re PR rtl-optimization/43438 (possible wrong code bug)
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "real.h"
96 #include "toplev.h"
97 #include "target.h"
98 #include "optabs.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 /* Include output.h for dump_file. */
102 #include "output.h"
103 #include "params.h"
104 #include "timevar.h"
105 #include "tree-pass.h"
106 #include "df.h"
107 #include "cgraph.h"
108
109 /* Number of attempts to combine instructions in this function. */
110
111 static int combine_attempts;
112
113 /* Number of attempts that got as far as substitution in this function. */
114
115 static int combine_merges;
116
117 /* Number of instructions combined with added SETs in this function. */
118
119 static int combine_extras;
120
121 /* Number of instructions combined in this function. */
122
123 static int combine_successes;
124
125 /* Totals over entire compilation. */
126
127 static int total_attempts, total_merges, total_extras, total_successes;
128
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
135
136 static rtx i2mod;
137
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139
140 static rtx i2mod_old_rhs;
141
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143
144 static rtx i2mod_new_rhs;
145 \f
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
152
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
158
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
161
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
165
166 Therefore, we maintain the following fields:
167
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
176
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
181
182 (The next two parameters are out of date).
183
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
195
196 /* Record last value assigned to (hard or pseudo) register n. */
197
198 rtx last_set_value;
199
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
202
203 int last_set_table_tick;
204
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
207
208 int last_set_label;
209
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
214
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
222
223 char last_set_invalid;
224
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
229
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
234
235 If an entry is zero, it means that we don't know anything special. */
236
237 unsigned char sign_bit_copies;
238
239 unsigned HOST_WIDE_INT nonzero_bits;
240
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
244
245 int truncation_label;
246
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
251
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
254
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
257
258 static VEC(reg_stat_type,heap) *reg_stat;
259
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
262
263 static int mem_last_set;
264
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
267
268 static int last_call_luid;
269
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
275
276 static rtx subst_insn;
277
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
284
285 static int subst_low_luid;
286
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
289
290 static HARD_REG_SET newpat_used_regs;
291
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
295
296 static rtx added_links_insn;
297
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
301
302 \f
303 /* Length of the currently allocated uid_insn_cost array. */
304
305 static int max_uid_known;
306
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
309
310 static int *uid_insn_cost;
311
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as an INSN_LIST rtx. */
314
315 static rtx *uid_log_links;
316
317 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
318 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
319
320 /* Incremented for each basic block. */
321
322 static int label_tick;
323
324 /* Reset to label_tick for each extended basic block in scanning order. */
325
326 static int label_tick_ebb_start;
327
328 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
329 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
330
331 static enum machine_mode nonzero_bits_mode;
332
333 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
334 be safely used. It is zero while computing them and after combine has
335 completed. This former test prevents propagating values based on
336 previously set values, which can be incorrect if a variable is modified
337 in a loop. */
338
339 static int nonzero_sign_valid;
340
341 \f
342 /* Record one modification to rtl structure
343 to be undone by storing old_contents into *where. */
344
345 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE };
346
347 struct undo
348 {
349 struct undo *next;
350 enum undo_kind kind;
351 union { rtx r; int i; enum machine_mode m; } old_contents;
352 union { rtx *r; int *i; } where;
353 };
354
355 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
356 num_undo says how many are currently recorded.
357
358 other_insn is nonzero if we have modified some other insn in the process
359 of working on subst_insn. It must be verified too. */
360
361 struct undobuf
362 {
363 struct undo *undos;
364 struct undo *frees;
365 rtx other_insn;
366 };
367
368 static struct undobuf undobuf;
369
370 /* Number of times the pseudo being substituted for
371 was found and replaced. */
372
373 static int n_occurrences;
374
375 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
376 enum machine_mode,
377 unsigned HOST_WIDE_INT,
378 unsigned HOST_WIDE_INT *);
379 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
380 enum machine_mode,
381 unsigned int, unsigned int *);
382 static void do_SUBST (rtx *, rtx);
383 static void do_SUBST_INT (int *, int);
384 static void init_reg_last (void);
385 static void setup_incoming_promotions (rtx);
386 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
387 static int cant_combine_insn_p (rtx);
388 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
389 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
390 static int contains_muldiv (rtx);
391 static rtx try_combine (rtx, rtx, rtx, int *);
392 static void undo_all (void);
393 static void undo_commit (void);
394 static rtx *find_split_point (rtx *, rtx);
395 static rtx subst (rtx, rtx, rtx, int, int);
396 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
397 static rtx simplify_if_then_else (rtx);
398 static rtx simplify_set (rtx);
399 static rtx simplify_logical (rtx);
400 static rtx expand_compound_operation (rtx);
401 static const_rtx expand_field_assignment (const_rtx);
402 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
403 rtx, unsigned HOST_WIDE_INT, int, int, int);
404 static rtx extract_left_shift (rtx, int);
405 static rtx make_compound_operation (rtx, enum rtx_code);
406 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
407 unsigned HOST_WIDE_INT *);
408 static rtx canon_reg_for_combine (rtx, rtx);
409 static rtx force_to_mode (rtx, enum machine_mode,
410 unsigned HOST_WIDE_INT, int);
411 static rtx if_then_else_cond (rtx, rtx *, rtx *);
412 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
413 static int rtx_equal_for_field_assignment_p (rtx, rtx);
414 static rtx make_field_assignment (rtx);
415 static rtx apply_distributive_law (rtx);
416 static rtx distribute_and_simplify_rtx (rtx, int);
417 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
418 unsigned HOST_WIDE_INT);
419 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
420 unsigned HOST_WIDE_INT);
421 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
422 HOST_WIDE_INT, enum machine_mode, int *);
423 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
424 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
425 int);
426 static int recog_for_combine (rtx *, rtx, rtx *);
427 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
428 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
429 static void update_table_tick (rtx);
430 static void record_value_for_reg (rtx, rtx, rtx);
431 static void check_promoted_subreg (rtx, rtx);
432 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
433 static void record_dead_and_set_regs (rtx);
434 static int get_last_value_validate (rtx *, rtx, int, int);
435 static rtx get_last_value (const_rtx);
436 static int use_crosses_set_p (const_rtx, int);
437 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
438 static int reg_dead_at_p (rtx, rtx);
439 static void move_deaths (rtx, rtx, int, rtx, rtx *);
440 static int reg_bitfield_target_p (rtx, rtx);
441 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
442 static void distribute_links (rtx);
443 static void mark_used_regs_combine (rtx);
444 static void record_promoted_value (rtx, rtx);
445 static int unmentioned_reg_p_1 (rtx *, void *);
446 static bool unmentioned_reg_p (rtx, rtx);
447 static int record_truncated_value (rtx *, void *);
448 static void record_truncated_values (rtx *, void *);
449 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
450 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
451 \f
452
453 /* It is not safe to use ordinary gen_lowpart in combine.
454 See comments in gen_lowpart_for_combine. */
455 #undef RTL_HOOKS_GEN_LOWPART
456 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
457
458 /* Our implementation of gen_lowpart never emits a new pseudo. */
459 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
460 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
461
462 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
463 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
464
465 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
466 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
467
468 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
469 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
470
471 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
472
473 \f
474 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
475 PATTERN can not be split. Otherwise, it returns an insn sequence.
476 This is a wrapper around split_insns which ensures that the
477 reg_stat vector is made larger if the splitter creates a new
478 register. */
479
480 static rtx
481 combine_split_insns (rtx pattern, rtx insn)
482 {
483 rtx ret;
484 unsigned int nregs;
485
486 ret = split_insns (pattern, insn);
487 nregs = max_reg_num ();
488 if (nregs > VEC_length (reg_stat_type, reg_stat))
489 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
490 return ret;
491 }
492
493 /* This is used by find_single_use to locate an rtx in LOC that
494 contains exactly one use of DEST, which is typically either a REG
495 or CC0. It returns a pointer to the innermost rtx expression
496 containing DEST. Appearances of DEST that are being used to
497 totally replace it are not counted. */
498
499 static rtx *
500 find_single_use_1 (rtx dest, rtx *loc)
501 {
502 rtx x = *loc;
503 enum rtx_code code = GET_CODE (x);
504 rtx *result = NULL;
505 rtx *this_result;
506 int i;
507 const char *fmt;
508
509 switch (code)
510 {
511 case CONST_INT:
512 case CONST:
513 case LABEL_REF:
514 case SYMBOL_REF:
515 case CONST_DOUBLE:
516 case CONST_VECTOR:
517 case CLOBBER:
518 return 0;
519
520 case SET:
521 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
522 of a REG that occupies all of the REG, the insn uses DEST if
523 it is mentioned in the destination or the source. Otherwise, we
524 need just check the source. */
525 if (GET_CODE (SET_DEST (x)) != CC0
526 && GET_CODE (SET_DEST (x)) != PC
527 && !REG_P (SET_DEST (x))
528 && ! (GET_CODE (SET_DEST (x)) == SUBREG
529 && REG_P (SUBREG_REG (SET_DEST (x)))
530 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
531 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
532 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
533 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
534 break;
535
536 return find_single_use_1 (dest, &SET_SRC (x));
537
538 case MEM:
539 case SUBREG:
540 return find_single_use_1 (dest, &XEXP (x, 0));
541
542 default:
543 break;
544 }
545
546 /* If it wasn't one of the common cases above, check each expression and
547 vector of this code. Look for a unique usage of DEST. */
548
549 fmt = GET_RTX_FORMAT (code);
550 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
551 {
552 if (fmt[i] == 'e')
553 {
554 if (dest == XEXP (x, i)
555 || (REG_P (dest) && REG_P (XEXP (x, i))
556 && REGNO (dest) == REGNO (XEXP (x, i))))
557 this_result = loc;
558 else
559 this_result = find_single_use_1 (dest, &XEXP (x, i));
560
561 if (result == NULL)
562 result = this_result;
563 else if (this_result)
564 /* Duplicate usage. */
565 return NULL;
566 }
567 else if (fmt[i] == 'E')
568 {
569 int j;
570
571 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
572 {
573 if (XVECEXP (x, i, j) == dest
574 || (REG_P (dest)
575 && REG_P (XVECEXP (x, i, j))
576 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
577 this_result = loc;
578 else
579 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
580
581 if (result == NULL)
582 result = this_result;
583 else if (this_result)
584 return NULL;
585 }
586 }
587 }
588
589 return result;
590 }
591
592
593 /* See if DEST, produced in INSN, is used only a single time in the
594 sequel. If so, return a pointer to the innermost rtx expression in which
595 it is used.
596
597 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
598
599 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
600 care about REG_DEAD notes or LOG_LINKS.
601
602 Otherwise, we find the single use by finding an insn that has a
603 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
604 only referenced once in that insn, we know that it must be the first
605 and last insn referencing DEST. */
606
607 static rtx *
608 find_single_use (rtx dest, rtx insn, rtx *ploc)
609 {
610 basic_block bb;
611 rtx next;
612 rtx *result;
613 rtx link;
614
615 #ifdef HAVE_cc0
616 if (dest == cc0_rtx)
617 {
618 next = NEXT_INSN (insn);
619 if (next == 0
620 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
621 return 0;
622
623 result = find_single_use_1 (dest, &PATTERN (next));
624 if (result && ploc)
625 *ploc = next;
626 return result;
627 }
628 #endif
629
630 if (!REG_P (dest))
631 return 0;
632
633 bb = BLOCK_FOR_INSN (insn);
634 for (next = NEXT_INSN (insn);
635 next && BLOCK_FOR_INSN (next) == bb;
636 next = NEXT_INSN (next))
637 if (INSN_P (next) && dead_or_set_p (next, dest))
638 {
639 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
640 if (XEXP (link, 0) == insn)
641 break;
642
643 if (link)
644 {
645 result = find_single_use_1 (dest, &PATTERN (next));
646 if (ploc)
647 *ploc = next;
648 return result;
649 }
650 }
651
652 return 0;
653 }
654 \f
655 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
656 insn. The substitution can be undone by undo_all. If INTO is already
657 set to NEWVAL, do not record this change. Because computing NEWVAL might
658 also call SUBST, we have to compute it before we put anything into
659 the undo table. */
660
661 static void
662 do_SUBST (rtx *into, rtx newval)
663 {
664 struct undo *buf;
665 rtx oldval = *into;
666
667 if (oldval == newval)
668 return;
669
670 /* We'd like to catch as many invalid transformations here as
671 possible. Unfortunately, there are way too many mode changes
672 that are perfectly valid, so we'd waste too much effort for
673 little gain doing the checks here. Focus on catching invalid
674 transformations involving integer constants. */
675 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
676 && CONST_INT_P (newval))
677 {
678 /* Sanity check that we're replacing oldval with a CONST_INT
679 that is a valid sign-extension for the original mode. */
680 gcc_assert (INTVAL (newval)
681 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
682
683 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
684 CONST_INT is not valid, because after the replacement, the
685 original mode would be gone. Unfortunately, we can't tell
686 when do_SUBST is called to replace the operand thereof, so we
687 perform this test on oldval instead, checking whether an
688 invalid replacement took place before we got here. */
689 gcc_assert (!(GET_CODE (oldval) == SUBREG
690 && CONST_INT_P (SUBREG_REG (oldval))));
691 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
692 && CONST_INT_P (XEXP (oldval, 0))));
693 }
694
695 if (undobuf.frees)
696 buf = undobuf.frees, undobuf.frees = buf->next;
697 else
698 buf = XNEW (struct undo);
699
700 buf->kind = UNDO_RTX;
701 buf->where.r = into;
702 buf->old_contents.r = oldval;
703 *into = newval;
704
705 buf->next = undobuf.undos, undobuf.undos = buf;
706 }
707
708 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
709
710 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
711 for the value of a HOST_WIDE_INT value (including CONST_INT) is
712 not safe. */
713
714 static void
715 do_SUBST_INT (int *into, int newval)
716 {
717 struct undo *buf;
718 int oldval = *into;
719
720 if (oldval == newval)
721 return;
722
723 if (undobuf.frees)
724 buf = undobuf.frees, undobuf.frees = buf->next;
725 else
726 buf = XNEW (struct undo);
727
728 buf->kind = UNDO_INT;
729 buf->where.i = into;
730 buf->old_contents.i = oldval;
731 *into = newval;
732
733 buf->next = undobuf.undos, undobuf.undos = buf;
734 }
735
736 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
737
738 /* Similar to SUBST, but just substitute the mode. This is used when
739 changing the mode of a pseudo-register, so that any other
740 references to the entry in the regno_reg_rtx array will change as
741 well. */
742
743 static void
744 do_SUBST_MODE (rtx *into, enum machine_mode newval)
745 {
746 struct undo *buf;
747 enum machine_mode oldval = GET_MODE (*into);
748
749 if (oldval == newval)
750 return;
751
752 if (undobuf.frees)
753 buf = undobuf.frees, undobuf.frees = buf->next;
754 else
755 buf = XNEW (struct undo);
756
757 buf->kind = UNDO_MODE;
758 buf->where.r = into;
759 buf->old_contents.m = oldval;
760 adjust_reg_mode (*into, newval);
761
762 buf->next = undobuf.undos, undobuf.undos = buf;
763 }
764
765 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
766 \f
767 /* Subroutine of try_combine. Determine whether the combine replacement
768 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
769 insn_rtx_cost that the original instruction sequence I1, I2, I3 and
770 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
771 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
772 function returns false, if the costs of all instructions can be
773 estimated, and the replacements are more expensive than the original
774 sequence. */
775
776 static bool
777 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat,
778 rtx newotherpat)
779 {
780 int i1_cost, i2_cost, i3_cost;
781 int new_i2_cost, new_i3_cost;
782 int old_cost, new_cost;
783
784 /* Lookup the original insn_rtx_costs. */
785 i2_cost = INSN_COST (i2);
786 i3_cost = INSN_COST (i3);
787
788 if (i1)
789 {
790 i1_cost = INSN_COST (i1);
791 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
792 ? i1_cost + i2_cost + i3_cost : 0;
793 }
794 else
795 {
796 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
797 i1_cost = 0;
798 }
799
800 /* Calculate the replacement insn_rtx_costs. */
801 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
802 if (newi2pat)
803 {
804 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
805 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
806 ? new_i2_cost + new_i3_cost : 0;
807 }
808 else
809 {
810 new_cost = new_i3_cost;
811 new_i2_cost = 0;
812 }
813
814 if (undobuf.other_insn)
815 {
816 int old_other_cost, new_other_cost;
817
818 old_other_cost = INSN_COST (undobuf.other_insn);
819 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
820 if (old_other_cost > 0 && new_other_cost > 0)
821 {
822 old_cost += old_other_cost;
823 new_cost += new_other_cost;
824 }
825 else
826 old_cost = 0;
827 }
828
829 /* Disallow this recombination if both new_cost and old_cost are
830 greater than zero, and new_cost is greater than old cost. */
831 if (old_cost > 0
832 && new_cost > old_cost)
833 {
834 if (dump_file)
835 {
836 if (i1)
837 {
838 fprintf (dump_file,
839 "rejecting combination of insns %d, %d and %d\n",
840 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
841 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
842 i1_cost, i2_cost, i3_cost, old_cost);
843 }
844 else
845 {
846 fprintf (dump_file,
847 "rejecting combination of insns %d and %d\n",
848 INSN_UID (i2), INSN_UID (i3));
849 fprintf (dump_file, "original costs %d + %d = %d\n",
850 i2_cost, i3_cost, old_cost);
851 }
852
853 if (newi2pat)
854 {
855 fprintf (dump_file, "replacement costs %d + %d = %d\n",
856 new_i2_cost, new_i3_cost, new_cost);
857 }
858 else
859 fprintf (dump_file, "replacement cost %d\n", new_cost);
860 }
861
862 return false;
863 }
864
865 /* Update the uid_insn_cost array with the replacement costs. */
866 INSN_COST (i2) = new_i2_cost;
867 INSN_COST (i3) = new_i3_cost;
868 if (i1)
869 INSN_COST (i1) = 0;
870
871 return true;
872 }
873
874
875 /* Delete any insns that copy a register to itself. */
876
877 static void
878 delete_noop_moves (void)
879 {
880 rtx insn, next;
881 basic_block bb;
882
883 FOR_EACH_BB (bb)
884 {
885 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
886 {
887 next = NEXT_INSN (insn);
888 if (INSN_P (insn) && noop_move_p (insn))
889 {
890 if (dump_file)
891 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
892
893 delete_insn_and_edges (insn);
894 }
895 }
896 }
897 }
898
899 \f
900 /* Fill in log links field for all insns. */
901
902 static void
903 create_log_links (void)
904 {
905 basic_block bb;
906 rtx *next_use, insn;
907 df_ref *def_vec, *use_vec;
908
909 next_use = XCNEWVEC (rtx, max_reg_num ());
910
911 /* Pass through each block from the end, recording the uses of each
912 register and establishing log links when def is encountered.
913 Note that we do not clear next_use array in order to save time,
914 so we have to test whether the use is in the same basic block as def.
915
916 There are a few cases below when we do not consider the definition or
917 usage -- these are taken from original flow.c did. Don't ask me why it is
918 done this way; I don't know and if it works, I don't want to know. */
919
920 FOR_EACH_BB (bb)
921 {
922 FOR_BB_INSNS_REVERSE (bb, insn)
923 {
924 if (!NONDEBUG_INSN_P (insn))
925 continue;
926
927 /* Log links are created only once. */
928 gcc_assert (!LOG_LINKS (insn));
929
930 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
931 {
932 df_ref def = *def_vec;
933 int regno = DF_REF_REGNO (def);
934 rtx use_insn;
935
936 if (!next_use[regno])
937 continue;
938
939 /* Do not consider if it is pre/post modification in MEM. */
940 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
941 continue;
942
943 /* Do not make the log link for frame pointer. */
944 if ((regno == FRAME_POINTER_REGNUM
945 && (! reload_completed || frame_pointer_needed))
946 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
947 || (regno == HARD_FRAME_POINTER_REGNUM
948 && (! reload_completed || frame_pointer_needed))
949 #endif
950 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
951 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
952 #endif
953 )
954 continue;
955
956 use_insn = next_use[regno];
957 if (BLOCK_FOR_INSN (use_insn) == bb)
958 {
959 /* flow.c claimed:
960
961 We don't build a LOG_LINK for hard registers contained
962 in ASM_OPERANDs. If these registers get replaced,
963 we might wind up changing the semantics of the insn,
964 even if reload can make what appear to be valid
965 assignments later. */
966 if (regno >= FIRST_PSEUDO_REGISTER
967 || asm_noperands (PATTERN (use_insn)) < 0)
968 {
969 /* Don't add duplicate links between instructions. */
970 rtx links;
971 for (links = LOG_LINKS (use_insn); links;
972 links = XEXP (links, 1))
973 if (insn == XEXP (links, 0))
974 break;
975
976 if (!links)
977 LOG_LINKS (use_insn) =
978 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
979 }
980 }
981 next_use[regno] = NULL_RTX;
982 }
983
984 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
985 {
986 df_ref use = *use_vec;
987 int regno = DF_REF_REGNO (use);
988
989 /* Do not consider the usage of the stack pointer
990 by function call. */
991 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
992 continue;
993
994 next_use[regno] = insn;
995 }
996 }
997 }
998
999 free (next_use);
1000 }
1001
1002 /* Clear LOG_LINKS fields of insns. */
1003
1004 static void
1005 clear_log_links (void)
1006 {
1007 rtx insn;
1008
1009 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1010 if (INSN_P (insn))
1011 free_INSN_LIST_list (&LOG_LINKS (insn));
1012 }
1013 \f
1014 /* Main entry point for combiner. F is the first insn of the function.
1015 NREGS is the first unused pseudo-reg number.
1016
1017 Return nonzero if the combiner has turned an indirect jump
1018 instruction into a direct jump. */
1019 static int
1020 combine_instructions (rtx f, unsigned int nregs)
1021 {
1022 rtx insn, next;
1023 #ifdef HAVE_cc0
1024 rtx prev;
1025 #endif
1026 rtx links, nextlinks;
1027 rtx first;
1028 basic_block last_bb;
1029
1030 int new_direct_jump_p = 0;
1031
1032 for (first = f; first && !INSN_P (first); )
1033 first = NEXT_INSN (first);
1034 if (!first)
1035 return 0;
1036
1037 combine_attempts = 0;
1038 combine_merges = 0;
1039 combine_extras = 0;
1040 combine_successes = 0;
1041
1042 rtl_hooks = combine_rtl_hooks;
1043
1044 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1045
1046 init_recog_no_volatile ();
1047
1048 /* Allocate array for insn info. */
1049 max_uid_known = get_max_uid ();
1050 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1051 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1052
1053 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1054
1055 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1056 problems when, for example, we have j <<= 1 in a loop. */
1057
1058 nonzero_sign_valid = 0;
1059 label_tick = label_tick_ebb_start = 1;
1060
1061 /* Scan all SETs and see if we can deduce anything about what
1062 bits are known to be zero for some registers and how many copies
1063 of the sign bit are known to exist for those registers.
1064
1065 Also set any known values so that we can use it while searching
1066 for what bits are known to be set. */
1067
1068 setup_incoming_promotions (first);
1069 /* Allow the entry block and the first block to fall into the same EBB.
1070 Conceptually the incoming promotions are assigned to the entry block. */
1071 last_bb = ENTRY_BLOCK_PTR;
1072
1073 create_log_links ();
1074 FOR_EACH_BB (this_basic_block)
1075 {
1076 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1077 last_call_luid = 0;
1078 mem_last_set = -1;
1079
1080 label_tick++;
1081 if (!single_pred_p (this_basic_block)
1082 || single_pred (this_basic_block) != last_bb)
1083 label_tick_ebb_start = label_tick;
1084 last_bb = this_basic_block;
1085
1086 FOR_BB_INSNS (this_basic_block, insn)
1087 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1088 {
1089 subst_low_luid = DF_INSN_LUID (insn);
1090 subst_insn = insn;
1091
1092 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1093 insn);
1094 record_dead_and_set_regs (insn);
1095
1096 #ifdef AUTO_INC_DEC
1097 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1098 if (REG_NOTE_KIND (links) == REG_INC)
1099 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1100 insn);
1101 #endif
1102
1103 /* Record the current insn_rtx_cost of this instruction. */
1104 if (NONJUMP_INSN_P (insn))
1105 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1106 optimize_this_for_speed_p);
1107 if (dump_file)
1108 fprintf(dump_file, "insn_cost %d: %d\n",
1109 INSN_UID (insn), INSN_COST (insn));
1110 }
1111 }
1112
1113 nonzero_sign_valid = 1;
1114
1115 /* Now scan all the insns in forward order. */
1116 label_tick = label_tick_ebb_start = 1;
1117 init_reg_last ();
1118 setup_incoming_promotions (first);
1119 last_bb = ENTRY_BLOCK_PTR;
1120
1121 FOR_EACH_BB (this_basic_block)
1122 {
1123 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1124 last_call_luid = 0;
1125 mem_last_set = -1;
1126
1127 label_tick++;
1128 if (!single_pred_p (this_basic_block)
1129 || single_pred (this_basic_block) != last_bb)
1130 label_tick_ebb_start = label_tick;
1131 last_bb = this_basic_block;
1132
1133 rtl_profile_for_bb (this_basic_block);
1134 for (insn = BB_HEAD (this_basic_block);
1135 insn != NEXT_INSN (BB_END (this_basic_block));
1136 insn = next ? next : NEXT_INSN (insn))
1137 {
1138 next = 0;
1139 if (NONDEBUG_INSN_P (insn))
1140 {
1141 /* See if we know about function return values before this
1142 insn based upon SUBREG flags. */
1143 check_promoted_subreg (insn, PATTERN (insn));
1144
1145 /* See if we can find hardregs and subreg of pseudos in
1146 narrower modes. This could help turning TRUNCATEs
1147 into SUBREGs. */
1148 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1149
1150 /* Try this insn with each insn it links back to. */
1151
1152 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1153 if ((next = try_combine (insn, XEXP (links, 0),
1154 NULL_RTX, &new_direct_jump_p)) != 0)
1155 goto retry;
1156
1157 /* Try each sequence of three linked insns ending with this one. */
1158
1159 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1160 {
1161 rtx link = XEXP (links, 0);
1162
1163 /* If the linked insn has been replaced by a note, then there
1164 is no point in pursuing this chain any further. */
1165 if (NOTE_P (link))
1166 continue;
1167
1168 for (nextlinks = LOG_LINKS (link);
1169 nextlinks;
1170 nextlinks = XEXP (nextlinks, 1))
1171 if ((next = try_combine (insn, link,
1172 XEXP (nextlinks, 0),
1173 &new_direct_jump_p)) != 0)
1174 goto retry;
1175 }
1176
1177 #ifdef HAVE_cc0
1178 /* Try to combine a jump insn that uses CC0
1179 with a preceding insn that sets CC0, and maybe with its
1180 logical predecessor as well.
1181 This is how we make decrement-and-branch insns.
1182 We need this special code because data flow connections
1183 via CC0 do not get entered in LOG_LINKS. */
1184
1185 if (JUMP_P (insn)
1186 && (prev = prev_nonnote_insn (insn)) != 0
1187 && NONJUMP_INSN_P (prev)
1188 && sets_cc0_p (PATTERN (prev)))
1189 {
1190 if ((next = try_combine (insn, prev,
1191 NULL_RTX, &new_direct_jump_p)) != 0)
1192 goto retry;
1193
1194 for (nextlinks = LOG_LINKS (prev); nextlinks;
1195 nextlinks = XEXP (nextlinks, 1))
1196 if ((next = try_combine (insn, prev,
1197 XEXP (nextlinks, 0),
1198 &new_direct_jump_p)) != 0)
1199 goto retry;
1200 }
1201
1202 /* Do the same for an insn that explicitly references CC0. */
1203 if (NONJUMP_INSN_P (insn)
1204 && (prev = prev_nonnote_insn (insn)) != 0
1205 && NONJUMP_INSN_P (prev)
1206 && sets_cc0_p (PATTERN (prev))
1207 && GET_CODE (PATTERN (insn)) == SET
1208 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1209 {
1210 if ((next = try_combine (insn, prev,
1211 NULL_RTX, &new_direct_jump_p)) != 0)
1212 goto retry;
1213
1214 for (nextlinks = LOG_LINKS (prev); nextlinks;
1215 nextlinks = XEXP (nextlinks, 1))
1216 if ((next = try_combine (insn, prev,
1217 XEXP (nextlinks, 0),
1218 &new_direct_jump_p)) != 0)
1219 goto retry;
1220 }
1221
1222 /* Finally, see if any of the insns that this insn links to
1223 explicitly references CC0. If so, try this insn, that insn,
1224 and its predecessor if it sets CC0. */
1225 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1226 if (NONJUMP_INSN_P (XEXP (links, 0))
1227 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1228 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1229 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1230 && NONJUMP_INSN_P (prev)
1231 && sets_cc0_p (PATTERN (prev))
1232 && (next = try_combine (insn, XEXP (links, 0),
1233 prev, &new_direct_jump_p)) != 0)
1234 goto retry;
1235 #endif
1236
1237 /* Try combining an insn with two different insns whose results it
1238 uses. */
1239 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1240 for (nextlinks = XEXP (links, 1); nextlinks;
1241 nextlinks = XEXP (nextlinks, 1))
1242 if ((next = try_combine (insn, XEXP (links, 0),
1243 XEXP (nextlinks, 0),
1244 &new_direct_jump_p)) != 0)
1245 goto retry;
1246
1247 /* Try this insn with each REG_EQUAL note it links back to. */
1248 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1249 {
1250 rtx set, note;
1251 rtx temp = XEXP (links, 0);
1252 if ((set = single_set (temp)) != 0
1253 && (note = find_reg_equal_equiv_note (temp)) != 0
1254 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1255 /* Avoid using a register that may already been marked
1256 dead by an earlier instruction. */
1257 && ! unmentioned_reg_p (note, SET_SRC (set))
1258 && (GET_MODE (note) == VOIDmode
1259 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1260 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1261 {
1262 /* Temporarily replace the set's source with the
1263 contents of the REG_EQUAL note. The insn will
1264 be deleted or recognized by try_combine. */
1265 rtx orig = SET_SRC (set);
1266 SET_SRC (set) = note;
1267 i2mod = temp;
1268 i2mod_old_rhs = copy_rtx (orig);
1269 i2mod_new_rhs = copy_rtx (note);
1270 next = try_combine (insn, i2mod, NULL_RTX,
1271 &new_direct_jump_p);
1272 i2mod = NULL_RTX;
1273 if (next)
1274 goto retry;
1275 SET_SRC (set) = orig;
1276 }
1277 }
1278
1279 if (!NOTE_P (insn))
1280 record_dead_and_set_regs (insn);
1281
1282 retry:
1283 ;
1284 }
1285 }
1286 }
1287
1288 default_rtl_profile ();
1289 clear_log_links ();
1290 clear_bb_flags ();
1291 new_direct_jump_p |= purge_all_dead_edges ();
1292 delete_noop_moves ();
1293
1294 /* Clean up. */
1295 free (uid_log_links);
1296 free (uid_insn_cost);
1297 VEC_free (reg_stat_type, heap, reg_stat);
1298
1299 {
1300 struct undo *undo, *next;
1301 for (undo = undobuf.frees; undo; undo = next)
1302 {
1303 next = undo->next;
1304 free (undo);
1305 }
1306 undobuf.frees = 0;
1307 }
1308
1309 total_attempts += combine_attempts;
1310 total_merges += combine_merges;
1311 total_extras += combine_extras;
1312 total_successes += combine_successes;
1313
1314 nonzero_sign_valid = 0;
1315 rtl_hooks = general_rtl_hooks;
1316
1317 /* Make recognizer allow volatile MEMs again. */
1318 init_recog ();
1319
1320 return new_direct_jump_p;
1321 }
1322
1323 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1324
1325 static void
1326 init_reg_last (void)
1327 {
1328 unsigned int i;
1329 reg_stat_type *p;
1330
1331 for (i = 0; VEC_iterate (reg_stat_type, reg_stat, i, p); ++i)
1332 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1333 }
1334 \f
1335 /* Set up any promoted values for incoming argument registers. */
1336
1337 static void
1338 setup_incoming_promotions (rtx first)
1339 {
1340 tree arg;
1341 bool strictly_local = false;
1342
1343 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1344 arg = TREE_CHAIN (arg))
1345 {
1346 rtx x, reg = DECL_INCOMING_RTL (arg);
1347 int uns1, uns3;
1348 enum machine_mode mode1, mode2, mode3, mode4;
1349
1350 /* Only continue if the incoming argument is in a register. */
1351 if (!REG_P (reg))
1352 continue;
1353
1354 /* Determine, if possible, whether all call sites of the current
1355 function lie within the current compilation unit. (This does
1356 take into account the exporting of a function via taking its
1357 address, and so forth.) */
1358 strictly_local = cgraph_local_info (current_function_decl)->local;
1359
1360 /* The mode and signedness of the argument before any promotions happen
1361 (equal to the mode of the pseudo holding it at that stage). */
1362 mode1 = TYPE_MODE (TREE_TYPE (arg));
1363 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1364
1365 /* The mode and signedness of the argument after any source language and
1366 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1367 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1368 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1369
1370 /* The mode and signedness of the argument as it is actually passed,
1371 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1372 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1373 TREE_TYPE (cfun->decl), 0);
1374
1375 /* The mode of the register in which the argument is being passed. */
1376 mode4 = GET_MODE (reg);
1377
1378 /* Eliminate sign extensions in the callee when:
1379 (a) A mode promotion has occurred; */
1380 if (mode1 == mode3)
1381 continue;
1382 /* (b) The mode of the register is the same as the mode of
1383 the argument as it is passed; */
1384 if (mode3 != mode4)
1385 continue;
1386 /* (c) There's no language level extension; */
1387 if (mode1 == mode2)
1388 ;
1389 /* (c.1) All callers are from the current compilation unit. If that's
1390 the case we don't have to rely on an ABI, we only have to know
1391 what we're generating right now, and we know that we will do the
1392 mode1 to mode2 promotion with the given sign. */
1393 else if (!strictly_local)
1394 continue;
1395 /* (c.2) The combination of the two promotions is useful. This is
1396 true when the signs match, or if the first promotion is unsigned.
1397 In the later case, (sign_extend (zero_extend x)) is the same as
1398 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1399 else if (uns1)
1400 uns3 = true;
1401 else if (uns3)
1402 continue;
1403
1404 /* Record that the value was promoted from mode1 to mode3,
1405 so that any sign extension at the head of the current
1406 function may be eliminated. */
1407 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1408 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1409 record_value_for_reg (reg, first, x);
1410 }
1411 }
1412
1413 /* Called via note_stores. If X is a pseudo that is narrower than
1414 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1415
1416 If we are setting only a portion of X and we can't figure out what
1417 portion, assume all bits will be used since we don't know what will
1418 be happening.
1419
1420 Similarly, set how many bits of X are known to be copies of the sign bit
1421 at all locations in the function. This is the smallest number implied
1422 by any set of X. */
1423
1424 static void
1425 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1426 {
1427 rtx insn = (rtx) data;
1428 unsigned int num;
1429
1430 if (REG_P (x)
1431 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1432 /* If this register is undefined at the start of the file, we can't
1433 say what its contents were. */
1434 && ! REGNO_REG_SET_P
1435 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1436 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1437 {
1438 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1439
1440 if (set == 0 || GET_CODE (set) == CLOBBER)
1441 {
1442 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1443 rsp->sign_bit_copies = 1;
1444 return;
1445 }
1446
1447 /* If this register is being initialized using itself, and the
1448 register is uninitialized in this basic block, and there are
1449 no LOG_LINKS which set the register, then part of the
1450 register is uninitialized. In that case we can't assume
1451 anything about the number of nonzero bits.
1452
1453 ??? We could do better if we checked this in
1454 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1455 could avoid making assumptions about the insn which initially
1456 sets the register, while still using the information in other
1457 insns. We would have to be careful to check every insn
1458 involved in the combination. */
1459
1460 if (insn
1461 && reg_referenced_p (x, PATTERN (insn))
1462 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1463 REGNO (x)))
1464 {
1465 rtx link;
1466
1467 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1468 {
1469 if (dead_or_set_p (XEXP (link, 0), x))
1470 break;
1471 }
1472 if (!link)
1473 {
1474 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1475 rsp->sign_bit_copies = 1;
1476 return;
1477 }
1478 }
1479
1480 /* If this is a complex assignment, see if we can convert it into a
1481 simple assignment. */
1482 set = expand_field_assignment (set);
1483
1484 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1485 set what we know about X. */
1486
1487 if (SET_DEST (set) == x
1488 || (GET_CODE (SET_DEST (set)) == SUBREG
1489 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1490 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1491 && SUBREG_REG (SET_DEST (set)) == x))
1492 {
1493 rtx src = SET_SRC (set);
1494
1495 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1496 /* If X is narrower than a word and SRC is a non-negative
1497 constant that would appear negative in the mode of X,
1498 sign-extend it for use in reg_stat[].nonzero_bits because some
1499 machines (maybe most) will actually do the sign-extension
1500 and this is the conservative approach.
1501
1502 ??? For 2.5, try to tighten up the MD files in this regard
1503 instead of this kludge. */
1504
1505 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1506 && CONST_INT_P (src)
1507 && INTVAL (src) > 0
1508 && 0 != (INTVAL (src)
1509 & ((HOST_WIDE_INT) 1
1510 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1511 src = GEN_INT (INTVAL (src)
1512 | ((HOST_WIDE_INT) (-1)
1513 << GET_MODE_BITSIZE (GET_MODE (x))));
1514 #endif
1515
1516 /* Don't call nonzero_bits if it cannot change anything. */
1517 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1518 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1519 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1520 if (rsp->sign_bit_copies == 0
1521 || rsp->sign_bit_copies > num)
1522 rsp->sign_bit_copies = num;
1523 }
1524 else
1525 {
1526 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1527 rsp->sign_bit_copies = 1;
1528 }
1529 }
1530 }
1531 \f
1532 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1533 insns that were previously combined into I3 or that will be combined
1534 into the merger of INSN and I3.
1535
1536 Return 0 if the combination is not allowed for any reason.
1537
1538 If the combination is allowed, *PDEST will be set to the single
1539 destination of INSN and *PSRC to the single source, and this function
1540 will return 1. */
1541
1542 static int
1543 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1544 rtx *pdest, rtx *psrc)
1545 {
1546 int i;
1547 const_rtx set = 0;
1548 rtx src, dest;
1549 rtx p;
1550 #ifdef AUTO_INC_DEC
1551 rtx link;
1552 #endif
1553 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1554 && next_active_insn (succ) == i3)
1555 : next_active_insn (insn) == i3);
1556
1557 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1558 or a PARALLEL consisting of such a SET and CLOBBERs.
1559
1560 If INSN has CLOBBER parallel parts, ignore them for our processing.
1561 By definition, these happen during the execution of the insn. When it
1562 is merged with another insn, all bets are off. If they are, in fact,
1563 needed and aren't also supplied in I3, they may be added by
1564 recog_for_combine. Otherwise, it won't match.
1565
1566 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1567 note.
1568
1569 Get the source and destination of INSN. If more than one, can't
1570 combine. */
1571
1572 if (GET_CODE (PATTERN (insn)) == SET)
1573 set = PATTERN (insn);
1574 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1575 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1576 {
1577 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1578 {
1579 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1580
1581 switch (GET_CODE (elt))
1582 {
1583 /* This is important to combine floating point insns
1584 for the SH4 port. */
1585 case USE:
1586 /* Combining an isolated USE doesn't make sense.
1587 We depend here on combinable_i3pat to reject them. */
1588 /* The code below this loop only verifies that the inputs of
1589 the SET in INSN do not change. We call reg_set_between_p
1590 to verify that the REG in the USE does not change between
1591 I3 and INSN.
1592 If the USE in INSN was for a pseudo register, the matching
1593 insn pattern will likely match any register; combining this
1594 with any other USE would only be safe if we knew that the
1595 used registers have identical values, or if there was
1596 something to tell them apart, e.g. different modes. For
1597 now, we forgo such complicated tests and simply disallow
1598 combining of USES of pseudo registers with any other USE. */
1599 if (REG_P (XEXP (elt, 0))
1600 && GET_CODE (PATTERN (i3)) == PARALLEL)
1601 {
1602 rtx i3pat = PATTERN (i3);
1603 int i = XVECLEN (i3pat, 0) - 1;
1604 unsigned int regno = REGNO (XEXP (elt, 0));
1605
1606 do
1607 {
1608 rtx i3elt = XVECEXP (i3pat, 0, i);
1609
1610 if (GET_CODE (i3elt) == USE
1611 && REG_P (XEXP (i3elt, 0))
1612 && (REGNO (XEXP (i3elt, 0)) == regno
1613 ? reg_set_between_p (XEXP (elt, 0),
1614 PREV_INSN (insn), i3)
1615 : regno >= FIRST_PSEUDO_REGISTER))
1616 return 0;
1617 }
1618 while (--i >= 0);
1619 }
1620 break;
1621
1622 /* We can ignore CLOBBERs. */
1623 case CLOBBER:
1624 break;
1625
1626 case SET:
1627 /* Ignore SETs whose result isn't used but not those that
1628 have side-effects. */
1629 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1630 && insn_nothrow_p (insn)
1631 && !side_effects_p (elt))
1632 break;
1633
1634 /* If we have already found a SET, this is a second one and
1635 so we cannot combine with this insn. */
1636 if (set)
1637 return 0;
1638
1639 set = elt;
1640 break;
1641
1642 default:
1643 /* Anything else means we can't combine. */
1644 return 0;
1645 }
1646 }
1647
1648 if (set == 0
1649 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1650 so don't do anything with it. */
1651 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1652 return 0;
1653 }
1654 else
1655 return 0;
1656
1657 if (set == 0)
1658 return 0;
1659
1660 set = expand_field_assignment (set);
1661 src = SET_SRC (set), dest = SET_DEST (set);
1662
1663 /* Don't eliminate a store in the stack pointer. */
1664 if (dest == stack_pointer_rtx
1665 /* Don't combine with an insn that sets a register to itself if it has
1666 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1667 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1668 /* Can't merge an ASM_OPERANDS. */
1669 || GET_CODE (src) == ASM_OPERANDS
1670 /* Can't merge a function call. */
1671 || GET_CODE (src) == CALL
1672 /* Don't eliminate a function call argument. */
1673 || (CALL_P (i3)
1674 && (find_reg_fusage (i3, USE, dest)
1675 || (REG_P (dest)
1676 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1677 && global_regs[REGNO (dest)])))
1678 /* Don't substitute into an incremented register. */
1679 || FIND_REG_INC_NOTE (i3, dest)
1680 || (succ && FIND_REG_INC_NOTE (succ, dest))
1681 /* Don't substitute into a non-local goto, this confuses CFG. */
1682 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1683 /* Make sure that DEST is not used after SUCC but before I3. */
1684 || (succ && ! all_adjacent
1685 && reg_used_between_p (dest, succ, i3))
1686 /* Make sure that the value that is to be substituted for the register
1687 does not use any registers whose values alter in between. However,
1688 If the insns are adjacent, a use can't cross a set even though we
1689 think it might (this can happen for a sequence of insns each setting
1690 the same destination; last_set of that register might point to
1691 a NOTE). If INSN has a REG_EQUIV note, the register is always
1692 equivalent to the memory so the substitution is valid even if there
1693 are intervening stores. Also, don't move a volatile asm or
1694 UNSPEC_VOLATILE across any other insns. */
1695 || (! all_adjacent
1696 && (((!MEM_P (src)
1697 || ! find_reg_note (insn, REG_EQUIV, src))
1698 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1699 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1700 || GET_CODE (src) == UNSPEC_VOLATILE))
1701 /* Don't combine across a CALL_INSN, because that would possibly
1702 change whether the life span of some REGs crosses calls or not,
1703 and it is a pain to update that information.
1704 Exception: if source is a constant, moving it later can't hurt.
1705 Accept that as a special case. */
1706 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1707 return 0;
1708
1709 /* DEST must either be a REG or CC0. */
1710 if (REG_P (dest))
1711 {
1712 /* If register alignment is being enforced for multi-word items in all
1713 cases except for parameters, it is possible to have a register copy
1714 insn referencing a hard register that is not allowed to contain the
1715 mode being copied and which would not be valid as an operand of most
1716 insns. Eliminate this problem by not combining with such an insn.
1717
1718 Also, on some machines we don't want to extend the life of a hard
1719 register. */
1720
1721 if (REG_P (src)
1722 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1723 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1724 /* Don't extend the life of a hard register unless it is
1725 user variable (if we have few registers) or it can't
1726 fit into the desired register (meaning something special
1727 is going on).
1728 Also avoid substituting a return register into I3, because
1729 reload can't handle a conflict with constraints of other
1730 inputs. */
1731 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1732 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1733 return 0;
1734 }
1735 else if (GET_CODE (dest) != CC0)
1736 return 0;
1737
1738
1739 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1740 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1741 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1742 {
1743 /* Don't substitute for a register intended as a clobberable
1744 operand. */
1745 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1746 if (rtx_equal_p (reg, dest))
1747 return 0;
1748
1749 /* If the clobber represents an earlyclobber operand, we must not
1750 substitute an expression containing the clobbered register.
1751 As we do not analyze the constraint strings here, we have to
1752 make the conservative assumption. However, if the register is
1753 a fixed hard reg, the clobber cannot represent any operand;
1754 we leave it up to the machine description to either accept or
1755 reject use-and-clobber patterns. */
1756 if (!REG_P (reg)
1757 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1758 || !fixed_regs[REGNO (reg)])
1759 if (reg_overlap_mentioned_p (reg, src))
1760 return 0;
1761 }
1762
1763 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1764 or not), reject, unless nothing volatile comes between it and I3 */
1765
1766 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1767 {
1768 /* Make sure succ doesn't contain a volatile reference. */
1769 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1770 return 0;
1771
1772 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1773 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1774 return 0;
1775 }
1776
1777 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1778 to be an explicit register variable, and was chosen for a reason. */
1779
1780 if (GET_CODE (src) == ASM_OPERANDS
1781 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1782 return 0;
1783
1784 /* If there are any volatile insns between INSN and I3, reject, because
1785 they might affect machine state. */
1786
1787 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1788 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1789 return 0;
1790
1791 /* If INSN contains an autoincrement or autodecrement, make sure that
1792 register is not used between there and I3, and not already used in
1793 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1794 Also insist that I3 not be a jump; if it were one
1795 and the incremented register were spilled, we would lose. */
1796
1797 #ifdef AUTO_INC_DEC
1798 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1799 if (REG_NOTE_KIND (link) == REG_INC
1800 && (JUMP_P (i3)
1801 || reg_used_between_p (XEXP (link, 0), insn, i3)
1802 || (pred != NULL_RTX
1803 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1804 || (succ != NULL_RTX
1805 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1806 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1807 return 0;
1808 #endif
1809
1810 #ifdef HAVE_cc0
1811 /* Don't combine an insn that follows a CC0-setting insn.
1812 An insn that uses CC0 must not be separated from the one that sets it.
1813 We do, however, allow I2 to follow a CC0-setting insn if that insn
1814 is passed as I1; in that case it will be deleted also.
1815 We also allow combining in this case if all the insns are adjacent
1816 because that would leave the two CC0 insns adjacent as well.
1817 It would be more logical to test whether CC0 occurs inside I1 or I2,
1818 but that would be much slower, and this ought to be equivalent. */
1819
1820 p = prev_nonnote_insn (insn);
1821 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1822 && ! all_adjacent)
1823 return 0;
1824 #endif
1825
1826 /* If we get here, we have passed all the tests and the combination is
1827 to be allowed. */
1828
1829 *pdest = dest;
1830 *psrc = src;
1831
1832 return 1;
1833 }
1834 \f
1835 /* LOC is the location within I3 that contains its pattern or the component
1836 of a PARALLEL of the pattern. We validate that it is valid for combining.
1837
1838 One problem is if I3 modifies its output, as opposed to replacing it
1839 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1840 so would produce an insn that is not equivalent to the original insns.
1841
1842 Consider:
1843
1844 (set (reg:DI 101) (reg:DI 100))
1845 (set (subreg:SI (reg:DI 101) 0) <foo>)
1846
1847 This is NOT equivalent to:
1848
1849 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1850 (set (reg:DI 101) (reg:DI 100))])
1851
1852 Not only does this modify 100 (in which case it might still be valid
1853 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1854
1855 We can also run into a problem if I2 sets a register that I1
1856 uses and I1 gets directly substituted into I3 (not via I2). In that
1857 case, we would be getting the wrong value of I2DEST into I3, so we
1858 must reject the combination. This case occurs when I2 and I1 both
1859 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1860 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1861 of a SET must prevent combination from occurring.
1862
1863 Before doing the above check, we first try to expand a field assignment
1864 into a set of logical operations.
1865
1866 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1867 we place a register that is both set and used within I3. If more than one
1868 such register is detected, we fail.
1869
1870 Return 1 if the combination is valid, zero otherwise. */
1871
1872 static int
1873 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1874 int i1_not_in_src, rtx *pi3dest_killed)
1875 {
1876 rtx x = *loc;
1877
1878 if (GET_CODE (x) == SET)
1879 {
1880 rtx set = x ;
1881 rtx dest = SET_DEST (set);
1882 rtx src = SET_SRC (set);
1883 rtx inner_dest = dest;
1884 rtx subdest;
1885
1886 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1887 || GET_CODE (inner_dest) == SUBREG
1888 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1889 inner_dest = XEXP (inner_dest, 0);
1890
1891 /* Check for the case where I3 modifies its output, as discussed
1892 above. We don't want to prevent pseudos from being combined
1893 into the address of a MEM, so only prevent the combination if
1894 i1 or i2 set the same MEM. */
1895 if ((inner_dest != dest &&
1896 (!MEM_P (inner_dest)
1897 || rtx_equal_p (i2dest, inner_dest)
1898 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1899 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1900 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1901
1902 /* This is the same test done in can_combine_p except we can't test
1903 all_adjacent; we don't have to, since this instruction will stay
1904 in place, thus we are not considering increasing the lifetime of
1905 INNER_DEST.
1906
1907 Also, if this insn sets a function argument, combining it with
1908 something that might need a spill could clobber a previous
1909 function argument; the all_adjacent test in can_combine_p also
1910 checks this; here, we do a more specific test for this case. */
1911
1912 || (REG_P (inner_dest)
1913 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1914 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1915 GET_MODE (inner_dest))))
1916 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1917 return 0;
1918
1919 /* If DEST is used in I3, it is being killed in this insn, so
1920 record that for later. We have to consider paradoxical
1921 subregs here, since they kill the whole register, but we
1922 ignore partial subregs, STRICT_LOW_PART, etc.
