[43/77] Use scalar_int_mode in simplify_comparison
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
107
108 /* Number of attempts to combine instructions in this function. */
109
110 static int combine_attempts;
111
112 /* Number of attempts that got as far as substitution in this function. */
113
114 static int combine_merges;
115
116 /* Number of instructions combined with added SETs in this function. */
117
118 static int combine_extras;
119
120 /* Number of instructions combined in this function. */
121
122 static int combine_successes;
123
124 /* Totals over entire compilation. */
125
126 static int total_attempts, total_merges, total_extras, total_successes;
127
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
134
135 static rtx_insn *i2mod;
136
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
138
139 static rtx i2mod_old_rhs;
140
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
142
143 static rtx i2mod_new_rhs;
144 \f
145 struct reg_stat_type {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx_insn *last_death;
148
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx_insn *last_set;
151
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
157
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
160
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
164
165 Therefore, we maintain the following fields:
166
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
175
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
180
181 (The next two parameters are out of date).
182
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
194
195 /* Record last value assigned to (hard or pseudo) register n. */
196
197 rtx last_set_value;
198
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
201
202 int last_set_table_tick;
203
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
206
207 int last_set_label;
208
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
213
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
217
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
221
222 char last_set_invalid;
223
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
228
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
233
234 If an entry is zero, it means that we don't know anything special. */
235
236 unsigned char sign_bit_copies;
237
238 unsigned HOST_WIDE_INT nonzero_bits;
239
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
243
244 int truncation_label;
245
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
250
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
252 };
253
254
255 static vec<reg_stat_type> reg_stat;
256
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259 but during combine_split_insns new pseudos can be created. As we don't have
260 updated DF information in that case, it is hard to initialize the array
261 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
262 so instead of growing the arrays, just assume all newly created pseudos
263 during combine might be set multiple times. */
264
265 static unsigned int reg_n_sets_max;
266
267 /* Record the luid of the last insn that invalidated memory
268 (anything that writes memory, and subroutine calls, but not pushes). */
269
270 static int mem_last_set;
271
272 /* Record the luid of the last CALL_INSN
273 so we can tell whether a potential combination crosses any calls. */
274
275 static int last_call_luid;
276
277 /* When `subst' is called, this is the insn that is being modified
278 (by combining in a previous insn). The PATTERN of this insn
279 is still the old pattern partially modified and it should not be
280 looked at, but this may be used to examine the successors of the insn
281 to judge whether a simplification is valid. */
282
283 static rtx_insn *subst_insn;
284
285 /* This is the lowest LUID that `subst' is currently dealing with.
286 get_last_value will not return a value if the register was set at or
287 after this LUID. If not for this mechanism, we could get confused if
288 I2 or I1 in try_combine were an insn that used the old value of a register
289 to obtain a new value. In that case, we might erroneously get the
290 new value of the register when we wanted the old one. */
291
292 static int subst_low_luid;
293
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295 must consider all these registers to be always live. */
296
297 static HARD_REG_SET newpat_used_regs;
298
299 /* This is an insn to which a LOG_LINKS entry has been added. If this
300 insn is the earlier than I2 or I3, combine should rescan starting at
301 that location. */
302
303 static rtx_insn *added_links_insn;
304
305 /* Basic block in which we are performing combines. */
306 static basic_block this_basic_block;
307 static bool optimize_this_for_speed_p;
308
309 \f
310 /* Length of the currently allocated uid_insn_cost array. */
311
312 static int max_uid_known;
313
314 /* The following array records the insn_rtx_cost for every insn
315 in the instruction stream. */
316
317 static int *uid_insn_cost;
318
319 /* The following array records the LOG_LINKS for every insn in the
320 instruction stream as struct insn_link pointers. */
321
322 struct insn_link {
323 rtx_insn *insn;
324 unsigned int regno;
325 struct insn_link *next;
326 };
327
328 static struct insn_link **uid_log_links;
329
330 static inline int
331 insn_uid_check (const_rtx insn)
332 {
333 int uid = INSN_UID (insn);
334 gcc_checking_assert (uid <= max_uid_known);
335 return uid;
336 }
337
338 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
339 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
340
341 #define FOR_EACH_LOG_LINK(L, INSN) \
342 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
343
344 /* Links for LOG_LINKS are allocated from this obstack. */
345
346 static struct obstack insn_link_obstack;
347
348 /* Allocate a link. */
349
350 static inline struct insn_link *
351 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
352 {
353 struct insn_link *l
354 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
355 sizeof (struct insn_link));
356 l->insn = insn;
357 l->regno = regno;
358 l->next = next;
359 return l;
360 }
361
362 /* Incremented for each basic block. */
363
364 static int label_tick;
365
366 /* Reset to label_tick for each extended basic block in scanning order. */
367
368 static int label_tick_ebb_start;
369
370 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
371 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
372
373 static machine_mode nonzero_bits_mode;
374
375 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
376 be safely used. It is zero while computing them and after combine has
377 completed. This former test prevents propagating values based on
378 previously set values, which can be incorrect if a variable is modified
379 in a loop. */
380
381 static int nonzero_sign_valid;
382
383 \f
384 /* Record one modification to rtl structure
385 to be undone by storing old_contents into *where. */
386
387 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
388
389 struct undo
390 {
391 struct undo *next;
392 enum undo_kind kind;
393 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
394 union { rtx *r; int *i; struct insn_link **l; } where;
395 };
396
397 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
398 num_undo says how many are currently recorded.
399
400 other_insn is nonzero if we have modified some other insn in the process
401 of working on subst_insn. It must be verified too. */
402
403 struct undobuf
404 {
405 struct undo *undos;
406 struct undo *frees;
407 rtx_insn *other_insn;
408 };
409
410 static struct undobuf undobuf;
411
412 /* Number of times the pseudo being substituted for
413 was found and replaced. */
414
415 static int n_occurrences;
416
417 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
418 machine_mode,
419 unsigned HOST_WIDE_INT,
420 unsigned HOST_WIDE_INT *);
421 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
422 machine_mode,
423 unsigned int, unsigned int *);
424 static void do_SUBST (rtx *, rtx);
425 static void do_SUBST_INT (int *, int);
426 static void init_reg_last (void);
427 static void setup_incoming_promotions (rtx_insn *);
428 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
429 static int cant_combine_insn_p (rtx_insn *);
430 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
431 rtx_insn *, rtx_insn *, rtx *, rtx *);
432 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
433 static int contains_muldiv (rtx);
434 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
435 int *, rtx_insn *);
436 static void undo_all (void);
437 static void undo_commit (void);
438 static rtx *find_split_point (rtx *, rtx_insn *, bool);
439 static rtx subst (rtx, rtx, rtx, int, int, int);
440 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
441 static rtx simplify_if_then_else (rtx);
442 static rtx simplify_set (rtx);
443 static rtx simplify_logical (rtx);
444 static rtx expand_compound_operation (rtx);
445 static const_rtx expand_field_assignment (const_rtx);
446 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
447 rtx, unsigned HOST_WIDE_INT, int, int, int);
448 static rtx extract_left_shift (rtx, int);
449 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
450 unsigned HOST_WIDE_INT *);
451 static rtx canon_reg_for_combine (rtx, rtx);
452 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
453 scalar_int_mode, unsigned HOST_WIDE_INT, int);
454 static rtx force_to_mode (rtx, machine_mode,
455 unsigned HOST_WIDE_INT, int);
456 static rtx if_then_else_cond (rtx, rtx *, rtx *);
457 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
458 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
459 static rtx make_field_assignment (rtx);
460 static rtx apply_distributive_law (rtx);
461 static rtx distribute_and_simplify_rtx (rtx, int);
462 static rtx simplify_and_const_int_1 (machine_mode, rtx,
463 unsigned HOST_WIDE_INT);
464 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
465 unsigned HOST_WIDE_INT);
466 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
467 HOST_WIDE_INT, machine_mode, int *);
468 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
469 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
470 int);
471 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
472 static rtx gen_lowpart_for_combine (machine_mode, rtx);
473 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
474 rtx, rtx *);
475 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
476 static void update_table_tick (rtx);
477 static void record_value_for_reg (rtx, rtx_insn *, rtx);
478 static void check_promoted_subreg (rtx_insn *, rtx);
479 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
480 static void record_dead_and_set_regs (rtx_insn *);
481 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
482 static rtx get_last_value (const_rtx);
483 static int use_crosses_set_p (const_rtx, int);
484 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
485 static int reg_dead_at_p (rtx, rtx_insn *);
486 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
487 static int reg_bitfield_target_p (rtx, rtx);
488 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
489 static void distribute_links (struct insn_link *);
490 static void mark_used_regs_combine (rtx);
491 static void record_promoted_value (rtx_insn *, rtx);
492 static bool unmentioned_reg_p (rtx, rtx);
493 static void record_truncated_values (rtx *, void *);
494 static bool reg_truncated_to_mode (machine_mode, const_rtx);
495 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
496 \f
497
498 /* It is not safe to use ordinary gen_lowpart in combine.
499 See comments in gen_lowpart_for_combine. */
500 #undef RTL_HOOKS_GEN_LOWPART
501 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
502
503 /* Our implementation of gen_lowpart never emits a new pseudo. */
504 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
505 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
506
507 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
508 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
509
510 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
511 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
512
513 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
514 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
515
516 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
517
518 \f
519 /* Convenience wrapper for the canonicalize_comparison target hook.
520 Target hooks cannot use enum rtx_code. */
521 static inline void
522 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
523 bool op0_preserve_value)
524 {
525 int code_int = (int)*code;
526 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
527 *code = (enum rtx_code)code_int;
528 }
529
530 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
531 PATTERN can not be split. Otherwise, it returns an insn sequence.
532 This is a wrapper around split_insns which ensures that the
533 reg_stat vector is made larger if the splitter creates a new
534 register. */
535
536 static rtx_insn *
537 combine_split_insns (rtx pattern, rtx_insn *insn)
538 {
539 rtx_insn *ret;
540 unsigned int nregs;
541
542 ret = split_insns (pattern, insn);
543 nregs = max_reg_num ();
544 if (nregs > reg_stat.length ())
545 reg_stat.safe_grow_cleared (nregs);
546 return ret;
547 }
548
549 /* This is used by find_single_use to locate an rtx in LOC that
550 contains exactly one use of DEST, which is typically either a REG
551 or CC0. It returns a pointer to the innermost rtx expression
552 containing DEST. Appearances of DEST that are being used to
553 totally replace it are not counted. */
554
555 static rtx *
556 find_single_use_1 (rtx dest, rtx *loc)
557 {
558 rtx x = *loc;
559 enum rtx_code code = GET_CODE (x);
560 rtx *result = NULL;
561 rtx *this_result;
562 int i;
563 const char *fmt;
564
565 switch (code)
566 {
567 case CONST:
568 case LABEL_REF:
569 case SYMBOL_REF:
570 CASE_CONST_ANY:
571 case CLOBBER:
572 return 0;
573
574 case SET:
575 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
576 of a REG that occupies all of the REG, the insn uses DEST if
577 it is mentioned in the destination or the source. Otherwise, we
578 need just check the source. */
579 if (GET_CODE (SET_DEST (x)) != CC0
580 && GET_CODE (SET_DEST (x)) != PC
581 && !REG_P (SET_DEST (x))
582 && ! (GET_CODE (SET_DEST (x)) == SUBREG
583 && REG_P (SUBREG_REG (SET_DEST (x)))
584 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
585 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
586 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
587 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
588 break;
589
590 return find_single_use_1 (dest, &SET_SRC (x));
591
592 case MEM:
593 case SUBREG:
594 return find_single_use_1 (dest, &XEXP (x, 0));
595
596 default:
597 break;
598 }
599
600 /* If it wasn't one of the common cases above, check each expression and
601 vector of this code. Look for a unique usage of DEST. */
602
603 fmt = GET_RTX_FORMAT (code);
604 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
605 {
606 if (fmt[i] == 'e')
607 {
608 if (dest == XEXP (x, i)
609 || (REG_P (dest) && REG_P (XEXP (x, i))
610 && REGNO (dest) == REGNO (XEXP (x, i))))
611 this_result = loc;
612 else
613 this_result = find_single_use_1 (dest, &XEXP (x, i));
614
615 if (result == NULL)
616 result = this_result;
617 else if (this_result)
618 /* Duplicate usage. */
619 return NULL;
620 }
621 else if (fmt[i] == 'E')
622 {
623 int j;
624
625 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
626 {
627 if (XVECEXP (x, i, j) == dest
628 || (REG_P (dest)
629 && REG_P (XVECEXP (x, i, j))
630 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
631 this_result = loc;
632 else
633 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
634
635 if (result == NULL)
636 result = this_result;
637 else if (this_result)
638 return NULL;
639 }
640 }
641 }
642
643 return result;
644 }
645
646
647 /* See if DEST, produced in INSN, is used only a single time in the
648 sequel. If so, return a pointer to the innermost rtx expression in which
649 it is used.
650
651 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
652
653 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
654 care about REG_DEAD notes or LOG_LINKS.
655
656 Otherwise, we find the single use by finding an insn that has a
657 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
658 only referenced once in that insn, we know that it must be the first
659 and last insn referencing DEST. */
660
661 static rtx *
662 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
663 {
664 basic_block bb;
665 rtx_insn *next;
666 rtx *result;
667 struct insn_link *link;
668
669 if (dest == cc0_rtx)
670 {
671 next = NEXT_INSN (insn);
672 if (next == 0
673 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
674 return 0;
675
676 result = find_single_use_1 (dest, &PATTERN (next));
677 if (result && ploc)
678 *ploc = next;
679 return result;
680 }
681
682 if (!REG_P (dest))
683 return 0;
684
685 bb = BLOCK_FOR_INSN (insn);
686 for (next = NEXT_INSN (insn);
687 next && BLOCK_FOR_INSN (next) == bb;
688 next = NEXT_INSN (next))
689 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
690 {
691 FOR_EACH_LOG_LINK (link, next)
692 if (link->insn == insn && link->regno == REGNO (dest))
693 break;
694
695 if (link)
696 {
697 result = find_single_use_1 (dest, &PATTERN (next));
698 if (ploc)
699 *ploc = next;
700 return result;
701 }
702 }
703
704 return 0;
705 }
706 \f
707 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
708 insn. The substitution can be undone by undo_all. If INTO is already
709 set to NEWVAL, do not record this change. Because computing NEWVAL might
710 also call SUBST, we have to compute it before we put anything into
711 the undo table. */
712
713 static void
714 do_SUBST (rtx *into, rtx newval)
715 {
716 struct undo *buf;
717 rtx oldval = *into;
718
719 if (oldval == newval)
720 return;
721
722 /* We'd like to catch as many invalid transformations here as
723 possible. Unfortunately, there are way too many mode changes
724 that are perfectly valid, so we'd waste too much effort for
725 little gain doing the checks here. Focus on catching invalid
726 transformations involving integer constants. */
727 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
728 && CONST_INT_P (newval))
729 {
730 /* Sanity check that we're replacing oldval with a CONST_INT
731 that is a valid sign-extension for the original mode. */
732 gcc_assert (INTVAL (newval)
733 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
734
735 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
736 CONST_INT is not valid, because after the replacement, the
737 original mode would be gone. Unfortunately, we can't tell
738 when do_SUBST is called to replace the operand thereof, so we
739 perform this test on oldval instead, checking whether an
740 invalid replacement took place before we got here. */
741 gcc_assert (!(GET_CODE (oldval) == SUBREG
742 && CONST_INT_P (SUBREG_REG (oldval))));
743 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
744 && CONST_INT_P (XEXP (oldval, 0))));
745 }
746
747 if (undobuf.frees)
748 buf = undobuf.frees, undobuf.frees = buf->next;
749 else
750 buf = XNEW (struct undo);
751
752 buf->kind = UNDO_RTX;
753 buf->where.r = into;
754 buf->old_contents.r = oldval;
755 *into = newval;
756
757 buf->next = undobuf.undos, undobuf.undos = buf;
758 }
759
760 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
761
762 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
763 for the value of a HOST_WIDE_INT value (including CONST_INT) is
764 not safe. */
765
766 static void
767 do_SUBST_INT (int *into, int newval)
768 {
769 struct undo *buf;
770 int oldval = *into;
771
772 if (oldval == newval)
773 return;
774
775 if (undobuf.frees)
776 buf = undobuf.frees, undobuf.frees = buf->next;
777 else
778 buf = XNEW (struct undo);
779
780 buf->kind = UNDO_INT;
781 buf->where.i = into;
782 buf->old_contents.i = oldval;
783 *into = newval;
784
785 buf->next = undobuf.undos, undobuf.undos = buf;
786 }
787
788 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
789
790 /* Similar to SUBST, but just substitute the mode. This is used when
791 changing the mode of a pseudo-register, so that any other
792 references to the entry in the regno_reg_rtx array will change as
793 well. */
794
795 static void
796 do_SUBST_MODE (rtx *into, machine_mode newval)
797 {
798 struct undo *buf;
799 machine_mode oldval = GET_MODE (*into);
800
801 if (oldval == newval)
802 return;
803
804 if (undobuf.frees)
805 buf = undobuf.frees, undobuf.frees = buf->next;
806 else
807 buf = XNEW (struct undo);
808
809 buf->kind = UNDO_MODE;
810 buf->where.r = into;
811 buf->old_contents.m = oldval;
812 adjust_reg_mode (*into, newval);
813
814 buf->next = undobuf.undos, undobuf.undos = buf;
815 }
816
817 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
818
819 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
820
821 static void
822 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
823 {
824 struct undo *buf;
825 struct insn_link * oldval = *into;
826
827 if (oldval == newval)
828 return;
829
830 if (undobuf.frees)
831 buf = undobuf.frees, undobuf.frees = buf->next;
832 else
833 buf = XNEW (struct undo);
834
835 buf->kind = UNDO_LINKS;
836 buf->where.l = into;
837 buf->old_contents.l = oldval;
838 *into = newval;
839
840 buf->next = undobuf.undos, undobuf.undos = buf;
841 }
842
843 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
844 \f
845 /* Subroutine of try_combine. Determine whether the replacement patterns
846 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
847 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
848 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
849 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
850 of all the instructions can be estimated and the replacements are more
851 expensive than the original sequence. */
852
853 static bool
854 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
855 rtx newpat, rtx newi2pat, rtx newotherpat)
856 {
857 int i0_cost, i1_cost, i2_cost, i3_cost;
858 int new_i2_cost, new_i3_cost;
859 int old_cost, new_cost;
860
861 /* Lookup the original insn_rtx_costs. */
862 i2_cost = INSN_COST (i2);
863 i3_cost = INSN_COST (i3);
864
865 if (i1)
866 {
867 i1_cost = INSN_COST (i1);
868 if (i0)
869 {
870 i0_cost = INSN_COST (i0);
871 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
872 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
873 }
874 else
875 {
876 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
877 ? i1_cost + i2_cost + i3_cost : 0);
878 i0_cost = 0;
879 }
880 }
881 else
882 {
883 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
884 i1_cost = i0_cost = 0;
885 }
886
887 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
888 correct that. */
889 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
890 old_cost -= i1_cost;
891
892
893 /* Calculate the replacement insn_rtx_costs. */
894 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
895 if (newi2pat)
896 {
897 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
898 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
899 ? new_i2_cost + new_i3_cost : 0;
900 }
901 else
902 {
903 new_cost = new_i3_cost;
904 new_i2_cost = 0;
905 }
906
907 if (undobuf.other_insn)
908 {
909 int old_other_cost, new_other_cost;
910
911 old_other_cost = INSN_COST (undobuf.other_insn);
912 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
913 if (old_other_cost > 0 && new_other_cost > 0)
914 {
915 old_cost += old_other_cost;
916 new_cost += new_other_cost;
917 }
918 else
919 old_cost = 0;
920 }
921
922 /* Disallow this combination if both new_cost and old_cost are greater than
923 zero, and new_cost is greater than old cost. */
924 int reject = old_cost > 0 && new_cost > old_cost;
925
926 if (dump_file)
927 {
928 fprintf (dump_file, "%s combination of insns ",
929 reject ? "rejecting" : "allowing");
930 if (i0)
931 fprintf (dump_file, "%d, ", INSN_UID (i0));
932 if (i1 && INSN_UID (i1) != INSN_UID (i2))
933 fprintf (dump_file, "%d, ", INSN_UID (i1));
934 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
935
936 fprintf (dump_file, "original costs ");
937 if (i0)
938 fprintf (dump_file, "%d + ", i0_cost);
939 if (i1 && INSN_UID (i1) != INSN_UID (i2))
940 fprintf (dump_file, "%d + ", i1_cost);
941 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
942
943 if (newi2pat)
944 fprintf (dump_file, "replacement costs %d + %d = %d\n",
945 new_i2_cost, new_i3_cost, new_cost);
946 else
947 fprintf (dump_file, "replacement cost %d\n", new_cost);
948 }
949
950 if (reject)
951 return false;
952
953 /* Update the uid_insn_cost array with the replacement costs. */
954 INSN_COST (i2) = new_i2_cost;
955 INSN_COST (i3) = new_i3_cost;
956 if (i1)
957 {
958 INSN_COST (i1) = 0;
959 if (i0)
960 INSN_COST (i0) = 0;
961 }
962
963 return true;
964 }
965
966
967 /* Delete any insns that copy a register to itself. */
968
969 static void
970 delete_noop_moves (void)
971 {
972 rtx_insn *insn, *next;
973 basic_block bb;
974
975 FOR_EACH_BB_FN (bb, cfun)
976 {
977 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
978 {
979 next = NEXT_INSN (insn);
980 if (INSN_P (insn) && noop_move_p (insn))
981 {
982 if (dump_file)
983 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
984
985 delete_insn_and_edges (insn);
986 }
987 }
988 }
989 }
990
991 \f
992 /* Return false if we do not want to (or cannot) combine DEF. */
993 static bool
994 can_combine_def_p (df_ref def)
995 {
996 /* Do not consider if it is pre/post modification in MEM. */
997 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
998 return false;
999
1000 unsigned int regno = DF_REF_REGNO (def);
1001
1002 /* Do not combine frame pointer adjustments. */
1003 if ((regno == FRAME_POINTER_REGNUM
1004 && (!reload_completed || frame_pointer_needed))
1005 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1006 && regno == HARD_FRAME_POINTER_REGNUM
1007 && (!reload_completed || frame_pointer_needed))
1008 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1009 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1010 return false;
1011
1012 return true;
1013 }
1014
1015 /* Return false if we do not want to (or cannot) combine USE. */
1016 static bool
1017 can_combine_use_p (df_ref use)
1018 {
1019 /* Do not consider the usage of the stack pointer by function call. */
1020 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1021 return false;
1022
1023 return true;
1024 }
1025
1026 /* Fill in log links field for all insns. */
1027
1028 static void
1029 create_log_links (void)
1030 {
1031 basic_block bb;
1032 rtx_insn **next_use;
1033 rtx_insn *insn;
1034 df_ref def, use;
1035
1036 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1037
1038 /* Pass through each block from the end, recording the uses of each
1039 register and establishing log links when def is encountered.
1040 Note that we do not clear next_use array in order to save time,
1041 so we have to test whether the use is in the same basic block as def.
1042
1043 There are a few cases below when we do not consider the definition or
1044 usage -- these are taken from original flow.c did. Don't ask me why it is
1045 done this way; I don't know and if it works, I don't want to know. */
1046
1047 FOR_EACH_BB_FN (bb, cfun)
1048 {
1049 FOR_BB_INSNS_REVERSE (bb, insn)
1050 {
1051 if (!NONDEBUG_INSN_P (insn))
1052 continue;
1053
1054 /* Log links are created only once. */
1055 gcc_assert (!LOG_LINKS (insn));
1056
1057 FOR_EACH_INSN_DEF (def, insn)
1058 {
1059 unsigned int regno = DF_REF_REGNO (def);
1060 rtx_insn *use_insn;
1061
1062 if (!next_use[regno])
1063 continue;
1064
1065 if (!can_combine_def_p (def))
1066 continue;
1067
1068 use_insn = next_use[regno];
1069 next_use[regno] = NULL;
1070
1071 if (BLOCK_FOR_INSN (use_insn) != bb)
1072 continue;
1073
1074 /* flow.c claimed:
1075
1076 We don't build a LOG_LINK for hard registers contained
1077 in ASM_OPERANDs. If these registers get replaced,
1078 we might wind up changing the semantics of the insn,
1079 even if reload can make what appear to be valid
1080 assignments later. */
1081 if (regno < FIRST_PSEUDO_REGISTER
1082 && asm_noperands (PATTERN (use_insn)) >= 0)
1083 continue;
1084
1085 /* Don't add duplicate links between instructions. */
1086 struct insn_link *links;
1087 FOR_EACH_LOG_LINK (links, use_insn)
1088 if (insn == links->insn && regno == links->regno)
1089 break;
1090
1091 if (!links)
1092 LOG_LINKS (use_insn)
1093 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1094 }
1095
1096 FOR_EACH_INSN_USE (use, insn)
1097 if (can_combine_use_p (use))
1098 next_use[DF_REF_REGNO (use)] = insn;
1099 }
1100 }
1101
1102 free (next_use);
1103 }
1104
1105 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1106 true if we found a LOG_LINK that proves that A feeds B. This only works
1107 if there are no instructions between A and B which could have a link
1108 depending on A, since in that case we would not record a link for B.
1109 We also check the implicit dependency created by a cc0 setter/user
1110 pair. */
1111
1112 static bool
1113 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1114 {
1115 struct insn_link *links;
1116 FOR_EACH_LOG_LINK (links, b)
1117 if (links->insn == a)
1118 return true;
1119 if (HAVE_cc0 && sets_cc0_p (a))
1120 return true;
1121 return false;
1122 }
1123 \f
1124 /* Main entry point for combiner. F is the first insn of the function.
1125 NREGS is the first unused pseudo-reg number.
1126
1127 Return nonzero if the combiner has turned an indirect jump
1128 instruction into a direct jump. */
1129 static int
1130 combine_instructions (rtx_insn *f, unsigned int nregs)
1131 {
1132 rtx_insn *insn, *next;
1133 rtx_insn *prev;
1134 struct insn_link *links, *nextlinks;
1135 rtx_insn *first;
1136 basic_block last_bb;
1137
1138 int new_direct_jump_p = 0;
1139
1140 for (first = f; first && !NONDEBUG_INSN_P (first); )
1141 first = NEXT_INSN (first);
1142 if (!first)
1143 return 0;
1144
1145 combine_attempts = 0;
1146 combine_merges = 0;
1147 combine_extras = 0;
1148 combine_successes = 0;
1149
1150 rtl_hooks = combine_rtl_hooks;
1151
1152 reg_stat.safe_grow_cleared (nregs);
1153
1154 init_recog_no_volatile ();
1155
1156 /* Allocate array for insn info. */
1157 max_uid_known = get_max_uid ();
1158 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1159 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1160 gcc_obstack_init (&insn_link_obstack);
1161
1162 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1163
1164 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1165 problems when, for example, we have j <<= 1 in a loop. */
1166
1167 nonzero_sign_valid = 0;
1168 label_tick = label_tick_ebb_start = 1;
1169
1170 /* Scan all SETs and see if we can deduce anything about what
1171 bits are known to be zero for some registers and how many copies
1172 of the sign bit are known to exist for those registers.
1173
1174 Also set any known values so that we can use it while searching
1175 for what bits are known to be set. */
1176
1177 setup_incoming_promotions (first);
1178 /* Allow the entry block and the first block to fall into the same EBB.
1179 Conceptually the incoming promotions are assigned to the entry block. */
1180 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1181
1182 create_log_links ();
1183 FOR_EACH_BB_FN (this_basic_block, cfun)
1184 {
1185 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1186 last_call_luid = 0;
1187 mem_last_set = -1;
1188
1189 label_tick++;
1190 if (!single_pred_p (this_basic_block)
1191 || single_pred (this_basic_block) != last_bb)
1192 label_tick_ebb_start = label_tick;
1193 last_bb = this_basic_block;
1194
1195 FOR_BB_INSNS (this_basic_block, insn)
1196 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1197 {
1198 rtx links;
1199
1200 subst_low_luid = DF_INSN_LUID (insn);
1201 subst_insn = insn;
1202
1203 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1204 insn);
1205 record_dead_and_set_regs (insn);
1206
1207 if (AUTO_INC_DEC)
1208 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1209 if (REG_NOTE_KIND (links) == REG_INC)
1210 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1211 insn);
1212
1213 /* Record the current insn_rtx_cost of this instruction. */
1214 if (NONJUMP_INSN_P (insn))
1215 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1216 optimize_this_for_speed_p);
1217 if (dump_file)
1218 {
1219 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1220 dump_insn_slim (dump_file, insn);
1221 }
1222 }
1223 }
1224
1225 nonzero_sign_valid = 1;
1226
1227 /* Now scan all the insns in forward order. */
1228 label_tick = label_tick_ebb_start = 1;
1229 init_reg_last ();
1230 setup_incoming_promotions (first);
1231 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1232 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1233
1234 FOR_EACH_BB_FN (this_basic_block, cfun)
1235 {
1236 rtx_insn *last_combined_insn = NULL;
1237 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1238 last_call_luid = 0;
1239 mem_last_set = -1;
1240
1241 label_tick++;
1242 if (!single_pred_p (this_basic_block)
1243 || single_pred (this_basic_block) != last_bb)
1244 label_tick_ebb_start = label_tick;
1245 last_bb = this_basic_block;
1246
1247 rtl_profile_for_bb (this_basic_block);
1248 for (insn = BB_HEAD (this_basic_block);
1249 insn != NEXT_INSN (BB_END (this_basic_block));
1250 insn = next ? next : NEXT_INSN (insn))
1251 {
1252 next = 0;
1253 if (!NONDEBUG_INSN_P (insn))
1254 continue;
1255
1256 while (last_combined_insn
1257 && (!NONDEBUG_INSN_P (last_combined_insn)
1258 || last_combined_insn->deleted ()))
1259 last_combined_insn = PREV_INSN (last_combined_insn);
1260 if (last_combined_insn == NULL_RTX
1261 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1262 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1263 last_combined_insn = insn;
1264
1265 /* See if we know about function return values before this
1266 insn based upon SUBREG flags. */
1267 check_promoted_subreg (insn, PATTERN (insn));
1268
1269 /* See if we can find hardregs and subreg of pseudos in
1270 narrower modes. This could help turning TRUNCATEs
1271 into SUBREGs. */
1272 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1273
1274 /* Try this insn with each insn it links back to. */
1275
1276 FOR_EACH_LOG_LINK (links, insn)
1277 if ((next = try_combine (insn, links->insn, NULL,
1278 NULL, &new_direct_jump_p,
1279 last_combined_insn)) != 0)
1280 {
1281 statistics_counter_event (cfun, "two-insn combine", 1);
1282 goto retry;
1283 }
1284
1285 /* Try each sequence of three linked insns ending with this one. */
1286
1287 if (max_combine >= 3)
1288 FOR_EACH_LOG_LINK (links, insn)
1289 {
1290 rtx_insn *link = links->insn;
1291
1292 /* If the linked insn has been replaced by a note, then there
1293 is no point in pursuing this chain any further. */
1294 if (NOTE_P (link))
1295 continue;
1296
1297 FOR_EACH_LOG_LINK (nextlinks, link)
1298 if ((next = try_combine (insn, link, nextlinks->insn,
1299 NULL, &new_direct_jump_p,
1300 last_combined_insn)) != 0)
1301 {
1302 statistics_counter_event (cfun, "three-insn combine", 1);
1303 goto retry;
1304 }
1305 }
1306
1307 /* Try to combine a jump insn that uses CC0
1308 with a preceding insn that sets CC0, and maybe with its
1309 logical predecessor as well.
1310 This is how we make decrement-and-branch insns.
1311 We need this special code because data flow connections
1312 via CC0 do not get entered in LOG_LINKS. */
1313
1314 if (HAVE_cc0
1315 && JUMP_P (insn)
1316 && (prev = prev_nonnote_insn (insn)) != 0
1317 && NONJUMP_INSN_P (prev)
1318 && sets_cc0_p (PATTERN (prev)))
1319 {
1320 if ((next = try_combine (insn, prev, NULL, NULL,
1321 &new_direct_jump_p,
1322 last_combined_insn)) != 0)
1323 goto retry;
1324
1325 FOR_EACH_LOG_LINK (nextlinks, prev)
1326 if ((next = try_combine (insn, prev, nextlinks->insn,
1327 NULL, &new_direct_jump_p,
1328 last_combined_insn)) != 0)
1329 goto retry;
1330 }
1331
1332 /* Do the same for an insn that explicitly references CC0. */
1333 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1334 && (prev = prev_nonnote_insn (insn)) != 0
1335 && NONJUMP_INSN_P (prev)
1336 && sets_cc0_p (PATTERN (prev))
1337 && GET_CODE (PATTERN (insn)) == SET
1338 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1339 {
1340 if ((next = try_combine (insn, prev, NULL, NULL,
1341 &new_direct_jump_p,
1342 last_combined_insn)) != 0)
1343 goto retry;
1344
1345 FOR_EACH_LOG_LINK (nextlinks, prev)
1346 if ((next = try_combine (insn, prev, nextlinks->insn,
1347 NULL, &new_direct_jump_p,
1348 last_combined_insn)) != 0)
1349 goto retry;
1350 }
1351
1352 /* Finally, see if any of the insns that this insn links to
1353 explicitly references CC0. If so, try this insn, that insn,
1354 and its predecessor if it sets CC0. */
1355 if (HAVE_cc0)
1356 {
1357 FOR_EACH_LOG_LINK (links, insn)
1358 if (NONJUMP_INSN_P (links->insn)
1359 && GET_CODE (PATTERN (links->insn)) == SET
1360 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1361 && (prev = prev_nonnote_insn (links->insn)) != 0
1362 && NONJUMP_INSN_P (prev)
1363 && sets_cc0_p (PATTERN (prev))
1364 && (next = try_combine (insn, links->insn,
1365 prev, NULL, &new_direct_jump_p,
1366 last_combined_insn)) != 0)
1367 goto retry;
1368 }
1369
1370 /* Try combining an insn with two different insns whose results it
1371 uses. */
1372 if (max_combine >= 3)
1373 FOR_EACH_LOG_LINK (links, insn)
1374 for (nextlinks = links->next; nextlinks;
1375 nextlinks = nextlinks->next)
1376 if ((next = try_combine (insn, links->insn,
1377 nextlinks->insn, NULL,
1378 &new_direct_jump_p,
1379 last_combined_insn)) != 0)
1380
1381 {
1382 statistics_counter_event (cfun, "three-insn combine", 1);
1383 goto retry;
1384 }
1385
1386 /* Try four-instruction combinations. */
1387 if (max_combine >= 4)
1388 FOR_EACH_LOG_LINK (links, insn)
1389 {
1390 struct insn_link *next1;
1391 rtx_insn *link = links->insn;
1392
1393 /* If the linked insn has been replaced by a note, then there
1394 is no point in pursuing this chain any further. */
1395 if (NOTE_P (link))
1396 continue;
1397
1398 FOR_EACH_LOG_LINK (next1, link)
1399 {
1400 rtx_insn *link1 = next1->insn;
1401 if (NOTE_P (link1))
1402 continue;
1403 /* I0 -> I1 -> I2 -> I3. */
1404 FOR_EACH_LOG_LINK (nextlinks, link1)
1405 if ((next = try_combine (insn, link, link1,
1406 nextlinks->insn,
1407 &new_direct_jump_p,
1408 last_combined_insn)) != 0)
1409 {
1410 statistics_counter_event (cfun, "four-insn combine", 1);
1411 goto retry;
1412 }
1413 /* I0, I1 -> I2, I2 -> I3. */
1414 for (nextlinks = next1->next; nextlinks;
1415 nextlinks = nextlinks->next)
1416 if ((next = try_combine (insn, link, link1,
1417 nextlinks->insn,
1418 &new_direct_jump_p,
1419 last_combined_insn)) != 0)
1420 {
1421 statistics_counter_event (cfun, "four-insn combine", 1);
1422 goto retry;
1423 }
1424 }
1425
1426 for (next1 = links->next; next1; next1 = next1->next)
1427 {
1428 rtx_insn *link1 = next1->insn;
1429 if (NOTE_P (link1))
1430 continue;
1431 /* I0 -> I2; I1, I2 -> I3. */
1432 FOR_EACH_LOG_LINK (nextlinks, link)
1433 if ((next = try_combine (insn, link, link1,
1434 nextlinks->insn,
1435 &new_direct_jump_p,
1436 last_combined_insn)) != 0)
1437 {
1438 statistics_counter_event (cfun, "four-insn combine", 1);
1439 goto retry;
1440 }
1441 /* I0 -> I1; I1, I2 -> I3. */
1442 FOR_EACH_LOG_LINK (nextlinks, link1)
1443 if ((next = try_combine (insn, link, link1,
1444 nextlinks->insn,
1445 &new_direct_jump_p,
1446 last_combined_insn)) != 0)
1447 {
1448 statistics_counter_event (cfun, "four-insn combine", 1);
1449 goto retry;
1450 }
1451 }
1452 }
1453
1454 /* Try this insn with each REG_EQUAL note it links back to. */
1455 FOR_EACH_LOG_LINK (links, insn)
1456 {
1457 rtx set, note;
1458 rtx_insn *temp = links->insn;
1459 if ((set = single_set (temp)) != 0
1460 && (note = find_reg_equal_equiv_note (temp)) != 0
1461 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1462 /* Avoid using a register that may already been marked
1463 dead by an earlier instruction. */
1464 && ! unmentioned_reg_p (note, SET_SRC (set))
1465 && (GET_MODE (note) == VOIDmode
1466 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1467 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1468 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1469 || (GET_MODE (XEXP (SET_DEST (set), 0))
1470 == GET_MODE (note))))))
1471 {
1472 /* Temporarily replace the set's source with the
1473 contents of the REG_EQUAL note. The insn will
1474 be deleted or recognized by try_combine. */
1475 rtx orig_src = SET_SRC (set);
1476 rtx orig_dest = SET_DEST (set);
1477 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1478 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1479 SET_SRC (set) = note;
1480 i2mod = temp;
1481 i2mod_old_rhs = copy_rtx (orig_src);
1482 i2mod_new_rhs = copy_rtx (note);
1483 next = try_combine (insn, i2mod, NULL, NULL,
1484 &new_direct_jump_p,
1485 last_combined_insn);
1486 i2mod = NULL;
1487 if (next)
1488 {
1489 statistics_counter_event (cfun, "insn-with-note combine", 1);
1490 goto retry;
1491 }
1492 SET_SRC (set) = orig_src;
1493 SET_DEST (set) = orig_dest;
1494 }
1495 }
1496
1497 if (!NOTE_P (insn))
1498 record_dead_and_set_regs (insn);
1499
1500 retry:
1501 ;
1502 }
1503 }
1504
1505 default_rtl_profile ();
1506 clear_bb_flags ();
1507 new_direct_jump_p |= purge_all_dead_edges ();
1508 delete_noop_moves ();
1509
1510 /* Clean up. */
1511 obstack_free (&insn_link_obstack, NULL);
1512 free (uid_log_links);
1513 free (uid_insn_cost);
1514 reg_stat.release ();
1515
1516 {
1517 struct undo *undo, *next;
1518 for (undo = undobuf.frees; undo; undo = next)
1519 {
1520 next = undo->next;
1521 free (undo);
1522 }
1523 undobuf.frees = 0;
1524 }
1525
1526 total_attempts += combine_attempts;
1527 total_merges += combine_merges;
1528 total_extras += combine_extras;
1529 total_successes += combine_successes;
1530
1531 nonzero_sign_valid = 0;
1532 rtl_hooks = general_rtl_hooks;
1533
1534 /* Make recognizer allow volatile MEMs again. */
1535 init_recog ();
1536
1537 return new_direct_jump_p;
1538 }
1539
1540 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1541
1542 static void
1543 init_reg_last (void)
1544 {
1545 unsigned int i;
1546 reg_stat_type *p;
1547
1548 FOR_EACH_VEC_ELT (reg_stat, i, p)
1549 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1550 }
1551 \f
1552 /* Set up any promoted values for incoming argument registers. */
1553
1554 static void
1555 setup_incoming_promotions (rtx_insn *first)
1556 {
1557 tree arg;
1558 bool strictly_local = false;
1559
1560 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1561 arg = DECL_CHAIN (arg))
1562 {
1563 rtx x, reg = DECL_INCOMING_RTL (arg);
1564 int uns1, uns3;
1565 machine_mode mode1, mode2, mode3, mode4;
1566
1567 /* Only continue if the incoming argument is in a register. */
1568 if (!REG_P (reg))
1569 continue;
1570
1571 /* Determine, if possible, whether all call sites of the current
1572 function lie within the current compilation unit. (This does
1573 take into account the exporting of a function via taking its
1574 address, and so forth.) */
1575 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1576
1577 /* The mode and signedness of the argument before any promotions happen
1578 (equal to the mode of the pseudo holding it at that stage). */
1579 mode1 = TYPE_MODE (TREE_TYPE (arg));
1580 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1581
1582 /* The mode and signedness of the argument after any source language and
1583 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1584 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1585 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1586
1587 /* The mode and signedness of the argument as it is actually passed,
1588 see assign_parm_setup_reg in function.c. */
1589 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1590 TREE_TYPE (cfun->decl), 0);
1591
1592 /* The mode of the register in which the argument is being passed. */
1593 mode4 = GET_MODE (reg);
1594
1595 /* Eliminate sign extensions in the callee when:
1596 (a) A mode promotion has occurred; */
1597 if (mode1 == mode3)
1598 continue;
1599 /* (b) The mode of the register is the same as the mode of
1600 the argument as it is passed; */
1601 if (mode3 != mode4)
1602 continue;
1603 /* (c) There's no language level extension; */
1604 if (mode1 == mode2)
1605 ;
1606 /* (c.1) All callers are from the current compilation unit. If that's
1607 the case we don't have to rely on an ABI, we only have to know
1608 what we're generating right now, and we know that we will do the
1609 mode1 to mode2 promotion with the given sign. */
1610 else if (!strictly_local)
1611 continue;
1612 /* (c.2) The combination of the two promotions is useful. This is
1613 true when the signs match, or if the first promotion is unsigned.
1614 In the later case, (sign_extend (zero_extend x)) is the same as
1615 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1616 else if (uns1)
1617 uns3 = true;
1618 else if (uns3)
1619 continue;
1620
1621 /* Record that the value was promoted from mode1 to mode3,
1622 so that any sign extension at the head of the current
1623 function may be eliminated. */
1624 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1625 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1626 record_value_for_reg (reg, first, x);
1627 }
1628 }
1629
1630 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1631 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1632 because some machines (maybe most) will actually do the sign-extension and
1633 this is the conservative approach.
1634
1635 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1636 kludge. */
1637
1638 static rtx
1639 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1640 {
1641 scalar_int_mode int_mode;
1642 if (CONST_INT_P (src)
1643 && is_a <scalar_int_mode> (mode, &int_mode)
1644 && GET_MODE_PRECISION (int_mode) < prec
1645 && INTVAL (src) > 0
1646 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1647 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1648
1649 return src;
1650 }
1651
1652 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1653 and SET. */
1654
1655 static void
1656 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1657 rtx x)
1658 {
1659 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1660 unsigned HOST_WIDE_INT bits = 0;
1661 rtx reg_equal = NULL, src = SET_SRC (set);
1662 unsigned int num = 0;
1663
1664 if (reg_equal_note)
1665 reg_equal = XEXP (reg_equal_note, 0);
1666
1667 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1668 {
1669 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1670 if (reg_equal)
1671 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1672 }
1673
1674 /* Don't call nonzero_bits if it cannot change anything. */
1675 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1676 {
1677 bits = nonzero_bits (src, nonzero_bits_mode);
1678 if (reg_equal && bits)
1679 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1680 rsp->nonzero_bits |= bits;
1681 }
1682
1683 /* Don't call num_sign_bit_copies if it cannot change anything. */
1684 if (rsp->sign_bit_copies != 1)
1685 {
1686 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1687 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1688 {
1689 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1690 if (num == 0 || numeq > num)
1691 num = numeq;
1692 }
1693 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1694 rsp->sign_bit_copies = num;
1695 }
1696 }
1697
1698 /* Called via note_stores. If X is a pseudo that is narrower than
1699 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1700
1701 If we are setting only a portion of X and we can't figure out what
1702 portion, assume all bits will be used since we don't know what will
1703 be happening.
1704
1705 Similarly, set how many bits of X are known to be copies of the sign bit
1706 at all locations in the function. This is the smallest number implied
1707 by any set of X. */
1708
1709 static void
1710 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1711 {
1712 rtx_insn *insn = (rtx_insn *) data;
1713 scalar_int_mode mode;
1714
1715 if (REG_P (x)
1716 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1717 /* If this register is undefined at the start of the file, we can't
1718 say what its contents were. */
1719 && ! REGNO_REG_SET_P
1720 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1721 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1722 && HWI_COMPUTABLE_MODE_P (mode))
1723 {
1724 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1725
1726 if (set == 0 || GET_CODE (set) == CLOBBER)
1727 {
1728 rsp->nonzero_bits = GET_MODE_MASK (mode);
1729 rsp->sign_bit_copies = 1;
1730 return;
1731 }
1732
1733 /* If this register is being initialized using itself, and the
1734 register is uninitialized in this basic block, and there are
1735 no LOG_LINKS which set the register, then part of the
1736 register is uninitialized. In that case we can't assume
1737 anything about the number of nonzero bits.
1738
1739 ??? We could do better if we checked this in
1740 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1741 could avoid making assumptions about the insn which initially
1742 sets the register, while still using the information in other
1743 insns. We would have to be careful to check every insn
1744 involved in the combination. */
1745
1746 if (insn
1747 && reg_referenced_p (x, PATTERN (insn))
1748 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1749 REGNO (x)))
1750 {
1751 struct insn_link *link;
1752
1753 FOR_EACH_LOG_LINK (link, insn)
1754 if (dead_or_set_p (link->insn, x))
1755 break;
1756 if (!link)
1757 {
1758 rsp->nonzero_bits = GET_MODE_MASK (mode);
1759 rsp->sign_bit_copies = 1;
1760 return;
1761 }
1762 }
1763
1764 /* If this is a complex assignment, see if we can convert it into a
1765 simple assignment. */
1766 set = expand_field_assignment (set);
1767
1768 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1769 set what we know about X. */
1770
1771 if (SET_DEST (set) == x
1772 || (paradoxical_subreg_p (SET_DEST (set))
1773 && SUBREG_REG (SET_DEST (set)) == x))
1774 update_rsp_from_reg_equal (rsp, insn, set, x);
1775 else
1776 {
1777 rsp->nonzero_bits = GET_MODE_MASK (mode);
1778 rsp->sign_bit_copies = 1;
1779 }
1780 }
1781 }
1782 \f
1783 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1784 optionally insns that were previously combined into I3 or that will be
1785 combined into the merger of INSN and I3. The order is PRED, PRED2,
1786 INSN, SUCC, SUCC2, I3.
1787
1788 Return 0 if the combination is not allowed for any reason.
1789
1790 If the combination is allowed, *PDEST will be set to the single
1791 destination of INSN and *PSRC to the single source, and this function
1792 will return 1. */
1793
1794 static int
1795 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1796 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1797 rtx *pdest, rtx *psrc)
1798 {
1799 int i;
1800 const_rtx set = 0;
1801 rtx src, dest;
1802 rtx_insn *p;
1803 rtx link;
1804 bool all_adjacent = true;
1805 int (*is_volatile_p) (const_rtx);
1806
1807 if (succ)
1808 {
1809 if (succ2)
1810 {
1811 if (next_active_insn (succ2) != i3)
1812 all_adjacent = false;
1813 if (next_active_insn (succ) != succ2)
1814 all_adjacent = false;
1815 }
1816 else if (next_active_insn (succ) != i3)
1817 all_adjacent = false;
1818 if (next_active_insn (insn) != succ)
1819 all_adjacent = false;
1820 }
1821 else if (next_active_insn (insn) != i3)
1822 all_adjacent = false;
1823
1824 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1825 or a PARALLEL consisting of such a SET and CLOBBERs.
1826
1827 If INSN has CLOBBER parallel parts, ignore them for our processing.
1828 By definition, these happen during the execution of the insn. When it
1829 is merged with another insn, all bets are off. If they are, in fact,
1830 needed and aren't also supplied in I3, they may be added by
1831 recog_for_combine. Otherwise, it won't match.
1832
1833 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1834 note.
1835
1836 Get the source and destination of INSN. If more than one, can't
1837 combine. */
1838
1839 if (GET_CODE (PATTERN (insn)) == SET)
1840 set = PATTERN (insn);
1841 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1842 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1843 {
1844 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1845 {
1846 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1847
1848 switch (GET_CODE (elt))
1849 {
1850 /* This is important to combine floating point insns
1851 for the SH4 port. */
1852 case USE:
1853 /* Combining an isolated USE doesn't make sense.
1854 We depend here on combinable_i3pat to reject them. */
1855 /* The code below this loop only verifies that the inputs of
1856 the SET in INSN do not change. We call reg_set_between_p
1857 to verify that the REG in the USE does not change between
1858 I3 and INSN.
1859 If the USE in INSN was for a pseudo register, the matching
1860 insn pattern will likely match any register; combining this
1861 with any other USE would only be safe if we knew that the
1862 used registers have identical values, or if there was
1863 something to tell them apart, e.g. different modes. For
1864 now, we forgo such complicated tests and simply disallow
1865 combining of USES of pseudo registers with any other USE. */
1866 if (REG_P (XEXP (elt, 0))
1867 && GET_CODE (PATTERN (i3)) == PARALLEL)
1868 {
1869 rtx i3pat = PATTERN (i3);
1870 int i = XVECLEN (i3pat, 0) - 1;
1871 unsigned int regno = REGNO (XEXP (elt, 0));
1872
1873 do
1874 {
1875 rtx i3elt = XVECEXP (i3pat, 0, i);
1876
1877 if (GET_CODE (i3elt) == USE
1878 && REG_P (XEXP (i3elt, 0))
1879 && (REGNO (XEXP (i3elt, 0)) == regno
1880 ? reg_set_between_p (XEXP (elt, 0),
1881 PREV_INSN (insn), i3)
1882 : regno >= FIRST_PSEUDO_REGISTER))
1883 return 0;
1884 }
1885 while (--i >= 0);
1886 }
1887 break;
1888
1889 /* We can ignore CLOBBERs. */
1890 case CLOBBER:
1891 break;
1892
1893 case SET:
1894 /* Ignore SETs whose result isn't used but not those that
1895 have side-effects. */
1896 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1897 && insn_nothrow_p (insn)
1898 && !side_effects_p (elt))
1899 break;
1900
1901 /* If we have already found a SET, this is a second one and
1902 so we cannot combine with this insn. */
1903 if (set)
1904 return 0;
1905
1906 set = elt;
1907 break;
1908
1909 default:
1910 /* Anything else means we can't combine. */
1911 return 0;
1912 }
1913 }
1914
1915 if (set == 0
1916 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1917 so don't do anything with it. */
1918 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1919 return 0;
1920 }
1921 else
1922 return 0;
1923
1924 if (set == 0)
1925 return 0;
1926
1927 /* The simplification in expand_field_assignment may call back to
1928 get_last_value, so set safe guard here. */
1929 subst_low_luid = DF_INSN_LUID (insn);
1930
1931 set = expand_field_assignment (set);
1932 src = SET_SRC (set), dest = SET_DEST (set);
1933
1934 /* Do not eliminate user-specified register if it is in an
1935 asm input because we may break the register asm usage defined
1936 in GCC manual if allow to do so.
1937 Be aware that this may cover more cases than we expect but this
1938 should be harmless. */
1939 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1940 && extract_asm_operands (PATTERN (i3)))
1941 return 0;
1942
1943 /* Don't eliminate a store in the stack pointer. */
1944 if (dest == stack_pointer_rtx
1945 /* Don't combine with an insn that sets a register to itself if it has
1946 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1947 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1948 /* Can't merge an ASM_OPERANDS. */
1949 || GET_CODE (src) == ASM_OPERANDS
1950 /* Can't merge a function call. */
1951 || GET_CODE (src) == CALL
1952 /* Don't eliminate a function call argument. */
1953 || (CALL_P (i3)
1954 && (find_reg_fusage (i3, USE, dest)
1955 || (REG_P (dest)
1956 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1957 && global_regs[REGNO (dest)])))
1958 /* Don't substitute into an incremented register. */
1959 || FIND_REG_INC_NOTE (i3, dest)
1960 || (succ && FIND_REG_INC_NOTE (succ, dest))
1961 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1962 /* Don't substitute into a non-local goto, this confuses CFG. */
1963 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1964 /* Make sure that DEST is not used after INSN but before SUCC, or
1965 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1966 || (!all_adjacent
1967 && ((succ2
1968 && (reg_used_between_p (dest, succ2, i3)
1969 || reg_used_between_p (dest, succ, succ2)))
1970 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
1971 || (succ
1972 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1973 that case SUCC is not in the insn stream, so use SUCC2
1974 instead for this test. */
1975 && reg_used_between_p (dest, insn,
1976 succ2
1977 && INSN_UID (succ) == INSN_UID (succ2)
1978 ? succ2 : succ))))
1979 /* Make sure that the value that is to be substituted for the register
1980 does not use any registers whose values alter in between. However,
1981 If the insns are adjacent, a use can't cross a set even though we
1982 think it might (this can happen for a sequence of insns each setting
1983 the same destination; last_set of that register might point to
1984 a NOTE). If INSN has a REG_EQUIV note, the register is always
1985 equivalent to the memory so the substitution is valid even if there
1986 are intervening stores. Also, don't move a volatile asm or
1987 UNSPEC_VOLATILE across any other insns. */
1988 || (! all_adjacent
1989 && (((!MEM_P (src)
1990 || ! find_reg_note (insn, REG_EQUIV, src))
1991 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1992 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1993 || GET_CODE (src) == UNSPEC_VOLATILE))
1994 /* Don't combine across a CALL_INSN, because that would possibly
1995 change whether the life span of some REGs crosses calls or not,
1996 and it is a pain to update that information.
1997 Exception: if source is a constant, moving it later can't hurt.
1998 Accept that as a special case. */
1999 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2000 return 0;
2001
2002 /* DEST must either be a REG or CC0. */
2003 if (REG_P (dest))
2004 {
2005 /* If register alignment is being enforced for multi-word items in all
2006 cases except for parameters, it is possible to have a register copy
2007 insn referencing a hard register that is not allowed to contain the
2008 mode being copied and which would not be valid as an operand of most
2009 insns. Eliminate this problem by not combining with such an insn.
2010
2011 Also, on some machines we don't want to extend the life of a hard
2012 register. */
2013
2014 if (REG_P (src)
2015 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2016 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
2017 /* Don't extend the life of a hard register unless it is
2018 user variable (if we have few registers) or it can't
2019 fit into the desired register (meaning something special
2020 is going on).
2021 Also avoid substituting a return register into I3, because
2022 reload can't handle a conflict with constraints of other
2023 inputs. */
2024 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2025 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
2026 return 0;
2027 }
2028 else if (GET_CODE (dest) != CC0)
2029 return 0;
2030
2031
2032 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2033 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2034 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2035 {
2036 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2037
2038 /* If the clobber represents an earlyclobber operand, we must not
2039 substitute an expression containing the clobbered register.
2040 As we do not analyze the constraint strings here, we have to
2041 make the conservative assumption. However, if the register is
2042 a fixed hard reg, the clobber cannot represent any operand;
2043 we leave it up to the machine description to either accept or
2044 reject use-and-clobber patterns. */
2045 if (!REG_P (reg)
2046 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2047 || !fixed_regs[REGNO (reg)])
2048 if (reg_overlap_mentioned_p (reg, src))
2049 return 0;
2050 }
2051
2052 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2053 or not), reject, unless nothing volatile comes between it and I3 */
2054
2055 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2056 {
2057 /* Make sure neither succ nor succ2 contains a volatile reference. */
2058 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2059 return 0;
2060 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2061 return 0;
2062 /* We'll check insns between INSN and I3 below. */
2063 }
2064
2065 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2066 to be an explicit register variable, and was chosen for a reason. */
2067
2068 if (GET_CODE (src) == ASM_OPERANDS
2069 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2070 return 0;
2071
2072 /* If INSN contains volatile references (specifically volatile MEMs),
2073 we cannot combine across any other volatile references.
