cse.c: Use HOST_WIDE_INT_M1 instead of ~(HOST_WIDE_INT) 0.
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "predict.h"
86 #include "df.h"
87 #include "tm_p.h"
88 #include "optabs.h"
89 #include "regs.h"
90 #include "emit-rtl.h"
91 #include "recog.h"
92 #include "cgraph.h"
93 #include "stor-layout.h"
94 #include "cfgrtl.h"
95 #include "cfgcleanup.h"
96 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
97 #include "explow.h"
98 #include "insn-attr.h"
99 #include "rtlhooks-def.h"
100 #include "params.h"
101 #include "tree-pass.h"
102 #include "valtrack.h"
103 #include "rtl-iter.h"
104 #include "print-rtl.h"
105
106 #ifndef LOAD_EXTEND_OP
107 #define LOAD_EXTEND_OP(M) UNKNOWN
108 #endif
109
110 /* Number of attempts to combine instructions in this function. */
111
112 static int combine_attempts;
113
114 /* Number of attempts that got as far as substitution in this function. */
115
116 static int combine_merges;
117
118 /* Number of instructions combined with added SETs in this function. */
119
120 static int combine_extras;
121
122 /* Number of instructions combined in this function. */
123
124 static int combine_successes;
125
126 /* Totals over entire compilation. */
127
128 static int total_attempts, total_merges, total_extras, total_successes;
129
130 /* combine_instructions may try to replace the right hand side of the
131 second instruction with the value of an associated REG_EQUAL note
132 before throwing it at try_combine. That is problematic when there
133 is a REG_DEAD note for a register used in the old right hand side
134 and can cause distribute_notes to do wrong things. This is the
135 second instruction if it has been so modified, null otherwise. */
136
137 static rtx_insn *i2mod;
138
139 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
140
141 static rtx i2mod_old_rhs;
142
143 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
144
145 static rtx i2mod_new_rhs;
146 \f
147 struct reg_stat_type {
148 /* Record last point of death of (hard or pseudo) register n. */
149 rtx_insn *last_death;
150
151 /* Record last point of modification of (hard or pseudo) register n. */
152 rtx_insn *last_set;
153
154 /* The next group of fields allows the recording of the last value assigned
155 to (hard or pseudo) register n. We use this information to see if an
156 operation being processed is redundant given a prior operation performed
157 on the register. For example, an `and' with a constant is redundant if
158 all the zero bits are already known to be turned off.
159
160 We use an approach similar to that used by cse, but change it in the
161 following ways:
162
163 (1) We do not want to reinitialize at each label.
164 (2) It is useful, but not critical, to know the actual value assigned
165 to a register. Often just its form is helpful.
166
167 Therefore, we maintain the following fields:
168
169 last_set_value the last value assigned
170 last_set_label records the value of label_tick when the
171 register was assigned
172 last_set_table_tick records the value of label_tick when a
173 value using the register is assigned
174 last_set_invalid set to nonzero when it is not valid
175 to use the value of this register in some
176 register's value
177
178 To understand the usage of these tables, it is important to understand
179 the distinction between the value in last_set_value being valid and
180 the register being validly contained in some other expression in the
181 table.
182
183 (The next two parameters are out of date).
184
185 reg_stat[i].last_set_value is valid if it is nonzero, and either
186 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187
188 Register I may validly appear in any expression returned for the value
189 of another register if reg_n_sets[i] is 1. It may also appear in the
190 value for register J if reg_stat[j].last_set_invalid is zero, or
191 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192
193 If an expression is found in the table containing a register which may
194 not validly appear in an expression, the register is replaced by
195 something that won't match, (clobber (const_int 0)). */
196
197 /* Record last value assigned to (hard or pseudo) register n. */
198
199 rtx last_set_value;
200
201 /* Record the value of label_tick when an expression involving register n
202 is placed in last_set_value. */
203
204 int last_set_table_tick;
205
206 /* Record the value of label_tick when the value for register n is placed in
207 last_set_value. */
208
209 int last_set_label;
210
211 /* These fields are maintained in parallel with last_set_value and are
212 used to store the mode in which the register was last set, the bits
213 that were known to be zero when it was last set, and the number of
214 sign bits copies it was known to have when it was last set. */
215
216 unsigned HOST_WIDE_INT last_set_nonzero_bits;
217 char last_set_sign_bit_copies;
218 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219
220 /* Set nonzero if references to register n in expressions should not be
221 used. last_set_invalid is set nonzero when this register is being
222 assigned to and last_set_table_tick == label_tick. */
223
224 char last_set_invalid;
225
226 /* Some registers that are set more than once and used in more than one
227 basic block are nevertheless always set in similar ways. For example,
228 a QImode register may be loaded from memory in two places on a machine
229 where byte loads zero extend.
230
231 We record in the following fields if a register has some leading bits
232 that are always equal to the sign bit, and what we know about the
233 nonzero bits of a register, specifically which bits are known to be
234 zero.
235
236 If an entry is zero, it means that we don't know anything special. */
237
238 unsigned char sign_bit_copies;
239
240 unsigned HOST_WIDE_INT nonzero_bits;
241
242 /* Record the value of the label_tick when the last truncation
243 happened. The field truncated_to_mode is only valid if
244 truncation_label == label_tick. */
245
246 int truncation_label;
247
248 /* Record the last truncation seen for this register. If truncation
249 is not a nop to this mode we might be able to save an explicit
250 truncation if we know that value already contains a truncated
251 value. */
252
253 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
254 };
255
256
257 static vec<reg_stat_type> reg_stat;
258
259 /* One plus the highest pseudo for which we track REG_N_SETS.
260 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
261 but during combine_split_insns new pseudos can be created. As we don't have
262 updated DF information in that case, it is hard to initialize the array
263 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
264 so instead of growing the arrays, just assume all newly created pseudos
265 during combine might be set multiple times. */
266
267 static unsigned int reg_n_sets_max;
268
269 /* Record the luid of the last insn that invalidated memory
270 (anything that writes memory, and subroutine calls, but not pushes). */
271
272 static int mem_last_set;
273
274 /* Record the luid of the last CALL_INSN
275 so we can tell whether a potential combination crosses any calls. */
276
277 static int last_call_luid;
278
279 /* When `subst' is called, this is the insn that is being modified
280 (by combining in a previous insn). The PATTERN of this insn
281 is still the old pattern partially modified and it should not be
282 looked at, but this may be used to examine the successors of the insn
283 to judge whether a simplification is valid. */
284
285 static rtx_insn *subst_insn;
286
287 /* This is the lowest LUID that `subst' is currently dealing with.
288 get_last_value will not return a value if the register was set at or
289 after this LUID. If not for this mechanism, we could get confused if
290 I2 or I1 in try_combine were an insn that used the old value of a register
291 to obtain a new value. In that case, we might erroneously get the
292 new value of the register when we wanted the old one. */
293
294 static int subst_low_luid;
295
296 /* This contains any hard registers that are used in newpat; reg_dead_at_p
297 must consider all these registers to be always live. */
298
299 static HARD_REG_SET newpat_used_regs;
300
301 /* This is an insn to which a LOG_LINKS entry has been added. If this
302 insn is the earlier than I2 or I3, combine should rescan starting at
303 that location. */
304
305 static rtx_insn *added_links_insn;
306
307 /* Basic block in which we are performing combines. */
308 static basic_block this_basic_block;
309 static bool optimize_this_for_speed_p;
310
311 \f
312 /* Length of the currently allocated uid_insn_cost array. */
313
314 static int max_uid_known;
315
316 /* The following array records the insn_rtx_cost for every insn
317 in the instruction stream. */
318
319 static int *uid_insn_cost;
320
321 /* The following array records the LOG_LINKS for every insn in the
322 instruction stream as struct insn_link pointers. */
323
324 struct insn_link {
325 rtx_insn *insn;
326 unsigned int regno;
327 struct insn_link *next;
328 };
329
330 static struct insn_link **uid_log_links;
331
332 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
333 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
334
335 #define FOR_EACH_LOG_LINK(L, INSN) \
336 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
337
338 /* Links for LOG_LINKS are allocated from this obstack. */
339
340 static struct obstack insn_link_obstack;
341
342 /* Allocate a link. */
343
344 static inline struct insn_link *
345 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
346 {
347 struct insn_link *l
348 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
349 sizeof (struct insn_link));
350 l->insn = insn;
351 l->regno = regno;
352 l->next = next;
353 return l;
354 }
355
356 /* Incremented for each basic block. */
357
358 static int label_tick;
359
360 /* Reset to label_tick for each extended basic block in scanning order. */
361
362 static int label_tick_ebb_start;
363
364 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
365 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
366
367 static machine_mode nonzero_bits_mode;
368
369 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
370 be safely used. It is zero while computing them and after combine has
371 completed. This former test prevents propagating values based on
372 previously set values, which can be incorrect if a variable is modified
373 in a loop. */
374
375 static int nonzero_sign_valid;
376
377 \f
378 /* Record one modification to rtl structure
379 to be undone by storing old_contents into *where. */
380
381 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
382
383 struct undo
384 {
385 struct undo *next;
386 enum undo_kind kind;
387 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
388 union { rtx *r; int *i; struct insn_link **l; } where;
389 };
390
391 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
392 num_undo says how many are currently recorded.
393
394 other_insn is nonzero if we have modified some other insn in the process
395 of working on subst_insn. It must be verified too. */
396
397 struct undobuf
398 {
399 struct undo *undos;
400 struct undo *frees;
401 rtx_insn *other_insn;
402 };
403
404 static struct undobuf undobuf;
405
406 /* Number of times the pseudo being substituted for
407 was found and replaced. */
408
409 static int n_occurrences;
410
411 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
412 machine_mode,
413 unsigned HOST_WIDE_INT,
414 unsigned HOST_WIDE_INT *);
415 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
416 machine_mode,
417 unsigned int, unsigned int *);
418 static void do_SUBST (rtx *, rtx);
419 static void do_SUBST_INT (int *, int);
420 static void init_reg_last (void);
421 static void setup_incoming_promotions (rtx_insn *);
422 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
423 static int cant_combine_insn_p (rtx_insn *);
424 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
425 rtx_insn *, rtx_insn *, rtx *, rtx *);
426 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
427 static int contains_muldiv (rtx);
428 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
429 int *, rtx_insn *);
430 static void undo_all (void);
431 static void undo_commit (void);
432 static rtx *find_split_point (rtx *, rtx_insn *, bool);
433 static rtx subst (rtx, rtx, rtx, int, int, int);
434 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
435 static rtx simplify_if_then_else (rtx);
436 static rtx simplify_set (rtx);
437 static rtx simplify_logical (rtx);
438 static rtx expand_compound_operation (rtx);
439 static const_rtx expand_field_assignment (const_rtx);
440 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
441 rtx, unsigned HOST_WIDE_INT, int, int, int);
442 static rtx extract_left_shift (rtx, int);
443 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
444 unsigned HOST_WIDE_INT *);
445 static rtx canon_reg_for_combine (rtx, rtx);
446 static rtx force_to_mode (rtx, machine_mode,
447 unsigned HOST_WIDE_INT, int);
448 static rtx if_then_else_cond (rtx, rtx *, rtx *);
449 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
450 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
451 static rtx make_field_assignment (rtx);
452 static rtx apply_distributive_law (rtx);
453 static rtx distribute_and_simplify_rtx (rtx, int);
454 static rtx simplify_and_const_int_1 (machine_mode, rtx,
455 unsigned HOST_WIDE_INT);
456 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
457 unsigned HOST_WIDE_INT);
458 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
459 HOST_WIDE_INT, machine_mode, int *);
460 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
461 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
462 int);
463 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
464 static rtx gen_lowpart_for_combine (machine_mode, rtx);
465 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
466 rtx, rtx *);
467 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
468 static void update_table_tick (rtx);
469 static void record_value_for_reg (rtx, rtx_insn *, rtx);
470 static void check_promoted_subreg (rtx_insn *, rtx);
471 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
472 static void record_dead_and_set_regs (rtx_insn *);
473 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
474 static rtx get_last_value (const_rtx);
475 static int use_crosses_set_p (const_rtx, int);
476 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
477 static int reg_dead_at_p (rtx, rtx_insn *);
478 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
479 static int reg_bitfield_target_p (rtx, rtx);
480 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
481 static void distribute_links (struct insn_link *);
482 static void mark_used_regs_combine (rtx);
483 static void record_promoted_value (rtx_insn *, rtx);
484 static bool unmentioned_reg_p (rtx, rtx);
485 static void record_truncated_values (rtx *, void *);
486 static bool reg_truncated_to_mode (machine_mode, const_rtx);
487 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
488 \f
489
490 /* It is not safe to use ordinary gen_lowpart in combine.
491 See comments in gen_lowpart_for_combine. */
492 #undef RTL_HOOKS_GEN_LOWPART
493 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
494
495 /* Our implementation of gen_lowpart never emits a new pseudo. */
496 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
497 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
498
499 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
500 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
501
502 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
503 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
504
505 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
506 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
507
508 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
509
510 \f
511 /* Convenience wrapper for the canonicalize_comparison target hook.
512 Target hooks cannot use enum rtx_code. */
513 static inline void
514 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
515 bool op0_preserve_value)
516 {
517 int code_int = (int)*code;
518 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
519 *code = (enum rtx_code)code_int;
520 }
521
522 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
523 PATTERN can not be split. Otherwise, it returns an insn sequence.
524 This is a wrapper around split_insns which ensures that the
525 reg_stat vector is made larger if the splitter creates a new
526 register. */
527
528 static rtx_insn *
529 combine_split_insns (rtx pattern, rtx_insn *insn)
530 {
531 rtx_insn *ret;
532 unsigned int nregs;
533
534 ret = split_insns (pattern, insn);
535 nregs = max_reg_num ();
536 if (nregs > reg_stat.length ())
537 reg_stat.safe_grow_cleared (nregs);
538 return ret;
539 }
540
541 /* This is used by find_single_use to locate an rtx in LOC that
542 contains exactly one use of DEST, which is typically either a REG
543 or CC0. It returns a pointer to the innermost rtx expression
544 containing DEST. Appearances of DEST that are being used to
545 totally replace it are not counted. */
546
547 static rtx *
548 find_single_use_1 (rtx dest, rtx *loc)
549 {
550 rtx x = *loc;
551 enum rtx_code code = GET_CODE (x);
552 rtx *result = NULL;
553 rtx *this_result;
554 int i;
555 const char *fmt;
556
557 switch (code)
558 {
559 case CONST:
560 case LABEL_REF:
561 case SYMBOL_REF:
562 CASE_CONST_ANY:
563 case CLOBBER:
564 return 0;
565
566 case SET:
567 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
568 of a REG that occupies all of the REG, the insn uses DEST if
569 it is mentioned in the destination or the source. Otherwise, we
570 need just check the source. */
571 if (GET_CODE (SET_DEST (x)) != CC0
572 && GET_CODE (SET_DEST (x)) != PC
573 && !REG_P (SET_DEST (x))
574 && ! (GET_CODE (SET_DEST (x)) == SUBREG
575 && REG_P (SUBREG_REG (SET_DEST (x)))
576 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
577 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
578 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
579 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
580 break;
581
582 return find_single_use_1 (dest, &SET_SRC (x));
583
584 case MEM:
585 case SUBREG:
586 return find_single_use_1 (dest, &XEXP (x, 0));
587
588 default:
589 break;
590 }
591
592 /* If it wasn't one of the common cases above, check each expression and
593 vector of this code. Look for a unique usage of DEST. */
594
595 fmt = GET_RTX_FORMAT (code);
596 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
597 {
598 if (fmt[i] == 'e')
599 {
600 if (dest == XEXP (x, i)
601 || (REG_P (dest) && REG_P (XEXP (x, i))
602 && REGNO (dest) == REGNO (XEXP (x, i))))
603 this_result = loc;
604 else
605 this_result = find_single_use_1 (dest, &XEXP (x, i));
606
607 if (result == NULL)
608 result = this_result;
609 else if (this_result)
610 /* Duplicate usage. */
611 return NULL;
612 }
613 else if (fmt[i] == 'E')
614 {
615 int j;
616
617 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
618 {
619 if (XVECEXP (x, i, j) == dest
620 || (REG_P (dest)
621 && REG_P (XVECEXP (x, i, j))
622 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
623 this_result = loc;
624 else
625 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
626
627 if (result == NULL)
628 result = this_result;
629 else if (this_result)
630 return NULL;
631 }
632 }
633 }
634
635 return result;
636 }
637
638
639 /* See if DEST, produced in INSN, is used only a single time in the
640 sequel. If so, return a pointer to the innermost rtx expression in which
641 it is used.
642
643 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
644
645 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
646 care about REG_DEAD notes or LOG_LINKS.
647
648 Otherwise, we find the single use by finding an insn that has a
649 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
650 only referenced once in that insn, we know that it must be the first
651 and last insn referencing DEST. */
652
653 static rtx *
654 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
655 {
656 basic_block bb;
657 rtx_insn *next;
658 rtx *result;
659 struct insn_link *link;
660
661 if (dest == cc0_rtx)
662 {
663 next = NEXT_INSN (insn);
664 if (next == 0
665 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
666 return 0;
667
668 result = find_single_use_1 (dest, &PATTERN (next));
669 if (result && ploc)
670 *ploc = next;
671 return result;
672 }
673
674 if (!REG_P (dest))
675 return 0;
676
677 bb = BLOCK_FOR_INSN (insn);
678 for (next = NEXT_INSN (insn);
679 next && BLOCK_FOR_INSN (next) == bb;
680 next = NEXT_INSN (next))
681 if (INSN_P (next) && dead_or_set_p (next, dest))
682 {
683 FOR_EACH_LOG_LINK (link, next)
684 if (link->insn == insn && link->regno == REGNO (dest))
685 break;
686
687 if (link)
688 {
689 result = find_single_use_1 (dest, &PATTERN (next));
690 if (ploc)
691 *ploc = next;
692 return result;
693 }
694 }
695
696 return 0;
697 }
698 \f
699 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
700 insn. The substitution can be undone by undo_all. If INTO is already
701 set to NEWVAL, do not record this change. Because computing NEWVAL might
702 also call SUBST, we have to compute it before we put anything into
703 the undo table. */
704
705 static void
706 do_SUBST (rtx *into, rtx newval)
707 {
708 struct undo *buf;
709 rtx oldval = *into;
710
711 if (oldval == newval)
712 return;
713
714 /* We'd like to catch as many invalid transformations here as
715 possible. Unfortunately, there are way too many mode changes
716 that are perfectly valid, so we'd waste too much effort for
717 little gain doing the checks here. Focus on catching invalid
718 transformations involving integer constants. */
719 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
720 && CONST_INT_P (newval))
721 {
722 /* Sanity check that we're replacing oldval with a CONST_INT
723 that is a valid sign-extension for the original mode. */
724 gcc_assert (INTVAL (newval)
725 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
726
727 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
728 CONST_INT is not valid, because after the replacement, the
729 original mode would be gone. Unfortunately, we can't tell
730 when do_SUBST is called to replace the operand thereof, so we
731 perform this test on oldval instead, checking whether an
732 invalid replacement took place before we got here. */
733 gcc_assert (!(GET_CODE (oldval) == SUBREG
734 && CONST_INT_P (SUBREG_REG (oldval))));
735 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
736 && CONST_INT_P (XEXP (oldval, 0))));
737 }
738
739 if (undobuf.frees)
740 buf = undobuf.frees, undobuf.frees = buf->next;
741 else
742 buf = XNEW (struct undo);
743
744 buf->kind = UNDO_RTX;
745 buf->where.r = into;
746 buf->old_contents.r = oldval;
747 *into = newval;
748
749 buf->next = undobuf.undos, undobuf.undos = buf;
750 }
751
752 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
753
754 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
755 for the value of a HOST_WIDE_INT value (including CONST_INT) is
756 not safe. */
757
758 static void
759 do_SUBST_INT (int *into, int newval)
760 {
761 struct undo *buf;
762 int oldval = *into;
763
764 if (oldval == newval)
765 return;
766
767 if (undobuf.frees)
768 buf = undobuf.frees, undobuf.frees = buf->next;
769 else
770 buf = XNEW (struct undo);
771
772 buf->kind = UNDO_INT;
773 buf->where.i = into;
774 buf->old_contents.i = oldval;
775 *into = newval;
776
777 buf->next = undobuf.undos, undobuf.undos = buf;
778 }
779
780 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
781
782 /* Similar to SUBST, but just substitute the mode. This is used when
783 changing the mode of a pseudo-register, so that any other
784 references to the entry in the regno_reg_rtx array will change as
785 well. */
786
787 static void
788 do_SUBST_MODE (rtx *into, machine_mode newval)
789 {
790 struct undo *buf;
791 machine_mode oldval = GET_MODE (*into);
792
793 if (oldval == newval)
794 return;
795
796 if (undobuf.frees)
797 buf = undobuf.frees, undobuf.frees = buf->next;
798 else
799 buf = XNEW (struct undo);
800
801 buf->kind = UNDO_MODE;
802 buf->where.r = into;
803 buf->old_contents.m = oldval;
804 adjust_reg_mode (*into, newval);
805
806 buf->next = undobuf.undos, undobuf.undos = buf;
807 }
808
809 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
810
811 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
812
813 static void
814 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
815 {
816 struct undo *buf;
817 struct insn_link * oldval = *into;
818
819 if (oldval == newval)
820 return;
821
822 if (undobuf.frees)
823 buf = undobuf.frees, undobuf.frees = buf->next;
824 else
825 buf = XNEW (struct undo);
826
827 buf->kind = UNDO_LINKS;
828 buf->where.l = into;
829 buf->old_contents.l = oldval;
830 *into = newval;
831
832 buf->next = undobuf.undos, undobuf.undos = buf;
833 }
834
835 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
836 \f
837 /* Subroutine of try_combine. Determine whether the replacement patterns
838 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
839 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
840 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
841 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
842 of all the instructions can be estimated and the replacements are more
843 expensive than the original sequence. */
844
845 static bool
846 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
847 rtx newpat, rtx newi2pat, rtx newotherpat)
848 {
849 int i0_cost, i1_cost, i2_cost, i3_cost;
850 int new_i2_cost, new_i3_cost;
851 int old_cost, new_cost;
852
853 /* Lookup the original insn_rtx_costs. */
854 i2_cost = INSN_COST (i2);
855 i3_cost = INSN_COST (i3);
856
857 if (i1)
858 {
859 i1_cost = INSN_COST (i1);
860 if (i0)
861 {
862 i0_cost = INSN_COST (i0);
863 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
864 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
865 }
866 else
867 {
868 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
869 ? i1_cost + i2_cost + i3_cost : 0);
870 i0_cost = 0;
871 }
872 }
873 else
874 {
875 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
876 i1_cost = i0_cost = 0;
877 }
878
879 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
880 correct that. */
881 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
882 old_cost -= i1_cost;
883
884
885 /* Calculate the replacement insn_rtx_costs. */
886 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
887 if (newi2pat)
888 {
889 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
890 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
891 ? new_i2_cost + new_i3_cost : 0;
892 }
893 else
894 {
895 new_cost = new_i3_cost;
896 new_i2_cost = 0;
897 }
898
899 if (undobuf.other_insn)
900 {
901 int old_other_cost, new_other_cost;
902
903 old_other_cost = INSN_COST (undobuf.other_insn);
904 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
905 if (old_other_cost > 0 && new_other_cost > 0)
906 {
907 old_cost += old_other_cost;
908 new_cost += new_other_cost;
909 }
910 else
911 old_cost = 0;
912 }
913
914 /* Disallow this combination if both new_cost and old_cost are greater than
915 zero, and new_cost is greater than old cost. */
916 int reject = old_cost > 0 && new_cost > old_cost;
917
918 if (dump_file)
919 {
920 fprintf (dump_file, "%s combination of insns ",
921 reject ? "rejecting" : "allowing");
922 if (i0)
923 fprintf (dump_file, "%d, ", INSN_UID (i0));
924 if (i1 && INSN_UID (i1) != INSN_UID (i2))
925 fprintf (dump_file, "%d, ", INSN_UID (i1));
926 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
927
928 fprintf (dump_file, "original costs ");
929 if (i0)
930 fprintf (dump_file, "%d + ", i0_cost);
931 if (i1 && INSN_UID (i1) != INSN_UID (i2))
932 fprintf (dump_file, "%d + ", i1_cost);
933 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
934
935 if (newi2pat)
936 fprintf (dump_file, "replacement costs %d + %d = %d\n",
937 new_i2_cost, new_i3_cost, new_cost);
938 else
939 fprintf (dump_file, "replacement cost %d\n", new_cost);
940 }
941
942 if (reject)
943 return false;
944
945 /* Update the uid_insn_cost array with the replacement costs. */
946 INSN_COST (i2) = new_i2_cost;
947 INSN_COST (i3) = new_i3_cost;
948 if (i1)
949 {
950 INSN_COST (i1) = 0;
951 if (i0)
952 INSN_COST (i0) = 0;
953 }
954
955 return true;
956 }
957
958
959 /* Delete any insns that copy a register to itself. */
960
961 static void
962 delete_noop_moves (void)
963 {
964 rtx_insn *insn, *next;
965 basic_block bb;
966
967 FOR_EACH_BB_FN (bb, cfun)
968 {
969 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
970 {
971 next = NEXT_INSN (insn);
972 if (INSN_P (insn) && noop_move_p (insn))
973 {
974 if (dump_file)
975 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
976
977 delete_insn_and_edges (insn);
978 }
979 }
980 }
981 }
982
983 \f
984 /* Return false if we do not want to (or cannot) combine DEF. */
985 static bool
986 can_combine_def_p (df_ref def)
987 {
988 /* Do not consider if it is pre/post modification in MEM. */
989 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
990 return false;
991
992 unsigned int regno = DF_REF_REGNO (def);
993
994 /* Do not combine frame pointer adjustments. */
995 if ((regno == FRAME_POINTER_REGNUM
996 && (!reload_completed || frame_pointer_needed))
997 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
998 && regno == HARD_FRAME_POINTER_REGNUM
999 && (!reload_completed || frame_pointer_needed))
1000 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1001 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1002 return false;
1003
1004 return true;
1005 }
1006
1007 /* Return false if we do not want to (or cannot) combine USE. */
1008 static bool
1009 can_combine_use_p (df_ref use)
1010 {
1011 /* Do not consider the usage of the stack pointer by function call. */
1012 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1013 return false;
1014
1015 return true;
1016 }
1017
1018 /* Fill in log links field for all insns. */
1019
1020 static void
1021 create_log_links (void)
1022 {
1023 basic_block bb;
1024 rtx_insn **next_use;
1025 rtx_insn *insn;
1026 df_ref def, use;
1027
1028 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1029
1030 /* Pass through each block from the end, recording the uses of each
1031 register and establishing log links when def is encountered.
1032 Note that we do not clear next_use array in order to save time,
1033 so we have to test whether the use is in the same basic block as def.
1034
1035 There are a few cases below when we do not consider the definition or
1036 usage -- these are taken from original flow.c did. Don't ask me why it is
1037 done this way; I don't know and if it works, I don't want to know. */
1038
1039 FOR_EACH_BB_FN (bb, cfun)
1040 {
1041 FOR_BB_INSNS_REVERSE (bb, insn)
1042 {
1043 if (!NONDEBUG_INSN_P (insn))
1044 continue;
1045
1046 /* Log links are created only once. */
1047 gcc_assert (!LOG_LINKS (insn));
1048
1049 FOR_EACH_INSN_DEF (def, insn)
1050 {
1051 unsigned int regno = DF_REF_REGNO (def);
1052 rtx_insn *use_insn;
1053
1054 if (!next_use[regno])
1055 continue;
1056
1057 if (!can_combine_def_p (def))
1058 continue;
1059
1060 use_insn = next_use[regno];
1061 next_use[regno] = NULL;
1062
1063 if (BLOCK_FOR_INSN (use_insn) != bb)
1064 continue;
1065
1066 /* flow.c claimed:
1067
1068 We don't build a LOG_LINK for hard registers contained
1069 in ASM_OPERANDs. If these registers get replaced,
1070 we might wind up changing the semantics of the insn,
1071 even if reload can make what appear to be valid
1072 assignments later. */
1073 if (regno < FIRST_PSEUDO_REGISTER
1074 && asm_noperands (PATTERN (use_insn)) >= 0)
1075 continue;
1076
1077 /* Don't add duplicate links between instructions. */
1078 struct insn_link *links;
1079 FOR_EACH_LOG_LINK (links, use_insn)
1080 if (insn == links->insn && regno == links->regno)
1081 break;
1082
1083 if (!links)
1084 LOG_LINKS (use_insn)
1085 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1086 }
1087
1088 FOR_EACH_INSN_USE (use, insn)
1089 if (can_combine_use_p (use))
1090 next_use[DF_REF_REGNO (use)] = insn;
1091 }
1092 }
1093
1094 free (next_use);
1095 }
1096
1097 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1098 true if we found a LOG_LINK that proves that A feeds B. This only works
1099 if there are no instructions between A and B which could have a link
1100 depending on A, since in that case we would not record a link for B.
1101 We also check the implicit dependency created by a cc0 setter/user
1102 pair. */
1103
1104 static bool
1105 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1106 {
1107 struct insn_link *links;
1108 FOR_EACH_LOG_LINK (links, b)
1109 if (links->insn == a)
1110 return true;
1111 if (HAVE_cc0 && sets_cc0_p (a))
1112 return true;
1113 return false;
1114 }
1115 \f
1116 /* Main entry point for combiner. F is the first insn of the function.
1117 NREGS is the first unused pseudo-reg number.
1118
1119 Return nonzero if the combiner has turned an indirect jump
1120 instruction into a direct jump. */
1121 static int
1122 combine_instructions (rtx_insn *f, unsigned int nregs)
1123 {
1124 rtx_insn *insn, *next;
1125 rtx_insn *prev;
1126 struct insn_link *links, *nextlinks;
1127 rtx_insn *first;
1128 basic_block last_bb;
1129
1130 int new_direct_jump_p = 0;
1131
1132 for (first = f; first && !INSN_P (first); )
1133 first = NEXT_INSN (first);
1134 if (!first)
1135 return 0;
1136
1137 combine_attempts = 0;
1138 combine_merges = 0;
1139 combine_extras = 0;
1140 combine_successes = 0;
1141
1142 rtl_hooks = combine_rtl_hooks;
1143
1144 reg_stat.safe_grow_cleared (nregs);
1145
1146 init_recog_no_volatile ();
1147
1148 /* Allocate array for insn info. */
1149 max_uid_known = get_max_uid ();
1150 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1151 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1152 gcc_obstack_init (&insn_link_obstack);
1153
1154 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1155
1156 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1157 problems when, for example, we have j <<= 1 in a loop. */
1158
1159 nonzero_sign_valid = 0;
1160 label_tick = label_tick_ebb_start = 1;
1161
1162 /* Scan all SETs and see if we can deduce anything about what
1163 bits are known to be zero for some registers and how many copies
1164 of the sign bit are known to exist for those registers.
1165
1166 Also set any known values so that we can use it while searching
1167 for what bits are known to be set. */
1168
1169 setup_incoming_promotions (first);
1170 /* Allow the entry block and the first block to fall into the same EBB.
1171 Conceptually the incoming promotions are assigned to the entry block. */
1172 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1173
1174 create_log_links ();
1175 FOR_EACH_BB_FN (this_basic_block, cfun)
1176 {
1177 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1178 last_call_luid = 0;
1179 mem_last_set = -1;
1180
1181 label_tick++;
1182 if (!single_pred_p (this_basic_block)
1183 || single_pred (this_basic_block) != last_bb)
1184 label_tick_ebb_start = label_tick;
1185 last_bb = this_basic_block;
1186
1187 FOR_BB_INSNS (this_basic_block, insn)
1188 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1189 {
1190 rtx links;
1191
1192 subst_low_luid = DF_INSN_LUID (insn);
1193 subst_insn = insn;
1194
1195 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1196 insn);
1197 record_dead_and_set_regs (insn);
1198
1199 if (AUTO_INC_DEC)
1200 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1201 if (REG_NOTE_KIND (links) == REG_INC)
1202 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1203 insn);
1204
1205 /* Record the current insn_rtx_cost of this instruction. */
1206 if (NONJUMP_INSN_P (insn))
1207 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1208 optimize_this_for_speed_p);
1209 if (dump_file)
1210 fprintf (dump_file, "insn_cost %d: %d\n",
1211 INSN_UID (insn), INSN_COST (insn));
1212 }
1213 }
1214
1215 nonzero_sign_valid = 1;
1216
1217 /* Now scan all the insns in forward order. */
1218 label_tick = label_tick_ebb_start = 1;
1219 init_reg_last ();
1220 setup_incoming_promotions (first);
1221 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1222 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1223
1224 FOR_EACH_BB_FN (this_basic_block, cfun)
1225 {
1226 rtx_insn *last_combined_insn = NULL;
1227 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1228 last_call_luid = 0;
1229 mem_last_set = -1;
1230
1231 label_tick++;
1232 if (!single_pred_p (this_basic_block)
1233 || single_pred (this_basic_block) != last_bb)
1234 label_tick_ebb_start = label_tick;
1235 last_bb = this_basic_block;
1236
1237 rtl_profile_for_bb (this_basic_block);
1238 for (insn = BB_HEAD (this_basic_block);
1239 insn != NEXT_INSN (BB_END (this_basic_block));
1240 insn = next ? next : NEXT_INSN (insn))
1241 {
1242 next = 0;
1243 if (!NONDEBUG_INSN_P (insn))
1244 continue;
1245
1246 while (last_combined_insn
1247 && last_combined_insn->deleted ())
1248 last_combined_insn = PREV_INSN (last_combined_insn);
1249 if (last_combined_insn == NULL_RTX
1250 || BARRIER_P (last_combined_insn)
1251 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1252 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1253 last_combined_insn = insn;
1254
1255 /* See if we know about function return values before this
1256 insn based upon SUBREG flags. */
1257 check_promoted_subreg (insn, PATTERN (insn));
1258
1259 /* See if we can find hardregs and subreg of pseudos in
1260 narrower modes. This could help turning TRUNCATEs
1261 into SUBREGs. */
1262 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1263
1264 /* Try this insn with each insn it links back to. */
1265
1266 FOR_EACH_LOG_LINK (links, insn)
1267 if ((next = try_combine (insn, links->insn, NULL,
1268 NULL, &new_direct_jump_p,
1269 last_combined_insn)) != 0)
1270 {
1271 statistics_counter_event (cfun, "two-insn combine", 1);
1272 goto retry;
1273 }
1274
1275 /* Try each sequence of three linked insns ending with this one. */
1276
1277 if (max_combine >= 3)
1278 FOR_EACH_LOG_LINK (links, insn)
1279 {
1280 rtx_insn *link = links->insn;
1281
1282 /* If the linked insn has been replaced by a note, then there
1283 is no point in pursuing this chain any further. */
1284 if (NOTE_P (link))
1285 continue;
1286
1287 FOR_EACH_LOG_LINK (nextlinks, link)
1288 if ((next = try_combine (insn, link, nextlinks->insn,
1289 NULL, &new_direct_jump_p,
1290 last_combined_insn)) != 0)
1291 {
1292 statistics_counter_event (cfun, "three-insn combine", 1);
1293 goto retry;
1294 }
1295 }
1296
1297 /* Try to combine a jump insn that uses CC0
1298 with a preceding insn that sets CC0, and maybe with its
1299 logical predecessor as well.
1300 This is how we make decrement-and-branch insns.
1301 We need this special code because data flow connections
1302 via CC0 do not get entered in LOG_LINKS. */
1303
1304 if (HAVE_cc0
1305 && JUMP_P (insn)
1306 && (prev = prev_nonnote_insn (insn)) != 0
1307 && NONJUMP_INSN_P (prev)
1308 && sets_cc0_p (PATTERN (prev)))
1309 {
1310 if ((next = try_combine (insn, prev, NULL, NULL,
1311 &new_direct_jump_p,
1312 last_combined_insn)) != 0)
1313 goto retry;
1314
1315 FOR_EACH_LOG_LINK (nextlinks, prev)
1316 if ((next = try_combine (insn, prev, nextlinks->insn,
1317 NULL, &new_direct_jump_p,
1318 last_combined_insn)) != 0)
1319 goto retry;
1320 }
1321
1322 /* Do the same for an insn that explicitly references CC0. */
1323 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1324 && (prev = prev_nonnote_insn (insn)) != 0
1325 && NONJUMP_INSN_P (prev)
1326 && sets_cc0_p (PATTERN (prev))
1327 && GET_CODE (PATTERN (insn)) == SET
1328 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1329 {
1330 if ((next = try_combine (insn, prev, NULL, NULL,
1331 &new_direct_jump_p,
1332 last_combined_insn)) != 0)
1333 goto retry;
1334
1335 FOR_EACH_LOG_LINK (nextlinks, prev)
1336 if ((next = try_combine (insn, prev, nextlinks->insn,
1337 NULL, &new_direct_jump_p,
1338 last_combined_insn)) != 0)
1339 goto retry;
1340 }
1341
1342 /* Finally, see if any of the insns that this insn links to
1343 explicitly references CC0. If so, try this insn, that insn,
1344 and its predecessor if it sets CC0. */
1345 if (HAVE_cc0)
1346 {
1347 FOR_EACH_LOG_LINK (links, insn)
1348 if (NONJUMP_INSN_P (links->insn)
1349 && GET_CODE (PATTERN (links->insn)) == SET
1350 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1351 && (prev = prev_nonnote_insn (links->insn)) != 0
1352 && NONJUMP_INSN_P (prev)
1353 && sets_cc0_p (PATTERN (prev))
1354 && (next = try_combine (insn, links->insn,
1355 prev, NULL, &new_direct_jump_p,
1356 last_combined_insn)) != 0)
1357 goto retry;
1358 }
1359
1360 /* Try combining an insn with two different insns whose results it
1361 uses. */
1362 if (max_combine >= 3)
1363 FOR_EACH_LOG_LINK (links, insn)
1364 for (nextlinks = links->next; nextlinks;
1365 nextlinks = nextlinks->next)
1366 if ((next = try_combine (insn, links->insn,
1367 nextlinks->insn, NULL,
1368 &new_direct_jump_p,
1369 last_combined_insn)) != 0)
1370
1371 {
1372 statistics_counter_event (cfun, "three-insn combine", 1);
1373 goto retry;
1374 }
1375
1376 /* Try four-instruction combinations. */
1377 if (max_combine >= 4)
1378 FOR_EACH_LOG_LINK (links, insn)
1379 {
1380 struct insn_link *next1;
1381 rtx_insn *link = links->insn;
1382
1383 /* If the linked insn has been replaced by a note, then there
1384 is no point in pursuing this chain any further. */
1385 if (NOTE_P (link))
1386 continue;
1387
1388 FOR_EACH_LOG_LINK (next1, link)
1389 {
1390 rtx_insn *link1 = next1->insn;
1391 if (NOTE_P (link1))
1392 continue;
1393 /* I0 -> I1 -> I2 -> I3. */
1394 FOR_EACH_LOG_LINK (nextlinks, link1)
1395 if ((next = try_combine (insn, link, link1,
1396 nextlinks->insn,
1397 &new_direct_jump_p,
1398 last_combined_insn)) != 0)
1399 {
1400 statistics_counter_event (cfun, "four-insn combine", 1);
1401 goto retry;
1402 }
1403 /* I0, I1 -> I2, I2 -> I3. */
1404 for (nextlinks = next1->next; nextlinks;
1405 nextlinks = nextlinks->next)
1406 if ((next = try_combine (insn, link, link1,
1407 nextlinks->insn,
1408 &new_direct_jump_p,
1409 last_combined_insn)) != 0)
1410 {
1411 statistics_counter_event (cfun, "four-insn combine", 1);
1412 goto retry;
1413 }
1414 }
1415
1416 for (next1 = links->next; next1; next1 = next1->next)
1417 {
1418 rtx_insn *link1 = next1->insn;
1419 if (NOTE_P (link1))
1420 continue;
1421 /* I0 -> I2; I1, I2 -> I3. */
1422 FOR_EACH_LOG_LINK (nextlinks, link)
1423 if ((next = try_combine (insn, link, link1,
1424 nextlinks->insn,
1425 &new_direct_jump_p,
1426 last_combined_insn)) != 0)
1427 {
1428 statistics_counter_event (cfun, "four-insn combine", 1);
1429 goto retry;
1430 }
1431 /* I0 -> I1; I1, I2 -> I3. */
1432 FOR_EACH_LOG_LINK (nextlinks, link1)
1433 if ((next = try_combine (insn, link, link1,
1434 nextlinks->insn,
1435 &new_direct_jump_p,
1436 last_combined_insn)) != 0)
1437 {
1438 statistics_counter_event (cfun, "four-insn combine", 1);
1439 goto retry;
1440 }
1441 }
1442 }
1443
1444 /* Try this insn with each REG_EQUAL note it links back to. */
1445 FOR_EACH_LOG_LINK (links, insn)
1446 {
1447 rtx set, note;
1448 rtx_insn *temp = links->insn;
1449 if ((set = single_set (temp)) != 0
1450 && (note = find_reg_equal_equiv_note (temp)) != 0
1451 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1452 /* Avoid using a register that may already been marked
1453 dead by an earlier instruction. */
1454 && ! unmentioned_reg_p (note, SET_SRC (set))
1455 && (GET_MODE (note) == VOIDmode
1456 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1457 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1458 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1459 || (GET_MODE (XEXP (SET_DEST (set), 0))
1460 == GET_MODE (note))))))
1461 {
1462 /* Temporarily replace the set's source with the
1463 contents of the REG_EQUAL note. The insn will
1464 be deleted or recognized by try_combine. */
1465 rtx orig_src = SET_SRC (set);
1466 rtx orig_dest = SET_DEST (set);
1467 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1468 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1469 SET_SRC (set) = note;
1470 i2mod = temp;
1471 i2mod_old_rhs = copy_rtx (orig_src);
1472 i2mod_new_rhs = copy_rtx (note);
1473 next = try_combine (insn, i2mod, NULL, NULL,
1474 &new_direct_jump_p,
1475 last_combined_insn);
1476 i2mod = NULL;
1477 if (next)
1478 {
1479 statistics_counter_event (cfun, "insn-with-note combine", 1);
1480 goto retry;
1481 }
1482 SET_SRC (set) = orig_src;
1483 SET_DEST (set) = orig_dest;
1484 }
1485 }
1486
1487 if (!NOTE_P (insn))
1488 record_dead_and_set_regs (insn);
1489
1490 retry:
1491 ;
1492 }
1493 }
1494
1495 default_rtl_profile ();
1496 clear_bb_flags ();
1497 new_direct_jump_p |= purge_all_dead_edges ();
1498 delete_noop_moves ();
1499
1500 /* Clean up. */
1501 obstack_free (&insn_link_obstack, NULL);
1502 free (uid_log_links);
1503 free (uid_insn_cost);
1504 reg_stat.release ();
1505
1506 {
1507 struct undo *undo, *next;
1508 for (undo = undobuf.frees; undo; undo = next)
1509 {
1510 next = undo->next;
1511 free (undo);
1512 }
1513 undobuf.frees = 0;
1514 }
1515
1516 total_attempts += combine_attempts;
1517 total_merges += combine_merges;
1518 total_extras += combine_extras;
1519 total_successes += combine_successes;
1520
1521 nonzero_sign_valid = 0;
1522 rtl_hooks = general_rtl_hooks;
1523
1524 /* Make recognizer allow volatile MEMs again. */
1525 init_recog ();
1526
1527 return new_direct_jump_p;
1528 }
1529
1530 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1531
1532 static void
1533 init_reg_last (void)
1534 {
1535 unsigned int i;
1536 reg_stat_type *p;
1537
1538 FOR_EACH_VEC_ELT (reg_stat, i, p)
1539 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1540 }
1541 \f
1542 /* Set up any promoted values for incoming argument registers. */
1543
1544 static void
1545 setup_incoming_promotions (rtx_insn *first)
1546 {
1547 tree arg;
1548 bool strictly_local = false;
1549
1550 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1551 arg = DECL_CHAIN (arg))
1552 {
1553 rtx x, reg = DECL_INCOMING_RTL (arg);
1554 int uns1, uns3;
1555 machine_mode mode1, mode2, mode3, mode4;
1556
1557 /* Only continue if the incoming argument is in a register. */
1558 if (!REG_P (reg))
1559 continue;
1560
1561 /* Determine, if possible, whether all call sites of the current
1562 function lie within the current compilation unit. (This does
1563 take into account the exporting of a function via taking its
1564 address, and so forth.) */
1565 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1566
1567 /* The mode and signedness of the argument before any promotions happen
1568 (equal to the mode of the pseudo holding it at that stage). */
1569 mode1 = TYPE_MODE (TREE_TYPE (arg));
1570 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1571
1572 /* The mode and signedness of the argument after any source language and
1573 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1574 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1575 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1576
1577 /* The mode and signedness of the argument as it is actually passed,
1578 see assign_parm_setup_reg in function.c. */
1579 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1580 TREE_TYPE (cfun->decl), 0);
1581
1582 /* The mode of the register in which the argument is being passed. */
1583 mode4 = GET_MODE (reg);
1584
1585 /* Eliminate sign extensions in the callee when:
1586 (a) A mode promotion has occurred; */
1587 if (mode1 == mode3)
1588 continue;
1589 /* (b) The mode of the register is the same as the mode of
1590 the argument as it is passed; */
1591 if (mode3 != mode4)
1592 continue;
1593 /* (c) There's no language level extension; */
1594 if (mode1 == mode2)
1595 ;
1596 /* (c.1) All callers are from the current compilation unit. If that's
1597 the case we don't have to rely on an ABI, we only have to know
1598 what we're generating right now, and we know that we will do the
1599 mode1 to mode2 promotion with the given sign. */
1600 else if (!strictly_local)
1601 continue;
1602 /* (c.2) The combination of the two promotions is useful. This is
1603 true when the signs match, or if the first promotion is unsigned.
1604 In the later case, (sign_extend (zero_extend x)) is the same as
1605 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1606 else if (uns1)
1607 uns3 = true;
1608 else if (uns3)
1609 continue;
1610
1611 /* Record that the value was promoted from mode1 to mode3,
1612 so that any sign extension at the head of the current
1613 function may be eliminated. */
1614 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1615 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1616 record_value_for_reg (reg, first, x);
1617 }
1618 }
1619
1620 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1621 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1622 because some machines (maybe most) will actually do the sign-extension and
1623 this is the conservative approach.
1624
1625 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1626 kludge. */
1627
1628 static rtx
1629 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1630 {
1631 if (GET_MODE_PRECISION (mode) < prec
1632 && CONST_INT_P (src)
1633 && INTVAL (src) > 0
1634 && val_signbit_known_set_p (mode, INTVAL (src)))
1635 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1636
1637 return src;
1638 }
1639
1640 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1641 and SET. */
1642
1643 static void
1644 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1645 rtx x)
1646 {
1647 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1648 unsigned HOST_WIDE_INT bits = 0;
1649 rtx reg_equal = NULL, src = SET_SRC (set);
1650 unsigned int num = 0;
1651
1652 if (reg_equal_note)
1653 reg_equal = XEXP (reg_equal_note, 0);
1654
1655 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1656 {
1657 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1658 if (reg_equal)
1659 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1660 }
1661
1662 /* Don't call nonzero_bits if it cannot change anything. */
1663 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1664 {
1665 bits = nonzero_bits (src, nonzero_bits_mode);
1666 if (reg_equal && bits)
1667 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1668 rsp->nonzero_bits |= bits;
1669 }
1670
1671 /* Don't call num_sign_bit_copies if it cannot change anything. */
1672 if (rsp->sign_bit_copies != 1)
1673 {
1674 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1675 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1676 {
1677 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1678 if (num == 0 || numeq > num)
1679 num = numeq;
1680 }
1681 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1682 rsp->sign_bit_copies = num;
1683 }
1684 }
1685
1686 /* Called via note_stores. If X is a pseudo that is narrower than
1687 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1688
1689 If we are setting only a portion of X and we can't figure out what
1690 portion, assume all bits will be used since we don't know what will
1691 be happening.
1692
1693 Similarly, set how many bits of X are known to be copies of the sign bit
1694 at all locations in the function. This is the smallest number implied
1695 by any set of X. */
1696
1697 static void
1698 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1699 {
1700 rtx_insn *insn = (rtx_insn *) data;
1701
1702 if (REG_P (x)
1703 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1704 /* If this register is undefined at the start of the file, we can't
1705 say what its contents were. */
1706 && ! REGNO_REG_SET_P
1707 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1708 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1709 {
1710 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1711
1712 if (set == 0 || GET_CODE (set) == CLOBBER)
1713 {
1714 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1715 rsp->sign_bit_copies = 1;
1716 return;
1717 }
1718
1719 /* If this register is being initialized using itself, and the
1720 register is uninitialized in this basic block, and there are
1721 no LOG_LINKS which set the register, then part of the
1722 register is uninitialized. In that case we can't assume
1723 anything about the number of nonzero bits.
1724
1725 ??? We could do better if we checked this in
1726 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1727 could avoid making assumptions about the insn which initially
1728 sets the register, while still using the information in other
1729 insns. We would have to be careful to check every insn
1730 involved in the combination. */
1731
1732 if (insn
1733 && reg_referenced_p (x, PATTERN (insn))
1734 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1735 REGNO (x)))
1736 {
1737 struct insn_link *link;
1738
1739 FOR_EACH_LOG_LINK (link, insn)
1740 if (dead_or_set_p (link->insn, x))
1741 break;
1742 if (!link)
1743 {
1744 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1745 rsp->sign_bit_copies = 1;
1746 return;
1747 }
1748 }
1749
1750 /* If this is a complex assignment, see if we can convert it into a
1751 simple assignment. */
1752 set = expand_field_assignment (set);
1753
1754 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1755 set what we know about X. */
1756
1757 if (SET_DEST (set) == x
1758 || (paradoxical_subreg_p (SET_DEST (set))
1759 && SUBREG_REG (SET_DEST (set)) == x))
1760 update_rsp_from_reg_equal (rsp, insn, set, x);
1761 else
1762 {
1763 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1764 rsp->sign_bit_copies = 1;
1765 }
1766 }
1767 }
1768 \f
1769 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1770 optionally insns that were previously combined into I3 or that will be
1771 combined into the merger of INSN and I3. The order is PRED, PRED2,
1772 INSN, SUCC, SUCC2, I3.
1773
1774 Return 0 if the combination is not allowed for any reason.
1775
1776 If the combination is allowed, *PDEST will be set to the single
1777 destination of INSN and *PSRC to the single source, and this function
1778 will return 1. */
1779
1780 static int
1781 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1782 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1783 rtx *pdest, rtx *psrc)
1784 {
1785 int i;
1786 const_rtx set = 0;
1787 rtx src, dest;
1788 rtx_insn *p;
1789 rtx link;
1790 bool all_adjacent = true;
1791 int (*is_volatile_p) (const_rtx);
1792
1793 if (succ)
1794 {
1795 if (succ2)
1796 {
1797 if (next_active_insn (succ2) != i3)
1798 all_adjacent = false;
1799 if (next_active_insn (succ) != succ2)
1800 all_adjacent = false;
1801 }
1802 else if (next_active_insn (succ) != i3)
1803 all_adjacent = false;
1804 if (next_active_insn (insn) != succ)
1805 all_adjacent = false;
1806 }
1807 else if (next_active_insn (insn) != i3)
1808 all_adjacent = false;
1809
1810 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1811 or a PARALLEL consisting of such a SET and CLOBBERs.
1812
1813 If INSN has CLOBBER parallel parts, ignore them for our processing.
1814 By definition, these happen during the execution of the insn. When it
1815 is merged with another insn, all bets are off. If they are, in fact,
1816 needed and aren't also supplied in I3, they may be added by
1817 recog_for_combine. Otherwise, it won't match.
1818
1819 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1820 note.
1821
1822 Get the source and destination of INSN. If more than one, can't
1823 combine. */
1824
1825 if (GET_CODE (PATTERN (insn)) == SET)
1826 set = PATTERN (insn);
1827 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1828 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1829 {
1830 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1831 {
1832 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1833
1834 switch (GET_CODE (elt))
1835 {
1836 /* This is important to combine floating point insns
1837 for the SH4 port. */
1838 case USE:
1839 /* Combining an isolated USE doesn't make sense.
1840 We depend here on combinable_i3pat to reject them. */
1841 /* The code below this loop only verifies that the inputs of
1842 the SET in INSN do not change. We call reg_set_between_p
1843 to verify that the REG in the USE does not change between
1844 I3 and INSN.
1845 If the USE in INSN was for a pseudo register, the matching
1846 insn pattern will likely match any register; combining this
1847 with any other USE would only be safe if we knew that the
1848 used registers have identical values, or if there was
1849 something to tell them apart, e.g. different modes. For
1850 now, we forgo such complicated tests and simply disallow
1851 combining of USES of pseudo registers with any other USE. */
1852 if (REG_P (XEXP (elt, 0))
1853 && GET_CODE (PATTERN (i3)) == PARALLEL)
1854 {
1855 rtx i3pat = PATTERN (i3);
1856 int i = XVECLEN (i3pat, 0) - 1;
1857 unsigned int regno = REGNO (XEXP (elt, 0));
1858
1859 do
1860 {
1861 rtx i3elt = XVECEXP (i3pat, 0, i);
1862
1863 if (GET_CODE (i3elt) == USE
1864 && REG_P (XEXP (i3elt, 0))
1865 && (REGNO (XEXP (i3elt, 0)) == regno
1866 ? reg_set_between_p (XEXP (elt, 0),
1867 PREV_INSN (insn), i3)
1868 : regno >= FIRST_PSEUDO_REGISTER))
1869 return 0;
1870 }
1871 while (--i >= 0);
1872 }
1873 break;
1874
1875 /* We can ignore CLOBBERs. */
1876 case CLOBBER:
1877 break;
1878
1879 case SET:
1880 /* Ignore SETs whose result isn't used but not those that
1881 have side-effects. */
1882 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1883 && insn_nothrow_p (insn)
1884 && !side_effects_p (elt))
1885 break;
1886
1887 /* If we have already found a SET, this is a second one and
1888 so we cannot combine with this insn. */
1889 if (set)
1890 return 0;
1891
1892 set = elt;
1893 break;
1894
1895 default:
1896 /* Anything else means we can't combine. */
1897 return 0;
1898 }
1899 }
1900
1901 if (set == 0
1902 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1903 so don't do anything with it. */
1904 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1905 return 0;
1906 }
1907 else
1908 return 0;
1909
1910 if (set == 0)
1911 return 0;
1912
1913 /* The simplification in expand_field_assignment may call back to
1914 get_last_value, so set safe guard here. */
1915 subst_low_luid = DF_INSN_LUID (insn);
1916
1917 set = expand_field_assignment (set);
1918 src = SET_SRC (set), dest = SET_DEST (set);
1919
1920 /* Do not eliminate user-specified register if it is in an
1921 asm input because we may break the register asm usage defined
1922 in GCC manual if allow to do so.