1923 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1924 STACK_POINTER_REGNUM, since these are always considered to be
1925 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1926 subdest = dest;
1927 if (GET_CODE (subdest) == SUBREG
1928 && (GET_MODE_SIZE (GET_MODE (subdest))
1929 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1930 subdest = SUBREG_REG (subdest);
1931 if (pi3dest_killed
1932 && REG_P (subdest)
1933 && reg_referenced_p (subdest, PATTERN (i3))
1934 && REGNO (subdest) != FRAME_POINTER_REGNUM
1935 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1936 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1937 #endif
1938 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1939 && (REGNO (subdest) != ARG_POINTER_REGNUM
1940 || ! fixed_regs [REGNO (subdest)])
1941 #endif
1942 && REGNO (subdest) != STACK_POINTER_REGNUM)
1943 {
1944 if (*pi3dest_killed)
1945 return 0;
1946
1947 *pi3dest_killed = subdest;
1948 }
1949 }
1950
1951 else if (GET_CODE (x) == PARALLEL)
1952 {
1953 int i;
1954
1955 for (i = 0; i < XVECLEN (x, 0); i++)
1956 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1957 i1_not_in_src, pi3dest_killed))
1958 return 0;
1959 }
1960
1961 return 1;
1962 }
1963 \f
1964 /* Return 1 if X is an arithmetic expression that contains a multiplication
1965 and division. We don't count multiplications by powers of two here. */
1966
1967 static int
1968 contains_muldiv (rtx x)
1969 {
1970 switch (GET_CODE (x))
1971 {
1972 case MOD: case DIV: case UMOD: case UDIV:
1973 return 1;
1974
1975 case MULT:
1976 return ! (CONST_INT_P (XEXP (x, 1))
1977 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1978 default:
1979 if (BINARY_P (x))
1980 return contains_muldiv (XEXP (x, 0))
1981 || contains_muldiv (XEXP (x, 1));
1982
1983 if (UNARY_P (x))
1984 return contains_muldiv (XEXP (x, 0));
1985
1986 return 0;
1987 }
1988 }
1989 \f
1990 /* Determine whether INSN can be used in a combination. Return nonzero if
1991 not. This is used in try_combine to detect early some cases where we
1992 can't perform combinations. */
1993
1994 static int
1995 cant_combine_insn_p (rtx insn)
1996 {
1997 rtx set;
1998 rtx src, dest;
1999
2000 /* If this isn't really an insn, we can't do anything.
2001 This can occur when flow deletes an insn that it has merged into an
2002 auto-increment address. */
2003 if (! INSN_P (insn))
2004 return 1;
2005
2006 /* Never combine loads and stores involving hard regs that are likely
2007 to be spilled. The register allocator can usually handle such
2008 reg-reg moves by tying. If we allow the combiner to make
2009 substitutions of likely-spilled regs, reload might die.
2010 As an exception, we allow combinations involving fixed regs; these are
2011 not available to the register allocator so there's no risk involved. */
2012
2013 set = single_set (insn);
2014 if (! set)
2015 return 0;
2016 src = SET_SRC (set);
2017 dest = SET_DEST (set);
2018 if (GET_CODE (src) == SUBREG)
2019 src = SUBREG_REG (src);
2020 if (GET_CODE (dest) == SUBREG)
2021 dest = SUBREG_REG (dest);
2022 if (REG_P (src) && REG_P (dest)
2023 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
2024 && ! fixed_regs[REGNO (src)]
2025 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
2026 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
2027 && ! fixed_regs[REGNO (dest)]
2028 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
2029 return 1;
2030
2031 return 0;
2032 }
2033
2034 struct likely_spilled_retval_info
2035 {
2036 unsigned regno, nregs;
2037 unsigned mask;
2038 };
2039
2040 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2041 hard registers that are known to be written to / clobbered in full. */
2042 static void
2043 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2044 {
2045 struct likely_spilled_retval_info *const info =
2046 (struct likely_spilled_retval_info *) data;
2047 unsigned regno, nregs;
2048 unsigned new_mask;
2049
2050 if (!REG_P (XEXP (set, 0)))
2051 return;
2052 regno = REGNO (x);
2053 if (regno >= info->regno + info->nregs)
2054 return;
2055 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2056 if (regno + nregs <= info->regno)
2057 return;
2058 new_mask = (2U << (nregs - 1)) - 1;
2059 if (regno < info->regno)
2060 new_mask >>= info->regno - regno;
2061 else
2062 new_mask <<= regno - info->regno;
2063 info->mask &= ~new_mask;
2064 }
2065
2066 /* Return nonzero iff part of the return value is live during INSN, and
2067 it is likely spilled. This can happen when more than one insn is needed
2068 to copy the return value, e.g. when we consider to combine into the
2069 second copy insn for a complex value. */
2070
2071 static int
2072 likely_spilled_retval_p (rtx insn)
2073 {
2074 rtx use = BB_END (this_basic_block);
2075 rtx reg, p;
2076 unsigned regno, nregs;
2077 /* We assume here that no machine mode needs more than
2078 32 hard registers when the value overlaps with a register
2079 for which FUNCTION_VALUE_REGNO_P is true. */
2080 unsigned mask;
2081 struct likely_spilled_retval_info info;
2082
2083 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2084 return 0;
2085 reg = XEXP (PATTERN (use), 0);
2086 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
2087 return 0;
2088 regno = REGNO (reg);
2089 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2090 if (nregs == 1)
2091 return 0;
2092 mask = (2U << (nregs - 1)) - 1;
2093
2094 /* Disregard parts of the return value that are set later. */
2095 info.regno = regno;
2096 info.nregs = nregs;
2097 info.mask = mask;
2098 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2099 if (INSN_P (p))
2100 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2101 mask = info.mask;
2102
2103 /* Check if any of the (probably) live return value registers is
2104 likely spilled. */
2105 nregs --;
2106 do
2107 {
2108 if ((mask & 1 << nregs)
2109 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
2110 return 1;
2111 } while (nregs--);
2112 return 0;
2113 }
2114
2115 /* Adjust INSN after we made a change to its destination.
2116
2117 Changing the destination can invalidate notes that say something about
2118 the results of the insn and a LOG_LINK pointing to the insn. */
2119
2120 static void
2121 adjust_for_new_dest (rtx insn)
2122 {
2123 /* For notes, be conservative and simply remove them. */
2124 remove_reg_equal_equiv_notes (insn);
2125
2126 /* The new insn will have a destination that was previously the destination
2127 of an insn just above it. Call distribute_links to make a LOG_LINK from
2128 the next use of that destination. */
2129 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2130
2131 df_insn_rescan (insn);
2132 }
2133
2134 /* Return TRUE if combine can reuse reg X in mode MODE.
2135 ADDED_SETS is nonzero if the original set is still required. */
2136 static bool
2137 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2138 {
2139 unsigned int regno;
2140
2141 if (!REG_P(x))
2142 return false;
2143
2144 regno = REGNO (x);
2145 /* Allow hard registers if the new mode is legal, and occupies no more
2146 registers than the old mode. */
2147 if (regno < FIRST_PSEUDO_REGISTER)
2148 return (HARD_REGNO_MODE_OK (regno, mode)
2149 && (hard_regno_nregs[regno][GET_MODE (x)]
2150 >= hard_regno_nregs[regno][mode]));
2151
2152 /* Or a pseudo that is only used once. */
2153 return (REG_N_SETS (regno) == 1 && !added_sets
2154 && !REG_USERVAR_P (x));
2155 }
2156
2157
2158 /* Check whether X, the destination of a set, refers to part of
2159 the register specified by REG. */
2160
2161 static bool
2162 reg_subword_p (rtx x, rtx reg)
2163 {
2164 /* Check that reg is an integer mode register. */
2165 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2166 return false;
2167
2168 if (GET_CODE (x) == STRICT_LOW_PART
2169 || GET_CODE (x) == ZERO_EXTRACT)
2170 x = XEXP (x, 0);
2171
2172 return GET_CODE (x) == SUBREG
2173 && SUBREG_REG (x) == reg
2174 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2175 }
2176
2177 #ifdef AUTO_INC_DEC
2178 /* Replace auto-increment addressing modes with explicit operations to
2179 access the same addresses without modifying the corresponding
2180 registers. If AFTER holds, SRC is meant to be reused after the
2181 side effect, otherwise it is to be reused before that. */
2182
2183 static rtx
2184 cleanup_auto_inc_dec (rtx src, bool after, enum machine_mode mem_mode)
2185 {
2186 rtx x = src;
2187 const RTX_CODE code = GET_CODE (x);
2188 int i;
2189 const char *fmt;
2190
2191 switch (code)
2192 {
2193 case REG:
2194 case CONST_INT:
2195 case CONST_DOUBLE:
2196 case CONST_FIXED:
2197 case CONST_VECTOR:
2198 case SYMBOL_REF:
2199 case CODE_LABEL:
2200 case PC:
2201 case CC0:
2202 case SCRATCH:
2203 /* SCRATCH must be shared because they represent distinct values. */
2204 return x;
2205 case CLOBBER:
2206 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2207 return x;
2208 break;
2209
2210 case CONST:
2211 if (shared_const_p (x))
2212 return x;
2213 break;
2214
2215 case MEM:
2216 mem_mode = GET_MODE (x);
2217 break;
2218
2219 case PRE_INC:
2220 case PRE_DEC:
2221 case POST_INC:
2222 case POST_DEC:
2223 gcc_assert (mem_mode != VOIDmode && mem_mode != BLKmode);
2224 if (after == (code == PRE_INC || code == PRE_DEC))
2225 x = cleanup_auto_inc_dec (XEXP (x, 0), after, mem_mode);
2226 else
2227 x = gen_rtx_PLUS (GET_MODE (x),
2228 cleanup_auto_inc_dec (XEXP (x, 0), after, mem_mode),
2229 GEN_INT ((code == PRE_INC || code == POST_INC)
2230 ? GET_MODE_SIZE (mem_mode)
2231 : -GET_MODE_SIZE (mem_mode)));
2232 return x;
2233
2234 case PRE_MODIFY:
2235 case POST_MODIFY:
2236 if (after == (code == PRE_MODIFY))
2237 x = XEXP (x, 0);
2238 else
2239 x = XEXP (x, 1);
2240 return cleanup_auto_inc_dec (x, after, mem_mode);
2241
2242 default:
2243 break;
2244 }
2245
2246 /* Copy the various flags, fields, and other information. We assume
2247 that all fields need copying, and then clear the fields that should
2248 not be copied. That is the sensible default behavior, and forces
2249 us to explicitly document why we are *not* copying a flag. */
2250 x = shallow_copy_rtx (x);
2251
2252 /* We do not copy the USED flag, which is used as a mark bit during
2253 walks over the RTL. */
2254 RTX_FLAG (x, used) = 0;
2255
2256 /* We do not copy FRAME_RELATED for INSNs. */
2257 if (INSN_P (x))
2258 RTX_FLAG (x, frame_related) = 0;
2259
2260 fmt = GET_RTX_FORMAT (code);
2261 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2262 if (fmt[i] == 'e')
2263 XEXP (x, i) = cleanup_auto_inc_dec (XEXP (x, i), after, mem_mode);
2264 else if (fmt[i] == 'E' || fmt[i] == 'V')
2265 {
2266 int j;
2267 XVEC (x, i) = rtvec_alloc (XVECLEN (x, i));
2268 for (j = 0; j < XVECLEN (x, i); j++)
2269 XVECEXP (x, i, j)
2270 = cleanup_auto_inc_dec (XVECEXP (src, i, j), after, mem_mode);
2271 }
2272
2273 return x;
2274 }
2275
2276 /* Auxiliary data structure for propagate_for_debug_stmt. */
2277
2278 struct rtx_subst_pair
2279 {
2280 rtx to;
2281 bool adjusted;
2282 bool after;
2283 };
2284
2285 /* DATA points to an rtx_subst_pair. Return the value that should be
2286 substituted. */
2287
2288 static rtx
2289 propagate_for_debug_subst (rtx from, const_rtx old_rtx, void *data)
2290 {
2291 struct rtx_subst_pair *pair = (struct rtx_subst_pair *)data;
2292
2293 if (!rtx_equal_p (from, old_rtx))
2294 return NULL_RTX;
2295 if (!pair->adjusted)
2296 {
2297 pair->adjusted = true;
2298 pair->to = cleanup_auto_inc_dec (pair->to, pair->after, VOIDmode);
2299 return pair->to;
2300 }
2301 return copy_rtx (pair->to);
2302 }
2303 #endif
2304
2305 /* Replace occurrences of DEST with SRC in DEBUG_INSNs between INSN
2306 and LAST. If MOVE holds, debug insns must also be moved past
2307 LAST. */
2308
2309 static void
2310 propagate_for_debug (rtx insn, rtx last, rtx dest, rtx src, bool move)
2311 {
2312 rtx next, move_pos = move ? last : NULL_RTX, loc;
2313
2314 #ifdef AUTO_INC_DEC
2315 struct rtx_subst_pair p;
2316 p.to = src;
2317 p.adjusted = false;
2318 p.after = move;
2319 #endif
2320
2321 next = NEXT_INSN (insn);
2322 while (next != last)
2323 {
2324 insn = next;
2325 next = NEXT_INSN (insn);
2326 if (DEBUG_INSN_P (insn))
2327 {
2328 #ifdef AUTO_INC_DEC
2329 loc = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
2330 dest, propagate_for_debug_subst, &p);
2331 #else
2332 loc = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn), dest, src);
2333 #endif
2334 if (loc == INSN_VAR_LOCATION_LOC (insn))
2335 continue;
2336 INSN_VAR_LOCATION_LOC (insn) = loc;
2337 if (move_pos)
2338 {
2339 remove_insn (insn);
2340 PREV_INSN (insn) = NEXT_INSN (insn) = NULL_RTX;
2341 move_pos = emit_debug_insn_after (insn, move_pos);
2342 }
2343 else
2344 df_insn_rescan (insn);
2345 }
2346 }
2347 }
2348
2349 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2350 Note that the INSN should be deleted *after* removing dead edges, so
2351 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2352 but not for a (set (pc) (label_ref FOO)). */
2353
2354 static void
2355 update_cfg_for_uncondjump (rtx insn)
2356 {
2357 basic_block bb = BLOCK_FOR_INSN (insn);
2358 bool at_end = (BB_END (bb) == insn);
2359
2360 if (at_end)
2361 purge_dead_edges (bb);
2362
2363 delete_insn (insn);
2364 if (at_end && EDGE_COUNT (bb->succs) == 1)
2365 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2366 }
2367
2368
2369 /* Try to combine the insns I1 and I2 into I3.
2370 Here I1 and I2 appear earlier than I3.
2371 I1 can be zero; then we combine just I2 into I3.
2372
2373 If we are combining three insns and the resulting insn is not recognized,
2374 try splitting it into two insns. If that happens, I2 and I3 are retained
2375 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
2376 are pseudo-deleted.
2377
2378 Return 0 if the combination does not work. Then nothing is changed.
2379 If we did the combination, return the insn at which combine should
2380 resume scanning.
2381
2382 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2383 new direct jump instruction. */
2384
2385 static rtx
2386 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
2387 {
2388 /* New patterns for I3 and I2, respectively. */
2389 rtx newpat, newi2pat = 0;
2390 rtvec newpat_vec_with_clobbers = 0;
2391 int substed_i2 = 0, substed_i1 = 0;
2392 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
2393 int added_sets_1, added_sets_2;
2394 /* Total number of SETs to put into I3. */
2395 int total_sets;
2396 /* Nonzero if I2's body now appears in I3. */
2397 int i2_is_used;
2398 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2399 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2400 /* Contains I3 if the destination of I3 is used in its source, which means
2401 that the old life of I3 is being killed. If that usage is placed into
2402 I2 and not in I3, a REG_DEAD note must be made. */
2403 rtx i3dest_killed = 0;
2404 /* SET_DEST and SET_SRC of I2 and I1. */
2405 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0;
2406 /* Set if I2DEST was reused as a scratch register. */
2407 bool i2scratch = false;
2408 /* PATTERN (I1) and PATTERN (I2), or a copy of it in certain cases. */
2409 rtx i1pat = 0, i2pat = 0;
2410 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2411 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2412 int i2dest_killed = 0, i1dest_killed = 0;
2413 int i1_feeds_i3 = 0;
2414 /* Notes that must be added to REG_NOTES in I3 and I2. */
2415 rtx new_i3_notes, new_i2_notes;
2416 /* Notes that we substituted I3 into I2 instead of the normal case. */
2417 int i3_subst_into_i2 = 0;
2418 /* Notes that I1, I2 or I3 is a MULT operation. */
2419 int have_mult = 0;
2420 int swap_i2i3 = 0;
2421 int changed_i3_dest = 0;
2422
2423 int maxreg;
2424 rtx temp;
2425 rtx link;
2426 rtx other_pat = 0;
2427 rtx new_other_notes;
2428 int i;
2429
2430 /* Exit early if one of the insns involved can't be used for
2431 combinations. */
2432 if (cant_combine_insn_p (i3)
2433 || cant_combine_insn_p (i2)
2434 || (i1 && cant_combine_insn_p (i1))
2435 || likely_spilled_retval_p (i3))
2436 return 0;
2437
2438 combine_attempts++;
2439 undobuf.other_insn = 0;
2440
2441 /* Reset the hard register usage information. */
2442 CLEAR_HARD_REG_SET (newpat_used_regs);
2443
2444 if (dump_file && (dump_flags & TDF_DETAILS))
2445 {
2446 if (i1)
2447 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2448 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2449 else
2450 fprintf (dump_file, "\nTrying %d -> %d:\n",
2451 INSN_UID (i2), INSN_UID (i3));
2452 }
2453
2454 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
2455 code below, set I1 to be the earlier of the two insns. */
2456 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2457 temp = i1, i1 = i2, i2 = temp;
2458
2459 added_links_insn = 0;
2460
2461 /* First check for one important special-case that the code below will
2462 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2463 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2464 we may be able to replace that destination with the destination of I3.
2465 This occurs in the common code where we compute both a quotient and
2466 remainder into a structure, in which case we want to do the computation
2467 directly into the structure to avoid register-register copies.
2468
2469 Note that this case handles both multiple sets in I2 and also
2470 cases where I2 has a number of CLOBBER or PARALLELs.
2471
2472 We make very conservative checks below and only try to handle the
2473 most common cases of this. For example, we only handle the case
2474 where I2 and I3 are adjacent to avoid making difficult register
2475 usage tests. */
2476
2477 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2478 && REG_P (SET_SRC (PATTERN (i3)))
2479 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2480 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2481 && GET_CODE (PATTERN (i2)) == PARALLEL
2482 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2483 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2484 below would need to check what is inside (and reg_overlap_mentioned_p
2485 doesn't support those codes anyway). Don't allow those destinations;
2486 the resulting insn isn't likely to be recognized anyway. */
2487 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2488 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2489 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2490 SET_DEST (PATTERN (i3)))
2491 && next_active_insn (i2) == i3)
2492 {
2493 rtx p2 = PATTERN (i2);
2494
2495 /* Make sure that the destination of I3,
2496 which we are going to substitute into one output of I2,
2497 is not used within another output of I2. We must avoid making this:
2498 (parallel [(set (mem (reg 69)) ...)
2499 (set (reg 69) ...)])
2500 which is not well-defined as to order of actions.
2501 (Besides, reload can't handle output reloads for this.)
2502
2503 The problem can also happen if the dest of I3 is a memory ref,
2504 if another dest in I2 is an indirect memory ref. */
2505 for (i = 0; i < XVECLEN (p2, 0); i++)
2506 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2507 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2508 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2509 SET_DEST (XVECEXP (p2, 0, i))))
2510 break;
2511
2512 if (i == XVECLEN (p2, 0))
2513 for (i = 0; i < XVECLEN (p2, 0); i++)
2514 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2515 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2516 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2517 {
2518 combine_merges++;
2519
2520 subst_insn = i3;
2521 subst_low_luid = DF_INSN_LUID (i2);
2522
2523 added_sets_2 = added_sets_1 = 0;
2524 i2src = SET_DEST (PATTERN (i3));
2525 i2dest = SET_SRC (PATTERN (i3));
2526 i2dest_killed = dead_or_set_p (i2, i2dest);
2527
2528 /* Replace the dest in I2 with our dest and make the resulting
2529 insn the new pattern for I3. Then skip to where we
2530 validate the pattern. Everything was set up above. */
2531 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
2532 SET_DEST (PATTERN (i3)));
2533
2534 newpat = p2;
2535 i3_subst_into_i2 = 1;
2536 goto validate_replacement;
2537 }
2538 }
2539
2540 /* If I2 is setting a pseudo to a constant and I3 is setting some
2541 sub-part of it to another constant, merge them by making a new
2542 constant. */
2543 if (i1 == 0
2544 && (temp = single_set (i2)) != 0
2545 && (CONST_INT_P (SET_SRC (temp))
2546 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2547 && GET_CODE (PATTERN (i3)) == SET
2548 && (CONST_INT_P (SET_SRC (PATTERN (i3)))
2549 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2550 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2551 {
2552 rtx dest = SET_DEST (PATTERN (i3));
2553 int offset = -1;
2554 int width = 0;
2555
2556 if (GET_CODE (dest) == ZERO_EXTRACT)
2557 {
2558 if (CONST_INT_P (XEXP (dest, 1))
2559 && CONST_INT_P (XEXP (dest, 2)))
2560 {
2561 width = INTVAL (XEXP (dest, 1));
2562 offset = INTVAL (XEXP (dest, 2));
2563 dest = XEXP (dest, 0);
2564 if (BITS_BIG_ENDIAN)
2565 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2566 }
2567 }
2568 else
2569 {
2570 if (GET_CODE (dest) == STRICT_LOW_PART)
2571 dest = XEXP (dest, 0);
2572 width = GET_MODE_BITSIZE (GET_MODE (dest));
2573 offset = 0;
2574 }
2575
2576 if (offset >= 0)
2577 {
2578 /* If this is the low part, we're done. */
2579 if (subreg_lowpart_p (dest))
2580 ;
2581 /* Handle the case where inner is twice the size of outer. */
2582 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2583 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2584 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2585 /* Otherwise give up for now. */
2586 else
2587 offset = -1;
2588 }
2589
2590 if (offset >= 0
2591 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2592 <= HOST_BITS_PER_WIDE_INT * 2))
2593 {
2594 HOST_WIDE_INT mhi, ohi, ihi;
2595 HOST_WIDE_INT mlo, olo, ilo;
2596 rtx inner = SET_SRC (PATTERN (i3));
2597 rtx outer = SET_SRC (temp);
2598
2599 if (CONST_INT_P (outer))
2600 {
2601 olo = INTVAL (outer);
2602 ohi = olo < 0 ? -1 : 0;
2603 }
2604 else
2605 {
2606 olo = CONST_DOUBLE_LOW (outer);
2607 ohi = CONST_DOUBLE_HIGH (outer);
2608 }
2609
2610 if (CONST_INT_P (inner))
2611 {
2612 ilo = INTVAL (inner);
2613 ihi = ilo < 0 ? -1 : 0;
2614 }
2615 else
2616 {
2617 ilo = CONST_DOUBLE_LOW (inner);
2618 ihi = CONST_DOUBLE_HIGH (inner);
2619 }
2620
2621 if (width < HOST_BITS_PER_WIDE_INT)
2622 {
2623 mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2624 mhi = 0;
2625 }
2626 else if (width < HOST_BITS_PER_WIDE_INT * 2)
2627 {
2628 mhi = ((unsigned HOST_WIDE_INT) 1
2629 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2630 mlo = -1;
2631 }
2632 else
2633 {
2634 mlo = -1;
2635 mhi = -1;
2636 }
2637
2638 ilo &= mlo;
2639 ihi &= mhi;
2640
2641 if (offset >= HOST_BITS_PER_WIDE_INT)
2642 {
2643 mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2644 mlo = 0;
2645 ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2646 ilo = 0;
2647 }
2648 else if (offset > 0)
2649 {
2650 mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2651 >> (HOST_BITS_PER_WIDE_INT - offset));
2652 mlo = mlo << offset;
2653 ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2654 >> (HOST_BITS_PER_WIDE_INT - offset));
2655 ilo = ilo << offset;
2656 }
2657
2658 olo = (olo & ~mlo) | ilo;
2659 ohi = (ohi & ~mhi) | ihi;
2660
2661 combine_merges++;
2662 subst_insn = i3;
2663 subst_low_luid = DF_INSN_LUID (i2);
2664 added_sets_2 = added_sets_1 = 0;
2665 i2dest = SET_DEST (temp);
2666 i2dest_killed = dead_or_set_p (i2, i2dest);
2667
2668 /* Replace the source in I2 with the new constant and make the
2669 resulting insn the new pattern for I3. Then skip to where we
2670 validate the pattern. Everything was set up above. */
2671 SUBST (SET_SRC (temp),
2672 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2673
2674 newpat = PATTERN (i2);
2675
2676 /* The dest of I3 has been replaced with the dest of I2. */
2677 changed_i3_dest = 1;
2678 goto validate_replacement;
2679 }
2680 }
2681
2682 #ifndef HAVE_cc0
2683 /* If we have no I1 and I2 looks like:
2684 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2685 (set Y OP)])
2686 make up a dummy I1 that is
2687 (set Y OP)
2688 and change I2 to be
2689 (set (reg:CC X) (compare:CC Y (const_int 0)))
2690
2691 (We can ignore any trailing CLOBBERs.)
2692
2693 This undoes a previous combination and allows us to match a branch-and-
2694 decrement insn. */
2695
2696 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2697 && XVECLEN (PATTERN (i2), 0) >= 2
2698 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2699 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2700 == MODE_CC)
2701 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2702 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2703 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2704 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2705 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2706 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2707 {
2708 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2709 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2710 break;
2711
2712 if (i == 1)
2713 {
2714 /* We make I1 with the same INSN_UID as I2. This gives it
2715 the same DF_INSN_LUID for value tracking. Our fake I1 will
2716 never appear in the insn stream so giving it the same INSN_UID
2717 as I2 will not cause a problem. */
2718
2719 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2720 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2721 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX);
2722
2723 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2724 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2725 SET_DEST (PATTERN (i1)));
2726 }
2727 }
2728 #endif
2729
2730 /* Verify that I2 and I1 are valid for combining. */
2731 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2732 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2733 {
2734 undo_all ();
2735 return 0;
2736 }
2737
2738 /* Record whether I2DEST is used in I2SRC and similarly for the other
2739 cases. Knowing this will help in register status updating below. */
2740 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2741 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2742 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2743 i2dest_killed = dead_or_set_p (i2, i2dest);
2744 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2745
2746 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2747 in I2SRC. */
2748 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2749
2750 /* Ensure that I3's pattern can be the destination of combines. */
2751 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2752 i1 && i2dest_in_i1src && i1_feeds_i3,
2753 &i3dest_killed))
2754 {
2755 undo_all ();
2756 return 0;
2757 }
2758
2759 /* See if any of the insns is a MULT operation. Unless one is, we will
2760 reject a combination that is, since it must be slower. Be conservative
2761 here. */
2762 if (GET_CODE (i2src) == MULT
2763 || (i1 != 0 && GET_CODE (i1src) == MULT)
2764 || (GET_CODE (PATTERN (i3)) == SET
2765 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2766 have_mult = 1;
2767
2768 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2769 We used to do this EXCEPT in one case: I3 has a post-inc in an
2770 output operand. However, that exception can give rise to insns like
2771 mov r3,(r3)+
2772 which is a famous insn on the PDP-11 where the value of r3 used as the
2773 source was model-dependent. Avoid this sort of thing. */
2774
2775 #if 0
2776 if (!(GET_CODE (PATTERN (i3)) == SET
2777 && REG_P (SET_SRC (PATTERN (i3)))
2778 && MEM_P (SET_DEST (PATTERN (i3)))
2779 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2780 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2781 /* It's not the exception. */
2782 #endif
2783 #ifdef AUTO_INC_DEC
2784 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2785 if (REG_NOTE_KIND (link) == REG_INC
2786 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2787 || (i1 != 0
2788 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2789 {
2790 undo_all ();
2791 return 0;
2792 }
2793 #endif
2794
2795 /* See if the SETs in I1 or I2 need to be kept around in the merged
2796 instruction: whenever the value set there is still needed past I3.
2797 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2798
2799 For the SET in I1, we have two cases: If I1 and I2 independently
2800 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2801 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2802 in I1 needs to be kept around unless I1DEST dies or is set in either
2803 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2804 I1DEST. If so, we know I1 feeds into I2. */
2805
2806 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2807
2808 added_sets_1
2809 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2810 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2811
2812 /* If the set in I2 needs to be kept around, we must make a copy of
2813 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2814 PATTERN (I2), we are only substituting for the original I1DEST, not into
2815 an already-substituted copy. This also prevents making self-referential
2816 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2817 I2DEST. */
2818
2819 if (added_sets_2)
2820 {
2821 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2822 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2823 else
2824 i2pat = copy_rtx (PATTERN (i2));
2825 }
2826
2827 if (added_sets_1)
2828 {
2829 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2830 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2831 else
2832 i1pat = copy_rtx (PATTERN (i1));
2833 }
2834
2835 combine_merges++;
2836
2837 /* Substitute in the latest insn for the regs set by the earlier ones. */
2838
2839 maxreg = max_reg_num ();
2840
2841 subst_insn = i3;
2842
2843 #ifndef HAVE_cc0
2844 /* Many machines that don't use CC0 have insns that can both perform an
2845 arithmetic operation and set the condition code. These operations will
2846 be represented as a PARALLEL with the first element of the vector
2847 being a COMPARE of an arithmetic operation with the constant zero.
2848 The second element of the vector will set some pseudo to the result
2849 of the same arithmetic operation. If we simplify the COMPARE, we won't
2850 match such a pattern and so will generate an extra insn. Here we test
2851 for this case, where both the comparison and the operation result are
2852 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2853 I2SRC. Later we will make the PARALLEL that contains I2. */
2854
2855 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2856 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2857 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2858 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2859 {
2860 #ifdef SELECT_CC_MODE
2861 rtx *cc_use;
2862 enum machine_mode compare_mode;
2863 #endif
2864
2865 newpat = PATTERN (i3);
2866 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2867
2868 i2_is_used = 1;
2869
2870 #ifdef SELECT_CC_MODE
2871 /* See if a COMPARE with the operand we substituted in should be done
2872 with the mode that is currently being used. If not, do the same
2873 processing we do in `subst' for a SET; namely, if the destination
2874 is used only once, try to replace it with a register of the proper
2875 mode and also replace the COMPARE. */
2876 if (undobuf.other_insn == 0
2877 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2878 &undobuf.other_insn))
2879 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2880 i2src, const0_rtx))
2881 != GET_MODE (SET_DEST (newpat))))
2882 {
2883 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2884 compare_mode))
2885 {
2886 unsigned int regno = REGNO (SET_DEST (newpat));
2887 rtx new_dest;
2888
2889 if (regno < FIRST_PSEUDO_REGISTER)
2890 new_dest = gen_rtx_REG (compare_mode, regno);
2891 else
2892 {
2893 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2894 new_dest = regno_reg_rtx[regno];
2895 }
2896
2897 SUBST (SET_DEST (newpat), new_dest);
2898 SUBST (XEXP (*cc_use, 0), new_dest);
2899 SUBST (SET_SRC (newpat),
2900 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2901 }
2902 else
2903 undobuf.other_insn = 0;
2904 }
2905 #endif
2906 }
2907 else
2908 #endif
2909 {
2910 /* It is possible that the source of I2 or I1 may be performing
2911 an unneeded operation, such as a ZERO_EXTEND of something
2912 that is known to have the high part zero. Handle that case
2913 by letting subst look at the innermost one of them.
2914
2915 Another way to do this would be to have a function that tries
2916 to simplify a single insn instead of merging two or more
2917 insns. We don't do this because of the potential of infinite
2918 loops and because of the potential extra memory required.
2919 However, doing it the way we are is a bit of a kludge and
2920 doesn't catch all cases.
2921
2922 But only do this if -fexpensive-optimizations since it slows
2923 things down and doesn't usually win.
2924
2925 This is not done in the COMPARE case above because the
2926 unmodified I2PAT is used in the PARALLEL and so a pattern
2927 with a modified I2SRC would not match. */
2928
2929 if (flag_expensive_optimizations)
2930 {
2931 /* Pass pc_rtx so no substitutions are done, just
2932 simplifications. */
2933 if (i1)
2934 {
2935 subst_low_luid = DF_INSN_LUID (i1);
2936 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2937 }
2938 else
2939 {
2940 subst_low_luid = DF_INSN_LUID (i2);
2941 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2942 }
2943 }
2944
2945 n_occurrences = 0; /* `subst' counts here */
2946
2947 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2948 need to make a unique copy of I2SRC each time we substitute it
2949 to avoid self-referential rtl. */
2950
2951 subst_low_luid = DF_INSN_LUID (i2);
2952 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2953 ! i1_feeds_i3 && i1dest_in_i1src);
2954 substed_i2 = 1;
2955
2956 /* Record whether i2's body now appears within i3's body. */
2957 i2_is_used = n_occurrences;
2958 }
2959
2960 /* If we already got a failure, don't try to do more. Otherwise,
2961 try to substitute in I1 if we have it. */
2962
2963 if (i1 && GET_CODE (newpat) != CLOBBER)
2964 {
2965 /* Check that an autoincrement side-effect on I1 has not been lost.
2966 This happens if I1DEST is mentioned in I2 and dies there, and
2967 has disappeared from the new pattern. */
2968 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2969 && !i1_feeds_i3
2970 && dead_or_set_p (i2, i1dest)
2971 && !reg_overlap_mentioned_p (i1dest, newpat))
2972 /* Before we can do this substitution, we must redo the test done
2973 above (see detailed comments there) that ensures that I1DEST
2974 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2975 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, 0, 0))
2976 {
2977 undo_all ();
2978 return 0;
2979 }
2980
2981 n_occurrences = 0;
2982 subst_low_luid = DF_INSN_LUID (i1);
2983 newpat = subst (newpat, i1dest, i1src, 0, 0);
2984 substed_i1 = 1;
2985 }
2986
2987 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2988 to count all the ways that I2SRC and I1SRC can be used. */
2989 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2990 && i2_is_used + added_sets_2 > 1)
2991 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2992 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2993 > 1))
2994 /* Fail if we tried to make a new register. */
2995 || max_reg_num () != maxreg
2996 /* Fail if we couldn't do something and have a CLOBBER. */
2997 || GET_CODE (newpat) == CLOBBER
2998 /* Fail if this new pattern is a MULT and we didn't have one before
2999 at the outer level. */
3000 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3001 && ! have_mult))
3002 {
3003 undo_all ();
3004 return 0;
3005 }
3006
3007 /* If the actions of the earlier insns must be kept
3008 in addition to substituting them into the latest one,
3009 we must make a new PARALLEL for the latest insn
3010 to hold additional the SETs. */
3011
3012 if (added_sets_1 || added_sets_2)
3013 {
3014 combine_extras++;
3015
3016 if (GET_CODE (newpat) == PARALLEL)
3017 {
3018 rtvec old = XVEC (newpat, 0);
3019 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
3020 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3021 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3022 sizeof (old->elem[0]) * old->num_elem);
3023 }
3024 else
3025 {
3026 rtx old = newpat;
3027 total_sets = 1 + added_sets_1 + added_sets_2;
3028 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3029 XVECEXP (newpat, 0, 0) = old;
3030 }
3031
3032 if (added_sets_1)
3033 XVECEXP (newpat, 0, --total_sets) = i1pat;
3034
3035 if (added_sets_2)
3036 {
3037 /* If there is no I1, use I2's body as is. We used to also not do
3038 the subst call below if I2 was substituted into I3,
3039 but that could lose a simplification. */
3040 if (i1 == 0)
3041 XVECEXP (newpat, 0, --total_sets) = i2pat;
3042 else
3043 /* See comment where i2pat is assigned. */
3044 XVECEXP (newpat, 0, --total_sets)
3045 = subst (i2pat, i1dest, i1src, 0, 0);
3046 }
3047 }
3048
3049 validate_replacement:
3050
3051 /* Note which hard regs this insn has as inputs. */
3052 mark_used_regs_combine (newpat);
3053
3054 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3055 consider splitting this pattern, we might need these clobbers. */
3056 if (i1 && GET_CODE (newpat) == PARALLEL
3057 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3058 {
3059 int len = XVECLEN (newpat, 0);
3060
3061 newpat_vec_with_clobbers = rtvec_alloc (len);
3062 for (i = 0; i < len; i++)
3063 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3064 }
3065
3066 /* Is the result of combination a valid instruction? */
3067 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3068
3069 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3070 the second SET's destination is a register that is unused and isn't
3071 marked as an instruction that might trap in an EH region. In that case,
3072 we just need the first SET. This can occur when simplifying a divmod
3073 insn. We *must* test for this case here because the code below that
3074 splits two independent SETs doesn't handle this case correctly when it
3075 updates the register status.
3076
3077 It's pointless doing this if we originally had two sets, one from
3078 i3, and one from i2. Combining then splitting the parallel results
3079 in the original i2 again plus an invalid insn (which we delete).
3080 The net effect is only to move instructions around, which makes
3081 debug info less accurate.
3082
3083 Also check the case where the first SET's destination is unused.
3084 That would not cause incorrect code, but does cause an unneeded
3085 insn to remain. */
3086
3087 if (insn_code_number < 0
3088 && !(added_sets_2 && i1 == 0)
3089 && GET_CODE (newpat) == PARALLEL
3090 && XVECLEN (newpat, 0) == 2
3091 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3092 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3093 && asm_noperands (newpat) < 0)
3094 {
3095 rtx set0 = XVECEXP (newpat, 0, 0);
3096 rtx set1 = XVECEXP (newpat, 0, 1);
3097
3098 if (((REG_P (SET_DEST (set1))
3099 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3100 || (GET_CODE (SET_DEST (set1)) == SUBREG
3101 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3102 && insn_nothrow_p (i3)
3103 && !side_effects_p (SET_SRC (set1)))
3104 {
3105 newpat = set0;
3106 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3107 }
3108
3109 else if (((REG_P (SET_DEST (set0))
3110 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3111 || (GET_CODE (SET_DEST (set0)) == SUBREG
3112 && find_reg_note (i3, REG_UNUSED,
3113 SUBREG_REG (SET_DEST (set0)))))
3114 && insn_nothrow_p (i3)
3115 && !side_effects_p (SET_SRC (set0)))
3116 {
3117 newpat = set1;
3118 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3119
3120 if (insn_code_number >= 0)
3121 changed_i3_dest = 1;
3122 }
3123 }
3124
3125 /* If we were combining three insns and the result is a simple SET
3126 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3127 insns. There are two ways to do this. It can be split using a
3128 machine-specific method (like when you have an addition of a large
3129 constant) or by combine in the function find_split_point. */
3130
3131 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3132 && asm_noperands (newpat) < 0)
3133 {
3134 rtx parallel, m_split, *split;
3135
3136 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3137 use I2DEST as a scratch register will help. In the latter case,
3138 convert I2DEST to the mode of the source of NEWPAT if we can. */
3139
3140 m_split = combine_split_insns (newpat, i3);
3141
3142 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3143 inputs of NEWPAT. */
3144
3145 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3146 possible to try that as a scratch reg. This would require adding
3147 more code to make it work though. */
3148
3149 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3150 {
3151 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3152
3153 /* First try to split using the original register as a
3154 scratch register. */
3155 parallel = gen_rtx_PARALLEL (VOIDmode,
3156 gen_rtvec (2, newpat,
3157 gen_rtx_CLOBBER (VOIDmode,
3158 i2dest)));
3159 m_split = combine_split_insns (parallel, i3);
3160
3161 /* If that didn't work, try changing the mode of I2DEST if
3162 we can. */
3163 if (m_split == 0
3164 && new_mode != GET_MODE (i2dest)
3165 && new_mode != VOIDmode
3166 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3167 {
3168 enum machine_mode old_mode = GET_MODE (i2dest);
3169 rtx ni2dest;
3170
3171 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3172 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3173 else
3174 {
3175 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3176 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3177 }
3178
3179 parallel = (gen_rtx_PARALLEL
3180 (VOIDmode,
3181 gen_rtvec (2, newpat,
3182 gen_rtx_CLOBBER (VOIDmode,
3183 ni2dest))));
3184 m_split = combine_split_insns (parallel, i3);
3185
3186 if (m_split == 0
3187 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3188 {
3189 struct undo *buf;
3190
3191 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3192 buf = undobuf.undos;
3193 undobuf.undos = buf->next;
3194 buf->next = undobuf.frees;
3195 undobuf.frees = buf;
3196 }
3197 }
3198
3199 i2scratch = m_split != 0;
3200 }
3201
3202 /* If recog_for_combine has discarded clobbers, try to use them
3203 again for the split. */
3204 if (m_split == 0 && newpat_vec_with_clobbers)
3205 {
3206 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3207 m_split = combine_split_insns (parallel, i3);
3208 }
3209
3210 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3211 {
3212 m_split = PATTERN (m_split);
3213 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3214 if (insn_code_number >= 0)
3215 newpat = m_split;
3216 }
3217 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3218 && (next_real_insn (i2) == i3
3219 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3220 {
3221 rtx i2set, i3set;
3222 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3223 newi2pat = PATTERN (m_split);
3224
3225 i3set = single_set (NEXT_INSN (m_split));
3226 i2set = single_set (m_split);
3227
3228 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3229
3230 /* If I2 or I3 has multiple SETs, we won't know how to track
3231 register status, so don't use these insns. If I2's destination
3232 is used between I2 and I3, we also can't use these insns. */
3233
3234 if (i2_code_number >= 0 && i2set && i3set
3235 && (next_real_insn (i2) == i3
3236 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3237 insn_code_number = recog_for_combine (&newi3pat, i3,
3238 &new_i3_notes);
3239 if (insn_code_number >= 0)
3240 newpat = newi3pat;
3241
3242 /* It is possible that both insns now set the destination of I3.
3243 If so, we must show an extra use of it. */
3244
3245 if (insn_code_number >= 0)
3246 {
3247 rtx new_i3_dest = SET_DEST (i3set);
3248 rtx new_i2_dest = SET_DEST (i2set);
3249
3250 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3251 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3252 || GET_CODE (new_i3_dest) == SUBREG)
3253 new_i3_dest = XEXP (new_i3_dest, 0);
3254
3255 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3256 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3257 || GET_CODE (new_i2_dest) == SUBREG)
3258 new_i2_dest = XEXP (new_i2_dest, 0);
3259
3260 if (REG_P (new_i3_dest)
3261 && REG_P (new_i2_dest)
3262 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3263 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3264 }
3265 }
3266
3267 /* If we can split it and use I2DEST, go ahead and see if that
3268 helps things be recognized. Verify that none of the registers
3269 are set between I2 and I3. */
3270 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
3271 #ifdef HAVE_cc0
3272 && REG_P (i2dest)
3273 #endif
3274 /* We need I2DEST in the proper mode. If it is a hard register
3275 or the only use of a pseudo, we can change its mode.
3276 Make sure we don't change a hard register to have a mode that
3277 isn't valid for it, or change the number of registers. */
3278 && (GET_MODE (*split) == GET_MODE (i2dest)
3279 || GET_MODE (*split) == VOIDmode
3280 || can_change_dest_mode (i2dest, added_sets_2,
3281 GET_MODE (*split)))
3282 && (next_real_insn (i2) == i3
3283 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3284 /* We can't overwrite I2DEST if its value is still used by
3285 NEWPAT. */
3286 && ! reg_referenced_p (i2dest, newpat))
3287 {
3288 rtx newdest = i2dest;
3289 enum rtx_code split_code = GET_CODE (*split);
3290 enum machine_mode split_mode = GET_MODE (*split);
3291 bool subst_done = false;
3292 newi2pat = NULL_RTX;
3293
3294 i2scratch = true;
3295
3296 /* Get NEWDEST as a register in the proper mode. We have already
3297 validated that we can do this. */
3298 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3299 {
3300 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3301 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3302 else
3303 {
3304 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3305 newdest = regno_reg_rtx[REGNO (i2dest)];
3306 }
3307 }
3308
3309 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3310 an ASHIFT. This can occur if it was inside a PLUS and hence
3311 appeared to be a memory address. This is a kludge. */
3312 if (split_code == MULT
3313 && CONST_INT_P (XEXP (*split, 1))
3314 && INTVAL (XEXP (*split, 1)) > 0
3315 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
3316 {
3317 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3318 XEXP (*split, 0), GEN_INT (i)));
3319 /* Update split_code because we may not have a multiply
3320 anymore. */
3321 split_code = GET_CODE (*split);
3322 }
3323
3324 #ifdef INSN_SCHEDULING
3325 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3326 be written as a ZERO_EXTEND. */
3327 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3328 {
3329 #ifdef LOAD_EXTEND_OP
3330 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3331 what it really is. */
3332 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3333 == SIGN_EXTEND)
3334 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3335 SUBREG_REG (*split)));
3336 else
3337 #endif
3338 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3339 SUBREG_REG (*split)));
3340 }
3341 #endif
3342
3343 /* Attempt to split binary operators using arithmetic identities. */
3344 if (BINARY_P (SET_SRC (newpat))
3345 && split_mode == GET_MODE (SET_SRC (newpat))
3346 && ! side_effects_p (SET_SRC (newpat)))
3347 {
3348 rtx setsrc = SET_SRC (newpat);
3349 enum machine_mode mode = GET_MODE (setsrc);
3350 enum rtx_code code = GET_CODE (setsrc);
3351 rtx src_op0 = XEXP (setsrc, 0);
3352 rtx src_op1 = XEXP (setsrc, 1);
3353
3354 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3355 if (rtx_equal_p (src_op0, src_op1))
3356 {
3357 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3358 SUBST (XEXP (setsrc, 0), newdest);
3359 SUBST (XEXP (setsrc, 1), newdest);
3360 subst_done = true;
3361 }
3362 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3363 else if ((code == PLUS || code == MULT)
3364 && GET_CODE (src_op0) == code
3365 && GET_CODE (XEXP (src_op0, 0)) == code
3366 && (INTEGRAL_MODE_P (mode)
3367 || (FLOAT_MODE_P (mode)
3368 && flag_unsafe_math_optimizations)))
3369 {
3370 rtx p = XEXP (XEXP (src_op0, 0), 0);
3371 rtx q = XEXP (XEXP (src_op0, 0), 1);
3372 rtx r = XEXP (src_op0, 1);
3373 rtx s = src_op1;
3374
3375 /* Split both "((X op Y) op X) op Y" and
3376 "((X op Y) op Y) op X" as "T op T" where T is
3377 "X op Y". */
3378 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3379 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3380 {
3381 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3382 XEXP (src_op0, 0));
3383 SUBST (XEXP (setsrc, 0), newdest);
3384 SUBST (XEXP (setsrc, 1), newdest);
3385 subst_done = true;
3386 }
3387 /* Split "((X op X) op Y) op Y)" as "T op T" where
3388 T is "X op Y". */
3389 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3390 {
3391 rtx tmp = simplify_gen_binary (code, mode, p, r);
3392 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3393 SUBST (XEXP (setsrc, 0), newdest);
3394 SUBST (XEXP (setsrc, 1), newdest);
3395 subst_done = true;
3396 }
3397 }
3398 }
3399
3400 if (!subst_done)
3401 {
3402 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3403 SUBST (*split, newdest);
3404 }
3405
3406 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3407
3408 /* recog_for_combine might have added CLOBBERs to newi2pat.
3409 Make sure NEWPAT does not depend on the clobbered regs. */
3410 if (GET_CODE (newi2pat) == PARALLEL)
3411 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3412 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3413 {
3414 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3415 if (reg_overlap_mentioned_p (reg, newpat))
3416 {
3417 undo_all ();
3418 return 0;
3419 }
3420 }
3421
3422 /* If the split point was a MULT and we didn't have one before,
3423 don't use one now. */
3424 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3425 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3426 }
3427 }
3428
3429 /* Check for a case where we loaded from memory in a narrow mode and
3430 then sign extended it, but we need both registers. In that case,
3431 we have a PARALLEL with both loads from the same memory location.
3432 We can split this into a load from memory followed by a register-register
3433 copy. This saves at least one insn, more if register allocation can
3434 eliminate the copy.
3435
3436 We cannot do this if the destination of the first assignment is a
3437 condition code register or cc0. We eliminate this case by making sure
3438 the SET_DEST and SET_SRC have the same mode.