2074 Even if INSN doesn't contain volatile references, any intervening
2075 volatile insn might affect machine state. */
2076
2077 is_volatile_p = volatile_refs_p (PATTERN (insn))
2078 ? volatile_refs_p
2079 : volatile_insn_p;
2080
2081 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2082 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2083 return 0;
2084
2085 /* If INSN contains an autoincrement or autodecrement, make sure that
2086 register is not used between there and I3, and not already used in
2087 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2088 Also insist that I3 not be a jump; if it were one
2089 and the incremented register were spilled, we would lose. */
2090
2091 if (AUTO_INC_DEC)
2092 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2093 if (REG_NOTE_KIND (link) == REG_INC
2094 && (JUMP_P (i3)
2095 || reg_used_between_p (XEXP (link, 0), insn, i3)
2096 || (pred != NULL_RTX
2097 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2098 || (pred2 != NULL_RTX
2099 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2100 || (succ != NULL_RTX
2101 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2102 || (succ2 != NULL_RTX
2103 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2104 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2105 return 0;
2106
2107 /* Don't combine an insn that follows a CC0-setting insn.
2108 An insn that uses CC0 must not be separated from the one that sets it.
2109 We do, however, allow I2 to follow a CC0-setting insn if that insn
2110 is passed as I1; in that case it will be deleted also.
2111 We also allow combining in this case if all the insns are adjacent
2112 because that would leave the two CC0 insns adjacent as well.
2113 It would be more logical to test whether CC0 occurs inside I1 or I2,
2114 but that would be much slower, and this ought to be equivalent. */
2115
2116 if (HAVE_cc0)
2117 {
2118 p = prev_nonnote_insn (insn);
2119 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2120 && ! all_adjacent)
2121 return 0;
2122 }
2123
2124 /* If we get here, we have passed all the tests and the combination is
2125 to be allowed. */
2126
2127 *pdest = dest;
2128 *psrc = src;
2129
2130 return 1;
2131 }
2132 \f
2133 /* LOC is the location within I3 that contains its pattern or the component
2134 of a PARALLEL of the pattern. We validate that it is valid for combining.
2135
2136 One problem is if I3 modifies its output, as opposed to replacing it
2137 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2138 doing so would produce an insn that is not equivalent to the original insns.
2139
2140 Consider:
2141
2142 (set (reg:DI 101) (reg:DI 100))
2143 (set (subreg:SI (reg:DI 101) 0) <foo>)
2144
2145 This is NOT equivalent to:
2146
2147 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2148 (set (reg:DI 101) (reg:DI 100))])
2149
2150 Not only does this modify 100 (in which case it might still be valid
2151 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2152
2153 We can also run into a problem if I2 sets a register that I1
2154 uses and I1 gets directly substituted into I3 (not via I2). In that
2155 case, we would be getting the wrong value of I2DEST into I3, so we
2156 must reject the combination. This case occurs when I2 and I1 both
2157 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2158 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2159 of a SET must prevent combination from occurring. The same situation
2160 can occur for I0, in which case I0_NOT_IN_SRC is set.
2161
2162 Before doing the above check, we first try to expand a field assignment
2163 into a set of logical operations.
2164
2165 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2166 we place a register that is both set and used within I3. If more than one
2167 such register is detected, we fail.
2168
2169 Return 1 if the combination is valid, zero otherwise. */
2170
2171 static int
2172 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2173 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2174 {
2175 rtx x = *loc;
2176
2177 if (GET_CODE (x) == SET)
2178 {
2179 rtx set = x ;
2180 rtx dest = SET_DEST (set);
2181 rtx src = SET_SRC (set);
2182 rtx inner_dest = dest;
2183 rtx subdest;
2184
2185 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2186 || GET_CODE (inner_dest) == SUBREG
2187 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2188 inner_dest = XEXP (inner_dest, 0);
2189
2190 /* Check for the case where I3 modifies its output, as discussed
2191 above. We don't want to prevent pseudos from being combined
2192 into the address of a MEM, so only prevent the combination if
2193 i1 or i2 set the same MEM. */
2194 if ((inner_dest != dest &&
2195 (!MEM_P (inner_dest)
2196 || rtx_equal_p (i2dest, inner_dest)
2197 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2198 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2199 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2200 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2201 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2202
2203 /* This is the same test done in can_combine_p except we can't test
2204 all_adjacent; we don't have to, since this instruction will stay
2205 in place, thus we are not considering increasing the lifetime of
2206 INNER_DEST.
2207
2208 Also, if this insn sets a function argument, combining it with
2209 something that might need a spill could clobber a previous
2210 function argument; the all_adjacent test in can_combine_p also
2211 checks this; here, we do a more specific test for this case. */
2212
2213 || (REG_P (inner_dest)
2214 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2215 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2216 GET_MODE (inner_dest))))
2217 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2218 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2219 return 0;
2220
2221 /* If DEST is used in I3, it is being killed in this insn, so
2222 record that for later. We have to consider paradoxical
2223 subregs here, since they kill the whole register, but we
2224 ignore partial subregs, STRICT_LOW_PART, etc.
2225 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2226 STACK_POINTER_REGNUM, since these are always considered to be
2227 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2228 subdest = dest;
2229 if (GET_CODE (subdest) == SUBREG
2230 && (GET_MODE_SIZE (GET_MODE (subdest))
2231 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2232 subdest = SUBREG_REG (subdest);
2233 if (pi3dest_killed
2234 && REG_P (subdest)
2235 && reg_referenced_p (subdest, PATTERN (i3))
2236 && REGNO (subdest) != FRAME_POINTER_REGNUM
2237 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2238 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2239 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2240 || (REGNO (subdest) != ARG_POINTER_REGNUM
2241 || ! fixed_regs [REGNO (subdest)]))
2242 && REGNO (subdest) != STACK_POINTER_REGNUM)
2243 {
2244 if (*pi3dest_killed)
2245 return 0;
2246
2247 *pi3dest_killed = subdest;
2248 }
2249 }
2250
2251 else if (GET_CODE (x) == PARALLEL)
2252 {
2253 int i;
2254
2255 for (i = 0; i < XVECLEN (x, 0); i++)
2256 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2257 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2258 return 0;
2259 }
2260
2261 return 1;
2262 }
2263 \f
2264 /* Return 1 if X is an arithmetic expression that contains a multiplication
2265 and division. We don't count multiplications by powers of two here. */
2266
2267 static int
2268 contains_muldiv (rtx x)
2269 {
2270 switch (GET_CODE (x))
2271 {
2272 case MOD: case DIV: case UMOD: case UDIV:
2273 return 1;
2274
2275 case MULT:
2276 return ! (CONST_INT_P (XEXP (x, 1))
2277 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2278 default:
2279 if (BINARY_P (x))
2280 return contains_muldiv (XEXP (x, 0))
2281 || contains_muldiv (XEXP (x, 1));
2282
2283 if (UNARY_P (x))
2284 return contains_muldiv (XEXP (x, 0));
2285
2286 return 0;
2287 }
2288 }
2289 \f
2290 /* Determine whether INSN can be used in a combination. Return nonzero if
2291 not. This is used in try_combine to detect early some cases where we
2292 can't perform combinations. */
2293
2294 static int
2295 cant_combine_insn_p (rtx_insn *insn)
2296 {
2297 rtx set;
2298 rtx src, dest;
2299
2300 /* If this isn't really an insn, we can't do anything.
2301 This can occur when flow deletes an insn that it has merged into an
2302 auto-increment address. */
2303 if (!NONDEBUG_INSN_P (insn))
2304 return 1;
2305
2306 /* Never combine loads and stores involving hard regs that are likely
2307 to be spilled. The register allocator can usually handle such
2308 reg-reg moves by tying. If we allow the combiner to make
2309 substitutions of likely-spilled regs, reload might die.
2310 As an exception, we allow combinations involving fixed regs; these are
2311 not available to the register allocator so there's no risk involved. */
2312
2313 set = single_set (insn);
2314 if (! set)
2315 return 0;
2316 src = SET_SRC (set);
2317 dest = SET_DEST (set);
2318 if (GET_CODE (src) == SUBREG)
2319 src = SUBREG_REG (src);
2320 if (GET_CODE (dest) == SUBREG)
2321 dest = SUBREG_REG (dest);
2322 if (REG_P (src) && REG_P (dest)
2323 && ((HARD_REGISTER_P (src)
2324 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2325 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2326 || (HARD_REGISTER_P (dest)
2327 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2328 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2329 return 1;
2330
2331 return 0;
2332 }
2333
2334 struct likely_spilled_retval_info
2335 {
2336 unsigned regno, nregs;
2337 unsigned mask;
2338 };
2339
2340 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2341 hard registers that are known to be written to / clobbered in full. */
2342 static void
2343 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2344 {
2345 struct likely_spilled_retval_info *const info =
2346 (struct likely_spilled_retval_info *) data;
2347 unsigned regno, nregs;
2348 unsigned new_mask;
2349
2350 if (!REG_P (XEXP (set, 0)))
2351 return;
2352 regno = REGNO (x);
2353 if (regno >= info->regno + info->nregs)
2354 return;
2355 nregs = REG_NREGS (x);
2356 if (regno + nregs <= info->regno)
2357 return;
2358 new_mask = (2U << (nregs - 1)) - 1;
2359 if (regno < info->regno)
2360 new_mask >>= info->regno - regno;
2361 else
2362 new_mask <<= regno - info->regno;
2363 info->mask &= ~new_mask;
2364 }
2365
2366 /* Return nonzero iff part of the return value is live during INSN, and
2367 it is likely spilled. This can happen when more than one insn is needed
2368 to copy the return value, e.g. when we consider to combine into the
2369 second copy insn for a complex value. */
2370
2371 static int
2372 likely_spilled_retval_p (rtx_insn *insn)
2373 {
2374 rtx_insn *use = BB_END (this_basic_block);
2375 rtx reg;
2376 rtx_insn *p;
2377 unsigned regno, nregs;
2378 /* We assume here that no machine mode needs more than
2379 32 hard registers when the value overlaps with a register
2380 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2381 unsigned mask;
2382 struct likely_spilled_retval_info info;
2383
2384 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2385 return 0;
2386 reg = XEXP (PATTERN (use), 0);
2387 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2388 return 0;
2389 regno = REGNO (reg);
2390 nregs = REG_NREGS (reg);
2391 if (nregs == 1)
2392 return 0;
2393 mask = (2U << (nregs - 1)) - 1;
2394
2395 /* Disregard parts of the return value that are set later. */
2396 info.regno = regno;
2397 info.nregs = nregs;
2398 info.mask = mask;
2399 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2400 if (INSN_P (p))
2401 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2402 mask = info.mask;
2403
2404 /* Check if any of the (probably) live return value registers is
2405 likely spilled. */
2406 nregs --;
2407 do
2408 {
2409 if ((mask & 1 << nregs)
2410 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2411 return 1;
2412 } while (nregs--);
2413 return 0;
2414 }
2415
2416 /* Adjust INSN after we made a change to its destination.
2417
2418 Changing the destination can invalidate notes that say something about
2419 the results of the insn and a LOG_LINK pointing to the insn. */
2420
2421 static void
2422 adjust_for_new_dest (rtx_insn *insn)
2423 {
2424 /* For notes, be conservative and simply remove them. */
2425 remove_reg_equal_equiv_notes (insn);
2426
2427 /* The new insn will have a destination that was previously the destination
2428 of an insn just above it. Call distribute_links to make a LOG_LINK from
2429 the next use of that destination. */
2430
2431 rtx set = single_set (insn);
2432 gcc_assert (set);
2433
2434 rtx reg = SET_DEST (set);
2435
2436 while (GET_CODE (reg) == ZERO_EXTRACT
2437 || GET_CODE (reg) == STRICT_LOW_PART
2438 || GET_CODE (reg) == SUBREG)
2439 reg = XEXP (reg, 0);
2440 gcc_assert (REG_P (reg));
2441
2442 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2443
2444 df_insn_rescan (insn);
2445 }
2446
2447 /* Return TRUE if combine can reuse reg X in mode MODE.
2448 ADDED_SETS is nonzero if the original set is still required. */
2449 static bool
2450 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2451 {
2452 unsigned int regno;
2453
2454 if (!REG_P (x))
2455 return false;
2456
2457 regno = REGNO (x);
2458 /* Allow hard registers if the new mode is legal, and occupies no more
2459 registers than the old mode. */
2460 if (regno < FIRST_PSEUDO_REGISTER)
2461 return (HARD_REGNO_MODE_OK (regno, mode)
2462 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2463
2464 /* Or a pseudo that is only used once. */
2465 return (regno < reg_n_sets_max
2466 && REG_N_SETS (regno) == 1
2467 && !added_sets
2468 && !REG_USERVAR_P (x));
2469 }
2470
2471
2472 /* Check whether X, the destination of a set, refers to part of
2473 the register specified by REG. */
2474
2475 static bool
2476 reg_subword_p (rtx x, rtx reg)
2477 {
2478 /* Check that reg is an integer mode register. */
2479 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2480 return false;
2481
2482 if (GET_CODE (x) == STRICT_LOW_PART
2483 || GET_CODE (x) == ZERO_EXTRACT)
2484 x = XEXP (x, 0);
2485
2486 return GET_CODE (x) == SUBREG
2487 && SUBREG_REG (x) == reg
2488 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2489 }
2490
2491 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2492 Note that the INSN should be deleted *after* removing dead edges, so
2493 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2494 but not for a (set (pc) (label_ref FOO)). */
2495
2496 static void
2497 update_cfg_for_uncondjump (rtx_insn *insn)
2498 {
2499 basic_block bb = BLOCK_FOR_INSN (insn);
2500 gcc_assert (BB_END (bb) == insn);
2501
2502 purge_dead_edges (bb);
2503
2504 delete_insn (insn);
2505 if (EDGE_COUNT (bb->succs) == 1)
2506 {
2507 rtx_insn *insn;
2508
2509 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2510
2511 /* Remove barriers from the footer if there are any. */
2512 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2513 if (BARRIER_P (insn))
2514 {
2515 if (PREV_INSN (insn))
2516 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2517 else
2518 BB_FOOTER (bb) = NEXT_INSN (insn);
2519 if (NEXT_INSN (insn))
2520 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2521 }
2522 else if (LABEL_P (insn))
2523 break;
2524 }
2525 }
2526
2527 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2528 by an arbitrary number of CLOBBERs. */
2529 static bool
2530 is_parallel_of_n_reg_sets (rtx pat, int n)
2531 {
2532 if (GET_CODE (pat) != PARALLEL)
2533 return false;
2534
2535 int len = XVECLEN (pat, 0);
2536 if (len < n)
2537 return false;
2538
2539 int i;
2540 for (i = 0; i < n; i++)
2541 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2542 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2543 return false;
2544 for ( ; i < len; i++)
2545 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2546 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2547 return false;
2548
2549 return true;
2550 }
2551
2552 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2553 CLOBBERs), can be split into individual SETs in that order, without
2554 changing semantics. */
2555 static bool
2556 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2557 {
2558 if (!insn_nothrow_p (insn))
2559 return false;
2560
2561 rtx pat = PATTERN (insn);
2562
2563 int i, j;
2564 for (i = 0; i < n; i++)
2565 {
2566 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2567 return false;
2568
2569 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2570
2571 for (j = i + 1; j < n; j++)
2572 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2573 return false;
2574 }
2575
2576 return true;
2577 }
2578
2579 /* Try to combine the insns I0, I1 and I2 into I3.
2580 Here I0, I1 and I2 appear earlier than I3.
2581 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2582 I3.
2583
2584 If we are combining more than two insns and the resulting insn is not
2585 recognized, try splitting it into two insns. If that happens, I2 and I3
2586 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2587 Otherwise, I0, I1 and I2 are pseudo-deleted.
2588
2589 Return 0 if the combination does not work. Then nothing is changed.
2590 If we did the combination, return the insn at which combine should
2591 resume scanning.
2592
2593 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2594 new direct jump instruction.
2595
2596 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2597 been I3 passed to an earlier try_combine within the same basic
2598 block. */
2599
2600 static rtx_insn *
2601 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2602 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2603 {
2604 /* New patterns for I3 and I2, respectively. */
2605 rtx newpat, newi2pat = 0;
2606 rtvec newpat_vec_with_clobbers = 0;
2607 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2608 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2609 dead. */
2610 int added_sets_0, added_sets_1, added_sets_2;
2611 /* Total number of SETs to put into I3. */
2612 int total_sets;
2613 /* Nonzero if I2's or I1's body now appears in I3. */
2614 int i2_is_used = 0, i1_is_used = 0;
2615 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2616 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2617 /* Contains I3 if the destination of I3 is used in its source, which means
2618 that the old life of I3 is being killed. If that usage is placed into
2619 I2 and not in I3, a REG_DEAD note must be made. */
2620 rtx i3dest_killed = 0;
2621 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2622 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2623 /* Copy of SET_SRC of I1 and I0, if needed. */
2624 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2625 /* Set if I2DEST was reused as a scratch register. */
2626 bool i2scratch = false;
2627 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2628 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2629 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2630 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2631 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2632 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2633 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2634 /* Notes that must be added to REG_NOTES in I3 and I2. */
2635 rtx new_i3_notes, new_i2_notes;
2636 /* Notes that we substituted I3 into I2 instead of the normal case. */
2637 int i3_subst_into_i2 = 0;
2638 /* Notes that I1, I2 or I3 is a MULT operation. */
2639 int have_mult = 0;
2640 int swap_i2i3 = 0;
2641 int changed_i3_dest = 0;
2642
2643 int maxreg;
2644 rtx_insn *temp_insn;
2645 rtx temp_expr;
2646 struct insn_link *link;
2647 rtx other_pat = 0;
2648 rtx new_other_notes;
2649 int i;
2650
2651 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2652 never be). */
2653 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2654 return 0;
2655
2656 /* Only try four-insn combinations when there's high likelihood of
2657 success. Look for simple insns, such as loads of constants or
2658 binary operations involving a constant. */
2659 if (i0)
2660 {
2661 int i;
2662 int ngood = 0;
2663 int nshift = 0;
2664 rtx set0, set3;
2665
2666 if (!flag_expensive_optimizations)
2667 return 0;
2668
2669 for (i = 0; i < 4; i++)
2670 {
2671 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2672 rtx set = single_set (insn);
2673 rtx src;
2674 if (!set)
2675 continue;
2676 src = SET_SRC (set);
2677 if (CONSTANT_P (src))
2678 {
2679 ngood += 2;
2680 break;
2681 }
2682 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2683 ngood++;
2684 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2685 || GET_CODE (src) == LSHIFTRT)
2686 nshift++;
2687 }
2688
2689 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2690 are likely manipulating its value. Ideally we'll be able to combine
2691 all four insns into a bitfield insertion of some kind.
2692
2693 Note the source in I0 might be inside a sign/zero extension and the
2694 memory modes in I0 and I3 might be different. So extract the address
2695 from the destination of I3 and search for it in the source of I0.
2696
2697 In the event that there's a match but the source/dest do not actually
2698 refer to the same memory, the worst that happens is we try some
2699 combinations that we wouldn't have otherwise. */
2700 if ((set0 = single_set (i0))
2701 /* Ensure the source of SET0 is a MEM, possibly buried inside
2702 an extension. */
2703 && (GET_CODE (SET_SRC (set0)) == MEM
2704 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2705 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2706 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2707 && (set3 = single_set (i3))
2708 /* Ensure the destination of SET3 is a MEM. */
2709 && GET_CODE (SET_DEST (set3)) == MEM
2710 /* Would it be better to extract the base address for the MEM
2711 in SET3 and look for that? I don't have cases where it matters
2712 but I could envision such cases. */
2713 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2714 ngood += 2;
2715
2716 if (ngood < 2 && nshift < 2)
2717 return 0;
2718 }
2719
2720 /* Exit early if one of the insns involved can't be used for
2721 combinations. */
2722 if (CALL_P (i2)
2723 || (i1 && CALL_P (i1))
2724 || (i0 && CALL_P (i0))
2725 || cant_combine_insn_p (i3)
2726 || cant_combine_insn_p (i2)
2727 || (i1 && cant_combine_insn_p (i1))
2728 || (i0 && cant_combine_insn_p (i0))
2729 || likely_spilled_retval_p (i3))
2730 return 0;
2731
2732 combine_attempts++;
2733 undobuf.other_insn = 0;
2734
2735 /* Reset the hard register usage information. */
2736 CLEAR_HARD_REG_SET (newpat_used_regs);
2737
2738 if (dump_file && (dump_flags & TDF_DETAILS))
2739 {
2740 if (i0)
2741 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2742 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2743 else if (i1)
2744 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2745 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2746 else
2747 fprintf (dump_file, "\nTrying %d -> %d:\n",
2748 INSN_UID (i2), INSN_UID (i3));
2749 }
2750
2751 /* If multiple insns feed into one of I2 or I3, they can be in any
2752 order. To simplify the code below, reorder them in sequence. */
2753 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2754 std::swap (i0, i2);
2755 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2756 std::swap (i0, i1);
2757 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2758 std::swap (i1, i2);
2759
2760 added_links_insn = 0;
2761
2762 /* First check for one important special case that the code below will
2763 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2764 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2765 we may be able to replace that destination with the destination of I3.
2766 This occurs in the common code where we compute both a quotient and
2767 remainder into a structure, in which case we want to do the computation
2768 directly into the structure to avoid register-register copies.
2769
2770 Note that this case handles both multiple sets in I2 and also cases
2771 where I2 has a number of CLOBBERs inside the PARALLEL.
2772
2773 We make very conservative checks below and only try to handle the
2774 most common cases of this. For example, we only handle the case
2775 where I2 and I3 are adjacent to avoid making difficult register
2776 usage tests. */
2777
2778 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2779 && REG_P (SET_SRC (PATTERN (i3)))
2780 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2781 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2782 && GET_CODE (PATTERN (i2)) == PARALLEL
2783 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2784 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2785 below would need to check what is inside (and reg_overlap_mentioned_p
2786 doesn't support those codes anyway). Don't allow those destinations;
2787 the resulting insn isn't likely to be recognized anyway. */
2788 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2789 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2790 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2791 SET_DEST (PATTERN (i3)))
2792 && next_active_insn (i2) == i3)
2793 {
2794 rtx p2 = PATTERN (i2);
2795
2796 /* Make sure that the destination of I3,
2797 which we are going to substitute into one output of I2,
2798 is not used within another output of I2. We must avoid making this:
2799 (parallel [(set (mem (reg 69)) ...)
2800 (set (reg 69) ...)])
2801 which is not well-defined as to order of actions.
2802 (Besides, reload can't handle output reloads for this.)
2803
2804 The problem can also happen if the dest of I3 is a memory ref,
2805 if another dest in I2 is an indirect memory ref.
2806
2807 Neither can this PARALLEL be an asm. We do not allow combining
2808 that usually (see can_combine_p), so do not here either. */
2809 bool ok = true;
2810 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2811 {
2812 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2813 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2814 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2815 SET_DEST (XVECEXP (p2, 0, i))))
2816 ok = false;
2817 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2818 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2819 ok = false;
2820 }
2821
2822 if (ok)
2823 for (i = 0; i < XVECLEN (p2, 0); i++)
2824 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2825 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2826 {
2827 combine_merges++;
2828
2829 subst_insn = i3;
2830 subst_low_luid = DF_INSN_LUID (i2);
2831
2832 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2833 i2src = SET_SRC (XVECEXP (p2, 0, i));
2834 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2835 i2dest_killed = dead_or_set_p (i2, i2dest);
2836
2837 /* Replace the dest in I2 with our dest and make the resulting
2838 insn the new pattern for I3. Then skip to where we validate
2839 the pattern. Everything was set up above. */
2840 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2841 newpat = p2;
2842 i3_subst_into_i2 = 1;
2843 goto validate_replacement;
2844 }
2845 }
2846
2847 /* If I2 is setting a pseudo to a constant and I3 is setting some
2848 sub-part of it to another constant, merge them by making a new
2849 constant. */
2850 if (i1 == 0
2851 && (temp_expr = single_set (i2)) != 0
2852 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2853 && GET_CODE (PATTERN (i3)) == SET
2854 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2855 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2856 {
2857 rtx dest = SET_DEST (PATTERN (i3));
2858 int offset = -1;
2859 int width = 0;
2860
2861 if (GET_CODE (dest) == ZERO_EXTRACT)
2862 {
2863 if (CONST_INT_P (XEXP (dest, 1))
2864 && CONST_INT_P (XEXP (dest, 2)))
2865 {
2866 width = INTVAL (XEXP (dest, 1));
2867 offset = INTVAL (XEXP (dest, 2));
2868 dest = XEXP (dest, 0);
2869 if (BITS_BIG_ENDIAN)
2870 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2871 }
2872 }
2873 else
2874 {
2875 if (GET_CODE (dest) == STRICT_LOW_PART)
2876 dest = XEXP (dest, 0);
2877 width = GET_MODE_PRECISION (GET_MODE (dest));
2878 offset = 0;
2879 }
2880
2881 if (offset >= 0)
2882 {
2883 /* If this is the low part, we're done. */
2884 if (subreg_lowpart_p (dest))
2885 ;
2886 /* Handle the case where inner is twice the size of outer. */
2887 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2888 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2889 offset += GET_MODE_PRECISION (GET_MODE (dest));
2890 /* Otherwise give up for now. */
2891 else
2892 offset = -1;
2893 }
2894
2895 if (offset >= 0)
2896 {
2897 rtx inner = SET_SRC (PATTERN (i3));
2898 rtx outer = SET_SRC (temp_expr);
2899
2900 wide_int o
2901 = wi::insert (rtx_mode_t (outer, GET_MODE (SET_DEST (temp_expr))),
2902 rtx_mode_t (inner, GET_MODE (dest)),
2903 offset, width);
2904
2905 combine_merges++;
2906 subst_insn = i3;
2907 subst_low_luid = DF_INSN_LUID (i2);
2908 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2909 i2dest = SET_DEST (temp_expr);
2910 i2dest_killed = dead_or_set_p (i2, i2dest);
2911
2912 /* Replace the source in I2 with the new constant and make the
2913 resulting insn the new pattern for I3. Then skip to where we
2914 validate the pattern. Everything was set up above. */
2915 SUBST (SET_SRC (temp_expr),
2916 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2917
2918 newpat = PATTERN (i2);
2919
2920 /* The dest of I3 has been replaced with the dest of I2. */
2921 changed_i3_dest = 1;
2922 goto validate_replacement;
2923 }
2924 }
2925
2926 /* If we have no I1 and I2 looks like:
2927 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2928 (set Y OP)])
2929 make up a dummy I1 that is
2930 (set Y OP)
2931 and change I2 to be
2932 (set (reg:CC X) (compare:CC Y (const_int 0)))
2933
2934 (We can ignore any trailing CLOBBERs.)
2935
2936 This undoes a previous combination and allows us to match a branch-and-
2937 decrement insn. */
2938
2939 if (!HAVE_cc0 && i1 == 0
2940 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2941 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2942 == MODE_CC)
2943 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2944 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2945 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2946 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2947 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2948 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2949 {
2950 /* We make I1 with the same INSN_UID as I2. This gives it
2951 the same DF_INSN_LUID for value tracking. Our fake I1 will
2952 never appear in the insn stream so giving it the same INSN_UID
2953 as I2 will not cause a problem. */
2954
2955 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2956 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2957 -1, NULL_RTX);
2958 INSN_UID (i1) = INSN_UID (i2);
2959
2960 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2961 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2962 SET_DEST (PATTERN (i1)));
2963 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2964 SUBST_LINK (LOG_LINKS (i2),
2965 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2966 }
2967
2968 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2969 make those two SETs separate I1 and I2 insns, and make an I0 that is
2970 the original I1. */
2971 if (!HAVE_cc0 && i0 == 0
2972 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2973 && can_split_parallel_of_n_reg_sets (i2, 2)
2974 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2975 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2976 {
2977 /* If there is no I1, there is no I0 either. */
2978 i0 = i1;
2979
2980 /* We make I1 with the same INSN_UID as I2. This gives it
2981 the same DF_INSN_LUID for value tracking. Our fake I1 will
2982 never appear in the insn stream so giving it the same INSN_UID
2983 as I2 will not cause a problem. */
2984
2985 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2986 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2987 -1, NULL_RTX);
2988 INSN_UID (i1) = INSN_UID (i2);
2989
2990 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2991 }
2992
2993 /* Verify that I2 and I1 are valid for combining. */
2994 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2995 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2996 &i1dest, &i1src))
2997 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2998 &i0dest, &i0src)))
2999 {
3000 undo_all ();
3001 return 0;
3002 }
3003
3004 /* Record whether I2DEST is used in I2SRC and similarly for the other
3005 cases. Knowing this will help in register status updating below. */
3006 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3007 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3008 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3009 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3010 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3011 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3012 i2dest_killed = dead_or_set_p (i2, i2dest);
3013 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3014 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3015
3016 /* For the earlier insns, determine which of the subsequent ones they
3017 feed. */
3018 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3019 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3020 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3021 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3022 && reg_overlap_mentioned_p (i0dest, i2src))));
3023
3024 /* Ensure that I3's pattern can be the destination of combines. */
3025 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3026 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3027 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3028 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3029 &i3dest_killed))
3030 {
3031 undo_all ();
3032 return 0;
3033 }
3034
3035 /* See if any of the insns is a MULT operation. Unless one is, we will
3036 reject a combination that is, since it must be slower. Be conservative
3037 here. */
3038 if (GET_CODE (i2src) == MULT
3039 || (i1 != 0 && GET_CODE (i1src) == MULT)
3040 || (i0 != 0 && GET_CODE (i0src) == MULT)
3041 || (GET_CODE (PATTERN (i3)) == SET
3042 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3043 have_mult = 1;
3044
3045 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3046 We used to do this EXCEPT in one case: I3 has a post-inc in an
3047 output operand. However, that exception can give rise to insns like
3048 mov r3,(r3)+
3049 which is a famous insn on the PDP-11 where the value of r3 used as the
3050 source was model-dependent. Avoid this sort of thing. */
3051
3052 #if 0
3053 if (!(GET_CODE (PATTERN (i3)) == SET
3054 && REG_P (SET_SRC (PATTERN (i3)))
3055 && MEM_P (SET_DEST (PATTERN (i3)))
3056 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3057 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3058 /* It's not the exception. */
3059 #endif
3060 if (AUTO_INC_DEC)
3061 {
3062 rtx link;
3063 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3064 if (REG_NOTE_KIND (link) == REG_INC
3065 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3066 || (i1 != 0
3067 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3068 {
3069 undo_all ();
3070 return 0;
3071 }
3072 }
3073
3074 /* See if the SETs in I1 or I2 need to be kept around in the merged
3075 instruction: whenever the value set there is still needed past I3.
3076 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3077
3078 For the SET in I1, we have two cases: if I1 and I2 independently feed
3079 into I3, the set in I1 needs to be kept around unless I1DEST dies
3080 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3081 in I1 needs to be kept around unless I1DEST dies or is set in either
3082 I2 or I3. The same considerations apply to I0. */
3083
3084 added_sets_2 = !dead_or_set_p (i3, i2dest);
3085
3086 if (i1)
3087 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3088 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3089 else
3090 added_sets_1 = 0;
3091
3092 if (i0)
3093 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3094 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3095 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3096 && dead_or_set_p (i2, i0dest)));
3097 else
3098 added_sets_0 = 0;
3099
3100 /* We are about to copy insns for the case where they need to be kept
3101 around. Check that they can be copied in the merged instruction. */
3102
3103 if (targetm.cannot_copy_insn_p
3104 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3105 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3106 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3107 {
3108 undo_all ();
3109 return 0;
3110 }
3111
3112 /* If the set in I2 needs to be kept around, we must make a copy of
3113 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3114 PATTERN (I2), we are only substituting for the original I1DEST, not into
3115 an already-substituted copy. This also prevents making self-referential
3116 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3117 I2DEST. */
3118
3119 if (added_sets_2)
3120 {
3121 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3122 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3123 else
3124 i2pat = copy_rtx (PATTERN (i2));
3125 }
3126
3127 if (added_sets_1)
3128 {
3129 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3130 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3131 else
3132 i1pat = copy_rtx (PATTERN (i1));
3133 }
3134
3135 if (added_sets_0)
3136 {
3137 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3138 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3139 else
3140 i0pat = copy_rtx (PATTERN (i0));
3141 }
3142
3143 combine_merges++;
3144
3145 /* Substitute in the latest insn for the regs set by the earlier ones. */
3146
3147 maxreg = max_reg_num ();
3148
3149 subst_insn = i3;
3150
3151 /* Many machines that don't use CC0 have insns that can both perform an
3152 arithmetic operation and set the condition code. These operations will
3153 be represented as a PARALLEL with the first element of the vector
3154 being a COMPARE of an arithmetic operation with the constant zero.
3155 The second element of the vector will set some pseudo to the result
3156 of the same arithmetic operation. If we simplify the COMPARE, we won't
3157 match such a pattern and so will generate an extra insn. Here we test
3158 for this case, where both the comparison and the operation result are
3159 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3160 I2SRC. Later we will make the PARALLEL that contains I2. */
3161
3162 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3163 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3164 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3165 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3166 {
3167 rtx newpat_dest;
3168 rtx *cc_use_loc = NULL;
3169 rtx_insn *cc_use_insn = NULL;
3170 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3171 machine_mode compare_mode, orig_compare_mode;
3172 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3173 scalar_int_mode mode;
3174
3175 newpat = PATTERN (i3);
3176 newpat_dest = SET_DEST (newpat);
3177 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3178
3179 if (undobuf.other_insn == 0
3180 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3181 &cc_use_insn)))
3182 {
3183 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3184 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3185 compare_code = simplify_compare_const (compare_code, mode,
3186 op0, &op1);
3187 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3188 }
3189
3190 /* Do the rest only if op1 is const0_rtx, which may be the
3191 result of simplification. */
3192 if (op1 == const0_rtx)
3193 {
3194 /* If a single use of the CC is found, prepare to modify it
3195 when SELECT_CC_MODE returns a new CC-class mode, or when
3196 the above simplify_compare_const() returned a new comparison
3197 operator. undobuf.other_insn is assigned the CC use insn
3198 when modifying it. */
3199 if (cc_use_loc)
3200 {
3201 #ifdef SELECT_CC_MODE
3202 machine_mode new_mode
3203 = SELECT_CC_MODE (compare_code, op0, op1);
3204 if (new_mode != orig_compare_mode
3205 && can_change_dest_mode (SET_DEST (newpat),
3206 added_sets_2, new_mode))
3207 {
3208 unsigned int regno = REGNO (newpat_dest);
3209 compare_mode = new_mode;
3210 if (regno < FIRST_PSEUDO_REGISTER)
3211 newpat_dest = gen_rtx_REG (compare_mode, regno);
3212 else
3213 {
3214 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3215 newpat_dest = regno_reg_rtx[regno];
3216 }
3217 }
3218 #endif
3219 /* Cases for modifying the CC-using comparison. */
3220 if (compare_code != orig_compare_code
3221 /* ??? Do we need to verify the zero rtx? */
3222 && XEXP (*cc_use_loc, 1) == const0_rtx)
3223 {
3224 /* Replace cc_use_loc with entire new RTX. */
3225 SUBST (*cc_use_loc,
3226 gen_rtx_fmt_ee (compare_code, compare_mode,
3227 newpat_dest, const0_rtx));
3228 undobuf.other_insn = cc_use_insn;
3229 }
3230 else if (compare_mode != orig_compare_mode)
3231 {
3232 /* Just replace the CC reg with a new mode. */
3233 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3234 undobuf.other_insn = cc_use_insn;
3235 }
3236 }
3237
3238 /* Now we modify the current newpat:
3239 First, SET_DEST(newpat) is updated if the CC mode has been
3240 altered. For targets without SELECT_CC_MODE, this should be
3241 optimized away. */
3242 if (compare_mode != orig_compare_mode)
3243 SUBST (SET_DEST (newpat), newpat_dest);
3244 /* This is always done to propagate i2src into newpat. */
3245 SUBST (SET_SRC (newpat),
3246 gen_rtx_COMPARE (compare_mode, op0, op1));
3247 /* Create new version of i2pat if needed; the below PARALLEL
3248 creation needs this to work correctly. */
3249 if (! rtx_equal_p (i2src, op0))
3250 i2pat = gen_rtx_SET (i2dest, op0);
3251 i2_is_used = 1;
3252 }
3253 }
3254
3255 if (i2_is_used == 0)
3256 {
3257 /* It is possible that the source of I2 or I1 may be performing
3258 an unneeded operation, such as a ZERO_EXTEND of something
3259 that is known to have the high part zero. Handle that case
3260 by letting subst look at the inner insns.
3261
3262 Another way to do this would be to have a function that tries
3263 to simplify a single insn instead of merging two or more
3264 insns. We don't do this because of the potential of infinite
3265 loops and because of the potential extra memory required.
3266 However, doing it the way we are is a bit of a kludge and
3267 doesn't catch all cases.
3268
3269 But only do this if -fexpensive-optimizations since it slows
3270 things down and doesn't usually win.
3271
3272 This is not done in the COMPARE case above because the
3273 unmodified I2PAT is used in the PARALLEL and so a pattern
3274 with a modified I2SRC would not match. */
3275
3276 if (flag_expensive_optimizations)
3277 {
3278 /* Pass pc_rtx so no substitutions are done, just
3279 simplifications. */
3280 if (i1)
3281 {
3282 subst_low_luid = DF_INSN_LUID (i1);
3283 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3284 }
3285
3286 subst_low_luid = DF_INSN_LUID (i2);
3287 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3288 }
3289
3290 n_occurrences = 0; /* `subst' counts here */
3291 subst_low_luid = DF_INSN_LUID (i2);
3292
3293 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3294 copy of I2SRC each time we substitute it, in order to avoid creating
3295 self-referential RTL when we will be substituting I1SRC for I1DEST
3296 later. Likewise if I0 feeds into I2, either directly or indirectly
3297 through I1, and I0DEST is in I0SRC. */
3298 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3299 (i1_feeds_i2_n && i1dest_in_i1src)
3300 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3301 && i0dest_in_i0src));
3302 substed_i2 = 1;
3303
3304 /* Record whether I2's body now appears within I3's body. */
3305 i2_is_used = n_occurrences;
3306 }
3307
3308 /* If we already got a failure, don't try to do more. Otherwise, try to
3309 substitute I1 if we have it. */
3310
3311 if (i1 && GET_CODE (newpat) != CLOBBER)
3312 {
3313 /* Check that an autoincrement side-effect on I1 has not been lost.
3314 This happens if I1DEST is mentioned in I2 and dies there, and
3315 has disappeared from the new pattern. */
3316 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3317 && i1_feeds_i2_n
3318 && dead_or_set_p (i2, i1dest)
3319 && !reg_overlap_mentioned_p (i1dest, newpat))
3320 /* Before we can do this substitution, we must redo the test done
3321 above (see detailed comments there) that ensures I1DEST isn't
3322 mentioned in any SETs in NEWPAT that are field assignments. */
3323 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3324 0, 0, 0))
3325 {
3326 undo_all ();
3327 return 0;
3328 }
3329
3330 n_occurrences = 0;
3331 subst_low_luid = DF_INSN_LUID (i1);
3332
3333 /* If the following substitution will modify I1SRC, make a copy of it
3334 for the case where it is substituted for I1DEST in I2PAT later. */
3335 if (added_sets_2 && i1_feeds_i2_n)
3336 i1src_copy = copy_rtx (i1src);
3337
3338 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3339 copy of I1SRC each time we substitute it, in order to avoid creating
3340 self-referential RTL when we will be substituting I0SRC for I0DEST
3341 later. */
3342 newpat = subst (newpat, i1dest, i1src, 0, 0,
3343 i0_feeds_i1_n && i0dest_in_i0src);
3344 substed_i1 = 1;
3345
3346 /* Record whether I1's body now appears within I3's body. */
3347 i1_is_used = n_occurrences;
3348 }
3349
3350 /* Likewise for I0 if we have it. */
3351
3352 if (i0 && GET_CODE (newpat) != CLOBBER)
3353 {
3354 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3355 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3356 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3357 && !reg_overlap_mentioned_p (i0dest, newpat))
3358 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3359 0, 0, 0))
3360 {
3361 undo_all ();
3362 return 0;
3363 }
3364
3365 /* If the following substitution will modify I0SRC, make a copy of it
3366 for the case where it is substituted for I0DEST in I1PAT later. */
3367 if (added_sets_1 && i0_feeds_i1_n)
3368 i0src_copy = copy_rtx (i0src);
3369 /* And a copy for I0DEST in I2PAT substitution. */
3370 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3371 || (i0_feeds_i2_n)))
3372 i0src_copy2 = copy_rtx (i0src);
3373
3374 n_occurrences = 0;
3375 subst_low_luid = DF_INSN_LUID (i0);
3376 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3377 substed_i0 = 1;
3378 }
3379
3380 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3381 to count all the ways that I2SRC and I1SRC can be used. */
3382 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3383 && i2_is_used + added_sets_2 > 1)
3384 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3385 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3386 > 1))
3387 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3388 && (n_occurrences + added_sets_0
3389 + (added_sets_1 && i0_feeds_i1_n)
3390 + (added_sets_2 && i0_feeds_i2_n)
3391 > 1))
3392 /* Fail if we tried to make a new register. */
3393 || max_reg_num () != maxreg
3394 /* Fail if we couldn't do something and have a CLOBBER. */
3395 || GET_CODE (newpat) == CLOBBER
3396 /* Fail if this new pattern is a MULT and we didn't have one before
3397 at the outer level. */
3398 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3399 && ! have_mult))
3400 {
3401 undo_all ();
3402 return 0;
3403 }
3404
3405 /* If the actions of the earlier insns must be kept
3406 in addition to substituting them into the latest one,
3407 we must make a new PARALLEL for the latest insn
3408 to hold additional the SETs. */
3409
3410 if (added_sets_0 || added_sets_1 || added_sets_2)
3411 {
3412 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3413 combine_extras++;
3414
3415 if (GET_CODE (newpat) == PARALLEL)
3416 {
3417 rtvec old = XVEC (newpat, 0);
3418 total_sets = XVECLEN (newpat, 0) + extra_sets;
3419 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3420 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3421 sizeof (old->elem[0]) * old->num_elem);
3422 }
3423 else
3424 {
3425 rtx old = newpat;
3426 total_sets = 1 + extra_sets;
3427 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3428 XVECEXP (newpat, 0, 0) = old;
3429 }
3430
3431 if (added_sets_0)
3432 XVECEXP (newpat, 0, --total_sets) = i0pat;
3433
3434 if (added_sets_1)
3435 {
3436 rtx t = i1pat;
3437 if (i0_feeds_i1_n)
3438 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3439
3440 XVECEXP (newpat, 0, --total_sets) = t;
3441 }
3442 if (added_sets_2)
3443 {
3444 rtx t = i2pat;
3445 if (i1_feeds_i2_n)
3446 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3447 i0_feeds_i1_n && i0dest_in_i0src);
3448 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3449 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3450
3451 XVECEXP (newpat, 0, --total_sets) = t;
3452 }
3453 }
3454
3455 validate_replacement:
3456
3457 /* Note which hard regs this insn has as inputs. */
3458 mark_used_regs_combine (newpat);
3459
3460 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3461 consider splitting this pattern, we might need these clobbers. */
3462 if (i1 && GET_CODE (newpat) == PARALLEL
3463 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3464 {
3465 int len = XVECLEN (newpat, 0);
3466
3467 newpat_vec_with_clobbers = rtvec_alloc (len);
3468 for (i = 0; i < len; i++)
3469 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3470 }
3471
3472 /* We have recognized nothing yet. */
3473 insn_code_number = -1;
3474
3475 /* See if this is a PARALLEL of two SETs where one SET's destination is
3476 a register that is unused and this isn't marked as an instruction that
3477 might trap in an EH region. In that case, we just need the other SET.
3478 We prefer this over the PARALLEL.
3479
3480 This can occur when simplifying a divmod insn. We *must* test for this
3481 case here because the code below that splits two independent SETs doesn't
3482 handle this case correctly when it updates the register status.
3483
3484 It's pointless doing this if we originally had two sets, one from
3485 i3, and one from i2. Combining then splitting the parallel results
3486 in the original i2 again plus an invalid insn (which we delete).
3487 The net effect is only to move instructions around, which makes
3488 debug info less accurate. */
3489
3490 if (!(added_sets_2 && i1 == 0)
3491 && is_parallel_of_n_reg_sets (newpat, 2)
3492 && asm_noperands (newpat) < 0)
3493 {
3494 rtx set0 = XVECEXP (newpat, 0, 0);
3495 rtx set1 = XVECEXP (newpat, 0, 1);
3496 rtx oldpat = newpat;
3497
3498 if (((REG_P (SET_DEST (set1))
3499 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3500 || (GET_CODE (SET_DEST (set1)) == SUBREG
3501 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3502 && insn_nothrow_p (i3)
3503 && !side_effects_p (SET_SRC (set1)))
3504 {
3505 newpat = set0;
3506 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3507 }
3508
3509 else if (((REG_P (SET_DEST (set0))
3510 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3511 || (GET_CODE (SET_DEST (set0)) == SUBREG
3512 && find_reg_note (i3, REG_UNUSED,
3513 SUBREG_REG (SET_DEST (set0)))))
3514 && insn_nothrow_p (i3)
3515 && !side_effects_p (SET_SRC (set0)))
3516 {
3517 newpat = set1;
3518 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3519
3520 if (insn_code_number >= 0)
3521 changed_i3_dest = 1;
3522 }
3523
3524 if (insn_code_number < 0)
3525 newpat = oldpat;
3526 }
3527
3528 /* Is the result of combination a valid instruction? */
3529 if (insn_code_number < 0)
3530 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3531
3532 /* If we were combining three insns and the result is a simple SET
3533 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3534 insns. There are two ways to do this. It can be split using a
3535 machine-specific method (like when you have an addition of a large
3536 constant) or by combine in the function find_split_point. */
3537
3538 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3539 && asm_noperands (newpat) < 0)
3540 {
3541 rtx parallel, *split;
3542 rtx_insn *m_split_insn;
3543
3544 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3545 use I2DEST as a scratch register will help. In the latter case,
3546 convert I2DEST to the mode of the source of NEWPAT if we can. */
3547
3548 m_split_insn = combine_split_insns (newpat, i3);
3549
3550 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3551 inputs of NEWPAT. */
3552
3553 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3554 possible to try that as a scratch reg. This would require adding
3555 more code to make it work though. */
3556
3557 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3558 {
3559 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3560
3561 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3562 (temporarily, until we are committed to this instruction
3563 combination) does not work: for example, any call to nonzero_bits
3564 on the register (from a splitter in the MD file, for example)
3565 will get the old information, which is invalid.
3566
3567 Since nowadays we can create registers during combine just fine,
3568 we should just create a new one here, not reuse i2dest. */
3569
3570 /* First try to split using the original register as a
3571 scratch register. */
3572 parallel = gen_rtx_PARALLEL (VOIDmode,
3573 gen_rtvec (2, newpat,
3574 gen_rtx_CLOBBER (VOIDmode,
3575 i2dest)));
3576 m_split_insn = combine_split_insns (parallel, i3);
3577
3578 /* If that didn't work, try changing the mode of I2DEST if
3579 we can. */
3580 if (m_split_insn == 0
3581 && new_mode != GET_MODE (i2dest)
3582 && new_mode != VOIDmode
3583 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3584 {
3585 machine_mode old_mode = GET_MODE (i2dest);
3586 rtx ni2dest;
3587
3588 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3589 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3590 else
3591 {
3592 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3593 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3594 }
3595
3596 parallel = (gen_rtx_PARALLEL
3597 (VOIDmode,
3598 gen_rtvec (2, newpat,
3599 gen_rtx_CLOBBER (VOIDmode,
3600 ni2dest))));
3601 m_split_insn = combine_split_insns (parallel, i3);
3602
3603 if (m_split_insn == 0
3604 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3605 {
3606 struct undo *buf;
3607
3608 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3609 buf = undobuf.undos;
3610 undobuf.undos = buf->next;
3611 buf->next = undobuf.frees;
3612 undobuf.frees = buf;
3613 }
3614 }
3615
3616 i2scratch = m_split_insn != 0;
3617 }
3618
3619 /* If recog_for_combine has discarded clobbers, try to use them
3620 again for the split. */
3621 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3622 {
3623 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3624 m_split_insn = combine_split_insns (parallel, i3);
3625 }
3626
3627 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3628 {
3629 rtx m_split_pat = PATTERN (m_split_insn);
3630 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3631 if (insn_code_number >= 0)
3632 newpat = m_split_pat;
3633 }
3634 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3635 && (next_nonnote_nondebug_insn (i2) == i3
3636 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3637 {
3638 rtx i2set, i3set;
3639 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3640 newi2pat = PATTERN (m_split_insn);
3641
3642 i3set = single_set (NEXT_INSN (m_split_insn));
3643 i2set = single_set (m_split_insn);
3644
3645 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3646
3647 /* If I2 or I3 has multiple SETs, we won't know how to track
3648 register status, so don't use these insns. If I2's destination
3649 is used between I2 and I3, we also can't use these insns. */
3650
3651 if (i2_code_number >= 0 && i2set && i3set
3652 && (next_nonnote_nondebug_insn (i2) == i3
3653 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3654 insn_code_number = recog_for_combine (&newi3pat, i3,
3655 &new_i3_notes);
3656 if (insn_code_number >= 0)
3657 newpat = newi3pat;
3658
3659 /* It is possible that both insns now set the destination of I3.
3660 If so, we must show an extra use of it. */
3661
3662 if (insn_code_number >= 0)
3663 {
3664 rtx new_i3_dest = SET_DEST (i3set);
3665 rtx new_i2_dest = SET_DEST (i2set);
3666
3667 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3668 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3669 || GET_CODE (new_i3_dest) == SUBREG)
3670 new_i3_dest = XEXP (new_i3_dest, 0);
3671
3672 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3673 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3674 || GET_CODE (new_i2_dest) == SUBREG)
3675 new_i2_dest = XEXP (new_i2_dest, 0);
3676
3677 if (REG_P (new_i3_dest)
3678 && REG_P (new_i2_dest)
3679 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3680 && REGNO (new_i2_dest) < reg_n_sets_max)
3681 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3682 }
3683 }
3684
3685 /* If we can split it and use I2DEST, go ahead and see if that
3686 helps things be recognized. Verify that none of the registers
3687 are set between I2 and I3. */
3688 if (insn_code_number < 0
3689 && (split = find_split_point (&newpat, i3, false)) != 0
3690 && (!HAVE_cc0 || REG_P (i2dest))
3691 /* We need I2DEST in the proper mode. If it is a hard register
3692 or the only use of a pseudo, we can change its mode.
3693 Make sure we don't change a hard register to have a mode that
3694 isn't valid for it, or change the number of registers. */
3695 && (GET_MODE (*split) == GET_MODE (i2dest)
3696 || GET_MODE (*split) == VOIDmode
3697 || can_change_dest_mode (i2dest, added_sets_2,
3698 GET_MODE (*split)))
3699 && (next_nonnote_nondebug_insn (i2) == i3
3700 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3701 /* We can't overwrite I2DEST if its value is still used by
3702 NEWPAT. */
3703 && ! reg_referenced_p (i2dest, newpat))
3704 {
3705 rtx newdest = i2dest;
3706 enum rtx_code split_code = GET_CODE (*split);
3707 machine_mode split_mode = GET_MODE (*split);
3708 bool subst_done = false;
3709 newi2pat = NULL_RTX;
3710
3711 i2scratch = true;
3712
3713 /* *SPLIT may be part of I2SRC, so make sure we have the
3714 original expression around for later debug processing.
3715 We should not need I2SRC any more in other cases. */
3716 if (MAY_HAVE_DEBUG_INSNS)
3717 i2src = copy_rtx (i2src);
3718 else
3719 i2src = NULL;
3720
3721 /* Get NEWDEST as a register in the proper mode. We have already
3722 validated that we can do this. */
3723 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3724 {
3725 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3726 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3727 else
3728 {
3729 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3730 newdest = regno_reg_rtx[REGNO (i2dest)];
3731 }
3732 }
3733
3734 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3735 an ASHIFT. This can occur if it was inside a PLUS and hence
3736 appeared to be a memory address. This is a kludge. */
3737 if (split_code == MULT
3738 && CONST_INT_P (XEXP (*split, 1))
3739 && INTVAL (XEXP (*split, 1)) > 0
3740 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3741 {
3742 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3743 XEXP (*split, 0), GEN_INT (i)));
3744 /* Update split_code because we may not have a multiply
3745 anymore. */
3746 split_code = GET_CODE (*split);
3747 }
3748
3749 /* Similarly for (plus (mult FOO (const_int pow2))). */
3750 if (split_code == PLUS
3751 && GET_CODE (XEXP (*split, 0)) == MULT
3752 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3753 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3754 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3755 {
3756 rtx nsplit = XEXP (*split, 0);
3757 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3758 XEXP (nsplit, 0), GEN_INT (i)));
3759 /* Update split_code because we may not have a multiply
3760 anymore. */
3761 split_code = GET_CODE (*split);
3762 }
3763
3764 #ifdef INSN_SCHEDULING
3765 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3766 be written as a ZERO_EXTEND. */
3767 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3768 {
3769 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3770 what it really is. */
3771 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3772 == SIGN_EXTEND)
3773 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3774 SUBREG_REG (*split)));
3775 else
3776 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3777 SUBREG_REG (*split)));
3778 }
3779 #endif
3780
3781 /* Attempt to split binary operators using arithmetic identities. */
3782 if (BINARY_P (SET_SRC (newpat))
3783 && split_mode == GET_MODE (SET_SRC (newpat))
3784 && ! side_effects_p (SET_SRC (newpat)))
3785 {
3786 rtx setsrc = SET_SRC (newpat);
3787 machine_mode mode = GET_MODE (setsrc);
3788 enum rtx_code code = GET_CODE (setsrc);
3789 rtx src_op0 = XEXP (setsrc, 0);
3790 rtx src_op1 = XEXP (setsrc, 1);
3791
3792 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3793 if (rtx_equal_p (src_op0, src_op1))
3794 {
3795 newi2pat = gen_rtx_SET (newdest, src_op0);
3796 SUBST (XEXP (setsrc, 0), newdest);
3797 SUBST (XEXP (setsrc, 1), newdest);
3798 subst_done = true;
3799 }
3800 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3801 else if ((code == PLUS || code == MULT)
3802 && GET_CODE (src_op0) == code
3803 && GET_CODE (XEXP (src_op0, 0)) == code
3804 && (INTEGRAL_MODE_P (mode)
3805 || (FLOAT_MODE_P (mode)
3806 && flag_unsafe_math_optimizations)))
3807 {
3808 rtx p = XEXP (XEXP (src_op0, 0), 0);
3809 rtx q = XEXP (XEXP (src_op0, 0), 1);
3810 rtx r = XEXP (src_op0, 1);
3811 rtx s = src_op1;
3812
3813 /* Split both "((X op Y) op X) op Y" and
3814 "((X op Y) op Y) op X" as "T op T" where T is
3815 "X op Y". */
3816 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3817 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3818 {
3819 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3820 SUBST (XEXP (setsrc, 0), newdest);
3821 SUBST (XEXP (setsrc, 1), newdest);
3822 subst_done = true;
3823 }
3824 /* Split "((X op X) op Y) op Y)" as "T op T" where
3825 T is "X op Y". */
3826 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3827 {
3828 rtx tmp = simplify_gen_binary (code, mode, p, r);
3829 newi2pat = gen_rtx_SET (newdest, tmp);
3830 SUBST (XEXP (setsrc, 0), newdest);
3831 SUBST (XEXP (setsrc, 1), newdest);
3832 subst_done = true;
3833 }
3834 }
3835 }
3836
3837 if (!subst_done)
3838 {
3839 newi2pat = gen_rtx_SET (newdest, *split);
3840 SUBST (*split, newdest);
3841 }
3842
3843 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3844
3845 /* recog_for_combine might have added CLOBBERs to newi2pat.