1923 Be aware that this may cover more cases than we expect but this
1924 should be harmless. */
1925 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1926 && extract_asm_operands (PATTERN (i3)))
1927 return 0;
1928
1929 /* Don't eliminate a store in the stack pointer. */
1930 if (dest == stack_pointer_rtx
1931 /* Don't combine with an insn that sets a register to itself if it has
1932 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1933 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1934 /* Can't merge an ASM_OPERANDS. */
1935 || GET_CODE (src) == ASM_OPERANDS
1936 /* Can't merge a function call. */
1937 || GET_CODE (src) == CALL
1938 /* Don't eliminate a function call argument. */
1939 || (CALL_P (i3)
1940 && (find_reg_fusage (i3, USE, dest)
1941 || (REG_P (dest)
1942 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1943 && global_regs[REGNO (dest)])))
1944 /* Don't substitute into an incremented register. */
1945 || FIND_REG_INC_NOTE (i3, dest)
1946 || (succ && FIND_REG_INC_NOTE (succ, dest))
1947 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1948 /* Don't substitute into a non-local goto, this confuses CFG. */
1949 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1950 /* Make sure that DEST is not used after SUCC but before I3. */
1951 || (!all_adjacent
1952 && ((succ2
1953 && (reg_used_between_p (dest, succ2, i3)
1954 || reg_used_between_p (dest, succ, succ2)))
1955 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1956 /* Make sure that the value that is to be substituted for the register
1957 does not use any registers whose values alter in between. However,
1958 If the insns are adjacent, a use can't cross a set even though we
1959 think it might (this can happen for a sequence of insns each setting
1960 the same destination; last_set of that register might point to
1961 a NOTE). If INSN has a REG_EQUIV note, the register is always
1962 equivalent to the memory so the substitution is valid even if there
1963 are intervening stores. Also, don't move a volatile asm or
1964 UNSPEC_VOLATILE across any other insns. */
1965 || (! all_adjacent
1966 && (((!MEM_P (src)
1967 || ! find_reg_note (insn, REG_EQUIV, src))
1968 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1969 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1970 || GET_CODE (src) == UNSPEC_VOLATILE))
1971 /* Don't combine across a CALL_INSN, because that would possibly
1972 change whether the life span of some REGs crosses calls or not,
1973 and it is a pain to update that information.
1974 Exception: if source is a constant, moving it later can't hurt.
1975 Accept that as a special case. */
1976 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1977 return 0;
1978
1979 /* DEST must either be a REG or CC0. */
1980 if (REG_P (dest))
1981 {
1982 /* If register alignment is being enforced for multi-word items in all
1983 cases except for parameters, it is possible to have a register copy
1984 insn referencing a hard register that is not allowed to contain the
1985 mode being copied and which would not be valid as an operand of most
1986 insns. Eliminate this problem by not combining with such an insn.
1987
1988 Also, on some machines we don't want to extend the life of a hard
1989 register. */
1990
1991 if (REG_P (src)
1992 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1993 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1994 /* Don't extend the life of a hard register unless it is
1995 user variable (if we have few registers) or it can't
1996 fit into the desired register (meaning something special
1997 is going on).
1998 Also avoid substituting a return register into I3, because
1999 reload can't handle a conflict with constraints of other
2000 inputs. */
2001 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2002 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
2003 return 0;
2004 }
2005 else if (GET_CODE (dest) != CC0)
2006 return 0;
2007
2008
2009 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2010 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2011 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2012 {
2013 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2014
2015 /* If the clobber represents an earlyclobber operand, we must not
2016 substitute an expression containing the clobbered register.
2017 As we do not analyze the constraint strings here, we have to
2018 make the conservative assumption. However, if the register is
2019 a fixed hard reg, the clobber cannot represent any operand;
2020 we leave it up to the machine description to either accept or
2021 reject use-and-clobber patterns. */
2022 if (!REG_P (reg)
2023 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2024 || !fixed_regs[REGNO (reg)])
2025 if (reg_overlap_mentioned_p (reg, src))
2026 return 0;
2027 }
2028
2029 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2030 or not), reject, unless nothing volatile comes between it and I3 */
2031
2032 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2033 {
2034 /* Make sure neither succ nor succ2 contains a volatile reference. */
2035 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2036 return 0;
2037 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2038 return 0;
2039 /* We'll check insns between INSN and I3 below. */
2040 }
2041
2042 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2043 to be an explicit register variable, and was chosen for a reason. */
2044
2045 if (GET_CODE (src) == ASM_OPERANDS
2046 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2047 return 0;
2048
2049 /* If INSN contains volatile references (specifically volatile MEMs),
2050 we cannot combine across any other volatile references.
2051 Even if INSN doesn't contain volatile references, any intervening
2052 volatile insn might affect machine state. */
2053
2054 is_volatile_p = volatile_refs_p (PATTERN (insn))
2055 ? volatile_refs_p
2056 : volatile_insn_p;
2057
2058 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2059 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2060 return 0;
2061
2062 /* If INSN contains an autoincrement or autodecrement, make sure that
2063 register is not used between there and I3, and not already used in
2064 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2065 Also insist that I3 not be a jump; if it were one
2066 and the incremented register were spilled, we would lose. */
2067
2068 if (AUTO_INC_DEC)
2069 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2070 if (REG_NOTE_KIND (link) == REG_INC
2071 && (JUMP_P (i3)
2072 || reg_used_between_p (XEXP (link, 0), insn, i3)
2073 || (pred != NULL_RTX
2074 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2075 || (pred2 != NULL_RTX
2076 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2077 || (succ != NULL_RTX
2078 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2079 || (succ2 != NULL_RTX
2080 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2081 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2082 return 0;
2083
2084 /* Don't combine an insn that follows a CC0-setting insn.
2085 An insn that uses CC0 must not be separated from the one that sets it.
2086 We do, however, allow I2 to follow a CC0-setting insn if that insn
2087 is passed as I1; in that case it will be deleted also.
2088 We also allow combining in this case if all the insns are adjacent
2089 because that would leave the two CC0 insns adjacent as well.
2090 It would be more logical to test whether CC0 occurs inside I1 or I2,
2091 but that would be much slower, and this ought to be equivalent. */
2092
2093 if (HAVE_cc0)
2094 {
2095 p = prev_nonnote_insn (insn);
2096 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2097 && ! all_adjacent)
2098 return 0;
2099 }
2100
2101 /* If we get here, we have passed all the tests and the combination is
2102 to be allowed. */
2103
2104 *pdest = dest;
2105 *psrc = src;
2106
2107 return 1;
2108 }
2109 \f
2110 /* LOC is the location within I3 that contains its pattern or the component
2111 of a PARALLEL of the pattern. We validate that it is valid for combining.
2112
2113 One problem is if I3 modifies its output, as opposed to replacing it
2114 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2115 doing so would produce an insn that is not equivalent to the original insns.
2116
2117 Consider:
2118
2119 (set (reg:DI 101) (reg:DI 100))
2120 (set (subreg:SI (reg:DI 101) 0) <foo>)
2121
2122 This is NOT equivalent to:
2123
2124 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2125 (set (reg:DI 101) (reg:DI 100))])
2126
2127 Not only does this modify 100 (in which case it might still be valid
2128 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2129
2130 We can also run into a problem if I2 sets a register that I1
2131 uses and I1 gets directly substituted into I3 (not via I2). In that
2132 case, we would be getting the wrong value of I2DEST into I3, so we
2133 must reject the combination. This case occurs when I2 and I1 both
2134 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2135 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2136 of a SET must prevent combination from occurring. The same situation
2137 can occur for I0, in which case I0_NOT_IN_SRC is set.
2138
2139 Before doing the above check, we first try to expand a field assignment
2140 into a set of logical operations.
2141
2142 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2143 we place a register that is both set and used within I3. If more than one
2144 such register is detected, we fail.
2145
2146 Return 1 if the combination is valid, zero otherwise. */
2147
2148 static int
2149 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2150 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2151 {
2152 rtx x = *loc;
2153
2154 if (GET_CODE (x) == SET)
2155 {
2156 rtx set = x ;
2157 rtx dest = SET_DEST (set);
2158 rtx src = SET_SRC (set);
2159 rtx inner_dest = dest;
2160 rtx subdest;
2161
2162 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2163 || GET_CODE (inner_dest) == SUBREG
2164 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2165 inner_dest = XEXP (inner_dest, 0);
2166
2167 /* Check for the case where I3 modifies its output, as discussed
2168 above. We don't want to prevent pseudos from being combined
2169 into the address of a MEM, so only prevent the combination if
2170 i1 or i2 set the same MEM. */
2171 if ((inner_dest != dest &&
2172 (!MEM_P (inner_dest)
2173 || rtx_equal_p (i2dest, inner_dest)
2174 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2175 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2176 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2177 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2178 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2179
2180 /* This is the same test done in can_combine_p except we can't test
2181 all_adjacent; we don't have to, since this instruction will stay
2182 in place, thus we are not considering increasing the lifetime of
2183 INNER_DEST.
2184
2185 Also, if this insn sets a function argument, combining it with
2186 something that might need a spill could clobber a previous
2187 function argument; the all_adjacent test in can_combine_p also
2188 checks this; here, we do a more specific test for this case. */
2189
2190 || (REG_P (inner_dest)
2191 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2192 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2193 GET_MODE (inner_dest))))
2194 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2195 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2196 return 0;
2197
2198 /* If DEST is used in I3, it is being killed in this insn, so
2199 record that for later. We have to consider paradoxical
2200 subregs here, since they kill the whole register, but we
2201 ignore partial subregs, STRICT_LOW_PART, etc.
2202 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2203 STACK_POINTER_REGNUM, since these are always considered to be
2204 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2205 subdest = dest;
2206 if (GET_CODE (subdest) == SUBREG
2207 && (GET_MODE_SIZE (GET_MODE (subdest))
2208 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2209 subdest = SUBREG_REG (subdest);
2210 if (pi3dest_killed
2211 && REG_P (subdest)
2212 && reg_referenced_p (subdest, PATTERN (i3))
2213 && REGNO (subdest) != FRAME_POINTER_REGNUM
2214 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2215 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2216 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2217 || (REGNO (subdest) != ARG_POINTER_REGNUM
2218 || ! fixed_regs [REGNO (subdest)]))
2219 && REGNO (subdest) != STACK_POINTER_REGNUM)
2220 {
2221 if (*pi3dest_killed)
2222 return 0;
2223
2224 *pi3dest_killed = subdest;
2225 }
2226 }
2227
2228 else if (GET_CODE (x) == PARALLEL)
2229 {
2230 int i;
2231
2232 for (i = 0; i < XVECLEN (x, 0); i++)
2233 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2234 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2235 return 0;
2236 }
2237
2238 return 1;
2239 }
2240 \f
2241 /* Return 1 if X is an arithmetic expression that contains a multiplication
2242 and division. We don't count multiplications by powers of two here. */
2243
2244 static int
2245 contains_muldiv (rtx x)
2246 {
2247 switch (GET_CODE (x))
2248 {
2249 case MOD: case DIV: case UMOD: case UDIV:
2250 return 1;
2251
2252 case MULT:
2253 return ! (CONST_INT_P (XEXP (x, 1))
2254 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2255 default:
2256 if (BINARY_P (x))
2257 return contains_muldiv (XEXP (x, 0))
2258 || contains_muldiv (XEXP (x, 1));
2259
2260 if (UNARY_P (x))
2261 return contains_muldiv (XEXP (x, 0));
2262
2263 return 0;
2264 }
2265 }
2266 \f
2267 /* Determine whether INSN can be used in a combination. Return nonzero if
2268 not. This is used in try_combine to detect early some cases where we
2269 can't perform combinations. */
2270
2271 static int
2272 cant_combine_insn_p (rtx_insn *insn)
2273 {
2274 rtx set;
2275 rtx src, dest;
2276
2277 /* If this isn't really an insn, we can't do anything.
2278 This can occur when flow deletes an insn that it has merged into an
2279 auto-increment address. */
2280 if (! INSN_P (insn))
2281 return 1;
2282
2283 /* Never combine loads and stores involving hard regs that are likely
2284 to be spilled. The register allocator can usually handle such
2285 reg-reg moves by tying. If we allow the combiner to make
2286 substitutions of likely-spilled regs, reload might die.
2287 As an exception, we allow combinations involving fixed regs; these are
2288 not available to the register allocator so there's no risk involved. */
2289
2290 set = single_set (insn);
2291 if (! set)
2292 return 0;
2293 src = SET_SRC (set);
2294 dest = SET_DEST (set);
2295 if (GET_CODE (src) == SUBREG)
2296 src = SUBREG_REG (src);
2297 if (GET_CODE (dest) == SUBREG)
2298 dest = SUBREG_REG (dest);
2299 if (REG_P (src) && REG_P (dest)
2300 && ((HARD_REGISTER_P (src)
2301 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2302 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2303 || (HARD_REGISTER_P (dest)
2304 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2305 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2306 return 1;
2307
2308 return 0;
2309 }
2310
2311 struct likely_spilled_retval_info
2312 {
2313 unsigned regno, nregs;
2314 unsigned mask;
2315 };
2316
2317 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2318 hard registers that are known to be written to / clobbered in full. */
2319 static void
2320 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2321 {
2322 struct likely_spilled_retval_info *const info =
2323 (struct likely_spilled_retval_info *) data;
2324 unsigned regno, nregs;
2325 unsigned new_mask;
2326
2327 if (!REG_P (XEXP (set, 0)))
2328 return;
2329 regno = REGNO (x);
2330 if (regno >= info->regno + info->nregs)
2331 return;
2332 nregs = REG_NREGS (x);
2333 if (regno + nregs <= info->regno)
2334 return;
2335 new_mask = (2U << (nregs - 1)) - 1;
2336 if (regno < info->regno)
2337 new_mask >>= info->regno - regno;
2338 else
2339 new_mask <<= regno - info->regno;
2340 info->mask &= ~new_mask;
2341 }
2342
2343 /* Return nonzero iff part of the return value is live during INSN, and
2344 it is likely spilled. This can happen when more than one insn is needed
2345 to copy the return value, e.g. when we consider to combine into the
2346 second copy insn for a complex value. */
2347
2348 static int
2349 likely_spilled_retval_p (rtx_insn *insn)
2350 {
2351 rtx_insn *use = BB_END (this_basic_block);
2352 rtx reg;
2353 rtx_insn *p;
2354 unsigned regno, nregs;
2355 /* We assume here that no machine mode needs more than
2356 32 hard registers when the value overlaps with a register
2357 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2358 unsigned mask;
2359 struct likely_spilled_retval_info info;
2360
2361 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2362 return 0;
2363 reg = XEXP (PATTERN (use), 0);
2364 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2365 return 0;
2366 regno = REGNO (reg);
2367 nregs = REG_NREGS (reg);
2368 if (nregs == 1)
2369 return 0;
2370 mask = (2U << (nregs - 1)) - 1;
2371
2372 /* Disregard parts of the return value that are set later. */
2373 info.regno = regno;
2374 info.nregs = nregs;
2375 info.mask = mask;
2376 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2377 if (INSN_P (p))
2378 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2379 mask = info.mask;
2380
2381 /* Check if any of the (probably) live return value registers is
2382 likely spilled. */
2383 nregs --;
2384 do
2385 {
2386 if ((mask & 1 << nregs)
2387 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2388 return 1;
2389 } while (nregs--);
2390 return 0;
2391 }
2392
2393 /* Adjust INSN after we made a change to its destination.
2394
2395 Changing the destination can invalidate notes that say something about
2396 the results of the insn and a LOG_LINK pointing to the insn. */
2397
2398 static void
2399 adjust_for_new_dest (rtx_insn *insn)
2400 {
2401 /* For notes, be conservative and simply remove them. */
2402 remove_reg_equal_equiv_notes (insn);
2403
2404 /* The new insn will have a destination that was previously the destination
2405 of an insn just above it. Call distribute_links to make a LOG_LINK from
2406 the next use of that destination. */
2407
2408 rtx set = single_set (insn);
2409 gcc_assert (set);
2410
2411 rtx reg = SET_DEST (set);
2412
2413 while (GET_CODE (reg) == ZERO_EXTRACT
2414 || GET_CODE (reg) == STRICT_LOW_PART
2415 || GET_CODE (reg) == SUBREG)
2416 reg = XEXP (reg, 0);
2417 gcc_assert (REG_P (reg));
2418
2419 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2420
2421 df_insn_rescan (insn);
2422 }
2423
2424 /* Return TRUE if combine can reuse reg X in mode MODE.
2425 ADDED_SETS is nonzero if the original set is still required. */
2426 static bool
2427 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2428 {
2429 unsigned int regno;
2430
2431 if (!REG_P (x))
2432 return false;
2433
2434 regno = REGNO (x);
2435 /* Allow hard registers if the new mode is legal, and occupies no more
2436 registers than the old mode. */
2437 if (regno < FIRST_PSEUDO_REGISTER)
2438 return (HARD_REGNO_MODE_OK (regno, mode)
2439 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2440
2441 /* Or a pseudo that is only used once. */
2442 return (regno < reg_n_sets_max
2443 && REG_N_SETS (regno) == 1
2444 && !added_sets
2445 && !REG_USERVAR_P (x));
2446 }
2447
2448
2449 /* Check whether X, the destination of a set, refers to part of
2450 the register specified by REG. */
2451
2452 static bool
2453 reg_subword_p (rtx x, rtx reg)
2454 {
2455 /* Check that reg is an integer mode register. */
2456 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2457 return false;
2458
2459 if (GET_CODE (x) == STRICT_LOW_PART
2460 || GET_CODE (x) == ZERO_EXTRACT)
2461 x = XEXP (x, 0);
2462
2463 return GET_CODE (x) == SUBREG
2464 && SUBREG_REG (x) == reg
2465 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2466 }
2467
2468 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2469 Note that the INSN should be deleted *after* removing dead edges, so
2470 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2471 but not for a (set (pc) (label_ref FOO)). */
2472
2473 static void
2474 update_cfg_for_uncondjump (rtx_insn *insn)
2475 {
2476 basic_block bb = BLOCK_FOR_INSN (insn);
2477 gcc_assert (BB_END (bb) == insn);
2478
2479 purge_dead_edges (bb);
2480
2481 delete_insn (insn);
2482 if (EDGE_COUNT (bb->succs) == 1)
2483 {
2484 rtx_insn *insn;
2485
2486 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2487
2488 /* Remove barriers from the footer if there are any. */
2489 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2490 if (BARRIER_P (insn))
2491 {
2492 if (PREV_INSN (insn))
2493 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2494 else
2495 BB_FOOTER (bb) = NEXT_INSN (insn);
2496 if (NEXT_INSN (insn))
2497 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2498 }
2499 else if (LABEL_P (insn))
2500 break;
2501 }
2502 }
2503
2504 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2505 by an arbitrary number of CLOBBERs. */
2506 static bool
2507 is_parallel_of_n_reg_sets (rtx pat, int n)
2508 {
2509 if (GET_CODE (pat) != PARALLEL)
2510 return false;
2511
2512 int len = XVECLEN (pat, 0);
2513 if (len < n)
2514 return false;
2515
2516 int i;
2517 for (i = 0; i < n; i++)
2518 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2519 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2520 return false;
2521 for ( ; i < len; i++)
2522 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2523 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2524 return false;
2525
2526 return true;
2527 }
2528
2529 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2530 CLOBBERs), can be split into individual SETs in that order, without
2531 changing semantics. */
2532 static bool
2533 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2534 {
2535 if (!insn_nothrow_p (insn))
2536 return false;
2537
2538 rtx pat = PATTERN (insn);
2539
2540 int i, j;
2541 for (i = 0; i < n; i++)
2542 {
2543 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2544 return false;
2545
2546 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2547
2548 for (j = i + 1; j < n; j++)
2549 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2550 return false;
2551 }
2552
2553 return true;
2554 }
2555
2556 /* Try to combine the insns I0, I1 and I2 into I3.
2557 Here I0, I1 and I2 appear earlier than I3.
2558 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2559 I3.
2560
2561 If we are combining more than two insns and the resulting insn is not
2562 recognized, try splitting it into two insns. If that happens, I2 and I3
2563 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2564 Otherwise, I0, I1 and I2 are pseudo-deleted.
2565
2566 Return 0 if the combination does not work. Then nothing is changed.
2567 If we did the combination, return the insn at which combine should
2568 resume scanning.
2569
2570 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2571 new direct jump instruction.
2572
2573 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2574 been I3 passed to an earlier try_combine within the same basic
2575 block. */
2576
2577 static rtx_insn *
2578 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2579 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2580 {
2581 /* New patterns for I3 and I2, respectively. */
2582 rtx newpat, newi2pat = 0;
2583 rtvec newpat_vec_with_clobbers = 0;
2584 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2585 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2586 dead. */
2587 int added_sets_0, added_sets_1, added_sets_2;
2588 /* Total number of SETs to put into I3. */
2589 int total_sets;
2590 /* Nonzero if I2's or I1's body now appears in I3. */
2591 int i2_is_used = 0, i1_is_used = 0;
2592 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2593 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2594 /* Contains I3 if the destination of I3 is used in its source, which means
2595 that the old life of I3 is being killed. If that usage is placed into
2596 I2 and not in I3, a REG_DEAD note must be made. */
2597 rtx i3dest_killed = 0;
2598 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2599 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2600 /* Copy of SET_SRC of I1 and I0, if needed. */
2601 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2602 /* Set if I2DEST was reused as a scratch register. */
2603 bool i2scratch = false;
2604 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2605 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2606 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2607 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2608 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2609 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2610 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2611 /* Notes that must be added to REG_NOTES in I3 and I2. */
2612 rtx new_i3_notes, new_i2_notes;
2613 /* Notes that we substituted I3 into I2 instead of the normal case. */
2614 int i3_subst_into_i2 = 0;
2615 /* Notes that I1, I2 or I3 is a MULT operation. */
2616 int have_mult = 0;
2617 int swap_i2i3 = 0;
2618 int changed_i3_dest = 0;
2619
2620 int maxreg;
2621 rtx_insn *temp_insn;
2622 rtx temp_expr;
2623 struct insn_link *link;
2624 rtx other_pat = 0;
2625 rtx new_other_notes;
2626 int i;
2627
2628 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2629 never be). */
2630 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2631 return 0;
2632
2633 /* Only try four-insn combinations when there's high likelihood of
2634 success. Look for simple insns, such as loads of constants or
2635 binary operations involving a constant. */
2636 if (i0)
2637 {
2638 int i;
2639 int ngood = 0;
2640 int nshift = 0;
2641 rtx set0, set3;
2642
2643 if (!flag_expensive_optimizations)
2644 return 0;
2645
2646 for (i = 0; i < 4; i++)
2647 {
2648 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2649 rtx set = single_set (insn);
2650 rtx src;
2651 if (!set)
2652 continue;
2653 src = SET_SRC (set);
2654 if (CONSTANT_P (src))
2655 {
2656 ngood += 2;
2657 break;
2658 }
2659 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2660 ngood++;
2661 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2662 || GET_CODE (src) == LSHIFTRT)
2663 nshift++;
2664 }
2665
2666 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2667 are likely manipulating its value. Ideally we'll be able to combine
2668 all four insns into a bitfield insertion of some kind.
2669
2670 Note the source in I0 might be inside a sign/zero extension and the
2671 memory modes in I0 and I3 might be different. So extract the address
2672 from the destination of I3 and search for it in the source of I0.
2673
2674 In the event that there's a match but the source/dest do not actually
2675 refer to the same memory, the worst that happens is we try some
2676 combinations that we wouldn't have otherwise. */
2677 if ((set0 = single_set (i0))
2678 /* Ensure the source of SET0 is a MEM, possibly buried inside
2679 an extension. */
2680 && (GET_CODE (SET_SRC (set0)) == MEM
2681 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2682 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2683 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2684 && (set3 = single_set (i3))
2685 /* Ensure the destination of SET3 is a MEM. */
2686 && GET_CODE (SET_DEST (set3)) == MEM
2687 /* Would it be better to extract the base address for the MEM
2688 in SET3 and look for that? I don't have cases where it matters
2689 but I could envision such cases. */
2690 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2691 ngood += 2;
2692
2693 if (ngood < 2 && nshift < 2)
2694 return 0;
2695 }
2696
2697 /* Exit early if one of the insns involved can't be used for
2698 combinations. */
2699 if (CALL_P (i2)
2700 || (i1 && CALL_P (i1))
2701 || (i0 && CALL_P (i0))
2702 || cant_combine_insn_p (i3)
2703 || cant_combine_insn_p (i2)
2704 || (i1 && cant_combine_insn_p (i1))
2705 || (i0 && cant_combine_insn_p (i0))
2706 || likely_spilled_retval_p (i3))
2707 return 0;
2708
2709 combine_attempts++;
2710 undobuf.other_insn = 0;
2711
2712 /* Reset the hard register usage information. */
2713 CLEAR_HARD_REG_SET (newpat_used_regs);
2714
2715 if (dump_file && (dump_flags & TDF_DETAILS))
2716 {
2717 if (i0)
2718 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2719 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2720 else if (i1)
2721 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2722 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2723 else
2724 fprintf (dump_file, "\nTrying %d -> %d:\n",
2725 INSN_UID (i2), INSN_UID (i3));
2726 }
2727
2728 /* If multiple insns feed into one of I2 or I3, they can be in any
2729 order. To simplify the code below, reorder them in sequence. */
2730 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2731 std::swap (i0, i2);
2732 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2733 std::swap (i0, i1);
2734 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2735 std::swap (i1, i2);
2736
2737 added_links_insn = 0;
2738
2739 /* First check for one important special case that the code below will
2740 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2741 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2742 we may be able to replace that destination with the destination of I3.
2743 This occurs in the common code where we compute both a quotient and
2744 remainder into a structure, in which case we want to do the computation
2745 directly into the structure to avoid register-register copies.
2746
2747 Note that this case handles both multiple sets in I2 and also cases
2748 where I2 has a number of CLOBBERs inside the PARALLEL.
2749
2750 We make very conservative checks below and only try to handle the
2751 most common cases of this. For example, we only handle the case
2752 where I2 and I3 are adjacent to avoid making difficult register
2753 usage tests. */
2754
2755 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2756 && REG_P (SET_SRC (PATTERN (i3)))
2757 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2758 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2759 && GET_CODE (PATTERN (i2)) == PARALLEL
2760 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2761 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2762 below would need to check what is inside (and reg_overlap_mentioned_p
2763 doesn't support those codes anyway). Don't allow those destinations;
2764 the resulting insn isn't likely to be recognized anyway. */
2765 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2766 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2767 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2768 SET_DEST (PATTERN (i3)))
2769 && next_active_insn (i2) == i3)
2770 {
2771 rtx p2 = PATTERN (i2);
2772
2773 /* Make sure that the destination of I3,
2774 which we are going to substitute into one output of I2,
2775 is not used within another output of I2. We must avoid making this:
2776 (parallel [(set (mem (reg 69)) ...)
2777 (set (reg 69) ...)])
2778 which is not well-defined as to order of actions.
2779 (Besides, reload can't handle output reloads for this.)
2780
2781 The problem can also happen if the dest of I3 is a memory ref,
2782 if another dest in I2 is an indirect memory ref. */
2783 for (i = 0; i < XVECLEN (p2, 0); i++)
2784 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2785 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2786 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2787 SET_DEST (XVECEXP (p2, 0, i))))
2788 break;
2789
2790 /* Make sure this PARALLEL is not an asm. We do not allow combining
2791 that usually (see can_combine_p), so do not here either. */
2792 for (i = 0; i < XVECLEN (p2, 0); i++)
2793 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2794 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2795 break;
2796
2797 if (i == XVECLEN (p2, 0))
2798 for (i = 0; i < XVECLEN (p2, 0); i++)
2799 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2800 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2801 {
2802 combine_merges++;
2803
2804 subst_insn = i3;
2805 subst_low_luid = DF_INSN_LUID (i2);
2806
2807 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2808 i2src = SET_SRC (XVECEXP (p2, 0, i));
2809 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2810 i2dest_killed = dead_or_set_p (i2, i2dest);
2811
2812 /* Replace the dest in I2 with our dest and make the resulting
2813 insn the new pattern for I3. Then skip to where we validate
2814 the pattern. Everything was set up above. */
2815 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2816 newpat = p2;
2817 i3_subst_into_i2 = 1;
2818 goto validate_replacement;
2819 }
2820 }
2821
2822 /* If I2 is setting a pseudo to a constant and I3 is setting some
2823 sub-part of it to another constant, merge them by making a new
2824 constant. */
2825 if (i1 == 0
2826 && (temp_expr = single_set (i2)) != 0
2827 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2828 && GET_CODE (PATTERN (i3)) == SET
2829 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2830 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2831 {
2832 rtx dest = SET_DEST (PATTERN (i3));
2833 int offset = -1;
2834 int width = 0;
2835
2836 if (GET_CODE (dest) == ZERO_EXTRACT)
2837 {
2838 if (CONST_INT_P (XEXP (dest, 1))
2839 && CONST_INT_P (XEXP (dest, 2)))
2840 {
2841 width = INTVAL (XEXP (dest, 1));
2842 offset = INTVAL (XEXP (dest, 2));
2843 dest = XEXP (dest, 0);
2844 if (BITS_BIG_ENDIAN)
2845 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2846 }
2847 }
2848 else
2849 {
2850 if (GET_CODE (dest) == STRICT_LOW_PART)
2851 dest = XEXP (dest, 0);
2852 width = GET_MODE_PRECISION (GET_MODE (dest));
2853 offset = 0;
2854 }
2855
2856 if (offset >= 0)
2857 {
2858 /* If this is the low part, we're done. */
2859 if (subreg_lowpart_p (dest))
2860 ;
2861 /* Handle the case where inner is twice the size of outer. */
2862 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2863 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2864 offset += GET_MODE_PRECISION (GET_MODE (dest));
2865 /* Otherwise give up for now. */
2866 else
2867 offset = -1;
2868 }
2869
2870 if (offset >= 0)
2871 {
2872 rtx inner = SET_SRC (PATTERN (i3));
2873 rtx outer = SET_SRC (temp_expr);
2874
2875 wide_int o
2876 = wi::insert (std::make_pair (outer, GET_MODE (SET_DEST (temp_expr))),
2877 std::make_pair (inner, GET_MODE (dest)),
2878 offset, width);
2879
2880 combine_merges++;
2881 subst_insn = i3;
2882 subst_low_luid = DF_INSN_LUID (i2);
2883 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2884 i2dest = SET_DEST (temp_expr);
2885 i2dest_killed = dead_or_set_p (i2, i2dest);
2886
2887 /* Replace the source in I2 with the new constant and make the
2888 resulting insn the new pattern for I3. Then skip to where we
2889 validate the pattern. Everything was set up above. */
2890 SUBST (SET_SRC (temp_expr),
2891 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2892
2893 newpat = PATTERN (i2);
2894
2895 /* The dest of I3 has been replaced with the dest of I2. */
2896 changed_i3_dest = 1;
2897 goto validate_replacement;
2898 }
2899 }
2900
2901 /* If we have no I1 and I2 looks like:
2902 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2903 (set Y OP)])
2904 make up a dummy I1 that is
2905 (set Y OP)
2906 and change I2 to be
2907 (set (reg:CC X) (compare:CC Y (const_int 0)))
2908
2909 (We can ignore any trailing CLOBBERs.)
2910
2911 This undoes a previous combination and allows us to match a branch-and-
2912 decrement insn. */
2913
2914 if (!HAVE_cc0 && i1 == 0
2915 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2916 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2917 == MODE_CC)
2918 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2919 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2920 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2921 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2922 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2923 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2924 {
2925 /* We make I1 with the same INSN_UID as I2. This gives it
2926 the same DF_INSN_LUID for value tracking. Our fake I1 will
2927 never appear in the insn stream so giving it the same INSN_UID
2928 as I2 will not cause a problem. */
2929
2930 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2931 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2932 -1, NULL_RTX);
2933 INSN_UID (i1) = INSN_UID (i2);
2934
2935 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2936 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2937 SET_DEST (PATTERN (i1)));
2938 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2939 SUBST_LINK (LOG_LINKS (i2),
2940 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2941 }
2942
2943 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2944 make those two SETs separate I1 and I2 insns, and make an I0 that is
2945 the original I1. */
2946 if (!HAVE_cc0 && i0 == 0
2947 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2948 && can_split_parallel_of_n_reg_sets (i2, 2)
2949 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2950 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2951 {
2952 /* If there is no I1, there is no I0 either. */
2953 i0 = i1;
2954
2955 /* We make I1 with the same INSN_UID as I2. This gives it
2956 the same DF_INSN_LUID for value tracking. Our fake I1 will
2957 never appear in the insn stream so giving it the same INSN_UID
2958 as I2 will not cause a problem. */
2959
2960 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2961 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2962 -1, NULL_RTX);
2963 INSN_UID (i1) = INSN_UID (i2);
2964
2965 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2966 }
2967
2968 /* Verify that I2 and I1 are valid for combining. */
2969 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2970 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2971 &i1dest, &i1src))
2972 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2973 &i0dest, &i0src)))
2974 {
2975 undo_all ();
2976 return 0;
2977 }
2978
2979 /* Record whether I2DEST is used in I2SRC and similarly for the other
2980 cases. Knowing this will help in register status updating below. */
2981 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2982 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2983 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2984 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2985 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2986 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2987 i2dest_killed = dead_or_set_p (i2, i2dest);
2988 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2989 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2990
2991 /* For the earlier insns, determine which of the subsequent ones they
2992 feed. */
2993 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2994 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2995 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2996 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2997 && reg_overlap_mentioned_p (i0dest, i2src))));
2998
2999 /* Ensure that I3's pattern can be the destination of combines. */
3000 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3001 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3002 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3003 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3004 &i3dest_killed))
3005 {
3006 undo_all ();
3007 return 0;
3008 }
3009
3010 /* See if any of the insns is a MULT operation. Unless one is, we will
3011 reject a combination that is, since it must be slower. Be conservative
3012 here. */
3013 if (GET_CODE (i2src) == MULT
3014 || (i1 != 0 && GET_CODE (i1src) == MULT)
3015 || (i0 != 0 && GET_CODE (i0src) == MULT)
3016 || (GET_CODE (PATTERN (i3)) == SET
3017 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3018 have_mult = 1;
3019
3020 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3021 We used to do this EXCEPT in one case: I3 has a post-inc in an
3022 output operand. However, that exception can give rise to insns like
3023 mov r3,(r3)+
3024 which is a famous insn on the PDP-11 where the value of r3 used as the
3025 source was model-dependent. Avoid this sort of thing. */
3026
3027 #if 0
3028 if (!(GET_CODE (PATTERN (i3)) == SET
3029 && REG_P (SET_SRC (PATTERN (i3)))
3030 && MEM_P (SET_DEST (PATTERN (i3)))
3031 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3032 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3033 /* It's not the exception. */
3034 #endif
3035 if (AUTO_INC_DEC)
3036 {
3037 rtx link;
3038 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3039 if (REG_NOTE_KIND (link) == REG_INC
3040 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3041 || (i1 != 0
3042 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3043 {
3044 undo_all ();
3045 return 0;
3046 }
3047 }
3048
3049 /* See if the SETs in I1 or I2 need to be kept around in the merged
3050 instruction: whenever the value set there is still needed past I3.
3051 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3052
3053 For the SET in I1, we have two cases: if I1 and I2 independently feed
3054 into I3, the set in I1 needs to be kept around unless I1DEST dies
3055 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3056 in I1 needs to be kept around unless I1DEST dies or is set in either
3057 I2 or I3. The same considerations apply to I0. */
3058
3059 added_sets_2 = !dead_or_set_p (i3, i2dest);
3060
3061 if (i1)
3062 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3063 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3064 else
3065 added_sets_1 = 0;
3066
3067 if (i0)
3068 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3069 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3070 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3071 && dead_or_set_p (i2, i0dest)));
3072 else
3073 added_sets_0 = 0;
3074
3075 /* We are about to copy insns for the case where they need to be kept
3076 around. Check that they can be copied in the merged instruction. */
3077
3078 if (targetm.cannot_copy_insn_p
3079 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3080 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3081 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3082 {
3083 undo_all ();
3084 return 0;
3085 }
3086
3087 /* If the set in I2 needs to be kept around, we must make a copy of
3088 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3089 PATTERN (I2), we are only substituting for the original I1DEST, not into
3090 an already-substituted copy. This also prevents making self-referential
3091 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3092 I2DEST. */
3093
3094 if (added_sets_2)
3095 {
3096 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3097 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3098 else
3099 i2pat = copy_rtx (PATTERN (i2));
3100 }
3101
3102 if (added_sets_1)
3103 {
3104 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3105 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3106 else
3107 i1pat = copy_rtx (PATTERN (i1));
3108 }
3109
3110 if (added_sets_0)
3111 {
3112 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3113 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3114 else
3115 i0pat = copy_rtx (PATTERN (i0));
3116 }
3117
3118 combine_merges++;
3119
3120 /* Substitute in the latest insn for the regs set by the earlier ones. */
3121
3122 maxreg = max_reg_num ();
3123
3124 subst_insn = i3;
3125
3126 /* Many machines that don't use CC0 have insns that can both perform an
3127 arithmetic operation and set the condition code. These operations will
3128 be represented as a PARALLEL with the first element of the vector
3129 being a COMPARE of an arithmetic operation with the constant zero.
3130 The second element of the vector will set some pseudo to the result
3131 of the same arithmetic operation. If we simplify the COMPARE, we won't
3132 match such a pattern and so will generate an extra insn. Here we test
3133 for this case, where both the comparison and the operation result are
3134 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3135 I2SRC. Later we will make the PARALLEL that contains I2. */
3136
3137 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3138 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3139 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3140 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3141 {
3142 rtx newpat_dest;
3143 rtx *cc_use_loc = NULL;
3144 rtx_insn *cc_use_insn = NULL;
3145 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3146 machine_mode compare_mode, orig_compare_mode;
3147 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3148
3149 newpat = PATTERN (i3);
3150 newpat_dest = SET_DEST (newpat);
3151 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3152
3153 if (undobuf.other_insn == 0
3154 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3155 &cc_use_insn)))
3156 {
3157 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3158 compare_code = simplify_compare_const (compare_code,
3159 GET_MODE (i2dest), op0, &op1);
3160 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3161 }
3162
3163 /* Do the rest only if op1 is const0_rtx, which may be the
3164 result of simplification. */
3165 if (op1 == const0_rtx)
3166 {
3167 /* If a single use of the CC is found, prepare to modify it
3168 when SELECT_CC_MODE returns a new CC-class mode, or when
3169 the above simplify_compare_const() returned a new comparison
3170 operator. undobuf.other_insn is assigned the CC use insn
3171 when modifying it. */
3172 if (cc_use_loc)
3173 {
3174 #ifdef SELECT_CC_MODE
3175 machine_mode new_mode
3176 = SELECT_CC_MODE (compare_code, op0, op1);
3177 if (new_mode != orig_compare_mode
3178 && can_change_dest_mode (SET_DEST (newpat),
3179 added_sets_2, new_mode))
3180 {
3181 unsigned int regno = REGNO (newpat_dest);
3182 compare_mode = new_mode;
3183 if (regno < FIRST_PSEUDO_REGISTER)
3184 newpat_dest = gen_rtx_REG (compare_mode, regno);
3185 else
3186 {
3187 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3188 newpat_dest = regno_reg_rtx[regno];
3189 }
3190 }
3191 #endif
3192 /* Cases for modifying the CC-using comparison. */
3193 if (compare_code != orig_compare_code
3194 /* ??? Do we need to verify the zero rtx? */
3195 && XEXP (*cc_use_loc, 1) == const0_rtx)
3196 {
3197 /* Replace cc_use_loc with entire new RTX. */
3198 SUBST (*cc_use_loc,
3199 gen_rtx_fmt_ee (compare_code, compare_mode,
3200 newpat_dest, const0_rtx));
3201 undobuf.other_insn = cc_use_insn;
3202 }
3203 else if (compare_mode != orig_compare_mode)
3204 {
3205 /* Just replace the CC reg with a new mode. */
3206 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3207 undobuf.other_insn = cc_use_insn;
3208 }
3209 }
3210
3211 /* Now we modify the current newpat:
3212 First, SET_DEST(newpat) is updated if the CC mode has been
3213 altered. For targets without SELECT_CC_MODE, this should be
3214 optimized away. */
3215 if (compare_mode != orig_compare_mode)
3216 SUBST (SET_DEST (newpat), newpat_dest);
3217 /* This is always done to propagate i2src into newpat. */
3218 SUBST (SET_SRC (newpat),
3219 gen_rtx_COMPARE (compare_mode, op0, op1));
3220 /* Create new version of i2pat if needed; the below PARALLEL
3221 creation needs this to work correctly. */
3222 if (! rtx_equal_p (i2src, op0))
3223 i2pat = gen_rtx_SET (i2dest, op0);
3224 i2_is_used = 1;
3225 }
3226 }
3227
3228 if (i2_is_used == 0)
3229 {
3230 /* It is possible that the source of I2 or I1 may be performing
3231 an unneeded operation, such as a ZERO_EXTEND of something
3232 that is known to have the high part zero. Handle that case
3233 by letting subst look at the inner insns.
3234
3235 Another way to do this would be to have a function that tries
3236 to simplify a single insn instead of merging two or more
3237 insns. We don't do this because of the potential of infinite
3238 loops and because of the potential extra memory required.
3239 However, doing it the way we are is a bit of a kludge and
3240 doesn't catch all cases.
3241
3242 But only do this if -fexpensive-optimizations since it slows
3243 things down and doesn't usually win.
3244
3245 This is not done in the COMPARE case above because the
3246 unmodified I2PAT is used in the PARALLEL and so a pattern
3247 with a modified I2SRC would not match. */
3248
3249 if (flag_expensive_optimizations)
3250 {
3251 /* Pass pc_rtx so no substitutions are done, just
3252 simplifications. */
3253 if (i1)
3254 {
3255 subst_low_luid = DF_INSN_LUID (i1);
3256 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3257 }
3258
3259 subst_low_luid = DF_INSN_LUID (i2);
3260 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3261 }
3262
3263 n_occurrences = 0; /* `subst' counts here */
3264 subst_low_luid = DF_INSN_LUID (i2);
3265
3266 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3267 copy of I2SRC each time we substitute it, in order to avoid creating
3268 self-referential RTL when we will be substituting I1SRC for I1DEST
3269 later. Likewise if I0 feeds into I2, either directly or indirectly
3270 through I1, and I0DEST is in I0SRC. */
3271 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3272 (i1_feeds_i2_n && i1dest_in_i1src)
3273 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3274 && i0dest_in_i0src));
3275 substed_i2 = 1;
3276
3277 /* Record whether I2's body now appears within I3's body. */
3278 i2_is_used = n_occurrences;
3279 }
3280
3281 /* If we already got a failure, don't try to do more. Otherwise, try to
3282 substitute I1 if we have it. */
3283
3284 if (i1 && GET_CODE (newpat) != CLOBBER)
3285 {
3286 /* Check that an autoincrement side-effect on I1 has not been lost.
3287 This happens if I1DEST is mentioned in I2 and dies there, and
3288 has disappeared from the new pattern. */
3289 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3290 && i1_feeds_i2_n
3291 && dead_or_set_p (i2, i1dest)
3292 && !reg_overlap_mentioned_p (i1dest, newpat))
3293 /* Before we can do this substitution, we must redo the test done
3294 above (see detailed comments there) that ensures I1DEST isn't
3295 mentioned in any SETs in NEWPAT that are field assignments. */
3296 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3297 0, 0, 0))
3298 {
3299 undo_all ();
3300 return 0;
3301 }
3302
3303 n_occurrences = 0;
3304 subst_low_luid = DF_INSN_LUID (i1);
3305
3306 /* If the following substitution will modify I1SRC, make a copy of it
3307 for the case where it is substituted for I1DEST in I2PAT later. */
3308 if (added_sets_2 && i1_feeds_i2_n)
3309 i1src_copy = copy_rtx (i1src);
3310
3311 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3312 copy of I1SRC each time we substitute it, in order to avoid creating
3313 self-referential RTL when we will be substituting I0SRC for I0DEST
3314 later. */
3315 newpat = subst (newpat, i1dest, i1src, 0, 0,
3316 i0_feeds_i1_n && i0dest_in_i0src);
3317 substed_i1 = 1;
3318
3319 /* Record whether I1's body now appears within I3's body. */
3320 i1_is_used = n_occurrences;
3321 }
3322
3323 /* Likewise for I0 if we have it. */
3324
3325 if (i0 && GET_CODE (newpat) != CLOBBER)
3326 {
3327 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3328 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3329 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3330 && !reg_overlap_mentioned_p (i0dest, newpat))
3331 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3332 0, 0, 0))
3333 {
3334 undo_all ();
3335 return 0;
3336 }
3337
3338 /* If the following substitution will modify I0SRC, make a copy of it
3339 for the case where it is substituted for I0DEST in I1PAT later. */
3340 if (added_sets_1 && i0_feeds_i1_n)
3341 i0src_copy = copy_rtx (i0src);
3342 /* And a copy for I0DEST in I2PAT substitution. */
3343 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3344 || (i0_feeds_i2_n)))
3345 i0src_copy2 = copy_rtx (i0src);
3346
3347 n_occurrences = 0;
3348 subst_low_luid = DF_INSN_LUID (i0);
3349 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3350 substed_i0 = 1;
3351 }
3352
3353 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3354 to count all the ways that I2SRC and I1SRC can be used. */
3355 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3356 && i2_is_used + added_sets_2 > 1)
3357 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3358 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3359 > 1))
3360 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3361 && (n_occurrences + added_sets_0
3362 + (added_sets_1 && i0_feeds_i1_n)
3363 + (added_sets_2 && i0_feeds_i2_n)
3364 > 1))
3365 /* Fail if we tried to make a new register. */
3366 || max_reg_num () != maxreg
3367 /* Fail if we couldn't do something and have a CLOBBER. */
3368 || GET_CODE (newpat) == CLOBBER
3369 /* Fail if this new pattern is a MULT and we didn't have one before
3370 at the outer level. */
3371 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3372 && ! have_mult))
3373 {
3374 undo_all ();
3375 return 0;
3376 }
3377
3378 /* If the actions of the earlier insns must be kept
3379 in addition to substituting them into the latest one,
3380 we must make a new PARALLEL for the latest insn
3381 to hold additional the SETs. */
3382
3383 if (added_sets_0 || added_sets_1 || added_sets_2)
3384 {
3385 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3386 combine_extras++;
3387
3388 if (GET_CODE (newpat) == PARALLEL)
3389 {
3390 rtvec old = XVEC (newpat, 0);
3391 total_sets = XVECLEN (newpat, 0) + extra_sets;
3392 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3393 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3394 sizeof (old->elem[0]) * old->num_elem);
3395 }
3396 else
3397 {
3398 rtx old = newpat;
3399 total_sets = 1 + extra_sets;
3400 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3401 XVECEXP (newpat, 0, 0) = old;
3402 }
3403
3404 if (added_sets_0)
3405 XVECEXP (newpat, 0, --total_sets) = i0pat;
3406
3407 if (added_sets_1)
3408 {
3409 rtx t = i1pat;
3410 if (i0_feeds_i1_n)
3411 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3412
3413 XVECEXP (newpat, 0, --total_sets) = t;
3414 }
3415 if (added_sets_2)
3416 {
3417 rtx t = i2pat;
3418 if (i1_feeds_i2_n)
3419 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3420 i0_feeds_i1_n && i0dest_in_i0src);
3421 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3422 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3423
3424 XVECEXP (newpat, 0, --total_sets) = t;
3425 }
3426 }
3427
3428 validate_replacement:
3429
3430 /* Note which hard regs this insn has as inputs. */
3431 mark_used_regs_combine (newpat);
3432
3433 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3434 consider splitting this pattern, we might need these clobbers. */
3435 if (i1 && GET_CODE (newpat) == PARALLEL
3436 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3437 {
3438 int len = XVECLEN (newpat, 0);
3439
3440 newpat_vec_with_clobbers = rtvec_alloc (len);
3441 for (i = 0; i < len; i++)
3442 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3443 }
3444
3445 /* We have recognized nothing yet. */
3446 insn_code_number = -1;
3447
3448 /* See if this is a PARALLEL of two SETs where one SET's destination is
3449 a register that is unused and this isn't marked as an instruction that
3450 might trap in an EH region. In that case, we just need the other SET.
3451 We prefer this over the PARALLEL.
3452
3453 This can occur when simplifying a divmod insn. We *must* test for this
3454 case here because the code below that splits two independent SETs doesn't
3455 handle this case correctly when it updates the register status.
3456
3457 It's pointless doing this if we originally had two sets, one from
3458 i3, and one from i2. Combining then splitting the parallel results
3459 in the original i2 again plus an invalid insn (which we delete).
3460 The net effect is only to move instructions around, which makes
3461 debug info less accurate. */
3462
3463 if (!(added_sets_2 && i1 == 0)
3464 && is_parallel_of_n_reg_sets (newpat, 2)
3465 && asm_noperands (newpat) < 0)
3466 {
3467 rtx set0 = XVECEXP (newpat, 0, 0);
3468 rtx set1 = XVECEXP (newpat, 0, 1);
3469 rtx oldpat = newpat;
3470
3471 if (((REG_P (SET_DEST (set1))
3472 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3473 || (GET_CODE (SET_DEST (set1)) == SUBREG
3474 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3475 && insn_nothrow_p (i3)
3476 && !side_effects_p (SET_SRC (set1)))
3477 {
3478 newpat = set0;
3479 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3480 }
3481
3482 else if (((REG_P (SET_DEST (set0))
3483 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3484 || (GET_CODE (SET_DEST (set0)) == SUBREG
3485 && find_reg_note (i3, REG_UNUSED,
3486 SUBREG_REG (SET_DEST (set0)))))
3487 && insn_nothrow_p (i3)
3488 && !side_effects_p (SET_SRC (set0)))
3489 {
3490 newpat = set1;
3491 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3492
3493 if (insn_code_number >= 0)
3494 changed_i3_dest = 1;
3495 }
3496
3497 if (insn_code_number < 0)
3498 newpat = oldpat;
3499 }
3500
3501 /* Is the result of combination a valid instruction? */
3502 if (insn_code_number < 0)
3503 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3504
3505 /* If we were combining three insns and the result is a simple SET
3506 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3507 insns. There are two ways to do this. It can be split using a
3508 machine-specific method (like when you have an addition of a large
3509 constant) or by combine in the function find_split_point. */
3510
3511 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3512 && asm_noperands (newpat) < 0)
3513 {
3514 rtx parallel, *split;
3515 rtx_insn *m_split_insn;
3516
3517 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3518 use I2DEST as a scratch register will help. In the latter case,
3519 convert I2DEST to the mode of the source of NEWPAT if we can. */
3520
3521 m_split_insn = combine_split_insns (newpat, i3);
3522
3523 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3524 inputs of NEWPAT. */
3525
3526 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3527 possible to try that as a scratch reg. This would require adding
3528 more code to make it work though. */
3529
3530 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3531 {
3532 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3533
3534 /* First try to split using the original register as a
3535 scratch register. */
3536 parallel = gen_rtx_PARALLEL (VOIDmode,
3537 gen_rtvec (2, newpat,
3538 gen_rtx_CLOBBER (VOIDmode,
3539 i2dest)));
3540 m_split_insn = combine_split_insns (parallel, i3);
3541
3542 /* If that didn't work, try changing the mode of I2DEST if
3543 we can. */
3544 if (m_split_insn == 0
3545 && new_mode != GET_MODE (i2dest)
3546 && new_mode != VOIDmode
3547 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3548 {
3549 machine_mode old_mode = GET_MODE (i2dest);
3550 rtx ni2dest;
3551
3552 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3553 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3554 else
3555 {
3556 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3557 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3558 }
3559
3560 parallel = (gen_rtx_PARALLEL
3561 (VOIDmode,
3562 gen_rtvec (2, newpat,
3563 gen_rtx_CLOBBER (VOIDmode,
3564 ni2dest))));
3565 m_split_insn = combine_split_insns (parallel, i3);
3566
3567 if (m_split_insn == 0
3568 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3569 {
3570 struct undo *buf;
3571
3572 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3573 buf = undobuf.undos;
3574 undobuf.undos = buf->next;
3575 buf->next = undobuf.frees;
3576 undobuf.frees = buf;
3577 }
3578 }
3579
3580 i2scratch = m_split_insn != 0;
3581 }
3582
3583 /* If recog_for_combine has discarded clobbers, try to use them
3584 again for the split. */
3585 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3586 {
3587 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3588 m_split_insn = combine_split_insns (parallel, i3);
3589 }
3590
3591 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3592 {
3593 rtx m_split_pat = PATTERN (m_split_insn);
3594 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3595 if (insn_code_number >= 0)
3596 newpat = m_split_pat;
3597 }
3598 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3599 && (next_nonnote_nondebug_insn (i2) == i3
3600 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3601 {
3602 rtx i2set, i3set;
3603 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3604 newi2pat = PATTERN (m_split_insn);
3605
3606 i3set = single_set (NEXT_INSN (m_split_insn));
3607 i2set = single_set (m_split_insn);
3608
3609 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3610
3611 /* If I2 or I3 has multiple SETs, we won't know how to track
3612 register status, so don't use these insns. If I2's destination
3613 is used between I2 and I3, we also can't use these insns. */
3614
3615 if (i2_code_number >= 0 && i2set && i3set
3616 && (next_nonnote_nondebug_insn (i2) == i3
3617 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3618 insn_code_number = recog_for_combine (&newi3pat, i3,
3619 &new_i3_notes);
3620 if (insn_code_number >= 0)
3621 newpat = newi3pat;
3622
3623 /* It is possible that both insns now set the destination of I3.
3624 If so, we must show an extra use of it. */
3625
3626 if (insn_code_number >= 0)
3627 {
3628 rtx new_i3_dest = SET_DEST (i3set);
3629 rtx new_i2_dest = SET_DEST (i2set);
3630
3631 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3632 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3633 || GET_CODE (new_i3_dest) == SUBREG)
3634 new_i3_dest = XEXP (new_i3_dest, 0);
3635
3636 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3637 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3638 || GET_CODE (new_i2_dest) == SUBREG)
3639 new_i2_dest = XEXP (new_i2_dest, 0);
3640
3641 if (REG_P (new_i3_dest)
3642 && REG_P (new_i2_dest)
3643 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3644 && REGNO (new_i2_dest) < reg_n_sets_max)
3645 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3646 }
3647 }
3648
3649 /* If we can split it and use I2DEST, go ahead and see if that
3650 helps things be recognized. Verify that none of the registers
3651 are set between I2 and I3. */
3652 if (insn_code_number < 0
3653 && (split = find_split_point (&newpat, i3, false)) != 0
3654 && (!HAVE_cc0 || REG_P (i2dest))
3655 /* We need I2DEST in the proper mode. If it is a hard register
3656 or the only use of a pseudo, we can change its mode.
3657 Make sure we don't change a hard register to have a mode that
3658 isn't valid for it, or change the number of registers. */
3659 && (GET_MODE (*split) == GET_MODE (i2dest)
3660 || GET_MODE (*split) == VOIDmode
3661 || can_change_dest_mode (i2dest, added_sets_2,
3662 GET_MODE (*split)))
3663 && (next_nonnote_nondebug_insn (i2) == i3
3664 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3665 /* We can't overwrite I2DEST if its value is still used by
3666 NEWPAT. */
3667 && ! reg_referenced_p (i2dest, newpat))
3668 {
3669 rtx newdest = i2dest;
3670 enum rtx_code split_code = GET_CODE (*split);
3671 machine_mode split_mode = GET_MODE (*split);
3672 bool subst_done = false;
3673 newi2pat = NULL_RTX;
3674
3675 i2scratch = true;
3676
3677 /* *SPLIT may be part of I2SRC, so make sure we have the
3678 original expression around for later debug processing.