3439
3440 We cannot do this if the destination of the second assignment is
3441 a register that we have already assumed is zero-extended. Similarly
3442 for a SUBREG of such a register. */
3443
3444 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3445 && GET_CODE (newpat) == PARALLEL
3446 && XVECLEN (newpat, 0) == 2
3447 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3448 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3449 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3450 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3451 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3452 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3453 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3454 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3455 DF_INSN_LUID (i2))
3456 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3457 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3458 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3459 (REG_P (temp)
3460 && VEC_index (reg_stat_type, reg_stat,
3461 REGNO (temp))->nonzero_bits != 0
3462 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3463 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3464 && (VEC_index (reg_stat_type, reg_stat,
3465 REGNO (temp))->nonzero_bits
3466 != GET_MODE_MASK (word_mode))))
3467 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3468 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3469 (REG_P (temp)
3470 && VEC_index (reg_stat_type, reg_stat,
3471 REGNO (temp))->nonzero_bits != 0
3472 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3473 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3474 && (VEC_index (reg_stat_type, reg_stat,
3475 REGNO (temp))->nonzero_bits
3476 != GET_MODE_MASK (word_mode)))))
3477 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3478 SET_SRC (XVECEXP (newpat, 0, 1)))
3479 && ! find_reg_note (i3, REG_UNUSED,
3480 SET_DEST (XVECEXP (newpat, 0, 0))))
3481 {
3482 rtx ni2dest;
3483
3484 newi2pat = XVECEXP (newpat, 0, 0);
3485 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3486 newpat = XVECEXP (newpat, 0, 1);
3487 SUBST (SET_SRC (newpat),
3488 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3489 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3490
3491 if (i2_code_number >= 0)
3492 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3493
3494 if (insn_code_number >= 0)
3495 swap_i2i3 = 1;
3496 }
3497
3498 /* Similarly, check for a case where we have a PARALLEL of two independent
3499 SETs but we started with three insns. In this case, we can do the sets
3500 as two separate insns. This case occurs when some SET allows two
3501 other insns to combine, but the destination of that SET is still live. */
3502
3503 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3504 && GET_CODE (newpat) == PARALLEL
3505 && XVECLEN (newpat, 0) == 2
3506 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3507 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3508 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3509 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3510 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3511 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3512 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3513 DF_INSN_LUID (i2))
3514 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3515 XVECEXP (newpat, 0, 0))
3516 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3517 XVECEXP (newpat, 0, 1))
3518 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3519 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))
3520 #ifdef HAVE_cc0
3521 /* We cannot split the parallel into two sets if both sets
3522 reference cc0. */
3523 && ! (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3524 && reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1)))
3525 #endif
3526 )
3527 {
3528 /* Normally, it doesn't matter which of the two is done first,
3529 but it does if one references cc0. In that case, it has to
3530 be first. */
3531 #ifdef HAVE_cc0
3532 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
3533 {
3534 newi2pat = XVECEXP (newpat, 0, 0);
3535 newpat = XVECEXP (newpat, 0, 1);
3536 }
3537 else
3538 #endif
3539 {
3540 newi2pat = XVECEXP (newpat, 0, 1);
3541 newpat = XVECEXP (newpat, 0, 0);
3542 }
3543
3544 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3545
3546 if (i2_code_number >= 0)
3547 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3548 }
3549
3550 /* If it still isn't recognized, fail and change things back the way they
3551 were. */
3552 if ((insn_code_number < 0
3553 /* Is the result a reasonable ASM_OPERANDS? */
3554 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3555 {
3556 undo_all ();
3557 return 0;
3558 }
3559
3560 /* If we had to change another insn, make sure it is valid also. */
3561 if (undobuf.other_insn)
3562 {
3563 CLEAR_HARD_REG_SET (newpat_used_regs);
3564
3565 other_pat = PATTERN (undobuf.other_insn);
3566 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3567 &new_other_notes);
3568
3569 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3570 {
3571 undo_all ();
3572 return 0;
3573 }
3574 }
3575
3576 #ifdef HAVE_cc0
3577 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3578 they are adjacent to each other or not. */
3579 {
3580 rtx p = prev_nonnote_insn (i3);
3581 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3582 && sets_cc0_p (newi2pat))
3583 {
3584 undo_all ();
3585 return 0;
3586 }
3587 }
3588 #endif
3589
3590 /* Only allow this combination if insn_rtx_costs reports that the
3591 replacement instructions are cheaper than the originals. */
3592 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat, other_pat))
3593 {
3594 undo_all ();
3595 return 0;
3596 }
3597
3598 if (MAY_HAVE_DEBUG_INSNS)
3599 {
3600 struct undo *undo;
3601
3602 for (undo = undobuf.undos; undo; undo = undo->next)
3603 if (undo->kind == UNDO_MODE)
3604 {
3605 rtx reg = *undo->where.r;
3606 enum machine_mode new_mode = GET_MODE (reg);
3607 enum machine_mode old_mode = undo->old_contents.m;
3608
3609 /* Temporarily revert mode back. */
3610 adjust_reg_mode (reg, old_mode);
3611
3612 if (reg == i2dest && i2scratch)
3613 {
3614 /* If we used i2dest as a scratch register with a
3615 different mode, substitute it for the original
3616 i2src while its original mode is temporarily
3617 restored, and then clear i2scratch so that we don't
3618 do it again later. */
3619 propagate_for_debug (i2, i3, reg, i2src, false);
3620 i2scratch = false;
3621 /* Put back the new mode. */
3622 adjust_reg_mode (reg, new_mode);
3623 }
3624 else
3625 {
3626 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3627 rtx first, last;
3628
3629 if (reg == i2dest)
3630 {
3631 first = i2;
3632 last = i3;
3633 }
3634 else
3635 {
3636 first = i3;
3637 last = undobuf.other_insn;
3638 gcc_assert (last);
3639 }
3640
3641 /* We're dealing with a reg that changed mode but not
3642 meaning, so we want to turn it into a subreg for
3643 the new mode. However, because of REG sharing and
3644 because its mode had already changed, we have to do
3645 it in two steps. First, replace any debug uses of
3646 reg, with its original mode temporarily restored,
3647 with this copy we have created; then, replace the
3648 copy with the SUBREG of the original shared reg,
3649 once again changed to the new mode. */
3650 propagate_for_debug (first, last, reg, tempreg, false);
3651 adjust_reg_mode (reg, new_mode);
3652 propagate_for_debug (first, last, tempreg,
3653 lowpart_subreg (old_mode, reg, new_mode),
3654 false);
3655 }
3656 }
3657 }
3658
3659 /* If we will be able to accept this, we have made a
3660 change to the destination of I3. This requires us to
3661 do a few adjustments. */
3662
3663 if (changed_i3_dest)
3664 {
3665 PATTERN (i3) = newpat;
3666 adjust_for_new_dest (i3);
3667 }
3668
3669 /* We now know that we can do this combination. Merge the insns and
3670 update the status of registers and LOG_LINKS. */
3671
3672 if (undobuf.other_insn)
3673 {
3674 rtx note, next;
3675
3676 PATTERN (undobuf.other_insn) = other_pat;
3677
3678 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3679 are still valid. Then add any non-duplicate notes added by
3680 recog_for_combine. */
3681 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3682 {
3683 next = XEXP (note, 1);
3684
3685 if (REG_NOTE_KIND (note) == REG_UNUSED
3686 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3687 remove_note (undobuf.other_insn, note);
3688 }
3689
3690 distribute_notes (new_other_notes, undobuf.other_insn,
3691 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
3692 }
3693
3694 if (swap_i2i3)
3695 {
3696 rtx insn;
3697 rtx link;
3698 rtx ni2dest;
3699
3700 /* I3 now uses what used to be its destination and which is now
3701 I2's destination. This requires us to do a few adjustments. */
3702 PATTERN (i3) = newpat;
3703 adjust_for_new_dest (i3);
3704
3705 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3706 so we still will.
3707
3708 However, some later insn might be using I2's dest and have
3709 a LOG_LINK pointing at I3. We must remove this link.
3710 The simplest way to remove the link is to point it at I1,
3711 which we know will be a NOTE. */
3712
3713 /* newi2pat is usually a SET here; however, recog_for_combine might
3714 have added some clobbers. */
3715 if (GET_CODE (newi2pat) == PARALLEL)
3716 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3717 else
3718 ni2dest = SET_DEST (newi2pat);
3719
3720 for (insn = NEXT_INSN (i3);
3721 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3722 || insn != BB_HEAD (this_basic_block->next_bb));
3723 insn = NEXT_INSN (insn))
3724 {
3725 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3726 {
3727 for (link = LOG_LINKS (insn); link;
3728 link = XEXP (link, 1))
3729 if (XEXP (link, 0) == i3)
3730 XEXP (link, 0) = i1;
3731
3732 break;
3733 }
3734 }
3735 }
3736
3737 {
3738 rtx i3notes, i2notes, i1notes = 0;
3739 rtx i3links, i2links, i1links = 0;
3740 rtx midnotes = 0;
3741 unsigned int regno;
3742 /* Compute which registers we expect to eliminate. newi2pat may be setting
3743 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3744 same as i3dest, in which case newi2pat may be setting i1dest. */
3745 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3746 || i2dest_in_i2src || i2dest_in_i1src
3747 || !i2dest_killed
3748 ? 0 : i2dest);
3749 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3750 || (newi2pat && reg_set_p (i1dest, newi2pat))
3751 || !i1dest_killed
3752 ? 0 : i1dest);
3753
3754 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3755 clear them. */
3756 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3757 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3758 if (i1)
3759 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3760
3761 /* Ensure that we do not have something that should not be shared but
3762 occurs multiple times in the new insns. Check this by first
3763 resetting all the `used' flags and then copying anything is shared. */
3764
3765 reset_used_flags (i3notes);
3766 reset_used_flags (i2notes);
3767 reset_used_flags (i1notes);
3768 reset_used_flags (newpat);
3769 reset_used_flags (newi2pat);
3770 if (undobuf.other_insn)
3771 reset_used_flags (PATTERN (undobuf.other_insn));
3772
3773 i3notes = copy_rtx_if_shared (i3notes);
3774 i2notes = copy_rtx_if_shared (i2notes);
3775 i1notes = copy_rtx_if_shared (i1notes);
3776 newpat = copy_rtx_if_shared (newpat);
3777 newi2pat = copy_rtx_if_shared (newi2pat);
3778 if (undobuf.other_insn)
3779 reset_used_flags (PATTERN (undobuf.other_insn));
3780
3781 INSN_CODE (i3) = insn_code_number;
3782 PATTERN (i3) = newpat;
3783
3784 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3785 {
3786 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3787
3788 reset_used_flags (call_usage);
3789 call_usage = copy_rtx (call_usage);
3790
3791 if (substed_i2)
3792 replace_rtx (call_usage, i2dest, i2src);
3793
3794 if (substed_i1)
3795 replace_rtx (call_usage, i1dest, i1src);
3796
3797 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3798 }
3799
3800 if (undobuf.other_insn)
3801 INSN_CODE (undobuf.other_insn) = other_code_number;
3802
3803 /* We had one special case above where I2 had more than one set and
3804 we replaced a destination of one of those sets with the destination
3805 of I3. In that case, we have to update LOG_LINKS of insns later
3806 in this basic block. Note that this (expensive) case is rare.
3807
3808 Also, in this case, we must pretend that all REG_NOTEs for I2
3809 actually came from I3, so that REG_UNUSED notes from I2 will be
3810 properly handled. */
3811
3812 if (i3_subst_into_i2)
3813 {
3814 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3815 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
3816 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
3817 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3818 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3819 && ! find_reg_note (i2, REG_UNUSED,
3820 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3821 for (temp = NEXT_INSN (i2);
3822 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3823 || BB_HEAD (this_basic_block) != temp);
3824 temp = NEXT_INSN (temp))
3825 if (temp != i3 && INSN_P (temp))
3826 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3827 if (XEXP (link, 0) == i2)
3828 XEXP (link, 0) = i3;
3829
3830 if (i3notes)
3831 {
3832 rtx link = i3notes;
3833 while (XEXP (link, 1))
3834 link = XEXP (link, 1);
3835 XEXP (link, 1) = i2notes;
3836 }
3837 else
3838 i3notes = i2notes;
3839 i2notes = 0;
3840 }
3841
3842 LOG_LINKS (i3) = 0;
3843 REG_NOTES (i3) = 0;
3844 LOG_LINKS (i2) = 0;
3845 REG_NOTES (i2) = 0;
3846
3847 if (newi2pat)
3848 {
3849 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
3850 propagate_for_debug (i2, i3, i2dest, i2src, false);
3851 INSN_CODE (i2) = i2_code_number;
3852 PATTERN (i2) = newi2pat;
3853 }
3854 else
3855 {
3856 if (MAY_HAVE_DEBUG_INSNS && i2src)
3857 propagate_for_debug (i2, i3, i2dest, i2src, i3_subst_into_i2);
3858 SET_INSN_DELETED (i2);
3859 }
3860
3861 if (i1)
3862 {
3863 LOG_LINKS (i1) = 0;
3864 REG_NOTES (i1) = 0;
3865 if (MAY_HAVE_DEBUG_INSNS)
3866 propagate_for_debug (i1, i3, i1dest, i1src, false);
3867 SET_INSN_DELETED (i1);
3868 }
3869
3870 /* Get death notes for everything that is now used in either I3 or
3871 I2 and used to die in a previous insn. If we built two new
3872 patterns, move from I1 to I2 then I2 to I3 so that we get the
3873 proper movement on registers that I2 modifies. */
3874
3875 if (newi2pat)
3876 {
3877 move_deaths (newi2pat, NULL_RTX, DF_INSN_LUID (i1), i2, &midnotes);
3878 move_deaths (newpat, newi2pat, DF_INSN_LUID (i1), i3, &midnotes);
3879 }
3880 else
3881 move_deaths (newpat, NULL_RTX, i1 ? DF_INSN_LUID (i1) : DF_INSN_LUID (i2),
3882 i3, &midnotes);
3883
3884 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3885 if (i3notes)
3886 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3887 elim_i2, elim_i1);
3888 if (i2notes)
3889 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3890 elim_i2, elim_i1);
3891 if (i1notes)
3892 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3893 elim_i2, elim_i1);
3894 if (midnotes)
3895 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3896 elim_i2, elim_i1);
3897
3898 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3899 know these are REG_UNUSED and want them to go to the desired insn,
3900 so we always pass it as i3. */
3901
3902 if (newi2pat && new_i2_notes)
3903 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3904
3905 if (new_i3_notes)
3906 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3907
3908 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3909 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3910 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3911 in that case, it might delete I2. Similarly for I2 and I1.
3912 Show an additional death due to the REG_DEAD note we make here. If
3913 we discard it in distribute_notes, we will decrement it again. */
3914
3915 if (i3dest_killed)
3916 {
3917 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3918 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
3919 NULL_RTX),
3920 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3921 else
3922 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
3923 NULL_RTX),
3924 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3925 elim_i2, elim_i1);
3926 }
3927
3928 if (i2dest_in_i2src)
3929 {
3930 if (newi2pat && reg_set_p (i2dest, newi2pat))
3931 distribute_notes (alloc_reg_note (REG_DEAD, i2dest, NULL_RTX),
3932 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3933 else
3934 distribute_notes (alloc_reg_note (REG_DEAD, i2dest, NULL_RTX),
3935 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3936 NULL_RTX, NULL_RTX);
3937 }
3938
3939 if (i1dest_in_i1src)
3940 {
3941 if (newi2pat && reg_set_p (i1dest, newi2pat))
3942 distribute_notes (alloc_reg_note (REG_DEAD, i1dest, NULL_RTX),
3943 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3944 else
3945 distribute_notes (alloc_reg_note (REG_DEAD, i1dest, NULL_RTX),
3946 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3947 NULL_RTX, NULL_RTX);
3948 }
3949
3950 distribute_links (i3links);
3951 distribute_links (i2links);
3952 distribute_links (i1links);
3953
3954 if (REG_P (i2dest))
3955 {
3956 rtx link;
3957 rtx i2_insn = 0, i2_val = 0, set;
3958
3959 /* The insn that used to set this register doesn't exist, and
3960 this life of the register may not exist either. See if one of
3961 I3's links points to an insn that sets I2DEST. If it does,
3962 that is now the last known value for I2DEST. If we don't update
3963 this and I2 set the register to a value that depended on its old
3964 contents, we will get confused. If this insn is used, thing
3965 will be set correctly in combine_instructions. */
3966
3967 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3968 if ((set = single_set (XEXP (link, 0))) != 0
3969 && rtx_equal_p (i2dest, SET_DEST (set)))
3970 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3971
3972 record_value_for_reg (i2dest, i2_insn, i2_val);
3973
3974 /* If the reg formerly set in I2 died only once and that was in I3,
3975 zero its use count so it won't make `reload' do any work. */
3976 if (! added_sets_2
3977 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3978 && ! i2dest_in_i2src)
3979 {
3980 regno = REGNO (i2dest);
3981 INC_REG_N_SETS (regno, -1);
3982 }
3983 }
3984
3985 if (i1 && REG_P (i1dest))
3986 {
3987 rtx link;
3988 rtx i1_insn = 0, i1_val = 0, set;
3989
3990 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3991 if ((set = single_set (XEXP (link, 0))) != 0
3992 && rtx_equal_p (i1dest, SET_DEST (set)))
3993 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3994
3995 record_value_for_reg (i1dest, i1_insn, i1_val);
3996
3997 regno = REGNO (i1dest);
3998 if (! added_sets_1 && ! i1dest_in_i1src)
3999 INC_REG_N_SETS (regno, -1);
4000 }
4001
4002 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4003 been made to this insn. The order of
4004 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
4005 can affect nonzero_bits of newpat */
4006 if (newi2pat)
4007 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4008 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4009 }
4010
4011 if (undobuf.other_insn != NULL_RTX)
4012 {
4013 if (dump_file)
4014 {
4015 fprintf (dump_file, "modifying other_insn ");
4016 dump_insn_slim (dump_file, undobuf.other_insn);
4017 }
4018 df_insn_rescan (undobuf.other_insn);
4019 }
4020
4021 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4022 {
4023 if (dump_file)
4024 {
4025 fprintf (dump_file, "modifying insn i1 ");
4026 dump_insn_slim (dump_file, i1);
4027 }
4028 df_insn_rescan (i1);
4029 }
4030
4031 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4032 {
4033 if (dump_file)
4034 {
4035 fprintf (dump_file, "modifying insn i2 ");
4036 dump_insn_slim (dump_file, i2);
4037 }
4038 df_insn_rescan (i2);
4039 }
4040
4041 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4042 {
4043 if (dump_file)
4044 {
4045 fprintf (dump_file, "modifying insn i3 ");
4046 dump_insn_slim (dump_file, i3);
4047 }
4048 df_insn_rescan (i3);
4049 }
4050
4051 /* Set new_direct_jump_p if a new return or simple jump instruction
4052 has been created. Adjust the CFG accordingly. */
4053
4054 if (returnjump_p (i3) || any_uncondjump_p (i3))
4055 {
4056 *new_direct_jump_p = 1;
4057 mark_jump_label (PATTERN (i3), i3, 0);
4058 update_cfg_for_uncondjump (i3);
4059 }
4060
4061 if (undobuf.other_insn != NULL_RTX
4062 && (returnjump_p (undobuf.other_insn)
4063 || any_uncondjump_p (undobuf.other_insn)))
4064 {
4065 *new_direct_jump_p = 1;
4066 update_cfg_for_uncondjump (undobuf.other_insn);
4067 }
4068
4069 /* A noop might also need cleaning up of CFG, if it comes from the
4070 simplification of a jump. */
4071 if (GET_CODE (newpat) == SET
4072 && SET_SRC (newpat) == pc_rtx
4073 && SET_DEST (newpat) == pc_rtx)
4074 {
4075 *new_direct_jump_p = 1;
4076 update_cfg_for_uncondjump (i3);
4077 }
4078
4079 combine_successes++;
4080 undo_commit ();
4081
4082 if (added_links_insn
4083 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4084 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4085 return added_links_insn;
4086 else
4087 return newi2pat ? i2 : i3;
4088 }
4089 \f
4090 /* Undo all the modifications recorded in undobuf. */
4091
4092 static void
4093 undo_all (void)
4094 {
4095 struct undo *undo, *next;
4096
4097 for (undo = undobuf.undos; undo; undo = next)
4098 {
4099 next = undo->next;
4100 switch (undo->kind)
4101 {
4102 case UNDO_RTX:
4103 *undo->where.r = undo->old_contents.r;
4104 break;
4105 case UNDO_INT:
4106 *undo->where.i = undo->old_contents.i;
4107 break;
4108 case UNDO_MODE:
4109 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4110 break;
4111 default:
4112 gcc_unreachable ();
4113 }
4114
4115 undo->next = undobuf.frees;
4116 undobuf.frees = undo;
4117 }
4118
4119 undobuf.undos = 0;
4120 }
4121
4122 /* We've committed to accepting the changes we made. Move all
4123 of the undos to the free list. */
4124
4125 static void
4126 undo_commit (void)
4127 {
4128 struct undo *undo, *next;
4129
4130 for (undo = undobuf.undos; undo; undo = next)
4131 {
4132 next = undo->next;
4133 undo->next = undobuf.frees;
4134 undobuf.frees = undo;
4135 }
4136 undobuf.undos = 0;
4137 }
4138 \f
4139 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4140 where we have an arithmetic expression and return that point. LOC will
4141 be inside INSN.
4142
4143 try_combine will call this function to see if an insn can be split into
4144 two insns. */
4145
4146 static rtx *
4147 find_split_point (rtx *loc, rtx insn)
4148 {
4149 rtx x = *loc;
4150 enum rtx_code code = GET_CODE (x);
4151 rtx *split;
4152 unsigned HOST_WIDE_INT len = 0;
4153 HOST_WIDE_INT pos = 0;
4154 int unsignedp = 0;
4155 rtx inner = NULL_RTX;
4156
4157 /* First special-case some codes. */
4158 switch (code)
4159 {
4160 case SUBREG:
4161 #ifdef INSN_SCHEDULING
4162 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4163 point. */
4164 if (MEM_P (SUBREG_REG (x)))
4165 return loc;
4166 #endif
4167 return find_split_point (&SUBREG_REG (x), insn);
4168
4169 case MEM:
4170 #ifdef HAVE_lo_sum
4171 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4172 using LO_SUM and HIGH. */
4173 if (GET_CODE (XEXP (x, 0)) == CONST
4174 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4175 {
4176 enum machine_mode address_mode
4177 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
4178
4179 SUBST (XEXP (x, 0),
4180 gen_rtx_LO_SUM (address_mode,
4181 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4182 XEXP (x, 0)));
4183 return &XEXP (XEXP (x, 0), 0);
4184 }
4185 #endif
4186
4187 /* If we have a PLUS whose second operand is a constant and the
4188 address is not valid, perhaps will can split it up using
4189 the machine-specific way to split large constants. We use
4190 the first pseudo-reg (one of the virtual regs) as a placeholder;
4191 it will not remain in the result. */
4192 if (GET_CODE (XEXP (x, 0)) == PLUS
4193 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4194 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4195 MEM_ADDR_SPACE (x)))
4196 {
4197 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4198 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4199 XEXP (x, 0)),
4200 subst_insn);
4201
4202 /* This should have produced two insns, each of which sets our
4203 placeholder. If the source of the second is a valid address,
4204 we can make put both sources together and make a split point
4205 in the middle. */
4206
4207 if (seq
4208 && NEXT_INSN (seq) != NULL_RTX
4209 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4210 && NONJUMP_INSN_P (seq)
4211 && GET_CODE (PATTERN (seq)) == SET
4212 && SET_DEST (PATTERN (seq)) == reg
4213 && ! reg_mentioned_p (reg,
4214 SET_SRC (PATTERN (seq)))
4215 && NONJUMP_INSN_P (NEXT_INSN (seq))
4216 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4217 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4218 && memory_address_addr_space_p
4219 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4220 MEM_ADDR_SPACE (x)))
4221 {
4222 rtx src1 = SET_SRC (PATTERN (seq));
4223 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4224
4225 /* Replace the placeholder in SRC2 with SRC1. If we can
4226 find where in SRC2 it was placed, that can become our
4227 split point and we can replace this address with SRC2.
4228 Just try two obvious places. */
4229
4230 src2 = replace_rtx (src2, reg, src1);
4231 split = 0;
4232 if (XEXP (src2, 0) == src1)
4233 split = &XEXP (src2, 0);
4234 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4235 && XEXP (XEXP (src2, 0), 0) == src1)
4236 split = &XEXP (XEXP (src2, 0), 0);
4237
4238 if (split)
4239 {
4240 SUBST (XEXP (x, 0), src2);
4241 return split;
4242 }
4243 }
4244
4245 /* If that didn't work, perhaps the first operand is complex and
4246 needs to be computed separately, so make a split point there.
4247 This will occur on machines that just support REG + CONST
4248 and have a constant moved through some previous computation. */
4249
4250 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4251 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4252 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4253 return &XEXP (XEXP (x, 0), 0);
4254 }
4255
4256 /* If we have a PLUS whose first operand is complex, try computing it
4257 separately by making a split there. */
4258 if (GET_CODE (XEXP (x, 0)) == PLUS
4259 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4260 MEM_ADDR_SPACE (x))
4261 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4262 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4263 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4264 return &XEXP (XEXP (x, 0), 0);
4265 break;
4266
4267 case SET:
4268 #ifdef HAVE_cc0
4269 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4270 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4271 we need to put the operand into a register. So split at that
4272 point. */
4273
4274 if (SET_DEST (x) == cc0_rtx
4275 && GET_CODE (SET_SRC (x)) != COMPARE
4276 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4277 && !OBJECT_P (SET_SRC (x))
4278 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4279 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4280 return &SET_SRC (x);
4281 #endif
4282
4283 /* See if we can split SET_SRC as it stands. */
4284 split = find_split_point (&SET_SRC (x), insn);
4285 if (split && split != &SET_SRC (x))
4286 return split;
4287
4288 /* See if we can split SET_DEST as it stands. */
4289 split = find_split_point (&SET_DEST (x), insn);
4290 if (split && split != &SET_DEST (x))
4291 return split;
4292
4293 /* See if this is a bitfield assignment with everything constant. If
4294 so, this is an IOR of an AND, so split it into that. */
4295 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4296 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
4297 <= HOST_BITS_PER_WIDE_INT)
4298 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4299 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4300 && CONST_INT_P (SET_SRC (x))
4301 && ((INTVAL (XEXP (SET_DEST (x), 1))
4302 + INTVAL (XEXP (SET_DEST (x), 2)))
4303 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4304 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4305 {
4306 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4307 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4308 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4309 rtx dest = XEXP (SET_DEST (x), 0);
4310 enum machine_mode mode = GET_MODE (dest);
4311 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
4312 rtx or_mask;
4313
4314 if (BITS_BIG_ENDIAN)
4315 pos = GET_MODE_BITSIZE (mode) - len - pos;
4316
4317 or_mask = gen_int_mode (src << pos, mode);
4318 if (src == mask)
4319 SUBST (SET_SRC (x),
4320 simplify_gen_binary (IOR, mode, dest, or_mask));
4321 else
4322 {
4323 rtx negmask = gen_int_mode (~(mask << pos), mode);
4324 SUBST (SET_SRC (x),
4325 simplify_gen_binary (IOR, mode,
4326 simplify_gen_binary (AND, mode,
4327 dest, negmask),
4328 or_mask));
4329 }
4330
4331 SUBST (SET_DEST (x), dest);
4332
4333 split = find_split_point (&SET_SRC (x), insn);
4334 if (split && split != &SET_SRC (x))
4335 return split;
4336 }
4337
4338 /* Otherwise, see if this is an operation that we can split into two.
4339 If so, try to split that. */
4340 code = GET_CODE (SET_SRC (x));
4341
4342 switch (code)
4343 {
4344 case AND:
4345 /* If we are AND'ing with a large constant that is only a single
4346 bit and the result is only being used in a context where we
4347 need to know if it is zero or nonzero, replace it with a bit
4348 extraction. This will avoid the large constant, which might
4349 have taken more than one insn to make. If the constant were
4350 not a valid argument to the AND but took only one insn to make,
4351 this is no worse, but if it took more than one insn, it will
4352 be better. */
4353
4354 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4355 && REG_P (XEXP (SET_SRC (x), 0))
4356 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4357 && REG_P (SET_DEST (x))
4358 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4359 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4360 && XEXP (*split, 0) == SET_DEST (x)
4361 && XEXP (*split, 1) == const0_rtx)
4362 {
4363 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4364 XEXP (SET_SRC (x), 0),
4365 pos, NULL_RTX, 1, 1, 0, 0);
4366 if (extraction != 0)
4367 {
4368 SUBST (SET_SRC (x), extraction);
4369 return find_split_point (loc, insn);
4370 }
4371 }
4372 break;
4373
4374 case NE:
4375 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4376 is known to be on, this can be converted into a NEG of a shift. */
4377 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4378 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4379 && 1 <= (pos = exact_log2
4380 (nonzero_bits (XEXP (SET_SRC (x), 0),
4381 GET_MODE (XEXP (SET_SRC (x), 0))))))
4382 {
4383 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4384
4385 SUBST (SET_SRC (x),
4386 gen_rtx_NEG (mode,
4387 gen_rtx_LSHIFTRT (mode,
4388 XEXP (SET_SRC (x), 0),
4389 GEN_INT (pos))));
4390
4391 split = find_split_point (&SET_SRC (x), insn);
4392 if (split && split != &SET_SRC (x))
4393 return split;
4394 }
4395 break;
4396
4397 case SIGN_EXTEND:
4398 inner = XEXP (SET_SRC (x), 0);
4399
4400 /* We can't optimize if either mode is a partial integer
4401 mode as we don't know how many bits are significant
4402 in those modes. */
4403 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4404 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4405 break;
4406
4407 pos = 0;
4408 len = GET_MODE_BITSIZE (GET_MODE (inner));
4409 unsignedp = 0;
4410 break;
4411
4412 case SIGN_EXTRACT:
4413 case ZERO_EXTRACT:
4414 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4415 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4416 {
4417 inner = XEXP (SET_SRC (x), 0);
4418 len = INTVAL (XEXP (SET_SRC (x), 1));
4419 pos = INTVAL (XEXP (SET_SRC (x), 2));
4420
4421 if (BITS_BIG_ENDIAN)
4422 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4423 unsignedp = (code == ZERO_EXTRACT);
4424 }
4425 break;
4426
4427 default:
4428 break;
4429 }
4430
4431 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4432 {
4433 enum machine_mode mode = GET_MODE (SET_SRC (x));
4434
4435 /* For unsigned, we have a choice of a shift followed by an
4436 AND or two shifts. Use two shifts for field sizes where the
4437 constant might be too large. We assume here that we can
4438 always at least get 8-bit constants in an AND insn, which is
4439 true for every current RISC. */
4440
4441 if (unsignedp && len <= 8)
4442 {
4443 SUBST (SET_SRC (x),
4444 gen_rtx_AND (mode,
4445 gen_rtx_LSHIFTRT
4446 (mode, gen_lowpart (mode, inner),
4447 GEN_INT (pos)),
4448 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
4449
4450 split = find_split_point (&SET_SRC (x), insn);
4451 if (split && split != &SET_SRC (x))
4452 return split;
4453 }
4454 else
4455 {
4456 SUBST (SET_SRC (x),
4457 gen_rtx_fmt_ee
4458 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4459 gen_rtx_ASHIFT (mode,
4460 gen_lowpart (mode, inner),
4461 GEN_INT (GET_MODE_BITSIZE (mode)
4462 - len - pos)),
4463 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4464
4465 split = find_split_point (&SET_SRC (x), insn);
4466 if (split && split != &SET_SRC (x))
4467 return split;
4468 }
4469 }
4470
4471 /* See if this is a simple operation with a constant as the second
4472 operand. It might be that this constant is out of range and hence
4473 could be used as a split point. */
4474 if (BINARY_P (SET_SRC (x))
4475 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4476 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4477 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4478 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4479 return &XEXP (SET_SRC (x), 1);
4480
4481 /* Finally, see if this is a simple operation with its first operand
4482 not in a register. The operation might require this operand in a
4483 register, so return it as a split point. We can always do this
4484 because if the first operand were another operation, we would have
4485 already found it as a split point. */
4486 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4487 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4488 return &XEXP (SET_SRC (x), 0);
4489
4490 return 0;
4491
4492 case AND:
4493 case IOR:
4494 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4495 it is better to write this as (not (ior A B)) so we can split it.
4496 Similarly for IOR. */
4497 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4498 {
4499 SUBST (*loc,
4500 gen_rtx_NOT (GET_MODE (x),
4501 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4502 GET_MODE (x),
4503 XEXP (XEXP (x, 0), 0),
4504 XEXP (XEXP (x, 1), 0))));
4505 return find_split_point (loc, insn);
4506 }
4507
4508 /* Many RISC machines have a large set of logical insns. If the
4509 second operand is a NOT, put it first so we will try to split the
4510 other operand first. */
4511 if (GET_CODE (XEXP (x, 1)) == NOT)
4512 {
4513 rtx tem = XEXP (x, 0);
4514 SUBST (XEXP (x, 0), XEXP (x, 1));
4515 SUBST (XEXP (x, 1), tem);
4516 }
4517 break;
4518
4519 default:
4520 break;
4521 }
4522
4523 /* Otherwise, select our actions depending on our rtx class. */
4524 switch (GET_RTX_CLASS (code))
4525 {
4526 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4527 case RTX_TERNARY:
4528 split = find_split_point (&XEXP (x, 2), insn);
4529 if (split)
4530 return split;
4531 /* ... fall through ... */
4532 case RTX_BIN_ARITH:
4533 case RTX_COMM_ARITH:
4534 case RTX_COMPARE:
4535 case RTX_COMM_COMPARE:
4536 split = find_split_point (&XEXP (x, 1), insn);
4537 if (split)
4538 return split;
4539 /* ... fall through ... */
4540 case RTX_UNARY:
4541 /* Some machines have (and (shift ...) ...) insns. If X is not
4542 an AND, but XEXP (X, 0) is, use it as our split point. */
4543 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4544 return &XEXP (x, 0);
4545
4546 split = find_split_point (&XEXP (x, 0), insn);
4547 if (split)
4548 return split;
4549 return loc;
4550
4551 default:
4552 /* Otherwise, we don't have a split point. */
4553 return 0;
4554 }
4555 }
4556 \f
4557 /* Throughout X, replace FROM with TO, and return the result.
4558 The result is TO if X is FROM;
4559 otherwise the result is X, but its contents may have been modified.
4560 If they were modified, a record was made in undobuf so that
4561 undo_all will (among other things) return X to its original state.
4562
4563 If the number of changes necessary is too much to record to undo,
4564 the excess changes are not made, so the result is invalid.
4565 The changes already made can still be undone.
4566 undobuf.num_undo is incremented for such changes, so by testing that
4567 the caller can tell whether the result is valid.
4568
4569 `n_occurrences' is incremented each time FROM is replaced.
4570
4571 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4572
4573 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4574 by copying if `n_occurrences' is nonzero. */
4575
4576 static rtx
4577 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4578 {
4579 enum rtx_code code = GET_CODE (x);
4580 enum machine_mode op0_mode = VOIDmode;
4581 const char *fmt;
4582 int len, i;
4583 rtx new_rtx;
4584
4585 /* Two expressions are equal if they are identical copies of a shared
4586 RTX or if they are both registers with the same register number
4587 and mode. */
4588
4589 #define COMBINE_RTX_EQUAL_P(X,Y) \
4590 ((X) == (Y) \
4591 || (REG_P (X) && REG_P (Y) \
4592 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4593
4594 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4595 {
4596 n_occurrences++;
4597 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4598 }
4599
4600 /* If X and FROM are the same register but different modes, they
4601 will not have been seen as equal above. However, the log links code
4602 will make a LOG_LINKS entry for that case. If we do nothing, we
4603 will try to rerecognize our original insn and, when it succeeds,
4604 we will delete the feeding insn, which is incorrect.
4605
4606 So force this insn not to match in this (rare) case. */
4607 if (! in_dest && code == REG && REG_P (from)
4608 && reg_overlap_mentioned_p (x, from))
4609 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4610
4611 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4612 of which may contain things that can be combined. */
4613 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4614 return x;
4615
4616 /* It is possible to have a subexpression appear twice in the insn.
4617 Suppose that FROM is a register that appears within TO.
4618 Then, after that subexpression has been scanned once by `subst',
4619 the second time it is scanned, TO may be found. If we were
4620 to scan TO here, we would find FROM within it and create a
4621 self-referent rtl structure which is completely wrong. */
4622 if (COMBINE_RTX_EQUAL_P (x, to))
4623 return to;
4624
4625 /* Parallel asm_operands need special attention because all of the
4626 inputs are shared across the arms. Furthermore, unsharing the
4627 rtl results in recognition failures. Failure to handle this case
4628 specially can result in circular rtl.
4629
4630 Solve this by doing a normal pass across the first entry of the
4631 parallel, and only processing the SET_DESTs of the subsequent
4632 entries. Ug. */
4633
4634 if (code == PARALLEL
4635 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4636 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4637 {
4638 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4639
4640 /* If this substitution failed, this whole thing fails. */
4641 if (GET_CODE (new_rtx) == CLOBBER
4642 && XEXP (new_rtx, 0) == const0_rtx)
4643 return new_rtx;
4644
4645 SUBST (XVECEXP (x, 0, 0), new_rtx);
4646
4647 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4648 {
4649 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4650
4651 if (!REG_P (dest)
4652 && GET_CODE (dest) != CC0
4653 && GET_CODE (dest) != PC)
4654 {
4655 new_rtx = subst (dest, from, to, 0, unique_copy);
4656
4657 /* If this substitution failed, this whole thing fails. */
4658 if (GET_CODE (new_rtx) == CLOBBER
4659 && XEXP (new_rtx, 0) == const0_rtx)
4660 return new_rtx;
4661
4662 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4663 }
4664 }
4665 }
4666 else
4667 {
4668 len = GET_RTX_LENGTH (code);
4669 fmt = GET_RTX_FORMAT (code);
4670
4671 /* We don't need to process a SET_DEST that is a register, CC0,
4672 or PC, so set up to skip this common case. All other cases
4673 where we want to suppress replacing something inside a
4674 SET_SRC are handled via the IN_DEST operand. */
4675 if (code == SET
4676 && (REG_P (SET_DEST (x))
4677 || GET_CODE (SET_DEST (x)) == CC0
4678 || GET_CODE (SET_DEST (x)) == PC))
4679 fmt = "ie";
4680
4681 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
4682 constant. */
4683 if (fmt[0] == 'e')
4684 op0_mode = GET_MODE (XEXP (x, 0));
4685
4686 for (i = 0; i < len; i++)
4687 {
4688 if (fmt[i] == 'E')
4689 {
4690 int j;
4691 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4692 {
4693 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
4694 {
4695 new_rtx = (unique_copy && n_occurrences
4696 ? copy_rtx (to) : to);
4697 n_occurrences++;
4698 }
4699 else
4700 {
4701 new_rtx = subst (XVECEXP (x, i, j), from, to, 0,
4702 unique_copy);
4703
4704 /* If this substitution failed, this whole thing
4705 fails. */
4706 if (GET_CODE (new_rtx) == CLOBBER
4707 && XEXP (new_rtx, 0) == const0_rtx)
4708 return new_rtx;
4709 }
4710
4711 SUBST (XVECEXP (x, i, j), new_rtx);
4712 }
4713 }
4714 else if (fmt[i] == 'e')
4715 {
4716 /* If this is a register being set, ignore it. */
4717 new_rtx = XEXP (x, i);
4718 if (in_dest
4719 && i == 0
4720 && (((code == SUBREG || code == ZERO_EXTRACT)
4721 && REG_P (new_rtx))
4722 || code == STRICT_LOW_PART))
4723 ;
4724
4725 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4726 {
4727 /* In general, don't install a subreg involving two
4728 modes not tieable. It can worsen register
4729 allocation, and can even make invalid reload
4730 insns, since the reg inside may need to be copied
4731 from in the outside mode, and that may be invalid
4732 if it is an fp reg copied in integer mode.
4733
4734 We allow two exceptions to this: It is valid if
4735 it is inside another SUBREG and the mode of that
4736 SUBREG and the mode of the inside of TO is
4737 tieable and it is valid if X is a SET that copies
4738 FROM to CC0. */
4739
4740 if (GET_CODE (to) == SUBREG
4741 && ! MODES_TIEABLE_P (GET_MODE (to),
4742 GET_MODE (SUBREG_REG (to)))
4743 && ! (code == SUBREG
4744 && MODES_TIEABLE_P (GET_MODE (x),
4745 GET_MODE (SUBREG_REG (to))))
4746 #ifdef HAVE_cc0
4747 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4748 #endif
4749 )
4750 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4751
4752 #ifdef CANNOT_CHANGE_MODE_CLASS
4753 if (code == SUBREG
4754 && REG_P (to)
4755 && REGNO (to) < FIRST_PSEUDO_REGISTER
4756 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4757 GET_MODE (to),
4758 GET_MODE (x)))
4759 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4760 #endif
4761
4762 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4763 n_occurrences++;
4764 }
4765 else
4766 /* If we are in a SET_DEST, suppress most cases unless we
4767 have gone inside a MEM, in which case we want to
4768 simplify the address. We assume here that things that
4769 are actually part of the destination have their inner
4770 parts in the first expression. This is true for SUBREG,
4771 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4772 things aside from REG and MEM that should appear in a
4773 SET_DEST. */
4774 new_rtx = subst (XEXP (x, i), from, to,
4775 (((in_dest
4776 && (code == SUBREG || code == STRICT_LOW_PART
4777 || code == ZERO_EXTRACT))
4778 || code == SET)
4779 && i == 0), unique_copy);
4780
4781 /* If we found that we will have to reject this combination,
4782 indicate that by returning the CLOBBER ourselves, rather than
4783 an expression containing it. This will speed things up as
4784 well as prevent accidents where two CLOBBERs are considered
4785 to be equal, thus producing an incorrect simplification. */
4786
4787 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
4788 return new_rtx;
4789
4790 if (GET_CODE (x) == SUBREG
4791 && (CONST_INT_P (new_rtx)
4792 || GET_CODE (new_rtx) == CONST_DOUBLE))
4793 {
4794 enum machine_mode mode = GET_MODE (x);
4795
4796 x = simplify_subreg (GET_MODE (x), new_rtx,
4797 GET_MODE (SUBREG_REG (x)),
4798 SUBREG_BYTE (x));
4799 if (! x)
4800 x = gen_rtx_CLOBBER (mode, const0_rtx);
4801 }
4802 else if (CONST_INT_P (new_rtx)
4803 && GET_CODE (x) == ZERO_EXTEND)
4804 {
4805 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4806 new_rtx, GET_MODE (XEXP (x, 0)));
4807 gcc_assert (x);
4808 }
4809 else
4810 SUBST (XEXP (x, i), new_rtx);
4811 }
4812 }
4813 }
4814
4815 /* Check if we are loading something from the constant pool via float
4816 extension; in this case we would undo compress_float_constant
4817 optimization and degenerate constant load to an immediate value. */
4818 if (GET_CODE (x) == FLOAT_EXTEND
4819 && MEM_P (XEXP (x, 0))
4820 && MEM_READONLY_P (XEXP (x, 0)))
4821 {
4822 rtx tmp = avoid_constant_pool_reference (x);
4823 if (x != tmp)
4824 return x;
4825 }
4826
4827 /* Try to simplify X. If the simplification changed the code, it is likely
4828 that further simplification will help, so loop, but limit the number
4829 of repetitions that will be performed. */
4830
4831 for (i = 0; i < 4; i++)
4832 {
4833 /* If X is sufficiently simple, don't bother trying to do anything
4834 with it. */
4835 if (code != CONST_INT && code != REG && code != CLOBBER)
4836 x = combine_simplify_rtx (x, op0_mode, in_dest);
4837
4838 if (GET_CODE (x) == code)
4839 break;
4840
4841 code = GET_CODE (x);
4842
4843 /* We no longer know the original mode of operand 0 since we
4844 have changed the form of X) */
4845 op0_mode = VOIDmode;
4846 }
4847
4848 return x;
4849 }
4850 \f
4851 /* Simplify X, a piece of RTL. We just operate on the expression at the
4852 outer level; call `subst' to simplify recursively. Return the new
4853 expression.
4854
4855 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4856 if we are inside a SET_DEST. */
4857
4858 static rtx
4859 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4860 {
4861 enum rtx_code code = GET_CODE (x);
4862 enum machine_mode mode = GET_MODE (x);
4863 rtx temp;
4864 int i;
4865
4866 /* If this is a commutative operation, put a constant last and a complex
4867 expression first. We don't need to do this for comparisons here. */
4868 if (COMMUTATIVE_ARITH_P (x)
4869 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4870 {
4871 temp = XEXP (x, 0);
4872 SUBST (XEXP (x, 0), XEXP (x, 1));
4873 SUBST (XEXP (x, 1), temp);
4874 }
4875
4876 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4877 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4878 things. Check for cases where both arms are testing the same
4879 condition.