3846 Make sure NEWPAT does not depend on the clobbered regs. */
3847 if (GET_CODE (newi2pat) == PARALLEL)
3848 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3849 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3850 {
3851 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3852 if (reg_overlap_mentioned_p (reg, newpat))
3853 {
3854 undo_all ();
3855 return 0;
3856 }
3857 }
3858
3859 /* If the split point was a MULT and we didn't have one before,
3860 don't use one now. */
3861 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3862 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3863 }
3864 }
3865
3866 /* Check for a case where we loaded from memory in a narrow mode and
3867 then sign extended it, but we need both registers. In that case,
3868 we have a PARALLEL with both loads from the same memory location.
3869 We can split this into a load from memory followed by a register-register
3870 copy. This saves at least one insn, more if register allocation can
3871 eliminate the copy.
3872
3873 We cannot do this if the destination of the first assignment is a
3874 condition code register or cc0. We eliminate this case by making sure
3875 the SET_DEST and SET_SRC have the same mode.
3876
3877 We cannot do this if the destination of the second assignment is
3878 a register that we have already assumed is zero-extended. Similarly
3879 for a SUBREG of such a register. */
3880
3881 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3882 && GET_CODE (newpat) == PARALLEL
3883 && XVECLEN (newpat, 0) == 2
3884 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3885 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3886 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3887 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3888 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3889 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3890 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3891 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3892 DF_INSN_LUID (i2))
3893 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3894 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3895 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3896 (REG_P (temp_expr)
3897 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3898 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3899 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3900 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3901 != GET_MODE_MASK (word_mode))))
3902 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3903 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3904 (REG_P (temp_expr)
3905 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3906 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3907 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3908 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3909 != GET_MODE_MASK (word_mode)))))
3910 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3911 SET_SRC (XVECEXP (newpat, 0, 1)))
3912 && ! find_reg_note (i3, REG_UNUSED,
3913 SET_DEST (XVECEXP (newpat, 0, 0))))
3914 {
3915 rtx ni2dest;
3916
3917 newi2pat = XVECEXP (newpat, 0, 0);
3918 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3919 newpat = XVECEXP (newpat, 0, 1);
3920 SUBST (SET_SRC (newpat),
3921 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3922 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3923
3924 if (i2_code_number >= 0)
3925 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3926
3927 if (insn_code_number >= 0)
3928 swap_i2i3 = 1;
3929 }
3930
3931 /* Similarly, check for a case where we have a PARALLEL of two independent
3932 SETs but we started with three insns. In this case, we can do the sets
3933 as two separate insns. This case occurs when some SET allows two
3934 other insns to combine, but the destination of that SET is still live.
3935
3936 Also do this if we started with two insns and (at least) one of the
3937 resulting sets is a noop; this noop will be deleted later. */
3938
3939 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3940 && GET_CODE (newpat) == PARALLEL
3941 && XVECLEN (newpat, 0) == 2
3942 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3943 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3944 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3945 || set_noop_p (XVECEXP (newpat, 0, 1)))
3946 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3947 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3948 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3949 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3950 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3951 XVECEXP (newpat, 0, 0))
3952 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3953 XVECEXP (newpat, 0, 1))
3954 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3955 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3956 {
3957 rtx set0 = XVECEXP (newpat, 0, 0);
3958 rtx set1 = XVECEXP (newpat, 0, 1);
3959
3960 /* Normally, it doesn't matter which of the two is done first,
3961 but the one that references cc0 can't be the second, and
3962 one which uses any regs/memory set in between i2 and i3 can't
3963 be first. The PARALLEL might also have been pre-existing in i3,
3964 so we need to make sure that we won't wrongly hoist a SET to i2
3965 that would conflict with a death note present in there. */
3966 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3967 && !(REG_P (SET_DEST (set1))
3968 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3969 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3970 && find_reg_note (i2, REG_DEAD,
3971 SUBREG_REG (SET_DEST (set1))))
3972 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3973 /* If I3 is a jump, ensure that set0 is a jump so that
3974 we do not create invalid RTL. */
3975 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3976 )
3977 {
3978 newi2pat = set1;
3979 newpat = set0;
3980 }
3981 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3982 && !(REG_P (SET_DEST (set0))
3983 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3984 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3985 && find_reg_note (i2, REG_DEAD,
3986 SUBREG_REG (SET_DEST (set0))))
3987 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3988 /* If I3 is a jump, ensure that set1 is a jump so that
3989 we do not create invalid RTL. */
3990 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3991 )
3992 {
3993 newi2pat = set0;
3994 newpat = set1;
3995 }
3996 else
3997 {
3998 undo_all ();
3999 return 0;
4000 }
4001
4002 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4003
4004 if (i2_code_number >= 0)
4005 {
4006 /* recog_for_combine might have added CLOBBERs to newi2pat.
4007 Make sure NEWPAT does not depend on the clobbered regs. */
4008 if (GET_CODE (newi2pat) == PARALLEL)
4009 {
4010 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4011 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4012 {
4013 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4014 if (reg_overlap_mentioned_p (reg, newpat))
4015 {
4016 undo_all ();
4017 return 0;
4018 }
4019 }
4020 }
4021
4022 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4023 }
4024 }
4025
4026 /* If it still isn't recognized, fail and change things back the way they
4027 were. */
4028 if ((insn_code_number < 0
4029 /* Is the result a reasonable ASM_OPERANDS? */
4030 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4031 {
4032 undo_all ();
4033 return 0;
4034 }
4035
4036 /* If we had to change another insn, make sure it is valid also. */
4037 if (undobuf.other_insn)
4038 {
4039 CLEAR_HARD_REG_SET (newpat_used_regs);
4040
4041 other_pat = PATTERN (undobuf.other_insn);
4042 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4043 &new_other_notes);
4044
4045 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4046 {
4047 undo_all ();
4048 return 0;
4049 }
4050 }
4051
4052 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4053 they are adjacent to each other or not. */
4054 if (HAVE_cc0)
4055 {
4056 rtx_insn *p = prev_nonnote_insn (i3);
4057 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4058 && sets_cc0_p (newi2pat))
4059 {
4060 undo_all ();
4061 return 0;
4062 }
4063 }
4064
4065 /* Only allow this combination if insn_rtx_costs reports that the
4066 replacement instructions are cheaper than the originals. */
4067 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4068 {
4069 undo_all ();
4070 return 0;
4071 }
4072
4073 if (MAY_HAVE_DEBUG_INSNS)
4074 {
4075 struct undo *undo;
4076
4077 for (undo = undobuf.undos; undo; undo = undo->next)
4078 if (undo->kind == UNDO_MODE)
4079 {
4080 rtx reg = *undo->where.r;
4081 machine_mode new_mode = GET_MODE (reg);
4082 machine_mode old_mode = undo->old_contents.m;
4083
4084 /* Temporarily revert mode back. */
4085 adjust_reg_mode (reg, old_mode);
4086
4087 if (reg == i2dest && i2scratch)
4088 {
4089 /* If we used i2dest as a scratch register with a
4090 different mode, substitute it for the original
4091 i2src while its original mode is temporarily
4092 restored, and then clear i2scratch so that we don't
4093 do it again later. */
4094 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4095 this_basic_block);
4096 i2scratch = false;
4097 /* Put back the new mode. */
4098 adjust_reg_mode (reg, new_mode);
4099 }
4100 else
4101 {
4102 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4103 rtx_insn *first, *last;
4104
4105 if (reg == i2dest)
4106 {
4107 first = i2;
4108 last = last_combined_insn;
4109 }
4110 else
4111 {
4112 first = i3;
4113 last = undobuf.other_insn;
4114 gcc_assert (last);
4115 if (DF_INSN_LUID (last)
4116 < DF_INSN_LUID (last_combined_insn))
4117 last = last_combined_insn;
4118 }
4119
4120 /* We're dealing with a reg that changed mode but not
4121 meaning, so we want to turn it into a subreg for
4122 the new mode. However, because of REG sharing and
4123 because its mode had already changed, we have to do
4124 it in two steps. First, replace any debug uses of
4125 reg, with its original mode temporarily restored,
4126 with this copy we have created; then, replace the
4127 copy with the SUBREG of the original shared reg,
4128 once again changed to the new mode. */
4129 propagate_for_debug (first, last, reg, tempreg,
4130 this_basic_block);
4131 adjust_reg_mode (reg, new_mode);
4132 propagate_for_debug (first, last, tempreg,
4133 lowpart_subreg (old_mode, reg, new_mode),
4134 this_basic_block);
4135 }
4136 }
4137 }
4138
4139 /* If we will be able to accept this, we have made a
4140 change to the destination of I3. This requires us to
4141 do a few adjustments. */
4142
4143 if (changed_i3_dest)
4144 {
4145 PATTERN (i3) = newpat;
4146 adjust_for_new_dest (i3);
4147 }
4148
4149 /* We now know that we can do this combination. Merge the insns and
4150 update the status of registers and LOG_LINKS. */
4151
4152 if (undobuf.other_insn)
4153 {
4154 rtx note, next;
4155
4156 PATTERN (undobuf.other_insn) = other_pat;
4157
4158 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4159 ensure that they are still valid. Then add any non-duplicate
4160 notes added by recog_for_combine. */
4161 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4162 {
4163 next = XEXP (note, 1);
4164
4165 if ((REG_NOTE_KIND (note) == REG_DEAD
4166 && !reg_referenced_p (XEXP (note, 0),
4167 PATTERN (undobuf.other_insn)))
4168 ||(REG_NOTE_KIND (note) == REG_UNUSED
4169 && !reg_set_p (XEXP (note, 0),
4170 PATTERN (undobuf.other_insn)))
4171 /* Simply drop equal note since it may be no longer valid
4172 for other_insn. It may be possible to record that CC
4173 register is changed and only discard those notes, but
4174 in practice it's unnecessary complication and doesn't
4175 give any meaningful improvement.
4176
4177 See PR78559. */
4178 || REG_NOTE_KIND (note) == REG_EQUAL
4179 || REG_NOTE_KIND (note) == REG_EQUIV)
4180 remove_note (undobuf.other_insn, note);
4181 }
4182
4183 distribute_notes (new_other_notes, undobuf.other_insn,
4184 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4185 NULL_RTX);
4186 }
4187
4188 if (swap_i2i3)
4189 {
4190 rtx_insn *insn;
4191 struct insn_link *link;
4192 rtx ni2dest;
4193
4194 /* I3 now uses what used to be its destination and which is now
4195 I2's destination. This requires us to do a few adjustments. */
4196 PATTERN (i3) = newpat;
4197 adjust_for_new_dest (i3);
4198
4199 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4200 so we still will.
4201
4202 However, some later insn might be using I2's dest and have
4203 a LOG_LINK pointing at I3. We must remove this link.
4204 The simplest way to remove the link is to point it at I1,
4205 which we know will be a NOTE. */
4206
4207 /* newi2pat is usually a SET here; however, recog_for_combine might
4208 have added some clobbers. */
4209 if (GET_CODE (newi2pat) == PARALLEL)
4210 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4211 else
4212 ni2dest = SET_DEST (newi2pat);
4213
4214 for (insn = NEXT_INSN (i3);
4215 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4216 || insn != BB_HEAD (this_basic_block->next_bb));
4217 insn = NEXT_INSN (insn))
4218 {
4219 if (NONDEBUG_INSN_P (insn)
4220 && reg_referenced_p (ni2dest, PATTERN (insn)))
4221 {
4222 FOR_EACH_LOG_LINK (link, insn)
4223 if (link->insn == i3)
4224 link->insn = i1;
4225
4226 break;
4227 }
4228 }
4229 }
4230
4231 {
4232 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4233 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4234 rtx midnotes = 0;
4235 int from_luid;
4236 /* Compute which registers we expect to eliminate. newi2pat may be setting
4237 either i3dest or i2dest, so we must check it. */
4238 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4239 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4240 || !i2dest_killed
4241 ? 0 : i2dest);
4242 /* For i1, we need to compute both local elimination and global
4243 elimination information with respect to newi2pat because i1dest
4244 may be the same as i3dest, in which case newi2pat may be setting
4245 i1dest. Global information is used when distributing REG_DEAD
4246 note for i2 and i3, in which case it does matter if newi2pat sets
4247 i1dest or not.
4248
4249 Local information is used when distributing REG_DEAD note for i1,
4250 in which case it doesn't matter if newi2pat sets i1dest or not.
4251 See PR62151, if we have four insns combination:
4252 i0: r0 <- i0src
4253 i1: r1 <- i1src (using r0)
4254 REG_DEAD (r0)
4255 i2: r0 <- i2src (using r1)
4256 i3: r3 <- i3src (using r0)
4257 ix: using r0
4258 From i1's point of view, r0 is eliminated, no matter if it is set
4259 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4260 should be discarded.
4261
4262 Note local information only affects cases in forms like "I1->I2->I3",
4263 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4264 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4265 i0dest anyway. */
4266 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4267 || !i1dest_killed
4268 ? 0 : i1dest);
4269 rtx elim_i1 = (local_elim_i1 == 0
4270 || (newi2pat && reg_set_p (i1dest, newi2pat))
4271 ? 0 : i1dest);
4272 /* Same case as i1. */
4273 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4274 ? 0 : i0dest);
4275 rtx elim_i0 = (local_elim_i0 == 0
4276 || (newi2pat && reg_set_p (i0dest, newi2pat))
4277 ? 0 : i0dest);
4278
4279 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4280 clear them. */
4281 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4282 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4283 if (i1)
4284 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4285 if (i0)
4286 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4287
4288 /* Ensure that we do not have something that should not be shared but
4289 occurs multiple times in the new insns. Check this by first
4290 resetting all the `used' flags and then copying anything is shared. */
4291
4292 reset_used_flags (i3notes);
4293 reset_used_flags (i2notes);
4294 reset_used_flags (i1notes);
4295 reset_used_flags (i0notes);
4296 reset_used_flags (newpat);
4297 reset_used_flags (newi2pat);
4298 if (undobuf.other_insn)
4299 reset_used_flags (PATTERN (undobuf.other_insn));
4300
4301 i3notes = copy_rtx_if_shared (i3notes);
4302 i2notes = copy_rtx_if_shared (i2notes);
4303 i1notes = copy_rtx_if_shared (i1notes);
4304 i0notes = copy_rtx_if_shared (i0notes);
4305 newpat = copy_rtx_if_shared (newpat);
4306 newi2pat = copy_rtx_if_shared (newi2pat);
4307 if (undobuf.other_insn)
4308 reset_used_flags (PATTERN (undobuf.other_insn));
4309
4310 INSN_CODE (i3) = insn_code_number;
4311 PATTERN (i3) = newpat;
4312
4313 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4314 {
4315 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4316 link = XEXP (link, 1))
4317 {
4318 if (substed_i2)
4319 {
4320 /* I2SRC must still be meaningful at this point. Some
4321 splitting operations can invalidate I2SRC, but those
4322 operations do not apply to calls. */
4323 gcc_assert (i2src);
4324 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4325 i2dest, i2src);
4326 }
4327 if (substed_i1)
4328 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4329 i1dest, i1src);
4330 if (substed_i0)
4331 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4332 i0dest, i0src);
4333 }
4334 }
4335
4336 if (undobuf.other_insn)
4337 INSN_CODE (undobuf.other_insn) = other_code_number;
4338
4339 /* We had one special case above where I2 had more than one set and
4340 we replaced a destination of one of those sets with the destination
4341 of I3. In that case, we have to update LOG_LINKS of insns later
4342 in this basic block. Note that this (expensive) case is rare.
4343
4344 Also, in this case, we must pretend that all REG_NOTEs for I2
4345 actually came from I3, so that REG_UNUSED notes from I2 will be
4346 properly handled. */
4347
4348 if (i3_subst_into_i2)
4349 {
4350 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4351 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4352 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4353 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4354 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4355 && ! find_reg_note (i2, REG_UNUSED,
4356 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4357 for (temp_insn = NEXT_INSN (i2);
4358 temp_insn
4359 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4360 || BB_HEAD (this_basic_block) != temp_insn);
4361 temp_insn = NEXT_INSN (temp_insn))
4362 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4363 FOR_EACH_LOG_LINK (link, temp_insn)
4364 if (link->insn == i2)
4365 link->insn = i3;
4366
4367 if (i3notes)
4368 {
4369 rtx link = i3notes;
4370 while (XEXP (link, 1))
4371 link = XEXP (link, 1);
4372 XEXP (link, 1) = i2notes;
4373 }
4374 else
4375 i3notes = i2notes;
4376 i2notes = 0;
4377 }
4378
4379 LOG_LINKS (i3) = NULL;
4380 REG_NOTES (i3) = 0;
4381 LOG_LINKS (i2) = NULL;
4382 REG_NOTES (i2) = 0;
4383
4384 if (newi2pat)
4385 {
4386 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4387 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4388 this_basic_block);
4389 INSN_CODE (i2) = i2_code_number;
4390 PATTERN (i2) = newi2pat;
4391 }
4392 else
4393 {
4394 if (MAY_HAVE_DEBUG_INSNS && i2src)
4395 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4396 this_basic_block);
4397 SET_INSN_DELETED (i2);
4398 }
4399
4400 if (i1)
4401 {
4402 LOG_LINKS (i1) = NULL;
4403 REG_NOTES (i1) = 0;
4404 if (MAY_HAVE_DEBUG_INSNS)
4405 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4406 this_basic_block);
4407 SET_INSN_DELETED (i1);
4408 }
4409
4410 if (i0)
4411 {
4412 LOG_LINKS (i0) = NULL;
4413 REG_NOTES (i0) = 0;
4414 if (MAY_HAVE_DEBUG_INSNS)
4415 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4416 this_basic_block);
4417 SET_INSN_DELETED (i0);
4418 }
4419
4420 /* Get death notes for everything that is now used in either I3 or
4421 I2 and used to die in a previous insn. If we built two new
4422 patterns, move from I1 to I2 then I2 to I3 so that we get the
4423 proper movement on registers that I2 modifies. */
4424
4425 if (i0)
4426 from_luid = DF_INSN_LUID (i0);
4427 else if (i1)
4428 from_luid = DF_INSN_LUID (i1);
4429 else
4430 from_luid = DF_INSN_LUID (i2);
4431 if (newi2pat)
4432 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4433 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4434
4435 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4436 if (i3notes)
4437 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4438 elim_i2, elim_i1, elim_i0);
4439 if (i2notes)
4440 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4441 elim_i2, elim_i1, elim_i0);
4442 if (i1notes)
4443 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4444 elim_i2, local_elim_i1, local_elim_i0);
4445 if (i0notes)
4446 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4447 elim_i2, elim_i1, local_elim_i0);
4448 if (midnotes)
4449 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4450 elim_i2, elim_i1, elim_i0);
4451
4452 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4453 know these are REG_UNUSED and want them to go to the desired insn,
4454 so we always pass it as i3. */
4455
4456 if (newi2pat && new_i2_notes)
4457 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4458 NULL_RTX);
4459
4460 if (new_i3_notes)
4461 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4462 NULL_RTX);
4463
4464 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4465 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4466 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4467 in that case, it might delete I2. Similarly for I2 and I1.
4468 Show an additional death due to the REG_DEAD note we make here. If
4469 we discard it in distribute_notes, we will decrement it again. */
4470
4471 if (i3dest_killed)
4472 {
4473 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4474 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4475 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4476 elim_i1, elim_i0);
4477 else
4478 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4479 elim_i2, elim_i1, elim_i0);
4480 }
4481
4482 if (i2dest_in_i2src)
4483 {
4484 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4485 if (newi2pat && reg_set_p (i2dest, newi2pat))
4486 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4487 NULL_RTX, NULL_RTX);
4488 else
4489 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4490 NULL_RTX, NULL_RTX, NULL_RTX);
4491 }
4492
4493 if (i1dest_in_i1src)
4494 {
4495 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4496 if (newi2pat && reg_set_p (i1dest, newi2pat))
4497 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4498 NULL_RTX, NULL_RTX);
4499 else
4500 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4501 NULL_RTX, NULL_RTX, NULL_RTX);
4502 }
4503
4504 if (i0dest_in_i0src)
4505 {
4506 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4507 if (newi2pat && reg_set_p (i0dest, newi2pat))
4508 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4509 NULL_RTX, NULL_RTX);
4510 else
4511 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4512 NULL_RTX, NULL_RTX, NULL_RTX);
4513 }
4514
4515 distribute_links (i3links);
4516 distribute_links (i2links);
4517 distribute_links (i1links);
4518 distribute_links (i0links);
4519
4520 if (REG_P (i2dest))
4521 {
4522 struct insn_link *link;
4523 rtx_insn *i2_insn = 0;
4524 rtx i2_val = 0, set;
4525
4526 /* The insn that used to set this register doesn't exist, and
4527 this life of the register may not exist either. See if one of
4528 I3's links points to an insn that sets I2DEST. If it does,
4529 that is now the last known value for I2DEST. If we don't update
4530 this and I2 set the register to a value that depended on its old
4531 contents, we will get confused. If this insn is used, thing
4532 will be set correctly in combine_instructions. */
4533 FOR_EACH_LOG_LINK (link, i3)
4534 if ((set = single_set (link->insn)) != 0
4535 && rtx_equal_p (i2dest, SET_DEST (set)))
4536 i2_insn = link->insn, i2_val = SET_SRC (set);
4537
4538 record_value_for_reg (i2dest, i2_insn, i2_val);
4539
4540 /* If the reg formerly set in I2 died only once and that was in I3,
4541 zero its use count so it won't make `reload' do any work. */
4542 if (! added_sets_2
4543 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4544 && ! i2dest_in_i2src
4545 && REGNO (i2dest) < reg_n_sets_max)
4546 INC_REG_N_SETS (REGNO (i2dest), -1);
4547 }
4548
4549 if (i1 && REG_P (i1dest))
4550 {
4551 struct insn_link *link;
4552 rtx_insn *i1_insn = 0;
4553 rtx i1_val = 0, set;
4554
4555 FOR_EACH_LOG_LINK (link, i3)
4556 if ((set = single_set (link->insn)) != 0
4557 && rtx_equal_p (i1dest, SET_DEST (set)))
4558 i1_insn = link->insn, i1_val = SET_SRC (set);
4559
4560 record_value_for_reg (i1dest, i1_insn, i1_val);
4561
4562 if (! added_sets_1
4563 && ! i1dest_in_i1src
4564 && REGNO (i1dest) < reg_n_sets_max)
4565 INC_REG_N_SETS (REGNO (i1dest), -1);
4566 }
4567
4568 if (i0 && REG_P (i0dest))
4569 {
4570 struct insn_link *link;
4571 rtx_insn *i0_insn = 0;
4572 rtx i0_val = 0, set;
4573
4574 FOR_EACH_LOG_LINK (link, i3)
4575 if ((set = single_set (link->insn)) != 0
4576 && rtx_equal_p (i0dest, SET_DEST (set)))
4577 i0_insn = link->insn, i0_val = SET_SRC (set);
4578
4579 record_value_for_reg (i0dest, i0_insn, i0_val);
4580
4581 if (! added_sets_0
4582 && ! i0dest_in_i0src
4583 && REGNO (i0dest) < reg_n_sets_max)
4584 INC_REG_N_SETS (REGNO (i0dest), -1);
4585 }
4586
4587 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4588 been made to this insn. The order is important, because newi2pat
4589 can affect nonzero_bits of newpat. */
4590 if (newi2pat)
4591 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4592 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4593 }
4594
4595 if (undobuf.other_insn != NULL_RTX)
4596 {
4597 if (dump_file)
4598 {
4599 fprintf (dump_file, "modifying other_insn ");
4600 dump_insn_slim (dump_file, undobuf.other_insn);
4601 }
4602 df_insn_rescan (undobuf.other_insn);
4603 }
4604
4605 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4606 {
4607 if (dump_file)
4608 {
4609 fprintf (dump_file, "modifying insn i0 ");
4610 dump_insn_slim (dump_file, i0);
4611 }
4612 df_insn_rescan (i0);
4613 }
4614
4615 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4616 {
4617 if (dump_file)
4618 {
4619 fprintf (dump_file, "modifying insn i1 ");
4620 dump_insn_slim (dump_file, i1);
4621 }
4622 df_insn_rescan (i1);
4623 }
4624
4625 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4626 {
4627 if (dump_file)
4628 {
4629 fprintf (dump_file, "modifying insn i2 ");
4630 dump_insn_slim (dump_file, i2);
4631 }
4632 df_insn_rescan (i2);
4633 }
4634
4635 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4636 {
4637 if (dump_file)
4638 {
4639 fprintf (dump_file, "modifying insn i3 ");
4640 dump_insn_slim (dump_file, i3);
4641 }
4642 df_insn_rescan (i3);
4643 }
4644
4645 /* Set new_direct_jump_p if a new return or simple jump instruction
4646 has been created. Adjust the CFG accordingly. */
4647 if (returnjump_p (i3) || any_uncondjump_p (i3))
4648 {
4649 *new_direct_jump_p = 1;
4650 mark_jump_label (PATTERN (i3), i3, 0);
4651 update_cfg_for_uncondjump (i3);
4652 }
4653
4654 if (undobuf.other_insn != NULL_RTX
4655 && (returnjump_p (undobuf.other_insn)
4656 || any_uncondjump_p (undobuf.other_insn)))
4657 {
4658 *new_direct_jump_p = 1;
4659 update_cfg_for_uncondjump (undobuf.other_insn);
4660 }
4661
4662 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4663 && XEXP (PATTERN (i3), 0) == const1_rtx)
4664 {
4665 basic_block bb = BLOCK_FOR_INSN (i3);
4666 gcc_assert (bb);
4667 remove_edge (split_block (bb, i3));
4668 emit_barrier_after_bb (bb);
4669 *new_direct_jump_p = 1;
4670 }
4671
4672 if (undobuf.other_insn
4673 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4674 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4675 {
4676 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4677 gcc_assert (bb);
4678 remove_edge (split_block (bb, undobuf.other_insn));
4679 emit_barrier_after_bb (bb);
4680 *new_direct_jump_p = 1;
4681 }
4682
4683 /* A noop might also need cleaning up of CFG, if it comes from the
4684 simplification of a jump. */
4685 if (JUMP_P (i3)
4686 && GET_CODE (newpat) == SET
4687 && SET_SRC (newpat) == pc_rtx
4688 && SET_DEST (newpat) == pc_rtx)
4689 {
4690 *new_direct_jump_p = 1;
4691 update_cfg_for_uncondjump (i3);
4692 }
4693
4694 if (undobuf.other_insn != NULL_RTX
4695 && JUMP_P (undobuf.other_insn)
4696 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4697 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4698 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4699 {
4700 *new_direct_jump_p = 1;
4701 update_cfg_for_uncondjump (undobuf.other_insn);
4702 }
4703
4704 combine_successes++;
4705 undo_commit ();
4706
4707 if (added_links_insn
4708 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4709 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4710 return added_links_insn;
4711 else
4712 return newi2pat ? i2 : i3;
4713 }
4714 \f
4715 /* Get a marker for undoing to the current state. */
4716
4717 static void *
4718 get_undo_marker (void)
4719 {
4720 return undobuf.undos;
4721 }
4722
4723 /* Undo the modifications up to the marker. */
4724
4725 static void
4726 undo_to_marker (void *marker)
4727 {
4728 struct undo *undo, *next;
4729
4730 for (undo = undobuf.undos; undo != marker; undo = next)
4731 {
4732 gcc_assert (undo);
4733
4734 next = undo->next;
4735 switch (undo->kind)
4736 {
4737 case UNDO_RTX:
4738 *undo->where.r = undo->old_contents.r;
4739 break;
4740 case UNDO_INT:
4741 *undo->where.i = undo->old_contents.i;
4742 break;
4743 case UNDO_MODE:
4744 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4745 break;
4746 case UNDO_LINKS:
4747 *undo->where.l = undo->old_contents.l;
4748 break;
4749 default:
4750 gcc_unreachable ();
4751 }
4752
4753 undo->next = undobuf.frees;
4754 undobuf.frees = undo;
4755 }
4756
4757 undobuf.undos = (struct undo *) marker;
4758 }
4759
4760 /* Undo all the modifications recorded in undobuf. */
4761
4762 static void
4763 undo_all (void)
4764 {
4765 undo_to_marker (0);
4766 }
4767
4768 /* We've committed to accepting the changes we made. Move all
4769 of the undos to the free list. */
4770
4771 static void
4772 undo_commit (void)
4773 {
4774 struct undo *undo, *next;
4775
4776 for (undo = undobuf.undos; undo; undo = next)
4777 {
4778 next = undo->next;
4779 undo->next = undobuf.frees;
4780 undobuf.frees = undo;
4781 }
4782 undobuf.undos = 0;
4783 }
4784 \f
4785 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4786 where we have an arithmetic expression and return that point. LOC will
4787 be inside INSN.
4788
4789 try_combine will call this function to see if an insn can be split into
4790 two insns. */
4791
4792 static rtx *
4793 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4794 {
4795 rtx x = *loc;
4796 enum rtx_code code = GET_CODE (x);
4797 rtx *split;
4798 unsigned HOST_WIDE_INT len = 0;
4799 HOST_WIDE_INT pos = 0;
4800 int unsignedp = 0;
4801 rtx inner = NULL_RTX;
4802 scalar_int_mode mode, inner_mode;
4803
4804 /* First special-case some codes. */
4805 switch (code)
4806 {
4807 case SUBREG:
4808 #ifdef INSN_SCHEDULING
4809 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4810 point. */
4811 if (MEM_P (SUBREG_REG (x)))
4812 return loc;
4813 #endif
4814 return find_split_point (&SUBREG_REG (x), insn, false);
4815
4816 case MEM:
4817 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4818 using LO_SUM and HIGH. */
4819 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4820 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4821 {
4822 machine_mode address_mode = get_address_mode (x);
4823
4824 SUBST (XEXP (x, 0),
4825 gen_rtx_LO_SUM (address_mode,
4826 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4827 XEXP (x, 0)));
4828 return &XEXP (XEXP (x, 0), 0);
4829 }
4830
4831 /* If we have a PLUS whose second operand is a constant and the
4832 address is not valid, perhaps will can split it up using
4833 the machine-specific way to split large constants. We use
4834 the first pseudo-reg (one of the virtual regs) as a placeholder;
4835 it will not remain in the result. */
4836 if (GET_CODE (XEXP (x, 0)) == PLUS
4837 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4838 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4839 MEM_ADDR_SPACE (x)))
4840 {
4841 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4842 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4843 subst_insn);
4844
4845 /* This should have produced two insns, each of which sets our
4846 placeholder. If the source of the second is a valid address,
4847 we can make put both sources together and make a split point
4848 in the middle. */
4849
4850 if (seq
4851 && NEXT_INSN (seq) != NULL_RTX
4852 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4853 && NONJUMP_INSN_P (seq)
4854 && GET_CODE (PATTERN (seq)) == SET
4855 && SET_DEST (PATTERN (seq)) == reg
4856 && ! reg_mentioned_p (reg,
4857 SET_SRC (PATTERN (seq)))
4858 && NONJUMP_INSN_P (NEXT_INSN (seq))
4859 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4860 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4861 && memory_address_addr_space_p
4862 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4863 MEM_ADDR_SPACE (x)))
4864 {
4865 rtx src1 = SET_SRC (PATTERN (seq));
4866 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4867
4868 /* Replace the placeholder in SRC2 with SRC1. If we can
4869 find where in SRC2 it was placed, that can become our
4870 split point and we can replace this address with SRC2.
4871 Just try two obvious places. */
4872
4873 src2 = replace_rtx (src2, reg, src1);
4874 split = 0;
4875 if (XEXP (src2, 0) == src1)
4876 split = &XEXP (src2, 0);
4877 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4878 && XEXP (XEXP (src2, 0), 0) == src1)
4879 split = &XEXP (XEXP (src2, 0), 0);
4880
4881 if (split)
4882 {
4883 SUBST (XEXP (x, 0), src2);
4884 return split;
4885 }
4886 }
4887
4888 /* If that didn't work, perhaps the first operand is complex and
4889 needs to be computed separately, so make a split point there.
4890 This will occur on machines that just support REG + CONST
4891 and have a constant moved through some previous computation. */
4892
4893 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4894 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4895 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4896 return &XEXP (XEXP (x, 0), 0);
4897 }
4898
4899 /* If we have a PLUS whose first operand is complex, try computing it
4900 separately by making a split there. */
4901 if (GET_CODE (XEXP (x, 0)) == PLUS
4902 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4903 MEM_ADDR_SPACE (x))
4904 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4905 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4906 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4907 return &XEXP (XEXP (x, 0), 0);
4908 break;
4909
4910 case SET:
4911 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4912 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4913 we need to put the operand into a register. So split at that
4914 point. */
4915
4916 if (SET_DEST (x) == cc0_rtx
4917 && GET_CODE (SET_SRC (x)) != COMPARE
4918 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4919 && !OBJECT_P (SET_SRC (x))
4920 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4921 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4922 return &SET_SRC (x);
4923
4924 /* See if we can split SET_SRC as it stands. */
4925 split = find_split_point (&SET_SRC (x), insn, true);
4926 if (split && split != &SET_SRC (x))
4927 return split;
4928
4929 /* See if we can split SET_DEST as it stands. */
4930 split = find_split_point (&SET_DEST (x), insn, false);
4931 if (split && split != &SET_DEST (x))
4932 return split;
4933
4934 /* See if this is a bitfield assignment with everything constant. If
4935 so, this is an IOR of an AND, so split it into that. */
4936 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4937 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
4938 &inner_mode)
4939 && HWI_COMPUTABLE_MODE_P (inner_mode)
4940 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4941 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4942 && CONST_INT_P (SET_SRC (x))
4943 && ((INTVAL (XEXP (SET_DEST (x), 1))
4944 + INTVAL (XEXP (SET_DEST (x), 2)))
4945 <= GET_MODE_PRECISION (inner_mode))
4946 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4947 {
4948 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4949 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4950 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4951 rtx dest = XEXP (SET_DEST (x), 0);
4952 unsigned HOST_WIDE_INT mask
4953 = (HOST_WIDE_INT_1U << len) - 1;
4954 rtx or_mask;
4955
4956 if (BITS_BIG_ENDIAN)
4957 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
4958
4959 or_mask = gen_int_mode (src << pos, inner_mode);
4960 if (src == mask)
4961 SUBST (SET_SRC (x),
4962 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
4963 else
4964 {
4965 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
4966 SUBST (SET_SRC (x),
4967 simplify_gen_binary (IOR, inner_mode,
4968 simplify_gen_binary (AND, inner_mode,
4969 dest, negmask),
4970 or_mask));
4971 }
4972
4973 SUBST (SET_DEST (x), dest);
4974
4975 split = find_split_point (&SET_SRC (x), insn, true);
4976 if (split && split != &SET_SRC (x))
4977 return split;
4978 }
4979
4980 /* Otherwise, see if this is an operation that we can split into two.
4981 If so, try to split that. */
4982 code = GET_CODE (SET_SRC (x));
4983
4984 switch (code)
4985 {
4986 case AND:
4987 /* If we are AND'ing with a large constant that is only a single
4988 bit and the result is only being used in a context where we
4989 need to know if it is zero or nonzero, replace it with a bit
4990 extraction. This will avoid the large constant, which might
4991 have taken more than one insn to make. If the constant were
4992 not a valid argument to the AND but took only one insn to make,
4993 this is no worse, but if it took more than one insn, it will
4994 be better. */
4995
4996 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4997 && REG_P (XEXP (SET_SRC (x), 0))
4998 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4999 && REG_P (SET_DEST (x))
5000 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5001 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5002 && XEXP (*split, 0) == SET_DEST (x)
5003 && XEXP (*split, 1) == const0_rtx)
5004 {
5005 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5006 XEXP (SET_SRC (x), 0),
5007 pos, NULL_RTX, 1, 1, 0, 0);
5008 if (extraction != 0)
5009 {
5010 SUBST (SET_SRC (x), extraction);
5011 return find_split_point (loc, insn, false);
5012 }
5013 }
5014 break;
5015
5016 case NE:
5017 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5018 is known to be on, this can be converted into a NEG of a shift. */
5019 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5020 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5021 && 1 <= (pos = exact_log2
5022 (nonzero_bits (XEXP (SET_SRC (x), 0),
5023 GET_MODE (XEXP (SET_SRC (x), 0))))))
5024 {
5025 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5026
5027 SUBST (SET_SRC (x),
5028 gen_rtx_NEG (mode,
5029 gen_rtx_LSHIFTRT (mode,
5030 XEXP (SET_SRC (x), 0),
5031 GEN_INT (pos))));
5032
5033 split = find_split_point (&SET_SRC (x), insn, true);
5034 if (split && split != &SET_SRC (x))
5035 return split;
5036 }
5037 break;
5038
5039 case SIGN_EXTEND:
5040 inner = XEXP (SET_SRC (x), 0);
5041
5042 /* We can't optimize if either mode is a partial integer
5043 mode as we don't know how many bits are significant
5044 in those modes. */
5045 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5046 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5047 break;
5048
5049 pos = 0;
5050 len = GET_MODE_PRECISION (inner_mode);
5051 unsignedp = 0;
5052 break;
5053
5054 case SIGN_EXTRACT:
5055 case ZERO_EXTRACT:
5056 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5057 &inner_mode)
5058 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5059 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5060 {
5061 inner = XEXP (SET_SRC (x), 0);
5062 len = INTVAL (XEXP (SET_SRC (x), 1));
5063 pos = INTVAL (XEXP (SET_SRC (x), 2));
5064
5065 if (BITS_BIG_ENDIAN)
5066 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5067 unsignedp = (code == ZERO_EXTRACT);
5068 }
5069 break;
5070
5071 default:
5072 break;
5073 }
5074
5075 if (len && pos >= 0
5076 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner))
5077 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5078 {
5079 /* For unsigned, we have a choice of a shift followed by an
5080 AND or two shifts. Use two shifts for field sizes where the
5081 constant might be too large. We assume here that we can
5082 always at least get 8-bit constants in an AND insn, which is
5083 true for every current RISC. */
5084
5085 if (unsignedp && len <= 8)
5086 {
5087 unsigned HOST_WIDE_INT mask
5088 = (HOST_WIDE_INT_1U << len) - 1;
5089 SUBST (SET_SRC (x),
5090 gen_rtx_AND (mode,
5091 gen_rtx_LSHIFTRT
5092 (mode, gen_lowpart (mode, inner),
5093 GEN_INT (pos)),
5094 gen_int_mode (mask, mode)));
5095
5096 split = find_split_point (&SET_SRC (x), insn, true);
5097 if (split && split != &SET_SRC (x))
5098 return split;
5099 }
5100 else
5101 {
5102 SUBST (SET_SRC (x),
5103 gen_rtx_fmt_ee
5104 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5105 gen_rtx_ASHIFT (mode,
5106 gen_lowpart (mode, inner),
5107 GEN_INT (GET_MODE_PRECISION (mode)
5108 - len - pos)),
5109 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5110
5111 split = find_split_point (&SET_SRC (x), insn, true);
5112 if (split && split != &SET_SRC (x))
5113 return split;
5114 }
5115 }
5116
5117 /* See if this is a simple operation with a constant as the second
5118 operand. It might be that this constant is out of range and hence
5119 could be used as a split point. */
5120 if (BINARY_P (SET_SRC (x))
5121 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5122 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5123 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5124 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5125 return &XEXP (SET_SRC (x), 1);
5126
5127 /* Finally, see if this is a simple operation with its first operand
5128 not in a register. The operation might require this operand in a
5129 register, so return it as a split point. We can always do this
5130 because if the first operand were another operation, we would have
5131 already found it as a split point. */
5132 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5133 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5134 return &XEXP (SET_SRC (x), 0);
5135
5136 return 0;
5137
5138 case AND:
5139 case IOR:
5140 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5141 it is better to write this as (not (ior A B)) so we can split it.
5142 Similarly for IOR. */
5143 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5144 {
5145 SUBST (*loc,
5146 gen_rtx_NOT (GET_MODE (x),
5147 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5148 GET_MODE (x),
5149 XEXP (XEXP (x, 0), 0),
5150 XEXP (XEXP (x, 1), 0))));
5151 return find_split_point (loc, insn, set_src);
5152 }
5153
5154 /* Many RISC machines have a large set of logical insns. If the
5155 second operand is a NOT, put it first so we will try to split the
5156 other operand first. */
5157 if (GET_CODE (XEXP (x, 1)) == NOT)
5158 {
5159 rtx tem = XEXP (x, 0);
5160 SUBST (XEXP (x, 0), XEXP (x, 1));
5161 SUBST (XEXP (x, 1), tem);
5162 }
5163 break;
5164
5165 case PLUS:
5166 case MINUS:
5167 /* Canonicalization can produce (minus A (mult B C)), where C is a
5168 constant. It may be better to try splitting (plus (mult B -C) A)
5169 instead if this isn't a multiply by a power of two. */
5170 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5171 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5172 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5173 {
5174 machine_mode mode = GET_MODE (x);
5175 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5176 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5177 SUBST (*loc, gen_rtx_PLUS (mode,
5178 gen_rtx_MULT (mode,
5179 XEXP (XEXP (x, 1), 0),
5180 gen_int_mode (other_int,
5181 mode)),
5182 XEXP (x, 0)));
5183 return find_split_point (loc, insn, set_src);
5184 }
5185
5186 /* Split at a multiply-accumulate instruction. However if this is
5187 the SET_SRC, we likely do not have such an instruction and it's
5188 worthless to try this split. */
5189 if (!set_src
5190 && (GET_CODE (XEXP (x, 0)) == MULT
5191 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5192 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5193 return loc;
5194
5195 default:
5196 break;
5197 }
5198
5199 /* Otherwise, select our actions depending on our rtx class. */
5200 switch (GET_RTX_CLASS (code))
5201 {
5202 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5203 case RTX_TERNARY:
5204 split = find_split_point (&XEXP (x, 2), insn, false);
5205 if (split)
5206 return split;
5207 /* fall through */
5208 case RTX_BIN_ARITH:
5209 case RTX_COMM_ARITH:
5210 case RTX_COMPARE:
5211 case RTX_COMM_COMPARE:
5212 split = find_split_point (&XEXP (x, 1), insn, false);
5213 if (split)
5214 return split;
5215 /* fall through */
5216 case RTX_UNARY:
5217 /* Some machines have (and (shift ...) ...) insns. If X is not
5218 an AND, but XEXP (X, 0) is, use it as our split point. */
5219 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5220 return &XEXP (x, 0);
5221
5222 split = find_split_point (&XEXP (x, 0), insn, false);
5223 if (split)
5224 return split;
5225 return loc;
5226
5227 default:
5228 /* Otherwise, we don't have a split point. */
5229 return 0;
5230 }
5231 }
5232 \f
5233 /* Throughout X, replace FROM with TO, and return the result.
5234 The result is TO if X is FROM;
5235 otherwise the result is X, but its contents may have been modified.
5236 If they were modified, a record was made in undobuf so that
5237 undo_all will (among other things) return X to its original state.
5238
5239 If the number of changes necessary is too much to record to undo,
5240 the excess changes are not made, so the result is invalid.
5241 The changes already made can still be undone.
5242 undobuf.num_undo is incremented for such changes, so by testing that
5243 the caller can tell whether the result is valid.
5244
5245 `n_occurrences' is incremented each time FROM is replaced.
5246
5247 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5248
5249 IN_COND is nonzero if we are at the top level of a condition.
5250
5251 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5252 by copying if `n_occurrences' is nonzero. */
5253
5254 static rtx
5255 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5256 {
5257 enum rtx_code code = GET_CODE (x);
5258 machine_mode op0_mode = VOIDmode;
5259 const char *fmt;
5260 int len, i;
5261 rtx new_rtx;
5262
5263 /* Two expressions are equal if they are identical copies of a shared
5264 RTX or if they are both registers with the same register number
5265 and mode. */
5266
5267 #define COMBINE_RTX_EQUAL_P(X,Y) \
5268 ((X) == (Y) \
5269 || (REG_P (X) && REG_P (Y) \
5270 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5271
5272 /* Do not substitute into clobbers of regs -- this will never result in
5273 valid RTL. */
5274 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5275 return x;
5276
5277 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5278 {
5279 n_occurrences++;
5280 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5281 }
5282
5283 /* If X and FROM are the same register but different modes, they
5284 will not have been seen as equal above. However, the log links code
5285 will make a LOG_LINKS entry for that case. If we do nothing, we
5286 will try to rerecognize our original insn and, when it succeeds,
5287 we will delete the feeding insn, which is incorrect.
5288
5289 So force this insn not to match in this (rare) case. */
5290 if (! in_dest && code == REG && REG_P (from)
5291 && reg_overlap_mentioned_p (x, from))
5292 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5293
5294 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5295 of which may contain things that can be combined. */
5296 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5297 return x;
5298
5299 /* It is possible to have a subexpression appear twice in the insn.
5300 Suppose that FROM is a register that appears within TO.
5301 Then, after that subexpression has been scanned once by `subst',
5302 the second time it is scanned, TO may be found. If we were
5303 to scan TO here, we would find FROM within it and create a
5304 self-referent rtl structure which is completely wrong. */
5305 if (COMBINE_RTX_EQUAL_P (x, to))
5306 return to;
5307
5308 /* Parallel asm_operands need special attention because all of the
5309 inputs are shared across the arms. Furthermore, unsharing the
5310 rtl results in recognition failures. Failure to handle this case
5311 specially can result in circular rtl.
5312
5313 Solve this by doing a normal pass across the first entry of the
5314 parallel, and only processing the SET_DESTs of the subsequent
5315 entries. Ug. */
5316
5317 if (code == PARALLEL
5318 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5319 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5320 {
5321 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5322
5323 /* If this substitution failed, this whole thing fails. */
5324 if (GET_CODE (new_rtx) == CLOBBER
5325 && XEXP (new_rtx, 0) == const0_rtx)
5326 return new_rtx;
5327
5328 SUBST (XVECEXP (x, 0, 0), new_rtx);
5329
5330 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5331 {
5332 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5333
5334 if (!REG_P (dest)
5335 && GET_CODE (dest) != CC0
5336 && GET_CODE (dest) != PC)
5337 {
5338 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5339
5340 /* If this substitution failed, this whole thing fails. */
5341 if (GET_CODE (new_rtx) == CLOBBER
5342 && XEXP (new_rtx, 0) == const0_rtx)
5343 return new_rtx;
5344
5345 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5346 }
5347 }
5348 }
5349 else
5350 {
5351 len = GET_RTX_LENGTH (code);
5352 fmt = GET_RTX_FORMAT (code);
5353
5354 /* We don't need to process a SET_DEST that is a register, CC0,
5355 or PC, so set up to skip this common case. All other cases
5356 where we want to suppress replacing something inside a
5357 SET_SRC are handled via the IN_DEST operand. */
5358 if (code == SET
5359 && (REG_P (SET_DEST (x))
5360 || GET_CODE (SET_DEST (x)) == CC0
5361 || GET_CODE (SET_DEST (x)) == PC))
5362 fmt = "ie";
5363
5364 /* Trying to simplify the operands of a widening MULT is not likely
5365 to create RTL matching a machine insn. */
5366 if (code == MULT
5367 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5368 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5369 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5370 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5371 && REG_P (XEXP (XEXP (x, 0), 0))
5372 && REG_P (XEXP (XEXP (x, 1), 0))
5373 && from == to)
5374 return x;
5375
5376
5377 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5378 constant. */
5379 if (fmt[0] == 'e')
5380 op0_mode = GET_MODE (XEXP (x, 0));
5381
5382 for (i = 0; i < len; i++)
5383 {
5384 if (fmt[i] == 'E')
5385 {
5386 int j;
5387 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5388 {
5389 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5390 {
5391 new_rtx = (unique_copy && n_occurrences
5392 ? copy_rtx (to) : to);
5393 n_occurrences++;
5394 }
5395 else
5396 {
5397 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5398 unique_copy);
5399
5400 /* If this substitution failed, this whole thing
5401 fails. */
5402 if (GET_CODE (new_rtx) == CLOBBER
5403 && XEXP (new_rtx, 0) == const0_rtx)
5404 return new_rtx;
5405 }
5406
5407 SUBST (XVECEXP (x, i, j), new_rtx);
5408 }
5409 }
5410 else if (fmt[i] == 'e')
5411 {
5412 /* If this is a register being set, ignore it. */
5413 new_rtx = XEXP (x, i);
5414 if (in_dest
5415 && i == 0
5416 && (((code == SUBREG || code == ZERO_EXTRACT)
5417 && REG_P (new_rtx))
5418 || code == STRICT_LOW_PART))
5419 ;
5420
5421 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5422 {
5423 /* In general, don't install a subreg involving two
5424 modes not tieable. It can worsen register
5425 allocation, and can even make invalid reload
5426 insns, since the reg inside may need to be copied
5427 from in the outside mode, and that may be invalid
5428 if it is an fp reg copied in integer mode.
5429
5430 We allow two exceptions to this: It is valid if
5431 it is inside another SUBREG and the mode of that
5432 SUBREG and the mode of the inside of TO is
5433 tieable and it is valid if X is a SET that copies
5434 FROM to CC0. */
5435
5436 if (GET_CODE (to) == SUBREG
5437 && ! MODES_TIEABLE_P (GET_MODE (to),
5438 GET_MODE (SUBREG_REG (to)))
5439 && ! (code == SUBREG
5440 && MODES_TIEABLE_P (GET_MODE (x),
5441 GET_MODE (SUBREG_REG (to))))
5442 && (!HAVE_cc0
5443 || (! (code == SET
5444 && i == 1
5445 && XEXP (x, 0) == cc0_rtx))))
5446 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5447
5448 if (code == SUBREG
5449 && REG_P (to)
5450 && REGNO (to) < FIRST_PSEUDO_REGISTER
5451 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5452 SUBREG_BYTE (x),
5453 GET_MODE (x)) < 0)
5454 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5455
5456 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5457 n_occurrences++;
5458 }
5459 else
5460 /* If we are in a SET_DEST, suppress most cases unless we
5461 have gone inside a MEM, in which case we want to
5462 simplify the address. We assume here that things that
5463 are actually part of the destination have their inner
5464 parts in the first expression. This is true for SUBREG,
5465 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5466 things aside from REG and MEM that should appear in a
5467 SET_DEST. */
5468 new_rtx = subst (XEXP (x, i), from, to,
5469 (((in_dest
5470 && (code == SUBREG || code == STRICT_LOW_PART
5471 || code == ZERO_EXTRACT))
5472 || code == SET)
5473 && i == 0),
5474 code == IF_THEN_ELSE && i == 0,
5475 unique_copy);
5476
5477 /* If we found that we will have to reject this combination,
5478 indicate that by returning the CLOBBER ourselves, rather than
5479 an expression containing it. This will speed things up as
5480 well as prevent accidents where two CLOBBERs are considered
5481 to be equal, thus producing an incorrect simplification. */
5482
5483 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5484 return new_rtx;
5485
5486 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5487 {
5488 machine_mode mode = GET_MODE (x);
5489
5490 x = simplify_subreg (GET_MODE (x), new_rtx,
5491 GET_MODE (SUBREG_REG (x)),
5492 SUBREG_BYTE (x));
5493 if (! x)
5494 x = gen_rtx_CLOBBER (mode, const0_rtx);
5495 }
5496 else if (CONST_SCALAR_INT_P (new_rtx)
5497 && GET_CODE (x) == ZERO_EXTEND)
5498 {
5499 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5500 new_rtx, GET_MODE (XEXP (x, 0)));
5501 gcc_assert (x);
5502 }
5503 else
5504 SUBST (XEXP (x, i), new_rtx);
5505 }
5506 }
5507 }
5508
5509 /* Check if we are loading something from the constant pool via float
5510 extension; in this case we would undo compress_float_constant
5511 optimization and degenerate constant load to an immediate value. */
5512 if (GET_CODE (x) == FLOAT_EXTEND
5513 && MEM_P (XEXP (x, 0))
5514 && MEM_READONLY_P (XEXP (x, 0)))
5515 {
5516 rtx tmp = avoid_constant_pool_reference (x);
5517 if (x != tmp)
5518 return x;
5519 }
5520
5521 /* Try to simplify X. If the simplification changed the code, it is likely
5522 that further simplification will help, so loop, but limit the number
5523 of repetitions that will be performed. */
5524
5525 for (i = 0; i < 4; i++)
5526 {
5527 /* If X is sufficiently simple, don't bother trying to do anything
5528 with it. */
5529 if (code != CONST_INT && code != REG && code != CLOBBER)
5530 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5531
5532 if (GET_CODE (x) == code)
5533 break;
5534
5535 code = GET_CODE (x);
5536
5537 /* We no longer know the original mode of operand 0 since we
5538 have changed the form of X) */
5539 op0_mode = VOIDmode;
5540 }
5541
5542 return x;
5543 }
5544 \f
5545 /* If X is a commutative operation whose operands are not in the canonical
5546 order, use substitutions to swap them. */
5547
5548 static void
5549 maybe_swap_commutative_operands (rtx x)
5550 {
5551 if (COMMUTATIVE_ARITH_P (x)
5552 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5553 {
5554 rtx temp = XEXP (x, 0);
5555 SUBST (XEXP (x, 0), XEXP (x, 1));
5556 SUBST (XEXP (x, 1), temp);
5557 }
5558 }
5559
5560 /* Simplify X, a piece of RTL. We just operate on the expression at the
5561 outer level; call `subst' to simplify recursively. Return the new
5562 expression.
5563
5564 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5565 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5566 of a condition. */
5567
5568 static rtx
5569 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5570 int in_cond)
5571 {
5572 enum rtx_code code = GET_CODE (x);
5573 machine_mode mode = GET_MODE (x);
5574 scalar_int_mode int_mode;
5575 rtx temp;
5576 int i;
5577
5578 /* If this is a commutative operation, put a constant last and a complex
5579 expression first. We don't need to do this for comparisons here. */
5580 maybe_swap_commutative_operands (x);
5581
5582 /* Try to fold this expression in case we have constants that weren't
5583 present before. */
5584 temp = 0;
5585 switch (GET_RTX_CLASS (code))
5586 {
5587 case RTX_UNARY:
5588 if (op0_mode == VOIDmode)
5589 op0_mode = GET_MODE (XEXP (x, 0));
5590 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5591 break;
5592 case RTX_COMPARE:
5593 case RTX_COMM_COMPARE:
5594 {
5595 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5596 if (cmp_mode == VOIDmode)
5597 {
5598 cmp_mode = GET_MODE (XEXP (x, 1));
5599 if (cmp_mode == VOIDmode)
5600 cmp_mode = op0_mode;
5601 }
5602 temp = simplify_relational_operation (code, mode, cmp_mode,
5603 XEXP (x, 0), XEXP (x, 1));
5604 }
5605 break;
5606 case RTX_COMM_ARITH:
5607 case RTX_BIN_ARITH:
5608 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5609 break;
5610 case RTX_BITFIELD_OPS:
5611 case RTX_TERNARY:
5612 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5613 XEXP (x, 1), XEXP (x, 2));
5614 break;
5615 default:
5616 break;
5617 }
5618
5619 if (temp)
5620 {
5621 x = temp;
5622 code = GET_CODE (temp);
5623 op0_mode = VOIDmode;
5624 mode = GET_MODE (temp);
5625 }
5626
5627 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5628 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5629 things. Check for cases where both arms are testing the same
5630 condition.
