convert (ne x 0) to
6273 (ashift x c) where C puts the bit in the sign bit. Remove any
6274 AND with STORE_FLAG_VALUE when we are done, since we are only
6275 going to test the sign bit. */
6276 if (new_code == NE
6277 && is_int_mode (mode, &int_mode)
6278 && HWI_COMPUTABLE_MODE_P (int_mode)
6279 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6280 && op1 == const0_rtx
6281 && int_mode == GET_MODE (op0)
6282 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6283 {
6284 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6285 expand_compound_operation (op0),
6286 GET_MODE_PRECISION (int_mode) - 1 - i);
6287 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6288 return XEXP (x, 0);
6289 else
6290 return x;
6291 }
6292
6293 /* If the code changed, return a whole new comparison.
6294 We also need to avoid using SUBST in cases where
6295 simplify_comparison has widened a comparison with a CONST_INT,
6296 since in that case the wider CONST_INT may fail the sanity
6297 checks in do_SUBST. */
6298 if (new_code != code
6299 || (CONST_INT_P (op1)
6300 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6301 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6302 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6303
6304 /* Otherwise, keep this operation, but maybe change its operands.
6305 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6306 SUBST (XEXP (x, 0), op0);
6307 SUBST (XEXP (x, 1), op1);
6308 }
6309 break;
6310
6311 case IF_THEN_ELSE:
6312 return simplify_if_then_else (x);
6313
6314 case ZERO_EXTRACT:
6315 case SIGN_EXTRACT:
6316 case ZERO_EXTEND:
6317 case SIGN_EXTEND:
6318 /* If we are processing SET_DEST, we are done. */
6319 if (in_dest)
6320 return x;
6321
6322 return expand_compound_operation (x);
6323
6324 case SET:
6325 return simplify_set (x);
6326
6327 case AND:
6328 case IOR:
6329 return simplify_logical (x);
6330
6331 case ASHIFT:
6332 case LSHIFTRT:
6333 case ASHIFTRT:
6334 case ROTATE:
6335 case ROTATERT:
6336 /* If this is a shift by a constant amount, simplify it. */
6337 if (CONST_INT_P (XEXP (x, 1)))
6338 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6339 INTVAL (XEXP (x, 1)));
6340
6341 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6342 SUBST (XEXP (x, 1),
6343 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6344 (HOST_WIDE_INT_1U
6345 << exact_log2 (GET_MODE_UNIT_BITSIZE
6346 (GET_MODE (x))))
6347 - 1,
6348 0));
6349 break;
6350
6351 default:
6352 break;
6353 }
6354
6355 return x;
6356 }
6357 \f
6358 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6359
6360 static rtx
6361 simplify_if_then_else (rtx x)
6362 {
6363 machine_mode mode = GET_MODE (x);
6364 rtx cond = XEXP (x, 0);
6365 rtx true_rtx = XEXP (x, 1);
6366 rtx false_rtx = XEXP (x, 2);
6367 enum rtx_code true_code = GET_CODE (cond);
6368 int comparison_p = COMPARISON_P (cond);
6369 rtx temp;
6370 int i;
6371 enum rtx_code false_code;
6372 rtx reversed;
6373 scalar_int_mode int_mode, inner_mode;
6374
6375 /* Simplify storing of the truth value. */
6376 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6377 return simplify_gen_relational (true_code, mode, VOIDmode,
6378 XEXP (cond, 0), XEXP (cond, 1));
6379
6380 /* Also when the truth value has to be reversed. */
6381 if (comparison_p
6382 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6383 && (reversed = reversed_comparison (cond, mode)))
6384 return reversed;
6385
6386 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6387 in it is being compared against certain values. Get the true and false
6388 comparisons and see if that says anything about the value of each arm. */
6389
6390 if (comparison_p
6391 && ((false_code = reversed_comparison_code (cond, NULL))
6392 != UNKNOWN)
6393 && REG_P (XEXP (cond, 0)))
6394 {
6395 HOST_WIDE_INT nzb;
6396 rtx from = XEXP (cond, 0);
6397 rtx true_val = XEXP (cond, 1);
6398 rtx false_val = true_val;
6399 int swapped = 0;
6400
6401 /* If FALSE_CODE is EQ, swap the codes and arms. */
6402
6403 if (false_code == EQ)
6404 {
6405 swapped = 1, true_code = EQ, false_code = NE;
6406 std::swap (true_rtx, false_rtx);
6407 }
6408
6409 scalar_int_mode from_mode;
6410 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6411 {
6412 /* If we are comparing against zero and the expression being
6413 tested has only a single bit that might be nonzero, that is
6414 its value when it is not equal to zero. Similarly if it is
6415 known to be -1 or 0. */
6416 if (true_code == EQ
6417 && true_val == const0_rtx
6418 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6419 {
6420 false_code = EQ;
6421 false_val = gen_int_mode (nzb, from_mode);
6422 }
6423 else if (true_code == EQ
6424 && true_val == const0_rtx
6425 && (num_sign_bit_copies (from, from_mode)
6426 == GET_MODE_PRECISION (from_mode)))
6427 {
6428 false_code = EQ;
6429 false_val = constm1_rtx;
6430 }
6431 }
6432
6433 /* Now simplify an arm if we know the value of the register in the
6434 branch and it is used in the arm. Be careful due to the potential
6435 of locally-shared RTL. */
6436
6437 if (reg_mentioned_p (from, true_rtx))
6438 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6439 from, true_val),
6440 pc_rtx, pc_rtx, 0, 0, 0);
6441 if (reg_mentioned_p (from, false_rtx))
6442 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6443 from, false_val),
6444 pc_rtx, pc_rtx, 0, 0, 0);
6445
6446 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6447 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6448
6449 true_rtx = XEXP (x, 1);
6450 false_rtx = XEXP (x, 2);
6451 true_code = GET_CODE (cond);
6452 }
6453
6454 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6455 reversed, do so to avoid needing two sets of patterns for
6456 subtract-and-branch insns. Similarly if we have a constant in the true
6457 arm, the false arm is the same as the first operand of the comparison, or
6458 the false arm is more complicated than the true arm. */
6459
6460 if (comparison_p
6461 && reversed_comparison_code (cond, NULL) != UNKNOWN
6462 && (true_rtx == pc_rtx
6463 || (CONSTANT_P (true_rtx)
6464 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6465 || true_rtx == const0_rtx
6466 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6467 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6468 && !OBJECT_P (false_rtx))
6469 || reg_mentioned_p (true_rtx, false_rtx)
6470 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6471 {
6472 true_code = reversed_comparison_code (cond, NULL);
6473 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6474 SUBST (XEXP (x, 1), false_rtx);
6475 SUBST (XEXP (x, 2), true_rtx);
6476
6477 std::swap (true_rtx, false_rtx);
6478 cond = XEXP (x, 0);
6479
6480 /* It is possible that the conditional has been simplified out. */
6481 true_code = GET_CODE (cond);
6482 comparison_p = COMPARISON_P (cond);
6483 }
6484
6485 /* If the two arms are identical, we don't need the comparison. */
6486
6487 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6488 return true_rtx;
6489
6490 /* Convert a == b ? b : a to "a". */
6491 if (true_code == EQ && ! side_effects_p (cond)
6492 && !HONOR_NANS (mode)
6493 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6494 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6495 return false_rtx;
6496 else if (true_code == NE && ! side_effects_p (cond)
6497 && !HONOR_NANS (mode)
6498 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6499 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6500 return true_rtx;
6501
6502 /* Look for cases where we have (abs x) or (neg (abs X)). */
6503
6504 if (GET_MODE_CLASS (mode) == MODE_INT
6505 && comparison_p
6506 && XEXP (cond, 1) == const0_rtx
6507 && GET_CODE (false_rtx) == NEG
6508 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6509 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6510 && ! side_effects_p (true_rtx))
6511 switch (true_code)
6512 {
6513 case GT:
6514 case GE:
6515 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6516 case LT:
6517 case LE:
6518 return
6519 simplify_gen_unary (NEG, mode,
6520 simplify_gen_unary (ABS, mode, true_rtx, mode),
6521 mode);
6522 default:
6523 break;
6524 }
6525
6526 /* Look for MIN or MAX. */
6527
6528 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6529 && comparison_p
6530 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6531 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6532 && ! side_effects_p (cond))
6533 switch (true_code)
6534 {
6535 case GE:
6536 case GT:
6537 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6538 case LE:
6539 case LT:
6540 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6541 case GEU:
6542 case GTU:
6543 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6544 case LEU:
6545 case LTU:
6546 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6547 default:
6548 break;
6549 }
6550
6551 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6552 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6553 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6554 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6555 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6556 neither 1 or -1, but it isn't worth checking for. */
6557
6558 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6559 && comparison_p
6560 && is_int_mode (mode, &int_mode)
6561 && ! side_effects_p (x))
6562 {
6563 rtx t = make_compound_operation (true_rtx, SET);
6564 rtx f = make_compound_operation (false_rtx, SET);
6565 rtx cond_op0 = XEXP (cond, 0);
6566 rtx cond_op1 = XEXP (cond, 1);
6567 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6568 scalar_int_mode m = int_mode;
6569 rtx z = 0, c1 = NULL_RTX;
6570
6571 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6572 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6573 || GET_CODE (t) == ASHIFT
6574 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6575 && rtx_equal_p (XEXP (t, 0), f))
6576 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6577
6578 /* If an identity-zero op is commutative, check whether there
6579 would be a match if we swapped the operands. */
6580 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6581 || GET_CODE (t) == XOR)
6582 && rtx_equal_p (XEXP (t, 1), f))
6583 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6584 else if (GET_CODE (t) == SIGN_EXTEND
6585 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6586 && (GET_CODE (XEXP (t, 0)) == PLUS
6587 || GET_CODE (XEXP (t, 0)) == MINUS
6588 || GET_CODE (XEXP (t, 0)) == IOR
6589 || GET_CODE (XEXP (t, 0)) == XOR
6590 || GET_CODE (XEXP (t, 0)) == ASHIFT
6591 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6592 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6593 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6594 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6595 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6596 && (num_sign_bit_copies (f, GET_MODE (f))
6597 > (unsigned int)
6598 (GET_MODE_PRECISION (int_mode)
6599 - GET_MODE_PRECISION (inner_mode))))
6600 {
6601 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6602 extend_op = SIGN_EXTEND;
6603 m = inner_mode;
6604 }
6605 else if (GET_CODE (t) == SIGN_EXTEND
6606 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6607 && (GET_CODE (XEXP (t, 0)) == PLUS
6608 || GET_CODE (XEXP (t, 0)) == IOR
6609 || GET_CODE (XEXP (t, 0)) == XOR)
6610 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6611 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6612 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6613 && (num_sign_bit_copies (f, GET_MODE (f))
6614 > (unsigned int)
6615 (GET_MODE_PRECISION (int_mode)
6616 - GET_MODE_PRECISION (inner_mode))))
6617 {
6618 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6619 extend_op = SIGN_EXTEND;
6620 m = inner_mode;
6621 }
6622 else if (GET_CODE (t) == ZERO_EXTEND
6623 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6624 && (GET_CODE (XEXP (t, 0)) == PLUS
6625 || GET_CODE (XEXP (t, 0)) == MINUS
6626 || GET_CODE (XEXP (t, 0)) == IOR
6627 || GET_CODE (XEXP (t, 0)) == XOR
6628 || GET_CODE (XEXP (t, 0)) == ASHIFT
6629 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6630 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6631 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6632 && HWI_COMPUTABLE_MODE_P (int_mode)
6633 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6634 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6635 && ((nonzero_bits (f, GET_MODE (f))
6636 & ~GET_MODE_MASK (inner_mode))
6637 == 0))
6638 {
6639 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6640 extend_op = ZERO_EXTEND;
6641 m = inner_mode;
6642 }
6643 else if (GET_CODE (t) == ZERO_EXTEND
6644 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6645 && (GET_CODE (XEXP (t, 0)) == PLUS
6646 || GET_CODE (XEXP (t, 0)) == IOR
6647 || GET_CODE (XEXP (t, 0)) == XOR)
6648 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6649 && HWI_COMPUTABLE_MODE_P (int_mode)
6650 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6651 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6652 && ((nonzero_bits (f, GET_MODE (f))
6653 & ~GET_MODE_MASK (inner_mode))
6654 == 0))
6655 {
6656 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6657 extend_op = ZERO_EXTEND;
6658 m = inner_mode;
6659 }
6660
6661 if (z)
6662 {
6663 machine_mode cm = m;
6664 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6665 && GET_MODE (c1) != VOIDmode)
6666 cm = GET_MODE (c1);
6667 temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6668 cond_op0, cond_op1),
6669 pc_rtx, pc_rtx, 0, 0, 0);
6670 temp = simplify_gen_binary (MULT, cm, temp,
6671 simplify_gen_binary (MULT, cm, c1,
6672 const_true_rtx));
6673 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6674 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6675
6676 if (extend_op != UNKNOWN)
6677 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6678
6679 return temp;
6680 }
6681 }
6682
6683 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6684 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6685 negation of a single bit, we can convert this operation to a shift. We
6686 can actually do this more generally, but it doesn't seem worth it. */
6687
6688 if (true_code == NE
6689 && is_a <scalar_int_mode> (mode, &int_mode)
6690 && XEXP (cond, 1) == const0_rtx
6691 && false_rtx == const0_rtx
6692 && CONST_INT_P (true_rtx)
6693 && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6694 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6695 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6696 == GET_MODE_PRECISION (int_mode))
6697 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6698 return
6699 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6700 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6701
6702 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6703 non-zero bit in A is C1. */
6704 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6705 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6706 && is_a <scalar_int_mode> (mode, &int_mode)
6707 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6708 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6709 == nonzero_bits (XEXP (cond, 0), inner_mode)
6710 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6711 {
6712 rtx val = XEXP (cond, 0);
6713 if (inner_mode == int_mode)
6714 return val;
6715 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6716 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6717 }
6718
6719 return x;
6720 }
6721 \f
6722 /* Simplify X, a SET expression. Return the new expression. */
6723
6724 static rtx
6725 simplify_set (rtx x)
6726 {
6727 rtx src = SET_SRC (x);
6728 rtx dest = SET_DEST (x);
6729 machine_mode mode
6730 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6731 rtx_insn *other_insn;
6732 rtx *cc_use;
6733 scalar_int_mode int_mode;
6734
6735 /* (set (pc) (return)) gets written as (return). */
6736 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6737 return src;
6738
6739 /* Now that we know for sure which bits of SRC we are using, see if we can
6740 simplify the expression for the object knowing that we only need the
6741 low-order bits. */
6742
6743 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6744 {
6745 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6746 SUBST (SET_SRC (x), src);
6747 }
6748
6749 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6750 the comparison result and try to simplify it unless we already have used
6751 undobuf.other_insn. */
6752 if ((GET_MODE_CLASS (mode) == MODE_CC
6753 || GET_CODE (src) == COMPARE
6754 || CC0_P (dest))
6755 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6756 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6757 && COMPARISON_P (*cc_use)
6758 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6759 {
6760 enum rtx_code old_code = GET_CODE (*cc_use);
6761 enum rtx_code new_code;
6762 rtx op0, op1, tmp;
6763 int other_changed = 0;
6764 rtx inner_compare = NULL_RTX;
6765 machine_mode compare_mode = GET_MODE (dest);
6766
6767 if (GET_CODE (src) == COMPARE)
6768 {
6769 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6770 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6771 {
6772 inner_compare = op0;
6773 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6774 }
6775 }
6776 else
6777 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6778
6779 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6780 op0, op1);
6781 if (!tmp)
6782 new_code = old_code;
6783 else if (!CONSTANT_P (tmp))
6784 {
6785 new_code = GET_CODE (tmp);
6786 op0 = XEXP (tmp, 0);
6787 op1 = XEXP (tmp, 1);
6788 }
6789 else
6790 {
6791 rtx pat = PATTERN (other_insn);
6792 undobuf.other_insn = other_insn;
6793 SUBST (*cc_use, tmp);
6794
6795 /* Attempt to simplify CC user. */
6796 if (GET_CODE (pat) == SET)
6797 {
6798 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6799 if (new_rtx != NULL_RTX)
6800 SUBST (SET_SRC (pat), new_rtx);
6801 }
6802
6803 /* Convert X into a no-op move. */
6804 SUBST (SET_DEST (x), pc_rtx);
6805 SUBST (SET_SRC (x), pc_rtx);
6806 return x;
6807 }
6808
6809 /* Simplify our comparison, if possible. */
6810 new_code = simplify_comparison (new_code, &op0, &op1);
6811
6812 #ifdef SELECT_CC_MODE
6813 /* If this machine has CC modes other than CCmode, check to see if we
6814 need to use a different CC mode here. */
6815 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6816 compare_mode = GET_MODE (op0);
6817 else if (inner_compare
6818 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6819 && new_code == old_code
6820 && op0 == XEXP (inner_compare, 0)
6821 && op1 == XEXP (inner_compare, 1))
6822 compare_mode = GET_MODE (inner_compare);
6823 else
6824 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6825
6826 /* If the mode changed, we have to change SET_DEST, the mode in the
6827 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6828 a hard register, just build new versions with the proper mode. If it
6829 is a pseudo, we lose unless it is only time we set the pseudo, in
6830 which case we can safely change its mode. */
6831 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6832 {
6833 if (can_change_dest_mode (dest, 0, compare_mode))
6834 {
6835 unsigned int regno = REGNO (dest);
6836 rtx new_dest;
6837
6838 if (regno < FIRST_PSEUDO_REGISTER)
6839 new_dest = gen_rtx_REG (compare_mode, regno);
6840 else
6841 {
6842 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6843 new_dest = regno_reg_rtx[regno];
6844 }
6845
6846 SUBST (SET_DEST (x), new_dest);
6847 SUBST (XEXP (*cc_use, 0), new_dest);
6848 other_changed = 1;
6849
6850 dest = new_dest;
6851 }
6852 }
6853 #endif /* SELECT_CC_MODE */
6854
6855 /* If the code changed, we have to build a new comparison in
6856 undobuf.other_insn. */
6857 if (new_code != old_code)
6858 {
6859 int other_changed_previously = other_changed;
6860 unsigned HOST_WIDE_INT mask;
6861 rtx old_cc_use = *cc_use;
6862
6863 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6864 dest, const0_rtx));
6865 other_changed = 1;
6866
6867 /* If the only change we made was to change an EQ into an NE or
6868 vice versa, OP0 has only one bit that might be nonzero, and OP1
6869 is zero, check if changing the user of the condition code will
6870 produce a valid insn. If it won't, we can keep the original code
6871 in that insn by surrounding our operation with an XOR. */
6872
6873 if (((old_code == NE && new_code == EQ)
6874 || (old_code == EQ && new_code == NE))
6875 && ! other_changed_previously && op1 == const0_rtx
6876 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6877 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6878 {
6879 rtx pat = PATTERN (other_insn), note = 0;
6880
6881 if ((recog_for_combine (&pat, other_insn, &note) < 0
6882 && ! check_asm_operands (pat)))
6883 {
6884 *cc_use = old_cc_use;
6885 other_changed = 0;
6886
6887 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6888 gen_int_mode (mask,
6889 GET_MODE (op0)));
6890 }
6891 }
6892 }
6893
6894 if (other_changed)
6895 undobuf.other_insn = other_insn;
6896
6897 /* Don't generate a compare of a CC with 0, just use that CC. */
6898 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6899 {
6900 SUBST (SET_SRC (x), op0);
6901 src = SET_SRC (x);
6902 }
6903 /* Otherwise, if we didn't previously have the same COMPARE we
6904 want, create it from scratch. */
6905 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6906 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6907 {
6908 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6909 src = SET_SRC (x);
6910 }
6911 }
6912 else
6913 {
6914 /* Get SET_SRC in a form where we have placed back any
6915 compound expressions. Then do the checks below. */
6916 src = make_compound_operation (src, SET);
6917 SUBST (SET_SRC (x), src);
6918 }
6919
6920 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6921 and X being a REG or (subreg (reg)), we may be able to convert this to
6922 (set (subreg:m2 x) (op)).
6923
6924 We can always do this if M1 is narrower than M2 because that means that
6925 we only care about the low bits of the result.
6926
6927 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6928 perform a narrower operation than requested since the high-order bits will
6929 be undefined. On machine where it is defined, this transformation is safe
6930 as long as M1 and M2 have the same number of words. */
6931
6932 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6933 && !OBJECT_P (SUBREG_REG (src))
6934 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6935 / UNITS_PER_WORD)
6936 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6937 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6938 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
6939 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6940 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
6941 GET_MODE (SUBREG_REG (src)),
6942 GET_MODE (src)))
6943 && (REG_P (dest)
6944 || (GET_CODE (dest) == SUBREG
6945 && REG_P (SUBREG_REG (dest)))))
6946 {
6947 SUBST (SET_DEST (x),
6948 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6949 dest));
6950 SUBST (SET_SRC (x), SUBREG_REG (src));
6951
6952 src = SET_SRC (x), dest = SET_DEST (x);
6953 }
6954
6955 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6956 in SRC. */
6957 if (dest == cc0_rtx
6958 && partial_subreg_p (src)
6959 && subreg_lowpart_p (src))
6960 {
6961 rtx inner = SUBREG_REG (src);
6962 machine_mode inner_mode = GET_MODE (inner);
6963
6964 /* Here we make sure that we don't have a sign bit on. */
6965 if (val_signbit_known_clear_p (GET_MODE (src),
6966 nonzero_bits (inner, inner_mode)))
6967 {
6968 SUBST (SET_SRC (x), inner);
6969 src = SET_SRC (x);
6970 }
6971 }
6972
6973 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6974 would require a paradoxical subreg. Replace the subreg with a
6975 zero_extend to avoid the reload that would otherwise be required.
6976 Don't do this unless we have a scalar integer mode, otherwise the
6977 transformation is incorrect. */
6978
6979 enum rtx_code extend_op;
6980 if (paradoxical_subreg_p (src)
6981 && MEM_P (SUBREG_REG (src))
6982 && SCALAR_INT_MODE_P (GET_MODE (src))
6983 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
6984 {
6985 SUBST (SET_SRC (x),
6986 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
6987
6988 src = SET_SRC (x);
6989 }
6990
6991 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6992 are comparing an item known to be 0 or -1 against 0, use a logical
6993 operation instead. Check for one of the arms being an IOR of the other
6994 arm with some value. We compute three terms to be IOR'ed together. In
6995 practice, at most two will be nonzero. Then we do the IOR's. */
6996
6997 if (GET_CODE (dest) != PC
6998 && GET_CODE (src) == IF_THEN_ELSE
6999 && is_int_mode (GET_MODE (src), &int_mode)
7000 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7001 && XEXP (XEXP (src, 0), 1) == const0_rtx
7002 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
7003 && (!HAVE_conditional_move
7004 || ! can_conditionally_move_p (int_mode))
7005 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7006 == GET_MODE_PRECISION (int_mode))
7007 && ! side_effects_p (src))
7008 {
7009 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7010 ? XEXP (src, 1) : XEXP (src, 2));
7011 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7012 ? XEXP (src, 2) : XEXP (src, 1));
7013 rtx term1 = const0_rtx, term2, term3;
7014
7015 if (GET_CODE (true_rtx) == IOR
7016 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7017 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7018 else if (GET_CODE (true_rtx) == IOR
7019 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7020 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7021 else if (GET_CODE (false_rtx) == IOR
7022 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7023 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7024 else if (GET_CODE (false_rtx) == IOR
7025 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7026 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7027
7028 term2 = simplify_gen_binary (AND, int_mode,
7029 XEXP (XEXP (src, 0), 0), true_rtx);
7030 term3 = simplify_gen_binary (AND, int_mode,
7031 simplify_gen_unary (NOT, int_mode,
7032 XEXP (XEXP (src, 0), 0),
7033 int_mode),
7034 false_rtx);
7035
7036 SUBST (SET_SRC (x),
7037 simplify_gen_binary (IOR, int_mode,
7038 simplify_gen_binary (IOR, int_mode,
7039 term1, term2),
7040 term3));
7041
7042 src = SET_SRC (x);
7043 }
7044
7045 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7046 whole thing fail. */
7047 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7048 return src;
7049 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7050 return dest;
7051 else
7052 /* Convert this into a field assignment operation, if possible. */
7053 return make_field_assignment (x);
7054 }
7055 \f
7056 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7057 result. */
7058
7059 static rtx
7060 simplify_logical (rtx x)
7061 {
7062 rtx op0 = XEXP (x, 0);
7063 rtx op1 = XEXP (x, 1);
7064 scalar_int_mode mode;
7065
7066 switch (GET_CODE (x))
7067 {
7068 case AND:
7069 /* We can call simplify_and_const_int only if we don't lose
7070 any (sign) bits when converting INTVAL (op1) to
7071 "unsigned HOST_WIDE_INT". */
7072 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7073 && CONST_INT_P (op1)
7074 && (HWI_COMPUTABLE_MODE_P (mode)
7075 || INTVAL (op1) > 0))
7076 {
7077 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7078 if (GET_CODE (x) != AND)
7079 return x;
7080
7081 op0 = XEXP (x, 0);
7082 op1 = XEXP (x, 1);
7083 }
7084
7085 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7086 apply the distributive law and then the inverse distributive
7087 law to see if things simplify. */
7088 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7089 {
7090 rtx result = distribute_and_simplify_rtx (x, 0);
7091 if (result)
7092 return result;
7093 }
7094 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7095 {
7096 rtx result = distribute_and_simplify_rtx (x, 1);
7097 if (result)
7098 return result;
7099 }
7100 break;
7101
7102 case IOR:
7103 /* If we have (ior (and A B) C), apply the distributive law and then
7104 the inverse distributive law to see if things simplify. */
7105
7106 if (GET_CODE (op0) == AND)
7107 {
7108 rtx result = distribute_and_simplify_rtx (x, 0);
7109 if (result)
7110 return result;
7111 }
7112
7113 if (GET_CODE (op1) == AND)
7114 {
7115 rtx result = distribute_and_simplify_rtx (x, 1);
7116 if (result)
7117 return result;
7118 }
7119 break;
7120
7121 default:
7122 gcc_unreachable ();
7123 }
7124
7125 return x;
7126 }
7127 \f
7128 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7129 operations" because they can be replaced with two more basic operations.
7130 ZERO_EXTEND is also considered "compound" because it can be replaced with
7131 an AND operation, which is simpler, though only one operation.
7132
7133 The function expand_compound_operation is called with an rtx expression
7134 and will convert it to the appropriate shifts and AND operations,
7135 simplifying at each stage.
7136
7137 The function make_compound_operation is called to convert an expression
7138 consisting of shifts and ANDs into the equivalent compound expression.
7139 It is the inverse of this function, loosely speaking. */
7140
7141 static rtx
7142 expand_compound_operation (rtx x)
7143 {
7144 unsigned HOST_WIDE_INT pos = 0, len;
7145 int unsignedp = 0;
7146 unsigned int modewidth;
7147 rtx tem;
7148 scalar_int_mode inner_mode;
7149
7150 switch (GET_CODE (x))
7151 {
7152 case ZERO_EXTEND:
7153 unsignedp = 1;
7154 /* FALLTHRU */
7155 case SIGN_EXTEND:
7156 /* We can't necessarily use a const_int for a multiword mode;
7157 it depends on implicitly extending the value.
7158 Since we don't know the right way to extend it,
7159 we can't tell whether the implicit way is right.
7160
7161 Even for a mode that is no wider than a const_int,
7162 we can't win, because we need to sign extend one of its bits through
7163 the rest of it, and we don't know which bit. */
7164 if (CONST_INT_P (XEXP (x, 0)))
7165 return x;
7166
7167 /* Reject modes that aren't scalar integers because turning vector
7168 or complex modes into shifts causes problems. */
7169 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7170 return x;
7171
7172 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7173 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7174 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7175 reloaded. If not for that, MEM's would very rarely be safe.
7176
7177 Reject modes bigger than a word, because we might not be able
7178 to reference a two-register group starting with an arbitrary register
7179 (and currently gen_lowpart might crash for a SUBREG). */
7180
7181 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7182 return x;
7183
7184 len = GET_MODE_PRECISION (inner_mode);
7185 /* If the inner object has VOIDmode (the only way this can happen
7186 is if it is an ASM_OPERANDS), we can't do anything since we don't
7187 know how much masking to do. */
7188 if (len == 0)
7189 return x;
7190
7191 break;
7192
7193 case ZERO_EXTRACT:
7194 unsignedp = 1;
7195
7196 /* fall through */
7197
7198 case SIGN_EXTRACT:
7199 /* If the operand is a CLOBBER, just return it. */
7200 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7201 return XEXP (x, 0);
7202
7203 if (!CONST_INT_P (XEXP (x, 1))
7204 || !CONST_INT_P (XEXP (x, 2)))
7205 return x;
7206
7207 /* Reject modes that aren't scalar integers because turning vector
7208 or complex modes into shifts causes problems. */
7209 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7210 return x;
7211
7212 len = INTVAL (XEXP (x, 1));
7213 pos = INTVAL (XEXP (x, 2));
7214
7215 /* This should stay within the object being extracted, fail otherwise. */
7216 if (len + pos > GET_MODE_PRECISION (inner_mode))
7217 return x;
7218
7219 if (BITS_BIG_ENDIAN)
7220 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7221
7222 break;
7223
7224 default:
7225 return x;
7226 }
7227
7228 /* We've rejected non-scalar operations by now. */
7229 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7230
7231 /* Convert sign extension to zero extension, if we know that the high
7232 bit is not set, as this is easier to optimize. It will be converted
7233 back to cheaper alternative in make_extraction. */
7234 if (GET_CODE (x) == SIGN_EXTEND
7235 && HWI_COMPUTABLE_MODE_P (mode)
7236 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7237 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7238 == 0))
7239 {
7240 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7241 rtx temp2 = expand_compound_operation (temp);
7242
7243 /* Make sure this is a profitable operation. */
7244 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7245 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7246 return temp2;
7247 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7248 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7249 return temp;
7250 else
7251 return x;
7252 }
7253
7254 /* We can optimize some special cases of ZERO_EXTEND. */
7255 if (GET_CODE (x) == ZERO_EXTEND)
7256 {
7257 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7258 know that the last value didn't have any inappropriate bits
7259 set. */
7260 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7261 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7262 && HWI_COMPUTABLE_MODE_P (mode)
7263 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7264 & ~GET_MODE_MASK (inner_mode)) == 0)
7265 return XEXP (XEXP (x, 0), 0);
7266
7267 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7268 if (GET_CODE (XEXP (x, 0)) == SUBREG
7269 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7270 && subreg_lowpart_p (XEXP (x, 0))
7271 && HWI_COMPUTABLE_MODE_P (mode)
7272 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7273 & ~GET_MODE_MASK (inner_mode)) == 0)
7274 return SUBREG_REG (XEXP (x, 0));
7275
7276 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7277 is a comparison and STORE_FLAG_VALUE permits. This is like
7278 the first case, but it works even when MODE is larger
7279 than HOST_WIDE_INT. */
7280 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7281 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7282 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7283 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7284 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7285 return XEXP (XEXP (x, 0), 0);
7286
7287 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7288 if (GET_CODE (XEXP (x, 0)) == SUBREG
7289 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7290 && subreg_lowpart_p (XEXP (x, 0))
7291 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7292 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7293 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7294 return SUBREG_REG (XEXP (x, 0));
7295
7296 }
7297
7298 /* If we reach here, we want to return a pair of shifts. The inner
7299 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7300 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7301 logical depending on the value of UNSIGNEDP.
7302
7303 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7304 converted into an AND of a shift.
7305
7306 We must check for the case where the left shift would have a negative
7307 count. This can happen in a case like (x >> 31) & 255 on machines
7308 that can't shift by a constant. On those machines, we would first
7309 combine the shift with the AND to produce a variable-position
7310 extraction. Then the constant of 31 would be substituted in
7311 to produce such a position. */
7312
7313 modewidth = GET_MODE_PRECISION (mode);
7314 if (modewidth >= pos + len)
7315 {
7316 tem = gen_lowpart (mode, XEXP (x, 0));
7317 if (!tem || GET_CODE (tem) == CLOBBER)
7318 return x;
7319 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7320 tem, modewidth - pos - len);
7321 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7322 mode, tem, modewidth - len);
7323 }
7324 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7325 tem = simplify_and_const_int (NULL_RTX, mode,
7326 simplify_shift_const (NULL_RTX, LSHIFTRT,
7327 mode, XEXP (x, 0),
7328 pos),
7329 (HOST_WIDE_INT_1U << len) - 1);
7330 else
7331 /* Any other cases we can't handle. */
7332 return x;
7333
7334 /* If we couldn't do this for some reason, return the original
7335 expression. */
7336 if (GET_CODE (tem) == CLOBBER)
7337 return x;
7338
7339 return tem;
7340 }
7341 \f
7342 /* X is a SET which contains an assignment of one object into
7343 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7344 or certain SUBREGS). If possible, convert it into a series of
7345 logical operations.