4880
4881 Don't do anything if all operands are very simple. */
4882
4883 if ((BINARY_P (x)
4884 && ((!OBJECT_P (XEXP (x, 0))
4885 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4886 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4887 || (!OBJECT_P (XEXP (x, 1))
4888 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4889 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4890 || (UNARY_P (x)
4891 && (!OBJECT_P (XEXP (x, 0))
4892 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4893 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4894 {
4895 rtx cond, true_rtx, false_rtx;
4896
4897 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4898 if (cond != 0
4899 /* If everything is a comparison, what we have is highly unlikely
4900 to be simpler, so don't use it. */
4901 && ! (COMPARISON_P (x)
4902 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4903 {
4904 rtx cop1 = const0_rtx;
4905 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4906
4907 if (cond_code == NE && COMPARISON_P (cond))
4908 return x;
4909
4910 /* Simplify the alternative arms; this may collapse the true and
4911 false arms to store-flag values. Be careful to use copy_rtx
4912 here since true_rtx or false_rtx might share RTL with x as a
4913 result of the if_then_else_cond call above. */
4914 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4915 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4916
4917 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4918 is unlikely to be simpler. */
4919 if (general_operand (true_rtx, VOIDmode)
4920 && general_operand (false_rtx, VOIDmode))
4921 {
4922 enum rtx_code reversed;
4923
4924 /* Restarting if we generate a store-flag expression will cause
4925 us to loop. Just drop through in this case. */
4926
4927 /* If the result values are STORE_FLAG_VALUE and zero, we can
4928 just make the comparison operation. */
4929 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4930 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4931 cond, cop1);
4932 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4933 && ((reversed = reversed_comparison_code_parts
4934 (cond_code, cond, cop1, NULL))
4935 != UNKNOWN))
4936 x = simplify_gen_relational (reversed, mode, VOIDmode,
4937 cond, cop1);
4938
4939 /* Likewise, we can make the negate of a comparison operation
4940 if the result values are - STORE_FLAG_VALUE and zero. */
4941 else if (CONST_INT_P (true_rtx)
4942 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4943 && false_rtx == const0_rtx)
4944 x = simplify_gen_unary (NEG, mode,
4945 simplify_gen_relational (cond_code,
4946 mode, VOIDmode,
4947 cond, cop1),
4948 mode);
4949 else if (CONST_INT_P (false_rtx)
4950 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4951 && true_rtx == const0_rtx
4952 && ((reversed = reversed_comparison_code_parts
4953 (cond_code, cond, cop1, NULL))
4954 != UNKNOWN))
4955 x = simplify_gen_unary (NEG, mode,
4956 simplify_gen_relational (reversed,
4957 mode, VOIDmode,
4958 cond, cop1),
4959 mode);
4960 else
4961 return gen_rtx_IF_THEN_ELSE (mode,
4962 simplify_gen_relational (cond_code,
4963 mode,
4964 VOIDmode,
4965 cond,
4966 cop1),
4967 true_rtx, false_rtx);
4968
4969 code = GET_CODE (x);
4970 op0_mode = VOIDmode;
4971 }
4972 }
4973 }
4974
4975 /* Try to fold this expression in case we have constants that weren't
4976 present before. */
4977 temp = 0;
4978 switch (GET_RTX_CLASS (code))
4979 {
4980 case RTX_UNARY:
4981 if (op0_mode == VOIDmode)
4982 op0_mode = GET_MODE (XEXP (x, 0));
4983 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4984 break;
4985 case RTX_COMPARE:
4986 case RTX_COMM_COMPARE:
4987 {
4988 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4989 if (cmp_mode == VOIDmode)
4990 {
4991 cmp_mode = GET_MODE (XEXP (x, 1));
4992 if (cmp_mode == VOIDmode)
4993 cmp_mode = op0_mode;
4994 }
4995 temp = simplify_relational_operation (code, mode, cmp_mode,
4996 XEXP (x, 0), XEXP (x, 1));
4997 }
4998 break;
4999 case RTX_COMM_ARITH:
5000 case RTX_BIN_ARITH:
5001 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5002 break;
5003 case RTX_BITFIELD_OPS:
5004 case RTX_TERNARY:
5005 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5006 XEXP (x, 1), XEXP (x, 2));
5007 break;
5008 default:
5009 break;
5010 }
5011
5012 if (temp)
5013 {
5014 x = temp;
5015 code = GET_CODE (temp);
5016 op0_mode = VOIDmode;
5017 mode = GET_MODE (temp);
5018 }
5019
5020 /* First see if we can apply the inverse distributive law. */
5021 if (code == PLUS || code == MINUS
5022 || code == AND || code == IOR || code == XOR)
5023 {
5024 x = apply_distributive_law (x);
5025 code = GET_CODE (x);
5026 op0_mode = VOIDmode;
5027 }
5028
5029 /* If CODE is an associative operation not otherwise handled, see if we
5030 can associate some operands. This can win if they are constants or
5031 if they are logically related (i.e. (a & b) & a). */
5032 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5033 || code == AND || code == IOR || code == XOR
5034 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5035 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5036 || (flag_associative_math && FLOAT_MODE_P (mode))))
5037 {
5038 if (GET_CODE (XEXP (x, 0)) == code)
5039 {
5040 rtx other = XEXP (XEXP (x, 0), 0);
5041 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5042 rtx inner_op1 = XEXP (x, 1);
5043 rtx inner;
5044
5045 /* Make sure we pass the constant operand if any as the second
5046 one if this is a commutative operation. */
5047 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5048 {
5049 rtx tem = inner_op0;
5050 inner_op0 = inner_op1;
5051 inner_op1 = tem;
5052 }
5053 inner = simplify_binary_operation (code == MINUS ? PLUS
5054 : code == DIV ? MULT
5055 : code,
5056 mode, inner_op0, inner_op1);
5057
5058 /* For commutative operations, try the other pair if that one
5059 didn't simplify. */
5060 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5061 {
5062 other = XEXP (XEXP (x, 0), 1);
5063 inner = simplify_binary_operation (code, mode,
5064 XEXP (XEXP (x, 0), 0),
5065 XEXP (x, 1));
5066 }
5067
5068 if (inner)
5069 return simplify_gen_binary (code, mode, other, inner);
5070 }
5071 }
5072
5073 /* A little bit of algebraic simplification here. */
5074 switch (code)
5075 {
5076 case MEM:
5077 /* Ensure that our address has any ASHIFTs converted to MULT in case
5078 address-recognizing predicates are called later. */
5079 temp = make_compound_operation (XEXP (x, 0), MEM);
5080 SUBST (XEXP (x, 0), temp);
5081 break;
5082
5083 case SUBREG:
5084 if (op0_mode == VOIDmode)
5085 op0_mode = GET_MODE (SUBREG_REG (x));
5086
5087 /* See if this can be moved to simplify_subreg. */
5088 if (CONSTANT_P (SUBREG_REG (x))
5089 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5090 /* Don't call gen_lowpart if the inner mode
5091 is VOIDmode and we cannot simplify it, as SUBREG without
5092 inner mode is invalid. */
5093 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5094 || gen_lowpart_common (mode, SUBREG_REG (x))))
5095 return gen_lowpart (mode, SUBREG_REG (x));
5096
5097 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5098 break;
5099 {
5100 rtx temp;
5101 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5102 SUBREG_BYTE (x));
5103 if (temp)
5104 return temp;
5105 }
5106
5107 /* Don't change the mode of the MEM if that would change the meaning
5108 of the address. */
5109 if (MEM_P (SUBREG_REG (x))
5110 && (MEM_VOLATILE_P (SUBREG_REG (x))
5111 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
5112 return gen_rtx_CLOBBER (mode, const0_rtx);
5113
5114 /* Note that we cannot do any narrowing for non-constants since
5115 we might have been counting on using the fact that some bits were
5116 zero. We now do this in the SET. */
5117
5118 break;
5119
5120 case NEG:
5121 temp = expand_compound_operation (XEXP (x, 0));
5122
5123 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5124 replaced by (lshiftrt X C). This will convert
5125 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5126
5127 if (GET_CODE (temp) == ASHIFTRT
5128 && CONST_INT_P (XEXP (temp, 1))
5129 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
5130 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5131 INTVAL (XEXP (temp, 1)));
5132
5133 /* If X has only a single bit that might be nonzero, say, bit I, convert
5134 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5135 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5136 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5137 or a SUBREG of one since we'd be making the expression more
5138 complex if it was just a register. */
5139
5140 if (!REG_P (temp)
5141 && ! (GET_CODE (temp) == SUBREG
5142 && REG_P (SUBREG_REG (temp)))
5143 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5144 {
5145 rtx temp1 = simplify_shift_const
5146 (NULL_RTX, ASHIFTRT, mode,
5147 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5148 GET_MODE_BITSIZE (mode) - 1 - i),
5149 GET_MODE_BITSIZE (mode) - 1 - i);
5150
5151 /* If all we did was surround TEMP with the two shifts, we
5152 haven't improved anything, so don't use it. Otherwise,
5153 we are better off with TEMP1. */
5154 if (GET_CODE (temp1) != ASHIFTRT
5155 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5156 || XEXP (XEXP (temp1, 0), 0) != temp)
5157 return temp1;
5158 }
5159 break;
5160
5161 case TRUNCATE:
5162 /* We can't handle truncation to a partial integer mode here
5163 because we don't know the real bitsize of the partial
5164 integer mode. */
5165 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5166 break;
5167
5168 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5169 SUBST (XEXP (x, 0),
5170 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5171 GET_MODE_MASK (mode), 0));
5172
5173 /* We can truncate a constant value and return it. */
5174 if (CONST_INT_P (XEXP (x, 0)))
5175 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5176
5177 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5178 whose value is a comparison can be replaced with a subreg if
5179 STORE_FLAG_VALUE permits. */
5180 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5181 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5182 && (temp = get_last_value (XEXP (x, 0)))
5183 && COMPARISON_P (temp))
5184 return gen_lowpart (mode, XEXP (x, 0));
5185 break;
5186
5187 case CONST:
5188 /* (const (const X)) can become (const X). Do it this way rather than
5189 returning the inner CONST since CONST can be shared with a
5190 REG_EQUAL note. */
5191 if (GET_CODE (XEXP (x, 0)) == CONST)
5192 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5193 break;
5194
5195 #ifdef HAVE_lo_sum
5196 case LO_SUM:
5197 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5198 can add in an offset. find_split_point will split this address up
5199 again if it doesn't match. */
5200 if (GET_CODE (XEXP (x, 0)) == HIGH
5201 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5202 return XEXP (x, 1);
5203 break;
5204 #endif
5205
5206 case PLUS:
5207 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5208 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5209 bit-field and can be replaced by either a sign_extend or a
5210 sign_extract. The `and' may be a zero_extend and the two
5211 <c>, -<c> constants may be reversed. */
5212 if (GET_CODE (XEXP (x, 0)) == XOR
5213 && CONST_INT_P (XEXP (x, 1))
5214 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5215 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5216 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5217 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
5218 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5219 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5220 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5221 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5222 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
5223 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5224 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5225 == (unsigned int) i + 1))))
5226 return simplify_shift_const
5227 (NULL_RTX, ASHIFTRT, mode,
5228 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5229 XEXP (XEXP (XEXP (x, 0), 0), 0),
5230 GET_MODE_BITSIZE (mode) - (i + 1)),
5231 GET_MODE_BITSIZE (mode) - (i + 1));
5232
5233 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5234 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5235 the bitsize of the mode - 1. This allows simplification of
5236 "a = (b & 8) == 0;" */
5237 if (XEXP (x, 1) == constm1_rtx
5238 && !REG_P (XEXP (x, 0))
5239 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5240 && REG_P (SUBREG_REG (XEXP (x, 0))))
5241 && nonzero_bits (XEXP (x, 0), mode) == 1)
5242 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5243 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5244 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5245 GET_MODE_BITSIZE (mode) - 1),
5246 GET_MODE_BITSIZE (mode) - 1);
5247
5248 /* If we are adding two things that have no bits in common, convert
5249 the addition into an IOR. This will often be further simplified,
5250 for example in cases like ((a & 1) + (a & 2)), which can
5251 become a & 3. */
5252
5253 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5254 && (nonzero_bits (XEXP (x, 0), mode)
5255 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5256 {
5257 /* Try to simplify the expression further. */
5258 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5259 temp = combine_simplify_rtx (tor, mode, in_dest);
5260
5261 /* If we could, great. If not, do not go ahead with the IOR
5262 replacement, since PLUS appears in many special purpose
5263 address arithmetic instructions. */
5264 if (GET_CODE (temp) != CLOBBER && temp != tor)
5265 return temp;
5266 }
5267 break;
5268
5269 case MINUS:
5270 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5271 (and <foo> (const_int pow2-1)) */
5272 if (GET_CODE (XEXP (x, 1)) == AND
5273 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5274 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5275 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5276 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5277 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5278 break;
5279
5280 case MULT:
5281 /* If we have (mult (plus A B) C), apply the distributive law and then
5282 the inverse distributive law to see if things simplify. This
5283 occurs mostly in addresses, often when unrolling loops. */
5284
5285 if (GET_CODE (XEXP (x, 0)) == PLUS)
5286 {
5287 rtx result = distribute_and_simplify_rtx (x, 0);
5288 if (result)
5289 return result;
5290 }
5291
5292 /* Try simplify a*(b/c) as (a*b)/c. */
5293 if (FLOAT_MODE_P (mode) && flag_associative_math
5294 && GET_CODE (XEXP (x, 0)) == DIV)
5295 {
5296 rtx tem = simplify_binary_operation (MULT, mode,
5297 XEXP (XEXP (x, 0), 0),
5298 XEXP (x, 1));
5299 if (tem)
5300 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5301 }
5302 break;
5303
5304 case UDIV:
5305 /* If this is a divide by a power of two, treat it as a shift if
5306 its first operand is a shift. */
5307 if (CONST_INT_P (XEXP (x, 1))
5308 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
5309 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5310 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5311 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5312 || GET_CODE (XEXP (x, 0)) == ROTATE
5313 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5314 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5315 break;
5316
5317 case EQ: case NE:
5318 case GT: case GTU: case GE: case GEU:
5319 case LT: case LTU: case LE: case LEU:
5320 case UNEQ: case LTGT:
5321 case UNGT: case UNGE:
5322 case UNLT: case UNLE:
5323 case UNORDERED: case ORDERED:
5324 /* If the first operand is a condition code, we can't do anything
5325 with it. */
5326 if (GET_CODE (XEXP (x, 0)) == COMPARE
5327 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5328 && ! CC0_P (XEXP (x, 0))))
5329 {
5330 rtx op0 = XEXP (x, 0);
5331 rtx op1 = XEXP (x, 1);
5332 enum rtx_code new_code;
5333
5334 if (GET_CODE (op0) == COMPARE)
5335 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5336
5337 /* Simplify our comparison, if possible. */
5338 new_code = simplify_comparison (code, &op0, &op1);
5339
5340 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5341 if only the low-order bit is possibly nonzero in X (such as when
5342 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5343 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5344 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5345 (plus X 1).
5346
5347 Remove any ZERO_EXTRACT we made when thinking this was a
5348 comparison. It may now be simpler to use, e.g., an AND. If a
5349 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5350 the call to make_compound_operation in the SET case. */
5351
5352 if (STORE_FLAG_VALUE == 1
5353 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5354 && op1 == const0_rtx
5355 && mode == GET_MODE (op0)
5356 && nonzero_bits (op0, mode) == 1)
5357 return gen_lowpart (mode,
5358 expand_compound_operation (op0));
5359
5360 else if (STORE_FLAG_VALUE == 1
5361 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5362 && op1 == const0_rtx
5363 && mode == GET_MODE (op0)
5364 && (num_sign_bit_copies (op0, mode)
5365 == GET_MODE_BITSIZE (mode)))
5366 {
5367 op0 = expand_compound_operation (op0);
5368 return simplify_gen_unary (NEG, mode,
5369 gen_lowpart (mode, op0),
5370 mode);
5371 }
5372
5373 else if (STORE_FLAG_VALUE == 1
5374 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5375 && op1 == const0_rtx
5376 && mode == GET_MODE (op0)
5377 && nonzero_bits (op0, mode) == 1)
5378 {
5379 op0 = expand_compound_operation (op0);
5380 return simplify_gen_binary (XOR, mode,
5381 gen_lowpart (mode, op0),
5382 const1_rtx);
5383 }
5384
5385 else if (STORE_FLAG_VALUE == 1
5386 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5387 && op1 == const0_rtx
5388 && mode == GET_MODE (op0)
5389 && (num_sign_bit_copies (op0, mode)
5390 == GET_MODE_BITSIZE (mode)))
5391 {
5392 op0 = expand_compound_operation (op0);
5393 return plus_constant (gen_lowpart (mode, op0), 1);
5394 }
5395
5396 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5397 those above. */
5398 if (STORE_FLAG_VALUE == -1
5399 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5400 && op1 == const0_rtx
5401 && (num_sign_bit_copies (op0, mode)
5402 == GET_MODE_BITSIZE (mode)))
5403 return gen_lowpart (mode,
5404 expand_compound_operation (op0));
5405
5406 else if (STORE_FLAG_VALUE == -1
5407 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5408 && op1 == const0_rtx
5409 && mode == GET_MODE (op0)
5410 && nonzero_bits (op0, mode) == 1)
5411 {
5412 op0 = expand_compound_operation (op0);
5413 return simplify_gen_unary (NEG, mode,
5414 gen_lowpart (mode, op0),
5415 mode);
5416 }
5417
5418 else if (STORE_FLAG_VALUE == -1
5419 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5420 && op1 == const0_rtx
5421 && mode == GET_MODE (op0)
5422 && (num_sign_bit_copies (op0, mode)
5423 == GET_MODE_BITSIZE (mode)))
5424 {
5425 op0 = expand_compound_operation (op0);
5426 return simplify_gen_unary (NOT, mode,
5427 gen_lowpart (mode, op0),
5428 mode);
5429 }
5430
5431 /* If X is 0/1, (eq X 0) is X-1. */
5432 else if (STORE_FLAG_VALUE == -1
5433 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5434 && op1 == const0_rtx
5435 && mode == GET_MODE (op0)
5436 && nonzero_bits (op0, mode) == 1)
5437 {
5438 op0 = expand_compound_operation (op0);
5439 return plus_constant (gen_lowpart (mode, op0), -1);
5440 }
5441
5442 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5443 one bit that might be nonzero, we can convert (ne x 0) to
5444 (ashift x c) where C puts the bit in the sign bit. Remove any
5445 AND with STORE_FLAG_VALUE when we are done, since we are only
5446 going to test the sign bit. */
5447 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5448 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5449 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5450 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5451 && op1 == const0_rtx
5452 && mode == GET_MODE (op0)
5453 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5454 {
5455 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5456 expand_compound_operation (op0),
5457 GET_MODE_BITSIZE (mode) - 1 - i);
5458 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5459 return XEXP (x, 0);
5460 else
5461 return x;
5462 }
5463
5464 /* If the code changed, return a whole new comparison. */
5465 if (new_code != code)
5466 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5467
5468 /* Otherwise, keep this operation, but maybe change its operands.
5469 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5470 SUBST (XEXP (x, 0), op0);
5471 SUBST (XEXP (x, 1), op1);
5472 }
5473 break;
5474
5475 case IF_THEN_ELSE:
5476 return simplify_if_then_else (x);
5477
5478 case ZERO_EXTRACT:
5479 case SIGN_EXTRACT:
5480 case ZERO_EXTEND:
5481 case SIGN_EXTEND:
5482 /* If we are processing SET_DEST, we are done. */
5483 if (in_dest)
5484 return x;
5485
5486 return expand_compound_operation (x);
5487
5488 case SET:
5489 return simplify_set (x);
5490
5491 case AND:
5492 case IOR:
5493 return simplify_logical (x);
5494
5495 case ASHIFT:
5496 case LSHIFTRT:
5497 case ASHIFTRT:
5498 case ROTATE:
5499 case ROTATERT:
5500 /* If this is a shift by a constant amount, simplify it. */
5501 if (CONST_INT_P (XEXP (x, 1)))
5502 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5503 INTVAL (XEXP (x, 1)));
5504
5505 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5506 SUBST (XEXP (x, 1),
5507 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5508 ((HOST_WIDE_INT) 1
5509 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5510 - 1,
5511 0));
5512 break;
5513
5514 default:
5515 break;
5516 }
5517
5518 return x;
5519 }
5520 \f
5521 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5522
5523 static rtx
5524 simplify_if_then_else (rtx x)
5525 {
5526 enum machine_mode mode = GET_MODE (x);
5527 rtx cond = XEXP (x, 0);
5528 rtx true_rtx = XEXP (x, 1);
5529 rtx false_rtx = XEXP (x, 2);
5530 enum rtx_code true_code = GET_CODE (cond);
5531 int comparison_p = COMPARISON_P (cond);
5532 rtx temp;
5533 int i;
5534 enum rtx_code false_code;
5535 rtx reversed;
5536
5537 /* Simplify storing of the truth value. */
5538 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5539 return simplify_gen_relational (true_code, mode, VOIDmode,
5540 XEXP (cond, 0), XEXP (cond, 1));
5541
5542 /* Also when the truth value has to be reversed. */
5543 if (comparison_p
5544 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5545 && (reversed = reversed_comparison (cond, mode)))
5546 return reversed;
5547
5548 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5549 in it is being compared against certain values. Get the true and false
5550 comparisons and see if that says anything about the value of each arm. */
5551
5552 if (comparison_p
5553 && ((false_code = reversed_comparison_code (cond, NULL))
5554 != UNKNOWN)
5555 && REG_P (XEXP (cond, 0)))
5556 {
5557 HOST_WIDE_INT nzb;
5558 rtx from = XEXP (cond, 0);
5559 rtx true_val = XEXP (cond, 1);
5560 rtx false_val = true_val;
5561 int swapped = 0;
5562
5563 /* If FALSE_CODE is EQ, swap the codes and arms. */
5564
5565 if (false_code == EQ)
5566 {
5567 swapped = 1, true_code = EQ, false_code = NE;
5568 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5569 }
5570
5571 /* If we are comparing against zero and the expression being tested has
5572 only a single bit that might be nonzero, that is its value when it is
5573 not equal to zero. Similarly if it is known to be -1 or 0. */
5574
5575 if (true_code == EQ && true_val == const0_rtx
5576 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5577 {
5578 false_code = EQ;
5579 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5580 }
5581 else if (true_code == EQ && true_val == const0_rtx
5582 && (num_sign_bit_copies (from, GET_MODE (from))
5583 == GET_MODE_BITSIZE (GET_MODE (from))))
5584 {
5585 false_code = EQ;
5586 false_val = constm1_rtx;
5587 }
5588
5589 /* Now simplify an arm if we know the value of the register in the
5590 branch and it is used in the arm. Be careful due to the potential
5591 of locally-shared RTL. */
5592
5593 if (reg_mentioned_p (from, true_rtx))
5594 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5595 from, true_val),
5596 pc_rtx, pc_rtx, 0, 0);
5597 if (reg_mentioned_p (from, false_rtx))
5598 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5599 from, false_val),
5600 pc_rtx, pc_rtx, 0, 0);
5601
5602 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5603 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5604
5605 true_rtx = XEXP (x, 1);
5606 false_rtx = XEXP (x, 2);
5607 true_code = GET_CODE (cond);
5608 }
5609
5610 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5611 reversed, do so to avoid needing two sets of patterns for
5612 subtract-and-branch insns. Similarly if we have a constant in the true
5613 arm, the false arm is the same as the first operand of the comparison, or
5614 the false arm is more complicated than the true arm. */
5615
5616 if (comparison_p
5617 && reversed_comparison_code (cond, NULL) != UNKNOWN
5618 && (true_rtx == pc_rtx
5619 || (CONSTANT_P (true_rtx)
5620 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5621 || true_rtx == const0_rtx
5622 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5623 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5624 && !OBJECT_P (false_rtx))
5625 || reg_mentioned_p (true_rtx, false_rtx)
5626 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5627 {
5628 true_code = reversed_comparison_code (cond, NULL);
5629 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5630 SUBST (XEXP (x, 1), false_rtx);
5631 SUBST (XEXP (x, 2), true_rtx);
5632
5633 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5634 cond = XEXP (x, 0);
5635
5636 /* It is possible that the conditional has been simplified out. */
5637 true_code = GET_CODE (cond);
5638 comparison_p = COMPARISON_P (cond);
5639 }
5640
5641 /* If the two arms are identical, we don't need the comparison. */
5642
5643 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5644 return true_rtx;
5645
5646 /* Convert a == b ? b : a to "a". */
5647 if (true_code == EQ && ! side_effects_p (cond)
5648 && !HONOR_NANS (mode)
5649 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5650 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5651 return false_rtx;
5652 else if (true_code == NE && ! side_effects_p (cond)
5653 && !HONOR_NANS (mode)
5654 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5655 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5656 return true_rtx;
5657
5658 /* Look for cases where we have (abs x) or (neg (abs X)). */
5659
5660 if (GET_MODE_CLASS (mode) == MODE_INT
5661 && comparison_p
5662 && XEXP (cond, 1) == const0_rtx
5663 && GET_CODE (false_rtx) == NEG
5664 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5665 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5666 && ! side_effects_p (true_rtx))
5667 switch (true_code)
5668 {
5669 case GT:
5670 case GE:
5671 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5672 case LT:
5673 case LE:
5674 return
5675 simplify_gen_unary (NEG, mode,
5676 simplify_gen_unary (ABS, mode, true_rtx, mode),
5677 mode);
5678 default:
5679 break;
5680 }
5681
5682 /* Look for MIN or MAX. */
5683
5684 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5685 && comparison_p
5686 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5687 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5688 && ! side_effects_p (cond))
5689 switch (true_code)
5690 {
5691 case GE:
5692 case GT:
5693 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5694 case LE:
5695 case LT:
5696 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5697 case GEU:
5698 case GTU:
5699 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5700 case LEU:
5701 case LTU:
5702 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5703 default:
5704 break;
5705 }
5706
5707 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5708 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5709 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5710 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5711 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5712 neither 1 or -1, but it isn't worth checking for. */
5713
5714 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5715 && comparison_p
5716 && GET_MODE_CLASS (mode) == MODE_INT
5717 && ! side_effects_p (x))
5718 {
5719 rtx t = make_compound_operation (true_rtx, SET);
5720 rtx f = make_compound_operation (false_rtx, SET);
5721 rtx cond_op0 = XEXP (cond, 0);
5722 rtx cond_op1 = XEXP (cond, 1);
5723 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5724 enum machine_mode m = mode;
5725 rtx z = 0, c1 = NULL_RTX;
5726
5727 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5728 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5729 || GET_CODE (t) == ASHIFT
5730 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5731 && rtx_equal_p (XEXP (t, 0), f))
5732 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5733
5734 /* If an identity-zero op is commutative, check whether there
5735 would be a match if we swapped the operands. */
5736 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5737 || GET_CODE (t) == XOR)
5738 && rtx_equal_p (XEXP (t, 1), f))
5739 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5740 else if (GET_CODE (t) == SIGN_EXTEND
5741 && (GET_CODE (XEXP (t, 0)) == PLUS
5742 || GET_CODE (XEXP (t, 0)) == MINUS
5743 || GET_CODE (XEXP (t, 0)) == IOR
5744 || GET_CODE (XEXP (t, 0)) == XOR
5745 || GET_CODE (XEXP (t, 0)) == ASHIFT
5746 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5747 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5748 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5749 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5750 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5751 && (num_sign_bit_copies (f, GET_MODE (f))
5752 > (unsigned int)
5753 (GET_MODE_BITSIZE (mode)
5754 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5755 {
5756 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5757 extend_op = SIGN_EXTEND;
5758 m = GET_MODE (XEXP (t, 0));
5759 }
5760 else if (GET_CODE (t) == SIGN_EXTEND
5761 && (GET_CODE (XEXP (t, 0)) == PLUS
5762 || GET_CODE (XEXP (t, 0)) == IOR
5763 || GET_CODE (XEXP (t, 0)) == XOR)
5764 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5765 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5766 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5767 && (num_sign_bit_copies (f, GET_MODE (f))
5768 > (unsigned int)
5769 (GET_MODE_BITSIZE (mode)
5770 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5771 {
5772 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5773 extend_op = SIGN_EXTEND;
5774 m = GET_MODE (XEXP (t, 0));
5775 }
5776 else if (GET_CODE (t) == ZERO_EXTEND
5777 && (GET_CODE (XEXP (t, 0)) == PLUS
5778 || GET_CODE (XEXP (t, 0)) == MINUS
5779 || GET_CODE (XEXP (t, 0)) == IOR
5780 || GET_CODE (XEXP (t, 0)) == XOR
5781 || GET_CODE (XEXP (t, 0)) == ASHIFT
5782 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5783 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5784 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5785 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5786 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5787 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5788 && ((nonzero_bits (f, GET_MODE (f))
5789 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5790 == 0))
5791 {
5792 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5793 extend_op = ZERO_EXTEND;
5794 m = GET_MODE (XEXP (t, 0));
5795 }
5796 else if (GET_CODE (t) == ZERO_EXTEND
5797 && (GET_CODE (XEXP (t, 0)) == PLUS
5798 || GET_CODE (XEXP (t, 0)) == IOR
5799 || GET_CODE (XEXP (t, 0)) == XOR)
5800 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5801 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5802 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5803 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5804 && ((nonzero_bits (f, GET_MODE (f))
5805 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5806 == 0))
5807 {
5808 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5809 extend_op = ZERO_EXTEND;
5810 m = GET_MODE (XEXP (t, 0));
5811 }
5812
5813 if (z)
5814 {
5815 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5816 cond_op0, cond_op1),
5817 pc_rtx, pc_rtx, 0, 0);
5818 temp = simplify_gen_binary (MULT, m, temp,
5819 simplify_gen_binary (MULT, m, c1,
5820 const_true_rtx));
5821 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5822 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5823
5824 if (extend_op != UNKNOWN)
5825 temp = simplify_gen_unary (extend_op, mode, temp, m);
5826
5827 return temp;
5828 }
5829 }
5830
5831 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5832 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5833 negation of a single bit, we can convert this operation to a shift. We
5834 can actually do this more generally, but it doesn't seem worth it. */
5835
5836 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5837 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
5838 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5839 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5840 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5841 == GET_MODE_BITSIZE (mode))
5842 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5843 return
5844 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5845 gen_lowpart (mode, XEXP (cond, 0)), i);
5846
5847 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5848 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5849 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
5850 && GET_MODE (XEXP (cond, 0)) == mode
5851 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5852 == nonzero_bits (XEXP (cond, 0), mode)
5853 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5854 return XEXP (cond, 0);
5855
5856 return x;
5857 }
5858 \f
5859 /* Simplify X, a SET expression. Return the new expression. */
5860
5861 static rtx
5862 simplify_set (rtx x)
5863 {
5864 rtx src = SET_SRC (x);
5865 rtx dest = SET_DEST (x);
5866 enum machine_mode mode
5867 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5868 rtx other_insn;
5869 rtx *cc_use;
5870
5871 /* (set (pc) (return)) gets written as (return). */
5872 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5873 return src;
5874
5875 /* Now that we know for sure which bits of SRC we are using, see if we can
5876 simplify the expression for the object knowing that we only need the
5877 low-order bits. */
5878
5879 if (GET_MODE_CLASS (mode) == MODE_INT
5880 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5881 {
5882 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5883 SUBST (SET_SRC (x), src);
5884 }
5885
5886 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5887 the comparison result and try to simplify it unless we already have used
5888 undobuf.other_insn. */
5889 if ((GET_MODE_CLASS (mode) == MODE_CC
5890 || GET_CODE (src) == COMPARE
5891 || CC0_P (dest))
5892 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5893 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5894 && COMPARISON_P (*cc_use)
5895 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5896 {
5897 enum rtx_code old_code = GET_CODE (*cc_use);
5898 enum rtx_code new_code;
5899 rtx op0, op1, tmp;
5900 int other_changed = 0;
5901 enum machine_mode compare_mode = GET_MODE (dest);
5902
5903 if (GET_CODE (src) == COMPARE)
5904 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5905 else
5906 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5907
5908 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5909 op0, op1);
5910 if (!tmp)
5911 new_code = old_code;
5912 else if (!CONSTANT_P (tmp))
5913 {
5914 new_code = GET_CODE (tmp);
5915 op0 = XEXP (tmp, 0);
5916 op1 = XEXP (tmp, 1);
5917 }
5918 else
5919 {
5920 rtx pat = PATTERN (other_insn);
5921 undobuf.other_insn = other_insn;
5922 SUBST (*cc_use, tmp);
5923
5924 /* Attempt to simplify CC user. */
5925 if (GET_CODE (pat) == SET)
5926 {
5927 rtx new_rtx = simplify_rtx (SET_SRC (pat));
5928 if (new_rtx != NULL_RTX)
5929 SUBST (SET_SRC (pat), new_rtx);
5930 }
5931
5932 /* Convert X into a no-op move. */
5933 SUBST (SET_DEST (x), pc_rtx);
5934 SUBST (SET_SRC (x), pc_rtx);
5935 return x;
5936 }
5937
5938 /* Simplify our comparison, if possible. */
5939 new_code = simplify_comparison (new_code, &op0, &op1);
5940
5941 #ifdef SELECT_CC_MODE
5942 /* If this machine has CC modes other than CCmode, check to see if we
5943 need to use a different CC mode here. */
5944 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5945 compare_mode = GET_MODE (op0);
5946 else
5947 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5948
5949 #ifndef HAVE_cc0
5950 /* If the mode changed, we have to change SET_DEST, the mode in the
5951 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5952 a hard register, just build new versions with the proper mode. If it
5953 is a pseudo, we lose unless it is only time we set the pseudo, in
5954 which case we can safely change its mode. */
5955 if (compare_mode != GET_MODE (dest))
5956 {
5957 if (can_change_dest_mode (dest, 0, compare_mode))
5958 {
5959 unsigned int regno = REGNO (dest);
5960 rtx new_dest;
5961
5962 if (regno < FIRST_PSEUDO_REGISTER)
5963 new_dest = gen_rtx_REG (compare_mode, regno);
5964 else
5965 {
5966 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5967 new_dest = regno_reg_rtx[regno];
5968 }
5969
5970 SUBST (SET_DEST (x), new_dest);
5971 SUBST (XEXP (*cc_use, 0), new_dest);
5972 other_changed = 1;
5973
5974 dest = new_dest;
5975 }
5976 }
5977 #endif /* cc0 */
5978 #endif /* SELECT_CC_MODE */
5979
5980 /* If the code changed, we have to build a new comparison in
5981 undobuf.other_insn. */
5982 if (new_code != old_code)
5983 {
5984 int other_changed_previously = other_changed;
5985 unsigned HOST_WIDE_INT mask;
5986 rtx old_cc_use = *cc_use;
5987
5988 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5989 dest, const0_rtx));
5990 other_changed = 1;
5991
5992 /* If the only change we made was to change an EQ into an NE or
5993 vice versa, OP0 has only one bit that might be nonzero, and OP1
5994 is zero, check if changing the user of the condition code will
5995 produce a valid insn. If it won't, we can keep the original code
5996 in that insn by surrounding our operation with an XOR. */
5997
5998 if (((old_code == NE && new_code == EQ)
5999 || (old_code == EQ && new_code == NE))
6000 && ! other_changed_previously && op1 == const0_rtx
6001 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
6002 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6003 {
6004 rtx pat = PATTERN (other_insn), note = 0;
6005
6006 if ((recog_for_combine (&pat, other_insn, &note) < 0
6007 && ! check_asm_operands (pat)))
6008 {
6009 *cc_use = old_cc_use;
6010 other_changed = 0;
6011
6012 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
6013 op0, GEN_INT (mask));
6014 }
6015 }
6016 }
6017
6018 if (other_changed)
6019 undobuf.other_insn = other_insn;
6020
6021 /* Otherwise, if we didn't previously have a COMPARE in the
6022 correct mode, we need one. */
6023 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6024 {
6025 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6026 src = SET_SRC (x);
6027 }
6028 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6029 {
6030 SUBST (SET_SRC (x), op0);
6031 src = SET_SRC (x);
6032 }
6033 /* Otherwise, update the COMPARE if needed. */
6034 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6035 {
6036 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6037 src = SET_SRC (x);
6038 }
6039 }
6040 else
6041 {
6042 /* Get SET_SRC in a form where we have placed back any
6043 compound expressions. Then do the checks below. */
6044 src = make_compound_operation (src, SET);
6045 SUBST (SET_SRC (x), src);
6046 }
6047
6048 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6049 and X being a REG or (subreg (reg)), we may be able to convert this to
6050 (set (subreg:m2 x) (op)).
6051
6052 We can always do this if M1 is narrower than M2 because that means that
6053 we only care about the low bits of the result.
6054
6055 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6056 perform a narrower operation than requested since the high-order bits will
6057 be undefined. On machine where it is defined, this transformation is safe
6058 as long as M1 and M2 have the same number of words. */
6059
6060 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6061 && !OBJECT_P (SUBREG_REG (src))
6062 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6063 / UNITS_PER_WORD)
6064 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6065 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6066 #ifndef WORD_REGISTER_OPERATIONS
6067 && (GET_MODE_SIZE (GET_MODE (src))
6068 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6069 #endif
6070 #ifdef CANNOT_CHANGE_MODE_CLASS
6071 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6072 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6073 GET_MODE (SUBREG_REG (src)),
6074 GET_MODE (src)))
6075 #endif
6076 && (REG_P (dest)
6077 || (GET_CODE (dest) == SUBREG
6078 && REG_P (SUBREG_REG (dest)))))
6079 {
6080 SUBST (SET_DEST (x),
6081 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6082 dest));
6083 SUBST (SET_SRC (x), SUBREG_REG (src));
6084
6085 src = SET_SRC (x), dest = SET_DEST (x);
6086 }
6087
6088 #ifdef HAVE_cc0
6089 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6090 in SRC. */
6091 if (dest == cc0_rtx
6092 && GET_CODE (src) == SUBREG
6093 && subreg_lowpart_p (src)
6094 && (GET_MODE_BITSIZE (GET_MODE (src))
6095 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
6096 {
6097 rtx inner = SUBREG_REG (src);
6098 enum machine_mode inner_mode = GET_MODE (inner);
6099
6100 /* Here we make sure that we don't have a sign bit on. */
6101 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
6102 && (nonzero_bits (inner, inner_mode)
6103 < ((unsigned HOST_WIDE_INT) 1
6104 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
6105 {
6106 SUBST (SET_SRC (x), inner);
6107 src = SET_SRC (x);
6108 }
6109 }
6110 #endif
6111
6112 #ifdef LOAD_EXTEND_OP
6113 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6114 would require a paradoxical subreg. Replace the subreg with a
6115 zero_extend to avoid the reload that would otherwise be required. */
6116
6117 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6118 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6119 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6120 && SUBREG_BYTE (src) == 0
6121 && (GET_MODE_SIZE (GET_MODE (src))
6122 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6123 && MEM_P (SUBREG_REG (src)))
6124 {
6125 SUBST (SET_SRC (x),
6126 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6127 GET_MODE (src), SUBREG_REG (src)));
6128
6129 src = SET_SRC (x);
6130 }
6131 #endif
6132
6133 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6134 are comparing an item known to be 0 or -1 against 0, use a logical
6135 operation instead. Check for one of the arms being an IOR of the other
6136 arm with some value. We compute three terms to be IOR'ed together. In
6137 practice, at most two will be nonzero. Then we do the IOR's. */
6138
6139 if (GET_CODE (dest) != PC
6140 && GET_CODE (src) == IF_THEN_ELSE
6141 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6142 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6143 && XEXP (XEXP (src, 0), 1) == const0_rtx
6144 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6145 #ifdef HAVE_conditional_move
6146 && ! can_conditionally_move_p (GET_MODE (src))
6147 #endif
6148 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6149 GET_MODE (XEXP (XEXP (src, 0), 0)))
6150 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
6151 && ! side_effects_p (src))
6152 {
6153 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6154 ? XEXP (src, 1) : XEXP (src, 2));
6155 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6156 ? XEXP (src, 2) : XEXP (src, 1));
6157 rtx term1 = const0_rtx, term2, term3;
6158
6159 if (GET_CODE (true_rtx) == IOR
6160 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6161 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6162 else if (GET_CODE (true_rtx) == IOR
6163 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6164 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6165 else if (GET_CODE (false_rtx) == IOR
6166 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6167 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6168 else if (GET_CODE (false_rtx) == IOR
6169 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6170 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6171
6172 term2 = simplify_gen_binary (AND, GET_MODE (src),
6173 XEXP (XEXP (src, 0), 0), true_rtx);
6174 term3 = simplify_gen_binary (AND, GET_MODE (src),
6175 simplify_gen_unary (NOT, GET_MODE (src),
6176 XEXP (XEXP (src, 0), 0),
6177 GET_MODE (src)),
6178 false_rtx);
6179
6180 SUBST (SET_SRC (x),
6181 simplify_gen_binary (IOR, GET_MODE (src),
6182 simplify_gen_binary (IOR, GET_MODE (src),
6183 term1, term2),
6184 term3));
6185
6186 src = SET_SRC (x);
6187 }
6188
6189 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6190 whole thing fail. */
6191 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6192 return src;
6193 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6194 return dest;
6195 else
6196 /* Convert this into a field assignment operation, if possible. */
6197 return make_field_assignment (x);
6198 }
6199 \f
6200 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6201 result. */
6202
6203 static rtx
6204 simplify_logical (rtx x)
6205 {
6206 enum machine_mode mode = GET_MODE (x);
6207 rtx op0 = XEXP (x, 0);
6208 rtx op1 = XEXP (x, 1);
6209
6210 switch (GET_CODE (x))
6211 {
6212 case AND:
6213 /* We can call simplify_and_const_int only if we don't lose
6214 any (sign) bits when converting INTVAL (op1) to
6215 "unsigned HOST_WIDE_INT". */
6216 if (CONST_INT_P (op1)
6217 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6218 || INTVAL (op1) > 0))
6219 {
6220 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6221 if (GET_CODE (x) != AND)
6222 return x;
6223
6224 op0 = XEXP (x, 0);
6225 op1 = XEXP (x, 1);
6226 }
6227
6228 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6229 apply the distributive law and then the inverse distributive
6230 law to see if things simplify. */
6231 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6232 {
6233 rtx result = distribute_and_simplify_rtx (x, 0);
6234 if (result)
6235 return result;
6236 }
6237 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6238 {
6239 rtx result = distribute_and_simplify_rtx (x, 1);
6240 if (result)
6241 return result;
6242 }
6243 break;
6244
6245 case IOR:
6246 /* If we have (ior (and A B) C), apply the distributive law and then
6247 the inverse distributive law to see if things simplify. */
6248
6249 if (GET_CODE (op0) == AND)
6250 {
6251 rtx result = distribute_and_simplify_rtx (x, 0);
6252 if (result)
6253 return result;
6254 }
6255
6256 if (GET_CODE (op1) == AND)
6257 {
6258 rtx result = distribute_and_simplify_rtx (x, 1);
6259 if (result)
6260 return result;
6261 }
6262 break;
6263
6264 default:
6265 gcc_unreachable ();
6266 }
6267
6268 return x;
6269 }
6270 \f
6271 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6272 operations" because they can be replaced with two more basic operations.
6273 ZERO_EXTEND is also considered "compound" because it can be replaced with
6274 an AND operation, which is simpler, though only one operation.
6275
6276 The function expand_compound_operation is called with an rtx expression
6277 and will convert it to the appropriate shifts and AND operations,
6278 simplifying at each stage.
6279
6280 The function make_compound_operation is called to convert an expression
6281 consisting of shifts and ANDs into the equivalent compound expression.
6282 It is the inverse of this function, loosely speaking. */
6283
6284 static rtx
6285 expand_compound_operation (rtx x)
6286 {
6287 unsigned HOST_WIDE_INT pos = 0, len;
6288 int unsignedp = 0;
6289 unsigned int modewidth;
6290 rtx tem;
6291
6292 switch (GET_CODE (x))
6293 {
6294 case ZERO_EXTEND:
6295 unsignedp = 1;
6296 case SIGN_EXTEND:
6297 /* We can't necessarily use a const_int for a multiword mode;
6298 it depends on implicitly extending the value.
6299 Since we don't know the right way to extend it,
6300 we can't tell whether the implicit way is right.
6301
6302 Even for a mode that is no wider than a const_int,
6303 we can't win, because we need to sign extend one of its bits through
6304 the rest of it, and we don't know which bit. */
6305 if (CONST_INT_P (XEXP (x, 0)))
6306 return x;
6307
6308 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6309 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6310 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6311 reloaded. If not for that, MEM's would very rarely be safe.
6312
6313 Reject MODEs bigger than a word, because we might not be able
6314 to reference a two-register group starting with an arbitrary register
6315 (and currently gen_lowpart might crash for a SUBREG). */
6316
6317 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6318 return x;
6319
6320 /* Reject MODEs that aren't scalar integers because turning vector
6321 or complex modes into shifts causes problems. */
6322
6323 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6324 return x;
6325
6326 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6327 /* If the inner object has VOIDmode (the only way this can happen
6328 is if it is an ASM_OPERANDS), we can't do anything since we don't
6329 know how much masking to do. */
6330 if (len == 0)
6331 return x;
6332
6333 break;
6334
6335 case ZERO_EXTRACT:
6336 unsignedp = 1;
6337
6338 /* ... fall through ... */
6339
6340 case SIGN_EXTRACT:
6341 /* If the operand is a CLOBBER, just return it. */
6342 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6343 return XEXP (x, 0);
6344
6345 if (!CONST_INT_P (XEXP (x, 1))
6346 || !CONST_INT_P (XEXP (x, 2))
6347 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6348 return x;
6349
6350 /* Reject MODEs that aren't scalar integers because turning vector
6351 or complex modes into shifts causes problems. */
6352
6353 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6354 return x;
6355
6356 len = INTVAL (XEXP (x, 1));
6357 pos = INTVAL (XEXP (x, 2));
6358
6359 /* This should stay within the object being extracted, fail otherwise. */
6360 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6361 return x;
6362
6363 if (BITS_BIG_ENDIAN)
6364 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6365
6366 break;
6367
6368 default:
6369 return x;
6370 }
6371 /* Convert sign extension to zero extension, if we know that the high
6372 bit is not set, as this is easier to optimize. It will be converted
6373 back to cheaper alternative in make_extraction. */
6374 if (GET_CODE (x) == SIGN_EXTEND
6375 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6376 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6377 & ~(((unsigned HOST_WIDE_INT)
6378 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6379 >> 1))
6380 == 0)))
6381 {
6382 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6383 rtx temp2 = expand_compound_operation (temp);
6384
6385 /* Make sure this is a profitable operation. */
6386 if (rtx_cost (x, SET, optimize_this_for_speed_p)
6387 > rtx_cost (temp2, SET, optimize_this_for_speed_p))
6388 return temp2;
6389 else if (rtx_cost (x, SET, optimize_this_for_speed_p)
6390 > rtx_cost (temp, SET, optimize_this_for_speed_p))
6391 return temp;
6392 else
6393 return x;
6394 }
6395
6396 /* We can optimize some special cases of ZERO_EXTEND. */
6397 if (GET_CODE (x) == ZERO_EXTEND)
6398 {
6399 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6400 know that the last value didn't have any inappropriate bits
6401 set. */
6402 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6403 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6404 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6405 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6406 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6407 return XEXP (XEXP (x, 0), 0);
6408
6409 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6410 if (GET_CODE (XEXP (x, 0)) == SUBREG
6411 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6412 && subreg_lowpart_p (XEXP (x, 0))
6413 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6414 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6415 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6416 return SUBREG_REG (XEXP (x, 0));
6417
6418 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6419 is a comparison and STORE_FLAG_VALUE permits. This is like
6420 the first case, but it works even when GET_MODE (x) is larger
6421 than HOST_WIDE_INT. */
6422 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6423 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6424 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6425 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6426 <= HOST_BITS_PER_WIDE_INT)
6427 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6428 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6429 return XEXP (XEXP (x, 0), 0);
6430
6431 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6432 if (GET_CODE (XEXP (x, 0)) == SUBREG
6433 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6434 && subreg_lowpart_p (XEXP (x, 0))
6435 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6436 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6437 <= HOST_BITS_PER_WIDE_INT)
6438 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6439 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6440 return SUBREG_REG (XEXP (x, 0));
6441
6442 }
6443
6444 /* If we reach here, we want to return a pair of shifts. The inner
6445 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6446 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6447 logical depending on the value of UNSIGNEDP.
6448
6449 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6450 converted into an AND of a shift.
6451
6452 We must check for the case where the left shift would have a negative
6453 count. This can happen in a case like (x >> 31) & 255 on machines
6454 that can't shift by a constant. On those machines, we would first
6455 combine the shift with the AND to produce a variable-position
6456 extraction. Then the constant of 31 would be substituted in to produce
6457 a such a position. */
6458
6459 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6460 if (modewidth + len >= pos)
6461 {
6462 enum machine_mode mode = GET_MODE (x);
6463 tem = gen_lowpart (mode, XEXP (x, 0));
6464 if (!tem || GET_CODE (tem) == CLOBBER)
6465 return x;
6466 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6467 tem, modewidth - pos - len);
6468 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6469 mode, tem, modewidth - len);
6470 }
6471 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6472 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6473 simplify_shift_const (NULL_RTX, LSHIFTRT,
6474 GET_MODE (x),
6475 XEXP (x, 0), pos),
6476 ((HOST_WIDE_INT) 1 << len) - 1);
6477 else
6478 /* Any other cases we can't handle. */
6479 return x;
6480
6481 /* If we couldn't do this for some reason, return the original
6482 expression. */
6483 if (GET_CODE (tem) == CLOBBER)
6484 return x;
6485
6486 return tem;
6487 }
6488 \f
6489 /* X is a SET which contains an assignment of one object into
6490 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6491 or certain SUBREGS). If possible, convert it into a series of
6492 logical operations.
6493
6494 We half-heartedly support variable positions, but do not at all
6495 support variable lengths. */
6496
6497 static const_rtx
6498 expand_field_assignment (const_rtx x)
6499 {
6500 rtx inner;
6501 rtx pos; /* Always counts from low bit. */
6502 int len;
6503 rtx mask, cleared, masked;
6504 enum machine_mode compute_mode;
6505
6506 /* Loop until we find something we can't simplify. */
6507 while (1)
6508 {
6509 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6510 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6511 {
6512 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6513 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6514 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6515 }
6516 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6517 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6518 {
6519 inner = XEXP (SET_DEST (x), 0);
6520 len = INTVAL (XEXP (SET_DEST (x), 1));
6521 pos = XEXP (SET_DEST (x), 2);
6522
6523 /* A constant position should stay within the width of INNER. */
6524 if (CONST_INT_P (pos)
6525 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6526 break;
6527
6528 if (BITS_BIG_ENDIAN)
6529 {
6530 if (CONST_INT_P (pos))
6531 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6532 - INTVAL (pos));
6533 else if (GET_CODE (pos) == MINUS
6534 && CONST_INT_P (XEXP (pos, 1))
6535 && (INTVAL (XEXP (pos, 1))
6536 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6537 /* If position is ADJUST - X, new position is X. */
6538 pos = XEXP (pos, 0);
6539 else
6540 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6541 GEN_INT (GET_MODE_BITSIZE (
6542 GET_MODE (inner))
6543 - len),
6544 pos);
6545 }
6546 }
6547
6548 /* A SUBREG between two modes that occupy the same numbers of words
6549 can be done by moving the SUBREG to the source. */
6550 else if (GET_CODE (SET_DEST (x)) == SUBREG
6551 /* We need SUBREGs to compute nonzero_bits properly. */
6552 && nonzero_sign_valid
6553 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6554 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6555 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6556 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6557 {
6558 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6559 gen_lowpart
6560 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6561 SET_SRC (x)));
6562 continue;
6563 }
6564 else
6565 break;
6566
6567 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6568 inner = SUBREG_REG (inner);
6569
6570 compute_mode = GET_MODE (inner);
6571
6572 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6573 if (! SCALAR_INT_MODE_P (compute_mode))
6574 {
6575 enum machine_mode imode;
6576
6577 /* Don't do anything for vector or complex integral types. */
6578 if (! FLOAT_MODE_P (compute_mode))
6579 break;
6580
6581 /* Try to find an integral mode to pun with. */
6582 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6583 if (imode == BLKmode)
6584 break;
6585
6586 compute_mode = imode;
6587 inner = gen_lowpart (imode, inner);
6588 }
6589
6590 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6591 if (len >= HOST_BITS_PER_WIDE_INT)
6592 break;
6593
6594 /* Now compute the equivalent expression. Make a copy of INNER
6595 for the SET_DEST in case it is a MEM into which we will substitute;
6596 we don't want shared RTL in that case. */
6597 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6598 cleared = simplify_gen_binary (AND, compute_mode,
6599 simplify_gen_unary (NOT, compute_mode,
6600 simplify_gen_binary (ASHIFT,
6601 compute_mode,
6602 mask, pos),
6603 compute_mode),
6604 inner);
6605 masked = simplify_gen_binary (ASHIFT, compute_mode,
6606 simplify_gen_binary (
6607 AND, compute_mode,
6608 gen_lowpart (compute_mode, SET_SRC (x)),
6609 mask),
6610 pos);
6611
6612 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6613 simplify_gen_binary (IOR, compute_mode,
6614 cleared, masked));
6615 }
6616
6617 return x;
6618 }
6619 \f
6620 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6621 it is an RTX that represents a variable starting position; otherwise,
6622 POS is the (constant) starting bit position (counted from the LSB).
6623
6624 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6625 signed reference.
6626
6627 IN_DEST is nonzero if this is a reference in the destination of a
6628 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6629 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6630 be used.
6631
6632 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6633 ZERO_EXTRACT should be built even for bits starting at bit 0.
6634
6635 MODE is the desired mode of the result (if IN_DEST == 0).
6636
6637 The result is an RTX for the extraction or NULL_RTX if the target
6638 can't handle it. */
6639
6640 static rtx
6641 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6642 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6643 int in_dest, int in_compare)
6644 {
6645 /* This mode describes the size of the storage area
6646 to fetch the overall value from. Within that, we
6647 ignore the POS lowest bits, etc. */
6648 enum machine_mode is_mode = GET_MODE (inner);
6649 enum machine_mode inner_mode;
6650 enum machine_mode wanted_inner_mode;
6651 enum machine_mode wanted_inner_reg_mode = word_mode;
6652 enum machine_mode pos_mode = word_mode;
6653 enum machine_mode extraction_mode = word_mode;
6654 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6655 rtx new_rtx = 0;
6656 rtx orig_pos_rtx = pos_rtx;
6657 HOST_WIDE_INT orig_pos;
6658
6659 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6660 {
6661 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6662 consider just the QI as the memory to extract from.
6663 The subreg adds or removes high bits; its mode is
6664 irrelevant to the meaning of this extraction,
6665 since POS and LEN count from the lsb. */
6666 if (MEM_P (SUBREG_REG (inner)))
6667 is_mode = GET_MODE (SUBREG_REG (inner));
6668 inner = SUBREG_REG (inner);
6669 }
6670 else if (GET_CODE (inner) == ASHIFT
6671 && CONST_INT_P (XEXP (inner, 1))
6672 && pos_rtx == 0 && pos == 0
6673 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6674 {
6675 /* We're extracting the least significant bits of an rtx
6676 (ashift X (const_int C)), where LEN > C. Extract the
6677 least significant (LEN - C) bits of X, giving an rtx
6678 whose mode is MODE, then shift it left C times. */
6679 new_rtx = make_extraction (mode, XEXP (inner, 0),
6680 0, 0, len - INTVAL (XEXP (inner, 1)),
6681 unsignedp, in_dest, in_compare);
6682 if (new_rtx != 0)
6683 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
6684 }
6685
6686 inner_mode = GET_MODE (inner);
6687
6688 if (pos_rtx && CONST_INT_P (pos_rtx))
6689 pos = INTVAL (pos_rtx), pos_rtx = 0;
6690
6691 /* See if this can be done without an extraction. We never can if the
6692 width of the field is not the same as that of some integer mode. For
6693 registers, we can only avoid the extraction if the position is at the
6694 low-order bit and this is either not in the destination or we have the
6695 appropriate STRICT_LOW_PART operation available.