5631
5632 Don't do anything if all operands are very simple. */
5633
5634 if ((BINARY_P (x)
5635 && ((!OBJECT_P (XEXP (x, 0))
5636 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5637 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5638 || (!OBJECT_P (XEXP (x, 1))
5639 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5640 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5641 || (UNARY_P (x)
5642 && (!OBJECT_P (XEXP (x, 0))
5643 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5644 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5645 {
5646 rtx cond, true_rtx, false_rtx;
5647
5648 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5649 if (cond != 0
5650 /* If everything is a comparison, what we have is highly unlikely
5651 to be simpler, so don't use it. */
5652 && ! (COMPARISON_P (x)
5653 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5654 {
5655 rtx cop1 = const0_rtx;
5656 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5657
5658 if (cond_code == NE && COMPARISON_P (cond))
5659 return x;
5660
5661 /* Simplify the alternative arms; this may collapse the true and
5662 false arms to store-flag values. Be careful to use copy_rtx
5663 here since true_rtx or false_rtx might share RTL with x as a
5664 result of the if_then_else_cond call above. */
5665 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5666 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5667
5668 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5669 is unlikely to be simpler. */
5670 if (general_operand (true_rtx, VOIDmode)
5671 && general_operand (false_rtx, VOIDmode))
5672 {
5673 enum rtx_code reversed;
5674
5675 /* Restarting if we generate a store-flag expression will cause
5676 us to loop. Just drop through in this case. */
5677
5678 /* If the result values are STORE_FLAG_VALUE and zero, we can
5679 just make the comparison operation. */
5680 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5681 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5682 cond, cop1);
5683 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5684 && ((reversed = reversed_comparison_code_parts
5685 (cond_code, cond, cop1, NULL))
5686 != UNKNOWN))
5687 x = simplify_gen_relational (reversed, mode, VOIDmode,
5688 cond, cop1);
5689
5690 /* Likewise, we can make the negate of a comparison operation
5691 if the result values are - STORE_FLAG_VALUE and zero. */
5692 else if (CONST_INT_P (true_rtx)
5693 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5694 && false_rtx == const0_rtx)
5695 x = simplify_gen_unary (NEG, mode,
5696 simplify_gen_relational (cond_code,
5697 mode, VOIDmode,
5698 cond, cop1),
5699 mode);
5700 else if (CONST_INT_P (false_rtx)
5701 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5702 && true_rtx == const0_rtx
5703 && ((reversed = reversed_comparison_code_parts
5704 (cond_code, cond, cop1, NULL))
5705 != UNKNOWN))
5706 x = simplify_gen_unary (NEG, mode,
5707 simplify_gen_relational (reversed,
5708 mode, VOIDmode,
5709 cond, cop1),
5710 mode);
5711 else
5712 return gen_rtx_IF_THEN_ELSE (mode,
5713 simplify_gen_relational (cond_code,
5714 mode,
5715 VOIDmode,
5716 cond,
5717 cop1),
5718 true_rtx, false_rtx);
5719
5720 code = GET_CODE (x);
5721 op0_mode = VOIDmode;
5722 }
5723 }
5724 }
5725
5726 /* First see if we can apply the inverse distributive law. */
5727 if (code == PLUS || code == MINUS
5728 || code == AND || code == IOR || code == XOR)
5729 {
5730 x = apply_distributive_law (x);
5731 code = GET_CODE (x);
5732 op0_mode = VOIDmode;
5733 }
5734
5735 /* If CODE is an associative operation not otherwise handled, see if we
5736 can associate some operands. This can win if they are constants or
5737 if they are logically related (i.e. (a & b) & a). */
5738 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5739 || code == AND || code == IOR || code == XOR
5740 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5741 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5742 || (flag_associative_math && FLOAT_MODE_P (mode))))
5743 {
5744 if (GET_CODE (XEXP (x, 0)) == code)
5745 {
5746 rtx other = XEXP (XEXP (x, 0), 0);
5747 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5748 rtx inner_op1 = XEXP (x, 1);
5749 rtx inner;
5750
5751 /* Make sure we pass the constant operand if any as the second
5752 one if this is a commutative operation. */
5753 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5754 std::swap (inner_op0, inner_op1);
5755 inner = simplify_binary_operation (code == MINUS ? PLUS
5756 : code == DIV ? MULT
5757 : code,
5758 mode, inner_op0, inner_op1);
5759
5760 /* For commutative operations, try the other pair if that one
5761 didn't simplify. */
5762 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5763 {
5764 other = XEXP (XEXP (x, 0), 1);
5765 inner = simplify_binary_operation (code, mode,
5766 XEXP (XEXP (x, 0), 0),
5767 XEXP (x, 1));
5768 }
5769
5770 if (inner)
5771 return simplify_gen_binary (code, mode, other, inner);
5772 }
5773 }
5774
5775 /* A little bit of algebraic simplification here. */
5776 switch (code)
5777 {
5778 case MEM:
5779 /* Ensure that our address has any ASHIFTs converted to MULT in case
5780 address-recognizing predicates are called later. */
5781 temp = make_compound_operation (XEXP (x, 0), MEM);
5782 SUBST (XEXP (x, 0), temp);
5783 break;
5784
5785 case SUBREG:
5786 if (op0_mode == VOIDmode)
5787 op0_mode = GET_MODE (SUBREG_REG (x));
5788
5789 /* See if this can be moved to simplify_subreg. */
5790 if (CONSTANT_P (SUBREG_REG (x))
5791 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5792 /* Don't call gen_lowpart if the inner mode
5793 is VOIDmode and we cannot simplify it, as SUBREG without
5794 inner mode is invalid. */
5795 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5796 || gen_lowpart_common (mode, SUBREG_REG (x))))
5797 return gen_lowpart (mode, SUBREG_REG (x));
5798
5799 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5800 break;
5801 {
5802 rtx temp;
5803 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5804 SUBREG_BYTE (x));
5805 if (temp)
5806 return temp;
5807
5808 /* If op is known to have all lower bits zero, the result is zero. */
5809 scalar_int_mode int_mode, int_op0_mode;
5810 if (!in_dest
5811 && is_a <scalar_int_mode> (mode, &int_mode)
5812 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
5813 && (GET_MODE_PRECISION (int_mode)
5814 < GET_MODE_PRECISION (int_op0_mode))
5815 && (subreg_lowpart_offset (int_mode, int_op0_mode)
5816 == SUBREG_BYTE (x))
5817 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
5818 && (nonzero_bits (SUBREG_REG (x), int_op0_mode)
5819 & GET_MODE_MASK (int_mode)) == 0)
5820 return CONST0_RTX (int_mode);
5821 }
5822
5823 /* Don't change the mode of the MEM if that would change the meaning
5824 of the address. */
5825 if (MEM_P (SUBREG_REG (x))
5826 && (MEM_VOLATILE_P (SUBREG_REG (x))
5827 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5828 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5829 return gen_rtx_CLOBBER (mode, const0_rtx);
5830
5831 /* Note that we cannot do any narrowing for non-constants since
5832 we might have been counting on using the fact that some bits were
5833 zero. We now do this in the SET. */
5834
5835 break;
5836
5837 case NEG:
5838 temp = expand_compound_operation (XEXP (x, 0));
5839
5840 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5841 replaced by (lshiftrt X C). This will convert
5842 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5843
5844 if (GET_CODE (temp) == ASHIFTRT
5845 && CONST_INT_P (XEXP (temp, 1))
5846 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5847 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5848 INTVAL (XEXP (temp, 1)));
5849
5850 /* If X has only a single bit that might be nonzero, say, bit I, convert
5851 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5852 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5853 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5854 or a SUBREG of one since we'd be making the expression more
5855 complex if it was just a register. */
5856
5857 if (!REG_P (temp)
5858 && ! (GET_CODE (temp) == SUBREG
5859 && REG_P (SUBREG_REG (temp)))
5860 && is_a <scalar_int_mode> (mode, &int_mode)
5861 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
5862 {
5863 rtx temp1 = simplify_shift_const
5864 (NULL_RTX, ASHIFTRT, int_mode,
5865 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
5866 GET_MODE_PRECISION (int_mode) - 1 - i),
5867 GET_MODE_PRECISION (int_mode) - 1 - i);
5868
5869 /* If all we did was surround TEMP with the two shifts, we
5870 haven't improved anything, so don't use it. Otherwise,
5871 we are better off with TEMP1. */
5872 if (GET_CODE (temp1) != ASHIFTRT
5873 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5874 || XEXP (XEXP (temp1, 0), 0) != temp)
5875 return temp1;
5876 }
5877 break;
5878
5879 case TRUNCATE:
5880 /* We can't handle truncation to a partial integer mode here
5881 because we don't know the real bitsize of the partial
5882 integer mode. */
5883 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5884 break;
5885
5886 if (HWI_COMPUTABLE_MODE_P (mode))
5887 SUBST (XEXP (x, 0),
5888 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5889 GET_MODE_MASK (mode), 0));
5890
5891 /* We can truncate a constant value and return it. */
5892 if (CONST_INT_P (XEXP (x, 0)))
5893 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5894
5895 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5896 whose value is a comparison can be replaced with a subreg if
5897 STORE_FLAG_VALUE permits. */
5898 if (HWI_COMPUTABLE_MODE_P (mode)
5899 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5900 && (temp = get_last_value (XEXP (x, 0)))
5901 && COMPARISON_P (temp))
5902 return gen_lowpart (mode, XEXP (x, 0));
5903 break;
5904
5905 case CONST:
5906 /* (const (const X)) can become (const X). Do it this way rather than
5907 returning the inner CONST since CONST can be shared with a
5908 REG_EQUAL note. */
5909 if (GET_CODE (XEXP (x, 0)) == CONST)
5910 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5911 break;
5912
5913 case LO_SUM:
5914 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5915 can add in an offset. find_split_point will split this address up
5916 again if it doesn't match. */
5917 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5918 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5919 return XEXP (x, 1);
5920 break;
5921
5922 case PLUS:
5923 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5924 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5925 bit-field and can be replaced by either a sign_extend or a
5926 sign_extract. The `and' may be a zero_extend and the two
5927 <c>, -<c> constants may be reversed. */
5928 if (GET_CODE (XEXP (x, 0)) == XOR
5929 && is_a <scalar_int_mode> (mode, &int_mode)
5930 && CONST_INT_P (XEXP (x, 1))
5931 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5932 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5933 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5934 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5935 && HWI_COMPUTABLE_MODE_P (int_mode)
5936 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5937 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5938 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5939 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
5940 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5941 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5942 == (unsigned int) i + 1))))
5943 return simplify_shift_const
5944 (NULL_RTX, ASHIFTRT, int_mode,
5945 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
5946 XEXP (XEXP (XEXP (x, 0), 0), 0),
5947 GET_MODE_PRECISION (int_mode) - (i + 1)),
5948 GET_MODE_PRECISION (int_mode) - (i + 1));
5949
5950 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5951 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5952 the bitsize of the mode - 1. This allows simplification of
5953 "a = (b & 8) == 0;" */
5954 if (XEXP (x, 1) == constm1_rtx
5955 && !REG_P (XEXP (x, 0))
5956 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5957 && REG_P (SUBREG_REG (XEXP (x, 0))))
5958 && is_a <scalar_int_mode> (mode, &int_mode)
5959 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
5960 return simplify_shift_const
5961 (NULL_RTX, ASHIFTRT, int_mode,
5962 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
5963 gen_rtx_XOR (int_mode, XEXP (x, 0),
5964 const1_rtx),
5965 GET_MODE_PRECISION (int_mode) - 1),
5966 GET_MODE_PRECISION (int_mode) - 1);
5967
5968 /* If we are adding two things that have no bits in common, convert
5969 the addition into an IOR. This will often be further simplified,
5970 for example in cases like ((a & 1) + (a & 2)), which can
5971 become a & 3. */
5972
5973 if (HWI_COMPUTABLE_MODE_P (mode)
5974 && (nonzero_bits (XEXP (x, 0), mode)
5975 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5976 {
5977 /* Try to simplify the expression further. */
5978 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5979 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5980
5981 /* If we could, great. If not, do not go ahead with the IOR
5982 replacement, since PLUS appears in many special purpose
5983 address arithmetic instructions. */
5984 if (GET_CODE (temp) != CLOBBER
5985 && (GET_CODE (temp) != IOR
5986 || ((XEXP (temp, 0) != XEXP (x, 0)
5987 || XEXP (temp, 1) != XEXP (x, 1))
5988 && (XEXP (temp, 0) != XEXP (x, 1)
5989 || XEXP (temp, 1) != XEXP (x, 0)))))
5990 return temp;
5991 }
5992
5993 /* Canonicalize x + x into x << 1. */
5994 if (GET_MODE_CLASS (mode) == MODE_INT
5995 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
5996 && !side_effects_p (XEXP (x, 0)))
5997 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
5998
5999 break;
6000
6001 case MINUS:
6002 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6003 (and <foo> (const_int pow2-1)) */
6004 if (is_a <scalar_int_mode> (mode, &int_mode)
6005 && GET_CODE (XEXP (x, 1)) == AND
6006 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6007 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6008 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6009 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6010 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6011 break;
6012
6013 case MULT:
6014 /* If we have (mult (plus A B) C), apply the distributive law and then
6015 the inverse distributive law to see if things simplify. This
6016 occurs mostly in addresses, often when unrolling loops. */
6017
6018 if (GET_CODE (XEXP (x, 0)) == PLUS)
6019 {
6020 rtx result = distribute_and_simplify_rtx (x, 0);
6021 if (result)
6022 return result;
6023 }
6024
6025 /* Try simplify a*(b/c) as (a*b)/c. */
6026 if (FLOAT_MODE_P (mode) && flag_associative_math
6027 && GET_CODE (XEXP (x, 0)) == DIV)
6028 {
6029 rtx tem = simplify_binary_operation (MULT, mode,
6030 XEXP (XEXP (x, 0), 0),
6031 XEXP (x, 1));
6032 if (tem)
6033 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6034 }
6035 break;
6036
6037 case UDIV:
6038 /* If this is a divide by a power of two, treat it as a shift if
6039 its first operand is a shift. */
6040 if (is_a <scalar_int_mode> (mode, &int_mode)
6041 && CONST_INT_P (XEXP (x, 1))
6042 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6043 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6044 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6045 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6046 || GET_CODE (XEXP (x, 0)) == ROTATE
6047 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6048 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6049 XEXP (x, 0), i);
6050 break;
6051
6052 case EQ: case NE:
6053 case GT: case GTU: case GE: case GEU:
6054 case LT: case LTU: case LE: case LEU:
6055 case UNEQ: case LTGT:
6056 case UNGT: case UNGE:
6057 case UNLT: case UNLE:
6058 case UNORDERED: case ORDERED:
6059 /* If the first operand is a condition code, we can't do anything
6060 with it. */
6061 if (GET_CODE (XEXP (x, 0)) == COMPARE
6062 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6063 && ! CC0_P (XEXP (x, 0))))
6064 {
6065 rtx op0 = XEXP (x, 0);
6066 rtx op1 = XEXP (x, 1);
6067 enum rtx_code new_code;
6068
6069 if (GET_CODE (op0) == COMPARE)
6070 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6071
6072 /* Simplify our comparison, if possible. */
6073 new_code = simplify_comparison (code, &op0, &op1);
6074
6075 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6076 if only the low-order bit is possibly nonzero in X (such as when
6077 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6078 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6079 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6080 (plus X 1).
6081
6082 Remove any ZERO_EXTRACT we made when thinking this was a
6083 comparison. It may now be simpler to use, e.g., an AND. If a
6084 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6085 the call to make_compound_operation in the SET case.
6086
6087 Don't apply these optimizations if the caller would
6088 prefer a comparison rather than a value.
6089 E.g., for the condition in an IF_THEN_ELSE most targets need
6090 an explicit comparison. */
6091
6092 if (in_cond)
6093 ;
6094
6095 else if (STORE_FLAG_VALUE == 1
6096 && new_code == NE
6097 && is_int_mode (mode, &int_mode)
6098 && op1 == const0_rtx
6099 && int_mode == GET_MODE (op0)
6100 && nonzero_bits (op0, int_mode) == 1)
6101 return gen_lowpart (int_mode,
6102 expand_compound_operation (op0));
6103
6104 else if (STORE_FLAG_VALUE == 1
6105 && new_code == NE
6106 && is_int_mode (mode, &int_mode)
6107 && op1 == const0_rtx
6108 && int_mode == GET_MODE (op0)
6109 && (num_sign_bit_copies (op0, int_mode)
6110 == GET_MODE_PRECISION (int_mode)))
6111 {
6112 op0 = expand_compound_operation (op0);
6113 return simplify_gen_unary (NEG, int_mode,
6114 gen_lowpart (int_mode, op0),
6115 int_mode);
6116 }
6117
6118 else if (STORE_FLAG_VALUE == 1
6119 && new_code == EQ
6120 && is_int_mode (mode, &int_mode)
6121 && op1 == const0_rtx
6122 && int_mode == GET_MODE (op0)
6123 && nonzero_bits (op0, int_mode) == 1)
6124 {
6125 op0 = expand_compound_operation (op0);
6126 return simplify_gen_binary (XOR, int_mode,
6127 gen_lowpart (int_mode, op0),
6128 const1_rtx);
6129 }
6130
6131 else if (STORE_FLAG_VALUE == 1
6132 && new_code == EQ
6133 && is_int_mode (mode, &int_mode)
6134 && op1 == const0_rtx
6135 && int_mode == GET_MODE (op0)
6136 && (num_sign_bit_copies (op0, int_mode)
6137 == GET_MODE_PRECISION (int_mode)))
6138 {
6139 op0 = expand_compound_operation (op0);
6140 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6141 }
6142
6143 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6144 those above. */
6145 if (in_cond)
6146 ;
6147
6148 else if (STORE_FLAG_VALUE == -1
6149 && new_code == NE
6150 && is_int_mode (mode, &int_mode)
6151 && op1 == const0_rtx
6152 && int_mode == GET_MODE (op0)
6153 && (num_sign_bit_copies (op0, int_mode)
6154 == GET_MODE_PRECISION (int_mode)))
6155 return gen_lowpart (int_mode, expand_compound_operation (op0));
6156
6157 else if (STORE_FLAG_VALUE == -1
6158 && new_code == NE
6159 && is_int_mode (mode, &int_mode)
6160 && op1 == const0_rtx
6161 && int_mode == GET_MODE (op0)
6162 && nonzero_bits (op0, int_mode) == 1)
6163 {
6164 op0 = expand_compound_operation (op0);
6165 return simplify_gen_unary (NEG, int_mode,
6166 gen_lowpart (int_mode, op0),
6167 int_mode);
6168 }
6169
6170 else if (STORE_FLAG_VALUE == -1
6171 && new_code == EQ
6172 && is_int_mode (mode, &int_mode)
6173 && op1 == const0_rtx
6174 && int_mode == GET_MODE (op0)
6175 && (num_sign_bit_copies (op0, int_mode)
6176 == GET_MODE_PRECISION (int_mode)))
6177 {
6178 op0 = expand_compound_operation (op0);
6179 return simplify_gen_unary (NOT, int_mode,
6180 gen_lowpart (int_mode, op0),
6181 int_mode);
6182 }
6183
6184 /* If X is 0/1, (eq X 0) is X-1. */
6185 else if (STORE_FLAG_VALUE == -1
6186 && new_code == EQ
6187 && is_int_mode (mode, &int_mode)
6188 && op1 == const0_rtx
6189 && int_mode == GET_MODE (op0)
6190 && nonzero_bits (op0, int_mode) == 1)
6191 {
6192 op0 = expand_compound_operation (op0);
6193 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6194 }
6195
6196 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6197 one bit that might be nonzero, we can convert (ne x 0) to
6198 (ashift x c) where C puts the bit in the sign bit. Remove any
6199 AND with STORE_FLAG_VALUE when we are done, since we are only
6200 going to test the sign bit. */
6201 if (new_code == NE
6202 && is_int_mode (mode, &int_mode)
6203 && HWI_COMPUTABLE_MODE_P (int_mode)
6204 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6205 && op1 == const0_rtx
6206 && int_mode == GET_MODE (op0)
6207 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6208 {
6209 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6210 expand_compound_operation (op0),
6211 GET_MODE_PRECISION (int_mode) - 1 - i);
6212 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6213 return XEXP (x, 0);
6214 else
6215 return x;
6216 }
6217
6218 /* If the code changed, return a whole new comparison.
6219 We also need to avoid using SUBST in cases where
6220 simplify_comparison has widened a comparison with a CONST_INT,
6221 since in that case the wider CONST_INT may fail the sanity
6222 checks in do_SUBST. */
6223 if (new_code != code
6224 || (CONST_INT_P (op1)
6225 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6226 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6227 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6228
6229 /* Otherwise, keep this operation, but maybe change its operands.
6230 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6231 SUBST (XEXP (x, 0), op0);
6232 SUBST (XEXP (x, 1), op1);
6233 }
6234 break;
6235
6236 case IF_THEN_ELSE:
6237 return simplify_if_then_else (x);
6238
6239 case ZERO_EXTRACT:
6240 case SIGN_EXTRACT:
6241 case ZERO_EXTEND:
6242 case SIGN_EXTEND:
6243 /* If we are processing SET_DEST, we are done. */
6244 if (in_dest)
6245 return x;
6246
6247 return expand_compound_operation (x);
6248
6249 case SET:
6250 return simplify_set (x);
6251
6252 case AND:
6253 case IOR:
6254 return simplify_logical (x);
6255
6256 case ASHIFT:
6257 case LSHIFTRT:
6258 case ASHIFTRT:
6259 case ROTATE:
6260 case ROTATERT:
6261 /* If this is a shift by a constant amount, simplify it. */
6262 if (CONST_INT_P (XEXP (x, 1)))
6263 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6264 INTVAL (XEXP (x, 1)));
6265
6266 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6267 SUBST (XEXP (x, 1),
6268 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6269 (HOST_WIDE_INT_1U
6270 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6271 - 1,
6272 0));
6273 break;
6274
6275 default:
6276 break;
6277 }
6278
6279 return x;
6280 }
6281 \f
6282 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6283
6284 static rtx
6285 simplify_if_then_else (rtx x)
6286 {
6287 machine_mode mode = GET_MODE (x);
6288 rtx cond = XEXP (x, 0);
6289 rtx true_rtx = XEXP (x, 1);
6290 rtx false_rtx = XEXP (x, 2);
6291 enum rtx_code true_code = GET_CODE (cond);
6292 int comparison_p = COMPARISON_P (cond);
6293 rtx temp;
6294 int i;
6295 enum rtx_code false_code;
6296 rtx reversed;
6297 scalar_int_mode int_mode, inner_mode;
6298
6299 /* Simplify storing of the truth value. */
6300 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6301 return simplify_gen_relational (true_code, mode, VOIDmode,
6302 XEXP (cond, 0), XEXP (cond, 1));
6303
6304 /* Also when the truth value has to be reversed. */
6305 if (comparison_p
6306 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6307 && (reversed = reversed_comparison (cond, mode)))
6308 return reversed;
6309
6310 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6311 in it is being compared against certain values. Get the true and false
6312 comparisons and see if that says anything about the value of each arm. */
6313
6314 if (comparison_p
6315 && ((false_code = reversed_comparison_code (cond, NULL))
6316 != UNKNOWN)
6317 && REG_P (XEXP (cond, 0)))
6318 {
6319 HOST_WIDE_INT nzb;
6320 rtx from = XEXP (cond, 0);
6321 rtx true_val = XEXP (cond, 1);
6322 rtx false_val = true_val;
6323 int swapped = 0;
6324
6325 /* If FALSE_CODE is EQ, swap the codes and arms. */
6326
6327 if (false_code == EQ)
6328 {
6329 swapped = 1, true_code = EQ, false_code = NE;
6330 std::swap (true_rtx, false_rtx);
6331 }
6332
6333 scalar_int_mode from_mode;
6334 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6335 {
6336 /* If we are comparing against zero and the expression being
6337 tested has only a single bit that might be nonzero, that is
6338 its value when it is not equal to zero. Similarly if it is
6339 known to be -1 or 0. */
6340 if (true_code == EQ
6341 && true_val == const0_rtx
6342 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6343 {
6344 false_code = EQ;
6345 false_val = gen_int_mode (nzb, from_mode);
6346 }
6347 else if (true_code == EQ
6348 && true_val == const0_rtx
6349 && (num_sign_bit_copies (from, from_mode)
6350 == GET_MODE_PRECISION (from_mode)))
6351 {
6352 false_code = EQ;
6353 false_val = constm1_rtx;
6354 }
6355 }
6356
6357 /* Now simplify an arm if we know the value of the register in the
6358 branch and it is used in the arm. Be careful due to the potential
6359 of locally-shared RTL. */
6360
6361 if (reg_mentioned_p (from, true_rtx))
6362 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6363 from, true_val),
6364 pc_rtx, pc_rtx, 0, 0, 0);
6365 if (reg_mentioned_p (from, false_rtx))
6366 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6367 from, false_val),
6368 pc_rtx, pc_rtx, 0, 0, 0);
6369
6370 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6371 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6372
6373 true_rtx = XEXP (x, 1);
6374 false_rtx = XEXP (x, 2);
6375 true_code = GET_CODE (cond);
6376 }
6377
6378 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6379 reversed, do so to avoid needing two sets of patterns for
6380 subtract-and-branch insns. Similarly if we have a constant in the true
6381 arm, the false arm is the same as the first operand of the comparison, or
6382 the false arm is more complicated than the true arm. */
6383
6384 if (comparison_p
6385 && reversed_comparison_code (cond, NULL) != UNKNOWN
6386 && (true_rtx == pc_rtx
6387 || (CONSTANT_P (true_rtx)
6388 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6389 || true_rtx == const0_rtx
6390 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6391 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6392 && !OBJECT_P (false_rtx))
6393 || reg_mentioned_p (true_rtx, false_rtx)
6394 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6395 {
6396 true_code = reversed_comparison_code (cond, NULL);
6397 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6398 SUBST (XEXP (x, 1), false_rtx);
6399 SUBST (XEXP (x, 2), true_rtx);
6400
6401 std::swap (true_rtx, false_rtx);
6402 cond = XEXP (x, 0);
6403
6404 /* It is possible that the conditional has been simplified out. */
6405 true_code = GET_CODE (cond);
6406 comparison_p = COMPARISON_P (cond);
6407 }
6408
6409 /* If the two arms are identical, we don't need the comparison. */
6410
6411 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6412 return true_rtx;
6413
6414 /* Convert a == b ? b : a to "a". */
6415 if (true_code == EQ && ! side_effects_p (cond)
6416 && !HONOR_NANS (mode)
6417 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6418 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6419 return false_rtx;
6420 else if (true_code == NE && ! side_effects_p (cond)
6421 && !HONOR_NANS (mode)
6422 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6423 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6424 return true_rtx;
6425
6426 /* Look for cases where we have (abs x) or (neg (abs X)). */
6427
6428 if (GET_MODE_CLASS (mode) == MODE_INT
6429 && comparison_p
6430 && XEXP (cond, 1) == const0_rtx
6431 && GET_CODE (false_rtx) == NEG
6432 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6433 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6434 && ! side_effects_p (true_rtx))
6435 switch (true_code)
6436 {
6437 case GT:
6438 case GE:
6439 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6440 case LT:
6441 case LE:
6442 return
6443 simplify_gen_unary (NEG, mode,
6444 simplify_gen_unary (ABS, mode, true_rtx, mode),
6445 mode);
6446 default:
6447 break;
6448 }
6449
6450 /* Look for MIN or MAX. */
6451
6452 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6453 && comparison_p
6454 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6455 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6456 && ! side_effects_p (cond))
6457 switch (true_code)
6458 {
6459 case GE:
6460 case GT:
6461 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6462 case LE:
6463 case LT:
6464 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6465 case GEU:
6466 case GTU:
6467 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6468 case LEU:
6469 case LTU:
6470 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6471 default:
6472 break;
6473 }
6474
6475 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6476 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6477 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6478 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6479 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6480 neither 1 or -1, but it isn't worth checking for. */
6481
6482 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6483 && comparison_p
6484 && is_int_mode (mode, &int_mode)
6485 && ! side_effects_p (x))
6486 {
6487 rtx t = make_compound_operation (true_rtx, SET);
6488 rtx f = make_compound_operation (false_rtx, SET);
6489 rtx cond_op0 = XEXP (cond, 0);
6490 rtx cond_op1 = XEXP (cond, 1);
6491 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6492 machine_mode m = int_mode;
6493 rtx z = 0, c1 = NULL_RTX;
6494
6495 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6496 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6497 || GET_CODE (t) == ASHIFT
6498 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6499 && rtx_equal_p (XEXP (t, 0), f))
6500 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6501
6502 /* If an identity-zero op is commutative, check whether there
6503 would be a match if we swapped the operands. */
6504 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6505 || GET_CODE (t) == XOR)
6506 && rtx_equal_p (XEXP (t, 1), f))
6507 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6508 else if (GET_CODE (t) == SIGN_EXTEND
6509 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6510 && (GET_CODE (XEXP (t, 0)) == PLUS
6511 || GET_CODE (XEXP (t, 0)) == MINUS
6512 || GET_CODE (XEXP (t, 0)) == IOR
6513 || GET_CODE (XEXP (t, 0)) == XOR
6514 || GET_CODE (XEXP (t, 0)) == ASHIFT
6515 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6516 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6517 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6518 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6519 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6520 && (num_sign_bit_copies (f, GET_MODE (f))
6521 > (unsigned int)
6522 (GET_MODE_PRECISION (int_mode)
6523 - GET_MODE_PRECISION (inner_mode))))
6524 {
6525 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6526 extend_op = SIGN_EXTEND;
6527 m = inner_mode;
6528 }
6529 else if (GET_CODE (t) == SIGN_EXTEND
6530 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6531 && (GET_CODE (XEXP (t, 0)) == PLUS
6532 || GET_CODE (XEXP (t, 0)) == IOR
6533 || GET_CODE (XEXP (t, 0)) == XOR)
6534 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6535 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6536 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6537 && (num_sign_bit_copies (f, GET_MODE (f))
6538 > (unsigned int)
6539 (GET_MODE_PRECISION (int_mode)
6540 - GET_MODE_PRECISION (inner_mode))))
6541 {
6542 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6543 extend_op = SIGN_EXTEND;
6544 m = inner_mode;
6545 }
6546 else if (GET_CODE (t) == ZERO_EXTEND
6547 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6548 && (GET_CODE (XEXP (t, 0)) == PLUS
6549 || GET_CODE (XEXP (t, 0)) == MINUS
6550 || GET_CODE (XEXP (t, 0)) == IOR
6551 || GET_CODE (XEXP (t, 0)) == XOR
6552 || GET_CODE (XEXP (t, 0)) == ASHIFT
6553 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6554 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6555 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6556 && HWI_COMPUTABLE_MODE_P (int_mode)
6557 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6558 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6559 && ((nonzero_bits (f, GET_MODE (f))
6560 & ~GET_MODE_MASK (inner_mode))
6561 == 0))
6562 {
6563 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6564 extend_op = ZERO_EXTEND;
6565 m = inner_mode;
6566 }
6567 else if (GET_CODE (t) == ZERO_EXTEND
6568 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6569 && (GET_CODE (XEXP (t, 0)) == PLUS
6570 || GET_CODE (XEXP (t, 0)) == IOR
6571 || GET_CODE (XEXP (t, 0)) == XOR)
6572 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6573 && HWI_COMPUTABLE_MODE_P (int_mode)
6574 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6575 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6576 && ((nonzero_bits (f, GET_MODE (f))
6577 & ~GET_MODE_MASK (inner_mode))
6578 == 0))
6579 {
6580 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6581 extend_op = ZERO_EXTEND;
6582 m = inner_mode;
6583 }
6584
6585 if (z)
6586 {
6587 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6588 cond_op0, cond_op1),
6589 pc_rtx, pc_rtx, 0, 0, 0);
6590 temp = simplify_gen_binary (MULT, m, temp,
6591 simplify_gen_binary (MULT, m, c1,
6592 const_true_rtx));
6593 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6594 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6595
6596 if (extend_op != UNKNOWN)
6597 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6598
6599 return temp;
6600 }
6601 }
6602
6603 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6604 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6605 negation of a single bit, we can convert this operation to a shift. We
6606 can actually do this more generally, but it doesn't seem worth it. */
6607
6608 if (true_code == NE
6609 && is_a <scalar_int_mode> (mode, &int_mode)
6610 && XEXP (cond, 1) == const0_rtx
6611 && false_rtx == const0_rtx
6612 && CONST_INT_P (true_rtx)
6613 && ((1 == nonzero_bits (XEXP (cond, 0), int_mode)
6614 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6615 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6616 == GET_MODE_PRECISION (int_mode))
6617 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6618 return
6619 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6620 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6621
6622 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6623 non-zero bit in A is C1. */
6624 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6625 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6626 && is_a <scalar_int_mode> (mode, &int_mode)
6627 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6628 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6629 == nonzero_bits (XEXP (cond, 0), inner_mode)
6630 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6631 {
6632 rtx val = XEXP (cond, 0);
6633 if (inner_mode == int_mode)
6634 return val;
6635 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6636 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6637 }
6638
6639 return x;
6640 }
6641 \f
6642 /* Simplify X, a SET expression. Return the new expression. */
6643
6644 static rtx
6645 simplify_set (rtx x)
6646 {
6647 rtx src = SET_SRC (x);
6648 rtx dest = SET_DEST (x);
6649 machine_mode mode
6650 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6651 rtx_insn *other_insn;
6652 rtx *cc_use;
6653 scalar_int_mode int_mode;
6654
6655 /* (set (pc) (return)) gets written as (return). */
6656 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6657 return src;
6658
6659 /* Now that we know for sure which bits of SRC we are using, see if we can
6660 simplify the expression for the object knowing that we only need the
6661 low-order bits. */
6662
6663 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6664 {
6665 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6666 SUBST (SET_SRC (x), src);
6667 }
6668
6669 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6670 the comparison result and try to simplify it unless we already have used
6671 undobuf.other_insn. */
6672 if ((GET_MODE_CLASS (mode) == MODE_CC
6673 || GET_CODE (src) == COMPARE
6674 || CC0_P (dest))
6675 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6676 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6677 && COMPARISON_P (*cc_use)
6678 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6679 {
6680 enum rtx_code old_code = GET_CODE (*cc_use);
6681 enum rtx_code new_code;
6682 rtx op0, op1, tmp;
6683 int other_changed = 0;
6684 rtx inner_compare = NULL_RTX;
6685 machine_mode compare_mode = GET_MODE (dest);
6686
6687 if (GET_CODE (src) == COMPARE)
6688 {
6689 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6690 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6691 {
6692 inner_compare = op0;
6693 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6694 }
6695 }
6696 else
6697 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6698
6699 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6700 op0, op1);
6701 if (!tmp)
6702 new_code = old_code;
6703 else if (!CONSTANT_P (tmp))
6704 {
6705 new_code = GET_CODE (tmp);
6706 op0 = XEXP (tmp, 0);
6707 op1 = XEXP (tmp, 1);
6708 }
6709 else
6710 {
6711 rtx pat = PATTERN (other_insn);
6712 undobuf.other_insn = other_insn;
6713 SUBST (*cc_use, tmp);
6714
6715 /* Attempt to simplify CC user. */
6716 if (GET_CODE (pat) == SET)
6717 {
6718 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6719 if (new_rtx != NULL_RTX)
6720 SUBST (SET_SRC (pat), new_rtx);
6721 }
6722
6723 /* Convert X into a no-op move. */
6724 SUBST (SET_DEST (x), pc_rtx);
6725 SUBST (SET_SRC (x), pc_rtx);
6726 return x;
6727 }
6728
6729 /* Simplify our comparison, if possible. */
6730 new_code = simplify_comparison (new_code, &op0, &op1);
6731
6732 #ifdef SELECT_CC_MODE
6733 /* If this machine has CC modes other than CCmode, check to see if we
6734 need to use a different CC mode here. */
6735 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6736 compare_mode = GET_MODE (op0);
6737 else if (inner_compare
6738 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6739 && new_code == old_code
6740 && op0 == XEXP (inner_compare, 0)
6741 && op1 == XEXP (inner_compare, 1))
6742 compare_mode = GET_MODE (inner_compare);
6743 else
6744 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6745
6746 /* If the mode changed, we have to change SET_DEST, the mode in the
6747 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6748 a hard register, just build new versions with the proper mode. If it
6749 is a pseudo, we lose unless it is only time we set the pseudo, in
6750 which case we can safely change its mode. */
6751 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6752 {
6753 if (can_change_dest_mode (dest, 0, compare_mode))
6754 {
6755 unsigned int regno = REGNO (dest);
6756 rtx new_dest;
6757
6758 if (regno < FIRST_PSEUDO_REGISTER)
6759 new_dest = gen_rtx_REG (compare_mode, regno);
6760 else
6761 {
6762 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6763 new_dest = regno_reg_rtx[regno];
6764 }
6765
6766 SUBST (SET_DEST (x), new_dest);
6767 SUBST (XEXP (*cc_use, 0), new_dest);
6768 other_changed = 1;
6769
6770 dest = new_dest;
6771 }
6772 }
6773 #endif /* SELECT_CC_MODE */
6774
6775 /* If the code changed, we have to build a new comparison in
6776 undobuf.other_insn. */
6777 if (new_code != old_code)
6778 {
6779 int other_changed_previously = other_changed;
6780 unsigned HOST_WIDE_INT mask;
6781 rtx old_cc_use = *cc_use;
6782
6783 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6784 dest, const0_rtx));
6785 other_changed = 1;
6786
6787 /* If the only change we made was to change an EQ into an NE or
6788 vice versa, OP0 has only one bit that might be nonzero, and OP1
6789 is zero, check if changing the user of the condition code will
6790 produce a valid insn. If it won't, we can keep the original code
6791 in that insn by surrounding our operation with an XOR. */
6792
6793 if (((old_code == NE && new_code == EQ)
6794 || (old_code == EQ && new_code == NE))
6795 && ! other_changed_previously && op1 == const0_rtx
6796 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6797 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6798 {
6799 rtx pat = PATTERN (other_insn), note = 0;
6800
6801 if ((recog_for_combine (&pat, other_insn, &note) < 0
6802 && ! check_asm_operands (pat)))
6803 {
6804 *cc_use = old_cc_use;
6805 other_changed = 0;
6806
6807 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6808 gen_int_mode (mask,
6809 GET_MODE (op0)));
6810 }
6811 }
6812 }
6813
6814 if (other_changed)
6815 undobuf.other_insn = other_insn;
6816
6817 /* Don't generate a compare of a CC with 0, just use that CC. */
6818 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6819 {
6820 SUBST (SET_SRC (x), op0);
6821 src = SET_SRC (x);
6822 }
6823 /* Otherwise, if we didn't previously have the same COMPARE we
6824 want, create it from scratch. */
6825 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6826 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6827 {
6828 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6829 src = SET_SRC (x);
6830 }
6831 }
6832 else
6833 {
6834 /* Get SET_SRC in a form where we have placed back any
6835 compound expressions. Then do the checks below. */
6836 src = make_compound_operation (src, SET);
6837 SUBST (SET_SRC (x), src);
6838 }
6839
6840 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6841 and X being a REG or (subreg (reg)), we may be able to convert this to
6842 (set (subreg:m2 x) (op)).
6843
6844 We can always do this if M1 is narrower than M2 because that means that
6845 we only care about the low bits of the result.
6846
6847 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6848 perform a narrower operation than requested since the high-order bits will
6849 be undefined. On machine where it is defined, this transformation is safe
6850 as long as M1 and M2 have the same number of words. */
6851
6852 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6853 && !OBJECT_P (SUBREG_REG (src))
6854 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6855 / UNITS_PER_WORD)
6856 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6857 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6858 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
6859 #ifdef CANNOT_CHANGE_MODE_CLASS
6860 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6861 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6862 GET_MODE (SUBREG_REG (src)),
6863 GET_MODE (src)))
6864 #endif
6865 && (REG_P (dest)
6866 || (GET_CODE (dest) == SUBREG
6867 && REG_P (SUBREG_REG (dest)))))
6868 {
6869 SUBST (SET_DEST (x),
6870 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6871 dest));
6872 SUBST (SET_SRC (x), SUBREG_REG (src));
6873
6874 src = SET_SRC (x), dest = SET_DEST (x);
6875 }
6876
6877 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6878 in SRC. */
6879 if (dest == cc0_rtx
6880 && GET_CODE (src) == SUBREG
6881 && subreg_lowpart_p (src)
6882 && (GET_MODE_PRECISION (GET_MODE (src))
6883 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6884 {
6885 rtx inner = SUBREG_REG (src);
6886 machine_mode inner_mode = GET_MODE (inner);
6887
6888 /* Here we make sure that we don't have a sign bit on. */
6889 if (val_signbit_known_clear_p (GET_MODE (src),
6890 nonzero_bits (inner, inner_mode)))
6891 {
6892 SUBST (SET_SRC (x), inner);
6893 src = SET_SRC (x);
6894 }
6895 }
6896
6897 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6898 would require a paradoxical subreg. Replace the subreg with a
6899 zero_extend to avoid the reload that would otherwise be required. */
6900
6901 enum rtx_code extend_op;
6902 if (paradoxical_subreg_p (src)
6903 && MEM_P (SUBREG_REG (src))
6904 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
6905 {
6906 SUBST (SET_SRC (x),
6907 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
6908
6909 src = SET_SRC (x);
6910 }
6911
6912 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6913 are comparing an item known to be 0 or -1 against 0, use a logical
6914 operation instead. Check for one of the arms being an IOR of the other
6915 arm with some value. We compute three terms to be IOR'ed together. In
6916 practice, at most two will be nonzero. Then we do the IOR's. */
6917
6918 if (GET_CODE (dest) != PC
6919 && GET_CODE (src) == IF_THEN_ELSE
6920 && is_int_mode (GET_MODE (src), &int_mode)
6921 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6922 && XEXP (XEXP (src, 0), 1) == const0_rtx
6923 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
6924 && (!HAVE_conditional_move
6925 || ! can_conditionally_move_p (int_mode))
6926 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
6927 == GET_MODE_PRECISION (int_mode))
6928 && ! side_effects_p (src))
6929 {
6930 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6931 ? XEXP (src, 1) : XEXP (src, 2));
6932 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6933 ? XEXP (src, 2) : XEXP (src, 1));
6934 rtx term1 = const0_rtx, term2, term3;
6935
6936 if (GET_CODE (true_rtx) == IOR
6937 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6938 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6939 else if (GET_CODE (true_rtx) == IOR
6940 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6941 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6942 else if (GET_CODE (false_rtx) == IOR
6943 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6944 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6945 else if (GET_CODE (false_rtx) == IOR
6946 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6947 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6948
6949 term2 = simplify_gen_binary (AND, int_mode,
6950 XEXP (XEXP (src, 0), 0), true_rtx);
6951 term3 = simplify_gen_binary (AND, int_mode,
6952 simplify_gen_unary (NOT, int_mode,
6953 XEXP (XEXP (src, 0), 0),
6954 int_mode),
6955 false_rtx);
6956
6957 SUBST (SET_SRC (x),
6958 simplify_gen_binary (IOR, int_mode,
6959 simplify_gen_binary (IOR, int_mode,
6960 term1, term2),
6961 term3));
6962
6963 src = SET_SRC (x);
6964 }
6965
6966 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6967 whole thing fail. */
6968 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6969 return src;
6970 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6971 return dest;
6972 else
6973 /* Convert this into a field assignment operation, if possible. */
6974 return make_field_assignment (x);
6975 }
6976 \f
6977 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6978 result. */
6979
6980 static rtx
6981 simplify_logical (rtx x)
6982 {
6983 rtx op0 = XEXP (x, 0);
6984 rtx op1 = XEXP (x, 1);
6985 scalar_int_mode mode;
6986
6987 switch (GET_CODE (x))
6988 {
6989 case AND:
6990 /* We can call simplify_and_const_int only if we don't lose
6991 any (sign) bits when converting INTVAL (op1) to
6992 "unsigned HOST_WIDE_INT". */
6993 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
6994 && CONST_INT_P (op1)
6995 && (HWI_COMPUTABLE_MODE_P (mode)
6996 || INTVAL (op1) > 0))
6997 {
6998 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6999 if (GET_CODE (x) != AND)
7000 return x;
7001
7002 op0 = XEXP (x, 0);
7003 op1 = XEXP (x, 1);
7004 }
7005
7006 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7007 apply the distributive law and then the inverse distributive
7008 law to see if things simplify. */
7009 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7010 {
7011 rtx result = distribute_and_simplify_rtx (x, 0);
7012 if (result)
7013 return result;
7014 }
7015 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7016 {
7017 rtx result = distribute_and_simplify_rtx (x, 1);
7018 if (result)
7019 return result;
7020 }
7021 break;
7022
7023 case IOR:
7024 /* If we have (ior (and A B) C), apply the distributive law and then
7025 the inverse distributive law to see if things simplify. */
7026
7027 if (GET_CODE (op0) == AND)
7028 {
7029 rtx result = distribute_and_simplify_rtx (x, 0);
7030 if (result)
7031 return result;
7032 }
7033
7034 if (GET_CODE (op1) == AND)
7035 {
7036 rtx result = distribute_and_simplify_rtx (x, 1);
7037 if (result)
7038 return result;
7039 }
7040 break;
7041
7042 default:
7043 gcc_unreachable ();
7044 }
7045
7046 return x;
7047 }
7048 \f
7049 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7050 operations" because they can be replaced with two more basic operations.
7051 ZERO_EXTEND is also considered "compound" because it can be replaced with
7052 an AND operation, which is simpler, though only one operation.
7053
7054 The function expand_compound_operation is called with an rtx expression
7055 and will convert it to the appropriate shifts and AND operations,
7056 simplifying at each stage.
7057
7058 The function make_compound_operation is called to convert an expression
7059 consisting of shifts and ANDs into the equivalent compound expression.
7060 It is the inverse of this function, loosely speaking. */
7061
7062 static rtx
7063 expand_compound_operation (rtx x)
7064 {
7065 unsigned HOST_WIDE_INT pos = 0, len;
7066 int unsignedp = 0;
7067 unsigned int modewidth;
7068 rtx tem;
7069 scalar_int_mode inner_mode;
7070
7071 switch (GET_CODE (x))
7072 {
7073 case ZERO_EXTEND:
7074 unsignedp = 1;
7075 /* FALLTHRU */
7076 case SIGN_EXTEND:
7077 /* We can't necessarily use a const_int for a multiword mode;
7078 it depends on implicitly extending the value.
7079 Since we don't know the right way to extend it,
7080 we can't tell whether the implicit way is right.
7081
7082 Even for a mode that is no wider than a const_int,
7083 we can't win, because we need to sign extend one of its bits through
7084 the rest of it, and we don't know which bit. */
7085 if (CONST_INT_P (XEXP (x, 0)))
7086 return x;
7087
7088 /* Reject modes that aren't scalar integers because turning vector
7089 or complex modes into shifts causes problems. */
7090 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7091 return x;
7092
7093 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7094 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7095 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7096 reloaded. If not for that, MEM's would very rarely be safe.
7097
7098 Reject modes bigger than a word, because we might not be able
7099 to reference a two-register group starting with an arbitrary register
7100 (and currently gen_lowpart might crash for a SUBREG). */
7101
7102 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7103 return x;
7104
7105 len = GET_MODE_PRECISION (inner_mode);
7106 /* If the inner object has VOIDmode (the only way this can happen
7107 is if it is an ASM_OPERANDS), we can't do anything since we don't
7108 know how much masking to do. */
7109 if (len == 0)
7110 return x;
7111
7112 break;
7113
7114 case ZERO_EXTRACT:
7115 unsignedp = 1;
7116
7117 /* fall through */
7118
7119 case SIGN_EXTRACT:
7120 /* If the operand is a CLOBBER, just return it. */
7121 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7122 return XEXP (x, 0);
7123
7124 if (!CONST_INT_P (XEXP (x, 1))
7125 || !CONST_INT_P (XEXP (x, 2)))
7126 return x;
7127
7128 /* Reject modes that aren't scalar integers because turning vector
7129 or complex modes into shifts causes problems. */
7130 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7131 return x;
7132
7133 len = INTVAL (XEXP (x, 1));
7134 pos = INTVAL (XEXP (x, 2));
7135
7136 /* This should stay within the object being extracted, fail otherwise. */
7137 if (len + pos > GET_MODE_PRECISION (inner_mode))
7138 return x;
7139
7140 if (BITS_BIG_ENDIAN)
7141 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7142
7143 break;
7144
7145 default:
7146 return x;
7147 }
7148
7149 /* We've rejected non-scalar operations by now. */
7150 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7151
7152 /* Convert sign extension to zero extension, if we know that the high
7153 bit is not set, as this is easier to optimize. It will be converted
7154 back to cheaper alternative in make_extraction. */
7155 if (GET_CODE (x) == SIGN_EXTEND
7156 && HWI_COMPUTABLE_MODE_P (mode)
7157 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7158 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7159 == 0))
7160 {
7161 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7162 rtx temp2 = expand_compound_operation (temp);
7163
7164 /* Make sure this is a profitable operation. */
7165 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7166 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7167 return temp2;
7168 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7169 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7170 return temp;
7171 else
7172 return x;
7173 }
7174
7175 /* We can optimize some special cases of ZERO_EXTEND. */
7176 if (GET_CODE (x) == ZERO_EXTEND)
7177 {
7178 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7179 know that the last value didn't have any inappropriate bits
7180 set. */
7181 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7182 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7183 && HWI_COMPUTABLE_MODE_P (mode)
7184 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7185 & ~GET_MODE_MASK (inner_mode)) == 0)
7186 return XEXP (XEXP (x, 0), 0);
7187
7188 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7189 if (GET_CODE (XEXP (x, 0)) == SUBREG
7190 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7191 && subreg_lowpart_p (XEXP (x, 0))
7192 && HWI_COMPUTABLE_MODE_P (mode)
7193 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7194 & ~GET_MODE_MASK (inner_mode)) == 0)
7195 return SUBREG_REG (XEXP (x, 0));
7196
7197 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7198 is a comparison and STORE_FLAG_VALUE permits. This is like
7199 the first case, but it works even when MODE is larger
7200 than HOST_WIDE_INT. */
7201 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7202 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7203 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7204 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7205 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7206 return XEXP (XEXP (x, 0), 0);
7207
7208 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7209 if (GET_CODE (XEXP (x, 0)) == SUBREG
7210 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7211 && subreg_lowpart_p (XEXP (x, 0))
7212 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7213 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7214 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7215 return SUBREG_REG (XEXP (x, 0));
7216
7217 }
7218
7219 /* If we reach here, we want to return a pair of shifts. The inner
7220 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7221 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7222 logical depending on the value of UNSIGNEDP.
7223
7224 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7225 converted into an AND of a shift.
7226
7227 We must check for the case where the left shift would have a negative
7228 count. This can happen in a case like (x >> 31) & 255 on machines
7229 that can't shift by a constant. On those machines, we would first
7230 combine the shift with the AND to produce a variable-position
7231 extraction. Then the constant of 31 would be substituted in
7232 to produce such a position. */
7233
7234 modewidth = GET_MODE_PRECISION (mode);
7235 if (modewidth >= pos + len)
7236 {
7237 tem = gen_lowpart (mode, XEXP (x, 0));
7238 if (!tem || GET_CODE (tem) == CLOBBER)
7239 return x;
7240 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7241 tem, modewidth - pos - len);
7242 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7243 mode, tem, modewidth - len);
7244 }
7245 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7246 tem = simplify_and_const_int (NULL_RTX, mode,
7247 simplify_shift_const (NULL_RTX, LSHIFTRT,
7248 mode, XEXP (x, 0),
7249 pos),
7250 (HOST_WIDE_INT_1U << len) - 1);
7251 else
7252 /* Any other cases we can't handle. */
7253 return x;
7254
7255 /* If we couldn't do this for some reason, return the original
7256 expression. */
7257 if (GET_CODE (tem) == CLOBBER)
7258 return x;
7259
7260 return tem;
7261 }
7262 \f
7263 /* X is a SET which contains an assignment of one object into
7264 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7265 or certain SUBREGS). If possible, convert it into a series of
7266 logical operations.
7267
7268 We half-heartedly support variable positions, but do not at all
7269 support variable lengths. */
7270
7271 static const_rtx
7272 expand_field_assignment (const_rtx x)
7273 {
7274 rtx inner;
7275 rtx pos; /* Always counts from low bit. */
7276 int len;
7277 rtx mask, cleared, masked;
7278 scalar_int_mode compute_mode;
7279
7280 /* Loop until we find something we can't simplify. */
7281 while (1)
7282 {
7283 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7284 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7285 {
7286 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7287 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7288 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7289 }
7290 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7291 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7292 {
7293 inner = XEXP (SET_DEST (x), 0);
7294 len = INTVAL (XEXP (SET_DEST (x), 1));
7295 pos = XEXP (SET_DEST (x), 2);
7296
7297 /* A constant position should stay within the width of INNER. */
7298 if (CONST_INT_P (pos)
7299 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7300 break;
7301
7302 if (BITS_BIG_ENDIAN)
7303 {
7304 if (CONST_INT_P (pos))
7305 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7306 - INTVAL (pos));
7307 else if (GET_CODE (pos) == MINUS
7308 && CONST_INT_P (XEXP (pos, 1))
7309 && (INTVAL (XEXP (pos, 1))
7310 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7311 /* If position is ADJUST - X, new position is X. */
7312 pos = XEXP (pos, 0);
7313 else
7314 {
7315 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7316 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7317 gen_int_mode (prec - len,
7318 GET_MODE (pos)),
7319 pos);
7320 }
7321 }
7322 }
7323
7324 /* A SUBREG between two modes that occupy the same numbers of words
7325 can be done by moving the SUBREG to the source. */
7326 else if (GET_CODE (SET_DEST (x)) == SUBREG
7327 /* We need SUBREGs to compute nonzero_bits properly. */
7328 && nonzero_sign_valid
7329 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7330 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7331 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7332 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7333 {
7334 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7335 gen_lowpart
7336 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7337 SET_SRC (x)));
7338 continue;
7339 }
7340 else
7341 break;
7342
7343 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7344 inner = SUBREG_REG (inner);
7345
7346 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7347 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7348 {
7349 /* Don't do anything for vector or complex integral types. */
7350 if (! FLOAT_MODE_P (GET_MODE (inner)))
7351 break;
7352
7353 /* Try to find an integral mode to pun with. */
7354 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7355 .exists (&compute_mode))
7356 break;
7357
7358 inner = gen_lowpart (compute_mode, inner);
7359 }
7360
7361 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7362 if (len >= HOST_BITS_PER_WIDE_INT)
7363 break;
7364
7365 /* Don't try to compute in too wide unsupported modes. */
7366 if (!targetm.scalar_mode_supported_p (compute_mode))
7367 break;
7368
7369 /* Now compute the equivalent expression. Make a copy of INNER
7370 for the SET_DEST in case it is a MEM into which we will substitute;
7371 we don't want shared RTL in that case. */
7372 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7373 compute_mode);
7374 cleared = simplify_gen_binary (AND, compute_mode,
7375 simplify_gen_unary (NOT, compute_mode,
7376 simplify_gen_binary (ASHIFT,
7377 compute_mode,
7378 mask, pos),
7379 compute_mode),
7380 inner);
7381 masked = simplify_gen_binary (ASHIFT, compute_mode,
7382 simplify_gen_binary (
7383 AND, compute_mode,
7384 gen_lowpart (compute_mode, SET_SRC (x)),
7385 mask),
7386 pos);
7387
7388 x = gen_rtx_SET (copy_rtx (inner),
7389 simplify_gen_binary (IOR, compute_mode,
7390 cleared, masked));
7391 }
7392
7393 return x;
7394 }
7395 \f
7396 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7397 it is an RTX that represents the (variable) starting position; otherwise,
7398 POS is the (constant) starting bit position. Both are counted from the LSB.
7399
7400 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7401
7402 IN_DEST is nonzero if this is a reference in the destination of a SET.
7403 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7404 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7405 be used.
7406
7407 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7408 ZERO_EXTRACT should be built even for bits starting at bit 0.
7409
7410 MODE is the desired mode of the result (if IN_DEST == 0).
7411
7412 The result is an RTX for the extraction or NULL_RTX if the target
7413 can't handle it. */
7414
7415 static rtx
7416 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7417 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7418 int in_dest, int in_compare)
7419 {
7420 /* This mode describes the size of the storage area
7421 to fetch the overall value from. Within that, we
7422 ignore the POS lowest bits, etc. */
7423 machine_mode is_mode = GET_MODE (inner);
7424 machine_mode inner_mode;
7425 machine_mode wanted_inner_mode;
7426 machine_mode wanted_inner_reg_mode = word_mode;
7427 machine_mode pos_mode = word_mode;
7428 machine_mode extraction_mode = word_mode;
7429 rtx new_rtx = 0;
7430 rtx orig_pos_rtx = pos_rtx;
7431 HOST_WIDE_INT orig_pos;
7432
7433 if (pos_rtx && CONST_INT_P (pos_rtx))
7434 pos = INTVAL (pos_rtx), pos_rtx = 0;
7435
7436 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7437 {
7438 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7439 consider just the QI as the memory to extract from.