3679 We should not need I2SRC any more in other cases. */
3680 if (MAY_HAVE_DEBUG_INSNS)
3681 i2src = copy_rtx (i2src);
3682 else
3683 i2src = NULL;
3684
3685 /* Get NEWDEST as a register in the proper mode. We have already
3686 validated that we can do this. */
3687 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3688 {
3689 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3690 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3691 else
3692 {
3693 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3694 newdest = regno_reg_rtx[REGNO (i2dest)];
3695 }
3696 }
3697
3698 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3699 an ASHIFT. This can occur if it was inside a PLUS and hence
3700 appeared to be a memory address. This is a kludge. */
3701 if (split_code == MULT
3702 && CONST_INT_P (XEXP (*split, 1))
3703 && INTVAL (XEXP (*split, 1)) > 0
3704 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3705 {
3706 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3707 XEXP (*split, 0), GEN_INT (i)));
3708 /* Update split_code because we may not have a multiply
3709 anymore. */
3710 split_code = GET_CODE (*split);
3711 }
3712
3713 /* Similarly for (plus (mult FOO (const_int pow2))). */
3714 if (split_code == PLUS
3715 && GET_CODE (XEXP (*split, 0)) == MULT
3716 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3717 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3718 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3719 {
3720 rtx nsplit = XEXP (*split, 0);
3721 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3722 XEXP (nsplit, 0), GEN_INT (i)));
3723 /* Update split_code because we may not have a multiply
3724 anymore. */
3725 split_code = GET_CODE (*split);
3726 }
3727
3728 #ifdef INSN_SCHEDULING
3729 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3730 be written as a ZERO_EXTEND. */
3731 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3732 {
3733 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3734 what it really is. */
3735 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3736 == SIGN_EXTEND)
3737 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3738 SUBREG_REG (*split)));
3739 else
3740 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3741 SUBREG_REG (*split)));
3742 }
3743 #endif
3744
3745 /* Attempt to split binary operators using arithmetic identities. */
3746 if (BINARY_P (SET_SRC (newpat))
3747 && split_mode == GET_MODE (SET_SRC (newpat))
3748 && ! side_effects_p (SET_SRC (newpat)))
3749 {
3750 rtx setsrc = SET_SRC (newpat);
3751 machine_mode mode = GET_MODE (setsrc);
3752 enum rtx_code code = GET_CODE (setsrc);
3753 rtx src_op0 = XEXP (setsrc, 0);
3754 rtx src_op1 = XEXP (setsrc, 1);
3755
3756 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3757 if (rtx_equal_p (src_op0, src_op1))
3758 {
3759 newi2pat = gen_rtx_SET (newdest, src_op0);
3760 SUBST (XEXP (setsrc, 0), newdest);
3761 SUBST (XEXP (setsrc, 1), newdest);
3762 subst_done = true;
3763 }
3764 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3765 else if ((code == PLUS || code == MULT)
3766 && GET_CODE (src_op0) == code
3767 && GET_CODE (XEXP (src_op0, 0)) == code
3768 && (INTEGRAL_MODE_P (mode)
3769 || (FLOAT_MODE_P (mode)
3770 && flag_unsafe_math_optimizations)))
3771 {
3772 rtx p = XEXP (XEXP (src_op0, 0), 0);
3773 rtx q = XEXP (XEXP (src_op0, 0), 1);
3774 rtx r = XEXP (src_op0, 1);
3775 rtx s = src_op1;
3776
3777 /* Split both "((X op Y) op X) op Y" and
3778 "((X op Y) op Y) op X" as "T op T" where T is
3779 "X op Y". */
3780 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3781 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3782 {
3783 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3784 SUBST (XEXP (setsrc, 0), newdest);
3785 SUBST (XEXP (setsrc, 1), newdest);
3786 subst_done = true;
3787 }
3788 /* Split "((X op X) op Y) op Y)" as "T op T" where
3789 T is "X op Y". */
3790 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3791 {
3792 rtx tmp = simplify_gen_binary (code, mode, p, r);
3793 newi2pat = gen_rtx_SET (newdest, tmp);
3794 SUBST (XEXP (setsrc, 0), newdest);
3795 SUBST (XEXP (setsrc, 1), newdest);
3796 subst_done = true;
3797 }
3798 }
3799 }
3800
3801 if (!subst_done)
3802 {
3803 newi2pat = gen_rtx_SET (newdest, *split);
3804 SUBST (*split, newdest);
3805 }
3806
3807 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3808
3809 /* recog_for_combine might have added CLOBBERs to newi2pat.
3810 Make sure NEWPAT does not depend on the clobbered regs. */
3811 if (GET_CODE (newi2pat) == PARALLEL)
3812 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3813 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3814 {
3815 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3816 if (reg_overlap_mentioned_p (reg, newpat))
3817 {
3818 undo_all ();
3819 return 0;
3820 }
3821 }
3822
3823 /* If the split point was a MULT and we didn't have one before,
3824 don't use one now. */
3825 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3826 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3827 }
3828 }
3829
3830 /* Check for a case where we loaded from memory in a narrow mode and
3831 then sign extended it, but we need both registers. In that case,
3832 we have a PARALLEL with both loads from the same memory location.
3833 We can split this into a load from memory followed by a register-register
3834 copy. This saves at least one insn, more if register allocation can
3835 eliminate the copy.
3836
3837 We cannot do this if the destination of the first assignment is a
3838 condition code register or cc0. We eliminate this case by making sure
3839 the SET_DEST and SET_SRC have the same mode.
3840
3841 We cannot do this if the destination of the second assignment is
3842 a register that we have already assumed is zero-extended. Similarly
3843 for a SUBREG of such a register. */
3844
3845 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3846 && GET_CODE (newpat) == PARALLEL
3847 && XVECLEN (newpat, 0) == 2
3848 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3849 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3850 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3851 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3852 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3853 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3854 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3855 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3856 DF_INSN_LUID (i2))
3857 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3858 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3859 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3860 (REG_P (temp_expr)
3861 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3862 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3863 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3864 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3865 != GET_MODE_MASK (word_mode))))
3866 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3867 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3868 (REG_P (temp_expr)
3869 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3870 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3871 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3872 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3873 != GET_MODE_MASK (word_mode)))))
3874 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3875 SET_SRC (XVECEXP (newpat, 0, 1)))
3876 && ! find_reg_note (i3, REG_UNUSED,
3877 SET_DEST (XVECEXP (newpat, 0, 0))))
3878 {
3879 rtx ni2dest;
3880
3881 newi2pat = XVECEXP (newpat, 0, 0);
3882 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3883 newpat = XVECEXP (newpat, 0, 1);
3884 SUBST (SET_SRC (newpat),
3885 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3886 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3887
3888 if (i2_code_number >= 0)
3889 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3890
3891 if (insn_code_number >= 0)
3892 swap_i2i3 = 1;
3893 }
3894
3895 /* Similarly, check for a case where we have a PARALLEL of two independent
3896 SETs but we started with three insns. In this case, we can do the sets
3897 as two separate insns. This case occurs when some SET allows two
3898 other insns to combine, but the destination of that SET is still live.
3899
3900 Also do this if we started with two insns and (at least) one of the
3901 resulting sets is a noop; this noop will be deleted later. */
3902
3903 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3904 && GET_CODE (newpat) == PARALLEL
3905 && XVECLEN (newpat, 0) == 2
3906 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3907 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3908 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3909 || set_noop_p (XVECEXP (newpat, 0, 1)))
3910 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3911 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3912 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3913 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3914 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3915 XVECEXP (newpat, 0, 0))
3916 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3917 XVECEXP (newpat, 0, 1))
3918 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3919 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3920 {
3921 rtx set0 = XVECEXP (newpat, 0, 0);
3922 rtx set1 = XVECEXP (newpat, 0, 1);
3923
3924 /* Normally, it doesn't matter which of the two is done first,
3925 but the one that references cc0 can't be the second, and
3926 one which uses any regs/memory set in between i2 and i3 can't
3927 be first. The PARALLEL might also have been pre-existing in i3,
3928 so we need to make sure that we won't wrongly hoist a SET to i2
3929 that would conflict with a death note present in there. */
3930 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3931 && !(REG_P (SET_DEST (set1))
3932 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3933 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3934 && find_reg_note (i2, REG_DEAD,
3935 SUBREG_REG (SET_DEST (set1))))
3936 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3937 /* If I3 is a jump, ensure that set0 is a jump so that
3938 we do not create invalid RTL. */
3939 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3940 )
3941 {
3942 newi2pat = set1;
3943 newpat = set0;
3944 }
3945 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3946 && !(REG_P (SET_DEST (set0))
3947 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3948 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3949 && find_reg_note (i2, REG_DEAD,
3950 SUBREG_REG (SET_DEST (set0))))
3951 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3952 /* If I3 is a jump, ensure that set1 is a jump so that
3953 we do not create invalid RTL. */
3954 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3955 )
3956 {
3957 newi2pat = set0;
3958 newpat = set1;
3959 }
3960 else
3961 {
3962 undo_all ();
3963 return 0;
3964 }
3965
3966 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3967
3968 if (i2_code_number >= 0)
3969 {
3970 /* recog_for_combine might have added CLOBBERs to newi2pat.
3971 Make sure NEWPAT does not depend on the clobbered regs. */
3972 if (GET_CODE (newi2pat) == PARALLEL)
3973 {
3974 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3975 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3976 {
3977 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3978 if (reg_overlap_mentioned_p (reg, newpat))
3979 {
3980 undo_all ();
3981 return 0;
3982 }
3983 }
3984 }
3985
3986 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3987 }
3988 }
3989
3990 /* If it still isn't recognized, fail and change things back the way they
3991 were. */
3992 if ((insn_code_number < 0
3993 /* Is the result a reasonable ASM_OPERANDS? */
3994 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3995 {
3996 undo_all ();
3997 return 0;
3998 }
3999
4000 /* If we had to change another insn, make sure it is valid also. */
4001 if (undobuf.other_insn)
4002 {
4003 CLEAR_HARD_REG_SET (newpat_used_regs);
4004
4005 other_pat = PATTERN (undobuf.other_insn);
4006 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4007 &new_other_notes);
4008
4009 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4010 {
4011 undo_all ();
4012 return 0;
4013 }
4014 }
4015
4016 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4017 they are adjacent to each other or not. */
4018 if (HAVE_cc0)
4019 {
4020 rtx_insn *p = prev_nonnote_insn (i3);
4021 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4022 && sets_cc0_p (newi2pat))
4023 {
4024 undo_all ();
4025 return 0;
4026 }
4027 }
4028
4029 /* Only allow this combination if insn_rtx_costs reports that the
4030 replacement instructions are cheaper than the originals. */
4031 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4032 {
4033 undo_all ();
4034 return 0;
4035 }
4036
4037 if (MAY_HAVE_DEBUG_INSNS)
4038 {
4039 struct undo *undo;
4040
4041 for (undo = undobuf.undos; undo; undo = undo->next)
4042 if (undo->kind == UNDO_MODE)
4043 {
4044 rtx reg = *undo->where.r;
4045 machine_mode new_mode = GET_MODE (reg);
4046 machine_mode old_mode = undo->old_contents.m;
4047
4048 /* Temporarily revert mode back. */
4049 adjust_reg_mode (reg, old_mode);
4050
4051 if (reg == i2dest && i2scratch)
4052 {
4053 /* If we used i2dest as a scratch register with a
4054 different mode, substitute it for the original
4055 i2src while its original mode is temporarily
4056 restored, and then clear i2scratch so that we don't
4057 do it again later. */
4058 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4059 this_basic_block);
4060 i2scratch = false;
4061 /* Put back the new mode. */
4062 adjust_reg_mode (reg, new_mode);
4063 }
4064 else
4065 {
4066 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4067 rtx_insn *first, *last;
4068
4069 if (reg == i2dest)
4070 {
4071 first = i2;
4072 last = last_combined_insn;
4073 }
4074 else
4075 {
4076 first = i3;
4077 last = undobuf.other_insn;
4078 gcc_assert (last);
4079 if (DF_INSN_LUID (last)
4080 < DF_INSN_LUID (last_combined_insn))
4081 last = last_combined_insn;
4082 }
4083
4084 /* We're dealing with a reg that changed mode but not
4085 meaning, so we want to turn it into a subreg for
4086 the new mode. However, because of REG sharing and
4087 because its mode had already changed, we have to do
4088 it in two steps. First, replace any debug uses of
4089 reg, with its original mode temporarily restored,
4090 with this copy we have created; then, replace the
4091 copy with the SUBREG of the original shared reg,
4092 once again changed to the new mode. */
4093 propagate_for_debug (first, last, reg, tempreg,
4094 this_basic_block);
4095 adjust_reg_mode (reg, new_mode);
4096 propagate_for_debug (first, last, tempreg,
4097 lowpart_subreg (old_mode, reg, new_mode),
4098 this_basic_block);
4099 }
4100 }
4101 }
4102
4103 /* If we will be able to accept this, we have made a
4104 change to the destination of I3. This requires us to
4105 do a few adjustments. */
4106
4107 if (changed_i3_dest)
4108 {
4109 PATTERN (i3) = newpat;
4110 adjust_for_new_dest (i3);
4111 }
4112
4113 /* We now know that we can do this combination. Merge the insns and
4114 update the status of registers and LOG_LINKS. */
4115
4116 if (undobuf.other_insn)
4117 {
4118 rtx note, next;
4119
4120 PATTERN (undobuf.other_insn) = other_pat;
4121
4122 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4123 ensure that they are still valid. Then add any non-duplicate
4124 notes added by recog_for_combine. */
4125 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4126 {
4127 next = XEXP (note, 1);
4128
4129 if ((REG_NOTE_KIND (note) == REG_DEAD
4130 && !reg_referenced_p (XEXP (note, 0),
4131 PATTERN (undobuf.other_insn)))
4132 ||(REG_NOTE_KIND (note) == REG_UNUSED
4133 && !reg_set_p (XEXP (note, 0),
4134 PATTERN (undobuf.other_insn))))
4135 remove_note (undobuf.other_insn, note);
4136 }
4137
4138 distribute_notes (new_other_notes, undobuf.other_insn,
4139 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4140 NULL_RTX);
4141 }
4142
4143 if (swap_i2i3)
4144 {
4145 rtx_insn *insn;
4146 struct insn_link *link;
4147 rtx ni2dest;
4148
4149 /* I3 now uses what used to be its destination and which is now
4150 I2's destination. This requires us to do a few adjustments. */
4151 PATTERN (i3) = newpat;
4152 adjust_for_new_dest (i3);
4153
4154 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4155 so we still will.
4156
4157 However, some later insn might be using I2's dest and have
4158 a LOG_LINK pointing at I3. We must remove this link.
4159 The simplest way to remove the link is to point it at I1,
4160 which we know will be a NOTE. */
4161
4162 /* newi2pat is usually a SET here; however, recog_for_combine might
4163 have added some clobbers. */
4164 if (GET_CODE (newi2pat) == PARALLEL)
4165 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4166 else
4167 ni2dest = SET_DEST (newi2pat);
4168
4169 for (insn = NEXT_INSN (i3);
4170 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4171 || insn != BB_HEAD (this_basic_block->next_bb));
4172 insn = NEXT_INSN (insn))
4173 {
4174 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4175 {
4176 FOR_EACH_LOG_LINK (link, insn)
4177 if (link->insn == i3)
4178 link->insn = i1;
4179
4180 break;
4181 }
4182 }
4183 }
4184
4185 {
4186 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4187 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4188 rtx midnotes = 0;
4189 int from_luid;
4190 /* Compute which registers we expect to eliminate. newi2pat may be setting
4191 either i3dest or i2dest, so we must check it. */
4192 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4193 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4194 || !i2dest_killed
4195 ? 0 : i2dest);
4196 /* For i1, we need to compute both local elimination and global
4197 elimination information with respect to newi2pat because i1dest
4198 may be the same as i3dest, in which case newi2pat may be setting
4199 i1dest. Global information is used when distributing REG_DEAD
4200 note for i2 and i3, in which case it does matter if newi2pat sets
4201 i1dest or not.
4202
4203 Local information is used when distributing REG_DEAD note for i1,
4204 in which case it doesn't matter if newi2pat sets i1dest or not.
4205 See PR62151, if we have four insns combination:
4206 i0: r0 <- i0src
4207 i1: r1 <- i1src (using r0)
4208 REG_DEAD (r0)
4209 i2: r0 <- i2src (using r1)
4210 i3: r3 <- i3src (using r0)
4211 ix: using r0
4212 From i1's point of view, r0 is eliminated, no matter if it is set
4213 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4214 should be discarded.
4215
4216 Note local information only affects cases in forms like "I1->I2->I3",
4217 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4218 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4219 i0dest anyway. */
4220 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4221 || !i1dest_killed
4222 ? 0 : i1dest);
4223 rtx elim_i1 = (local_elim_i1 == 0
4224 || (newi2pat && reg_set_p (i1dest, newi2pat))
4225 ? 0 : i1dest);
4226 /* Same case as i1. */
4227 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4228 ? 0 : i0dest);
4229 rtx elim_i0 = (local_elim_i0 == 0
4230 || (newi2pat && reg_set_p (i0dest, newi2pat))
4231 ? 0 : i0dest);
4232
4233 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4234 clear them. */
4235 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4236 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4237 if (i1)
4238 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4239 if (i0)
4240 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4241
4242 /* Ensure that we do not have something that should not be shared but
4243 occurs multiple times in the new insns. Check this by first
4244 resetting all the `used' flags and then copying anything is shared. */
4245
4246 reset_used_flags (i3notes);
4247 reset_used_flags (i2notes);
4248 reset_used_flags (i1notes);
4249 reset_used_flags (i0notes);
4250 reset_used_flags (newpat);
4251 reset_used_flags (newi2pat);
4252 if (undobuf.other_insn)
4253 reset_used_flags (PATTERN (undobuf.other_insn));
4254
4255 i3notes = copy_rtx_if_shared (i3notes);
4256 i2notes = copy_rtx_if_shared (i2notes);
4257 i1notes = copy_rtx_if_shared (i1notes);
4258 i0notes = copy_rtx_if_shared (i0notes);
4259 newpat = copy_rtx_if_shared (newpat);
4260 newi2pat = copy_rtx_if_shared (newi2pat);
4261 if (undobuf.other_insn)
4262 reset_used_flags (PATTERN (undobuf.other_insn));
4263
4264 INSN_CODE (i3) = insn_code_number;
4265 PATTERN (i3) = newpat;
4266
4267 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4268 {
4269 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4270
4271 reset_used_flags (call_usage);
4272 call_usage = copy_rtx (call_usage);
4273
4274 if (substed_i2)
4275 {
4276 /* I2SRC must still be meaningful at this point. Some splitting
4277 operations can invalidate I2SRC, but those operations do not
4278 apply to calls. */
4279 gcc_assert (i2src);
4280 replace_rtx (call_usage, i2dest, i2src);
4281 }
4282
4283 if (substed_i1)
4284 replace_rtx (call_usage, i1dest, i1src);
4285 if (substed_i0)
4286 replace_rtx (call_usage, i0dest, i0src);
4287
4288 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4289 }
4290
4291 if (undobuf.other_insn)
4292 INSN_CODE (undobuf.other_insn) = other_code_number;
4293
4294 /* We had one special case above where I2 had more than one set and
4295 we replaced a destination of one of those sets with the destination
4296 of I3. In that case, we have to update LOG_LINKS of insns later
4297 in this basic block. Note that this (expensive) case is rare.
4298
4299 Also, in this case, we must pretend that all REG_NOTEs for I2
4300 actually came from I3, so that REG_UNUSED notes from I2 will be
4301 properly handled. */
4302
4303 if (i3_subst_into_i2)
4304 {
4305 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4306 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4307 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4308 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4309 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4310 && ! find_reg_note (i2, REG_UNUSED,
4311 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4312 for (temp_insn = NEXT_INSN (i2);
4313 temp_insn
4314 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4315 || BB_HEAD (this_basic_block) != temp_insn);
4316 temp_insn = NEXT_INSN (temp_insn))
4317 if (temp_insn != i3 && INSN_P (temp_insn))
4318 FOR_EACH_LOG_LINK (link, temp_insn)
4319 if (link->insn == i2)
4320 link->insn = i3;
4321
4322 if (i3notes)
4323 {
4324 rtx link = i3notes;
4325 while (XEXP (link, 1))
4326 link = XEXP (link, 1);
4327 XEXP (link, 1) = i2notes;
4328 }
4329 else
4330 i3notes = i2notes;
4331 i2notes = 0;
4332 }
4333
4334 LOG_LINKS (i3) = NULL;
4335 REG_NOTES (i3) = 0;
4336 LOG_LINKS (i2) = NULL;
4337 REG_NOTES (i2) = 0;
4338
4339 if (newi2pat)
4340 {
4341 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4342 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4343 this_basic_block);
4344 INSN_CODE (i2) = i2_code_number;
4345 PATTERN (i2) = newi2pat;
4346 }
4347 else
4348 {
4349 if (MAY_HAVE_DEBUG_INSNS && i2src)
4350 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4351 this_basic_block);
4352 SET_INSN_DELETED (i2);
4353 }
4354
4355 if (i1)
4356 {
4357 LOG_LINKS (i1) = NULL;
4358 REG_NOTES (i1) = 0;
4359 if (MAY_HAVE_DEBUG_INSNS)
4360 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4361 this_basic_block);
4362 SET_INSN_DELETED (i1);
4363 }
4364
4365 if (i0)
4366 {
4367 LOG_LINKS (i0) = NULL;
4368 REG_NOTES (i0) = 0;
4369 if (MAY_HAVE_DEBUG_INSNS)
4370 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4371 this_basic_block);
4372 SET_INSN_DELETED (i0);
4373 }
4374
4375 /* Get death notes for everything that is now used in either I3 or
4376 I2 and used to die in a previous insn. If we built two new
4377 patterns, move from I1 to I2 then I2 to I3 so that we get the
4378 proper movement on registers that I2 modifies. */
4379
4380 if (i0)
4381 from_luid = DF_INSN_LUID (i0);
4382 else if (i1)
4383 from_luid = DF_INSN_LUID (i1);
4384 else
4385 from_luid = DF_INSN_LUID (i2);
4386 if (newi2pat)
4387 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4388 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4389
4390 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4391 if (i3notes)
4392 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4393 elim_i2, elim_i1, elim_i0);
4394 if (i2notes)
4395 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4396 elim_i2, elim_i1, elim_i0);
4397 if (i1notes)
4398 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4399 elim_i2, local_elim_i1, local_elim_i0);
4400 if (i0notes)
4401 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4402 elim_i2, elim_i1, local_elim_i0);
4403 if (midnotes)
4404 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4405 elim_i2, elim_i1, elim_i0);
4406
4407 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4408 know these are REG_UNUSED and want them to go to the desired insn,
4409 so we always pass it as i3. */
4410
4411 if (newi2pat && new_i2_notes)
4412 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4413 NULL_RTX);
4414
4415 if (new_i3_notes)
4416 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4417 NULL_RTX);
4418
4419 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4420 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4421 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4422 in that case, it might delete I2. Similarly for I2 and I1.
4423 Show an additional death due to the REG_DEAD note we make here. If
4424 we discard it in distribute_notes, we will decrement it again. */
4425
4426 if (i3dest_killed)
4427 {
4428 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4429 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4430 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4431 elim_i1, elim_i0);
4432 else
4433 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4434 elim_i2, elim_i1, elim_i0);
4435 }
4436
4437 if (i2dest_in_i2src)
4438 {
4439 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4440 if (newi2pat && reg_set_p (i2dest, newi2pat))
4441 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4442 NULL_RTX, NULL_RTX);
4443 else
4444 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4445 NULL_RTX, NULL_RTX, NULL_RTX);
4446 }
4447
4448 if (i1dest_in_i1src)
4449 {
4450 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4451 if (newi2pat && reg_set_p (i1dest, newi2pat))
4452 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4453 NULL_RTX, NULL_RTX);
4454 else
4455 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4456 NULL_RTX, NULL_RTX, NULL_RTX);
4457 }
4458
4459 if (i0dest_in_i0src)
4460 {
4461 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4462 if (newi2pat && reg_set_p (i0dest, newi2pat))
4463 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4464 NULL_RTX, NULL_RTX);
4465 else
4466 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4467 NULL_RTX, NULL_RTX, NULL_RTX);
4468 }
4469
4470 distribute_links (i3links);
4471 distribute_links (i2links);
4472 distribute_links (i1links);
4473 distribute_links (i0links);
4474
4475 if (REG_P (i2dest))
4476 {
4477 struct insn_link *link;
4478 rtx_insn *i2_insn = 0;
4479 rtx i2_val = 0, set;
4480
4481 /* The insn that used to set this register doesn't exist, and
4482 this life of the register may not exist either. See if one of
4483 I3's links points to an insn that sets I2DEST. If it does,
4484 that is now the last known value for I2DEST. If we don't update
4485 this and I2 set the register to a value that depended on its old
4486 contents, we will get confused. If this insn is used, thing
4487 will be set correctly in combine_instructions. */
4488 FOR_EACH_LOG_LINK (link, i3)
4489 if ((set = single_set (link->insn)) != 0
4490 && rtx_equal_p (i2dest, SET_DEST (set)))
4491 i2_insn = link->insn, i2_val = SET_SRC (set);
4492
4493 record_value_for_reg (i2dest, i2_insn, i2_val);
4494
4495 /* If the reg formerly set in I2 died only once and that was in I3,
4496 zero its use count so it won't make `reload' do any work. */
4497 if (! added_sets_2
4498 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4499 && ! i2dest_in_i2src
4500 && REGNO (i2dest) < reg_n_sets_max)
4501 INC_REG_N_SETS (REGNO (i2dest), -1);
4502 }
4503
4504 if (i1 && REG_P (i1dest))
4505 {
4506 struct insn_link *link;
4507 rtx_insn *i1_insn = 0;
4508 rtx i1_val = 0, set;
4509
4510 FOR_EACH_LOG_LINK (link, i3)
4511 if ((set = single_set (link->insn)) != 0
4512 && rtx_equal_p (i1dest, SET_DEST (set)))
4513 i1_insn = link->insn, i1_val = SET_SRC (set);
4514
4515 record_value_for_reg (i1dest, i1_insn, i1_val);
4516
4517 if (! added_sets_1
4518 && ! i1dest_in_i1src
4519 && REGNO (i1dest) < reg_n_sets_max)
4520 INC_REG_N_SETS (REGNO (i1dest), -1);
4521 }
4522
4523 if (i0 && REG_P (i0dest))
4524 {
4525 struct insn_link *link;
4526 rtx_insn *i0_insn = 0;
4527 rtx i0_val = 0, set;
4528
4529 FOR_EACH_LOG_LINK (link, i3)
4530 if ((set = single_set (link->insn)) != 0
4531 && rtx_equal_p (i0dest, SET_DEST (set)))
4532 i0_insn = link->insn, i0_val = SET_SRC (set);
4533
4534 record_value_for_reg (i0dest, i0_insn, i0_val);
4535
4536 if (! added_sets_0
4537 && ! i0dest_in_i0src
4538 && REGNO (i0dest) < reg_n_sets_max)
4539 INC_REG_N_SETS (REGNO (i0dest), -1);
4540 }
4541
4542 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4543 been made to this insn. The order is important, because newi2pat
4544 can affect nonzero_bits of newpat. */
4545 if (newi2pat)
4546 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4547 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4548 }
4549
4550 if (undobuf.other_insn != NULL_RTX)
4551 {
4552 if (dump_file)
4553 {
4554 fprintf (dump_file, "modifying other_insn ");
4555 dump_insn_slim (dump_file, undobuf.other_insn);
4556 }
4557 df_insn_rescan (undobuf.other_insn);
4558 }
4559
4560 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4561 {
4562 if (dump_file)
4563 {
4564 fprintf (dump_file, "modifying insn i0 ");
4565 dump_insn_slim (dump_file, i0);
4566 }
4567 df_insn_rescan (i0);
4568 }
4569
4570 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4571 {
4572 if (dump_file)
4573 {
4574 fprintf (dump_file, "modifying insn i1 ");
4575 dump_insn_slim (dump_file, i1);
4576 }
4577 df_insn_rescan (i1);
4578 }
4579
4580 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4581 {
4582 if (dump_file)
4583 {
4584 fprintf (dump_file, "modifying insn i2 ");
4585 dump_insn_slim (dump_file, i2);
4586 }
4587 df_insn_rescan (i2);
4588 }
4589
4590 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4591 {
4592 if (dump_file)
4593 {
4594 fprintf (dump_file, "modifying insn i3 ");
4595 dump_insn_slim (dump_file, i3);
4596 }
4597 df_insn_rescan (i3);
4598 }
4599
4600 /* Set new_direct_jump_p if a new return or simple jump instruction
4601 has been created. Adjust the CFG accordingly. */
4602 if (returnjump_p (i3) || any_uncondjump_p (i3))
4603 {
4604 *new_direct_jump_p = 1;
4605 mark_jump_label (PATTERN (i3), i3, 0);
4606 update_cfg_for_uncondjump (i3);
4607 }
4608
4609 if (undobuf.other_insn != NULL_RTX
4610 && (returnjump_p (undobuf.other_insn)
4611 || any_uncondjump_p (undobuf.other_insn)))
4612 {
4613 *new_direct_jump_p = 1;
4614 update_cfg_for_uncondjump (undobuf.other_insn);
4615 }
4616
4617 /* A noop might also need cleaning up of CFG, if it comes from the
4618 simplification of a jump. */
4619 if (JUMP_P (i3)
4620 && GET_CODE (newpat) == SET
4621 && SET_SRC (newpat) == pc_rtx
4622 && SET_DEST (newpat) == pc_rtx)
4623 {
4624 *new_direct_jump_p = 1;
4625 update_cfg_for_uncondjump (i3);
4626 }
4627
4628 if (undobuf.other_insn != NULL_RTX
4629 && JUMP_P (undobuf.other_insn)
4630 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4631 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4632 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4633 {
4634 *new_direct_jump_p = 1;
4635 update_cfg_for_uncondjump (undobuf.other_insn);
4636 }
4637
4638 combine_successes++;
4639 undo_commit ();
4640
4641 if (added_links_insn
4642 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4643 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4644 return added_links_insn;
4645 else
4646 return newi2pat ? i2 : i3;
4647 }
4648 \f
4649 /* Get a marker for undoing to the current state. */
4650
4651 static void *
4652 get_undo_marker (void)
4653 {
4654 return undobuf.undos;
4655 }
4656
4657 /* Undo the modifications up to the marker. */
4658
4659 static void
4660 undo_to_marker (void *marker)
4661 {
4662 struct undo *undo, *next;
4663
4664 for (undo = undobuf.undos; undo != marker; undo = next)
4665 {
4666 gcc_assert (undo);
4667
4668 next = undo->next;
4669 switch (undo->kind)
4670 {
4671 case UNDO_RTX:
4672 *undo->where.r = undo->old_contents.r;
4673 break;
4674 case UNDO_INT:
4675 *undo->where.i = undo->old_contents.i;
4676 break;
4677 case UNDO_MODE:
4678 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4679 break;
4680 case UNDO_LINKS:
4681 *undo->where.l = undo->old_contents.l;
4682 break;
4683 default:
4684 gcc_unreachable ();
4685 }
4686
4687 undo->next = undobuf.frees;
4688 undobuf.frees = undo;
4689 }
4690
4691 undobuf.undos = (struct undo *) marker;
4692 }
4693
4694 /* Undo all the modifications recorded in undobuf. */
4695
4696 static void
4697 undo_all (void)
4698 {
4699 undo_to_marker (0);
4700 }
4701
4702 /* We've committed to accepting the changes we made. Move all
4703 of the undos to the free list. */
4704
4705 static void
4706 undo_commit (void)
4707 {
4708 struct undo *undo, *next;
4709
4710 for (undo = undobuf.undos; undo; undo = next)
4711 {
4712 next = undo->next;
4713 undo->next = undobuf.frees;
4714 undobuf.frees = undo;
4715 }
4716 undobuf.undos = 0;
4717 }
4718 \f
4719 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4720 where we have an arithmetic expression and return that point. LOC will
4721 be inside INSN.
4722
4723 try_combine will call this function to see if an insn can be split into
4724 two insns. */
4725
4726 static rtx *
4727 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4728 {
4729 rtx x = *loc;
4730 enum rtx_code code = GET_CODE (x);
4731 rtx *split;
4732 unsigned HOST_WIDE_INT len = 0;
4733 HOST_WIDE_INT pos = 0;
4734 int unsignedp = 0;
4735 rtx inner = NULL_RTX;
4736
4737 /* First special-case some codes. */
4738 switch (code)
4739 {
4740 case SUBREG:
4741 #ifdef INSN_SCHEDULING
4742 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4743 point. */
4744 if (MEM_P (SUBREG_REG (x)))
4745 return loc;
4746 #endif
4747 return find_split_point (&SUBREG_REG (x), insn, false);
4748
4749 case MEM:
4750 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4751 using LO_SUM and HIGH. */
4752 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4753 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4754 {
4755 machine_mode address_mode = get_address_mode (x);
4756
4757 SUBST (XEXP (x, 0),
4758 gen_rtx_LO_SUM (address_mode,
4759 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4760 XEXP (x, 0)));
4761 return &XEXP (XEXP (x, 0), 0);
4762 }
4763
4764 /* If we have a PLUS whose second operand is a constant and the
4765 address is not valid, perhaps will can split it up using
4766 the machine-specific way to split large constants. We use
4767 the first pseudo-reg (one of the virtual regs) as a placeholder;
4768 it will not remain in the result. */
4769 if (GET_CODE (XEXP (x, 0)) == PLUS
4770 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4771 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4772 MEM_ADDR_SPACE (x)))
4773 {
4774 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4775 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4776 subst_insn);
4777
4778 /* This should have produced two insns, each of which sets our
4779 placeholder. If the source of the second is a valid address,
4780 we can make put both sources together and make a split point
4781 in the middle. */
4782
4783 if (seq
4784 && NEXT_INSN (seq) != NULL_RTX
4785 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4786 && NONJUMP_INSN_P (seq)
4787 && GET_CODE (PATTERN (seq)) == SET
4788 && SET_DEST (PATTERN (seq)) == reg
4789 && ! reg_mentioned_p (reg,
4790 SET_SRC (PATTERN (seq)))
4791 && NONJUMP_INSN_P (NEXT_INSN (seq))
4792 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4793 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4794 && memory_address_addr_space_p
4795 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4796 MEM_ADDR_SPACE (x)))
4797 {
4798 rtx src1 = SET_SRC (PATTERN (seq));
4799 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4800
4801 /* Replace the placeholder in SRC2 with SRC1. If we can
4802 find where in SRC2 it was placed, that can become our
4803 split point and we can replace this address with SRC2.
4804 Just try two obvious places. */
4805
4806 src2 = replace_rtx (src2, reg, src1);
4807 split = 0;
4808 if (XEXP (src2, 0) == src1)
4809 split = &XEXP (src2, 0);
4810 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4811 && XEXP (XEXP (src2, 0), 0) == src1)
4812 split = &XEXP (XEXP (src2, 0), 0);
4813
4814 if (split)
4815 {
4816 SUBST (XEXP (x, 0), src2);
4817 return split;
4818 }
4819 }
4820
4821 /* If that didn't work, perhaps the first operand is complex and
4822 needs to be computed separately, so make a split point there.
4823 This will occur on machines that just support REG + CONST
4824 and have a constant moved through some previous computation. */
4825
4826 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4827 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4828 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4829 return &XEXP (XEXP (x, 0), 0);
4830 }
4831
4832 /* If we have a PLUS whose first operand is complex, try computing it
4833 separately by making a split there. */
4834 if (GET_CODE (XEXP (x, 0)) == PLUS
4835 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4836 MEM_ADDR_SPACE (x))
4837 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4838 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4839 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4840 return &XEXP (XEXP (x, 0), 0);
4841 break;
4842
4843 case SET:
4844 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4845 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4846 we need to put the operand into a register. So split at that
4847 point. */
4848
4849 if (SET_DEST (x) == cc0_rtx
4850 && GET_CODE (SET_SRC (x)) != COMPARE
4851 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4852 && !OBJECT_P (SET_SRC (x))
4853 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4854 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4855 return &SET_SRC (x);
4856
4857 /* See if we can split SET_SRC as it stands. */
4858 split = find_split_point (&SET_SRC (x), insn, true);
4859 if (split && split != &SET_SRC (x))
4860 return split;
4861
4862 /* See if we can split SET_DEST as it stands. */
4863 split = find_split_point (&SET_DEST (x), insn, false);
4864 if (split && split != &SET_DEST (x))
4865 return split;
4866
4867 /* See if this is a bitfield assignment with everything constant. If
4868 so, this is an IOR of an AND, so split it into that. */
4869 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4870 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4871 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4872 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4873 && CONST_INT_P (SET_SRC (x))
4874 && ((INTVAL (XEXP (SET_DEST (x), 1))
4875 + INTVAL (XEXP (SET_DEST (x), 2)))
4876 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4877 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4878 {
4879 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4880 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4881 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4882 rtx dest = XEXP (SET_DEST (x), 0);
4883 machine_mode mode = GET_MODE (dest);
4884 unsigned HOST_WIDE_INT mask
4885 = (HOST_WIDE_INT_1U << len) - 1;
4886 rtx or_mask;
4887
4888 if (BITS_BIG_ENDIAN)
4889 pos = GET_MODE_PRECISION (mode) - len - pos;
4890
4891 or_mask = gen_int_mode (src << pos, mode);
4892 if (src == mask)
4893 SUBST (SET_SRC (x),
4894 simplify_gen_binary (IOR, mode, dest, or_mask));
4895 else
4896 {
4897 rtx negmask = gen_int_mode (~(mask << pos), mode);
4898 SUBST (SET_SRC (x),
4899 simplify_gen_binary (IOR, mode,
4900 simplify_gen_binary (AND, mode,
4901 dest, negmask),
4902 or_mask));
4903 }
4904
4905 SUBST (SET_DEST (x), dest);
4906
4907 split = find_split_point (&SET_SRC (x), insn, true);
4908 if (split && split != &SET_SRC (x))
4909 return split;
4910 }
4911
4912 /* Otherwise, see if this is an operation that we can split into two.
4913 If so, try to split that. */
4914 code = GET_CODE (SET_SRC (x));
4915
4916 switch (code)
4917 {
4918 case AND:
4919 /* If we are AND'ing with a large constant that is only a single
4920 bit and the result is only being used in a context where we
4921 need to know if it is zero or nonzero, replace it with a bit
4922 extraction. This will avoid the large constant, which might
4923 have taken more than one insn to make. If the constant were
4924 not a valid argument to the AND but took only one insn to make,
4925 this is no worse, but if it took more than one insn, it will
4926 be better. */
4927
4928 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4929 && REG_P (XEXP (SET_SRC (x), 0))
4930 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4931 && REG_P (SET_DEST (x))
4932 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4933 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4934 && XEXP (*split, 0) == SET_DEST (x)
4935 && XEXP (*split, 1) == const0_rtx)
4936 {
4937 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4938 XEXP (SET_SRC (x), 0),
4939 pos, NULL_RTX, 1, 1, 0, 0);
4940 if (extraction != 0)
4941 {
4942 SUBST (SET_SRC (x), extraction);
4943 return find_split_point (loc, insn, false);
4944 }
4945 }
4946 break;
4947
4948 case NE:
4949 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4950 is known to be on, this can be converted into a NEG of a shift. */
4951 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4952 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4953 && 1 <= (pos = exact_log2
4954 (nonzero_bits (XEXP (SET_SRC (x), 0),
4955 GET_MODE (XEXP (SET_SRC (x), 0))))))
4956 {
4957 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4958
4959 SUBST (SET_SRC (x),
4960 gen_rtx_NEG (mode,
4961 gen_rtx_LSHIFTRT (mode,
4962 XEXP (SET_SRC (x), 0),
4963 GEN_INT (pos))));
4964
4965 split = find_split_point (&SET_SRC (x), insn, true);
4966 if (split && split != &SET_SRC (x))
4967 return split;
4968 }
4969 break;
4970
4971 case SIGN_EXTEND:
4972 inner = XEXP (SET_SRC (x), 0);
4973
4974 /* We can't optimize if either mode is a partial integer
4975 mode as we don't know how many bits are significant
4976 in those modes. */
4977 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4978 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4979 break;
4980
4981 pos = 0;
4982 len = GET_MODE_PRECISION (GET_MODE (inner));
4983 unsignedp = 0;
4984 break;
4985
4986 case SIGN_EXTRACT:
4987 case ZERO_EXTRACT:
4988 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4989 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4990 {
4991 inner = XEXP (SET_SRC (x), 0);
4992 len = INTVAL (XEXP (SET_SRC (x), 1));
4993 pos = INTVAL (XEXP (SET_SRC (x), 2));
4994
4995 if (BITS_BIG_ENDIAN)
4996 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4997 unsignedp = (code == ZERO_EXTRACT);
4998 }
4999 break;
5000
5001 default:
5002 break;
5003 }
5004
5005 if (len && pos >= 0
5006 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
5007 {
5008 machine_mode mode = GET_MODE (SET_SRC (x));
5009
5010 /* For unsigned, we have a choice of a shift followed by an
5011 AND or two shifts. Use two shifts for field sizes where the
5012 constant might be too large. We assume here that we can
5013 always at least get 8-bit constants in an AND insn, which is
5014 true for every current RISC. */
5015
5016 if (unsignedp && len <= 8)
5017 {
5018 unsigned HOST_WIDE_INT mask
5019 = (HOST_WIDE_INT_1U << len) - 1;
5020 SUBST (SET_SRC (x),
5021 gen_rtx_AND (mode,
5022 gen_rtx_LSHIFTRT
5023 (mode, gen_lowpart (mode, inner),
5024 GEN_INT (pos)),
5025 gen_int_mode (mask, mode)));
5026
5027 split = find_split_point (&SET_SRC (x), insn, true);
5028 if (split && split != &SET_SRC (x))
5029 return split;
5030 }
5031 else
5032 {
5033 SUBST (SET_SRC (x),
5034 gen_rtx_fmt_ee
5035 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5036 gen_rtx_ASHIFT (mode,
5037 gen_lowpart (mode, inner),
5038 GEN_INT (GET_MODE_PRECISION (mode)
5039 - len - pos)),
5040 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5041
5042 split = find_split_point (&SET_SRC (x), insn, true);
5043 if (split && split != &SET_SRC (x))
5044 return split;
5045 }
5046 }
5047
5048 /* See if this is a simple operation with a constant as the second
5049 operand. It might be that this constant is out of range and hence
5050 could be used as a split point. */
5051 if (BINARY_P (SET_SRC (x))
5052 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5053 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5054 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5055 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5056 return &XEXP (SET_SRC (x), 1);
5057
5058 /* Finally, see if this is a simple operation with its first operand
5059 not in a register. The operation might require this operand in a
5060 register, so return it as a split point. We can always do this
5061 because if the first operand were another operation, we would have
5062 already found it as a split point. */
5063 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5064 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5065 return &XEXP (SET_SRC (x), 0);
5066
5067 return 0;
5068
5069 case AND:
5070 case IOR:
5071 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5072 it is better to write this as (not (ior A B)) so we can split it.
5073 Similarly for IOR. */
5074 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5075 {
5076 SUBST (*loc,
5077 gen_rtx_NOT (GET_MODE (x),
5078 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5079 GET_MODE (x),
5080 XEXP (XEXP (x, 0), 0),
5081 XEXP (XEXP (x, 1), 0))));
5082 return find_split_point (loc, insn, set_src);
5083 }
5084
5085 /* Many RISC machines have a large set of logical insns. If the
5086 second operand is a NOT, put it first so we will try to split the
5087 other operand first. */
5088 if (GET_CODE (XEXP (x, 1)) == NOT)
5089 {
5090 rtx tem = XEXP (x, 0);
5091 SUBST (XEXP (x, 0), XEXP (x, 1));
5092 SUBST (XEXP (x, 1), tem);
5093 }
5094 break;
5095
5096 case PLUS:
5097 case MINUS:
5098 /* Canonicalization can produce (minus A (mult B C)), where C is a
5099 constant. It may be better to try splitting (plus (mult B -C) A)
5100 instead if this isn't a multiply by a power of two. */
5101 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5102 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5103 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
5104 {
5105 machine_mode mode = GET_MODE (x);
5106 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5107 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5108 SUBST (*loc, gen_rtx_PLUS (mode,
5109 gen_rtx_MULT (mode,
5110 XEXP (XEXP (x, 1), 0),
5111 gen_int_mode (other_int,
5112 mode)),
5113 XEXP (x, 0)));
5114 return find_split_point (loc, insn, set_src);
5115 }
5116
5117 /* Split at a multiply-accumulate instruction. However if this is
5118 the SET_SRC, we likely do not have such an instruction and it's
5119 worthless to try this split. */
5120 if (!set_src
5121 && (GET_CODE (XEXP (x, 0)) == MULT
5122 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5123 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5124 return loc;
5125
5126 default:
5127 break;
5128 }
5129
5130 /* Otherwise, select our actions depending on our rtx class. */
5131 switch (GET_RTX_CLASS (code))
5132 {
5133 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5134 case RTX_TERNARY:
5135 split = find_split_point (&XEXP (x, 2), insn, false);
5136 if (split)
5137 return split;
5138 /* ... fall through ... */
5139 case RTX_BIN_ARITH:
5140 case RTX_COMM_ARITH:
5141 case RTX_COMPARE:
5142 case RTX_COMM_COMPARE:
5143 split = find_split_point (&XEXP (x, 1), insn, false);
5144 if (split)
5145 return split;
5146 /* ... fall through ... */
5147 case RTX_UNARY:
5148 /* Some machines have (and (shift ...) ...) insns. If X is not
5149 an AND, but XEXP (X, 0) is, use it as our split point. */
5150 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5151 return &XEXP (x, 0);
5152
5153 split = find_split_point (&XEXP (x, 0), insn, false);
5154 if (split)
5155 return split;
5156 return loc;
5157
5158 default:
5159 /* Otherwise, we don't have a split point. */
5160 return 0;
5161 }
5162 }
5163 \f
5164 /* Throughout X, replace FROM with TO, and return the result.
5165 The result is TO if X is FROM;
5166 otherwise the result is X, but its contents may have been modified.
5167 If they were modified, a record was made in undobuf so that
5168 undo_all will (among other things) return X to its original state.
5169
5170 If the number of changes necessary is too much to record to undo,
5171 the excess changes are not made, so the result is invalid.
5172 The changes already made can still be undone.
5173 undobuf.num_undo is incremented for such changes, so by testing that
5174 the caller can tell whether the result is valid.
5175
5176 `n_occurrences' is incremented each time FROM is replaced.
5177
5178 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5179
5180 IN_COND is nonzero if we are at the top level of a condition.
5181
5182 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5183 by copying if `n_occurrences' is nonzero. */
5184
5185 static rtx
5186 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5187 {
5188 enum rtx_code code = GET_CODE (x);
5189 machine_mode op0_mode = VOIDmode;
5190 const char *fmt;
5191 int len, i;
5192 rtx new_rtx;
5193
5194 /* Two expressions are equal if they are identical copies of a shared
5195 RTX or if they are both registers with the same register number
5196 and mode. */
5197
5198 #define COMBINE_RTX_EQUAL_P(X,Y) \
5199 ((X) == (Y) \
5200 || (REG_P (X) && REG_P (Y) \
5201 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5202
5203 /* Do not substitute into clobbers of regs -- this will never result in
5204 valid RTL. */
5205 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5206 return x;
5207
5208 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5209 {
5210 n_occurrences++;
5211 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5212 }
5213
5214 /* If X and FROM are the same register but different modes, they
5215 will not have been seen as equal above. However, the log links code
5216 will make a LOG_LINKS entry for that case. If we do nothing, we
5217 will try to rerecognize our original insn and, when it succeeds,
5218 we will delete the feeding insn, which is incorrect.
5219
5220 So force this insn not to match in this (rare) case. */
5221 if (! in_dest && code == REG && REG_P (from)
5222 && reg_overlap_mentioned_p (x, from))
5223 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5224
5225 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5226 of which may contain things that can be combined. */
5227 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5228 return x;
5229
5230 /* It is possible to have a subexpression appear twice in the insn.
5231 Suppose that FROM is a register that appears within TO.
5232 Then, after that subexpression has been scanned once by `subst',
5233 the second time it is scanned, TO may be found. If we were
5234 to scan TO here, we would find FROM within it and create a
5235 self-referent rtl structure which is completely wrong. */
5236 if (COMBINE_RTX_EQUAL_P (x, to))
5237 return to;
5238
5239 /* Parallel asm_operands need special attention because all of the
5240 inputs are shared across the arms. Furthermore, unsharing the
5241 rtl results in recognition failures. Failure to handle this case
5242 specially can result in circular rtl.
5243
5244 Solve this by doing a normal pass across the first entry of the
5245 parallel, and only processing the SET_DESTs of the subsequent
5246 entries. Ug. */
5247
5248 if (code == PARALLEL
5249 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5250 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5251 {
5252 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5253
5254 /* If this substitution failed, this whole thing fails. */
5255 if (GET_CODE (new_rtx) == CLOBBER
5256 && XEXP (new_rtx, 0) == const0_rtx)
5257 return new_rtx;
5258
5259 SUBST (XVECEXP (x, 0, 0), new_rtx);
5260
5261 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5262 {
5263 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5264
5265 if (!REG_P (dest)
5266 && GET_CODE (dest) != CC0
5267 && GET_CODE (dest) != PC)
5268 {
5269 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5270
5271 /* If this substitution failed, this whole thing fails. */
5272 if (GET_CODE (new_rtx) == CLOBBER
5273 && XEXP (new_rtx, 0) == const0_rtx)
5274 return new_rtx;
5275
5276 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5277 }
5278 }
5279 }
5280 else
5281 {
5282 len = GET_RTX_LENGTH (code);
5283 fmt = GET_RTX_FORMAT (code);
5284
5285 /* We don't need to process a SET_DEST that is a register, CC0,
5286 or PC, so set up to skip this common case. All other cases
5287 where we want to suppress replacing something inside a
5288 SET_SRC are handled via the IN_DEST operand. */
5289 if (code == SET
5290 && (REG_P (SET_DEST (x))
5291 || GET_CODE (SET_DEST (x)) == CC0
5292 || GET_CODE (SET_DEST (x)) == PC))
5293 fmt = "ie";
5294
5295 /* Trying to simplify the operands of a widening MULT is not likely
5296 to create RTL matching a machine insn. */
5297 if (code == MULT
5298 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5299 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5300 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5301 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5302 && REG_P (XEXP (XEXP (x, 0), 0))
5303 && REG_P (XEXP (XEXP (x, 1), 0))
5304 && from == to)
5305 return x;
5306
5307
5308 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5309 constant. */
5310 if (fmt[0] == 'e')
5311 op0_mode = GET_MODE (XEXP (x, 0));
5312
5313 for (i = 0; i < len; i++)
5314 {
5315 if (fmt[i] == 'E')
5316 {
5317 int j;
5318 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5319 {
5320 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5321 {
5322 new_rtx = (unique_copy && n_occurrences
5323 ? copy_rtx (to) : to);
5324 n_occurrences++;
5325 }
5326 else
5327 {
5328 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5329 unique_copy);
5330
5331 /* If this substitution failed, this whole thing
5332 fails. */
5333 if (GET_CODE (new_rtx) == CLOBBER
5334 && XEXP (new_rtx, 0) == const0_rtx)
5335 return new_rtx;
5336 }
5337
5338 SUBST (XVECEXP (x, i, j), new_rtx);
5339 }
5340 }
5341 else if (fmt[i] == 'e')
5342 {
5343 /* If this is a register being set, ignore it. */
5344 new_rtx = XEXP (x, i);
5345 if (in_dest
5346 && i == 0
5347 && (((code == SUBREG || code == ZERO_EXTRACT)
5348 && REG_P (new_rtx))
5349 || code == STRICT_LOW_PART))
5350 ;
5351
5352 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5353 {
5354 /* In general, don't install a subreg involving two
5355 modes not tieable. It can worsen register
5356 allocation, and can even make invalid reload
5357 insns, since the reg inside may need to be copied
5358 from in the outside mode, and that may be invalid
5359 if it is an fp reg copied in integer mode.
5360
5361 We allow two exceptions to this: It is valid if
5362 it is inside another SUBREG and the mode of that
5363 SUBREG and the mode of the inside of TO is
5364 tieable and it is valid if X is a SET that copies
5365 FROM to CC0. */
5366
5367 if (GET_CODE (to) == SUBREG
5368 && ! MODES_TIEABLE_P (GET_MODE (to),
5369 GET_MODE (SUBREG_REG (to)))
5370 && ! (code == SUBREG
5371 && MODES_TIEABLE_P (GET_MODE (x),
5372 GET_MODE (SUBREG_REG (to))))
5373 && (!HAVE_cc0
5374 || (! (code == SET
5375 && i == 1
5376 && XEXP (x, 0) == cc0_rtx))))
5377 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5378
5379 if (code == SUBREG
5380 && REG_P (to)
5381 && REGNO (to) < FIRST_PSEUDO_REGISTER
5382 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5383 SUBREG_BYTE (x),
5384 GET_MODE (x)) < 0)
5385 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5386
5387 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5388 n_occurrences++;
5389 }
5390 else
5391 /* If we are in a SET_DEST, suppress most cases unless we
5392 have gone inside a MEM, in which case we want to
5393 simplify the address. We assume here that things that
5394 are actually part of the destination have their inner
5395 parts in the first expression. This is true for SUBREG,
5396 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5397 things aside from REG and MEM that should appear in a
5398 SET_DEST. */
5399 new_rtx = subst (XEXP (x, i), from, to,
5400 (((in_dest
5401 && (code == SUBREG || code == STRICT_LOW_PART
5402 || code == ZERO_EXTRACT))
5403 || code == SET)
5404 && i == 0),
5405 code == IF_THEN_ELSE && i == 0,
5406 unique_copy);
5407
5408 /* If we found that we will have to reject this combination,
5409 indicate that by returning the CLOBBER ourselves, rather than
5410 an expression containing it. This will speed things up as
5411 well as prevent accidents where two CLOBBERs are considered
5412 to be equal, thus producing an incorrect simplification. */
5413
5414 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5415 return new_rtx;
5416
5417 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5418 {
5419 machine_mode mode = GET_MODE (x);
5420
5421 x = simplify_subreg (GET_MODE (x), new_rtx,
5422 GET_MODE (SUBREG_REG (x)),
5423 SUBREG_BYTE (x));
5424 if (! x)
5425 x = gen_rtx_CLOBBER (mode, const0_rtx);
5426 }
5427 else if (CONST_SCALAR_INT_P (new_rtx)
5428 && GET_CODE (x) == ZERO_EXTEND)
5429 {
5430 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5431 new_rtx, GET_MODE (XEXP (x, 0)));
5432 gcc_assert (x);
5433 }
5434 else
5435 SUBST (XEXP (x, i), new_rtx);
5436 }
5437 }
5438 }
5439
5440 /* Check if we are loading something from the constant pool via float
5441 extension; in this case we would undo compress_float_constant
5442 optimization and degenerate constant load to an immediate value. */
5443 if (GET_CODE (x) == FLOAT_EXTEND
5444 && MEM_P (XEXP (x, 0))
5445 && MEM_READONLY_P (XEXP (x, 0)))
5446 {
5447 rtx tmp = avoid_constant_pool_reference (x);
5448 if (x != tmp)
5449 return x;
5450 }
5451
5452 /* Try to simplify X. If the simplification changed the code, it is likely
5453 that further simplification will help, so loop, but limit the number
5454 of repetitions that will be performed. */
5455
5456 for (i = 0; i < 4; i++)
5457 {
5458 /* If X is sufficiently simple, don't bother trying to do anything
5459 with it. */
5460 if (code != CONST_INT && code != REG && code != CLOBBER)
5461 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5462
5463 if (GET_CODE (x) == code)
5464 break;
5465
5466 code = GET_CODE (x);
5467
5468 /* We no longer know the original mode of operand 0 since we
5469 have changed the form of X) */
5470 op0_mode = VOIDmode;
5471 }
5472
5473 return x;
5474 }
5475 \f
5476 /* Simplify X, a piece of RTL. We just operate on the expression at the
5477 outer level; call `subst' to simplify recursively. Return the new
5478 expression.