6696
6697 For MEM, we can avoid an extract if the field starts on an appropriate
6698 boundary and we can change the mode of the memory reference. */
6699
6700 if (tmode != BLKmode
6701 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6702 && !MEM_P (inner)
6703 && (inner_mode == tmode
6704 || !REG_P (inner)
6705 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
6706 GET_MODE_BITSIZE (inner_mode))
6707 || reg_truncated_to_mode (tmode, inner))
6708 && (! in_dest
6709 || (REG_P (inner)
6710 && have_insn_for (STRICT_LOW_PART, tmode))))
6711 || (MEM_P (inner) && pos_rtx == 0
6712 && (pos
6713 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6714 : BITS_PER_UNIT)) == 0
6715 /* We can't do this if we are widening INNER_MODE (it
6716 may not be aligned, for one thing). */
6717 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6718 && (inner_mode == tmode
6719 || (! mode_dependent_address_p (XEXP (inner, 0))
6720 && ! MEM_VOLATILE_P (inner))))))
6721 {
6722 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6723 field. If the original and current mode are the same, we need not
6724 adjust the offset. Otherwise, we do if bytes big endian.
6725
6726 If INNER is not a MEM, get a piece consisting of just the field
6727 of interest (in this case POS % BITS_PER_WORD must be 0). */
6728
6729 if (MEM_P (inner))
6730 {
6731 HOST_WIDE_INT offset;
6732
6733 /* POS counts from lsb, but make OFFSET count in memory order. */
6734 if (BYTES_BIG_ENDIAN)
6735 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6736 else
6737 offset = pos / BITS_PER_UNIT;
6738
6739 new_rtx = adjust_address_nv (inner, tmode, offset);
6740 }
6741 else if (REG_P (inner))
6742 {
6743 if (tmode != inner_mode)
6744 {
6745 /* We can't call gen_lowpart in a DEST since we
6746 always want a SUBREG (see below) and it would sometimes
6747 return a new hard register. */
6748 if (pos || in_dest)
6749 {
6750 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6751
6752 if (WORDS_BIG_ENDIAN
6753 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6754 final_word = ((GET_MODE_SIZE (inner_mode)
6755 - GET_MODE_SIZE (tmode))
6756 / UNITS_PER_WORD) - final_word;
6757
6758 final_word *= UNITS_PER_WORD;
6759 if (BYTES_BIG_ENDIAN &&
6760 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6761 final_word += (GET_MODE_SIZE (inner_mode)
6762 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6763
6764 /* Avoid creating invalid subregs, for example when
6765 simplifying (x>>32)&255. */
6766 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6767 return NULL_RTX;
6768
6769 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
6770 }
6771 else
6772 new_rtx = gen_lowpart (tmode, inner);
6773 }
6774 else
6775 new_rtx = inner;
6776 }
6777 else
6778 new_rtx = force_to_mode (inner, tmode,
6779 len >= HOST_BITS_PER_WIDE_INT
6780 ? ~(unsigned HOST_WIDE_INT) 0
6781 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6782 0);
6783
6784 /* If this extraction is going into the destination of a SET,
6785 make a STRICT_LOW_PART unless we made a MEM. */
6786
6787 if (in_dest)
6788 return (MEM_P (new_rtx) ? new_rtx
6789 : (GET_CODE (new_rtx) != SUBREG
6790 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6791 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
6792
6793 if (mode == tmode)
6794 return new_rtx;
6795
6796 if (CONST_INT_P (new_rtx)
6797 || GET_CODE (new_rtx) == CONST_DOUBLE)
6798 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6799 mode, new_rtx, tmode);
6800
6801 /* If we know that no extraneous bits are set, and that the high
6802 bit is not set, convert the extraction to the cheaper of
6803 sign and zero extension, that are equivalent in these cases. */
6804 if (flag_expensive_optimizations
6805 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6806 && ((nonzero_bits (new_rtx, tmode)
6807 & ~(((unsigned HOST_WIDE_INT)
6808 GET_MODE_MASK (tmode))
6809 >> 1))
6810 == 0)))
6811 {
6812 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
6813 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
6814
6815 /* Prefer ZERO_EXTENSION, since it gives more information to
6816 backends. */
6817 if (rtx_cost (temp, SET, optimize_this_for_speed_p)
6818 <= rtx_cost (temp1, SET, optimize_this_for_speed_p))
6819 return temp;
6820 return temp1;
6821 }
6822
6823 /* Otherwise, sign- or zero-extend unless we already are in the
6824 proper mode. */
6825
6826 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6827 mode, new_rtx));
6828 }
6829
6830 /* Unless this is a COMPARE or we have a funny memory reference,
6831 don't do anything with zero-extending field extracts starting at
6832 the low-order bit since they are simple AND operations. */
6833 if (pos_rtx == 0 && pos == 0 && ! in_dest
6834 && ! in_compare && unsignedp)
6835 return 0;
6836
6837 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6838 if the position is not a constant and the length is not 1. In all
6839 other cases, we would only be going outside our object in cases when
6840 an original shift would have been undefined. */
6841 if (MEM_P (inner)
6842 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6843 || (pos_rtx != 0 && len != 1)))
6844 return 0;
6845
6846 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6847 and the mode for the result. */
6848 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6849 {
6850 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6851 pos_mode = mode_for_extraction (EP_insv, 2);
6852 extraction_mode = mode_for_extraction (EP_insv, 3);
6853 }
6854
6855 if (! in_dest && unsignedp
6856 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6857 {
6858 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6859 pos_mode = mode_for_extraction (EP_extzv, 3);
6860 extraction_mode = mode_for_extraction (EP_extzv, 0);
6861 }
6862
6863 if (! in_dest && ! unsignedp
6864 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6865 {
6866 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6867 pos_mode = mode_for_extraction (EP_extv, 3);
6868 extraction_mode = mode_for_extraction (EP_extv, 0);
6869 }
6870
6871 /* Never narrow an object, since that might not be safe. */
6872
6873 if (mode != VOIDmode
6874 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6875 extraction_mode = mode;
6876
6877 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6878 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6879 pos_mode = GET_MODE (pos_rtx);
6880
6881 /* If this is not from memory, the desired mode is the preferred mode
6882 for an extraction pattern's first input operand, or word_mode if there
6883 is none. */
6884 if (!MEM_P (inner))
6885 wanted_inner_mode = wanted_inner_reg_mode;
6886 else
6887 {
6888 /* Be careful not to go beyond the extracted object and maintain the
6889 natural alignment of the memory. */
6890 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6891 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6892 > GET_MODE_BITSIZE (wanted_inner_mode))
6893 {
6894 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6895 gcc_assert (wanted_inner_mode != VOIDmode);
6896 }
6897
6898 /* If we have to change the mode of memory and cannot, the desired mode
6899 is EXTRACTION_MODE. */
6900 if (inner_mode != wanted_inner_mode
6901 && (mode_dependent_address_p (XEXP (inner, 0))
6902 || MEM_VOLATILE_P (inner)
6903 || pos_rtx))
6904 wanted_inner_mode = extraction_mode;
6905 }
6906
6907 orig_pos = pos;
6908
6909 if (BITS_BIG_ENDIAN)
6910 {
6911 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6912 BITS_BIG_ENDIAN style. If position is constant, compute new
6913 position. Otherwise, build subtraction.
6914 Note that POS is relative to the mode of the original argument.
6915 If it's a MEM we need to recompute POS relative to that.
6916 However, if we're extracting from (or inserting into) a register,
6917 we want to recompute POS relative to wanted_inner_mode. */
6918 int width = (MEM_P (inner)
6919 ? GET_MODE_BITSIZE (is_mode)
6920 : GET_MODE_BITSIZE (wanted_inner_mode));
6921
6922 if (pos_rtx == 0)
6923 pos = width - len - pos;
6924 else
6925 pos_rtx
6926 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6927 /* POS may be less than 0 now, but we check for that below.
6928 Note that it can only be less than 0 if !MEM_P (inner). */
6929 }
6930
6931 /* If INNER has a wider mode, and this is a constant extraction, try to
6932 make it smaller and adjust the byte to point to the byte containing
6933 the value. */
6934 if (wanted_inner_mode != VOIDmode
6935 && inner_mode != wanted_inner_mode
6936 && ! pos_rtx
6937 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6938 && MEM_P (inner)
6939 && ! mode_dependent_address_p (XEXP (inner, 0))
6940 && ! MEM_VOLATILE_P (inner))
6941 {
6942 int offset = 0;
6943
6944 /* The computations below will be correct if the machine is big
6945 endian in both bits and bytes or little endian in bits and bytes.
6946 If it is mixed, we must adjust. */
6947
6948 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6949 adjust OFFSET to compensate. */
6950 if (BYTES_BIG_ENDIAN
6951 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6952 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6953
6954 /* We can now move to the desired byte. */
6955 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6956 * GET_MODE_SIZE (wanted_inner_mode);
6957 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6958
6959 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6960 && is_mode != wanted_inner_mode)
6961 offset = (GET_MODE_SIZE (is_mode)
6962 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6963
6964 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6965 }
6966
6967 /* If INNER is not memory, get it into the proper mode. If we are changing
6968 its mode, POS must be a constant and smaller than the size of the new
6969 mode. */
6970 else if (!MEM_P (inner))
6971 {
6972 /* On the LHS, don't create paradoxical subregs implicitely truncating
6973 the register unless TRULY_NOOP_TRUNCATION. */
6974 if (in_dest
6975 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (inner)),
6976 GET_MODE_BITSIZE (wanted_inner_mode)))
6977 return NULL_RTX;
6978
6979 if (GET_MODE (inner) != wanted_inner_mode
6980 && (pos_rtx != 0
6981 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6982 return NULL_RTX;
6983
6984 if (orig_pos < 0)
6985 return NULL_RTX;
6986
6987 inner = force_to_mode (inner, wanted_inner_mode,
6988 pos_rtx
6989 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6990 ? ~(unsigned HOST_WIDE_INT) 0
6991 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6992 << orig_pos),
6993 0);
6994 }
6995
6996 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6997 have to zero extend. Otherwise, we can just use a SUBREG. */
6998 if (pos_rtx != 0
6999 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7000 {
7001 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
7002
7003 /* If we know that no extraneous bits are set, and that the high
7004 bit is not set, convert extraction to cheaper one - either
7005 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7006 cases. */
7007 if (flag_expensive_optimizations
7008 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
7009 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7010 & ~(((unsigned HOST_WIDE_INT)
7011 GET_MODE_MASK (GET_MODE (pos_rtx)))
7012 >> 1))
7013 == 0)))
7014 {
7015 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
7016
7017 /* Prefer ZERO_EXTENSION, since it gives more information to
7018 backends. */
7019 if (rtx_cost (temp1, SET, optimize_this_for_speed_p)
7020 < rtx_cost (temp, SET, optimize_this_for_speed_p))
7021 temp = temp1;
7022 }
7023 pos_rtx = temp;
7024 }
7025 else if (pos_rtx != 0
7026 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7027 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
7028
7029 /* Make POS_RTX unless we already have it and it is correct. If we don't
7030 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7031 be a CONST_INT. */
7032 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7033 pos_rtx = orig_pos_rtx;
7034
7035 else if (pos_rtx == 0)
7036 pos_rtx = GEN_INT (pos);
7037
7038 /* Make the required operation. See if we can use existing rtx. */
7039 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7040 extraction_mode, inner, GEN_INT (len), pos_rtx);
7041 if (! in_dest)
7042 new_rtx = gen_lowpart (mode, new_rtx);
7043
7044 return new_rtx;
7045 }
7046 \f
7047 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7048 with any other operations in X. Return X without that shift if so. */
7049
7050 static rtx
7051 extract_left_shift (rtx x, int count)
7052 {
7053 enum rtx_code code = GET_CODE (x);
7054 enum machine_mode mode = GET_MODE (x);
7055 rtx tem;
7056
7057 switch (code)
7058 {
7059 case ASHIFT:
7060 /* This is the shift itself. If it is wide enough, we will return
7061 either the value being shifted if the shift count is equal to
7062 COUNT or a shift for the difference. */
7063 if (CONST_INT_P (XEXP (x, 1))
7064 && INTVAL (XEXP (x, 1)) >= count)
7065 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7066 INTVAL (XEXP (x, 1)) - count);
7067 break;
7068
7069 case NEG: case NOT:
7070 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7071 return simplify_gen_unary (code, mode, tem, mode);
7072
7073 break;
7074
7075 case PLUS: case IOR: case XOR: case AND:
7076 /* If we can safely shift this constant and we find the inner shift,
7077 make a new operation. */
7078 if (CONST_INT_P (XEXP (x, 1))
7079 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
7080 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7081 return simplify_gen_binary (code, mode, tem,
7082 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7083
7084 break;
7085
7086 default:
7087 break;
7088 }
7089
7090 return 0;
7091 }
7092 \f
7093 /* Look at the expression rooted at X. Look for expressions
7094 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7095 Form these expressions.
7096
7097 Return the new rtx, usually just X.
7098
7099 Also, for machines like the VAX that don't have logical shift insns,
7100 try to convert logical to arithmetic shift operations in cases where
7101 they are equivalent. This undoes the canonicalizations to logical
7102 shifts done elsewhere.
7103
7104 We try, as much as possible, to re-use rtl expressions to save memory.
7105
7106 IN_CODE says what kind of expression we are processing. Normally, it is
7107 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7108 being kludges), it is MEM. When processing the arguments of a comparison
7109 or a COMPARE against zero, it is COMPARE. */
7110
7111 static rtx
7112 make_compound_operation (rtx x, enum rtx_code in_code)
7113 {
7114 enum rtx_code code = GET_CODE (x);
7115 enum machine_mode mode = GET_MODE (x);
7116 int mode_width = GET_MODE_BITSIZE (mode);
7117 rtx rhs, lhs;
7118 enum rtx_code next_code;
7119 int i, j;
7120 rtx new_rtx = 0;
7121 rtx tem;
7122 const char *fmt;
7123
7124 /* Select the code to be used in recursive calls. Once we are inside an
7125 address, we stay there. If we have a comparison, set to COMPARE,
7126 but once inside, go back to our default of SET. */
7127
7128 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
7129 : ((code == COMPARE || COMPARISON_P (x))
7130 && XEXP (x, 1) == const0_rtx) ? COMPARE
7131 : in_code == COMPARE ? SET : in_code);
7132
7133 /* Process depending on the code of this operation. If NEW is set
7134 nonzero, it will be returned. */
7135
7136 switch (code)
7137 {
7138 case ASHIFT:
7139 /* Convert shifts by constants into multiplications if inside
7140 an address. */
7141 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7142 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7143 && INTVAL (XEXP (x, 1)) >= 0)
7144 {
7145 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7146 new_rtx = gen_rtx_MULT (mode, new_rtx,
7147 GEN_INT ((HOST_WIDE_INT) 1
7148 << INTVAL (XEXP (x, 1))));
7149 }
7150 break;
7151
7152 case AND:
7153 /* If the second operand is not a constant, we can't do anything
7154 with it. */
7155 if (!CONST_INT_P (XEXP (x, 1)))
7156 break;
7157
7158 /* If the constant is a power of two minus one and the first operand
7159 is a logical right shift, make an extraction. */
7160 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7161 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7162 {
7163 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7164 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7165 0, in_code == COMPARE);
7166 }
7167
7168 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7169 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7170 && subreg_lowpart_p (XEXP (x, 0))
7171 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7172 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7173 {
7174 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7175 next_code);
7176 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7177 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7178 0, in_code == COMPARE);
7179 }
7180 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7181 else if ((GET_CODE (XEXP (x, 0)) == XOR
7182 || GET_CODE (XEXP (x, 0)) == IOR)
7183 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7184 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7185 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7186 {
7187 /* Apply the distributive law, and then try to make extractions. */
7188 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7189 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7190 XEXP (x, 1)),
7191 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7192 XEXP (x, 1)));
7193 new_rtx = make_compound_operation (new_rtx, in_code);
7194 }
7195
7196 /* If we are have (and (rotate X C) M) and C is larger than the number
7197 of bits in M, this is an extraction. */
7198
7199 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7200 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7201 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
7202 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7203 {
7204 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7205 new_rtx = make_extraction (mode, new_rtx,
7206 (GET_MODE_BITSIZE (mode)
7207 - INTVAL (XEXP (XEXP (x, 0), 1))),
7208 NULL_RTX, i, 1, 0, in_code == COMPARE);
7209 }
7210
7211 /* On machines without logical shifts, if the operand of the AND is
7212 a logical shift and our mask turns off all the propagated sign
7213 bits, we can replace the logical shift with an arithmetic shift. */
7214 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7215 && !have_insn_for (LSHIFTRT, mode)
7216 && have_insn_for (ASHIFTRT, mode)
7217 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7218 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7219 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7220 && mode_width <= HOST_BITS_PER_WIDE_INT)
7221 {
7222 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7223
7224 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7225 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7226 SUBST (XEXP (x, 0),
7227 gen_rtx_ASHIFTRT (mode,
7228 make_compound_operation
7229 (XEXP (XEXP (x, 0), 0), next_code),
7230 XEXP (XEXP (x, 0), 1)));
7231 }
7232
7233 /* If the constant is one less than a power of two, this might be
7234 representable by an extraction even if no shift is present.
7235 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7236 we are in a COMPARE. */
7237 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7238 new_rtx = make_extraction (mode,
7239 make_compound_operation (XEXP (x, 0),
7240 next_code),
7241 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7242
7243 /* If we are in a comparison and this is an AND with a power of two,
7244 convert this into the appropriate bit extract. */
7245 else if (in_code == COMPARE
7246 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
7247 new_rtx = make_extraction (mode,
7248 make_compound_operation (XEXP (x, 0),
7249 next_code),
7250 i, NULL_RTX, 1, 1, 0, 1);
7251
7252 break;
7253
7254 case LSHIFTRT:
7255 /* If the sign bit is known to be zero, replace this with an
7256 arithmetic shift. */
7257 if (have_insn_for (ASHIFTRT, mode)
7258 && ! have_insn_for (LSHIFTRT, mode)
7259 && mode_width <= HOST_BITS_PER_WIDE_INT
7260 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7261 {
7262 new_rtx = gen_rtx_ASHIFTRT (mode,
7263 make_compound_operation (XEXP (x, 0),
7264 next_code),
7265 XEXP (x, 1));
7266 break;
7267 }
7268
7269 /* ... fall through ... */
7270
7271 case ASHIFTRT:
7272 lhs = XEXP (x, 0);
7273 rhs = XEXP (x, 1);
7274
7275 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7276 this is a SIGN_EXTRACT. */
7277 if (CONST_INT_P (rhs)
7278 && GET_CODE (lhs) == ASHIFT
7279 && CONST_INT_P (XEXP (lhs, 1))
7280 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7281 && INTVAL (rhs) < mode_width)
7282 {
7283 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7284 new_rtx = make_extraction (mode, new_rtx,
7285 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7286 NULL_RTX, mode_width - INTVAL (rhs),
7287 code == LSHIFTRT, 0, in_code == COMPARE);
7288 break;
7289 }
7290
7291 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7292 If so, try to merge the shifts into a SIGN_EXTEND. We could
7293 also do this for some cases of SIGN_EXTRACT, but it doesn't
7294 seem worth the effort; the case checked for occurs on Alpha. */
7295
7296 if (!OBJECT_P (lhs)
7297 && ! (GET_CODE (lhs) == SUBREG
7298 && (OBJECT_P (SUBREG_REG (lhs))))
7299 && CONST_INT_P (rhs)
7300 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7301 && INTVAL (rhs) < mode_width
7302 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7303 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7304 0, NULL_RTX, mode_width - INTVAL (rhs),
7305 code == LSHIFTRT, 0, in_code == COMPARE);
7306
7307 break;
7308
7309 case SUBREG:
7310 /* Call ourselves recursively on the inner expression. If we are
7311 narrowing the object and it has a different RTL code from
7312 what it originally did, do this SUBREG as a force_to_mode. */
7313
7314 tem = make_compound_operation (SUBREG_REG (x), in_code);
7315
7316 {
7317 rtx simplified = simplify_subreg (mode, tem, GET_MODE (SUBREG_REG (x)),
7318 SUBREG_BYTE (x));
7319
7320 if (simplified)
7321 tem = simplified;
7322
7323 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
7324 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
7325 && subreg_lowpart_p (x))
7326 {
7327 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
7328 0);
7329
7330 /* If we have something other than a SUBREG, we might have
7331 done an expansion, so rerun ourselves. */
7332 if (GET_CODE (newer) != SUBREG)
7333 newer = make_compound_operation (newer, in_code);
7334
7335 /* force_to_mode can expand compounds. If it just re-expanded the
7336 compound use gen_lowpart instead to convert to the desired
7337 mode. */
7338 if (rtx_equal_p (newer, x))
7339 return gen_lowpart (GET_MODE (x), tem);
7340
7341 return newer;
7342 }
7343
7344 if (simplified)
7345 return tem;
7346 }
7347 break;
7348
7349 default:
7350 break;
7351 }
7352
7353 if (new_rtx)
7354 {
7355 x = gen_lowpart (mode, new_rtx);
7356 code = GET_CODE (x);
7357 }
7358
7359 /* Now recursively process each operand of this operation. */
7360 fmt = GET_RTX_FORMAT (code);
7361 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7362 if (fmt[i] == 'e')
7363 {
7364 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7365 SUBST (XEXP (x, i), new_rtx);
7366 }
7367 else if (fmt[i] == 'E')
7368 for (j = 0; j < XVECLEN (x, i); j++)
7369 {
7370 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7371 SUBST (XVECEXP (x, i, j), new_rtx);
7372 }
7373
7374 /* If this is a commutative operation, the changes to the operands
7375 may have made it noncanonical. */
7376 if (COMMUTATIVE_ARITH_P (x)
7377 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7378 {
7379 tem = XEXP (x, 0);
7380 SUBST (XEXP (x, 0), XEXP (x, 1));
7381 SUBST (XEXP (x, 1), tem);
7382 }
7383
7384 return x;
7385 }
7386 \f
7387 /* Given M see if it is a value that would select a field of bits
7388 within an item, but not the entire word. Return -1 if not.
7389 Otherwise, return the starting position of the field, where 0 is the
7390 low-order bit.
7391
7392 *PLEN is set to the length of the field. */
7393
7394 static int
7395 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7396 {
7397 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7398 int pos = exact_log2 (m & -m);
7399 int len = 0;
7400
7401 if (pos >= 0)
7402 /* Now shift off the low-order zero bits and see if we have a
7403 power of two minus 1. */
7404 len = exact_log2 ((m >> pos) + 1);
7405
7406 if (len <= 0)
7407 pos = -1;
7408
7409 *plen = len;
7410 return pos;
7411 }
7412 \f
7413 /* If X refers to a register that equals REG in value, replace these
7414 references with REG. */
7415 static rtx
7416 canon_reg_for_combine (rtx x, rtx reg)
7417 {
7418 rtx op0, op1, op2;
7419 const char *fmt;
7420 int i;
7421 bool copied;
7422
7423 enum rtx_code code = GET_CODE (x);
7424 switch (GET_RTX_CLASS (code))
7425 {
7426 case RTX_UNARY:
7427 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7428 if (op0 != XEXP (x, 0))
7429 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7430 GET_MODE (reg));
7431 break;
7432
7433 case RTX_BIN_ARITH:
7434 case RTX_COMM_ARITH:
7435 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7436 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7437 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7438 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7439 break;
7440
7441 case RTX_COMPARE:
7442 case RTX_COMM_COMPARE:
7443 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7444 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7445 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7446 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7447 GET_MODE (op0), op0, op1);
7448 break;
7449
7450 case RTX_TERNARY:
7451 case RTX_BITFIELD_OPS:
7452 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7453 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7454 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7455 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7456 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7457 GET_MODE (op0), op0, op1, op2);
7458
7459 case RTX_OBJ:
7460 if (REG_P (x))
7461 {
7462 if (rtx_equal_p (get_last_value (reg), x)
7463 || rtx_equal_p (reg, get_last_value (x)))
7464 return reg;
7465 else
7466 break;
7467 }
7468
7469 /* fall through */
7470
7471 default:
7472 fmt = GET_RTX_FORMAT (code);
7473 copied = false;
7474 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7475 if (fmt[i] == 'e')
7476 {
7477 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7478 if (op != XEXP (x, i))
7479 {
7480 if (!copied)
7481 {
7482 copied = true;
7483 x = copy_rtx (x);
7484 }
7485 XEXP (x, i) = op;
7486 }
7487 }
7488 else if (fmt[i] == 'E')
7489 {
7490 int j;
7491 for (j = 0; j < XVECLEN (x, i); j++)
7492 {
7493 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7494 if (op != XVECEXP (x, i, j))
7495 {
7496 if (!copied)
7497 {
7498 copied = true;
7499 x = copy_rtx (x);
7500 }
7501 XVECEXP (x, i, j) = op;
7502 }
7503 }
7504 }
7505
7506 break;
7507 }
7508
7509 return x;
7510 }
7511
7512 /* Return X converted to MODE. If the value is already truncated to
7513 MODE we can just return a subreg even though in the general case we
7514 would need an explicit truncation. */
7515
7516 static rtx
7517 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7518 {
7519 if (!CONST_INT_P (x)
7520 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
7521 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7522 GET_MODE_BITSIZE (GET_MODE (x)))
7523 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
7524 {
7525 /* Bit-cast X into an integer mode. */
7526 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
7527 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
7528 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
7529 x, GET_MODE (x));
7530 }
7531
7532 return gen_lowpart (mode, x);
7533 }
7534
7535 /* See if X can be simplified knowing that we will only refer to it in
7536 MODE and will only refer to those bits that are nonzero in MASK.
7537 If other bits are being computed or if masking operations are done
7538 that select a superset of the bits in MASK, they can sometimes be
7539 ignored.
7540
7541 Return a possibly simplified expression, but always convert X to
7542 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7543
7544 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7545 are all off in X. This is used when X will be complemented, by either
7546 NOT, NEG, or XOR. */
7547
7548 static rtx
7549 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7550 int just_select)
7551 {
7552 enum rtx_code code = GET_CODE (x);
7553 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7554 enum machine_mode op_mode;
7555 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7556 rtx op0, op1, temp;
7557
7558 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7559 code below will do the wrong thing since the mode of such an
7560 expression is VOIDmode.
7561
7562 Also do nothing if X is a CLOBBER; this can happen if X was
7563 the return value from a call to gen_lowpart. */
7564 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7565 return x;
7566
7567 /* We want to perform the operation is its present mode unless we know
7568 that the operation is valid in MODE, in which case we do the operation
7569 in MODE. */
7570 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7571 && have_insn_for (code, mode))
7572 ? mode : GET_MODE (x));
7573
7574 /* It is not valid to do a right-shift in a narrower mode
7575 than the one it came in with. */
7576 if ((code == LSHIFTRT || code == ASHIFTRT)
7577 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7578 op_mode = GET_MODE (x);
7579
7580 /* Truncate MASK to fit OP_MODE. */
7581 if (op_mode)
7582 mask &= GET_MODE_MASK (op_mode);
7583
7584 /* When we have an arithmetic operation, or a shift whose count we
7585 do not know, we need to assume that all bits up to the highest-order
7586 bit in MASK will be needed. This is how we form such a mask. */
7587 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7588 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7589 else
7590 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7591 - 1);
7592
7593 /* Determine what bits of X are guaranteed to be (non)zero. */
7594 nonzero = nonzero_bits (x, mode);
7595
7596 /* If none of the bits in X are needed, return a zero. */
7597 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
7598 x = const0_rtx;
7599
7600 /* If X is a CONST_INT, return a new one. Do this here since the
7601 test below will fail. */
7602 if (CONST_INT_P (x))
7603 {
7604 if (SCALAR_INT_MODE_P (mode))
7605 return gen_int_mode (INTVAL (x) & mask, mode);
7606 else
7607 {
7608 x = GEN_INT (INTVAL (x) & mask);
7609 return gen_lowpart_common (mode, x);
7610 }
7611 }
7612
7613 /* If X is narrower than MODE and we want all the bits in X's mode, just
7614 get X in the proper mode. */
7615 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7616 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7617 return gen_lowpart (mode, x);
7618
7619 /* We can ignore the effect of a SUBREG if it narrows the mode or
7620 if the constant masks to zero all the bits the mode doesn't have. */
7621 if (GET_CODE (x) == SUBREG
7622 && subreg_lowpart_p (x)
7623 && ((GET_MODE_SIZE (GET_MODE (x))
7624 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7625 || (0 == (mask
7626 & GET_MODE_MASK (GET_MODE (x))
7627 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7628 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
7629
7630 /* The arithmetic simplifications here only work for scalar integer modes. */
7631 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
7632 return gen_lowpart_or_truncate (mode, x);
7633
7634 switch (code)
7635 {
7636 case CLOBBER:
7637 /* If X is a (clobber (const_int)), return it since we know we are
7638 generating something that won't match. */
7639 return x;
7640
7641 case SIGN_EXTEND:
7642 case ZERO_EXTEND:
7643 case ZERO_EXTRACT:
7644 case SIGN_EXTRACT:
7645 x = expand_compound_operation (x);
7646 if (GET_CODE (x) != code)
7647 return force_to_mode (x, mode, mask, next_select);
7648 break;
7649
7650 case TRUNCATE:
7651 /* Similarly for a truncate. */
7652 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7653
7654 case AND:
7655 /* If this is an AND with a constant, convert it into an AND
7656 whose constant is the AND of that constant with MASK. If it
7657 remains an AND of MASK, delete it since it is redundant. */
7658
7659 if (CONST_INT_P (XEXP (x, 1)))
7660 {
7661 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7662 mask & INTVAL (XEXP (x, 1)));
7663
7664 /* If X is still an AND, see if it is an AND with a mask that
7665 is just some low-order bits. If so, and it is MASK, we don't
7666 need it. */
7667
7668 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
7669 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7670 == mask))
7671 x = XEXP (x, 0);
7672
7673 /* If it remains an AND, try making another AND with the bits
7674 in the mode mask that aren't in MASK turned on. If the
7675 constant in the AND is wide enough, this might make a
7676 cheaper constant. */
7677
7678 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
7679 && GET_MODE_MASK (GET_MODE (x)) != mask
7680 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7681 {
7682 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7683 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7684 int width = GET_MODE_BITSIZE (GET_MODE (x));
7685 rtx y;
7686
7687 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7688 number, sign extend it. */
7689 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7690 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7691 cval |= (HOST_WIDE_INT) -1 << width;
7692
7693 y = simplify_gen_binary (AND, GET_MODE (x),
7694 XEXP (x, 0), GEN_INT (cval));
7695 if (rtx_cost (y, SET, optimize_this_for_speed_p)
7696 < rtx_cost (x, SET, optimize_this_for_speed_p))
7697 x = y;
7698 }
7699
7700 break;
7701 }
7702
7703 goto binop;
7704
7705 case PLUS:
7706 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7707 low-order bits (as in an alignment operation) and FOO is already
7708 aligned to that boundary, mask C1 to that boundary as well.
7709 This may eliminate that PLUS and, later, the AND. */
7710
7711 {
7712 unsigned int width = GET_MODE_BITSIZE (mode);
7713 unsigned HOST_WIDE_INT smask = mask;
7714
7715 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7716 number, sign extend it. */
7717
7718 if (width < HOST_BITS_PER_WIDE_INT
7719 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7720 smask |= (HOST_WIDE_INT) -1 << width;
7721
7722 if (CONST_INT_P (XEXP (x, 1))
7723 && exact_log2 (- smask) >= 0
7724 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7725 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7726 return force_to_mode (plus_constant (XEXP (x, 0),
7727 (INTVAL (XEXP (x, 1)) & smask)),
7728 mode, smask, next_select);
7729 }
7730
7731 /* ... fall through ... */
7732
7733 case MULT:
7734 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7735 most significant bit in MASK since carries from those bits will
7736 affect the bits we are interested in. */
7737 mask = fuller_mask;
7738 goto binop;
7739
7740 case MINUS:
7741 /* If X is (minus C Y) where C's least set bit is larger than any bit
7742 in the mask, then we may replace with (neg Y). */
7743 if (CONST_INT_P (XEXP (x, 0))
7744 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7745 & -INTVAL (XEXP (x, 0))))
7746 > mask))
7747 {
7748 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7749 GET_MODE (x));
7750 return force_to_mode (x, mode, mask, next_select);
7751 }
7752
7753 /* Similarly, if C contains every bit in the fuller_mask, then we may
7754 replace with (not Y). */
7755 if (CONST_INT_P (XEXP (x, 0))
7756 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7757 == INTVAL (XEXP (x, 0))))
7758 {
7759 x = simplify_gen_unary (NOT, GET_MODE (x),
7760 XEXP (x, 1), GET_MODE (x));
7761 return force_to_mode (x, mode, mask, next_select);
7762 }
7763
7764 mask = fuller_mask;
7765 goto binop;
7766
7767 case IOR:
7768 case XOR:
7769 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7770 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7771 operation which may be a bitfield extraction. Ensure that the
7772 constant we form is not wider than the mode of X. */
7773
7774 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7775 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7776 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7777 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7778 && CONST_INT_P (XEXP (x, 1))
7779 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7780 + floor_log2 (INTVAL (XEXP (x, 1))))
7781 < GET_MODE_BITSIZE (GET_MODE (x)))
7782 && (INTVAL (XEXP (x, 1))
7783 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7784 {
7785 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7786 << INTVAL (XEXP (XEXP (x, 0), 1)));
7787 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7788 XEXP (XEXP (x, 0), 0), temp);
7789 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7790 XEXP (XEXP (x, 0), 1));
7791 return force_to_mode (x, mode, mask, next_select);
7792 }
7793
7794 binop:
7795 /* For most binary operations, just propagate into the operation and
7796 change the mode if we have an operation of that mode. */
7797
7798 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
7799 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
7800
7801 /* If we ended up truncating both operands, truncate the result of the
7802 operation instead. */
7803 if (GET_CODE (op0) == TRUNCATE
7804 && GET_CODE (op1) == TRUNCATE)
7805 {
7806 op0 = XEXP (op0, 0);
7807 op1 = XEXP (op1, 0);
7808 }
7809
7810 op0 = gen_lowpart_or_truncate (op_mode, op0);
7811 op1 = gen_lowpart_or_truncate (op_mode, op1);
7812
7813 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7814 x = simplify_gen_binary (code, op_mode, op0, op1);
7815 break;
7816
7817 case ASHIFT:
7818 /* For left shifts, do the same, but just for the first operand.
7819 However, we cannot do anything with shifts where we cannot
7820 guarantee that the counts are smaller than the size of the mode
7821 because such a count will have a different meaning in a
7822 wider mode. */
7823
7824 if (! (CONST_INT_P (XEXP (x, 1))
7825 && INTVAL (XEXP (x, 1)) >= 0
7826 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7827 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7828 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7829 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7830 break;
7831
7832 /* If the shift count is a constant and we can do arithmetic in
7833 the mode of the shift, refine which bits we need. Otherwise, use the
7834 conservative form of the mask. */
7835 if (CONST_INT_P (XEXP (x, 1))
7836 && INTVAL (XEXP (x, 1)) >= 0
7837 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7838 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7839 mask >>= INTVAL (XEXP (x, 1));
7840 else
7841 mask = fuller_mask;
7842
7843 op0 = gen_lowpart_or_truncate (op_mode,
7844 force_to_mode (XEXP (x, 0), op_mode,
7845 mask, next_select));
7846
7847 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7848 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7849 break;
7850
7851 case LSHIFTRT:
7852 /* Here we can only do something if the shift count is a constant,
7853 this shift constant is valid for the host, and we can do arithmetic
7854 in OP_MODE. */
7855
7856 if (CONST_INT_P (XEXP (x, 1))
7857 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7858 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7859 {
7860 rtx inner = XEXP (x, 0);
7861 unsigned HOST_WIDE_INT inner_mask;
7862
7863 /* Select the mask of the bits we need for the shift operand. */
7864 inner_mask = mask << INTVAL (XEXP (x, 1));
7865
7866 /* We can only change the mode of the shift if we can do arithmetic
7867 in the mode of the shift and INNER_MASK is no wider than the
7868 width of X's mode. */
7869 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7870 op_mode = GET_MODE (x);
7871
7872 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7873
7874 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7875 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7876 }
7877
7878 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7879 shift and AND produces only copies of the sign bit (C2 is one less
7880 than a power of two), we can do this with just a shift. */
7881
7882 if (GET_CODE (x) == LSHIFTRT
7883 && CONST_INT_P (XEXP (x, 1))
7884 /* The shift puts one of the sign bit copies in the least significant
7885 bit. */
7886 && ((INTVAL (XEXP (x, 1))
7887 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7888 >= GET_MODE_BITSIZE (GET_MODE (x)))
7889 && exact_log2 (mask + 1) >= 0
7890 /* Number of bits left after the shift must be more than the mask
7891 needs. */
7892 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7893 <= GET_MODE_BITSIZE (GET_MODE (x)))
7894 /* Must be more sign bit copies than the mask needs. */
7895 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7896 >= exact_log2 (mask + 1)))
7897 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7898 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7899 - exact_log2 (mask + 1)));
7900
7901 goto shiftrt;
7902
7903 case ASHIFTRT:
7904 /* If we are just looking for the sign bit, we don't need this shift at
7905 all, even if it has a variable count. */
7906 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7907 && (mask == ((unsigned HOST_WIDE_INT) 1
7908 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7909 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7910
7911 /* If this is a shift by a constant, get a mask that contains those bits
7912 that are not copies of the sign bit. We then have two cases: If
7913 MASK only includes those bits, this can be a logical shift, which may
7914 allow simplifications. If MASK is a single-bit field not within
7915 those bits, we are requesting a copy of the sign bit and hence can
7916 shift the sign bit to the appropriate location. */
7917
7918 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
7919 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7920 {
7921 int i;
7922
7923 /* If the considered data is wider than HOST_WIDE_INT, we can't
7924 represent a mask for all its bits in a single scalar.
7925 But we only care about the lower bits, so calculate these. */
7926
7927 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7928 {
7929 nonzero = ~(HOST_WIDE_INT) 0;
7930
7931 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7932 is the number of bits a full-width mask would have set.
7933 We need only shift if these are fewer than nonzero can
7934 hold. If not, we must keep all bits set in nonzero. */
7935
7936 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7937 < HOST_BITS_PER_WIDE_INT)
7938 nonzero >>= INTVAL (XEXP (x, 1))
7939 + HOST_BITS_PER_WIDE_INT
7940 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7941 }
7942 else
7943 {
7944 nonzero = GET_MODE_MASK (GET_MODE (x));
7945 nonzero >>= INTVAL (XEXP (x, 1));
7946 }
7947
7948 if ((mask & ~nonzero) == 0)
7949 {
7950 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7951 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7952 if (GET_CODE (x) != ASHIFTRT)
7953 return force_to_mode (x, mode, mask, next_select);
7954 }
7955
7956 else if ((i = exact_log2 (mask)) >= 0)
7957 {
7958 x = simplify_shift_const
7959 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7960 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7961
7962 if (GET_CODE (x) != ASHIFTRT)
7963 return force_to_mode (x, mode, mask, next_select);
7964 }
7965 }
7966
7967 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7968 even if the shift count isn't a constant. */
7969 if (mask == 1)
7970 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7971 XEXP (x, 0), XEXP (x, 1));
7972
7973 shiftrt:
7974
7975 /* If this is a zero- or sign-extension operation that just affects bits
7976 we don't care about, remove it. Be sure the call above returned
7977 something that is still a shift. */
7978
7979 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7980 && CONST_INT_P (XEXP (x, 1))
7981 && INTVAL (XEXP (x, 1)) >= 0
7982 && (INTVAL (XEXP (x, 1))
7983 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7984 && GET_CODE (XEXP (x, 0)) == ASHIFT
7985 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7986 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7987 next_select);
7988
7989 break;
7990
7991 case ROTATE:
7992 case ROTATERT:
7993 /* If the shift count is constant and we can do computations
7994 in the mode of X, compute where the bits we care about are.
7995 Otherwise, we can't do anything. Don't change the mode of
7996 the shift or propagate MODE into the shift, though. */
7997 if (CONST_INT_P (XEXP (x, 1))
7998 && INTVAL (XEXP (x, 1)) >= 0)
7999 {
8000 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8001 GET_MODE (x), GEN_INT (mask),
8002 XEXP (x, 1));
8003 if (temp && CONST_INT_P (temp))
8004 SUBST (XEXP (x, 0),
8005 force_to_mode (XEXP (x, 0), GET_MODE (x),
8006 INTVAL (temp), next_select));
8007 }
8008 break;
8009
8010 case NEG:
8011 /* If we just want the low-order bit, the NEG isn't needed since it
8012 won't change the low-order bit. */
8013 if (mask == 1)
8014 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8015
8016 /* We need any bits less significant than the most significant bit in
8017 MASK since carries from those bits will affect the bits we are
8018 interested in. */
8019 mask = fuller_mask;
8020 goto unop;
8021
8022 case NOT:
8023 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8024 same as the XOR case above. Ensure that the constant we form is not
8025 wider than the mode of X. */
8026
8027 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8028 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8029 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8030 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8031 < GET_MODE_BITSIZE (GET_MODE (x)))
8032 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8033 {
8034 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8035 GET_MODE (x));
8036 temp = simplify_gen_binary (XOR, GET_MODE (x),
8037 XEXP (XEXP (x, 0), 0), temp);
8038 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8039 temp, XEXP (XEXP (x, 0), 1));
8040
8041 return force_to_mode (x, mode, mask, next_select);
8042 }
8043
8044 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8045 use the full mask inside the NOT. */
8046 mask = fuller_mask;
8047
8048 unop:
8049 op0 = gen_lowpart_or_truncate (op_mode,
8050 force_to_mode (XEXP (x, 0), mode, mask,
8051 next_select));
8052 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8053 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8054 break;
8055
8056 case NE:
8057 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8058 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8059 which is equal to STORE_FLAG_VALUE. */
8060 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
8061 && GET_MODE (XEXP (x, 0)) == mode
8062 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8063 && (nonzero_bits (XEXP (x, 0), mode)
8064 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8065 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8066
8067 break;
8068
8069 case IF_THEN_ELSE:
8070 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8071 written in a narrower mode. We play it safe and do not do so. */
8072
8073 SUBST (XEXP (x, 1),
8074 gen_lowpart_or_truncate (GET_MODE (x),
8075 force_to_mode (XEXP (x, 1), mode,
8076 mask, next_select)));
8077 SUBST (XEXP (x, 2),
8078 gen_lowpart_or_truncate (GET_MODE (x),
8079 force_to_mode (XEXP (x, 2), mode,
8080 mask, next_select)));
8081 break;
8082
8083 default:
8084 break;
8085 }
8086
8087 /* Ensure we return a value of the proper mode. */
8088 return gen_lowpart_or_truncate (mode, x);
8089 }
8090 \f
8091 /* Return nonzero if X is an expression that has one of two values depending on
8092 whether some other value is zero or nonzero. In that case, we return the
8093 value that is being tested, *PTRUE is set to the value if the rtx being
8094 returned has a nonzero value, and *PFALSE is set to the other alternative.
8095
8096 If we return zero, we set *PTRUE and *PFALSE to X. */
8097
8098 static rtx
8099 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8100 {
8101 enum machine_mode mode = GET_MODE (x);
8102 enum rtx_code code = GET_CODE (x);
8103 rtx cond0, cond1, true0, true1, false0, false1;
8104 unsigned HOST_WIDE_INT nz;
8105
8106 /* If we are comparing a value against zero, we are done. */
8107 if ((code == NE || code == EQ)
8108 && XEXP (x, 1) == const0_rtx)
8109 {
8110 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8111 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8112 return XEXP (x, 0);
8113 }
8114
8115 /* If this is a unary operation whose operand has one of two values, apply
8116 our opcode to compute those values. */
8117 else if (UNARY_P (x)
8118 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8119 {
8120 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8121 *pfalse = simplify_gen_unary (code, mode, false0,
8122 GET_MODE (XEXP (x, 0)));
8123 return cond0;
8124 }
8125
8126 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8127 make can't possibly match and would suppress other optimizations. */
8128 else if (code == COMPARE)
8129 ;
8130
8131 /* If this is a binary operation, see if either side has only one of two
8132 values. If either one does or if both do and they are conditional on
8133 the same value, compute the new true and false values. */
8134 else if (BINARY_P (x))
8135 {
8136 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8137 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8138
8139 if ((cond0 != 0 || cond1 != 0)
8140 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8141 {
8142 /* If if_then_else_cond returned zero, then true/false are the
8143 same rtl. We must copy one of them to prevent invalid rtl
8144 sharing. */
8145 if (cond0 == 0)
8146 true0 = copy_rtx (true0);
8147 else if (cond1 == 0)
8148 true1 = copy_rtx (true1);
8149
8150 if (COMPARISON_P (x))
8151 {
8152 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8153 true0, true1);
8154 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8155 false0, false1);
8156 }
8157 else
8158 {
8159 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8160 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8161 }
8162
8163 return cond0 ? cond0 : cond1;
8164 }
8165
8166 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8167 operands is zero when the other is nonzero, and vice-versa,
8168 and STORE_FLAG_VALUE is 1 or -1. */
8169
8170 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8171 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8172 || code == UMAX)
8173 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8174 {
8175 rtx op0 = XEXP (XEXP (x, 0), 1);
8176 rtx op1 = XEXP (XEXP (x, 1), 1);
8177
8178 cond0 = XEXP (XEXP (x, 0), 0);
8179 cond1 = XEXP (XEXP (x, 1), 0);
8180
8181 if (COMPARISON_P (cond0)
8182 && COMPARISON_P (cond1)
8183 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8184 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8185 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8186 || ((swap_condition (GET_CODE (cond0))
8187 == reversed_comparison_code (cond1, NULL))
8188 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8189 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8190 && ! side_effects_p (x))
8191 {
8192 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8193 *pfalse = simplify_gen_binary (MULT, mode,
8194 (code == MINUS
8195 ? simplify_gen_unary (NEG, mode,
8196 op1, mode)
8197 : op1),
8198 const_true_rtx);
8199 return cond0;
8200 }
8201 }
8202
8203 /* Similarly for MULT, AND and UMIN, except that for these the result
8204 is always zero. */
8205 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8206 && (code == MULT || code == AND || code == UMIN)
8207 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8208 {
8209 cond0 = XEXP (XEXP (x, 0), 0);
8210 cond1 = XEXP (XEXP (x, 1), 0);
8211
8212 if (COMPARISON_P (cond0)
8213 && COMPARISON_P (cond1)
8214 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8215 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8216 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8217 || ((swap_condition (GET_CODE (cond0))
8218 == reversed_comparison_code (cond1, NULL))
8219 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8220 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8221 && ! side_effects_p (x))
8222 {
8223 *ptrue = *pfalse = const0_rtx;
8224 return cond0;
8225 }
8226 }
8227 }
8228
8229 else if (code == IF_THEN_ELSE)
8230 {
8231 /* If we have IF_THEN_ELSE already, extract the condition and
8232 canonicalize it if it is NE or EQ. */
8233 cond0 = XEXP (x, 0);
8234 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8235 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8236 return XEXP (cond0, 0);
8237 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8238 {
8239 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8240 return XEXP (cond0, 0);
8241 }
8242 else
8243 return cond0;
8244 }
8245
8246 /* If X is a SUBREG, we can narrow both the true and false values
8247 if the inner expression, if there is a condition. */
8248 else if (code == SUBREG
8249 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8250 &true0, &false0)))
8251 {
8252 true0 = simplify_gen_subreg (mode, true0,
8253 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8254 false0 = simplify_gen_subreg (mode, false0,
8255 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8256 if (true0 && false0)
8257 {
8258 *ptrue = true0;
8259 *pfalse = false0;
8260 return cond0;
8261 }
8262 }
8263
8264 /* If X is a constant, this isn't special and will cause confusions
8265 if we treat it as such. Likewise if it is equivalent to a constant. */
8266 else if (CONSTANT_P (x)
8267 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8268 ;
8269
8270 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8271 will be least confusing to the rest of the compiler. */
8272 else if (mode == BImode)
8273 {
8274 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8275 return x;
8276 }
8277
8278 /* If X is known to be either 0 or -1, those are the true and
8279 false values when testing X. */
8280 else if (x == constm1_rtx || x == const0_rtx
8281 || (mode != VOIDmode
8282 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
8283 {
8284 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8285 return x;
8286 }
8287
8288 /* Likewise for 0 or a single bit. */
8289 else if (SCALAR_INT_MODE_P (mode)
8290 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8291 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8292 {
8293 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8294 return x;
8295 }
8296
8297 /* Otherwise fail; show no condition with true and false values the same. */
8298 *ptrue = *pfalse = x;
8299 return 0;
8300 }
8301 \f
8302 /* Return the value of expression X given the fact that condition COND
8303 is known to be true when applied to REG as its first operand and VAL
8304 as its second. X is known to not be shared and so can be modified in
8305 place.
8306
8307 We only handle the simplest cases, and specifically those cases that
8308 arise with IF_THEN_ELSE expressions. */
8309
8310 static rtx
8311 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8312 {
8313 enum rtx_code code = GET_CODE (x);
8314 rtx temp;
8315 const char *fmt;
8316 int i, j;
8317
8318 if (side_effects_p (x))
8319 return x;
8320
8321 /* If either operand of the condition is a floating point value,
8322 then we have to avoid collapsing an EQ comparison. */
8323 if (cond == EQ
8324 && rtx_equal_p (x, reg)
8325 && ! FLOAT_MODE_P (GET_MODE (x))
8326 && ! FLOAT_MODE_P (GET_MODE (val)))
8327 return val;
8328
8329 if (cond == UNEQ && rtx_equal_p (x, reg))
8330 return val;
8331
8332 /* If X is (abs REG) and we know something about REG's relationship
8333 with zero, we may be able to simplify this. */
8334
8335 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8336 switch (cond)
8337 {
8338 case GE: case GT: case EQ:
8339 return XEXP (x, 0);
8340 case LT: case LE:
8341 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8342 XEXP (x, 0),
8343 GET_MODE (XEXP (x, 0)));
8344 default:
8345 break;
8346 }
8347
8348 /* The only other cases we handle are MIN, MAX, and comparisons if the
8349 operands are the same as REG and VAL. */
8350
8351 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8352 {
8353 if (rtx_equal_p (XEXP (x, 0), val))
8354 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8355
8356 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8357 {
8358 if (COMPARISON_P (x))
8359 {
8360 if (comparison_dominates_p (cond, code))
8361 return const_true_rtx;
8362
8363 code = reversed_comparison_code (x, NULL);
8364 if (code != UNKNOWN
8365 && comparison_dominates_p (cond, code))
8366 return const0_rtx;
8367 else
8368 return x;
8369 }
8370 else if (code == SMAX || code == SMIN
8371 || code == UMIN || code == UMAX)
8372 {
8373 int unsignedp = (code == UMIN || code == UMAX);
8374
8375 /* Do not reverse the condition when it is NE or EQ.