7440 The subreg adds or removes high bits; its mode is
7441 irrelevant to the meaning of this extraction,
7442 since POS and LEN count from the lsb. */
7443 if (MEM_P (SUBREG_REG (inner)))
7444 is_mode = GET_MODE (SUBREG_REG (inner));
7445 inner = SUBREG_REG (inner);
7446 }
7447 else if (GET_CODE (inner) == ASHIFT
7448 && CONST_INT_P (XEXP (inner, 1))
7449 && pos_rtx == 0 && pos == 0
7450 && len > UINTVAL (XEXP (inner, 1)))
7451 {
7452 /* We're extracting the least significant bits of an rtx
7453 (ashift X (const_int C)), where LEN > C. Extract the
7454 least significant (LEN - C) bits of X, giving an rtx
7455 whose mode is MODE, then shift it left C times. */
7456 new_rtx = make_extraction (mode, XEXP (inner, 0),
7457 0, 0, len - INTVAL (XEXP (inner, 1)),
7458 unsignedp, in_dest, in_compare);
7459 if (new_rtx != 0)
7460 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7461 }
7462 else if (GET_CODE (inner) == TRUNCATE)
7463 inner = XEXP (inner, 0);
7464
7465 inner_mode = GET_MODE (inner);
7466
7467 /* See if this can be done without an extraction. We never can if the
7468 width of the field is not the same as that of some integer mode. For
7469 registers, we can only avoid the extraction if the position is at the
7470 low-order bit and this is either not in the destination or we have the
7471 appropriate STRICT_LOW_PART operation available.
7472
7473 For MEM, we can avoid an extract if the field starts on an appropriate
7474 boundary and we can change the mode of the memory reference. */
7475
7476 scalar_int_mode tmode;
7477 if (int_mode_for_size (len, 1).exists (&tmode)
7478 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7479 && !MEM_P (inner)
7480 && (pos == 0 || REG_P (inner))
7481 && (inner_mode == tmode
7482 || !REG_P (inner)
7483 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7484 || reg_truncated_to_mode (tmode, inner))
7485 && (! in_dest
7486 || (REG_P (inner)
7487 && have_insn_for (STRICT_LOW_PART, tmode))))
7488 || (MEM_P (inner) && pos_rtx == 0
7489 && (pos
7490 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7491 : BITS_PER_UNIT)) == 0
7492 /* We can't do this if we are widening INNER_MODE (it
7493 may not be aligned, for one thing). */
7494 && !paradoxical_subreg_p (tmode, inner_mode)
7495 && (inner_mode == tmode
7496 || (! mode_dependent_address_p (XEXP (inner, 0),
7497 MEM_ADDR_SPACE (inner))
7498 && ! MEM_VOLATILE_P (inner))))))
7499 {
7500 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7501 field. If the original and current mode are the same, we need not
7502 adjust the offset. Otherwise, we do if bytes big endian.
7503
7504 If INNER is not a MEM, get a piece consisting of just the field
7505 of interest (in this case POS % BITS_PER_WORD must be 0). */
7506
7507 if (MEM_P (inner))
7508 {
7509 HOST_WIDE_INT offset;
7510
7511 /* POS counts from lsb, but make OFFSET count in memory order. */
7512 if (BYTES_BIG_ENDIAN)
7513 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7514 else
7515 offset = pos / BITS_PER_UNIT;
7516
7517 new_rtx = adjust_address_nv (inner, tmode, offset);
7518 }
7519 else if (REG_P (inner))
7520 {
7521 if (tmode != inner_mode)
7522 {
7523 /* We can't call gen_lowpart in a DEST since we
7524 always want a SUBREG (see below) and it would sometimes
7525 return a new hard register. */
7526 if (pos || in_dest)
7527 {
7528 unsigned int offset
7529 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7530
7531 /* Avoid creating invalid subregs, for example when
7532 simplifying (x>>32)&255. */
7533 if (!validate_subreg (tmode, inner_mode, inner, offset))
7534 return NULL_RTX;
7535
7536 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7537 }
7538 else
7539 new_rtx = gen_lowpart (tmode, inner);
7540 }
7541 else
7542 new_rtx = inner;
7543 }
7544 else
7545 new_rtx = force_to_mode (inner, tmode,
7546 len >= HOST_BITS_PER_WIDE_INT
7547 ? HOST_WIDE_INT_M1U
7548 : (HOST_WIDE_INT_1U << len) - 1, 0);
7549
7550 /* If this extraction is going into the destination of a SET,
7551 make a STRICT_LOW_PART unless we made a MEM. */
7552
7553 if (in_dest)
7554 return (MEM_P (new_rtx) ? new_rtx
7555 : (GET_CODE (new_rtx) != SUBREG
7556 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7557 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7558
7559 if (mode == tmode)
7560 return new_rtx;
7561
7562 if (CONST_SCALAR_INT_P (new_rtx))
7563 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7564 mode, new_rtx, tmode);
7565
7566 /* If we know that no extraneous bits are set, and that the high
7567 bit is not set, convert the extraction to the cheaper of
7568 sign and zero extension, that are equivalent in these cases. */
7569 if (flag_expensive_optimizations
7570 && (HWI_COMPUTABLE_MODE_P (tmode)
7571 && ((nonzero_bits (new_rtx, tmode)
7572 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7573 == 0)))
7574 {
7575 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7576 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7577
7578 /* Prefer ZERO_EXTENSION, since it gives more information to
7579 backends. */
7580 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7581 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7582 return temp;
7583 return temp1;
7584 }
7585
7586 /* Otherwise, sign- or zero-extend unless we already are in the
7587 proper mode. */
7588
7589 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7590 mode, new_rtx));
7591 }
7592
7593 /* Unless this is a COMPARE or we have a funny memory reference,
7594 don't do anything with zero-extending field extracts starting at
7595 the low-order bit since they are simple AND operations. */
7596 if (pos_rtx == 0 && pos == 0 && ! in_dest
7597 && ! in_compare && unsignedp)
7598 return 0;
7599
7600 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7601 if the position is not a constant and the length is not 1. In all
7602 other cases, we would only be going outside our object in cases when
7603 an original shift would have been undefined. */
7604 if (MEM_P (inner)
7605 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7606 || (pos_rtx != 0 && len != 1)))
7607 return 0;
7608
7609 enum extraction_pattern pattern = (in_dest ? EP_insv
7610 : unsignedp ? EP_extzv : EP_extv);
7611
7612 /* If INNER is not from memory, we want it to have the mode of a register
7613 extraction pattern's structure operand, or word_mode if there is no
7614 such pattern. The same applies to extraction_mode and pos_mode
7615 and their respective operands.
7616
7617 For memory, assume that the desired extraction_mode and pos_mode
7618 are the same as for a register operation, since at present we don't
7619 have named patterns for aligned memory structures. */
7620 struct extraction_insn insn;
7621 if (get_best_reg_extraction_insn (&insn, pattern,
7622 GET_MODE_BITSIZE (inner_mode), mode))
7623 {
7624 wanted_inner_reg_mode = insn.struct_mode.require ();
7625 pos_mode = insn.pos_mode;
7626 extraction_mode = insn.field_mode;
7627 }
7628
7629 /* Never narrow an object, since that might not be safe. */
7630
7631 if (mode != VOIDmode
7632 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7633 extraction_mode = mode;
7634
7635 if (!MEM_P (inner))
7636 wanted_inner_mode = wanted_inner_reg_mode;
7637 else
7638 {
7639 /* Be careful not to go beyond the extracted object and maintain the
7640 natural alignment of the memory. */
7641 wanted_inner_mode = smallest_int_mode_for_size (len);
7642 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7643 > GET_MODE_BITSIZE (wanted_inner_mode))
7644 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7645 }
7646
7647 orig_pos = pos;
7648
7649 if (BITS_BIG_ENDIAN)
7650 {
7651 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7652 BITS_BIG_ENDIAN style. If position is constant, compute new
7653 position. Otherwise, build subtraction.
7654 Note that POS is relative to the mode of the original argument.
7655 If it's a MEM we need to recompute POS relative to that.
7656 However, if we're extracting from (or inserting into) a register,
7657 we want to recompute POS relative to wanted_inner_mode. */
7658 int width = (MEM_P (inner)
7659 ? GET_MODE_BITSIZE (is_mode)
7660 : GET_MODE_BITSIZE (wanted_inner_mode));
7661
7662 if (pos_rtx == 0)
7663 pos = width - len - pos;
7664 else
7665 pos_rtx
7666 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7667 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7668 pos_rtx);
7669 /* POS may be less than 0 now, but we check for that below.
7670 Note that it can only be less than 0 if !MEM_P (inner). */
7671 }
7672
7673 /* If INNER has a wider mode, and this is a constant extraction, try to
7674 make it smaller and adjust the byte to point to the byte containing
7675 the value. */
7676 if (wanted_inner_mode != VOIDmode
7677 && inner_mode != wanted_inner_mode
7678 && ! pos_rtx
7679 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7680 && MEM_P (inner)
7681 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7682 && ! MEM_VOLATILE_P (inner))
7683 {
7684 int offset = 0;
7685
7686 /* The computations below will be correct if the machine is big
7687 endian in both bits and bytes or little endian in bits and bytes.
7688 If it is mixed, we must adjust. */
7689
7690 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7691 adjust OFFSET to compensate. */
7692 if (BYTES_BIG_ENDIAN
7693 && paradoxical_subreg_p (is_mode, inner_mode))
7694 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7695
7696 /* We can now move to the desired byte. */
7697 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7698 * GET_MODE_SIZE (wanted_inner_mode);
7699 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7700
7701 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7702 && is_mode != wanted_inner_mode)
7703 offset = (GET_MODE_SIZE (is_mode)
7704 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7705
7706 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7707 }
7708
7709 /* If INNER is not memory, get it into the proper mode. If we are changing
7710 its mode, POS must be a constant and smaller than the size of the new
7711 mode. */
7712 else if (!MEM_P (inner))
7713 {
7714 /* On the LHS, don't create paradoxical subregs implicitely truncating
7715 the register unless TRULY_NOOP_TRUNCATION. */
7716 if (in_dest
7717 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7718 wanted_inner_mode))
7719 return NULL_RTX;
7720
7721 if (GET_MODE (inner) != wanted_inner_mode
7722 && (pos_rtx != 0
7723 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7724 return NULL_RTX;
7725
7726 if (orig_pos < 0)
7727 return NULL_RTX;
7728
7729 inner = force_to_mode (inner, wanted_inner_mode,
7730 pos_rtx
7731 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7732 ? HOST_WIDE_INT_M1U
7733 : (((HOST_WIDE_INT_1U << len) - 1)
7734 << orig_pos),
7735 0);
7736 }
7737
7738 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7739 have to zero extend. Otherwise, we can just use a SUBREG.
7740
7741 We dealt with constant rtxes earlier, so pos_rtx cannot
7742 have VOIDmode at this point. */
7743 if (pos_rtx != 0
7744 && (GET_MODE_SIZE (pos_mode)
7745 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7746 {
7747 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7748 GET_MODE (pos_rtx));
7749
7750 /* If we know that no extraneous bits are set, and that the high
7751 bit is not set, convert extraction to cheaper one - either
7752 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7753 cases. */
7754 if (flag_expensive_optimizations
7755 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7756 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7757 & ~(((unsigned HOST_WIDE_INT)
7758 GET_MODE_MASK (GET_MODE (pos_rtx)))
7759 >> 1))
7760 == 0)))
7761 {
7762 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7763 GET_MODE (pos_rtx));
7764
7765 /* Prefer ZERO_EXTENSION, since it gives more information to
7766 backends. */
7767 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7768 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7769 temp = temp1;
7770 }
7771 pos_rtx = temp;
7772 }
7773
7774 /* Make POS_RTX unless we already have it and it is correct. If we don't
7775 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7776 be a CONST_INT. */
7777 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7778 pos_rtx = orig_pos_rtx;
7779
7780 else if (pos_rtx == 0)
7781 pos_rtx = GEN_INT (pos);
7782
7783 /* Make the required operation. See if we can use existing rtx. */
7784 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7785 extraction_mode, inner, GEN_INT (len), pos_rtx);
7786 if (! in_dest)
7787 new_rtx = gen_lowpart (mode, new_rtx);
7788
7789 return new_rtx;
7790 }
7791 \f
7792 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7793 with any other operations in X. Return X without that shift if so. */
7794
7795 static rtx
7796 extract_left_shift (rtx x, int count)
7797 {
7798 enum rtx_code code = GET_CODE (x);
7799 machine_mode mode = GET_MODE (x);
7800 rtx tem;
7801
7802 switch (code)
7803 {
7804 case ASHIFT:
7805 /* This is the shift itself. If it is wide enough, we will return
7806 either the value being shifted if the shift count is equal to
7807 COUNT or a shift for the difference. */
7808 if (CONST_INT_P (XEXP (x, 1))
7809 && INTVAL (XEXP (x, 1)) >= count)
7810 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7811 INTVAL (XEXP (x, 1)) - count);
7812 break;
7813
7814 case NEG: case NOT:
7815 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7816 return simplify_gen_unary (code, mode, tem, mode);
7817
7818 break;
7819
7820 case PLUS: case IOR: case XOR: case AND:
7821 /* If we can safely shift this constant and we find the inner shift,
7822 make a new operation. */
7823 if (CONST_INT_P (XEXP (x, 1))
7824 && (UINTVAL (XEXP (x, 1))
7825 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7826 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7827 {
7828 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7829 return simplify_gen_binary (code, mode, tem,
7830 gen_int_mode (val, mode));
7831 }
7832 break;
7833
7834 default:
7835 break;
7836 }
7837
7838 return 0;
7839 }
7840 \f
7841 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7842 level of the expression and MODE is its mode. IN_CODE is as for
7843 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7844 that should be used when recursing on operands of *X_PTR.
7845
7846 There are two possible actions:
7847
7848 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7849 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7850
7851 - Return a new rtx, which the caller returns directly. */
7852
7853 static rtx
7854 make_compound_operation_int (machine_mode mode, rtx *x_ptr,
7855 enum rtx_code in_code,
7856 enum rtx_code *next_code_ptr)
7857 {
7858 rtx x = *x_ptr;
7859 enum rtx_code next_code = *next_code_ptr;
7860 enum rtx_code code = GET_CODE (x);
7861 int mode_width = GET_MODE_PRECISION (mode);
7862 rtx rhs, lhs;
7863 rtx new_rtx = 0;
7864 int i;
7865 rtx tem;
7866 scalar_int_mode inner_mode;
7867 bool equality_comparison = false;
7868
7869 if (in_code == EQ)
7870 {
7871 equality_comparison = true;
7872 in_code = COMPARE;
7873 }
7874
7875 /* Process depending on the code of this operation. If NEW is set
7876 nonzero, it will be returned. */
7877
7878 switch (code)
7879 {
7880 case ASHIFT:
7881 /* Convert shifts by constants into multiplications if inside
7882 an address. */
7883 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7884 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7885 && INTVAL (XEXP (x, 1)) >= 0)
7886 {
7887 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7888 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7889
7890 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7891 if (GET_CODE (new_rtx) == NEG)
7892 {
7893 new_rtx = XEXP (new_rtx, 0);
7894 multval = -multval;
7895 }
7896 multval = trunc_int_for_mode (multval, mode);
7897 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7898 }
7899 break;
7900
7901 case PLUS:
7902 lhs = XEXP (x, 0);
7903 rhs = XEXP (x, 1);
7904 lhs = make_compound_operation (lhs, next_code);
7905 rhs = make_compound_operation (rhs, next_code);
7906 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
7907 {
7908 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7909 XEXP (lhs, 1));
7910 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7911 }
7912 else if (GET_CODE (lhs) == MULT
7913 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7914 {
7915 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7916 simplify_gen_unary (NEG, mode,
7917 XEXP (lhs, 1),
7918 mode));
7919 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7920 }
7921 else
7922 {
7923 SUBST (XEXP (x, 0), lhs);
7924 SUBST (XEXP (x, 1), rhs);
7925 }
7926 maybe_swap_commutative_operands (x);
7927 return x;
7928
7929 case MINUS:
7930 lhs = XEXP (x, 0);
7931 rhs = XEXP (x, 1);
7932 lhs = make_compound_operation (lhs, next_code);
7933 rhs = make_compound_operation (rhs, next_code);
7934 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
7935 {
7936 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7937 XEXP (rhs, 1));
7938 return simplify_gen_binary (PLUS, mode, tem, lhs);
7939 }
7940 else if (GET_CODE (rhs) == MULT
7941 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7942 {
7943 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7944 simplify_gen_unary (NEG, mode,
7945 XEXP (rhs, 1),
7946 mode));
7947 return simplify_gen_binary (PLUS, mode, tem, lhs);
7948 }
7949 else
7950 {
7951 SUBST (XEXP (x, 0), lhs);
7952 SUBST (XEXP (x, 1), rhs);
7953 return x;
7954 }
7955
7956 case AND:
7957 /* If the second operand is not a constant, we can't do anything
7958 with it. */
7959 if (!CONST_INT_P (XEXP (x, 1)))
7960 break;
7961
7962 /* If the constant is a power of two minus one and the first operand
7963 is a logical right shift, make an extraction. */
7964 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7965 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7966 {
7967 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7968 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7969 0, in_code == COMPARE);
7970 }
7971
7972 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7973 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7974 && subreg_lowpart_p (XEXP (x, 0))
7975 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
7976 &inner_mode)
7977 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7978 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7979 {
7980 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
7981 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
7982 new_rtx = make_extraction (inner_mode, new_rtx, 0,
7983 XEXP (inner_x0, 1),
7984 i, 1, 0, in_code == COMPARE);
7985
7986 /* If we narrowed the mode when dropping the subreg, then we lose. */
7987 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
7988 new_rtx = NULL;
7989
7990 /* If that didn't give anything, see if the AND simplifies on
7991 its own. */
7992 if (!new_rtx && i >= 0)
7993 {
7994 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7995 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
7996 0, in_code == COMPARE);
7997 }
7998 }
7999 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8000 else if ((GET_CODE (XEXP (x, 0)) == XOR
8001 || GET_CODE (XEXP (x, 0)) == IOR)
8002 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8003 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8004 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8005 {
8006 /* Apply the distributive law, and then try to make extractions. */
8007 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8008 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8009 XEXP (x, 1)),
8010 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8011 XEXP (x, 1)));
8012 new_rtx = make_compound_operation (new_rtx, in_code);
8013 }
8014
8015 /* If we are have (and (rotate X C) M) and C is larger than the number
8016 of bits in M, this is an extraction. */
8017
8018 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8019 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8020 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8021 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8022 {
8023 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8024 new_rtx = make_extraction (mode, new_rtx,
8025 (GET_MODE_PRECISION (mode)
8026 - INTVAL (XEXP (XEXP (x, 0), 1))),
8027 NULL_RTX, i, 1, 0, in_code == COMPARE);
8028 }
8029
8030 /* On machines without logical shifts, if the operand of the AND is
8031 a logical shift and our mask turns off all the propagated sign
8032 bits, we can replace the logical shift with an arithmetic shift. */
8033 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8034 && !have_insn_for (LSHIFTRT, mode)
8035 && have_insn_for (ASHIFTRT, mode)
8036 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8037 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8038 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8039 && mode_width <= HOST_BITS_PER_WIDE_INT)
8040 {
8041 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8042
8043 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8044 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8045 SUBST (XEXP (x, 0),
8046 gen_rtx_ASHIFTRT (mode,
8047 make_compound_operation
8048 (XEXP (XEXP (x, 0), 0), next_code),
8049 XEXP (XEXP (x, 0), 1)));
8050 }
8051
8052 /* If the constant is one less than a power of two, this might be
8053 representable by an extraction even if no shift is present.
8054 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8055 we are in a COMPARE. */
8056 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8057 new_rtx = make_extraction (mode,
8058 make_compound_operation (XEXP (x, 0),
8059 next_code),
8060 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8061
8062 /* If we are in a comparison and this is an AND with a power of two,
8063 convert this into the appropriate bit extract. */
8064 else if (in_code == COMPARE
8065 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8066 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8067 new_rtx = make_extraction (mode,
8068 make_compound_operation (XEXP (x, 0),
8069 next_code),
8070 i, NULL_RTX, 1, 1, 0, 1);
8071
8072 /* If the one operand is a paradoxical subreg of a register or memory and
8073 the constant (limited to the smaller mode) has only zero bits where
8074 the sub expression has known zero bits, this can be expressed as
8075 a zero_extend. */
8076 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8077 {
8078 rtx sub;
8079
8080 sub = XEXP (XEXP (x, 0), 0);
8081 machine_mode sub_mode = GET_MODE (sub);
8082 if ((REG_P (sub) || MEM_P (sub))
8083 && GET_MODE_PRECISION (sub_mode) < mode_width)
8084 {
8085 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8086 unsigned HOST_WIDE_INT mask;
8087
8088 /* original AND constant with all the known zero bits set */
8089 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8090 if ((mask & mode_mask) == mode_mask)
8091 {
8092 new_rtx = make_compound_operation (sub, next_code);
8093 new_rtx = make_extraction (mode, new_rtx, 0, 0,
8094 GET_MODE_PRECISION (sub_mode),
8095 1, 0, in_code == COMPARE);
8096 }
8097 }
8098 }
8099
8100 break;
8101
8102 case LSHIFTRT:
8103 /* If the sign bit is known to be zero, replace this with an
8104 arithmetic shift. */
8105 if (have_insn_for (ASHIFTRT, mode)
8106 && ! have_insn_for (LSHIFTRT, mode)
8107 && mode_width <= HOST_BITS_PER_WIDE_INT
8108 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8109 {
8110 new_rtx = gen_rtx_ASHIFTRT (mode,
8111 make_compound_operation (XEXP (x, 0),
8112 next_code),
8113 XEXP (x, 1));
8114 break;
8115 }
8116
8117 /* fall through */
8118
8119 case ASHIFTRT:
8120 lhs = XEXP (x, 0);
8121 rhs = XEXP (x, 1);
8122
8123 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8124 this is a SIGN_EXTRACT. */
8125 if (CONST_INT_P (rhs)
8126 && GET_CODE (lhs) == ASHIFT
8127 && CONST_INT_P (XEXP (lhs, 1))
8128 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8129 && INTVAL (XEXP (lhs, 1)) >= 0
8130 && INTVAL (rhs) < mode_width)
8131 {
8132 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8133 new_rtx = make_extraction (mode, new_rtx,
8134 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8135 NULL_RTX, mode_width - INTVAL (rhs),
8136 code == LSHIFTRT, 0, in_code == COMPARE);
8137 break;
8138 }
8139
8140 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8141 If so, try to merge the shifts into a SIGN_EXTEND. We could
8142 also do this for some cases of SIGN_EXTRACT, but it doesn't
8143 seem worth the effort; the case checked for occurs on Alpha. */
8144
8145 if (!OBJECT_P (lhs)
8146 && ! (GET_CODE (lhs) == SUBREG
8147 && (OBJECT_P (SUBREG_REG (lhs))))
8148 && CONST_INT_P (rhs)
8149 && INTVAL (rhs) >= 0
8150 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8151 && INTVAL (rhs) < mode_width
8152 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8153 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8154 0, NULL_RTX, mode_width - INTVAL (rhs),
8155 code == LSHIFTRT, 0, in_code == COMPARE);
8156
8157 break;
8158
8159 case SUBREG:
8160 /* Call ourselves recursively on the inner expression. If we are
8161 narrowing the object and it has a different RTL code from
8162 what it originally did, do this SUBREG as a force_to_mode. */
8163 {
8164 rtx inner = SUBREG_REG (x), simplified;
8165 enum rtx_code subreg_code = in_code;
8166
8167 /* If the SUBREG is masking of a logical right shift,
8168 make an extraction. */
8169 if (GET_CODE (inner) == LSHIFTRT
8170 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8171 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8172 && CONST_INT_P (XEXP (inner, 1))
8173 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8174 && subreg_lowpart_p (x))
8175 {
8176 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8177 int width = GET_MODE_PRECISION (inner_mode)
8178 - INTVAL (XEXP (inner, 1));
8179 if (width > mode_width)
8180 width = mode_width;
8181 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8182 width, 1, 0, in_code == COMPARE);
8183 break;
8184 }
8185
8186 /* If in_code is COMPARE, it isn't always safe to pass it through
8187 to the recursive make_compound_operation call. */
8188 if (subreg_code == COMPARE
8189 && (!subreg_lowpart_p (x)
8190 || GET_CODE (inner) == SUBREG
8191 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8192 is (const_int 0), rather than
8193 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8194 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8195 for non-equality comparisons against 0 is not equivalent
8196 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8197 || (GET_CODE (inner) == AND
8198 && CONST_INT_P (XEXP (inner, 1))
8199 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8200 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8201 >= GET_MODE_BITSIZE (mode) - 1)))
8202 subreg_code = SET;
8203
8204 tem = make_compound_operation (inner, subreg_code);
8205
8206 simplified
8207 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8208 if (simplified)
8209 tem = simplified;
8210
8211 if (GET_CODE (tem) != GET_CODE (inner)
8212 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8213 && subreg_lowpart_p (x))
8214 {
8215 rtx newer
8216 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8217
8218 /* If we have something other than a SUBREG, we might have
8219 done an expansion, so rerun ourselves. */
8220 if (GET_CODE (newer) != SUBREG)
8221 newer = make_compound_operation (newer, in_code);
8222
8223 /* force_to_mode can expand compounds. If it just re-expanded the
8224 compound, use gen_lowpart to convert to the desired mode. */
8225 if (rtx_equal_p (newer, x)
8226 /* Likewise if it re-expanded the compound only partially.
8227 This happens for SUBREG of ZERO_EXTRACT if they extract
8228 the same number of bits. */
8229 || (GET_CODE (newer) == SUBREG
8230 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8231 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8232 && GET_CODE (inner) == AND
8233 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8234 return gen_lowpart (GET_MODE (x), tem);
8235
8236 return newer;
8237 }
8238
8239 if (simplified)
8240 return tem;
8241 }
8242 break;
8243
8244 default:
8245 break;
8246 }
8247
8248 if (new_rtx)
8249 *x_ptr = gen_lowpart (mode, new_rtx);
8250 *next_code_ptr = next_code;
8251 return NULL_RTX;
8252 }
8253
8254 /* Look at the expression rooted at X. Look for expressions
8255 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8256 Form these expressions.
8257
8258 Return the new rtx, usually just X.
8259
8260 Also, for machines like the VAX that don't have logical shift insns,
8261 try to convert logical to arithmetic shift operations in cases where
8262 they are equivalent. This undoes the canonicalizations to logical
8263 shifts done elsewhere.
8264
8265 We try, as much as possible, to re-use rtl expressions to save memory.
8266
8267 IN_CODE says what kind of expression we are processing. Normally, it is
8268 SET. In a memory address it is MEM. When processing the arguments of
8269 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8270 precisely it is an equality comparison against zero. */
8271
8272 rtx
8273 make_compound_operation (rtx x, enum rtx_code in_code)
8274 {
8275 enum rtx_code code = GET_CODE (x);
8276 const char *fmt;
8277 int i, j;
8278 enum rtx_code next_code;
8279 rtx new_rtx, tem;
8280
8281 /* Select the code to be used in recursive calls. Once we are inside an
8282 address, we stay there. If we have a comparison, set to COMPARE,
8283 but once inside, go back to our default of SET. */
8284
8285 next_code = (code == MEM ? MEM
8286 : ((code == COMPARE || COMPARISON_P (x))
8287 && XEXP (x, 1) == const0_rtx) ? COMPARE
8288 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8289
8290 scalar_int_mode mode;
8291 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8292 {
8293 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8294 &next_code);
8295 if (new_rtx)
8296 return new_rtx;
8297 code = GET_CODE (x);
8298 }
8299
8300 /* Now recursively process each operand of this operation. We need to
8301 handle ZERO_EXTEND specially so that we don't lose track of the
8302 inner mode. */
8303 if (code == ZERO_EXTEND)
8304 {
8305 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8306 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8307 new_rtx, GET_MODE (XEXP (x, 0)));
8308 if (tem)
8309 return tem;
8310 SUBST (XEXP (x, 0), new_rtx);
8311 return x;
8312 }
8313
8314 fmt = GET_RTX_FORMAT (code);
8315 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8316 if (fmt[i] == 'e')
8317 {
8318 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8319 SUBST (XEXP (x, i), new_rtx);
8320 }
8321 else if (fmt[i] == 'E')
8322 for (j = 0; j < XVECLEN (x, i); j++)
8323 {
8324 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8325 SUBST (XVECEXP (x, i, j), new_rtx);
8326 }
8327
8328 maybe_swap_commutative_operands (x);
8329 return x;
8330 }
8331 \f
8332 /* Given M see if it is a value that would select a field of bits
8333 within an item, but not the entire word. Return -1 if not.
8334 Otherwise, return the starting position of the field, where 0 is the
8335 low-order bit.
8336
8337 *PLEN is set to the length of the field. */
8338
8339 static int
8340 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8341 {
8342 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8343 int pos = m ? ctz_hwi (m) : -1;
8344 int len = 0;
8345
8346 if (pos >= 0)
8347 /* Now shift off the low-order zero bits and see if we have a
8348 power of two minus 1. */
8349 len = exact_log2 ((m >> pos) + 1);
8350
8351 if (len <= 0)
8352 pos = -1;
8353
8354 *plen = len;
8355 return pos;
8356 }
8357 \f
8358 /* If X refers to a register that equals REG in value, replace these
8359 references with REG. */
8360 static rtx
8361 canon_reg_for_combine (rtx x, rtx reg)
8362 {
8363 rtx op0, op1, op2;
8364 const char *fmt;
8365 int i;
8366 bool copied;
8367
8368 enum rtx_code code = GET_CODE (x);
8369 switch (GET_RTX_CLASS (code))
8370 {
8371 case RTX_UNARY:
8372 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8373 if (op0 != XEXP (x, 0))
8374 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8375 GET_MODE (reg));
8376 break;
8377
8378 case RTX_BIN_ARITH:
8379 case RTX_COMM_ARITH:
8380 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8381 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8382 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8383 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8384 break;
8385
8386 case RTX_COMPARE:
8387 case RTX_COMM_COMPARE:
8388 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8389 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8390 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8391 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8392 GET_MODE (op0), op0, op1);
8393 break;
8394
8395 case RTX_TERNARY:
8396 case RTX_BITFIELD_OPS:
8397 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8398 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8399 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8400 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8401 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8402 GET_MODE (op0), op0, op1, op2);
8403 /* FALLTHRU */
8404
8405 case RTX_OBJ:
8406 if (REG_P (x))
8407 {
8408 if (rtx_equal_p (get_last_value (reg), x)
8409 || rtx_equal_p (reg, get_last_value (x)))
8410 return reg;
8411 else
8412 break;
8413 }
8414
8415 /* fall through */
8416
8417 default:
8418 fmt = GET_RTX_FORMAT (code);
8419 copied = false;
8420 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8421 if (fmt[i] == 'e')
8422 {
8423 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8424 if (op != XEXP (x, i))
8425 {
8426 if (!copied)
8427 {
8428 copied = true;
8429 x = copy_rtx (x);
8430 }
8431 XEXP (x, i) = op;
8432 }
8433 }
8434 else if (fmt[i] == 'E')
8435 {
8436 int j;
8437 for (j = 0; j < XVECLEN (x, i); j++)
8438 {
8439 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8440 if (op != XVECEXP (x, i, j))
8441 {
8442 if (!copied)
8443 {
8444 copied = true;
8445 x = copy_rtx (x);
8446 }
8447 XVECEXP (x, i, j) = op;
8448 }
8449 }
8450 }
8451
8452 break;
8453 }
8454
8455 return x;
8456 }
8457
8458 /* Return X converted to MODE. If the value is already truncated to
8459 MODE we can just return a subreg even though in the general case we
8460 would need an explicit truncation. */
8461
8462 static rtx
8463 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8464 {
8465 if (!CONST_INT_P (x)
8466 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8467 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8468 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8469 {
8470 /* Bit-cast X into an integer mode. */
8471 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8472 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8473 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8474 x, GET_MODE (x));
8475 }
8476
8477 return gen_lowpart (mode, x);
8478 }
8479
8480 /* See if X can be simplified knowing that we will only refer to it in
8481 MODE and will only refer to those bits that are nonzero in MASK.
8482 If other bits are being computed or if masking operations are done
8483 that select a superset of the bits in MASK, they can sometimes be
8484 ignored.
8485
8486 Return a possibly simplified expression, but always convert X to
8487 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8488
8489 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8490 are all off in X. This is used when X will be complemented, by either
8491 NOT, NEG, or XOR. */
8492
8493 static rtx
8494 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8495 int just_select)
8496 {
8497 enum rtx_code code = GET_CODE (x);
8498 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8499 machine_mode op_mode;
8500 unsigned HOST_WIDE_INT nonzero;
8501
8502 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8503 code below will do the wrong thing since the mode of such an
8504 expression is VOIDmode.
8505
8506 Also do nothing if X is a CLOBBER; this can happen if X was
8507 the return value from a call to gen_lowpart. */
8508 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8509 return x;
8510
8511 /* We want to perform the operation in its present mode unless we know
8512 that the operation is valid in MODE, in which case we do the operation
8513 in MODE. */
8514 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8515 && have_insn_for (code, mode))
8516 ? mode : GET_MODE (x));
8517
8518 /* It is not valid to do a right-shift in a narrower mode
8519 than the one it came in with. */
8520 if ((code == LSHIFTRT || code == ASHIFTRT)
8521 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8522 op_mode = GET_MODE (x);
8523
8524 /* Truncate MASK to fit OP_MODE. */
8525 if (op_mode)
8526 mask &= GET_MODE_MASK (op_mode);
8527
8528 /* Determine what bits of X are guaranteed to be (non)zero. */
8529 nonzero = nonzero_bits (x, mode);
8530
8531 /* If none of the bits in X are needed, return a zero. */
8532 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8533 x = const0_rtx;
8534
8535 /* If X is a CONST_INT, return a new one. Do this here since the
8536 test below will fail. */
8537 if (CONST_INT_P (x))
8538 {
8539 if (SCALAR_INT_MODE_P (mode))
8540 return gen_int_mode (INTVAL (x) & mask, mode);
8541 else
8542 {
8543 x = GEN_INT (INTVAL (x) & mask);
8544 return gen_lowpart_common (mode, x);
8545 }
8546 }
8547
8548 /* If X is narrower than MODE and we want all the bits in X's mode, just
8549 get X in the proper mode. */
8550 if (paradoxical_subreg_p (mode, GET_MODE (x))
8551 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8552 return gen_lowpart (mode, x);
8553
8554 /* We can ignore the effect of a SUBREG if it narrows the mode or
8555 if the constant masks to zero all the bits the mode doesn't have. */
8556 if (GET_CODE (x) == SUBREG
8557 && subreg_lowpart_p (x)
8558 && ((GET_MODE_SIZE (GET_MODE (x))
8559 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8560 || (0 == (mask
8561 & GET_MODE_MASK (GET_MODE (x))
8562 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8563 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8564
8565 scalar_int_mode int_mode, xmode;
8566 if (is_a <scalar_int_mode> (mode, &int_mode)
8567 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8568 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8569 integer too. */
8570 return force_int_to_mode (x, int_mode, xmode,
8571 as_a <scalar_int_mode> (op_mode),
8572 mask, just_select);
8573
8574 return gen_lowpart_or_truncate (mode, x);
8575 }
8576
8577 /* Subroutine of force_to_mode that handles cases in which both X and
8578 the result are scalar integers. MODE is the mode of the result,
8579 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8580 is preferred for simplified versions of X. The other arguments
8581 are as for force_to_mode. */
8582
8583 static rtx
8584 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8585 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8586 int just_select)
8587 {
8588 enum rtx_code code = GET_CODE (x);
8589 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8590 unsigned HOST_WIDE_INT fuller_mask;
8591 rtx op0, op1, temp;
8592
8593 /* When we have an arithmetic operation, or a shift whose count we
8594 do not know, we need to assume that all bits up to the highest-order
8595 bit in MASK will be needed. This is how we form such a mask. */
8596 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8597 fuller_mask = HOST_WIDE_INT_M1U;
8598 else
8599 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8600 - 1);
8601
8602 switch (code)
8603 {
8604 case CLOBBER:
8605 /* If X is a (clobber (const_int)), return it since we know we are
8606 generating something that won't match. */
8607 return x;
8608
8609 case SIGN_EXTEND:
8610 case ZERO_EXTEND:
8611 case ZERO_EXTRACT:
8612 case SIGN_EXTRACT:
8613 x = expand_compound_operation (x);
8614 if (GET_CODE (x) != code)
8615 return force_to_mode (x, mode, mask, next_select);
8616 break;
8617
8618 case TRUNCATE:
8619 /* Similarly for a truncate. */
8620 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8621
8622 case AND:
8623 /* If this is an AND with a constant, convert it into an AND
8624 whose constant is the AND of that constant with MASK. If it
8625 remains an AND of MASK, delete it since it is redundant. */
8626
8627 if (CONST_INT_P (XEXP (x, 1)))
8628 {
8629 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8630 mask & INTVAL (XEXP (x, 1)));
8631 xmode = op_mode;
8632
8633 /* If X is still an AND, see if it is an AND with a mask that
8634 is just some low-order bits. If so, and it is MASK, we don't
8635 need it. */
8636
8637 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8638 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8639 x = XEXP (x, 0);
8640
8641 /* If it remains an AND, try making another AND with the bits
8642 in the mode mask that aren't in MASK turned on. If the
8643 constant in the AND is wide enough, this might make a
8644 cheaper constant. */
8645
8646 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8647 && GET_MODE_MASK (xmode) != mask
8648 && HWI_COMPUTABLE_MODE_P (xmode))
8649 {
8650 unsigned HOST_WIDE_INT cval
8651 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8652 rtx y;
8653
8654 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8655 gen_int_mode (cval, xmode));
8656 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8657 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8658 x = y;
8659 }
8660
8661 break;
8662 }
8663
8664 goto binop;
8665
8666 case PLUS:
8667 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8668 low-order bits (as in an alignment operation) and FOO is already
8669 aligned to that boundary, mask C1 to that boundary as well.
8670 This may eliminate that PLUS and, later, the AND. */
8671
8672 {
8673 unsigned int width = GET_MODE_PRECISION (mode);
8674 unsigned HOST_WIDE_INT smask = mask;
8675
8676 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8677 number, sign extend it. */
8678
8679 if (width < HOST_BITS_PER_WIDE_INT
8680 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8681 smask |= HOST_WIDE_INT_M1U << width;
8682
8683 if (CONST_INT_P (XEXP (x, 1))
8684 && pow2p_hwi (- smask)
8685 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8686 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8687 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8688 (INTVAL (XEXP (x, 1)) & smask)),
8689 mode, smask, next_select);
8690 }
8691
8692 /* fall through */
8693
8694 case MULT:
8695 /* Substituting into the operands of a widening MULT is not likely to
8696 create RTL matching a machine insn. */
8697 if (code == MULT
8698 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8699 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8700 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8701 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8702 && REG_P (XEXP (XEXP (x, 0), 0))
8703 && REG_P (XEXP (XEXP (x, 1), 0)))
8704 return gen_lowpart_or_truncate (mode, x);
8705
8706 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8707 most significant bit in MASK since carries from those bits will
8708 affect the bits we are interested in. */
8709 mask = fuller_mask;
8710 goto binop;
8711
8712 case MINUS:
8713 /* If X is (minus C Y) where C's least set bit is larger than any bit
8714 in the mask, then we may replace with (neg Y). */
8715 if (CONST_INT_P (XEXP (x, 0))
8716 && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8717 {
8718 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8719 return force_to_mode (x, mode, mask, next_select);
8720 }
8721
8722 /* Similarly, if C contains every bit in the fuller_mask, then we may
8723 replace with (not Y). */
8724 if (CONST_INT_P (XEXP (x, 0))
8725 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8726 {
8727 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8728 return force_to_mode (x, mode, mask, next_select);
8729 }
8730
8731 mask = fuller_mask;
8732 goto binop;
8733
8734 case IOR:
8735 case XOR:
8736 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8737 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8738 operation which may be a bitfield extraction. Ensure that the
8739 constant we form is not wider than the mode of X. */
8740
8741 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8742 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8743 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8744 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8745 && CONST_INT_P (XEXP (x, 1))
8746 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8747 + floor_log2 (INTVAL (XEXP (x, 1))))
8748 < GET_MODE_PRECISION (xmode))
8749 && (UINTVAL (XEXP (x, 1))
8750 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8751 {
8752 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8753 << INTVAL (XEXP (XEXP (x, 0), 1)),
8754 xmode);
8755 temp = simplify_gen_binary (GET_CODE (x), xmode,
8756 XEXP (XEXP (x, 0), 0), temp);
8757 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8758 XEXP (XEXP (x, 0), 1));
8759 return force_to_mode (x, mode, mask, next_select);
8760 }
8761
8762 binop:
8763 /* For most binary operations, just propagate into the operation and
8764 change the mode if we have an operation of that mode. */
8765
8766 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8767 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8768
8769 /* If we ended up truncating both operands, truncate the result of the
8770 operation instead. */
8771 if (GET_CODE (op0) == TRUNCATE
8772 && GET_CODE (op1) == TRUNCATE)
8773 {
8774 op0 = XEXP (op0, 0);
8775 op1 = XEXP (op1, 0);
8776 }
8777
8778 op0 = gen_lowpart_or_truncate (op_mode, op0);
8779 op1 = gen_lowpart_or_truncate (op_mode, op1);
8780
8781 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8782 {
8783 x = simplify_gen_binary (code, op_mode, op0, op1);
8784 xmode = op_mode;
8785 }
8786 break;
8787
8788 case ASHIFT:
8789 /* For left shifts, do the same, but just for the first operand.
8790 However, we cannot do anything with shifts where we cannot
8791 guarantee that the counts are smaller than the size of the mode
8792 because such a count will have a different meaning in a
8793 wider mode. */
8794
8795 if (! (CONST_INT_P (XEXP (x, 1))
8796 && INTVAL (XEXP (x, 1)) >= 0
8797 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8798 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8799 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8800 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8801 break;
8802
8803 /* If the shift count is a constant and we can do arithmetic in
8804 the mode of the shift, refine which bits we need. Otherwise, use the
8805 conservative form of the mask. */
8806 if (CONST_INT_P (XEXP (x, 1))
8807 && INTVAL (XEXP (x, 1)) >= 0
8808 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8809 && HWI_COMPUTABLE_MODE_P (op_mode))
8810 mask >>= INTVAL (XEXP (x, 1));
8811 else
8812 mask = fuller_mask;
8813
8814 op0 = gen_lowpart_or_truncate (op_mode,
8815 force_to_mode (XEXP (x, 0), op_mode,
8816 mask, next_select));
8817
8818 if (op_mode != xmode || op0 != XEXP (x, 0))
8819 {
8820 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8821 xmode = op_mode;
8822 }
8823 break;
8824
8825 case LSHIFTRT:
8826 /* Here we can only do something if the shift count is a constant,
8827 this shift constant is valid for the host, and we can do arithmetic
8828 in OP_MODE. */
8829
8830 if (CONST_INT_P (XEXP (x, 1))
8831 && INTVAL (XEXP (x, 1)) >= 0
8832 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8833 && HWI_COMPUTABLE_MODE_P (op_mode))
8834 {
8835 rtx inner = XEXP (x, 0);
8836 unsigned HOST_WIDE_INT inner_mask;
8837
8838 /* Select the mask of the bits we need for the shift operand. */
8839 inner_mask = mask << INTVAL (XEXP (x, 1));
8840
8841 /* We can only change the mode of the shift if we can do arithmetic
8842 in the mode of the shift and INNER_MASK is no wider than the
8843 width of X's mode. */
8844 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
8845 op_mode = xmode;
8846
8847 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8848
8849 if (xmode != op_mode || inner != XEXP (x, 0))
8850 {
8851 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8852 xmode = op_mode;
8853 }
8854 }
8855
8856 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8857 shift and AND produces only copies of the sign bit (C2 is one less
8858 than a power of two), we can do this with just a shift. */
8859
8860 if (GET_CODE (x) == LSHIFTRT
8861 && CONST_INT_P (XEXP (x, 1))
8862 /* The shift puts one of the sign bit copies in the least significant
8863 bit. */
8864 && ((INTVAL (XEXP (x, 1))
8865 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8866 >= GET_MODE_PRECISION (xmode))
8867 && pow2p_hwi (mask + 1)
8868 /* Number of bits left after the shift must be more than the mask
8869 needs. */
8870 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8871 <= GET_MODE_PRECISION (xmode))
8872 /* Must be more sign bit copies than the mask needs. */
8873 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8874 >= exact_log2 (mask + 1)))
8875 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
8876 GEN_INT (GET_MODE_PRECISION (xmode)
8877 - exact_log2 (mask + 1)));
8878
8879 goto shiftrt;
8880
8881 case ASHIFTRT:
8882 /* If we are just looking for the sign bit, we don't need this shift at
8883 all, even if it has a variable count. */
8884 if (val_signbit_p (xmode, mask))
8885 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8886
8887 /* If this is a shift by a constant, get a mask that contains those bits
8888 that are not copies of the sign bit. We then have two cases: If
8889 MASK only includes those bits, this can be a logical shift, which may
8890 allow simplifications. If MASK is a single-bit field not within
8891 those bits, we are requesting a copy of the sign bit and hence can
8892 shift the sign bit to the appropriate location. */
8893
8894 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8895 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8896 {
8897 unsigned HOST_WIDE_INT nonzero;
8898 int i;
8899
8900 /* If the considered data is wider than HOST_WIDE_INT, we can't
8901 represent a mask for all its bits in a single scalar.
8902 But we only care about the lower bits, so calculate these. */
8903
8904 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
8905 {
8906 nonzero = HOST_WIDE_INT_M1U;
8907
8908 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8909 is the number of bits a full-width mask would have set.
8910 We need only shift if these are fewer than nonzero can
8911 hold. If not, we must keep all bits set in nonzero. */
8912
8913 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
8914 < HOST_BITS_PER_WIDE_INT)
8915 nonzero >>= INTVAL (XEXP (x, 1))
8916 + HOST_BITS_PER_WIDE_INT
8917 - GET_MODE_PRECISION (xmode);
8918 }
8919 else
8920 {
8921 nonzero = GET_MODE_MASK (xmode);
8922 nonzero >>= INTVAL (XEXP (x, 1));
8923 }
8924
8925 if ((mask & ~nonzero) == 0)
8926 {
8927 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
8928 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8929 if (GET_CODE (x) != ASHIFTRT)
8930 return force_to_mode (x, mode, mask, next_select);
8931 }
8932
8933 else if ((i = exact_log2 (mask)) >= 0)
8934 {
8935 x = simplify_shift_const
8936 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
8937 GET_MODE_PRECISION (xmode) - 1 - i);
8938
8939 if (GET_CODE (x) != ASHIFTRT)
8940 return force_to_mode (x, mode, mask, next_select);
8941 }
8942 }
8943
8944 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8945 even if the shift count isn't a constant. */
8946 if (mask == 1)
8947 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
8948
8949 shiftrt:
8950
8951 /* If this is a zero- or sign-extension operation that just affects bits
8952 we don't care about, remove it. Be sure the call above returned
8953 something that is still a shift. */
8954
8955 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8956 && CONST_INT_P (XEXP (x, 1))
8957 && INTVAL (XEXP (x, 1)) >= 0
8958 && (INTVAL (XEXP (x, 1))
8959 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
8960 && GET_CODE (XEXP (x, 0)) == ASHIFT
8961 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8962 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8963 next_select);
8964
8965 break;
8966
8967 case ROTATE:
8968 case ROTATERT:
8969 /* If the shift count is constant and we can do computations
8970 in the mode of X, compute where the bits we care about are.
8971 Otherwise, we can't do anything. Don't change the mode of
8972 the shift or propagate MODE into the shift, though. */
8973 if (CONST_INT_P (XEXP (x, 1))
8974 && INTVAL (XEXP (x, 1)) >= 0)
8975 {
8976 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8977 xmode, gen_int_mode (mask, xmode),
8978 XEXP (x, 1));
8979 if (temp && CONST_INT_P (temp))
8980 x = simplify_gen_binary (code, xmode,
8981 force_to_mode (XEXP (x, 0), xmode,
8982 INTVAL (temp), next_select),
8983 XEXP (x, 1));
8984 }
8985 break;
8986
8987 case NEG:
8988 /* If we just want the low-order bit, the NEG isn't needed since it
8989 won't change the low-order bit. */
8990 if (mask == 1)
8991 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8992
8993 /* We need any bits less significant than the most significant bit in
8994 MASK since carries from those bits will affect the bits we are
8995 interested in. */
8996 mask = fuller_mask;
8997 goto unop;
8998
8999 case NOT:
9000 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9001 same as the XOR case above. Ensure that the constant we form is not
9002 wider than the mode of X. */
9003
9004 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9005 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9006 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9007 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9008 < GET_MODE_PRECISION (xmode))
9009 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9010 {
9011 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9012 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9013 x = simplify_gen_binary (LSHIFTRT, xmode,
9014 temp, XEXP (XEXP (x, 0), 1));
9015
9016 return force_to_mode (x, mode, mask, next_select);
9017 }
9018
9019 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9020 use the full mask inside the NOT. */
9021 mask = fuller_mask;
9022
9023 unop:
9024 op0 = gen_lowpart_or_truncate (op_mode,
9025 force_to_mode (XEXP (x, 0), mode, mask,
9026 next_select));
9027 if (op_mode != xmode || op0 != XEXP (x, 0))
9028 {
9029 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9030 xmode = op_mode;
9031 }
9032 break;
9033
9034 case NE:
9035 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9036 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9037 which is equal to STORE_FLAG_VALUE. */
9038 if ((mask & ~STORE_FLAG_VALUE) == 0
9039 && XEXP (x, 1) == const0_rtx
9040 && GET_MODE (XEXP (x, 0)) == mode
9041 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9042 && (nonzero_bits (XEXP (x, 0), mode)
9043 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9044 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9045
9046 break;
9047
9048 case IF_THEN_ELSE:
9049 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9050 written in a narrower mode. We play it safe and do not do so. */
9051
9052 op0 = gen_lowpart_or_truncate (xmode,
9053 force_to_mode (XEXP (x, 1), mode,
9054 mask, next_select));
9055 op1 = gen_lowpart_or_truncate (xmode,
9056 force_to_mode (XEXP (x, 2), mode,
9057 mask, next_select));
9058 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9059 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9060 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9061 op0, op1);
9062 break;
9063
9064 default:
9065 break;
9066 }
9067
9068 /* Ensure we return a value of the proper mode. */
9069 return gen_lowpart_or_truncate (mode, x);
9070 }
9071 \f
9072 /* Return nonzero if X is an expression that has one of two values depending on
9073 whether some other value is zero or nonzero. In that case, we return the
9074 value that is being tested, *PTRUE is set to the value if the rtx being
9075 returned has a nonzero value, and *PFALSE is set to the other alternative.
9076
9077 If we return zero, we set *PTRUE and *PFALSE to X. */
9078
9079 static rtx
9080 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9081 {
9082 machine_mode mode = GET_MODE (x);
9083 enum rtx_code code = GET_CODE (x);
9084 rtx cond0, cond1, true0, true1, false0, false1;
9085 unsigned HOST_WIDE_INT nz;
9086 scalar_int_mode int_mode;
9087
9088 /* If we are comparing a value against zero, we are done. */
9089 if ((code == NE || code == EQ)
9090 && XEXP (x, 1) == const0_rtx)
9091 {
9092 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9093 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9094 return XEXP (x, 0);
9095 }
9096
9097 /* If this is a unary operation whose operand has one of two values, apply
9098 our opcode to compute those values. */
9099 else if (UNARY_P (x)
9100 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9101 {
9102 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9103 *pfalse = simplify_gen_unary (code, mode, false0,
9104 GET_MODE (XEXP (x, 0)));
9105 return cond0;
9106 }
9107
9108 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9109 make can't possibly match and would suppress other optimizations. */
9110 else if (code == COMPARE)
9111 ;
9112
9113 /* If this is a binary operation, see if either side has only one of two
9114 values. If either one does or if both do and they are conditional on
9115 the same value, compute the new true and false values. */
9116 else if (BINARY_P (x))
9117 {
9118 rtx op0 = XEXP (x, 0);
9119 rtx op1 = XEXP (x, 1);
9120 cond0 = if_then_else_cond (op0, &true0, &false0);
9121 cond1 = if_then_else_cond (op1, &true1, &false1);
9122
9123 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9124 && (REG_P (op0) || REG_P (op1)))
9125 {
9126 /* Try to enable a simplification by undoing work done by
9127 if_then_else_cond if it converted a REG into something more
9128 complex. */
9129 if (REG_P (op0))
9130 {
9131 cond0 = 0;
9132 true0 = false0 = op0;
9133 }
9134 else
9135 {
9136 cond1 = 0;
9137 true1 = false1 = op1;
9138 }
9139 }
9140
9141 if ((cond0 != 0 || cond1 != 0)
9142 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9143 {
9144 /* If if_then_else_cond returned zero, then true/false are the
9145 same rtl. We must copy one of them to prevent invalid rtl
9146 sharing. */
9147 if (cond0 == 0)
9148 true0 = copy_rtx (true0);
9149 else if (cond1 == 0)
9150 true1 = copy_rtx (true1);
9151
9152 if (COMPARISON_P (x))
9153 {
9154 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9155 true0, true1);
9156 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9157 false0, false1);
9158 }
9159 else
9160 {
9161 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9162 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9163 }
9164
9165 return cond0 ? cond0 : cond1;
9166 }
9167
9168 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9169 operands is zero when the other is nonzero, and vice-versa,
9170 and STORE_FLAG_VALUE is 1 or -1. */
9171
9172 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9173 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9174 || code == UMAX)
9175 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9176 {
9177 rtx op0 = XEXP (XEXP (x, 0), 1);
9178 rtx op1 = XEXP (XEXP (x, 1), 1);
9179
9180 cond0 = XEXP (XEXP (x, 0), 0);
9181 cond1 = XEXP (XEXP (x, 1), 0);
9182
9183 if (COMPARISON_P (cond0)
9184 && COMPARISON_P (cond1)
9185 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9186 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9187 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9188 || ((swap_condition (GET_CODE (cond0))
9189 == reversed_comparison_code (cond1, NULL))
9190 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9191 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9192 && ! side_effects_p (x))
9193 {
9194 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9195 *pfalse = simplify_gen_binary (MULT, mode,
9196 (code == MINUS
9197 ? simplify_gen_unary (NEG, mode,
9198 op1, mode)
9199 : op1),
9200 const_true_rtx);
9201 return cond0;
9202 }
9203 }
9204
9205 /* Similarly for MULT, AND and UMIN, except that for these the result
9206 is always zero. */
9207 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9208 && (code == MULT || code == AND || code == UMIN)
9209 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9210 {
9211 cond0 = XEXP (XEXP (x, 0), 0);
9212 cond1 = XEXP (XEXP (x, 1), 0);
9213
9214 if (COMPARISON_P (cond0)
9215 && COMPARISON_P (cond1)
9216 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9217 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9218 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9219 || ((swap_condition (GET_CODE (cond0))
9220 == reversed_comparison_code (cond1, NULL))
9221 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9222 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9223 && ! side_effects_p (x))
9224 {
9225 *ptrue = *pfalse = const0_rtx;
9226 return cond0;
9227 }
9228 }
9229 }
9230
9231 else if (code == IF_THEN_ELSE)
9232 {
9233 /* If we have IF_THEN_ELSE already, extract the condition and
9234 canonicalize it if it is NE or EQ. */
9235 cond0 = XEXP (x, 0);
9236 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9237 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9238 return XEXP (cond0, 0);
9239 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9240 {
9241 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9242 return XEXP (cond0, 0);
9243 }
9244 else
9245 return cond0;
9246 }
9247
9248 /* If X is a SUBREG, we can narrow both the true and false values
9249 if the inner expression, if there is a condition. */
9250 else if (code == SUBREG
9251 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9252 &true0, &false0)))
9253 {
9254 true0 = simplify_gen_subreg (mode, true0,
9255 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9256 false0 = simplify_gen_subreg (mode, false0,
9257 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9258 if (true0 && false0)
9259 {
9260 *ptrue = true0;
9261 *pfalse = false0;
9262 return cond0;
9263 }
9264 }
9265
9266 /* If X is a constant, this isn't special and will cause confusions
9267 if we treat it as such. Likewise if it is equivalent to a constant. */
9268 else if (CONSTANT_P (x)
9269 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9270 ;
9271
9272 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9273 will be least confusing to the rest of the compiler. */
9274 else if (mode == BImode)
9275 {
9276 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9277 return x;
9278 }
9279
9280 /* If X is known to be either 0 or -1, those are the true and
9281 false values when testing X. */
9282 else if (x == constm1_rtx || x == const0_rtx
9283 || (is_a <scalar_int_mode> (mode, &int_mode)
9284 && (num_sign_bit_copies (x, int_mode)
9285 == GET_MODE_PRECISION (int_mode))))
9286 {
9287 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9288 return x;
9289 }
9290
9291 /* Likewise for 0 or a single bit. */
9292 else if (HWI_COMPUTABLE_MODE_P (mode)
9293 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9294 {
9295 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9296 return x;
9297 }
9298
9299 /* Otherwise fail; show no condition with true and false values the same. */
9300 *ptrue = *pfalse = x;
9301 return 0;
9302 }
9303 \f
9304 /* Return the value of expression X given the fact that condition COND
9305 is known to be true when applied to REG as its first operand and VAL
9306 as its second. X is known to not be shared and so can be modified in
9307 place.