5479
5480 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5481 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5482 of a condition. */
5483
5484 static rtx
5485 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5486 int in_cond)
5487 {
5488 enum rtx_code code = GET_CODE (x);
5489 machine_mode mode = GET_MODE (x);
5490 rtx temp;
5491 int i;
5492
5493 /* If this is a commutative operation, put a constant last and a complex
5494 expression first. We don't need to do this for comparisons here. */
5495 if (COMMUTATIVE_ARITH_P (x)
5496 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5497 {
5498 temp = XEXP (x, 0);
5499 SUBST (XEXP (x, 0), XEXP (x, 1));
5500 SUBST (XEXP (x, 1), temp);
5501 }
5502
5503 /* Try to fold this expression in case we have constants that weren't
5504 present before. */
5505 temp = 0;
5506 switch (GET_RTX_CLASS (code))
5507 {
5508 case RTX_UNARY:
5509 if (op0_mode == VOIDmode)
5510 op0_mode = GET_MODE (XEXP (x, 0));
5511 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5512 break;
5513 case RTX_COMPARE:
5514 case RTX_COMM_COMPARE:
5515 {
5516 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5517 if (cmp_mode == VOIDmode)
5518 {
5519 cmp_mode = GET_MODE (XEXP (x, 1));
5520 if (cmp_mode == VOIDmode)
5521 cmp_mode = op0_mode;
5522 }
5523 temp = simplify_relational_operation (code, mode, cmp_mode,
5524 XEXP (x, 0), XEXP (x, 1));
5525 }
5526 break;
5527 case RTX_COMM_ARITH:
5528 case RTX_BIN_ARITH:
5529 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5530 break;
5531 case RTX_BITFIELD_OPS:
5532 case RTX_TERNARY:
5533 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5534 XEXP (x, 1), XEXP (x, 2));
5535 break;
5536 default:
5537 break;
5538 }
5539
5540 if (temp)
5541 {
5542 x = temp;
5543 code = GET_CODE (temp);
5544 op0_mode = VOIDmode;
5545 mode = GET_MODE (temp);
5546 }
5547
5548 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5549 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5550 things. Check for cases where both arms are testing the same
5551 condition.
5552
5553 Don't do anything if all operands are very simple. */
5554
5555 if ((BINARY_P (x)
5556 && ((!OBJECT_P (XEXP (x, 0))
5557 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5558 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5559 || (!OBJECT_P (XEXP (x, 1))
5560 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5561 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5562 || (UNARY_P (x)
5563 && (!OBJECT_P (XEXP (x, 0))
5564 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5565 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5566 {
5567 rtx cond, true_rtx, false_rtx;
5568
5569 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5570 if (cond != 0
5571 /* If everything is a comparison, what we have is highly unlikely
5572 to be simpler, so don't use it. */
5573 && ! (COMPARISON_P (x)
5574 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5575 {
5576 rtx cop1 = const0_rtx;
5577 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5578
5579 if (cond_code == NE && COMPARISON_P (cond))
5580 return x;
5581
5582 /* Simplify the alternative arms; this may collapse the true and
5583 false arms to store-flag values. Be careful to use copy_rtx
5584 here since true_rtx or false_rtx might share RTL with x as a
5585 result of the if_then_else_cond call above. */
5586 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5587 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5588
5589 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5590 is unlikely to be simpler. */
5591 if (general_operand (true_rtx, VOIDmode)
5592 && general_operand (false_rtx, VOIDmode))
5593 {
5594 enum rtx_code reversed;
5595
5596 /* Restarting if we generate a store-flag expression will cause
5597 us to loop. Just drop through in this case. */
5598
5599 /* If the result values are STORE_FLAG_VALUE and zero, we can
5600 just make the comparison operation. */
5601 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5602 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5603 cond, cop1);
5604 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5605 && ((reversed = reversed_comparison_code_parts
5606 (cond_code, cond, cop1, NULL))
5607 != UNKNOWN))
5608 x = simplify_gen_relational (reversed, mode, VOIDmode,
5609 cond, cop1);
5610
5611 /* Likewise, we can make the negate of a comparison operation
5612 if the result values are - STORE_FLAG_VALUE and zero. */
5613 else if (CONST_INT_P (true_rtx)
5614 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5615 && false_rtx == const0_rtx)
5616 x = simplify_gen_unary (NEG, mode,
5617 simplify_gen_relational (cond_code,
5618 mode, VOIDmode,
5619 cond, cop1),
5620 mode);
5621 else if (CONST_INT_P (false_rtx)
5622 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5623 && true_rtx == const0_rtx
5624 && ((reversed = reversed_comparison_code_parts
5625 (cond_code, cond, cop1, NULL))
5626 != UNKNOWN))
5627 x = simplify_gen_unary (NEG, mode,
5628 simplify_gen_relational (reversed,
5629 mode, VOIDmode,
5630 cond, cop1),
5631 mode);
5632 else
5633 return gen_rtx_IF_THEN_ELSE (mode,
5634 simplify_gen_relational (cond_code,
5635 mode,
5636 VOIDmode,
5637 cond,
5638 cop1),
5639 true_rtx, false_rtx);
5640
5641 code = GET_CODE (x);
5642 op0_mode = VOIDmode;
5643 }
5644 }
5645 }
5646
5647 /* First see if we can apply the inverse distributive law. */
5648 if (code == PLUS || code == MINUS
5649 || code == AND || code == IOR || code == XOR)
5650 {
5651 x = apply_distributive_law (x);
5652 code = GET_CODE (x);
5653 op0_mode = VOIDmode;
5654 }
5655
5656 /* If CODE is an associative operation not otherwise handled, see if we
5657 can associate some operands. This can win if they are constants or
5658 if they are logically related (i.e. (a & b) & a). */
5659 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5660 || code == AND || code == IOR || code == XOR
5661 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5662 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5663 || (flag_associative_math && FLOAT_MODE_P (mode))))
5664 {
5665 if (GET_CODE (XEXP (x, 0)) == code)
5666 {
5667 rtx other = XEXP (XEXP (x, 0), 0);
5668 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5669 rtx inner_op1 = XEXP (x, 1);
5670 rtx inner;
5671
5672 /* Make sure we pass the constant operand if any as the second
5673 one if this is a commutative operation. */
5674 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5675 std::swap (inner_op0, inner_op1);
5676 inner = simplify_binary_operation (code == MINUS ? PLUS
5677 : code == DIV ? MULT
5678 : code,
5679 mode, inner_op0, inner_op1);
5680
5681 /* For commutative operations, try the other pair if that one
5682 didn't simplify. */
5683 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5684 {
5685 other = XEXP (XEXP (x, 0), 1);
5686 inner = simplify_binary_operation (code, mode,
5687 XEXP (XEXP (x, 0), 0),
5688 XEXP (x, 1));
5689 }
5690
5691 if (inner)
5692 return simplify_gen_binary (code, mode, other, inner);
5693 }
5694 }
5695
5696 /* A little bit of algebraic simplification here. */
5697 switch (code)
5698 {
5699 case MEM:
5700 /* Ensure that our address has any ASHIFTs converted to MULT in case
5701 address-recognizing predicates are called later. */
5702 temp = make_compound_operation (XEXP (x, 0), MEM);
5703 SUBST (XEXP (x, 0), temp);
5704 break;
5705
5706 case SUBREG:
5707 if (op0_mode == VOIDmode)
5708 op0_mode = GET_MODE (SUBREG_REG (x));
5709
5710 /* See if this can be moved to simplify_subreg. */
5711 if (CONSTANT_P (SUBREG_REG (x))
5712 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5713 /* Don't call gen_lowpart if the inner mode
5714 is VOIDmode and we cannot simplify it, as SUBREG without
5715 inner mode is invalid. */
5716 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5717 || gen_lowpart_common (mode, SUBREG_REG (x))))
5718 return gen_lowpart (mode, SUBREG_REG (x));
5719
5720 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5721 break;
5722 {
5723 rtx temp;
5724 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5725 SUBREG_BYTE (x));
5726 if (temp)
5727 return temp;
5728
5729 /* If op is known to have all lower bits zero, the result is zero. */
5730 if (!in_dest
5731 && SCALAR_INT_MODE_P (mode)
5732 && SCALAR_INT_MODE_P (op0_mode)
5733 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5734 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5735 && HWI_COMPUTABLE_MODE_P (op0_mode)
5736 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5737 & GET_MODE_MASK (mode)) == 0)
5738 return CONST0_RTX (mode);
5739 }
5740
5741 /* Don't change the mode of the MEM if that would change the meaning
5742 of the address. */
5743 if (MEM_P (SUBREG_REG (x))
5744 && (MEM_VOLATILE_P (SUBREG_REG (x))
5745 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5746 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5747 return gen_rtx_CLOBBER (mode, const0_rtx);
5748
5749 /* Note that we cannot do any narrowing for non-constants since
5750 we might have been counting on using the fact that some bits were
5751 zero. We now do this in the SET. */
5752
5753 break;
5754
5755 case NEG:
5756 temp = expand_compound_operation (XEXP (x, 0));
5757
5758 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5759 replaced by (lshiftrt X C). This will convert
5760 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5761
5762 if (GET_CODE (temp) == ASHIFTRT
5763 && CONST_INT_P (XEXP (temp, 1))
5764 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5765 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5766 INTVAL (XEXP (temp, 1)));
5767
5768 /* If X has only a single bit that might be nonzero, say, bit I, convert
5769 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5770 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5771 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5772 or a SUBREG of one since we'd be making the expression more
5773 complex if it was just a register. */
5774
5775 if (!REG_P (temp)
5776 && ! (GET_CODE (temp) == SUBREG
5777 && REG_P (SUBREG_REG (temp)))
5778 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5779 {
5780 rtx temp1 = simplify_shift_const
5781 (NULL_RTX, ASHIFTRT, mode,
5782 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5783 GET_MODE_PRECISION (mode) - 1 - i),
5784 GET_MODE_PRECISION (mode) - 1 - i);
5785
5786 /* If all we did was surround TEMP with the two shifts, we
5787 haven't improved anything, so don't use it. Otherwise,
5788 we are better off with TEMP1. */
5789 if (GET_CODE (temp1) != ASHIFTRT
5790 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5791 || XEXP (XEXP (temp1, 0), 0) != temp)
5792 return temp1;
5793 }
5794 break;
5795
5796 case TRUNCATE:
5797 /* We can't handle truncation to a partial integer mode here
5798 because we don't know the real bitsize of the partial
5799 integer mode. */
5800 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5801 break;
5802
5803 if (HWI_COMPUTABLE_MODE_P (mode))
5804 SUBST (XEXP (x, 0),
5805 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5806 GET_MODE_MASK (mode), 0));
5807
5808 /* We can truncate a constant value and return it. */
5809 if (CONST_INT_P (XEXP (x, 0)))
5810 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5811
5812 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5813 whose value is a comparison can be replaced with a subreg if
5814 STORE_FLAG_VALUE permits. */
5815 if (HWI_COMPUTABLE_MODE_P (mode)
5816 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5817 && (temp = get_last_value (XEXP (x, 0)))
5818 && COMPARISON_P (temp))
5819 return gen_lowpart (mode, XEXP (x, 0));
5820 break;
5821
5822 case CONST:
5823 /* (const (const X)) can become (const X). Do it this way rather than
5824 returning the inner CONST since CONST can be shared with a
5825 REG_EQUAL note. */
5826 if (GET_CODE (XEXP (x, 0)) == CONST)
5827 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5828 break;
5829
5830 case LO_SUM:
5831 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5832 can add in an offset. find_split_point will split this address up
5833 again if it doesn't match. */
5834 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5835 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5836 return XEXP (x, 1);
5837 break;
5838
5839 case PLUS:
5840 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5841 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5842 bit-field and can be replaced by either a sign_extend or a
5843 sign_extract. The `and' may be a zero_extend and the two
5844 <c>, -<c> constants may be reversed. */
5845 if (GET_CODE (XEXP (x, 0)) == XOR
5846 && CONST_INT_P (XEXP (x, 1))
5847 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5848 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5849 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5850 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5851 && HWI_COMPUTABLE_MODE_P (mode)
5852 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5853 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5854 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5855 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
5856 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5857 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5858 == (unsigned int) i + 1))))
5859 return simplify_shift_const
5860 (NULL_RTX, ASHIFTRT, mode,
5861 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5862 XEXP (XEXP (XEXP (x, 0), 0), 0),
5863 GET_MODE_PRECISION (mode) - (i + 1)),
5864 GET_MODE_PRECISION (mode) - (i + 1));
5865
5866 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5867 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5868 the bitsize of the mode - 1. This allows simplification of
5869 "a = (b & 8) == 0;" */
5870 if (XEXP (x, 1) == constm1_rtx
5871 && !REG_P (XEXP (x, 0))
5872 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5873 && REG_P (SUBREG_REG (XEXP (x, 0))))
5874 && nonzero_bits (XEXP (x, 0), mode) == 1)
5875 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5876 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5877 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5878 GET_MODE_PRECISION (mode) - 1),
5879 GET_MODE_PRECISION (mode) - 1);
5880
5881 /* If we are adding two things that have no bits in common, convert
5882 the addition into an IOR. This will often be further simplified,
5883 for example in cases like ((a & 1) + (a & 2)), which can
5884 become a & 3. */
5885
5886 if (HWI_COMPUTABLE_MODE_P (mode)
5887 && (nonzero_bits (XEXP (x, 0), mode)
5888 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5889 {
5890 /* Try to simplify the expression further. */
5891 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5892 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5893
5894 /* If we could, great. If not, do not go ahead with the IOR
5895 replacement, since PLUS appears in many special purpose
5896 address arithmetic instructions. */
5897 if (GET_CODE (temp) != CLOBBER
5898 && (GET_CODE (temp) != IOR
5899 || ((XEXP (temp, 0) != XEXP (x, 0)
5900 || XEXP (temp, 1) != XEXP (x, 1))
5901 && (XEXP (temp, 0) != XEXP (x, 1)
5902 || XEXP (temp, 1) != XEXP (x, 0)))))
5903 return temp;
5904 }
5905
5906 /* Canonicalize x + x into x << 1. */
5907 if (GET_MODE_CLASS (mode) == MODE_INT
5908 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
5909 && !side_effects_p (XEXP (x, 0)))
5910 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
5911
5912 break;
5913
5914 case MINUS:
5915 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5916 (and <foo> (const_int pow2-1)) */
5917 if (GET_CODE (XEXP (x, 1)) == AND
5918 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5919 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5920 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5921 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5922 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5923 break;
5924
5925 case MULT:
5926 /* If we have (mult (plus A B) C), apply the distributive law and then
5927 the inverse distributive law to see if things simplify. This
5928 occurs mostly in addresses, often when unrolling loops. */
5929
5930 if (GET_CODE (XEXP (x, 0)) == PLUS)
5931 {
5932 rtx result = distribute_and_simplify_rtx (x, 0);
5933 if (result)
5934 return result;
5935 }
5936
5937 /* Try simplify a*(b/c) as (a*b)/c. */
5938 if (FLOAT_MODE_P (mode) && flag_associative_math
5939 && GET_CODE (XEXP (x, 0)) == DIV)
5940 {
5941 rtx tem = simplify_binary_operation (MULT, mode,
5942 XEXP (XEXP (x, 0), 0),
5943 XEXP (x, 1));
5944 if (tem)
5945 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5946 }
5947 break;
5948
5949 case UDIV:
5950 /* If this is a divide by a power of two, treat it as a shift if
5951 its first operand is a shift. */
5952 if (CONST_INT_P (XEXP (x, 1))
5953 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5954 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5955 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5956 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5957 || GET_CODE (XEXP (x, 0)) == ROTATE
5958 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5959 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5960 break;
5961
5962 case EQ: case NE:
5963 case GT: case GTU: case GE: case GEU:
5964 case LT: case LTU: case LE: case LEU:
5965 case UNEQ: case LTGT:
5966 case UNGT: case UNGE:
5967 case UNLT: case UNLE:
5968 case UNORDERED: case ORDERED:
5969 /* If the first operand is a condition code, we can't do anything
5970 with it. */
5971 if (GET_CODE (XEXP (x, 0)) == COMPARE
5972 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5973 && ! CC0_P (XEXP (x, 0))))
5974 {
5975 rtx op0 = XEXP (x, 0);
5976 rtx op1 = XEXP (x, 1);
5977 enum rtx_code new_code;
5978
5979 if (GET_CODE (op0) == COMPARE)
5980 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5981
5982 /* Simplify our comparison, if possible. */
5983 new_code = simplify_comparison (code, &op0, &op1);
5984
5985 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5986 if only the low-order bit is possibly nonzero in X (such as when
5987 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5988 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5989 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5990 (plus X 1).
5991
5992 Remove any ZERO_EXTRACT we made when thinking this was a
5993 comparison. It may now be simpler to use, e.g., an AND. If a
5994 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5995 the call to make_compound_operation in the SET case.
5996
5997 Don't apply these optimizations if the caller would
5998 prefer a comparison rather than a value.
5999 E.g., for the condition in an IF_THEN_ELSE most targets need
6000 an explicit comparison. */
6001
6002 if (in_cond)
6003 ;
6004
6005 else if (STORE_FLAG_VALUE == 1
6006 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6007 && op1 == const0_rtx
6008 && mode == GET_MODE (op0)
6009 && nonzero_bits (op0, mode) == 1)
6010 return gen_lowpart (mode,
6011 expand_compound_operation (op0));
6012
6013 else if (STORE_FLAG_VALUE == 1
6014 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6015 && op1 == const0_rtx
6016 && mode == GET_MODE (op0)
6017 && (num_sign_bit_copies (op0, mode)
6018 == GET_MODE_PRECISION (mode)))
6019 {
6020 op0 = expand_compound_operation (op0);
6021 return simplify_gen_unary (NEG, mode,
6022 gen_lowpart (mode, op0),
6023 mode);
6024 }
6025
6026 else if (STORE_FLAG_VALUE == 1
6027 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6028 && op1 == const0_rtx
6029 && mode == GET_MODE (op0)
6030 && nonzero_bits (op0, mode) == 1)
6031 {
6032 op0 = expand_compound_operation (op0);
6033 return simplify_gen_binary (XOR, mode,
6034 gen_lowpart (mode, op0),
6035 const1_rtx);
6036 }
6037
6038 else if (STORE_FLAG_VALUE == 1
6039 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6040 && op1 == const0_rtx
6041 && mode == GET_MODE (op0)
6042 && (num_sign_bit_copies (op0, mode)
6043 == GET_MODE_PRECISION (mode)))
6044 {
6045 op0 = expand_compound_operation (op0);
6046 return plus_constant (mode, gen_lowpart (mode, op0), 1);
6047 }
6048
6049 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6050 those above. */
6051 if (in_cond)
6052 ;
6053
6054 else if (STORE_FLAG_VALUE == -1
6055 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6056 && op1 == const0_rtx
6057 && mode == GET_MODE (op0)
6058 && (num_sign_bit_copies (op0, mode)
6059 == GET_MODE_PRECISION (mode)))
6060 return gen_lowpart (mode,
6061 expand_compound_operation (op0));
6062
6063 else if (STORE_FLAG_VALUE == -1
6064 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6065 && op1 == const0_rtx
6066 && mode == GET_MODE (op0)
6067 && nonzero_bits (op0, mode) == 1)
6068 {
6069 op0 = expand_compound_operation (op0);
6070 return simplify_gen_unary (NEG, mode,
6071 gen_lowpart (mode, op0),
6072 mode);
6073 }
6074
6075 else if (STORE_FLAG_VALUE == -1
6076 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6077 && op1 == const0_rtx
6078 && mode == GET_MODE (op0)
6079 && (num_sign_bit_copies (op0, mode)
6080 == GET_MODE_PRECISION (mode)))
6081 {
6082 op0 = expand_compound_operation (op0);
6083 return simplify_gen_unary (NOT, mode,
6084 gen_lowpart (mode, op0),
6085 mode);
6086 }
6087
6088 /* If X is 0/1, (eq X 0) is X-1. */
6089 else if (STORE_FLAG_VALUE == -1
6090 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6091 && op1 == const0_rtx
6092 && mode == GET_MODE (op0)
6093 && nonzero_bits (op0, mode) == 1)
6094 {
6095 op0 = expand_compound_operation (op0);
6096 return plus_constant (mode, gen_lowpart (mode, op0), -1);
6097 }
6098
6099 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6100 one bit that might be nonzero, we can convert (ne x 0) to
6101 (ashift x c) where C puts the bit in the sign bit. Remove any
6102 AND with STORE_FLAG_VALUE when we are done, since we are only
6103 going to test the sign bit. */
6104 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6105 && HWI_COMPUTABLE_MODE_P (mode)
6106 && val_signbit_p (mode, STORE_FLAG_VALUE)
6107 && op1 == const0_rtx
6108 && mode == GET_MODE (op0)
6109 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6110 {
6111 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6112 expand_compound_operation (op0),
6113 GET_MODE_PRECISION (mode) - 1 - i);
6114 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6115 return XEXP (x, 0);
6116 else
6117 return x;
6118 }
6119
6120 /* If the code changed, return a whole new comparison.
6121 We also need to avoid using SUBST in cases where
6122 simplify_comparison has widened a comparison with a CONST_INT,
6123 since in that case the wider CONST_INT may fail the sanity
6124 checks in do_SUBST. */
6125 if (new_code != code
6126 || (CONST_INT_P (op1)
6127 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6128 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6129 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6130
6131 /* Otherwise, keep this operation, but maybe change its operands.
6132 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6133 SUBST (XEXP (x, 0), op0);
6134 SUBST (XEXP (x, 1), op1);
6135 }
6136 break;
6137
6138 case IF_THEN_ELSE:
6139 return simplify_if_then_else (x);
6140
6141 case ZERO_EXTRACT:
6142 case SIGN_EXTRACT:
6143 case ZERO_EXTEND:
6144 case SIGN_EXTEND:
6145 /* If we are processing SET_DEST, we are done. */
6146 if (in_dest)
6147 return x;
6148
6149 return expand_compound_operation (x);
6150
6151 case SET:
6152 return simplify_set (x);
6153
6154 case AND:
6155 case IOR:
6156 return simplify_logical (x);
6157
6158 case ASHIFT:
6159 case LSHIFTRT:
6160 case ASHIFTRT:
6161 case ROTATE:
6162 case ROTATERT:
6163 /* If this is a shift by a constant amount, simplify it. */
6164 if (CONST_INT_P (XEXP (x, 1)))
6165 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6166 INTVAL (XEXP (x, 1)));
6167
6168 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6169 SUBST (XEXP (x, 1),
6170 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6171 (HOST_WIDE_INT_1U
6172 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6173 - 1,
6174 0));
6175 break;
6176
6177 default:
6178 break;
6179 }
6180
6181 return x;
6182 }
6183 \f
6184 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6185
6186 static rtx
6187 simplify_if_then_else (rtx x)
6188 {
6189 machine_mode mode = GET_MODE (x);
6190 rtx cond = XEXP (x, 0);
6191 rtx true_rtx = XEXP (x, 1);
6192 rtx false_rtx = XEXP (x, 2);
6193 enum rtx_code true_code = GET_CODE (cond);
6194 int comparison_p = COMPARISON_P (cond);
6195 rtx temp;
6196 int i;
6197 enum rtx_code false_code;
6198 rtx reversed;
6199
6200 /* Simplify storing of the truth value. */
6201 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6202 return simplify_gen_relational (true_code, mode, VOIDmode,
6203 XEXP (cond, 0), XEXP (cond, 1));
6204
6205 /* Also when the truth value has to be reversed. */
6206 if (comparison_p
6207 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6208 && (reversed = reversed_comparison (cond, mode)))
6209 return reversed;
6210
6211 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6212 in it is being compared against certain values. Get the true and false
6213 comparisons and see if that says anything about the value of each arm. */
6214
6215 if (comparison_p
6216 && ((false_code = reversed_comparison_code (cond, NULL))
6217 != UNKNOWN)
6218 && REG_P (XEXP (cond, 0)))
6219 {
6220 HOST_WIDE_INT nzb;
6221 rtx from = XEXP (cond, 0);
6222 rtx true_val = XEXP (cond, 1);
6223 rtx false_val = true_val;
6224 int swapped = 0;
6225
6226 /* If FALSE_CODE is EQ, swap the codes and arms. */
6227
6228 if (false_code == EQ)
6229 {
6230 swapped = 1, true_code = EQ, false_code = NE;
6231 std::swap (true_rtx, false_rtx);
6232 }
6233
6234 /* If we are comparing against zero and the expression being tested has
6235 only a single bit that might be nonzero, that is its value when it is
6236 not equal to zero. Similarly if it is known to be -1 or 0. */
6237
6238 if (true_code == EQ && true_val == const0_rtx
6239 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
6240 {
6241 false_code = EQ;
6242 false_val = gen_int_mode (nzb, GET_MODE (from));
6243 }
6244 else if (true_code == EQ && true_val == const0_rtx
6245 && (num_sign_bit_copies (from, GET_MODE (from))
6246 == GET_MODE_PRECISION (GET_MODE (from))))
6247 {
6248 false_code = EQ;
6249 false_val = constm1_rtx;
6250 }
6251
6252 /* Now simplify an arm if we know the value of the register in the
6253 branch and it is used in the arm. Be careful due to the potential
6254 of locally-shared RTL. */
6255
6256 if (reg_mentioned_p (from, true_rtx))
6257 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6258 from, true_val),
6259 pc_rtx, pc_rtx, 0, 0, 0);
6260 if (reg_mentioned_p (from, false_rtx))
6261 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6262 from, false_val),
6263 pc_rtx, pc_rtx, 0, 0, 0);
6264
6265 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6266 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6267
6268 true_rtx = XEXP (x, 1);
6269 false_rtx = XEXP (x, 2);
6270 true_code = GET_CODE (cond);
6271 }
6272
6273 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6274 reversed, do so to avoid needing two sets of patterns for
6275 subtract-and-branch insns. Similarly if we have a constant in the true
6276 arm, the false arm is the same as the first operand of the comparison, or
6277 the false arm is more complicated than the true arm. */
6278
6279 if (comparison_p
6280 && reversed_comparison_code (cond, NULL) != UNKNOWN
6281 && (true_rtx == pc_rtx
6282 || (CONSTANT_P (true_rtx)
6283 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6284 || true_rtx == const0_rtx
6285 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6286 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6287 && !OBJECT_P (false_rtx))
6288 || reg_mentioned_p (true_rtx, false_rtx)
6289 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6290 {
6291 true_code = reversed_comparison_code (cond, NULL);
6292 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6293 SUBST (XEXP (x, 1), false_rtx);
6294 SUBST (XEXP (x, 2), true_rtx);
6295
6296 std::swap (true_rtx, false_rtx);
6297 cond = XEXP (x, 0);
6298
6299 /* It is possible that the conditional has been simplified out. */
6300 true_code = GET_CODE (cond);
6301 comparison_p = COMPARISON_P (cond);
6302 }
6303
6304 /* If the two arms are identical, we don't need the comparison. */
6305
6306 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6307 return true_rtx;
6308
6309 /* Convert a == b ? b : a to "a". */
6310 if (true_code == EQ && ! side_effects_p (cond)
6311 && !HONOR_NANS (mode)
6312 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6313 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6314 return false_rtx;
6315 else if (true_code == NE && ! side_effects_p (cond)
6316 && !HONOR_NANS (mode)
6317 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6318 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6319 return true_rtx;
6320
6321 /* Look for cases where we have (abs x) or (neg (abs X)). */
6322
6323 if (GET_MODE_CLASS (mode) == MODE_INT
6324 && comparison_p
6325 && XEXP (cond, 1) == const0_rtx
6326 && GET_CODE (false_rtx) == NEG
6327 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6328 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6329 && ! side_effects_p (true_rtx))
6330 switch (true_code)
6331 {
6332 case GT:
6333 case GE:
6334 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6335 case LT:
6336 case LE:
6337 return
6338 simplify_gen_unary (NEG, mode,
6339 simplify_gen_unary (ABS, mode, true_rtx, mode),
6340 mode);
6341 default:
6342 break;
6343 }
6344
6345 /* Look for MIN or MAX. */
6346
6347 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6348 && comparison_p
6349 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6350 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6351 && ! side_effects_p (cond))
6352 switch (true_code)
6353 {
6354 case GE:
6355 case GT:
6356 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6357 case LE:
6358 case LT:
6359 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6360 case GEU:
6361 case GTU:
6362 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6363 case LEU:
6364 case LTU:
6365 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6366 default:
6367 break;
6368 }
6369
6370 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6371 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6372 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6373 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6374 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6375 neither 1 or -1, but it isn't worth checking for. */
6376
6377 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6378 && comparison_p
6379 && GET_MODE_CLASS (mode) == MODE_INT
6380 && ! side_effects_p (x))
6381 {
6382 rtx t = make_compound_operation (true_rtx, SET);
6383 rtx f = make_compound_operation (false_rtx, SET);
6384 rtx cond_op0 = XEXP (cond, 0);
6385 rtx cond_op1 = XEXP (cond, 1);
6386 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6387 machine_mode m = mode;
6388 rtx z = 0, c1 = NULL_RTX;
6389
6390 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6391 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6392 || GET_CODE (t) == ASHIFT
6393 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6394 && rtx_equal_p (XEXP (t, 0), f))
6395 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6396
6397 /* If an identity-zero op is commutative, check whether there
6398 would be a match if we swapped the operands. */
6399 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6400 || GET_CODE (t) == XOR)
6401 && rtx_equal_p (XEXP (t, 1), f))
6402 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6403 else if (GET_CODE (t) == SIGN_EXTEND
6404 && (GET_CODE (XEXP (t, 0)) == PLUS
6405 || GET_CODE (XEXP (t, 0)) == MINUS
6406 || GET_CODE (XEXP (t, 0)) == IOR
6407 || GET_CODE (XEXP (t, 0)) == XOR
6408 || GET_CODE (XEXP (t, 0)) == ASHIFT
6409 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6410 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6411 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6412 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6413 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6414 && (num_sign_bit_copies (f, GET_MODE (f))
6415 > (unsigned int)
6416 (GET_MODE_PRECISION (mode)
6417 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6418 {
6419 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6420 extend_op = SIGN_EXTEND;
6421 m = GET_MODE (XEXP (t, 0));
6422 }
6423 else if (GET_CODE (t) == SIGN_EXTEND
6424 && (GET_CODE (XEXP (t, 0)) == PLUS
6425 || GET_CODE (XEXP (t, 0)) == IOR
6426 || GET_CODE (XEXP (t, 0)) == XOR)
6427 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6428 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6429 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6430 && (num_sign_bit_copies (f, GET_MODE (f))
6431 > (unsigned int)
6432 (GET_MODE_PRECISION (mode)
6433 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6434 {
6435 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6436 extend_op = SIGN_EXTEND;
6437 m = GET_MODE (XEXP (t, 0));
6438 }
6439 else if (GET_CODE (t) == ZERO_EXTEND
6440 && (GET_CODE (XEXP (t, 0)) == PLUS
6441 || GET_CODE (XEXP (t, 0)) == MINUS
6442 || GET_CODE (XEXP (t, 0)) == IOR
6443 || GET_CODE (XEXP (t, 0)) == XOR
6444 || GET_CODE (XEXP (t, 0)) == ASHIFT
6445 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6446 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6447 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6448 && HWI_COMPUTABLE_MODE_P (mode)
6449 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6450 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6451 && ((nonzero_bits (f, GET_MODE (f))
6452 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6453 == 0))
6454 {
6455 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6456 extend_op = ZERO_EXTEND;
6457 m = GET_MODE (XEXP (t, 0));
6458 }
6459 else if (GET_CODE (t) == ZERO_EXTEND
6460 && (GET_CODE (XEXP (t, 0)) == PLUS
6461 || GET_CODE (XEXP (t, 0)) == IOR
6462 || GET_CODE (XEXP (t, 0)) == XOR)
6463 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6464 && HWI_COMPUTABLE_MODE_P (mode)
6465 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6466 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6467 && ((nonzero_bits (f, GET_MODE (f))
6468 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6469 == 0))
6470 {
6471 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6472 extend_op = ZERO_EXTEND;
6473 m = GET_MODE (XEXP (t, 0));
6474 }
6475
6476 if (z)
6477 {
6478 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6479 cond_op0, cond_op1),
6480 pc_rtx, pc_rtx, 0, 0, 0);
6481 temp = simplify_gen_binary (MULT, m, temp,
6482 simplify_gen_binary (MULT, m, c1,
6483 const_true_rtx));
6484 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6485 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6486
6487 if (extend_op != UNKNOWN)
6488 temp = simplify_gen_unary (extend_op, mode, temp, m);
6489
6490 return temp;
6491 }
6492 }
6493
6494 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6495 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6496 negation of a single bit, we can convert this operation to a shift. We
6497 can actually do this more generally, but it doesn't seem worth it. */
6498
6499 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6500 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6501 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6502 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6503 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6504 == GET_MODE_PRECISION (mode))
6505 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6506 return
6507 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6508 gen_lowpart (mode, XEXP (cond, 0)), i);
6509
6510 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6511 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6512 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6513 && GET_MODE (XEXP (cond, 0)) == mode
6514 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6515 == nonzero_bits (XEXP (cond, 0), mode)
6516 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6517 return XEXP (cond, 0);
6518
6519 return x;
6520 }
6521 \f
6522 /* Simplify X, a SET expression. Return the new expression. */
6523
6524 static rtx
6525 simplify_set (rtx x)
6526 {
6527 rtx src = SET_SRC (x);
6528 rtx dest = SET_DEST (x);
6529 machine_mode mode
6530 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6531 rtx_insn *other_insn;
6532 rtx *cc_use;
6533
6534 /* (set (pc) (return)) gets written as (return). */
6535 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6536 return src;
6537
6538 /* Now that we know for sure which bits of SRC we are using, see if we can
6539 simplify the expression for the object knowing that we only need the
6540 low-order bits. */
6541
6542 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6543 {
6544 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6545 SUBST (SET_SRC (x), src);
6546 }
6547
6548 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6549 the comparison result and try to simplify it unless we already have used
6550 undobuf.other_insn. */
6551 if ((GET_MODE_CLASS (mode) == MODE_CC
6552 || GET_CODE (src) == COMPARE
6553 || CC0_P (dest))
6554 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6555 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6556 && COMPARISON_P (*cc_use)
6557 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6558 {
6559 enum rtx_code old_code = GET_CODE (*cc_use);
6560 enum rtx_code new_code;
6561 rtx op0, op1, tmp;
6562 int other_changed = 0;
6563 rtx inner_compare = NULL_RTX;
6564 machine_mode compare_mode = GET_MODE (dest);
6565
6566 if (GET_CODE (src) == COMPARE)
6567 {
6568 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6569 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6570 {
6571 inner_compare = op0;
6572 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6573 }
6574 }
6575 else
6576 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6577
6578 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6579 op0, op1);
6580 if (!tmp)
6581 new_code = old_code;
6582 else if (!CONSTANT_P (tmp))
6583 {
6584 new_code = GET_CODE (tmp);
6585 op0 = XEXP (tmp, 0);
6586 op1 = XEXP (tmp, 1);
6587 }
6588 else
6589 {
6590 rtx pat = PATTERN (other_insn);
6591 undobuf.other_insn = other_insn;
6592 SUBST (*cc_use, tmp);
6593
6594 /* Attempt to simplify CC user. */
6595 if (GET_CODE (pat) == SET)
6596 {
6597 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6598 if (new_rtx != NULL_RTX)
6599 SUBST (SET_SRC (pat), new_rtx);
6600 }
6601
6602 /* Convert X into a no-op move. */
6603 SUBST (SET_DEST (x), pc_rtx);
6604 SUBST (SET_SRC (x), pc_rtx);
6605 return x;
6606 }
6607
6608 /* Simplify our comparison, if possible. */
6609 new_code = simplify_comparison (new_code, &op0, &op1);
6610
6611 #ifdef SELECT_CC_MODE
6612 /* If this machine has CC modes other than CCmode, check to see if we
6613 need to use a different CC mode here. */
6614 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6615 compare_mode = GET_MODE (op0);
6616 else if (inner_compare
6617 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6618 && new_code == old_code
6619 && op0 == XEXP (inner_compare, 0)
6620 && op1 == XEXP (inner_compare, 1))
6621 compare_mode = GET_MODE (inner_compare);
6622 else
6623 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6624
6625 /* If the mode changed, we have to change SET_DEST, the mode in the
6626 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6627 a hard register, just build new versions with the proper mode. If it
6628 is a pseudo, we lose unless it is only time we set the pseudo, in
6629 which case we can safely change its mode. */
6630 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6631 {
6632 if (can_change_dest_mode (dest, 0, compare_mode))
6633 {
6634 unsigned int regno = REGNO (dest);
6635 rtx new_dest;
6636
6637 if (regno < FIRST_PSEUDO_REGISTER)
6638 new_dest = gen_rtx_REG (compare_mode, regno);
6639 else
6640 {
6641 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6642 new_dest = regno_reg_rtx[regno];
6643 }
6644
6645 SUBST (SET_DEST (x), new_dest);
6646 SUBST (XEXP (*cc_use, 0), new_dest);
6647 other_changed = 1;
6648
6649 dest = new_dest;
6650 }
6651 }
6652 #endif /* SELECT_CC_MODE */
6653
6654 /* If the code changed, we have to build a new comparison in
6655 undobuf.other_insn. */
6656 if (new_code != old_code)
6657 {
6658 int other_changed_previously = other_changed;
6659 unsigned HOST_WIDE_INT mask;
6660 rtx old_cc_use = *cc_use;
6661
6662 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6663 dest, const0_rtx));
6664 other_changed = 1;
6665
6666 /* If the only change we made was to change an EQ into an NE or
6667 vice versa, OP0 has only one bit that might be nonzero, and OP1
6668 is zero, check if changing the user of the condition code will
6669 produce a valid insn. If it won't, we can keep the original code
6670 in that insn by surrounding our operation with an XOR. */
6671
6672 if (((old_code == NE && new_code == EQ)
6673 || (old_code == EQ && new_code == NE))
6674 && ! other_changed_previously && op1 == const0_rtx
6675 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6676 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6677 {
6678 rtx pat = PATTERN (other_insn), note = 0;
6679
6680 if ((recog_for_combine (&pat, other_insn, &note) < 0
6681 && ! check_asm_operands (pat)))
6682 {
6683 *cc_use = old_cc_use;
6684 other_changed = 0;
6685
6686 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6687 gen_int_mode (mask,
6688 GET_MODE (op0)));
6689 }
6690 }
6691 }
6692
6693 if (other_changed)
6694 undobuf.other_insn = other_insn;
6695
6696 /* Don't generate a compare of a CC with 0, just use that CC. */
6697 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6698 {
6699 SUBST (SET_SRC (x), op0);
6700 src = SET_SRC (x);
6701 }
6702 /* Otherwise, if we didn't previously have the same COMPARE we
6703 want, create it from scratch. */
6704 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6705 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6706 {
6707 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6708 src = SET_SRC (x);
6709 }
6710 }
6711 else
6712 {
6713 /* Get SET_SRC in a form where we have placed back any
6714 compound expressions. Then do the checks below. */
6715 src = make_compound_operation (src, SET);
6716 SUBST (SET_SRC (x), src);
6717 }
6718
6719 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6720 and X being a REG or (subreg (reg)), we may be able to convert this to
6721 (set (subreg:m2 x) (op)).
6722
6723 We can always do this if M1 is narrower than M2 because that means that
6724 we only care about the low bits of the result.
6725
6726 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6727 perform a narrower operation than requested since the high-order bits will
6728 be undefined. On machine where it is defined, this transformation is safe
6729 as long as M1 and M2 have the same number of words. */
6730
6731 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6732 && !OBJECT_P (SUBREG_REG (src))
6733 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6734 / UNITS_PER_WORD)
6735 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6736 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6737 && (WORD_REGISTER_OPERATIONS
6738 || (GET_MODE_SIZE (GET_MODE (src))
6739 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
6740 #ifdef CANNOT_CHANGE_MODE_CLASS
6741 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6742 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6743 GET_MODE (SUBREG_REG (src)),
6744 GET_MODE (src)))
6745 #endif
6746 && (REG_P (dest)
6747 || (GET_CODE (dest) == SUBREG
6748 && REG_P (SUBREG_REG (dest)))))
6749 {
6750 SUBST (SET_DEST (x),
6751 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6752 dest));
6753 SUBST (SET_SRC (x), SUBREG_REG (src));
6754
6755 src = SET_SRC (x), dest = SET_DEST (x);
6756 }
6757
6758 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6759 in SRC. */
6760 if (dest == cc0_rtx
6761 && GET_CODE (src) == SUBREG
6762 && subreg_lowpart_p (src)
6763 && (GET_MODE_PRECISION (GET_MODE (src))
6764 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6765 {
6766 rtx inner = SUBREG_REG (src);
6767 machine_mode inner_mode = GET_MODE (inner);
6768
6769 /* Here we make sure that we don't have a sign bit on. */
6770 if (val_signbit_known_clear_p (GET_MODE (src),
6771 nonzero_bits (inner, inner_mode)))
6772 {
6773 SUBST (SET_SRC (x), inner);
6774 src = SET_SRC (x);
6775 }
6776 }
6777
6778 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6779 would require a paradoxical subreg. Replace the subreg with a
6780 zero_extend to avoid the reload that would otherwise be required. */
6781
6782 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6783 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6784 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6785 && SUBREG_BYTE (src) == 0
6786 && paradoxical_subreg_p (src)
6787 && MEM_P (SUBREG_REG (src)))
6788 {
6789 SUBST (SET_SRC (x),
6790 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6791 GET_MODE (src), SUBREG_REG (src)));
6792
6793 src = SET_SRC (x);
6794 }
6795
6796 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6797 are comparing an item known to be 0 or -1 against 0, use a logical
6798 operation instead. Check for one of the arms being an IOR of the other
6799 arm with some value. We compute three terms to be IOR'ed together. In
6800 practice, at most two will be nonzero. Then we do the IOR's. */
6801
6802 if (GET_CODE (dest) != PC
6803 && GET_CODE (src) == IF_THEN_ELSE
6804 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6805 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6806 && XEXP (XEXP (src, 0), 1) == const0_rtx
6807 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6808 && (!HAVE_conditional_move
6809 || ! can_conditionally_move_p (GET_MODE (src)))
6810 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6811 GET_MODE (XEXP (XEXP (src, 0), 0)))
6812 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6813 && ! side_effects_p (src))
6814 {
6815 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6816 ? XEXP (src, 1) : XEXP (src, 2));
6817 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6818 ? XEXP (src, 2) : XEXP (src, 1));
6819 rtx term1 = const0_rtx, term2, term3;
6820
6821 if (GET_CODE (true_rtx) == IOR
6822 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6823 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6824 else if (GET_CODE (true_rtx) == IOR
6825 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6826 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6827 else if (GET_CODE (false_rtx) == IOR
6828 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6829 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6830 else if (GET_CODE (false_rtx) == IOR
6831 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6832 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6833
6834 term2 = simplify_gen_binary (AND, GET_MODE (src),
6835 XEXP (XEXP (src, 0), 0), true_rtx);
6836 term3 = simplify_gen_binary (AND, GET_MODE (src),
6837 simplify_gen_unary (NOT, GET_MODE (src),
6838 XEXP (XEXP (src, 0), 0),
6839 GET_MODE (src)),
6840 false_rtx);
6841
6842 SUBST (SET_SRC (x),
6843 simplify_gen_binary (IOR, GET_MODE (src),
6844 simplify_gen_binary (IOR, GET_MODE (src),
6845 term1, term2),
6846 term3));
6847
6848 src = SET_SRC (x);
6849 }
6850
6851 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6852 whole thing fail. */
6853 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6854 return src;
6855 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6856 return dest;
6857 else
6858 /* Convert this into a field assignment operation, if possible. */
6859 return make_field_assignment (x);
6860 }
6861 \f
6862 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6863 result. */
6864
6865 static rtx
6866 simplify_logical (rtx x)
6867 {
6868 machine_mode mode = GET_MODE (x);
6869 rtx op0 = XEXP (x, 0);
6870 rtx op1 = XEXP (x, 1);
6871
6872 switch (GET_CODE (x))
6873 {
6874 case AND:
6875 /* We can call simplify_and_const_int only if we don't lose
6876 any (sign) bits when converting INTVAL (op1) to
6877 "unsigned HOST_WIDE_INT". */
6878 if (CONST_INT_P (op1)
6879 && (HWI_COMPUTABLE_MODE_P (mode)
6880 || INTVAL (op1) > 0))
6881 {
6882 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6883 if (GET_CODE (x) != AND)
6884 return x;
6885
6886 op0 = XEXP (x, 0);
6887 op1 = XEXP (x, 1);
6888 }
6889
6890 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6891 apply the distributive law and then the inverse distributive
6892 law to see if things simplify. */
6893 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6894 {
6895 rtx result = distribute_and_simplify_rtx (x, 0);
6896 if (result)
6897 return result;
6898 }
6899 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6900 {
6901 rtx result = distribute_and_simplify_rtx (x, 1);
6902 if (result)
6903 return result;
6904 }
6905 break;
6906
6907 case IOR:
6908 /* If we have (ior (and A B) C), apply the distributive law and then
6909 the inverse distributive law to see if things simplify. */
6910
6911 if (GET_CODE (op0) == AND)
6912 {
6913 rtx result = distribute_and_simplify_rtx (x, 0);
6914 if (result)
6915 return result;
6916 }
6917
6918 if (GET_CODE (op1) == AND)
6919 {
6920 rtx result = distribute_and_simplify_rtx (x, 1);
6921 if (result)
6922 return result;
6923 }
6924 break;
6925
6926 default:
6927 gcc_unreachable ();
6928 }
6929
6930 return x;
6931 }
6932 \f
6933 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6934 operations" because they can be replaced with two more basic operations.
6935 ZERO_EXTEND is also considered "compound" because it can be replaced with
6936 an AND operation, which is simpler, though only one operation.
6937
6938 The function expand_compound_operation is called with an rtx expression
6939 and will convert it to the appropriate shifts and AND operations,
6940 simplifying at each stage.
6941
6942 The function make_compound_operation is called to convert an expression
6943 consisting of shifts and ANDs into the equivalent compound expression.
6944 It is the inverse of this function, loosely speaking. */
6945
6946 static rtx
6947 expand_compound_operation (rtx x)
6948 {
6949 unsigned HOST_WIDE_INT pos = 0, len;
6950 int unsignedp = 0;
6951 unsigned int modewidth;
6952 rtx tem;
6953
6954 switch (GET_CODE (x))
6955 {
6956 case ZERO_EXTEND:
6957 unsignedp = 1;
6958 case SIGN_EXTEND:
6959 /* We can't necessarily use a const_int for a multiword mode;
6960 it depends on implicitly extending the value.
6961 Since we don't know the right way to extend it,
6962 we can't tell whether the implicit way is right.
6963
6964 Even for a mode that is no wider than a const_int,
6965 we can't win, because we need to sign extend one of its bits through
6966 the rest of it, and we don't know which bit. */
6967 if (CONST_INT_P (XEXP (x, 0)))
6968 return x;
6969
6970 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6971 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6972 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6973 reloaded. If not for that, MEM's would very rarely be safe.
6974
6975 Reject MODEs bigger than a word, because we might not be able
6976 to reference a two-register group starting with an arbitrary register
6977 (and currently gen_lowpart might crash for a SUBREG). */
6978
6979 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6980 return x;
6981
6982 /* Reject MODEs that aren't scalar integers because turning vector
6983 or complex modes into shifts causes problems. */
6984
6985 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6986 return x;
6987
6988 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6989 /* If the inner object has VOIDmode (the only way this can happen
6990 is if it is an ASM_OPERANDS), we can't do anything since we don't
6991 know how much masking to do. */
6992 if (len == 0)
6993 return x;
6994
6995 break;
6996
6997 case ZERO_EXTRACT:
6998 unsignedp = 1;
6999
7000 /* ... fall through ... */
7001
7002 case SIGN_EXTRACT:
7003 /* If the operand is a CLOBBER, just return it. */
7004 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7005 return XEXP (x, 0);
7006
7007 if (!CONST_INT_P (XEXP (x, 1))
7008 || !CONST_INT_P (XEXP (x, 2))
7009 || GET_MODE (XEXP (x, 0)) == VOIDmode)
7010 return x;
7011
7012 /* Reject MODEs that aren't scalar integers because turning vector
7013 or complex modes into shifts causes problems. */
7014
7015 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7016 return x;
7017
7018 len = INTVAL (XEXP (x, 1));
7019 pos = INTVAL (XEXP (x, 2));
7020
7021 /* This should stay within the object being extracted, fail otherwise. */
7022 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
7023 return x;
7024
7025 if (BITS_BIG_ENDIAN)
7026 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7027
7028 break;
7029
7030 default:
7031 return x;
7032 }
7033 /* Convert sign extension to zero extension, if we know that the high
7034 bit is not set, as this is easier to optimize. It will be converted
7035 back to cheaper alternative in make_extraction. */
7036 if (GET_CODE (x) == SIGN_EXTEND
7037 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7038 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7039 & ~(((unsigned HOST_WIDE_INT)
7040 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7041 >> 1))
7042 == 0)))
7043 {
7044 machine_mode mode = GET_MODE (x);
7045 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7046 rtx temp2 = expand_compound_operation (temp);
7047
7048 /* Make sure this is a profitable operation. */
7049 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7050 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7051 return temp2;
7052 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7053 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7054 return temp;
7055 else
7056 return x;
7057 }
7058
7059 /* We can optimize some special cases of ZERO_EXTEND. */
7060 if (GET_CODE (x) == ZERO_EXTEND)
7061 {
7062 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7063 know that the last value didn't have any inappropriate bits
7064 set. */
7065 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7066 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7067 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7068 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7069 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7070 return XEXP (XEXP (x, 0), 0);
7071
7072 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7073 if (GET_CODE (XEXP (x, 0)) == SUBREG
7074 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7075 && subreg_lowpart_p (XEXP (x, 0))
7076 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7077 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7078 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7079 return SUBREG_REG (XEXP (x, 0));
7080
7081 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7082 is a comparison and STORE_FLAG_VALUE permits. This is like
7083 the first case, but it works even when GET_MODE (x) is larger
7084 than HOST_WIDE_INT. */
7085 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7086 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7087 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7088 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7089 <= HOST_BITS_PER_WIDE_INT)
7090 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7091 return XEXP (XEXP (x, 0), 0);
7092
7093 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7094 if (GET_CODE (XEXP (x, 0)) == SUBREG
7095 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7096 && subreg_lowpart_p (XEXP (x, 0))
7097 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7098 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7099 <= HOST_BITS_PER_WIDE_INT)
7100 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7101 return SUBREG_REG (XEXP (x, 0));
7102
7103 }
7104
7105 /* If we reach here, we want to return a pair of shifts. The inner
7106 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7107 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7108 logical depending on the value of UNSIGNEDP.
7109
7110 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7111 converted into an AND of a shift.
7112
7113 We must check for the case where the left shift would have a negative
7114 count. This can happen in a case like (x >> 31) & 255 on machines
7115 that can't shift by a constant. On those machines, we would first
7116 combine the shift with the AND to produce a variable-position
7117 extraction. Then the constant of 31 would be substituted in
7118 to produce such a position. */
7119
7120 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7121 if (modewidth >= pos + len)
7122 {
7123 machine_mode mode = GET_MODE (x);
7124 tem = gen_lowpart (mode, XEXP (x, 0));
7125 if (!tem || GET_CODE (tem) == CLOBBER)
7126 return x;
7127 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7128 tem, modewidth - pos - len);
7129 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7130 mode, tem, modewidth - len);
7131 }
7132 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7133 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7134 simplify_shift_const (NULL_RTX, LSHIFTRT,
7135 GET_MODE (x),
7136 XEXP (x, 0), pos),
7137 (HOST_WIDE_INT_1U << len) - 1);
7138 else
7139 /* Any other cases we can't handle. */
7140 return x;
7141
7142 /* If we couldn't do this for some reason, return the original
7143 expression. */
7144 if (GET_CODE (tem) == CLOBBER)
7145 return x;
7146
7147 return tem;
7148 }
7149 \f
7150 /* X is a SET which contains an assignment of one object into
7151 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7152 or certain SUBREGS). If possible, convert it into a series of
7153 logical operations.