7346
7347 We half-heartedly support variable positions, but do not at all
7348 support variable lengths. */
7349
7350 static const_rtx
7351 expand_field_assignment (const_rtx x)
7352 {
7353 rtx inner;
7354 rtx pos; /* Always counts from low bit. */
7355 int len, inner_len;
7356 rtx mask, cleared, masked;
7357 scalar_int_mode compute_mode;
7358
7359 /* Loop until we find something we can't simplify. */
7360 while (1)
7361 {
7362 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7363 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7364 {
7365 rtx x0 = XEXP (SET_DEST (x), 0);
7366 if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len))
7367 break;
7368 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7369 pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7370 MAX_MODE_INT);
7371 }
7372 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7373 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7374 {
7375 inner = XEXP (SET_DEST (x), 0);
7376 if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len))
7377 break;
7378
7379 len = INTVAL (XEXP (SET_DEST (x), 1));
7380 pos = XEXP (SET_DEST (x), 2);
7381
7382 /* A constant position should stay within the width of INNER. */
7383 if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7384 break;
7385
7386 if (BITS_BIG_ENDIAN)
7387 {
7388 if (CONST_INT_P (pos))
7389 pos = GEN_INT (inner_len - len - INTVAL (pos));
7390 else if (GET_CODE (pos) == MINUS
7391 && CONST_INT_P (XEXP (pos, 1))
7392 && INTVAL (XEXP (pos, 1)) == inner_len - len)
7393 /* If position is ADJUST - X, new position is X. */
7394 pos = XEXP (pos, 0);
7395 else
7396 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7397 gen_int_mode (inner_len - len,
7398 GET_MODE (pos)),
7399 pos);
7400 }
7401 }
7402
7403 /* If the destination is a subreg that overwrites the whole of the inner
7404 register, we can move the subreg to the source. */
7405 else if (GET_CODE (SET_DEST (x)) == SUBREG
7406 /* We need SUBREGs to compute nonzero_bits properly. */
7407 && nonzero_sign_valid
7408 && !read_modify_subreg_p (SET_DEST (x)))
7409 {
7410 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7411 gen_lowpart
7412 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7413 SET_SRC (x)));
7414 continue;
7415 }
7416 else
7417 break;
7418
7419 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7420 inner = SUBREG_REG (inner);
7421
7422 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7423 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7424 {
7425 /* Don't do anything for vector or complex integral types. */
7426 if (! FLOAT_MODE_P (GET_MODE (inner)))
7427 break;
7428
7429 /* Try to find an integral mode to pun with. */
7430 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7431 .exists (&compute_mode))
7432 break;
7433
7434 inner = gen_lowpart (compute_mode, inner);
7435 }
7436
7437 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7438 if (len >= HOST_BITS_PER_WIDE_INT)
7439 break;
7440
7441 /* Don't try to compute in too wide unsupported modes. */
7442 if (!targetm.scalar_mode_supported_p (compute_mode))
7443 break;
7444
7445 /* Now compute the equivalent expression. Make a copy of INNER
7446 for the SET_DEST in case it is a MEM into which we will substitute;
7447 we don't want shared RTL in that case. */
7448 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7449 compute_mode);
7450 cleared = simplify_gen_binary (AND, compute_mode,
7451 simplify_gen_unary (NOT, compute_mode,
7452 simplify_gen_binary (ASHIFT,
7453 compute_mode,
7454 mask, pos),
7455 compute_mode),
7456 inner);
7457 masked = simplify_gen_binary (ASHIFT, compute_mode,
7458 simplify_gen_binary (
7459 AND, compute_mode,
7460 gen_lowpart (compute_mode, SET_SRC (x)),
7461 mask),
7462 pos);
7463
7464 x = gen_rtx_SET (copy_rtx (inner),
7465 simplify_gen_binary (IOR, compute_mode,
7466 cleared, masked));
7467 }
7468
7469 return x;
7470 }
7471 \f
7472 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7473 it is an RTX that represents the (variable) starting position; otherwise,
7474 POS is the (constant) starting bit position. Both are counted from the LSB.
7475
7476 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7477
7478 IN_DEST is nonzero if this is a reference in the destination of a SET.
7479 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7480 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7481 be used.
7482
7483 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7484 ZERO_EXTRACT should be built even for bits starting at bit 0.
7485
7486 MODE is the desired mode of the result (if IN_DEST == 0).
7487
7488 The result is an RTX for the extraction or NULL_RTX if the target
7489 can't handle it. */
7490
7491 static rtx
7492 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7493 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7494 int in_dest, int in_compare)
7495 {
7496 /* This mode describes the size of the storage area
7497 to fetch the overall value from. Within that, we
7498 ignore the POS lowest bits, etc. */
7499 machine_mode is_mode = GET_MODE (inner);
7500 machine_mode inner_mode;
7501 scalar_int_mode wanted_inner_mode;
7502 scalar_int_mode wanted_inner_reg_mode = word_mode;
7503 scalar_int_mode pos_mode = word_mode;
7504 machine_mode extraction_mode = word_mode;
7505 rtx new_rtx = 0;
7506 rtx orig_pos_rtx = pos_rtx;
7507 HOST_WIDE_INT orig_pos;
7508
7509 if (pos_rtx && CONST_INT_P (pos_rtx))
7510 pos = INTVAL (pos_rtx), pos_rtx = 0;
7511
7512 if (GET_CODE (inner) == SUBREG
7513 && subreg_lowpart_p (inner)
7514 && (paradoxical_subreg_p (inner)
7515 /* If trying or potentionally trying to extract
7516 bits outside of is_mode, don't look through
7517 non-paradoxical SUBREGs. See PR82192. */
7518 || (pos_rtx == NULL_RTX
7519 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7520 {
7521 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7522 consider just the QI as the memory to extract from.
7523 The subreg adds or removes high bits; its mode is
7524 irrelevant to the meaning of this extraction,
7525 since POS and LEN count from the lsb. */
7526 if (MEM_P (SUBREG_REG (inner)))
7527 is_mode = GET_MODE (SUBREG_REG (inner));
7528 inner = SUBREG_REG (inner);
7529 }
7530 else if (GET_CODE (inner) == ASHIFT
7531 && CONST_INT_P (XEXP (inner, 1))
7532 && pos_rtx == 0 && pos == 0
7533 && len > UINTVAL (XEXP (inner, 1)))
7534 {
7535 /* We're extracting the least significant bits of an rtx
7536 (ashift X (const_int C)), where LEN > C. Extract the
7537 least significant (LEN - C) bits of X, giving an rtx
7538 whose mode is MODE, then shift it left C times. */
7539 new_rtx = make_extraction (mode, XEXP (inner, 0),
7540 0, 0, len - INTVAL (XEXP (inner, 1)),
7541 unsignedp, in_dest, in_compare);
7542 if (new_rtx != 0)
7543 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7544 }
7545 else if (GET_CODE (inner) == TRUNCATE
7546 /* If trying or potentionally trying to extract
7547 bits outside of is_mode, don't look through
7548 TRUNCATE. See PR82192. */
7549 && pos_rtx == NULL_RTX
7550 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7551 inner = XEXP (inner, 0);
7552
7553 inner_mode = GET_MODE (inner);
7554
7555 /* See if this can be done without an extraction. We never can if the
7556 width of the field is not the same as that of some integer mode. For
7557 registers, we can only avoid the extraction if the position is at the
7558 low-order bit and this is either not in the destination or we have the
7559 appropriate STRICT_LOW_PART operation available.
7560
7561 For MEM, we can avoid an extract if the field starts on an appropriate
7562 boundary and we can change the mode of the memory reference. */
7563
7564 scalar_int_mode tmode;
7565 if (int_mode_for_size (len, 1).exists (&tmode)
7566 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7567 && !MEM_P (inner)
7568 && (pos == 0 || REG_P (inner))
7569 && (inner_mode == tmode
7570 || !REG_P (inner)
7571 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7572 || reg_truncated_to_mode (tmode, inner))
7573 && (! in_dest
7574 || (REG_P (inner)
7575 && have_insn_for (STRICT_LOW_PART, tmode))))
7576 || (MEM_P (inner) && pos_rtx == 0
7577 && (pos
7578 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7579 : BITS_PER_UNIT)) == 0
7580 /* We can't do this if we are widening INNER_MODE (it
7581 may not be aligned, for one thing). */
7582 && !paradoxical_subreg_p (tmode, inner_mode)
7583 && (inner_mode == tmode
7584 || (! mode_dependent_address_p (XEXP (inner, 0),
7585 MEM_ADDR_SPACE (inner))
7586 && ! MEM_VOLATILE_P (inner))))))
7587 {
7588 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7589 field. If the original and current mode are the same, we need not
7590 adjust the offset. Otherwise, we do if bytes big endian.
7591
7592 If INNER is not a MEM, get a piece consisting of just the field
7593 of interest (in this case POS % BITS_PER_WORD must be 0). */
7594
7595 if (MEM_P (inner))
7596 {
7597 poly_int64 offset;
7598
7599 /* POS counts from lsb, but make OFFSET count in memory order. */
7600 if (BYTES_BIG_ENDIAN)
7601 offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7602 - len - pos);
7603 else
7604 offset = pos / BITS_PER_UNIT;
7605
7606 new_rtx = adjust_address_nv (inner, tmode, offset);
7607 }
7608 else if (REG_P (inner))
7609 {
7610 if (tmode != inner_mode)
7611 {
7612 /* We can't call gen_lowpart in a DEST since we
7613 always want a SUBREG (see below) and it would sometimes
7614 return a new hard register. */
7615 if (pos || in_dest)
7616 {
7617 poly_uint64 offset
7618 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7619
7620 /* Avoid creating invalid subregs, for example when
7621 simplifying (x>>32)&255. */
7622 if (!validate_subreg (tmode, inner_mode, inner, offset))
7623 return NULL_RTX;
7624
7625 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7626 }
7627 else
7628 new_rtx = gen_lowpart (tmode, inner);
7629 }
7630 else
7631 new_rtx = inner;
7632 }
7633 else
7634 new_rtx = force_to_mode (inner, tmode,
7635 len >= HOST_BITS_PER_WIDE_INT
7636 ? HOST_WIDE_INT_M1U
7637 : (HOST_WIDE_INT_1U << len) - 1, 0);
7638
7639 /* If this extraction is going into the destination of a SET,
7640 make a STRICT_LOW_PART unless we made a MEM. */
7641
7642 if (in_dest)
7643 return (MEM_P (new_rtx) ? new_rtx
7644 : (GET_CODE (new_rtx) != SUBREG
7645 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7646 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7647
7648 if (mode == tmode)
7649 return new_rtx;
7650
7651 if (CONST_SCALAR_INT_P (new_rtx))
7652 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7653 mode, new_rtx, tmode);
7654
7655 /* If we know that no extraneous bits are set, and that the high
7656 bit is not set, convert the extraction to the cheaper of
7657 sign and zero extension, that are equivalent in these cases. */
7658 if (flag_expensive_optimizations
7659 && (HWI_COMPUTABLE_MODE_P (tmode)
7660 && ((nonzero_bits (new_rtx, tmode)
7661 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7662 == 0)))
7663 {
7664 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7665 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7666
7667 /* Prefer ZERO_EXTENSION, since it gives more information to
7668 backends. */
7669 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7670 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7671 return temp;
7672 return temp1;
7673 }
7674
7675 /* Otherwise, sign- or zero-extend unless we already are in the
7676 proper mode. */
7677
7678 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7679 mode, new_rtx));
7680 }
7681
7682 /* Unless this is a COMPARE or we have a funny memory reference,
7683 don't do anything with zero-extending field extracts starting at
7684 the low-order bit since they are simple AND operations. */
7685 if (pos_rtx == 0 && pos == 0 && ! in_dest
7686 && ! in_compare && unsignedp)
7687 return 0;
7688
7689 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7690 if the position is not a constant and the length is not 1. In all
7691 other cases, we would only be going outside our object in cases when
7692 an original shift would have been undefined. */
7693 if (MEM_P (inner)
7694 && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7695 || (pos_rtx != 0 && len != 1)))
7696 return 0;
7697
7698 enum extraction_pattern pattern = (in_dest ? EP_insv
7699 : unsignedp ? EP_extzv : EP_extv);
7700
7701 /* If INNER is not from memory, we want it to have the mode of a register
7702 extraction pattern's structure operand, or word_mode if there is no
7703 such pattern. The same applies to extraction_mode and pos_mode
7704 and their respective operands.
7705
7706 For memory, assume that the desired extraction_mode and pos_mode
7707 are the same as for a register operation, since at present we don't
7708 have named patterns for aligned memory structures. */
7709 struct extraction_insn insn;
7710 if (get_best_reg_extraction_insn (&insn, pattern,
7711 GET_MODE_BITSIZE (inner_mode), mode))
7712 {
7713 wanted_inner_reg_mode = insn.struct_mode.require ();
7714 pos_mode = insn.pos_mode;
7715 extraction_mode = insn.field_mode;
7716 }
7717
7718 /* Never narrow an object, since that might not be safe. */
7719
7720 if (mode != VOIDmode
7721 && partial_subreg_p (extraction_mode, mode))
7722 extraction_mode = mode;
7723
7724 if (!MEM_P (inner))
7725 wanted_inner_mode = wanted_inner_reg_mode;
7726 else
7727 {
7728 /* Be careful not to go beyond the extracted object and maintain the
7729 natural alignment of the memory. */
7730 wanted_inner_mode = smallest_int_mode_for_size (len);
7731 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7732 > GET_MODE_BITSIZE (wanted_inner_mode))
7733 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7734 }
7735
7736 orig_pos = pos;
7737
7738 if (BITS_BIG_ENDIAN)
7739 {
7740 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7741 BITS_BIG_ENDIAN style. If position is constant, compute new
7742 position. Otherwise, build subtraction.
7743 Note that POS is relative to the mode of the original argument.
7744 If it's a MEM we need to recompute POS relative to that.
7745 However, if we're extracting from (or inserting into) a register,
7746 we want to recompute POS relative to wanted_inner_mode. */
7747 int width = (MEM_P (inner)
7748 ? GET_MODE_BITSIZE (is_mode)
7749 : GET_MODE_BITSIZE (wanted_inner_mode));
7750
7751 if (pos_rtx == 0)
7752 pos = width - len - pos;
7753 else
7754 pos_rtx
7755 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7756 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7757 pos_rtx);
7758 /* POS may be less than 0 now, but we check for that below.
7759 Note that it can only be less than 0 if !MEM_P (inner). */
7760 }
7761
7762 /* If INNER has a wider mode, and this is a constant extraction, try to
7763 make it smaller and adjust the byte to point to the byte containing
7764 the value. */
7765 if (wanted_inner_mode != VOIDmode
7766 && inner_mode != wanted_inner_mode
7767 && ! pos_rtx
7768 && partial_subreg_p (wanted_inner_mode, is_mode)
7769 && MEM_P (inner)
7770 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7771 && ! MEM_VOLATILE_P (inner))
7772 {
7773 int offset = 0;
7774
7775 /* The computations below will be correct if the machine is big
7776 endian in both bits and bytes or little endian in bits and bytes.
7777 If it is mixed, we must adjust. */
7778
7779 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7780 adjust OFFSET to compensate. */
7781 if (BYTES_BIG_ENDIAN
7782 && paradoxical_subreg_p (is_mode, inner_mode))
7783 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7784
7785 /* We can now move to the desired byte. */
7786 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7787 * GET_MODE_SIZE (wanted_inner_mode);
7788 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7789
7790 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7791 && is_mode != wanted_inner_mode)
7792 offset = (GET_MODE_SIZE (is_mode)
7793 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7794
7795 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7796 }
7797
7798 /* If INNER is not memory, get it into the proper mode. If we are changing
7799 its mode, POS must be a constant and smaller than the size of the new
7800 mode. */
7801 else if (!MEM_P (inner))
7802 {
7803 /* On the LHS, don't create paradoxical subregs implicitely truncating
7804 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7805 if (in_dest
7806 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7807 wanted_inner_mode))
7808 return NULL_RTX;
7809
7810 if (GET_MODE (inner) != wanted_inner_mode
7811 && (pos_rtx != 0
7812 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7813 return NULL_RTX;
7814
7815 if (orig_pos < 0)
7816 return NULL_RTX;
7817
7818 inner = force_to_mode (inner, wanted_inner_mode,
7819 pos_rtx
7820 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7821 ? HOST_WIDE_INT_M1U
7822 : (((HOST_WIDE_INT_1U << len) - 1)
7823 << orig_pos),
7824 0);
7825 }
7826
7827 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7828 have to zero extend. Otherwise, we can just use a SUBREG.
7829
7830 We dealt with constant rtxes earlier, so pos_rtx cannot
7831 have VOIDmode at this point. */
7832 if (pos_rtx != 0
7833 && (GET_MODE_SIZE (pos_mode)
7834 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7835 {
7836 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7837 GET_MODE (pos_rtx));
7838
7839 /* If we know that no extraneous bits are set, and that the high
7840 bit is not set, convert extraction to cheaper one - either
7841 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7842 cases. */
7843 if (flag_expensive_optimizations
7844 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7845 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7846 & ~(((unsigned HOST_WIDE_INT)
7847 GET_MODE_MASK (GET_MODE (pos_rtx)))
7848 >> 1))
7849 == 0)))
7850 {
7851 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7852 GET_MODE (pos_rtx));
7853
7854 /* Prefer ZERO_EXTENSION, since it gives more information to
7855 backends. */
7856 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7857 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7858 temp = temp1;
7859 }
7860 pos_rtx = temp;
7861 }
7862
7863 /* Make POS_RTX unless we already have it and it is correct. If we don't
7864 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7865 be a CONST_INT. */
7866 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7867 pos_rtx = orig_pos_rtx;
7868
7869 else if (pos_rtx == 0)
7870 pos_rtx = GEN_INT (pos);
7871
7872 /* Make the required operation. See if we can use existing rtx. */
7873 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7874 extraction_mode, inner, GEN_INT (len), pos_rtx);
7875 if (! in_dest)
7876 new_rtx = gen_lowpart (mode, new_rtx);
7877
7878 return new_rtx;
7879 }
7880 \f
7881 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7882 can be commuted with any other operations in X. Return X without
7883 that shift if so. */
7884
7885 static rtx
7886 extract_left_shift (scalar_int_mode mode, rtx x, int count)
7887 {
7888 enum rtx_code code = GET_CODE (x);
7889 rtx tem;
7890
7891 switch (code)
7892 {
7893 case ASHIFT:
7894 /* This is the shift itself. If it is wide enough, we will return
7895 either the value being shifted if the shift count is equal to
7896 COUNT or a shift for the difference. */
7897 if (CONST_INT_P (XEXP (x, 1))
7898 && INTVAL (XEXP (x, 1)) >= count)
7899 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7900 INTVAL (XEXP (x, 1)) - count);
7901 break;
7902
7903 case NEG: case NOT:
7904 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7905 return simplify_gen_unary (code, mode, tem, mode);
7906
7907 break;
7908
7909 case PLUS: case IOR: case XOR: case AND:
7910 /* If we can safely shift this constant and we find the inner shift,
7911 make a new operation. */
7912 if (CONST_INT_P (XEXP (x, 1))
7913 && (UINTVAL (XEXP (x, 1))
7914 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7915 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7916 {
7917 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7918 return simplify_gen_binary (code, mode, tem,
7919 gen_int_mode (val, mode));
7920 }
7921 break;
7922
7923 default:
7924 break;
7925 }
7926
7927 return 0;
7928 }
7929 \f
7930 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7931 level of the expression and MODE is its mode. IN_CODE is as for
7932 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7933 that should be used when recursing on operands of *X_PTR.
7934
7935 There are two possible actions:
7936
7937 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7938 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7939
7940 - Return a new rtx, which the caller returns directly. */
7941
7942 static rtx
7943 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
7944 enum rtx_code in_code,
7945 enum rtx_code *next_code_ptr)
7946 {
7947 rtx x = *x_ptr;
7948 enum rtx_code next_code = *next_code_ptr;
7949 enum rtx_code code = GET_CODE (x);
7950 int mode_width = GET_MODE_PRECISION (mode);
7951 rtx rhs, lhs;
7952 rtx new_rtx = 0;
7953 int i;
7954 rtx tem;
7955 scalar_int_mode inner_mode;
7956 bool equality_comparison = false;
7957
7958 if (in_code == EQ)
7959 {
7960 equality_comparison = true;
7961 in_code = COMPARE;
7962 }
7963
7964 /* Process depending on the code of this operation. If NEW is set
7965 nonzero, it will be returned. */
7966
7967 switch (code)
7968 {
7969 case ASHIFT:
7970 /* Convert shifts by constants into multiplications if inside
7971 an address. */
7972 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7973 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7974 && INTVAL (XEXP (x, 1)) >= 0)
7975 {
7976 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7977 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7978
7979 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7980 if (GET_CODE (new_rtx) == NEG)
7981 {
7982 new_rtx = XEXP (new_rtx, 0);
7983 multval = -multval;
7984 }
7985 multval = trunc_int_for_mode (multval, mode);
7986 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7987 }
7988 break;
7989
7990 case PLUS:
7991 lhs = XEXP (x, 0);
7992 rhs = XEXP (x, 1);
7993 lhs = make_compound_operation (lhs, next_code);
7994 rhs = make_compound_operation (rhs, next_code);
7995 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
7996 {
7997 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7998 XEXP (lhs, 1));
7999 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8000 }
8001 else if (GET_CODE (lhs) == MULT
8002 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8003 {
8004 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
8005 simplify_gen_unary (NEG, mode,
8006 XEXP (lhs, 1),
8007 mode));
8008 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8009 }
8010 else
8011 {
8012 SUBST (XEXP (x, 0), lhs);
8013 SUBST (XEXP (x, 1), rhs);
8014 }
8015 maybe_swap_commutative_operands (x);
8016 return x;
8017
8018 case MINUS:
8019 lhs = XEXP (x, 0);
8020 rhs = XEXP (x, 1);
8021 lhs = make_compound_operation (lhs, next_code);
8022 rhs = make_compound_operation (rhs, next_code);
8023 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8024 {
8025 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8026 XEXP (rhs, 1));
8027 return simplify_gen_binary (PLUS, mode, tem, lhs);
8028 }
8029 else if (GET_CODE (rhs) == MULT
8030 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8031 {
8032 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8033 simplify_gen_unary (NEG, mode,
8034 XEXP (rhs, 1),
8035 mode));
8036 return simplify_gen_binary (PLUS, mode, tem, lhs);
8037 }
8038 else
8039 {
8040 SUBST (XEXP (x, 0), lhs);
8041 SUBST (XEXP (x, 1), rhs);
8042 return x;
8043 }
8044
8045 case AND:
8046 /* If the second operand is not a constant, we can't do anything
8047 with it. */
8048 if (!CONST_INT_P (XEXP (x, 1)))
8049 break;
8050
8051 /* If the constant is a power of two minus one and the first operand
8052 is a logical right shift, make an extraction. */
8053 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8054 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8055 {
8056 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8057 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8058 i, 1, 0, in_code == COMPARE);
8059 }
8060
8061 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8062 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8063 && subreg_lowpart_p (XEXP (x, 0))
8064 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8065 &inner_mode)
8066 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8067 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8068 {
8069 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8070 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8071 new_rtx = make_extraction (inner_mode, new_rtx, 0,
8072 XEXP (inner_x0, 1),
8073 i, 1, 0, in_code == COMPARE);
8074
8075 /* If we narrowed the mode when dropping the subreg, then we lose. */
8076 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8077 new_rtx = NULL;
8078
8079 /* If that didn't give anything, see if the AND simplifies on
8080 its own. */
8081 if (!new_rtx && i >= 0)
8082 {
8083 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8084 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8085 0, in_code == COMPARE);
8086 }
8087 }
8088 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8089 else if ((GET_CODE (XEXP (x, 0)) == XOR
8090 || GET_CODE (XEXP (x, 0)) == IOR)
8091 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8092 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8093 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8094 {
8095 /* Apply the distributive law, and then try to make extractions. */
8096 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8097 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8098 XEXP (x, 1)),
8099 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8100 XEXP (x, 1)));
8101 new_rtx = make_compound_operation (new_rtx, in_code);
8102 }
8103
8104 /* If we are have (and (rotate X C) M) and C is larger than the number
8105 of bits in M, this is an extraction. */
8106
8107 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8108 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8109 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8110 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8111 {
8112 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8113 new_rtx = make_extraction (mode, new_rtx,
8114 (GET_MODE_PRECISION (mode)
8115 - INTVAL (XEXP (XEXP (x, 0), 1))),
8116 NULL_RTX, i, 1, 0, in_code == COMPARE);
8117 }
8118
8119 /* On machines without logical shifts, if the operand of the AND is
8120 a logical shift and our mask turns off all the propagated sign
8121 bits, we can replace the logical shift with an arithmetic shift. */
8122 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8123 && !have_insn_for (LSHIFTRT, mode)
8124 && have_insn_for (ASHIFTRT, mode)
8125 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8126 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8127 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8128 && mode_width <= HOST_BITS_PER_WIDE_INT)
8129 {
8130 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8131
8132 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8133 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8134 SUBST (XEXP (x, 0),
8135 gen_rtx_ASHIFTRT (mode,
8136 make_compound_operation (XEXP (XEXP (x,
8137 0),
8138 0),
8139 next_code),
8140 XEXP (XEXP (x, 0), 1)));
8141 }
8142
8143 /* If the constant is one less than a power of two, this might be
8144 representable by an extraction even if no shift is present.
8145 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8146 we are in a COMPARE. */
8147 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8148 new_rtx = make_extraction (mode,
8149 make_compound_operation (XEXP (x, 0),
8150 next_code),
8151 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8152
8153 /* If we are in a comparison and this is an AND with a power of two,
8154 convert this into the appropriate bit extract. */
8155 else if (in_code == COMPARE
8156 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8157 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8158 new_rtx = make_extraction (mode,
8159 make_compound_operation (XEXP (x, 0),
8160 next_code),
8161 i, NULL_RTX, 1, 1, 0, 1);
8162
8163 /* If the one operand is a paradoxical subreg of a register or memory and
8164 the constant (limited to the smaller mode) has only zero bits where
8165 the sub expression has known zero bits, this can be expressed as
8166 a zero_extend. */
8167 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8168 {
8169 rtx sub;
8170
8171 sub = XEXP (XEXP (x, 0), 0);
8172 machine_mode sub_mode = GET_MODE (sub);
8173 int sub_width;
8174 if ((REG_P (sub) || MEM_P (sub))
8175 && GET_MODE_PRECISION (sub_mode).is_constant (&sub_width)
8176 && sub_width < mode_width)
8177 {
8178 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8179 unsigned HOST_WIDE_INT mask;
8180
8181 /* original AND constant with all the known zero bits set */
8182 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8183 if ((mask & mode_mask) == mode_mask)
8184 {
8185 new_rtx = make_compound_operation (sub, next_code);
8186 new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width,
8187 1, 0, in_code == COMPARE);
8188 }
8189 }
8190 }
8191
8192 break;
8193
8194 case LSHIFTRT:
8195 /* If the sign bit is known to be zero, replace this with an
8196 arithmetic shift. */
8197 if (have_insn_for (ASHIFTRT, mode)
8198 && ! have_insn_for (LSHIFTRT, mode)
8199 && mode_width <= HOST_BITS_PER_WIDE_INT
8200 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8201 {
8202 new_rtx = gen_rtx_ASHIFTRT (mode,
8203 make_compound_operation (XEXP (x, 0),
8204 next_code),
8205 XEXP (x, 1));
8206 break;
8207 }
8208
8209 /* fall through */
8210
8211 case ASHIFTRT:
8212 lhs = XEXP (x, 0);
8213 rhs = XEXP (x, 1);
8214
8215 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8216 this is a SIGN_EXTRACT. */
8217 if (CONST_INT_P (rhs)
8218 && GET_CODE (lhs) == ASHIFT
8219 && CONST_INT_P (XEXP (lhs, 1))
8220 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8221 && INTVAL (XEXP (lhs, 1)) >= 0
8222 && INTVAL (rhs) < mode_width)
8223 {
8224 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8225 new_rtx = make_extraction (mode, new_rtx,
8226 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8227 NULL_RTX, mode_width - INTVAL (rhs),
8228 code == LSHIFTRT, 0, in_code == COMPARE);
8229 break;
8230 }
8231
8232 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8233 If so, try to merge the shifts into a SIGN_EXTEND. We could
8234 also do this for some cases of SIGN_EXTRACT, but it doesn't
8235 seem worth the effort; the case checked for occurs on Alpha. */
8236
8237 if (!OBJECT_P (lhs)
8238 && ! (GET_CODE (lhs) == SUBREG
8239 && (OBJECT_P (SUBREG_REG (lhs))))
8240 && CONST_INT_P (rhs)
8241 && INTVAL (rhs) >= 0
8242 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8243 && INTVAL (rhs) < mode_width
8244 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8245 new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8246 next_code),
8247 0, NULL_RTX, mode_width - INTVAL (rhs),
8248 code == LSHIFTRT, 0, in_code == COMPARE);
8249
8250 break;
8251
8252 case SUBREG:
8253 /* Call ourselves recursively on the inner expression. If we are
8254 narrowing the object and it has a different RTL code from
8255 what it originally did, do this SUBREG as a force_to_mode. */
8256 {
8257 rtx inner = SUBREG_REG (x), simplified;
8258 enum rtx_code subreg_code = in_code;
8259
8260 /* If the SUBREG is masking of a logical right shift,
8261 make an extraction. */
8262 if (GET_CODE (inner) == LSHIFTRT
8263 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8264 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8265 && CONST_INT_P (XEXP (inner, 1))
8266 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8267 && subreg_lowpart_p (x))
8268 {
8269 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8270 int width = GET_MODE_PRECISION (inner_mode)
8271 - INTVAL (XEXP (inner, 1));
8272 if (width > mode_width)
8273 width = mode_width;
8274 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8275 width, 1, 0, in_code == COMPARE);
8276 break;
8277 }
8278
8279 /* If in_code is COMPARE, it isn't always safe to pass it through
8280 to the recursive make_compound_operation call. */
8281 if (subreg_code == COMPARE
8282 && (!subreg_lowpart_p (x)
8283 || GET_CODE (inner) == SUBREG
8284 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8285 is (const_int 0), rather than
8286 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8287 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8288 for non-equality comparisons against 0 is not equivalent
8289 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8290 || (GET_CODE (inner) == AND
8291 && CONST_INT_P (XEXP (inner, 1))
8292 && partial_subreg_p (x)
8293 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8294 >= GET_MODE_BITSIZE (mode) - 1)))
8295 subreg_code = SET;
8296
8297 tem = make_compound_operation (inner, subreg_code);
8298
8299 simplified
8300 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8301 if (simplified)
8302 tem = simplified;
8303
8304 if (GET_CODE (tem) != GET_CODE (inner)
8305 && partial_subreg_p (x)
8306 && subreg_lowpart_p (x))
8307 {
8308 rtx newer
8309 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8310
8311 /* If we have something other than a SUBREG, we might have
8312 done an expansion, so rerun ourselves. */
8313 if (GET_CODE (newer) != SUBREG)
8314 newer = make_compound_operation (newer, in_code);
8315
8316 /* force_to_mode can expand compounds. If it just re-expanded
8317 the compound, use gen_lowpart to convert to the desired
8318 mode. */
8319 if (rtx_equal_p (newer, x)
8320 /* Likewise if it re-expanded the compound only partially.
8321 This happens for SUBREG of ZERO_EXTRACT if they extract
8322 the same number of bits. */
8323 || (GET_CODE (newer) == SUBREG
8324 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8325 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8326 && GET_CODE (inner) == AND
8327 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8328 return gen_lowpart (GET_MODE (x), tem);
8329
8330 return newer;
8331 }
8332
8333 if (simplified)
8334 return tem;
8335 }
8336 break;
8337
8338 default:
8339 break;
8340 }
8341
8342 if (new_rtx)
8343 *x_ptr = gen_lowpart (mode, new_rtx);
8344 *next_code_ptr = next_code;
8345 return NULL_RTX;
8346 }
8347
8348 /* Look at the expression rooted at X. Look for expressions
8349 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8350 Form these expressions.
8351
8352 Return the new rtx, usually just X.
8353
8354 Also, for machines like the VAX that don't have logical shift insns,
8355 try to convert logical to arithmetic shift operations in cases where
8356 they are equivalent. This undoes the canonicalizations to logical
8357 shifts done elsewhere.