9308
9309 We only handle the simplest cases, and specifically those cases that
9310 arise with IF_THEN_ELSE expressions. */
9311
9312 static rtx
9313 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9314 {
9315 enum rtx_code code = GET_CODE (x);
9316 const char *fmt;
9317 int i, j;
9318
9319 if (side_effects_p (x))
9320 return x;
9321
9322 /* If either operand of the condition is a floating point value,
9323 then we have to avoid collapsing an EQ comparison. */
9324 if (cond == EQ
9325 && rtx_equal_p (x, reg)
9326 && ! FLOAT_MODE_P (GET_MODE (x))
9327 && ! FLOAT_MODE_P (GET_MODE (val)))
9328 return val;
9329
9330 if (cond == UNEQ && rtx_equal_p (x, reg))
9331 return val;
9332
9333 /* If X is (abs REG) and we know something about REG's relationship
9334 with zero, we may be able to simplify this. */
9335
9336 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9337 switch (cond)
9338 {
9339 case GE: case GT: case EQ:
9340 return XEXP (x, 0);
9341 case LT: case LE:
9342 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9343 XEXP (x, 0),
9344 GET_MODE (XEXP (x, 0)));
9345 default:
9346 break;
9347 }
9348
9349 /* The only other cases we handle are MIN, MAX, and comparisons if the
9350 operands are the same as REG and VAL. */
9351
9352 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9353 {
9354 if (rtx_equal_p (XEXP (x, 0), val))
9355 {
9356 std::swap (val, reg);
9357 cond = swap_condition (cond);
9358 }
9359
9360 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9361 {
9362 if (COMPARISON_P (x))
9363 {
9364 if (comparison_dominates_p (cond, code))
9365 return const_true_rtx;
9366
9367 code = reversed_comparison_code (x, NULL);
9368 if (code != UNKNOWN
9369 && comparison_dominates_p (cond, code))
9370 return const0_rtx;
9371 else
9372 return x;
9373 }
9374 else if (code == SMAX || code == SMIN
9375 || code == UMIN || code == UMAX)
9376 {
9377 int unsignedp = (code == UMIN || code == UMAX);
9378
9379 /* Do not reverse the condition when it is NE or EQ.
9380 This is because we cannot conclude anything about
9381 the value of 'SMAX (x, y)' when x is not equal to y,
9382 but we can when x equals y. */
9383 if ((code == SMAX || code == UMAX)
9384 && ! (cond == EQ || cond == NE))
9385 cond = reverse_condition (cond);
9386
9387 switch (cond)
9388 {
9389 case GE: case GT:
9390 return unsignedp ? x : XEXP (x, 1);
9391 case LE: case LT:
9392 return unsignedp ? x : XEXP (x, 0);
9393 case GEU: case GTU:
9394 return unsignedp ? XEXP (x, 1) : x;
9395 case LEU: case LTU:
9396 return unsignedp ? XEXP (x, 0) : x;
9397 default:
9398 break;
9399 }
9400 }
9401 }
9402 }
9403 else if (code == SUBREG)
9404 {
9405 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9406 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9407
9408 if (SUBREG_REG (x) != r)
9409 {
9410 /* We must simplify subreg here, before we lose track of the
9411 original inner_mode. */
9412 new_rtx = simplify_subreg (GET_MODE (x), r,
9413 inner_mode, SUBREG_BYTE (x));
9414 if (new_rtx)
9415 return new_rtx;
9416 else
9417 SUBST (SUBREG_REG (x), r);
9418 }
9419
9420 return x;
9421 }
9422 /* We don't have to handle SIGN_EXTEND here, because even in the
9423 case of replacing something with a modeless CONST_INT, a
9424 CONST_INT is already (supposed to be) a valid sign extension for
9425 its narrower mode, which implies it's already properly
9426 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9427 story is different. */
9428 else if (code == ZERO_EXTEND)
9429 {
9430 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9431 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9432
9433 if (XEXP (x, 0) != r)
9434 {
9435 /* We must simplify the zero_extend here, before we lose
9436 track of the original inner_mode. */
9437 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9438 r, inner_mode);
9439 if (new_rtx)
9440 return new_rtx;
9441 else
9442 SUBST (XEXP (x, 0), r);
9443 }
9444
9445 return x;
9446 }
9447
9448 fmt = GET_RTX_FORMAT (code);
9449 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9450 {
9451 if (fmt[i] == 'e')
9452 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9453 else if (fmt[i] == 'E')
9454 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9455 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9456 cond, reg, val));
9457 }
9458
9459 return x;
9460 }
9461 \f
9462 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9463 assignment as a field assignment. */
9464
9465 static int
9466 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9467 {
9468 if (widen_x && GET_MODE (x) != GET_MODE (y))
9469 {
9470 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9471 return 0;
9472 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9473 return 0;
9474 /* For big endian, adjust the memory offset. */
9475 if (BYTES_BIG_ENDIAN)
9476 x = adjust_address_nv (x, GET_MODE (y),
9477 -subreg_lowpart_offset (GET_MODE (x),
9478 GET_MODE (y)));
9479 else
9480 x = adjust_address_nv (x, GET_MODE (y), 0);
9481 }
9482
9483 if (x == y || rtx_equal_p (x, y))
9484 return 1;
9485
9486 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9487 return 0;
9488
9489 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9490 Note that all SUBREGs of MEM are paradoxical; otherwise they
9491 would have been rewritten. */
9492 if (MEM_P (x) && GET_CODE (y) == SUBREG
9493 && MEM_P (SUBREG_REG (y))
9494 && rtx_equal_p (SUBREG_REG (y),
9495 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9496 return 1;
9497
9498 if (MEM_P (y) && GET_CODE (x) == SUBREG
9499 && MEM_P (SUBREG_REG (x))
9500 && rtx_equal_p (SUBREG_REG (x),
9501 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9502 return 1;
9503
9504 /* We used to see if get_last_value of X and Y were the same but that's
9505 not correct. In one direction, we'll cause the assignment to have
9506 the wrong destination and in the case, we'll import a register into this
9507 insn that might have already have been dead. So fail if none of the
9508 above cases are true. */
9509 return 0;
9510 }
9511 \f
9512 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9513 Return that assignment if so.
9514
9515 We only handle the most common cases. */
9516
9517 static rtx
9518 make_field_assignment (rtx x)
9519 {
9520 rtx dest = SET_DEST (x);
9521 rtx src = SET_SRC (x);
9522 rtx assign;
9523 rtx rhs, lhs;
9524 HOST_WIDE_INT c1;
9525 HOST_WIDE_INT pos;
9526 unsigned HOST_WIDE_INT len;
9527 rtx other;
9528
9529 /* All the rules in this function are specific to scalar integers. */
9530 scalar_int_mode mode;
9531 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9532 return x;
9533
9534 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9535 a clear of a one-bit field. We will have changed it to
9536 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9537 for a SUBREG. */
9538
9539 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9540 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9541 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9542 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9543 {
9544 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9545 1, 1, 1, 0);
9546 if (assign != 0)
9547 return gen_rtx_SET (assign, const0_rtx);
9548 return x;
9549 }
9550
9551 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9552 && subreg_lowpart_p (XEXP (src, 0))
9553 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9554 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9555 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9556 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9557 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9558 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9559 {
9560 assign = make_extraction (VOIDmode, dest, 0,
9561 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9562 1, 1, 1, 0);
9563 if (assign != 0)
9564 return gen_rtx_SET (assign, const0_rtx);
9565 return x;
9566 }
9567
9568 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9569 one-bit field. */
9570 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9571 && XEXP (XEXP (src, 0), 0) == const1_rtx
9572 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9573 {
9574 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9575 1, 1, 1, 0);
9576 if (assign != 0)
9577 return gen_rtx_SET (assign, const1_rtx);
9578 return x;
9579 }
9580
9581 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9582 SRC is an AND with all bits of that field set, then we can discard
9583 the AND. */
9584 if (GET_CODE (dest) == ZERO_EXTRACT
9585 && CONST_INT_P (XEXP (dest, 1))
9586 && GET_CODE (src) == AND
9587 && CONST_INT_P (XEXP (src, 1)))
9588 {
9589 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9590 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9591 unsigned HOST_WIDE_INT ze_mask;
9592
9593 if (width >= HOST_BITS_PER_WIDE_INT)
9594 ze_mask = -1;
9595 else
9596 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9597
9598 /* Complete overlap. We can remove the source AND. */
9599 if ((and_mask & ze_mask) == ze_mask)
9600 return gen_rtx_SET (dest, XEXP (src, 0));
9601
9602 /* Partial overlap. We can reduce the source AND. */
9603 if ((and_mask & ze_mask) != and_mask)
9604 {
9605 src = gen_rtx_AND (mode, XEXP (src, 0),
9606 gen_int_mode (and_mask & ze_mask, mode));
9607 return gen_rtx_SET (dest, src);
9608 }
9609 }
9610
9611 /* The other case we handle is assignments into a constant-position
9612 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9613 a mask that has all one bits except for a group of zero bits and
9614 OTHER is known to have zeros where C1 has ones, this is such an
9615 assignment. Compute the position and length from C1. Shift OTHER
9616 to the appropriate position, force it to the required mode, and
9617 make the extraction. Check for the AND in both operands. */
9618
9619 /* One or more SUBREGs might obscure the constant-position field
9620 assignment. The first one we are likely to encounter is an outer
9621 narrowing SUBREG, which we can just strip for the purposes of
9622 identifying the constant-field assignment. */
9623 scalar_int_mode src_mode = mode;
9624 if (GET_CODE (src) == SUBREG
9625 && subreg_lowpart_p (src)
9626 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9627 src = SUBREG_REG (src);
9628
9629 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9630 return x;
9631
9632 rhs = expand_compound_operation (XEXP (src, 0));
9633 lhs = expand_compound_operation (XEXP (src, 1));
9634
9635 if (GET_CODE (rhs) == AND
9636 && CONST_INT_P (XEXP (rhs, 1))
9637 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9638 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9639 /* The second SUBREG that might get in the way is a paradoxical
9640 SUBREG around the first operand of the AND. We want to
9641 pretend the operand is as wide as the destination here. We
9642 do this by adjusting the MEM to wider mode for the sole
9643 purpose of the call to rtx_equal_for_field_assignment_p. Also
9644 note this trick only works for MEMs. */
9645 else if (GET_CODE (rhs) == AND
9646 && paradoxical_subreg_p (XEXP (rhs, 0))
9647 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9648 && CONST_INT_P (XEXP (rhs, 1))
9649 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9650 dest, true))
9651 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9652 else if (GET_CODE (lhs) == AND
9653 && CONST_INT_P (XEXP (lhs, 1))
9654 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9655 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9656 /* The second SUBREG that might get in the way is a paradoxical
9657 SUBREG around the first operand of the AND. We want to
9658 pretend the operand is as wide as the destination here. We
9659 do this by adjusting the MEM to wider mode for the sole
9660 purpose of the call to rtx_equal_for_field_assignment_p. Also
9661 note this trick only works for MEMs. */
9662 else if (GET_CODE (lhs) == AND
9663 && paradoxical_subreg_p (XEXP (lhs, 0))
9664 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9665 && CONST_INT_P (XEXP (lhs, 1))
9666 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9667 dest, true))
9668 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9669 else
9670 return x;
9671
9672 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9673 if (pos < 0
9674 || pos + len > GET_MODE_PRECISION (mode)
9675 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9676 || (c1 & nonzero_bits (other, mode)) != 0)
9677 return x;
9678
9679 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9680 if (assign == 0)
9681 return x;
9682
9683 /* The mode to use for the source is the mode of the assignment, or of
9684 what is inside a possible STRICT_LOW_PART. */
9685 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9686 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9687
9688 /* Shift OTHER right POS places and make it the source, restricting it
9689 to the proper length and mode. */
9690
9691 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9692 src_mode, other, pos),
9693 dest);
9694 src = force_to_mode (src, new_mode,
9695 len >= HOST_BITS_PER_WIDE_INT
9696 ? HOST_WIDE_INT_M1U
9697 : (HOST_WIDE_INT_1U << len) - 1,
9698 0);
9699
9700 /* If SRC is masked by an AND that does not make a difference in
9701 the value being stored, strip it. */
9702 if (GET_CODE (assign) == ZERO_EXTRACT
9703 && CONST_INT_P (XEXP (assign, 1))
9704 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9705 && GET_CODE (src) == AND
9706 && CONST_INT_P (XEXP (src, 1))
9707 && UINTVAL (XEXP (src, 1))
9708 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9709 src = XEXP (src, 0);
9710
9711 return gen_rtx_SET (assign, src);
9712 }
9713 \f
9714 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9715 if so. */
9716
9717 static rtx
9718 apply_distributive_law (rtx x)
9719 {
9720 enum rtx_code code = GET_CODE (x);
9721 enum rtx_code inner_code;
9722 rtx lhs, rhs, other;
9723 rtx tem;
9724
9725 /* Distributivity is not true for floating point as it can change the
9726 value. So we don't do it unless -funsafe-math-optimizations. */
9727 if (FLOAT_MODE_P (GET_MODE (x))
9728 && ! flag_unsafe_math_optimizations)
9729 return x;
9730
9731 /* The outer operation can only be one of the following: */
9732 if (code != IOR && code != AND && code != XOR
9733 && code != PLUS && code != MINUS)
9734 return x;
9735
9736 lhs = XEXP (x, 0);
9737 rhs = XEXP (x, 1);
9738
9739 /* If either operand is a primitive we can't do anything, so get out
9740 fast. */
9741 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9742 return x;
9743
9744 lhs = expand_compound_operation (lhs);
9745 rhs = expand_compound_operation (rhs);
9746 inner_code = GET_CODE (lhs);
9747 if (inner_code != GET_CODE (rhs))
9748 return x;
9749
9750 /* See if the inner and outer operations distribute. */
9751 switch (inner_code)
9752 {
9753 case LSHIFTRT:
9754 case ASHIFTRT:
9755 case AND:
9756 case IOR:
9757 /* These all distribute except over PLUS. */
9758 if (code == PLUS || code == MINUS)
9759 return x;
9760 break;
9761
9762 case MULT:
9763 if (code != PLUS && code != MINUS)
9764 return x;
9765 break;
9766
9767 case ASHIFT:
9768 /* This is also a multiply, so it distributes over everything. */
9769 break;
9770
9771 /* This used to handle SUBREG, but this turned out to be counter-
9772 productive, since (subreg (op ...)) usually is not handled by
9773 insn patterns, and this "optimization" therefore transformed
9774 recognizable patterns into unrecognizable ones. Therefore the
9775 SUBREG case was removed from here.
9776
9777 It is possible that distributing SUBREG over arithmetic operations
9778 leads to an intermediate result than can then be optimized further,
9779 e.g. by moving the outer SUBREG to the other side of a SET as done
9780 in simplify_set. This seems to have been the original intent of
9781 handling SUBREGs here.
9782
9783 However, with current GCC this does not appear to actually happen,
9784 at least on major platforms. If some case is found where removing
9785 the SUBREG case here prevents follow-on optimizations, distributing
9786 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9787
9788 default:
9789 return x;
9790 }
9791
9792 /* Set LHS and RHS to the inner operands (A and B in the example
9793 above) and set OTHER to the common operand (C in the example).
9794 There is only one way to do this unless the inner operation is
9795 commutative. */
9796 if (COMMUTATIVE_ARITH_P (lhs)
9797 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9798 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9799 else if (COMMUTATIVE_ARITH_P (lhs)
9800 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9801 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9802 else if (COMMUTATIVE_ARITH_P (lhs)
9803 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9804 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9805 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9806 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9807 else
9808 return x;
9809
9810 /* Form the new inner operation, seeing if it simplifies first. */
9811 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9812
9813 /* There is one exception to the general way of distributing:
9814 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9815 if (code == XOR && inner_code == IOR)
9816 {
9817 inner_code = AND;
9818 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9819 }
9820
9821 /* We may be able to continuing distributing the result, so call
9822 ourselves recursively on the inner operation before forming the
9823 outer operation, which we return. */
9824 return simplify_gen_binary (inner_code, GET_MODE (x),
9825 apply_distributive_law (tem), other);
9826 }
9827
9828 /* See if X is of the form (* (+ A B) C), and if so convert to
9829 (+ (* A C) (* B C)) and try to simplify.
9830
9831 Most of the time, this results in no change. However, if some of
9832 the operands are the same or inverses of each other, simplifications
9833 will result.
9834
9835 For example, (and (ior A B) (not B)) can occur as the result of
9836 expanding a bit field assignment. When we apply the distributive
9837 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9838 which then simplifies to (and (A (not B))).
9839
9840 Note that no checks happen on the validity of applying the inverse
9841 distributive law. This is pointless since we can do it in the
9842 few places where this routine is called.
9843
9844 N is the index of the term that is decomposed (the arithmetic operation,
9845 i.e. (+ A B) in the first example above). !N is the index of the term that
9846 is distributed, i.e. of C in the first example above. */
9847 static rtx
9848 distribute_and_simplify_rtx (rtx x, int n)
9849 {
9850 machine_mode mode;
9851 enum rtx_code outer_code, inner_code;
9852 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9853
9854 /* Distributivity is not true for floating point as it can change the
9855 value. So we don't do it unless -funsafe-math-optimizations. */
9856 if (FLOAT_MODE_P (GET_MODE (x))
9857 && ! flag_unsafe_math_optimizations)
9858 return NULL_RTX;
9859
9860 decomposed = XEXP (x, n);
9861 if (!ARITHMETIC_P (decomposed))
9862 return NULL_RTX;
9863
9864 mode = GET_MODE (x);
9865 outer_code = GET_CODE (x);
9866 distributed = XEXP (x, !n);
9867
9868 inner_code = GET_CODE (decomposed);
9869 inner_op0 = XEXP (decomposed, 0);
9870 inner_op1 = XEXP (decomposed, 1);
9871
9872 /* Special case (and (xor B C) (not A)), which is equivalent to
9873 (xor (ior A B) (ior A C)) */
9874 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9875 {
9876 distributed = XEXP (distributed, 0);
9877 outer_code = IOR;
9878 }
9879
9880 if (n == 0)
9881 {
9882 /* Distribute the second term. */
9883 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9884 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9885 }
9886 else
9887 {
9888 /* Distribute the first term. */
9889 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9890 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9891 }
9892
9893 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9894 new_op0, new_op1));
9895 if (GET_CODE (tmp) != outer_code
9896 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9897 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9898 return tmp;
9899
9900 return NULL_RTX;
9901 }
9902 \f
9903 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9904 in MODE. Return an equivalent form, if different from (and VAROP
9905 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9906
9907 static rtx
9908 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9909 unsigned HOST_WIDE_INT constop)
9910 {
9911 unsigned HOST_WIDE_INT nonzero;
9912 unsigned HOST_WIDE_INT orig_constop;
9913 rtx orig_varop;
9914 int i;
9915
9916 orig_varop = varop;
9917 orig_constop = constop;
9918 if (GET_CODE (varop) == CLOBBER)
9919 return NULL_RTX;
9920
9921 /* Simplify VAROP knowing that we will be only looking at some of the
9922 bits in it.
9923
9924 Note by passing in CONSTOP, we guarantee that the bits not set in
9925 CONSTOP are not significant and will never be examined. We must
9926 ensure that is the case by explicitly masking out those bits
9927 before returning. */
9928 varop = force_to_mode (varop, mode, constop, 0);
9929
9930 /* If VAROP is a CLOBBER, we will fail so return it. */
9931 if (GET_CODE (varop) == CLOBBER)
9932 return varop;
9933
9934 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9935 to VAROP and return the new constant. */
9936 if (CONST_INT_P (varop))
9937 return gen_int_mode (INTVAL (varop) & constop, mode);
9938
9939 /* See what bits may be nonzero in VAROP. Unlike the general case of
9940 a call to nonzero_bits, here we don't care about bits outside
9941 MODE. */
9942
9943 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9944
9945 /* Turn off all bits in the constant that are known to already be zero.
9946 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9947 which is tested below. */
9948
9949 constop &= nonzero;
9950
9951 /* If we don't have any bits left, return zero. */
9952 if (constop == 0)
9953 return const0_rtx;
9954
9955 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9956 a power of two, we can replace this with an ASHIFT. */
9957 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9958 && (i = exact_log2 (constop)) >= 0)
9959 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9960
9961 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9962 or XOR, then try to apply the distributive law. This may eliminate
9963 operations if either branch can be simplified because of the AND.
9964 It may also make some cases more complex, but those cases probably
9965 won't match a pattern either with or without this. */
9966
9967 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9968 return
9969 gen_lowpart
9970 (mode,
9971 apply_distributive_law
9972 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9973 simplify_and_const_int (NULL_RTX,
9974 GET_MODE (varop),
9975 XEXP (varop, 0),
9976 constop),
9977 simplify_and_const_int (NULL_RTX,
9978 GET_MODE (varop),
9979 XEXP (varop, 1),
9980 constop))));
9981
9982 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9983 the AND and see if one of the operands simplifies to zero. If so, we
9984 may eliminate it. */
9985
9986 if (GET_CODE (varop) == PLUS
9987 && pow2p_hwi (constop + 1))
9988 {
9989 rtx o0, o1;
9990
9991 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9992 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9993 if (o0 == const0_rtx)
9994 return o1;
9995 if (o1 == const0_rtx)
9996 return o0;
9997 }
9998
9999 /* Make a SUBREG if necessary. If we can't make it, fail. */
10000 varop = gen_lowpart (mode, varop);
10001 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10002 return NULL_RTX;
10003
10004 /* If we are only masking insignificant bits, return VAROP. */
10005 if (constop == nonzero)
10006 return varop;
10007
10008 if (varop == orig_varop && constop == orig_constop)
10009 return NULL_RTX;
10010
10011 /* Otherwise, return an AND. */
10012 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10013 }
10014
10015
10016 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10017 in MODE.
10018
10019 Return an equivalent form, if different from X. Otherwise, return X. If
10020 X is zero, we are to always construct the equivalent form. */
10021
10022 static rtx
10023 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
10024 unsigned HOST_WIDE_INT constop)
10025 {
10026 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10027 if (tem)
10028 return tem;
10029
10030 if (!x)
10031 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10032 gen_int_mode (constop, mode));
10033 if (GET_MODE (x) != mode)
10034 x = gen_lowpart (mode, x);
10035 return x;
10036 }
10037 \f
10038 /* Given a REG, X, compute which bits in X can be nonzero.
10039 We don't care about bits outside of those defined in MODE.
10040
10041 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10042 a shift, AND, or zero_extract, we can do better. */
10043
10044 static rtx
10045 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
10046 const_rtx known_x ATTRIBUTE_UNUSED,
10047 machine_mode known_mode ATTRIBUTE_UNUSED,
10048 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
10049 unsigned HOST_WIDE_INT *nonzero)
10050 {
10051 rtx tem;
10052 reg_stat_type *rsp;
10053
10054 /* If X is a register whose nonzero bits value is current, use it.
10055 Otherwise, if X is a register whose value we can find, use that
10056 value. Otherwise, use the previously-computed global nonzero bits
10057 for this register. */
10058
10059 rsp = &reg_stat[REGNO (x)];
10060 if (rsp->last_set_value != 0
10061 && (rsp->last_set_mode == mode
10062 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10063 && GET_MODE_CLASS (mode) == MODE_INT))
10064 && ((rsp->last_set_label >= label_tick_ebb_start
10065 && rsp->last_set_label < label_tick)
10066 || (rsp->last_set_label == label_tick
10067 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10068 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10069 && REGNO (x) < reg_n_sets_max
10070 && REG_N_SETS (REGNO (x)) == 1
10071 && !REGNO_REG_SET_P
10072 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10073 REGNO (x)))))
10074 {
10075 /* Note that, even if the precision of last_set_mode is lower than that
10076 of mode, record_value_for_reg invoked nonzero_bits on the register
10077 with nonzero_bits_mode (because last_set_mode is necessarily integral
10078 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10079 are all valid, hence in mode too since nonzero_bits_mode is defined
10080 to the largest HWI_COMPUTABLE_MODE_P mode. */
10081 *nonzero &= rsp->last_set_nonzero_bits;
10082 return NULL;
10083 }
10084
10085 tem = get_last_value (x);
10086 if (tem)
10087 {
10088 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10089 tem = sign_extend_short_imm (tem, GET_MODE (x),
10090 GET_MODE_PRECISION (mode));
10091
10092 return tem;
10093 }
10094
10095 if (nonzero_sign_valid && rsp->nonzero_bits)
10096 {
10097 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10098
10099 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
10100 /* We don't know anything about the upper bits. */
10101 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
10102
10103 *nonzero &= mask;
10104 }
10105
10106 return NULL;
10107 }
10108
10109 /* Return the number of bits at the high-order end of X that are known to
10110 be equal to the sign bit. X will be used in mode MODE; if MODE is
10111 VOIDmode, X will be used in its own mode. The returned value will always
10112 be between 1 and the number of bits in MODE. */
10113
10114 static rtx
10115 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
10116 const_rtx known_x ATTRIBUTE_UNUSED,
10117 machine_mode known_mode
10118 ATTRIBUTE_UNUSED,
10119 unsigned int known_ret ATTRIBUTE_UNUSED,
10120 unsigned int *result)
10121 {
10122 rtx tem;
10123 reg_stat_type *rsp;
10124
10125 rsp = &reg_stat[REGNO (x)];
10126 if (rsp->last_set_value != 0
10127 && rsp->last_set_mode == mode
10128 && ((rsp->last_set_label >= label_tick_ebb_start
10129 && rsp->last_set_label < label_tick)
10130 || (rsp->last_set_label == label_tick
10131 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10132 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10133 && REGNO (x) < reg_n_sets_max
10134 && REG_N_SETS (REGNO (x)) == 1
10135 && !REGNO_REG_SET_P
10136 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10137 REGNO (x)))))
10138 {
10139 *result = rsp->last_set_sign_bit_copies;
10140 return NULL;
10141 }
10142
10143 tem = get_last_value (x);
10144 if (tem != 0)
10145 return tem;
10146
10147 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10148 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
10149 *result = rsp->sign_bit_copies;
10150
10151 return NULL;
10152 }
10153 \f
10154 /* Return the number of "extended" bits there are in X, when interpreted
10155 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10156 unsigned quantities, this is the number of high-order zero bits.
10157 For signed quantities, this is the number of copies of the sign bit
10158 minus 1. In both case, this function returns the number of "spare"
10159 bits. For example, if two quantities for which this function returns
10160 at least 1 are added, the addition is known not to overflow.
10161
10162 This function will always return 0 unless called during combine, which
10163 implies that it must be called from a define_split. */
10164
10165 unsigned int
10166 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10167 {
10168 if (nonzero_sign_valid == 0)
10169 return 0;
10170
10171 scalar_int_mode int_mode;
10172 return (unsignedp
10173 ? (is_a <scalar_int_mode> (mode, &int_mode)
10174 && HWI_COMPUTABLE_MODE_P (int_mode)
10175 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10176 - floor_log2 (nonzero_bits (x, int_mode)))
10177 : 0)
10178 : num_sign_bit_copies (x, mode) - 1);
10179 }
10180
10181 /* This function is called from `simplify_shift_const' to merge two
10182 outer operations. Specifically, we have already found that we need
10183 to perform operation *POP0 with constant *PCONST0 at the outermost
10184 position. We would now like to also perform OP1 with constant CONST1
10185 (with *POP0 being done last).
10186
10187 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10188 the resulting operation. *PCOMP_P is set to 1 if we would need to
10189 complement the innermost operand, otherwise it is unchanged.
10190
10191 MODE is the mode in which the operation will be done. No bits outside
10192 the width of this mode matter. It is assumed that the width of this mode
10193 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10194
10195 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10196 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10197 result is simply *PCONST0.
10198
10199 If the resulting operation cannot be expressed as one operation, we
10200 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10201
10202 static int
10203 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10204 {
10205 enum rtx_code op0 = *pop0;
10206 HOST_WIDE_INT const0 = *pconst0;
10207
10208 const0 &= GET_MODE_MASK (mode);
10209 const1 &= GET_MODE_MASK (mode);
10210
10211 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10212 if (op0 == AND)
10213 const1 &= const0;
10214
10215 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10216 if OP0 is SET. */
10217
10218 if (op1 == UNKNOWN || op0 == SET)
10219 return 1;
10220
10221 else if (op0 == UNKNOWN)
10222 op0 = op1, const0 = const1;
10223
10224 else if (op0 == op1)
10225 {
10226 switch (op0)
10227 {
10228 case AND:
10229 const0 &= const1;
10230 break;
10231 case IOR:
10232 const0 |= const1;
10233 break;
10234 case XOR:
10235 const0 ^= const1;
10236 break;
10237 case PLUS:
10238 const0 += const1;
10239 break;
10240 case NEG:
10241 op0 = UNKNOWN;
10242 break;
10243 default:
10244 break;
10245 }
10246 }
10247
10248 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10249 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10250 return 0;
10251
10252 /* If the two constants aren't the same, we can't do anything. The
10253 remaining six cases can all be done. */
10254 else if (const0 != const1)
10255 return 0;
10256
10257 else
10258 switch (op0)
10259 {
10260 case IOR:
10261 if (op1 == AND)
10262 /* (a & b) | b == b */
10263 op0 = SET;
10264 else /* op1 == XOR */
10265 /* (a ^ b) | b == a | b */
10266 {;}
10267 break;
10268
10269 case XOR:
10270 if (op1 == AND)
10271 /* (a & b) ^ b == (~a) & b */
10272 op0 = AND, *pcomp_p = 1;
10273 else /* op1 == IOR */
10274 /* (a | b) ^ b == a & ~b */
10275 op0 = AND, const0 = ~const0;
10276 break;
10277
10278 case AND:
10279 if (op1 == IOR)
10280 /* (a | b) & b == b */
10281 op0 = SET;
10282 else /* op1 == XOR */
10283 /* (a ^ b) & b) == (~a) & b */
10284 *pcomp_p = 1;
10285 break;
10286 default:
10287 break;
10288 }
10289
10290 /* Check for NO-OP cases. */
10291 const0 &= GET_MODE_MASK (mode);
10292 if (const0 == 0
10293 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10294 op0 = UNKNOWN;
10295 else if (const0 == 0 && op0 == AND)
10296 op0 = SET;
10297 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10298 && op0 == AND)
10299 op0 = UNKNOWN;
10300
10301 *pop0 = op0;
10302
10303 /* ??? Slightly redundant with the above mask, but not entirely.
10304 Moving this above means we'd have to sign-extend the mode mask
10305 for the final test. */
10306 if (op0 != UNKNOWN && op0 != NEG)
10307 *pconst0 = trunc_int_for_mode (const0, mode);
10308
10309 return 1;
10310 }
10311 \f
10312 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10313 the shift in. The original shift operation CODE is performed on OP in
10314 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10315 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10316 result of the shift is subject to operation OUTER_CODE with operand
10317 OUTER_CONST. */
10318
10319 static machine_mode
10320 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10321 machine_mode orig_mode, machine_mode mode,
10322 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10323 {
10324 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10325
10326 /* In general we can't perform in wider mode for right shift and rotate. */
10327 switch (code)
10328 {
10329 case ASHIFTRT:
10330 /* We can still widen if the bits brought in from the left are identical
10331 to the sign bit of ORIG_MODE. */
10332 if (num_sign_bit_copies (op, mode)
10333 > (unsigned) (GET_MODE_PRECISION (mode)
10334 - GET_MODE_PRECISION (orig_mode)))
10335 return mode;
10336 return orig_mode;
10337
10338 case LSHIFTRT:
10339 /* Similarly here but with zero bits. */
10340 if (HWI_COMPUTABLE_MODE_P (mode)
10341 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10342 return mode;
10343
10344 /* We can also widen if the bits brought in will be masked off. This
10345 operation is performed in ORIG_MODE. */
10346 if (outer_code == AND)
10347 {
10348 int care_bits = low_bitmask_len (orig_mode, outer_const);
10349
10350 if (care_bits >= 0
10351 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10352 return mode;
10353 }
10354 /* fall through */
10355
10356 case ROTATE:
10357 return orig_mode;
10358
10359 case ROTATERT:
10360 gcc_unreachable ();
10361
10362 default:
10363 return mode;
10364 }
10365 }
10366
10367 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10368 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10369 if we cannot simplify it. Otherwise, return a simplified value.
10370
10371 The shift is normally computed in the widest mode we find in VAROP, as
10372 long as it isn't a different number of words than RESULT_MODE. Exceptions
10373 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10374
10375 static rtx
10376 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10377 rtx varop, int orig_count)
10378 {
10379 enum rtx_code orig_code = code;
10380 rtx orig_varop = varop;
10381 int count;
10382 machine_mode mode = result_mode;
10383 machine_mode shift_mode;
10384 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10385 unsigned int mode_words
10386 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10387 /* We form (outer_op (code varop count) (outer_const)). */
10388 enum rtx_code outer_op = UNKNOWN;
10389 HOST_WIDE_INT outer_const = 0;
10390 int complement_p = 0;
10391 rtx new_rtx, x;
10392
10393 /* Make sure and truncate the "natural" shift on the way in. We don't
10394 want to do this inside the loop as it makes it more difficult to
10395 combine shifts. */
10396 if (SHIFT_COUNT_TRUNCATED)
10397 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10398
10399 /* If we were given an invalid count, don't do anything except exactly
10400 what was requested. */
10401
10402 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10403 return NULL_RTX;
10404
10405 count = orig_count;
10406
10407 /* Unless one of the branches of the `if' in this loop does a `continue',
10408 we will `break' the loop after the `if'. */
10409
10410 while (count != 0)
10411 {
10412 /* If we have an operand of (clobber (const_int 0)), fail. */
10413 if (GET_CODE (varop) == CLOBBER)
10414 return NULL_RTX;
10415
10416 /* Convert ROTATERT to ROTATE. */
10417 if (code == ROTATERT)
10418 {
10419 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10420 code = ROTATE;
10421 count = bitsize - count;
10422 }
10423
10424 shift_mode = result_mode;
10425 if (shift_mode != mode)
10426 {
10427 /* We only change the modes of scalar shifts. */
10428 int_mode = as_a <scalar_int_mode> (mode);
10429 int_result_mode = as_a <scalar_int_mode> (result_mode);
10430 shift_mode = try_widen_shift_mode (code, varop, count,
10431 int_result_mode, int_mode,
10432 outer_op, outer_const);
10433 }
10434
10435 scalar_int_mode shift_unit_mode
10436 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10437
10438 /* Handle cases where the count is greater than the size of the mode
10439 minus 1. For ASHIFT, use the size minus one as the count (this can
10440 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10441 take the count modulo the size. For other shifts, the result is
10442 zero.
10443
10444 Since these shifts are being produced by the compiler by combining
10445 multiple operations, each of which are defined, we know what the
10446 result is supposed to be. */
10447
10448 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10449 {
10450 if (code == ASHIFTRT)
10451 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10452 else if (code == ROTATE || code == ROTATERT)
10453 count %= GET_MODE_PRECISION (shift_unit_mode);
10454 else
10455 {
10456 /* We can't simply return zero because there may be an
10457 outer op. */
10458 varop = const0_rtx;
10459 count = 0;
10460 break;
10461 }
10462 }
10463
10464 /* If we discovered we had to complement VAROP, leave. Making a NOT
10465 here would cause an infinite loop. */
10466 if (complement_p)
10467 break;
10468
10469 if (shift_mode == shift_unit_mode)
10470 {
10471 /* An arithmetic right shift of a quantity known to be -1 or 0
10472 is a no-op. */
10473 if (code == ASHIFTRT
10474 && (num_sign_bit_copies (varop, shift_unit_mode)
10475 == GET_MODE_PRECISION (shift_unit_mode)))
10476 {
10477 count = 0;
10478 break;
10479 }
10480
10481 /* If we are doing an arithmetic right shift and discarding all but
10482 the sign bit copies, this is equivalent to doing a shift by the
10483 bitsize minus one. Convert it into that shift because it will
10484 often allow other simplifications. */
10485
10486 if (code == ASHIFTRT
10487 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10488 >= GET_MODE_PRECISION (shift_unit_mode)))
10489 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10490
10491 /* We simplify the tests below and elsewhere by converting
10492 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10493 `make_compound_operation' will convert it to an ASHIFTRT for
10494 those machines (such as VAX) that don't have an LSHIFTRT. */
10495 if (code == ASHIFTRT
10496 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10497 && val_signbit_known_clear_p (shift_unit_mode,
10498 nonzero_bits (varop,
10499 shift_unit_mode)))
10500 code = LSHIFTRT;
10501
10502 if (((code == LSHIFTRT
10503 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10504 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10505 || (code == ASHIFT
10506 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10507 && !((nonzero_bits (varop, shift_unit_mode) << count)
10508 & GET_MODE_MASK (shift_unit_mode))))
10509 && !side_effects_p (varop))
10510 varop = const0_rtx;
10511 }
10512
10513 switch (GET_CODE (varop))
10514 {
10515 case SIGN_EXTEND:
10516 case ZERO_EXTEND:
10517 case SIGN_EXTRACT:
10518 case ZERO_EXTRACT:
10519 new_rtx = expand_compound_operation (varop);
10520 if (new_rtx != varop)
10521 {
10522 varop = new_rtx;
10523 continue;
10524 }
10525 break;
10526
10527 case MEM:
10528 /* The following rules apply only to scalars. */
10529 if (shift_mode != shift_unit_mode)
10530 break;
10531 int_mode = as_a <scalar_int_mode> (mode);
10532
10533 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10534 minus the width of a smaller mode, we can do this with a
10535 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10536 if ((code == ASHIFTRT || code == LSHIFTRT)
10537 && ! mode_dependent_address_p (XEXP (varop, 0),
10538 MEM_ADDR_SPACE (varop))
10539 && ! MEM_VOLATILE_P (varop)
10540 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10541 .exists (&tmode)))
10542 {
10543 new_rtx = adjust_address_nv (varop, tmode,
10544 BYTES_BIG_ENDIAN ? 0
10545 : count / BITS_PER_UNIT);
10546
10547 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10548 : ZERO_EXTEND, int_mode, new_rtx);
10549 count = 0;
10550 continue;
10551 }
10552 break;
10553
10554 case SUBREG:
10555 /* The following rules apply only to scalars. */
10556 if (shift_mode != shift_unit_mode)
10557 break;
10558 int_mode = as_a <scalar_int_mode> (mode);
10559 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10560
10561 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10562 the same number of words as what we've seen so far. Then store
10563 the widest mode in MODE. */
10564 if (subreg_lowpart_p (varop)
10565 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10566 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10567 && (unsigned int) ((GET_MODE_SIZE (inner_mode)
10568 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10569 == mode_words
10570 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10571 {
10572 varop = SUBREG_REG (varop);
10573 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10574 mode = inner_mode;
10575 continue;
10576 }
10577 break;
10578
10579 case MULT:
10580 /* Some machines use MULT instead of ASHIFT because MULT
10581 is cheaper. But it is still better on those machines to
10582 merge two shifts into one. */
10583 if (CONST_INT_P (XEXP (varop, 1))
10584 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10585 {
10586 varop
10587 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10588 XEXP (varop, 0),
10589 GEN_INT (exact_log2 (
10590 UINTVAL (XEXP (varop, 1)))));
10591 continue;
10592 }
10593 break;
10594
10595 case UDIV:
10596 /* Similar, for when divides are cheaper. */
10597 if (CONST_INT_P (XEXP (varop, 1))
10598 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10599 {
10600 varop
10601 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10602 XEXP (varop, 0),
10603 GEN_INT (exact_log2 (
10604 UINTVAL (XEXP (varop, 1)))));
10605 continue;
10606 }
10607 break;
10608
10609 case ASHIFTRT:
10610 /* If we are extracting just the sign bit of an arithmetic
10611 right shift, that shift is not needed. However, the sign
10612 bit of a wider mode may be different from what would be
10613 interpreted as the sign bit in a narrower mode, so, if
10614 the result is narrower, don't discard the shift. */
10615 if (code == LSHIFTRT
10616 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10617 && (GET_MODE_UNIT_BITSIZE (result_mode)
10618 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10619 {
10620 varop = XEXP (varop, 0);
10621 continue;
10622 }
10623
10624 /* fall through */
10625
10626 case LSHIFTRT:
10627 case ASHIFT:
10628 case ROTATE:
10629 /* The following rules apply only to scalars. */
10630 if (shift_mode != shift_unit_mode)
10631 break;
10632 int_mode = as_a <scalar_int_mode> (mode);
10633 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10634 int_result_mode = as_a <scalar_int_mode> (result_mode);
10635
10636 /* Here we have two nested shifts. The result is usually the
10637 AND of a new shift with a mask. We compute the result below. */
10638 if (CONST_INT_P (XEXP (varop, 1))
10639 && INTVAL (XEXP (varop, 1)) >= 0
10640 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10641 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10642 && HWI_COMPUTABLE_MODE_P (int_mode))
10643 {
10644 enum rtx_code first_code = GET_CODE (varop);
10645 unsigned int first_count = INTVAL (XEXP (varop, 1));
10646 unsigned HOST_WIDE_INT mask;
10647 rtx mask_rtx;
10648
10649 /* We have one common special case. We can't do any merging if
10650 the inner code is an ASHIFTRT of a smaller mode. However, if
10651 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10652 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10653 we can convert it to
10654 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10655 This simplifies certain SIGN_EXTEND operations. */
10656 if (code == ASHIFT && first_code == ASHIFTRT
10657 && count == (GET_MODE_PRECISION (int_result_mode)
10658 - GET_MODE_PRECISION (int_varop_mode)))
10659 {
10660 /* C3 has the low-order C1 bits zero. */
10661
10662 mask = GET_MODE_MASK (int_mode)
10663 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10664
10665 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10666 XEXP (varop, 0), mask);
10667 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10668 int_result_mode, varop, count);
10669 count = first_count;
10670 code = ASHIFTRT;
10671 continue;
10672 }
10673
10674 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10675 than C1 high-order bits equal to the sign bit, we can convert
10676 this to either an ASHIFT or an ASHIFTRT depending on the
10677 two counts.
10678
10679 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10680
10681 if (code == ASHIFTRT && first_code == ASHIFT
10682 && int_varop_mode == shift_unit_mode
10683 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10684 > first_count))
10685 {
10686 varop = XEXP (varop, 0);
10687 count -= first_count;
10688 if (count < 0)
10689 {
10690 count = -count;
10691 code = ASHIFT;
10692 }
10693
10694 continue;
10695 }
10696
10697 /* There are some cases we can't do. If CODE is ASHIFTRT,
10698 we can only do this if FIRST_CODE is also ASHIFTRT.
10699
10700 We can't do the case when CODE is ROTATE and FIRST_CODE is
10701 ASHIFTRT.
10702
10703 If the mode of this shift is not the mode of the outer shift,
10704 we can't do this if either shift is a right shift or ROTATE.
10705
10706 Finally, we can't do any of these if the mode is too wide
10707 unless the codes are the same.
10708
10709 Handle the case where the shift codes are the same
10710 first. */
10711
10712 if (code == first_code)
10713 {
10714 if (int_varop_mode != int_result_mode
10715 && (code == ASHIFTRT || code == LSHIFTRT
10716 || code == ROTATE))
10717 break;
10718
10719 count += first_count;
10720 varop = XEXP (varop, 0);
10721 continue;
10722 }
10723
10724 if (code == ASHIFTRT
10725 || (code == ROTATE && first_code == ASHIFTRT)
10726 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10727 || (int_varop_mode != int_result_mode
10728 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10729 || first_code == ROTATE
10730 || code == ROTATE)))
10731 break;
10732
10733 /* To compute the mask to apply after the shift, shift the
10734 nonzero bits of the inner shift the same way the
10735 outer shift will. */
10736
10737 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10738 int_result_mode);
10739
10740 mask_rtx
10741 = simplify_const_binary_operation (code, int_result_mode,
10742 mask_rtx, GEN_INT (count));
10743
10744 /* Give up if we can't compute an outer operation to use. */
10745 if (mask_rtx == 0
10746 || !CONST_INT_P (mask_rtx)
10747 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10748 INTVAL (mask_rtx),
10749 int_result_mode, &complement_p))
10750 break;
10751
10752 /* If the shifts are in the same direction, we add the
10753 counts. Otherwise, we subtract them. */
10754 if ((code == ASHIFTRT || code == LSHIFTRT)
10755 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10756 count += first_count;
10757 else
10758 count -= first_count;
10759
10760 /* If COUNT is positive, the new shift is usually CODE,
10761 except for the two exceptions below, in which case it is
10762 FIRST_CODE. If the count is negative, FIRST_CODE should
10763 always be used */
10764 if (count > 0
10765 && ((first_code == ROTATE && code == ASHIFT)
10766 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10767 code = first_code;
10768 else if (count < 0)
10769 code = first_code, count = -count;
10770
10771 varop = XEXP (varop, 0);
10772 continue;
10773 }
10774
10775 /* If we have (A << B << C) for any shift, we can convert this to
10776 (A << C << B). This wins if A is a constant. Only try this if
10777 B is not a constant. */
10778
10779 else if (GET_CODE (varop) == code
10780 && CONST_INT_P (XEXP (varop, 0))
10781 && !CONST_INT_P (XEXP (varop, 1)))
10782 {
10783 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10784 sure the result will be masked. See PR70222. */
10785 if (code == LSHIFTRT
10786 && int_mode != int_result_mode
10787 && !merge_outer_ops (&outer_op, &outer_const, AND,
10788 GET_MODE_MASK (int_result_mode)
10789 >> orig_count, int_result_mode,
10790 &complement_p))
10791 break;
10792 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10793 up outer sign extension (often left and right shift) is
10794 hardly more efficient than the original. See PR70429. */
10795 if (code == ASHIFTRT && int_mode != int_result_mode)
10796 break;
10797
10798 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
10799 XEXP (varop, 0),
10800 GEN_INT (count));
10801 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
10802 count = 0;
10803 continue;
10804 }
10805 break;
10806
10807 case NOT:
10808 /* The following rules apply only to scalars. */
10809 if (shift_mode != shift_unit_mode)
10810 break;
10811
10812 /* Make this fit the case below. */
10813 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10814 continue;
10815
10816 case IOR:
10817 case AND:
10818 case XOR:
10819 /* The following rules apply only to scalars. */
10820 if (shift_mode != shift_unit_mode)
10821 break;
10822 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10823 int_result_mode = as_a <scalar_int_mode> (result_mode);
10824
10825 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10826 with C the size of VAROP - 1 and the shift is logical if
10827 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10828 we have an (le X 0) operation. If we have an arithmetic shift
10829 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10830 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10831
10832 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10833 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10834 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10835 && (code == LSHIFTRT || code == ASHIFTRT)
10836 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
10837 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10838 {
10839 count = 0;
10840 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
10841 const0_rtx);
10842
10843 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10844 varop = gen_rtx_NEG (int_varop_mode, varop);
10845
10846 continue;
10847 }
10848
10849 /* If we have (shift (logical)), move the logical to the outside
10850 to allow it to possibly combine with another logical and the
10851 shift to combine with another shift. This also canonicalizes to
10852 what a ZERO_EXTRACT looks like. Also, some machines have
10853 (and (shift)) insns. */
10854
10855 if (CONST_INT_P (XEXP (varop, 1))
10856 /* We can't do this if we have (ashiftrt (xor)) and the
10857 constant has its sign bit set in shift_unit_mode with
10858 shift_unit_mode wider than result_mode. */
10859 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10860 && int_result_mode != shift_unit_mode
10861 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10862 shift_unit_mode))
10863 && (new_rtx = simplify_const_binary_operation
10864 (code, int_result_mode,
10865 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
10866 GEN_INT (count))) != 0
10867 && CONST_INT_P (new_rtx)
10868 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10869 INTVAL (new_rtx), int_result_mode,
10870 &complement_p))
10871 {
10872 varop = XEXP (varop, 0);
10873 continue;
10874 }
10875
10876 /* If we can't do that, try to simplify the shift in each arm of the
10877 logical expression, make a new logical expression, and apply
10878 the inverse distributive law. This also can't be done for
10879 (ashiftrt (xor)) where we've widened the shift and the constant
10880 changes the sign bit. */
10881 if (CONST_INT_P (XEXP (varop, 1))
10882 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10883 && int_result_mode != shift_unit_mode
10884 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10885 shift_unit_mode)))
10886 {
10887 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
10888 XEXP (varop, 0), count);
10889 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
10890 XEXP (varop, 1), count);
10891
10892 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
10893 lhs, rhs);
10894 varop = apply_distributive_law (varop);
10895
10896 count = 0;
10897 continue;
10898 }
10899 break;
10900
10901 case EQ:
10902 /* The following rules apply only to scalars. */
10903 if (shift_mode != shift_unit_mode)
10904 break;
10905 int_result_mode = as_a <scalar_int_mode> (result_mode);
10906
10907 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10908 says that the sign bit can be tested, FOO has mode MODE, C is
10909 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10910 that may be nonzero. */
10911 if (code == LSHIFTRT
10912 && XEXP (varop, 1) == const0_rtx
10913 && GET_MODE (XEXP (varop, 0)) == int_result_mode
10914 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
10915 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10916 && STORE_FLAG_VALUE == -1
10917 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
10918 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
10919 int_result_mode, &complement_p))
10920 {
10921 varop = XEXP (varop, 0);
10922 count = 0;
10923 continue;
10924 }
10925 break;
10926
10927 case NEG:
10928 /* The following rules apply only to scalars. */
10929 if (shift_mode != shift_unit_mode)
10930 break;
10931 int_result_mode = as_a <scalar_int_mode> (result_mode);
10932
10933 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10934 than the number of bits in the mode is equivalent to A. */
10935 if (code == LSHIFTRT
10936 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
10937 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
10938 {
10939 varop = XEXP (varop, 0);
10940 count = 0;
10941 continue;
10942 }
10943
10944 /* NEG commutes with ASHIFT since it is multiplication. Move the
10945 NEG outside to allow shifts to combine. */
10946 if (code == ASHIFT
10947 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
10948 int_result_mode, &complement_p))
10949 {
10950 varop = XEXP (varop, 0);
10951 continue;
10952 }
10953 break;
10954
10955 case PLUS:
10956 /* The following rules apply only to scalars. */
10957 if (shift_mode != shift_unit_mode)
10958 break;
10959 int_result_mode = as_a <scalar_int_mode> (result_mode);
10960
10961 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10962 is one less than the number of bits in the mode is
10963 equivalent to (xor A 1). */
10964 if (code == LSHIFTRT
10965 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
10966 && XEXP (varop, 1) == constm1_rtx
10967 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
10968 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
10969 int_result_mode, &complement_p))
10970 {
10971 count = 0;
10972 varop = XEXP (varop, 0);
10973 continue;
10974 }
10975
10976 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10977 that might be nonzero in BAR are those being shifted out and those
10978 bits are known zero in FOO, we can replace the PLUS with FOO.
10979 Similarly in the other operand order. This code occurs when
10980 we are computing the size of a variable-size array. */
10981
10982 if ((code == ASHIFTRT || code == LSHIFTRT)
10983 && count < HOST_BITS_PER_WIDE_INT
10984 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
10985 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
10986 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
10987 {
10988 varop = XEXP (varop, 0);
10989 continue;
10990 }
10991 else if ((code == ASHIFTRT || code == LSHIFTRT)
10992 && count < HOST_BITS_PER_WIDE_INT
10993 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10994 && 0 == (nonzero_bits (XEXP (varop, 0), int_result_mode)
10995 >> count)
10996 && 0 == (nonzero_bits (XEXP (varop, 0), int_result_mode)
10997 & nonzero_bits (XEXP (varop, 1), int_result_mode)))
10998 {
10999 varop = XEXP (varop, 1);
11000 continue;
11001 }
11002
11003 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11004 if (code == ASHIFT
11005 && CONST_INT_P (XEXP (varop, 1))
11006 && (new_rtx = simplify_const_binary_operation
11007 (ASHIFT, int_result_mode,
11008 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11009 GEN_INT (count))) != 0
11010 && CONST_INT_P (new_rtx)
11011 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11012 INTVAL (new_rtx), int_result_mode,
11013 &complement_p))
11014 {
11015 varop = XEXP (varop, 0);
11016 continue;
11017 }
11018
11019 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11020 signbit', and attempt to change the PLUS to an XOR and move it to
11021 the outer operation as is done above in the AND/IOR/XOR case
11022 leg for shift(logical). See details in logical handling above
11023 for reasoning in doing so. */
11024 if (code == LSHIFTRT
11025 && CONST_INT_P (XEXP (varop, 1))
11026 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11027 && (new_rtx = simplify_const_binary_operation
11028 (code, int_result_mode,
11029 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11030 GEN_INT (count))) != 0
11031 && CONST_INT_P (new_rtx)
11032 && merge_outer_ops (&outer_op, &outer_const, XOR,
11033 INTVAL (new_rtx), int_result_mode,
11034 &complement_p))
11035 {
11036 varop = XEXP (varop, 0);
11037 continue;
11038 }
11039
11040 break;
11041
11042 case MINUS:
11043 /* The following rules apply only to scalars. */
11044 if (shift_mode != shift_unit_mode)
11045 break;
11046 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11047
11048 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11049 with C the size of VAROP - 1 and the shift is logical if
11050 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11051 we have a (gt X 0) operation. If the shift is arithmetic with
11052 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11053 we have a (neg (gt X 0)) operation. */
11054
11055 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11056 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11057 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11058 && (code == LSHIFTRT || code == ASHIFTRT)
11059 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11060 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11061 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11062 {
11063 count = 0;
11064 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11065 const0_rtx);
11066
11067 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11068 varop = gen_rtx_NEG (int_varop_mode, varop);
11069
11070 continue;
11071 }
11072 break;
11073
11074 case TRUNCATE:
11075 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11076 if the truncate does not affect the value. */
11077 if (code == LSHIFTRT
11078 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11079 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11080 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11081 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11082 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11083 {
11084 rtx varop_inner = XEXP (varop, 0);
11085
11086 varop_inner
11087 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11088 XEXP (varop_inner, 0),
11089 GEN_INT
11090 (count + INTVAL (XEXP (varop_inner, 1))));
11091 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11092 count = 0;
11093 continue;
11094 }
11095 break;
11096
11097 default:
11098 break;
11099 }
11100
11101 break;
11102 }
11103
11104 shift_mode = result_mode;
11105 if (shift_mode != mode)
11106 {
11107 /* We only change the modes of scalar shifts. */
11108 int_mode = as_a <scalar_int_mode> (mode);
11109 int_result_mode = as_a <scalar_int_mode> (result_mode);
11110 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11111 int_mode, outer_op, outer_const);
11112 }
11113
11114 /* We have now finished analyzing the shift. The result should be
11115 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11116 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11117 to the result of the shift. OUTER_CONST is the relevant constant,
11118 but we must turn off all bits turned off in the shift. */
11119
11120 if (outer_op == UNKNOWN
11121 && orig_code == code && orig_count == count
11122 && varop == orig_varop
11123 && shift_mode == GET_MODE (varop))
11124 return NULL_RTX;
11125
11126 /* Make a SUBREG if necessary. If we can't make it, fail. */
11127 varop = gen_lowpart (shift_mode, varop);
11128 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11129 return NULL_RTX;
11130
11131 /* If we have an outer operation and we just made a shift, it is
11132 possible that we could have simplified the shift were it not
11133 for the outer operation. So try to do the simplification
11134 recursively. */
11135
11136 if (outer_op != UNKNOWN)
11137 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11138 else
11139 x = NULL_RTX;
11140
11141 if (x == NULL_RTX)
11142 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
11143
11144 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11145 turn off all the bits that the shift would have turned off. */
11146 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11147 /* We only change the modes of scalar shifts. */
11148 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11149 x, GET_MODE_MASK (result_mode) >> orig_count);
11150
11151 /* Do the remainder of the processing in RESULT_MODE. */
11152 x = gen_lowpart_or_truncate (result_mode, x);
11153
11154 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11155 operation. */
11156 if (complement_p)
11157 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11158
11159 if (outer_op != UNKNOWN)
11160 {
11161 int_result_mode = as_a <scalar_int_mode> (result_mode);
11162
11163 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11164 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11165 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11166
11167 if (outer_op == AND)
11168 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11169 else if (outer_op == SET)
11170 {
11171 /* This means that we have determined that the result is
11172 equivalent to a constant. This should be rare. */
11173 if (!side_effects_p (x))
11174 x = GEN_INT (outer_const);
11175 }
11176 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11177 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11178 else
11179 x = simplify_gen_binary (outer_op, int_result_mode, x,
11180 GEN_INT (outer_const));
11181 }
11182
11183 return x;
11184 }
11185
11186 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11187 The result of the shift is RESULT_MODE. If we cannot simplify it,
11188 return X or, if it is NULL, synthesize the expression with
11189 simplify_gen_binary. Otherwise, return a simplified value.