7154
7155 We half-heartedly support variable positions, but do not at all
7156 support variable lengths. */
7157
7158 static const_rtx
7159 expand_field_assignment (const_rtx x)
7160 {
7161 rtx inner;
7162 rtx pos; /* Always counts from low bit. */
7163 int len;
7164 rtx mask, cleared, masked;
7165 machine_mode compute_mode;
7166
7167 /* Loop until we find something we can't simplify. */
7168 while (1)
7169 {
7170 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7171 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7172 {
7173 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7174 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7175 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7176 }
7177 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7178 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7179 {
7180 inner = XEXP (SET_DEST (x), 0);
7181 len = INTVAL (XEXP (SET_DEST (x), 1));
7182 pos = XEXP (SET_DEST (x), 2);
7183
7184 /* A constant position should stay within the width of INNER. */
7185 if (CONST_INT_P (pos)
7186 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7187 break;
7188
7189 if (BITS_BIG_ENDIAN)
7190 {
7191 if (CONST_INT_P (pos))
7192 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7193 - INTVAL (pos));
7194 else if (GET_CODE (pos) == MINUS
7195 && CONST_INT_P (XEXP (pos, 1))
7196 && (INTVAL (XEXP (pos, 1))
7197 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7198 /* If position is ADJUST - X, new position is X. */
7199 pos = XEXP (pos, 0);
7200 else
7201 {
7202 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7203 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7204 gen_int_mode (prec - len,
7205 GET_MODE (pos)),
7206 pos);
7207 }
7208 }
7209 }
7210
7211 /* A SUBREG between two modes that occupy the same numbers of words
7212 can be done by moving the SUBREG to the source. */
7213 else if (GET_CODE (SET_DEST (x)) == SUBREG
7214 /* We need SUBREGs to compute nonzero_bits properly. */
7215 && nonzero_sign_valid
7216 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7217 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7218 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7219 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7220 {
7221 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7222 gen_lowpart
7223 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7224 SET_SRC (x)));
7225 continue;
7226 }
7227 else
7228 break;
7229
7230 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7231 inner = SUBREG_REG (inner);
7232
7233 compute_mode = GET_MODE (inner);
7234
7235 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7236 if (! SCALAR_INT_MODE_P (compute_mode))
7237 {
7238 machine_mode imode;
7239
7240 /* Don't do anything for vector or complex integral types. */
7241 if (! FLOAT_MODE_P (compute_mode))
7242 break;
7243
7244 /* Try to find an integral mode to pun with. */
7245 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7246 if (imode == BLKmode)
7247 break;
7248
7249 compute_mode = imode;
7250 inner = gen_lowpart (imode, inner);
7251 }
7252
7253 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7254 if (len >= HOST_BITS_PER_WIDE_INT)
7255 break;
7256
7257 /* Don't try to compute in too wide unsupported modes. */
7258 if (!targetm.scalar_mode_supported_p (compute_mode))
7259 break;
7260
7261 /* Now compute the equivalent expression. Make a copy of INNER
7262 for the SET_DEST in case it is a MEM into which we will substitute;
7263 we don't want shared RTL in that case. */
7264 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7265 compute_mode);
7266 cleared = simplify_gen_binary (AND, compute_mode,
7267 simplify_gen_unary (NOT, compute_mode,
7268 simplify_gen_binary (ASHIFT,
7269 compute_mode,
7270 mask, pos),
7271 compute_mode),
7272 inner);
7273 masked = simplify_gen_binary (ASHIFT, compute_mode,
7274 simplify_gen_binary (
7275 AND, compute_mode,
7276 gen_lowpart (compute_mode, SET_SRC (x)),
7277 mask),
7278 pos);
7279
7280 x = gen_rtx_SET (copy_rtx (inner),
7281 simplify_gen_binary (IOR, compute_mode,
7282 cleared, masked));
7283 }
7284
7285 return x;
7286 }
7287 \f
7288 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7289 it is an RTX that represents the (variable) starting position; otherwise,
7290 POS is the (constant) starting bit position. Both are counted from the LSB.
7291
7292 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7293
7294 IN_DEST is nonzero if this is a reference in the destination of a SET.
7295 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7296 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7297 be used.
7298
7299 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7300 ZERO_EXTRACT should be built even for bits starting at bit 0.
7301
7302 MODE is the desired mode of the result (if IN_DEST == 0).
7303
7304 The result is an RTX for the extraction or NULL_RTX if the target
7305 can't handle it. */
7306
7307 static rtx
7308 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7309 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7310 int in_dest, int in_compare)
7311 {
7312 /* This mode describes the size of the storage area
7313 to fetch the overall value from. Within that, we
7314 ignore the POS lowest bits, etc. */
7315 machine_mode is_mode = GET_MODE (inner);
7316 machine_mode inner_mode;
7317 machine_mode wanted_inner_mode;
7318 machine_mode wanted_inner_reg_mode = word_mode;
7319 machine_mode pos_mode = word_mode;
7320 machine_mode extraction_mode = word_mode;
7321 machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7322 rtx new_rtx = 0;
7323 rtx orig_pos_rtx = pos_rtx;
7324 HOST_WIDE_INT orig_pos;
7325
7326 if (pos_rtx && CONST_INT_P (pos_rtx))
7327 pos = INTVAL (pos_rtx), pos_rtx = 0;
7328
7329 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7330 {
7331 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7332 consider just the QI as the memory to extract from.
7333 The subreg adds or removes high bits; its mode is
7334 irrelevant to the meaning of this extraction,
7335 since POS and LEN count from the lsb. */
7336 if (MEM_P (SUBREG_REG (inner)))
7337 is_mode = GET_MODE (SUBREG_REG (inner));
7338 inner = SUBREG_REG (inner);
7339 }
7340 else if (GET_CODE (inner) == ASHIFT
7341 && CONST_INT_P (XEXP (inner, 1))
7342 && pos_rtx == 0 && pos == 0
7343 && len > UINTVAL (XEXP (inner, 1)))
7344 {
7345 /* We're extracting the least significant bits of an rtx
7346 (ashift X (const_int C)), where LEN > C. Extract the
7347 least significant (LEN - C) bits of X, giving an rtx
7348 whose mode is MODE, then shift it left C times. */
7349 new_rtx = make_extraction (mode, XEXP (inner, 0),
7350 0, 0, len - INTVAL (XEXP (inner, 1)),
7351 unsignedp, in_dest, in_compare);
7352 if (new_rtx != 0)
7353 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7354 }
7355 else if (GET_CODE (inner) == TRUNCATE)
7356 inner = XEXP (inner, 0);
7357
7358 inner_mode = GET_MODE (inner);
7359
7360 /* See if this can be done without an extraction. We never can if the
7361 width of the field is not the same as that of some integer mode. For
7362 registers, we can only avoid the extraction if the position is at the
7363 low-order bit and this is either not in the destination or we have the
7364 appropriate STRICT_LOW_PART operation available.
7365
7366 For MEM, we can avoid an extract if the field starts on an appropriate
7367 boundary and we can change the mode of the memory reference. */
7368
7369 if (tmode != BLKmode
7370 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7371 && !MEM_P (inner)
7372 && (inner_mode == tmode
7373 || !REG_P (inner)
7374 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7375 || reg_truncated_to_mode (tmode, inner))
7376 && (! in_dest
7377 || (REG_P (inner)
7378 && have_insn_for (STRICT_LOW_PART, tmode))))
7379 || (MEM_P (inner) && pos_rtx == 0
7380 && (pos
7381 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7382 : BITS_PER_UNIT)) == 0
7383 /* We can't do this if we are widening INNER_MODE (it
7384 may not be aligned, for one thing). */
7385 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7386 && (inner_mode == tmode
7387 || (! mode_dependent_address_p (XEXP (inner, 0),
7388 MEM_ADDR_SPACE (inner))
7389 && ! MEM_VOLATILE_P (inner))))))
7390 {
7391 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7392 field. If the original and current mode are the same, we need not
7393 adjust the offset. Otherwise, we do if bytes big endian.
7394
7395 If INNER is not a MEM, get a piece consisting of just the field
7396 of interest (in this case POS % BITS_PER_WORD must be 0). */
7397
7398 if (MEM_P (inner))
7399 {
7400 HOST_WIDE_INT offset;
7401
7402 /* POS counts from lsb, but make OFFSET count in memory order. */
7403 if (BYTES_BIG_ENDIAN)
7404 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7405 else
7406 offset = pos / BITS_PER_UNIT;
7407
7408 new_rtx = adjust_address_nv (inner, tmode, offset);
7409 }
7410 else if (REG_P (inner))
7411 {
7412 if (tmode != inner_mode)
7413 {
7414 /* We can't call gen_lowpart in a DEST since we
7415 always want a SUBREG (see below) and it would sometimes
7416 return a new hard register. */
7417 if (pos || in_dest)
7418 {
7419 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7420
7421 if (WORDS_BIG_ENDIAN
7422 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7423 final_word = ((GET_MODE_SIZE (inner_mode)
7424 - GET_MODE_SIZE (tmode))
7425 / UNITS_PER_WORD) - final_word;
7426
7427 final_word *= UNITS_PER_WORD;
7428 if (BYTES_BIG_ENDIAN &&
7429 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7430 final_word += (GET_MODE_SIZE (inner_mode)
7431 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7432
7433 /* Avoid creating invalid subregs, for example when
7434 simplifying (x>>32)&255. */
7435 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7436 return NULL_RTX;
7437
7438 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7439 }
7440 else
7441 new_rtx = gen_lowpart (tmode, inner);
7442 }
7443 else
7444 new_rtx = inner;
7445 }
7446 else
7447 new_rtx = force_to_mode (inner, tmode,
7448 len >= HOST_BITS_PER_WIDE_INT
7449 ? HOST_WIDE_INT_M1U
7450 : (HOST_WIDE_INT_1U << len) - 1,
7451 0);
7452
7453 /* If this extraction is going into the destination of a SET,
7454 make a STRICT_LOW_PART unless we made a MEM. */
7455
7456 if (in_dest)
7457 return (MEM_P (new_rtx) ? new_rtx
7458 : (GET_CODE (new_rtx) != SUBREG
7459 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7460 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7461
7462 if (mode == tmode)
7463 return new_rtx;
7464
7465 if (CONST_SCALAR_INT_P (new_rtx))
7466 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7467 mode, new_rtx, tmode);
7468
7469 /* If we know that no extraneous bits are set, and that the high
7470 bit is not set, convert the extraction to the cheaper of
7471 sign and zero extension, that are equivalent in these cases. */
7472 if (flag_expensive_optimizations
7473 && (HWI_COMPUTABLE_MODE_P (tmode)
7474 && ((nonzero_bits (new_rtx, tmode)
7475 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7476 == 0)))
7477 {
7478 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7479 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7480
7481 /* Prefer ZERO_EXTENSION, since it gives more information to
7482 backends. */
7483 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7484 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7485 return temp;
7486 return temp1;
7487 }
7488
7489 /* Otherwise, sign- or zero-extend unless we already are in the
7490 proper mode. */
7491
7492 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7493 mode, new_rtx));
7494 }
7495
7496 /* Unless this is a COMPARE or we have a funny memory reference,
7497 don't do anything with zero-extending field extracts starting at
7498 the low-order bit since they are simple AND operations. */
7499 if (pos_rtx == 0 && pos == 0 && ! in_dest
7500 && ! in_compare && unsignedp)
7501 return 0;
7502
7503 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7504 if the position is not a constant and the length is not 1. In all
7505 other cases, we would only be going outside our object in cases when
7506 an original shift would have been undefined. */
7507 if (MEM_P (inner)
7508 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7509 || (pos_rtx != 0 && len != 1)))
7510 return 0;
7511
7512 enum extraction_pattern pattern = (in_dest ? EP_insv
7513 : unsignedp ? EP_extzv : EP_extv);
7514
7515 /* If INNER is not from memory, we want it to have the mode of a register
7516 extraction pattern's structure operand, or word_mode if there is no
7517 such pattern. The same applies to extraction_mode and pos_mode
7518 and their respective operands.
7519
7520 For memory, assume that the desired extraction_mode and pos_mode
7521 are the same as for a register operation, since at present we don't
7522 have named patterns for aligned memory structures. */
7523 struct extraction_insn insn;
7524 if (get_best_reg_extraction_insn (&insn, pattern,
7525 GET_MODE_BITSIZE (inner_mode), mode))
7526 {
7527 wanted_inner_reg_mode = insn.struct_mode;
7528 pos_mode = insn.pos_mode;
7529 extraction_mode = insn.field_mode;
7530 }
7531
7532 /* Never narrow an object, since that might not be safe. */
7533
7534 if (mode != VOIDmode
7535 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7536 extraction_mode = mode;
7537
7538 if (!MEM_P (inner))
7539 wanted_inner_mode = wanted_inner_reg_mode;
7540 else
7541 {
7542 /* Be careful not to go beyond the extracted object and maintain the
7543 natural alignment of the memory. */
7544 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7545 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7546 > GET_MODE_BITSIZE (wanted_inner_mode))
7547 {
7548 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7549 gcc_assert (wanted_inner_mode != VOIDmode);
7550 }
7551 }
7552
7553 orig_pos = pos;
7554
7555 if (BITS_BIG_ENDIAN)
7556 {
7557 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7558 BITS_BIG_ENDIAN style. If position is constant, compute new
7559 position. Otherwise, build subtraction.
7560 Note that POS is relative to the mode of the original argument.
7561 If it's a MEM we need to recompute POS relative to that.
7562 However, if we're extracting from (or inserting into) a register,
7563 we want to recompute POS relative to wanted_inner_mode. */
7564 int width = (MEM_P (inner)
7565 ? GET_MODE_BITSIZE (is_mode)
7566 : GET_MODE_BITSIZE (wanted_inner_mode));
7567
7568 if (pos_rtx == 0)
7569 pos = width - len - pos;
7570 else
7571 pos_rtx
7572 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7573 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7574 pos_rtx);
7575 /* POS may be less than 0 now, but we check for that below.
7576 Note that it can only be less than 0 if !MEM_P (inner). */
7577 }
7578
7579 /* If INNER has a wider mode, and this is a constant extraction, try to
7580 make it smaller and adjust the byte to point to the byte containing
7581 the value. */
7582 if (wanted_inner_mode != VOIDmode
7583 && inner_mode != wanted_inner_mode
7584 && ! pos_rtx
7585 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7586 && MEM_P (inner)
7587 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7588 && ! MEM_VOLATILE_P (inner))
7589 {
7590 int offset = 0;
7591
7592 /* The computations below will be correct if the machine is big
7593 endian in both bits and bytes or little endian in bits and bytes.
7594 If it is mixed, we must adjust. */
7595
7596 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7597 adjust OFFSET to compensate. */
7598 if (BYTES_BIG_ENDIAN
7599 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7600 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7601
7602 /* We can now move to the desired byte. */
7603 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7604 * GET_MODE_SIZE (wanted_inner_mode);
7605 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7606
7607 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7608 && is_mode != wanted_inner_mode)
7609 offset = (GET_MODE_SIZE (is_mode)
7610 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7611
7612 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7613 }
7614
7615 /* If INNER is not memory, get it into the proper mode. If we are changing
7616 its mode, POS must be a constant and smaller than the size of the new
7617 mode. */
7618 else if (!MEM_P (inner))
7619 {
7620 /* On the LHS, don't create paradoxical subregs implicitely truncating
7621 the register unless TRULY_NOOP_TRUNCATION. */
7622 if (in_dest
7623 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7624 wanted_inner_mode))
7625 return NULL_RTX;
7626
7627 if (GET_MODE (inner) != wanted_inner_mode
7628 && (pos_rtx != 0
7629 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7630 return NULL_RTX;
7631
7632 if (orig_pos < 0)
7633 return NULL_RTX;
7634
7635 inner = force_to_mode (inner, wanted_inner_mode,
7636 pos_rtx
7637 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7638 ? HOST_WIDE_INT_M1U
7639 : (((HOST_WIDE_INT_1U << len) - 1)
7640 << orig_pos),
7641 0);
7642 }
7643
7644 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7645 have to zero extend. Otherwise, we can just use a SUBREG. */
7646 if (pos_rtx != 0
7647 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7648 {
7649 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7650 GET_MODE (pos_rtx));
7651
7652 /* If we know that no extraneous bits are set, and that the high
7653 bit is not set, convert extraction to cheaper one - either
7654 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7655 cases. */
7656 if (flag_expensive_optimizations
7657 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7658 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7659 & ~(((unsigned HOST_WIDE_INT)
7660 GET_MODE_MASK (GET_MODE (pos_rtx)))
7661 >> 1))
7662 == 0)))
7663 {
7664 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7665 GET_MODE (pos_rtx));
7666
7667 /* Prefer ZERO_EXTENSION, since it gives more information to
7668 backends. */
7669 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7670 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7671 temp = temp1;
7672 }
7673 pos_rtx = temp;
7674 }
7675
7676 /* Make POS_RTX unless we already have it and it is correct. If we don't
7677 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7678 be a CONST_INT. */
7679 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7680 pos_rtx = orig_pos_rtx;
7681
7682 else if (pos_rtx == 0)
7683 pos_rtx = GEN_INT (pos);
7684
7685 /* Make the required operation. See if we can use existing rtx. */
7686 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7687 extraction_mode, inner, GEN_INT (len), pos_rtx);
7688 if (! in_dest)
7689 new_rtx = gen_lowpart (mode, new_rtx);
7690
7691 return new_rtx;
7692 }
7693 \f
7694 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7695 with any other operations in X. Return X without that shift if so. */
7696
7697 static rtx
7698 extract_left_shift (rtx x, int count)
7699 {
7700 enum rtx_code code = GET_CODE (x);
7701 machine_mode mode = GET_MODE (x);
7702 rtx tem;
7703
7704 switch (code)
7705 {
7706 case ASHIFT:
7707 /* This is the shift itself. If it is wide enough, we will return
7708 either the value being shifted if the shift count is equal to
7709 COUNT or a shift for the difference. */
7710 if (CONST_INT_P (XEXP (x, 1))
7711 && INTVAL (XEXP (x, 1)) >= count)
7712 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7713 INTVAL (XEXP (x, 1)) - count);
7714 break;
7715
7716 case NEG: case NOT:
7717 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7718 return simplify_gen_unary (code, mode, tem, mode);
7719
7720 break;
7721
7722 case PLUS: case IOR: case XOR: case AND:
7723 /* If we can safely shift this constant and we find the inner shift,
7724 make a new operation. */
7725 if (CONST_INT_P (XEXP (x, 1))
7726 && (UINTVAL (XEXP (x, 1))
7727 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7728 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7729 {
7730 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7731 return simplify_gen_binary (code, mode, tem,
7732 gen_int_mode (val, mode));
7733 }
7734 break;
7735
7736 default:
7737 break;
7738 }
7739
7740 return 0;
7741 }
7742 \f
7743 /* Look at the expression rooted at X. Look for expressions
7744 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7745 Form these expressions.
7746
7747 Return the new rtx, usually just X.
7748
7749 Also, for machines like the VAX that don't have logical shift insns,
7750 try to convert logical to arithmetic shift operations in cases where
7751 they are equivalent. This undoes the canonicalizations to logical
7752 shifts done elsewhere.
7753
7754 We try, as much as possible, to re-use rtl expressions to save memory.
7755
7756 IN_CODE says what kind of expression we are processing. Normally, it is
7757 SET. In a memory address it is MEM. When processing the arguments of
7758 a comparison or a COMPARE against zero, it is COMPARE. */
7759
7760 rtx
7761 make_compound_operation (rtx x, enum rtx_code in_code)
7762 {
7763 enum rtx_code code = GET_CODE (x);
7764 machine_mode mode = GET_MODE (x);
7765 int mode_width = GET_MODE_PRECISION (mode);
7766 rtx rhs, lhs;
7767 enum rtx_code next_code;
7768 int i, j;
7769 rtx new_rtx = 0;
7770 rtx tem;
7771 const char *fmt;
7772
7773 /* Select the code to be used in recursive calls. Once we are inside an
7774 address, we stay there. If we have a comparison, set to COMPARE,
7775 but once inside, go back to our default of SET. */
7776
7777 next_code = (code == MEM ? MEM
7778 : ((code == COMPARE || COMPARISON_P (x))
7779 && XEXP (x, 1) == const0_rtx) ? COMPARE
7780 : in_code == COMPARE ? SET : in_code);
7781
7782 /* Process depending on the code of this operation. If NEW is set
7783 nonzero, it will be returned. */
7784
7785 switch (code)
7786 {
7787 case ASHIFT:
7788 /* Convert shifts by constants into multiplications if inside
7789 an address. */
7790 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7791 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7792 && INTVAL (XEXP (x, 1)) >= 0
7793 && SCALAR_INT_MODE_P (mode))
7794 {
7795 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7796 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7797
7798 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7799 if (GET_CODE (new_rtx) == NEG)
7800 {
7801 new_rtx = XEXP (new_rtx, 0);
7802 multval = -multval;
7803 }
7804 multval = trunc_int_for_mode (multval, mode);
7805 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7806 }
7807 break;
7808
7809 case PLUS:
7810 lhs = XEXP (x, 0);
7811 rhs = XEXP (x, 1);
7812 lhs = make_compound_operation (lhs, next_code);
7813 rhs = make_compound_operation (rhs, next_code);
7814 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7815 && SCALAR_INT_MODE_P (mode))
7816 {
7817 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7818 XEXP (lhs, 1));
7819 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7820 }
7821 else if (GET_CODE (lhs) == MULT
7822 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7823 {
7824 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7825 simplify_gen_unary (NEG, mode,
7826 XEXP (lhs, 1),
7827 mode));
7828 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7829 }
7830 else
7831 {
7832 SUBST (XEXP (x, 0), lhs);
7833 SUBST (XEXP (x, 1), rhs);
7834 goto maybe_swap;
7835 }
7836 x = gen_lowpart (mode, new_rtx);
7837 goto maybe_swap;
7838
7839 case MINUS:
7840 lhs = XEXP (x, 0);
7841 rhs = XEXP (x, 1);
7842 lhs = make_compound_operation (lhs, next_code);
7843 rhs = make_compound_operation (rhs, next_code);
7844 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7845 && SCALAR_INT_MODE_P (mode))
7846 {
7847 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7848 XEXP (rhs, 1));
7849 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7850 }
7851 else if (GET_CODE (rhs) == MULT
7852 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7853 {
7854 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7855 simplify_gen_unary (NEG, mode,
7856 XEXP (rhs, 1),
7857 mode));
7858 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7859 }
7860 else
7861 {
7862 SUBST (XEXP (x, 0), lhs);
7863 SUBST (XEXP (x, 1), rhs);
7864 return x;
7865 }
7866 return gen_lowpart (mode, new_rtx);
7867
7868 case AND:
7869 /* If the second operand is not a constant, we can't do anything
7870 with it. */
7871 if (!CONST_INT_P (XEXP (x, 1)))
7872 break;
7873
7874 /* If the constant is a power of two minus one and the first operand
7875 is a logical right shift, make an extraction. */
7876 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7877 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7878 {
7879 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7880 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7881 0, in_code == COMPARE);
7882 }
7883
7884 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7885 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7886 && subreg_lowpart_p (XEXP (x, 0))
7887 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7888 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7889 {
7890 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
7891 machine_mode inner_mode = GET_MODE (inner_x0);
7892 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
7893 new_rtx = make_extraction (inner_mode, new_rtx, 0,
7894 XEXP (inner_x0, 1),
7895 i, 1, 0, in_code == COMPARE);
7896
7897 if (new_rtx)
7898 {
7899 /* If we narrowed the mode when dropping the subreg, then
7900 we must zero-extend to keep the semantics of the AND. */
7901 if (GET_MODE_SIZE (inner_mode) >= GET_MODE_SIZE (mode))
7902 ;
7903 else if (SCALAR_INT_MODE_P (inner_mode))
7904 new_rtx = simplify_gen_unary (ZERO_EXTEND, mode,
7905 new_rtx, inner_mode);
7906 else
7907 new_rtx = NULL;
7908 }
7909
7910 /* If that didn't give anything, see if the AND simplifies on
7911 its own. */
7912 if (!new_rtx && i >= 0)
7913 {
7914 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7915 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
7916 0, in_code == COMPARE);
7917 }
7918 }
7919 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7920 else if ((GET_CODE (XEXP (x, 0)) == XOR
7921 || GET_CODE (XEXP (x, 0)) == IOR)
7922 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7923 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7924 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7925 {
7926 /* Apply the distributive law, and then try to make extractions. */
7927 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7928 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7929 XEXP (x, 1)),
7930 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7931 XEXP (x, 1)));
7932 new_rtx = make_compound_operation (new_rtx, in_code);
7933 }
7934
7935 /* If we are have (and (rotate X C) M) and C is larger than the number
7936 of bits in M, this is an extraction. */
7937
7938 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7939 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7940 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7941 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7942 {
7943 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7944 new_rtx = make_extraction (mode, new_rtx,
7945 (GET_MODE_PRECISION (mode)
7946 - INTVAL (XEXP (XEXP (x, 0), 1))),
7947 NULL_RTX, i, 1, 0, in_code == COMPARE);
7948 }
7949
7950 /* On machines without logical shifts, if the operand of the AND is
7951 a logical shift and our mask turns off all the propagated sign
7952 bits, we can replace the logical shift with an arithmetic shift. */
7953 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7954 && !have_insn_for (LSHIFTRT, mode)
7955 && have_insn_for (ASHIFTRT, mode)
7956 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7957 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7958 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7959 && mode_width <= HOST_BITS_PER_WIDE_INT)
7960 {
7961 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7962
7963 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7964 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7965 SUBST (XEXP (x, 0),
7966 gen_rtx_ASHIFTRT (mode,
7967 make_compound_operation
7968 (XEXP (XEXP (x, 0), 0), next_code),
7969 XEXP (XEXP (x, 0), 1)));
7970 }
7971
7972 /* If the constant is one less than a power of two, this might be
7973 representable by an extraction even if no shift is present.
7974 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7975 we are in a COMPARE. */
7976 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7977 new_rtx = make_extraction (mode,
7978 make_compound_operation (XEXP (x, 0),
7979 next_code),
7980 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7981
7982 /* If we are in a comparison and this is an AND with a power of two,
7983 convert this into the appropriate bit extract. */
7984 else if (in_code == COMPARE
7985 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7986 new_rtx = make_extraction (mode,
7987 make_compound_operation (XEXP (x, 0),
7988 next_code),
7989 i, NULL_RTX, 1, 1, 0, 1);
7990
7991 /* If the one operand is a paradoxical subreg of a register or memory and
7992 the constant (limited to the smaller mode) has only zero bits where
7993 the sub expression has known zero bits, this can be expressed as
7994 a zero_extend. */
7995 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
7996 {
7997 rtx sub;
7998
7999 sub = XEXP (XEXP (x, 0), 0);
8000 machine_mode sub_mode = GET_MODE (sub);
8001 if ((REG_P (sub) || MEM_P (sub))
8002 && GET_MODE_PRECISION (sub_mode) < mode_width)
8003 {
8004 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8005 unsigned HOST_WIDE_INT mask;
8006
8007 /* original AND constant with all the known zero bits set */
8008 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8009 if ((mask & mode_mask) == mode_mask)
8010 {
8011 new_rtx = make_compound_operation (sub, next_code);
8012 new_rtx = make_extraction (mode, new_rtx, 0, 0,
8013 GET_MODE_PRECISION (sub_mode),
8014 1, 0, in_code == COMPARE);
8015 }
8016 }
8017 }
8018
8019 break;
8020
8021 case LSHIFTRT:
8022 /* If the sign bit is known to be zero, replace this with an
8023 arithmetic shift. */
8024 if (have_insn_for (ASHIFTRT, mode)
8025 && ! have_insn_for (LSHIFTRT, mode)
8026 && mode_width <= HOST_BITS_PER_WIDE_INT
8027 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8028 {
8029 new_rtx = gen_rtx_ASHIFTRT (mode,
8030 make_compound_operation (XEXP (x, 0),
8031 next_code),
8032 XEXP (x, 1));
8033 break;
8034 }
8035
8036 /* ... fall through ... */
8037
8038 case ASHIFTRT:
8039 lhs = XEXP (x, 0);
8040 rhs = XEXP (x, 1);
8041
8042 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8043 this is a SIGN_EXTRACT. */
8044 if (CONST_INT_P (rhs)
8045 && GET_CODE (lhs) == ASHIFT
8046 && CONST_INT_P (XEXP (lhs, 1))
8047 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8048 && INTVAL (XEXP (lhs, 1)) >= 0
8049 && INTVAL (rhs) < mode_width)
8050 {
8051 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8052 new_rtx = make_extraction (mode, new_rtx,
8053 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8054 NULL_RTX, mode_width - INTVAL (rhs),
8055 code == LSHIFTRT, 0, in_code == COMPARE);
8056 break;
8057 }
8058
8059 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8060 If so, try to merge the shifts into a SIGN_EXTEND. We could
8061 also do this for some cases of SIGN_EXTRACT, but it doesn't
8062 seem worth the effort; the case checked for occurs on Alpha. */
8063
8064 if (!OBJECT_P (lhs)
8065 && ! (GET_CODE (lhs) == SUBREG
8066 && (OBJECT_P (SUBREG_REG (lhs))))
8067 && CONST_INT_P (rhs)
8068 && INTVAL (rhs) >= 0
8069 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8070 && INTVAL (rhs) < mode_width
8071 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8072 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8073 0, NULL_RTX, mode_width - INTVAL (rhs),
8074 code == LSHIFTRT, 0, in_code == COMPARE);
8075
8076 break;
8077
8078 case SUBREG:
8079 /* Call ourselves recursively on the inner expression. If we are
8080 narrowing the object and it has a different RTL code from
8081 what it originally did, do this SUBREG as a force_to_mode. */
8082 {
8083 rtx inner = SUBREG_REG (x), simplified;
8084 enum rtx_code subreg_code = in_code;
8085
8086 /* If in_code is COMPARE, it isn't always safe to pass it through
8087 to the recursive make_compound_operation call. */
8088 if (subreg_code == COMPARE
8089 && (!subreg_lowpart_p (x)
8090 || GET_CODE (inner) == SUBREG
8091 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8092 is (const_int 0), rather than
8093 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
8094 || (GET_CODE (inner) == AND
8095 && CONST_INT_P (XEXP (inner, 1))
8096 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8097 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8098 >= GET_MODE_BITSIZE (mode))))
8099 subreg_code = SET;
8100
8101 tem = make_compound_operation (inner, subreg_code);
8102
8103 simplified
8104 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8105 if (simplified)
8106 tem = simplified;
8107
8108 if (GET_CODE (tem) != GET_CODE (inner)
8109 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8110 && subreg_lowpart_p (x))
8111 {
8112 rtx newer
8113 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8114
8115 /* If we have something other than a SUBREG, we might have
8116 done an expansion, so rerun ourselves. */
8117 if (GET_CODE (newer) != SUBREG)
8118 newer = make_compound_operation (newer, in_code);
8119
8120 /* force_to_mode can expand compounds. If it just re-expanded the
8121 compound, use gen_lowpart to convert to the desired mode. */
8122 if (rtx_equal_p (newer, x)
8123 /* Likewise if it re-expanded the compound only partially.
8124 This happens for SUBREG of ZERO_EXTRACT if they extract
8125 the same number of bits. */
8126 || (GET_CODE (newer) == SUBREG
8127 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8128 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8129 && GET_CODE (inner) == AND
8130 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8131 return gen_lowpart (GET_MODE (x), tem);
8132
8133 return newer;
8134 }
8135
8136 if (simplified)
8137 return tem;
8138 }
8139 break;
8140
8141 default:
8142 break;
8143 }
8144
8145 if (new_rtx)
8146 {
8147 x = gen_lowpart (mode, new_rtx);
8148 code = GET_CODE (x);
8149 }
8150
8151 /* Now recursively process each operand of this operation. We need to
8152 handle ZERO_EXTEND specially so that we don't lose track of the
8153 inner mode. */
8154 if (GET_CODE (x) == ZERO_EXTEND)
8155 {
8156 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8157 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8158 new_rtx, GET_MODE (XEXP (x, 0)));
8159 if (tem)
8160 return tem;
8161 SUBST (XEXP (x, 0), new_rtx);
8162 return x;
8163 }
8164
8165 fmt = GET_RTX_FORMAT (code);
8166 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8167 if (fmt[i] == 'e')
8168 {
8169 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8170 SUBST (XEXP (x, i), new_rtx);
8171 }
8172 else if (fmt[i] == 'E')
8173 for (j = 0; j < XVECLEN (x, i); j++)
8174 {
8175 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8176 SUBST (XVECEXP (x, i, j), new_rtx);
8177 }
8178
8179 maybe_swap:
8180 /* If this is a commutative operation, the changes to the operands
8181 may have made it noncanonical. */
8182 if (COMMUTATIVE_ARITH_P (x)
8183 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
8184 {
8185 tem = XEXP (x, 0);
8186 SUBST (XEXP (x, 0), XEXP (x, 1));
8187 SUBST (XEXP (x, 1), tem);
8188 }
8189
8190 return x;
8191 }
8192 \f
8193 /* Given M see if it is a value that would select a field of bits
8194 within an item, but not the entire word. Return -1 if not.
8195 Otherwise, return the starting position of the field, where 0 is the
8196 low-order bit.
8197
8198 *PLEN is set to the length of the field. */
8199
8200 static int
8201 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8202 {
8203 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8204 int pos = m ? ctz_hwi (m) : -1;
8205 int len = 0;
8206
8207 if (pos >= 0)
8208 /* Now shift off the low-order zero bits and see if we have a
8209 power of two minus 1. */
8210 len = exact_log2 ((m >> pos) + 1);
8211
8212 if (len <= 0)
8213 pos = -1;
8214
8215 *plen = len;
8216 return pos;
8217 }
8218 \f
8219 /* If X refers to a register that equals REG in value, replace these
8220 references with REG. */
8221 static rtx
8222 canon_reg_for_combine (rtx x, rtx reg)
8223 {
8224 rtx op0, op1, op2;
8225 const char *fmt;
8226 int i;
8227 bool copied;
8228
8229 enum rtx_code code = GET_CODE (x);
8230 switch (GET_RTX_CLASS (code))
8231 {
8232 case RTX_UNARY:
8233 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8234 if (op0 != XEXP (x, 0))
8235 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8236 GET_MODE (reg));
8237 break;
8238
8239 case RTX_BIN_ARITH:
8240 case RTX_COMM_ARITH:
8241 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8242 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8243 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8244 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8245 break;
8246
8247 case RTX_COMPARE:
8248 case RTX_COMM_COMPARE:
8249 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8250 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8251 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8252 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8253 GET_MODE (op0), op0, op1);
8254 break;
8255
8256 case RTX_TERNARY:
8257 case RTX_BITFIELD_OPS:
8258 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8259 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8260 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8261 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8262 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8263 GET_MODE (op0), op0, op1, op2);
8264
8265 case RTX_OBJ:
8266 if (REG_P (x))
8267 {
8268 if (rtx_equal_p (get_last_value (reg), x)
8269 || rtx_equal_p (reg, get_last_value (x)))
8270 return reg;
8271 else
8272 break;
8273 }
8274
8275 /* fall through */
8276
8277 default:
8278 fmt = GET_RTX_FORMAT (code);
8279 copied = false;
8280 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8281 if (fmt[i] == 'e')
8282 {
8283 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8284 if (op != XEXP (x, i))
8285 {
8286 if (!copied)
8287 {
8288 copied = true;
8289 x = copy_rtx (x);
8290 }
8291 XEXP (x, i) = op;
8292 }
8293 }
8294 else if (fmt[i] == 'E')
8295 {
8296 int j;
8297 for (j = 0; j < XVECLEN (x, i); j++)
8298 {
8299 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8300 if (op != XVECEXP (x, i, j))
8301 {
8302 if (!copied)
8303 {
8304 copied = true;
8305 x = copy_rtx (x);
8306 }
8307 XVECEXP (x, i, j) = op;
8308 }
8309 }
8310 }
8311
8312 break;
8313 }
8314
8315 return x;
8316 }
8317
8318 /* Return X converted to MODE. If the value is already truncated to
8319 MODE we can just return a subreg even though in the general case we
8320 would need an explicit truncation. */
8321
8322 static rtx
8323 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8324 {
8325 if (!CONST_INT_P (x)
8326 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8327 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8328 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8329 {
8330 /* Bit-cast X into an integer mode. */
8331 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8332 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8333 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8334 x, GET_MODE (x));
8335 }
8336
8337 return gen_lowpart (mode, x);
8338 }
8339
8340 /* See if X can be simplified knowing that we will only refer to it in
8341 MODE and will only refer to those bits that are nonzero in MASK.
8342 If other bits are being computed or if masking operations are done
8343 that select a superset of the bits in MASK, they can sometimes be
8344 ignored.
8345
8346 Return a possibly simplified expression, but always convert X to
8347 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8348
8349 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8350 are all off in X. This is used when X will be complemented, by either
8351 NOT, NEG, or XOR. */
8352
8353 static rtx
8354 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8355 int just_select)
8356 {
8357 enum rtx_code code = GET_CODE (x);
8358 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8359 machine_mode op_mode;
8360 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8361 rtx op0, op1, temp;
8362
8363 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8364 code below will do the wrong thing since the mode of such an
8365 expression is VOIDmode.
8366
8367 Also do nothing if X is a CLOBBER; this can happen if X was
8368 the return value from a call to gen_lowpart. */
8369 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8370 return x;
8371
8372 /* We want to perform the operation in its present mode unless we know
8373 that the operation is valid in MODE, in which case we do the operation
8374 in MODE. */
8375 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8376 && have_insn_for (code, mode))
8377 ? mode : GET_MODE (x));
8378
8379 /* It is not valid to do a right-shift in a narrower mode
8380 than the one it came in with. */
8381 if ((code == LSHIFTRT || code == ASHIFTRT)
8382 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8383 op_mode = GET_MODE (x);
8384
8385 /* Truncate MASK to fit OP_MODE. */
8386 if (op_mode)
8387 mask &= GET_MODE_MASK (op_mode);
8388
8389 /* When we have an arithmetic operation, or a shift whose count we
8390 do not know, we need to assume that all bits up to the highest-order
8391 bit in MASK will be needed. This is how we form such a mask. */
8392 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8393 fuller_mask = HOST_WIDE_INT_M1U;
8394 else
8395 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8396 - 1);
8397
8398 /* Determine what bits of X are guaranteed to be (non)zero. */
8399 nonzero = nonzero_bits (x, mode);
8400
8401 /* If none of the bits in X are needed, return a zero. */
8402 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8403 x = const0_rtx;
8404
8405 /* If X is a CONST_INT, return a new one. Do this here since the
8406 test below will fail. */
8407 if (CONST_INT_P (x))
8408 {
8409 if (SCALAR_INT_MODE_P (mode))
8410 return gen_int_mode (INTVAL (x) & mask, mode);
8411 else
8412 {
8413 x = GEN_INT (INTVAL (x) & mask);
8414 return gen_lowpart_common (mode, x);
8415 }
8416 }
8417
8418 /* If X is narrower than MODE and we want all the bits in X's mode, just
8419 get X in the proper mode. */
8420 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8421 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8422 return gen_lowpart (mode, x);
8423
8424 /* We can ignore the effect of a SUBREG if it narrows the mode or
8425 if the constant masks to zero all the bits the mode doesn't have. */
8426 if (GET_CODE (x) == SUBREG
8427 && subreg_lowpart_p (x)
8428 && ((GET_MODE_SIZE (GET_MODE (x))
8429 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8430 || (0 == (mask
8431 & GET_MODE_MASK (GET_MODE (x))
8432 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8433 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8434
8435 /* The arithmetic simplifications here only work for scalar integer modes. */
8436 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8437 return gen_lowpart_or_truncate (mode, x);
8438
8439 switch (code)
8440 {
8441 case CLOBBER:
8442 /* If X is a (clobber (const_int)), return it since we know we are
8443 generating something that won't match. */
8444 return x;
8445
8446 case SIGN_EXTEND:
8447 case ZERO_EXTEND:
8448 case ZERO_EXTRACT:
8449 case SIGN_EXTRACT:
8450 x = expand_compound_operation (x);
8451 if (GET_CODE (x) != code)
8452 return force_to_mode (x, mode, mask, next_select);
8453 break;
8454
8455 case TRUNCATE:
8456 /* Similarly for a truncate. */
8457 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8458
8459 case AND:
8460 /* If this is an AND with a constant, convert it into an AND
8461 whose constant is the AND of that constant with MASK. If it
8462 remains an AND of MASK, delete it since it is redundant. */
8463
8464 if (CONST_INT_P (XEXP (x, 1)))
8465 {
8466 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8467 mask & INTVAL (XEXP (x, 1)));
8468
8469 /* If X is still an AND, see if it is an AND with a mask that
8470 is just some low-order bits. If so, and it is MASK, we don't
8471 need it. */
8472
8473 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8474 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8475 == mask))
8476 x = XEXP (x, 0);
8477
8478 /* If it remains an AND, try making another AND with the bits
8479 in the mode mask that aren't in MASK turned on. If the
8480 constant in the AND is wide enough, this might make a
8481 cheaper constant. */
8482
8483 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8484 && GET_MODE_MASK (GET_MODE (x)) != mask
8485 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8486 {
8487 unsigned HOST_WIDE_INT cval
8488 = UINTVAL (XEXP (x, 1))
8489 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8490 rtx y;
8491
8492 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8493 gen_int_mode (cval, GET_MODE (x)));
8494 if (set_src_cost (y, GET_MODE (x), optimize_this_for_speed_p)
8495 < set_src_cost (x, GET_MODE (x), optimize_this_for_speed_p))
8496 x = y;
8497 }
8498
8499 break;
8500 }
8501
8502 goto binop;
8503
8504 case PLUS:
8505 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8506 low-order bits (as in an alignment operation) and FOO is already
8507 aligned to that boundary, mask C1 to that boundary as well.
8508 This may eliminate that PLUS and, later, the AND. */
8509
8510 {
8511 unsigned int width = GET_MODE_PRECISION (mode);
8512 unsigned HOST_WIDE_INT smask = mask;
8513
8514 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8515 number, sign extend it. */
8516
8517 if (width < HOST_BITS_PER_WIDE_INT
8518 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8519 smask |= HOST_WIDE_INT_M1U << width;
8520
8521 if (CONST_INT_P (XEXP (x, 1))
8522 && exact_log2 (- smask) >= 0
8523 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8524 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8525 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8526 (INTVAL (XEXP (x, 1)) & smask)),
8527 mode, smask, next_select);
8528 }
8529
8530 /* ... fall through ... */
8531
8532 case MULT:
8533 /* Substituting into the operands of a widening MULT is not likely to
8534 create RTL matching a machine insn. */
8535 if (code == MULT
8536 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8537 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8538 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8539 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8540 && REG_P (XEXP (XEXP (x, 0), 0))
8541 && REG_P (XEXP (XEXP (x, 1), 0)))
8542 return gen_lowpart_or_truncate (mode, x);
8543
8544 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8545 most significant bit in MASK since carries from those bits will
8546 affect the bits we are interested in. */
8547 mask = fuller_mask;
8548 goto binop;
8549
8550 case MINUS:
8551 /* If X is (minus C Y) where C's least set bit is larger than any bit
8552 in the mask, then we may replace with (neg Y). */
8553 if (CONST_INT_P (XEXP (x, 0))
8554 && ((UINTVAL (XEXP (x, 0)) & -UINTVAL (XEXP (x, 0))) > mask))
8555 {
8556 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8557 GET_MODE (x));
8558 return force_to_mode (x, mode, mask, next_select);
8559 }
8560
8561 /* Similarly, if C contains every bit in the fuller_mask, then we may
8562 replace with (not Y). */
8563 if (CONST_INT_P (XEXP (x, 0))
8564 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8565 {
8566 x = simplify_gen_unary (NOT, GET_MODE (x),
8567 XEXP (x, 1), GET_MODE (x));
8568 return force_to_mode (x, mode, mask, next_select);
8569 }
8570
8571 mask = fuller_mask;
8572 goto binop;
8573
8574 case IOR:
8575 case XOR:
8576 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8577 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8578 operation which may be a bitfield extraction. Ensure that the
8579 constant we form is not wider than the mode of X. */
8580
8581 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8582 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8583 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8584 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8585 && CONST_INT_P (XEXP (x, 1))
8586 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8587 + floor_log2 (INTVAL (XEXP (x, 1))))
8588 < GET_MODE_PRECISION (GET_MODE (x)))
8589 && (UINTVAL (XEXP (x, 1))
8590 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8591 {
8592 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8593 << INTVAL (XEXP (XEXP (x, 0), 1)),
8594 GET_MODE (x));
8595 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8596 XEXP (XEXP (x, 0), 0), temp);
8597 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8598 XEXP (XEXP (x, 0), 1));
8599 return force_to_mode (x, mode, mask, next_select);
8600 }
8601
8602 binop:
8603 /* For most binary operations, just propagate into the operation and
8604 change the mode if we have an operation of that mode. */
8605
8606 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8607 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8608
8609 /* If we ended up truncating both operands, truncate the result of the
8610 operation instead. */
8611 if (GET_CODE (op0) == TRUNCATE
8612 && GET_CODE (op1) == TRUNCATE)
8613 {
8614 op0 = XEXP (op0, 0);
8615 op1 = XEXP (op1, 0);
8616 }
8617
8618 op0 = gen_lowpart_or_truncate (op_mode, op0);
8619 op1 = gen_lowpart_or_truncate (op_mode, op1);
8620
8621 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8622 x = simplify_gen_binary (code, op_mode, op0, op1);
8623 break;
8624
8625 case ASHIFT:
8626 /* For left shifts, do the same, but just for the first operand.
8627 However, we cannot do anything with shifts where we cannot
8628 guarantee that the counts are smaller than the size of the mode
8629 because such a count will have a different meaning in a
8630 wider mode. */
8631
8632 if (! (CONST_INT_P (XEXP (x, 1))
8633 && INTVAL (XEXP (x, 1)) >= 0
8634 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8635 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8636 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8637 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8638 break;
8639
8640 /* If the shift count is a constant and we can do arithmetic in
8641 the mode of the shift, refine which bits we need. Otherwise, use the
8642 conservative form of the mask. */
8643 if (CONST_INT_P (XEXP (x, 1))
8644 && INTVAL (XEXP (x, 1)) >= 0
8645 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8646 && HWI_COMPUTABLE_MODE_P (op_mode))
8647 mask >>= INTVAL (XEXP (x, 1));
8648 else
8649 mask = fuller_mask;
8650
8651 op0 = gen_lowpart_or_truncate (op_mode,
8652 force_to_mode (XEXP (x, 0), op_mode,
8653 mask, next_select));
8654
8655 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8656 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8657 break;
8658
8659 case LSHIFTRT:
8660 /* Here we can only do something if the shift count is a constant,
8661 this shift constant is valid for the host, and we can do arithmetic
8662 in OP_MODE. */
8663
8664 if (CONST_INT_P (XEXP (x, 1))
8665 && INTVAL (XEXP (x, 1)) >= 0
8666 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8667 && HWI_COMPUTABLE_MODE_P (op_mode))
8668 {
8669 rtx inner = XEXP (x, 0);
8670 unsigned HOST_WIDE_INT inner_mask;
8671
8672 /* Select the mask of the bits we need for the shift operand. */
8673 inner_mask = mask << INTVAL (XEXP (x, 1));
8674
8675 /* We can only change the mode of the shift if we can do arithmetic
8676 in the mode of the shift and INNER_MASK is no wider than the
8677 width of X's mode. */
8678 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8679 op_mode = GET_MODE (x);
8680
8681 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8682
8683 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8684 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8685 }
8686
8687 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8688 shift and AND produces only copies of the sign bit (C2 is one less
8689 than a power of two), we can do this with just a shift. */
8690
8691 if (GET_CODE (x) == LSHIFTRT
8692 && CONST_INT_P (XEXP (x, 1))
8693 /* The shift puts one of the sign bit copies in the least significant
8694 bit. */
8695 && ((INTVAL (XEXP (x, 1))
8696 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8697 >= GET_MODE_PRECISION (GET_MODE (x)))
8698 && exact_log2 (mask + 1) >= 0
8699 /* Number of bits left after the shift must be more than the mask
8700 needs. */
8701 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8702 <= GET_MODE_PRECISION (GET_MODE (x)))
8703 /* Must be more sign bit copies than the mask needs. */
8704 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8705 >= exact_log2 (mask + 1)))
8706 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8707 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8708 - exact_log2 (mask + 1)));
8709
8710 goto shiftrt;
8711
8712 case ASHIFTRT:
8713 /* If we are just looking for the sign bit, we don't need this shift at
8714 all, even if it has a variable count. */
8715 if (val_signbit_p (GET_MODE (x), mask))
8716 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8717
8718 /* If this is a shift by a constant, get a mask that contains those bits
8719 that are not copies of the sign bit. We then have two cases: If
8720 MASK only includes those bits, this can be a logical shift, which may
8721 allow simplifications. If MASK is a single-bit field not within
8722 those bits, we are requesting a copy of the sign bit and hence can
8723 shift the sign bit to the appropriate location. */
8724
8725 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8726 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8727 {
8728 int i;
8729
8730 /* If the considered data is wider than HOST_WIDE_INT, we can't
8731 represent a mask for all its bits in a single scalar.
8732 But we only care about the lower bits, so calculate these. */
8733
8734 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8735 {
8736 nonzero = HOST_WIDE_INT_M1U;
8737
8738 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8739 is the number of bits a full-width mask would have set.
8740 We need only shift if these are fewer than nonzero can
8741 hold. If not, we must keep all bits set in nonzero. */
8742
8743 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8744 < HOST_BITS_PER_WIDE_INT)
8745 nonzero >>= INTVAL (XEXP (x, 1))
8746 + HOST_BITS_PER_WIDE_INT
8747 - GET_MODE_PRECISION (GET_MODE (x)) ;
8748 }
8749 else
8750 {
8751 nonzero = GET_MODE_MASK (GET_MODE (x));
8752 nonzero >>= INTVAL (XEXP (x, 1));
8753 }
8754
8755 if ((mask & ~nonzero) == 0)
8756 {
8757 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8758 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8759 if (GET_CODE (x) != ASHIFTRT)
8760 return force_to_mode (x, mode, mask, next_select);
8761 }
8762
8763 else if ((i = exact_log2 (mask)) >= 0)
8764 {
8765 x = simplify_shift_const
8766 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8767 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8768
8769 if (GET_CODE (x) != ASHIFTRT)
8770 return force_to_mode (x, mode, mask, next_select);
8771 }
8772 }
8773
8774 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8775 even if the shift count isn't a constant. */
8776 if (mask == 1)
8777 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8778 XEXP (x, 0), XEXP (x, 1));
8779
8780 shiftrt:
8781
8782 /* If this is a zero- or sign-extension operation that just affects bits
8783 we don't care about, remove it. Be sure the call above returned
8784 something that is still a shift. */
8785
8786 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8787 && CONST_INT_P (XEXP (x, 1))
8788 && INTVAL (XEXP (x, 1)) >= 0
8789 && (INTVAL (XEXP (x, 1))
8790 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8791 && GET_CODE (XEXP (x, 0)) == ASHIFT
8792 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8793 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8794 next_select);
8795
8796 break;
8797
8798 case ROTATE:
8799 case ROTATERT:
8800 /* If the shift count is constant and we can do computations
8801 in the mode of X, compute where the bits we care about are.
8802 Otherwise, we can't do anything. Don't change the mode of
8803 the shift or propagate MODE into the shift, though. */
8804 if (CONST_INT_P (XEXP (x, 1))
8805 && INTVAL (XEXP (x, 1)) >= 0)
8806 {
8807 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8808 GET_MODE (x),
8809 gen_int_mode (mask, GET_MODE (x)),
8810 XEXP (x, 1));
8811 if (temp && CONST_INT_P (temp))
8812 x = simplify_gen_binary (code, GET_MODE (x),
8813 force_to_mode (XEXP (x, 0), GET_MODE (x),
8814 INTVAL (temp), next_select),
8815 XEXP (x, 1));
8816 }
8817 break;
8818
8819 case NEG:
8820 /* If we just want the low-order bit, the NEG isn't needed since it
8821 won't change the low-order bit. */
8822 if (mask == 1)
8823 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8824
8825 /* We need any bits less significant than the most significant bit in
8826 MASK since carries from those bits will affect the bits we are
8827 interested in. */
8828 mask = fuller_mask;
8829 goto unop;
8830
8831 case NOT:
8832 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8833 same as the XOR case above. Ensure that the constant we form is not
8834 wider than the mode of X. */
8835
8836 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8837 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8838 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8839 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8840 < GET_MODE_PRECISION (GET_MODE (x)))
8841 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8842 {
8843 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8844 GET_MODE (x));
8845 temp = simplify_gen_binary (XOR, GET_MODE (x),
8846 XEXP (XEXP (x, 0), 0), temp);
8847 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8848 temp, XEXP (XEXP (x, 0), 1));
8849
8850 return force_to_mode (x, mode, mask, next_select);
8851 }
8852
8853 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8854 use the full mask inside the NOT. */
8855 mask = fuller_mask;
8856
8857 unop:
8858 op0 = gen_lowpart_or_truncate (op_mode,
8859 force_to_mode (XEXP (x, 0), mode, mask,
8860 next_select));
8861 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8862 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8863 break;
8864
8865 case NE:
8866 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8867 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8868 which is equal to STORE_FLAG_VALUE. */
8869 if ((mask & ~STORE_FLAG_VALUE) == 0
8870 && XEXP (x, 1) == const0_rtx
8871 && GET_MODE (XEXP (x, 0)) == mode
8872 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8873 && (nonzero_bits (XEXP (x, 0), mode)
8874 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8875 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8876
8877 break;
8878
8879 case IF_THEN_ELSE:
8880 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8881 written in a narrower mode. We play it safe and do not do so. */
8882
8883 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8884 force_to_mode (XEXP (x, 1), mode,
8885 mask, next_select));
8886 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8887 force_to_mode (XEXP (x, 2), mode,
8888 mask, next_select));
8889 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
8890 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
8891 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
8892 op0, op1);
8893 break;
8894
8895 default:
8896 break;
8897 }
8898
8899 /* Ensure we return a value of the proper mode. */
8900 return gen_lowpart_or_truncate (mode, x);
8901 }
8902 \f
8903 /* Return nonzero if X is an expression that has one of two values depending on
8904 whether some other value is zero or nonzero. In that case, we return the
8905 value that is being tested, *PTRUE is set to the value if the rtx being
8906 returned has a nonzero value, and *PFALSE is set to the other alternative.