8358
8359 We try, as much as possible, to re-use rtl expressions to save memory.
8360
8361 IN_CODE says what kind of expression we are processing. Normally, it is
8362 SET. In a memory address it is MEM. When processing the arguments of
8363 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8364 precisely it is an equality comparison against zero. */
8365
8366 rtx
8367 make_compound_operation (rtx x, enum rtx_code in_code)
8368 {
8369 enum rtx_code code = GET_CODE (x);
8370 const char *fmt;
8371 int i, j;
8372 enum rtx_code next_code;
8373 rtx new_rtx, tem;
8374
8375 /* Select the code to be used in recursive calls. Once we are inside an
8376 address, we stay there. If we have a comparison, set to COMPARE,
8377 but once inside, go back to our default of SET. */
8378
8379 next_code = (code == MEM ? MEM
8380 : ((code == COMPARE || COMPARISON_P (x))
8381 && XEXP (x, 1) == const0_rtx) ? COMPARE
8382 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8383
8384 scalar_int_mode mode;
8385 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8386 {
8387 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8388 &next_code);
8389 if (new_rtx)
8390 return new_rtx;
8391 code = GET_CODE (x);
8392 }
8393
8394 /* Now recursively process each operand of this operation. We need to
8395 handle ZERO_EXTEND specially so that we don't lose track of the
8396 inner mode. */
8397 if (code == ZERO_EXTEND)
8398 {
8399 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8400 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8401 new_rtx, GET_MODE (XEXP (x, 0)));
8402 if (tem)
8403 return tem;
8404 SUBST (XEXP (x, 0), new_rtx);
8405 return x;
8406 }
8407
8408 fmt = GET_RTX_FORMAT (code);
8409 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8410 if (fmt[i] == 'e')
8411 {
8412 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8413 SUBST (XEXP (x, i), new_rtx);
8414 }
8415 else if (fmt[i] == 'E')
8416 for (j = 0; j < XVECLEN (x, i); j++)
8417 {
8418 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8419 SUBST (XVECEXP (x, i, j), new_rtx);
8420 }
8421
8422 maybe_swap_commutative_operands (x);
8423 return x;
8424 }
8425 \f
8426 /* Given M see if it is a value that would select a field of bits
8427 within an item, but not the entire word. Return -1 if not.
8428 Otherwise, return the starting position of the field, where 0 is the
8429 low-order bit.
8430
8431 *PLEN is set to the length of the field. */
8432
8433 static int
8434 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8435 {
8436 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8437 int pos = m ? ctz_hwi (m) : -1;
8438 int len = 0;
8439
8440 if (pos >= 0)
8441 /* Now shift off the low-order zero bits and see if we have a
8442 power of two minus 1. */
8443 len = exact_log2 ((m >> pos) + 1);
8444
8445 if (len <= 0)
8446 pos = -1;
8447
8448 *plen = len;
8449 return pos;
8450 }
8451 \f
8452 /* If X refers to a register that equals REG in value, replace these
8453 references with REG. */
8454 static rtx
8455 canon_reg_for_combine (rtx x, rtx reg)
8456 {
8457 rtx op0, op1, op2;
8458 const char *fmt;
8459 int i;
8460 bool copied;
8461
8462 enum rtx_code code = GET_CODE (x);
8463 switch (GET_RTX_CLASS (code))
8464 {
8465 case RTX_UNARY:
8466 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8467 if (op0 != XEXP (x, 0))
8468 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8469 GET_MODE (reg));
8470 break;
8471
8472 case RTX_BIN_ARITH:
8473 case RTX_COMM_ARITH:
8474 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8475 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8476 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8477 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8478 break;
8479
8480 case RTX_COMPARE:
8481 case RTX_COMM_COMPARE:
8482 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8483 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8484 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8485 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8486 GET_MODE (op0), op0, op1);
8487 break;
8488
8489 case RTX_TERNARY:
8490 case RTX_BITFIELD_OPS:
8491 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8492 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8493 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8494 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8495 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8496 GET_MODE (op0), op0, op1, op2);
8497 /* FALLTHRU */
8498
8499 case RTX_OBJ:
8500 if (REG_P (x))
8501 {
8502 if (rtx_equal_p (get_last_value (reg), x)
8503 || rtx_equal_p (reg, get_last_value (x)))
8504 return reg;
8505 else
8506 break;
8507 }
8508
8509 /* fall through */
8510
8511 default:
8512 fmt = GET_RTX_FORMAT (code);
8513 copied = false;
8514 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8515 if (fmt[i] == 'e')
8516 {
8517 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8518 if (op != XEXP (x, i))
8519 {
8520 if (!copied)
8521 {
8522 copied = true;
8523 x = copy_rtx (x);
8524 }
8525 XEXP (x, i) = op;
8526 }
8527 }
8528 else if (fmt[i] == 'E')
8529 {
8530 int j;
8531 for (j = 0; j < XVECLEN (x, i); j++)
8532 {
8533 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8534 if (op != XVECEXP (x, i, j))
8535 {
8536 if (!copied)
8537 {
8538 copied = true;
8539 x = copy_rtx (x);
8540 }
8541 XVECEXP (x, i, j) = op;
8542 }
8543 }
8544 }
8545
8546 break;
8547 }
8548
8549 return x;
8550 }
8551
8552 /* Return X converted to MODE. If the value is already truncated to
8553 MODE we can just return a subreg even though in the general case we
8554 would need an explicit truncation. */
8555
8556 static rtx
8557 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8558 {
8559 if (!CONST_INT_P (x)
8560 && partial_subreg_p (mode, GET_MODE (x))
8561 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8562 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8563 {
8564 /* Bit-cast X into an integer mode. */
8565 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8566 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8567 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8568 x, GET_MODE (x));
8569 }
8570
8571 return gen_lowpart (mode, x);
8572 }
8573
8574 /* See if X can be simplified knowing that we will only refer to it in
8575 MODE and will only refer to those bits that are nonzero in MASK.
8576 If other bits are being computed or if masking operations are done
8577 that select a superset of the bits in MASK, they can sometimes be
8578 ignored.
8579
8580 Return a possibly simplified expression, but always convert X to
8581 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8582
8583 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8584 are all off in X. This is used when X will be complemented, by either
8585 NOT, NEG, or XOR. */
8586
8587 static rtx
8588 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8589 int just_select)
8590 {
8591 enum rtx_code code = GET_CODE (x);
8592 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8593 machine_mode op_mode;
8594 unsigned HOST_WIDE_INT nonzero;
8595
8596 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8597 code below will do the wrong thing since the mode of such an
8598 expression is VOIDmode.
8599
8600 Also do nothing if X is a CLOBBER; this can happen if X was
8601 the return value from a call to gen_lowpart. */
8602 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8603 return x;
8604
8605 /* We want to perform the operation in its present mode unless we know
8606 that the operation is valid in MODE, in which case we do the operation
8607 in MODE. */
8608 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8609 && have_insn_for (code, mode))
8610 ? mode : GET_MODE (x));
8611
8612 /* It is not valid to do a right-shift in a narrower mode
8613 than the one it came in with. */
8614 if ((code == LSHIFTRT || code == ASHIFTRT)
8615 && partial_subreg_p (mode, GET_MODE (x)))
8616 op_mode = GET_MODE (x);
8617
8618 /* Truncate MASK to fit OP_MODE. */
8619 if (op_mode)
8620 mask &= GET_MODE_MASK (op_mode);
8621
8622 /* Determine what bits of X are guaranteed to be (non)zero. */
8623 nonzero = nonzero_bits (x, mode);
8624
8625 /* If none of the bits in X are needed, return a zero. */
8626 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8627 x = const0_rtx;
8628
8629 /* If X is a CONST_INT, return a new one. Do this here since the
8630 test below will fail. */
8631 if (CONST_INT_P (x))
8632 {
8633 if (SCALAR_INT_MODE_P (mode))
8634 return gen_int_mode (INTVAL (x) & mask, mode);
8635 else
8636 {
8637 x = GEN_INT (INTVAL (x) & mask);
8638 return gen_lowpart_common (mode, x);
8639 }
8640 }
8641
8642 /* If X is narrower than MODE and we want all the bits in X's mode, just
8643 get X in the proper mode. */
8644 if (paradoxical_subreg_p (mode, GET_MODE (x))
8645 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8646 return gen_lowpart (mode, x);
8647
8648 /* We can ignore the effect of a SUBREG if it narrows the mode or
8649 if the constant masks to zero all the bits the mode doesn't have. */
8650 if (GET_CODE (x) == SUBREG
8651 && subreg_lowpart_p (x)
8652 && (partial_subreg_p (x)
8653 || (mask
8654 & GET_MODE_MASK (GET_MODE (x))
8655 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8656 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8657
8658 scalar_int_mode int_mode, xmode;
8659 if (is_a <scalar_int_mode> (mode, &int_mode)
8660 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8661 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8662 integer too. */
8663 return force_int_to_mode (x, int_mode, xmode,
8664 as_a <scalar_int_mode> (op_mode),
8665 mask, just_select);
8666
8667 return gen_lowpart_or_truncate (mode, x);
8668 }
8669
8670 /* Subroutine of force_to_mode that handles cases in which both X and
8671 the result are scalar integers. MODE is the mode of the result,
8672 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8673 is preferred for simplified versions of X. The other arguments
8674 are as for force_to_mode. */
8675
8676 static rtx
8677 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8678 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8679 int just_select)
8680 {
8681 enum rtx_code code = GET_CODE (x);
8682 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8683 unsigned HOST_WIDE_INT fuller_mask;
8684 rtx op0, op1, temp;
8685
8686 /* When we have an arithmetic operation, or a shift whose count we
8687 do not know, we need to assume that all bits up to the highest-order
8688 bit in MASK will be needed. This is how we form such a mask. */
8689 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8690 fuller_mask = HOST_WIDE_INT_M1U;
8691 else
8692 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8693 - 1);
8694
8695 switch (code)
8696 {
8697 case CLOBBER:
8698 /* If X is a (clobber (const_int)), return it since we know we are
8699 generating something that won't match. */
8700 return x;
8701
8702 case SIGN_EXTEND:
8703 case ZERO_EXTEND:
8704 case ZERO_EXTRACT:
8705 case SIGN_EXTRACT:
8706 x = expand_compound_operation (x);
8707 if (GET_CODE (x) != code)
8708 return force_to_mode (x, mode, mask, next_select);
8709 break;
8710
8711 case TRUNCATE:
8712 /* Similarly for a truncate. */
8713 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8714
8715 case AND:
8716 /* If this is an AND with a constant, convert it into an AND
8717 whose constant is the AND of that constant with MASK. If it
8718 remains an AND of MASK, delete it since it is redundant. */
8719
8720 if (CONST_INT_P (XEXP (x, 1)))
8721 {
8722 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8723 mask & INTVAL (XEXP (x, 1)));
8724 xmode = op_mode;
8725
8726 /* If X is still an AND, see if it is an AND with a mask that
8727 is just some low-order bits. If so, and it is MASK, we don't
8728 need it. */
8729
8730 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8731 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8732 x = XEXP (x, 0);
8733
8734 /* If it remains an AND, try making another AND with the bits
8735 in the mode mask that aren't in MASK turned on. If the
8736 constant in the AND is wide enough, this might make a
8737 cheaper constant. */
8738
8739 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8740 && GET_MODE_MASK (xmode) != mask
8741 && HWI_COMPUTABLE_MODE_P (xmode))
8742 {
8743 unsigned HOST_WIDE_INT cval
8744 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8745 rtx y;
8746
8747 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8748 gen_int_mode (cval, xmode));
8749 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8750 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8751 x = y;
8752 }
8753
8754 break;
8755 }
8756
8757 goto binop;
8758
8759 case PLUS:
8760 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8761 low-order bits (as in an alignment operation) and FOO is already
8762 aligned to that boundary, mask C1 to that boundary as well.
8763 This may eliminate that PLUS and, later, the AND. */
8764
8765 {
8766 unsigned int width = GET_MODE_PRECISION (mode);
8767 unsigned HOST_WIDE_INT smask = mask;
8768
8769 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8770 number, sign extend it. */
8771
8772 if (width < HOST_BITS_PER_WIDE_INT
8773 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8774 smask |= HOST_WIDE_INT_M1U << width;
8775
8776 if (CONST_INT_P (XEXP (x, 1))
8777 && pow2p_hwi (- smask)
8778 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8779 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8780 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8781 (INTVAL (XEXP (x, 1)) & smask)),
8782 mode, smask, next_select);
8783 }
8784
8785 /* fall through */
8786
8787 case MULT:
8788 /* Substituting into the operands of a widening MULT is not likely to
8789 create RTL matching a machine insn. */
8790 if (code == MULT
8791 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8792 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8793 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8794 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8795 && REG_P (XEXP (XEXP (x, 0), 0))
8796 && REG_P (XEXP (XEXP (x, 1), 0)))
8797 return gen_lowpart_or_truncate (mode, x);
8798
8799 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8800 most significant bit in MASK since carries from those bits will
8801 affect the bits we are interested in. */
8802 mask = fuller_mask;
8803 goto binop;
8804
8805 case MINUS:
8806 /* If X is (minus C Y) where C's least set bit is larger than any bit
8807 in the mask, then we may replace with (neg Y). */
8808 if (CONST_INT_P (XEXP (x, 0))
8809 && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8810 {
8811 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8812 return force_to_mode (x, mode, mask, next_select);
8813 }
8814
8815 /* Similarly, if C contains every bit in the fuller_mask, then we may
8816 replace with (not Y). */
8817 if (CONST_INT_P (XEXP (x, 0))
8818 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8819 {
8820 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8821 return force_to_mode (x, mode, mask, next_select);
8822 }
8823
8824 mask = fuller_mask;
8825 goto binop;
8826
8827 case IOR:
8828 case XOR:
8829 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8830 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8831 operation which may be a bitfield extraction. Ensure that the
8832 constant we form is not wider than the mode of X. */
8833
8834 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8835 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8836 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8837 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8838 && CONST_INT_P (XEXP (x, 1))
8839 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8840 + floor_log2 (INTVAL (XEXP (x, 1))))
8841 < GET_MODE_PRECISION (xmode))
8842 && (UINTVAL (XEXP (x, 1))
8843 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8844 {
8845 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8846 << INTVAL (XEXP (XEXP (x, 0), 1)),
8847 xmode);
8848 temp = simplify_gen_binary (GET_CODE (x), xmode,
8849 XEXP (XEXP (x, 0), 0), temp);
8850 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8851 XEXP (XEXP (x, 0), 1));
8852 return force_to_mode (x, mode, mask, next_select);
8853 }
8854
8855 binop:
8856 /* For most binary operations, just propagate into the operation and
8857 change the mode if we have an operation of that mode. */
8858
8859 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8860 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8861
8862 /* If we ended up truncating both operands, truncate the result of the
8863 operation instead. */
8864 if (GET_CODE (op0) == TRUNCATE
8865 && GET_CODE (op1) == TRUNCATE)
8866 {
8867 op0 = XEXP (op0, 0);
8868 op1 = XEXP (op1, 0);
8869 }
8870
8871 op0 = gen_lowpart_or_truncate (op_mode, op0);
8872 op1 = gen_lowpart_or_truncate (op_mode, op1);
8873
8874 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8875 {
8876 x = simplify_gen_binary (code, op_mode, op0, op1);
8877 xmode = op_mode;
8878 }
8879 break;
8880
8881 case ASHIFT:
8882 /* For left shifts, do the same, but just for the first operand.
8883 However, we cannot do anything with shifts where we cannot
8884 guarantee that the counts are smaller than the size of the mode
8885 because such a count will have a different meaning in a
8886 wider mode. */
8887
8888 if (! (CONST_INT_P (XEXP (x, 1))
8889 && INTVAL (XEXP (x, 1)) >= 0
8890 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8891 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8892 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8893 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8894 break;
8895
8896 /* If the shift count is a constant and we can do arithmetic in
8897 the mode of the shift, refine which bits we need. Otherwise, use the
8898 conservative form of the mask. */
8899 if (CONST_INT_P (XEXP (x, 1))
8900 && INTVAL (XEXP (x, 1)) >= 0
8901 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8902 && HWI_COMPUTABLE_MODE_P (op_mode))
8903 mask >>= INTVAL (XEXP (x, 1));
8904 else
8905 mask = fuller_mask;
8906
8907 op0 = gen_lowpart_or_truncate (op_mode,
8908 force_to_mode (XEXP (x, 0), op_mode,
8909 mask, next_select));
8910
8911 if (op_mode != xmode || op0 != XEXP (x, 0))
8912 {
8913 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8914 xmode = op_mode;
8915 }
8916 break;
8917
8918 case LSHIFTRT:
8919 /* Here we can only do something if the shift count is a constant,
8920 this shift constant is valid for the host, and we can do arithmetic
8921 in OP_MODE. */
8922
8923 if (CONST_INT_P (XEXP (x, 1))
8924 && INTVAL (XEXP (x, 1)) >= 0
8925 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8926 && HWI_COMPUTABLE_MODE_P (op_mode))
8927 {
8928 rtx inner = XEXP (x, 0);
8929 unsigned HOST_WIDE_INT inner_mask;
8930
8931 /* Select the mask of the bits we need for the shift operand. */
8932 inner_mask = mask << INTVAL (XEXP (x, 1));
8933
8934 /* We can only change the mode of the shift if we can do arithmetic
8935 in the mode of the shift and INNER_MASK is no wider than the
8936 width of X's mode. */
8937 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
8938 op_mode = xmode;
8939
8940 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8941
8942 if (xmode != op_mode || inner != XEXP (x, 0))
8943 {
8944 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8945 xmode = op_mode;
8946 }
8947 }
8948
8949 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8950 shift and AND produces only copies of the sign bit (C2 is one less
8951 than a power of two), we can do this with just a shift. */
8952
8953 if (GET_CODE (x) == LSHIFTRT
8954 && CONST_INT_P (XEXP (x, 1))
8955 /* The shift puts one of the sign bit copies in the least significant
8956 bit. */
8957 && ((INTVAL (XEXP (x, 1))
8958 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8959 >= GET_MODE_PRECISION (xmode))
8960 && pow2p_hwi (mask + 1)
8961 /* Number of bits left after the shift must be more than the mask
8962 needs. */
8963 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8964 <= GET_MODE_PRECISION (xmode))
8965 /* Must be more sign bit copies than the mask needs. */
8966 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8967 >= exact_log2 (mask + 1)))
8968 {
8969 int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
8970 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
8971 gen_int_shift_amount (xmode, nbits));
8972 }
8973 goto shiftrt;
8974
8975 case ASHIFTRT:
8976 /* If we are just looking for the sign bit, we don't need this shift at
8977 all, even if it has a variable count. */
8978 if (val_signbit_p (xmode, mask))
8979 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8980
8981 /* If this is a shift by a constant, get a mask that contains those bits
8982 that are not copies of the sign bit. We then have two cases: If
8983 MASK only includes those bits, this can be a logical shift, which may
8984 allow simplifications. If MASK is a single-bit field not within
8985 those bits, we are requesting a copy of the sign bit and hence can
8986 shift the sign bit to the appropriate location. */
8987
8988 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8989 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8990 {
8991 unsigned HOST_WIDE_INT nonzero;
8992 int i;
8993
8994 /* If the considered data is wider than HOST_WIDE_INT, we can't
8995 represent a mask for all its bits in a single scalar.
8996 But we only care about the lower bits, so calculate these. */
8997
8998 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
8999 {
9000 nonzero = HOST_WIDE_INT_M1U;
9001
9002 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9003 is the number of bits a full-width mask would have set.
9004 We need only shift if these are fewer than nonzero can
9005 hold. If not, we must keep all bits set in nonzero. */
9006
9007 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
9008 < HOST_BITS_PER_WIDE_INT)
9009 nonzero >>= INTVAL (XEXP (x, 1))
9010 + HOST_BITS_PER_WIDE_INT
9011 - GET_MODE_PRECISION (xmode);
9012 }
9013 else
9014 {
9015 nonzero = GET_MODE_MASK (xmode);
9016 nonzero >>= INTVAL (XEXP (x, 1));
9017 }
9018
9019 if ((mask & ~nonzero) == 0)
9020 {
9021 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9022 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9023 if (GET_CODE (x) != ASHIFTRT)
9024 return force_to_mode (x, mode, mask, next_select);
9025 }
9026
9027 else if ((i = exact_log2 (mask)) >= 0)
9028 {
9029 x = simplify_shift_const
9030 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9031 GET_MODE_PRECISION (xmode) - 1 - i);
9032
9033 if (GET_CODE (x) != ASHIFTRT)
9034 return force_to_mode (x, mode, mask, next_select);
9035 }
9036 }
9037
9038 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9039 even if the shift count isn't a constant. */
9040 if (mask == 1)
9041 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9042
9043 shiftrt:
9044
9045 /* If this is a zero- or sign-extension operation that just affects bits
9046 we don't care about, remove it. Be sure the call above returned
9047 something that is still a shift. */
9048
9049 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9050 && CONST_INT_P (XEXP (x, 1))
9051 && INTVAL (XEXP (x, 1)) >= 0
9052 && (INTVAL (XEXP (x, 1))
9053 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9054 && GET_CODE (XEXP (x, 0)) == ASHIFT
9055 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9056 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9057 next_select);
9058
9059 break;
9060
9061 case ROTATE:
9062 case ROTATERT:
9063 /* If the shift count is constant and we can do computations
9064 in the mode of X, compute where the bits we care about are.
9065 Otherwise, we can't do anything. Don't change the mode of
9066 the shift or propagate MODE into the shift, though. */
9067 if (CONST_INT_P (XEXP (x, 1))
9068 && INTVAL (XEXP (x, 1)) >= 0)
9069 {
9070 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9071 xmode, gen_int_mode (mask, xmode),
9072 XEXP (x, 1));
9073 if (temp && CONST_INT_P (temp))
9074 x = simplify_gen_binary (code, xmode,
9075 force_to_mode (XEXP (x, 0), xmode,
9076 INTVAL (temp), next_select),
9077 XEXP (x, 1));
9078 }
9079 break;
9080
9081 case NEG:
9082 /* If we just want the low-order bit, the NEG isn't needed since it
9083 won't change the low-order bit. */
9084 if (mask == 1)
9085 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9086
9087 /* We need any bits less significant than the most significant bit in
9088 MASK since carries from those bits will affect the bits we are
9089 interested in. */
9090 mask = fuller_mask;
9091 goto unop;
9092
9093 case NOT:
9094 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9095 same as the XOR case above. Ensure that the constant we form is not
9096 wider than the mode of X. */
9097
9098 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9099 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9100 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9101 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9102 < GET_MODE_PRECISION (xmode))
9103 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9104 {
9105 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9106 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9107 x = simplify_gen_binary (LSHIFTRT, xmode,
9108 temp, XEXP (XEXP (x, 0), 1));
9109
9110 return force_to_mode (x, mode, mask, next_select);
9111 }
9112
9113 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9114 use the full mask inside the NOT. */
9115 mask = fuller_mask;
9116
9117 unop:
9118 op0 = gen_lowpart_or_truncate (op_mode,
9119 force_to_mode (XEXP (x, 0), mode, mask,
9120 next_select));
9121 if (op_mode != xmode || op0 != XEXP (x, 0))
9122 {
9123 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9124 xmode = op_mode;
9125 }
9126 break;
9127
9128 case NE:
9129 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9130 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9131 which is equal to STORE_FLAG_VALUE. */
9132 if ((mask & ~STORE_FLAG_VALUE) == 0
9133 && XEXP (x, 1) == const0_rtx
9134 && GET_MODE (XEXP (x, 0)) == mode
9135 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9136 && (nonzero_bits (XEXP (x, 0), mode)
9137 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9138 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9139
9140 break;
9141
9142 case IF_THEN_ELSE:
9143 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9144 written in a narrower mode. We play it safe and do not do so. */
9145
9146 op0 = gen_lowpart_or_truncate (xmode,
9147 force_to_mode (XEXP (x, 1), mode,
9148 mask, next_select));
9149 op1 = gen_lowpart_or_truncate (xmode,
9150 force_to_mode (XEXP (x, 2), mode,
9151 mask, next_select));
9152 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9153 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9154 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9155 op0, op1);
9156 break;
9157
9158 default:
9159 break;
9160 }
9161
9162 /* Ensure we return a value of the proper mode. */
9163 return gen_lowpart_or_truncate (mode, x);
9164 }
9165 \f
9166 /* Return nonzero if X is an expression that has one of two values depending on
9167 whether some other value is zero or nonzero. In that case, we return the
9168 value that is being tested, *PTRUE is set to the value if the rtx being
9169 returned has a nonzero value, and *PFALSE is set to the other alternative.
9170
9171 If we return zero, we set *PTRUE and *PFALSE to X. */
9172
9173 static rtx
9174 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9175 {
9176 machine_mode mode = GET_MODE (x);
9177 enum rtx_code code = GET_CODE (x);
9178 rtx cond0, cond1, true0, true1, false0, false1;
9179 unsigned HOST_WIDE_INT nz;
9180 scalar_int_mode int_mode;
9181
9182 /* If we are comparing a value against zero, we are done. */
9183 if ((code == NE || code == EQ)
9184 && XEXP (x, 1) == const0_rtx)
9185 {
9186 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9187 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9188 return XEXP (x, 0);
9189 }
9190
9191 /* If this is a unary operation whose operand has one of two values, apply
9192 our opcode to compute those values. */
9193 else if (UNARY_P (x)
9194 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9195 {
9196 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9197 *pfalse = simplify_gen_unary (code, mode, false0,
9198 GET_MODE (XEXP (x, 0)));
9199 return cond0;
9200 }
9201
9202 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9203 make can't possibly match and would suppress other optimizations. */
9204 else if (code == COMPARE)
9205 ;
9206
9207 /* If this is a binary operation, see if either side has only one of two
9208 values. If either one does or if both do and they are conditional on
9209 the same value, compute the new true and false values. */
9210 else if (BINARY_P (x))
9211 {
9212 rtx op0 = XEXP (x, 0);
9213 rtx op1 = XEXP (x, 1);
9214 cond0 = if_then_else_cond (op0, &true0, &false0);
9215 cond1 = if_then_else_cond (op1, &true1, &false1);
9216
9217 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9218 && (REG_P (op0) || REG_P (op1)))
9219 {
9220 /* Try to enable a simplification by undoing work done by
9221 if_then_else_cond if it converted a REG into something more
9222 complex. */
9223 if (REG_P (op0))
9224 {
9225 cond0 = 0;
9226 true0 = false0 = op0;
9227 }
9228 else
9229 {
9230 cond1 = 0;
9231 true1 = false1 = op1;
9232 }
9233 }
9234
9235 if ((cond0 != 0 || cond1 != 0)
9236 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9237 {
9238 /* If if_then_else_cond returned zero, then true/false are the
9239 same rtl. We must copy one of them to prevent invalid rtl
9240 sharing. */
9241 if (cond0 == 0)
9242 true0 = copy_rtx (true0);
9243 else if (cond1 == 0)
9244 true1 = copy_rtx (true1);
9245
9246 if (COMPARISON_P (x))
9247 {
9248 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9249 true0, true1);
9250 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9251 false0, false1);
9252 }
9253 else
9254 {
9255 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9256 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9257 }
9258
9259 return cond0 ? cond0 : cond1;
9260 }
9261
9262 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9263 operands is zero when the other is nonzero, and vice-versa,
9264 and STORE_FLAG_VALUE is 1 or -1. */
9265
9266 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9267 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9268 || code == UMAX)
9269 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9270 {
9271 rtx op0 = XEXP (XEXP (x, 0), 1);
9272 rtx op1 = XEXP (XEXP (x, 1), 1);
9273
9274 cond0 = XEXP (XEXP (x, 0), 0);
9275 cond1 = XEXP (XEXP (x, 1), 0);
9276
9277 if (COMPARISON_P (cond0)
9278 && COMPARISON_P (cond1)
9279 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9280 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9281 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9282 || ((swap_condition (GET_CODE (cond0))
9283 == reversed_comparison_code (cond1, NULL))
9284 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9285 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9286 && ! side_effects_p (x))
9287 {
9288 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9289 *pfalse = simplify_gen_binary (MULT, mode,
9290 (code == MINUS
9291 ? simplify_gen_unary (NEG, mode,
9292 op1, mode)
9293 : op1),
9294 const_true_rtx);
9295 return cond0;
9296 }
9297 }
9298
9299 /* Similarly for MULT, AND and UMIN, except that for these the result
9300 is always zero. */
9301 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9302 && (code == MULT || code == AND || code == UMIN)
9303 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9304 {
9305 cond0 = XEXP (XEXP (x, 0), 0);
9306 cond1 = XEXP (XEXP (x, 1), 0);
9307
9308 if (COMPARISON_P (cond0)
9309 && COMPARISON_P (cond1)
9310 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9311 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9312 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9313 || ((swap_condition (GET_CODE (cond0))
9314 == reversed_comparison_code (cond1, NULL))
9315 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9316 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9317 && ! side_effects_p (x))
9318 {
9319 *ptrue = *pfalse = const0_rtx;
9320 return cond0;
9321 }
9322 }
9323 }
9324
9325 else if (code == IF_THEN_ELSE)
9326 {
9327 /* If we have IF_THEN_ELSE already, extract the condition and
9328 canonicalize it if it is NE or EQ. */
9329 cond0 = XEXP (x, 0);
9330 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9331 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9332 return XEXP (cond0, 0);
9333 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9334 {
9335 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9336 return XEXP (cond0, 0);
9337 }
9338 else
9339 return cond0;
9340 }
9341
9342 /* If X is a SUBREG, we can narrow both the true and false values
9343 if the inner expression, if there is a condition. */
9344 else if (code == SUBREG
9345 && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
9346 &false0)) != 0)
9347 {
9348 true0 = simplify_gen_subreg (mode, true0,
9349 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9350 false0 = simplify_gen_subreg (mode, false0,
9351 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9352 if (true0 && false0)
9353 {
9354 *ptrue = true0;
9355 *pfalse = false0;
9356 return cond0;
9357 }
9358 }
9359
9360 /* If X is a constant, this isn't special and will cause confusions
9361 if we treat it as such. Likewise if it is equivalent to a constant. */
9362 else if (CONSTANT_P (x)
9363 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9364 ;
9365
9366 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9367 will be least confusing to the rest of the compiler. */
9368 else if (mode == BImode)
9369 {
9370 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9371 return x;
9372 }
9373
9374 /* If X is known to be either 0 or -1, those are the true and
9375 false values when testing X. */
9376 else if (x == constm1_rtx || x == const0_rtx
9377 || (is_a <scalar_int_mode> (mode, &int_mode)
9378 && (num_sign_bit_copies (x, int_mode)
9379 == GET_MODE_PRECISION (int_mode))))
9380 {
9381 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9382 return x;
9383 }
9384
9385 /* Likewise for 0 or a single bit. */
9386 else if (HWI_COMPUTABLE_MODE_P (mode)
9387 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9388 {
9389 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9390 return x;
9391 }
9392
9393 /* Otherwise fail; show no condition with true and false values the same. */
9394 *ptrue = *pfalse = x;
9395 return 0;
9396 }
9397 \f
9398 /* Return the value of expression X given the fact that condition COND
9399 is known to be true when applied to REG as its first operand and VAL
9400 as its second. X is known to not be shared and so can be modified in
9401 place.
9402
9403 We only handle the simplest cases, and specifically those cases that
9404 arise with IF_THEN_ELSE expressions. */
9405
9406 static rtx
9407 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9408 {
9409 enum rtx_code code = GET_CODE (x);
9410 const char *fmt;
9411 int i, j;
9412
9413 if (side_effects_p (x))
9414 return x;
9415
9416 /* If either operand of the condition is a floating point value,
9417 then we have to avoid collapsing an EQ comparison. */
9418 if (cond == EQ
9419 && rtx_equal_p (x, reg)
9420 && ! FLOAT_MODE_P (GET_MODE (x))
9421 && ! FLOAT_MODE_P (GET_MODE (val)))
9422 return val;
9423
9424 if (cond == UNEQ && rtx_equal_p (x, reg))
9425 return val;
9426
9427 /* If X is (abs REG) and we know something about REG's relationship
9428 with zero, we may be able to simplify this. */
9429
9430 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9431 switch (cond)
9432 {
9433 case GE: case GT: case EQ:
9434 return XEXP (x, 0);
9435 case LT: case LE:
9436 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9437 XEXP (x, 0),
9438 GET_MODE (XEXP (x, 0)));
9439 default:
9440 break;
9441 }
9442
9443 /* The only other cases we handle are MIN, MAX, and comparisons if the
9444 operands are the same as REG and VAL. */
9445
9446 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9447 {
9448 if (rtx_equal_p (XEXP (x, 0), val))
9449 {
9450 std::swap (val, reg);
9451 cond = swap_condition (cond);
9452 }
9453
9454 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9455 {
9456 if (COMPARISON_P (x))
9457 {
9458 if (comparison_dominates_p (cond, code))
9459 return const_true_rtx;
9460
9461 code = reversed_comparison_code (x, NULL);
9462 if (code != UNKNOWN
9463 && comparison_dominates_p (cond, code))
9464 return const0_rtx;
9465 else
9466 return x;
9467 }
9468 else if (code == SMAX || code == SMIN
9469 || code == UMIN || code == UMAX)
9470 {
9471 int unsignedp = (code == UMIN || code == UMAX);
9472
9473 /* Do not reverse the condition when it is NE or EQ.