11190
11191 The shift is normally computed in the widest mode we find in VAROP, as
11192 long as it isn't a different number of words than RESULT_MODE. Exceptions
11193 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11194
11195 static rtx
11196 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11197 rtx varop, int count)
11198 {
11199 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11200 if (tem)
11201 return tem;
11202
11203 if (!x)
11204 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
11205 if (GET_MODE (x) != result_mode)
11206 x = gen_lowpart (result_mode, x);
11207 return x;
11208 }
11209
11210 \f
11211 /* A subroutine of recog_for_combine. See there for arguments and
11212 return value. */
11213
11214 static int
11215 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11216 {
11217 rtx pat = *pnewpat;
11218 rtx pat_without_clobbers;
11219 int insn_code_number;
11220 int num_clobbers_to_add = 0;
11221 int i;
11222 rtx notes = NULL_RTX;
11223 rtx old_notes, old_pat;
11224 int old_icode;
11225
11226 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11227 we use to indicate that something didn't match. If we find such a
11228 thing, force rejection. */
11229 if (GET_CODE (pat) == PARALLEL)
11230 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11231 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11232 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11233 return -1;
11234
11235 old_pat = PATTERN (insn);
11236 old_notes = REG_NOTES (insn);
11237 PATTERN (insn) = pat;
11238 REG_NOTES (insn) = NULL_RTX;
11239
11240 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11241 if (dump_file && (dump_flags & TDF_DETAILS))
11242 {
11243 if (insn_code_number < 0)
11244 fputs ("Failed to match this instruction:\n", dump_file);
11245 else
11246 fputs ("Successfully matched this instruction:\n", dump_file);
11247 print_rtl_single (dump_file, pat);
11248 }
11249
11250 /* If it isn't, there is the possibility that we previously had an insn
11251 that clobbered some register as a side effect, but the combined
11252 insn doesn't need to do that. So try once more without the clobbers
11253 unless this represents an ASM insn. */
11254
11255 if (insn_code_number < 0 && ! check_asm_operands (pat)
11256 && GET_CODE (pat) == PARALLEL)
11257 {
11258 int pos;
11259
11260 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11261 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11262 {
11263 if (i != pos)
11264 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11265 pos++;
11266 }
11267
11268 SUBST_INT (XVECLEN (pat, 0), pos);
11269
11270 if (pos == 1)
11271 pat = XVECEXP (pat, 0, 0);
11272
11273 PATTERN (insn) = pat;
11274 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11275 if (dump_file && (dump_flags & TDF_DETAILS))
11276 {
11277 if (insn_code_number < 0)
11278 fputs ("Failed to match this instruction:\n", dump_file);
11279 else
11280 fputs ("Successfully matched this instruction:\n", dump_file);
11281 print_rtl_single (dump_file, pat);
11282 }
11283 }
11284
11285 pat_without_clobbers = pat;
11286
11287 PATTERN (insn) = old_pat;
11288 REG_NOTES (insn) = old_notes;
11289
11290 /* Recognize all noop sets, these will be killed by followup pass. */
11291 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11292 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11293
11294 /* If we had any clobbers to add, make a new pattern than contains
11295 them. Then check to make sure that all of them are dead. */
11296 if (num_clobbers_to_add)
11297 {
11298 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11299 rtvec_alloc (GET_CODE (pat) == PARALLEL
11300 ? (XVECLEN (pat, 0)
11301 + num_clobbers_to_add)
11302 : num_clobbers_to_add + 1));
11303
11304 if (GET_CODE (pat) == PARALLEL)
11305 for (i = 0; i < XVECLEN (pat, 0); i++)
11306 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11307 else
11308 XVECEXP (newpat, 0, 0) = pat;
11309
11310 add_clobbers (newpat, insn_code_number);
11311
11312 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11313 i < XVECLEN (newpat, 0); i++)
11314 {
11315 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11316 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11317 return -1;
11318 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11319 {
11320 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11321 notes = alloc_reg_note (REG_UNUSED,
11322 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11323 }
11324 }
11325 pat = newpat;
11326 }
11327
11328 if (insn_code_number >= 0
11329 && insn_code_number != NOOP_MOVE_INSN_CODE)
11330 {
11331 old_pat = PATTERN (insn);
11332 old_notes = REG_NOTES (insn);
11333 old_icode = INSN_CODE (insn);
11334 PATTERN (insn) = pat;
11335 REG_NOTES (insn) = notes;
11336 INSN_CODE (insn) = insn_code_number;
11337
11338 /* Allow targets to reject combined insn. */
11339 if (!targetm.legitimate_combined_insn (insn))
11340 {
11341 if (dump_file && (dump_flags & TDF_DETAILS))
11342 fputs ("Instruction not appropriate for target.",
11343 dump_file);
11344
11345 /* Callers expect recog_for_combine to strip
11346 clobbers from the pattern on failure. */
11347 pat = pat_without_clobbers;
11348 notes = NULL_RTX;
11349
11350 insn_code_number = -1;
11351 }
11352
11353 PATTERN (insn) = old_pat;
11354 REG_NOTES (insn) = old_notes;
11355 INSN_CODE (insn) = old_icode;
11356 }
11357
11358 *pnewpat = pat;
11359 *pnotes = notes;
11360
11361 return insn_code_number;
11362 }
11363
11364 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11365 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11366 Return whether anything was so changed. */
11367
11368 static bool
11369 change_zero_ext (rtx pat)
11370 {
11371 bool changed = false;
11372 rtx *src = &SET_SRC (pat);
11373
11374 subrtx_ptr_iterator::array_type array;
11375 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11376 {
11377 rtx x = **iter;
11378 scalar_int_mode mode, inner_mode;
11379 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11380 continue;
11381 int size;
11382
11383 if (GET_CODE (x) == ZERO_EXTRACT
11384 && CONST_INT_P (XEXP (x, 1))
11385 && CONST_INT_P (XEXP (x, 2))
11386 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11387 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11388 {
11389 size = INTVAL (XEXP (x, 1));
11390
11391 int start = INTVAL (XEXP (x, 2));
11392 if (BITS_BIG_ENDIAN)
11393 start = GET_MODE_PRECISION (inner_mode) - size - start;
11394
11395 if (start)
11396 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0), GEN_INT (start));
11397 else
11398 x = XEXP (x, 0);
11399 if (mode != inner_mode)
11400 x = gen_lowpart_SUBREG (mode, x);
11401 }
11402 else if (GET_CODE (x) == ZERO_EXTEND
11403 && GET_CODE (XEXP (x, 0)) == SUBREG
11404 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11405 && !paradoxical_subreg_p (XEXP (x, 0))
11406 && subreg_lowpart_p (XEXP (x, 0)))
11407 {
11408 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11409 size = GET_MODE_PRECISION (inner_mode);
11410 x = SUBREG_REG (XEXP (x, 0));
11411 if (GET_MODE (x) != mode)
11412 x = gen_lowpart_SUBREG (mode, x);
11413 }
11414 else if (GET_CODE (x) == ZERO_EXTEND
11415 && REG_P (XEXP (x, 0))
11416 && HARD_REGISTER_P (XEXP (x, 0))
11417 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11418 {
11419 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11420 size = GET_MODE_PRECISION (inner_mode);
11421 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11422 }
11423 else
11424 continue;
11425
11426 if (!(GET_CODE (x) == LSHIFTRT
11427 && CONST_INT_P (XEXP (x, 1))
11428 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11429 {
11430 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11431 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11432 }
11433
11434 SUBST (**iter, x);
11435 changed = true;
11436 }
11437
11438 if (changed)
11439 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11440 maybe_swap_commutative_operands (**iter);
11441
11442 rtx *dst = &SET_DEST (pat);
11443 scalar_int_mode mode;
11444 if (GET_CODE (*dst) == ZERO_EXTRACT
11445 && REG_P (XEXP (*dst, 0))
11446 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11447 && CONST_INT_P (XEXP (*dst, 1))
11448 && CONST_INT_P (XEXP (*dst, 2)))
11449 {
11450 rtx reg = XEXP (*dst, 0);
11451 int width = INTVAL (XEXP (*dst, 1));
11452 int offset = INTVAL (XEXP (*dst, 2));
11453 int reg_width = GET_MODE_PRECISION (mode);
11454 if (BITS_BIG_ENDIAN)
11455 offset = reg_width - width - offset;
11456
11457 rtx x, y, z, w;
11458 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11459 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11460 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11461 if (offset)
11462 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11463 else
11464 y = SET_SRC (pat);
11465 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11466 w = gen_rtx_IOR (mode, x, z);
11467 SUBST (SET_DEST (pat), reg);
11468 SUBST (SET_SRC (pat), w);
11469
11470 changed = true;
11471 }
11472
11473 return changed;
11474 }
11475
11476 /* Like recog, but we receive the address of a pointer to a new pattern.
11477 We try to match the rtx that the pointer points to.
11478 If that fails, we may try to modify or replace the pattern,
11479 storing the replacement into the same pointer object.
11480
11481 Modifications include deletion or addition of CLOBBERs. If the
11482 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11483 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11484 (and undo if that fails).
11485
11486 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11487 the CLOBBERs are placed.
11488
11489 The value is the final insn code from the pattern ultimately matched,
11490 or -1. */
11491
11492 static int
11493 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11494 {
11495 rtx pat = *pnewpat;
11496 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11497 if (insn_code_number >= 0 || check_asm_operands (pat))
11498 return insn_code_number;
11499
11500 void *marker = get_undo_marker ();
11501 bool changed = false;
11502
11503 if (GET_CODE (pat) == SET)
11504 changed = change_zero_ext (pat);
11505 else if (GET_CODE (pat) == PARALLEL)
11506 {
11507 int i;
11508 for (i = 0; i < XVECLEN (pat, 0); i++)
11509 {
11510 rtx set = XVECEXP (pat, 0, i);
11511 if (GET_CODE (set) == SET)
11512 changed |= change_zero_ext (set);
11513 }
11514 }
11515
11516 if (changed)
11517 {
11518 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11519
11520 if (insn_code_number < 0)
11521 undo_to_marker (marker);
11522 }
11523
11524 return insn_code_number;
11525 }
11526 \f
11527 /* Like gen_lowpart_general but for use by combine. In combine it
11528 is not possible to create any new pseudoregs. However, it is
11529 safe to create invalid memory addresses, because combine will
11530 try to recognize them and all they will do is make the combine
11531 attempt fail.
11532
11533 If for some reason this cannot do its job, an rtx
11534 (clobber (const_int 0)) is returned.
11535 An insn containing that will not be recognized. */
11536
11537 static rtx
11538 gen_lowpart_for_combine (machine_mode omode, rtx x)
11539 {
11540 machine_mode imode = GET_MODE (x);
11541 unsigned int osize = GET_MODE_SIZE (omode);
11542 unsigned int isize = GET_MODE_SIZE (imode);
11543 rtx result;
11544
11545 if (omode == imode)
11546 return x;
11547
11548 /* We can only support MODE being wider than a word if X is a
11549 constant integer or has a mode the same size. */
11550 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11551 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11552 goto fail;
11553
11554 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11555 won't know what to do. So we will strip off the SUBREG here and
11556 process normally. */
11557 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11558 {
11559 x = SUBREG_REG (x);
11560
11561 /* For use in case we fall down into the address adjustments
11562 further below, we need to adjust the known mode and size of
11563 x; imode and isize, since we just adjusted x. */
11564 imode = GET_MODE (x);
11565
11566 if (imode == omode)
11567 return x;
11568
11569 isize = GET_MODE_SIZE (imode);
11570 }
11571
11572 result = gen_lowpart_common (omode, x);
11573
11574 if (result)
11575 return result;
11576
11577 if (MEM_P (x))
11578 {
11579 int offset = 0;
11580
11581 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11582 address. */
11583 if (MEM_VOLATILE_P (x)
11584 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11585 goto fail;
11586
11587 /* If we want to refer to something bigger than the original memref,
11588 generate a paradoxical subreg instead. That will force a reload
11589 of the original memref X. */
11590 if (paradoxical_subreg_p (omode, imode))
11591 return gen_rtx_SUBREG (omode, x, 0);
11592
11593 if (WORDS_BIG_ENDIAN)
11594 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11595
11596 /* Adjust the address so that the address-after-the-data is
11597 unchanged. */
11598 if (BYTES_BIG_ENDIAN)
11599 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11600
11601 return adjust_address_nv (x, omode, offset);
11602 }
11603
11604 /* If X is a comparison operator, rewrite it in a new mode. This
11605 probably won't match, but may allow further simplifications. */
11606 else if (COMPARISON_P (x))
11607 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11608
11609 /* If we couldn't simplify X any other way, just enclose it in a
11610 SUBREG. Normally, this SUBREG won't match, but some patterns may
11611 include an explicit SUBREG or we may simplify it further in combine. */
11612 else
11613 {
11614 rtx res;
11615
11616 if (imode == VOIDmode)
11617 {
11618 imode = int_mode_for_mode (omode).require ();
11619 x = gen_lowpart_common (imode, x);
11620 if (x == NULL)
11621 goto fail;
11622 }
11623 res = lowpart_subreg (omode, x, imode);
11624 if (res)
11625 return res;
11626 }
11627
11628 fail:
11629 return gen_rtx_CLOBBER (omode, const0_rtx);
11630 }
11631 \f
11632 /* Try to simplify a comparison between OP0 and a constant OP1,
11633 where CODE is the comparison code that will be tested, into a
11634 (CODE OP0 const0_rtx) form.
11635
11636 The result is a possibly different comparison code to use.
11637 *POP1 may be updated. */
11638
11639 static enum rtx_code
11640 simplify_compare_const (enum rtx_code code, machine_mode mode,
11641 rtx op0, rtx *pop1)
11642 {
11643 scalar_int_mode int_mode;
11644 HOST_WIDE_INT const_op = INTVAL (*pop1);
11645
11646 /* Get the constant we are comparing against and turn off all bits
11647 not on in our mode. */
11648 if (mode != VOIDmode)
11649 const_op = trunc_int_for_mode (const_op, mode);
11650
11651 /* If we are comparing against a constant power of two and the value
11652 being compared can only have that single bit nonzero (e.g., it was
11653 `and'ed with that bit), we can replace this with a comparison
11654 with zero. */
11655 if (const_op
11656 && (code == EQ || code == NE || code == GE || code == GEU
11657 || code == LT || code == LTU)
11658 && is_a <scalar_int_mode> (mode, &int_mode)
11659 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11660 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11661 && (nonzero_bits (op0, int_mode)
11662 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11663 {
11664 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11665 const_op = 0;
11666 }
11667
11668 /* Similarly, if we are comparing a value known to be either -1 or
11669 0 with -1, change it to the opposite comparison against zero. */
11670 if (const_op == -1
11671 && (code == EQ || code == NE || code == GT || code == LE
11672 || code == GEU || code == LTU)
11673 && is_a <scalar_int_mode> (mode, &int_mode)
11674 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11675 {
11676 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11677 const_op = 0;
11678 }
11679
11680 /* Do some canonicalizations based on the comparison code. We prefer
11681 comparisons against zero and then prefer equality comparisons.
11682 If we can reduce the size of a constant, we will do that too. */
11683 switch (code)
11684 {
11685 case LT:
11686 /* < C is equivalent to <= (C - 1) */
11687 if (const_op > 0)
11688 {
11689 const_op -= 1;
11690 code = LE;
11691 /* ... fall through to LE case below. */
11692 gcc_fallthrough ();
11693 }
11694 else
11695 break;
11696
11697 case LE:
11698 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11699 if (const_op < 0)
11700 {
11701 const_op += 1;
11702 code = LT;
11703 }
11704
11705 /* If we are doing a <= 0 comparison on a value known to have
11706 a zero sign bit, we can replace this with == 0. */
11707 else if (const_op == 0
11708 && is_a <scalar_int_mode> (mode, &int_mode)
11709 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11710 && (nonzero_bits (op0, int_mode)
11711 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11712 == 0)
11713 code = EQ;
11714 break;
11715
11716 case GE:
11717 /* >= C is equivalent to > (C - 1). */
11718 if (const_op > 0)
11719 {
11720 const_op -= 1;
11721 code = GT;
11722 /* ... fall through to GT below. */
11723 gcc_fallthrough ();
11724 }
11725 else
11726 break;
11727
11728 case GT:
11729 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11730 if (const_op < 0)
11731 {
11732 const_op += 1;
11733 code = GE;
11734 }
11735
11736 /* If we are doing a > 0 comparison on a value known to have
11737 a zero sign bit, we can replace this with != 0. */
11738 else if (const_op == 0
11739 && is_a <scalar_int_mode> (mode, &int_mode)
11740 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11741 && (nonzero_bits (op0, int_mode)
11742 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11743 == 0)
11744 code = NE;
11745 break;
11746
11747 case LTU:
11748 /* < C is equivalent to <= (C - 1). */
11749 if (const_op > 0)
11750 {
11751 const_op -= 1;
11752 code = LEU;
11753 /* ... fall through ... */
11754 }
11755 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11756 else if (is_a <scalar_int_mode> (mode, &int_mode)
11757 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11758 && ((unsigned HOST_WIDE_INT) const_op
11759 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11760 {
11761 const_op = 0;
11762 code = GE;
11763 break;
11764 }
11765 else
11766 break;
11767
11768 case LEU:
11769 /* unsigned <= 0 is equivalent to == 0 */
11770 if (const_op == 0)
11771 code = EQ;
11772 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11773 else if (is_a <scalar_int_mode> (mode, &int_mode)
11774 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11775 && ((unsigned HOST_WIDE_INT) const_op
11776 == ((HOST_WIDE_INT_1U
11777 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11778 {
11779 const_op = 0;
11780 code = GE;
11781 }
11782 break;
11783
11784 case GEU:
11785 /* >= C is equivalent to > (C - 1). */
11786 if (const_op > 1)
11787 {
11788 const_op -= 1;
11789 code = GTU;
11790 /* ... fall through ... */
11791 }
11792
11793 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11794 else if (is_a <scalar_int_mode> (mode, &int_mode)
11795 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11796 && ((unsigned HOST_WIDE_INT) const_op
11797 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11798 {
11799 const_op = 0;
11800 code = LT;
11801 break;
11802 }
11803 else
11804 break;
11805
11806 case GTU:
11807 /* unsigned > 0 is equivalent to != 0 */
11808 if (const_op == 0)
11809 code = NE;
11810 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11811 else if (is_a <scalar_int_mode> (mode, &int_mode)
11812 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11813 && ((unsigned HOST_WIDE_INT) const_op
11814 == (HOST_WIDE_INT_1U
11815 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
11816 {
11817 const_op = 0;
11818 code = LT;
11819 }
11820 break;
11821
11822 default:
11823 break;
11824 }
11825
11826 *pop1 = GEN_INT (const_op);
11827 return code;
11828 }
11829 \f
11830 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11831 comparison code that will be tested.
11832
11833 The result is a possibly different comparison code to use. *POP0 and
11834 *POP1 may be updated.
11835
11836 It is possible that we might detect that a comparison is either always
11837 true or always false. However, we do not perform general constant
11838 folding in combine, so this knowledge isn't useful. Such tautologies
11839 should have been detected earlier. Hence we ignore all such cases. */
11840
11841 static enum rtx_code
11842 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11843 {
11844 rtx op0 = *pop0;
11845 rtx op1 = *pop1;
11846 rtx tem, tem1;
11847 int i;
11848 scalar_int_mode mode, inner_mode, tmode;
11849 opt_scalar_int_mode tmode_iter;
11850
11851 /* Try a few ways of applying the same transformation to both operands. */
11852 while (1)
11853 {
11854 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11855 so check specially. */
11856 if (!WORD_REGISTER_OPERATIONS
11857 && code != GTU && code != GEU && code != LTU && code != LEU
11858 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11859 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11860 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11861 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11862 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11863 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
11864 && (is_a <scalar_int_mode>
11865 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
11866 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
11867 && CONST_INT_P (XEXP (op0, 1))
11868 && XEXP (op0, 1) == XEXP (op1, 1)
11869 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11870 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11871 && (INTVAL (XEXP (op0, 1))
11872 == (GET_MODE_PRECISION (mode)
11873 - GET_MODE_PRECISION (inner_mode))))
11874 {
11875 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11876 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11877 }
11878
11879 /* If both operands are the same constant shift, see if we can ignore the
11880 shift. We can if the shift is a rotate or if the bits shifted out of
11881 this shift are known to be zero for both inputs and if the type of
11882 comparison is compatible with the shift. */
11883 if (GET_CODE (op0) == GET_CODE (op1)
11884 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11885 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11886 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11887 && (code != GT && code != LT && code != GE && code != LE))
11888 || (GET_CODE (op0) == ASHIFTRT
11889 && (code != GTU && code != LTU
11890 && code != GEU && code != LEU)))
11891 && CONST_INT_P (XEXP (op0, 1))
11892 && INTVAL (XEXP (op0, 1)) >= 0
11893 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11894 && XEXP (op0, 1) == XEXP (op1, 1))
11895 {
11896 machine_mode mode = GET_MODE (op0);
11897 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11898 int shift_count = INTVAL (XEXP (op0, 1));
11899
11900 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11901 mask &= (mask >> shift_count) << shift_count;
11902 else if (GET_CODE (op0) == ASHIFT)
11903 mask = (mask & (mask << shift_count)) >> shift_count;
11904
11905 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11906 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11907 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11908 else
11909 break;
11910 }
11911
11912 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11913 SUBREGs are of the same mode, and, in both cases, the AND would
11914 be redundant if the comparison was done in the narrower mode,
11915 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11916 and the operand's possibly nonzero bits are 0xffffff01; in that case
11917 if we only care about QImode, we don't need the AND). This case
11918 occurs if the output mode of an scc insn is not SImode and
11919 STORE_FLAG_VALUE == 1 (e.g., the 386).
11920
11921 Similarly, check for a case where the AND's are ZERO_EXTEND
11922 operations from some narrower mode even though a SUBREG is not
11923 present. */
11924
11925 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11926 && CONST_INT_P (XEXP (op0, 1))
11927 && CONST_INT_P (XEXP (op1, 1)))
11928 {
11929 rtx inner_op0 = XEXP (op0, 0);
11930 rtx inner_op1 = XEXP (op1, 0);
11931 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11932 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11933 int changed = 0;
11934
11935 if (paradoxical_subreg_p (inner_op0)
11936 && GET_CODE (inner_op1) == SUBREG
11937 && (GET_MODE (SUBREG_REG (inner_op0))
11938 == GET_MODE (SUBREG_REG (inner_op1)))
11939 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11940 <= HOST_BITS_PER_WIDE_INT)
11941 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11942 GET_MODE (SUBREG_REG (inner_op0)))))
11943 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11944 GET_MODE (SUBREG_REG (inner_op1))))))
11945 {
11946 op0 = SUBREG_REG (inner_op0);
11947 op1 = SUBREG_REG (inner_op1);
11948
11949 /* The resulting comparison is always unsigned since we masked
11950 off the original sign bit. */
11951 code = unsigned_condition (code);
11952
11953 changed = 1;
11954 }
11955
11956 else if (c0 == c1)
11957 FOR_EACH_MODE_UNTIL (tmode,
11958 as_a <scalar_int_mode> (GET_MODE (op0)))
11959 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11960 {
11961 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
11962 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
11963 code = unsigned_condition (code);
11964 changed = 1;
11965 break;
11966 }
11967
11968 if (! changed)
11969 break;
11970 }
11971
11972 /* If both operands are NOT, we can strip off the outer operation
11973 and adjust the comparison code for swapped operands; similarly for
11974 NEG, except that this must be an equality comparison. */
11975 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11976 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11977 && (code == EQ || code == NE)))
11978 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11979
11980 else
11981 break;
11982 }
11983
11984 /* If the first operand is a constant, swap the operands and adjust the
11985 comparison code appropriately, but don't do this if the second operand
11986 is already a constant integer. */
11987 if (swap_commutative_operands_p (op0, op1))
11988 {
11989 std::swap (op0, op1);
11990 code = swap_condition (code);
11991 }
11992
11993 /* We now enter a loop during which we will try to simplify the comparison.
11994 For the most part, we only are concerned with comparisons with zero,
11995 but some things may really be comparisons with zero but not start
11996 out looking that way. */
11997
11998 while (CONST_INT_P (op1))
11999 {
12000 machine_mode raw_mode = GET_MODE (op0);
12001 scalar_int_mode int_mode;
12002 int equality_comparison_p;
12003 int sign_bit_comparison_p;
12004 int unsigned_comparison_p;
12005 HOST_WIDE_INT const_op;
12006
12007 /* We only want to handle integral modes. This catches VOIDmode,
12008 CCmode, and the floating-point modes. An exception is that we
12009 can handle VOIDmode if OP0 is a COMPARE or a comparison
12010 operation. */
12011
12012 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12013 && ! (raw_mode == VOIDmode
12014 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12015 break;
12016
12017 /* Try to simplify the compare to constant, possibly changing the
12018 comparison op, and/or changing op1 to zero. */
12019 code = simplify_compare_const (code, raw_mode, op0, &op1);
12020 const_op = INTVAL (op1);
12021
12022 /* Compute some predicates to simplify code below. */
12023
12024 equality_comparison_p = (code == EQ || code == NE);
12025 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12026 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12027 || code == GEU);
12028
12029 /* If this is a sign bit comparison and we can do arithmetic in
12030 MODE, say that we will only be needing the sign bit of OP0. */
12031 if (sign_bit_comparison_p
12032 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12033 && HWI_COMPUTABLE_MODE_P (int_mode))
12034 op0 = force_to_mode (op0, int_mode,
12035 HOST_WIDE_INT_1U
12036 << (GET_MODE_PRECISION (int_mode) - 1),
12037 0);
12038
12039 if (COMPARISON_P (op0))
12040 {
12041 /* We can't do anything if OP0 is a condition code value, rather
12042 than an actual data value. */
12043 if (const_op != 0
12044 || CC0_P (XEXP (op0, 0))
12045 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12046 break;
12047
12048 /* Get the two operands being compared. */
12049 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12050 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12051 else
12052 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12053
12054 /* Check for the cases where we simply want the result of the
12055 earlier test or the opposite of that result. */
12056 if (code == NE || code == EQ
12057 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12058 && (code == LT || code == GE)))
12059 {
12060 enum rtx_code new_code;
12061 if (code == LT || code == NE)
12062 new_code = GET_CODE (op0);
12063 else
12064 new_code = reversed_comparison_code (op0, NULL);
12065
12066 if (new_code != UNKNOWN)
12067 {
12068 code = new_code;
12069 op0 = tem;
12070 op1 = tem1;
12071 continue;
12072 }
12073 }
12074 break;
12075 }
12076
12077 if (raw_mode == VOIDmode)
12078 break;
12079 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12080
12081 /* Now try cases based on the opcode of OP0. If none of the cases
12082 does a "continue", we exit this loop immediately after the
12083 switch. */
12084
12085 unsigned int mode_width = GET_MODE_PRECISION (mode);
12086 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12087 switch (GET_CODE (op0))
12088 {
12089 case ZERO_EXTRACT:
12090 /* If we are extracting a single bit from a variable position in
12091 a constant that has only a single bit set and are comparing it
12092 with zero, we can convert this into an equality comparison
12093 between the position and the location of the single bit. */
12094 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12095 have already reduced the shift count modulo the word size. */
12096 if (!SHIFT_COUNT_TRUNCATED
12097 && CONST_INT_P (XEXP (op0, 0))
12098 && XEXP (op0, 1) == const1_rtx
12099 && equality_comparison_p && const_op == 0
12100 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12101 {
12102 if (BITS_BIG_ENDIAN)
12103 i = BITS_PER_WORD - 1 - i;
12104
12105 op0 = XEXP (op0, 2);
12106 op1 = GEN_INT (i);
12107 const_op = i;
12108
12109 /* Result is nonzero iff shift count is equal to I. */
12110 code = reverse_condition (code);
12111 continue;
12112 }
12113
12114 /* fall through */
12115
12116 case SIGN_EXTRACT:
12117 tem = expand_compound_operation (op0);
12118 if (tem != op0)
12119 {
12120 op0 = tem;
12121 continue;
12122 }
12123 break;
12124
12125 case NOT:
12126 /* If testing for equality, we can take the NOT of the constant. */
12127 if (equality_comparison_p
12128 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12129 {
12130 op0 = XEXP (op0, 0);
12131 op1 = tem;
12132 continue;
12133 }
12134
12135 /* If just looking at the sign bit, reverse the sense of the
12136 comparison. */
12137 if (sign_bit_comparison_p)
12138 {
12139 op0 = XEXP (op0, 0);
12140 code = (code == GE ? LT : GE);
12141 continue;
12142 }
12143 break;
12144
12145 case NEG:
12146 /* If testing for equality, we can take the NEG of the constant. */
12147 if (equality_comparison_p
12148 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12149 {
12150 op0 = XEXP (op0, 0);
12151 op1 = tem;
12152 continue;
12153 }
12154
12155 /* The remaining cases only apply to comparisons with zero. */
12156 if (const_op != 0)
12157 break;
12158
12159 /* When X is ABS or is known positive,
12160 (neg X) is < 0 if and only if X != 0. */
12161
12162 if (sign_bit_comparison_p
12163 && (GET_CODE (XEXP (op0, 0)) == ABS
12164 || (mode_width <= HOST_BITS_PER_WIDE_INT
12165 && (nonzero_bits (XEXP (op0, 0), mode)
12166 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12167 == 0)))
12168 {
12169 op0 = XEXP (op0, 0);
12170 code = (code == LT ? NE : EQ);
12171 continue;
12172 }
12173
12174 /* If we have NEG of something whose two high-order bits are the
12175 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12176 if (num_sign_bit_copies (op0, mode) >= 2)
12177 {
12178 op0 = XEXP (op0, 0);
12179 code = swap_condition (code);
12180 continue;
12181 }
12182 break;
12183
12184 case ROTATE:
12185 /* If we are testing equality and our count is a constant, we
12186 can perform the inverse operation on our RHS. */
12187 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12188 && (tem = simplify_binary_operation (ROTATERT, mode,
12189 op1, XEXP (op0, 1))) != 0)
12190 {
12191 op0 = XEXP (op0, 0);
12192 op1 = tem;
12193 continue;
12194 }
12195
12196 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12197 a particular bit. Convert it to an AND of a constant of that
12198 bit. This will be converted into a ZERO_EXTRACT. */
12199 if (const_op == 0 && sign_bit_comparison_p
12200 && CONST_INT_P (XEXP (op0, 1))
12201 && mode_width <= HOST_BITS_PER_WIDE_INT)
12202 {
12203 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12204 (HOST_WIDE_INT_1U
12205 << (mode_width - 1
12206 - INTVAL (XEXP (op0, 1)))));
12207 code = (code == LT ? NE : EQ);
12208 continue;
12209 }
12210
12211 /* Fall through. */
12212
12213 case ABS:
12214 /* ABS is ignorable inside an equality comparison with zero. */
12215 if (const_op == 0 && equality_comparison_p)
12216 {
12217 op0 = XEXP (op0, 0);
12218 continue;
12219 }
12220 break;
12221
12222 case SIGN_EXTEND:
12223 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12224 (compare FOO CONST) if CONST fits in FOO's mode and we
12225 are either testing inequality or have an unsigned
12226 comparison with ZERO_EXTEND or a signed comparison with
12227 SIGN_EXTEND. But don't do it if we don't have a compare
12228 insn of the given mode, since we'd have to revert it
12229 later on, and then we wouldn't know whether to sign- or
12230 zero-extend. */
12231 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12232 && ! unsigned_comparison_p
12233 && HWI_COMPUTABLE_MODE_P (mode)
12234 && trunc_int_for_mode (const_op, mode) == const_op
12235 && have_insn_for (COMPARE, mode))
12236 {
12237 op0 = XEXP (op0, 0);
12238 continue;
12239 }
12240 break;
12241
12242 case SUBREG:
12243 /* Check for the case where we are comparing A - C1 with C2, that is
12244
12245 (subreg:MODE (plus (A) (-C1))) op (C2)
12246
12247 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12248 comparison in the wider mode. One of the following two conditions
12249 must be true in order for this to be valid:
12250
12251 1. The mode extension results in the same bit pattern being added
12252 on both sides and the comparison is equality or unsigned. As
12253 C2 has been truncated to fit in MODE, the pattern can only be
12254 all 0s or all 1s.
12255
12256 2. The mode extension results in the sign bit being copied on
12257 each side.
12258
12259 The difficulty here is that we have predicates for A but not for
12260 (A - C1) so we need to check that C1 is within proper bounds so
12261 as to perturbate A as little as possible. */
12262
12263 if (mode_width <= HOST_BITS_PER_WIDE_INT
12264 && subreg_lowpart_p (op0)
12265 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12266 &inner_mode)
12267 && GET_MODE_PRECISION (inner_mode) > mode_width
12268 && GET_CODE (SUBREG_REG (op0)) == PLUS
12269 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12270 {
12271 rtx a = XEXP (SUBREG_REG (op0), 0);
12272 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12273
12274 if ((c1 > 0
12275 && (unsigned HOST_WIDE_INT) c1
12276 < HOST_WIDE_INT_1U << (mode_width - 1)
12277 && (equality_comparison_p || unsigned_comparison_p)
12278 /* (A - C1) zero-extends if it is positive and sign-extends
12279 if it is negative, C2 both zero- and sign-extends. */
12280 && ((0 == (nonzero_bits (a, inner_mode)
12281 & ~GET_MODE_MASK (mode))
12282 && const_op >= 0)
12283 /* (A - C1) sign-extends if it is positive and 1-extends
12284 if it is negative, C2 both sign- and 1-extends. */
12285 || (num_sign_bit_copies (a, inner_mode)
12286 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12287 - mode_width)
12288 && const_op < 0)))
12289 || ((unsigned HOST_WIDE_INT) c1
12290 < HOST_WIDE_INT_1U << (mode_width - 2)
12291 /* (A - C1) always sign-extends, like C2. */
12292 && num_sign_bit_copies (a, inner_mode)
12293 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12294 - (mode_width - 1))))
12295 {
12296 op0 = SUBREG_REG (op0);
12297 continue;
12298 }
12299 }
12300
12301 /* If the inner mode is narrower and we are extracting the low part,
12302 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12303 if (paradoxical_subreg_p (op0))
12304 ;
12305 else if (subreg_lowpart_p (op0)
12306 && GET_MODE_CLASS (mode) == MODE_INT
12307 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12308 && (code == NE || code == EQ)
12309 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12310 && !paradoxical_subreg_p (op0)
12311 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12312 & ~GET_MODE_MASK (mode)) == 0)
12313 {
12314 /* Remove outer subregs that don't do anything. */
12315 tem = gen_lowpart (inner_mode, op1);
12316
12317 if ((nonzero_bits (tem, inner_mode)
12318 & ~GET_MODE_MASK (mode)) == 0)
12319 {
12320 op0 = SUBREG_REG (op0);
12321 op1 = tem;
12322 continue;
12323 }
12324 break;
12325 }
12326 else
12327 break;
12328
12329 /* FALLTHROUGH */
12330
12331 case ZERO_EXTEND:
12332 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12333 && (unsigned_comparison_p || equality_comparison_p)
12334 && HWI_COMPUTABLE_MODE_P (mode)
12335 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12336 && const_op >= 0
12337 && have_insn_for (COMPARE, mode))
12338 {
12339 op0 = XEXP (op0, 0);
12340 continue;
12341 }
12342 break;
12343
12344 case PLUS:
12345 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12346 this for equality comparisons due to pathological cases involving
12347 overflows. */
12348 if (equality_comparison_p
12349 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12350 op1, XEXP (op0, 1))))
12351 {
12352 op0 = XEXP (op0, 0);
12353 op1 = tem;
12354 continue;
12355 }
12356
12357 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12358 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12359 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12360 {
12361 op0 = XEXP (XEXP (op0, 0), 0);
12362 code = (code == LT ? EQ : NE);
12363 continue;
12364 }
12365 break;
12366
12367 case MINUS:
12368 /* We used to optimize signed comparisons against zero, but that
12369 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12370 arrive here as equality comparisons, or (GEU, LTU) are
12371 optimized away. No need to special-case them. */
12372
12373 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12374 (eq B (minus A C)), whichever simplifies. We can only do
12375 this for equality comparisons due to pathological cases involving
12376 overflows. */
12377 if (equality_comparison_p
12378 && 0 != (tem = simplify_binary_operation (PLUS, mode,
12379 XEXP (op0, 1), op1)))
12380 {
12381 op0 = XEXP (op0, 0);
12382 op1 = tem;
12383 continue;
12384 }
12385
12386 if (equality_comparison_p
12387 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12388 XEXP (op0, 0), op1)))
12389 {
12390 op0 = XEXP (op0, 1);
12391 op1 = tem;
12392 continue;
12393 }
12394
12395 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12396 of bits in X minus 1, is one iff X > 0. */
12397 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12398 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12399 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12400 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12401 {
12402 op0 = XEXP (op0, 1);
12403 code = (code == GE ? LE : GT);
12404 continue;
12405 }
12406 break;
12407
12408 case XOR:
12409 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12410 if C is zero or B is a constant. */
12411 if (equality_comparison_p
12412 && 0 != (tem = simplify_binary_operation (XOR, mode,
12413 XEXP (op0, 1), op1)))
12414 {
12415 op0 = XEXP (op0, 0);
12416 op1 = tem;
12417 continue;
12418 }
12419 break;
12420
12421
12422 case IOR:
12423 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12424 iff X <= 0. */
12425 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12426 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12427 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12428 {
12429 op0 = XEXP (op0, 1);
12430 code = (code == GE ? GT : LE);
12431 continue;
12432 }
12433 break;
12434
12435 case AND:
12436 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12437 will be converted to a ZERO_EXTRACT later. */
12438 if (const_op == 0 && equality_comparison_p
12439 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12440 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12441 {
12442 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12443 XEXP (XEXP (op0, 0), 1));
12444 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12445 continue;
12446 }
12447
12448 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12449 zero and X is a comparison and C1 and C2 describe only bits set
12450 in STORE_FLAG_VALUE, we can compare with X. */
12451 if (const_op == 0 && equality_comparison_p
12452 && mode_width <= HOST_BITS_PER_WIDE_INT
12453 && CONST_INT_P (XEXP (op0, 1))
12454 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12455 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12456 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12457 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12458 {
12459 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12460 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12461 if ((~STORE_FLAG_VALUE & mask) == 0
12462 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12463 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12464 && COMPARISON_P (tem))))
12465 {
12466 op0 = XEXP (XEXP (op0, 0), 0);
12467 continue;
12468 }
12469 }
12470
12471 /* If we are doing an equality comparison of an AND of a bit equal
12472 to the sign bit, replace this with a LT or GE comparison of
12473 the underlying value. */
12474 if (equality_comparison_p
12475 && const_op == 0
12476 && CONST_INT_P (XEXP (op0, 1))
12477 && mode_width <= HOST_BITS_PER_WIDE_INT
12478 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12479 == HOST_WIDE_INT_1U << (mode_width - 1)))
12480 {
12481 op0 = XEXP (op0, 0);
12482 code = (code == EQ ? GE : LT);
12483 continue;
12484 }
12485
12486 /* If this AND operation is really a ZERO_EXTEND from a narrower
12487 mode, the constant fits within that mode, and this is either an
12488 equality or unsigned comparison, try to do this comparison in
12489 the narrower mode.
12490
12491 Note that in:
12492
12493 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12494 -> (ne:DI (reg:SI 4) (const_int 0))
12495
12496 unless TRULY_NOOP_TRUNCATION allows it or the register is
12497 known to hold a value of the required mode the
12498 transformation is invalid. */
12499 if ((equality_comparison_p || unsigned_comparison_p)
12500 && CONST_INT_P (XEXP (op0, 1))
12501 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12502 & GET_MODE_MASK (mode))
12503 + 1)) >= 0
12504 && const_op >> i == 0
12505 && int_mode_for_size (i, 1).exists (&tmode))
12506 {
12507 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12508 continue;
12509 }
12510
12511 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12512 fits in both M1 and M2 and the SUBREG is either paradoxical
12513 or represents the low part, permute the SUBREG and the AND
12514 and try again. */
12515 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12516 && CONST_INT_P (XEXP (op0, 1)))
12517 {
12518 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12519 /* Require an integral mode, to avoid creating something like
12520 (AND:SF ...). */
12521 if ((is_a <scalar_int_mode>
12522 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12523 /* It is unsafe to commute the AND into the SUBREG if the
12524 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12525 not defined. As originally written the upper bits
12526 have a defined value due to the AND operation.
12527 However, if we commute the AND inside the SUBREG then
12528 they no longer have defined values and the meaning of
12529 the code has been changed.
12530 Also C1 should not change value in the smaller mode,
12531 see PR67028 (a positive C1 can become negative in the
12532 smaller mode, so that the AND does no longer mask the
12533 upper bits). */
12534 && ((WORD_REGISTER_OPERATIONS
12535 && mode_width > GET_MODE_PRECISION (tmode)
12536 && mode_width <= BITS_PER_WORD
12537 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12538 || (mode_width <= GET_MODE_PRECISION (tmode)
12539 && subreg_lowpart_p (XEXP (op0, 0))))
12540 && mode_width <= HOST_BITS_PER_WIDE_INT
12541 && HWI_COMPUTABLE_MODE_P (tmode)
12542 && (c1 & ~mask) == 0
12543 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12544 && c1 != mask
12545 && c1 != GET_MODE_MASK (tmode))
12546 {
12547 op0 = simplify_gen_binary (AND, tmode,
12548 SUBREG_REG (XEXP (op0, 0)),
12549 gen_int_mode (c1, tmode));
12550 op0 = gen_lowpart (mode, op0);
12551 continue;
12552 }
12553 }
12554
12555 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12556 if (const_op == 0 && equality_comparison_p
12557 && XEXP (op0, 1) == const1_rtx
12558 && GET_CODE (XEXP (op0, 0)) == NOT)
12559 {
12560 op0 = simplify_and_const_int (NULL_RTX, mode,
12561 XEXP (XEXP (op0, 0), 0), 1);
12562 code = (code == NE ? EQ : NE);
12563 continue;
12564 }
12565
12566 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12567 (eq (and (lshiftrt X) 1) 0).
12568 Also handle the case where (not X) is expressed using xor. */
12569 if (const_op == 0 && equality_comparison_p
12570 && XEXP (op0, 1) == const1_rtx
12571 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12572 {
12573 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12574 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12575
12576 if (GET_CODE (shift_op) == NOT
12577 || (GET_CODE (shift_op) == XOR
12578 && CONST_INT_P (XEXP (shift_op, 1))
12579 && CONST_INT_P (shift_count)
12580 && HWI_COMPUTABLE_MODE_P (mode)
12581 && (UINTVAL (XEXP (shift_op, 1))
12582 == HOST_WIDE_INT_1U
12583 << INTVAL (shift_count))))
12584 {
12585 op0
12586 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12587 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12588 code = (code == NE ? EQ : NE);
12589 continue;
12590 }
12591 }
12592 break;
12593
12594 case ASHIFT:
12595 /* If we have (compare (ashift FOO N) (const_int C)) and
12596 the high order N bits of FOO (N+1 if an inequality comparison)
12597 are known to be zero, we can do this by comparing FOO with C
12598 shifted right N bits so long as the low-order N bits of C are
12599 zero. */
12600 if (CONST_INT_P (XEXP (op0, 1))
12601 && INTVAL (XEXP (op0, 1)) >= 0
12602 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12603 < HOST_BITS_PER_WIDE_INT)
12604 && (((unsigned HOST_WIDE_INT) const_op
12605 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12606 - 1)) == 0)
12607 && mode_width <= HOST_BITS_PER_WIDE_INT
12608 && (nonzero_bits (XEXP (op0, 0), mode)
12609 & ~(mask >> (INTVAL (XEXP (op0, 1))
12610 + ! equality_comparison_p))) == 0)
12611 {
12612 /* We must perform a logical shift, not an arithmetic one,
12613 as we want the top N bits of C to be zero. */
12614 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12615
12616 temp >>= INTVAL (XEXP (op0, 1));
12617 op1 = gen_int_mode (temp, mode);
12618 op0 = XEXP (op0, 0);
12619 continue;
12620 }
12621
12622 /* If we are doing a sign bit comparison, it means we are testing
12623 a particular bit. Convert it to the appropriate AND. */
12624 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12625 && mode_width <= HOST_BITS_PER_WIDE_INT)
12626 {
12627 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12628 (HOST_WIDE_INT_1U
12629 << (mode_width - 1
12630 - INTVAL (XEXP (op0, 1)))));
12631 code = (code == LT ? NE : EQ);
12632 continue;
12633 }
12634
12635 /* If this an equality comparison with zero and we are shifting
12636 the low bit to the sign bit, we can convert this to an AND of the
12637 low-order bit. */
12638 if (const_op == 0 && equality_comparison_p
12639 && CONST_INT_P (XEXP (op0, 1))
12640 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12641 {
12642 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12643 continue;
12644 }
12645 break;
12646
12647 case ASHIFTRT:
12648 /* If this is an equality comparison with zero, we can do this
12649 as a logical shift, which might be much simpler. */
12650 if (equality_comparison_p && const_op == 0
12651 && CONST_INT_P (XEXP (op0, 1)))
12652 {
12653 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12654 XEXP (op0, 0),
12655 INTVAL (XEXP (op0, 1)));
12656 continue;
12657 }
12658
12659 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12660 do the comparison in a narrower mode. */
12661 if (! unsigned_comparison_p
12662 && CONST_INT_P (XEXP (op0, 1))
12663 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12664 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12665 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12666 .exists (&tmode))
12667 && (((unsigned HOST_WIDE_INT) const_op
12668 + (GET_MODE_MASK (tmode) >> 1) + 1)
12669 <= GET_MODE_MASK (tmode)))
12670 {
12671 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12672 continue;
12673 }
12674
12675 /* Likewise if OP0 is a PLUS of a sign extension with a
12676 constant, which is usually represented with the PLUS
12677 between the shifts. */
12678 if (! unsigned_comparison_p
12679 && CONST_INT_P (XEXP (op0, 1))
12680 && GET_CODE (XEXP (op0, 0)) == PLUS
12681 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12682 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12683 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12684 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12685 .exists (&tmode))
12686 && (((unsigned HOST_WIDE_INT) const_op
12687 + (GET_MODE_MASK (tmode) >> 1) + 1)
12688 <= GET_MODE_MASK (tmode)))
12689 {
12690 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12691 rtx add_const = XEXP (XEXP (op0, 0), 1);
12692 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12693 add_const, XEXP (op0, 1));
12694
12695 op0 = simplify_gen_binary (PLUS, tmode,
12696 gen_lowpart (tmode, inner),
12697 new_const);
12698 continue;
12699 }
12700
12701 /* FALLTHROUGH */
12702 case LSHIFTRT:
12703 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12704 the low order N bits of FOO are known to be zero, we can do this
12705 by comparing FOO with C shifted left N bits so long as no
12706 overflow occurs. Even if the low order N bits of FOO aren't known
12707 to be zero, if the comparison is >= or < we can use the same
12708 optimization and for > or <= by setting all the low
12709 order N bits in the comparison constant. */
12710 if (CONST_INT_P (XEXP (op0, 1))
12711 && INTVAL (XEXP (op0, 1)) > 0
12712 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12713 && mode_width <= HOST_BITS_PER_WIDE_INT
12714 && (((unsigned HOST_WIDE_INT) const_op
12715 + (GET_CODE (op0) != LSHIFTRT
12716 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12717 + 1)
12718 : 0))
12719 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12720 {
12721 unsigned HOST_WIDE_INT low_bits
12722 = (nonzero_bits (XEXP (op0, 0), mode)
12723 & ((HOST_WIDE_INT_1U
12724 << INTVAL (XEXP (op0, 1))) - 1));
12725 if (low_bits == 0 || !equality_comparison_p)
12726 {
12727 /* If the shift was logical, then we must make the condition
12728 unsigned. */
12729 if (GET_CODE (op0) == LSHIFTRT)
12730 code = unsigned_condition (code);
12731
12732 const_op = (unsigned HOST_WIDE_INT) const_op
12733 << INTVAL (XEXP (op0, 1));
12734 if (low_bits != 0
12735 && (code == GT || code == GTU
12736 || code == LE || code == LEU))
12737 const_op
12738 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12739 op1 = GEN_INT (const_op);
12740 op0 = XEXP (op0, 0);
12741 continue;
12742 }
12743 }
12744
12745 /* If we are using this shift to extract just the sign bit, we
12746 can replace this with an LT or GE comparison. */
12747 if (const_op == 0
12748 && (equality_comparison_p || sign_bit_comparison_p)
12749 && CONST_INT_P (XEXP (op0, 1))
12750 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12751 {
12752 op0 = XEXP (op0, 0);
12753 code = (code == NE || code == GT ? LT : GE);
12754 continue;
12755 }
12756 break;
12757
12758 default:
12759 break;
12760 }
12761
12762 break;
12763 }
12764
12765 /* Now make any compound operations involved in this comparison. Then,
12766 check for an outmost SUBREG on OP0 that is not doing anything or is
12767 paradoxical. The latter transformation must only be performed when
12768 it is known that the "extra" bits will be the same in op0 and op1 or
12769 that they don't matter. There are three cases to consider:
12770
12771 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12772 care bits and we can assume they have any convenient value. So
12773 making the transformation is safe.
12774
12775 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12776 In this case the upper bits of op0 are undefined. We should not make
12777 the simplification in that case as we do not know the contents of
12778 those bits.
12779
12780 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12781 In that case we know those bits are zeros or ones. We must also be
12782 sure that they are the same as the upper bits of op1.
12783
12784 We can never remove a SUBREG for a non-equality comparison because
12785 the sign bit is in a different place in the underlying object. */
12786
12787 rtx_code op0_mco_code = SET;
12788 if (op1 == const0_rtx)
12789 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12790
12791 op0 = make_compound_operation (op0, op0_mco_code);
12792 op1 = make_compound_operation (op1, SET);
12793
12794 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12795 && is_int_mode (GET_MODE (op0), &mode)
12796 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12797 && (code == NE || code == EQ))
12798 {
12799 if (paradoxical_subreg_p (op0))
12800 {
12801 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12802 implemented. */
12803 if (REG_P (SUBREG_REG (op0)))
12804 {
12805 op0 = SUBREG_REG (op0);
12806 op1 = gen_lowpart (inner_mode, op1);
12807 }
12808 }
12809 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12810 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12811 & ~GET_MODE_MASK (mode)) == 0)
12812 {
12813 tem = gen_lowpart (inner_mode, op1);
12814
12815 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
12816 op0 = SUBREG_REG (op0), op1 = tem;
12817 }
12818 }
12819
12820 /* We now do the opposite procedure: Some machines don't have compare
12821 insns in all modes. If OP0's mode is an integer mode smaller than a
12822 word and we can't do a compare in that mode, see if there is a larger
12823 mode for which we can do the compare. There are a number of cases in
12824 which we can use the wider mode. */
12825
12826 if (is_int_mode (GET_MODE (op0), &mode)
12827 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12828 && ! have_insn_for (COMPARE, mode))
12829 FOR_EACH_WIDER_MODE (tmode_iter, mode)
12830 {
12831 tmode = tmode_iter.require ();
12832 if (!HWI_COMPUTABLE_MODE_P (tmode))
12833 break;
12834 if (have_insn_for (COMPARE, tmode))
12835 {
12836 int zero_extended;
12837
12838 /* If this is a test for negative, we can make an explicit
12839 test of the sign bit. Test this first so we can use
12840 a paradoxical subreg to extend OP0. */
12841
12842 if (op1 == const0_rtx && (code == LT || code == GE)
12843 && HWI_COMPUTABLE_MODE_P (mode))
12844 {
12845 unsigned HOST_WIDE_INT sign
12846 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12847 op0 = simplify_gen_binary (AND, tmode,
12848 gen_lowpart (tmode, op0),
12849 gen_int_mode (sign, tmode));
12850 code = (code == LT) ? NE : EQ;
12851 break;
12852 }
12853
12854 /* If the only nonzero bits in OP0 and OP1 are those in the
12855 narrower mode and this is an equality or unsigned comparison,
12856 we can use the wider mode. Similarly for sign-extended
12857 values, in which case it is true for all comparisons. */
12858 zero_extended = ((code == EQ || code == NE
12859 || code == GEU || code == GTU
12860 || code == LEU || code == LTU)
12861 && (nonzero_bits (op0, tmode)
12862 & ~GET_MODE_MASK (mode)) == 0
12863 && ((CONST_INT_P (op1)
12864 || (nonzero_bits (op1, tmode)
12865 & ~GET_MODE_MASK (mode)) == 0)));
12866
12867 if (zero_extended
12868 || ((num_sign_bit_copies (op0, tmode)
12869 > (unsigned int) (GET_MODE_PRECISION (tmode)
12870 - GET_MODE_PRECISION (mode)))
12871 && (num_sign_bit_copies (op1, tmode)
12872 > (unsigned int) (GET_MODE_PRECISION (tmode)
12873 - GET_MODE_PRECISION (mode)))))
12874 {
12875 /* If OP0 is an AND and we don't have an AND in MODE either,
12876 make a new AND in the proper mode. */
12877 if (GET_CODE (op0) == AND
12878 && !have_insn_for (AND, mode))
12879 op0 = simplify_gen_binary (AND, tmode,
12880 gen_lowpart (tmode,
12881 XEXP (op0, 0)),
12882 gen_lowpart (tmode,
12883 XEXP (op0, 1)));
12884 else
12885 {
12886 if (zero_extended)
12887 {
12888 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
12889 op0, mode);
12890 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
12891 op1, mode);
12892 }
12893 else
12894 {
12895 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
12896 op0, mode);
12897 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
12898 op1, mode);
12899 }
12900 break;
12901 }
12902 }
12903 }
12904 }
12905
12906 /* We may have changed the comparison operands. Re-canonicalize. */
12907 if (swap_commutative_operands_p (op0, op1))
12908 {
12909 std::swap (op0, op1);
12910 code = swap_condition (code);
12911 }
12912
12913 /* If this machine only supports a subset of valid comparisons, see if we
12914 can convert an unsupported one into a supported one. */
12915 target_canonicalize_comparison (&code, &op0, &op1, 0);
12916
12917 *pop0 = op0;
12918 *pop1 = op1;
12919
12920 return code;
12921 }
12922 \f
12923 /* Utility function for record_value_for_reg. Count number of
12924 rtxs in X. */
12925 static int
12926 count_rtxs (rtx x)
12927 {
12928 enum rtx_code code = GET_CODE (x);
12929 const char *fmt;
12930 int i, j, ret = 1;
12931
12932 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12933 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12934 {
12935 rtx x0 = XEXP (x, 0);
12936 rtx x1 = XEXP (x, 1);
12937
12938 if (x0 == x1)
12939 return 1 + 2 * count_rtxs (x0);
12940
12941 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12942 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12943 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12944 return 2 + 2 * count_rtxs (x0)
12945 + count_rtxs (x == XEXP (x1, 0)
12946 ? XEXP (x1, 1) : XEXP (x1, 0));
12947
12948 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12949 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12950 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12951 return 2 + 2 * count_rtxs (x1)
12952 + count_rtxs (x == XEXP (x0, 0)
12953 ? XEXP (x0, 1) : XEXP (x0, 0));
12954 }
12955
12956 fmt = GET_RTX_FORMAT (code);
12957 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12958 if (fmt[i] == 'e')
12959 ret += count_rtxs (XEXP (x, i));
12960 else if (fmt[i] == 'E')
12961 for (j = 0; j < XVECLEN (x, i); j++)
12962 ret += count_rtxs (XVECEXP (x, i, j));
12963
12964 return ret;
12965 }
12966 \f
12967 /* Utility function for following routine. Called when X is part of a value
12968 being stored into last_set_value. Sets last_set_table_tick
12969 for each register mentioned. Similar to mention_regs in cse.c */
12970
12971 static void
12972 update_table_tick (rtx x)
12973 {
12974 enum rtx_code code = GET_CODE (x);
12975 const char *fmt = GET_RTX_FORMAT (code);
12976 int i, j;
12977
12978 if (code == REG)
12979 {
12980 unsigned int regno = REGNO (x);
12981 unsigned int endregno = END_REGNO (x);
12982 unsigned int r;
12983
12984 for (r = regno; r < endregno; r++)
12985 {
12986 reg_stat_type *rsp = &reg_stat[r];
12987 rsp->last_set_table_tick = label_tick;
12988 }
12989
12990 return;
12991 }
12992
12993 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12994 if (fmt[i] == 'e')
12995 {
12996 /* Check for identical subexpressions. If x contains
12997 identical subexpression we only have to traverse one of
12998 them. */
12999 if (i == 0 && ARITHMETIC_P (x))
13000 {
13001 /* Note that at this point x1 has already been
13002 processed. */
13003 rtx x0 = XEXP (x, 0);
13004 rtx x1 = XEXP (x, 1);
13005
13006 /* If x0 and x1 are identical then there is no need to
13007 process x0. */
13008 if (x0 == x1)
13009 break;
13010
13011 /* If x0 is identical to a subexpression of x1 then while
13012 processing x1, x0 has already been processed. Thus we
13013 are done with x. */
13014 if (ARITHMETIC_P (x1)
13015 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13016 break;
13017
13018 /* If x1 is identical to a subexpression of x0 then we
13019 still have to process the rest of x0. */
13020 if (ARITHMETIC_P (x0)
13021 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13022 {
13023 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13024 break;
13025 }
13026 }
13027
13028 update_table_tick (XEXP (x, i));
13029 }
13030 else if (fmt[i] == 'E')
13031 for (j = 0; j < XVECLEN (x, i); j++)
13032 update_table_tick (XVECEXP (x, i, j));
13033 }
13034
13035 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13036 are saying that the register is clobbered and we no longer know its
13037 value. If INSN is zero, don't update reg_stat[].last_set; this is
13038 only permitted with VALUE also zero and is used to invalidate the
13039 register. */
13040
13041 static void
13042 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13043 {
13044 unsigned int regno = REGNO (reg);
13045 unsigned int endregno = END_REGNO (reg);
13046 unsigned int i;
13047 reg_stat_type *rsp;
13048
13049 /* If VALUE contains REG and we have a previous value for REG, substitute
13050 the previous value. */
13051 if (value && insn && reg_overlap_mentioned_p (reg, value))
13052 {
13053 rtx tem;
13054
13055 /* Set things up so get_last_value is allowed to see anything set up to
13056 our insn. */
13057 subst_low_luid = DF_INSN_LUID (insn);
13058 tem = get_last_value (reg);
13059
13060 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13061 it isn't going to be useful and will take a lot of time to process,
13062 so just use the CLOBBER. */
13063
13064 if (tem)
13065 {
13066 if (ARITHMETIC_P (tem)
13067 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13068 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13069 tem = XEXP (tem, 0);
13070 else if (count_occurrences (value, reg, 1) >= 2)
13071 {
13072 /* If there are two or more occurrences of REG in VALUE,
13073 prevent the value from growing too much. */
13074 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
13075 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13076 }
13077
13078 value = replace_rtx (copy_rtx (value), reg, tem);
13079 }
13080 }
13081
13082 /* For each register modified, show we don't know its value, that
13083 we don't know about its bitwise content, that its value has been
13084 updated, and that we don't know the location of the death of the
13085 register. */
13086 for (i = regno; i < endregno; i++)
13087 {
13088 rsp = &reg_stat[i];
13089
13090 if (insn)
13091 rsp->last_set = insn;
13092
13093 rsp->last_set_value = 0;
13094 rsp->last_set_mode = VOIDmode;
13095 rsp->last_set_nonzero_bits = 0;
13096 rsp->last_set_sign_bit_copies = 0;
13097 rsp->last_death = 0;
13098 rsp->truncated_to_mode = VOIDmode;
13099 }
13100
13101 /* Mark registers that are being referenced in this value. */
13102 if (value)
13103 update_table_tick (value);
13104
13105 /* Now update the status of each register being set.