8376 This is because we cannot conclude anything about
8377 the value of 'SMAX (x, y)' when x is not equal to y,
8378 but we can when x equals y. */
8379 if ((code == SMAX || code == UMAX)
8380 && ! (cond == EQ || cond == NE))
8381 cond = reverse_condition (cond);
8382
8383 switch (cond)
8384 {
8385 case GE: case GT:
8386 return unsignedp ? x : XEXP (x, 1);
8387 case LE: case LT:
8388 return unsignedp ? x : XEXP (x, 0);
8389 case GEU: case GTU:
8390 return unsignedp ? XEXP (x, 1) : x;
8391 case LEU: case LTU:
8392 return unsignedp ? XEXP (x, 0) : x;
8393 default:
8394 break;
8395 }
8396 }
8397 }
8398 }
8399 else if (code == SUBREG)
8400 {
8401 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8402 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8403
8404 if (SUBREG_REG (x) != r)
8405 {
8406 /* We must simplify subreg here, before we lose track of the
8407 original inner_mode. */
8408 new_rtx = simplify_subreg (GET_MODE (x), r,
8409 inner_mode, SUBREG_BYTE (x));
8410 if (new_rtx)
8411 return new_rtx;
8412 else
8413 SUBST (SUBREG_REG (x), r);
8414 }
8415
8416 return x;
8417 }
8418 /* We don't have to handle SIGN_EXTEND here, because even in the
8419 case of replacing something with a modeless CONST_INT, a
8420 CONST_INT is already (supposed to be) a valid sign extension for
8421 its narrower mode, which implies it's already properly
8422 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8423 story is different. */
8424 else if (code == ZERO_EXTEND)
8425 {
8426 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8427 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8428
8429 if (XEXP (x, 0) != r)
8430 {
8431 /* We must simplify the zero_extend here, before we lose
8432 track of the original inner_mode. */
8433 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8434 r, inner_mode);
8435 if (new_rtx)
8436 return new_rtx;
8437 else
8438 SUBST (XEXP (x, 0), r);
8439 }
8440
8441 return x;
8442 }
8443
8444 fmt = GET_RTX_FORMAT (code);
8445 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8446 {
8447 if (fmt[i] == 'e')
8448 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8449 else if (fmt[i] == 'E')
8450 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8451 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8452 cond, reg, val));
8453 }
8454
8455 return x;
8456 }
8457 \f
8458 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8459 assignment as a field assignment. */
8460
8461 static int
8462 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8463 {
8464 if (x == y || rtx_equal_p (x, y))
8465 return 1;
8466
8467 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8468 return 0;
8469
8470 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8471 Note that all SUBREGs of MEM are paradoxical; otherwise they
8472 would have been rewritten. */
8473 if (MEM_P (x) && GET_CODE (y) == SUBREG
8474 && MEM_P (SUBREG_REG (y))
8475 && rtx_equal_p (SUBREG_REG (y),
8476 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8477 return 1;
8478
8479 if (MEM_P (y) && GET_CODE (x) == SUBREG
8480 && MEM_P (SUBREG_REG (x))
8481 && rtx_equal_p (SUBREG_REG (x),
8482 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8483 return 1;
8484
8485 /* We used to see if get_last_value of X and Y were the same but that's
8486 not correct. In one direction, we'll cause the assignment to have
8487 the wrong destination and in the case, we'll import a register into this
8488 insn that might have already have been dead. So fail if none of the
8489 above cases are true. */
8490 return 0;
8491 }
8492 \f
8493 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8494 Return that assignment if so.
8495
8496 We only handle the most common cases. */
8497
8498 static rtx
8499 make_field_assignment (rtx x)
8500 {
8501 rtx dest = SET_DEST (x);
8502 rtx src = SET_SRC (x);
8503 rtx assign;
8504 rtx rhs, lhs;
8505 HOST_WIDE_INT c1;
8506 HOST_WIDE_INT pos;
8507 unsigned HOST_WIDE_INT len;
8508 rtx other;
8509 enum machine_mode mode;
8510
8511 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8512 a clear of a one-bit field. We will have changed it to
8513 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8514 for a SUBREG. */
8515
8516 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8517 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8518 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8519 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8520 {
8521 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8522 1, 1, 1, 0);
8523 if (assign != 0)
8524 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8525 return x;
8526 }
8527
8528 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8529 && subreg_lowpart_p (XEXP (src, 0))
8530 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8531 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8532 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8533 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8534 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8535 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8536 {
8537 assign = make_extraction (VOIDmode, dest, 0,
8538 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8539 1, 1, 1, 0);
8540 if (assign != 0)
8541 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8542 return x;
8543 }
8544
8545 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8546 one-bit field. */
8547 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8548 && XEXP (XEXP (src, 0), 0) == const1_rtx
8549 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8550 {
8551 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8552 1, 1, 1, 0);
8553 if (assign != 0)
8554 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8555 return x;
8556 }
8557
8558 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8559 SRC is an AND with all bits of that field set, then we can discard
8560 the AND. */
8561 if (GET_CODE (dest) == ZERO_EXTRACT
8562 && CONST_INT_P (XEXP (dest, 1))
8563 && GET_CODE (src) == AND
8564 && CONST_INT_P (XEXP (src, 1)))
8565 {
8566 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8567 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8568 unsigned HOST_WIDE_INT ze_mask;
8569
8570 if (width >= HOST_BITS_PER_WIDE_INT)
8571 ze_mask = -1;
8572 else
8573 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8574
8575 /* Complete overlap. We can remove the source AND. */
8576 if ((and_mask & ze_mask) == ze_mask)
8577 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8578
8579 /* Partial overlap. We can reduce the source AND. */
8580 if ((and_mask & ze_mask) != and_mask)
8581 {
8582 mode = GET_MODE (src);
8583 src = gen_rtx_AND (mode, XEXP (src, 0),
8584 gen_int_mode (and_mask & ze_mask, mode));
8585 return gen_rtx_SET (VOIDmode, dest, src);
8586 }
8587 }
8588
8589 /* The other case we handle is assignments into a constant-position
8590 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8591 a mask that has all one bits except for a group of zero bits and
8592 OTHER is known to have zeros where C1 has ones, this is such an
8593 assignment. Compute the position and length from C1. Shift OTHER
8594 to the appropriate position, force it to the required mode, and
8595 make the extraction. Check for the AND in both operands. */
8596
8597 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8598 return x;
8599
8600 rhs = expand_compound_operation (XEXP (src, 0));
8601 lhs = expand_compound_operation (XEXP (src, 1));
8602
8603 if (GET_CODE (rhs) == AND
8604 && CONST_INT_P (XEXP (rhs, 1))
8605 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8606 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8607 else if (GET_CODE (lhs) == AND
8608 && CONST_INT_P (XEXP (lhs, 1))
8609 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8610 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8611 else
8612 return x;
8613
8614 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8615 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8616 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8617 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8618 return x;
8619
8620 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8621 if (assign == 0)
8622 return x;
8623
8624 /* The mode to use for the source is the mode of the assignment, or of
8625 what is inside a possible STRICT_LOW_PART. */
8626 mode = (GET_CODE (assign) == STRICT_LOW_PART
8627 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8628
8629 /* Shift OTHER right POS places and make it the source, restricting it
8630 to the proper length and mode. */
8631
8632 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
8633 GET_MODE (src),
8634 other, pos),
8635 dest);
8636 src = force_to_mode (src, mode,
8637 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8638 ? ~(unsigned HOST_WIDE_INT) 0
8639 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8640 0);
8641
8642 /* If SRC is masked by an AND that does not make a difference in
8643 the value being stored, strip it. */
8644 if (GET_CODE (assign) == ZERO_EXTRACT
8645 && CONST_INT_P (XEXP (assign, 1))
8646 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8647 && GET_CODE (src) == AND
8648 && CONST_INT_P (XEXP (src, 1))
8649 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8650 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8651 src = XEXP (src, 0);
8652
8653 return gen_rtx_SET (VOIDmode, assign, src);
8654 }
8655 \f
8656 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8657 if so. */
8658
8659 static rtx
8660 apply_distributive_law (rtx x)
8661 {
8662 enum rtx_code code = GET_CODE (x);
8663 enum rtx_code inner_code;
8664 rtx lhs, rhs, other;
8665 rtx tem;
8666
8667 /* Distributivity is not true for floating point as it can change the
8668 value. So we don't do it unless -funsafe-math-optimizations. */
8669 if (FLOAT_MODE_P (GET_MODE (x))
8670 && ! flag_unsafe_math_optimizations)
8671 return x;
8672
8673 /* The outer operation can only be one of the following: */
8674 if (code != IOR && code != AND && code != XOR
8675 && code != PLUS && code != MINUS)
8676 return x;
8677
8678 lhs = XEXP (x, 0);
8679 rhs = XEXP (x, 1);
8680
8681 /* If either operand is a primitive we can't do anything, so get out
8682 fast. */
8683 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8684 return x;
8685
8686 lhs = expand_compound_operation (lhs);
8687 rhs = expand_compound_operation (rhs);
8688 inner_code = GET_CODE (lhs);
8689 if (inner_code != GET_CODE (rhs))
8690 return x;
8691
8692 /* See if the inner and outer operations distribute. */
8693 switch (inner_code)
8694 {
8695 case LSHIFTRT:
8696 case ASHIFTRT:
8697 case AND:
8698 case IOR:
8699 /* These all distribute except over PLUS. */
8700 if (code == PLUS || code == MINUS)
8701 return x;
8702 break;
8703
8704 case MULT:
8705 if (code != PLUS && code != MINUS)
8706 return x;
8707 break;
8708
8709 case ASHIFT:
8710 /* This is also a multiply, so it distributes over everything. */
8711 break;
8712
8713 case SUBREG:
8714 /* Non-paradoxical SUBREGs distributes over all operations,
8715 provided the inner modes and byte offsets are the same, this
8716 is an extraction of a low-order part, we don't convert an fp
8717 operation to int or vice versa, this is not a vector mode,
8718 and we would not be converting a single-word operation into a
8719 multi-word operation. The latter test is not required, but
8720 it prevents generating unneeded multi-word operations. Some
8721 of the previous tests are redundant given the latter test,
8722 but are retained because they are required for correctness.
8723
8724 We produce the result slightly differently in this case. */
8725
8726 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8727 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8728 || ! subreg_lowpart_p (lhs)
8729 || (GET_MODE_CLASS (GET_MODE (lhs))
8730 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8731 || (GET_MODE_SIZE (GET_MODE (lhs))
8732 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8733 || VECTOR_MODE_P (GET_MODE (lhs))
8734 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
8735 /* Result might need to be truncated. Don't change mode if
8736 explicit truncation is needed. */
8737 || !TRULY_NOOP_TRUNCATION
8738 (GET_MODE_BITSIZE (GET_MODE (x)),
8739 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
8740 return x;
8741
8742 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8743 SUBREG_REG (lhs), SUBREG_REG (rhs));
8744 return gen_lowpart (GET_MODE (x), tem);
8745
8746 default:
8747 return x;
8748 }
8749
8750 /* Set LHS and RHS to the inner operands (A and B in the example
8751 above) and set OTHER to the common operand (C in the example).
8752 There is only one way to do this unless the inner operation is
8753 commutative. */
8754 if (COMMUTATIVE_ARITH_P (lhs)
8755 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8756 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8757 else if (COMMUTATIVE_ARITH_P (lhs)
8758 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8759 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8760 else if (COMMUTATIVE_ARITH_P (lhs)
8761 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8762 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8763 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8764 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8765 else
8766 return x;
8767
8768 /* Form the new inner operation, seeing if it simplifies first. */
8769 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8770
8771 /* There is one exception to the general way of distributing:
8772 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8773 if (code == XOR && inner_code == IOR)
8774 {
8775 inner_code = AND;
8776 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8777 }
8778
8779 /* We may be able to continuing distributing the result, so call
8780 ourselves recursively on the inner operation before forming the
8781 outer operation, which we return. */
8782 return simplify_gen_binary (inner_code, GET_MODE (x),
8783 apply_distributive_law (tem), other);
8784 }
8785
8786 /* See if X is of the form (* (+ A B) C), and if so convert to
8787 (+ (* A C) (* B C)) and try to simplify.
8788
8789 Most of the time, this results in no change. However, if some of
8790 the operands are the same or inverses of each other, simplifications
8791 will result.
8792
8793 For example, (and (ior A B) (not B)) can occur as the result of
8794 expanding a bit field assignment. When we apply the distributive
8795 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8796 which then simplifies to (and (A (not B))).
8797
8798 Note that no checks happen on the validity of applying the inverse
8799 distributive law. This is pointless since we can do it in the
8800 few places where this routine is called.
8801
8802 N is the index of the term that is decomposed (the arithmetic operation,
8803 i.e. (+ A B) in the first example above). !N is the index of the term that
8804 is distributed, i.e. of C in the first example above. */
8805 static rtx
8806 distribute_and_simplify_rtx (rtx x, int n)
8807 {
8808 enum machine_mode mode;
8809 enum rtx_code outer_code, inner_code;
8810 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8811
8812 /* Distributivity is not true for floating point as it can change the
8813 value. So we don't do it unless -funsafe-math-optimizations. */
8814 if (FLOAT_MODE_P (GET_MODE (x))
8815 && ! flag_unsafe_math_optimizations)
8816 return NULL_RTX;
8817
8818 decomposed = XEXP (x, n);
8819 if (!ARITHMETIC_P (decomposed))
8820 return NULL_RTX;
8821
8822 mode = GET_MODE (x);
8823 outer_code = GET_CODE (x);
8824 distributed = XEXP (x, !n);
8825
8826 inner_code = GET_CODE (decomposed);
8827 inner_op0 = XEXP (decomposed, 0);
8828 inner_op1 = XEXP (decomposed, 1);
8829
8830 /* Special case (and (xor B C) (not A)), which is equivalent to
8831 (xor (ior A B) (ior A C)) */
8832 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8833 {
8834 distributed = XEXP (distributed, 0);
8835 outer_code = IOR;
8836 }
8837
8838 if (n == 0)
8839 {
8840 /* Distribute the second term. */
8841 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8842 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8843 }
8844 else
8845 {
8846 /* Distribute the first term. */
8847 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8848 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8849 }
8850
8851 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8852 new_op0, new_op1));
8853 if (GET_CODE (tmp) != outer_code
8854 && rtx_cost (tmp, SET, optimize_this_for_speed_p)
8855 < rtx_cost (x, SET, optimize_this_for_speed_p))
8856 return tmp;
8857
8858 return NULL_RTX;
8859 }
8860 \f
8861 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8862 in MODE. Return an equivalent form, if different from (and VAROP
8863 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8864
8865 static rtx
8866 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8867 unsigned HOST_WIDE_INT constop)
8868 {
8869 unsigned HOST_WIDE_INT nonzero;
8870 unsigned HOST_WIDE_INT orig_constop;
8871 rtx orig_varop;
8872 int i;
8873
8874 orig_varop = varop;
8875 orig_constop = constop;
8876 if (GET_CODE (varop) == CLOBBER)
8877 return NULL_RTX;
8878
8879 /* Simplify VAROP knowing that we will be only looking at some of the
8880 bits in it.
8881
8882 Note by passing in CONSTOP, we guarantee that the bits not set in
8883 CONSTOP are not significant and will never be examined. We must
8884 ensure that is the case by explicitly masking out those bits
8885 before returning. */
8886 varop = force_to_mode (varop, mode, constop, 0);
8887
8888 /* If VAROP is a CLOBBER, we will fail so return it. */
8889 if (GET_CODE (varop) == CLOBBER)
8890 return varop;
8891
8892 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8893 to VAROP and return the new constant. */
8894 if (CONST_INT_P (varop))
8895 return gen_int_mode (INTVAL (varop) & constop, mode);
8896
8897 /* See what bits may be nonzero in VAROP. Unlike the general case of
8898 a call to nonzero_bits, here we don't care about bits outside
8899 MODE. */
8900
8901 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8902
8903 /* Turn off all bits in the constant that are known to already be zero.
8904 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8905 which is tested below. */
8906
8907 constop &= nonzero;
8908
8909 /* If we don't have any bits left, return zero. */
8910 if (constop == 0)
8911 return const0_rtx;
8912
8913 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8914 a power of two, we can replace this with an ASHIFT. */
8915 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8916 && (i = exact_log2 (constop)) >= 0)
8917 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8918
8919 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8920 or XOR, then try to apply the distributive law. This may eliminate
8921 operations if either branch can be simplified because of the AND.
8922 It may also make some cases more complex, but those cases probably
8923 won't match a pattern either with or without this. */
8924
8925 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8926 return
8927 gen_lowpart
8928 (mode,
8929 apply_distributive_law
8930 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8931 simplify_and_const_int (NULL_RTX,
8932 GET_MODE (varop),
8933 XEXP (varop, 0),
8934 constop),
8935 simplify_and_const_int (NULL_RTX,
8936 GET_MODE (varop),
8937 XEXP (varop, 1),
8938 constop))));
8939
8940 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8941 the AND and see if one of the operands simplifies to zero. If so, we
8942 may eliminate it. */
8943
8944 if (GET_CODE (varop) == PLUS
8945 && exact_log2 (constop + 1) >= 0)
8946 {
8947 rtx o0, o1;
8948
8949 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8950 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8951 if (o0 == const0_rtx)
8952 return o1;
8953 if (o1 == const0_rtx)
8954 return o0;
8955 }
8956
8957 /* Make a SUBREG if necessary. If we can't make it, fail. */
8958 varop = gen_lowpart (mode, varop);
8959 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8960 return NULL_RTX;
8961
8962 /* If we are only masking insignificant bits, return VAROP. */
8963 if (constop == nonzero)
8964 return varop;
8965
8966 if (varop == orig_varop && constop == orig_constop)
8967 return NULL_RTX;
8968
8969 /* Otherwise, return an AND. */
8970 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
8971 }
8972
8973
8974 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8975 in MODE.
8976
8977 Return an equivalent form, if different from X. Otherwise, return X. If
8978 X is zero, we are to always construct the equivalent form. */
8979
8980 static rtx
8981 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8982 unsigned HOST_WIDE_INT constop)
8983 {
8984 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8985 if (tem)
8986 return tem;
8987
8988 if (!x)
8989 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
8990 gen_int_mode (constop, mode));
8991 if (GET_MODE (x) != mode)
8992 x = gen_lowpart (mode, x);
8993 return x;
8994 }
8995 \f
8996 /* Given a REG, X, compute which bits in X can be nonzero.
8997 We don't care about bits outside of those defined in MODE.
8998
8999 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9000 a shift, AND, or zero_extract, we can do better. */
9001
9002 static rtx
9003 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9004 const_rtx known_x ATTRIBUTE_UNUSED,
9005 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9006 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9007 unsigned HOST_WIDE_INT *nonzero)
9008 {
9009 rtx tem;
9010 reg_stat_type *rsp;
9011
9012 /* If X is a register whose nonzero bits value is current, use it.
9013 Otherwise, if X is a register whose value we can find, use that
9014 value. Otherwise, use the previously-computed global nonzero bits
9015 for this register. */
9016
9017 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9018 if (rsp->last_set_value != 0
9019 && (rsp->last_set_mode == mode
9020 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9021 && GET_MODE_CLASS (mode) == MODE_INT))
9022 && ((rsp->last_set_label >= label_tick_ebb_start
9023 && rsp->last_set_label < label_tick)
9024 || (rsp->last_set_label == label_tick
9025 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9026 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9027 && REG_N_SETS (REGNO (x)) == 1
9028 && !REGNO_REG_SET_P
9029 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9030 {
9031 *nonzero &= rsp->last_set_nonzero_bits;
9032 return NULL;
9033 }
9034
9035 tem = get_last_value (x);
9036
9037 if (tem)
9038 {
9039 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9040 /* If X is narrower than MODE and TEM is a non-negative
9041 constant that would appear negative in the mode of X,
9042 sign-extend it for use in reg_nonzero_bits because some
9043 machines (maybe most) will actually do the sign-extension
9044 and this is the conservative approach.
9045
9046 ??? For 2.5, try to tighten up the MD files in this regard
9047 instead of this kludge. */
9048
9049 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
9050 && CONST_INT_P (tem)
9051 && INTVAL (tem) > 0
9052 && 0 != (INTVAL (tem)
9053 & ((HOST_WIDE_INT) 1
9054 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
9055 tem = GEN_INT (INTVAL (tem)
9056 | ((HOST_WIDE_INT) (-1)
9057 << GET_MODE_BITSIZE (GET_MODE (x))));
9058 #endif
9059 return tem;
9060 }
9061 else if (nonzero_sign_valid && rsp->nonzero_bits)
9062 {
9063 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9064
9065 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
9066 /* We don't know anything about the upper bits. */
9067 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9068 *nonzero &= mask;
9069 }
9070
9071 return NULL;
9072 }
9073
9074 /* Return the number of bits at the high-order end of X that are known to
9075 be equal to the sign bit. X will be used in mode MODE; if MODE is
9076 VOIDmode, X will be used in its own mode. The returned value will always
9077 be between 1 and the number of bits in MODE. */
9078
9079 static rtx
9080 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9081 const_rtx known_x ATTRIBUTE_UNUSED,
9082 enum machine_mode known_mode
9083 ATTRIBUTE_UNUSED,
9084 unsigned int known_ret ATTRIBUTE_UNUSED,
9085 unsigned int *result)
9086 {
9087 rtx tem;
9088 reg_stat_type *rsp;
9089
9090 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9091 if (rsp->last_set_value != 0
9092 && rsp->last_set_mode == mode
9093 && ((rsp->last_set_label >= label_tick_ebb_start
9094 && rsp->last_set_label < label_tick)
9095 || (rsp->last_set_label == label_tick
9096 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9097 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9098 && REG_N_SETS (REGNO (x)) == 1
9099 && !REGNO_REG_SET_P
9100 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9101 {
9102 *result = rsp->last_set_sign_bit_copies;
9103 return NULL;
9104 }
9105
9106 tem = get_last_value (x);
9107 if (tem != 0)
9108 return tem;
9109
9110 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9111 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
9112 *result = rsp->sign_bit_copies;
9113
9114 return NULL;
9115 }
9116 \f
9117 /* Return the number of "extended" bits there are in X, when interpreted
9118 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9119 unsigned quantities, this is the number of high-order zero bits.
9120 For signed quantities, this is the number of copies of the sign bit
9121 minus 1. In both case, this function returns the number of "spare"
9122 bits. For example, if two quantities for which this function returns
9123 at least 1 are added, the addition is known not to overflow.
9124
9125 This function will always return 0 unless called during combine, which
9126 implies that it must be called from a define_split. */
9127
9128 unsigned int
9129 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9130 {
9131 if (nonzero_sign_valid == 0)
9132 return 0;
9133
9134 return (unsignedp
9135 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9136 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
9137 - floor_log2 (nonzero_bits (x, mode)))
9138 : 0)
9139 : num_sign_bit_copies (x, mode) - 1);
9140 }
9141 \f
9142 /* This function is called from `simplify_shift_const' to merge two
9143 outer operations. Specifically, we have already found that we need
9144 to perform operation *POP0 with constant *PCONST0 at the outermost
9145 position. We would now like to also perform OP1 with constant CONST1
9146 (with *POP0 being done last).
9147
9148 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9149 the resulting operation. *PCOMP_P is set to 1 if we would need to
9150 complement the innermost operand, otherwise it is unchanged.
9151
9152 MODE is the mode in which the operation will be done. No bits outside
9153 the width of this mode matter. It is assumed that the width of this mode
9154 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9155
9156 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9157 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9158 result is simply *PCONST0.
9159
9160 If the resulting operation cannot be expressed as one operation, we
9161 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9162
9163 static int
9164 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9165 {
9166 enum rtx_code op0 = *pop0;
9167 HOST_WIDE_INT const0 = *pconst0;
9168
9169 const0 &= GET_MODE_MASK (mode);
9170 const1 &= GET_MODE_MASK (mode);
9171
9172 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9173 if (op0 == AND)
9174 const1 &= const0;
9175
9176 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9177 if OP0 is SET. */
9178
9179 if (op1 == UNKNOWN || op0 == SET)
9180 return 1;
9181
9182 else if (op0 == UNKNOWN)
9183 op0 = op1, const0 = const1;
9184
9185 else if (op0 == op1)
9186 {
9187 switch (op0)
9188 {
9189 case AND:
9190 const0 &= const1;
9191 break;
9192 case IOR:
9193 const0 |= const1;
9194 break;
9195 case XOR:
9196 const0 ^= const1;
9197 break;
9198 case PLUS:
9199 const0 += const1;
9200 break;
9201 case NEG:
9202 op0 = UNKNOWN;
9203 break;
9204 default:
9205 break;
9206 }
9207 }
9208
9209 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9210 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9211 return 0;
9212
9213 /* If the two constants aren't the same, we can't do anything. The
9214 remaining six cases can all be done. */
9215 else if (const0 != const1)
9216 return 0;
9217
9218 else
9219 switch (op0)
9220 {
9221 case IOR:
9222 if (op1 == AND)
9223 /* (a & b) | b == b */
9224 op0 = SET;
9225 else /* op1 == XOR */
9226 /* (a ^ b) | b == a | b */
9227 {;}
9228 break;
9229
9230 case XOR:
9231 if (op1 == AND)
9232 /* (a & b) ^ b == (~a) & b */
9233 op0 = AND, *pcomp_p = 1;
9234 else /* op1 == IOR */
9235 /* (a | b) ^ b == a & ~b */
9236 op0 = AND, const0 = ~const0;
9237 break;
9238
9239 case AND:
9240 if (op1 == IOR)
9241 /* (a | b) & b == b */
9242 op0 = SET;
9243 else /* op1 == XOR */
9244 /* (a ^ b) & b) == (~a) & b */
9245 *pcomp_p = 1;
9246 break;
9247 default:
9248 break;
9249 }
9250
9251 /* Check for NO-OP cases. */
9252 const0 &= GET_MODE_MASK (mode);
9253 if (const0 == 0
9254 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9255 op0 = UNKNOWN;
9256 else if (const0 == 0 && op0 == AND)
9257 op0 = SET;
9258 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9259 && op0 == AND)
9260 op0 = UNKNOWN;
9261
9262 *pop0 = op0;
9263
9264 /* ??? Slightly redundant with the above mask, but not entirely.
9265 Moving this above means we'd have to sign-extend the mode mask
9266 for the final test. */
9267 if (op0 != UNKNOWN && op0 != NEG)
9268 *pconst0 = trunc_int_for_mode (const0, mode);
9269
9270 return 1;
9271 }
9272 \f
9273 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9274 the shift in. The original shift operation CODE is performed on OP in
9275 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9276 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9277 result of the shift is subject to operation OUTER_CODE with operand
9278 OUTER_CONST. */
9279
9280 static enum machine_mode
9281 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9282 enum machine_mode orig_mode, enum machine_mode mode,
9283 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9284 {
9285 if (orig_mode == mode)
9286 return mode;
9287 gcc_assert (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (orig_mode));
9288
9289 /* In general we can't perform in wider mode for right shift and rotate. */
9290 switch (code)
9291 {
9292 case ASHIFTRT:
9293 /* We can still widen if the bits brought in from the left are identical
9294 to the sign bit of ORIG_MODE. */
9295 if (num_sign_bit_copies (op, mode)
9296 > (unsigned) (GET_MODE_BITSIZE (mode)
9297 - GET_MODE_BITSIZE (orig_mode)))
9298 return mode;
9299 return orig_mode;
9300
9301 case LSHIFTRT:
9302 /* Similarly here but with zero bits. */
9303 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9304 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9305 return mode;
9306
9307 /* We can also widen if the bits brought in will be masked off. This
9308 operation is performed in ORIG_MODE. */
9309 if (outer_code == AND)
9310 {
9311 int care_bits = low_bitmask_len (orig_mode, outer_const);
9312
9313 if (care_bits >= 0
9314 && GET_MODE_BITSIZE (orig_mode) - care_bits >= count)
9315 return mode;
9316 }
9317 /* fall through */
9318
9319 case ROTATE:
9320 return orig_mode;
9321
9322 case ROTATERT:
9323 gcc_unreachable ();
9324
9325 default:
9326 return mode;
9327 }
9328 }
9329
9330 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9331 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
9332 simplify it. Otherwise, return a simplified value.
9333
9334 The shift is normally computed in the widest mode we find in VAROP, as
9335 long as it isn't a different number of words than RESULT_MODE. Exceptions
9336 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9337
9338 static rtx
9339 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9340 rtx varop, int orig_count)
9341 {
9342 enum rtx_code orig_code = code;
9343 rtx orig_varop = varop;
9344 int count;
9345 enum machine_mode mode = result_mode;
9346 enum machine_mode shift_mode, tmode;
9347 unsigned int mode_words
9348 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9349 /* We form (outer_op (code varop count) (outer_const)). */
9350 enum rtx_code outer_op = UNKNOWN;
9351 HOST_WIDE_INT outer_const = 0;
9352 int complement_p = 0;
9353 rtx new_rtx, x;
9354
9355 /* Make sure and truncate the "natural" shift on the way in. We don't
9356 want to do this inside the loop as it makes it more difficult to
9357 combine shifts. */
9358 if (SHIFT_COUNT_TRUNCATED)
9359 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9360
9361 /* If we were given an invalid count, don't do anything except exactly
9362 what was requested. */
9363
9364 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9365 return NULL_RTX;
9366
9367 count = orig_count;
9368
9369 /* Unless one of the branches of the `if' in this loop does a `continue',
9370 we will `break' the loop after the `if'. */
9371
9372 while (count != 0)
9373 {
9374 /* If we have an operand of (clobber (const_int 0)), fail. */
9375 if (GET_CODE (varop) == CLOBBER)
9376 return NULL_RTX;
9377
9378 /* Convert ROTATERT to ROTATE. */
9379 if (code == ROTATERT)
9380 {
9381 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9382 code = ROTATE;
9383 if (VECTOR_MODE_P (result_mode))
9384 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9385 else
9386 count = bitsize - count;
9387 }
9388
9389 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9390 mode, outer_op, outer_const);
9391
9392 /* Handle cases where the count is greater than the size of the mode
9393 minus 1. For ASHIFT, use the size minus one as the count (this can
9394 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9395 take the count modulo the size. For other shifts, the result is
9396 zero.
9397
9398 Since these shifts are being produced by the compiler by combining
9399 multiple operations, each of which are defined, we know what the
9400 result is supposed to be. */
9401
9402 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9403 {
9404 if (code == ASHIFTRT)
9405 count = GET_MODE_BITSIZE (shift_mode) - 1;
9406 else if (code == ROTATE || code == ROTATERT)
9407 count %= GET_MODE_BITSIZE (shift_mode);
9408 else
9409 {
9410 /* We can't simply return zero because there may be an
9411 outer op. */
9412 varop = const0_rtx;
9413 count = 0;
9414 break;
9415 }
9416 }
9417
9418 /* If we discovered we had to complement VAROP, leave. Making a NOT
9419 here would cause an infinite loop. */
9420 if (complement_p)
9421 break;
9422
9423 /* An arithmetic right shift of a quantity known to be -1 or 0
9424 is a no-op. */
9425 if (code == ASHIFTRT
9426 && (num_sign_bit_copies (varop, shift_mode)
9427 == GET_MODE_BITSIZE (shift_mode)))
9428 {
9429 count = 0;
9430 break;
9431 }
9432
9433 /* If we are doing an arithmetic right shift and discarding all but
9434 the sign bit copies, this is equivalent to doing a shift by the
9435 bitsize minus one. Convert it into that shift because it will often
9436 allow other simplifications. */
9437
9438 if (code == ASHIFTRT
9439 && (count + num_sign_bit_copies (varop, shift_mode)
9440 >= GET_MODE_BITSIZE (shift_mode)))
9441 count = GET_MODE_BITSIZE (shift_mode) - 1;
9442
9443 /* We simplify the tests below and elsewhere by converting
9444 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9445 `make_compound_operation' will convert it to an ASHIFTRT for
9446 those machines (such as VAX) that don't have an LSHIFTRT. */
9447 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9448 && code == ASHIFTRT
9449 && ((nonzero_bits (varop, shift_mode)
9450 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9451 == 0))
9452 code = LSHIFTRT;
9453
9454 if (((code == LSHIFTRT
9455 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9456 && !(nonzero_bits (varop, shift_mode) >> count))
9457 || (code == ASHIFT
9458 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9459 && !((nonzero_bits (varop, shift_mode) << count)
9460 & GET_MODE_MASK (shift_mode))))
9461 && !side_effects_p (varop))
9462 varop = const0_rtx;
9463
9464 switch (GET_CODE (varop))
9465 {
9466 case SIGN_EXTEND:
9467 case ZERO_EXTEND:
9468 case SIGN_EXTRACT:
9469 case ZERO_EXTRACT:
9470 new_rtx = expand_compound_operation (varop);
9471 if (new_rtx != varop)
9472 {
9473 varop = new_rtx;
9474 continue;
9475 }
9476 break;
9477
9478 case MEM:
9479 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9480 minus the width of a smaller mode, we can do this with a
9481 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9482 if ((code == ASHIFTRT || code == LSHIFTRT)
9483 && ! mode_dependent_address_p (XEXP (varop, 0))
9484 && ! MEM_VOLATILE_P (varop)
9485 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9486 MODE_INT, 1)) != BLKmode)
9487 {
9488 new_rtx = adjust_address_nv (varop, tmode,
9489 BYTES_BIG_ENDIAN ? 0
9490 : count / BITS_PER_UNIT);
9491
9492 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9493 : ZERO_EXTEND, mode, new_rtx);
9494 count = 0;
9495 continue;
9496 }
9497 break;
9498
9499 case SUBREG:
9500 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9501 the same number of words as what we've seen so far. Then store
9502 the widest mode in MODE. */
9503 if (subreg_lowpart_p (varop)
9504 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9505 > GET_MODE_SIZE (GET_MODE (varop)))
9506 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9507 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9508 == mode_words)
9509 {
9510 varop = SUBREG_REG (varop);
9511 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9512 mode = GET_MODE (varop);
9513 continue;
9514 }
9515 break;
9516
9517 case MULT:
9518 /* Some machines use MULT instead of ASHIFT because MULT
9519 is cheaper. But it is still better on those machines to
9520 merge two shifts into one. */
9521 if (CONST_INT_P (XEXP (varop, 1))
9522 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9523 {
9524 varop
9525 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9526 XEXP (varop, 0),
9527 GEN_INT (exact_log2 (
9528 INTVAL (XEXP (varop, 1)))));
9529 continue;
9530 }
9531 break;
9532
9533 case UDIV:
9534 /* Similar, for when divides are cheaper. */
9535 if (CONST_INT_P (XEXP (varop, 1))
9536 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9537 {
9538 varop
9539 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9540 XEXP (varop, 0),
9541 GEN_INT (exact_log2 (
9542 INTVAL (XEXP (varop, 1)))));
9543 continue;
9544 }
9545 break;
9546
9547 case ASHIFTRT:
9548 /* If we are extracting just the sign bit of an arithmetic
9549 right shift, that shift is not needed. However, the sign
9550 bit of a wider mode may be different from what would be
9551 interpreted as the sign bit in a narrower mode, so, if
9552 the result is narrower, don't discard the shift. */
9553 if (code == LSHIFTRT
9554 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9555 && (GET_MODE_BITSIZE (result_mode)
9556 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9557 {
9558 varop = XEXP (varop, 0);
9559 continue;
9560 }
9561
9562 /* ... fall through ... */
9563
9564 case LSHIFTRT:
9565 case ASHIFT:
9566 case ROTATE:
9567 /* Here we have two nested shifts. The result is usually the
9568 AND of a new shift with a mask. We compute the result below. */
9569 if (CONST_INT_P (XEXP (varop, 1))
9570 && INTVAL (XEXP (varop, 1)) >= 0
9571 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9572 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9573 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9574 && !VECTOR_MODE_P (result_mode))
9575 {
9576 enum rtx_code first_code = GET_CODE (varop);
9577 unsigned int first_count = INTVAL (XEXP (varop, 1));
9578 unsigned HOST_WIDE_INT mask;
9579 rtx mask_rtx;
9580
9581 /* We have one common special case. We can't do any merging if
9582 the inner code is an ASHIFTRT of a smaller mode. However, if
9583 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9584 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9585 we can convert it to
9586 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9587 This simplifies certain SIGN_EXTEND operations. */
9588 if (code == ASHIFT && first_code == ASHIFTRT
9589 && count == (GET_MODE_BITSIZE (result_mode)
9590 - GET_MODE_BITSIZE (GET_MODE (varop))))
9591 {
9592 /* C3 has the low-order C1 bits zero. */
9593
9594 mask = (GET_MODE_MASK (mode)
9595 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9596
9597 varop = simplify_and_const_int (NULL_RTX, result_mode,
9598 XEXP (varop, 0), mask);
9599 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9600 varop, count);
9601 count = first_count;
9602 code = ASHIFTRT;
9603 continue;
9604 }
9605
9606 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9607 than C1 high-order bits equal to the sign bit, we can convert
9608 this to either an ASHIFT or an ASHIFTRT depending on the
9609 two counts.
9610
9611 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9612
9613 if (code == ASHIFTRT && first_code == ASHIFT
9614 && GET_MODE (varop) == shift_mode
9615 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9616 > first_count))
9617 {
9618 varop = XEXP (varop, 0);
9619 count -= first_count;
9620 if (count < 0)
9621 {
9622 count = -count;
9623 code = ASHIFT;
9624 }
9625
9626 continue;
9627 }
9628
9629 /* There are some cases we can't do. If CODE is ASHIFTRT,
9630 we can only do this if FIRST_CODE is also ASHIFTRT.
9631
9632 We can't do the case when CODE is ROTATE and FIRST_CODE is
9633 ASHIFTRT.
9634
9635 If the mode of this shift is not the mode of the outer shift,
9636 we can't do this if either shift is a right shift or ROTATE.
9637
9638 Finally, we can't do any of these if the mode is too wide
9639 unless the codes are the same.
9640
9641 Handle the case where the shift codes are the same
9642 first. */
9643
9644 if (code == first_code)
9645 {
9646 if (GET_MODE (varop) != result_mode
9647 && (code == ASHIFTRT || code == LSHIFTRT
9648 || code == ROTATE))
9649 break;
9650
9651 count += first_count;
9652 varop = XEXP (varop, 0);
9653 continue;
9654 }
9655
9656 if (code == ASHIFTRT
9657 || (code == ROTATE && first_code == ASHIFTRT)
9658 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9659 || (GET_MODE (varop) != result_mode
9660 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9661 || first_code == ROTATE
9662 || code == ROTATE)))
9663 break;
9664
9665 /* To compute the mask to apply after the shift, shift the
9666 nonzero bits of the inner shift the same way the
9667 outer shift will. */
9668
9669 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9670
9671 mask_rtx
9672 = simplify_const_binary_operation (code, result_mode, mask_rtx,
9673 GEN_INT (count));
9674
9675 /* Give up if we can't compute an outer operation to use. */
9676 if (mask_rtx == 0
9677 || !CONST_INT_P (mask_rtx)
9678 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9679 INTVAL (mask_rtx),
9680 result_mode, &complement_p))
9681 break;
9682
9683 /* If the shifts are in the same direction, we add the
9684 counts. Otherwise, we subtract them. */
9685 if ((code == ASHIFTRT || code == LSHIFTRT)
9686 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9687 count += first_count;
9688 else
9689 count -= first_count;
9690
9691 /* If COUNT is positive, the new shift is usually CODE,
9692 except for the two exceptions below, in which case it is
9693 FIRST_CODE. If the count is negative, FIRST_CODE should
9694 always be used */
9695 if (count > 0
9696 && ((first_code == ROTATE && code == ASHIFT)
9697 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9698 code = first_code;
9699 else if (count < 0)
9700 code = first_code, count = -count;
9701
9702 varop = XEXP (varop, 0);
9703 continue;
9704 }
9705
9706 /* If we have (A << B << C) for any shift, we can convert this to
9707 (A << C << B). This wins if A is a constant. Only try this if
9708 B is not a constant. */
9709
9710 else if (GET_CODE (varop) == code
9711 && CONST_INT_P (XEXP (varop, 0))
9712 && !CONST_INT_P (XEXP (varop, 1)))
9713 {
9714 rtx new_rtx = simplify_const_binary_operation (code, mode,
9715 XEXP (varop, 0),
9716 GEN_INT (count));
9717 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
9718 count = 0;
9719 continue;
9720 }
9721 break;
9722
9723 case NOT:
9724 if (VECTOR_MODE_P (mode))
9725 break;
9726
9727 /* Make this fit the case below. */
9728 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9729 GEN_INT (GET_MODE_MASK (mode)));
9730 continue;
9731
9732 case IOR:
9733 case AND:
9734 case XOR:
9735 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9736 with C the size of VAROP - 1 and the shift is logical if
9737 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9738 we have an (le X 0) operation. If we have an arithmetic shift
9739 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9740 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9741
9742 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9743 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9744 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9745 && (code == LSHIFTRT || code == ASHIFTRT)
9746 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9747 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9748 {
9749 count = 0;
9750 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9751 const0_rtx);
9752
9753 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9754 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9755
9756 continue;
9757 }
9758
9759 /* If we have (shift (logical)), move the logical to the outside
9760 to allow it to possibly combine with another logical and the
9761 shift to combine with another shift. This also canonicalizes to
9762 what a ZERO_EXTRACT looks like. Also, some machines have
9763 (and (shift)) insns. */
9764
9765 if (CONST_INT_P (XEXP (varop, 1))
9766 /* We can't do this if we have (ashiftrt (xor)) and the
9767 constant has its sign bit set in shift_mode. */
9768 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9769 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9770 shift_mode))
9771 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9772 XEXP (varop, 1),
9773 GEN_INT (count))) != 0
9774 && CONST_INT_P (new_rtx)
9775 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9776 INTVAL (new_rtx), result_mode, &complement_p))
9777 {
9778 varop = XEXP (varop, 0);
9779 continue;
9780 }
9781
9782 /* If we can't do that, try to simplify the shift in each arm of the
9783 logical expression, make a new logical expression, and apply
9784 the inverse distributive law. This also can't be done
9785 for some (ashiftrt (xor)). */
9786 if (CONST_INT_P (XEXP (varop, 1))
9787 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9788 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9789 shift_mode)))
9790 {
9791 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9792 XEXP (varop, 0), count);
9793 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9794 XEXP (varop, 1), count);
9795
9796 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9797 lhs, rhs);
9798 varop = apply_distributive_law (varop);
9799
9800 count = 0;
9801 continue;
9802 }
9803 break;
9804
9805 case EQ:
9806 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9807 says that the sign bit can be tested, FOO has mode MODE, C is
9808 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9809 that may be nonzero. */
9810 if (code == LSHIFTRT
9811 && XEXP (varop, 1) == const0_rtx
9812 && GET_MODE (XEXP (varop, 0)) == result_mode
9813 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9814 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9815 && STORE_FLAG_VALUE == -1
9816 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9817 && merge_outer_ops (&outer_op, &outer_const, XOR,
9818 (HOST_WIDE_INT) 1, result_mode,
9819 &complement_p))
9820 {
9821 varop = XEXP (varop, 0);
9822 count = 0;
9823 continue;
9824 }
9825 break;
9826
9827 case NEG:
9828 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9829 than the number of bits in the mode is equivalent to A. */
9830 if (code == LSHIFTRT
9831 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9832 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9833 {
9834 varop = XEXP (varop, 0);
9835 count = 0;
9836 continue;
9837 }
9838
9839 /* NEG commutes with ASHIFT since it is multiplication. Move the
9840 NEG outside to allow shifts to combine. */
9841 if (code == ASHIFT
9842 && merge_outer_ops (&outer_op, &outer_const, NEG,
9843 (HOST_WIDE_INT) 0, result_mode,
9844 &complement_p))
9845 {
9846 varop = XEXP (varop, 0);
9847 continue;
9848 }
9849 break;
9850
9851 case PLUS:
9852 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9853 is one less than the number of bits in the mode is
9854 equivalent to (xor A 1). */
9855 if (code == LSHIFTRT
9856 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9857 && XEXP (varop, 1) == constm1_rtx
9858 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9859 && merge_outer_ops (&outer_op, &outer_const, XOR,
9860 (HOST_WIDE_INT) 1, result_mode,
9861 &complement_p))
9862 {
9863 count = 0;
9864 varop = XEXP (varop, 0);
9865 continue;
9866 }
9867
9868 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9869 that might be nonzero in BAR are those being shifted out and those
9870 bits are known zero in FOO, we can replace the PLUS with FOO.
9871 Similarly in the other operand order. This code occurs when
9872 we are computing the size of a variable-size array. */
9873
9874 if ((code == ASHIFTRT || code == LSHIFTRT)
9875 && count < HOST_BITS_PER_WIDE_INT
9876 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9877 && (nonzero_bits (XEXP (varop, 1), result_mode)
9878 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9879 {
9880 varop = XEXP (varop, 0);
9881 continue;
9882 }
9883 else if ((code == ASHIFTRT || code == LSHIFTRT)
9884 && count < HOST_BITS_PER_WIDE_INT
9885 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9886 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9887 >> count)
9888 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9889 & nonzero_bits (XEXP (varop, 1),
9890 result_mode)))
9891 {
9892 varop = XEXP (varop, 1);
9893 continue;
9894 }
9895
9896 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9897 if (code == ASHIFT
9898 && CONST_INT_P (XEXP (varop, 1))
9899 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
9900 XEXP (varop, 1),
9901 GEN_INT (count))) != 0
9902 && CONST_INT_P (new_rtx)
9903 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9904 INTVAL (new_rtx), result_mode, &complement_p))
9905 {
9906 varop = XEXP (varop, 0);
9907 continue;
9908 }
9909
9910 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9911 signbit', and attempt to change the PLUS to an XOR and move it to
9912 the outer operation as is done above in the AND/IOR/XOR case
9913 leg for shift(logical). See details in logical handling above
9914 for reasoning in doing so. */
9915 if (code == LSHIFTRT
9916 && CONST_INT_P (XEXP (varop, 1))
9917 && mode_signbit_p (result_mode, XEXP (varop, 1))
9918 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9919 XEXP (varop, 1),
9920 GEN_INT (count))) != 0
9921 && CONST_INT_P (new_rtx)
9922 && merge_outer_ops (&outer_op, &outer_const, XOR,
9923 INTVAL (new_rtx), result_mode, &complement_p))
9924 {
9925 varop = XEXP (varop, 0);
9926 continue;
9927 }
9928
9929 break;
9930
9931 case MINUS:
9932 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9933 with C the size of VAROP - 1 and the shift is logical if
9934 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9935 we have a (gt X 0) operation. If the shift is arithmetic with
9936 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9937 we have a (neg (gt X 0)) operation. */
9938
9939 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9940 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9941 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9942 && (code == LSHIFTRT || code == ASHIFTRT)
9943 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
9944 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9945 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9946 {
9947 count = 0;
9948 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9949 const0_rtx);
9950
9951 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9952 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9953
9954 continue;
9955 }
9956 break;
9957
9958 case TRUNCATE:
9959 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9960 if the truncate does not affect the value. */
9961 if (code == LSHIFTRT
9962 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9963 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
9964 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9965 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9966 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9967 {
9968 rtx varop_inner = XEXP (varop, 0);
9969
9970 varop_inner
9971 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9972 XEXP (varop_inner, 0),
9973 GEN_INT
9974 (count + INTVAL (XEXP (varop_inner, 1))));
9975 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9976 count = 0;
9977 continue;
9978 }
9979 break;
9980
9981 default:
9982 break;
9983 }
9984
9985 break;
9986 }
9987
9988 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
9989 outer_op, outer_const);
9990
9991 /* We have now finished analyzing the shift. The result should be
9992 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9993 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9994 to the result of the shift. OUTER_CONST is the relevant constant,
9995 but we must turn off all bits turned off in the shift. */
9996
9997 if (outer_op == UNKNOWN
9998 && orig_code == code && orig_count == count
9999 && varop == orig_varop
10000 && shift_mode == GET_MODE (varop))
10001 return NULL_RTX;
10002
10003 /* Make a SUBREG if necessary. If we can't make it, fail. */
10004 varop = gen_lowpart (shift_mode, varop);
10005 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10006 return NULL_RTX;
10007
10008 /* If we have an outer operation and we just made a shift, it is
10009 possible that we could have simplified the shift were it not
10010 for the outer operation. So try to do the simplification
10011 recursively. */
10012
10013 if (outer_op != UNKNOWN)
10014 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10015 else
10016 x = NULL_RTX;
10017
10018 if (x == NULL_RTX)
10019 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10020
10021 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10022 turn off all the bits that the shift would have turned off. */
10023 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10024 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10025 GET_MODE_MASK (result_mode) >> orig_count);
10026
10027 /* Do the remainder of the processing in RESULT_MODE. */
10028 x = gen_lowpart_or_truncate (result_mode, x);
10029
10030 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10031 operation. */
10032 if (complement_p)
10033 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10034
10035 if (outer_op != UNKNOWN)
10036 {
10037 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10038 && GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
10039 outer_const = trunc_int_for_mode (outer_const, result_mode);
10040
10041 if (outer_op == AND)
10042 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10043 else if (outer_op == SET)
10044 {
10045 /* This means that we have determined that the result is
10046 equivalent to a constant. This should be rare. */
10047 if (!side_effects_p (x))
10048 x = GEN_INT (outer_const);
10049 }
10050 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10051 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10052 else
10053 x = simplify_gen_binary (outer_op, result_mode, x,
10054 GEN_INT (outer_const));
10055 }
10056
10057 return x;
10058 }
10059
10060 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10061 The result of the shift is RESULT_MODE. If we cannot simplify it,
10062 return X or, if it is NULL, synthesize the expression with
10063 simplify_gen_binary. Otherwise, return a simplified value.