9474 This is because we cannot conclude anything about
9475 the value of 'SMAX (x, y)' when x is not equal to y,
9476 but we can when x equals y. */
9477 if ((code == SMAX || code == UMAX)
9478 && ! (cond == EQ || cond == NE))
9479 cond = reverse_condition (cond);
9480
9481 switch (cond)
9482 {
9483 case GE: case GT:
9484 return unsignedp ? x : XEXP (x, 1);
9485 case LE: case LT:
9486 return unsignedp ? x : XEXP (x, 0);
9487 case GEU: case GTU:
9488 return unsignedp ? XEXP (x, 1) : x;
9489 case LEU: case LTU:
9490 return unsignedp ? XEXP (x, 0) : x;
9491 default:
9492 break;
9493 }
9494 }
9495 }
9496 }
9497 else if (code == SUBREG)
9498 {
9499 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9500 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9501
9502 if (SUBREG_REG (x) != r)
9503 {
9504 /* We must simplify subreg here, before we lose track of the
9505 original inner_mode. */
9506 new_rtx = simplify_subreg (GET_MODE (x), r,
9507 inner_mode, SUBREG_BYTE (x));
9508 if (new_rtx)
9509 return new_rtx;
9510 else
9511 SUBST (SUBREG_REG (x), r);
9512 }
9513
9514 return x;
9515 }
9516 /* We don't have to handle SIGN_EXTEND here, because even in the
9517 case of replacing something with a modeless CONST_INT, a
9518 CONST_INT is already (supposed to be) a valid sign extension for
9519 its narrower mode, which implies it's already properly
9520 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9521 story is different. */
9522 else if (code == ZERO_EXTEND)
9523 {
9524 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9525 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9526
9527 if (XEXP (x, 0) != r)
9528 {
9529 /* We must simplify the zero_extend here, before we lose
9530 track of the original inner_mode. */
9531 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9532 r, inner_mode);
9533 if (new_rtx)
9534 return new_rtx;
9535 else
9536 SUBST (XEXP (x, 0), r);
9537 }
9538
9539 return x;
9540 }
9541
9542 fmt = GET_RTX_FORMAT (code);
9543 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9544 {
9545 if (fmt[i] == 'e')
9546 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9547 else if (fmt[i] == 'E')
9548 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9549 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9550 cond, reg, val));
9551 }
9552
9553 return x;
9554 }
9555 \f
9556 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9557 assignment as a field assignment. */
9558
9559 static int
9560 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9561 {
9562 if (widen_x && GET_MODE (x) != GET_MODE (y))
9563 {
9564 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9565 return 0;
9566 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9567 return 0;
9568 x = adjust_address_nv (x, GET_MODE (y),
9569 byte_lowpart_offset (GET_MODE (y),
9570 GET_MODE (x)));
9571 }
9572
9573 if (x == y || rtx_equal_p (x, y))
9574 return 1;
9575
9576 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9577 return 0;
9578
9579 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9580 Note that all SUBREGs of MEM are paradoxical; otherwise they
9581 would have been rewritten. */
9582 if (MEM_P (x) && GET_CODE (y) == SUBREG
9583 && MEM_P (SUBREG_REG (y))
9584 && rtx_equal_p (SUBREG_REG (y),
9585 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9586 return 1;
9587
9588 if (MEM_P (y) && GET_CODE (x) == SUBREG
9589 && MEM_P (SUBREG_REG (x))
9590 && rtx_equal_p (SUBREG_REG (x),
9591 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9592 return 1;
9593
9594 /* We used to see if get_last_value of X and Y were the same but that's
9595 not correct. In one direction, we'll cause the assignment to have
9596 the wrong destination and in the case, we'll import a register into this
9597 insn that might have already have been dead. So fail if none of the
9598 above cases are true. */
9599 return 0;
9600 }
9601 \f
9602 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9603 Return that assignment if so.
9604
9605 We only handle the most common cases. */
9606
9607 static rtx
9608 make_field_assignment (rtx x)
9609 {
9610 rtx dest = SET_DEST (x);
9611 rtx src = SET_SRC (x);
9612 rtx assign;
9613 rtx rhs, lhs;
9614 HOST_WIDE_INT c1;
9615 HOST_WIDE_INT pos;
9616 unsigned HOST_WIDE_INT len;
9617 rtx other;
9618
9619 /* All the rules in this function are specific to scalar integers. */
9620 scalar_int_mode mode;
9621 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9622 return x;
9623
9624 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9625 a clear of a one-bit field. We will have changed it to
9626 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9627 for a SUBREG. */
9628
9629 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9630 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9631 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9632 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9633 {
9634 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9635 1, 1, 1, 0);
9636 if (assign != 0)
9637 return gen_rtx_SET (assign, const0_rtx);
9638 return x;
9639 }
9640
9641 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9642 && subreg_lowpart_p (XEXP (src, 0))
9643 && partial_subreg_p (XEXP (src, 0))
9644 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9645 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9646 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9647 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9648 {
9649 assign = make_extraction (VOIDmode, dest, 0,
9650 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9651 1, 1, 1, 0);
9652 if (assign != 0)
9653 return gen_rtx_SET (assign, const0_rtx);
9654 return x;
9655 }
9656
9657 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9658 one-bit field. */
9659 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9660 && XEXP (XEXP (src, 0), 0) == const1_rtx
9661 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9662 {
9663 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9664 1, 1, 1, 0);
9665 if (assign != 0)
9666 return gen_rtx_SET (assign, const1_rtx);
9667 return x;
9668 }
9669
9670 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9671 SRC is an AND with all bits of that field set, then we can discard
9672 the AND. */
9673 if (GET_CODE (dest) == ZERO_EXTRACT
9674 && CONST_INT_P (XEXP (dest, 1))
9675 && GET_CODE (src) == AND
9676 && CONST_INT_P (XEXP (src, 1)))
9677 {
9678 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9679 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9680 unsigned HOST_WIDE_INT ze_mask;
9681
9682 if (width >= HOST_BITS_PER_WIDE_INT)
9683 ze_mask = -1;
9684 else
9685 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9686
9687 /* Complete overlap. We can remove the source AND. */
9688 if ((and_mask & ze_mask) == ze_mask)
9689 return gen_rtx_SET (dest, XEXP (src, 0));
9690
9691 /* Partial overlap. We can reduce the source AND. */
9692 if ((and_mask & ze_mask) != and_mask)
9693 {
9694 src = gen_rtx_AND (mode, XEXP (src, 0),
9695 gen_int_mode (and_mask & ze_mask, mode));
9696 return gen_rtx_SET (dest, src);
9697 }
9698 }
9699
9700 /* The other case we handle is assignments into a constant-position
9701 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9702 a mask that has all one bits except for a group of zero bits and
9703 OTHER is known to have zeros where C1 has ones, this is such an
9704 assignment. Compute the position and length from C1. Shift OTHER
9705 to the appropriate position, force it to the required mode, and
9706 make the extraction. Check for the AND in both operands. */
9707
9708 /* One or more SUBREGs might obscure the constant-position field
9709 assignment. The first one we are likely to encounter is an outer
9710 narrowing SUBREG, which we can just strip for the purposes of
9711 identifying the constant-field assignment. */
9712 scalar_int_mode src_mode = mode;
9713 if (GET_CODE (src) == SUBREG
9714 && subreg_lowpart_p (src)
9715 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9716 src = SUBREG_REG (src);
9717
9718 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9719 return x;
9720
9721 rhs = expand_compound_operation (XEXP (src, 0));
9722 lhs = expand_compound_operation (XEXP (src, 1));
9723
9724 if (GET_CODE (rhs) == AND
9725 && CONST_INT_P (XEXP (rhs, 1))
9726 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9727 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9728 /* The second SUBREG that might get in the way is a paradoxical
9729 SUBREG around the first operand of the AND. We want to
9730 pretend the operand is as wide as the destination here. We
9731 do this by adjusting the MEM to wider mode for the sole
9732 purpose of the call to rtx_equal_for_field_assignment_p. Also
9733 note this trick only works for MEMs. */
9734 else if (GET_CODE (rhs) == AND
9735 && paradoxical_subreg_p (XEXP (rhs, 0))
9736 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9737 && CONST_INT_P (XEXP (rhs, 1))
9738 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9739 dest, true))
9740 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9741 else if (GET_CODE (lhs) == AND
9742 && CONST_INT_P (XEXP (lhs, 1))
9743 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9744 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9745 /* The second SUBREG that might get in the way is a paradoxical
9746 SUBREG around the first operand of the AND. We want to
9747 pretend the operand is as wide as the destination here. We
9748 do this by adjusting the MEM to wider mode for the sole
9749 purpose of the call to rtx_equal_for_field_assignment_p. Also
9750 note this trick only works for MEMs. */
9751 else if (GET_CODE (lhs) == AND
9752 && paradoxical_subreg_p (XEXP (lhs, 0))
9753 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9754 && CONST_INT_P (XEXP (lhs, 1))
9755 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9756 dest, true))
9757 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9758 else
9759 return x;
9760
9761 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9762 if (pos < 0
9763 || pos + len > GET_MODE_PRECISION (mode)
9764 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9765 || (c1 & nonzero_bits (other, mode)) != 0)
9766 return x;
9767
9768 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9769 if (assign == 0)
9770 return x;
9771
9772 /* The mode to use for the source is the mode of the assignment, or of
9773 what is inside a possible STRICT_LOW_PART. */
9774 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9775 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9776
9777 /* Shift OTHER right POS places and make it the source, restricting it
9778 to the proper length and mode. */
9779
9780 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9781 src_mode, other, pos),
9782 dest);
9783 src = force_to_mode (src, new_mode,
9784 len >= HOST_BITS_PER_WIDE_INT
9785 ? HOST_WIDE_INT_M1U
9786 : (HOST_WIDE_INT_1U << len) - 1,
9787 0);
9788
9789 /* If SRC is masked by an AND that does not make a difference in
9790 the value being stored, strip it. */
9791 if (GET_CODE (assign) == ZERO_EXTRACT
9792 && CONST_INT_P (XEXP (assign, 1))
9793 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9794 && GET_CODE (src) == AND
9795 && CONST_INT_P (XEXP (src, 1))
9796 && UINTVAL (XEXP (src, 1))
9797 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9798 src = XEXP (src, 0);
9799
9800 return gen_rtx_SET (assign, src);
9801 }
9802 \f
9803 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9804 if so. */
9805
9806 static rtx
9807 apply_distributive_law (rtx x)
9808 {
9809 enum rtx_code code = GET_CODE (x);
9810 enum rtx_code inner_code;
9811 rtx lhs, rhs, other;
9812 rtx tem;
9813
9814 /* Distributivity is not true for floating point as it can change the
9815 value. So we don't do it unless -funsafe-math-optimizations. */
9816 if (FLOAT_MODE_P (GET_MODE (x))
9817 && ! flag_unsafe_math_optimizations)
9818 return x;
9819
9820 /* The outer operation can only be one of the following: */
9821 if (code != IOR && code != AND && code != XOR
9822 && code != PLUS && code != MINUS)
9823 return x;
9824
9825 lhs = XEXP (x, 0);
9826 rhs = XEXP (x, 1);
9827
9828 /* If either operand is a primitive we can't do anything, so get out
9829 fast. */
9830 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9831 return x;
9832
9833 lhs = expand_compound_operation (lhs);
9834 rhs = expand_compound_operation (rhs);
9835 inner_code = GET_CODE (lhs);
9836 if (inner_code != GET_CODE (rhs))
9837 return x;
9838
9839 /* See if the inner and outer operations distribute. */
9840 switch (inner_code)
9841 {
9842 case LSHIFTRT:
9843 case ASHIFTRT:
9844 case AND:
9845 case IOR:
9846 /* These all distribute except over PLUS. */
9847 if (code == PLUS || code == MINUS)
9848 return x;
9849 break;
9850
9851 case MULT:
9852 if (code != PLUS && code != MINUS)
9853 return x;
9854 break;
9855
9856 case ASHIFT:
9857 /* This is also a multiply, so it distributes over everything. */
9858 break;
9859
9860 /* This used to handle SUBREG, but this turned out to be counter-
9861 productive, since (subreg (op ...)) usually is not handled by
9862 insn patterns, and this "optimization" therefore transformed
9863 recognizable patterns into unrecognizable ones. Therefore the
9864 SUBREG case was removed from here.
9865
9866 It is possible that distributing SUBREG over arithmetic operations
9867 leads to an intermediate result than can then be optimized further,
9868 e.g. by moving the outer SUBREG to the other side of a SET as done
9869 in simplify_set. This seems to have been the original intent of
9870 handling SUBREGs here.
9871
9872 However, with current GCC this does not appear to actually happen,
9873 at least on major platforms. If some case is found where removing
9874 the SUBREG case here prevents follow-on optimizations, distributing
9875 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9876
9877 default:
9878 return x;
9879 }
9880
9881 /* Set LHS and RHS to the inner operands (A and B in the example
9882 above) and set OTHER to the common operand (C in the example).
9883 There is only one way to do this unless the inner operation is
9884 commutative. */
9885 if (COMMUTATIVE_ARITH_P (lhs)
9886 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9887 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9888 else if (COMMUTATIVE_ARITH_P (lhs)
9889 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9890 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9891 else if (COMMUTATIVE_ARITH_P (lhs)
9892 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9893 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9894 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9895 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9896 else
9897 return x;
9898
9899 /* Form the new inner operation, seeing if it simplifies first. */
9900 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9901
9902 /* There is one exception to the general way of distributing:
9903 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9904 if (code == XOR && inner_code == IOR)
9905 {
9906 inner_code = AND;
9907 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9908 }
9909
9910 /* We may be able to continuing distributing the result, so call
9911 ourselves recursively on the inner operation before forming the
9912 outer operation, which we return. */
9913 return simplify_gen_binary (inner_code, GET_MODE (x),
9914 apply_distributive_law (tem), other);
9915 }
9916
9917 /* See if X is of the form (* (+ A B) C), and if so convert to
9918 (+ (* A C) (* B C)) and try to simplify.
9919
9920 Most of the time, this results in no change. However, if some of
9921 the operands are the same or inverses of each other, simplifications
9922 will result.
9923
9924 For example, (and (ior A B) (not B)) can occur as the result of
9925 expanding a bit field assignment. When we apply the distributive
9926 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9927 which then simplifies to (and (A (not B))).
9928
9929 Note that no checks happen on the validity of applying the inverse
9930 distributive law. This is pointless since we can do it in the
9931 few places where this routine is called.
9932
9933 N is the index of the term that is decomposed (the arithmetic operation,
9934 i.e. (+ A B) in the first example above). !N is the index of the term that
9935 is distributed, i.e. of C in the first example above. */
9936 static rtx
9937 distribute_and_simplify_rtx (rtx x, int n)
9938 {
9939 machine_mode mode;
9940 enum rtx_code outer_code, inner_code;
9941 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9942
9943 /* Distributivity is not true for floating point as it can change the
9944 value. So we don't do it unless -funsafe-math-optimizations. */
9945 if (FLOAT_MODE_P (GET_MODE (x))
9946 && ! flag_unsafe_math_optimizations)
9947 return NULL_RTX;
9948
9949 decomposed = XEXP (x, n);
9950 if (!ARITHMETIC_P (decomposed))
9951 return NULL_RTX;
9952
9953 mode = GET_MODE (x);
9954 outer_code = GET_CODE (x);
9955 distributed = XEXP (x, !n);
9956
9957 inner_code = GET_CODE (decomposed);
9958 inner_op0 = XEXP (decomposed, 0);
9959 inner_op1 = XEXP (decomposed, 1);
9960
9961 /* Special case (and (xor B C) (not A)), which is equivalent to
9962 (xor (ior A B) (ior A C)) */
9963 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9964 {
9965 distributed = XEXP (distributed, 0);
9966 outer_code = IOR;
9967 }
9968
9969 if (n == 0)
9970 {
9971 /* Distribute the second term. */
9972 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9973 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9974 }
9975 else
9976 {
9977 /* Distribute the first term. */
9978 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9979 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9980 }
9981
9982 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9983 new_op0, new_op1));
9984 if (GET_CODE (tmp) != outer_code
9985 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9986 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9987 return tmp;
9988
9989 return NULL_RTX;
9990 }
9991 \f
9992 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9993 in MODE. Return an equivalent form, if different from (and VAROP
9994 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9995
9996 static rtx
9997 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
9998 unsigned HOST_WIDE_INT constop)
9999 {
10000 unsigned HOST_WIDE_INT nonzero;
10001 unsigned HOST_WIDE_INT orig_constop;
10002 rtx orig_varop;
10003 int i;
10004
10005 orig_varop = varop;
10006 orig_constop = constop;
10007 if (GET_CODE (varop) == CLOBBER)
10008 return NULL_RTX;
10009
10010 /* Simplify VAROP knowing that we will be only looking at some of the
10011 bits in it.
10012
10013 Note by passing in CONSTOP, we guarantee that the bits not set in
10014 CONSTOP are not significant and will never be examined. We must
10015 ensure that is the case by explicitly masking out those bits
10016 before returning. */
10017 varop = force_to_mode (varop, mode, constop, 0);
10018
10019 /* If VAROP is a CLOBBER, we will fail so return it. */
10020 if (GET_CODE (varop) == CLOBBER)
10021 return varop;
10022
10023 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10024 to VAROP and return the new constant. */
10025 if (CONST_INT_P (varop))
10026 return gen_int_mode (INTVAL (varop) & constop, mode);
10027
10028 /* See what bits may be nonzero in VAROP. Unlike the general case of
10029 a call to nonzero_bits, here we don't care about bits outside
10030 MODE. */
10031
10032 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10033
10034 /* Turn off all bits in the constant that are known to already be zero.
10035 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10036 which is tested below. */
10037
10038 constop &= nonzero;
10039
10040 /* If we don't have any bits left, return zero. */
10041 if (constop == 0)
10042 return const0_rtx;
10043
10044 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10045 a power of two, we can replace this with an ASHIFT. */
10046 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10047 && (i = exact_log2 (constop)) >= 0)
10048 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10049
10050 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10051 or XOR, then try to apply the distributive law. This may eliminate
10052 operations if either branch can be simplified because of the AND.
10053 It may also make some cases more complex, but those cases probably
10054 won't match a pattern either with or without this. */
10055
10056 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10057 {
10058 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10059 return
10060 gen_lowpart
10061 (mode,
10062 apply_distributive_law
10063 (simplify_gen_binary (GET_CODE (varop), varop_mode,
10064 simplify_and_const_int (NULL_RTX, varop_mode,
10065 XEXP (varop, 0),
10066 constop),
10067 simplify_and_const_int (NULL_RTX, varop_mode,
10068 XEXP (varop, 1),
10069 constop))));
10070 }
10071
10072 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10073 the AND and see if one of the operands simplifies to zero. If so, we
10074 may eliminate it. */
10075
10076 if (GET_CODE (varop) == PLUS
10077 && pow2p_hwi (constop + 1))
10078 {
10079 rtx o0, o1;
10080
10081 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10082 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10083 if (o0 == const0_rtx)
10084 return o1;
10085 if (o1 == const0_rtx)
10086 return o0;
10087 }
10088
10089 /* Make a SUBREG if necessary. If we can't make it, fail. */
10090 varop = gen_lowpart (mode, varop);
10091 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10092 return NULL_RTX;
10093
10094 /* If we are only masking insignificant bits, return VAROP. */
10095 if (constop == nonzero)
10096 return varop;
10097
10098 if (varop == orig_varop && constop == orig_constop)
10099 return NULL_RTX;
10100
10101 /* Otherwise, return an AND. */
10102 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10103 }
10104
10105
10106 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10107 in MODE.
10108
10109 Return an equivalent form, if different from X. Otherwise, return X. If
10110 X is zero, we are to always construct the equivalent form. */
10111
10112 static rtx
10113 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10114 unsigned HOST_WIDE_INT constop)
10115 {
10116 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10117 if (tem)
10118 return tem;
10119
10120 if (!x)
10121 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10122 gen_int_mode (constop, mode));
10123 if (GET_MODE (x) != mode)
10124 x = gen_lowpart (mode, x);
10125 return x;
10126 }
10127 \f
10128 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10129 We don't care about bits outside of those defined in MODE.
10130
10131 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10132 a shift, AND, or zero_extract, we can do better. */
10133
10134 static rtx
10135 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10136 scalar_int_mode mode,
10137 unsigned HOST_WIDE_INT *nonzero)
10138 {
10139 rtx tem;
10140 reg_stat_type *rsp;
10141
10142 /* If X is a register whose nonzero bits value is current, use it.
10143 Otherwise, if X is a register whose value we can find, use that
10144 value. Otherwise, use the previously-computed global nonzero bits
10145 for this register. */
10146
10147 rsp = &reg_stat[REGNO (x)];
10148 if (rsp->last_set_value != 0
10149 && (rsp->last_set_mode == mode
10150 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10151 && GET_MODE_CLASS (mode) == MODE_INT))
10152 && ((rsp->last_set_label >= label_tick_ebb_start
10153 && rsp->last_set_label < label_tick)
10154 || (rsp->last_set_label == label_tick
10155 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10156 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10157 && REGNO (x) < reg_n_sets_max
10158 && REG_N_SETS (REGNO (x)) == 1
10159 && !REGNO_REG_SET_P
10160 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10161 REGNO (x)))))
10162 {
10163 /* Note that, even if the precision of last_set_mode is lower than that
10164 of mode, record_value_for_reg invoked nonzero_bits on the register
10165 with nonzero_bits_mode (because last_set_mode is necessarily integral
10166 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10167 are all valid, hence in mode too since nonzero_bits_mode is defined
10168 to the largest HWI_COMPUTABLE_MODE_P mode. */
10169 *nonzero &= rsp->last_set_nonzero_bits;
10170 return NULL;
10171 }
10172
10173 tem = get_last_value (x);
10174 if (tem)
10175 {
10176 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10177 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10178
10179 return tem;
10180 }
10181
10182 if (nonzero_sign_valid && rsp->nonzero_bits)
10183 {
10184 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10185
10186 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10187 /* We don't know anything about the upper bits. */
10188 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10189
10190 *nonzero &= mask;
10191 }
10192
10193 return NULL;
10194 }
10195
10196 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10197 end of X that are known to be equal to the sign bit. X will be used
10198 in mode MODE; the returned value will always be between 1 and the
10199 number of bits in MODE. */
10200
10201 static rtx
10202 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10203 scalar_int_mode mode,
10204 unsigned int *result)
10205 {
10206 rtx tem;
10207 reg_stat_type *rsp;
10208
10209 rsp = &reg_stat[REGNO (x)];
10210 if (rsp->last_set_value != 0
10211 && rsp->last_set_mode == mode
10212 && ((rsp->last_set_label >= label_tick_ebb_start
10213 && rsp->last_set_label < label_tick)
10214 || (rsp->last_set_label == label_tick
10215 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10216 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10217 && REGNO (x) < reg_n_sets_max
10218 && REG_N_SETS (REGNO (x)) == 1
10219 && !REGNO_REG_SET_P
10220 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10221 REGNO (x)))))
10222 {
10223 *result = rsp->last_set_sign_bit_copies;
10224 return NULL;
10225 }
10226
10227 tem = get_last_value (x);
10228 if (tem != 0)
10229 return tem;
10230
10231 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10232 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10233 *result = rsp->sign_bit_copies;
10234
10235 return NULL;
10236 }
10237 \f
10238 /* Return the number of "extended" bits there are in X, when interpreted
10239 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10240 unsigned quantities, this is the number of high-order zero bits.
10241 For signed quantities, this is the number of copies of the sign bit
10242 minus 1. In both case, this function returns the number of "spare"
10243 bits. For example, if two quantities for which this function returns
10244 at least 1 are added, the addition is known not to overflow.
10245
10246 This function will always return 0 unless called during combine, which
10247 implies that it must be called from a define_split. */
10248
10249 unsigned int
10250 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10251 {
10252 if (nonzero_sign_valid == 0)
10253 return 0;
10254
10255 scalar_int_mode int_mode;
10256 return (unsignedp
10257 ? (is_a <scalar_int_mode> (mode, &int_mode)
10258 && HWI_COMPUTABLE_MODE_P (int_mode)
10259 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10260 - floor_log2 (nonzero_bits (x, int_mode)))
10261 : 0)
10262 : num_sign_bit_copies (x, mode) - 1);
10263 }
10264
10265 /* This function is called from `simplify_shift_const' to merge two
10266 outer operations. Specifically, we have already found that we need
10267 to perform operation *POP0 with constant *PCONST0 at the outermost
10268 position. We would now like to also perform OP1 with constant CONST1
10269 (with *POP0 being done last).
10270
10271 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10272 the resulting operation. *PCOMP_P is set to 1 if we would need to
10273 complement the innermost operand, otherwise it is unchanged.
10274
10275 MODE is the mode in which the operation will be done. No bits outside
10276 the width of this mode matter. It is assumed that the width of this mode
10277 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10278
10279 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10280 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10281 result is simply *PCONST0.
10282
10283 If the resulting operation cannot be expressed as one operation, we
10284 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10285
10286 static int
10287 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10288 {
10289 enum rtx_code op0 = *pop0;
10290 HOST_WIDE_INT const0 = *pconst0;
10291
10292 const0 &= GET_MODE_MASK (mode);
10293 const1 &= GET_MODE_MASK (mode);
10294
10295 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10296 if (op0 == AND)
10297 const1 &= const0;
10298
10299 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10300 if OP0 is SET. */
10301
10302 if (op1 == UNKNOWN || op0 == SET)
10303 return 1;
10304
10305 else if (op0 == UNKNOWN)
10306 op0 = op1, const0 = const1;
10307
10308 else if (op0 == op1)
10309 {
10310 switch (op0)
10311 {
10312 case AND:
10313 const0 &= const1;
10314 break;
10315 case IOR:
10316 const0 |= const1;
10317 break;
10318 case XOR:
10319 const0 ^= const1;
10320 break;
10321 case PLUS:
10322 const0 += const1;
10323 break;
10324 case NEG:
10325 op0 = UNKNOWN;
10326 break;
10327 default:
10328 break;
10329 }
10330 }
10331
10332 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10333 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10334 return 0;
10335
10336 /* If the two constants aren't the same, we can't do anything. The
10337 remaining six cases can all be done. */
10338 else if (const0 != const1)
10339 return 0;
10340
10341 else
10342 switch (op0)
10343 {
10344 case IOR:
10345 if (op1 == AND)
10346 /* (a & b) | b == b */
10347 op0 = SET;
10348 else /* op1 == XOR */
10349 /* (a ^ b) | b == a | b */
10350 {;}
10351 break;
10352
10353 case XOR:
10354 if (op1 == AND)
10355 /* (a & b) ^ b == (~a) & b */
10356 op0 = AND, *pcomp_p = 1;
10357 else /* op1 == IOR */
10358 /* (a | b) ^ b == a & ~b */
10359 op0 = AND, const0 = ~const0;
10360 break;
10361
10362 case AND:
10363 if (op1 == IOR)
10364 /* (a | b) & b == b */
10365 op0 = SET;
10366 else /* op1 == XOR */
10367 /* (a ^ b) & b) == (~a) & b */
10368 *pcomp_p = 1;
10369 break;
10370 default:
10371 break;
10372 }
10373
10374 /* Check for NO-OP cases. */
10375 const0 &= GET_MODE_MASK (mode);
10376 if (const0 == 0
10377 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10378 op0 = UNKNOWN;
10379 else if (const0 == 0 && op0 == AND)
10380 op0 = SET;
10381 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10382 && op0 == AND)
10383 op0 = UNKNOWN;
10384
10385 *pop0 = op0;
10386
10387 /* ??? Slightly redundant with the above mask, but not entirely.
10388 Moving this above means we'd have to sign-extend the mode mask
10389 for the final test. */
10390 if (op0 != UNKNOWN && op0 != NEG)
10391 *pconst0 = trunc_int_for_mode (const0, mode);
10392
10393 return 1;
10394 }
10395 \f
10396 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10397 the shift in. The original shift operation CODE is performed on OP in
10398 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10399 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10400 result of the shift is subject to operation OUTER_CODE with operand
10401 OUTER_CONST. */
10402
10403 static scalar_int_mode
10404 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10405 scalar_int_mode orig_mode, scalar_int_mode mode,
10406 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10407 {
10408 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10409
10410 /* In general we can't perform in wider mode for right shift and rotate. */
10411 switch (code)
10412 {
10413 case ASHIFTRT:
10414 /* We can still widen if the bits brought in from the left are identical
10415 to the sign bit of ORIG_MODE. */
10416 if (num_sign_bit_copies (op, mode)
10417 > (unsigned) (GET_MODE_PRECISION (mode)
10418 - GET_MODE_PRECISION (orig_mode)))
10419 return mode;
10420 return orig_mode;
10421
10422 case LSHIFTRT:
10423 /* Similarly here but with zero bits. */
10424 if (HWI_COMPUTABLE_MODE_P (mode)
10425 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10426 return mode;
10427
10428 /* We can also widen if the bits brought in will be masked off. This
10429 operation is performed in ORIG_MODE. */
10430 if (outer_code == AND)
10431 {
10432 int care_bits = low_bitmask_len (orig_mode, outer_const);
10433
10434 if (care_bits >= 0
10435 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10436 return mode;
10437 }
10438 /* fall through */
10439
10440 case ROTATE:
10441 return orig_mode;
10442
10443 case ROTATERT:
10444 gcc_unreachable ();
10445
10446 default:
10447 return mode;
10448 }
10449 }
10450
10451 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10452 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10453 if we cannot simplify it. Otherwise, return a simplified value.
10454
10455 The shift is normally computed in the widest mode we find in VAROP, as
10456 long as it isn't a different number of words than RESULT_MODE. Exceptions
10457 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10458
10459 static rtx
10460 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10461 rtx varop, int orig_count)
10462 {
10463 enum rtx_code orig_code = code;
10464 rtx orig_varop = varop;
10465 int count, log2;
10466 machine_mode mode = result_mode;
10467 machine_mode shift_mode;
10468 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10469 unsigned int mode_words
10470 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10471 /* We form (outer_op (code varop count) (outer_const)). */
10472 enum rtx_code outer_op = UNKNOWN;
10473 HOST_WIDE_INT outer_const = 0;
10474 int complement_p = 0;
10475 rtx new_rtx, x;
10476
10477 /* Make sure and truncate the "natural" shift on the way in. We don't
10478 want to do this inside the loop as it makes it more difficult to
10479 combine shifts. */
10480 if (SHIFT_COUNT_TRUNCATED)
10481 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10482
10483 /* If we were given an invalid count, don't do anything except exactly
10484 what was requested. */
10485
10486 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10487 return NULL_RTX;
10488
10489 count = orig_count;
10490
10491 /* Unless one of the branches of the `if' in this loop does a `continue',
10492 we will `break' the loop after the `if'. */
10493
10494 while (count != 0)
10495 {
10496 /* If we have an operand of (clobber (const_int 0)), fail. */
10497 if (GET_CODE (varop) == CLOBBER)
10498 return NULL_RTX;
10499
10500 /* Convert ROTATERT to ROTATE. */
10501 if (code == ROTATERT)
10502 {
10503 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10504 code = ROTATE;
10505 count = bitsize - count;
10506 }
10507
10508 shift_mode = result_mode;
10509 if (shift_mode != mode)
10510 {
10511 /* We only change the modes of scalar shifts. */
10512 int_mode = as_a <scalar_int_mode> (mode);
10513 int_result_mode = as_a <scalar_int_mode> (result_mode);
10514 shift_mode = try_widen_shift_mode (code, varop, count,
10515 int_result_mode, int_mode,
10516 outer_op, outer_const);
10517 }
10518
10519 scalar_int_mode shift_unit_mode
10520 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10521
10522 /* Handle cases where the count is greater than the size of the mode
10523 minus 1. For ASHIFT, use the size minus one as the count (this can
10524 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10525 take the count modulo the size. For other shifts, the result is
10526 zero.