8907
8908 If we return zero, we set *PTRUE and *PFALSE to X. */
8909
8910 static rtx
8911 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8912 {
8913 machine_mode mode = GET_MODE (x);
8914 enum rtx_code code = GET_CODE (x);
8915 rtx cond0, cond1, true0, true1, false0, false1;
8916 unsigned HOST_WIDE_INT nz;
8917
8918 /* If we are comparing a value against zero, we are done. */
8919 if ((code == NE || code == EQ)
8920 && XEXP (x, 1) == const0_rtx)
8921 {
8922 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8923 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8924 return XEXP (x, 0);
8925 }
8926
8927 /* If this is a unary operation whose operand has one of two values, apply
8928 our opcode to compute those values. */
8929 else if (UNARY_P (x)
8930 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8931 {
8932 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8933 *pfalse = simplify_gen_unary (code, mode, false0,
8934 GET_MODE (XEXP (x, 0)));
8935 return cond0;
8936 }
8937
8938 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8939 make can't possibly match and would suppress other optimizations. */
8940 else if (code == COMPARE)
8941 ;
8942
8943 /* If this is a binary operation, see if either side has only one of two
8944 values. If either one does or if both do and they are conditional on
8945 the same value, compute the new true and false values. */
8946 else if (BINARY_P (x))
8947 {
8948 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8949 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8950
8951 if ((cond0 != 0 || cond1 != 0)
8952 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8953 {
8954 /* If if_then_else_cond returned zero, then true/false are the
8955 same rtl. We must copy one of them to prevent invalid rtl
8956 sharing. */
8957 if (cond0 == 0)
8958 true0 = copy_rtx (true0);
8959 else if (cond1 == 0)
8960 true1 = copy_rtx (true1);
8961
8962 if (COMPARISON_P (x))
8963 {
8964 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8965 true0, true1);
8966 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8967 false0, false1);
8968 }
8969 else
8970 {
8971 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8972 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8973 }
8974
8975 return cond0 ? cond0 : cond1;
8976 }
8977
8978 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8979 operands is zero when the other is nonzero, and vice-versa,
8980 and STORE_FLAG_VALUE is 1 or -1. */
8981
8982 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8983 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8984 || code == UMAX)
8985 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8986 {
8987 rtx op0 = XEXP (XEXP (x, 0), 1);
8988 rtx op1 = XEXP (XEXP (x, 1), 1);
8989
8990 cond0 = XEXP (XEXP (x, 0), 0);
8991 cond1 = XEXP (XEXP (x, 1), 0);
8992
8993 if (COMPARISON_P (cond0)
8994 && COMPARISON_P (cond1)
8995 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8996 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8997 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8998 || ((swap_condition (GET_CODE (cond0))
8999 == reversed_comparison_code (cond1, NULL))
9000 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9001 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9002 && ! side_effects_p (x))
9003 {
9004 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9005 *pfalse = simplify_gen_binary (MULT, mode,
9006 (code == MINUS
9007 ? simplify_gen_unary (NEG, mode,
9008 op1, mode)
9009 : op1),
9010 const_true_rtx);
9011 return cond0;
9012 }
9013 }
9014
9015 /* Similarly for MULT, AND and UMIN, except that for these the result
9016 is always zero. */
9017 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9018 && (code == MULT || code == AND || code == UMIN)
9019 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9020 {
9021 cond0 = XEXP (XEXP (x, 0), 0);
9022 cond1 = XEXP (XEXP (x, 1), 0);
9023
9024 if (COMPARISON_P (cond0)
9025 && COMPARISON_P (cond1)
9026 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9027 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9028 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9029 || ((swap_condition (GET_CODE (cond0))
9030 == reversed_comparison_code (cond1, NULL))
9031 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9032 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9033 && ! side_effects_p (x))
9034 {
9035 *ptrue = *pfalse = const0_rtx;
9036 return cond0;
9037 }
9038 }
9039 }
9040
9041 else if (code == IF_THEN_ELSE)
9042 {
9043 /* If we have IF_THEN_ELSE already, extract the condition and
9044 canonicalize it if it is NE or EQ. */
9045 cond0 = XEXP (x, 0);
9046 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9047 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9048 return XEXP (cond0, 0);
9049 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9050 {
9051 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9052 return XEXP (cond0, 0);
9053 }
9054 else
9055 return cond0;
9056 }
9057
9058 /* If X is a SUBREG, we can narrow both the true and false values
9059 if the inner expression, if there is a condition. */
9060 else if (code == SUBREG
9061 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9062 &true0, &false0)))
9063 {
9064 true0 = simplify_gen_subreg (mode, true0,
9065 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9066 false0 = simplify_gen_subreg (mode, false0,
9067 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9068 if (true0 && false0)
9069 {
9070 *ptrue = true0;
9071 *pfalse = false0;
9072 return cond0;
9073 }
9074 }
9075
9076 /* If X is a constant, this isn't special and will cause confusions
9077 if we treat it as such. Likewise if it is equivalent to a constant. */
9078 else if (CONSTANT_P (x)
9079 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9080 ;
9081
9082 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9083 will be least confusing to the rest of the compiler. */
9084 else if (mode == BImode)
9085 {
9086 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9087 return x;
9088 }
9089
9090 /* If X is known to be either 0 or -1, those are the true and
9091 false values when testing X. */
9092 else if (x == constm1_rtx || x == const0_rtx
9093 || (mode != VOIDmode
9094 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9095 {
9096 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9097 return x;
9098 }
9099
9100 /* Likewise for 0 or a single bit. */
9101 else if (HWI_COMPUTABLE_MODE_P (mode)
9102 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
9103 {
9104 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9105 return x;
9106 }
9107
9108 /* Otherwise fail; show no condition with true and false values the same. */
9109 *ptrue = *pfalse = x;
9110 return 0;
9111 }
9112 \f
9113 /* Return the value of expression X given the fact that condition COND
9114 is known to be true when applied to REG as its first operand and VAL
9115 as its second. X is known to not be shared and so can be modified in
9116 place.
9117
9118 We only handle the simplest cases, and specifically those cases that
9119 arise with IF_THEN_ELSE expressions. */
9120
9121 static rtx
9122 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9123 {
9124 enum rtx_code code = GET_CODE (x);
9125 const char *fmt;
9126 int i, j;
9127
9128 if (side_effects_p (x))
9129 return x;
9130
9131 /* If either operand of the condition is a floating point value,
9132 then we have to avoid collapsing an EQ comparison. */
9133 if (cond == EQ
9134 && rtx_equal_p (x, reg)
9135 && ! FLOAT_MODE_P (GET_MODE (x))
9136 && ! FLOAT_MODE_P (GET_MODE (val)))
9137 return val;
9138
9139 if (cond == UNEQ && rtx_equal_p (x, reg))
9140 return val;
9141
9142 /* If X is (abs REG) and we know something about REG's relationship
9143 with zero, we may be able to simplify this. */
9144
9145 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9146 switch (cond)
9147 {
9148 case GE: case GT: case EQ:
9149 return XEXP (x, 0);
9150 case LT: case LE:
9151 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9152 XEXP (x, 0),
9153 GET_MODE (XEXP (x, 0)));
9154 default:
9155 break;
9156 }
9157
9158 /* The only other cases we handle are MIN, MAX, and comparisons if the
9159 operands are the same as REG and VAL. */
9160
9161 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9162 {
9163 if (rtx_equal_p (XEXP (x, 0), val))
9164 {
9165 std::swap (val, reg);
9166 cond = swap_condition (cond);
9167 }
9168
9169 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9170 {
9171 if (COMPARISON_P (x))
9172 {
9173 if (comparison_dominates_p (cond, code))
9174 return const_true_rtx;
9175
9176 code = reversed_comparison_code (x, NULL);
9177 if (code != UNKNOWN
9178 && comparison_dominates_p (cond, code))
9179 return const0_rtx;
9180 else
9181 return x;
9182 }
9183 else if (code == SMAX || code == SMIN
9184 || code == UMIN || code == UMAX)
9185 {
9186 int unsignedp = (code == UMIN || code == UMAX);
9187
9188 /* Do not reverse the condition when it is NE or EQ.
9189 This is because we cannot conclude anything about
9190 the value of 'SMAX (x, y)' when x is not equal to y,
9191 but we can when x equals y. */
9192 if ((code == SMAX || code == UMAX)
9193 && ! (cond == EQ || cond == NE))
9194 cond = reverse_condition (cond);
9195
9196 switch (cond)
9197 {
9198 case GE: case GT:
9199 return unsignedp ? x : XEXP (x, 1);
9200 case LE: case LT:
9201 return unsignedp ? x : XEXP (x, 0);
9202 case GEU: case GTU:
9203 return unsignedp ? XEXP (x, 1) : x;
9204 case LEU: case LTU:
9205 return unsignedp ? XEXP (x, 0) : x;
9206 default:
9207 break;
9208 }
9209 }
9210 }
9211 }
9212 else if (code == SUBREG)
9213 {
9214 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9215 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9216
9217 if (SUBREG_REG (x) != r)
9218 {
9219 /* We must simplify subreg here, before we lose track of the
9220 original inner_mode. */
9221 new_rtx = simplify_subreg (GET_MODE (x), r,
9222 inner_mode, SUBREG_BYTE (x));
9223 if (new_rtx)
9224 return new_rtx;
9225 else
9226 SUBST (SUBREG_REG (x), r);
9227 }
9228
9229 return x;
9230 }
9231 /* We don't have to handle SIGN_EXTEND here, because even in the
9232 case of replacing something with a modeless CONST_INT, a
9233 CONST_INT is already (supposed to be) a valid sign extension for
9234 its narrower mode, which implies it's already properly
9235 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9236 story is different. */
9237 else if (code == ZERO_EXTEND)
9238 {
9239 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9240 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9241
9242 if (XEXP (x, 0) != r)
9243 {
9244 /* We must simplify the zero_extend here, before we lose
9245 track of the original inner_mode. */
9246 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9247 r, inner_mode);
9248 if (new_rtx)
9249 return new_rtx;
9250 else
9251 SUBST (XEXP (x, 0), r);
9252 }
9253
9254 return x;
9255 }
9256
9257 fmt = GET_RTX_FORMAT (code);
9258 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9259 {
9260 if (fmt[i] == 'e')
9261 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9262 else if (fmt[i] == 'E')
9263 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9264 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9265 cond, reg, val));
9266 }
9267
9268 return x;
9269 }
9270 \f
9271 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9272 assignment as a field assignment. */
9273
9274 static int
9275 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9276 {
9277 if (widen_x && GET_MODE (x) != GET_MODE (y))
9278 {
9279 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9280 return 0;
9281 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9282 return 0;
9283 /* For big endian, adjust the memory offset. */
9284 if (BYTES_BIG_ENDIAN)
9285 x = adjust_address_nv (x, GET_MODE (y),
9286 -subreg_lowpart_offset (GET_MODE (x),
9287 GET_MODE (y)));
9288 else
9289 x = adjust_address_nv (x, GET_MODE (y), 0);
9290 }
9291
9292 if (x == y || rtx_equal_p (x, y))
9293 return 1;
9294
9295 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9296 return 0;
9297
9298 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9299 Note that all SUBREGs of MEM are paradoxical; otherwise they
9300 would have been rewritten. */
9301 if (MEM_P (x) && GET_CODE (y) == SUBREG
9302 && MEM_P (SUBREG_REG (y))
9303 && rtx_equal_p (SUBREG_REG (y),
9304 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9305 return 1;
9306
9307 if (MEM_P (y) && GET_CODE (x) == SUBREG
9308 && MEM_P (SUBREG_REG (x))
9309 && rtx_equal_p (SUBREG_REG (x),
9310 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9311 return 1;
9312
9313 /* We used to see if get_last_value of X and Y were the same but that's
9314 not correct. In one direction, we'll cause the assignment to have
9315 the wrong destination and in the case, we'll import a register into this
9316 insn that might have already have been dead. So fail if none of the
9317 above cases are true. */
9318 return 0;
9319 }
9320 \f
9321 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9322 Return that assignment if so.
9323
9324 We only handle the most common cases. */
9325
9326 static rtx
9327 make_field_assignment (rtx x)
9328 {
9329 rtx dest = SET_DEST (x);
9330 rtx src = SET_SRC (x);
9331 rtx assign;
9332 rtx rhs, lhs;
9333 HOST_WIDE_INT c1;
9334 HOST_WIDE_INT pos;
9335 unsigned HOST_WIDE_INT len;
9336 rtx other;
9337 machine_mode mode;
9338
9339 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9340 a clear of a one-bit field. We will have changed it to
9341 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9342 for a SUBREG. */
9343
9344 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9345 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9346 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9347 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9348 {
9349 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9350 1, 1, 1, 0);
9351 if (assign != 0)
9352 return gen_rtx_SET (assign, const0_rtx);
9353 return x;
9354 }
9355
9356 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9357 && subreg_lowpart_p (XEXP (src, 0))
9358 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9359 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9360 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9361 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9362 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9363 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9364 {
9365 assign = make_extraction (VOIDmode, dest, 0,
9366 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9367 1, 1, 1, 0);
9368 if (assign != 0)
9369 return gen_rtx_SET (assign, const0_rtx);
9370 return x;
9371 }
9372
9373 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9374 one-bit field. */
9375 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9376 && XEXP (XEXP (src, 0), 0) == const1_rtx
9377 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9378 {
9379 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9380 1, 1, 1, 0);
9381 if (assign != 0)
9382 return gen_rtx_SET (assign, const1_rtx);
9383 return x;
9384 }
9385
9386 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9387 SRC is an AND with all bits of that field set, then we can discard
9388 the AND. */
9389 if (GET_CODE (dest) == ZERO_EXTRACT
9390 && CONST_INT_P (XEXP (dest, 1))
9391 && GET_CODE (src) == AND
9392 && CONST_INT_P (XEXP (src, 1)))
9393 {
9394 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9395 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9396 unsigned HOST_WIDE_INT ze_mask;
9397
9398 if (width >= HOST_BITS_PER_WIDE_INT)
9399 ze_mask = -1;
9400 else
9401 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9402
9403 /* Complete overlap. We can remove the source AND. */
9404 if ((and_mask & ze_mask) == ze_mask)
9405 return gen_rtx_SET (dest, XEXP (src, 0));
9406
9407 /* Partial overlap. We can reduce the source AND. */
9408 if ((and_mask & ze_mask) != and_mask)
9409 {
9410 mode = GET_MODE (src);
9411 src = gen_rtx_AND (mode, XEXP (src, 0),
9412 gen_int_mode (and_mask & ze_mask, mode));
9413 return gen_rtx_SET (dest, src);
9414 }
9415 }
9416
9417 /* The other case we handle is assignments into a constant-position
9418 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9419 a mask that has all one bits except for a group of zero bits and
9420 OTHER is known to have zeros where C1 has ones, this is such an
9421 assignment. Compute the position and length from C1. Shift OTHER
9422 to the appropriate position, force it to the required mode, and
9423 make the extraction. Check for the AND in both operands. */
9424
9425 /* One or more SUBREGs might obscure the constant-position field
9426 assignment. The first one we are likely to encounter is an outer
9427 narrowing SUBREG, which we can just strip for the purposes of
9428 identifying the constant-field assignment. */
9429 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9430 src = SUBREG_REG (src);
9431
9432 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9433 return x;
9434
9435 rhs = expand_compound_operation (XEXP (src, 0));
9436 lhs = expand_compound_operation (XEXP (src, 1));
9437
9438 if (GET_CODE (rhs) == AND
9439 && CONST_INT_P (XEXP (rhs, 1))
9440 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9441 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9442 /* The second SUBREG that might get in the way is a paradoxical
9443 SUBREG around the first operand of the AND. We want to
9444 pretend the operand is as wide as the destination here. We
9445 do this by adjusting the MEM to wider mode for the sole
9446 purpose of the call to rtx_equal_for_field_assignment_p. Also
9447 note this trick only works for MEMs. */
9448 else if (GET_CODE (rhs) == AND
9449 && paradoxical_subreg_p (XEXP (rhs, 0))
9450 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9451 && CONST_INT_P (XEXP (rhs, 1))
9452 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9453 dest, true))
9454 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9455 else if (GET_CODE (lhs) == AND
9456 && CONST_INT_P (XEXP (lhs, 1))
9457 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9458 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9459 /* The second SUBREG that might get in the way is a paradoxical
9460 SUBREG around the first operand of the AND. We want to
9461 pretend the operand is as wide as the destination here. We
9462 do this by adjusting the MEM to wider mode for the sole
9463 purpose of the call to rtx_equal_for_field_assignment_p. Also
9464 note this trick only works for MEMs. */
9465 else if (GET_CODE (lhs) == AND
9466 && paradoxical_subreg_p (XEXP (lhs, 0))
9467 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9468 && CONST_INT_P (XEXP (lhs, 1))
9469 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9470 dest, true))
9471 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9472 else
9473 return x;
9474
9475 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9476 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9477 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9478 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9479 return x;
9480
9481 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9482 if (assign == 0)
9483 return x;
9484
9485 /* The mode to use for the source is the mode of the assignment, or of
9486 what is inside a possible STRICT_LOW_PART. */
9487 mode = (GET_CODE (assign) == STRICT_LOW_PART
9488 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9489
9490 /* Shift OTHER right POS places and make it the source, restricting it
9491 to the proper length and mode. */
9492
9493 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9494 GET_MODE (src),
9495 other, pos),
9496 dest);
9497 src = force_to_mode (src, mode,
9498 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9499 ? HOST_WIDE_INT_M1U
9500 : (HOST_WIDE_INT_1U << len) - 1,
9501 0);
9502
9503 /* If SRC is masked by an AND that does not make a difference in
9504 the value being stored, strip it. */
9505 if (GET_CODE (assign) == ZERO_EXTRACT
9506 && CONST_INT_P (XEXP (assign, 1))
9507 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9508 && GET_CODE (src) == AND
9509 && CONST_INT_P (XEXP (src, 1))
9510 && UINTVAL (XEXP (src, 1))
9511 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9512 src = XEXP (src, 0);
9513
9514 return gen_rtx_SET (assign, src);
9515 }
9516 \f
9517 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9518 if so. */
9519
9520 static rtx
9521 apply_distributive_law (rtx x)
9522 {
9523 enum rtx_code code = GET_CODE (x);
9524 enum rtx_code inner_code;
9525 rtx lhs, rhs, other;
9526 rtx tem;
9527
9528 /* Distributivity is not true for floating point as it can change the
9529 value. So we don't do it unless -funsafe-math-optimizations. */
9530 if (FLOAT_MODE_P (GET_MODE (x))
9531 && ! flag_unsafe_math_optimizations)
9532 return x;
9533
9534 /* The outer operation can only be one of the following: */
9535 if (code != IOR && code != AND && code != XOR
9536 && code != PLUS && code != MINUS)
9537 return x;
9538
9539 lhs = XEXP (x, 0);
9540 rhs = XEXP (x, 1);
9541
9542 /* If either operand is a primitive we can't do anything, so get out
9543 fast. */
9544 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9545 return x;
9546
9547 lhs = expand_compound_operation (lhs);
9548 rhs = expand_compound_operation (rhs);
9549 inner_code = GET_CODE (lhs);
9550 if (inner_code != GET_CODE (rhs))
9551 return x;
9552
9553 /* See if the inner and outer operations distribute. */
9554 switch (inner_code)
9555 {
9556 case LSHIFTRT:
9557 case ASHIFTRT:
9558 case AND:
9559 case IOR:
9560 /* These all distribute except over PLUS. */
9561 if (code == PLUS || code == MINUS)
9562 return x;
9563 break;
9564
9565 case MULT:
9566 if (code != PLUS && code != MINUS)
9567 return x;
9568 break;
9569
9570 case ASHIFT:
9571 /* This is also a multiply, so it distributes over everything. */
9572 break;
9573
9574 /* This used to handle SUBREG, but this turned out to be counter-
9575 productive, since (subreg (op ...)) usually is not handled by
9576 insn patterns, and this "optimization" therefore transformed
9577 recognizable patterns into unrecognizable ones. Therefore the
9578 SUBREG case was removed from here.
9579
9580 It is possible that distributing SUBREG over arithmetic operations
9581 leads to an intermediate result than can then be optimized further,
9582 e.g. by moving the outer SUBREG to the other side of a SET as done
9583 in simplify_set. This seems to have been the original intent of
9584 handling SUBREGs here.
9585
9586 However, with current GCC this does not appear to actually happen,
9587 at least on major platforms. If some case is found where removing
9588 the SUBREG case here prevents follow-on optimizations, distributing
9589 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9590
9591 default:
9592 return x;
9593 }
9594
9595 /* Set LHS and RHS to the inner operands (A and B in the example
9596 above) and set OTHER to the common operand (C in the example).
9597 There is only one way to do this unless the inner operation is
9598 commutative. */
9599 if (COMMUTATIVE_ARITH_P (lhs)
9600 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9601 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9602 else if (COMMUTATIVE_ARITH_P (lhs)
9603 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9604 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9605 else if (COMMUTATIVE_ARITH_P (lhs)
9606 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9607 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9608 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9609 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9610 else
9611 return x;
9612
9613 /* Form the new inner operation, seeing if it simplifies first. */
9614 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9615
9616 /* There is one exception to the general way of distributing:
9617 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9618 if (code == XOR && inner_code == IOR)
9619 {
9620 inner_code = AND;
9621 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9622 }
9623
9624 /* We may be able to continuing distributing the result, so call
9625 ourselves recursively on the inner operation before forming the
9626 outer operation, which we return. */
9627 return simplify_gen_binary (inner_code, GET_MODE (x),
9628 apply_distributive_law (tem), other);
9629 }
9630
9631 /* See if X is of the form (* (+ A B) C), and if so convert to
9632 (+ (* A C) (* B C)) and try to simplify.
9633
9634 Most of the time, this results in no change. However, if some of
9635 the operands are the same or inverses of each other, simplifications
9636 will result.
9637
9638 For example, (and (ior A B) (not B)) can occur as the result of
9639 expanding a bit field assignment. When we apply the distributive
9640 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9641 which then simplifies to (and (A (not B))).
9642
9643 Note that no checks happen on the validity of applying the inverse
9644 distributive law. This is pointless since we can do it in the
9645 few places where this routine is called.
9646
9647 N is the index of the term that is decomposed (the arithmetic operation,
9648 i.e. (+ A B) in the first example above). !N is the index of the term that
9649 is distributed, i.e. of C in the first example above. */
9650 static rtx
9651 distribute_and_simplify_rtx (rtx x, int n)
9652 {
9653 machine_mode mode;
9654 enum rtx_code outer_code, inner_code;
9655 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9656
9657 /* Distributivity is not true for floating point as it can change the
9658 value. So we don't do it unless -funsafe-math-optimizations. */
9659 if (FLOAT_MODE_P (GET_MODE (x))
9660 && ! flag_unsafe_math_optimizations)
9661 return NULL_RTX;
9662
9663 decomposed = XEXP (x, n);
9664 if (!ARITHMETIC_P (decomposed))
9665 return NULL_RTX;
9666
9667 mode = GET_MODE (x);
9668 outer_code = GET_CODE (x);
9669 distributed = XEXP (x, !n);
9670
9671 inner_code = GET_CODE (decomposed);
9672 inner_op0 = XEXP (decomposed, 0);
9673 inner_op1 = XEXP (decomposed, 1);
9674
9675 /* Special case (and (xor B C) (not A)), which is equivalent to
9676 (xor (ior A B) (ior A C)) */
9677 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9678 {
9679 distributed = XEXP (distributed, 0);
9680 outer_code = IOR;
9681 }
9682
9683 if (n == 0)
9684 {
9685 /* Distribute the second term. */
9686 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9687 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9688 }
9689 else
9690 {
9691 /* Distribute the first term. */
9692 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9693 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9694 }
9695
9696 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9697 new_op0, new_op1));
9698 if (GET_CODE (tmp) != outer_code
9699 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9700 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9701 return tmp;
9702
9703 return NULL_RTX;
9704 }
9705 \f
9706 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9707 in MODE. Return an equivalent form, if different from (and VAROP
9708 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9709
9710 static rtx
9711 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9712 unsigned HOST_WIDE_INT constop)
9713 {
9714 unsigned HOST_WIDE_INT nonzero;
9715 unsigned HOST_WIDE_INT orig_constop;
9716 rtx orig_varop;
9717 int i;
9718
9719 orig_varop = varop;
9720 orig_constop = constop;
9721 if (GET_CODE (varop) == CLOBBER)
9722 return NULL_RTX;
9723
9724 /* Simplify VAROP knowing that we will be only looking at some of the
9725 bits in it.
9726
9727 Note by passing in CONSTOP, we guarantee that the bits not set in
9728 CONSTOP are not significant and will never be examined. We must
9729 ensure that is the case by explicitly masking out those bits
9730 before returning. */
9731 varop = force_to_mode (varop, mode, constop, 0);
9732
9733 /* If VAROP is a CLOBBER, we will fail so return it. */
9734 if (GET_CODE (varop) == CLOBBER)
9735 return varop;
9736
9737 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9738 to VAROP and return the new constant. */
9739 if (CONST_INT_P (varop))
9740 return gen_int_mode (INTVAL (varop) & constop, mode);
9741
9742 /* See what bits may be nonzero in VAROP. Unlike the general case of
9743 a call to nonzero_bits, here we don't care about bits outside
9744 MODE. */
9745
9746 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9747
9748 /* Turn off all bits in the constant that are known to already be zero.
9749 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9750 which is tested below. */
9751
9752 constop &= nonzero;
9753
9754 /* If we don't have any bits left, return zero. */
9755 if (constop == 0)
9756 return const0_rtx;
9757
9758 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9759 a power of two, we can replace this with an ASHIFT. */
9760 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9761 && (i = exact_log2 (constop)) >= 0)
9762 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9763
9764 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9765 or XOR, then try to apply the distributive law. This may eliminate
9766 operations if either branch can be simplified because of the AND.
9767 It may also make some cases more complex, but those cases probably
9768 won't match a pattern either with or without this. */
9769
9770 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9771 return
9772 gen_lowpart
9773 (mode,
9774 apply_distributive_law
9775 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9776 simplify_and_const_int (NULL_RTX,
9777 GET_MODE (varop),
9778 XEXP (varop, 0),
9779 constop),
9780 simplify_and_const_int (NULL_RTX,
9781 GET_MODE (varop),
9782 XEXP (varop, 1),
9783 constop))));
9784
9785 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9786 the AND and see if one of the operands simplifies to zero. If so, we
9787 may eliminate it. */
9788
9789 if (GET_CODE (varop) == PLUS
9790 && exact_log2 (constop + 1) >= 0)
9791 {
9792 rtx o0, o1;
9793
9794 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9795 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9796 if (o0 == const0_rtx)
9797 return o1;
9798 if (o1 == const0_rtx)
9799 return o0;
9800 }
9801
9802 /* Make a SUBREG if necessary. If we can't make it, fail. */
9803 varop = gen_lowpart (mode, varop);
9804 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9805 return NULL_RTX;
9806
9807 /* If we are only masking insignificant bits, return VAROP. */
9808 if (constop == nonzero)
9809 return varop;
9810
9811 if (varop == orig_varop && constop == orig_constop)
9812 return NULL_RTX;
9813
9814 /* Otherwise, return an AND. */
9815 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9816 }
9817
9818
9819 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9820 in MODE.
9821
9822 Return an equivalent form, if different from X. Otherwise, return X. If
9823 X is zero, we are to always construct the equivalent form. */
9824
9825 static rtx
9826 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9827 unsigned HOST_WIDE_INT constop)
9828 {
9829 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9830 if (tem)
9831 return tem;
9832
9833 if (!x)
9834 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9835 gen_int_mode (constop, mode));
9836 if (GET_MODE (x) != mode)
9837 x = gen_lowpart (mode, x);
9838 return x;
9839 }
9840 \f
9841 /* Given a REG, X, compute which bits in X can be nonzero.
9842 We don't care about bits outside of those defined in MODE.
9843
9844 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9845 a shift, AND, or zero_extract, we can do better. */
9846
9847 static rtx
9848 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9849 const_rtx known_x ATTRIBUTE_UNUSED,
9850 machine_mode known_mode ATTRIBUTE_UNUSED,
9851 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9852 unsigned HOST_WIDE_INT *nonzero)
9853 {
9854 rtx tem;
9855 reg_stat_type *rsp;
9856
9857 /* If X is a register whose nonzero bits value is current, use it.
9858 Otherwise, if X is a register whose value we can find, use that
9859 value. Otherwise, use the previously-computed global nonzero bits
9860 for this register. */
9861
9862 rsp = &reg_stat[REGNO (x)];
9863 if (rsp->last_set_value != 0
9864 && (rsp->last_set_mode == mode
9865 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9866 && GET_MODE_CLASS (mode) == MODE_INT))
9867 && ((rsp->last_set_label >= label_tick_ebb_start
9868 && rsp->last_set_label < label_tick)
9869 || (rsp->last_set_label == label_tick
9870 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9871 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9872 && REGNO (x) < reg_n_sets_max
9873 && REG_N_SETS (REGNO (x)) == 1
9874 && !REGNO_REG_SET_P
9875 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9876 REGNO (x)))))
9877 {
9878 unsigned HOST_WIDE_INT mask = rsp->last_set_nonzero_bits;
9879
9880 if (GET_MODE_PRECISION (rsp->last_set_mode) < GET_MODE_PRECISION (mode))
9881 /* We don't know anything about the upper bits. */
9882 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (rsp->last_set_mode);
9883
9884 *nonzero &= mask;
9885 return NULL;
9886 }
9887
9888 tem = get_last_value (x);
9889
9890 if (tem)
9891 {
9892 if (SHORT_IMMEDIATES_SIGN_EXTEND)
9893 tem = sign_extend_short_imm (tem, GET_MODE (x),
9894 GET_MODE_PRECISION (mode));
9895
9896 return tem;
9897 }
9898 else if (nonzero_sign_valid && rsp->nonzero_bits)
9899 {
9900 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9901
9902 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9903 /* We don't know anything about the upper bits. */
9904 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9905
9906 *nonzero &= mask;
9907 }
9908
9909 return NULL;
9910 }
9911
9912 /* Return the number of bits at the high-order end of X that are known to
9913 be equal to the sign bit. X will be used in mode MODE; if MODE is
9914 VOIDmode, X will be used in its own mode. The returned value will always
9915 be between 1 and the number of bits in MODE. */
9916
9917 static rtx
9918 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
9919 const_rtx known_x ATTRIBUTE_UNUSED,
9920 machine_mode known_mode
9921 ATTRIBUTE_UNUSED,
9922 unsigned int known_ret ATTRIBUTE_UNUSED,
9923 unsigned int *result)
9924 {
9925 rtx tem;
9926 reg_stat_type *rsp;
9927
9928 rsp = &reg_stat[REGNO (x)];
9929 if (rsp->last_set_value != 0
9930 && rsp->last_set_mode == mode
9931 && ((rsp->last_set_label >= label_tick_ebb_start
9932 && rsp->last_set_label < label_tick)
9933 || (rsp->last_set_label == label_tick
9934 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9935 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9936 && REGNO (x) < reg_n_sets_max
9937 && REG_N_SETS (REGNO (x)) == 1
9938 && !REGNO_REG_SET_P
9939 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9940 REGNO (x)))))
9941 {
9942 *result = rsp->last_set_sign_bit_copies;
9943 return NULL;
9944 }
9945
9946 tem = get_last_value (x);
9947 if (tem != 0)
9948 return tem;
9949
9950 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9951 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9952 *result = rsp->sign_bit_copies;
9953
9954 return NULL;
9955 }
9956 \f
9957 /* Return the number of "extended" bits there are in X, when interpreted
9958 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9959 unsigned quantities, this is the number of high-order zero bits.
9960 For signed quantities, this is the number of copies of the sign bit
9961 minus 1. In both case, this function returns the number of "spare"
9962 bits. For example, if two quantities for which this function returns
9963 at least 1 are added, the addition is known not to overflow.
9964
9965 This function will always return 0 unless called during combine, which
9966 implies that it must be called from a define_split. */
9967
9968 unsigned int
9969 extended_count (const_rtx x, machine_mode mode, int unsignedp)
9970 {
9971 if (nonzero_sign_valid == 0)
9972 return 0;
9973
9974 return (unsignedp
9975 ? (HWI_COMPUTABLE_MODE_P (mode)
9976 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9977 - floor_log2 (nonzero_bits (x, mode)))
9978 : 0)
9979 : num_sign_bit_copies (x, mode) - 1);
9980 }
9981
9982 /* This function is called from `simplify_shift_const' to merge two
9983 outer operations. Specifically, we have already found that we need
9984 to perform operation *POP0 with constant *PCONST0 at the outermost
9985 position. We would now like to also perform OP1 with constant CONST1
9986 (with *POP0 being done last).
9987
9988 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9989 the resulting operation. *PCOMP_P is set to 1 if we would need to
9990 complement the innermost operand, otherwise it is unchanged.
9991
9992 MODE is the mode in which the operation will be done. No bits outside
9993 the width of this mode matter. It is assumed that the width of this mode
9994 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9995
9996 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9997 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9998 result is simply *PCONST0.
9999
10000 If the resulting operation cannot be expressed as one operation, we
10001 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10002
10003 static int
10004 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10005 {
10006 enum rtx_code op0 = *pop0;
10007 HOST_WIDE_INT const0 = *pconst0;
10008
10009 const0 &= GET_MODE_MASK (mode);
10010 const1 &= GET_MODE_MASK (mode);
10011
10012 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10013 if (op0 == AND)
10014 const1 &= const0;
10015
10016 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10017 if OP0 is SET. */
10018
10019 if (op1 == UNKNOWN || op0 == SET)
10020 return 1;
10021
10022 else if (op0 == UNKNOWN)
10023 op0 = op1, const0 = const1;
10024
10025 else if (op0 == op1)
10026 {
10027 switch (op0)
10028 {
10029 case AND:
10030 const0 &= const1;
10031 break;
10032 case IOR:
10033 const0 |= const1;
10034 break;
10035 case XOR:
10036 const0 ^= const1;
10037 break;
10038 case PLUS:
10039 const0 += const1;
10040 break;
10041 case NEG:
10042 op0 = UNKNOWN;
10043 break;
10044 default:
10045 break;
10046 }
10047 }
10048
10049 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10050 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10051 return 0;
10052
10053 /* If the two constants aren't the same, we can't do anything. The
10054 remaining six cases can all be done. */
10055 else if (const0 != const1)
10056 return 0;
10057
10058 else
10059 switch (op0)
10060 {
10061 case IOR:
10062 if (op1 == AND)
10063 /* (a & b) | b == b */
10064 op0 = SET;
10065 else /* op1 == XOR */
10066 /* (a ^ b) | b == a | b */
10067 {;}
10068 break;
10069
10070 case XOR:
10071 if (op1 == AND)
10072 /* (a & b) ^ b == (~a) & b */
10073 op0 = AND, *pcomp_p = 1;
10074 else /* op1 == IOR */
10075 /* (a | b) ^ b == a & ~b */
10076 op0 = AND, const0 = ~const0;
10077 break;
10078
10079 case AND:
10080 if (op1 == IOR)
10081 /* (a | b) & b == b */
10082 op0 = SET;
10083 else /* op1 == XOR */
10084 /* (a ^ b) & b) == (~a) & b */
10085 *pcomp_p = 1;
10086 break;
10087 default:
10088 break;
10089 }
10090
10091 /* Check for NO-OP cases. */
10092 const0 &= GET_MODE_MASK (mode);
10093 if (const0 == 0
10094 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10095 op0 = UNKNOWN;
10096 else if (const0 == 0 && op0 == AND)
10097 op0 = SET;
10098 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10099 && op0 == AND)
10100 op0 = UNKNOWN;
10101
10102 *pop0 = op0;
10103
10104 /* ??? Slightly redundant with the above mask, but not entirely.
10105 Moving this above means we'd have to sign-extend the mode mask
10106 for the final test. */
10107 if (op0 != UNKNOWN && op0 != NEG)
10108 *pconst0 = trunc_int_for_mode (const0, mode);
10109
10110 return 1;
10111 }
10112 \f
10113 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10114 the shift in. The original shift operation CODE is performed on OP in
10115 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10116 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10117 result of the shift is subject to operation OUTER_CODE with operand
10118 OUTER_CONST. */
10119
10120 static machine_mode
10121 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10122 machine_mode orig_mode, machine_mode mode,
10123 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10124 {
10125 if (orig_mode == mode)
10126 return mode;
10127 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10128
10129 /* In general we can't perform in wider mode for right shift and rotate. */
10130 switch (code)
10131 {
10132 case ASHIFTRT:
10133 /* We can still widen if the bits brought in from the left are identical
10134 to the sign bit of ORIG_MODE. */
10135 if (num_sign_bit_copies (op, mode)
10136 > (unsigned) (GET_MODE_PRECISION (mode)
10137 - GET_MODE_PRECISION (orig_mode)))
10138 return mode;
10139 return orig_mode;
10140
10141 case LSHIFTRT:
10142 /* Similarly here but with zero bits. */
10143 if (HWI_COMPUTABLE_MODE_P (mode)
10144 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10145 return mode;
10146
10147 /* We can also widen if the bits brought in will be masked off. This
10148 operation is performed in ORIG_MODE. */
10149 if (outer_code == AND)
10150 {
10151 int care_bits = low_bitmask_len (orig_mode, outer_const);
10152
10153 if (care_bits >= 0
10154 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10155 return mode;
10156 }
10157 /* fall through */
10158
10159 case ROTATE:
10160 return orig_mode;
10161
10162 case ROTATERT:
10163 gcc_unreachable ();
10164
10165 default:
10166 return mode;
10167 }
10168 }
10169
10170 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10171 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10172 if we cannot simplify it. Otherwise, return a simplified value.
10173
10174 The shift is normally computed in the widest mode we find in VAROP, as
10175 long as it isn't a different number of words than RESULT_MODE. Exceptions
10176 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10177
10178 static rtx
10179 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10180 rtx varop, int orig_count)
10181 {
10182 enum rtx_code orig_code = code;
10183 rtx orig_varop = varop;
10184 int count;
10185 machine_mode mode = result_mode;
10186 machine_mode shift_mode, tmode;
10187 unsigned int mode_words
10188 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10189 /* We form (outer_op (code varop count) (outer_const)). */
10190 enum rtx_code outer_op = UNKNOWN;
10191 HOST_WIDE_INT outer_const = 0;
10192 int complement_p = 0;
10193 rtx new_rtx, x;
10194
10195 /* Make sure and truncate the "natural" shift on the way in. We don't
10196 want to do this inside the loop as it makes it more difficult to
10197 combine shifts. */
10198 if (SHIFT_COUNT_TRUNCATED)
10199 orig_count &= GET_MODE_BITSIZE (mode) - 1;
10200
10201 /* If we were given an invalid count, don't do anything except exactly
10202 what was requested. */
10203
10204 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
10205 return NULL_RTX;
10206
10207 count = orig_count;
10208
10209 /* Unless one of the branches of the `if' in this loop does a `continue',
10210 we will `break' the loop after the `if'. */
10211
10212 while (count != 0)
10213 {
10214 /* If we have an operand of (clobber (const_int 0)), fail. */
10215 if (GET_CODE (varop) == CLOBBER)
10216 return NULL_RTX;
10217
10218 /* Convert ROTATERT to ROTATE. */
10219 if (code == ROTATERT)
10220 {
10221 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
10222 code = ROTATE;
10223 if (VECTOR_MODE_P (result_mode))
10224 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
10225 else
10226 count = bitsize - count;
10227 }
10228
10229 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10230 mode, outer_op, outer_const);
10231
10232 /* Handle cases where the count is greater than the size of the mode
10233 minus 1. For ASHIFT, use the size minus one as the count (this can
10234 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10235 take the count modulo the size. For other shifts, the result is
10236 zero.
10237
10238 Since these shifts are being produced by the compiler by combining
10239 multiple operations, each of which are defined, we know what the
10240 result is supposed to be. */
10241
10242 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
10243 {
10244 if (code == ASHIFTRT)
10245 count = GET_MODE_PRECISION (shift_mode) - 1;
10246 else if (code == ROTATE || code == ROTATERT)
10247 count %= GET_MODE_PRECISION (shift_mode);
10248 else
10249 {
10250 /* We can't simply return zero because there may be an
10251 outer op. */
10252 varop = const0_rtx;
10253 count = 0;
10254 break;
10255 }
10256 }
10257
10258 /* If we discovered we had to complement VAROP, leave. Making a NOT
10259 here would cause an infinite loop. */
10260 if (complement_p)
10261 break;
10262
10263 /* An arithmetic right shift of a quantity known to be -1 or 0
10264 is a no-op. */
10265 if (code == ASHIFTRT
10266 && (num_sign_bit_copies (varop, shift_mode)
10267 == GET_MODE_PRECISION (shift_mode)))
10268 {
10269 count = 0;
10270 break;
10271 }
10272
10273 /* If we are doing an arithmetic right shift and discarding all but
10274 the sign bit copies, this is equivalent to doing a shift by the
10275 bitsize minus one. Convert it into that shift because it will often
10276 allow other simplifications. */
10277
10278 if (code == ASHIFTRT
10279 && (count + num_sign_bit_copies (varop, shift_mode)
10280 >= GET_MODE_PRECISION (shift_mode)))
10281 count = GET_MODE_PRECISION (shift_mode) - 1;
10282
10283 /* We simplify the tests below and elsewhere by converting
10284 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10285 `make_compound_operation' will convert it to an ASHIFTRT for
10286 those machines (such as VAX) that don't have an LSHIFTRT. */
10287 if (code == ASHIFTRT
10288 && val_signbit_known_clear_p (shift_mode,
10289 nonzero_bits (varop, shift_mode)))
10290 code = LSHIFTRT;
10291
10292 if (((code == LSHIFTRT
10293 && HWI_COMPUTABLE_MODE_P (shift_mode)
10294 && !(nonzero_bits (varop, shift_mode) >> count))
10295 || (code == ASHIFT
10296 && HWI_COMPUTABLE_MODE_P (shift_mode)
10297 && !((nonzero_bits (varop, shift_mode) << count)
10298 & GET_MODE_MASK (shift_mode))))
10299 && !side_effects_p (varop))
10300 varop = const0_rtx;
10301
10302 switch (GET_CODE (varop))
10303 {
10304 case SIGN_EXTEND:
10305 case ZERO_EXTEND:
10306 case SIGN_EXTRACT:
10307 case ZERO_EXTRACT:
10308 new_rtx = expand_compound_operation (varop);
10309 if (new_rtx != varop)
10310 {
10311 varop = new_rtx;
10312 continue;
10313 }
10314 break;
10315
10316 case MEM:
10317 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10318 minus the width of a smaller mode, we can do this with a
10319 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10320 if ((code == ASHIFTRT || code == LSHIFTRT)
10321 && ! mode_dependent_address_p (XEXP (varop, 0),
10322 MEM_ADDR_SPACE (varop))
10323 && ! MEM_VOLATILE_P (varop)
10324 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10325 MODE_INT, 1)) != BLKmode)
10326 {
10327 new_rtx = adjust_address_nv (varop, tmode,
10328 BYTES_BIG_ENDIAN ? 0
10329 : count / BITS_PER_UNIT);
10330
10331 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10332 : ZERO_EXTEND, mode, new_rtx);
10333 count = 0;
10334 continue;
10335 }
10336 break;
10337
10338 case SUBREG:
10339 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10340 the same number of words as what we've seen so far. Then store
10341 the widest mode in MODE. */
10342 if (subreg_lowpart_p (varop)
10343 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10344 > GET_MODE_SIZE (GET_MODE (varop)))
10345 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10346 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10347 == mode_words
10348 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10349 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10350 {
10351 varop = SUBREG_REG (varop);
10352 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10353 mode = GET_MODE (varop);
10354 continue;
10355 }
10356 break;
10357
10358 case MULT:
10359 /* Some machines use MULT instead of ASHIFT because MULT
10360 is cheaper. But it is still better on those machines to
10361 merge two shifts into one. */
10362 if (CONST_INT_P (XEXP (varop, 1))
10363 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10364 {
10365 varop
10366 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10367 XEXP (varop, 0),
10368 GEN_INT (exact_log2 (
10369 UINTVAL (XEXP (varop, 1)))));
10370 continue;
10371 }
10372 break;
10373
10374 case UDIV:
10375 /* Similar, for when divides are cheaper. */
10376 if (CONST_INT_P (XEXP (varop, 1))
10377 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10378 {
10379 varop
10380 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10381 XEXP (varop, 0),
10382 GEN_INT (exact_log2 (
10383 UINTVAL (XEXP (varop, 1)))));
10384 continue;
10385 }
10386 break;
10387
10388 case ASHIFTRT:
10389 /* If we are extracting just the sign bit of an arithmetic
10390 right shift, that shift is not needed. However, the sign
10391 bit of a wider mode may be different from what would be
10392 interpreted as the sign bit in a narrower mode, so, if
10393 the result is narrower, don't discard the shift. */
10394 if (code == LSHIFTRT
10395 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10396 && (GET_MODE_BITSIZE (result_mode)
10397 >= GET_MODE_BITSIZE (GET_MODE (varop))))
10398 {
10399 varop = XEXP (varop, 0);
10400 continue;
10401 }
10402
10403 /* ... fall through ... */
10404
10405 case LSHIFTRT:
10406 case ASHIFT:
10407 case ROTATE:
10408 /* Here we have two nested shifts. The result is usually the
10409 AND of a new shift with a mask. We compute the result below. */
10410 if (CONST_INT_P (XEXP (varop, 1))
10411 && INTVAL (XEXP (varop, 1)) >= 0
10412 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10413 && HWI_COMPUTABLE_MODE_P (result_mode)
10414 && HWI_COMPUTABLE_MODE_P (mode)
10415 && !VECTOR_MODE_P (result_mode))
10416 {
10417 enum rtx_code first_code = GET_CODE (varop);
10418 unsigned int first_count = INTVAL (XEXP (varop, 1));
10419 unsigned HOST_WIDE_INT mask;
10420 rtx mask_rtx;
10421
10422 /* We have one common special case. We can't do any merging if
10423 the inner code is an ASHIFTRT of a smaller mode. However, if
10424 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10425 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10426 we can convert it to
10427 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10428 This simplifies certain SIGN_EXTEND operations. */
10429 if (code == ASHIFT && first_code == ASHIFTRT
10430 && count == (GET_MODE_PRECISION (result_mode)
10431 - GET_MODE_PRECISION (GET_MODE (varop))))
10432 {
10433 /* C3 has the low-order C1 bits zero. */
10434
10435 mask = GET_MODE_MASK (mode)
10436 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10437
10438 varop = simplify_and_const_int (NULL_RTX, result_mode,
10439 XEXP (varop, 0), mask);
10440 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10441 varop, count);
10442 count = first_count;
10443 code = ASHIFTRT;
10444 continue;
10445 }
10446
10447 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10448 than C1 high-order bits equal to the sign bit, we can convert
10449 this to either an ASHIFT or an ASHIFTRT depending on the
10450 two counts.
10451
10452 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10453
10454 if (code == ASHIFTRT && first_code == ASHIFT
10455 && GET_MODE (varop) == shift_mode
10456 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10457 > first_count))
10458 {
10459 varop = XEXP (varop, 0);
10460 count -= first_count;
10461 if (count < 0)
10462 {
10463 count = -count;
10464 code = ASHIFT;
10465 }
10466
10467 continue;
10468 }
10469
10470 /* There are some cases we can't do. If CODE is ASHIFTRT,
10471 we can only do this if FIRST_CODE is also ASHIFTRT.
10472
10473 We can't do the case when CODE is ROTATE and FIRST_CODE is
10474 ASHIFTRT.
10475
10476 If the mode of this shift is not the mode of the outer shift,
10477 we can't do this if either shift is a right shift or ROTATE.
10478
10479 Finally, we can't do any of these if the mode is too wide
10480 unless the codes are the same.
10481
10482 Handle the case where the shift codes are the same
10483 first. */
10484
10485 if (code == first_code)
10486 {
10487 if (GET_MODE (varop) != result_mode
10488 && (code == ASHIFTRT || code == LSHIFTRT
10489 || code == ROTATE))
10490 break;
10491
10492 count += first_count;
10493 varop = XEXP (varop, 0);
10494 continue;
10495 }
10496
10497 if (code == ASHIFTRT
10498 || (code == ROTATE && first_code == ASHIFTRT)
10499 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10500 || (GET_MODE (varop) != result_mode
10501 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10502 || first_code == ROTATE
10503 || code == ROTATE)))
10504 break;
10505
10506 /* To compute the mask to apply after the shift, shift the
10507 nonzero bits of the inner shift the same way the
10508 outer shift will. */
10509
10510 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10511 result_mode);
10512
10513 mask_rtx
10514 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10515 GEN_INT (count));
10516
10517 /* Give up if we can't compute an outer operation to use. */
10518 if (mask_rtx == 0
10519 || !CONST_INT_P (mask_rtx)
10520 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10521 INTVAL (mask_rtx),
10522 result_mode, &complement_p))
10523 break;
10524
10525 /* If the shifts are in the same direction, we add the
10526 counts. Otherwise, we subtract them. */
10527 if ((code == ASHIFTRT || code == LSHIFTRT)
10528 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10529 count += first_count;
10530 else
10531 count -= first_count;
10532
10533 /* If COUNT is positive, the new shift is usually CODE,
10534 except for the two exceptions below, in which case it is
10535 FIRST_CODE. If the count is negative, FIRST_CODE should
10536 always be used */
10537 if (count > 0
10538 && ((first_code == ROTATE && code == ASHIFT)
10539 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10540 code = first_code;
10541 else if (count < 0)
10542 code = first_code, count = -count;
10543
10544 varop = XEXP (varop, 0);
10545 continue;
10546 }
10547
10548 /* If we have (A << B << C) for any shift, we can convert this to
10549 (A << C << B). This wins if A is a constant. Only try this if
10550 B is not a constant. */
10551
10552 else if (GET_CODE (varop) == code
10553 && CONST_INT_P (XEXP (varop, 0))
10554 && !CONST_INT_P (XEXP (varop, 1)))
10555 {
10556 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10557 sure the result will be masked. See PR70222. */
10558 if (code == LSHIFTRT
10559 && mode != result_mode
10560 && !merge_outer_ops (&outer_op, &outer_const, AND,
10561 GET_MODE_MASK (result_mode)
10562 >> orig_count, result_mode,
10563 &complement_p))
10564 break;
10565 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10566 up outer sign extension (often left and right shift) is
10567 hardly more efficient than the original. See PR70429. */
10568 if (code == ASHIFTRT && mode != result_mode)
10569 break;
10570
10571 rtx new_rtx = simplify_const_binary_operation (code, mode,
10572 XEXP (varop, 0),
10573 GEN_INT (count));
10574 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10575 count = 0;
10576 continue;
10577 }
10578 break;
10579
10580 case NOT:
10581 if (VECTOR_MODE_P (mode))
10582 break;
10583
10584 /* Make this fit the case below. */
10585 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10586 continue;
10587
10588 case IOR:
10589 case AND:
10590 case XOR:
10591 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10592 with C the size of VAROP - 1 and the shift is logical if
10593 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10594 we have an (le X 0) operation. If we have an arithmetic shift
10595 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10596 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10597
10598 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10599 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10600 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10601 && (code == LSHIFTRT || code == ASHIFTRT)
10602 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10603 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10604 {
10605 count = 0;
10606 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10607 const0_rtx);
10608
10609 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10610 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10611
10612 continue;
10613 }
10614
10615 /* If we have (shift (logical)), move the logical to the outside
10616 to allow it to possibly combine with another logical and the
10617 shift to combine with another shift. This also canonicalizes to
10618 what a ZERO_EXTRACT looks like. Also, some machines have
10619 (and (shift)) insns. */
10620
10621 if (CONST_INT_P (XEXP (varop, 1))
10622 /* We can't do this if we have (ashiftrt (xor)) and the
10623 constant has its sign bit set in shift_mode with shift_mode
10624 wider than result_mode. */
10625 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10626 && result_mode != shift_mode
10627 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10628 shift_mode))
10629 && (new_rtx = simplify_const_binary_operation
10630 (code, result_mode,
10631 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10632 GEN_INT (count))) != 0
10633 && CONST_INT_P (new_rtx)
10634 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10635 INTVAL (new_rtx), result_mode, &complement_p))
10636 {
10637 varop = XEXP (varop, 0);
10638 continue;
10639 }
10640
10641 /* If we can't do that, try to simplify the shift in each arm of the
10642 logical expression, make a new logical expression, and apply
10643 the inverse distributive law. This also can't be done for
10644 (ashiftrt (xor)) where we've widened the shift and the constant
10645 changes the sign bit. */
10646 if (CONST_INT_P (XEXP (varop, 1))
10647 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10648 && result_mode != shift_mode
10649 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10650 shift_mode)))
10651 {
10652 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10653 XEXP (varop, 0), count);
10654 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10655 XEXP (varop, 1), count);
10656
10657 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10658 lhs, rhs);
10659 varop = apply_distributive_law (varop);
10660
10661 count = 0;
10662 continue;
10663 }
10664 break;
10665
10666 case EQ:
10667 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10668 says that the sign bit can be tested, FOO has mode MODE, C is
10669 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10670 that may be nonzero. */
10671 if (code == LSHIFTRT
10672 && XEXP (varop, 1) == const0_rtx
10673 && GET_MODE (XEXP (varop, 0)) == result_mode
10674 && count == (GET_MODE_PRECISION (result_mode) - 1)
10675 && HWI_COMPUTABLE_MODE_P (result_mode)
10676 && STORE_FLAG_VALUE == -1
10677 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10678 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10679 &complement_p))
10680 {
10681 varop = XEXP (varop, 0);
10682 count = 0;
10683 continue;
10684 }
10685 break;
10686
10687 case NEG:
10688 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10689 than the number of bits in the mode is equivalent to A. */
10690 if (code == LSHIFTRT
10691 && count == (GET_MODE_PRECISION (result_mode) - 1)
10692 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10693 {
10694 varop = XEXP (varop, 0);
10695 count = 0;
10696 continue;
10697 }
10698
10699 /* NEG commutes with ASHIFT since it is multiplication. Move the
10700 NEG outside to allow shifts to combine. */
10701 if (code == ASHIFT
10702 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10703 &complement_p))
10704 {
10705 varop = XEXP (varop, 0);
10706 continue;
10707 }
10708 break;
10709
10710 case PLUS:
10711 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10712 is one less than the number of bits in the mode is
10713 equivalent to (xor A 1). */
10714 if (code == LSHIFTRT
10715 && count == (GET_MODE_PRECISION (result_mode) - 1)
10716 && XEXP (varop, 1) == constm1_rtx
10717 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10718 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10719 &complement_p))
10720 {
10721 count = 0;
10722 varop = XEXP (varop, 0);
10723 continue;
10724 }
10725
10726 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10727 that might be nonzero in BAR are those being shifted out and those
10728 bits are known zero in FOO, we can replace the PLUS with FOO.