10064
10065 The shift is normally computed in the widest mode we find in VAROP, as
10066 long as it isn't a different number of words than RESULT_MODE. Exceptions
10067 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10068
10069 static rtx
10070 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10071 rtx varop, int count)
10072 {
10073 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10074 if (tem)
10075 return tem;
10076
10077 if (!x)
10078 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10079 if (GET_MODE (x) != result_mode)
10080 x = gen_lowpart (result_mode, x);
10081 return x;
10082 }
10083
10084 \f
10085 /* Like recog, but we receive the address of a pointer to a new pattern.
10086 We try to match the rtx that the pointer points to.
10087 If that fails, we may try to modify or replace the pattern,
10088 storing the replacement into the same pointer object.
10089
10090 Modifications include deletion or addition of CLOBBERs.
10091
10092 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10093 the CLOBBERs are placed.
10094
10095 The value is the final insn code from the pattern ultimately matched,
10096 or -1. */
10097
10098 static int
10099 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10100 {
10101 rtx pat = *pnewpat;
10102 int insn_code_number;
10103 int num_clobbers_to_add = 0;
10104 int i;
10105 rtx notes = 0;
10106 rtx old_notes, old_pat;
10107
10108 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10109 we use to indicate that something didn't match. If we find such a
10110 thing, force rejection. */
10111 if (GET_CODE (pat) == PARALLEL)
10112 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10113 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10114 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10115 return -1;
10116
10117 old_pat = PATTERN (insn);
10118 old_notes = REG_NOTES (insn);
10119 PATTERN (insn) = pat;
10120 REG_NOTES (insn) = 0;
10121
10122 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10123 if (dump_file && (dump_flags & TDF_DETAILS))
10124 {
10125 if (insn_code_number < 0)
10126 fputs ("Failed to match this instruction:\n", dump_file);
10127 else
10128 fputs ("Successfully matched this instruction:\n", dump_file);
10129 print_rtl_single (dump_file, pat);
10130 }
10131
10132 /* If it isn't, there is the possibility that we previously had an insn
10133 that clobbered some register as a side effect, but the combined
10134 insn doesn't need to do that. So try once more without the clobbers
10135 unless this represents an ASM insn. */
10136
10137 if (insn_code_number < 0 && ! check_asm_operands (pat)
10138 && GET_CODE (pat) == PARALLEL)
10139 {
10140 int pos;
10141
10142 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10143 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10144 {
10145 if (i != pos)
10146 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10147 pos++;
10148 }
10149
10150 SUBST_INT (XVECLEN (pat, 0), pos);
10151
10152 if (pos == 1)
10153 pat = XVECEXP (pat, 0, 0);
10154
10155 PATTERN (insn) = pat;
10156 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10157 if (dump_file && (dump_flags & TDF_DETAILS))
10158 {
10159 if (insn_code_number < 0)
10160 fputs ("Failed to match this instruction:\n", dump_file);
10161 else
10162 fputs ("Successfully matched this instruction:\n", dump_file);
10163 print_rtl_single (dump_file, pat);
10164 }
10165 }
10166 PATTERN (insn) = old_pat;
10167 REG_NOTES (insn) = old_notes;
10168
10169 /* Recognize all noop sets, these will be killed by followup pass. */
10170 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10171 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10172
10173 /* If we had any clobbers to add, make a new pattern than contains
10174 them. Then check to make sure that all of them are dead. */
10175 if (num_clobbers_to_add)
10176 {
10177 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10178 rtvec_alloc (GET_CODE (pat) == PARALLEL
10179 ? (XVECLEN (pat, 0)
10180 + num_clobbers_to_add)
10181 : num_clobbers_to_add + 1));
10182
10183 if (GET_CODE (pat) == PARALLEL)
10184 for (i = 0; i < XVECLEN (pat, 0); i++)
10185 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10186 else
10187 XVECEXP (newpat, 0, 0) = pat;
10188
10189 add_clobbers (newpat, insn_code_number);
10190
10191 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10192 i < XVECLEN (newpat, 0); i++)
10193 {
10194 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10195 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10196 return -1;
10197 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10198 {
10199 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10200 notes = alloc_reg_note (REG_UNUSED,
10201 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10202 }
10203 }
10204 pat = newpat;
10205 }
10206
10207 *pnewpat = pat;
10208 *pnotes = notes;
10209
10210 return insn_code_number;
10211 }
10212 \f
10213 /* Like gen_lowpart_general but for use by combine. In combine it
10214 is not possible to create any new pseudoregs. However, it is
10215 safe to create invalid memory addresses, because combine will
10216 try to recognize them and all they will do is make the combine
10217 attempt fail.
10218
10219 If for some reason this cannot do its job, an rtx
10220 (clobber (const_int 0)) is returned.
10221 An insn containing that will not be recognized. */
10222
10223 static rtx
10224 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10225 {
10226 enum machine_mode imode = GET_MODE (x);
10227 unsigned int osize = GET_MODE_SIZE (omode);
10228 unsigned int isize = GET_MODE_SIZE (imode);
10229 rtx result;
10230
10231 if (omode == imode)
10232 return x;
10233
10234 /* Return identity if this is a CONST or symbolic reference. */
10235 if (omode == Pmode
10236 && (GET_CODE (x) == CONST
10237 || GET_CODE (x) == SYMBOL_REF
10238 || GET_CODE (x) == LABEL_REF))
10239 return x;
10240
10241 /* We can only support MODE being wider than a word if X is a
10242 constant integer or has a mode the same size. */
10243 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10244 && ! ((imode == VOIDmode
10245 && (CONST_INT_P (x)
10246 || GET_CODE (x) == CONST_DOUBLE))
10247 || isize == osize))
10248 goto fail;
10249
10250 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10251 won't know what to do. So we will strip off the SUBREG here and
10252 process normally. */
10253 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10254 {
10255 x = SUBREG_REG (x);
10256
10257 /* For use in case we fall down into the address adjustments
10258 further below, we need to adjust the known mode and size of
10259 x; imode and isize, since we just adjusted x. */
10260 imode = GET_MODE (x);
10261
10262 if (imode == omode)
10263 return x;
10264
10265 isize = GET_MODE_SIZE (imode);
10266 }
10267
10268 result = gen_lowpart_common (omode, x);
10269
10270 if (result)
10271 return result;
10272
10273 if (MEM_P (x))
10274 {
10275 int offset = 0;
10276
10277 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10278 address. */
10279 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10280 goto fail;
10281
10282 /* If we want to refer to something bigger than the original memref,
10283 generate a paradoxical subreg instead. That will force a reload
10284 of the original memref X. */
10285 if (isize < osize)
10286 return gen_rtx_SUBREG (omode, x, 0);
10287
10288 if (WORDS_BIG_ENDIAN)
10289 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10290
10291 /* Adjust the address so that the address-after-the-data is
10292 unchanged. */
10293 if (BYTES_BIG_ENDIAN)
10294 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10295
10296 return adjust_address_nv (x, omode, offset);
10297 }
10298
10299 /* If X is a comparison operator, rewrite it in a new mode. This
10300 probably won't match, but may allow further simplifications. */
10301 else if (COMPARISON_P (x))
10302 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10303
10304 /* If we couldn't simplify X any other way, just enclose it in a
10305 SUBREG. Normally, this SUBREG won't match, but some patterns may
10306 include an explicit SUBREG or we may simplify it further in combine. */
10307 else
10308 {
10309 int offset = 0;
10310 rtx res;
10311
10312 offset = subreg_lowpart_offset (omode, imode);
10313 if (imode == VOIDmode)
10314 {
10315 imode = int_mode_for_mode (omode);
10316 x = gen_lowpart_common (imode, x);
10317 if (x == NULL)
10318 goto fail;
10319 }
10320 res = simplify_gen_subreg (omode, x, imode, offset);
10321 if (res)
10322 return res;
10323 }
10324
10325 fail:
10326 return gen_rtx_CLOBBER (omode, const0_rtx);
10327 }
10328 \f
10329 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10330 comparison code that will be tested.
10331
10332 The result is a possibly different comparison code to use. *POP0 and
10333 *POP1 may be updated.
10334
10335 It is possible that we might detect that a comparison is either always
10336 true or always false. However, we do not perform general constant
10337 folding in combine, so this knowledge isn't useful. Such tautologies
10338 should have been detected earlier. Hence we ignore all such cases. */
10339
10340 static enum rtx_code
10341 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10342 {
10343 rtx op0 = *pop0;
10344 rtx op1 = *pop1;
10345 rtx tem, tem1;
10346 int i;
10347 enum machine_mode mode, tmode;
10348
10349 /* Try a few ways of applying the same transformation to both operands. */
10350 while (1)
10351 {
10352 #ifndef WORD_REGISTER_OPERATIONS
10353 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10354 so check specially. */
10355 if (code != GTU && code != GEU && code != LTU && code != LEU
10356 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10357 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10358 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10359 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10360 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10361 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10362 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10363 && CONST_INT_P (XEXP (op0, 1))
10364 && XEXP (op0, 1) == XEXP (op1, 1)
10365 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10366 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10367 && (INTVAL (XEXP (op0, 1))
10368 == (GET_MODE_BITSIZE (GET_MODE (op0))
10369 - (GET_MODE_BITSIZE
10370 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10371 {
10372 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10373 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10374 }
10375 #endif
10376
10377 /* If both operands are the same constant shift, see if we can ignore the
10378 shift. We can if the shift is a rotate or if the bits shifted out of
10379 this shift are known to be zero for both inputs and if the type of
10380 comparison is compatible with the shift. */
10381 if (GET_CODE (op0) == GET_CODE (op1)
10382 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10383 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10384 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10385 && (code != GT && code != LT && code != GE && code != LE))
10386 || (GET_CODE (op0) == ASHIFTRT
10387 && (code != GTU && code != LTU
10388 && code != GEU && code != LEU)))
10389 && CONST_INT_P (XEXP (op0, 1))
10390 && INTVAL (XEXP (op0, 1)) >= 0
10391 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10392 && XEXP (op0, 1) == XEXP (op1, 1))
10393 {
10394 enum machine_mode mode = GET_MODE (op0);
10395 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10396 int shift_count = INTVAL (XEXP (op0, 1));
10397
10398 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10399 mask &= (mask >> shift_count) << shift_count;
10400 else if (GET_CODE (op0) == ASHIFT)
10401 mask = (mask & (mask << shift_count)) >> shift_count;
10402
10403 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10404 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10405 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10406 else
10407 break;
10408 }
10409
10410 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10411 SUBREGs are of the same mode, and, in both cases, the AND would
10412 be redundant if the comparison was done in the narrower mode,
10413 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10414 and the operand's possibly nonzero bits are 0xffffff01; in that case
10415 if we only care about QImode, we don't need the AND). This case
10416 occurs if the output mode of an scc insn is not SImode and
10417 STORE_FLAG_VALUE == 1 (e.g., the 386).
10418
10419 Similarly, check for a case where the AND's are ZERO_EXTEND
10420 operations from some narrower mode even though a SUBREG is not
10421 present. */
10422
10423 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10424 && CONST_INT_P (XEXP (op0, 1))
10425 && CONST_INT_P (XEXP (op1, 1)))
10426 {
10427 rtx inner_op0 = XEXP (op0, 0);
10428 rtx inner_op1 = XEXP (op1, 0);
10429 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10430 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10431 int changed = 0;
10432
10433 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10434 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10435 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10436 && (GET_MODE (SUBREG_REG (inner_op0))
10437 == GET_MODE (SUBREG_REG (inner_op1)))
10438 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10439 <= HOST_BITS_PER_WIDE_INT)
10440 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10441 GET_MODE (SUBREG_REG (inner_op0)))))
10442 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10443 GET_MODE (SUBREG_REG (inner_op1))))))
10444 {
10445 op0 = SUBREG_REG (inner_op0);
10446 op1 = SUBREG_REG (inner_op1);
10447
10448 /* The resulting comparison is always unsigned since we masked
10449 off the original sign bit. */
10450 code = unsigned_condition (code);
10451
10452 changed = 1;
10453 }
10454
10455 else if (c0 == c1)
10456 for (tmode = GET_CLASS_NARROWEST_MODE
10457 (GET_MODE_CLASS (GET_MODE (op0)));
10458 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10459 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10460 {
10461 op0 = gen_lowpart (tmode, inner_op0);
10462 op1 = gen_lowpart (tmode, inner_op1);
10463 code = unsigned_condition (code);
10464 changed = 1;
10465 break;
10466 }
10467
10468 if (! changed)
10469 break;
10470 }
10471
10472 /* If both operands are NOT, we can strip off the outer operation
10473 and adjust the comparison code for swapped operands; similarly for
10474 NEG, except that this must be an equality comparison. */
10475 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10476 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10477 && (code == EQ || code == NE)))
10478 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10479
10480 else
10481 break;
10482 }
10483
10484 /* If the first operand is a constant, swap the operands and adjust the
10485 comparison code appropriately, but don't do this if the second operand
10486 is already a constant integer. */
10487 if (swap_commutative_operands_p (op0, op1))
10488 {
10489 tem = op0, op0 = op1, op1 = tem;
10490 code = swap_condition (code);
10491 }
10492
10493 /* We now enter a loop during which we will try to simplify the comparison.
10494 For the most part, we only are concerned with comparisons with zero,
10495 but some things may really be comparisons with zero but not start
10496 out looking that way. */
10497
10498 while (CONST_INT_P (op1))
10499 {
10500 enum machine_mode mode = GET_MODE (op0);
10501 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10502 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10503 int equality_comparison_p;
10504 int sign_bit_comparison_p;
10505 int unsigned_comparison_p;
10506 HOST_WIDE_INT const_op;
10507
10508 /* We only want to handle integral modes. This catches VOIDmode,
10509 CCmode, and the floating-point modes. An exception is that we
10510 can handle VOIDmode if OP0 is a COMPARE or a comparison
10511 operation. */
10512
10513 if (GET_MODE_CLASS (mode) != MODE_INT
10514 && ! (mode == VOIDmode
10515 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10516 break;
10517
10518 /* Get the constant we are comparing against and turn off all bits
10519 not on in our mode. */
10520 const_op = INTVAL (op1);
10521 if (mode != VOIDmode)
10522 const_op = trunc_int_for_mode (const_op, mode);
10523 op1 = GEN_INT (const_op);
10524
10525 /* If we are comparing against a constant power of two and the value
10526 being compared can only have that single bit nonzero (e.g., it was
10527 `and'ed with that bit), we can replace this with a comparison
10528 with zero. */
10529 if (const_op
10530 && (code == EQ || code == NE || code == GE || code == GEU
10531 || code == LT || code == LTU)
10532 && mode_width <= HOST_BITS_PER_WIDE_INT
10533 && exact_log2 (const_op) >= 0
10534 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10535 {
10536 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10537 op1 = const0_rtx, const_op = 0;
10538 }
10539
10540 /* Similarly, if we are comparing a value known to be either -1 or
10541 0 with -1, change it to the opposite comparison against zero. */
10542
10543 if (const_op == -1
10544 && (code == EQ || code == NE || code == GT || code == LE
10545 || code == GEU || code == LTU)
10546 && num_sign_bit_copies (op0, mode) == mode_width)
10547 {
10548 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10549 op1 = const0_rtx, const_op = 0;
10550 }
10551
10552 /* Do some canonicalizations based on the comparison code. We prefer
10553 comparisons against zero and then prefer equality comparisons.
10554 If we can reduce the size of a constant, we will do that too. */
10555
10556 switch (code)
10557 {
10558 case LT:
10559 /* < C is equivalent to <= (C - 1) */
10560 if (const_op > 0)
10561 {
10562 const_op -= 1;
10563 op1 = GEN_INT (const_op);
10564 code = LE;
10565 /* ... fall through to LE case below. */
10566 }
10567 else
10568 break;
10569
10570 case LE:
10571 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10572 if (const_op < 0)
10573 {
10574 const_op += 1;
10575 op1 = GEN_INT (const_op);
10576 code = LT;
10577 }
10578
10579 /* If we are doing a <= 0 comparison on a value known to have
10580 a zero sign bit, we can replace this with == 0. */
10581 else if (const_op == 0
10582 && mode_width <= HOST_BITS_PER_WIDE_INT
10583 && (nonzero_bits (op0, mode)
10584 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10585 code = EQ;
10586 break;
10587
10588 case GE:
10589 /* >= C is equivalent to > (C - 1). */
10590 if (const_op > 0)
10591 {
10592 const_op -= 1;
10593 op1 = GEN_INT (const_op);
10594 code = GT;
10595 /* ... fall through to GT below. */
10596 }
10597 else
10598 break;
10599
10600 case GT:
10601 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10602 if (const_op < 0)
10603 {
10604 const_op += 1;
10605 op1 = GEN_INT (const_op);
10606 code = GE;
10607 }
10608
10609 /* If we are doing a > 0 comparison on a value known to have
10610 a zero sign bit, we can replace this with != 0. */
10611 else if (const_op == 0
10612 && mode_width <= HOST_BITS_PER_WIDE_INT
10613 && (nonzero_bits (op0, mode)
10614 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10615 code = NE;
10616 break;
10617
10618 case LTU:
10619 /* < C is equivalent to <= (C - 1). */
10620 if (const_op > 0)
10621 {
10622 const_op -= 1;
10623 op1 = GEN_INT (const_op);
10624 code = LEU;
10625 /* ... fall through ... */
10626 }
10627
10628 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10629 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10630 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10631 {
10632 const_op = 0, op1 = const0_rtx;
10633 code = GE;
10634 break;
10635 }
10636 else
10637 break;
10638
10639 case LEU:
10640 /* unsigned <= 0 is equivalent to == 0 */
10641 if (const_op == 0)
10642 code = EQ;
10643
10644 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10645 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10646 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10647 {
10648 const_op = 0, op1 = const0_rtx;
10649 code = GE;
10650 }
10651 break;
10652
10653 case GEU:
10654 /* >= C is equivalent to > (C - 1). */
10655 if (const_op > 1)
10656 {
10657 const_op -= 1;
10658 op1 = GEN_INT (const_op);
10659 code = GTU;
10660 /* ... fall through ... */
10661 }
10662
10663 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10664 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10665 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10666 {
10667 const_op = 0, op1 = const0_rtx;
10668 code = LT;
10669 break;
10670 }
10671 else
10672 break;
10673
10674 case GTU:
10675 /* unsigned > 0 is equivalent to != 0 */
10676 if (const_op == 0)
10677 code = NE;
10678
10679 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10680 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10681 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10682 {
10683 const_op = 0, op1 = const0_rtx;
10684 code = LT;
10685 }
10686 break;
10687
10688 default:
10689 break;
10690 }
10691
10692 /* Compute some predicates to simplify code below. */
10693
10694 equality_comparison_p = (code == EQ || code == NE);
10695 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10696 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10697 || code == GEU);
10698
10699 /* If this is a sign bit comparison and we can do arithmetic in
10700 MODE, say that we will only be needing the sign bit of OP0. */
10701 if (sign_bit_comparison_p
10702 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10703 op0 = force_to_mode (op0, mode,
10704 ((HOST_WIDE_INT) 1
10705 << (GET_MODE_BITSIZE (mode) - 1)),
10706 0);
10707
10708 /* Now try cases based on the opcode of OP0. If none of the cases
10709 does a "continue", we exit this loop immediately after the
10710 switch. */
10711
10712 switch (GET_CODE (op0))
10713 {
10714 case ZERO_EXTRACT:
10715 /* If we are extracting a single bit from a variable position in
10716 a constant that has only a single bit set and are comparing it
10717 with zero, we can convert this into an equality comparison
10718 between the position and the location of the single bit. */
10719 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10720 have already reduced the shift count modulo the word size. */
10721 if (!SHIFT_COUNT_TRUNCATED
10722 && CONST_INT_P (XEXP (op0, 0))
10723 && XEXP (op0, 1) == const1_rtx
10724 && equality_comparison_p && const_op == 0
10725 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10726 {
10727 if (BITS_BIG_ENDIAN)
10728 {
10729 enum machine_mode new_mode
10730 = mode_for_extraction (EP_extzv, 1);
10731 if (new_mode == MAX_MACHINE_MODE)
10732 i = BITS_PER_WORD - 1 - i;
10733 else
10734 {
10735 mode = new_mode;
10736 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10737 }
10738 }
10739
10740 op0 = XEXP (op0, 2);
10741 op1 = GEN_INT (i);
10742 const_op = i;
10743
10744 /* Result is nonzero iff shift count is equal to I. */
10745 code = reverse_condition (code);
10746 continue;
10747 }
10748
10749 /* ... fall through ... */
10750
10751 case SIGN_EXTRACT:
10752 tem = expand_compound_operation (op0);
10753 if (tem != op0)
10754 {
10755 op0 = tem;
10756 continue;
10757 }
10758 break;
10759
10760 case NOT:
10761 /* If testing for equality, we can take the NOT of the constant. */
10762 if (equality_comparison_p
10763 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10764 {
10765 op0 = XEXP (op0, 0);
10766 op1 = tem;
10767 continue;
10768 }
10769
10770 /* If just looking at the sign bit, reverse the sense of the
10771 comparison. */
10772 if (sign_bit_comparison_p)
10773 {
10774 op0 = XEXP (op0, 0);
10775 code = (code == GE ? LT : GE);
10776 continue;
10777 }
10778 break;
10779
10780 case NEG:
10781 /* If testing for equality, we can take the NEG of the constant. */
10782 if (equality_comparison_p
10783 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10784 {
10785 op0 = XEXP (op0, 0);
10786 op1 = tem;
10787 continue;
10788 }
10789
10790 /* The remaining cases only apply to comparisons with zero. */
10791 if (const_op != 0)
10792 break;
10793
10794 /* When X is ABS or is known positive,
10795 (neg X) is < 0 if and only if X != 0. */
10796
10797 if (sign_bit_comparison_p
10798 && (GET_CODE (XEXP (op0, 0)) == ABS
10799 || (mode_width <= HOST_BITS_PER_WIDE_INT
10800 && (nonzero_bits (XEXP (op0, 0), mode)
10801 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10802 {
10803 op0 = XEXP (op0, 0);
10804 code = (code == LT ? NE : EQ);
10805 continue;
10806 }
10807
10808 /* If we have NEG of something whose two high-order bits are the
10809 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10810 if (num_sign_bit_copies (op0, mode) >= 2)
10811 {
10812 op0 = XEXP (op0, 0);
10813 code = swap_condition (code);
10814 continue;
10815 }
10816 break;
10817
10818 case ROTATE:
10819 /* If we are testing equality and our count is a constant, we
10820 can perform the inverse operation on our RHS. */
10821 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
10822 && (tem = simplify_binary_operation (ROTATERT, mode,
10823 op1, XEXP (op0, 1))) != 0)
10824 {
10825 op0 = XEXP (op0, 0);
10826 op1 = tem;
10827 continue;
10828 }
10829
10830 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10831 a particular bit. Convert it to an AND of a constant of that
10832 bit. This will be converted into a ZERO_EXTRACT. */
10833 if (const_op == 0 && sign_bit_comparison_p
10834 && CONST_INT_P (XEXP (op0, 1))
10835 && mode_width <= HOST_BITS_PER_WIDE_INT)
10836 {
10837 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10838 ((HOST_WIDE_INT) 1
10839 << (mode_width - 1
10840 - INTVAL (XEXP (op0, 1)))));
10841 code = (code == LT ? NE : EQ);
10842 continue;
10843 }
10844
10845 /* Fall through. */
10846
10847 case ABS:
10848 /* ABS is ignorable inside an equality comparison with zero. */
10849 if (const_op == 0 && equality_comparison_p)
10850 {
10851 op0 = XEXP (op0, 0);
10852 continue;
10853 }
10854 break;
10855
10856 case SIGN_EXTEND:
10857 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10858 (compare FOO CONST) if CONST fits in FOO's mode and we
10859 are either testing inequality or have an unsigned
10860 comparison with ZERO_EXTEND or a signed comparison with
10861 SIGN_EXTEND. But don't do it if we don't have a compare
10862 insn of the given mode, since we'd have to revert it
10863 later on, and then we wouldn't know whether to sign- or
10864 zero-extend. */
10865 mode = GET_MODE (XEXP (op0, 0));
10866 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10867 && ! unsigned_comparison_p
10868 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10869 && ((unsigned HOST_WIDE_INT) const_op
10870 < (((unsigned HOST_WIDE_INT) 1
10871 << (GET_MODE_BITSIZE (mode) - 1))))
10872 && have_insn_for (COMPARE, mode))
10873 {
10874 op0 = XEXP (op0, 0);
10875 continue;
10876 }
10877 break;
10878
10879 case SUBREG:
10880 /* Check for the case where we are comparing A - C1 with C2, that is
10881
10882 (subreg:MODE (plus (A) (-C1))) op (C2)
10883
10884 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10885 comparison in the wider mode. One of the following two conditions
10886 must be true in order for this to be valid:
10887
10888 1. The mode extension results in the same bit pattern being added
10889 on both sides and the comparison is equality or unsigned. As
10890 C2 has been truncated to fit in MODE, the pattern can only be
10891 all 0s or all 1s.
10892
10893 2. The mode extension results in the sign bit being copied on
10894 each side.
10895
10896 The difficulty here is that we have predicates for A but not for
10897 (A - C1) so we need to check that C1 is within proper bounds so
10898 as to perturbate A as little as possible. */
10899
10900 if (mode_width <= HOST_BITS_PER_WIDE_INT
10901 && subreg_lowpart_p (op0)
10902 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10903 && GET_CODE (SUBREG_REG (op0)) == PLUS
10904 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
10905 {
10906 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10907 rtx a = XEXP (SUBREG_REG (op0), 0);
10908 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10909
10910 if ((c1 > 0
10911 && (unsigned HOST_WIDE_INT) c1
10912 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10913 && (equality_comparison_p || unsigned_comparison_p)
10914 /* (A - C1) zero-extends if it is positive and sign-extends
10915 if it is negative, C2 both zero- and sign-extends. */
10916 && ((0 == (nonzero_bits (a, inner_mode)
10917 & ~GET_MODE_MASK (mode))
10918 && const_op >= 0)
10919 /* (A - C1) sign-extends if it is positive and 1-extends
10920 if it is negative, C2 both sign- and 1-extends. */
10921 || (num_sign_bit_copies (a, inner_mode)
10922 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10923 - mode_width)
10924 && const_op < 0)))
10925 || ((unsigned HOST_WIDE_INT) c1
10926 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10927 /* (A - C1) always sign-extends, like C2. */
10928 && num_sign_bit_copies (a, inner_mode)
10929 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10930 - (mode_width - 1))))
10931 {
10932 op0 = SUBREG_REG (op0);
10933 continue;
10934 }
10935 }
10936
10937 /* If the inner mode is narrower and we are extracting the low part,
10938 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10939 if (subreg_lowpart_p (op0)
10940 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10941 /* Fall through */ ;
10942 else
10943 break;
10944
10945 /* ... fall through ... */
10946
10947 case ZERO_EXTEND:
10948 mode = GET_MODE (XEXP (op0, 0));
10949 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10950 && (unsigned_comparison_p || equality_comparison_p)
10951 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10952 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10953 && have_insn_for (COMPARE, mode))
10954 {
10955 op0 = XEXP (op0, 0);
10956 continue;
10957 }
10958 break;
10959
10960 case PLUS:
10961 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10962 this for equality comparisons due to pathological cases involving
10963 overflows. */
10964 if (equality_comparison_p
10965 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10966 op1, XEXP (op0, 1))))
10967 {
10968 op0 = XEXP (op0, 0);
10969 op1 = tem;
10970 continue;
10971 }
10972
10973 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10974 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10975 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10976 {
10977 op0 = XEXP (XEXP (op0, 0), 0);
10978 code = (code == LT ? EQ : NE);
10979 continue;
10980 }
10981 break;
10982
10983 case MINUS:
10984 /* We used to optimize signed comparisons against zero, but that
10985 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10986 arrive here as equality comparisons, or (GEU, LTU) are
10987 optimized away. No need to special-case them. */
10988
10989 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10990 (eq B (minus A C)), whichever simplifies. We can only do
10991 this for equality comparisons due to pathological cases involving
10992 overflows. */
10993 if (equality_comparison_p
10994 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10995 XEXP (op0, 1), op1)))
10996 {
10997 op0 = XEXP (op0, 0);
10998 op1 = tem;
10999 continue;
11000 }
11001
11002 if (equality_comparison_p
11003 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11004 XEXP (op0, 0), op1)))
11005 {
11006 op0 = XEXP (op0, 1);
11007 op1 = tem;
11008 continue;
11009 }
11010
11011 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11012 of bits in X minus 1, is one iff X > 0. */
11013 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11014 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11015 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
11016 == mode_width - 1
11017 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11018 {
11019 op0 = XEXP (op0, 1);
11020 code = (code == GE ? LE : GT);
11021 continue;
11022 }
11023 break;
11024
11025 case XOR:
11026 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11027 if C is zero or B is a constant. */
11028 if (equality_comparison_p
11029 && 0 != (tem = simplify_binary_operation (XOR, mode,
11030 XEXP (op0, 1), op1)))
11031 {
11032 op0 = XEXP (op0, 0);
11033 op1 = tem;
11034 continue;
11035 }
11036 break;
11037
11038 case EQ: case NE:
11039 case UNEQ: case LTGT:
11040 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11041 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11042 case UNORDERED: case ORDERED:
11043 /* We can't do anything if OP0 is a condition code value, rather
11044 than an actual data value. */
11045 if (const_op != 0
11046 || CC0_P (XEXP (op0, 0))
11047 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11048 break;
11049
11050 /* Get the two operands being compared. */
11051 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11052 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11053 else
11054 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11055
11056 /* Check for the cases where we simply want the result of the
11057 earlier test or the opposite of that result. */
11058 if (code == NE || code == EQ
11059 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
11060 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11061 && (STORE_FLAG_VALUE
11062 & (((HOST_WIDE_INT) 1
11063 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
11064 && (code == LT || code == GE)))
11065 {
11066 enum rtx_code new_code;
11067 if (code == LT || code == NE)
11068 new_code = GET_CODE (op0);
11069 else
11070 new_code = reversed_comparison_code (op0, NULL);
11071
11072 if (new_code != UNKNOWN)
11073 {
11074 code = new_code;
11075 op0 = tem;
11076 op1 = tem1;
11077 continue;
11078 }
11079 }
11080 break;
11081
11082 case IOR:
11083 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11084 iff X <= 0. */
11085 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11086 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11087 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11088 {
11089 op0 = XEXP (op0, 1);
11090 code = (code == GE ? GT : LE);
11091 continue;
11092 }
11093 break;
11094
11095 case AND:
11096 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11097 will be converted to a ZERO_EXTRACT later. */
11098 if (const_op == 0 && equality_comparison_p
11099 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11100 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11101 {
11102 op0 = simplify_and_const_int
11103 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
11104 XEXP (op0, 1),
11105 XEXP (XEXP (op0, 0), 1)),
11106 (HOST_WIDE_INT) 1);
11107 continue;
11108 }
11109
11110 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11111 zero and X is a comparison and C1 and C2 describe only bits set
11112 in STORE_FLAG_VALUE, we can compare with X. */
11113 if (const_op == 0 && equality_comparison_p
11114 && mode_width <= HOST_BITS_PER_WIDE_INT
11115 && CONST_INT_P (XEXP (op0, 1))
11116 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11117 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11118 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11119 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11120 {
11121 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11122 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11123 if ((~STORE_FLAG_VALUE & mask) == 0
11124 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11125 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11126 && COMPARISON_P (tem))))
11127 {
11128 op0 = XEXP (XEXP (op0, 0), 0);
11129 continue;
11130 }
11131 }
11132
11133 /* If we are doing an equality comparison of an AND of a bit equal
11134 to the sign bit, replace this with a LT or GE comparison of
11135 the underlying value. */
11136 if (equality_comparison_p
11137 && const_op == 0
11138 && CONST_INT_P (XEXP (op0, 1))
11139 && mode_width <= HOST_BITS_PER_WIDE_INT
11140 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11141 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11142 {
11143 op0 = XEXP (op0, 0);
11144 code = (code == EQ ? GE : LT);
11145 continue;
11146 }
11147
11148 /* If this AND operation is really a ZERO_EXTEND from a narrower
11149 mode, the constant fits within that mode, and this is either an
11150 equality or unsigned comparison, try to do this comparison in
11151 the narrower mode.
11152
11153 Note that in:
11154
11155 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11156 -> (ne:DI (reg:SI 4) (const_int 0))
11157
11158 unless TRULY_NOOP_TRUNCATION allows it or the register is
11159 known to hold a value of the required mode the
11160 transformation is invalid. */
11161 if ((equality_comparison_p || unsigned_comparison_p)
11162 && CONST_INT_P (XEXP (op0, 1))
11163 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
11164 & GET_MODE_MASK (mode))
11165 + 1)) >= 0
11166 && const_op >> i == 0
11167 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11168 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
11169 GET_MODE_BITSIZE (GET_MODE (op0)))
11170 || (REG_P (XEXP (op0, 0))
11171 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11172 {
11173 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11174 continue;
11175 }
11176
11177 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11178 fits in both M1 and M2 and the SUBREG is either paradoxical
11179 or represents the low part, permute the SUBREG and the AND
11180 and try again. */
11181 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11182 {
11183 unsigned HOST_WIDE_INT c1;
11184 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11185 /* Require an integral mode, to avoid creating something like
11186 (AND:SF ...). */
11187 if (SCALAR_INT_MODE_P (tmode)
11188 /* It is unsafe to commute the AND into the SUBREG if the
11189 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11190 not defined. As originally written the upper bits
11191 have a defined value due to the AND operation.
11192 However, if we commute the AND inside the SUBREG then
11193 they no longer have defined values and the meaning of
11194 the code has been changed. */
11195 && (0
11196 #ifdef WORD_REGISTER_OPERATIONS
11197 || (mode_width > GET_MODE_BITSIZE (tmode)
11198 && mode_width <= BITS_PER_WORD)
11199 #endif
11200 || (mode_width <= GET_MODE_BITSIZE (tmode)
11201 && subreg_lowpart_p (XEXP (op0, 0))))
11202 && CONST_INT_P (XEXP (op0, 1))
11203 && mode_width <= HOST_BITS_PER_WIDE_INT
11204 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
11205 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11206 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11207 && c1 != mask
11208 && c1 != GET_MODE_MASK (tmode))
11209 {
11210 op0 = simplify_gen_binary (AND, tmode,
11211 SUBREG_REG (XEXP (op0, 0)),
11212 gen_int_mode (c1, tmode));
11213 op0 = gen_lowpart (mode, op0);
11214 continue;
11215 }
11216 }
11217
11218 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11219 if (const_op == 0 && equality_comparison_p
11220 && XEXP (op0, 1) == const1_rtx
11221 && GET_CODE (XEXP (op0, 0)) == NOT)
11222 {
11223 op0 = simplify_and_const_int
11224 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
11225 code = (code == NE ? EQ : NE);
11226 continue;
11227 }
11228
11229 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11230 (eq (and (lshiftrt X) 1) 0).
11231 Also handle the case where (not X) is expressed using xor. */
11232 if (const_op == 0 && equality_comparison_p
11233 && XEXP (op0, 1) == const1_rtx
11234 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11235 {
11236 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11237 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11238
11239 if (GET_CODE (shift_op) == NOT
11240 || (GET_CODE (shift_op) == XOR
11241 && CONST_INT_P (XEXP (shift_op, 1))
11242 && CONST_INT_P (shift_count)
11243 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
11244 && (INTVAL (XEXP (shift_op, 1))
11245 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
11246 {
11247 op0 = simplify_and_const_int
11248 (NULL_RTX, mode,
11249 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
11250 (HOST_WIDE_INT) 1);
11251 code = (code == NE ? EQ : NE);
11252 continue;
11253 }
11254 }
11255 break;
11256
11257 case ASHIFT:
11258 /* If we have (compare (ashift FOO N) (const_int C)) and
11259 the high order N bits of FOO (N+1 if an inequality comparison)
11260 are known to be zero, we can do this by comparing FOO with C
11261 shifted right N bits so long as the low-order N bits of C are
11262 zero. */
11263 if (CONST_INT_P (XEXP (op0, 1))
11264 && INTVAL (XEXP (op0, 1)) >= 0
11265 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11266 < HOST_BITS_PER_WIDE_INT)
11267 && ((const_op
11268 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
11269 && mode_width <= HOST_BITS_PER_WIDE_INT
11270 && (nonzero_bits (XEXP (op0, 0), mode)
11271 & ~(mask >> (INTVAL (XEXP (op0, 1))
11272 + ! equality_comparison_p))) == 0)
11273 {
11274 /* We must perform a logical shift, not an arithmetic one,
11275 as we want the top N bits of C to be zero. */
11276 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11277
11278 temp >>= INTVAL (XEXP (op0, 1));
11279 op1 = gen_int_mode (temp, mode);
11280 op0 = XEXP (op0, 0);
11281 continue;
11282 }
11283
11284 /* If we are doing a sign bit comparison, it means we are testing
11285 a particular bit. Convert it to the appropriate AND. */
11286 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11287 && mode_width <= HOST_BITS_PER_WIDE_INT)
11288 {
11289 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11290 ((HOST_WIDE_INT) 1
11291 << (mode_width - 1
11292 - INTVAL (XEXP (op0, 1)))));
11293 code = (code == LT ? NE : EQ);
11294 continue;
11295 }
11296
11297 /* If this an equality comparison with zero and we are shifting
11298 the low bit to the sign bit, we can convert this to an AND of the
11299 low-order bit. */
11300 if (const_op == 0 && equality_comparison_p
11301 && CONST_INT_P (XEXP (op0, 1))
11302 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11303 == mode_width - 1)
11304 {
11305 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11306 (HOST_WIDE_INT) 1);
11307 continue;
11308 }
11309 break;
11310
11311 case ASHIFTRT:
11312 /* If this is an equality comparison with zero, we can do this
11313 as a logical shift, which might be much simpler. */
11314 if (equality_comparison_p && const_op == 0
11315 && CONST_INT_P (XEXP (op0, 1)))
11316 {
11317 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11318 XEXP (op0, 0),
11319 INTVAL (XEXP (op0, 1)));
11320 continue;
11321 }
11322
11323 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11324 do the comparison in a narrower mode. */
11325 if (! unsigned_comparison_p
11326 && CONST_INT_P (XEXP (op0, 1))
11327 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11328 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11329 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11330 MODE_INT, 1)) != BLKmode
11331 && (((unsigned HOST_WIDE_INT) const_op
11332 + (GET_MODE_MASK (tmode) >> 1) + 1)
11333 <= GET_MODE_MASK (tmode)))
11334 {
11335 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11336 continue;
11337 }
11338
11339 /* Likewise if OP0 is a PLUS of a sign extension with a
11340 constant, which is usually represented with the PLUS
11341 between the shifts. */
11342 if (! unsigned_comparison_p
11343 && CONST_INT_P (XEXP (op0, 1))
11344 && GET_CODE (XEXP (op0, 0)) == PLUS
11345 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11346 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11347 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11348 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11349 MODE_INT, 1)) != BLKmode
11350 && (((unsigned HOST_WIDE_INT) const_op
11351 + (GET_MODE_MASK (tmode) >> 1) + 1)
11352 <= GET_MODE_MASK (tmode)))
11353 {
11354 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11355 rtx add_const = XEXP (XEXP (op0, 0), 1);
11356 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11357 add_const, XEXP (op0, 1));
11358
11359 op0 = simplify_gen_binary (PLUS, tmode,
11360 gen_lowpart (tmode, inner),
11361 new_const);
11362 continue;
11363 }
11364
11365 /* ... fall through ... */
11366 case LSHIFTRT:
11367 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11368 the low order N bits of FOO are known to be zero, we can do this
11369 by comparing FOO with C shifted left N bits so long as no
11370 overflow occurs. */
11371 if (CONST_INT_P (XEXP (op0, 1))
11372 && INTVAL (XEXP (op0, 1)) >= 0
11373 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11374 && mode_width <= HOST_BITS_PER_WIDE_INT
11375 && (nonzero_bits (XEXP (op0, 0), mode)
11376 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11377 && (((unsigned HOST_WIDE_INT) const_op
11378 + (GET_CODE (op0) != LSHIFTRT
11379 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11380 + 1)
11381 : 0))
11382 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11383 {
11384 /* If the shift was logical, then we must make the condition
11385 unsigned. */
11386 if (GET_CODE (op0) == LSHIFTRT)
11387 code = unsigned_condition (code);
11388
11389 const_op <<= INTVAL (XEXP (op0, 1));
11390 op1 = GEN_INT (const_op);
11391 op0 = XEXP (op0, 0);
11392 continue;
11393 }
11394
11395 /* If we are using this shift to extract just the sign bit, we
11396 can replace this with an LT or GE comparison. */
11397 if (const_op == 0
11398 && (equality_comparison_p || sign_bit_comparison_p)
11399 && CONST_INT_P (XEXP (op0, 1))
11400 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11401 == mode_width - 1)
11402 {
11403 op0 = XEXP (op0, 0);
11404 code = (code == NE || code == GT ? LT : GE);
11405 continue;
11406 }
11407 break;
11408
11409 default:
11410 break;
11411 }
11412
11413 break;
11414 }
11415
11416 /* Now make any compound operations involved in this comparison. Then,
11417 check for an outmost SUBREG on OP0 that is not doing anything or is
11418 paradoxical. The latter transformation must only be performed when
11419 it is known that the "extra" bits will be the same in op0 and op1 or
11420 that they don't matter. There are three cases to consider:
11421
11422 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11423 care bits and we can assume they have any convenient value. So
11424 making the transformation is safe.
11425
11426 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11427 In this case the upper bits of op0 are undefined. We should not make
11428 the simplification in that case as we do not know the contents of
11429 those bits.
11430
11431 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11432 UNKNOWN. In that case we know those bits are zeros or ones. We must
11433 also be sure that they are the same as the upper bits of op1.
11434
11435 We can never remove a SUBREG for a non-equality comparison because
11436 the sign bit is in a different place in the underlying object. */
11437
11438 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11439 op1 = make_compound_operation (op1, SET);
11440
11441 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11442 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11443 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11444 && (code == NE || code == EQ))
11445 {
11446 if (GET_MODE_SIZE (GET_MODE (op0))
11447 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11448 {
11449 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11450 implemented. */
11451 if (REG_P (SUBREG_REG (op0)))
11452 {
11453 op0 = SUBREG_REG (op0);
11454 op1 = gen_lowpart (GET_MODE (op0), op1);
11455 }
11456 }
11457 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11458 <= HOST_BITS_PER_WIDE_INT)
11459 && (nonzero_bits (SUBREG_REG (op0),
11460 GET_MODE (SUBREG_REG (op0)))
11461 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11462 {
11463 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11464
11465 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11466 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11467 op0 = SUBREG_REG (op0), op1 = tem;
11468 }
11469 }
11470
11471 /* We now do the opposite procedure: Some machines don't have compare
11472 insns in all modes. If OP0's mode is an integer mode smaller than a
11473 word and we can't do a compare in that mode, see if there is a larger
11474 mode for which we can do the compare. There are a number of cases in
11475 which we can use the wider mode. */
11476
11477 mode = GET_MODE (op0);
11478 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11479 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11480 && ! have_insn_for (COMPARE, mode))
11481 for (tmode = GET_MODE_WIDER_MODE (mode);
11482 (tmode != VOIDmode
11483 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11484 tmode = GET_MODE_WIDER_MODE (tmode))
11485 if (have_insn_for (COMPARE, tmode))
11486 {
11487 int zero_extended;
11488
11489 /* If this is a test for negative, we can make an explicit
11490 test of the sign bit. Test this first so we can use
11491 a paradoxical subreg to extend OP0. */
11492
11493 if (op1 == const0_rtx && (code == LT || code == GE)
11494 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11495 {
11496 op0 = simplify_gen_binary (AND, tmode,
11497 gen_lowpart (tmode, op0),
11498 GEN_INT ((HOST_WIDE_INT) 1
11499 << (GET_MODE_BITSIZE (mode)
11500 - 1)));
11501 code = (code == LT) ? NE : EQ;
11502 break;
11503 }
11504
11505 /* If the only nonzero bits in OP0 and OP1 are those in the
11506 narrower mode and this is an equality or unsigned comparison,
11507 we can use the wider mode. Similarly for sign-extended
11508 values, in which case it is true for all comparisons. */
11509 zero_extended = ((code == EQ || code == NE
11510 || code == GEU || code == GTU
11511 || code == LEU || code == LTU)
11512 && (nonzero_bits (op0, tmode)
11513 & ~GET_MODE_MASK (mode)) == 0
11514 && ((CONST_INT_P (op1)
11515 || (nonzero_bits (op1, tmode)
11516 & ~GET_MODE_MASK (mode)) == 0)));
11517
11518 if (zero_extended
11519 || ((num_sign_bit_copies (op0, tmode)
11520 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11521 - GET_MODE_BITSIZE (mode)))
11522 && (num_sign_bit_copies (op1, tmode)
11523 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11524 - GET_MODE_BITSIZE (mode)))))
11525 {
11526 /* If OP0 is an AND and we don't have an AND in MODE either,
11527 make a new AND in the proper mode. */
11528 if (GET_CODE (op0) == AND
11529 && !have_insn_for (AND, mode))
11530 op0 = simplify_gen_binary (AND, tmode,
11531 gen_lowpart (tmode,
11532 XEXP (op0, 0)),
11533 gen_lowpart (tmode,
11534 XEXP (op0, 1)));
11535 else
11536 {
11537 if (zero_extended)
11538 {
11539 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
11540 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
11541 }
11542 else
11543 {
11544 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
11545 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
11546 }
11547 break;
11548 }
11549 }
11550 }
11551
11552 #ifdef CANONICALIZE_COMPARISON
11553 /* If this machine only supports a subset of valid comparisons, see if we
11554 can convert an unsupported one into a supported one. */
11555 CANONICALIZE_COMPARISON (code, op0, op1);
11556 #endif
11557
11558 *pop0 = op0;
11559 *pop1 = op1;
11560
11561 return code;
11562 }
11563 \f
11564 /* Utility function for record_value_for_reg. Count number of
11565 rtxs in X. */
11566 static int
11567 count_rtxs (rtx x)
11568 {
11569 enum rtx_code code = GET_CODE (x);
11570 const char *fmt;
11571 int i, j, ret = 1;
11572
11573 if (GET_RTX_CLASS (code) == '2'
11574 || GET_RTX_CLASS (code) == 'c')
11575 {
11576 rtx x0 = XEXP (x, 0);
11577 rtx x1 = XEXP (x, 1);
11578
11579 if (x0 == x1)
11580 return 1 + 2 * count_rtxs (x0);
11581
11582 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11583 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11584 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11585 return 2 + 2 * count_rtxs (x0)
11586 + count_rtxs (x == XEXP (x1, 0)
11587 ? XEXP (x1, 1) : XEXP (x1, 0));
11588
11589 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11590 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11591 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11592 return 2 + 2 * count_rtxs (x1)
11593 + count_rtxs (x == XEXP (x0, 0)
11594 ? XEXP (x0, 1) : XEXP (x0, 0));
11595 }
11596
11597 fmt = GET_RTX_FORMAT (code);
11598 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11599 if (fmt[i] == 'e')
11600 ret += count_rtxs (XEXP (x, i));
11601 else if (fmt[i] == 'E')
11602 for (j = 0; j < XVECLEN (x, i); j++)
11603 ret += count_rtxs (XVECEXP (x, i, j));
11604
11605 return ret;
11606 }
11607 \f
11608 /* Utility function for following routine. Called when X is part of a value
11609 being stored into last_set_value. Sets last_set_table_tick
11610 for each register mentioned. Similar to mention_regs in cse.c */
11611
11612 static void
11613 update_table_tick (rtx x)
11614 {
11615 enum rtx_code code = GET_CODE (x);
11616 const char *fmt = GET_RTX_FORMAT (code);
11617 int i, j;
11618
11619 if (code == REG)
11620 {
11621 unsigned int regno = REGNO (x);
11622 unsigned int endregno = END_REGNO (x);
11623 unsigned int r;
11624
11625 for (r = regno; r < endregno; r++)
11626 {
11627 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
11628 rsp->last_set_table_tick = label_tick;
11629 }
11630
11631 return;
11632 }
11633
11634 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11635 if (fmt[i] == 'e')
11636 {
11637 /* Check for identical subexpressions. If x contains
11638 identical subexpression we only have to traverse one of
11639 them. */
11640 if (i == 0 && ARITHMETIC_P (x))
11641 {
11642 /* Note that at this point x1 has already been
11643 processed. */
11644 rtx x0 = XEXP (x, 0);
11645 rtx x1 = XEXP (x, 1);
11646
11647 /* If x0 and x1 are identical then there is no need to
11648 process x0. */
11649 if (x0 == x1)
11650 break;
11651
11652 /* If x0 is identical to a subexpression of x1 then while
11653 processing x1, x0 has already been processed. Thus we
11654 are done with x. */
11655 if (ARITHMETIC_P (x1)
11656 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11657 break;
11658
11659 /* If x1 is identical to a subexpression of x0 then we
11660 still have to process the rest of x0. */
11661 if (ARITHMETIC_P (x0)
11662 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11663 {
11664 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11665 break;
11666 }
11667 }
11668
11669 update_table_tick (XEXP (x, i));
11670 }
11671 else if (fmt[i] == 'E')
11672 for (j = 0; j < XVECLEN (x, i); j++)
11673 update_table_tick (XVECEXP (x, i, j));
11674 }
11675
11676 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11677 are saying that the register is clobbered and we no longer know its
11678 value. If INSN is zero, don't update reg_stat[].last_set; this is
11679 only permitted with VALUE also zero and is used to invalidate the
11680 register. */
11681
11682 static void
11683 record_value_for_reg (rtx reg, rtx insn, rtx value)
11684 {
11685 unsigned int regno = REGNO (reg);
11686 unsigned int endregno = END_REGNO (reg);
11687 unsigned int i;
11688 reg_stat_type *rsp;
11689
11690 /* If VALUE contains REG and we have a previous value for REG, substitute
11691 the previous value. */
11692 if (value && insn && reg_overlap_mentioned_p (reg, value))
11693 {
11694 rtx tem;
11695
11696 /* Set things up so get_last_value is allowed to see anything set up to
11697 our insn. */
11698 subst_low_luid = DF_INSN_LUID (insn);
11699 tem = get_last_value (reg);
11700
11701 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11702 it isn't going to be useful and will take a lot of time to process,
11703 so just use the CLOBBER. */
11704
11705 if (tem)
11706 {
11707 if (ARITHMETIC_P (tem)
11708 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11709 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11710 tem = XEXP (tem, 0);
11711 else if (count_occurrences (value, reg, 1) >= 2)
11712 {
11713 /* If there are two or more occurrences of REG in VALUE,
11714 prevent the value from growing too much. */
11715 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
11716 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
11717 }
11718
11719 value = replace_rtx (copy_rtx (value), reg, tem);
11720 }
11721 }
11722
11723 /* For each register modified, show we don't know its value, that
11724 we don't know about its bitwise content, that its value has been
11725 updated, and that we don't know the location of the death of the
11726 register. */
11727 for (i = regno; i < endregno; i++)
11728 {
11729 rsp = VEC_index (reg_stat_type, reg_stat, i);
11730
11731 if (insn)
11732 rsp->last_set = insn;
11733
11734 rsp->last_set_value = 0;
11735 rsp->last_set_mode = VOIDmode;
11736 rsp->last_set_nonzero_bits = 0;
11737 rsp->last_set_sign_bit_copies = 0;
11738 rsp->last_death = 0;
11739 rsp->truncated_to_mode = VOIDmode;
11740 }
11741
11742 /* Mark registers that are being referenced in this value. */
11743 if (value)
11744 update_table_tick (value);
11745
11746 /* Now update the status of each register being set.