10527
10528 Since these shifts are being produced by the compiler by combining
10529 multiple operations, each of which are defined, we know what the
10530 result is supposed to be. */
10531
10532 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10533 {
10534 if (code == ASHIFTRT)
10535 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10536 else if (code == ROTATE || code == ROTATERT)
10537 count %= GET_MODE_PRECISION (shift_unit_mode);
10538 else
10539 {
10540 /* We can't simply return zero because there may be an
10541 outer op. */
10542 varop = const0_rtx;
10543 count = 0;
10544 break;
10545 }
10546 }
10547
10548 /* If we discovered we had to complement VAROP, leave. Making a NOT
10549 here would cause an infinite loop. */
10550 if (complement_p)
10551 break;
10552
10553 if (shift_mode == shift_unit_mode)
10554 {
10555 /* An arithmetic right shift of a quantity known to be -1 or 0
10556 is a no-op. */
10557 if (code == ASHIFTRT
10558 && (num_sign_bit_copies (varop, shift_unit_mode)
10559 == GET_MODE_PRECISION (shift_unit_mode)))
10560 {
10561 count = 0;
10562 break;
10563 }
10564
10565 /* If we are doing an arithmetic right shift and discarding all but
10566 the sign bit copies, this is equivalent to doing a shift by the
10567 bitsize minus one. Convert it into that shift because it will
10568 often allow other simplifications. */
10569
10570 if (code == ASHIFTRT
10571 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10572 >= GET_MODE_PRECISION (shift_unit_mode)))
10573 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10574
10575 /* We simplify the tests below and elsewhere by converting
10576 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10577 `make_compound_operation' will convert it to an ASHIFTRT for
10578 those machines (such as VAX) that don't have an LSHIFTRT. */
10579 if (code == ASHIFTRT
10580 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10581 && val_signbit_known_clear_p (shift_unit_mode,
10582 nonzero_bits (varop,
10583 shift_unit_mode)))
10584 code = LSHIFTRT;
10585
10586 if (((code == LSHIFTRT
10587 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10588 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10589 || (code == ASHIFT
10590 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10591 && !((nonzero_bits (varop, shift_unit_mode) << count)
10592 & GET_MODE_MASK (shift_unit_mode))))
10593 && !side_effects_p (varop))
10594 varop = const0_rtx;
10595 }
10596
10597 switch (GET_CODE (varop))
10598 {
10599 case SIGN_EXTEND:
10600 case ZERO_EXTEND:
10601 case SIGN_EXTRACT:
10602 case ZERO_EXTRACT:
10603 new_rtx = expand_compound_operation (varop);
10604 if (new_rtx != varop)
10605 {
10606 varop = new_rtx;
10607 continue;
10608 }
10609 break;
10610
10611 case MEM:
10612 /* The following rules apply only to scalars. */
10613 if (shift_mode != shift_unit_mode)
10614 break;
10615 int_mode = as_a <scalar_int_mode> (mode);
10616
10617 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10618 minus the width of a smaller mode, we can do this with a
10619 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10620 if ((code == ASHIFTRT || code == LSHIFTRT)
10621 && ! mode_dependent_address_p (XEXP (varop, 0),
10622 MEM_ADDR_SPACE (varop))
10623 && ! MEM_VOLATILE_P (varop)
10624 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10625 .exists (&tmode)))
10626 {
10627 new_rtx = adjust_address_nv (varop, tmode,
10628 BYTES_BIG_ENDIAN ? 0
10629 : count / BITS_PER_UNIT);
10630
10631 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10632 : ZERO_EXTEND, int_mode, new_rtx);
10633 count = 0;
10634 continue;
10635 }
10636 break;
10637
10638 case SUBREG:
10639 /* The following rules apply only to scalars. */
10640 if (shift_mode != shift_unit_mode)
10641 break;
10642 int_mode = as_a <scalar_int_mode> (mode);
10643 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10644
10645 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10646 the same number of words as what we've seen so far. Then store
10647 the widest mode in MODE. */
10648 if (subreg_lowpart_p (varop)
10649 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10650 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10651 && (unsigned int) ((GET_MODE_SIZE (inner_mode)
10652 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10653 == mode_words
10654 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10655 {
10656 varop = SUBREG_REG (varop);
10657 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10658 mode = inner_mode;
10659 continue;
10660 }
10661 break;
10662
10663 case MULT:
10664 /* Some machines use MULT instead of ASHIFT because MULT
10665 is cheaper. But it is still better on those machines to
10666 merge two shifts into one. */
10667 if (CONST_INT_P (XEXP (varop, 1))
10668 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10669 {
10670 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10671 varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10672 XEXP (varop, 0), log2_rtx);
10673 continue;
10674 }
10675 break;
10676
10677 case UDIV:
10678 /* Similar, for when divides are cheaper. */
10679 if (CONST_INT_P (XEXP (varop, 1))
10680 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10681 {
10682 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10683 varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10684 XEXP (varop, 0), log2_rtx);
10685 continue;
10686 }
10687 break;
10688
10689 case ASHIFTRT:
10690 /* If we are extracting just the sign bit of an arithmetic
10691 right shift, that shift is not needed. However, the sign
10692 bit of a wider mode may be different from what would be
10693 interpreted as the sign bit in a narrower mode, so, if
10694 the result is narrower, don't discard the shift. */
10695 if (code == LSHIFTRT
10696 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10697 && (GET_MODE_UNIT_BITSIZE (result_mode)
10698 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10699 {
10700 varop = XEXP (varop, 0);
10701 continue;
10702 }
10703
10704 /* fall through */
10705
10706 case LSHIFTRT:
10707 case ASHIFT:
10708 case ROTATE:
10709 /* The following rules apply only to scalars. */
10710 if (shift_mode != shift_unit_mode)
10711 break;
10712 int_mode = as_a <scalar_int_mode> (mode);
10713 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10714 int_result_mode = as_a <scalar_int_mode> (result_mode);
10715
10716 /* Here we have two nested shifts. The result is usually the
10717 AND of a new shift with a mask. We compute the result below. */
10718 if (CONST_INT_P (XEXP (varop, 1))
10719 && INTVAL (XEXP (varop, 1)) >= 0
10720 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10721 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10722 && HWI_COMPUTABLE_MODE_P (int_mode))
10723 {
10724 enum rtx_code first_code = GET_CODE (varop);
10725 unsigned int first_count = INTVAL (XEXP (varop, 1));
10726 unsigned HOST_WIDE_INT mask;
10727 rtx mask_rtx;
10728
10729 /* We have one common special case. We can't do any merging if
10730 the inner code is an ASHIFTRT of a smaller mode. However, if
10731 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10732 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10733 we can convert it to
10734 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10735 This simplifies certain SIGN_EXTEND operations. */
10736 if (code == ASHIFT && first_code == ASHIFTRT
10737 && count == (GET_MODE_PRECISION (int_result_mode)
10738 - GET_MODE_PRECISION (int_varop_mode)))
10739 {
10740 /* C3 has the low-order C1 bits zero. */
10741
10742 mask = GET_MODE_MASK (int_mode)
10743 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10744
10745 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10746 XEXP (varop, 0), mask);
10747 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10748 int_result_mode, varop, count);
10749 count = first_count;
10750 code = ASHIFTRT;
10751 continue;
10752 }
10753
10754 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10755 than C1 high-order bits equal to the sign bit, we can convert
10756 this to either an ASHIFT or an ASHIFTRT depending on the
10757 two counts.
10758
10759 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10760
10761 if (code == ASHIFTRT && first_code == ASHIFT
10762 && int_varop_mode == shift_unit_mode
10763 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10764 > first_count))
10765 {
10766 varop = XEXP (varop, 0);
10767 count -= first_count;
10768 if (count < 0)
10769 {
10770 count = -count;
10771 code = ASHIFT;
10772 }
10773
10774 continue;
10775 }
10776
10777 /* There are some cases we can't do. If CODE is ASHIFTRT,
10778 we can only do this if FIRST_CODE is also ASHIFTRT.
10779
10780 We can't do the case when CODE is ROTATE and FIRST_CODE is
10781 ASHIFTRT.
10782
10783 If the mode of this shift is not the mode of the outer shift,
10784 we can't do this if either shift is a right shift or ROTATE.
10785
10786 Finally, we can't do any of these if the mode is too wide
10787 unless the codes are the same.
10788
10789 Handle the case where the shift codes are the same
10790 first. */
10791
10792 if (code == first_code)
10793 {
10794 if (int_varop_mode != int_result_mode
10795 && (code == ASHIFTRT || code == LSHIFTRT
10796 || code == ROTATE))
10797 break;
10798
10799 count += first_count;
10800 varop = XEXP (varop, 0);
10801 continue;
10802 }
10803
10804 if (code == ASHIFTRT
10805 || (code == ROTATE && first_code == ASHIFTRT)
10806 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10807 || (int_varop_mode != int_result_mode
10808 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10809 || first_code == ROTATE
10810 || code == ROTATE)))
10811 break;
10812
10813 /* To compute the mask to apply after the shift, shift the
10814 nonzero bits of the inner shift the same way the
10815 outer shift will. */
10816
10817 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10818 int_result_mode);
10819 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10820 mask_rtx
10821 = simplify_const_binary_operation (code, int_result_mode,
10822 mask_rtx, count_rtx);
10823
10824 /* Give up if we can't compute an outer operation to use. */
10825 if (mask_rtx == 0
10826 || !CONST_INT_P (mask_rtx)
10827 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10828 INTVAL (mask_rtx),
10829 int_result_mode, &complement_p))
10830 break;
10831
10832 /* If the shifts are in the same direction, we add the
10833 counts. Otherwise, we subtract them. */
10834 if ((code == ASHIFTRT || code == LSHIFTRT)
10835 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10836 count += first_count;
10837 else
10838 count -= first_count;
10839
10840 /* If COUNT is positive, the new shift is usually CODE,
10841 except for the two exceptions below, in which case it is
10842 FIRST_CODE. If the count is negative, FIRST_CODE should
10843 always be used */
10844 if (count > 0
10845 && ((first_code == ROTATE && code == ASHIFT)
10846 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10847 code = first_code;
10848 else if (count < 0)
10849 code = first_code, count = -count;
10850
10851 varop = XEXP (varop, 0);
10852 continue;
10853 }
10854
10855 /* If we have (A << B << C) for any shift, we can convert this to
10856 (A << C << B). This wins if A is a constant. Only try this if
10857 B is not a constant. */
10858
10859 else if (GET_CODE (varop) == code
10860 && CONST_INT_P (XEXP (varop, 0))
10861 && !CONST_INT_P (XEXP (varop, 1)))
10862 {
10863 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10864 sure the result will be masked. See PR70222. */
10865 if (code == LSHIFTRT
10866 && int_mode != int_result_mode
10867 && !merge_outer_ops (&outer_op, &outer_const, AND,
10868 GET_MODE_MASK (int_result_mode)
10869 >> orig_count, int_result_mode,
10870 &complement_p))
10871 break;
10872 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10873 up outer sign extension (often left and right shift) is
10874 hardly more efficient than the original. See PR70429. */
10875 if (code == ASHIFTRT && int_mode != int_result_mode)
10876 break;
10877
10878 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10879 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
10880 XEXP (varop, 0),
10881 count_rtx);
10882 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
10883 count = 0;
10884 continue;
10885 }
10886 break;
10887
10888 case NOT:
10889 /* The following rules apply only to scalars. */
10890 if (shift_mode != shift_unit_mode)
10891 break;
10892
10893 /* Make this fit the case below. */
10894 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10895 continue;
10896
10897 case IOR:
10898 case AND:
10899 case XOR:
10900 /* The following rules apply only to scalars. */
10901 if (shift_mode != shift_unit_mode)
10902 break;
10903 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10904 int_result_mode = as_a <scalar_int_mode> (result_mode);
10905
10906 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10907 with C the size of VAROP - 1 and the shift is logical if
10908 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10909 we have an (le X 0) operation. If we have an arithmetic shift
10910 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10911 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10912
10913 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10914 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10915 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10916 && (code == LSHIFTRT || code == ASHIFTRT)
10917 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
10918 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10919 {
10920 count = 0;
10921 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
10922 const0_rtx);
10923
10924 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10925 varop = gen_rtx_NEG (int_varop_mode, varop);
10926
10927 continue;
10928 }
10929
10930 /* If we have (shift (logical)), move the logical to the outside
10931 to allow it to possibly combine with another logical and the
10932 shift to combine with another shift. This also canonicalizes to
10933 what a ZERO_EXTRACT looks like. Also, some machines have
10934 (and (shift)) insns. */
10935
10936 if (CONST_INT_P (XEXP (varop, 1))
10937 /* We can't do this if we have (ashiftrt (xor)) and the
10938 constant has its sign bit set in shift_unit_mode with
10939 shift_unit_mode wider than result_mode. */
10940 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10941 && int_result_mode != shift_unit_mode
10942 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10943 shift_unit_mode) < 0)
10944 && (new_rtx = simplify_const_binary_operation
10945 (code, int_result_mode,
10946 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
10947 gen_int_shift_amount (int_result_mode, count))) != 0
10948 && CONST_INT_P (new_rtx)
10949 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10950 INTVAL (new_rtx), int_result_mode,
10951 &complement_p))
10952 {
10953 varop = XEXP (varop, 0);
10954 continue;
10955 }
10956
10957 /* If we can't do that, try to simplify the shift in each arm of the
10958 logical expression, make a new logical expression, and apply
10959 the inverse distributive law. This also can't be done for
10960 (ashiftrt (xor)) where we've widened the shift and the constant
10961 changes the sign bit. */
10962 if (CONST_INT_P (XEXP (varop, 1))
10963 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10964 && int_result_mode != shift_unit_mode
10965 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10966 shift_unit_mode) < 0))
10967 {
10968 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
10969 XEXP (varop, 0), count);
10970 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
10971 XEXP (varop, 1), count);
10972
10973 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
10974 lhs, rhs);
10975 varop = apply_distributive_law (varop);
10976
10977 count = 0;
10978 continue;
10979 }
10980 break;
10981
10982 case EQ:
10983 /* The following rules apply only to scalars. */
10984 if (shift_mode != shift_unit_mode)
10985 break;
10986 int_result_mode = as_a <scalar_int_mode> (result_mode);
10987
10988 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10989 says that the sign bit can be tested, FOO has mode MODE, C is
10990 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10991 that may be nonzero. */
10992 if (code == LSHIFTRT
10993 && XEXP (varop, 1) == const0_rtx
10994 && GET_MODE (XEXP (varop, 0)) == int_result_mode
10995 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
10996 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10997 && STORE_FLAG_VALUE == -1
10998 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
10999 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11000 int_result_mode, &complement_p))
11001 {
11002 varop = XEXP (varop, 0);
11003 count = 0;
11004 continue;
11005 }
11006 break;
11007
11008 case NEG:
11009 /* The following rules apply only to scalars. */
11010 if (shift_mode != shift_unit_mode)
11011 break;
11012 int_result_mode = as_a <scalar_int_mode> (result_mode);
11013
11014 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11015 than the number of bits in the mode is equivalent to A. */
11016 if (code == LSHIFTRT
11017 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11018 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11019 {
11020 varop = XEXP (varop, 0);
11021 count = 0;
11022 continue;
11023 }
11024
11025 /* NEG commutes with ASHIFT since it is multiplication. Move the
11026 NEG outside to allow shifts to combine. */
11027 if (code == ASHIFT
11028 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11029 int_result_mode, &complement_p))
11030 {
11031 varop = XEXP (varop, 0);
11032 continue;
11033 }
11034 break;
11035
11036 case PLUS:
11037 /* The following rules apply only to scalars. */
11038 if (shift_mode != shift_unit_mode)
11039 break;
11040 int_result_mode = as_a <scalar_int_mode> (result_mode);
11041
11042 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11043 is one less than the number of bits in the mode is
11044 equivalent to (xor A 1). */
11045 if (code == LSHIFTRT
11046 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11047 && XEXP (varop, 1) == constm1_rtx
11048 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11049 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11050 int_result_mode, &complement_p))
11051 {
11052 count = 0;
11053 varop = XEXP (varop, 0);
11054 continue;
11055 }
11056
11057 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11058 that might be nonzero in BAR are those being shifted out and those
11059 bits are known zero in FOO, we can replace the PLUS with FOO.
11060 Similarly in the other operand order. This code occurs when
11061 we are computing the size of a variable-size array. */
11062
11063 if ((code == ASHIFTRT || code == LSHIFTRT)
11064 && count < HOST_BITS_PER_WIDE_INT
11065 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11066 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11067 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11068 {
11069 varop = XEXP (varop, 0);
11070 continue;
11071 }
11072 else if ((code == ASHIFTRT || code == LSHIFTRT)
11073 && count < HOST_BITS_PER_WIDE_INT
11074 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11075 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11076 >> count) == 0
11077 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11078 & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11079 {
11080 varop = XEXP (varop, 1);
11081 continue;
11082 }
11083
11084 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11085 if (code == ASHIFT
11086 && CONST_INT_P (XEXP (varop, 1))
11087 && (new_rtx = simplify_const_binary_operation
11088 (ASHIFT, int_result_mode,
11089 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11090 gen_int_shift_amount (int_result_mode, count))) != 0
11091 && CONST_INT_P (new_rtx)
11092 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11093 INTVAL (new_rtx), int_result_mode,
11094 &complement_p))
11095 {
11096 varop = XEXP (varop, 0);
11097 continue;
11098 }
11099
11100 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11101 signbit', and attempt to change the PLUS to an XOR and move it to
11102 the outer operation as is done above in the AND/IOR/XOR case
11103 leg for shift(logical). See details in logical handling above
11104 for reasoning in doing so. */
11105 if (code == LSHIFTRT
11106 && CONST_INT_P (XEXP (varop, 1))
11107 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11108 && (new_rtx = simplify_const_binary_operation
11109 (code, int_result_mode,
11110 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11111 gen_int_shift_amount (int_result_mode, count))) != 0
11112 && CONST_INT_P (new_rtx)
11113 && merge_outer_ops (&outer_op, &outer_const, XOR,
11114 INTVAL (new_rtx), int_result_mode,
11115 &complement_p))
11116 {
11117 varop = XEXP (varop, 0);
11118 continue;
11119 }
11120
11121 break;
11122
11123 case MINUS:
11124 /* The following rules apply only to scalars. */
11125 if (shift_mode != shift_unit_mode)
11126 break;
11127 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11128
11129 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11130 with C the size of VAROP - 1 and the shift is logical if
11131 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11132 we have a (gt X 0) operation. If the shift is arithmetic with
11133 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11134 we have a (neg (gt X 0)) operation. */
11135
11136 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11137 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11138 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11139 && (code == LSHIFTRT || code == ASHIFTRT)
11140 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11141 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11142 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11143 {
11144 count = 0;
11145 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11146 const0_rtx);
11147
11148 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11149 varop = gen_rtx_NEG (int_varop_mode, varop);
11150
11151 continue;
11152 }
11153 break;
11154
11155 case TRUNCATE:
11156 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11157 if the truncate does not affect the value. */
11158 if (code == LSHIFTRT
11159 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11160 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11161 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11162 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11163 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11164 {
11165 rtx varop_inner = XEXP (varop, 0);
11166 int new_count = count + INTVAL (XEXP (varop_inner, 1));
11167 rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11168 new_count);
11169 varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11170 XEXP (varop_inner, 0),
11171 new_count_rtx);
11172 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11173 count = 0;
11174 continue;
11175 }
11176 break;
11177
11178 default:
11179 break;
11180 }
11181
11182 break;
11183 }
11184
11185 shift_mode = result_mode;
11186 if (shift_mode != mode)
11187 {
11188 /* We only change the modes of scalar shifts. */
11189 int_mode = as_a <scalar_int_mode> (mode);
11190 int_result_mode = as_a <scalar_int_mode> (result_mode);
11191 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11192 int_mode, outer_op, outer_const);
11193 }
11194
11195 /* We have now finished analyzing the shift. The result should be
11196 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11197 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11198 to the result of the shift. OUTER_CONST is the relevant constant,
11199 but we must turn off all bits turned off in the shift. */
11200
11201 if (outer_op == UNKNOWN
11202 && orig_code == code && orig_count == count
11203 && varop == orig_varop
11204 && shift_mode == GET_MODE (varop))
11205 return NULL_RTX;
11206
11207 /* Make a SUBREG if necessary. If we can't make it, fail. */
11208 varop = gen_lowpart (shift_mode, varop);
11209 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11210 return NULL_RTX;
11211
11212 /* If we have an outer operation and we just made a shift, it is
11213 possible that we could have simplified the shift were it not
11214 for the outer operation. So try to do the simplification
11215 recursively. */
11216
11217 if (outer_op != UNKNOWN)
11218 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11219 else
11220 x = NULL_RTX;
11221
11222 if (x == NULL_RTX)
11223 x = simplify_gen_binary (code, shift_mode, varop,
11224 gen_int_shift_amount (shift_mode, count));
11225
11226 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11227 turn off all the bits that the shift would have turned off. */
11228 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11229 /* We only change the modes of scalar shifts. */
11230 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11231 x, GET_MODE_MASK (result_mode) >> orig_count);
11232
11233 /* Do the remainder of the processing in RESULT_MODE. */
11234 x = gen_lowpart_or_truncate (result_mode, x);
11235
11236 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11237 operation. */
11238 if (complement_p)
11239 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11240
11241 if (outer_op != UNKNOWN)
11242 {
11243 int_result_mode = as_a <scalar_int_mode> (result_mode);
11244
11245 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11246 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11247 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11248
11249 if (outer_op == AND)
11250 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11251 else if (outer_op == SET)
11252 {
11253 /* This means that we have determined that the result is
11254 equivalent to a constant. This should be rare. */
11255 if (!side_effects_p (x))
11256 x = GEN_INT (outer_const);
11257 }
11258 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11259 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11260 else
11261 x = simplify_gen_binary (outer_op, int_result_mode, x,
11262 GEN_INT (outer_const));
11263 }
11264
11265 return x;
11266 }
11267
11268 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11269 The result of the shift is RESULT_MODE. If we cannot simplify it,
11270 return X or, if it is NULL, synthesize the expression with
11271 simplify_gen_binary. Otherwise, return a simplified value.
11272
11273 The shift is normally computed in the widest mode we find in VAROP, as
11274 long as it isn't a different number of words than RESULT_MODE. Exceptions
11275 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11276
11277 static rtx
11278 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11279 rtx varop, int count)
11280 {
11281 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11282 if (tem)
11283 return tem;
11284
11285 if (!x)
11286 x = simplify_gen_binary (code, GET_MODE (varop), varop,
11287 gen_int_shift_amount (GET_MODE (varop), count));
11288 if (GET_MODE (x) != result_mode)
11289 x = gen_lowpart (result_mode, x);
11290 return x;
11291 }
11292
11293 \f
11294 /* A subroutine of recog_for_combine. See there for arguments and
11295 return value. */
11296
11297 static int
11298 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11299 {
11300 rtx pat = *pnewpat;
11301 rtx pat_without_clobbers;
11302 int insn_code_number;
11303 int num_clobbers_to_add = 0;
11304 int i;
11305 rtx notes = NULL_RTX;
11306 rtx old_notes, old_pat;
11307 int old_icode;
11308
11309 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11310 we use to indicate that something didn't match. If we find such a
11311 thing, force rejection. */
11312 if (GET_CODE (pat) == PARALLEL)
11313 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11314 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11315 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11316 return -1;
11317
11318 old_pat = PATTERN (insn);
11319 old_notes = REG_NOTES (insn);
11320 PATTERN (insn) = pat;
11321 REG_NOTES (insn) = NULL_RTX;
11322
11323 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11324 if (dump_file && (dump_flags & TDF_DETAILS))
11325 {
11326 if (insn_code_number < 0)
11327 fputs ("Failed to match this instruction:\n", dump_file);
11328 else
11329 fputs ("Successfully matched this instruction:\n", dump_file);
11330 print_rtl_single (dump_file, pat);
11331 }
11332
11333 /* If it isn't, there is the possibility that we previously had an insn
11334 that clobbered some register as a side effect, but the combined
11335 insn doesn't need to do that. So try once more without the clobbers
11336 unless this represents an ASM insn. */
11337
11338 if (insn_code_number < 0 && ! check_asm_operands (pat)
11339 && GET_CODE (pat) == PARALLEL)
11340 {
11341 int pos;
11342
11343 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11344 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11345 {
11346 if (i != pos)
11347 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11348 pos++;
11349 }
11350
11351 SUBST_INT (XVECLEN (pat, 0), pos);
11352
11353 if (pos == 1)
11354 pat = XVECEXP (pat, 0, 0);
11355
11356 PATTERN (insn) = pat;
11357 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11358 if (dump_file && (dump_flags & TDF_DETAILS))
11359 {
11360 if (insn_code_number < 0)
11361 fputs ("Failed to match this instruction:\n", dump_file);
11362 else
11363 fputs ("Successfully matched this instruction:\n", dump_file);
11364 print_rtl_single (dump_file, pat);
11365 }
11366 }
11367
11368 pat_without_clobbers = pat;
11369
11370 PATTERN (insn) = old_pat;
11371 REG_NOTES (insn) = old_notes;
11372
11373 /* Recognize all noop sets, these will be killed by followup pass. */
11374 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11375 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11376
11377 /* If we had any clobbers to add, make a new pattern than contains
11378 them. Then check to make sure that all of them are dead. */
11379 if (num_clobbers_to_add)
11380 {
11381 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11382 rtvec_alloc (GET_CODE (pat) == PARALLEL
11383 ? (XVECLEN (pat, 0)
11384 + num_clobbers_to_add)
11385 : num_clobbers_to_add + 1));
11386
11387 if (GET_CODE (pat) == PARALLEL)
11388 for (i = 0; i < XVECLEN (pat, 0); i++)
11389 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11390 else
11391 XVECEXP (newpat, 0, 0) = pat;
11392
11393 add_clobbers (newpat, insn_code_number);
11394
11395 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11396 i < XVECLEN (newpat, 0); i++)
11397 {
11398 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11399 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11400 return -1;
11401 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11402 {
11403 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11404 notes = alloc_reg_note (REG_UNUSED,
11405 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11406 }
11407 }
11408 pat = newpat;
11409 }
11410
11411 if (insn_code_number >= 0
11412 && insn_code_number != NOOP_MOVE_INSN_CODE)
11413 {
11414 old_pat = PATTERN (insn);
11415 old_notes = REG_NOTES (insn);
11416 old_icode = INSN_CODE (insn);
11417 PATTERN (insn) = pat;
11418 REG_NOTES (insn) = notes;
11419 INSN_CODE (insn) = insn_code_number;
11420
11421 /* Allow targets to reject combined insn. */
11422 if (!targetm.legitimate_combined_insn (insn))
11423 {
11424 if (dump_file && (dump_flags & TDF_DETAILS))
11425 fputs ("Instruction not appropriate for target.",
11426 dump_file);
11427
11428 /* Callers expect recog_for_combine to strip
11429 clobbers from the pattern on failure. */
11430 pat = pat_without_clobbers;
11431 notes = NULL_RTX;
11432
11433 insn_code_number = -1;
11434 }
11435
11436 PATTERN (insn) = old_pat;
11437 REG_NOTES (insn) = old_notes;
11438 INSN_CODE (insn) = old_icode;
11439 }
11440
11441 *pnewpat = pat;
11442 *pnotes = notes;
11443
11444 return insn_code_number;
11445 }
11446
11447 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11448 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11449 Return whether anything was so changed. */
11450
11451 static bool
11452 change_zero_ext (rtx pat)
11453 {
11454 bool changed = false;
11455 rtx *src = &SET_SRC (pat);
11456
11457 subrtx_ptr_iterator::array_type array;
11458 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11459 {
11460 rtx x = **iter;
11461 scalar_int_mode mode, inner_mode;
11462 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11463 continue;
11464 int size;
11465
11466 if (GET_CODE (x) == ZERO_EXTRACT
11467 && CONST_INT_P (XEXP (x, 1))
11468 && CONST_INT_P (XEXP (x, 2))
11469 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11470 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11471 {
11472 size = INTVAL (XEXP (x, 1));
11473
11474 int start = INTVAL (XEXP (x, 2));
11475 if (BITS_BIG_ENDIAN)
11476 start = GET_MODE_PRECISION (inner_mode) - size - start;
11477
11478 if (start != 0)
11479 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11480 gen_int_shift_amount (inner_mode, start));
11481 else
11482 x = XEXP (x, 0);
11483 if (mode != inner_mode)
11484 x = gen_lowpart_SUBREG (mode, x);
11485 }
11486 else if (GET_CODE (x) == ZERO_EXTEND
11487 && GET_CODE (XEXP (x, 0)) == SUBREG
11488 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11489 && !paradoxical_subreg_p (XEXP (x, 0))
11490 && subreg_lowpart_p (XEXP (x, 0)))
11491 {
11492 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11493 size = GET_MODE_PRECISION (inner_mode);
11494 x = SUBREG_REG (XEXP (x, 0));
11495 if (GET_MODE (x) != mode)
11496 x = gen_lowpart_SUBREG (mode, x);
11497 }
11498 else if (GET_CODE (x) == ZERO_EXTEND
11499 && REG_P (XEXP (x, 0))
11500 && HARD_REGISTER_P (XEXP (x, 0))
11501 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11502 {
11503 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11504 size = GET_MODE_PRECISION (inner_mode);
11505 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11506 }
11507 else
11508 continue;
11509
11510 if (!(GET_CODE (x) == LSHIFTRT
11511 && CONST_INT_P (XEXP (x, 1))
11512 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11513 {
11514 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11515 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11516 }
11517
11518 SUBST (**iter, x);
11519 changed = true;
11520 }
11521
11522 if (changed)
11523 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11524 maybe_swap_commutative_operands (**iter);
11525
11526 rtx *dst = &SET_DEST (pat);
11527 scalar_int_mode mode;
11528 if (GET_CODE (*dst) == ZERO_EXTRACT
11529 && REG_P (XEXP (*dst, 0))
11530 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11531 && CONST_INT_P (XEXP (*dst, 1))
11532 && CONST_INT_P (XEXP (*dst, 2)))
11533 {
11534 rtx reg = XEXP (*dst, 0);
11535 int width = INTVAL (XEXP (*dst, 1));
11536 int offset = INTVAL (XEXP (*dst, 2));
11537 int reg_width = GET_MODE_PRECISION (mode);
11538 if (BITS_BIG_ENDIAN)
11539 offset = reg_width - width - offset;
11540
11541 rtx x, y, z, w;
11542 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11543 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11544 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11545 if (offset)
11546 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11547 else
11548 y = SET_SRC (pat);
11549 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11550 w = gen_rtx_IOR (mode, x, z);
11551 SUBST (SET_DEST (pat), reg);
11552 SUBST (SET_SRC (pat), w);
11553
11554 changed = true;
11555 }
11556
11557 return changed;
11558 }
11559
11560 /* Like recog, but we receive the address of a pointer to a new pattern.
11561 We try to match the rtx that the pointer points to.
11562 If that fails, we may try to modify or replace the pattern,
11563 storing the replacement into the same pointer object.
11564
11565 Modifications include deletion or addition of CLOBBERs. If the
11566 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11567 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11568 (and undo if that fails).
11569
11570 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11571 the CLOBBERs are placed.
11572
11573 The value is the final insn code from the pattern ultimately matched,
11574 or -1. */
11575
11576 static int
11577 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11578 {
11579 rtx pat = *pnewpat;
11580 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11581 if (insn_code_number >= 0 || check_asm_operands (pat))
11582 return insn_code_number;
11583
11584 void *marker = get_undo_marker ();
11585 bool changed = false;
11586
11587 if (GET_CODE (pat) == SET)
11588 changed = change_zero_ext (pat);
11589 else if (GET_CODE (pat) == PARALLEL)
11590 {
11591 int i;
11592 for (i = 0; i < XVECLEN (pat, 0); i++)
11593 {
11594 rtx set = XVECEXP (pat, 0, i);
11595 if (GET_CODE (set) == SET)
11596 changed |= change_zero_ext (set);
11597 }
11598 }
11599
11600 if (changed)
11601 {
11602 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11603
11604 if (insn_code_number < 0)
11605 undo_to_marker (marker);
11606 }
11607
11608 return insn_code_number;
11609 }
11610 \f
11611 /* Like gen_lowpart_general but for use by combine. In combine it
11612 is not possible to create any new pseudoregs. However, it is
11613 safe to create invalid memory addresses, because combine will
11614 try to recognize them and all they will do is make the combine
11615 attempt fail.
11616
11617 If for some reason this cannot do its job, an rtx
11618 (clobber (const_int 0)) is returned.
11619 An insn containing that will not be recognized. */
11620
11621 static rtx
11622 gen_lowpart_for_combine (machine_mode omode, rtx x)
11623 {
11624 machine_mode imode = GET_MODE (x);
11625 unsigned int osize = GET_MODE_SIZE (omode);
11626 unsigned int isize = GET_MODE_SIZE (imode);
11627 rtx result;
11628
11629 if (omode == imode)
11630 return x;
11631
11632 /* We can only support MODE being wider than a word if X is a
11633 constant integer or has a mode the same size. */
11634 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11635 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11636 goto fail;
11637
11638 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11639 won't know what to do. So we will strip off the SUBREG here and
11640 process normally. */
11641 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11642 {
11643 x = SUBREG_REG (x);
11644
11645 /* For use in case we fall down into the address adjustments
11646 further below, we need to adjust the known mode and size of
11647 x; imode and isize, since we just adjusted x. */
11648 imode = GET_MODE (x);
11649
11650 if (imode == omode)
11651 return x;
11652
11653 isize = GET_MODE_SIZE (imode);
11654 }
11655
11656 result = gen_lowpart_common (omode, x);
11657
11658 if (result)
11659 return result;
11660
11661 if (MEM_P (x))
11662 {
11663 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11664 address. */
11665 if (MEM_VOLATILE_P (x)
11666 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11667 goto fail;
11668
11669 /* If we want to refer to something bigger than the original memref,
11670 generate a paradoxical subreg instead. That will force a reload
11671 of the original memref X. */
11672 if (paradoxical_subreg_p (omode, imode))
11673 return gen_rtx_SUBREG (omode, x, 0);
11674
11675 poly_int64 offset = byte_lowpart_offset (omode, imode);
11676 return adjust_address_nv (x, omode, offset);
11677 }
11678
11679 /* If X is a comparison operator, rewrite it in a new mode. This
11680 probably won't match, but may allow further simplifications. */
11681 else if (COMPARISON_P (x))
11682 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11683
11684 /* If we couldn't simplify X any other way, just enclose it in a
11685 SUBREG. Normally, this SUBREG won't match, but some patterns may
11686 include an explicit SUBREG or we may simplify it further in combine. */
11687 else
11688 {
11689 rtx res;
11690
11691 if (imode == VOIDmode)
11692 {
11693 imode = int_mode_for_mode (omode).require ();
11694 x = gen_lowpart_common (imode, x);
11695 if (x == NULL)
11696 goto fail;
11697 }
11698 res = lowpart_subreg (omode, x, imode);
11699 if (res)
11700 return res;
11701 }
11702
11703 fail:
11704 return gen_rtx_CLOBBER (omode, const0_rtx);
11705 }
11706 \f
11707 /* Try to simplify a comparison between OP0 and a constant OP1,
11708 where CODE is the comparison code that will be tested, into a
11709 (CODE OP0 const0_rtx) form.