10729 Similarly in the other operand order. This code occurs when
10730 we are computing the size of a variable-size array. */
10731
10732 if ((code == ASHIFTRT || code == LSHIFTRT)
10733 && count < HOST_BITS_PER_WIDE_INT
10734 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10735 && (nonzero_bits (XEXP (varop, 1), result_mode)
10736 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10737 {
10738 varop = XEXP (varop, 0);
10739 continue;
10740 }
10741 else if ((code == ASHIFTRT || code == LSHIFTRT)
10742 && count < HOST_BITS_PER_WIDE_INT
10743 && HWI_COMPUTABLE_MODE_P (result_mode)
10744 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10745 >> count)
10746 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10747 & nonzero_bits (XEXP (varop, 1),
10748 result_mode)))
10749 {
10750 varop = XEXP (varop, 1);
10751 continue;
10752 }
10753
10754 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10755 if (code == ASHIFT
10756 && CONST_INT_P (XEXP (varop, 1))
10757 && (new_rtx = simplify_const_binary_operation
10758 (ASHIFT, result_mode,
10759 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10760 GEN_INT (count))) != 0
10761 && CONST_INT_P (new_rtx)
10762 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10763 INTVAL (new_rtx), result_mode, &complement_p))
10764 {
10765 varop = XEXP (varop, 0);
10766 continue;
10767 }
10768
10769 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10770 signbit', and attempt to change the PLUS to an XOR and move it to
10771 the outer operation as is done above in the AND/IOR/XOR case
10772 leg for shift(logical). See details in logical handling above
10773 for reasoning in doing so. */
10774 if (code == LSHIFTRT
10775 && CONST_INT_P (XEXP (varop, 1))
10776 && mode_signbit_p (result_mode, XEXP (varop, 1))
10777 && (new_rtx = simplify_const_binary_operation
10778 (code, result_mode,
10779 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10780 GEN_INT (count))) != 0
10781 && CONST_INT_P (new_rtx)
10782 && merge_outer_ops (&outer_op, &outer_const, XOR,
10783 INTVAL (new_rtx), result_mode, &complement_p))
10784 {
10785 varop = XEXP (varop, 0);
10786 continue;
10787 }
10788
10789 break;
10790
10791 case MINUS:
10792 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10793 with C the size of VAROP - 1 and the shift is logical if
10794 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10795 we have a (gt X 0) operation. If the shift is arithmetic with
10796 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10797 we have a (neg (gt X 0)) operation. */
10798
10799 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10800 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10801 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10802 && (code == LSHIFTRT || code == ASHIFTRT)
10803 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10804 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10805 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10806 {
10807 count = 0;
10808 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10809 const0_rtx);
10810
10811 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10812 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10813
10814 continue;
10815 }
10816 break;
10817
10818 case TRUNCATE:
10819 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10820 if the truncate does not affect the value. */
10821 if (code == LSHIFTRT
10822 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10823 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10824 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10825 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10826 - GET_MODE_PRECISION (GET_MODE (varop)))))
10827 {
10828 rtx varop_inner = XEXP (varop, 0);
10829
10830 varop_inner
10831 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10832 XEXP (varop_inner, 0),
10833 GEN_INT
10834 (count + INTVAL (XEXP (varop_inner, 1))));
10835 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10836 count = 0;
10837 continue;
10838 }
10839 break;
10840
10841 default:
10842 break;
10843 }
10844
10845 break;
10846 }
10847
10848 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10849 outer_op, outer_const);
10850
10851 /* We have now finished analyzing the shift. The result should be
10852 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10853 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10854 to the result of the shift. OUTER_CONST is the relevant constant,
10855 but we must turn off all bits turned off in the shift. */
10856
10857 if (outer_op == UNKNOWN
10858 && orig_code == code && orig_count == count
10859 && varop == orig_varop
10860 && shift_mode == GET_MODE (varop))
10861 return NULL_RTX;
10862
10863 /* Make a SUBREG if necessary. If we can't make it, fail. */
10864 varop = gen_lowpart (shift_mode, varop);
10865 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10866 return NULL_RTX;
10867
10868 /* If we have an outer operation and we just made a shift, it is
10869 possible that we could have simplified the shift were it not
10870 for the outer operation. So try to do the simplification
10871 recursively. */
10872
10873 if (outer_op != UNKNOWN)
10874 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10875 else
10876 x = NULL_RTX;
10877
10878 if (x == NULL_RTX)
10879 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10880
10881 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10882 turn off all the bits that the shift would have turned off. */
10883 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10884 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10885 GET_MODE_MASK (result_mode) >> orig_count);
10886
10887 /* Do the remainder of the processing in RESULT_MODE. */
10888 x = gen_lowpart_or_truncate (result_mode, x);
10889
10890 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10891 operation. */
10892 if (complement_p)
10893 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10894
10895 if (outer_op != UNKNOWN)
10896 {
10897 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10898 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10899 outer_const = trunc_int_for_mode (outer_const, result_mode);
10900
10901 if (outer_op == AND)
10902 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10903 else if (outer_op == SET)
10904 {
10905 /* This means that we have determined that the result is
10906 equivalent to a constant. This should be rare. */
10907 if (!side_effects_p (x))
10908 x = GEN_INT (outer_const);
10909 }
10910 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10911 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10912 else
10913 x = simplify_gen_binary (outer_op, result_mode, x,
10914 GEN_INT (outer_const));
10915 }
10916
10917 return x;
10918 }
10919
10920 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10921 The result of the shift is RESULT_MODE. If we cannot simplify it,
10922 return X or, if it is NULL, synthesize the expression with
10923 simplify_gen_binary. Otherwise, return a simplified value.
10924
10925 The shift is normally computed in the widest mode we find in VAROP, as
10926 long as it isn't a different number of words than RESULT_MODE. Exceptions
10927 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10928
10929 static rtx
10930 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
10931 rtx varop, int count)
10932 {
10933 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10934 if (tem)
10935 return tem;
10936
10937 if (!x)
10938 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10939 if (GET_MODE (x) != result_mode)
10940 x = gen_lowpart (result_mode, x);
10941 return x;
10942 }
10943
10944 \f
10945 /* A subroutine of recog_for_combine. See there for arguments and
10946 return value. */
10947
10948 static int
10949 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
10950 {
10951 rtx pat = *pnewpat;
10952 rtx pat_without_clobbers;
10953 int insn_code_number;
10954 int num_clobbers_to_add = 0;
10955 int i;
10956 rtx notes = NULL_RTX;
10957 rtx old_notes, old_pat;
10958 int old_icode;
10959
10960 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10961 we use to indicate that something didn't match. If we find such a
10962 thing, force rejection. */
10963 if (GET_CODE (pat) == PARALLEL)
10964 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10965 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10966 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10967 return -1;
10968
10969 old_pat = PATTERN (insn);
10970 old_notes = REG_NOTES (insn);
10971 PATTERN (insn) = pat;
10972 REG_NOTES (insn) = NULL_RTX;
10973
10974 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10975 if (dump_file && (dump_flags & TDF_DETAILS))
10976 {
10977 if (insn_code_number < 0)
10978 fputs ("Failed to match this instruction:\n", dump_file);
10979 else
10980 fputs ("Successfully matched this instruction:\n", dump_file);
10981 print_rtl_single (dump_file, pat);
10982 }
10983
10984 /* If it isn't, there is the possibility that we previously had an insn
10985 that clobbered some register as a side effect, but the combined
10986 insn doesn't need to do that. So try once more without the clobbers
10987 unless this represents an ASM insn. */
10988
10989 if (insn_code_number < 0 && ! check_asm_operands (pat)
10990 && GET_CODE (pat) == PARALLEL)
10991 {
10992 int pos;
10993
10994 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10995 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10996 {
10997 if (i != pos)
10998 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10999 pos++;
11000 }
11001
11002 SUBST_INT (XVECLEN (pat, 0), pos);
11003
11004 if (pos == 1)
11005 pat = XVECEXP (pat, 0, 0);
11006
11007 PATTERN (insn) = pat;
11008 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11009 if (dump_file && (dump_flags & TDF_DETAILS))
11010 {
11011 if (insn_code_number < 0)
11012 fputs ("Failed to match this instruction:\n", dump_file);
11013 else
11014 fputs ("Successfully matched this instruction:\n", dump_file);
11015 print_rtl_single (dump_file, pat);
11016 }
11017 }
11018
11019 pat_without_clobbers = pat;
11020
11021 PATTERN (insn) = old_pat;
11022 REG_NOTES (insn) = old_notes;
11023
11024 /* Recognize all noop sets, these will be killed by followup pass. */
11025 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11026 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11027
11028 /* If we had any clobbers to add, make a new pattern than contains
11029 them. Then check to make sure that all of them are dead. */
11030 if (num_clobbers_to_add)
11031 {
11032 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11033 rtvec_alloc (GET_CODE (pat) == PARALLEL
11034 ? (XVECLEN (pat, 0)
11035 + num_clobbers_to_add)
11036 : num_clobbers_to_add + 1));
11037
11038 if (GET_CODE (pat) == PARALLEL)
11039 for (i = 0; i < XVECLEN (pat, 0); i++)
11040 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11041 else
11042 XVECEXP (newpat, 0, 0) = pat;
11043
11044 add_clobbers (newpat, insn_code_number);
11045
11046 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11047 i < XVECLEN (newpat, 0); i++)
11048 {
11049 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11050 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11051 return -1;
11052 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11053 {
11054 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11055 notes = alloc_reg_note (REG_UNUSED,
11056 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11057 }
11058 }
11059 pat = newpat;
11060 }
11061
11062 if (insn_code_number >= 0
11063 && insn_code_number != NOOP_MOVE_INSN_CODE)
11064 {
11065 old_pat = PATTERN (insn);
11066 old_notes = REG_NOTES (insn);
11067 old_icode = INSN_CODE (insn);
11068 PATTERN (insn) = pat;
11069 REG_NOTES (insn) = notes;
11070
11071 /* Allow targets to reject combined insn. */
11072 if (!targetm.legitimate_combined_insn (insn))
11073 {
11074 if (dump_file && (dump_flags & TDF_DETAILS))
11075 fputs ("Instruction not appropriate for target.",
11076 dump_file);
11077
11078 /* Callers expect recog_for_combine to strip
11079 clobbers from the pattern on failure. */
11080 pat = pat_without_clobbers;
11081 notes = NULL_RTX;
11082
11083 insn_code_number = -1;
11084 }
11085
11086 PATTERN (insn) = old_pat;
11087 REG_NOTES (insn) = old_notes;
11088 INSN_CODE (insn) = old_icode;
11089 }
11090
11091 *pnewpat = pat;
11092 *pnotes = notes;
11093
11094 return insn_code_number;
11095 }
11096
11097 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11098 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11099 Return whether anything was so changed. */
11100
11101 static bool
11102 change_zero_ext (rtx *src)
11103 {
11104 bool changed = false;
11105
11106 subrtx_ptr_iterator::array_type array;
11107 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11108 {
11109 rtx x = **iter;
11110 machine_mode mode = GET_MODE (x);
11111 int size;
11112
11113 if (GET_CODE (x) == ZERO_EXTRACT
11114 && CONST_INT_P (XEXP (x, 1))
11115 && CONST_INT_P (XEXP (x, 2))
11116 && GET_MODE (XEXP (x, 0)) == mode)
11117 {
11118 size = INTVAL (XEXP (x, 1));
11119
11120 int start = INTVAL (XEXP (x, 2));
11121 if (BITS_BIG_ENDIAN)
11122 start = GET_MODE_PRECISION (mode) - size - start;
11123
11124 x = simplify_gen_binary (LSHIFTRT, mode,
11125 XEXP (x, 0), GEN_INT (start));
11126 }
11127 else if (GET_CODE (x) == ZERO_EXTEND
11128 && SCALAR_INT_MODE_P (mode)
11129 && GET_CODE (XEXP (x, 0)) == SUBREG
11130 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
11131 && subreg_lowpart_p (XEXP (x, 0)))
11132 {
11133 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11134 x = SUBREG_REG (XEXP (x, 0));
11135 }
11136 else
11137 continue;
11138
11139 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11140 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11141
11142 SUBST (**iter, x);
11143 changed = true;
11144 }
11145
11146 return changed;
11147 }
11148
11149 /* Like recog, but we receive the address of a pointer to a new pattern.
11150 We try to match the rtx that the pointer points to.
11151 If that fails, we may try to modify or replace the pattern,
11152 storing the replacement into the same pointer object.
11153
11154 Modifications include deletion or addition of CLOBBERs. If the
11155 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11156 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11157 (and undo if that fails).
11158
11159 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11160 the CLOBBERs are placed.
11161
11162 The value is the final insn code from the pattern ultimately matched,
11163 or -1. */
11164
11165 static int
11166 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11167 {
11168 rtx pat = PATTERN (insn);
11169 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11170 if (insn_code_number >= 0 || check_asm_operands (pat))
11171 return insn_code_number;
11172
11173 void *marker = get_undo_marker ();
11174 bool changed = false;
11175
11176 if (GET_CODE (pat) == SET)
11177 changed = change_zero_ext (&SET_SRC (pat));
11178 else if (GET_CODE (pat) == PARALLEL)
11179 {
11180 int i;
11181 for (i = 0; i < XVECLEN (pat, 0); i++)
11182 {
11183 rtx set = XVECEXP (pat, 0, i);
11184 if (GET_CODE (set) == SET)
11185 changed |= change_zero_ext (&SET_SRC (set));
11186 }
11187 }
11188
11189 if (changed)
11190 {
11191 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11192
11193 if (insn_code_number < 0)
11194 undo_to_marker (marker);
11195 }
11196
11197 return insn_code_number;
11198 }
11199 \f
11200 /* Like gen_lowpart_general but for use by combine. In combine it
11201 is not possible to create any new pseudoregs. However, it is
11202 safe to create invalid memory addresses, because combine will
11203 try to recognize them and all they will do is make the combine
11204 attempt fail.
11205
11206 If for some reason this cannot do its job, an rtx
11207 (clobber (const_int 0)) is returned.
11208 An insn containing that will not be recognized. */
11209
11210 static rtx
11211 gen_lowpart_for_combine (machine_mode omode, rtx x)
11212 {
11213 machine_mode imode = GET_MODE (x);
11214 unsigned int osize = GET_MODE_SIZE (omode);
11215 unsigned int isize = GET_MODE_SIZE (imode);
11216 rtx result;
11217
11218 if (omode == imode)
11219 return x;
11220
11221 /* We can only support MODE being wider than a word if X is a
11222 constant integer or has a mode the same size. */
11223 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11224 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11225 goto fail;
11226
11227 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11228 won't know what to do. So we will strip off the SUBREG here and
11229 process normally. */
11230 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11231 {
11232 x = SUBREG_REG (x);
11233
11234 /* For use in case we fall down into the address adjustments
11235 further below, we need to adjust the known mode and size of
11236 x; imode and isize, since we just adjusted x. */
11237 imode = GET_MODE (x);
11238
11239 if (imode == omode)
11240 return x;
11241
11242 isize = GET_MODE_SIZE (imode);
11243 }
11244
11245 result = gen_lowpart_common (omode, x);
11246
11247 if (result)
11248 return result;
11249
11250 if (MEM_P (x))
11251 {
11252 int offset = 0;
11253
11254 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11255 address. */
11256 if (MEM_VOLATILE_P (x)
11257 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11258 goto fail;
11259
11260 /* If we want to refer to something bigger than the original memref,
11261 generate a paradoxical subreg instead. That will force a reload
11262 of the original memref X. */
11263 if (isize < osize)
11264 return gen_rtx_SUBREG (omode, x, 0);
11265
11266 if (WORDS_BIG_ENDIAN)
11267 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11268
11269 /* Adjust the address so that the address-after-the-data is
11270 unchanged. */
11271 if (BYTES_BIG_ENDIAN)
11272 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11273
11274 return adjust_address_nv (x, omode, offset);
11275 }
11276
11277 /* If X is a comparison operator, rewrite it in a new mode. This
11278 probably won't match, but may allow further simplifications. */
11279 else if (COMPARISON_P (x))
11280 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11281
11282 /* If we couldn't simplify X any other way, just enclose it in a
11283 SUBREG. Normally, this SUBREG won't match, but some patterns may
11284 include an explicit SUBREG or we may simplify it further in combine. */
11285 else
11286 {
11287 rtx res;
11288
11289 if (imode == VOIDmode)
11290 {
11291 imode = int_mode_for_mode (omode);
11292 x = gen_lowpart_common (imode, x);
11293 if (x == NULL)
11294 goto fail;
11295 }
11296 res = lowpart_subreg (omode, x, imode);
11297 if (res)
11298 return res;
11299 }
11300
11301 fail:
11302 return gen_rtx_CLOBBER (omode, const0_rtx);
11303 }
11304 \f
11305 /* Try to simplify a comparison between OP0 and a constant OP1,
11306 where CODE is the comparison code that will be tested, into a
11307 (CODE OP0 const0_rtx) form.
11308
11309 The result is a possibly different comparison code to use.
11310 *POP1 may be updated. */
11311
11312 static enum rtx_code
11313 simplify_compare_const (enum rtx_code code, machine_mode mode,
11314 rtx op0, rtx *pop1)
11315 {
11316 unsigned int mode_width = GET_MODE_PRECISION (mode);
11317 HOST_WIDE_INT const_op = INTVAL (*pop1);
11318
11319 /* Get the constant we are comparing against and turn off all bits
11320 not on in our mode. */
11321 if (mode != VOIDmode)
11322 const_op = trunc_int_for_mode (const_op, mode);
11323
11324 /* If we are comparing against a constant power of two and the value
11325 being compared can only have that single bit nonzero (e.g., it was
11326 `and'ed with that bit), we can replace this with a comparison
11327 with zero. */
11328 if (const_op
11329 && (code == EQ || code == NE || code == GE || code == GEU
11330 || code == LT || code == LTU)
11331 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11332 && exact_log2 (const_op & GET_MODE_MASK (mode)) >= 0
11333 && (nonzero_bits (op0, mode)
11334 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11335 {
11336 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11337 const_op = 0;
11338 }
11339
11340 /* Similarly, if we are comparing a value known to be either -1 or
11341 0 with -1, change it to the opposite comparison against zero. */
11342 if (const_op == -1
11343 && (code == EQ || code == NE || code == GT || code == LE
11344 || code == GEU || code == LTU)
11345 && num_sign_bit_copies (op0, mode) == mode_width)
11346 {
11347 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11348 const_op = 0;
11349 }
11350
11351 /* Do some canonicalizations based on the comparison code. We prefer
11352 comparisons against zero and then prefer equality comparisons.
11353 If we can reduce the size of a constant, we will do that too. */
11354 switch (code)
11355 {
11356 case LT:
11357 /* < C is equivalent to <= (C - 1) */
11358 if (const_op > 0)
11359 {
11360 const_op -= 1;
11361 code = LE;
11362 /* ... fall through to LE case below. */
11363 }
11364 else
11365 break;
11366
11367 case LE:
11368 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11369 if (const_op < 0)
11370 {
11371 const_op += 1;
11372 code = LT;
11373 }
11374
11375 /* If we are doing a <= 0 comparison on a value known to have
11376 a zero sign bit, we can replace this with == 0. */
11377 else if (const_op == 0
11378 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11379 && (nonzero_bits (op0, mode)
11380 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11381 == 0)
11382 code = EQ;
11383 break;
11384
11385 case GE:
11386 /* >= C is equivalent to > (C - 1). */
11387 if (const_op > 0)
11388 {
11389 const_op -= 1;
11390 code = GT;
11391 /* ... fall through to GT below. */
11392 }
11393 else
11394 break;
11395
11396 case GT:
11397 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11398 if (const_op < 0)
11399 {
11400 const_op += 1;
11401 code = GE;
11402 }
11403
11404 /* If we are doing a > 0 comparison on a value known to have
11405 a zero sign bit, we can replace this with != 0. */
11406 else if (const_op == 0
11407 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11408 && (nonzero_bits (op0, mode)
11409 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11410 == 0)
11411 code = NE;
11412 break;
11413
11414 case LTU:
11415 /* < C is equivalent to <= (C - 1). */
11416 if (const_op > 0)
11417 {
11418 const_op -= 1;
11419 code = LEU;
11420 /* ... fall through ... */
11421 }
11422 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11423 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11424 && (unsigned HOST_WIDE_INT) const_op
11425 == HOST_WIDE_INT_1U << (mode_width - 1))
11426 {
11427 const_op = 0;
11428 code = GE;
11429 break;
11430 }
11431 else
11432 break;
11433
11434 case LEU:
11435 /* unsigned <= 0 is equivalent to == 0 */
11436 if (const_op == 0)
11437 code = EQ;
11438 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11439 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11440 && (unsigned HOST_WIDE_INT) const_op
11441 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11442 {
11443 const_op = 0;
11444 code = GE;
11445 }
11446 break;
11447
11448 case GEU:
11449 /* >= C is equivalent to > (C - 1). */
11450 if (const_op > 1)
11451 {
11452 const_op -= 1;
11453 code = GTU;
11454 /* ... fall through ... */
11455 }
11456
11457 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11458 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11459 && (unsigned HOST_WIDE_INT) const_op
11460 == HOST_WIDE_INT_1U << (mode_width - 1))
11461 {
11462 const_op = 0;
11463 code = LT;
11464 break;
11465 }
11466 else
11467 break;
11468
11469 case GTU:
11470 /* unsigned > 0 is equivalent to != 0 */
11471 if (const_op == 0)
11472 code = NE;
11473 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11474 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11475 && (unsigned HOST_WIDE_INT) const_op
11476 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11477 {
11478 const_op = 0;
11479 code = LT;
11480 }
11481 break;
11482
11483 default:
11484 break;
11485 }
11486
11487 *pop1 = GEN_INT (const_op);
11488 return code;
11489 }
11490 \f
11491 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11492 comparison code that will be tested.
11493
11494 The result is a possibly different comparison code to use. *POP0 and
11495 *POP1 may be updated.
11496
11497 It is possible that we might detect that a comparison is either always
11498 true or always false. However, we do not perform general constant
11499 folding in combine, so this knowledge isn't useful. Such tautologies
11500 should have been detected earlier. Hence we ignore all such cases. */
11501
11502 static enum rtx_code
11503 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11504 {
11505 rtx op0 = *pop0;
11506 rtx op1 = *pop1;
11507 rtx tem, tem1;
11508 int i;
11509 machine_mode mode, tmode;
11510
11511 /* Try a few ways of applying the same transformation to both operands. */
11512 while (1)
11513 {
11514 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11515 so check specially. */
11516 if (!WORD_REGISTER_OPERATIONS
11517 && code != GTU && code != GEU && code != LTU && code != LEU
11518 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11519 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11520 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11521 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11522 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11523 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11524 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11525 && CONST_INT_P (XEXP (op0, 1))
11526 && XEXP (op0, 1) == XEXP (op1, 1)
11527 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11528 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11529 && (INTVAL (XEXP (op0, 1))
11530 == (GET_MODE_PRECISION (GET_MODE (op0))
11531 - (GET_MODE_PRECISION
11532 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11533 {
11534 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11535 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11536 }
11537
11538 /* If both operands are the same constant shift, see if we can ignore the
11539 shift. We can if the shift is a rotate or if the bits shifted out of
11540 this shift are known to be zero for both inputs and if the type of
11541 comparison is compatible with the shift. */
11542 if (GET_CODE (op0) == GET_CODE (op1)
11543 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11544 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11545 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11546 && (code != GT && code != LT && code != GE && code != LE))
11547 || (GET_CODE (op0) == ASHIFTRT
11548 && (code != GTU && code != LTU
11549 && code != GEU && code != LEU)))
11550 && CONST_INT_P (XEXP (op0, 1))
11551 && INTVAL (XEXP (op0, 1)) >= 0
11552 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11553 && XEXP (op0, 1) == XEXP (op1, 1))
11554 {
11555 machine_mode mode = GET_MODE (op0);
11556 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11557 int shift_count = INTVAL (XEXP (op0, 1));
11558
11559 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11560 mask &= (mask >> shift_count) << shift_count;
11561 else if (GET_CODE (op0) == ASHIFT)
11562 mask = (mask & (mask << shift_count)) >> shift_count;
11563
11564 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11565 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11566 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11567 else
11568 break;
11569 }
11570
11571 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11572 SUBREGs are of the same mode, and, in both cases, the AND would
11573 be redundant if the comparison was done in the narrower mode,
11574 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11575 and the operand's possibly nonzero bits are 0xffffff01; in that case
11576 if we only care about QImode, we don't need the AND). This case
11577 occurs if the output mode of an scc insn is not SImode and
11578 STORE_FLAG_VALUE == 1 (e.g., the 386).
11579
11580 Similarly, check for a case where the AND's are ZERO_EXTEND
11581 operations from some narrower mode even though a SUBREG is not
11582 present. */
11583
11584 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11585 && CONST_INT_P (XEXP (op0, 1))
11586 && CONST_INT_P (XEXP (op1, 1)))
11587 {
11588 rtx inner_op0 = XEXP (op0, 0);
11589 rtx inner_op1 = XEXP (op1, 0);
11590 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11591 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11592 int changed = 0;
11593
11594 if (paradoxical_subreg_p (inner_op0)
11595 && GET_CODE (inner_op1) == SUBREG
11596 && (GET_MODE (SUBREG_REG (inner_op0))
11597 == GET_MODE (SUBREG_REG (inner_op1)))
11598 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11599 <= HOST_BITS_PER_WIDE_INT)
11600 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11601 GET_MODE (SUBREG_REG (inner_op0)))))
11602 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11603 GET_MODE (SUBREG_REG (inner_op1))))))
11604 {
11605 op0 = SUBREG_REG (inner_op0);
11606 op1 = SUBREG_REG (inner_op1);
11607
11608 /* The resulting comparison is always unsigned since we masked
11609 off the original sign bit. */
11610 code = unsigned_condition (code);
11611
11612 changed = 1;
11613 }
11614
11615 else if (c0 == c1)
11616 for (tmode = GET_CLASS_NARROWEST_MODE
11617 (GET_MODE_CLASS (GET_MODE (op0)));
11618 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11619 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11620 {
11621 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
11622 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
11623 code = unsigned_condition (code);
11624 changed = 1;
11625 break;
11626 }
11627
11628 if (! changed)
11629 break;
11630 }
11631
11632 /* If both operands are NOT, we can strip off the outer operation
11633 and adjust the comparison code for swapped operands; similarly for
11634 NEG, except that this must be an equality comparison. */
11635 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11636 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11637 && (code == EQ || code == NE)))
11638 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11639
11640 else
11641 break;
11642 }
11643
11644 /* If the first operand is a constant, swap the operands and adjust the
11645 comparison code appropriately, but don't do this if the second operand
11646 is already a constant integer. */
11647 if (swap_commutative_operands_p (op0, op1))
11648 {
11649 std::swap (op0, op1);
11650 code = swap_condition (code);
11651 }
11652
11653 /* We now enter a loop during which we will try to simplify the comparison.
11654 For the most part, we only are concerned with comparisons with zero,
11655 but some things may really be comparisons with zero but not start
11656 out looking that way. */
11657
11658 while (CONST_INT_P (op1))
11659 {
11660 machine_mode mode = GET_MODE (op0);
11661 unsigned int mode_width = GET_MODE_PRECISION (mode);
11662 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11663 int equality_comparison_p;
11664 int sign_bit_comparison_p;
11665 int unsigned_comparison_p;
11666 HOST_WIDE_INT const_op;
11667
11668 /* We only want to handle integral modes. This catches VOIDmode,
11669 CCmode, and the floating-point modes. An exception is that we
11670 can handle VOIDmode if OP0 is a COMPARE or a comparison
11671 operation. */
11672
11673 if (GET_MODE_CLASS (mode) != MODE_INT
11674 && ! (mode == VOIDmode
11675 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11676 break;
11677
11678 /* Try to simplify the compare to constant, possibly changing the
11679 comparison op, and/or changing op1 to zero. */
11680 code = simplify_compare_const (code, mode, op0, &op1);
11681 const_op = INTVAL (op1);
11682
11683 /* Compute some predicates to simplify code below. */
11684
11685 equality_comparison_p = (code == EQ || code == NE);
11686 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11687 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11688 || code == GEU);
11689
11690 /* If this is a sign bit comparison and we can do arithmetic in
11691 MODE, say that we will only be needing the sign bit of OP0. */
11692 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11693 op0 = force_to_mode (op0, mode,
11694 HOST_WIDE_INT_1U
11695 << (GET_MODE_PRECISION (mode) - 1),
11696 0);
11697
11698 /* Now try cases based on the opcode of OP0. If none of the cases
11699 does a "continue", we exit this loop immediately after the
11700 switch. */
11701
11702 switch (GET_CODE (op0))
11703 {
11704 case ZERO_EXTRACT:
11705 /* If we are extracting a single bit from a variable position in
11706 a constant that has only a single bit set and are comparing it
11707 with zero, we can convert this into an equality comparison
11708 between the position and the location of the single bit. */
11709 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11710 have already reduced the shift count modulo the word size. */
11711 if (!SHIFT_COUNT_TRUNCATED
11712 && CONST_INT_P (XEXP (op0, 0))
11713 && XEXP (op0, 1) == const1_rtx
11714 && equality_comparison_p && const_op == 0
11715 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11716 {
11717 if (BITS_BIG_ENDIAN)
11718 i = BITS_PER_WORD - 1 - i;
11719
11720 op0 = XEXP (op0, 2);
11721 op1 = GEN_INT (i);
11722 const_op = i;
11723
11724 /* Result is nonzero iff shift count is equal to I. */
11725 code = reverse_condition (code);
11726 continue;
11727 }
11728
11729 /* ... fall through ... */
11730
11731 case SIGN_EXTRACT:
11732 tem = expand_compound_operation (op0);
11733 if (tem != op0)
11734 {
11735 op0 = tem;
11736 continue;
11737 }
11738 break;
11739
11740 case NOT:
11741 /* If testing for equality, we can take the NOT of the constant. */
11742 if (equality_comparison_p
11743 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11744 {
11745 op0 = XEXP (op0, 0);
11746 op1 = tem;
11747 continue;
11748 }
11749
11750 /* If just looking at the sign bit, reverse the sense of the
11751 comparison. */
11752 if (sign_bit_comparison_p)
11753 {
11754 op0 = XEXP (op0, 0);
11755 code = (code == GE ? LT : GE);
11756 continue;
11757 }
11758 break;
11759
11760 case NEG:
11761 /* If testing for equality, we can take the NEG of the constant. */
11762 if (equality_comparison_p
11763 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11764 {
11765 op0 = XEXP (op0, 0);
11766 op1 = tem;
11767 continue;
11768 }
11769
11770 /* The remaining cases only apply to comparisons with zero. */
11771 if (const_op != 0)
11772 break;
11773
11774 /* When X is ABS or is known positive,
11775 (neg X) is < 0 if and only if X != 0. */
11776
11777 if (sign_bit_comparison_p
11778 && (GET_CODE (XEXP (op0, 0)) == ABS
11779 || (mode_width <= HOST_BITS_PER_WIDE_INT
11780 && (nonzero_bits (XEXP (op0, 0), mode)
11781 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11782 == 0)))
11783 {
11784 op0 = XEXP (op0, 0);
11785 code = (code == LT ? NE : EQ);
11786 continue;
11787 }
11788
11789 /* If we have NEG of something whose two high-order bits are the
11790 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11791 if (num_sign_bit_copies (op0, mode) >= 2)
11792 {
11793 op0 = XEXP (op0, 0);
11794 code = swap_condition (code);
11795 continue;
11796 }
11797 break;
11798
11799 case ROTATE:
11800 /* If we are testing equality and our count is a constant, we
11801 can perform the inverse operation on our RHS. */
11802 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11803 && (tem = simplify_binary_operation (ROTATERT, mode,
11804 op1, XEXP (op0, 1))) != 0)
11805 {
11806 op0 = XEXP (op0, 0);
11807 op1 = tem;
11808 continue;
11809 }
11810
11811 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11812 a particular bit. Convert it to an AND of a constant of that
11813 bit. This will be converted into a ZERO_EXTRACT. */
11814 if (const_op == 0 && sign_bit_comparison_p
11815 && CONST_INT_P (XEXP (op0, 1))
11816 && mode_width <= HOST_BITS_PER_WIDE_INT)
11817 {
11818 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11819 (HOST_WIDE_INT_1U
11820 << (mode_width - 1
11821 - INTVAL (XEXP (op0, 1)))));
11822 code = (code == LT ? NE : EQ);
11823 continue;
11824 }
11825
11826 /* Fall through. */
11827
11828 case ABS:
11829 /* ABS is ignorable inside an equality comparison with zero. */
11830 if (const_op == 0 && equality_comparison_p)
11831 {
11832 op0 = XEXP (op0, 0);
11833 continue;
11834 }
11835 break;
11836
11837 case SIGN_EXTEND:
11838 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11839 (compare FOO CONST) if CONST fits in FOO's mode and we
11840 are either testing inequality or have an unsigned
11841 comparison with ZERO_EXTEND or a signed comparison with
11842 SIGN_EXTEND. But don't do it if we don't have a compare
11843 insn of the given mode, since we'd have to revert it
11844 later on, and then we wouldn't know whether to sign- or
11845 zero-extend. */
11846 mode = GET_MODE (XEXP (op0, 0));
11847 if (GET_MODE_CLASS (mode) == MODE_INT
11848 && ! unsigned_comparison_p
11849 && HWI_COMPUTABLE_MODE_P (mode)
11850 && trunc_int_for_mode (const_op, mode) == const_op
11851 && have_insn_for (COMPARE, mode))
11852 {
11853 op0 = XEXP (op0, 0);
11854 continue;
11855 }
11856 break;
11857
11858 case SUBREG:
11859 /* Check for the case where we are comparing A - C1 with C2, that is
11860
11861 (subreg:MODE (plus (A) (-C1))) op (C2)
11862
11863 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11864 comparison in the wider mode. One of the following two conditions
11865 must be true in order for this to be valid:
11866
11867 1. The mode extension results in the same bit pattern being added
11868 on both sides and the comparison is equality or unsigned. As
11869 C2 has been truncated to fit in MODE, the pattern can only be
11870 all 0s or all 1s.
11871
11872 2. The mode extension results in the sign bit being copied on
11873 each side.
11874
11875 The difficulty here is that we have predicates for A but not for
11876 (A - C1) so we need to check that C1 is within proper bounds so
11877 as to perturbate A as little as possible. */
11878
11879 if (mode_width <= HOST_BITS_PER_WIDE_INT
11880 && subreg_lowpart_p (op0)
11881 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11882 && GET_CODE (SUBREG_REG (op0)) == PLUS
11883 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11884 {
11885 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11886 rtx a = XEXP (SUBREG_REG (op0), 0);
11887 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11888
11889 if ((c1 > 0
11890 && (unsigned HOST_WIDE_INT) c1
11891 < HOST_WIDE_INT_1U << (mode_width - 1)
11892 && (equality_comparison_p || unsigned_comparison_p)
11893 /* (A - C1) zero-extends if it is positive and sign-extends
11894 if it is negative, C2 both zero- and sign-extends. */
11895 && ((0 == (nonzero_bits (a, inner_mode)
11896 & ~GET_MODE_MASK (mode))
11897 && const_op >= 0)
11898 /* (A - C1) sign-extends if it is positive and 1-extends
11899 if it is negative, C2 both sign- and 1-extends. */
11900 || (num_sign_bit_copies (a, inner_mode)
11901 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11902 - mode_width)
11903 && const_op < 0)))
11904 || ((unsigned HOST_WIDE_INT) c1
11905 < HOST_WIDE_INT_1U << (mode_width - 2)
11906 /* (A - C1) always sign-extends, like C2. */
11907 && num_sign_bit_copies (a, inner_mode)
11908 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11909 - (mode_width - 1))))
11910 {
11911 op0 = SUBREG_REG (op0);
11912 continue;
11913 }
11914 }
11915
11916 /* If the inner mode is narrower and we are extracting the low part,
11917 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11918 if (subreg_lowpart_p (op0)
11919 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11920 /* Fall through */ ;
11921 else
11922 break;
11923
11924 /* ... fall through ... */
11925
11926 case ZERO_EXTEND:
11927 mode = GET_MODE (XEXP (op0, 0));
11928 if (GET_MODE_CLASS (mode) == MODE_INT
11929 && (unsigned_comparison_p || equality_comparison_p)
11930 && HWI_COMPUTABLE_MODE_P (mode)
11931 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11932 && const_op >= 0
11933 && have_insn_for (COMPARE, mode))
11934 {
11935 op0 = XEXP (op0, 0);
11936 continue;
11937 }
11938 break;
11939
11940 case PLUS:
11941 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11942 this for equality comparisons due to pathological cases involving
11943 overflows. */
11944 if (equality_comparison_p
11945 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11946 op1, XEXP (op0, 1))))
11947 {
11948 op0 = XEXP (op0, 0);
11949 op1 = tem;
11950 continue;
11951 }
11952
11953 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11954 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11955 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11956 {
11957 op0 = XEXP (XEXP (op0, 0), 0);
11958 code = (code == LT ? EQ : NE);
11959 continue;
11960 }
11961 break;
11962
11963 case MINUS:
11964 /* We used to optimize signed comparisons against zero, but that
11965 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11966 arrive here as equality comparisons, or (GEU, LTU) are
11967 optimized away. No need to special-case them. */
11968
11969 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11970 (eq B (minus A C)), whichever simplifies. We can only do
11971 this for equality comparisons due to pathological cases involving
11972 overflows. */
11973 if (equality_comparison_p
11974 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11975 XEXP (op0, 1), op1)))
11976 {
11977 op0 = XEXP (op0, 0);
11978 op1 = tem;
11979 continue;
11980 }
11981
11982 if (equality_comparison_p
11983 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11984 XEXP (op0, 0), op1)))
11985 {
11986 op0 = XEXP (op0, 1);
11987 op1 = tem;
11988 continue;
11989 }
11990
11991 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11992 of bits in X minus 1, is one iff X > 0. */
11993 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11994 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11995 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11996 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11997 {
11998 op0 = XEXP (op0, 1);
11999 code = (code == GE ? LE : GT);
12000 continue;
12001 }
12002 break;
12003
12004 case XOR:
12005 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12006 if C is zero or B is a constant. */
12007 if (equality_comparison_p
12008 && 0 != (tem = simplify_binary_operation (XOR, mode,
12009 XEXP (op0, 1), op1)))
12010 {
12011 op0 = XEXP (op0, 0);
12012 op1 = tem;
12013 continue;
12014 }
12015 break;
12016
12017 case EQ: case NE:
12018 case UNEQ: case LTGT:
12019 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
12020 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
12021 case UNORDERED: case ORDERED:
12022 /* We can't do anything if OP0 is a condition code value, rather
12023 than an actual data value. */
12024 if (const_op != 0
12025 || CC0_P (XEXP (op0, 0))
12026 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12027 break;
12028
12029 /* Get the two operands being compared. */
12030 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12031 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12032 else
12033 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12034
12035 /* Check for the cases where we simply want the result of the
12036 earlier test or the opposite of that result. */
12037 if (code == NE || code == EQ
12038 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
12039 && (code == LT || code == GE)))
12040 {
12041 enum rtx_code new_code;
12042 if (code == LT || code == NE)
12043 new_code = GET_CODE (op0);
12044 else
12045 new_code = reversed_comparison_code (op0, NULL);
12046
12047 if (new_code != UNKNOWN)
12048 {
12049 code = new_code;
12050 op0 = tem;
12051 op1 = tem1;
12052 continue;
12053 }
12054 }
12055 break;
12056
12057 case IOR:
12058 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12059 iff X <= 0. */
12060 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12061 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12062 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12063 {
12064 op0 = XEXP (op0, 1);
12065 code = (code == GE ? GT : LE);
12066 continue;
12067 }
12068 break;
12069
12070 case AND:
12071 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12072 will be converted to a ZERO_EXTRACT later. */
12073 if (const_op == 0 && equality_comparison_p
12074 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12075 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12076 {
12077 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12078 XEXP (XEXP (op0, 0), 1));
12079 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12080 continue;
12081 }
12082
12083 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12084 zero and X is a comparison and C1 and C2 describe only bits set
12085 in STORE_FLAG_VALUE, we can compare with X. */
12086 if (const_op == 0 && equality_comparison_p
12087 && mode_width <= HOST_BITS_PER_WIDE_INT
12088 && CONST_INT_P (XEXP (op0, 1))
12089 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12090 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12091 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12092 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12093 {
12094 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12095 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12096 if ((~STORE_FLAG_VALUE & mask) == 0
12097 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12098 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12099 && COMPARISON_P (tem))))
12100 {
12101 op0 = XEXP (XEXP (op0, 0), 0);
12102 continue;
12103 }
12104 }
12105
12106 /* If we are doing an equality comparison of an AND of a bit equal
12107 to the sign bit, replace this with a LT or GE comparison of
12108 the underlying value. */
12109 if (equality_comparison_p
12110 && const_op == 0
12111 && CONST_INT_P (XEXP (op0, 1))
12112 && mode_width <= HOST_BITS_PER_WIDE_INT
12113 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12114 == HOST_WIDE_INT_1U << (mode_width - 1)))
12115 {
12116 op0 = XEXP (op0, 0);
12117 code = (code == EQ ? GE : LT);
12118 continue;
12119 }
12120
12121 /* If this AND operation is really a ZERO_EXTEND from a narrower
12122 mode, the constant fits within that mode, and this is either an
12123 equality or unsigned comparison, try to do this comparison in
12124 the narrower mode.
12125
12126 Note that in:
12127
12128 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12129 -> (ne:DI (reg:SI 4) (const_int 0))
12130
12131 unless TRULY_NOOP_TRUNCATION allows it or the register is
12132 known to hold a value of the required mode the
12133 transformation is invalid. */
12134 if ((equality_comparison_p || unsigned_comparison_p)
12135 && CONST_INT_P (XEXP (op0, 1))
12136 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12137 & GET_MODE_MASK (mode))
12138 + 1)) >= 0
12139 && const_op >> i == 0
12140 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
12141 {
12142 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12143 continue;
12144 }
12145
12146 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12147 fits in both M1 and M2 and the SUBREG is either paradoxical
12148 or represents the low part, permute the SUBREG and the AND
12149 and try again. */
12150 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12151 && CONST_INT_P (XEXP (op0, 1)))
12152 {
12153 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12154 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12155 /* Require an integral mode, to avoid creating something like
12156 (AND:SF ...). */
12157 if (SCALAR_INT_MODE_P (tmode)
12158 /* It is unsafe to commute the AND into the SUBREG if the
12159 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12160 not defined. As originally written the upper bits
12161 have a defined value due to the AND operation.
12162 However, if we commute the AND inside the SUBREG then
12163 they no longer have defined values and the meaning of
12164 the code has been changed.
12165 Also C1 should not change value in the smaller mode,
12166 see PR67028 (a positive C1 can become negative in the
12167 smaller mode, so that the AND does no longer mask the
12168 upper bits). */
12169 && ((WORD_REGISTER_OPERATIONS
12170 && mode_width > GET_MODE_PRECISION (tmode)
12171 && mode_width <= BITS_PER_WORD
12172 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12173 || (mode_width <= GET_MODE_PRECISION (tmode)
12174 && subreg_lowpart_p (XEXP (op0, 0))))
12175 && mode_width <= HOST_BITS_PER_WIDE_INT
12176 && HWI_COMPUTABLE_MODE_P (tmode)
12177 && (c1 & ~mask) == 0
12178 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12179 && c1 != mask
12180 && c1 != GET_MODE_MASK (tmode))
12181 {
12182 op0 = simplify_gen_binary (AND, tmode,
12183 SUBREG_REG (XEXP (op0, 0)),
12184 gen_int_mode (c1, tmode));
12185 op0 = gen_lowpart (mode, op0);
12186 continue;
12187 }
12188 }
12189
12190 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12191 if (const_op == 0 && equality_comparison_p
12192 && XEXP (op0, 1) == const1_rtx
12193 && GET_CODE (XEXP (op0, 0)) == NOT)
12194 {
12195 op0 = simplify_and_const_int (NULL_RTX, mode,
12196 XEXP (XEXP (op0, 0), 0), 1);
12197 code = (code == NE ? EQ : NE);
12198 continue;
12199 }
12200
12201 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12202 (eq (and (lshiftrt X) 1) 0).
12203 Also handle the case where (not X) is expressed using xor. */
12204 if (const_op == 0 && equality_comparison_p
12205 && XEXP (op0, 1) == const1_rtx
12206 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12207 {
12208 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12209 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12210
12211 if (GET_CODE (shift_op) == NOT
12212 || (GET_CODE (shift_op) == XOR
12213 && CONST_INT_P (XEXP (shift_op, 1))
12214 && CONST_INT_P (shift_count)
12215 && HWI_COMPUTABLE_MODE_P (mode)
12216 && (UINTVAL (XEXP (shift_op, 1))
12217 == HOST_WIDE_INT_1U
12218 << INTVAL (shift_count))))
12219 {
12220 op0
12221 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12222 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12223 code = (code == NE ? EQ : NE);
12224 continue;
12225 }
12226 }
12227 break;
12228
12229 case ASHIFT:
12230 /* If we have (compare (ashift FOO N) (const_int C)) and
12231 the high order N bits of FOO (N+1 if an inequality comparison)
12232 are known to be zero, we can do this by comparing FOO with C
12233 shifted right N bits so long as the low-order N bits of C are
12234 zero. */
12235 if (CONST_INT_P (XEXP (op0, 1))
12236 && INTVAL (XEXP (op0, 1)) >= 0
12237 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12238 < HOST_BITS_PER_WIDE_INT)
12239 && (((unsigned HOST_WIDE_INT) const_op
12240 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12241 - 1)) == 0)
12242 && mode_width <= HOST_BITS_PER_WIDE_INT
12243 && (nonzero_bits (XEXP (op0, 0), mode)
12244 & ~(mask >> (INTVAL (XEXP (op0, 1))
12245 + ! equality_comparison_p))) == 0)
12246 {
12247 /* We must perform a logical shift, not an arithmetic one,
12248 as we want the top N bits of C to be zero. */
12249 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12250
12251 temp >>= INTVAL (XEXP (op0, 1));
12252 op1 = gen_int_mode (temp, mode);
12253 op0 = XEXP (op0, 0);
12254 continue;
12255 }
12256
12257 /* If we are doing a sign bit comparison, it means we are testing
12258 a particular bit. Convert it to the appropriate AND. */
12259 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12260 && mode_width <= HOST_BITS_PER_WIDE_INT)
12261 {
12262 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12263 (HOST_WIDE_INT_1U
12264 << (mode_width - 1
12265 - INTVAL (XEXP (op0, 1)))));
12266 code = (code == LT ? NE : EQ);
12267 continue;
12268 }
12269
12270 /* If this an equality comparison with zero and we are shifting
12271 the low bit to the sign bit, we can convert this to an AND of the
12272 low-order bit. */
12273 if (const_op == 0 && equality_comparison_p
12274 && CONST_INT_P (XEXP (op0, 1))
12275 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12276 {
12277 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12278 continue;
12279 }
12280 break;
12281
12282 case ASHIFTRT:
12283 /* If this is an equality comparison with zero, we can do this
12284 as a logical shift, which might be much simpler. */
12285 if (equality_comparison_p && const_op == 0
12286 && CONST_INT_P (XEXP (op0, 1)))
12287 {
12288 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12289 XEXP (op0, 0),
12290 INTVAL (XEXP (op0, 1)));
12291 continue;
12292 }
12293
12294 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12295 do the comparison in a narrower mode. */
12296 if (! unsigned_comparison_p
12297 && CONST_INT_P (XEXP (op0, 1))
12298 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12299 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12300 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12301 MODE_INT, 1)) != BLKmode
12302 && (((unsigned HOST_WIDE_INT) const_op
12303 + (GET_MODE_MASK (tmode) >> 1) + 1)
12304 <= GET_MODE_MASK (tmode)))
12305 {
12306 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12307 continue;
12308 }
12309
12310 /* Likewise if OP0 is a PLUS of a sign extension with a
12311 constant, which is usually represented with the PLUS
12312 between the shifts. */
12313 if (! unsigned_comparison_p
12314 && CONST_INT_P (XEXP (op0, 1))
12315 && GET_CODE (XEXP (op0, 0)) == PLUS
12316 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12317 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12318 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12319 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12320 MODE_INT, 1)) != BLKmode
12321 && (((unsigned HOST_WIDE_INT) const_op
12322 + (GET_MODE_MASK (tmode) >> 1) + 1)
12323 <= GET_MODE_MASK (tmode)))
12324 {
12325 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12326 rtx add_const = XEXP (XEXP (op0, 0), 1);
12327 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12328 add_const, XEXP (op0, 1));
12329
12330 op0 = simplify_gen_binary (PLUS, tmode,
12331 gen_lowpart (tmode, inner),
12332 new_const);
12333 continue;
12334 }
12335
12336 /* ... fall through ... */
12337 case LSHIFTRT:
12338 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12339 the low order N bits of FOO are known to be zero, we can do this
12340 by comparing FOO with C shifted left N bits so long as no
12341 overflow occurs. Even if the low order N bits of FOO aren't known
12342 to be zero, if the comparison is >= or < we can use the same
12343 optimization and for > or <= by setting all the low
12344 order N bits in the comparison constant. */
12345 if (CONST_INT_P (XEXP (op0, 1))
12346 && INTVAL (XEXP (op0, 1)) > 0
12347 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12348 && mode_width <= HOST_BITS_PER_WIDE_INT
12349 && (((unsigned HOST_WIDE_INT) const_op
12350 + (GET_CODE (op0) != LSHIFTRT
12351 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12352 + 1)
12353 : 0))
12354 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12355 {
12356 unsigned HOST_WIDE_INT low_bits
12357 = (nonzero_bits (XEXP (op0, 0), mode)
12358 & ((HOST_WIDE_INT_1U
12359 << INTVAL (XEXP (op0, 1))) - 1));
12360 if (low_bits == 0 || !equality_comparison_p)
12361 {
12362 /* If the shift was logical, then we must make the condition
12363 unsigned. */
12364 if (GET_CODE (op0) == LSHIFTRT)
12365 code = unsigned_condition (code);
12366
12367 const_op <<= INTVAL (XEXP (op0, 1));
12368 if (low_bits != 0
12369 && (code == GT || code == GTU
12370 || code == LE || code == LEU))
12371 const_op
12372 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12373 op1 = GEN_INT (const_op);
12374 op0 = XEXP (op0, 0);
12375 continue;
12376 }
12377 }
12378
12379 /* If we are using this shift to extract just the sign bit, we
12380 can replace this with an LT or GE comparison. */
12381 if (const_op == 0
12382 && (equality_comparison_p || sign_bit_comparison_p)
12383 && CONST_INT_P (XEXP (op0, 1))
12384 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12385 {
12386 op0 = XEXP (op0, 0);
12387 code = (code == NE || code == GT ? LT : GE);
12388 continue;
12389 }
12390 break;
12391
12392 default:
12393 break;
12394 }
12395
12396 break;
12397 }
12398
12399 /* Now make any compound operations involved in this comparison. Then,
12400 check for an outmost SUBREG on OP0 that is not doing anything or is
12401 paradoxical. The latter transformation must only be performed when
12402 it is known that the "extra" bits will be the same in op0 and op1 or
12403 that they don't matter. There are three cases to consider:
12404
12405 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12406 care bits and we can assume they have any convenient value. So
12407 making the transformation is safe.
12408
12409 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
12410 In this case the upper bits of op0 are undefined. We should not make
12411 the simplification in that case as we do not know the contents of
12412 those bits.
12413
12414 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
12415 UNKNOWN. In that case we know those bits are zeros or ones. We must
12416 also be sure that they are the same as the upper bits of op1.
12417
12418 We can never remove a SUBREG for a non-equality comparison because
12419 the sign bit is in a different place in the underlying object. */
12420
12421 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
12422 op1 = make_compound_operation (op1, SET);
12423
12424 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12425 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12426 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12427 && (code == NE || code == EQ))
12428 {
12429 if (paradoxical_subreg_p (op0))
12430 {
12431 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12432 implemented. */
12433 if (REG_P (SUBREG_REG (op0)))
12434 {
12435 op0 = SUBREG_REG (op0);
12436 op1 = gen_lowpart (GET_MODE (op0), op1);
12437 }
12438 }
12439 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12440 <= HOST_BITS_PER_WIDE_INT)
12441 && (nonzero_bits (SUBREG_REG (op0),
12442 GET_MODE (SUBREG_REG (op0)))
12443 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12444 {
12445 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12446
12447 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12448 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12449 op0 = SUBREG_REG (op0), op1 = tem;
12450 }
12451 }
12452
12453 /* We now do the opposite procedure: Some machines don't have compare
12454 insns in all modes. If OP0's mode is an integer mode smaller than a
12455 word and we can't do a compare in that mode, see if there is a larger
12456 mode for which we can do the compare. There are a number of cases in
12457 which we can use the wider mode. */
12458
12459 mode = GET_MODE (op0);
12460 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12461 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12462 && ! have_insn_for (COMPARE, mode))
12463 for (tmode = GET_MODE_WIDER_MODE (mode);
12464 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12465 tmode = GET_MODE_WIDER_MODE (tmode))
12466 if (have_insn_for (COMPARE, tmode))
12467 {
12468 int zero_extended;
12469
12470 /* If this is a test for negative, we can make an explicit
12471 test of the sign bit. Test this first so we can use
12472 a paradoxical subreg to extend OP0. */
12473
12474 if (op1 == const0_rtx && (code == LT || code == GE)
12475 && HWI_COMPUTABLE_MODE_P (mode))
12476 {
12477 unsigned HOST_WIDE_INT sign
12478 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12479 op0 = simplify_gen_binary (AND, tmode,
12480 gen_lowpart (tmode, op0),
12481 gen_int_mode (sign, tmode));
12482 code = (code == LT) ? NE : EQ;
12483 break;
12484 }
12485
12486 /* If the only nonzero bits in OP0 and OP1 are those in the
12487 narrower mode and this is an equality or unsigned comparison,
12488 we can use the wider mode. Similarly for sign-extended
12489 values, in which case it is true for all comparisons. */
12490 zero_extended = ((code == EQ || code == NE
12491 || code == GEU || code == GTU
12492 || code == LEU || code == LTU)
12493 && (nonzero_bits (op0, tmode)
12494 & ~GET_MODE_MASK (mode)) == 0
12495 && ((CONST_INT_P (op1)
12496 || (nonzero_bits (op1, tmode)
12497 & ~GET_MODE_MASK (mode)) == 0)));
12498
12499 if (zero_extended
12500 || ((num_sign_bit_copies (op0, tmode)
12501 > (unsigned int) (GET_MODE_PRECISION (tmode)
12502 - GET_MODE_PRECISION (mode)))
12503 && (num_sign_bit_copies (op1, tmode)
12504 > (unsigned int) (GET_MODE_PRECISION (tmode)
12505 - GET_MODE_PRECISION (mode)))))
12506 {
12507 /* If OP0 is an AND and we don't have an AND in MODE either,
12508 make a new AND in the proper mode. */
12509 if (GET_CODE (op0) == AND
12510 && !have_insn_for (AND, mode))
12511 op0 = simplify_gen_binary (AND, tmode,
12512 gen_lowpart (tmode,
12513 XEXP (op0, 0)),
12514 gen_lowpart (tmode,
12515 XEXP (op0, 1)));
12516 else
12517 {
12518 if (zero_extended)
12519 {
12520 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12521 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12522 }
12523 else
12524 {
12525 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12526 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12527 }
12528 break;
12529 }
12530 }
12531 }
12532
12533 /* We may have changed the comparison operands. Re-canonicalize. */
12534 if (swap_commutative_operands_p (op0, op1))
12535 {
12536 std::swap (op0, op1);
12537 code = swap_condition (code);
12538 }
12539
12540 /* If this machine only supports a subset of valid comparisons, see if we
12541 can convert an unsupported one into a supported one. */
12542 target_canonicalize_comparison (&code, &op0, &op1, 0);
12543
12544 *pop0 = op0;
12545 *pop1 = op1;
12546
12547 return code;
12548 }
12549 \f
12550 /* Utility function for record_value_for_reg. Count number of
12551 rtxs in X. */
12552 static int
12553 count_rtxs (rtx x)
12554 {
12555 enum rtx_code code = GET_CODE (x);
12556 const char *fmt;
12557 int i, j, ret = 1;
12558
12559 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12560 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12561 {
12562 rtx x0 = XEXP (x, 0);
12563 rtx x1 = XEXP (x, 1);
12564
12565 if (x0 == x1)
12566 return 1 + 2 * count_rtxs (x0);
12567
12568 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12569 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12570 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12571 return 2 + 2 * count_rtxs (x0)
12572 + count_rtxs (x == XEXP (x1, 0)
12573 ? XEXP (x1, 1) : XEXP (x1, 0));
12574
12575 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12576 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12577 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12578 return 2 + 2 * count_rtxs (x1)
12579 + count_rtxs (x == XEXP (x0, 0)
12580 ? XEXP (x0, 1) : XEXP (x0, 0));
12581 }
12582
12583 fmt = GET_RTX_FORMAT (code);
12584 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12585 if (fmt[i] == 'e')
12586 ret += count_rtxs (XEXP (x, i));
12587 else if (fmt[i] == 'E')
12588 for (j = 0; j < XVECLEN (x, i); j++)
12589 ret += count_rtxs (XVECEXP (x, i, j));
12590
12591 return ret;
12592 }
12593 \f
12594 /* Utility function for following routine. Called when X is part of a value
12595 being stored into last_set_value. Sets last_set_table_tick
12596 for each register mentioned. Similar to mention_regs in cse.c */
12597
12598 static void
12599 update_table_tick (rtx x)
12600 {
12601 enum rtx_code code = GET_CODE (x);
12602 const char *fmt = GET_RTX_FORMAT (code);
12603 int i, j;
12604
12605 if (code == REG)
12606 {
12607 unsigned int regno = REGNO (x);
12608 unsigned int endregno = END_REGNO (x);
12609 unsigned int r;
12610
12611 for (r = regno; r < endregno; r++)
12612 {
12613 reg_stat_type *rsp = &reg_stat[r];
12614 rsp->last_set_table_tick = label_tick;
12615 }
12616
12617 return;
12618 }
12619
12620 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12621 if (fmt[i] == 'e')
12622 {
12623 /* Check for identical subexpressions. If x contains
12624 identical subexpression we only have to traverse one of
12625 them. */
12626 if (i == 0 && ARITHMETIC_P (x))
12627 {
12628 /* Note that at this point x1 has already been
12629 processed. */
12630 rtx x0 = XEXP (x, 0);
12631 rtx x1 = XEXP (x, 1);
12632
12633 /* If x0 and x1 are identical then there is no need to
12634 process x0. */
12635 if (x0 == x1)
12636 break;
12637
12638 /* If x0 is identical to a subexpression of x1 then while
12639 processing x1, x0 has already been processed. Thus we
12640 are done with x. */
12641 if (ARITHMETIC_P (x1)
12642 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12643 break;
12644
12645 /* If x1 is identical to a subexpression of x0 then we
12646 still have to process the rest of x0. */
12647 if (ARITHMETIC_P (x0)
12648 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12649 {
12650 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12651 break;
12652 }
12653 }
12654
12655 update_table_tick (XEXP (x, i));
12656 }
12657 else if (fmt[i] == 'E')
12658 for (j = 0; j < XVECLEN (x, i); j++)
12659 update_table_tick (XVECEXP (x, i, j));
12660 }
12661
12662 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12663 are saying that the register is clobbered and we no longer know its
12664 value. If INSN is zero, don't update reg_stat[].last_set; this is
12665 only permitted with VALUE also zero and is used to invalidate the
12666 register. */
12667
12668 static void
12669 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12670 {
12671 unsigned int regno = REGNO (reg);
12672 unsigned int endregno = END_REGNO (reg);
12673 unsigned int i;
12674 reg_stat_type *rsp;
12675
12676 /* If VALUE contains REG and we have a previous value for REG, substitute
12677 the previous value. */
12678 if (value && insn && reg_overlap_mentioned_p (reg, value))
12679 {
12680 rtx tem;
12681
12682 /* Set things up so get_last_value is allowed to see anything set up to
12683 our insn. */
12684 subst_low_luid = DF_INSN_LUID (insn);
12685 tem = get_last_value (reg);
12686
12687 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12688 it isn't going to be useful and will take a lot of time to process,
12689 so just use the CLOBBER. */
12690
12691 if (tem)
12692 {
12693 if (ARITHMETIC_P (tem)
12694 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12695 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12696 tem = XEXP (tem, 0);
12697 else if (count_occurrences (value, reg, 1) >= 2)
12698 {
12699 /* If there are two or more occurrences of REG in VALUE,
12700 prevent the value from growing too much. */
12701 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12702 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12703 }
12704
12705 value = replace_rtx (copy_rtx (value), reg, tem);
12706 }
12707 }
12708
12709 /* For each register modified, show we don't know its value, that
12710 we don't know about its bitwise content, that its value has been
12711 updated, and that we don't know the location of the death of the
12712 register. */
12713 for (i = regno; i < endregno; i++)
12714 {
12715 rsp = &reg_stat[i];
12716
12717 if (insn)
12718 rsp->last_set = insn;
12719
12720 rsp->last_set_value = 0;
12721 rsp->last_set_mode = VOIDmode;
12722 rsp->last_set_nonzero_bits = 0;
12723 rsp->last_set_sign_bit_copies = 0;
12724 rsp->last_death = 0;
12725 rsp->truncated_to_mode = VOIDmode;
12726 }
12727
12728 /* Mark registers that are being referenced in this value. */
12729 if (value)
12730 update_table_tick (value);
12731
12732 /* Now update the status of each register being set.