13106 If someone is using this register in this block, set this register
13107 to invalid since we will get confused between the two lives in this
13108 basic block. This makes using this register always invalid. In cse, we
13109 scan the table to invalidate all entries using this register, but this
13110 is too much work for us. */
13111
13112 for (i = regno; i < endregno; i++)
13113 {
13114 rsp = &reg_stat[i];
13115 rsp->last_set_label = label_tick;
13116 if (!insn
13117 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13118 rsp->last_set_invalid = 1;
13119 else
13120 rsp->last_set_invalid = 0;
13121 }
13122
13123 /* The value being assigned might refer to X (like in "x++;"). In that
13124 case, we must replace it with (clobber (const_int 0)) to prevent
13125 infinite loops. */
13126 rsp = &reg_stat[regno];
13127 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13128 {
13129 value = copy_rtx (value);
13130 if (!get_last_value_validate (&value, insn, label_tick, 1))
13131 value = 0;
13132 }
13133
13134 /* For the main register being modified, update the value, the mode, the
13135 nonzero bits, and the number of sign bit copies. */
13136
13137 rsp->last_set_value = value;
13138
13139 if (value)
13140 {
13141 machine_mode mode = GET_MODE (reg);
13142 subst_low_luid = DF_INSN_LUID (insn);
13143 rsp->last_set_mode = mode;
13144 if (GET_MODE_CLASS (mode) == MODE_INT
13145 && HWI_COMPUTABLE_MODE_P (mode))
13146 mode = nonzero_bits_mode;
13147 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13148 rsp->last_set_sign_bit_copies
13149 = num_sign_bit_copies (value, GET_MODE (reg));
13150 }
13151 }
13152
13153 /* Called via note_stores from record_dead_and_set_regs to handle one
13154 SET or CLOBBER in an insn. DATA is the instruction in which the
13155 set is occurring. */
13156
13157 static void
13158 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13159 {
13160 rtx_insn *record_dead_insn = (rtx_insn *) data;
13161
13162 if (GET_CODE (dest) == SUBREG)
13163 dest = SUBREG_REG (dest);
13164
13165 if (!record_dead_insn)
13166 {
13167 if (REG_P (dest))
13168 record_value_for_reg (dest, NULL, NULL_RTX);
13169 return;
13170 }
13171
13172 if (REG_P (dest))
13173 {
13174 /* If we are setting the whole register, we know its value. Otherwise
13175 show that we don't know the value. We can handle SUBREG in
13176 some cases. */
13177 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13178 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13179 else if (GET_CODE (setter) == SET
13180 && GET_CODE (SET_DEST (setter)) == SUBREG
13181 && SUBREG_REG (SET_DEST (setter)) == dest
13182 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
13183 && subreg_lowpart_p (SET_DEST (setter)))
13184 record_value_for_reg (dest, record_dead_insn,
13185 gen_lowpart (GET_MODE (dest),
13186 SET_SRC (setter)));
13187 else
13188 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13189 }
13190 else if (MEM_P (dest)
13191 /* Ignore pushes, they clobber nothing. */
13192 && ! push_operand (dest, GET_MODE (dest)))
13193 mem_last_set = DF_INSN_LUID (record_dead_insn);
13194 }
13195
13196 /* Update the records of when each REG was most recently set or killed
13197 for the things done by INSN. This is the last thing done in processing
13198 INSN in the combiner loop.
13199
13200 We update reg_stat[], in particular fields last_set, last_set_value,
13201 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13202 last_death, and also the similar information mem_last_set (which insn
13203 most recently modified memory) and last_call_luid (which insn was the
13204 most recent subroutine call). */
13205
13206 static void
13207 record_dead_and_set_regs (rtx_insn *insn)
13208 {
13209 rtx link;
13210 unsigned int i;
13211
13212 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13213 {
13214 if (REG_NOTE_KIND (link) == REG_DEAD
13215 && REG_P (XEXP (link, 0)))
13216 {
13217 unsigned int regno = REGNO (XEXP (link, 0));
13218 unsigned int endregno = END_REGNO (XEXP (link, 0));
13219
13220 for (i = regno; i < endregno; i++)
13221 {
13222 reg_stat_type *rsp;
13223
13224 rsp = &reg_stat[i];
13225 rsp->last_death = insn;
13226 }
13227 }
13228 else if (REG_NOTE_KIND (link) == REG_INC)
13229 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13230 }
13231
13232 if (CALL_P (insn))
13233 {
13234 hard_reg_set_iterator hrsi;
13235 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13236 {
13237 reg_stat_type *rsp;
13238
13239 rsp = &reg_stat[i];
13240 rsp->last_set_invalid = 1;
13241 rsp->last_set = insn;
13242 rsp->last_set_value = 0;
13243 rsp->last_set_mode = VOIDmode;
13244 rsp->last_set_nonzero_bits = 0;
13245 rsp->last_set_sign_bit_copies = 0;
13246 rsp->last_death = 0;
13247 rsp->truncated_to_mode = VOIDmode;
13248 }
13249
13250 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13251
13252 /* We can't combine into a call pattern. Remember, though, that
13253 the return value register is set at this LUID. We could
13254 still replace a register with the return value from the
13255 wrong subroutine call! */
13256 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13257 }
13258 else
13259 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13260 }
13261
13262 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13263 register present in the SUBREG, so for each such SUBREG go back and
13264 adjust nonzero and sign bit information of the registers that are
13265 known to have some zero/sign bits set.
13266
13267 This is needed because when combine blows the SUBREGs away, the
13268 information on zero/sign bits is lost and further combines can be
13269 missed because of that. */
13270
13271 static void
13272 record_promoted_value (rtx_insn *insn, rtx subreg)
13273 {
13274 struct insn_link *links;
13275 rtx set;
13276 unsigned int regno = REGNO (SUBREG_REG (subreg));
13277 machine_mode mode = GET_MODE (subreg);
13278
13279 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
13280 return;
13281
13282 for (links = LOG_LINKS (insn); links;)
13283 {
13284 reg_stat_type *rsp;
13285
13286 insn = links->insn;
13287 set = single_set (insn);
13288
13289 if (! set || !REG_P (SET_DEST (set))
13290 || REGNO (SET_DEST (set)) != regno
13291 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13292 {
13293 links = links->next;
13294 continue;
13295 }
13296
13297 rsp = &reg_stat[regno];
13298 if (rsp->last_set == insn)
13299 {
13300 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13301 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13302 }
13303
13304 if (REG_P (SET_SRC (set)))
13305 {
13306 regno = REGNO (SET_SRC (set));
13307 links = LOG_LINKS (insn);
13308 }
13309 else
13310 break;
13311 }
13312 }
13313
13314 /* Check if X, a register, is known to contain a value already
13315 truncated to MODE. In this case we can use a subreg to refer to
13316 the truncated value even though in the generic case we would need
13317 an explicit truncation. */
13318
13319 static bool
13320 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13321 {
13322 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13323 machine_mode truncated = rsp->truncated_to_mode;
13324
13325 if (truncated == 0
13326 || rsp->truncation_label < label_tick_ebb_start)
13327 return false;
13328 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
13329 return true;
13330 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13331 return true;
13332 return false;
13333 }
13334
13335 /* If X is a hard reg or a subreg record the mode that the register is
13336 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
13337 to turn a truncate into a subreg using this information. Return true
13338 if traversing X is complete. */
13339
13340 static bool
13341 record_truncated_value (rtx x)
13342 {
13343 machine_mode truncated_mode;
13344 reg_stat_type *rsp;
13345
13346 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13347 {
13348 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13349 truncated_mode = GET_MODE (x);
13350
13351 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
13352 return true;
13353
13354 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13355 return true;
13356
13357 x = SUBREG_REG (x);
13358 }
13359 /* ??? For hard-regs we now record everything. We might be able to
13360 optimize this using last_set_mode. */
13361 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13362 truncated_mode = GET_MODE (x);
13363 else
13364 return false;
13365
13366 rsp = &reg_stat[REGNO (x)];
13367 if (rsp->truncated_to_mode == 0
13368 || rsp->truncation_label < label_tick_ebb_start
13369 || (GET_MODE_SIZE (truncated_mode)
13370 < GET_MODE_SIZE (rsp->truncated_to_mode)))
13371 {
13372 rsp->truncated_to_mode = truncated_mode;
13373 rsp->truncation_label = label_tick;
13374 }
13375
13376 return true;
13377 }
13378
13379 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13380 the modes they are used in. This can help truning TRUNCATEs into
13381 SUBREGs. */
13382
13383 static void
13384 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13385 {
13386 subrtx_var_iterator::array_type array;
13387 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13388 if (record_truncated_value (*iter))
13389 iter.skip_subrtxes ();
13390 }
13391
13392 /* Scan X for promoted SUBREGs. For each one found,
13393 note what it implies to the registers used in it. */
13394
13395 static void
13396 check_promoted_subreg (rtx_insn *insn, rtx x)
13397 {
13398 if (GET_CODE (x) == SUBREG
13399 && SUBREG_PROMOTED_VAR_P (x)
13400 && REG_P (SUBREG_REG (x)))
13401 record_promoted_value (insn, x);
13402 else
13403 {
13404 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13405 int i, j;
13406
13407 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13408 switch (format[i])
13409 {
13410 case 'e':
13411 check_promoted_subreg (insn, XEXP (x, i));
13412 break;
13413 case 'V':
13414 case 'E':
13415 if (XVEC (x, i) != 0)
13416 for (j = 0; j < XVECLEN (x, i); j++)
13417 check_promoted_subreg (insn, XVECEXP (x, i, j));
13418 break;
13419 }
13420 }
13421 }
13422 \f
13423 /* Verify that all the registers and memory references mentioned in *LOC are
13424 still valid. *LOC was part of a value set in INSN when label_tick was
13425 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13426 the invalid references with (clobber (const_int 0)) and return 1. This
13427 replacement is useful because we often can get useful information about
13428 the form of a value (e.g., if it was produced by a shift that always
13429 produces -1 or 0) even though we don't know exactly what registers it
13430 was produced from. */
13431
13432 static int
13433 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13434 {
13435 rtx x = *loc;
13436 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13437 int len = GET_RTX_LENGTH (GET_CODE (x));
13438 int i, j;
13439
13440 if (REG_P (x))
13441 {
13442 unsigned int regno = REGNO (x);
13443 unsigned int endregno = END_REGNO (x);
13444 unsigned int j;
13445
13446 for (j = regno; j < endregno; j++)
13447 {
13448 reg_stat_type *rsp = &reg_stat[j];
13449 if (rsp->last_set_invalid
13450 /* If this is a pseudo-register that was only set once and not
13451 live at the beginning of the function, it is always valid. */
13452 || (! (regno >= FIRST_PSEUDO_REGISTER
13453 && regno < reg_n_sets_max
13454 && REG_N_SETS (regno) == 1
13455 && (!REGNO_REG_SET_P
13456 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13457 regno)))
13458 && rsp->last_set_label > tick))
13459 {
13460 if (replace)
13461 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13462 return replace;
13463 }
13464 }
13465
13466 return 1;
13467 }
13468 /* If this is a memory reference, make sure that there were no stores after
13469 it that might have clobbered the value. We don't have alias info, so we
13470 assume any store invalidates it. Moreover, we only have local UIDs, so
13471 we also assume that there were stores in the intervening basic blocks. */
13472 else if (MEM_P (x) && !MEM_READONLY_P (x)
13473 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13474 {
13475 if (replace)
13476 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13477 return replace;
13478 }
13479
13480 for (i = 0; i < len; i++)
13481 {
13482 if (fmt[i] == 'e')
13483 {
13484 /* Check for identical subexpressions. If x contains
13485 identical subexpression we only have to traverse one of
13486 them. */
13487 if (i == 1 && ARITHMETIC_P (x))
13488 {
13489 /* Note that at this point x0 has already been checked
13490 and found valid. */
13491 rtx x0 = XEXP (x, 0);
13492 rtx x1 = XEXP (x, 1);
13493
13494 /* If x0 and x1 are identical then x is also valid. */
13495 if (x0 == x1)
13496 return 1;
13497
13498 /* If x1 is identical to a subexpression of x0 then
13499 while checking x0, x1 has already been checked. Thus
13500 it is valid and so as x. */
13501 if (ARITHMETIC_P (x0)
13502 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13503 return 1;
13504
13505 /* If x0 is identical to a subexpression of x1 then x is
13506 valid iff the rest of x1 is valid. */
13507 if (ARITHMETIC_P (x1)
13508 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13509 return
13510 get_last_value_validate (&XEXP (x1,
13511 x0 == XEXP (x1, 0) ? 1 : 0),
13512 insn, tick, replace);
13513 }
13514
13515 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13516 replace) == 0)
13517 return 0;
13518 }
13519 else if (fmt[i] == 'E')
13520 for (j = 0; j < XVECLEN (x, i); j++)
13521 if (get_last_value_validate (&XVECEXP (x, i, j),
13522 insn, tick, replace) == 0)
13523 return 0;
13524 }
13525
13526 /* If we haven't found a reason for it to be invalid, it is valid. */
13527 return 1;
13528 }
13529
13530 /* Get the last value assigned to X, if known. Some registers
13531 in the value may be replaced with (clobber (const_int 0)) if their value
13532 is known longer known reliably. */
13533
13534 static rtx
13535 get_last_value (const_rtx x)
13536 {
13537 unsigned int regno;
13538 rtx value;
13539 reg_stat_type *rsp;
13540
13541 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13542 then convert it to the desired mode. If this is a paradoxical SUBREG,
13543 we cannot predict what values the "extra" bits might have. */
13544 if (GET_CODE (x) == SUBREG
13545 && subreg_lowpart_p (x)
13546 && !paradoxical_subreg_p (x)
13547 && (value = get_last_value (SUBREG_REG (x))) != 0)
13548 return gen_lowpart (GET_MODE (x), value);
13549
13550 if (!REG_P (x))
13551 return 0;
13552
13553 regno = REGNO (x);
13554 rsp = &reg_stat[regno];
13555 value = rsp->last_set_value;
13556
13557 /* If we don't have a value, or if it isn't for this basic block and
13558 it's either a hard register, set more than once, or it's a live
13559 at the beginning of the function, return 0.
13560
13561 Because if it's not live at the beginning of the function then the reg
13562 is always set before being used (is never used without being set).
13563 And, if it's set only once, and it's always set before use, then all
13564 uses must have the same last value, even if it's not from this basic
13565 block. */
13566
13567 if (value == 0
13568 || (rsp->last_set_label < label_tick_ebb_start
13569 && (regno < FIRST_PSEUDO_REGISTER
13570 || regno >= reg_n_sets_max
13571 || REG_N_SETS (regno) != 1
13572 || REGNO_REG_SET_P
13573 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13574 return 0;
13575
13576 /* If the value was set in a later insn than the ones we are processing,
13577 we can't use it even if the register was only set once. */
13578 if (rsp->last_set_label == label_tick
13579 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13580 return 0;
13581
13582 /* If fewer bits were set than what we are asked for now, we cannot use
13583 the value. */
13584 if (GET_MODE_PRECISION (rsp->last_set_mode)
13585 < GET_MODE_PRECISION (GET_MODE (x)))
13586 return 0;
13587
13588 /* If the value has all its registers valid, return it. */
13589 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13590 return value;
13591
13592 /* Otherwise, make a copy and replace any invalid register with
13593 (clobber (const_int 0)). If that fails for some reason, return 0. */
13594
13595 value = copy_rtx (value);
13596 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13597 return value;
13598
13599 return 0;
13600 }
13601 \f
13602 /* Return nonzero if expression X refers to a REG or to memory
13603 that is set in an instruction more recent than FROM_LUID. */
13604
13605 static int
13606 use_crosses_set_p (const_rtx x, int from_luid)
13607 {
13608 const char *fmt;
13609 int i;
13610 enum rtx_code code = GET_CODE (x);
13611
13612 if (code == REG)
13613 {
13614 unsigned int regno = REGNO (x);
13615 unsigned endreg = END_REGNO (x);
13616
13617 #ifdef PUSH_ROUNDING
13618 /* Don't allow uses of the stack pointer to be moved,
13619 because we don't know whether the move crosses a push insn. */
13620 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13621 return 1;
13622 #endif
13623 for (; regno < endreg; regno++)
13624 {
13625 reg_stat_type *rsp = &reg_stat[regno];
13626 if (rsp->last_set
13627 && rsp->last_set_label == label_tick
13628 && DF_INSN_LUID (rsp->last_set) > from_luid)
13629 return 1;
13630 }
13631 return 0;
13632 }
13633
13634 if (code == MEM && mem_last_set > from_luid)
13635 return 1;
13636
13637 fmt = GET_RTX_FORMAT (code);
13638
13639 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13640 {
13641 if (fmt[i] == 'E')
13642 {
13643 int j;
13644 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13645 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13646 return 1;
13647 }
13648 else if (fmt[i] == 'e'
13649 && use_crosses_set_p (XEXP (x, i), from_luid))
13650 return 1;
13651 }
13652 return 0;
13653 }
13654 \f
13655 /* Define three variables used for communication between the following
13656 routines. */
13657
13658 static unsigned int reg_dead_regno, reg_dead_endregno;
13659 static int reg_dead_flag;
13660
13661 /* Function called via note_stores from reg_dead_at_p.
13662
13663 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13664 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13665
13666 static void
13667 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13668 {
13669 unsigned int regno, endregno;
13670
13671 if (!REG_P (dest))
13672 return;
13673
13674 regno = REGNO (dest);
13675 endregno = END_REGNO (dest);
13676 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13677 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13678 }
13679
13680 /* Return nonzero if REG is known to be dead at INSN.
13681
13682 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13683 referencing REG, it is dead. If we hit a SET referencing REG, it is
13684 live. Otherwise, see if it is live or dead at the start of the basic
13685 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13686 must be assumed to be always live. */
13687
13688 static int
13689 reg_dead_at_p (rtx reg, rtx_insn *insn)
13690 {
13691 basic_block block;
13692 unsigned int i;
13693
13694 /* Set variables for reg_dead_at_p_1. */
13695 reg_dead_regno = REGNO (reg);
13696 reg_dead_endregno = END_REGNO (reg);
13697
13698 reg_dead_flag = 0;
13699
13700 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13701 we allow the machine description to decide whether use-and-clobber
13702 patterns are OK. */
13703 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13704 {
13705 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13706 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13707 return 0;
13708 }
13709
13710 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13711 beginning of basic block. */
13712 block = BLOCK_FOR_INSN (insn);
13713 for (;;)
13714 {
13715 if (INSN_P (insn))
13716 {
13717 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13718 return 1;
13719
13720 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13721 if (reg_dead_flag)
13722 return reg_dead_flag == 1 ? 1 : 0;
13723
13724 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13725 return 1;
13726 }
13727
13728 if (insn == BB_HEAD (block))
13729 break;
13730
13731 insn = PREV_INSN (insn);
13732 }
13733
13734 /* Look at live-in sets for the basic block that we were in. */
13735 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13736 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13737 return 0;
13738
13739 return 1;
13740 }
13741 \f
13742 /* Note hard registers in X that are used. */
13743
13744 static void
13745 mark_used_regs_combine (rtx x)
13746 {
13747 RTX_CODE code = GET_CODE (x);
13748 unsigned int regno;
13749 int i;
13750
13751 switch (code)
13752 {
13753 case LABEL_REF:
13754 case SYMBOL_REF:
13755 case CONST:
13756 CASE_CONST_ANY:
13757 case PC:
13758 case ADDR_VEC:
13759 case ADDR_DIFF_VEC:
13760 case ASM_INPUT:
13761 /* CC0 must die in the insn after it is set, so we don't need to take
13762 special note of it here. */
13763 case CC0:
13764 return;
13765
13766 case CLOBBER:
13767 /* If we are clobbering a MEM, mark any hard registers inside the
13768 address as used. */
13769 if (MEM_P (XEXP (x, 0)))
13770 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13771 return;
13772
13773 case REG:
13774 regno = REGNO (x);
13775 /* A hard reg in a wide mode may really be multiple registers.
13776 If so, mark all of them just like the first. */
13777 if (regno < FIRST_PSEUDO_REGISTER)
13778 {
13779 /* None of this applies to the stack, frame or arg pointers. */
13780 if (regno == STACK_POINTER_REGNUM
13781 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13782 && regno == HARD_FRAME_POINTER_REGNUM)
13783 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13784 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13785 || regno == FRAME_POINTER_REGNUM)
13786 return;
13787
13788 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13789 }
13790 return;
13791
13792 case SET:
13793 {
13794 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13795 the address. */
13796 rtx testreg = SET_DEST (x);
13797
13798 while (GET_CODE (testreg) == SUBREG
13799 || GET_CODE (testreg) == ZERO_EXTRACT
13800 || GET_CODE (testreg) == STRICT_LOW_PART)
13801 testreg = XEXP (testreg, 0);
13802
13803 if (MEM_P (testreg))
13804 mark_used_regs_combine (XEXP (testreg, 0));
13805
13806 mark_used_regs_combine (SET_SRC (x));
13807 }
13808 return;
13809
13810 default:
13811 break;
13812 }
13813
13814 /* Recursively scan the operands of this expression. */
13815
13816 {
13817 const char *fmt = GET_RTX_FORMAT (code);
13818
13819 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13820 {
13821 if (fmt[i] == 'e')
13822 mark_used_regs_combine (XEXP (x, i));
13823 else if (fmt[i] == 'E')
13824 {
13825 int j;
13826
13827 for (j = 0; j < XVECLEN (x, i); j++)
13828 mark_used_regs_combine (XVECEXP (x, i, j));
13829 }
13830 }
13831 }
13832 }
13833 \f
13834 /* Remove register number REGNO from the dead registers list of INSN.
13835
13836 Return the note used to record the death, if there was one. */
13837
13838 rtx
13839 remove_death (unsigned int regno, rtx_insn *insn)
13840 {
13841 rtx note = find_regno_note (insn, REG_DEAD, regno);
13842
13843 if (note)
13844 remove_note (insn, note);
13845
13846 return note;
13847 }
13848
13849 /* For each register (hardware or pseudo) used within expression X, if its
13850 death is in an instruction with luid between FROM_LUID (inclusive) and
13851 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13852 list headed by PNOTES.
13853
13854 That said, don't move registers killed by maybe_kill_insn.
13855
13856 This is done when X is being merged by combination into TO_INSN. These
13857 notes will then be distributed as needed. */
13858
13859 static void
13860 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13861 rtx *pnotes)
13862 {
13863 const char *fmt;
13864 int len, i;
13865 enum rtx_code code = GET_CODE (x);
13866
13867 if (code == REG)
13868 {
13869 unsigned int regno = REGNO (x);
13870 rtx_insn *where_dead = reg_stat[regno].last_death;
13871
13872 /* Don't move the register if it gets killed in between from and to. */
13873 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13874 && ! reg_referenced_p (x, maybe_kill_insn))
13875 return;
13876
13877 if (where_dead
13878 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13879 && DF_INSN_LUID (where_dead) >= from_luid
13880 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13881 {
13882 rtx note = remove_death (regno, where_dead);
13883
13884 /* It is possible for the call above to return 0. This can occur
13885 when last_death points to I2 or I1 that we combined with.
13886 In that case make a new note.
13887
13888 We must also check for the case where X is a hard register
13889 and NOTE is a death note for a range of hard registers
13890 including X. In that case, we must put REG_DEAD notes for
13891 the remaining registers in place of NOTE. */
13892
13893 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13894 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13895 > GET_MODE_SIZE (GET_MODE (x))))
13896 {
13897 unsigned int deadregno = REGNO (XEXP (note, 0));
13898 unsigned int deadend = END_REGNO (XEXP (note, 0));
13899 unsigned int ourend = END_REGNO (x);
13900 unsigned int i;
13901
13902 for (i = deadregno; i < deadend; i++)
13903 if (i < regno || i >= ourend)
13904 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13905 }
13906
13907 /* If we didn't find any note, or if we found a REG_DEAD note that
13908 covers only part of the given reg, and we have a multi-reg hard
13909 register, then to be safe we must check for REG_DEAD notes
13910 for each register other than the first. They could have
13911 their own REG_DEAD notes lying around. */
13912 else if ((note == 0
13913 || (note != 0
13914 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13915 < GET_MODE_SIZE (GET_MODE (x)))))
13916 && regno < FIRST_PSEUDO_REGISTER
13917 && REG_NREGS (x) > 1)
13918 {
13919 unsigned int ourend = END_REGNO (x);
13920 unsigned int i, offset;
13921 rtx oldnotes = 0;
13922
13923 if (note)
13924 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13925 else
13926 offset = 1;
13927
13928 for (i = regno + offset; i < ourend; i++)
13929 move_deaths (regno_reg_rtx[i],
13930 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13931 }
13932
13933 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13934 {
13935 XEXP (note, 1) = *pnotes;
13936 *pnotes = note;
13937 }
13938 else
13939 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13940 }
13941
13942 return;
13943 }
13944
13945 else if (GET_CODE (x) == SET)
13946 {
13947 rtx dest = SET_DEST (x);
13948
13949 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13950
13951 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13952 that accesses one word of a multi-word item, some
13953 piece of everything register in the expression is used by
13954 this insn, so remove any old death. */
13955 /* ??? So why do we test for equality of the sizes? */
13956
13957 if (GET_CODE (dest) == ZERO_EXTRACT
13958 || GET_CODE (dest) == STRICT_LOW_PART
13959 || (GET_CODE (dest) == SUBREG
13960 && (((GET_MODE_SIZE (GET_MODE (dest))
13961 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13962 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13963 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13964 {
13965 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13966 return;
13967 }
13968
13969 /* If this is some other SUBREG, we know it replaces the entire
13970 value, so use that as the destination. */
13971 if (GET_CODE (dest) == SUBREG)
13972 dest = SUBREG_REG (dest);
13973
13974 /* If this is a MEM, adjust deaths of anything used in the address.
13975 For a REG (the only other possibility), the entire value is
13976 being replaced so the old value is not used in this insn. */
13977
13978 if (MEM_P (dest))
13979 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13980 to_insn, pnotes);
13981 return;
13982 }
13983
13984 else if (GET_CODE (x) == CLOBBER)
13985 return;
13986
13987 len = GET_RTX_LENGTH (code);
13988 fmt = GET_RTX_FORMAT (code);
13989
13990 for (i = 0; i < len; i++)
13991 {
13992 if (fmt[i] == 'E')
13993 {
13994 int j;
13995 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13996 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13997 to_insn, pnotes);
13998 }
13999 else if (fmt[i] == 'e')
14000 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14001 }
14002 }
14003 \f
14004 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14005 pattern of an insn. X must be a REG. */
14006
14007 static int
14008 reg_bitfield_target_p (rtx x, rtx body)
14009 {
14010 int i;
14011
14012 if (GET_CODE (body) == SET)
14013 {
14014 rtx dest = SET_DEST (body);
14015 rtx target;
14016 unsigned int regno, tregno, endregno, endtregno;
14017
14018 if (GET_CODE (dest) == ZERO_EXTRACT)
14019 target = XEXP (dest, 0);
14020 else if (GET_CODE (dest) == STRICT_LOW_PART)
14021 target = SUBREG_REG (XEXP (dest, 0));
14022 else
14023 return 0;
14024
14025 if (GET_CODE (target) == SUBREG)
14026 target = SUBREG_REG (target);
14027
14028 if (!REG_P (target))
14029 return 0;
14030
14031 tregno = REGNO (target), regno = REGNO (x);
14032 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14033 return target == x;
14034
14035 endtregno = end_hard_regno (GET_MODE (target), tregno);
14036 endregno = end_hard_regno (GET_MODE (x), regno);
14037
14038 return endregno > tregno && regno < endtregno;
14039 }
14040
14041 else if (GET_CODE (body) == PARALLEL)
14042 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14043 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14044 return 1;
14045
14046 return 0;
14047 }
14048 \f
14049 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14050 as appropriate. I3 and I2 are the insns resulting from the combination
14051 insns including FROM (I2 may be zero).
14052
14053 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14054 not need REG_DEAD notes because they are being substituted for. This
14055 saves searching in the most common cases.
14056
14057 Each note in the list is either ignored or placed on some insns, depending
14058 on the type of note. */
14059
14060 static void
14061 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14062 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14063 {
14064 rtx note, next_note;
14065 rtx tem_note;
14066 rtx_insn *tem_insn;
14067
14068 for (note = notes; note; note = next_note)
14069 {
14070 rtx_insn *place = 0, *place2 = 0;
14071
14072 next_note = XEXP (note, 1);
14073 switch (REG_NOTE_KIND (note))
14074 {
14075 case REG_BR_PROB:
14076 case REG_BR_PRED:
14077 /* Doesn't matter much where we put this, as long as it's somewhere.
14078 It is preferable to keep these notes on branches, which is most
14079 likely to be i3. */
14080 place = i3;
14081 break;
14082
14083 case REG_NON_LOCAL_GOTO:
14084 if (JUMP_P (i3))
14085 place = i3;
14086 else
14087 {
14088 gcc_assert (i2 && JUMP_P (i2));
14089 place = i2;
14090 }
14091 break;
14092
14093 case REG_EH_REGION:
14094 /* These notes must remain with the call or trapping instruction. */
14095 if (CALL_P (i3))
14096 place = i3;
14097 else if (i2 && CALL_P (i2))
14098 place = i2;
14099 else
14100 {
14101 gcc_assert (cfun->can_throw_non_call_exceptions);
14102 if (may_trap_p (i3))
14103 place = i3;
14104 else if (i2 && may_trap_p (i2))
14105 place = i2;
14106 /* ??? Otherwise assume we've combined things such that we
14107 can now prove that the instructions can't trap. Drop the
14108 note in this case. */
14109 }
14110 break;
14111
14112 case REG_ARGS_SIZE:
14113 /* ??? How to distribute between i3-i1. Assume i3 contains the
14114 entire adjustment. Assert i3 contains at least some adjust. */
14115 if (!noop_move_p (i3))
14116 {
14117 int old_size, args_size = INTVAL (XEXP (note, 0));
14118 /* fixup_args_size_notes looks at REG_NORETURN note,
14119 so ensure the note is placed there first. */
14120 if (CALL_P (i3))
14121 {
14122 rtx *np;
14123 for (np = &next_note; *np; np = &XEXP (*np, 1))
14124 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14125 {
14126 rtx n = *np;
14127 *np = XEXP (n, 1);
14128 XEXP (n, 1) = REG_NOTES (i3);
14129 REG_NOTES (i3) = n;
14130 break;
14131 }
14132 }
14133 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14134 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14135 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14136 gcc_assert (old_size != args_size
14137 || (CALL_P (i3)
14138 && !ACCUMULATE_OUTGOING_ARGS
14139 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14140 }
14141 break;
14142
14143 case REG_NORETURN:
14144 case REG_SETJMP:
14145 case REG_TM:
14146 case REG_CALL_DECL:
14147 /* These notes must remain with the call. It should not be
14148 possible for both I2 and I3 to be a call. */
14149 if (CALL_P (i3))
14150 place = i3;
14151 else
14152 {
14153 gcc_assert (i2 && CALL_P (i2));
14154 place = i2;
14155 }
14156 break;
14157
14158 case REG_UNUSED:
14159 /* Any clobbers for i3 may still exist, and so we must process
14160 REG_UNUSED notes from that insn.
14161
14162 Any clobbers from i2 or i1 can only exist if they were added by
14163 recog_for_combine. In that case, recog_for_combine created the
14164 necessary REG_UNUSED notes. Trying to keep any original
14165 REG_UNUSED notes from these insns can cause incorrect output
14166 if it is for the same register as the original i3 dest.
14167 In that case, we will notice that the register is set in i3,
14168 and then add a REG_UNUSED note for the destination of i3, which
14169 is wrong. However, it is possible to have REG_UNUSED notes from
14170 i2 or i1 for register which were both used and clobbered, so
14171 we keep notes from i2 or i1 if they will turn into REG_DEAD
14172 notes. */
14173
14174 /* If this register is set or clobbered in I3, put the note there
14175 unless there is one already. */
14176 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14177 {
14178 if (from_insn != i3)
14179 break;
14180
14181 if (! (REG_P (XEXP (note, 0))
14182 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14183 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14184 place = i3;
14185 }
14186 /* Otherwise, if this register is used by I3, then this register
14187 now dies here, so we must put a REG_DEAD note here unless there
14188 is one already. */
14189 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14190 && ! (REG_P (XEXP (note, 0))
14191 ? find_regno_note (i3, REG_DEAD,
14192 REGNO (XEXP (note, 0)))
14193 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14194 {
14195 PUT_REG_NOTE_KIND (note, REG_DEAD);
14196 place = i3;
14197 }
14198 break;
14199
14200 case REG_EQUAL:
14201 case REG_EQUIV:
14202 case REG_NOALIAS:
14203 /* These notes say something about results of an insn. We can
14204 only support them if they used to be on I3 in which case they
14205 remain on I3. Otherwise they are ignored.
14206
14207 If the note refers to an expression that is not a constant, we
14208 must also ignore the note since we cannot tell whether the
14209 equivalence is still true. It might be possible to do
14210 slightly better than this (we only have a problem if I2DEST
14211 or I1DEST is present in the expression), but it doesn't
14212 seem worth the trouble. */
14213
14214 if (from_insn == i3
14215 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14216 place = i3;
14217 break;
14218
14219 case REG_INC:
14220 /* These notes say something about how a register is used. They must
14221 be present on any use of the register in I2 or I3. */
14222 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14223 place = i3;
14224
14225 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14226 {
14227 if (place)
14228 place2 = i2;
14229 else
14230 place = i2;
14231 }
14232 break;
14233
14234 case REG_LABEL_TARGET:
14235 case REG_LABEL_OPERAND:
14236 /* This can show up in several ways -- either directly in the
14237 pattern, or hidden off in the constant pool with (or without?)
14238 a REG_EQUAL note. */
14239 /* ??? Ignore the without-reg_equal-note problem for now. */
14240 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14241 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14242 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14243 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14244 place = i3;
14245
14246 if (i2
14247 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14248 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14249 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14250 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14251 {
14252 if (place)
14253 place2 = i2;
14254 else
14255 place = i2;
14256 }
14257
14258 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14259 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14260 there. */
14261 if (place && JUMP_P (place)
14262 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14263 && (JUMP_LABEL (place) == NULL
14264 || JUMP_LABEL (place) == XEXP (note, 0)))
14265 {
14266 rtx label = JUMP_LABEL (place);
14267
14268 if (!label)
14269 JUMP_LABEL (place) = XEXP (note, 0);
14270 else if (LABEL_P (label))
14271 LABEL_NUSES (label)--;
14272 }
14273
14274 if (place2 && JUMP_P (place2)
14275 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14276 && (JUMP_LABEL (place2) == NULL
14277 || JUMP_LABEL (place2) == XEXP (note, 0)))
14278 {
14279 rtx label = JUMP_LABEL (place2);
14280
14281 if (!label)
14282 JUMP_LABEL (place2) = XEXP (note, 0);
14283 else if (LABEL_P (label))
14284 LABEL_NUSES (label)--;
14285 place2 = 0;
14286 }
14287 break;
14288
14289 case REG_NONNEG:
14290 /* This note says something about the value of a register prior
14291 to the execution of an insn. It is too much trouble to see
14292 if the note is still correct in all situations. It is better
14293 to simply delete it. */
14294 break;
14295
14296 case REG_DEAD:
14297 /* If we replaced the right hand side of FROM_INSN with a
14298 REG_EQUAL note, the original use of the dying register
14299 will not have been combined into I3 and I2. In such cases,
14300 FROM_INSN is guaranteed to be the first of the combined
14301 instructions, so we simply need to search back before
14302 FROM_INSN for the previous use or set of this register,
14303 then alter the notes there appropriately.
14304
14305 If the register is used as an input in I3, it dies there.
14306 Similarly for I2, if it is nonzero and adjacent to I3.
14307
14308 If the register is not used as an input in either I3 or I2
14309 and it is not one of the registers we were supposed to eliminate,
14310 there are two possibilities. We might have a non-adjacent I2
14311 or we might have somehow eliminated an additional register
14312 from a computation. For example, we might have had A & B where
14313 we discover that B will always be zero. In this case we will
14314 eliminate the reference to A.
14315
14316 In both cases, we must search to see if we can find a previous
14317 use of A and put the death note there. */
14318
14319 if (from_insn
14320 && from_insn == i2mod
14321 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14322 tem_insn = from_insn;
14323 else
14324 {
14325 if (from_insn
14326 && CALL_P (from_insn)
14327 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14328 place = from_insn;
14329 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14330 place = i3;
14331 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14332 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14333 place = i2;
14334 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14335 && !(i2mod
14336 && reg_overlap_mentioned_p (XEXP (note, 0),
14337 i2mod_old_rhs)))
14338 || rtx_equal_p (XEXP (note, 0), elim_i1)
14339 || rtx_equal_p (XEXP (note, 0), elim_i0))
14340 break;
14341 tem_insn = i3;
14342 /* If the new I2 sets the same register that is marked dead
14343 in the note, we do not know where to put the note.
14344 Give up. */
14345 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14346 break;
14347 }
14348
14349 if (place == 0)
14350 {
14351 basic_block bb = this_basic_block;
14352
14353 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14354 {
14355 if (!NONDEBUG_INSN_P (tem_insn))
14356 {
14357 if (tem_insn == BB_HEAD (bb))
14358 break;
14359 continue;
14360 }
14361
14362 /* If the register is being set at TEM_INSN, see if that is all
14363 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14364 into a REG_UNUSED note instead. Don't delete sets to
14365 global register vars. */
14366 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14367 || !global_regs[REGNO (XEXP (note, 0))])
14368 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14369 {
14370 rtx set = single_set (tem_insn);
14371 rtx inner_dest = 0;
14372 rtx_insn *cc0_setter = NULL;
14373
14374 if (set != 0)
14375 for (inner_dest = SET_DEST (set);
14376 (GET_CODE (inner_dest) == STRICT_LOW_PART
14377 || GET_CODE (inner_dest) == SUBREG
14378 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14379 inner_dest = XEXP (inner_dest, 0))
14380 ;
14381
14382 /* Verify that it was the set, and not a clobber that
14383 modified the register.
14384
14385 CC0 targets must be careful to maintain setter/user
14386 pairs. If we cannot delete the setter due to side
14387 effects, mark the user with an UNUSED note instead
14388 of deleting it. */
14389
14390 if (set != 0 && ! side_effects_p (SET_SRC (set))
14391 && rtx_equal_p (XEXP (note, 0), inner_dest)
14392 && (!HAVE_cc0
14393 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14394 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14395 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14396 {
14397 /* Move the notes and links of TEM_INSN elsewhere.
14398 This might delete other dead insns recursively.
14399 First set the pattern to something that won't use
14400 any register. */
14401 rtx old_notes = REG_NOTES (tem_insn);
14402
14403 PATTERN (tem_insn) = pc_rtx;
14404 REG_NOTES (tem_insn) = NULL;
14405
14406 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14407 NULL_RTX, NULL_RTX, NULL_RTX);
14408 distribute_links (LOG_LINKS (tem_insn));
14409
14410 unsigned int regno = REGNO (XEXP (note, 0));
14411 reg_stat_type *rsp = &reg_stat[regno];
14412 if (rsp->last_set == tem_insn)
14413 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14414
14415 SET_INSN_DELETED (tem_insn);
14416 if (tem_insn == i2)
14417 i2 = NULL;
14418
14419 /* Delete the setter too. */
14420 if (cc0_setter)
14421 {
14422 PATTERN (cc0_setter) = pc_rtx;
14423 old_notes = REG_NOTES (cc0_setter);
14424 REG_NOTES (cc0_setter) = NULL;
14425
14426 distribute_notes (old_notes, cc0_setter,
14427 cc0_setter, NULL,
14428 NULL_RTX, NULL_RTX, NULL_RTX);
14429 distribute_links (LOG_LINKS (cc0_setter));
14430
14431 SET_INSN_DELETED (cc0_setter);
14432 if (cc0_setter == i2)
14433 i2 = NULL;
14434 }
14435 }
14436 else
14437 {
14438 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14439
14440 /* If there isn't already a REG_UNUSED note, put one
14441 here. Do not place a REG_DEAD note, even if
14442 the register is also used here; that would not
14443 match the algorithm used in lifetime analysis
14444 and can cause the consistency check in the
14445 scheduler to fail. */
14446 if (! find_regno_note (tem_insn, REG_UNUSED,
14447 REGNO (XEXP (note, 0))))
14448 place = tem_insn;
14449 break;
14450 }
14451 }
14452 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14453 || (CALL_P (tem_insn)
14454 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14455 {
14456 place = tem_insn;
14457
14458 /* If we are doing a 3->2 combination, and we have a
14459 register which formerly died in i3 and was not used
14460 by i2, which now no longer dies in i3 and is used in
14461 i2 but does not die in i2, and place is between i2
14462 and i3, then we may need to move a link from place to
14463 i2. */
14464 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14465 && from_insn
14466 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14467 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14468 {
14469 struct insn_link *links = LOG_LINKS (place);
14470 LOG_LINKS (place) = NULL;
14471 distribute_links (links);
14472 }
14473 break;
14474 }
14475
14476 if (tem_insn == BB_HEAD (bb))
14477 break;
14478 }
14479
14480 }
14481
14482 /* If the register is set or already dead at PLACE, we needn't do
14483 anything with this note if it is still a REG_DEAD note.
14484 We check here if it is set at all, not if is it totally replaced,
14485 which is what `dead_or_set_p' checks, so also check for it being
14486 set partially. */
14487
14488 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14489 {
14490 unsigned int regno = REGNO (XEXP (note, 0));
14491 reg_stat_type *rsp = &reg_stat[regno];
14492
14493 if (dead_or_set_p (place, XEXP (note, 0))
14494 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14495 {
14496 /* Unless the register previously died in PLACE, clear
14497 last_death. [I no longer understand why this is
14498 being done.] */
14499 if (rsp->last_death != place)
14500 rsp->last_death = 0;
14501 place = 0;
14502 }
14503 else
14504 rsp->last_death = place;
14505
14506 /* If this is a death note for a hard reg that is occupying
14507 multiple registers, ensure that we are still using all
14508 parts of the object. If we find a piece of the object
14509 that is unused, we must arrange for an appropriate REG_DEAD
14510 note to be added for it. However, we can't just emit a USE
14511 and tag the note to it, since the register might actually
14512 be dead; so we recourse, and the recursive call then finds
14513 the previous insn that used this register. */
14514
14515 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14516 {
14517 unsigned int endregno = END_REGNO (XEXP (note, 0));
14518 bool all_used = true;
14519 unsigned int i;
14520
14521 for (i = regno; i < endregno; i++)
14522 if ((! refers_to_regno_p (i, PATTERN (place))
14523 && ! find_regno_fusage (place, USE, i))
14524 || dead_or_set_regno_p (place, i))
14525 {
14526 all_used = false;
14527 break;
14528 }
14529
14530 if (! all_used)
14531 {
14532 /* Put only REG_DEAD notes for pieces that are
14533 not already dead or set. */
14534
14535 for (i = regno; i < endregno;
14536 i += hard_regno_nregs[i][reg_raw_mode[i]])
14537 {
14538 rtx piece = regno_reg_rtx[i];
14539 basic_block bb = this_basic_block;
14540
14541 if (! dead_or_set_p (place, piece)
14542 && ! reg_bitfield_target_p (piece,
14543 PATTERN (place)))
14544 {
14545 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14546 NULL_RTX);
14547
14548 distribute_notes (new_note, place, place,
14549 NULL, NULL_RTX, NULL_RTX,
14550 NULL_RTX);
14551 }
14552 else if (! refers_to_regno_p (i, PATTERN (place))
14553 && ! find_regno_fusage (place, USE, i))
14554 for (tem_insn = PREV_INSN (place); ;
14555 tem_insn = PREV_INSN (tem_insn))
14556 {
14557 if (!NONDEBUG_INSN_P (tem_insn))
14558 {
14559 if (tem_insn == BB_HEAD (bb))
14560 break;
14561 continue;
14562 }
14563 if (dead_or_set_p (tem_insn, piece)
14564 || reg_bitfield_target_p (piece,
14565 PATTERN (tem_insn)))
14566 {
14567 add_reg_note (tem_insn, REG_UNUSED, piece);
14568 break;
14569 }
14570 }
14571 }
14572
14573 place = 0;
14574 }
14575 }
14576 }
14577 break;
14578
14579 default:
14580 /* Any other notes should not be present at this point in the
14581 compilation. */
14582 gcc_unreachable ();
14583 }
14584
14585 if (place)
14586 {
14587 XEXP (note, 1) = REG_NOTES (place);
14588 REG_NOTES (place) = note;
14589 }
14590
14591 if (place2)
14592 add_shallow_copy_of_reg_note (place2, note);
14593 }
14594 }
14595 \f
14596 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14597 I3, I2, and I1 to new locations. This is also called to add a link
14598 pointing at I3 when I3's destination is changed. */
14599
14600 static void
14601 distribute_links (struct insn_link *links)
14602 {
14603 struct insn_link *link, *next_link;
14604
14605 for (link = links; link; link = next_link)
14606 {
14607 rtx_insn *place = 0;
14608 rtx_insn *insn;
14609 rtx set, reg;
14610
14611 next_link = link->next;
14612
14613 /* If the insn that this link points to is a NOTE, ignore it. */
14614 if (NOTE_P (link->insn))
14615 continue;
14616
14617 set = 0;
14618 rtx pat = PATTERN (link->insn);
14619 if (GET_CODE (pat) == SET)
14620 set = pat;
14621 else if (GET_CODE (pat) == PARALLEL)
14622 {
14623 int i;
14624 for (i = 0; i < XVECLEN (pat, 0); i++)
14625 {
14626 set = XVECEXP (pat, 0, i);
14627 if (GET_CODE (set) != SET)
14628 continue;
14629
14630 reg = SET_DEST (set);
14631 while (GET_CODE (reg) == ZERO_EXTRACT
14632 || GET_CODE (reg) == STRICT_LOW_PART
14633 || GET_CODE (reg) == SUBREG)
14634 reg = XEXP (reg, 0);
14635
14636 if (!REG_P (reg))
14637 continue;
14638
14639 if (REGNO (reg) == link->regno)
14640 break;
14641 }
14642 if (i == XVECLEN (pat, 0))
14643 continue;
14644 }
14645 else
14646 continue;
14647
14648 reg = SET_DEST (set);
14649
14650 while (GET_CODE (reg) == ZERO_EXTRACT
14651 || GET_CODE (reg) == STRICT_LOW_PART
14652 || GET_CODE (reg) == SUBREG)
14653 reg = XEXP (reg, 0);
14654
14655 /* A LOG_LINK is defined as being placed on the first insn that uses
14656 a register and points to the insn that sets the register. Start
14657 searching at the next insn after the target of the link and stop
14658 when we reach a set of the register or the end of the basic block.
14659
14660 Note that this correctly handles the link that used to point from
14661 I3 to I2. Also note that not much searching is typically done here
14662 since most links don't point very far away. */
14663
14664 for (insn = NEXT_INSN (link->insn);
14665 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14666 || BB_HEAD (this_basic_block->next_bb) != insn));
14667 insn = NEXT_INSN (insn))
14668 if (DEBUG_INSN_P (insn))
14669 continue;
14670 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14671 {
14672 if (reg_referenced_p (reg, PATTERN (insn)))
14673 place = insn;
14674 break;
14675 }
14676 else if (CALL_P (insn)
14677 && find_reg_fusage (insn, USE, reg))
14678 {
14679 place = insn;
14680 break;
14681 }
14682 else if (INSN_P (insn) && reg_set_p (reg, insn))
14683 break;
14684
14685 /* If we found a place to put the link, place it there unless there
14686 is already a link to the same insn as LINK at that point. */
14687
14688 if (place)
14689 {
14690 struct insn_link *link2;
14691
14692 FOR_EACH_LOG_LINK (link2, place)
14693 if (link2->insn == link->insn && link2->regno == link->regno)
14694 break;
14695
14696 if (link2 == NULL)
14697 {
14698 link->next = LOG_LINKS (place);
14699 LOG_LINKS (place) = link;
14700
14701 /* Set added_links_insn to the earliest insn we added a
14702 link to. */
14703 if (added_links_insn == 0
14704 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14705 added_links_insn = place;
14706 }
14707 }
14708 }
14709 }
14710 \f
14711 /* Check for any register or memory mentioned in EQUIV that is not
14712 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14713 of EXPR where some registers may have been replaced by constants. */
14714
14715 static bool
14716 unmentioned_reg_p (rtx equiv, rtx expr)
14717 {
14718 subrtx_iterator::array_type array;
14719 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14720 {
14721 const_rtx x = *iter;
14722 if ((REG_P (x) || MEM_P (x))
14723 && !reg_mentioned_p (x, expr))
14724 return true;
14725 }
14726 return false;
14727 }
14728 \f
14729 DEBUG_FUNCTION void
14730 dump_combine_stats (FILE *file)
14731 {
14732 fprintf
14733 (file,
14734 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14735 combine_attempts, combine_merges, combine_extras, combine_successes);
14736 }
14737
14738 void
14739 dump_combine_total_stats (FILE *file)
14740 {
14741 fprintf
14742 (file,
14743 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14744 total_attempts, total_merges, total_extras, total_successes);
14745 }
14746 \f
14747 /* Try combining insns through substitution. */
14748 static unsigned int
14749 rest_of_handle_combine (void)
14750 {
14751 int rebuild_jump_labels_after_combine;
14752
14753 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14754 df_note_add_problem ();
14755 df_analyze ();
14756
14757 regstat_init_n_sets_and_refs ();
14758 reg_n_sets_max = max_reg_num ();
14759
14760 rebuild_jump_labels_after_combine
14761 = combine_instructions (get_insns (), max_reg_num ());
14762
14763 /* Combining insns may have turned an indirect jump into a
14764 direct jump. Rebuild the JUMP_LABEL fields of jumping
14765 instructions. */
14766 if (rebuild_jump_labels_after_combine)
14767 {
14768 if (dom_info_available_p (CDI_DOMINATORS))
14769 free_dominance_info (CDI_DOMINATORS);
14770 timevar_push (TV_JUMP);
14771 rebuild_jump_labels (get_insns ());
14772 cleanup_cfg (0);
14773 timevar_pop (TV_JUMP);
14774 }
14775
14776 regstat_free_n_sets_and_refs ();
14777 return 0;
14778 }
14779
14780 namespace {
14781
14782 const pass_data pass_data_combine =
14783 {
14784 RTL_PASS, /* type */
14785 "combine", /* name */
14786 OPTGROUP_NONE, /* optinfo_flags */
14787 TV_COMBINE, /* tv_id */
14788 PROP_cfglayout, /* properties_required */
14789 0, /* properties_provided */
14790 0, /* properties_destroyed */
14791 0, /* todo_flags_start */
14792 TODO_df_finish, /* todo_flags_finish */
14793 };
14794
14795 class pass_combine : public rtl_opt_pass
14796 {
14797 public:
14798 pass_combine (gcc::context *ctxt)
14799 : rtl_opt_pass (pass_data_combine, ctxt)
14800 {}
14801
14802 /* opt_pass methods: */
14803 virtual bool gate (function *) { return (optimize > 0); }
14804 virtual unsigned int execute (function *)
14805 {
14806 return rest_of_handle_combine ();
14807 }
14808
14809 }; // class pass_combine
14810
14811 } // anon namespace
14812
14813 rtl_opt_pass *
14814 make_pass_combine (gcc::context *ctxt)
14815 {
14816 return new pass_combine (ctxt);
14817 }