11710
11711 The result is a possibly different comparison code to use.
11712 *POP1 may be updated. */
11713
11714 static enum rtx_code
11715 simplify_compare_const (enum rtx_code code, machine_mode mode,
11716 rtx op0, rtx *pop1)
11717 {
11718 scalar_int_mode int_mode;
11719 HOST_WIDE_INT const_op = INTVAL (*pop1);
11720
11721 /* Get the constant we are comparing against and turn off all bits
11722 not on in our mode. */
11723 if (mode != VOIDmode)
11724 const_op = trunc_int_for_mode (const_op, mode);
11725
11726 /* If we are comparing against a constant power of two and the value
11727 being compared can only have that single bit nonzero (e.g., it was
11728 `and'ed with that bit), we can replace this with a comparison
11729 with zero. */
11730 if (const_op
11731 && (code == EQ || code == NE || code == GE || code == GEU
11732 || code == LT || code == LTU)
11733 && is_a <scalar_int_mode> (mode, &int_mode)
11734 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11735 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11736 && (nonzero_bits (op0, int_mode)
11737 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11738 {
11739 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11740 const_op = 0;
11741 }
11742
11743 /* Similarly, if we are comparing a value known to be either -1 or
11744 0 with -1, change it to the opposite comparison against zero. */
11745 if (const_op == -1
11746 && (code == EQ || code == NE || code == GT || code == LE
11747 || code == GEU || code == LTU)
11748 && is_a <scalar_int_mode> (mode, &int_mode)
11749 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11750 {
11751 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11752 const_op = 0;
11753 }
11754
11755 /* Do some canonicalizations based on the comparison code. We prefer
11756 comparisons against zero and then prefer equality comparisons.
11757 If we can reduce the size of a constant, we will do that too. */
11758 switch (code)
11759 {
11760 case LT:
11761 /* < C is equivalent to <= (C - 1) */
11762 if (const_op > 0)
11763 {
11764 const_op -= 1;
11765 code = LE;
11766 /* ... fall through to LE case below. */
11767 gcc_fallthrough ();
11768 }
11769 else
11770 break;
11771
11772 case LE:
11773 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11774 if (const_op < 0)
11775 {
11776 const_op += 1;
11777 code = LT;
11778 }
11779
11780 /* If we are doing a <= 0 comparison on a value known to have
11781 a zero sign bit, we can replace this with == 0. */
11782 else if (const_op == 0
11783 && is_a <scalar_int_mode> (mode, &int_mode)
11784 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11785 && (nonzero_bits (op0, int_mode)
11786 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11787 == 0)
11788 code = EQ;
11789 break;
11790
11791 case GE:
11792 /* >= C is equivalent to > (C - 1). */
11793 if (const_op > 0)
11794 {
11795 const_op -= 1;
11796 code = GT;
11797 /* ... fall through to GT below. */
11798 gcc_fallthrough ();
11799 }
11800 else
11801 break;
11802
11803 case GT:
11804 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11805 if (const_op < 0)
11806 {
11807 const_op += 1;
11808 code = GE;
11809 }
11810
11811 /* If we are doing a > 0 comparison on a value known to have
11812 a zero sign bit, we can replace this with != 0. */
11813 else if (const_op == 0
11814 && is_a <scalar_int_mode> (mode, &int_mode)
11815 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11816 && (nonzero_bits (op0, int_mode)
11817 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11818 == 0)
11819 code = NE;
11820 break;
11821
11822 case LTU:
11823 /* < C is equivalent to <= (C - 1). */
11824 if (const_op > 0)
11825 {
11826 const_op -= 1;
11827 code = LEU;
11828 /* ... fall through ... */
11829 gcc_fallthrough ();
11830 }
11831 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11832 else if (is_a <scalar_int_mode> (mode, &int_mode)
11833 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11834 && ((unsigned HOST_WIDE_INT) const_op
11835 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11836 {
11837 const_op = 0;
11838 code = GE;
11839 break;
11840 }
11841 else
11842 break;
11843
11844 case LEU:
11845 /* unsigned <= 0 is equivalent to == 0 */
11846 if (const_op == 0)
11847 code = EQ;
11848 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11849 else if (is_a <scalar_int_mode> (mode, &int_mode)
11850 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11851 && ((unsigned HOST_WIDE_INT) const_op
11852 == ((HOST_WIDE_INT_1U
11853 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11854 {
11855 const_op = 0;
11856 code = GE;
11857 }
11858 break;
11859
11860 case GEU:
11861 /* >= C is equivalent to > (C - 1). */
11862 if (const_op > 1)
11863 {
11864 const_op -= 1;
11865 code = GTU;
11866 /* ... fall through ... */
11867 gcc_fallthrough ();
11868 }
11869
11870 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11871 else if (is_a <scalar_int_mode> (mode, &int_mode)
11872 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11873 && ((unsigned HOST_WIDE_INT) const_op
11874 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11875 {
11876 const_op = 0;
11877 code = LT;
11878 break;
11879 }
11880 else
11881 break;
11882
11883 case GTU:
11884 /* unsigned > 0 is equivalent to != 0 */
11885 if (const_op == 0)
11886 code = NE;
11887 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11888 else if (is_a <scalar_int_mode> (mode, &int_mode)
11889 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11890 && ((unsigned HOST_WIDE_INT) const_op
11891 == (HOST_WIDE_INT_1U
11892 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
11893 {
11894 const_op = 0;
11895 code = LT;
11896 }
11897 break;
11898
11899 default:
11900 break;
11901 }
11902
11903 *pop1 = GEN_INT (const_op);
11904 return code;
11905 }
11906 \f
11907 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11908 comparison code that will be tested.
11909
11910 The result is a possibly different comparison code to use. *POP0 and
11911 *POP1 may be updated.
11912
11913 It is possible that we might detect that a comparison is either always
11914 true or always false. However, we do not perform general constant
11915 folding in combine, so this knowledge isn't useful. Such tautologies
11916 should have been detected earlier. Hence we ignore all such cases. */
11917
11918 static enum rtx_code
11919 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11920 {
11921 rtx op0 = *pop0;
11922 rtx op1 = *pop1;
11923 rtx tem, tem1;
11924 int i;
11925 scalar_int_mode mode, inner_mode, tmode;
11926 opt_scalar_int_mode tmode_iter;
11927
11928 /* Try a few ways of applying the same transformation to both operands. */
11929 while (1)
11930 {
11931 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11932 so check specially. */
11933 if (!WORD_REGISTER_OPERATIONS
11934 && code != GTU && code != GEU && code != LTU && code != LEU
11935 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11936 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11937 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11938 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11939 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11940 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
11941 && (is_a <scalar_int_mode>
11942 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
11943 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
11944 && CONST_INT_P (XEXP (op0, 1))
11945 && XEXP (op0, 1) == XEXP (op1, 1)
11946 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11947 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11948 && (INTVAL (XEXP (op0, 1))
11949 == (GET_MODE_PRECISION (mode)
11950 - GET_MODE_PRECISION (inner_mode))))
11951 {
11952 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11953 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11954 }
11955
11956 /* If both operands are the same constant shift, see if we can ignore the
11957 shift. We can if the shift is a rotate or if the bits shifted out of
11958 this shift are known to be zero for both inputs and if the type of
11959 comparison is compatible with the shift. */
11960 if (GET_CODE (op0) == GET_CODE (op1)
11961 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11962 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11963 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11964 && (code != GT && code != LT && code != GE && code != LE))
11965 || (GET_CODE (op0) == ASHIFTRT
11966 && (code != GTU && code != LTU
11967 && code != GEU && code != LEU)))
11968 && CONST_INT_P (XEXP (op0, 1))
11969 && INTVAL (XEXP (op0, 1)) >= 0
11970 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11971 && XEXP (op0, 1) == XEXP (op1, 1))
11972 {
11973 machine_mode mode = GET_MODE (op0);
11974 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11975 int shift_count = INTVAL (XEXP (op0, 1));
11976
11977 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11978 mask &= (mask >> shift_count) << shift_count;
11979 else if (GET_CODE (op0) == ASHIFT)
11980 mask = (mask & (mask << shift_count)) >> shift_count;
11981
11982 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11983 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11984 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11985 else
11986 break;
11987 }
11988
11989 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11990 SUBREGs are of the same mode, and, in both cases, the AND would
11991 be redundant if the comparison was done in the narrower mode,
11992 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11993 and the operand's possibly nonzero bits are 0xffffff01; in that case
11994 if we only care about QImode, we don't need the AND). This case
11995 occurs if the output mode of an scc insn is not SImode and
11996 STORE_FLAG_VALUE == 1 (e.g., the 386).
11997
11998 Similarly, check for a case where the AND's are ZERO_EXTEND
11999 operations from some narrower mode even though a SUBREG is not
12000 present. */
12001
12002 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12003 && CONST_INT_P (XEXP (op0, 1))
12004 && CONST_INT_P (XEXP (op1, 1)))
12005 {
12006 rtx inner_op0 = XEXP (op0, 0);
12007 rtx inner_op1 = XEXP (op1, 0);
12008 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12009 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12010 int changed = 0;
12011
12012 if (paradoxical_subreg_p (inner_op0)
12013 && GET_CODE (inner_op1) == SUBREG
12014 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12015 && (GET_MODE (SUBREG_REG (inner_op0))
12016 == GET_MODE (SUBREG_REG (inner_op1)))
12017 && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12018 GET_MODE (SUBREG_REG (inner_op0)))) == 0
12019 && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12020 GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12021 {
12022 op0 = SUBREG_REG (inner_op0);
12023 op1 = SUBREG_REG (inner_op1);
12024
12025 /* The resulting comparison is always unsigned since we masked
12026 off the original sign bit. */
12027 code = unsigned_condition (code);
12028
12029 changed = 1;
12030 }
12031
12032 else if (c0 == c1)
12033 FOR_EACH_MODE_UNTIL (tmode,
12034 as_a <scalar_int_mode> (GET_MODE (op0)))
12035 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12036 {
12037 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12038 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12039 code = unsigned_condition (code);
12040 changed = 1;
12041 break;
12042 }
12043
12044 if (! changed)
12045 break;
12046 }
12047
12048 /* If both operands are NOT, we can strip off the outer operation
12049 and adjust the comparison code for swapped operands; similarly for
12050 NEG, except that this must be an equality comparison. */
12051 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12052 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12053 && (code == EQ || code == NE)))
12054 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12055
12056 else
12057 break;
12058 }
12059
12060 /* If the first operand is a constant, swap the operands and adjust the
12061 comparison code appropriately, but don't do this if the second operand
12062 is already a constant integer. */
12063 if (swap_commutative_operands_p (op0, op1))
12064 {
12065 std::swap (op0, op1);
12066 code = swap_condition (code);
12067 }
12068
12069 /* We now enter a loop during which we will try to simplify the comparison.
12070 For the most part, we only are concerned with comparisons with zero,
12071 but some things may really be comparisons with zero but not start
12072 out looking that way. */
12073
12074 while (CONST_INT_P (op1))
12075 {
12076 machine_mode raw_mode = GET_MODE (op0);
12077 scalar_int_mode int_mode;
12078 int equality_comparison_p;
12079 int sign_bit_comparison_p;
12080 int unsigned_comparison_p;
12081 HOST_WIDE_INT const_op;
12082
12083 /* We only want to handle integral modes. This catches VOIDmode,
12084 CCmode, and the floating-point modes. An exception is that we
12085 can handle VOIDmode if OP0 is a COMPARE or a comparison
12086 operation. */
12087
12088 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12089 && ! (raw_mode == VOIDmode
12090 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12091 break;
12092
12093 /* Try to simplify the compare to constant, possibly changing the
12094 comparison op, and/or changing op1 to zero. */
12095 code = simplify_compare_const (code, raw_mode, op0, &op1);
12096 const_op = INTVAL (op1);
12097
12098 /* Compute some predicates to simplify code below. */
12099
12100 equality_comparison_p = (code == EQ || code == NE);
12101 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12102 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12103 || code == GEU);
12104
12105 /* If this is a sign bit comparison and we can do arithmetic in
12106 MODE, say that we will only be needing the sign bit of OP0. */
12107 if (sign_bit_comparison_p
12108 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12109 && HWI_COMPUTABLE_MODE_P (int_mode))
12110 op0 = force_to_mode (op0, int_mode,
12111 HOST_WIDE_INT_1U
12112 << (GET_MODE_PRECISION (int_mode) - 1),
12113 0);
12114
12115 if (COMPARISON_P (op0))
12116 {
12117 /* We can't do anything if OP0 is a condition code value, rather
12118 than an actual data value. */
12119 if (const_op != 0
12120 || CC0_P (XEXP (op0, 0))
12121 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12122 break;
12123
12124 /* Get the two operands being compared. */
12125 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12126 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12127 else
12128 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12129
12130 /* Check for the cases where we simply want the result of the
12131 earlier test or the opposite of that result. */
12132 if (code == NE || code == EQ
12133 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12134 && (code == LT || code == GE)))
12135 {
12136 enum rtx_code new_code;
12137 if (code == LT || code == NE)
12138 new_code = GET_CODE (op0);
12139 else
12140 new_code = reversed_comparison_code (op0, NULL);
12141
12142 if (new_code != UNKNOWN)
12143 {
12144 code = new_code;
12145 op0 = tem;
12146 op1 = tem1;
12147 continue;
12148 }
12149 }
12150 break;
12151 }
12152
12153 if (raw_mode == VOIDmode)
12154 break;
12155 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12156
12157 /* Now try cases based on the opcode of OP0. If none of the cases
12158 does a "continue", we exit this loop immediately after the
12159 switch. */
12160
12161 unsigned int mode_width = GET_MODE_PRECISION (mode);
12162 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12163 switch (GET_CODE (op0))
12164 {
12165 case ZERO_EXTRACT:
12166 /* If we are extracting a single bit from a variable position in
12167 a constant that has only a single bit set and are comparing it
12168 with zero, we can convert this into an equality comparison
12169 between the position and the location of the single bit. */
12170 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12171 have already reduced the shift count modulo the word size. */
12172 if (!SHIFT_COUNT_TRUNCATED
12173 && CONST_INT_P (XEXP (op0, 0))
12174 && XEXP (op0, 1) == const1_rtx
12175 && equality_comparison_p && const_op == 0
12176 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12177 {
12178 if (BITS_BIG_ENDIAN)
12179 i = BITS_PER_WORD - 1 - i;
12180
12181 op0 = XEXP (op0, 2);
12182 op1 = GEN_INT (i);
12183 const_op = i;
12184
12185 /* Result is nonzero iff shift count is equal to I. */
12186 code = reverse_condition (code);
12187 continue;
12188 }
12189
12190 /* fall through */
12191
12192 case SIGN_EXTRACT:
12193 tem = expand_compound_operation (op0);
12194 if (tem != op0)
12195 {
12196 op0 = tem;
12197 continue;
12198 }
12199 break;
12200
12201 case NOT:
12202 /* If testing for equality, we can take the NOT of the constant. */
12203 if (equality_comparison_p
12204 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12205 {
12206 op0 = XEXP (op0, 0);
12207 op1 = tem;
12208 continue;
12209 }
12210
12211 /* If just looking at the sign bit, reverse the sense of the
12212 comparison. */
12213 if (sign_bit_comparison_p)
12214 {
12215 op0 = XEXP (op0, 0);
12216 code = (code == GE ? LT : GE);
12217 continue;
12218 }
12219 break;
12220
12221 case NEG:
12222 /* If testing for equality, we can take the NEG of the constant. */
12223 if (equality_comparison_p
12224 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12225 {
12226 op0 = XEXP (op0, 0);
12227 op1 = tem;
12228 continue;
12229 }
12230
12231 /* The remaining cases only apply to comparisons with zero. */
12232 if (const_op != 0)
12233 break;
12234
12235 /* When X is ABS or is known positive,
12236 (neg X) is < 0 if and only if X != 0. */
12237
12238 if (sign_bit_comparison_p
12239 && (GET_CODE (XEXP (op0, 0)) == ABS
12240 || (mode_width <= HOST_BITS_PER_WIDE_INT
12241 && (nonzero_bits (XEXP (op0, 0), mode)
12242 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12243 == 0)))
12244 {
12245 op0 = XEXP (op0, 0);
12246 code = (code == LT ? NE : EQ);
12247 continue;
12248 }
12249
12250 /* If we have NEG of something whose two high-order bits are the
12251 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12252 if (num_sign_bit_copies (op0, mode) >= 2)
12253 {
12254 op0 = XEXP (op0, 0);
12255 code = swap_condition (code);
12256 continue;
12257 }
12258 break;
12259
12260 case ROTATE:
12261 /* If we are testing equality and our count is a constant, we
12262 can perform the inverse operation on our RHS. */
12263 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12264 && (tem = simplify_binary_operation (ROTATERT, mode,
12265 op1, XEXP (op0, 1))) != 0)
12266 {
12267 op0 = XEXP (op0, 0);
12268 op1 = tem;
12269 continue;
12270 }
12271
12272 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12273 a particular bit. Convert it to an AND of a constant of that
12274 bit. This will be converted into a ZERO_EXTRACT. */
12275 if (const_op == 0 && sign_bit_comparison_p
12276 && CONST_INT_P (XEXP (op0, 1))
12277 && mode_width <= HOST_BITS_PER_WIDE_INT)
12278 {
12279 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12280 (HOST_WIDE_INT_1U
12281 << (mode_width - 1
12282 - INTVAL (XEXP (op0, 1)))));
12283 code = (code == LT ? NE : EQ);
12284 continue;
12285 }
12286
12287 /* Fall through. */
12288
12289 case ABS:
12290 /* ABS is ignorable inside an equality comparison with zero. */
12291 if (const_op == 0 && equality_comparison_p)
12292 {
12293 op0 = XEXP (op0, 0);
12294 continue;
12295 }
12296 break;
12297
12298 case SIGN_EXTEND:
12299 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12300 (compare FOO CONST) if CONST fits in FOO's mode and we
12301 are either testing inequality or have an unsigned
12302 comparison with ZERO_EXTEND or a signed comparison with
12303 SIGN_EXTEND. But don't do it if we don't have a compare
12304 insn of the given mode, since we'd have to revert it
12305 later on, and then we wouldn't know whether to sign- or
12306 zero-extend. */
12307 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12308 && ! unsigned_comparison_p
12309 && HWI_COMPUTABLE_MODE_P (mode)
12310 && trunc_int_for_mode (const_op, mode) == const_op
12311 && have_insn_for (COMPARE, mode))
12312 {
12313 op0 = XEXP (op0, 0);
12314 continue;
12315 }
12316 break;
12317
12318 case SUBREG:
12319 /* Check for the case where we are comparing A - C1 with C2, that is
12320
12321 (subreg:MODE (plus (A) (-C1))) op (C2)
12322
12323 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12324 comparison in the wider mode. One of the following two conditions
12325 must be true in order for this to be valid:
12326
12327 1. The mode extension results in the same bit pattern being added
12328 on both sides and the comparison is equality or unsigned. As
12329 C2 has been truncated to fit in MODE, the pattern can only be
12330 all 0s or all 1s.
12331
12332 2. The mode extension results in the sign bit being copied on
12333 each side.
12334
12335 The difficulty here is that we have predicates for A but not for
12336 (A - C1) so we need to check that C1 is within proper bounds so
12337 as to perturbate A as little as possible. */
12338
12339 if (mode_width <= HOST_BITS_PER_WIDE_INT
12340 && subreg_lowpart_p (op0)
12341 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12342 &inner_mode)
12343 && GET_MODE_PRECISION (inner_mode) > mode_width
12344 && GET_CODE (SUBREG_REG (op0)) == PLUS
12345 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12346 {
12347 rtx a = XEXP (SUBREG_REG (op0), 0);
12348 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12349
12350 if ((c1 > 0
12351 && (unsigned HOST_WIDE_INT) c1
12352 < HOST_WIDE_INT_1U << (mode_width - 1)
12353 && (equality_comparison_p || unsigned_comparison_p)
12354 /* (A - C1) zero-extends if it is positive and sign-extends
12355 if it is negative, C2 both zero- and sign-extends. */
12356 && (((nonzero_bits (a, inner_mode)
12357 & ~GET_MODE_MASK (mode)) == 0
12358 && const_op >= 0)
12359 /* (A - C1) sign-extends if it is positive and 1-extends
12360 if it is negative, C2 both sign- and 1-extends. */
12361 || (num_sign_bit_copies (a, inner_mode)
12362 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12363 - mode_width)
12364 && const_op < 0)))
12365 || ((unsigned HOST_WIDE_INT) c1
12366 < HOST_WIDE_INT_1U << (mode_width - 2)
12367 /* (A - C1) always sign-extends, like C2. */
12368 && num_sign_bit_copies (a, inner_mode)
12369 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12370 - (mode_width - 1))))
12371 {
12372 op0 = SUBREG_REG (op0);
12373 continue;
12374 }
12375 }
12376
12377 /* If the inner mode is narrower and we are extracting the low part,
12378 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12379 if (paradoxical_subreg_p (op0))
12380 ;
12381 else if (subreg_lowpart_p (op0)
12382 && GET_MODE_CLASS (mode) == MODE_INT
12383 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12384 && (code == NE || code == EQ)
12385 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12386 && !paradoxical_subreg_p (op0)
12387 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12388 & ~GET_MODE_MASK (mode)) == 0)
12389 {
12390 /* Remove outer subregs that don't do anything. */
12391 tem = gen_lowpart (inner_mode, op1);
12392
12393 if ((nonzero_bits (tem, inner_mode)
12394 & ~GET_MODE_MASK (mode)) == 0)
12395 {
12396 op0 = SUBREG_REG (op0);
12397 op1 = tem;
12398 continue;
12399 }
12400 break;
12401 }
12402 else
12403 break;
12404
12405 /* FALLTHROUGH */
12406
12407 case ZERO_EXTEND:
12408 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12409 && (unsigned_comparison_p || equality_comparison_p)
12410 && HWI_COMPUTABLE_MODE_P (mode)
12411 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12412 && const_op >= 0
12413 && have_insn_for (COMPARE, mode))
12414 {
12415 op0 = XEXP (op0, 0);
12416 continue;
12417 }
12418 break;
12419
12420 case PLUS:
12421 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12422 this for equality comparisons due to pathological cases involving
12423 overflows. */
12424 if (equality_comparison_p
12425 && (tem = simplify_binary_operation (MINUS, mode,
12426 op1, XEXP (op0, 1))) != 0)
12427 {
12428 op0 = XEXP (op0, 0);
12429 op1 = tem;
12430 continue;
12431 }
12432
12433 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12434 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12435 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12436 {
12437 op0 = XEXP (XEXP (op0, 0), 0);
12438 code = (code == LT ? EQ : NE);
12439 continue;
12440 }
12441 break;
12442
12443 case MINUS:
12444 /* We used to optimize signed comparisons against zero, but that
12445 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12446 arrive here as equality comparisons, or (GEU, LTU) are
12447 optimized away. No need to special-case them. */
12448
12449 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12450 (eq B (minus A C)), whichever simplifies. We can only do
12451 this for equality comparisons due to pathological cases involving
12452 overflows. */
12453 if (equality_comparison_p
12454 && (tem = simplify_binary_operation (PLUS, mode,
12455 XEXP (op0, 1), op1)) != 0)
12456 {
12457 op0 = XEXP (op0, 0);
12458 op1 = tem;
12459 continue;
12460 }
12461
12462 if (equality_comparison_p
12463 && (tem = simplify_binary_operation (MINUS, mode,
12464 XEXP (op0, 0), op1)) != 0)
12465 {
12466 op0 = XEXP (op0, 1);
12467 op1 = tem;
12468 continue;
12469 }
12470
12471 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12472 of bits in X minus 1, is one iff X > 0. */
12473 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12474 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12475 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12476 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12477 {
12478 op0 = XEXP (op0, 1);
12479 code = (code == GE ? LE : GT);
12480 continue;
12481 }
12482 break;
12483
12484 case XOR:
12485 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12486 if C is zero or B is a constant. */
12487 if (equality_comparison_p
12488 && (tem = simplify_binary_operation (XOR, mode,
12489 XEXP (op0, 1), op1)) != 0)
12490 {
12491 op0 = XEXP (op0, 0);
12492 op1 = tem;
12493 continue;
12494 }
12495 break;
12496
12497
12498 case IOR:
12499 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12500 iff X <= 0. */
12501 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12502 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12503 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12504 {
12505 op0 = XEXP (op0, 1);
12506 code = (code == GE ? GT : LE);
12507 continue;
12508 }
12509 break;
12510
12511 case AND:
12512 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12513 will be converted to a ZERO_EXTRACT later. */
12514 if (const_op == 0 && equality_comparison_p
12515 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12516 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12517 {
12518 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12519 XEXP (XEXP (op0, 0), 1));
12520 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12521 continue;
12522 }
12523
12524 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12525 zero and X is a comparison and C1 and C2 describe only bits set
12526 in STORE_FLAG_VALUE, we can compare with X. */
12527 if (const_op == 0 && equality_comparison_p
12528 && mode_width <= HOST_BITS_PER_WIDE_INT
12529 && CONST_INT_P (XEXP (op0, 1))
12530 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12531 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12532 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12533 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12534 {
12535 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12536 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12537 if ((~STORE_FLAG_VALUE & mask) == 0
12538 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12539 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12540 && COMPARISON_P (tem))))
12541 {
12542 op0 = XEXP (XEXP (op0, 0), 0);
12543 continue;
12544 }
12545 }
12546
12547 /* If we are doing an equality comparison of an AND of a bit equal
12548 to the sign bit, replace this with a LT or GE comparison of
12549 the underlying value. */
12550 if (equality_comparison_p
12551 && const_op == 0
12552 && CONST_INT_P (XEXP (op0, 1))
12553 && mode_width <= HOST_BITS_PER_WIDE_INT
12554 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12555 == HOST_WIDE_INT_1U << (mode_width - 1)))
12556 {
12557 op0 = XEXP (op0, 0);
12558 code = (code == EQ ? GE : LT);
12559 continue;
12560 }
12561
12562 /* If this AND operation is really a ZERO_EXTEND from a narrower
12563 mode, the constant fits within that mode, and this is either an
12564 equality or unsigned comparison, try to do this comparison in
12565 the narrower mode.
12566
12567 Note that in:
12568
12569 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12570 -> (ne:DI (reg:SI 4) (const_int 0))
12571
12572 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12573 known to hold a value of the required mode the
12574 transformation is invalid. */
12575 if ((equality_comparison_p || unsigned_comparison_p)
12576 && CONST_INT_P (XEXP (op0, 1))
12577 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12578 & GET_MODE_MASK (mode))
12579 + 1)) >= 0
12580 && const_op >> i == 0
12581 && int_mode_for_size (i, 1).exists (&tmode))
12582 {
12583 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12584 continue;
12585 }
12586
12587 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12588 fits in both M1 and M2 and the SUBREG is either paradoxical
12589 or represents the low part, permute the SUBREG and the AND
12590 and try again. */
12591 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12592 && CONST_INT_P (XEXP (op0, 1)))
12593 {
12594 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12595 /* Require an integral mode, to avoid creating something like
12596 (AND:SF ...). */
12597 if ((is_a <scalar_int_mode>
12598 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12599 /* It is unsafe to commute the AND into the SUBREG if the
12600 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12601 not defined. As originally written the upper bits
12602 have a defined value due to the AND operation.
12603 However, if we commute the AND inside the SUBREG then
12604 they no longer have defined values and the meaning of
12605 the code has been changed.
12606 Also C1 should not change value in the smaller mode,
12607 see PR67028 (a positive C1 can become negative in the
12608 smaller mode, so that the AND does no longer mask the
12609 upper bits). */
12610 && ((WORD_REGISTER_OPERATIONS
12611 && mode_width > GET_MODE_PRECISION (tmode)
12612 && mode_width <= BITS_PER_WORD
12613 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12614 || (mode_width <= GET_MODE_PRECISION (tmode)
12615 && subreg_lowpart_p (XEXP (op0, 0))))
12616 && mode_width <= HOST_BITS_PER_WIDE_INT
12617 && HWI_COMPUTABLE_MODE_P (tmode)
12618 && (c1 & ~mask) == 0
12619 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12620 && c1 != mask
12621 && c1 != GET_MODE_MASK (tmode))
12622 {
12623 op0 = simplify_gen_binary (AND, tmode,
12624 SUBREG_REG (XEXP (op0, 0)),
12625 gen_int_mode (c1, tmode));
12626 op0 = gen_lowpart (mode, op0);
12627 continue;
12628 }
12629 }
12630
12631 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12632 if (const_op == 0 && equality_comparison_p
12633 && XEXP (op0, 1) == const1_rtx
12634 && GET_CODE (XEXP (op0, 0)) == NOT)
12635 {
12636 op0 = simplify_and_const_int (NULL_RTX, mode,
12637 XEXP (XEXP (op0, 0), 0), 1);
12638 code = (code == NE ? EQ : NE);
12639 continue;
12640 }
12641
12642 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12643 (eq (and (lshiftrt X) 1) 0).
12644 Also handle the case where (not X) is expressed using xor. */
12645 if (const_op == 0 && equality_comparison_p
12646 && XEXP (op0, 1) == const1_rtx
12647 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12648 {
12649 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12650 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12651
12652 if (GET_CODE (shift_op) == NOT
12653 || (GET_CODE (shift_op) == XOR
12654 && CONST_INT_P (XEXP (shift_op, 1))
12655 && CONST_INT_P (shift_count)
12656 && HWI_COMPUTABLE_MODE_P (mode)
12657 && (UINTVAL (XEXP (shift_op, 1))
12658 == HOST_WIDE_INT_1U
12659 << INTVAL (shift_count))))
12660 {
12661 op0
12662 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12663 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12664 code = (code == NE ? EQ : NE);
12665 continue;
12666 }
12667 }
12668 break;
12669
12670 case ASHIFT:
12671 /* If we have (compare (ashift FOO N) (const_int C)) and
12672 the high order N bits of FOO (N+1 if an inequality comparison)
12673 are known to be zero, we can do this by comparing FOO with C
12674 shifted right N bits so long as the low-order N bits of C are
12675 zero. */
12676 if (CONST_INT_P (XEXP (op0, 1))
12677 && INTVAL (XEXP (op0, 1)) >= 0
12678 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12679 < HOST_BITS_PER_WIDE_INT)
12680 && (((unsigned HOST_WIDE_INT) const_op
12681 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12682 - 1)) == 0)
12683 && mode_width <= HOST_BITS_PER_WIDE_INT
12684 && (nonzero_bits (XEXP (op0, 0), mode)
12685 & ~(mask >> (INTVAL (XEXP (op0, 1))
12686 + ! equality_comparison_p))) == 0)
12687 {
12688 /* We must perform a logical shift, not an arithmetic one,
12689 as we want the top N bits of C to be zero. */
12690 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12691
12692 temp >>= INTVAL (XEXP (op0, 1));
12693 op1 = gen_int_mode (temp, mode);
12694 op0 = XEXP (op0, 0);
12695 continue;
12696 }
12697
12698 /* If we are doing a sign bit comparison, it means we are testing
12699 a particular bit. Convert it to the appropriate AND. */
12700 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12701 && mode_width <= HOST_BITS_PER_WIDE_INT)
12702 {
12703 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12704 (HOST_WIDE_INT_1U
12705 << (mode_width - 1
12706 - INTVAL (XEXP (op0, 1)))));
12707 code = (code == LT ? NE : EQ);
12708 continue;
12709 }
12710
12711 /* If this an equality comparison with zero and we are shifting
12712 the low bit to the sign bit, we can convert this to an AND of the
12713 low-order bit. */
12714 if (const_op == 0 && equality_comparison_p
12715 && CONST_INT_P (XEXP (op0, 1))
12716 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12717 {
12718 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12719 continue;
12720 }
12721 break;
12722
12723 case ASHIFTRT:
12724 /* If this is an equality comparison with zero, we can do this
12725 as a logical shift, which might be much simpler. */
12726 if (equality_comparison_p && const_op == 0
12727 && CONST_INT_P (XEXP (op0, 1)))
12728 {
12729 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12730 XEXP (op0, 0),
12731 INTVAL (XEXP (op0, 1)));
12732 continue;
12733 }
12734
12735 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12736 do the comparison in a narrower mode. */
12737 if (! unsigned_comparison_p
12738 && CONST_INT_P (XEXP (op0, 1))
12739 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12740 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12741 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12742 .exists (&tmode))
12743 && (((unsigned HOST_WIDE_INT) const_op
12744 + (GET_MODE_MASK (tmode) >> 1) + 1)
12745 <= GET_MODE_MASK (tmode)))
12746 {
12747 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12748 continue;
12749 }
12750
12751 /* Likewise if OP0 is a PLUS of a sign extension with a
12752 constant, which is usually represented with the PLUS
12753 between the shifts. */
12754 if (! unsigned_comparison_p
12755 && CONST_INT_P (XEXP (op0, 1))
12756 && GET_CODE (XEXP (op0, 0)) == PLUS
12757 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12758 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12759 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12760 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12761 .exists (&tmode))
12762 && (((unsigned HOST_WIDE_INT) const_op
12763 + (GET_MODE_MASK (tmode) >> 1) + 1)
12764 <= GET_MODE_MASK (tmode)))
12765 {
12766 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12767 rtx add_const = XEXP (XEXP (op0, 0), 1);
12768 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12769 add_const, XEXP (op0, 1));
12770
12771 op0 = simplify_gen_binary (PLUS, tmode,
12772 gen_lowpart (tmode, inner),
12773 new_const);
12774 continue;
12775 }
12776
12777 /* FALLTHROUGH */
12778 case LSHIFTRT:
12779 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12780 the low order N bits of FOO are known to be zero, we can do this
12781 by comparing FOO with C shifted left N bits so long as no
12782 overflow occurs. Even if the low order N bits of FOO aren't known
12783 to be zero, if the comparison is >= or < we can use the same
12784 optimization and for > or <= by setting all the low
12785 order N bits in the comparison constant. */
12786 if (CONST_INT_P (XEXP (op0, 1))
12787 && INTVAL (XEXP (op0, 1)) > 0
12788 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12789 && mode_width <= HOST_BITS_PER_WIDE_INT
12790 && (((unsigned HOST_WIDE_INT) const_op
12791 + (GET_CODE (op0) != LSHIFTRT
12792 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12793 + 1)
12794 : 0))
12795 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12796 {
12797 unsigned HOST_WIDE_INT low_bits
12798 = (nonzero_bits (XEXP (op0, 0), mode)
12799 & ((HOST_WIDE_INT_1U
12800 << INTVAL (XEXP (op0, 1))) - 1));
12801 if (low_bits == 0 || !equality_comparison_p)
12802 {
12803 /* If the shift was logical, then we must make the condition
12804 unsigned. */
12805 if (GET_CODE (op0) == LSHIFTRT)
12806 code = unsigned_condition (code);
12807
12808 const_op = (unsigned HOST_WIDE_INT) const_op
12809 << INTVAL (XEXP (op0, 1));
12810 if (low_bits != 0
12811 && (code == GT || code == GTU
12812 || code == LE || code == LEU))
12813 const_op
12814 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12815 op1 = GEN_INT (const_op);
12816 op0 = XEXP (op0, 0);
12817 continue;
12818 }
12819 }
12820
12821 /* If we are using this shift to extract just the sign bit, we
12822 can replace this with an LT or GE comparison. */
12823 if (const_op == 0
12824 && (equality_comparison_p || sign_bit_comparison_p)
12825 && CONST_INT_P (XEXP (op0, 1))
12826 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12827 {
12828 op0 = XEXP (op0, 0);
12829 code = (code == NE || code == GT ? LT : GE);
12830 continue;
12831 }
12832 break;
12833
12834 default:
12835 break;
12836 }
12837
12838 break;
12839 }
12840
12841 /* Now make any compound operations involved in this comparison. Then,
12842 check for an outmost SUBREG on OP0 that is not doing anything or is
12843 paradoxical. The latter transformation must only be performed when
12844 it is known that the "extra" bits will be the same in op0 and op1 or
12845 that they don't matter. There are three cases to consider:
12846
12847 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12848 care bits and we can assume they have any convenient value. So
12849 making the transformation is safe.