12733 If someone is using this register in this block, set this register
12734 to invalid since we will get confused between the two lives in this
12735 basic block. This makes using this register always invalid. In cse, we
12736 scan the table to invalidate all entries using this register, but this
12737 is too much work for us. */
12738
12739 for (i = regno; i < endregno; i++)
12740 {
12741 rsp = &reg_stat[i];
12742 rsp->last_set_label = label_tick;
12743 if (!insn
12744 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12745 rsp->last_set_invalid = 1;
12746 else
12747 rsp->last_set_invalid = 0;
12748 }
12749
12750 /* The value being assigned might refer to X (like in "x++;"). In that
12751 case, we must replace it with (clobber (const_int 0)) to prevent
12752 infinite loops. */
12753 rsp = &reg_stat[regno];
12754 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12755 {
12756 value = copy_rtx (value);
12757 if (!get_last_value_validate (&value, insn, label_tick, 1))
12758 value = 0;
12759 }
12760
12761 /* For the main register being modified, update the value, the mode, the
12762 nonzero bits, and the number of sign bit copies. */
12763
12764 rsp->last_set_value = value;
12765
12766 if (value)
12767 {
12768 machine_mode mode = GET_MODE (reg);
12769 subst_low_luid = DF_INSN_LUID (insn);
12770 rsp->last_set_mode = mode;
12771 if (GET_MODE_CLASS (mode) == MODE_INT
12772 && HWI_COMPUTABLE_MODE_P (mode))
12773 mode = nonzero_bits_mode;
12774 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12775 rsp->last_set_sign_bit_copies
12776 = num_sign_bit_copies (value, GET_MODE (reg));
12777 }
12778 }
12779
12780 /* Called via note_stores from record_dead_and_set_regs to handle one
12781 SET or CLOBBER in an insn. DATA is the instruction in which the
12782 set is occurring. */
12783
12784 static void
12785 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12786 {
12787 rtx_insn *record_dead_insn = (rtx_insn *) data;
12788
12789 if (GET_CODE (dest) == SUBREG)
12790 dest = SUBREG_REG (dest);
12791
12792 if (!record_dead_insn)
12793 {
12794 if (REG_P (dest))
12795 record_value_for_reg (dest, NULL, NULL_RTX);
12796 return;
12797 }
12798
12799 if (REG_P (dest))
12800 {
12801 /* If we are setting the whole register, we know its value. Otherwise
12802 show that we don't know the value. We can handle SUBREG in
12803 some cases. */
12804 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12805 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12806 else if (GET_CODE (setter) == SET
12807 && GET_CODE (SET_DEST (setter)) == SUBREG
12808 && SUBREG_REG (SET_DEST (setter)) == dest
12809 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12810 && subreg_lowpart_p (SET_DEST (setter)))
12811 record_value_for_reg (dest, record_dead_insn,
12812 gen_lowpart (GET_MODE (dest),
12813 SET_SRC (setter)));
12814 else
12815 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12816 }
12817 else if (MEM_P (dest)
12818 /* Ignore pushes, they clobber nothing. */
12819 && ! push_operand (dest, GET_MODE (dest)))
12820 mem_last_set = DF_INSN_LUID (record_dead_insn);
12821 }
12822
12823 /* Update the records of when each REG was most recently set or killed
12824 for the things done by INSN. This is the last thing done in processing
12825 INSN in the combiner loop.
12826
12827 We update reg_stat[], in particular fields last_set, last_set_value,
12828 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12829 last_death, and also the similar information mem_last_set (which insn
12830 most recently modified memory) and last_call_luid (which insn was the
12831 most recent subroutine call). */
12832
12833 static void
12834 record_dead_and_set_regs (rtx_insn *insn)
12835 {
12836 rtx link;
12837 unsigned int i;
12838
12839 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12840 {
12841 if (REG_NOTE_KIND (link) == REG_DEAD
12842 && REG_P (XEXP (link, 0)))
12843 {
12844 unsigned int regno = REGNO (XEXP (link, 0));
12845 unsigned int endregno = END_REGNO (XEXP (link, 0));
12846
12847 for (i = regno; i < endregno; i++)
12848 {
12849 reg_stat_type *rsp;
12850
12851 rsp = &reg_stat[i];
12852 rsp->last_death = insn;
12853 }
12854 }
12855 else if (REG_NOTE_KIND (link) == REG_INC)
12856 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12857 }
12858
12859 if (CALL_P (insn))
12860 {
12861 hard_reg_set_iterator hrsi;
12862 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12863 {
12864 reg_stat_type *rsp;
12865
12866 rsp = &reg_stat[i];
12867 rsp->last_set_invalid = 1;
12868 rsp->last_set = insn;
12869 rsp->last_set_value = 0;
12870 rsp->last_set_mode = VOIDmode;
12871 rsp->last_set_nonzero_bits = 0;
12872 rsp->last_set_sign_bit_copies = 0;
12873 rsp->last_death = 0;
12874 rsp->truncated_to_mode = VOIDmode;
12875 }
12876
12877 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12878
12879 /* We can't combine into a call pattern. Remember, though, that
12880 the return value register is set at this LUID. We could
12881 still replace a register with the return value from the
12882 wrong subroutine call! */
12883 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12884 }
12885 else
12886 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12887 }
12888
12889 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12890 register present in the SUBREG, so for each such SUBREG go back and
12891 adjust nonzero and sign bit information of the registers that are
12892 known to have some zero/sign bits set.
12893
12894 This is needed because when combine blows the SUBREGs away, the
12895 information on zero/sign bits is lost and further combines can be
12896 missed because of that. */
12897
12898 static void
12899 record_promoted_value (rtx_insn *insn, rtx subreg)
12900 {
12901 struct insn_link *links;
12902 rtx set;
12903 unsigned int regno = REGNO (SUBREG_REG (subreg));
12904 machine_mode mode = GET_MODE (subreg);
12905
12906 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12907 return;
12908
12909 for (links = LOG_LINKS (insn); links;)
12910 {
12911 reg_stat_type *rsp;
12912
12913 insn = links->insn;
12914 set = single_set (insn);
12915
12916 if (! set || !REG_P (SET_DEST (set))
12917 || REGNO (SET_DEST (set)) != regno
12918 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12919 {
12920 links = links->next;
12921 continue;
12922 }
12923
12924 rsp = &reg_stat[regno];
12925 if (rsp->last_set == insn)
12926 {
12927 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
12928 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12929 }
12930
12931 if (REG_P (SET_SRC (set)))
12932 {
12933 regno = REGNO (SET_SRC (set));
12934 links = LOG_LINKS (insn);
12935 }
12936 else
12937 break;
12938 }
12939 }
12940
12941 /* Check if X, a register, is known to contain a value already
12942 truncated to MODE. In this case we can use a subreg to refer to
12943 the truncated value even though in the generic case we would need
12944 an explicit truncation. */
12945
12946 static bool
12947 reg_truncated_to_mode (machine_mode mode, const_rtx x)
12948 {
12949 reg_stat_type *rsp = &reg_stat[REGNO (x)];
12950 machine_mode truncated = rsp->truncated_to_mode;
12951
12952 if (truncated == 0
12953 || rsp->truncation_label < label_tick_ebb_start)
12954 return false;
12955 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12956 return true;
12957 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12958 return true;
12959 return false;
12960 }
12961
12962 /* If X is a hard reg or a subreg record the mode that the register is
12963 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
12964 to turn a truncate into a subreg using this information. Return true
12965 if traversing X is complete. */
12966
12967 static bool
12968 record_truncated_value (rtx x)
12969 {
12970 machine_mode truncated_mode;
12971 reg_stat_type *rsp;
12972
12973 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12974 {
12975 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12976 truncated_mode = GET_MODE (x);
12977
12978 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12979 return true;
12980
12981 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12982 return true;
12983
12984 x = SUBREG_REG (x);
12985 }
12986 /* ??? For hard-regs we now record everything. We might be able to
12987 optimize this using last_set_mode. */
12988 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12989 truncated_mode = GET_MODE (x);
12990 else
12991 return false;
12992
12993 rsp = &reg_stat[REGNO (x)];
12994 if (rsp->truncated_to_mode == 0
12995 || rsp->truncation_label < label_tick_ebb_start
12996 || (GET_MODE_SIZE (truncated_mode)
12997 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12998 {
12999 rsp->truncated_to_mode = truncated_mode;
13000 rsp->truncation_label = label_tick;
13001 }
13002
13003 return true;
13004 }
13005
13006 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13007 the modes they are used in. This can help truning TRUNCATEs into
13008 SUBREGs. */
13009
13010 static void
13011 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13012 {
13013 subrtx_var_iterator::array_type array;
13014 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13015 if (record_truncated_value (*iter))
13016 iter.skip_subrtxes ();
13017 }
13018
13019 /* Scan X for promoted SUBREGs. For each one found,
13020 note what it implies to the registers used in it. */
13021
13022 static void
13023 check_promoted_subreg (rtx_insn *insn, rtx x)
13024 {
13025 if (GET_CODE (x) == SUBREG
13026 && SUBREG_PROMOTED_VAR_P (x)
13027 && REG_P (SUBREG_REG (x)))
13028 record_promoted_value (insn, x);
13029 else
13030 {
13031 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13032 int i, j;
13033
13034 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13035 switch (format[i])
13036 {
13037 case 'e':
13038 check_promoted_subreg (insn, XEXP (x, i));
13039 break;
13040 case 'V':
13041 case 'E':
13042 if (XVEC (x, i) != 0)
13043 for (j = 0; j < XVECLEN (x, i); j++)
13044 check_promoted_subreg (insn, XVECEXP (x, i, j));
13045 break;
13046 }
13047 }
13048 }
13049 \f
13050 /* Verify that all the registers and memory references mentioned in *LOC are
13051 still valid. *LOC was part of a value set in INSN when label_tick was
13052 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13053 the invalid references with (clobber (const_int 0)) and return 1. This
13054 replacement is useful because we often can get useful information about
13055 the form of a value (e.g., if it was produced by a shift that always
13056 produces -1 or 0) even though we don't know exactly what registers it
13057 was produced from. */
13058
13059 static int
13060 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13061 {
13062 rtx x = *loc;
13063 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13064 int len = GET_RTX_LENGTH (GET_CODE (x));
13065 int i, j;
13066
13067 if (REG_P (x))
13068 {
13069 unsigned int regno = REGNO (x);
13070 unsigned int endregno = END_REGNO (x);
13071 unsigned int j;
13072
13073 for (j = regno; j < endregno; j++)
13074 {
13075 reg_stat_type *rsp = &reg_stat[j];
13076 if (rsp->last_set_invalid
13077 /* If this is a pseudo-register that was only set once and not
13078 live at the beginning of the function, it is always valid. */
13079 || (! (regno >= FIRST_PSEUDO_REGISTER
13080 && regno < reg_n_sets_max
13081 && REG_N_SETS (regno) == 1
13082 && (!REGNO_REG_SET_P
13083 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13084 regno)))
13085 && rsp->last_set_label > tick))
13086 {
13087 if (replace)
13088 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13089 return replace;
13090 }
13091 }
13092
13093 return 1;
13094 }
13095 /* If this is a memory reference, make sure that there were no stores after
13096 it that might have clobbered the value. We don't have alias info, so we
13097 assume any store invalidates it. Moreover, we only have local UIDs, so
13098 we also assume that there were stores in the intervening basic blocks. */
13099 else if (MEM_P (x) && !MEM_READONLY_P (x)
13100 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13101 {
13102 if (replace)
13103 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13104 return replace;
13105 }
13106
13107 for (i = 0; i < len; i++)
13108 {
13109 if (fmt[i] == 'e')
13110 {
13111 /* Check for identical subexpressions. If x contains
13112 identical subexpression we only have to traverse one of
13113 them. */
13114 if (i == 1 && ARITHMETIC_P (x))
13115 {
13116 /* Note that at this point x0 has already been checked
13117 and found valid. */
13118 rtx x0 = XEXP (x, 0);
13119 rtx x1 = XEXP (x, 1);
13120
13121 /* If x0 and x1 are identical then x is also valid. */
13122 if (x0 == x1)
13123 return 1;
13124
13125 /* If x1 is identical to a subexpression of x0 then
13126 while checking x0, x1 has already been checked. Thus
13127 it is valid and so as x. */
13128 if (ARITHMETIC_P (x0)
13129 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13130 return 1;
13131
13132 /* If x0 is identical to a subexpression of x1 then x is
13133 valid iff the rest of x1 is valid. */
13134 if (ARITHMETIC_P (x1)
13135 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13136 return
13137 get_last_value_validate (&XEXP (x1,
13138 x0 == XEXP (x1, 0) ? 1 : 0),
13139 insn, tick, replace);
13140 }
13141
13142 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13143 replace) == 0)
13144 return 0;
13145 }
13146 else if (fmt[i] == 'E')
13147 for (j = 0; j < XVECLEN (x, i); j++)
13148 if (get_last_value_validate (&XVECEXP (x, i, j),
13149 insn, tick, replace) == 0)
13150 return 0;
13151 }
13152
13153 /* If we haven't found a reason for it to be invalid, it is valid. */
13154 return 1;
13155 }
13156
13157 /* Get the last value assigned to X, if known. Some registers
13158 in the value may be replaced with (clobber (const_int 0)) if their value
13159 is known longer known reliably. */
13160
13161 static rtx
13162 get_last_value (const_rtx x)
13163 {
13164 unsigned int regno;
13165 rtx value;
13166 reg_stat_type *rsp;
13167
13168 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13169 then convert it to the desired mode. If this is a paradoxical SUBREG,
13170 we cannot predict what values the "extra" bits might have. */
13171 if (GET_CODE (x) == SUBREG
13172 && subreg_lowpart_p (x)
13173 && !paradoxical_subreg_p (x)
13174 && (value = get_last_value (SUBREG_REG (x))) != 0)
13175 return gen_lowpart (GET_MODE (x), value);
13176
13177 if (!REG_P (x))
13178 return 0;
13179
13180 regno = REGNO (x);
13181 rsp = &reg_stat[regno];
13182 value = rsp->last_set_value;
13183
13184 /* If we don't have a value, or if it isn't for this basic block and
13185 it's either a hard register, set more than once, or it's a live
13186 at the beginning of the function, return 0.
13187
13188 Because if it's not live at the beginning of the function then the reg
13189 is always set before being used (is never used without being set).
13190 And, if it's set only once, and it's always set before use, then all
13191 uses must have the same last value, even if it's not from this basic
13192 block. */
13193
13194 if (value == 0
13195 || (rsp->last_set_label < label_tick_ebb_start
13196 && (regno < FIRST_PSEUDO_REGISTER
13197 || regno >= reg_n_sets_max
13198 || REG_N_SETS (regno) != 1
13199 || REGNO_REG_SET_P
13200 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13201 return 0;
13202
13203 /* If the value was set in a later insn than the ones we are processing,
13204 we can't use it even if the register was only set once. */
13205 if (rsp->last_set_label == label_tick
13206 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13207 return 0;
13208
13209 /* If the value has all its registers valid, return it. */
13210 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13211 return value;
13212
13213 /* Otherwise, make a copy and replace any invalid register with
13214 (clobber (const_int 0)). If that fails for some reason, return 0. */
13215
13216 value = copy_rtx (value);
13217 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13218 return value;
13219
13220 return 0;
13221 }
13222 \f
13223 /* Return nonzero if expression X refers to a REG or to memory
13224 that is set in an instruction more recent than FROM_LUID. */
13225
13226 static int
13227 use_crosses_set_p (const_rtx x, int from_luid)
13228 {
13229 const char *fmt;
13230 int i;
13231 enum rtx_code code = GET_CODE (x);
13232
13233 if (code == REG)
13234 {
13235 unsigned int regno = REGNO (x);
13236 unsigned endreg = END_REGNO (x);
13237
13238 #ifdef PUSH_ROUNDING
13239 /* Don't allow uses of the stack pointer to be moved,
13240 because we don't know whether the move crosses a push insn. */
13241 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13242 return 1;
13243 #endif
13244 for (; regno < endreg; regno++)
13245 {
13246 reg_stat_type *rsp = &reg_stat[regno];
13247 if (rsp->last_set
13248 && rsp->last_set_label == label_tick
13249 && DF_INSN_LUID (rsp->last_set) > from_luid)
13250 return 1;
13251 }
13252 return 0;
13253 }
13254
13255 if (code == MEM && mem_last_set > from_luid)
13256 return 1;
13257
13258 fmt = GET_RTX_FORMAT (code);
13259
13260 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13261 {
13262 if (fmt[i] == 'E')
13263 {
13264 int j;
13265 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13266 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13267 return 1;
13268 }
13269 else if (fmt[i] == 'e'
13270 && use_crosses_set_p (XEXP (x, i), from_luid))
13271 return 1;
13272 }
13273 return 0;
13274 }
13275 \f
13276 /* Define three variables used for communication between the following
13277 routines. */
13278
13279 static unsigned int reg_dead_regno, reg_dead_endregno;
13280 static int reg_dead_flag;
13281
13282 /* Function called via note_stores from reg_dead_at_p.
13283
13284 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13285 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13286
13287 static void
13288 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13289 {
13290 unsigned int regno, endregno;
13291
13292 if (!REG_P (dest))
13293 return;
13294
13295 regno = REGNO (dest);
13296 endregno = END_REGNO (dest);
13297 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13298 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13299 }
13300
13301 /* Return nonzero if REG is known to be dead at INSN.
13302
13303 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13304 referencing REG, it is dead. If we hit a SET referencing REG, it is
13305 live. Otherwise, see if it is live or dead at the start of the basic
13306 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13307 must be assumed to be always live. */
13308
13309 static int
13310 reg_dead_at_p (rtx reg, rtx_insn *insn)
13311 {
13312 basic_block block;
13313 unsigned int i;
13314
13315 /* Set variables for reg_dead_at_p_1. */
13316 reg_dead_regno = REGNO (reg);
13317 reg_dead_endregno = END_REGNO (reg);
13318
13319 reg_dead_flag = 0;
13320
13321 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13322 we allow the machine description to decide whether use-and-clobber
13323 patterns are OK. */
13324 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13325 {
13326 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13327 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13328 return 0;
13329 }
13330
13331 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13332 beginning of basic block. */
13333 block = BLOCK_FOR_INSN (insn);
13334 for (;;)
13335 {
13336 if (INSN_P (insn))
13337 {
13338 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13339 return 1;
13340
13341 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13342 if (reg_dead_flag)
13343 return reg_dead_flag == 1 ? 1 : 0;
13344
13345 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13346 return 1;
13347 }
13348
13349 if (insn == BB_HEAD (block))
13350 break;
13351
13352 insn = PREV_INSN (insn);
13353 }
13354
13355 /* Look at live-in sets for the basic block that we were in. */
13356 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13357 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13358 return 0;
13359
13360 return 1;
13361 }
13362 \f
13363 /* Note hard registers in X that are used. */
13364
13365 static void
13366 mark_used_regs_combine (rtx x)
13367 {
13368 RTX_CODE code = GET_CODE (x);
13369 unsigned int regno;
13370 int i;
13371
13372 switch (code)
13373 {
13374 case LABEL_REF:
13375 case SYMBOL_REF:
13376 case CONST:
13377 CASE_CONST_ANY:
13378 case PC:
13379 case ADDR_VEC:
13380 case ADDR_DIFF_VEC:
13381 case ASM_INPUT:
13382 /* CC0 must die in the insn after it is set, so we don't need to take
13383 special note of it here. */
13384 case CC0:
13385 return;
13386
13387 case CLOBBER:
13388 /* If we are clobbering a MEM, mark any hard registers inside the
13389 address as used. */
13390 if (MEM_P (XEXP (x, 0)))
13391 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13392 return;
13393
13394 case REG:
13395 regno = REGNO (x);
13396 /* A hard reg in a wide mode may really be multiple registers.
13397 If so, mark all of them just like the first. */
13398 if (regno < FIRST_PSEUDO_REGISTER)
13399 {
13400 /* None of this applies to the stack, frame or arg pointers. */
13401 if (regno == STACK_POINTER_REGNUM
13402 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13403 && regno == HARD_FRAME_POINTER_REGNUM)
13404 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13405 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13406 || regno == FRAME_POINTER_REGNUM)
13407 return;
13408
13409 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13410 }
13411 return;
13412
13413 case SET:
13414 {
13415 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13416 the address. */
13417 rtx testreg = SET_DEST (x);
13418
13419 while (GET_CODE (testreg) == SUBREG
13420 || GET_CODE (testreg) == ZERO_EXTRACT
13421 || GET_CODE (testreg) == STRICT_LOW_PART)
13422 testreg = XEXP (testreg, 0);
13423
13424 if (MEM_P (testreg))
13425 mark_used_regs_combine (XEXP (testreg, 0));
13426
13427 mark_used_regs_combine (SET_SRC (x));
13428 }
13429 return;
13430
13431 default:
13432 break;
13433 }
13434
13435 /* Recursively scan the operands of this expression. */
13436
13437 {
13438 const char *fmt = GET_RTX_FORMAT (code);
13439
13440 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13441 {
13442 if (fmt[i] == 'e')
13443 mark_used_regs_combine (XEXP (x, i));
13444 else if (fmt[i] == 'E')
13445 {
13446 int j;
13447
13448 for (j = 0; j < XVECLEN (x, i); j++)
13449 mark_used_regs_combine (XVECEXP (x, i, j));
13450 }
13451 }
13452 }
13453 }
13454 \f
13455 /* Remove register number REGNO from the dead registers list of INSN.
13456
13457 Return the note used to record the death, if there was one. */
13458
13459 rtx
13460 remove_death (unsigned int regno, rtx_insn *insn)
13461 {
13462 rtx note = find_regno_note (insn, REG_DEAD, regno);
13463
13464 if (note)
13465 remove_note (insn, note);
13466
13467 return note;
13468 }
13469
13470 /* For each register (hardware or pseudo) used within expression X, if its
13471 death is in an instruction with luid between FROM_LUID (inclusive) and
13472 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13473 list headed by PNOTES.
13474
13475 That said, don't move registers killed by maybe_kill_insn.
13476
13477 This is done when X is being merged by combination into TO_INSN. These
13478 notes will then be distributed as needed. */
13479
13480 static void
13481 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13482 rtx *pnotes)
13483 {
13484 const char *fmt;
13485 int len, i;
13486 enum rtx_code code = GET_CODE (x);
13487
13488 if (code == REG)
13489 {
13490 unsigned int regno = REGNO (x);
13491 rtx_insn *where_dead = reg_stat[regno].last_death;
13492
13493 /* Don't move the register if it gets killed in between from and to. */
13494 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13495 && ! reg_referenced_p (x, maybe_kill_insn))
13496 return;
13497
13498 if (where_dead
13499 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13500 && DF_INSN_LUID (where_dead) >= from_luid
13501 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13502 {
13503 rtx note = remove_death (regno, where_dead);
13504
13505 /* It is possible for the call above to return 0. This can occur
13506 when last_death points to I2 or I1 that we combined with.
13507 In that case make a new note.
13508
13509 We must also check for the case where X is a hard register
13510 and NOTE is a death note for a range of hard registers
13511 including X. In that case, we must put REG_DEAD notes for
13512 the remaining registers in place of NOTE. */
13513
13514 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13515 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13516 > GET_MODE_SIZE (GET_MODE (x))))
13517 {
13518 unsigned int deadregno = REGNO (XEXP (note, 0));
13519 unsigned int deadend = END_REGNO (XEXP (note, 0));
13520 unsigned int ourend = END_REGNO (x);
13521 unsigned int i;
13522
13523 for (i = deadregno; i < deadend; i++)
13524 if (i < regno || i >= ourend)
13525 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13526 }
13527
13528 /* If we didn't find any note, or if we found a REG_DEAD note that
13529 covers only part of the given reg, and we have a multi-reg hard
13530 register, then to be safe we must check for REG_DEAD notes
13531 for each register other than the first. They could have
13532 their own REG_DEAD notes lying around. */
13533 else if ((note == 0
13534 || (note != 0
13535 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13536 < GET_MODE_SIZE (GET_MODE (x)))))
13537 && regno < FIRST_PSEUDO_REGISTER
13538 && REG_NREGS (x) > 1)
13539 {
13540 unsigned int ourend = END_REGNO (x);
13541 unsigned int i, offset;
13542 rtx oldnotes = 0;
13543
13544 if (note)
13545 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13546 else
13547 offset = 1;
13548
13549 for (i = regno + offset; i < ourend; i++)
13550 move_deaths (regno_reg_rtx[i],
13551 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13552 }
13553
13554 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13555 {
13556 XEXP (note, 1) = *pnotes;
13557 *pnotes = note;
13558 }
13559 else
13560 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13561 }
13562
13563 return;
13564 }
13565
13566 else if (GET_CODE (x) == SET)
13567 {
13568 rtx dest = SET_DEST (x);
13569
13570 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13571
13572 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13573 that accesses one word of a multi-word item, some
13574 piece of everything register in the expression is used by
13575 this insn, so remove any old death. */
13576 /* ??? So why do we test for equality of the sizes? */
13577
13578 if (GET_CODE (dest) == ZERO_EXTRACT
13579 || GET_CODE (dest) == STRICT_LOW_PART
13580 || (GET_CODE (dest) == SUBREG
13581 && (((GET_MODE_SIZE (GET_MODE (dest))
13582 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13583 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13584 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13585 {
13586 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13587 return;
13588 }
13589
13590 /* If this is some other SUBREG, we know it replaces the entire
13591 value, so use that as the destination. */
13592 if (GET_CODE (dest) == SUBREG)
13593 dest = SUBREG_REG (dest);
13594
13595 /* If this is a MEM, adjust deaths of anything used in the address.
13596 For a REG (the only other possibility), the entire value is
13597 being replaced so the old value is not used in this insn. */
13598
13599 if (MEM_P (dest))
13600 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13601 to_insn, pnotes);
13602 return;
13603 }
13604
13605 else if (GET_CODE (x) == CLOBBER)
13606 return;
13607
13608 len = GET_RTX_LENGTH (code);
13609 fmt = GET_RTX_FORMAT (code);
13610
13611 for (i = 0; i < len; i++)
13612 {
13613 if (fmt[i] == 'E')
13614 {
13615 int j;
13616 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13617 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13618 to_insn, pnotes);
13619 }
13620 else if (fmt[i] == 'e')
13621 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13622 }
13623 }
13624 \f
13625 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13626 pattern of an insn. X must be a REG. */
13627
13628 static int
13629 reg_bitfield_target_p (rtx x, rtx body)
13630 {
13631 int i;
13632
13633 if (GET_CODE (body) == SET)
13634 {
13635 rtx dest = SET_DEST (body);
13636 rtx target;
13637 unsigned int regno, tregno, endregno, endtregno;
13638
13639 if (GET_CODE (dest) == ZERO_EXTRACT)
13640 target = XEXP (dest, 0);
13641 else if (GET_CODE (dest) == STRICT_LOW_PART)
13642 target = SUBREG_REG (XEXP (dest, 0));
13643 else
13644 return 0;
13645
13646 if (GET_CODE (target) == SUBREG)
13647 target = SUBREG_REG (target);
13648
13649 if (!REG_P (target))
13650 return 0;
13651
13652 tregno = REGNO (target), regno = REGNO (x);
13653 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13654 return target == x;
13655
13656 endtregno = end_hard_regno (GET_MODE (target), tregno);
13657 endregno = end_hard_regno (GET_MODE (x), regno);
13658
13659 return endregno > tregno && regno < endtregno;
13660 }
13661
13662 else if (GET_CODE (body) == PARALLEL)
13663 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13664 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13665 return 1;
13666
13667 return 0;
13668 }
13669 \f
13670 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13671 as appropriate. I3 and I2 are the insns resulting from the combination
13672 insns including FROM (I2 may be zero).
13673
13674 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13675 not need REG_DEAD notes because they are being substituted for. This
13676 saves searching in the most common cases.
13677
13678 Each note in the list is either ignored or placed on some insns, depending
13679 on the type of note. */
13680
13681 static void
13682 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13683 rtx elim_i2, rtx elim_i1, rtx elim_i0)
13684 {
13685 rtx note, next_note;
13686 rtx tem_note;
13687 rtx_insn *tem_insn;
13688
13689 for (note = notes; note; note = next_note)
13690 {
13691 rtx_insn *place = 0, *place2 = 0;
13692
13693 next_note = XEXP (note, 1);
13694 switch (REG_NOTE_KIND (note))
13695 {
13696 case REG_BR_PROB:
13697 case REG_BR_PRED:
13698 /* Doesn't matter much where we put this, as long as it's somewhere.
13699 It is preferable to keep these notes on branches, which is most
13700 likely to be i3. */
13701 place = i3;
13702 break;
13703
13704 case REG_NON_LOCAL_GOTO:
13705 if (JUMP_P (i3))
13706 place = i3;
13707 else
13708 {
13709 gcc_assert (i2 && JUMP_P (i2));
13710 place = i2;
13711 }
13712 break;
13713
13714 case REG_EH_REGION:
13715 /* These notes must remain with the call or trapping instruction. */
13716 if (CALL_P (i3))
13717 place = i3;
13718 else if (i2 && CALL_P (i2))
13719 place = i2;
13720 else
13721 {
13722 gcc_assert (cfun->can_throw_non_call_exceptions);
13723 if (may_trap_p (i3))
13724 place = i3;
13725 else if (i2 && may_trap_p (i2))
13726 place = i2;
13727 /* ??? Otherwise assume we've combined things such that we
13728 can now prove that the instructions can't trap. Drop the
13729 note in this case. */
13730 }
13731 break;
13732
13733 case REG_ARGS_SIZE:
13734 /* ??? How to distribute between i3-i1. Assume i3 contains the
13735 entire adjustment. Assert i3 contains at least some adjust. */
13736 if (!noop_move_p (i3))
13737 {
13738 int old_size, args_size = INTVAL (XEXP (note, 0));
13739 /* fixup_args_size_notes looks at REG_NORETURN note,
13740 so ensure the note is placed there first. */
13741 if (CALL_P (i3))
13742 {
13743 rtx *np;
13744 for (np = &next_note; *np; np = &XEXP (*np, 1))
13745 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13746 {
13747 rtx n = *np;
13748 *np = XEXP (n, 1);
13749 XEXP (n, 1) = REG_NOTES (i3);
13750 REG_NOTES (i3) = n;
13751 break;
13752 }
13753 }
13754 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13755 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13756 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13757 gcc_assert (old_size != args_size
13758 || (CALL_P (i3)
13759 && !ACCUMULATE_OUTGOING_ARGS
13760 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13761 }
13762 break;
13763
13764 case REG_NORETURN:
13765 case REG_SETJMP:
13766 case REG_TM:
13767 case REG_CALL_DECL:
13768 /* These notes must remain with the call. It should not be
13769 possible for both I2 and I3 to be a call. */
13770 if (CALL_P (i3))
13771 place = i3;
13772 else
13773 {
13774 gcc_assert (i2 && CALL_P (i2));
13775 place = i2;
13776 }
13777 break;
13778
13779 case REG_UNUSED:
13780 /* Any clobbers for i3 may still exist, and so we must process
13781 REG_UNUSED notes from that insn.
13782
13783 Any clobbers from i2 or i1 can only exist if they were added by
13784 recog_for_combine. In that case, recog_for_combine created the
13785 necessary REG_UNUSED notes. Trying to keep any original
13786 REG_UNUSED notes from these insns can cause incorrect output
13787 if it is for the same register as the original i3 dest.
13788 In that case, we will notice that the register is set in i3,
13789 and then add a REG_UNUSED note for the destination of i3, which
13790 is wrong. However, it is possible to have REG_UNUSED notes from
13791 i2 or i1 for register which were both used and clobbered, so
13792 we keep notes from i2 or i1 if they will turn into REG_DEAD
13793 notes. */
13794
13795 /* If this register is set or clobbered in I3, put the note there
13796 unless there is one already. */
13797 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13798 {
13799 if (from_insn != i3)
13800 break;
13801
13802 if (! (REG_P (XEXP (note, 0))
13803 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13804 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13805 place = i3;
13806 }
13807 /* Otherwise, if this register is used by I3, then this register
13808 now dies here, so we must put a REG_DEAD note here unless there
13809 is one already. */
13810 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13811 && ! (REG_P (XEXP (note, 0))
13812 ? find_regno_note (i3, REG_DEAD,
13813 REGNO (XEXP (note, 0)))
13814 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13815 {
13816 PUT_REG_NOTE_KIND (note, REG_DEAD);
13817 place = i3;
13818 }
13819 break;
13820
13821 case REG_EQUAL:
13822 case REG_EQUIV:
13823 case REG_NOALIAS:
13824 /* These notes say something about results of an insn. We can
13825 only support them if they used to be on I3 in which case they
13826 remain on I3. Otherwise they are ignored.
13827
13828 If the note refers to an expression that is not a constant, we
13829 must also ignore the note since we cannot tell whether the
13830 equivalence is still true. It might be possible to do
13831 slightly better than this (we only have a problem if I2DEST
13832 or I1DEST is present in the expression), but it doesn't
13833 seem worth the trouble. */
13834
13835 if (from_insn == i3
13836 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13837 place = i3;
13838 break;
13839
13840 case REG_INC:
13841 /* These notes say something about how a register is used. They must
13842 be present on any use of the register in I2 or I3. */
13843 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13844 place = i3;
13845
13846 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13847 {
13848 if (place)
13849 place2 = i2;
13850 else
13851 place = i2;
13852 }
13853 break;
13854
13855 case REG_LABEL_TARGET:
13856 case REG_LABEL_OPERAND:
13857 /* This can show up in several ways -- either directly in the
13858 pattern, or hidden off in the constant pool with (or without?)
13859 a REG_EQUAL note. */
13860 /* ??? Ignore the without-reg_equal-note problem for now. */
13861 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13862 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13863 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13864 && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0)))
13865 place = i3;
13866
13867 if (i2
13868 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13869 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13870 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13871 && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0))))
13872 {
13873 if (place)
13874 place2 = i2;
13875 else
13876 place = i2;
13877 }
13878
13879 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13880 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13881 there. */
13882 if (place && JUMP_P (place)
13883 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13884 && (JUMP_LABEL (place) == NULL
13885 || JUMP_LABEL (place) == XEXP (note, 0)))
13886 {
13887 rtx label = JUMP_LABEL (place);
13888
13889 if (!label)
13890 JUMP_LABEL (place) = XEXP (note, 0);
13891 else if (LABEL_P (label))
13892 LABEL_NUSES (label)--;
13893 }
13894
13895 if (place2 && JUMP_P (place2)
13896 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13897 && (JUMP_LABEL (place2) == NULL
13898 || JUMP_LABEL (place2) == XEXP (note, 0)))
13899 {
13900 rtx label = JUMP_LABEL (place2);
13901
13902 if (!label)
13903 JUMP_LABEL (place2) = XEXP (note, 0);
13904 else if (LABEL_P (label))
13905 LABEL_NUSES (label)--;
13906 place2 = 0;
13907 }
13908 break;
13909
13910 case REG_NONNEG:
13911 /* This note says something about the value of a register prior
13912 to the execution of an insn. It is too much trouble to see
13913 if the note is still correct in all situations. It is better
13914 to simply delete it. */
13915 break;
13916
13917 case REG_DEAD:
13918 /* If we replaced the right hand side of FROM_INSN with a
13919 REG_EQUAL note, the original use of the dying register
13920 will not have been combined into I3 and I2. In such cases,
13921 FROM_INSN is guaranteed to be the first of the combined
13922 instructions, so we simply need to search back before
13923 FROM_INSN for the previous use or set of this register,
13924 then alter the notes there appropriately.
13925
13926 If the register is used as an input in I3, it dies there.
13927 Similarly for I2, if it is nonzero and adjacent to I3.
13928
13929 If the register is not used as an input in either I3 or I2
13930 and it is not one of the registers we were supposed to eliminate,
13931 there are two possibilities. We might have a non-adjacent I2
13932 or we might have somehow eliminated an additional register
13933 from a computation. For example, we might have had A & B where
13934 we discover that B will always be zero. In this case we will
13935 eliminate the reference to A.
13936
13937 In both cases, we must search to see if we can find a previous
13938 use of A and put the death note there. */
13939
13940 if (from_insn
13941 && from_insn == i2mod
13942 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13943 tem_insn = from_insn;
13944 else
13945 {
13946 if (from_insn
13947 && CALL_P (from_insn)
13948 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13949 place = from_insn;
13950 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13951 place = i3;
13952 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13953 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13954 place = i2;
13955 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13956 && !(i2mod
13957 && reg_overlap_mentioned_p (XEXP (note, 0),
13958 i2mod_old_rhs)))
13959 || rtx_equal_p (XEXP (note, 0), elim_i1)
13960 || rtx_equal_p (XEXP (note, 0), elim_i0))
13961 break;
13962 tem_insn = i3;
13963 /* If the new I2 sets the same register that is marked dead
13964 in the note, we do not know where to put the note.
13965 Give up. */
13966 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
13967 break;
13968 }
13969
13970 if (place == 0)
13971 {
13972 basic_block bb = this_basic_block;
13973
13974 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
13975 {
13976 if (!NONDEBUG_INSN_P (tem_insn))
13977 {
13978 if (tem_insn == BB_HEAD (bb))
13979 break;
13980 continue;
13981 }
13982
13983 /* If the register is being set at TEM_INSN, see if that is all
13984 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
13985 into a REG_UNUSED note instead. Don't delete sets to
13986 global register vars. */
13987 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13988 || !global_regs[REGNO (XEXP (note, 0))])
13989 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
13990 {
13991 rtx set = single_set (tem_insn);
13992 rtx inner_dest = 0;
13993 rtx_insn *cc0_setter = NULL;
13994
13995 if (set != 0)
13996 for (inner_dest = SET_DEST (set);
13997 (GET_CODE (inner_dest) == STRICT_LOW_PART
13998 || GET_CODE (inner_dest) == SUBREG
13999 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14000 inner_dest = XEXP (inner_dest, 0))
14001 ;
14002
14003 /* Verify that it was the set, and not a clobber that
14004 modified the register.
14005
14006 CC0 targets must be careful to maintain setter/user
14007 pairs. If we cannot delete the setter due to side
14008 effects, mark the user with an UNUSED note instead
14009 of deleting it. */
14010
14011 if (set != 0 && ! side_effects_p (SET_SRC (set))
14012 && rtx_equal_p (XEXP (note, 0), inner_dest)
14013 && (!HAVE_cc0
14014 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14015 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14016 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14017 {
14018 /* Move the notes and links of TEM_INSN elsewhere.
14019 This might delete other dead insns recursively.
14020 First set the pattern to something that won't use
14021 any register. */
14022 rtx old_notes = REG_NOTES (tem_insn);
14023
14024 PATTERN (tem_insn) = pc_rtx;
14025 REG_NOTES (tem_insn) = NULL;
14026
14027 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14028 NULL_RTX, NULL_RTX, NULL_RTX);
14029 distribute_links (LOG_LINKS (tem_insn));
14030
14031 SET_INSN_DELETED (tem_insn);
14032 if (tem_insn == i2)
14033 i2 = NULL;
14034
14035 /* Delete the setter too. */
14036 if (cc0_setter)
14037 {
14038 PATTERN (cc0_setter) = pc_rtx;
14039 old_notes = REG_NOTES (cc0_setter);
14040 REG_NOTES (cc0_setter) = NULL;
14041
14042 distribute_notes (old_notes, cc0_setter,
14043 cc0_setter, NULL,
14044 NULL_RTX, NULL_RTX, NULL_RTX);
14045 distribute_links (LOG_LINKS (cc0_setter));
14046
14047 SET_INSN_DELETED (cc0_setter);
14048 if (cc0_setter == i2)
14049 i2 = NULL;
14050 }
14051 }
14052 else
14053 {
14054 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14055
14056 /* If there isn't already a REG_UNUSED note, put one
14057 here. Do not place a REG_DEAD note, even if
14058 the register is also used here; that would not
14059 match the algorithm used in lifetime analysis
14060 and can cause the consistency check in the
14061 scheduler to fail. */
14062 if (! find_regno_note (tem_insn, REG_UNUSED,
14063 REGNO (XEXP (note, 0))))
14064 place = tem_insn;
14065 break;
14066 }
14067 }
14068 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14069 || (CALL_P (tem_insn)
14070 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14071 {
14072 place = tem_insn;
14073
14074 /* If we are doing a 3->2 combination, and we have a
14075 register which formerly died in i3 and was not used
14076 by i2, which now no longer dies in i3 and is used in
14077 i2 but does not die in i2, and place is between i2
14078 and i3, then we may need to move a link from place to
14079 i2. */
14080 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14081 && from_insn
14082 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14083 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14084 {
14085 struct insn_link *links = LOG_LINKS (place);
14086 LOG_LINKS (place) = NULL;
14087 distribute_links (links);
14088 }
14089 break;
14090 }
14091
14092 if (tem_insn == BB_HEAD (bb))
14093 break;
14094 }
14095
14096 }
14097
14098 /* If the register is set or already dead at PLACE, we needn't do
14099 anything with this note if it is still a REG_DEAD note.
14100 We check here if it is set at all, not if is it totally replaced,
14101 which is what `dead_or_set_p' checks, so also check for it being
14102 set partially. */
14103
14104 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14105 {
14106 unsigned int regno = REGNO (XEXP (note, 0));
14107 reg_stat_type *rsp = &reg_stat[regno];
14108
14109 if (dead_or_set_p (place, XEXP (note, 0))
14110 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14111 {
14112 /* Unless the register previously died in PLACE, clear
14113 last_death. [I no longer understand why this is
14114 being done.] */
14115 if (rsp->last_death != place)
14116 rsp->last_death = 0;
14117 place = 0;
14118 }
14119 else
14120 rsp->last_death = place;
14121
14122 /* If this is a death note for a hard reg that is occupying
14123 multiple registers, ensure that we are still using all
14124 parts of the object. If we find a piece of the object
14125 that is unused, we must arrange for an appropriate REG_DEAD
14126 note to be added for it. However, we can't just emit a USE
14127 and tag the note to it, since the register might actually
14128 be dead; so we recourse, and the recursive call then finds
14129 the previous insn that used this register. */
14130
14131 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14132 {
14133 unsigned int endregno = END_REGNO (XEXP (note, 0));
14134 bool all_used = true;
14135 unsigned int i;
14136
14137 for (i = regno; i < endregno; i++)
14138 if ((! refers_to_regno_p (i, PATTERN (place))
14139 && ! find_regno_fusage (place, USE, i))
14140 || dead_or_set_regno_p (place, i))
14141 {
14142 all_used = false;
14143 break;
14144 }
14145
14146 if (! all_used)
14147 {
14148 /* Put only REG_DEAD notes for pieces that are
14149 not already dead or set. */
14150
14151 for (i = regno; i < endregno;
14152 i += hard_regno_nregs[i][reg_raw_mode[i]])
14153 {
14154 rtx piece = regno_reg_rtx[i];
14155 basic_block bb = this_basic_block;
14156
14157 if (! dead_or_set_p (place, piece)
14158 && ! reg_bitfield_target_p (piece,
14159 PATTERN (place)))
14160 {
14161 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14162 NULL_RTX);
14163
14164 distribute_notes (new_note, place, place,
14165 NULL, NULL_RTX, NULL_RTX,
14166 NULL_RTX);
14167 }
14168 else if (! refers_to_regno_p (i, PATTERN (place))
14169 && ! find_regno_fusage (place, USE, i))
14170 for (tem_insn = PREV_INSN (place); ;
14171 tem_insn = PREV_INSN (tem_insn))
14172 {
14173 if (!NONDEBUG_INSN_P (tem_insn))
14174 {
14175 if (tem_insn == BB_HEAD (bb))
14176 break;
14177 continue;
14178 }
14179 if (dead_or_set_p (tem_insn, piece)
14180 || reg_bitfield_target_p (piece,
14181 PATTERN (tem_insn)))
14182 {
14183 add_reg_note (tem_insn, REG_UNUSED, piece);
14184 break;
14185 }
14186 }
14187 }
14188
14189 place = 0;
14190 }
14191 }
14192 }
14193 break;
14194
14195 default:
14196 /* Any other notes should not be present at this point in the
14197 compilation. */
14198 gcc_unreachable ();
14199 }
14200
14201 if (place)
14202 {
14203 XEXP (note, 1) = REG_NOTES (place);
14204 REG_NOTES (place) = note;
14205 }
14206
14207 if (place2)
14208 add_shallow_copy_of_reg_note (place2, note);
14209 }
14210 }
14211 \f
14212 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14213 I3, I2, and I1 to new locations. This is also called to add a link
14214 pointing at I3 when I3's destination is changed. */
14215
14216 static void
14217 distribute_links (struct insn_link *links)
14218 {
14219 struct insn_link *link, *next_link;
14220
14221 for (link = links; link; link = next_link)
14222 {
14223 rtx_insn *place = 0;
14224 rtx_insn *insn;
14225 rtx set, reg;
14226
14227 next_link = link->next;
14228
14229 /* If the insn that this link points to is a NOTE, ignore it. */
14230 if (NOTE_P (link->insn))
14231 continue;
14232
14233 set = 0;
14234 rtx pat = PATTERN (link->insn);
14235 if (GET_CODE (pat) == SET)
14236 set = pat;
14237 else if (GET_CODE (pat) == PARALLEL)
14238 {
14239 int i;
14240 for (i = 0; i < XVECLEN (pat, 0); i++)
14241 {
14242 set = XVECEXP (pat, 0, i);
14243 if (GET_CODE (set) != SET)
14244 continue;
14245
14246 reg = SET_DEST (set);
14247 while (GET_CODE (reg) == ZERO_EXTRACT
14248 || GET_CODE (reg) == STRICT_LOW_PART
14249 || GET_CODE (reg) == SUBREG)
14250 reg = XEXP (reg, 0);
14251
14252 if (!REG_P (reg))
14253 continue;
14254
14255 if (REGNO (reg) == link->regno)
14256 break;
14257 }
14258 if (i == XVECLEN (pat, 0))
14259 continue;
14260 }
14261 else
14262 continue;
14263
14264 reg = SET_DEST (set);
14265
14266 while (GET_CODE (reg) == ZERO_EXTRACT
14267 || GET_CODE (reg) == STRICT_LOW_PART
14268 || GET_CODE (reg) == SUBREG)
14269 reg = XEXP (reg, 0);
14270
14271 /* A LOG_LINK is defined as being placed on the first insn that uses
14272 a register and points to the insn that sets the register. Start
14273 searching at the next insn after the target of the link and stop
14274 when we reach a set of the register or the end of the basic block.
14275
14276 Note that this correctly handles the link that used to point from
14277 I3 to I2. Also note that not much searching is typically done here
14278 since most links don't point very far away. */
14279
14280 for (insn = NEXT_INSN (link->insn);
14281 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14282 || BB_HEAD (this_basic_block->next_bb) != insn));
14283 insn = NEXT_INSN (insn))
14284 if (DEBUG_INSN_P (insn))
14285 continue;
14286 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14287 {
14288 if (reg_referenced_p (reg, PATTERN (insn)))
14289 place = insn;
14290 break;
14291 }
14292 else if (CALL_P (insn)
14293 && find_reg_fusage (insn, USE, reg))
14294 {
14295 place = insn;
14296 break;
14297 }
14298 else if (INSN_P (insn) && reg_set_p (reg, insn))
14299 break;
14300
14301 /* If we found a place to put the link, place it there unless there
14302 is already a link to the same insn as LINK at that point. */
14303
14304 if (place)
14305 {
14306 struct insn_link *link2;
14307
14308 FOR_EACH_LOG_LINK (link2, place)
14309 if (link2->insn == link->insn && link2->regno == link->regno)
14310 break;
14311
14312 if (link2 == NULL)
14313 {
14314 link->next = LOG_LINKS (place);
14315 LOG_LINKS (place) = link;
14316
14317 /* Set added_links_insn to the earliest insn we added a
14318 link to. */
14319 if (added_links_insn == 0
14320 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14321 added_links_insn = place;
14322 }
14323 }
14324 }
14325 }
14326 \f
14327 /* Check for any register or memory mentioned in EQUIV that is not
14328 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14329 of EXPR where some registers may have been replaced by constants. */
14330
14331 static bool
14332 unmentioned_reg_p (rtx equiv, rtx expr)
14333 {
14334 subrtx_iterator::array_type array;
14335 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14336 {
14337 const_rtx x = *iter;
14338 if ((REG_P (x) || MEM_P (x))
14339 && !reg_mentioned_p (x, expr))
14340 return true;
14341 }
14342 return false;
14343 }
14344 \f
14345 DEBUG_FUNCTION void
14346 dump_combine_stats (FILE *file)
14347 {
14348 fprintf
14349 (file,
14350 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14351 combine_attempts, combine_merges, combine_extras, combine_successes);
14352 }
14353
14354 void
14355 dump_combine_total_stats (FILE *file)
14356 {
14357 fprintf
14358 (file,
14359 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14360 total_attempts, total_merges, total_extras, total_successes);
14361 }
14362 \f
14363 /* Try combining insns through substitution. */
14364 static unsigned int
14365 rest_of_handle_combine (void)
14366 {
14367 int rebuild_jump_labels_after_combine;
14368
14369 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14370 df_note_add_problem ();
14371 df_analyze ();
14372
14373 regstat_init_n_sets_and_refs ();
14374 reg_n_sets_max = max_reg_num ();
14375
14376 rebuild_jump_labels_after_combine
14377 = combine_instructions (get_insns (), max_reg_num ());
14378
14379 /* Combining insns may have turned an indirect jump into a
14380 direct jump. Rebuild the JUMP_LABEL fields of jumping
14381 instructions. */
14382 if (rebuild_jump_labels_after_combine)
14383 {
14384 timevar_push (TV_JUMP);
14385 rebuild_jump_labels (get_insns ());
14386 cleanup_cfg (0);
14387 timevar_pop (TV_JUMP);
14388 }
14389
14390 regstat_free_n_sets_and_refs ();
14391 return 0;
14392 }
14393
14394 namespace {
14395
14396 const pass_data pass_data_combine =
14397 {
14398 RTL_PASS, /* type */
14399 "combine", /* name */
14400 OPTGROUP_NONE, /* optinfo_flags */
14401 TV_COMBINE, /* tv_id */
14402 PROP_cfglayout, /* properties_required */
14403 0, /* properties_provided */
14404 0, /* properties_destroyed */
14405 0, /* todo_flags_start */
14406 TODO_df_finish, /* todo_flags_finish */
14407 };
14408
14409 class pass_combine : public rtl_opt_pass
14410 {
14411 public:
14412 pass_combine (gcc::context *ctxt)
14413 : rtl_opt_pass (pass_data_combine, ctxt)
14414 {}
14415
14416 /* opt_pass methods: */
14417 virtual bool gate (function *) { return (optimize > 0); }
14418 virtual unsigned int execute (function *)
14419 {
14420 return rest_of_handle_combine ();
14421 }
14422
14423 }; // class pass_combine
14424
14425 } // anon namespace
14426
14427 rtl_opt_pass *
14428 make_pass_combine (gcc::context *ctxt)
14429 {
14430 return new pass_combine (ctxt);
14431 }