11747 If someone is using this register in this block, set this register
11748 to invalid since we will get confused between the two lives in this
11749 basic block. This makes using this register always invalid. In cse, we
11750 scan the table to invalidate all entries using this register, but this
11751 is too much work for us. */
11752
11753 for (i = regno; i < endregno; i++)
11754 {
11755 rsp = VEC_index (reg_stat_type, reg_stat, i);
11756 rsp->last_set_label = label_tick;
11757 if (!insn
11758 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
11759 rsp->last_set_invalid = 1;
11760 else
11761 rsp->last_set_invalid = 0;
11762 }
11763
11764 /* The value being assigned might refer to X (like in "x++;"). In that
11765 case, we must replace it with (clobber (const_int 0)) to prevent
11766 infinite loops. */
11767 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11768 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
11769 {
11770 value = copy_rtx (value);
11771 if (!get_last_value_validate (&value, insn, label_tick, 1))
11772 value = 0;
11773 }
11774
11775 /* For the main register being modified, update the value, the mode, the
11776 nonzero bits, and the number of sign bit copies. */
11777
11778 rsp->last_set_value = value;
11779
11780 if (value)
11781 {
11782 enum machine_mode mode = GET_MODE (reg);
11783 subst_low_luid = DF_INSN_LUID (insn);
11784 rsp->last_set_mode = mode;
11785 if (GET_MODE_CLASS (mode) == MODE_INT
11786 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11787 mode = nonzero_bits_mode;
11788 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
11789 rsp->last_set_sign_bit_copies
11790 = num_sign_bit_copies (value, GET_MODE (reg));
11791 }
11792 }
11793
11794 /* Called via note_stores from record_dead_and_set_regs to handle one
11795 SET or CLOBBER in an insn. DATA is the instruction in which the
11796 set is occurring. */
11797
11798 static void
11799 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
11800 {
11801 rtx record_dead_insn = (rtx) data;
11802
11803 if (GET_CODE (dest) == SUBREG)
11804 dest = SUBREG_REG (dest);
11805
11806 if (!record_dead_insn)
11807 {
11808 if (REG_P (dest))
11809 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
11810 return;
11811 }
11812
11813 if (REG_P (dest))
11814 {
11815 /* If we are setting the whole register, we know its value. Otherwise
11816 show that we don't know the value. We can handle SUBREG in
11817 some cases. */
11818 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11819 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11820 else if (GET_CODE (setter) == SET
11821 && GET_CODE (SET_DEST (setter)) == SUBREG
11822 && SUBREG_REG (SET_DEST (setter)) == dest
11823 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11824 && subreg_lowpart_p (SET_DEST (setter)))
11825 record_value_for_reg (dest, record_dead_insn,
11826 gen_lowpart (GET_MODE (dest),
11827 SET_SRC (setter)));
11828 else
11829 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11830 }
11831 else if (MEM_P (dest)
11832 /* Ignore pushes, they clobber nothing. */
11833 && ! push_operand (dest, GET_MODE (dest)))
11834 mem_last_set = DF_INSN_LUID (record_dead_insn);
11835 }
11836
11837 /* Update the records of when each REG was most recently set or killed
11838 for the things done by INSN. This is the last thing done in processing
11839 INSN in the combiner loop.
11840
11841 We update reg_stat[], in particular fields last_set, last_set_value,
11842 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11843 last_death, and also the similar information mem_last_set (which insn
11844 most recently modified memory) and last_call_luid (which insn was the
11845 most recent subroutine call). */
11846
11847 static void
11848 record_dead_and_set_regs (rtx insn)
11849 {
11850 rtx link;
11851 unsigned int i;
11852
11853 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11854 {
11855 if (REG_NOTE_KIND (link) == REG_DEAD
11856 && REG_P (XEXP (link, 0)))
11857 {
11858 unsigned int regno = REGNO (XEXP (link, 0));
11859 unsigned int endregno = END_REGNO (XEXP (link, 0));
11860
11861 for (i = regno; i < endregno; i++)
11862 {
11863 reg_stat_type *rsp;
11864
11865 rsp = VEC_index (reg_stat_type, reg_stat, i);
11866 rsp->last_death = insn;
11867 }
11868 }
11869 else if (REG_NOTE_KIND (link) == REG_INC)
11870 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11871 }
11872
11873 if (CALL_P (insn))
11874 {
11875 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11876 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11877 {
11878 reg_stat_type *rsp;
11879
11880 rsp = VEC_index (reg_stat_type, reg_stat, i);
11881 rsp->last_set_invalid = 1;
11882 rsp->last_set = insn;
11883 rsp->last_set_value = 0;
11884 rsp->last_set_mode = VOIDmode;
11885 rsp->last_set_nonzero_bits = 0;
11886 rsp->last_set_sign_bit_copies = 0;
11887 rsp->last_death = 0;
11888 rsp->truncated_to_mode = VOIDmode;
11889 }
11890
11891 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
11892
11893 /* We can't combine into a call pattern. Remember, though, that
11894 the return value register is set at this LUID. We could
11895 still replace a register with the return value from the
11896 wrong subroutine call! */
11897 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11898 }
11899 else
11900 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11901 }
11902
11903 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11904 register present in the SUBREG, so for each such SUBREG go back and
11905 adjust nonzero and sign bit information of the registers that are
11906 known to have some zero/sign bits set.
11907
11908 This is needed because when combine blows the SUBREGs away, the
11909 information on zero/sign bits is lost and further combines can be
11910 missed because of that. */
11911
11912 static void
11913 record_promoted_value (rtx insn, rtx subreg)
11914 {
11915 rtx links, set;
11916 unsigned int regno = REGNO (SUBREG_REG (subreg));
11917 enum machine_mode mode = GET_MODE (subreg);
11918
11919 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11920 return;
11921
11922 for (links = LOG_LINKS (insn); links;)
11923 {
11924 reg_stat_type *rsp;
11925
11926 insn = XEXP (links, 0);
11927 set = single_set (insn);
11928
11929 if (! set || !REG_P (SET_DEST (set))
11930 || REGNO (SET_DEST (set)) != regno
11931 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11932 {
11933 links = XEXP (links, 1);
11934 continue;
11935 }
11936
11937 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11938 if (rsp->last_set == insn)
11939 {
11940 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11941 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
11942 }
11943
11944 if (REG_P (SET_SRC (set)))
11945 {
11946 regno = REGNO (SET_SRC (set));
11947 links = LOG_LINKS (insn);
11948 }
11949 else
11950 break;
11951 }
11952 }
11953
11954 /* Check if X, a register, is known to contain a value already
11955 truncated to MODE. In this case we can use a subreg to refer to
11956 the truncated value even though in the generic case we would need
11957 an explicit truncation. */
11958
11959 static bool
11960 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
11961 {
11962 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11963 enum machine_mode truncated = rsp->truncated_to_mode;
11964
11965 if (truncated == 0
11966 || rsp->truncation_label < label_tick_ebb_start)
11967 return false;
11968 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11969 return true;
11970 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11971 GET_MODE_BITSIZE (truncated)))
11972 return true;
11973 return false;
11974 }
11975
11976 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
11977 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
11978 might be able to turn a truncate into a subreg using this information.
11979 Return -1 if traversing *P is complete or 0 otherwise. */
11980
11981 static int
11982 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
11983 {
11984 rtx x = *p;
11985 enum machine_mode truncated_mode;
11986 reg_stat_type *rsp;
11987
11988 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11989 {
11990 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11991 truncated_mode = GET_MODE (x);
11992
11993 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11994 return -1;
11995
11996 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11997 GET_MODE_BITSIZE (original_mode)))
11998 return -1;
11999
12000 x = SUBREG_REG (x);
12001 }
12002 /* ??? For hard-regs we now record everything. We might be able to
12003 optimize this using last_set_mode. */
12004 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12005 truncated_mode = GET_MODE (x);
12006 else
12007 return 0;
12008
12009 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12010 if (rsp->truncated_to_mode == 0
12011 || rsp->truncation_label < label_tick_ebb_start
12012 || (GET_MODE_SIZE (truncated_mode)
12013 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12014 {
12015 rsp->truncated_to_mode = truncated_mode;
12016 rsp->truncation_label = label_tick;
12017 }
12018
12019 return -1;
12020 }
12021
12022 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12023 the modes they are used in. This can help truning TRUNCATEs into
12024 SUBREGs. */
12025
12026 static void
12027 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12028 {
12029 for_each_rtx (x, record_truncated_value, NULL);
12030 }
12031
12032 /* Scan X for promoted SUBREGs. For each one found,
12033 note what it implies to the registers used in it. */
12034
12035 static void
12036 check_promoted_subreg (rtx insn, rtx x)
12037 {
12038 if (GET_CODE (x) == SUBREG
12039 && SUBREG_PROMOTED_VAR_P (x)
12040 && REG_P (SUBREG_REG (x)))
12041 record_promoted_value (insn, x);
12042 else
12043 {
12044 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12045 int i, j;
12046
12047 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12048 switch (format[i])
12049 {
12050 case 'e':
12051 check_promoted_subreg (insn, XEXP (x, i));
12052 break;
12053 case 'V':
12054 case 'E':
12055 if (XVEC (x, i) != 0)
12056 for (j = 0; j < XVECLEN (x, i); j++)
12057 check_promoted_subreg (insn, XVECEXP (x, i, j));
12058 break;
12059 }
12060 }
12061 }
12062 \f
12063 /* Verify that all the registers and memory references mentioned in *LOC are
12064 still valid. *LOC was part of a value set in INSN when label_tick was
12065 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12066 the invalid references with (clobber (const_int 0)) and return 1. This
12067 replacement is useful because we often can get useful information about
12068 the form of a value (e.g., if it was produced by a shift that always
12069 produces -1 or 0) even though we don't know exactly what registers it
12070 was produced from. */
12071
12072 static int
12073 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12074 {
12075 rtx x = *loc;
12076 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12077 int len = GET_RTX_LENGTH (GET_CODE (x));
12078 int i, j;
12079
12080 if (REG_P (x))
12081 {
12082 unsigned int regno = REGNO (x);
12083 unsigned int endregno = END_REGNO (x);
12084 unsigned int j;
12085
12086 for (j = regno; j < endregno; j++)
12087 {
12088 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
12089 if (rsp->last_set_invalid
12090 /* If this is a pseudo-register that was only set once and not
12091 live at the beginning of the function, it is always valid. */
12092 || (! (regno >= FIRST_PSEUDO_REGISTER
12093 && REG_N_SETS (regno) == 1
12094 && (!REGNO_REG_SET_P
12095 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12096 && rsp->last_set_label > tick))
12097 {
12098 if (replace)
12099 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12100 return replace;
12101 }
12102 }
12103
12104 return 1;
12105 }
12106 /* If this is a memory reference, make sure that there were no stores after
12107 it that might have clobbered the value. We don't have alias info, so we
12108 assume any store invalidates it. Moreover, we only have local UIDs, so
12109 we also assume that there were stores in the intervening basic blocks. */
12110 else if (MEM_P (x) && !MEM_READONLY_P (x)
12111 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12112 {
12113 if (replace)
12114 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12115 return replace;
12116 }
12117
12118 for (i = 0; i < len; i++)
12119 {
12120 if (fmt[i] == 'e')
12121 {
12122 /* Check for identical subexpressions. If x contains
12123 identical subexpression we only have to traverse one of
12124 them. */
12125 if (i == 1 && ARITHMETIC_P (x))
12126 {
12127 /* Note that at this point x0 has already been checked
12128 and found valid. */
12129 rtx x0 = XEXP (x, 0);
12130 rtx x1 = XEXP (x, 1);
12131
12132 /* If x0 and x1 are identical then x is also valid. */
12133 if (x0 == x1)
12134 return 1;
12135
12136 /* If x1 is identical to a subexpression of x0 then
12137 while checking x0, x1 has already been checked. Thus
12138 it is valid and so as x. */
12139 if (ARITHMETIC_P (x0)
12140 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12141 return 1;
12142
12143 /* If x0 is identical to a subexpression of x1 then x is
12144 valid iff the rest of x1 is valid. */
12145 if (ARITHMETIC_P (x1)
12146 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12147 return
12148 get_last_value_validate (&XEXP (x1,
12149 x0 == XEXP (x1, 0) ? 1 : 0),
12150 insn, tick, replace);
12151 }
12152
12153 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12154 replace) == 0)
12155 return 0;
12156 }
12157 else if (fmt[i] == 'E')
12158 for (j = 0; j < XVECLEN (x, i); j++)
12159 if (get_last_value_validate (&XVECEXP (x, i, j),
12160 insn, tick, replace) == 0)
12161 return 0;
12162 }
12163
12164 /* If we haven't found a reason for it to be invalid, it is valid. */
12165 return 1;
12166 }
12167
12168 /* Get the last value assigned to X, if known. Some registers
12169 in the value may be replaced with (clobber (const_int 0)) if their value
12170 is known longer known reliably. */
12171
12172 static rtx
12173 get_last_value (const_rtx x)
12174 {
12175 unsigned int regno;
12176 rtx value;
12177 reg_stat_type *rsp;
12178
12179 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12180 then convert it to the desired mode. If this is a paradoxical SUBREG,
12181 we cannot predict what values the "extra" bits might have. */
12182 if (GET_CODE (x) == SUBREG
12183 && subreg_lowpart_p (x)
12184 && (GET_MODE_SIZE (GET_MODE (x))
12185 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
12186 && (value = get_last_value (SUBREG_REG (x))) != 0)
12187 return gen_lowpart (GET_MODE (x), value);
12188
12189 if (!REG_P (x))
12190 return 0;
12191
12192 regno = REGNO (x);
12193 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12194 value = rsp->last_set_value;
12195
12196 /* If we don't have a value, or if it isn't for this basic block and
12197 it's either a hard register, set more than once, or it's a live
12198 at the beginning of the function, return 0.
12199
12200 Because if it's not live at the beginning of the function then the reg
12201 is always set before being used (is never used without being set).
12202 And, if it's set only once, and it's always set before use, then all
12203 uses must have the same last value, even if it's not from this basic
12204 block. */
12205
12206 if (value == 0
12207 || (rsp->last_set_label < label_tick_ebb_start
12208 && (regno < FIRST_PSEUDO_REGISTER
12209 || REG_N_SETS (regno) != 1
12210 || REGNO_REG_SET_P
12211 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12212 return 0;
12213
12214 /* If the value was set in a later insn than the ones we are processing,
12215 we can't use it even if the register was only set once. */
12216 if (rsp->last_set_label == label_tick
12217 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12218 return 0;
12219
12220 /* If the value has all its registers valid, return it. */
12221 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12222 return value;
12223
12224 /* Otherwise, make a copy and replace any invalid register with
12225 (clobber (const_int 0)). If that fails for some reason, return 0. */
12226
12227 value = copy_rtx (value);
12228 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12229 return value;
12230
12231 return 0;
12232 }
12233 \f
12234 /* Return nonzero if expression X refers to a REG or to memory
12235 that is set in an instruction more recent than FROM_LUID. */
12236
12237 static int
12238 use_crosses_set_p (const_rtx x, int from_luid)
12239 {
12240 const char *fmt;
12241 int i;
12242 enum rtx_code code = GET_CODE (x);
12243
12244 if (code == REG)
12245 {
12246 unsigned int regno = REGNO (x);
12247 unsigned endreg = END_REGNO (x);
12248
12249 #ifdef PUSH_ROUNDING
12250 /* Don't allow uses of the stack pointer to be moved,
12251 because we don't know whether the move crosses a push insn. */
12252 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12253 return 1;
12254 #endif
12255 for (; regno < endreg; regno++)
12256 {
12257 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12258 if (rsp->last_set
12259 && rsp->last_set_label == label_tick
12260 && DF_INSN_LUID (rsp->last_set) > from_luid)
12261 return 1;
12262 }
12263 return 0;
12264 }
12265
12266 if (code == MEM && mem_last_set > from_luid)
12267 return 1;
12268
12269 fmt = GET_RTX_FORMAT (code);
12270
12271 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12272 {
12273 if (fmt[i] == 'E')
12274 {
12275 int j;
12276 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12277 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12278 return 1;
12279 }
12280 else if (fmt[i] == 'e'
12281 && use_crosses_set_p (XEXP (x, i), from_luid))
12282 return 1;
12283 }
12284 return 0;
12285 }
12286 \f
12287 /* Define three variables used for communication between the following
12288 routines. */
12289
12290 static unsigned int reg_dead_regno, reg_dead_endregno;
12291 static int reg_dead_flag;
12292
12293 /* Function called via note_stores from reg_dead_at_p.
12294
12295 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12296 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12297
12298 static void
12299 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12300 {
12301 unsigned int regno, endregno;
12302
12303 if (!REG_P (dest))
12304 return;
12305
12306 regno = REGNO (dest);
12307 endregno = END_REGNO (dest);
12308 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12309 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12310 }
12311
12312 /* Return nonzero if REG is known to be dead at INSN.
12313
12314 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12315 referencing REG, it is dead. If we hit a SET referencing REG, it is
12316 live. Otherwise, see if it is live or dead at the start of the basic
12317 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12318 must be assumed to be always live. */
12319
12320 static int
12321 reg_dead_at_p (rtx reg, rtx insn)
12322 {
12323 basic_block block;
12324 unsigned int i;
12325
12326 /* Set variables for reg_dead_at_p_1. */
12327 reg_dead_regno = REGNO (reg);
12328 reg_dead_endregno = END_REGNO (reg);
12329
12330 reg_dead_flag = 0;
12331
12332 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12333 we allow the machine description to decide whether use-and-clobber
12334 patterns are OK. */
12335 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12336 {
12337 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12338 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12339 return 0;
12340 }
12341
12342 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12343 beginning of basic block. */
12344 block = BLOCK_FOR_INSN (insn);
12345 for (;;)
12346 {
12347 if (INSN_P (insn))
12348 {
12349 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12350 if (reg_dead_flag)
12351 return reg_dead_flag == 1 ? 1 : 0;
12352
12353 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12354 return 1;
12355 }
12356
12357 if (insn == BB_HEAD (block))
12358 break;
12359
12360 insn = PREV_INSN (insn);
12361 }
12362
12363 /* Look at live-in sets for the basic block that we were in. */
12364 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12365 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12366 return 0;
12367
12368 return 1;
12369 }
12370 \f
12371 /* Note hard registers in X that are used. */
12372
12373 static void
12374 mark_used_regs_combine (rtx x)
12375 {
12376 RTX_CODE code = GET_CODE (x);
12377 unsigned int regno;
12378 int i;
12379
12380 switch (code)
12381 {
12382 case LABEL_REF:
12383 case SYMBOL_REF:
12384 case CONST_INT:
12385 case CONST:
12386 case CONST_DOUBLE:
12387 case CONST_VECTOR:
12388 case PC:
12389 case ADDR_VEC:
12390 case ADDR_DIFF_VEC:
12391 case ASM_INPUT:
12392 #ifdef HAVE_cc0
12393 /* CC0 must die in the insn after it is set, so we don't need to take
12394 special note of it here. */
12395 case CC0:
12396 #endif
12397 return;
12398
12399 case CLOBBER:
12400 /* If we are clobbering a MEM, mark any hard registers inside the
12401 address as used. */
12402 if (MEM_P (XEXP (x, 0)))
12403 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12404 return;
12405
12406 case REG:
12407 regno = REGNO (x);
12408 /* A hard reg in a wide mode may really be multiple registers.
12409 If so, mark all of them just like the first. */
12410 if (regno < FIRST_PSEUDO_REGISTER)
12411 {
12412 /* None of this applies to the stack, frame or arg pointers. */
12413 if (regno == STACK_POINTER_REGNUM
12414 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12415 || regno == HARD_FRAME_POINTER_REGNUM
12416 #endif
12417 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12418 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12419 #endif
12420 || regno == FRAME_POINTER_REGNUM)
12421 return;
12422
12423 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12424 }
12425 return;
12426
12427 case SET:
12428 {
12429 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12430 the address. */
12431 rtx testreg = SET_DEST (x);
12432
12433 while (GET_CODE (testreg) == SUBREG
12434 || GET_CODE (testreg) == ZERO_EXTRACT
12435 || GET_CODE (testreg) == STRICT_LOW_PART)
12436 testreg = XEXP (testreg, 0);
12437
12438 if (MEM_P (testreg))
12439 mark_used_regs_combine (XEXP (testreg, 0));
12440
12441 mark_used_regs_combine (SET_SRC (x));
12442 }
12443 return;
12444
12445 default:
12446 break;
12447 }
12448
12449 /* Recursively scan the operands of this expression. */
12450
12451 {
12452 const char *fmt = GET_RTX_FORMAT (code);
12453
12454 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12455 {
12456 if (fmt[i] == 'e')
12457 mark_used_regs_combine (XEXP (x, i));
12458 else if (fmt[i] == 'E')
12459 {
12460 int j;
12461
12462 for (j = 0; j < XVECLEN (x, i); j++)
12463 mark_used_regs_combine (XVECEXP (x, i, j));
12464 }
12465 }
12466 }
12467 }
12468 \f
12469 /* Remove register number REGNO from the dead registers list of INSN.
12470
12471 Return the note used to record the death, if there was one. */
12472
12473 rtx
12474 remove_death (unsigned int regno, rtx insn)
12475 {
12476 rtx note = find_regno_note (insn, REG_DEAD, regno);
12477
12478 if (note)
12479 remove_note (insn, note);
12480
12481 return note;
12482 }
12483
12484 /* For each register (hardware or pseudo) used within expression X, if its
12485 death is in an instruction with luid between FROM_LUID (inclusive) and
12486 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12487 list headed by PNOTES.
12488
12489 That said, don't move registers killed by maybe_kill_insn.
12490
12491 This is done when X is being merged by combination into TO_INSN. These
12492 notes will then be distributed as needed. */
12493
12494 static void
12495 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12496 rtx *pnotes)
12497 {
12498 const char *fmt;
12499 int len, i;
12500 enum rtx_code code = GET_CODE (x);
12501
12502 if (code == REG)
12503 {
12504 unsigned int regno = REGNO (x);
12505 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12506
12507 /* Don't move the register if it gets killed in between from and to. */
12508 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12509 && ! reg_referenced_p (x, maybe_kill_insn))
12510 return;
12511
12512 if (where_dead
12513 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12514 && DF_INSN_LUID (where_dead) >= from_luid
12515 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12516 {
12517 rtx note = remove_death (regno, where_dead);
12518
12519 /* It is possible for the call above to return 0. This can occur
12520 when last_death points to I2 or I1 that we combined with.
12521 In that case make a new note.
12522
12523 We must also check for the case where X is a hard register
12524 and NOTE is a death note for a range of hard registers
12525 including X. In that case, we must put REG_DEAD notes for
12526 the remaining registers in place of NOTE. */
12527
12528 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12529 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12530 > GET_MODE_SIZE (GET_MODE (x))))
12531 {
12532 unsigned int deadregno = REGNO (XEXP (note, 0));
12533 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12534 unsigned int ourend = END_HARD_REGNO (x);
12535 unsigned int i;
12536
12537 for (i = deadregno; i < deadend; i++)
12538 if (i < regno || i >= ourend)
12539 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12540 }
12541
12542 /* If we didn't find any note, or if we found a REG_DEAD note that
12543 covers only part of the given reg, and we have a multi-reg hard
12544 register, then to be safe we must check for REG_DEAD notes
12545 for each register other than the first. They could have
12546 their own REG_DEAD notes lying around. */
12547 else if ((note == 0
12548 || (note != 0
12549 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12550 < GET_MODE_SIZE (GET_MODE (x)))))
12551 && regno < FIRST_PSEUDO_REGISTER
12552 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12553 {
12554 unsigned int ourend = END_HARD_REGNO (x);
12555 unsigned int i, offset;
12556 rtx oldnotes = 0;
12557
12558 if (note)
12559 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12560 else
12561 offset = 1;
12562
12563 for (i = regno + offset; i < ourend; i++)
12564 move_deaths (regno_reg_rtx[i],
12565 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12566 }
12567
12568 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12569 {
12570 XEXP (note, 1) = *pnotes;
12571 *pnotes = note;
12572 }
12573 else
12574 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
12575 }
12576
12577 return;
12578 }
12579
12580 else if (GET_CODE (x) == SET)
12581 {
12582 rtx dest = SET_DEST (x);
12583
12584 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
12585
12586 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12587 that accesses one word of a multi-word item, some
12588 piece of everything register in the expression is used by
12589 this insn, so remove any old death. */
12590 /* ??? So why do we test for equality of the sizes? */
12591
12592 if (GET_CODE (dest) == ZERO_EXTRACT
12593 || GET_CODE (dest) == STRICT_LOW_PART
12594 || (GET_CODE (dest) == SUBREG
12595 && (((GET_MODE_SIZE (GET_MODE (dest))
12596 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12597 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12598 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12599 {
12600 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
12601 return;
12602 }
12603
12604 /* If this is some other SUBREG, we know it replaces the entire
12605 value, so use that as the destination. */
12606 if (GET_CODE (dest) == SUBREG)
12607 dest = SUBREG_REG (dest);
12608
12609 /* If this is a MEM, adjust deaths of anything used in the address.
12610 For a REG (the only other possibility), the entire value is
12611 being replaced so the old value is not used in this insn. */
12612
12613 if (MEM_P (dest))
12614 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
12615 to_insn, pnotes);
12616 return;
12617 }
12618
12619 else if (GET_CODE (x) == CLOBBER)
12620 return;
12621
12622 len = GET_RTX_LENGTH (code);
12623 fmt = GET_RTX_FORMAT (code);
12624
12625 for (i = 0; i < len; i++)
12626 {
12627 if (fmt[i] == 'E')
12628 {
12629 int j;
12630 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12631 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
12632 to_insn, pnotes);
12633 }
12634 else if (fmt[i] == 'e')
12635 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
12636 }
12637 }
12638 \f
12639 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12640 pattern of an insn. X must be a REG. */
12641
12642 static int
12643 reg_bitfield_target_p (rtx x, rtx body)
12644 {
12645 int i;
12646
12647 if (GET_CODE (body) == SET)
12648 {
12649 rtx dest = SET_DEST (body);
12650 rtx target;
12651 unsigned int regno, tregno, endregno, endtregno;
12652
12653 if (GET_CODE (dest) == ZERO_EXTRACT)
12654 target = XEXP (dest, 0);
12655 else if (GET_CODE (dest) == STRICT_LOW_PART)
12656 target = SUBREG_REG (XEXP (dest, 0));
12657 else
12658 return 0;
12659
12660 if (GET_CODE (target) == SUBREG)
12661 target = SUBREG_REG (target);
12662
12663 if (!REG_P (target))
12664 return 0;
12665
12666 tregno = REGNO (target), regno = REGNO (x);
12667 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12668 return target == x;
12669
12670 endtregno = end_hard_regno (GET_MODE (target), tregno);
12671 endregno = end_hard_regno (GET_MODE (x), regno);
12672
12673 return endregno > tregno && regno < endtregno;
12674 }
12675
12676 else if (GET_CODE (body) == PARALLEL)
12677 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12678 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12679 return 1;
12680
12681 return 0;
12682 }
12683
12684 /* Return the next insn after INSN that is neither a NOTE nor a
12685 DEBUG_INSN. This routine does not look inside SEQUENCEs. */
12686
12687 static rtx
12688 next_nonnote_nondebug_insn (rtx insn)
12689 {
12690 while (insn)
12691 {
12692 insn = NEXT_INSN (insn);
12693 if (insn == 0)
12694 break;
12695 if (NOTE_P (insn))
12696 continue;
12697 if (DEBUG_INSN_P (insn))
12698 continue;
12699 break;
12700 }
12701
12702 return insn;
12703 }
12704
12705
12706 \f
12707 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12708 as appropriate. I3 and I2 are the insns resulting from the combination
12709 insns including FROM (I2 may be zero).
12710
12711 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12712 not need REG_DEAD notes because they are being substituted for. This
12713 saves searching in the most common cases.
12714
12715 Each note in the list is either ignored or placed on some insns, depending
12716 on the type of note. */
12717
12718 static void
12719 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
12720 rtx elim_i1)
12721 {
12722 rtx note, next_note;
12723 rtx tem;
12724
12725 for (note = notes; note; note = next_note)
12726 {
12727 rtx place = 0, place2 = 0;
12728
12729 next_note = XEXP (note, 1);
12730 switch (REG_NOTE_KIND (note))
12731 {
12732 case REG_BR_PROB:
12733 case REG_BR_PRED:
12734 /* Doesn't matter much where we put this, as long as it's somewhere.
12735 It is preferable to keep these notes on branches, which is most
12736 likely to be i3. */
12737 place = i3;
12738 break;
12739
12740 case REG_VALUE_PROFILE:
12741 /* Just get rid of this note, as it is unused later anyway. */
12742 break;
12743
12744 case REG_NON_LOCAL_GOTO:
12745 if (JUMP_P (i3))
12746 place = i3;
12747 else
12748 {
12749 gcc_assert (i2 && JUMP_P (i2));
12750 place = i2;
12751 }
12752 break;
12753
12754 case REG_EH_REGION:
12755 /* These notes must remain with the call or trapping instruction. */
12756 if (CALL_P (i3))
12757 place = i3;
12758 else if (i2 && CALL_P (i2))
12759 place = i2;
12760 else
12761 {
12762 gcc_assert (flag_non_call_exceptions);
12763 if (may_trap_p (i3))
12764 place = i3;
12765 else if (i2 && may_trap_p (i2))
12766 place = i2;
12767 /* ??? Otherwise assume we've combined things such that we
12768 can now prove that the instructions can't trap. Drop the
12769 note in this case. */
12770 }
12771 break;
12772
12773 case REG_NORETURN:
12774 case REG_SETJMP:
12775 /* These notes must remain with the call. It should not be
12776 possible for both I2 and I3 to be a call. */
12777 if (CALL_P (i3))
12778 place = i3;
12779 else
12780 {
12781 gcc_assert (i2 && CALL_P (i2));
12782 place = i2;
12783 }
12784 break;
12785
12786 case REG_UNUSED:
12787 /* Any clobbers for i3 may still exist, and so we must process
12788 REG_UNUSED notes from that insn.
12789
12790 Any clobbers from i2 or i1 can only exist if they were added by
12791 recog_for_combine. In that case, recog_for_combine created the
12792 necessary REG_UNUSED notes. Trying to keep any original
12793 REG_UNUSED notes from these insns can cause incorrect output
12794 if it is for the same register as the original i3 dest.
12795 In that case, we will notice that the register is set in i3,
12796 and then add a REG_UNUSED note for the destination of i3, which
12797 is wrong. However, it is possible to have REG_UNUSED notes from
12798 i2 or i1 for register which were both used and clobbered, so
12799 we keep notes from i2 or i1 if they will turn into REG_DEAD
12800 notes. */
12801
12802 /* If this register is set or clobbered in I3, put the note there
12803 unless there is one already. */
12804 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12805 {
12806 if (from_insn != i3)
12807 break;
12808
12809 if (! (REG_P (XEXP (note, 0))
12810 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12811 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12812 place = i3;
12813 }
12814 /* Otherwise, if this register is used by I3, then this register
12815 now dies here, so we must put a REG_DEAD note here unless there
12816 is one already. */
12817 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12818 && ! (REG_P (XEXP (note, 0))
12819 ? find_regno_note (i3, REG_DEAD,
12820 REGNO (XEXP (note, 0)))
12821 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12822 {
12823 PUT_REG_NOTE_KIND (note, REG_DEAD);
12824 place = i3;
12825 }
12826 break;
12827
12828 case REG_EQUAL:
12829 case REG_EQUIV:
12830 case REG_NOALIAS:
12831 /* These notes say something about results of an insn. We can
12832 only support them if they used to be on I3 in which case they
12833 remain on I3. Otherwise they are ignored.
12834
12835 If the note refers to an expression that is not a constant, we
12836 must also ignore the note since we cannot tell whether the
12837 equivalence is still true. It might be possible to do
12838 slightly better than this (we only have a problem if I2DEST
12839 or I1DEST is present in the expression), but it doesn't
12840 seem worth the trouble. */
12841
12842 if (from_insn == i3
12843 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12844 place = i3;
12845 break;
12846
12847 case REG_INC:
12848 /* These notes say something about how a register is used. They must
12849 be present on any use of the register in I2 or I3. */
12850 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12851 place = i3;
12852
12853 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12854 {
12855 if (place)
12856 place2 = i2;
12857 else
12858 place = i2;
12859 }
12860 break;
12861
12862 case REG_LABEL_TARGET:
12863 case REG_LABEL_OPERAND:
12864 /* This can show up in several ways -- either directly in the
12865 pattern, or hidden off in the constant pool with (or without?)
12866 a REG_EQUAL note. */
12867 /* ??? Ignore the without-reg_equal-note problem for now. */
12868 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12869 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12870 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12871 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12872 place = i3;
12873
12874 if (i2
12875 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12876 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12877 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12878 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12879 {
12880 if (place)
12881 place2 = i2;
12882 else
12883 place = i2;
12884 }
12885
12886 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
12887 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
12888 there. */
12889 if (place && JUMP_P (place)
12890 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12891 && (JUMP_LABEL (place) == NULL
12892 || JUMP_LABEL (place) == XEXP (note, 0)))
12893 {
12894 rtx label = JUMP_LABEL (place);
12895
12896 if (!label)
12897 JUMP_LABEL (place) = XEXP (note, 0);
12898 else if (LABEL_P (label))
12899 LABEL_NUSES (label)--;
12900 }
12901
12902 if (place2 && JUMP_P (place2)
12903 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12904 && (JUMP_LABEL (place2) == NULL
12905 || JUMP_LABEL (place2) == XEXP (note, 0)))
12906 {
12907 rtx label = JUMP_LABEL (place2);
12908
12909 if (!label)
12910 JUMP_LABEL (place2) = XEXP (note, 0);
12911 else if (LABEL_P (label))
12912 LABEL_NUSES (label)--;
12913 place2 = 0;
12914 }
12915 break;
12916
12917 case REG_NONNEG:
12918 /* This note says something about the value of a register prior
12919 to the execution of an insn. It is too much trouble to see
12920 if the note is still correct in all situations. It is better
12921 to simply delete it. */
12922 break;
12923
12924 case REG_DEAD:
12925 /* If we replaced the right hand side of FROM_INSN with a
12926 REG_EQUAL note, the original use of the dying register
12927 will not have been combined into I3 and I2. In such cases,
12928 FROM_INSN is guaranteed to be the first of the combined
12929 instructions, so we simply need to search back before
12930 FROM_INSN for the previous use or set of this register,
12931 then alter the notes there appropriately.
12932
12933 If the register is used as an input in I3, it dies there.
12934 Similarly for I2, if it is nonzero and adjacent to I3.
12935
12936 If the register is not used as an input in either I3 or I2
12937 and it is not one of the registers we were supposed to eliminate,
12938 there are two possibilities. We might have a non-adjacent I2
12939 or we might have somehow eliminated an additional register
12940 from a computation. For example, we might have had A & B where
12941 we discover that B will always be zero. In this case we will
12942 eliminate the reference to A.
12943
12944 In both cases, we must search to see if we can find a previous
12945 use of A and put the death note there. */
12946
12947 if (from_insn
12948 && from_insn == i2mod
12949 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
12950 tem = from_insn;
12951 else
12952 {
12953 if (from_insn
12954 && CALL_P (from_insn)
12955 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12956 place = from_insn;
12957 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12958 place = i3;
12959 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
12960 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12961 place = i2;
12962 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
12963 && !(i2mod
12964 && reg_overlap_mentioned_p (XEXP (note, 0),
12965 i2mod_old_rhs)))
12966 || rtx_equal_p (XEXP (note, 0), elim_i1))
12967 break;
12968 tem = i3;
12969 }
12970
12971 if (place == 0)
12972 {
12973 basic_block bb = this_basic_block;
12974
12975 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
12976 {
12977 if (!NONDEBUG_INSN_P (tem))
12978 {
12979 if (tem == BB_HEAD (bb))
12980 break;
12981 continue;
12982 }
12983
12984 /* If the register is being set at TEM, see if that is all
12985 TEM is doing. If so, delete TEM. Otherwise, make this
12986 into a REG_UNUSED note instead. Don't delete sets to
12987 global register vars. */
12988 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12989 || !global_regs[REGNO (XEXP (note, 0))])
12990 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12991 {
12992 rtx set = single_set (tem);
12993 rtx inner_dest = 0;
12994 #ifdef HAVE_cc0
12995 rtx cc0_setter = NULL_RTX;
12996 #endif
12997
12998 if (set != 0)
12999 for (inner_dest = SET_DEST (set);
13000 (GET_CODE (inner_dest) == STRICT_LOW_PART
13001 || GET_CODE (inner_dest) == SUBREG
13002 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13003 inner_dest = XEXP (inner_dest, 0))
13004 ;
13005
13006 /* Verify that it was the set, and not a clobber that
13007 modified the register.
13008
13009 CC0 targets must be careful to maintain setter/user
13010 pairs. If we cannot delete the setter due to side
13011 effects, mark the user with an UNUSED note instead
13012 of deleting it. */
13013
13014 if (set != 0 && ! side_effects_p (SET_SRC (set))
13015 && rtx_equal_p (XEXP (note, 0), inner_dest)
13016 #ifdef HAVE_cc0
13017 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13018 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13019 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13020 #endif
13021 )
13022 {
13023 /* Move the notes and links of TEM elsewhere.
13024 This might delete other dead insns recursively.
13025 First set the pattern to something that won't use
13026 any register. */
13027 rtx old_notes = REG_NOTES (tem);
13028
13029 PATTERN (tem) = pc_rtx;
13030 REG_NOTES (tem) = NULL;
13031
13032 distribute_notes (old_notes, tem, tem, NULL_RTX,
13033 NULL_RTX, NULL_RTX);
13034 distribute_links (LOG_LINKS (tem));
13035
13036 SET_INSN_DELETED (tem);
13037 if (tem == i2)
13038 i2 = NULL_RTX;
13039
13040 #ifdef HAVE_cc0
13041 /* Delete the setter too. */
13042 if (cc0_setter)
13043 {
13044 PATTERN (cc0_setter) = pc_rtx;
13045 old_notes = REG_NOTES (cc0_setter);
13046 REG_NOTES (cc0_setter) = NULL;
13047
13048 distribute_notes (old_notes, cc0_setter,
13049 cc0_setter, NULL_RTX,
13050 NULL_RTX, NULL_RTX);
13051 distribute_links (LOG_LINKS (cc0_setter));
13052
13053 SET_INSN_DELETED (cc0_setter);
13054 if (cc0_setter == i2)
13055 i2 = NULL_RTX;
13056 }
13057 #endif
13058 }
13059 else
13060 {
13061 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13062
13063 /* If there isn't already a REG_UNUSED note, put one
13064 here. Do not place a REG_DEAD note, even if
13065 the register is also used here; that would not
13066 match the algorithm used in lifetime analysis
13067 and can cause the consistency check in the
13068 scheduler to fail. */
13069 if (! find_regno_note (tem, REG_UNUSED,
13070 REGNO (XEXP (note, 0))))
13071 place = tem;
13072 break;
13073 }
13074 }
13075 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13076 || (CALL_P (tem)
13077 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13078 {
13079 place = tem;
13080
13081 /* If we are doing a 3->2 combination, and we have a
13082 register which formerly died in i3 and was not used
13083 by i2, which now no longer dies in i3 and is used in
13084 i2 but does not die in i2, and place is between i2
13085 and i3, then we may need to move a link from place to
13086 i2. */
13087 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13088 && from_insn
13089 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13090 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13091 {
13092 rtx links = LOG_LINKS (place);
13093 LOG_LINKS (place) = 0;
13094 distribute_links (links);
13095 }
13096 break;
13097 }
13098
13099 if (tem == BB_HEAD (bb))
13100 break;
13101 }
13102
13103 }
13104
13105 /* If the register is set or already dead at PLACE, we needn't do
13106 anything with this note if it is still a REG_DEAD note.
13107 We check here if it is set at all, not if is it totally replaced,
13108 which is what `dead_or_set_p' checks, so also check for it being
13109 set partially. */
13110
13111 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13112 {
13113 unsigned int regno = REGNO (XEXP (note, 0));
13114 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
13115
13116 if (dead_or_set_p (place, XEXP (note, 0))
13117 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13118 {
13119 /* Unless the register previously died in PLACE, clear
13120 last_death. [I no longer understand why this is
13121 being done.] */
13122 if (rsp->last_death != place)
13123 rsp->last_death = 0;
13124 place = 0;
13125 }
13126 else
13127 rsp->last_death = place;
13128
13129 /* If this is a death note for a hard reg that is occupying
13130 multiple registers, ensure that we are still using all
13131 parts of the object. If we find a piece of the object
13132 that is unused, we must arrange for an appropriate REG_DEAD
13133 note to be added for it. However, we can't just emit a USE
13134 and tag the note to it, since the register might actually
13135 be dead; so we recourse, and the recursive call then finds
13136 the previous insn that used this register. */
13137
13138 if (place && regno < FIRST_PSEUDO_REGISTER
13139 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13140 {
13141 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13142 int all_used = 1;
13143 unsigned int i;
13144
13145 for (i = regno; i < endregno; i++)
13146 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13147 && ! find_regno_fusage (place, USE, i))
13148 || dead_or_set_regno_p (place, i))
13149 all_used = 0;
13150
13151 if (! all_used)
13152 {
13153 /* Put only REG_DEAD notes for pieces that are
13154 not already dead or set. */
13155
13156 for (i = regno; i < endregno;
13157 i += hard_regno_nregs[i][reg_raw_mode[i]])
13158 {
13159 rtx piece = regno_reg_rtx[i];
13160 basic_block bb = this_basic_block;
13161
13162 if (! dead_or_set_p (place, piece)
13163 && ! reg_bitfield_target_p (piece,
13164 PATTERN (place)))
13165 {
13166 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13167 NULL_RTX);
13168
13169 distribute_notes (new_note, place, place,
13170 NULL_RTX, NULL_RTX, NULL_RTX);
13171 }
13172 else if (! refers_to_regno_p (i, i + 1,
13173 PATTERN (place), 0)
13174 && ! find_regno_fusage (place, USE, i))
13175 for (tem = PREV_INSN (place); ;
13176 tem = PREV_INSN (tem))
13177 {
13178 if (!NONDEBUG_INSN_P (tem))
13179 {
13180 if (tem == BB_HEAD (bb))
13181 break;
13182 continue;
13183 }
13184 if (dead_or_set_p (tem, piece)
13185 || reg_bitfield_target_p (piece,
13186 PATTERN (tem)))
13187 {
13188 add_reg_note (tem, REG_UNUSED, piece);
13189 break;
13190 }
13191 }
13192
13193 }
13194
13195 place = 0;
13196 }
13197 }
13198 }
13199 break;
13200
13201 default:
13202 /* Any other notes should not be present at this point in the
13203 compilation. */
13204 gcc_unreachable ();
13205 }
13206
13207 if (place)
13208 {
13209 XEXP (note, 1) = REG_NOTES (place);
13210 REG_NOTES (place) = note;
13211 }
13212
13213 if (place2)
13214 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13215 }
13216 }
13217 \f
13218 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13219 I3, I2, and I1 to new locations. This is also called to add a link
13220 pointing at I3 when I3's destination is changed. */
13221
13222 static void
13223 distribute_links (rtx links)
13224 {
13225 rtx link, next_link;
13226
13227 for (link = links; link; link = next_link)
13228 {
13229 rtx place = 0;
13230 rtx insn;
13231 rtx set, reg;
13232
13233 next_link = XEXP (link, 1);
13234
13235 /* If the insn that this link points to is a NOTE or isn't a single
13236 set, ignore it. In the latter case, it isn't clear what we
13237 can do other than ignore the link, since we can't tell which
13238 register it was for. Such links wouldn't be used by combine
13239 anyway.
13240
13241 It is not possible for the destination of the target of the link to
13242 have been changed by combine. The only potential of this is if we
13243 replace I3, I2, and I1 by I3 and I2. But in that case the
13244 destination of I2 also remains unchanged. */
13245
13246 if (NOTE_P (XEXP (link, 0))
13247 || (set = single_set (XEXP (link, 0))) == 0)
13248 continue;
13249
13250 reg = SET_DEST (set);
13251 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13252 || GET_CODE (reg) == STRICT_LOW_PART)
13253 reg = XEXP (reg, 0);
13254
13255 /* A LOG_LINK is defined as being placed on the first insn that uses
13256 a register and points to the insn that sets the register. Start
13257 searching at the next insn after the target of the link and stop
13258 when we reach a set of the register or the end of the basic block.
13259
13260 Note that this correctly handles the link that used to point from
13261 I3 to I2. Also note that not much searching is typically done here
13262 since most links don't point very far away. */
13263
13264 for (insn = NEXT_INSN (XEXP (link, 0));
13265 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13266 || BB_HEAD (this_basic_block->next_bb) != insn));
13267 insn = NEXT_INSN (insn))
13268 if (DEBUG_INSN_P (insn))
13269 continue;
13270 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13271 {
13272 if (reg_referenced_p (reg, PATTERN (insn)))
13273 place = insn;
13274 break;
13275 }
13276 else if (CALL_P (insn)
13277 && find_reg_fusage (insn, USE, reg))
13278 {
13279 place = insn;
13280 break;
13281 }
13282 else if (INSN_P (insn) && reg_set_p (reg, insn))
13283 break;
13284
13285 /* If we found a place to put the link, place it there unless there
13286 is already a link to the same insn as LINK at that point. */
13287
13288 if (place)
13289 {
13290 rtx link2;
13291
13292 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
13293 if (XEXP (link2, 0) == XEXP (link, 0))
13294 break;
13295
13296 if (link2 == 0)
13297 {
13298 XEXP (link, 1) = LOG_LINKS (place);
13299 LOG_LINKS (place) = link;
13300
13301 /* Set added_links_insn to the earliest insn we added a
13302 link to. */
13303 if (added_links_insn == 0
13304 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13305 added_links_insn = place;
13306 }
13307 }
13308 }
13309 }
13310 \f
13311 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13312 Check whether the expression pointer to by LOC is a register or
13313 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13314 Otherwise return zero. */
13315
13316 static int
13317 unmentioned_reg_p_1 (rtx *loc, void *expr)
13318 {
13319 rtx x = *loc;
13320
13321 if (x != NULL_RTX
13322 && (REG_P (x) || MEM_P (x))
13323 && ! reg_mentioned_p (x, (rtx) expr))
13324 return 1;
13325 return 0;
13326 }
13327
13328 /* Check for any register or memory mentioned in EQUIV that is not
13329 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13330 of EXPR where some registers may have been replaced by constants. */
13331
13332 static bool
13333 unmentioned_reg_p (rtx equiv, rtx expr)
13334 {
13335 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13336 }
13337 \f
13338 void
13339 dump_combine_stats (FILE *file)
13340 {
13341 fprintf
13342 (file,
13343 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13344 combine_attempts, combine_merges, combine_extras, combine_successes);
13345 }
13346
13347 void
13348 dump_combine_total_stats (FILE *file)
13349 {
13350 fprintf
13351 (file,
13352 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13353 total_attempts, total_merges, total_extras, total_successes);
13354 }
13355 \f
13356 static bool
13357 gate_handle_combine (void)
13358 {
13359 return (optimize > 0);
13360 }
13361
13362 /* Try combining insns through substitution. */
13363 static unsigned int
13364 rest_of_handle_combine (void)
13365 {
13366 int rebuild_jump_labels_after_combine;
13367
13368 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13369 df_note_add_problem ();
13370 df_analyze ();
13371
13372 regstat_init_n_sets_and_refs ();
13373
13374 rebuild_jump_labels_after_combine
13375 = combine_instructions (get_insns (), max_reg_num ());
13376
13377 /* Combining insns may have turned an indirect jump into a
13378 direct jump. Rebuild the JUMP_LABEL fields of jumping
13379 instructions. */
13380 if (rebuild_jump_labels_after_combine)
13381 {
13382 timevar_push (TV_JUMP);
13383 rebuild_jump_labels (get_insns ());
13384 cleanup_cfg (0);
13385 timevar_pop (TV_JUMP);
13386 }
13387
13388 regstat_free_n_sets_and_refs ();
13389 return 0;
13390 }
13391
13392 struct rtl_opt_pass pass_combine =
13393 {
13394 {
13395 RTL_PASS,
13396 "combine", /* name */
13397 gate_handle_combine, /* gate */
13398 rest_of_handle_combine, /* execute */
13399 NULL, /* sub */
13400 NULL, /* next */
13401 0, /* static_pass_number */
13402 TV_COMBINE, /* tv_id */
13403 PROP_cfglayout, /* properties_required */
13404 0, /* properties_provided */
13405 0, /* properties_destroyed */
13406 0, /* todo_flags_start */
13407 TODO_dump_func |
13408 TODO_df_finish | TODO_verify_rtl_sharing |
13409 TODO_ggc_collect, /* todo_flags_finish */
13410 }
13411 };