12850
12851 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12852 In this case the upper bits of op0 are undefined. We should not make
12853 the simplification in that case as we do not know the contents of
12854 those bits.
12855
12856 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12857 In that case we know those bits are zeros or ones. We must also be
12858 sure that they are the same as the upper bits of op1.
12859
12860 We can never remove a SUBREG for a non-equality comparison because
12861 the sign bit is in a different place in the underlying object. */
12862
12863 rtx_code op0_mco_code = SET;
12864 if (op1 == const0_rtx)
12865 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12866
12867 op0 = make_compound_operation (op0, op0_mco_code);
12868 op1 = make_compound_operation (op1, SET);
12869
12870 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12871 && is_int_mode (GET_MODE (op0), &mode)
12872 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12873 && (code == NE || code == EQ))
12874 {
12875 if (paradoxical_subreg_p (op0))
12876 {
12877 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12878 implemented. */
12879 if (REG_P (SUBREG_REG (op0)))
12880 {
12881 op0 = SUBREG_REG (op0);
12882 op1 = gen_lowpart (inner_mode, op1);
12883 }
12884 }
12885 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12886 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12887 & ~GET_MODE_MASK (mode)) == 0)
12888 {
12889 tem = gen_lowpart (inner_mode, op1);
12890
12891 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
12892 op0 = SUBREG_REG (op0), op1 = tem;
12893 }
12894 }
12895
12896 /* We now do the opposite procedure: Some machines don't have compare
12897 insns in all modes. If OP0's mode is an integer mode smaller than a
12898 word and we can't do a compare in that mode, see if there is a larger
12899 mode for which we can do the compare. There are a number of cases in
12900 which we can use the wider mode. */
12901
12902 if (is_int_mode (GET_MODE (op0), &mode)
12903 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12904 && ! have_insn_for (COMPARE, mode))
12905 FOR_EACH_WIDER_MODE (tmode_iter, mode)
12906 {
12907 tmode = tmode_iter.require ();
12908 if (!HWI_COMPUTABLE_MODE_P (tmode))
12909 break;
12910 if (have_insn_for (COMPARE, tmode))
12911 {
12912 int zero_extended;
12913
12914 /* If this is a test for negative, we can make an explicit
12915 test of the sign bit. Test this first so we can use
12916 a paradoxical subreg to extend OP0. */
12917
12918 if (op1 == const0_rtx && (code == LT || code == GE)
12919 && HWI_COMPUTABLE_MODE_P (mode))
12920 {
12921 unsigned HOST_WIDE_INT sign
12922 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12923 op0 = simplify_gen_binary (AND, tmode,
12924 gen_lowpart (tmode, op0),
12925 gen_int_mode (sign, tmode));
12926 code = (code == LT) ? NE : EQ;
12927 break;
12928 }
12929
12930 /* If the only nonzero bits in OP0 and OP1 are those in the
12931 narrower mode and this is an equality or unsigned comparison,
12932 we can use the wider mode. Similarly for sign-extended
12933 values, in which case it is true for all comparisons. */
12934 zero_extended = ((code == EQ || code == NE
12935 || code == GEU || code == GTU
12936 || code == LEU || code == LTU)
12937 && (nonzero_bits (op0, tmode)
12938 & ~GET_MODE_MASK (mode)) == 0
12939 && ((CONST_INT_P (op1)
12940 || (nonzero_bits (op1, tmode)
12941 & ~GET_MODE_MASK (mode)) == 0)));
12942
12943 if (zero_extended
12944 || ((num_sign_bit_copies (op0, tmode)
12945 > (unsigned int) (GET_MODE_PRECISION (tmode)
12946 - GET_MODE_PRECISION (mode)))
12947 && (num_sign_bit_copies (op1, tmode)
12948 > (unsigned int) (GET_MODE_PRECISION (tmode)
12949 - GET_MODE_PRECISION (mode)))))
12950 {
12951 /* If OP0 is an AND and we don't have an AND in MODE either,
12952 make a new AND in the proper mode. */
12953 if (GET_CODE (op0) == AND
12954 && !have_insn_for (AND, mode))
12955 op0 = simplify_gen_binary (AND, tmode,
12956 gen_lowpart (tmode,
12957 XEXP (op0, 0)),
12958 gen_lowpart (tmode,
12959 XEXP (op0, 1)));
12960 else
12961 {
12962 if (zero_extended)
12963 {
12964 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
12965 op0, mode);
12966 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
12967 op1, mode);
12968 }
12969 else
12970 {
12971 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
12972 op0, mode);
12973 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
12974 op1, mode);
12975 }
12976 break;
12977 }
12978 }
12979 }
12980 }
12981
12982 /* We may have changed the comparison operands. Re-canonicalize. */
12983 if (swap_commutative_operands_p (op0, op1))
12984 {
12985 std::swap (op0, op1);
12986 code = swap_condition (code);
12987 }
12988
12989 /* If this machine only supports a subset of valid comparisons, see if we
12990 can convert an unsupported one into a supported one. */
12991 target_canonicalize_comparison (&code, &op0, &op1, 0);
12992
12993 *pop0 = op0;
12994 *pop1 = op1;
12995
12996 return code;
12997 }
12998 \f
12999 /* Utility function for record_value_for_reg. Count number of
13000 rtxs in X. */
13001 static int
13002 count_rtxs (rtx x)
13003 {
13004 enum rtx_code code = GET_CODE (x);
13005 const char *fmt;
13006 int i, j, ret = 1;
13007
13008 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13009 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13010 {
13011 rtx x0 = XEXP (x, 0);
13012 rtx x1 = XEXP (x, 1);
13013
13014 if (x0 == x1)
13015 return 1 + 2 * count_rtxs (x0);
13016
13017 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13018 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13019 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13020 return 2 + 2 * count_rtxs (x0)
13021 + count_rtxs (x == XEXP (x1, 0)
13022 ? XEXP (x1, 1) : XEXP (x1, 0));
13023
13024 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13025 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13026 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13027 return 2 + 2 * count_rtxs (x1)
13028 + count_rtxs (x == XEXP (x0, 0)
13029 ? XEXP (x0, 1) : XEXP (x0, 0));
13030 }
13031
13032 fmt = GET_RTX_FORMAT (code);
13033 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13034 if (fmt[i] == 'e')
13035 ret += count_rtxs (XEXP (x, i));
13036 else if (fmt[i] == 'E')
13037 for (j = 0; j < XVECLEN (x, i); j++)
13038 ret += count_rtxs (XVECEXP (x, i, j));
13039
13040 return ret;
13041 }
13042 \f
13043 /* Utility function for following routine. Called when X is part of a value
13044 being stored into last_set_value. Sets last_set_table_tick
13045 for each register mentioned. Similar to mention_regs in cse.c */
13046
13047 static void
13048 update_table_tick (rtx x)
13049 {
13050 enum rtx_code code = GET_CODE (x);
13051 const char *fmt = GET_RTX_FORMAT (code);
13052 int i, j;
13053
13054 if (code == REG)
13055 {
13056 unsigned int regno = REGNO (x);
13057 unsigned int endregno = END_REGNO (x);
13058 unsigned int r;
13059
13060 for (r = regno; r < endregno; r++)
13061 {
13062 reg_stat_type *rsp = &reg_stat[r];
13063 rsp->last_set_table_tick = label_tick;
13064 }
13065
13066 return;
13067 }
13068
13069 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13070 if (fmt[i] == 'e')
13071 {
13072 /* Check for identical subexpressions. If x contains
13073 identical subexpression we only have to traverse one of
13074 them. */
13075 if (i == 0 && ARITHMETIC_P (x))
13076 {
13077 /* Note that at this point x1 has already been
13078 processed. */
13079 rtx x0 = XEXP (x, 0);
13080 rtx x1 = XEXP (x, 1);
13081
13082 /* If x0 and x1 are identical then there is no need to
13083 process x0. */
13084 if (x0 == x1)
13085 break;
13086
13087 /* If x0 is identical to a subexpression of x1 then while
13088 processing x1, x0 has already been processed. Thus we
13089 are done with x. */
13090 if (ARITHMETIC_P (x1)
13091 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13092 break;
13093
13094 /* If x1 is identical to a subexpression of x0 then we
13095 still have to process the rest of x0. */
13096 if (ARITHMETIC_P (x0)
13097 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13098 {
13099 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13100 break;
13101 }
13102 }
13103
13104 update_table_tick (XEXP (x, i));
13105 }
13106 else if (fmt[i] == 'E')
13107 for (j = 0; j < XVECLEN (x, i); j++)
13108 update_table_tick (XVECEXP (x, i, j));
13109 }
13110
13111 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13112 are saying that the register is clobbered and we no longer know its
13113 value. If INSN is zero, don't update reg_stat[].last_set; this is
13114 only permitted with VALUE also zero and is used to invalidate the
13115 register. */
13116
13117 static void
13118 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13119 {
13120 unsigned int regno = REGNO (reg);
13121 unsigned int endregno = END_REGNO (reg);
13122 unsigned int i;
13123 reg_stat_type *rsp;
13124
13125 /* If VALUE contains REG and we have a previous value for REG, substitute
13126 the previous value. */
13127 if (value && insn && reg_overlap_mentioned_p (reg, value))
13128 {
13129 rtx tem;
13130
13131 /* Set things up so get_last_value is allowed to see anything set up to
13132 our insn. */
13133 subst_low_luid = DF_INSN_LUID (insn);
13134 tem = get_last_value (reg);
13135
13136 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13137 it isn't going to be useful and will take a lot of time to process,
13138 so just use the CLOBBER. */
13139
13140 if (tem)
13141 {
13142 if (ARITHMETIC_P (tem)
13143 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13144 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13145 tem = XEXP (tem, 0);
13146 else if (count_occurrences (value, reg, 1) >= 2)
13147 {
13148 /* If there are two or more occurrences of REG in VALUE,
13149 prevent the value from growing too much. */
13150 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
13151 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13152 }
13153
13154 value = replace_rtx (copy_rtx (value), reg, tem);
13155 }
13156 }
13157
13158 /* For each register modified, show we don't know its value, that
13159 we don't know about its bitwise content, that its value has been
13160 updated, and that we don't know the location of the death of the
13161 register. */
13162 for (i = regno; i < endregno; i++)
13163 {
13164 rsp = &reg_stat[i];
13165
13166 if (insn)
13167 rsp->last_set = insn;
13168
13169 rsp->last_set_value = 0;
13170 rsp->last_set_mode = VOIDmode;
13171 rsp->last_set_nonzero_bits = 0;
13172 rsp->last_set_sign_bit_copies = 0;
13173 rsp->last_death = 0;
13174 rsp->truncated_to_mode = VOIDmode;
13175 }
13176
13177 /* Mark registers that are being referenced in this value. */
13178 if (value)
13179 update_table_tick (value);
13180
13181 /* Now update the status of each register being set.
13182 If someone is using this register in this block, set this register
13183 to invalid since we will get confused between the two lives in this
13184 basic block. This makes using this register always invalid. In cse, we
13185 scan the table to invalidate all entries using this register, but this
13186 is too much work for us. */
13187
13188 for (i = regno; i < endregno; i++)
13189 {
13190 rsp = &reg_stat[i];
13191 rsp->last_set_label = label_tick;
13192 if (!insn
13193 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13194 rsp->last_set_invalid = 1;
13195 else
13196 rsp->last_set_invalid = 0;
13197 }
13198
13199 /* The value being assigned might refer to X (like in "x++;"). In that
13200 case, we must replace it with (clobber (const_int 0)) to prevent
13201 infinite loops. */
13202 rsp = &reg_stat[regno];
13203 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13204 {
13205 value = copy_rtx (value);
13206 if (!get_last_value_validate (&value, insn, label_tick, 1))
13207 value = 0;
13208 }
13209
13210 /* For the main register being modified, update the value, the mode, the
13211 nonzero bits, and the number of sign bit copies. */
13212
13213 rsp->last_set_value = value;
13214
13215 if (value)
13216 {
13217 machine_mode mode = GET_MODE (reg);
13218 subst_low_luid = DF_INSN_LUID (insn);
13219 rsp->last_set_mode = mode;
13220 if (GET_MODE_CLASS (mode) == MODE_INT
13221 && HWI_COMPUTABLE_MODE_P (mode))
13222 mode = nonzero_bits_mode;
13223 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13224 rsp->last_set_sign_bit_copies
13225 = num_sign_bit_copies (value, GET_MODE (reg));
13226 }
13227 }
13228
13229 /* Called via note_stores from record_dead_and_set_regs to handle one
13230 SET or CLOBBER in an insn. DATA is the instruction in which the
13231 set is occurring. */
13232
13233 static void
13234 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13235 {
13236 rtx_insn *record_dead_insn = (rtx_insn *) data;
13237
13238 if (GET_CODE (dest) == SUBREG)
13239 dest = SUBREG_REG (dest);
13240
13241 if (!record_dead_insn)
13242 {
13243 if (REG_P (dest))
13244 record_value_for_reg (dest, NULL, NULL_RTX);
13245 return;
13246 }
13247
13248 if (REG_P (dest))
13249 {
13250 /* If we are setting the whole register, we know its value. Otherwise
13251 show that we don't know the value. We can handle SUBREG in
13252 some cases. */
13253 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13254 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13255 else if (GET_CODE (setter) == SET
13256 && GET_CODE (SET_DEST (setter)) == SUBREG
13257 && SUBREG_REG (SET_DEST (setter)) == dest
13258 && known_le (GET_MODE_PRECISION (GET_MODE (dest)), BITS_PER_WORD)
13259 && subreg_lowpart_p (SET_DEST (setter)))
13260 record_value_for_reg (dest, record_dead_insn,
13261 gen_lowpart (GET_MODE (dest),
13262 SET_SRC (setter)));
13263 else
13264 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13265 }
13266 else if (MEM_P (dest)
13267 /* Ignore pushes, they clobber nothing. */
13268 && ! push_operand (dest, GET_MODE (dest)))
13269 mem_last_set = DF_INSN_LUID (record_dead_insn);
13270 }
13271
13272 /* Update the records of when each REG was most recently set or killed
13273 for the things done by INSN. This is the last thing done in processing
13274 INSN in the combiner loop.
13275
13276 We update reg_stat[], in particular fields last_set, last_set_value,
13277 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13278 last_death, and also the similar information mem_last_set (which insn
13279 most recently modified memory) and last_call_luid (which insn was the
13280 most recent subroutine call). */
13281
13282 static void
13283 record_dead_and_set_regs (rtx_insn *insn)
13284 {
13285 rtx link;
13286 unsigned int i;
13287
13288 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13289 {
13290 if (REG_NOTE_KIND (link) == REG_DEAD
13291 && REG_P (XEXP (link, 0)))
13292 {
13293 unsigned int regno = REGNO (XEXP (link, 0));
13294 unsigned int endregno = END_REGNO (XEXP (link, 0));
13295
13296 for (i = regno; i < endregno; i++)
13297 {
13298 reg_stat_type *rsp;
13299
13300 rsp = &reg_stat[i];
13301 rsp->last_death = insn;
13302 }
13303 }
13304 else if (REG_NOTE_KIND (link) == REG_INC)
13305 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13306 }
13307
13308 if (CALL_P (insn))
13309 {
13310 hard_reg_set_iterator hrsi;
13311 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13312 {
13313 reg_stat_type *rsp;
13314
13315 rsp = &reg_stat[i];
13316 rsp->last_set_invalid = 1;
13317 rsp->last_set = insn;
13318 rsp->last_set_value = 0;
13319 rsp->last_set_mode = VOIDmode;
13320 rsp->last_set_nonzero_bits = 0;
13321 rsp->last_set_sign_bit_copies = 0;
13322 rsp->last_death = 0;
13323 rsp->truncated_to_mode = VOIDmode;
13324 }
13325
13326 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13327
13328 /* We can't combine into a call pattern. Remember, though, that
13329 the return value register is set at this LUID. We could
13330 still replace a register with the return value from the
13331 wrong subroutine call! */
13332 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13333 }
13334 else
13335 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13336 }
13337
13338 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13339 register present in the SUBREG, so for each such SUBREG go back and
13340 adjust nonzero and sign bit information of the registers that are
13341 known to have some zero/sign bits set.
13342
13343 This is needed because when combine blows the SUBREGs away, the
13344 information on zero/sign bits is lost and further combines can be
13345 missed because of that. */
13346
13347 static void
13348 record_promoted_value (rtx_insn *insn, rtx subreg)
13349 {
13350 struct insn_link *links;
13351 rtx set;
13352 unsigned int regno = REGNO (SUBREG_REG (subreg));
13353 machine_mode mode = GET_MODE (subreg);
13354
13355 if (!HWI_COMPUTABLE_MODE_P (mode))
13356 return;
13357
13358 for (links = LOG_LINKS (insn); links;)
13359 {
13360 reg_stat_type *rsp;
13361
13362 insn = links->insn;
13363 set = single_set (insn);
13364
13365 if (! set || !REG_P (SET_DEST (set))
13366 || REGNO (SET_DEST (set)) != regno
13367 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13368 {
13369 links = links->next;
13370 continue;
13371 }
13372
13373 rsp = &reg_stat[regno];
13374 if (rsp->last_set == insn)
13375 {
13376 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13377 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13378 }
13379
13380 if (REG_P (SET_SRC (set)))
13381 {
13382 regno = REGNO (SET_SRC (set));
13383 links = LOG_LINKS (insn);
13384 }
13385 else
13386 break;
13387 }
13388 }
13389
13390 /* Check if X, a register, is known to contain a value already
13391 truncated to MODE. In this case we can use a subreg to refer to
13392 the truncated value even though in the generic case we would need
13393 an explicit truncation. */
13394
13395 static bool
13396 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13397 {
13398 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13399 machine_mode truncated = rsp->truncated_to_mode;
13400
13401 if (truncated == 0
13402 || rsp->truncation_label < label_tick_ebb_start)
13403 return false;
13404 if (!partial_subreg_p (mode, truncated))
13405 return true;
13406 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13407 return true;
13408 return false;
13409 }
13410
13411 /* If X is a hard reg or a subreg record the mode that the register is
13412 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13413 able to turn a truncate into a subreg using this information. Return true
13414 if traversing X is complete. */
13415
13416 static bool
13417 record_truncated_value (rtx x)
13418 {
13419 machine_mode truncated_mode;
13420 reg_stat_type *rsp;
13421
13422 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13423 {
13424 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13425 truncated_mode = GET_MODE (x);
13426
13427 if (!partial_subreg_p (truncated_mode, original_mode))
13428 return true;
13429
13430 truncated_mode = GET_MODE (x);
13431 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13432 return true;
13433
13434 x = SUBREG_REG (x);
13435 }
13436 /* ??? For hard-regs we now record everything. We might be able to
13437 optimize this using last_set_mode. */
13438 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13439 truncated_mode = GET_MODE (x);
13440 else
13441 return false;
13442
13443 rsp = &reg_stat[REGNO (x)];
13444 if (rsp->truncated_to_mode == 0
13445 || rsp->truncation_label < label_tick_ebb_start
13446 || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13447 {
13448 rsp->truncated_to_mode = truncated_mode;
13449 rsp->truncation_label = label_tick;
13450 }
13451
13452 return true;
13453 }
13454
13455 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13456 the modes they are used in. This can help truning TRUNCATEs into
13457 SUBREGs. */
13458
13459 static void
13460 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13461 {
13462 subrtx_var_iterator::array_type array;
13463 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13464 if (record_truncated_value (*iter))
13465 iter.skip_subrtxes ();
13466 }
13467
13468 /* Scan X for promoted SUBREGs. For each one found,
13469 note what it implies to the registers used in it. */
13470
13471 static void
13472 check_promoted_subreg (rtx_insn *insn, rtx x)
13473 {
13474 if (GET_CODE (x) == SUBREG
13475 && SUBREG_PROMOTED_VAR_P (x)
13476 && REG_P (SUBREG_REG (x)))
13477 record_promoted_value (insn, x);
13478 else
13479 {
13480 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13481 int i, j;
13482
13483 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13484 switch (format[i])
13485 {
13486 case 'e':
13487 check_promoted_subreg (insn, XEXP (x, i));
13488 break;
13489 case 'V':
13490 case 'E':
13491 if (XVEC (x, i) != 0)
13492 for (j = 0; j < XVECLEN (x, i); j++)
13493 check_promoted_subreg (insn, XVECEXP (x, i, j));
13494 break;
13495 }
13496 }
13497 }
13498 \f
13499 /* Verify that all the registers and memory references mentioned in *LOC are
13500 still valid. *LOC was part of a value set in INSN when label_tick was
13501 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13502 the invalid references with (clobber (const_int 0)) and return 1. This
13503 replacement is useful because we often can get useful information about
13504 the form of a value (e.g., if it was produced by a shift that always
13505 produces -1 or 0) even though we don't know exactly what registers it
13506 was produced from. */
13507
13508 static int
13509 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13510 {
13511 rtx x = *loc;
13512 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13513 int len = GET_RTX_LENGTH (GET_CODE (x));
13514 int i, j;
13515
13516 if (REG_P (x))
13517 {
13518 unsigned int regno = REGNO (x);
13519 unsigned int endregno = END_REGNO (x);
13520 unsigned int j;
13521
13522 for (j = regno; j < endregno; j++)
13523 {
13524 reg_stat_type *rsp = &reg_stat[j];
13525 if (rsp->last_set_invalid
13526 /* If this is a pseudo-register that was only set once and not
13527 live at the beginning of the function, it is always valid. */
13528 || (! (regno >= FIRST_PSEUDO_REGISTER
13529 && regno < reg_n_sets_max
13530 && REG_N_SETS (regno) == 1
13531 && (!REGNO_REG_SET_P
13532 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13533 regno)))
13534 && rsp->last_set_label > tick))
13535 {
13536 if (replace)
13537 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13538 return replace;
13539 }
13540 }
13541
13542 return 1;
13543 }
13544 /* If this is a memory reference, make sure that there were no stores after
13545 it that might have clobbered the value. We don't have alias info, so we
13546 assume any store invalidates it. Moreover, we only have local UIDs, so
13547 we also assume that there were stores in the intervening basic blocks. */
13548 else if (MEM_P (x) && !MEM_READONLY_P (x)
13549 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13550 {
13551 if (replace)
13552 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13553 return replace;
13554 }
13555
13556 for (i = 0; i < len; i++)
13557 {
13558 if (fmt[i] == 'e')
13559 {
13560 /* Check for identical subexpressions. If x contains
13561 identical subexpression we only have to traverse one of
13562 them. */
13563 if (i == 1 && ARITHMETIC_P (x))
13564 {
13565 /* Note that at this point x0 has already been checked
13566 and found valid. */
13567 rtx x0 = XEXP (x, 0);
13568 rtx x1 = XEXP (x, 1);
13569
13570 /* If x0 and x1 are identical then x is also valid. */
13571 if (x0 == x1)
13572 return 1;
13573
13574 /* If x1 is identical to a subexpression of x0 then
13575 while checking x0, x1 has already been checked. Thus
13576 it is valid and so as x. */
13577 if (ARITHMETIC_P (x0)
13578 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13579 return 1;
13580
13581 /* If x0 is identical to a subexpression of x1 then x is
13582 valid iff the rest of x1 is valid. */
13583 if (ARITHMETIC_P (x1)
13584 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13585 return
13586 get_last_value_validate (&XEXP (x1,
13587 x0 == XEXP (x1, 0) ? 1 : 0),
13588 insn, tick, replace);
13589 }
13590
13591 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13592 replace) == 0)
13593 return 0;
13594 }
13595 else if (fmt[i] == 'E')
13596 for (j = 0; j < XVECLEN (x, i); j++)
13597 if (get_last_value_validate (&XVECEXP (x, i, j),
13598 insn, tick, replace) == 0)
13599 return 0;
13600 }
13601
13602 /* If we haven't found a reason for it to be invalid, it is valid. */
13603 return 1;
13604 }
13605
13606 /* Get the last value assigned to X, if known. Some registers
13607 in the value may be replaced with (clobber (const_int 0)) if their value
13608 is known longer known reliably. */
13609
13610 static rtx
13611 get_last_value (const_rtx x)
13612 {
13613 unsigned int regno;
13614 rtx value;
13615 reg_stat_type *rsp;
13616
13617 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13618 then convert it to the desired mode. If this is a paradoxical SUBREG,
13619 we cannot predict what values the "extra" bits might have. */
13620 if (GET_CODE (x) == SUBREG
13621 && subreg_lowpart_p (x)
13622 && !paradoxical_subreg_p (x)
13623 && (value = get_last_value (SUBREG_REG (x))) != 0)
13624 return gen_lowpart (GET_MODE (x), value);
13625
13626 if (!REG_P (x))
13627 return 0;
13628
13629 regno = REGNO (x);
13630 rsp = &reg_stat[regno];
13631 value = rsp->last_set_value;
13632
13633 /* If we don't have a value, or if it isn't for this basic block and
13634 it's either a hard register, set more than once, or it's a live
13635 at the beginning of the function, return 0.
13636
13637 Because if it's not live at the beginning of the function then the reg
13638 is always set before being used (is never used without being set).
13639 And, if it's set only once, and it's always set before use, then all
13640 uses must have the same last value, even if it's not from this basic
13641 block. */
13642
13643 if (value == 0
13644 || (rsp->last_set_label < label_tick_ebb_start
13645 && (regno < FIRST_PSEUDO_REGISTER
13646 || regno >= reg_n_sets_max
13647 || REG_N_SETS (regno) != 1
13648 || REGNO_REG_SET_P
13649 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13650 return 0;
13651
13652 /* If the value was set in a later insn than the ones we are processing,
13653 we can't use it even if the register was only set once. */
13654 if (rsp->last_set_label == label_tick
13655 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13656 return 0;
13657
13658 /* If fewer bits were set than what we are asked for now, we cannot use
13659 the value. */
13660 if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode),
13661 GET_MODE_PRECISION (GET_MODE (x))))
13662 return 0;
13663
13664 /* If the value has all its registers valid, return it. */
13665 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13666 return value;
13667
13668 /* Otherwise, make a copy and replace any invalid register with
13669 (clobber (const_int 0)). If that fails for some reason, return 0. */
13670
13671 value = copy_rtx (value);
13672 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13673 return value;
13674
13675 return 0;
13676 }
13677 \f
13678 /* Define three variables used for communication between the following
13679 routines. */
13680
13681 static unsigned int reg_dead_regno, reg_dead_endregno;
13682 static int reg_dead_flag;
13683
13684 /* Function called via note_stores from reg_dead_at_p.
13685
13686 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13687 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13688
13689 static void
13690 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13691 {
13692 unsigned int regno, endregno;
13693
13694 if (!REG_P (dest))
13695 return;
13696
13697 regno = REGNO (dest);
13698 endregno = END_REGNO (dest);
13699 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13700 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13701 }
13702
13703 /* Return nonzero if REG is known to be dead at INSN.
13704
13705 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13706 referencing REG, it is dead. If we hit a SET referencing REG, it is
13707 live. Otherwise, see if it is live or dead at the start of the basic
13708 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13709 must be assumed to be always live. */
13710
13711 static int
13712 reg_dead_at_p (rtx reg, rtx_insn *insn)
13713 {
13714 basic_block block;
13715 unsigned int i;
13716
13717 /* Set variables for reg_dead_at_p_1. */
13718 reg_dead_regno = REGNO (reg);
13719 reg_dead_endregno = END_REGNO (reg);
13720
13721 reg_dead_flag = 0;
13722
13723 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13724 we allow the machine description to decide whether use-and-clobber
13725 patterns are OK. */
13726 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13727 {
13728 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13729 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13730 return 0;
13731 }
13732
13733 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13734 beginning of basic block. */
13735 block = BLOCK_FOR_INSN (insn);
13736 for (;;)
13737 {
13738 if (INSN_P (insn))
13739 {
13740 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13741 return 1;
13742
13743 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13744 if (reg_dead_flag)
13745 return reg_dead_flag == 1 ? 1 : 0;
13746
13747 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13748 return 1;
13749 }
13750
13751 if (insn == BB_HEAD (block))
13752 break;
13753
13754 insn = PREV_INSN (insn);
13755 }
13756
13757 /* Look at live-in sets for the basic block that we were in. */
13758 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13759 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13760 return 0;
13761
13762 return 1;
13763 }
13764 \f
13765 /* Note hard registers in X that are used. */
13766
13767 static void
13768 mark_used_regs_combine (rtx x)
13769 {
13770 RTX_CODE code = GET_CODE (x);
13771 unsigned int regno;
13772 int i;
13773
13774 switch (code)
13775 {
13776 case LABEL_REF:
13777 case SYMBOL_REF:
13778 case CONST:
13779 CASE_CONST_ANY:
13780 case PC:
13781 case ADDR_VEC:
13782 case ADDR_DIFF_VEC:
13783 case ASM_INPUT:
13784 /* CC0 must die in the insn after it is set, so we don't need to take
13785 special note of it here. */
13786 case CC0:
13787 return;
13788
13789 case CLOBBER:
13790 /* If we are clobbering a MEM, mark any hard registers inside the
13791 address as used. */
13792 if (MEM_P (XEXP (x, 0)))
13793 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13794 return;
13795
13796 case REG:
13797 regno = REGNO (x);
13798 /* A hard reg in a wide mode may really be multiple registers.
13799 If so, mark all of them just like the first. */
13800 if (regno < FIRST_PSEUDO_REGISTER)
13801 {
13802 /* None of this applies to the stack, frame or arg pointers. */
13803 if (regno == STACK_POINTER_REGNUM
13804 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13805 && regno == HARD_FRAME_POINTER_REGNUM)
13806 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13807 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13808 || regno == FRAME_POINTER_REGNUM)
13809 return;
13810
13811 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13812 }
13813 return;
13814
13815 case SET:
13816 {
13817 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13818 the address. */
13819 rtx testreg = SET_DEST (x);
13820
13821 while (GET_CODE (testreg) == SUBREG
13822 || GET_CODE (testreg) == ZERO_EXTRACT
13823 || GET_CODE (testreg) == STRICT_LOW_PART)
13824 testreg = XEXP (testreg, 0);
13825
13826 if (MEM_P (testreg))
13827 mark_used_regs_combine (XEXP (testreg, 0));
13828
13829 mark_used_regs_combine (SET_SRC (x));
13830 }
13831 return;
13832
13833 default:
13834 break;
13835 }
13836
13837 /* Recursively scan the operands of this expression. */
13838
13839 {
13840 const char *fmt = GET_RTX_FORMAT (code);
13841
13842 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13843 {
13844 if (fmt[i] == 'e')
13845 mark_used_regs_combine (XEXP (x, i));
13846 else if (fmt[i] == 'E')
13847 {
13848 int j;
13849
13850 for (j = 0; j < XVECLEN (x, i); j++)
13851 mark_used_regs_combine (XVECEXP (x, i, j));
13852 }
13853 }
13854 }
13855 }
13856 \f
13857 /* Remove register number REGNO from the dead registers list of INSN.
13858
13859 Return the note used to record the death, if there was one. */
13860
13861 rtx
13862 remove_death (unsigned int regno, rtx_insn *insn)
13863 {
13864 rtx note = find_regno_note (insn, REG_DEAD, regno);
13865
13866 if (note)
13867 remove_note (insn, note);
13868
13869 return note;
13870 }
13871
13872 /* For each register (hardware or pseudo) used within expression X, if its
13873 death is in an instruction with luid between FROM_LUID (inclusive) and
13874 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13875 list headed by PNOTES.
13876
13877 That said, don't move registers killed by maybe_kill_insn.
13878
13879 This is done when X is being merged by combination into TO_INSN. These
13880 notes will then be distributed as needed. */
13881
13882 static void
13883 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13884 rtx *pnotes)
13885 {
13886 const char *fmt;
13887 int len, i;
13888 enum rtx_code code = GET_CODE (x);
13889
13890 if (code == REG)
13891 {
13892 unsigned int regno = REGNO (x);
13893 rtx_insn *where_dead = reg_stat[regno].last_death;
13894
13895 /* If we do not know where the register died, it may still die between
13896 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
13897 if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
13898 {
13899 rtx_insn *insn = prev_real_insn (to_insn);
13900 while (insn
13901 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
13902 && DF_INSN_LUID (insn) >= from_luid)
13903 {
13904 if (dead_or_set_regno_p (insn, regno))
13905 {
13906 if (find_regno_note (insn, REG_DEAD, regno))
13907 where_dead = insn;
13908 break;
13909 }
13910
13911 insn = prev_real_insn (insn);
13912 }
13913 }
13914
13915 /* Don't move the register if it gets killed in between from and to. */
13916 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13917 && ! reg_referenced_p (x, maybe_kill_insn))
13918 return;
13919
13920 if (where_dead
13921 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13922 && DF_INSN_LUID (where_dead) >= from_luid
13923 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13924 {
13925 rtx note = remove_death (regno, where_dead);
13926
13927 /* It is possible for the call above to return 0. This can occur
13928 when last_death points to I2 or I1 that we combined with.
13929 In that case make a new note.
13930
13931 We must also check for the case where X is a hard register
13932 and NOTE is a death note for a range of hard registers
13933 including X. In that case, we must put REG_DEAD notes for
13934 the remaining registers in place of NOTE. */
13935
13936 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13937 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
13938 {
13939 unsigned int deadregno = REGNO (XEXP (note, 0));
13940 unsigned int deadend = END_REGNO (XEXP (note, 0));
13941 unsigned int ourend = END_REGNO (x);
13942 unsigned int i;
13943
13944 for (i = deadregno; i < deadend; i++)
13945 if (i < regno || i >= ourend)
13946 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13947 }
13948
13949 /* If we didn't find any note, or if we found a REG_DEAD note that
13950 covers only part of the given reg, and we have a multi-reg hard
13951 register, then to be safe we must check for REG_DEAD notes
13952 for each register other than the first. They could have
13953 their own REG_DEAD notes lying around. */
13954 else if ((note == 0
13955 || (note != 0
13956 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
13957 GET_MODE (x))))
13958 && regno < FIRST_PSEUDO_REGISTER
13959 && REG_NREGS (x) > 1)
13960 {
13961 unsigned int ourend = END_REGNO (x);
13962 unsigned int i, offset;
13963 rtx oldnotes = 0;
13964
13965 if (note)
13966 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
13967 else
13968 offset = 1;
13969
13970 for (i = regno + offset; i < ourend; i++)
13971 move_deaths (regno_reg_rtx[i],
13972 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13973 }
13974
13975 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13976 {
13977 XEXP (note, 1) = *pnotes;
13978 *pnotes = note;
13979 }
13980 else
13981 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13982 }
13983
13984 return;
13985 }
13986
13987 else if (GET_CODE (x) == SET)
13988 {
13989 rtx dest = SET_DEST (x);
13990
13991 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13992
13993 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13994 that accesses one word of a multi-word item, some
13995 piece of everything register in the expression is used by
13996 this insn, so remove any old death. */
13997 /* ??? So why do we test for equality of the sizes? */
13998
13999 if (GET_CODE (dest) == ZERO_EXTRACT
14000 || GET_CODE (dest) == STRICT_LOW_PART
14001 || (GET_CODE (dest) == SUBREG
14002 && !read_modify_subreg_p (dest)))
14003 {
14004 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14005 return;
14006 }
14007
14008 /* If this is some other SUBREG, we know it replaces the entire
14009 value, so use that as the destination. */
14010 if (GET_CODE (dest) == SUBREG)
14011 dest = SUBREG_REG (dest);
14012
14013 /* If this is a MEM, adjust deaths of anything used in the address.
14014 For a REG (the only other possibility), the entire value is
14015 being replaced so the old value is not used in this insn. */
14016
14017 if (MEM_P (dest))
14018 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14019 to_insn, pnotes);
14020 return;
14021 }
14022
14023 else if (GET_CODE (x) == CLOBBER)
14024 return;
14025
14026 len = GET_RTX_LENGTH (code);
14027 fmt = GET_RTX_FORMAT (code);
14028
14029 for (i = 0; i < len; i++)
14030 {
14031 if (fmt[i] == 'E')
14032 {
14033 int j;
14034 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14035 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14036 to_insn, pnotes);
14037 }
14038 else if (fmt[i] == 'e')
14039 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14040 }
14041 }
14042 \f
14043 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14044 pattern of an insn. X must be a REG. */
14045
14046 static int
14047 reg_bitfield_target_p (rtx x, rtx body)
14048 {
14049 int i;
14050
14051 if (GET_CODE (body) == SET)
14052 {
14053 rtx dest = SET_DEST (body);
14054 rtx target;
14055 unsigned int regno, tregno, endregno, endtregno;
14056
14057 if (GET_CODE (dest) == ZERO_EXTRACT)
14058 target = XEXP (dest, 0);
14059 else if (GET_CODE (dest) == STRICT_LOW_PART)
14060 target = SUBREG_REG (XEXP (dest, 0));
14061 else
14062 return 0;
14063
14064 if (GET_CODE (target) == SUBREG)
14065 target = SUBREG_REG (target);
14066
14067 if (!REG_P (target))
14068 return 0;
14069
14070 tregno = REGNO (target), regno = REGNO (x);
14071 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14072 return target == x;
14073
14074 endtregno = end_hard_regno (GET_MODE (target), tregno);
14075 endregno = end_hard_regno (GET_MODE (x), regno);
14076
14077 return endregno > tregno && regno < endtregno;
14078 }
14079
14080 else if (GET_CODE (body) == PARALLEL)
14081 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14082 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14083 return 1;
14084
14085 return 0;
14086 }
14087 \f
14088 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14089 as appropriate. I3 and I2 are the insns resulting from the combination
14090 insns including FROM (I2 may be zero).
14091
14092 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14093 not need REG_DEAD notes because they are being substituted for. This
14094 saves searching in the most common cases.
14095
14096 Each note in the list is either ignored or placed on some insns, depending
14097 on the type of note. */
14098
14099 static void
14100 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14101 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14102 {
14103 rtx note, next_note;
14104 rtx tem_note;
14105 rtx_insn *tem_insn;
14106
14107 for (note = notes; note; note = next_note)
14108 {
14109 rtx_insn *place = 0, *place2 = 0;
14110
14111 next_note = XEXP (note, 1);
14112 switch (REG_NOTE_KIND (note))
14113 {
14114 case REG_BR_PROB:
14115 case REG_BR_PRED:
14116 /* Doesn't matter much where we put this, as long as it's somewhere.
14117 It is preferable to keep these notes on branches, which is most
14118 likely to be i3. */
14119 place = i3;
14120 break;
14121
14122 case REG_NON_LOCAL_GOTO:
14123 if (JUMP_P (i3))
14124 place = i3;
14125 else
14126 {
14127 gcc_assert (i2 && JUMP_P (i2));
14128 place = i2;
14129 }
14130 break;
14131
14132 case REG_EH_REGION:
14133 /* These notes must remain with the call or trapping instruction. */
14134 if (CALL_P (i3))
14135 place = i3;
14136 else if (i2 && CALL_P (i2))
14137 place = i2;
14138 else
14139 {
14140 gcc_assert (cfun->can_throw_non_call_exceptions);
14141 if (may_trap_p (i3))
14142 place = i3;
14143 else if (i2 && may_trap_p (i2))
14144 place = i2;
14145 /* ??? Otherwise assume we've combined things such that we
14146 can now prove that the instructions can't trap. Drop the
14147 note in this case. */
14148 }
14149 break;
14150
14151 case REG_ARGS_SIZE:
14152 /* ??? How to distribute between i3-i1. Assume i3 contains the
14153 entire adjustment. Assert i3 contains at least some adjust. */
14154 if (!noop_move_p (i3))
14155 {
14156 poly_int64 old_size, args_size = get_args_size (note);
14157 /* fixup_args_size_notes looks at REG_NORETURN note,
14158 so ensure the note is placed there first. */
14159 if (CALL_P (i3))
14160 {
14161 rtx *np;
14162 for (np = &next_note; *np; np = &XEXP (*np, 1))
14163 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14164 {
14165 rtx n = *np;
14166 *np = XEXP (n, 1);
14167 XEXP (n, 1) = REG_NOTES (i3);
14168 REG_NOTES (i3) = n;
14169 break;
14170 }
14171 }
14172 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14173 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14174 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14175 gcc_assert (maybe_ne (old_size, args_size)
14176 || (CALL_P (i3)
14177 && !ACCUMULATE_OUTGOING_ARGS
14178 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14179 }
14180 break;
14181
14182 case REG_NORETURN:
14183 case REG_SETJMP:
14184 case REG_TM:
14185 case REG_CALL_DECL:
14186 case REG_CALL_NOCF_CHECK:
14187 /* These notes must remain with the call. It should not be
14188 possible for both I2 and I3 to be a call. */
14189 if (CALL_P (i3))
14190 place = i3;
14191 else
14192 {
14193 gcc_assert (i2 && CALL_P (i2));
14194 place = i2;
14195 }
14196 break;
14197
14198 case REG_UNUSED:
14199 /* Any clobbers for i3 may still exist, and so we must process
14200 REG_UNUSED notes from that insn.
14201
14202 Any clobbers from i2 or i1 can only exist if they were added by
14203 recog_for_combine. In that case, recog_for_combine created the
14204 necessary REG_UNUSED notes. Trying to keep any original
14205 REG_UNUSED notes from these insns can cause incorrect output
14206 if it is for the same register as the original i3 dest.
14207 In that case, we will notice that the register is set in i3,
14208 and then add a REG_UNUSED note for the destination of i3, which
14209 is wrong. However, it is possible to have REG_UNUSED notes from
14210 i2 or i1 for register which were both used and clobbered, so
14211 we keep notes from i2 or i1 if they will turn into REG_DEAD
14212 notes. */
14213
14214 /* If this register is set or clobbered in I3, put the note there
14215 unless there is one already. */
14216 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14217 {
14218 if (from_insn != i3)
14219 break;
14220
14221 if (! (REG_P (XEXP (note, 0))
14222 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14223 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14224 place = i3;
14225 }
14226 /* Otherwise, if this register is used by I3, then this register
14227 now dies here, so we must put a REG_DEAD note here unless there
14228 is one already. */
14229 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14230 && ! (REG_P (XEXP (note, 0))
14231 ? find_regno_note (i3, REG_DEAD,
14232 REGNO (XEXP (note, 0)))
14233 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14234 {
14235 PUT_REG_NOTE_KIND (note, REG_DEAD);
14236 place = i3;
14237 }
14238
14239 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14240 but we can't tell which at this point. We must reset any
14241 expectations we had about the value that was previously
14242 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14243 and, if appropriate, restore its previous value, but we
14244 don't have enough information for that at this point. */
14245 else
14246 {
14247 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14248
14249 /* Otherwise, if this register is now referenced in i2
14250 then the register used to be modified in one of the
14251 original insns. If it was i3 (say, in an unused
14252 parallel), it's now completely gone, so the note can
14253 be discarded. But if it was modified in i2, i1 or i0
14254 and we still reference it in i2, then we're
14255 referencing the previous value, and since the
14256 register was modified and REG_UNUSED, we know that
14257 the previous value is now dead. So, if we only
14258 reference the register in i2, we change the note to
14259 REG_DEAD, to reflect the previous value. However, if
14260 we're also setting or clobbering the register as
14261 scratch, we know (because the register was not
14262 referenced in i3) that it's unused, just as it was
14263 unused before, and we place the note in i2. */
14264 if (from_insn != i3 && i2 && INSN_P (i2)
14265 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14266 {
14267 if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14268 PUT_REG_NOTE_KIND (note, REG_DEAD);
14269 if (! (REG_P (XEXP (note, 0))
14270 ? find_regno_note (i2, REG_NOTE_KIND (note),
14271 REGNO (XEXP (note, 0)))
14272 : find_reg_note (i2, REG_NOTE_KIND (note),
14273 XEXP (note, 0))))
14274 place = i2;
14275 }
14276 }
14277
14278 break;
14279
14280 case REG_EQUAL:
14281 case REG_EQUIV:
14282 case REG_NOALIAS:
14283 /* These notes say something about results of an insn. We can
14284 only support them if they used to be on I3 in which case they
14285 remain on I3. Otherwise they are ignored.
14286
14287 If the note refers to an expression that is not a constant, we
14288 must also ignore the note since we cannot tell whether the
14289 equivalence is still true. It might be possible to do
14290 slightly better than this (we only have a problem if I2DEST
14291 or I1DEST is present in the expression), but it doesn't
14292 seem worth the trouble. */
14293
14294 if (from_insn == i3
14295 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14296 place = i3;
14297 break;
14298
14299 case REG_INC:
14300 /* These notes say something about how a register is used. They must
14301 be present on any use of the register in I2 or I3. */
14302 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14303 place = i3;
14304
14305 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14306 {
14307 if (place)
14308 place2 = i2;
14309 else
14310 place = i2;
14311 }
14312 break;
14313
14314 case REG_LABEL_TARGET:
14315 case REG_LABEL_OPERAND:
14316 /* This can show up in several ways -- either directly in the
14317 pattern, or hidden off in the constant pool with (or without?)
14318 a REG_EQUAL note. */
14319 /* ??? Ignore the without-reg_equal-note problem for now. */
14320 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14321 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14322 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14323 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14324 place = i3;
14325
14326 if (i2
14327 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14328 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14329 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14330 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14331 {
14332 if (place)
14333 place2 = i2;
14334 else
14335 place = i2;
14336 }
14337
14338 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14339 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14340 there. */
14341 if (place && JUMP_P (place)
14342 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14343 && (JUMP_LABEL (place) == NULL
14344 || JUMP_LABEL (place) == XEXP (note, 0)))
14345 {
14346 rtx label = JUMP_LABEL (place);
14347
14348 if (!label)
14349 JUMP_LABEL (place) = XEXP (note, 0);
14350 else if (LABEL_P (label))
14351 LABEL_NUSES (label)--;
14352 }
14353
14354 if (place2 && JUMP_P (place2)
14355 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14356 && (JUMP_LABEL (place2) == NULL
14357 || JUMP_LABEL (place2) == XEXP (note, 0)))
14358 {
14359 rtx label = JUMP_LABEL (place2);
14360
14361 if (!label)
14362 JUMP_LABEL (place2) = XEXP (note, 0);
14363 else if (LABEL_P (label))
14364 LABEL_NUSES (label)--;
14365 place2 = 0;
14366 }
14367 break;
14368
14369 case REG_NONNEG:
14370 /* This note says something about the value of a register prior
14371 to the execution of an insn. It is too much trouble to see
14372 if the note is still correct in all situations. It is better
14373 to simply delete it. */
14374 break;
14375
14376 case REG_DEAD:
14377 /* If we replaced the right hand side of FROM_INSN with a
14378 REG_EQUAL note, the original use of the dying register
14379 will not have been combined into I3 and I2. In such cases,
14380 FROM_INSN is guaranteed to be the first of the combined
14381 instructions, so we simply need to search back before
14382 FROM_INSN for the previous use or set of this register,
14383 then alter the notes there appropriately.
14384
14385 If the register is used as an input in I3, it dies there.
14386 Similarly for I2, if it is nonzero and adjacent to I3.
14387
14388 If the register is not used as an input in either I3 or I2
14389 and it is not one of the registers we were supposed to eliminate,
14390 there are two possibilities. We might have a non-adjacent I2
14391 or we might have somehow eliminated an additional register
14392 from a computation. For example, we might have had A & B where
14393 we discover that B will always be zero. In this case we will
14394 eliminate the reference to A.
14395
14396 In both cases, we must search to see if we can find a previous
14397 use of A and put the death note there. */
14398
14399 if (from_insn
14400 && from_insn == i2mod
14401 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14402 tem_insn = from_insn;
14403 else
14404 {
14405 if (from_insn
14406 && CALL_P (from_insn)
14407 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14408 place = from_insn;
14409 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14410 {
14411 /* If the new I2 sets the same register that is marked
14412 dead in the note, we do not in general know where to
14413 put the note. One important case we _can_ handle is
14414 when the note comes from I3. */
14415 if (from_insn == i3)
14416 place = i3;
14417 else
14418 break;
14419 }
14420 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14421 place = i3;
14422 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14423 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14424 place = i2;
14425 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14426 && !(i2mod
14427 && reg_overlap_mentioned_p (XEXP (note, 0),
14428 i2mod_old_rhs)))
14429 || rtx_equal_p (XEXP (note, 0), elim_i1)
14430 || rtx_equal_p (XEXP (note, 0), elim_i0))
14431 break;
14432 tem_insn = i3;
14433 }
14434
14435 if (place == 0)
14436 {
14437 basic_block bb = this_basic_block;
14438
14439 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14440 {
14441 if (!NONDEBUG_INSN_P (tem_insn))
14442 {
14443 if (tem_insn == BB_HEAD (bb))
14444 break;
14445 continue;
14446 }
14447
14448 /* If the register is being set at TEM_INSN, see if that is all
14449 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14450 into a REG_UNUSED note instead. Don't delete sets to
14451 global register vars. */
14452 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14453 || !global_regs[REGNO (XEXP (note, 0))])
14454 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14455 {
14456 rtx set = single_set (tem_insn);
14457 rtx inner_dest = 0;
14458 rtx_insn *cc0_setter = NULL;
14459
14460 if (set != 0)
14461 for (inner_dest = SET_DEST (set);
14462 (GET_CODE (inner_dest) == STRICT_LOW_PART
14463 || GET_CODE (inner_dest) == SUBREG
14464 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14465 inner_dest = XEXP (inner_dest, 0))
14466 ;
14467
14468 /* Verify that it was the set, and not a clobber that
14469 modified the register.
14470
14471 CC0 targets must be careful to maintain setter/user
14472 pairs. If we cannot delete the setter due to side
14473 effects, mark the user with an UNUSED note instead
14474 of deleting it. */
14475
14476 if (set != 0 && ! side_effects_p (SET_SRC (set))
14477 && rtx_equal_p (XEXP (note, 0), inner_dest)
14478 && (!HAVE_cc0
14479 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14480 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14481 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14482 {
14483 /* Move the notes and links of TEM_INSN elsewhere.
14484 This might delete other dead insns recursively.
14485 First set the pattern to something that won't use
14486 any register. */
14487 rtx old_notes = REG_NOTES (tem_insn);
14488
14489 PATTERN (tem_insn) = pc_rtx;
14490 REG_NOTES (tem_insn) = NULL;
14491
14492 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14493 NULL_RTX, NULL_RTX, NULL_RTX);
14494 distribute_links (LOG_LINKS (tem_insn));
14495
14496 unsigned int regno = REGNO (XEXP (note, 0));
14497 reg_stat_type *rsp = &reg_stat[regno];
14498 if (rsp->last_set == tem_insn)
14499 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14500
14501 SET_INSN_DELETED (tem_insn);
14502 if (tem_insn == i2)
14503 i2 = NULL;
14504
14505 /* Delete the setter too. */
14506 if (cc0_setter)
14507 {
14508 PATTERN (cc0_setter) = pc_rtx;
14509 old_notes = REG_NOTES (cc0_setter);
14510 REG_NOTES (cc0_setter) = NULL;
14511
14512 distribute_notes (old_notes, cc0_setter,
14513 cc0_setter, NULL,
14514 NULL_RTX, NULL_RTX, NULL_RTX);
14515 distribute_links (LOG_LINKS (cc0_setter));
14516
14517 SET_INSN_DELETED (cc0_setter);
14518 if (cc0_setter == i2)
14519 i2 = NULL;
14520 }
14521 }
14522 else
14523 {
14524 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14525
14526 /* If there isn't already a REG_UNUSED note, put one
14527 here. Do not place a REG_DEAD note, even if
14528 the register is also used here; that would not
14529 match the algorithm used in lifetime analysis
14530 and can cause the consistency check in the
14531 scheduler to fail. */
14532 if (! find_regno_note (tem_insn, REG_UNUSED,
14533 REGNO (XEXP (note, 0))))
14534 place = tem_insn;
14535 break;
14536 }
14537 }
14538 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14539 || (CALL_P (tem_insn)
14540 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14541 {
14542 place = tem_insn;
14543
14544 /* If we are doing a 3->2 combination, and we have a
14545 register which formerly died in i3 and was not used
14546 by i2, which now no longer dies in i3 and is used in
14547 i2 but does not die in i2, and place is between i2
14548 and i3, then we may need to move a link from place to
14549 i2. */
14550 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14551 && from_insn
14552 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14553 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14554 {
14555 struct insn_link *links = LOG_LINKS (place);
14556 LOG_LINKS (place) = NULL;
14557 distribute_links (links);
14558 }
14559 break;
14560 }
14561
14562 if (tem_insn == BB_HEAD (bb))
14563 break;
14564 }
14565
14566 }
14567
14568 /* If the register is set or already dead at PLACE, we needn't do
14569 anything with this note if it is still a REG_DEAD note.
14570 We check here if it is set at all, not if is it totally replaced,
14571 which is what `dead_or_set_p' checks, so also check for it being
14572 set partially. */
14573
14574 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14575 {
14576 unsigned int regno = REGNO (XEXP (note, 0));
14577 reg_stat_type *rsp = &reg_stat[regno];
14578
14579 if (dead_or_set_p (place, XEXP (note, 0))
14580 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14581 {
14582 /* Unless the register previously died in PLACE, clear
14583 last_death. [I no longer understand why this is
14584 being done.] */
14585 if (rsp->last_death != place)
14586 rsp->last_death = 0;
14587 place = 0;
14588 }
14589 else
14590 rsp->last_death = place;
14591
14592 /* If this is a death note for a hard reg that is occupying
14593 multiple registers, ensure that we are still using all
14594 parts of the object. If we find a piece of the object
14595 that is unused, we must arrange for an appropriate REG_DEAD
14596 note to be added for it. However, we can't just emit a USE
14597 and tag the note to it, since the register might actually
14598 be dead; so we recourse, and the recursive call then finds
14599 the previous insn that used this register. */
14600
14601 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14602 {
14603 unsigned int endregno = END_REGNO (XEXP (note, 0));
14604 bool all_used = true;
14605 unsigned int i;
14606
14607 for (i = regno; i < endregno; i++)
14608 if ((! refers_to_regno_p (i, PATTERN (place))
14609 && ! find_regno_fusage (place, USE, i))
14610 || dead_or_set_regno_p (place, i))
14611 {
14612 all_used = false;
14613 break;
14614 }
14615
14616 if (! all_used)
14617 {
14618 /* Put only REG_DEAD notes for pieces that are
14619 not already dead or set. */
14620
14621 for (i = regno; i < endregno;
14622 i += hard_regno_nregs (i, reg_raw_mode[i]))
14623 {
14624 rtx piece = regno_reg_rtx[i];
14625 basic_block bb = this_basic_block;
14626
14627 if (! dead_or_set_p (place, piece)
14628 && ! reg_bitfield_target_p (piece,
14629 PATTERN (place)))
14630 {
14631 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14632 NULL_RTX);
14633
14634 distribute_notes (new_note, place, place,
14635 NULL, NULL_RTX, NULL_RTX,
14636 NULL_RTX);
14637 }
14638 else if (! refers_to_regno_p (i, PATTERN (place))
14639 && ! find_regno_fusage (place, USE, i))
14640 for (tem_insn = PREV_INSN (place); ;
14641 tem_insn = PREV_INSN (tem_insn))
14642 {
14643 if (!NONDEBUG_INSN_P (tem_insn))
14644 {
14645 if (tem_insn == BB_HEAD (bb))
14646 break;
14647 continue;
14648 }
14649 if (dead_or_set_p (tem_insn, piece)
14650 || reg_bitfield_target_p (piece,
14651 PATTERN (tem_insn)))
14652 {
14653 add_reg_note (tem_insn, REG_UNUSED, piece);
14654 break;
14655 }
14656 }
14657 }
14658
14659 place = 0;
14660 }
14661 }
14662 }
14663 break;
14664
14665 default:
14666 /* Any other notes should not be present at this point in the
14667 compilation. */
14668 gcc_unreachable ();
14669 }
14670
14671 if (place)
14672 {
14673 XEXP (note, 1) = REG_NOTES (place);
14674 REG_NOTES (place) = note;
14675
14676 /* Set added_notes_insn to the earliest insn we added a note to. */
14677 if (added_notes_insn == 0
14678 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14679 added_notes_insn = place;
14680 }
14681
14682 if (place2)
14683 {
14684 add_shallow_copy_of_reg_note (place2, note);
14685
14686 /* Set added_notes_insn to the earliest insn we added a note to. */
14687 if (added_notes_insn == 0
14688 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14689 added_notes_insn = place2;
14690 }
14691 }
14692 }
14693 \f
14694 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14695 I3, I2, and I1 to new locations. This is also called to add a link
14696 pointing at I3 when I3's destination is changed. */
14697
14698 static void
14699 distribute_links (struct insn_link *links)
14700 {
14701 struct insn_link *link, *next_link;
14702
14703 for (link = links; link; link = next_link)
14704 {
14705 rtx_insn *place = 0;
14706 rtx_insn *insn;
14707 rtx set, reg;
14708
14709 next_link = link->next;
14710
14711 /* If the insn that this link points to is a NOTE, ignore it. */
14712 if (NOTE_P (link->insn))
14713 continue;
14714
14715 set = 0;
14716 rtx pat = PATTERN (link->insn);
14717 if (GET_CODE (pat) == SET)
14718 set = pat;
14719 else if (GET_CODE (pat) == PARALLEL)
14720 {
14721 int i;
14722 for (i = 0; i < XVECLEN (pat, 0); i++)
14723 {
14724 set = XVECEXP (pat, 0, i);
14725 if (GET_CODE (set) != SET)
14726 continue;
14727
14728 reg = SET_DEST (set);
14729 while (GET_CODE (reg) == ZERO_EXTRACT
14730 || GET_CODE (reg) == STRICT_LOW_PART
14731 || GET_CODE (reg) == SUBREG)
14732 reg = XEXP (reg, 0);
14733
14734 if (!REG_P (reg))
14735 continue;
14736
14737 if (REGNO (reg) == link->regno)
14738 break;
14739 }
14740 if (i == XVECLEN (pat, 0))
14741 continue;
14742 }
14743 else
14744 continue;
14745
14746 reg = SET_DEST (set);
14747
14748 while (GET_CODE (reg) == ZERO_EXTRACT
14749 || GET_CODE (reg) == STRICT_LOW_PART
14750 || GET_CODE (reg) == SUBREG)
14751 reg = XEXP (reg, 0);
14752
14753 /* A LOG_LINK is defined as being placed on the first insn that uses
14754 a register and points to the insn that sets the register. Start
14755 searching at the next insn after the target of the link and stop
14756 when we reach a set of the register or the end of the basic block.
14757
14758 Note that this correctly handles the link that used to point from
14759 I3 to I2. Also note that not much searching is typically done here
14760 since most links don't point very far away. */
14761
14762 for (insn = NEXT_INSN (link->insn);
14763 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14764 || BB_HEAD (this_basic_block->next_bb) != insn));
14765 insn = NEXT_INSN (insn))
14766 if (DEBUG_INSN_P (insn))
14767 continue;
14768 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14769 {
14770 if (reg_referenced_p (reg, PATTERN (insn)))
14771 place = insn;
14772 break;
14773 }
14774 else if (CALL_P (insn)
14775 && find_reg_fusage (insn, USE, reg))
14776 {
14777 place = insn;
14778 break;
14779 }
14780 else if (INSN_P (insn) && reg_set_p (reg, insn))
14781 break;
14782
14783 /* If we found a place to put the link, place it there unless there
14784 is already a link to the same insn as LINK at that point. */
14785
14786 if (place)
14787 {
14788 struct insn_link *link2;
14789
14790 FOR_EACH_LOG_LINK (link2, place)
14791 if (link2->insn == link->insn && link2->regno == link->regno)
14792 break;
14793
14794 if (link2 == NULL)
14795 {
14796 link->next = LOG_LINKS (place);
14797 LOG_LINKS (place) = link;
14798
14799 /* Set added_links_insn to the earliest insn we added a
14800 link to. */
14801 if (added_links_insn == 0
14802 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14803 added_links_insn = place;
14804 }
14805 }
14806 }
14807 }
14808 \f
14809 /* Check for any register or memory mentioned in EQUIV that is not
14810 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14811 of EXPR where some registers may have been replaced by constants. */
14812
14813 static bool
14814 unmentioned_reg_p (rtx equiv, rtx expr)
14815 {
14816 subrtx_iterator::array_type array;
14817 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14818 {
14819 const_rtx x = *iter;
14820 if ((REG_P (x) || MEM_P (x))
14821 && !reg_mentioned_p (x, expr))
14822 return true;
14823 }
14824 return false;
14825 }
14826 \f
14827 DEBUG_FUNCTION void
14828 dump_combine_stats (FILE *file)
14829 {
14830 fprintf
14831 (file,
14832 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14833 combine_attempts, combine_merges, combine_extras, combine_successes);
14834 }
14835
14836 void
14837 dump_combine_total_stats (FILE *file)
14838 {
14839 fprintf
14840 (file,
14841 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14842 total_attempts, total_merges, total_extras, total_successes);
14843 }
14844 \f
14845 /* Try combining insns through substitution. */
14846 static unsigned int
14847 rest_of_handle_combine (void)
14848 {
14849 int rebuild_jump_labels_after_combine;
14850
14851 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14852 df_note_add_problem ();
14853 df_analyze ();
14854
14855 regstat_init_n_sets_and_refs ();
14856 reg_n_sets_max = max_reg_num ();
14857
14858 rebuild_jump_labels_after_combine
14859 = combine_instructions (get_insns (), max_reg_num ());
14860
14861 /* Combining insns may have turned an indirect jump into a
14862 direct jump. Rebuild the JUMP_LABEL fields of jumping
14863 instructions. */
14864 if (rebuild_jump_labels_after_combine)
14865 {
14866 if (dom_info_available_p (CDI_DOMINATORS))
14867 free_dominance_info (CDI_DOMINATORS);
14868 timevar_push (TV_JUMP);
14869 rebuild_jump_labels (get_insns ());
14870 cleanup_cfg (0);
14871 timevar_pop (TV_JUMP);
14872 }
14873
14874 regstat_free_n_sets_and_refs ();
14875 return 0;
14876 }
14877
14878 namespace {
14879
14880 const pass_data pass_data_combine =
14881 {
14882 RTL_PASS, /* type */
14883 "combine", /* name */
14884 OPTGROUP_NONE, /* optinfo_flags */
14885 TV_COMBINE, /* tv_id */
14886 PROP_cfglayout, /* properties_required */
14887 0, /* properties_provided */
14888 0, /* properties_destroyed */
14889 0, /* todo_flags_start */
14890 TODO_df_finish, /* todo_flags_finish */
14891 };
14892
14893 class pass_combine : public rtl_opt_pass
14894 {
14895 public:
14896 pass_combine (gcc::context *ctxt)
14897 : rtl_opt_pass (pass_data_combine, ctxt)
14898 {}
14899
14900 /* opt_pass methods: */
14901 virtual bool gate (function *) { return (optimize > 0); }
14902 virtual unsigned int execute (function *)
14903 {
14904 return rest_of_handle_combine ();
14905 }
14906
14907 }; // class pass_combine
14908
14909 } // anon namespace
14910
14911 rtl_opt_pass *
14912 make_pass_combine (gcc::context *ctxt)
14913 {
14914 return new pass_combine (ctxt);
14915 }