combine: Fix 79910
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
107
108 /* Number of attempts to combine instructions in this function. */
109
110 static int combine_attempts;
111
112 /* Number of attempts that got as far as substitution in this function. */
113
114 static int combine_merges;
115
116 /* Number of instructions combined with added SETs in this function. */
117
118 static int combine_extras;
119
120 /* Number of instructions combined in this function. */
121
122 static int combine_successes;
123
124 /* Totals over entire compilation. */
125
126 static int total_attempts, total_merges, total_extras, total_successes;
127
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
134
135 static rtx_insn *i2mod;
136
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
138
139 static rtx i2mod_old_rhs;
140
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
142
143 static rtx i2mod_new_rhs;
144 \f
145 struct reg_stat_type {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx_insn *last_death;
148
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx_insn *last_set;
151
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
157
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
160
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
164
165 Therefore, we maintain the following fields:
166
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
175
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
180
181 (The next two parameters are out of date).
182
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
194
195 /* Record last value assigned to (hard or pseudo) register n. */
196
197 rtx last_set_value;
198
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
201
202 int last_set_table_tick;
203
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
206
207 int last_set_label;
208
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
213
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
217
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
221
222 char last_set_invalid;
223
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
228
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
233
234 If an entry is zero, it means that we don't know anything special. */
235
236 unsigned char sign_bit_copies;
237
238 unsigned HOST_WIDE_INT nonzero_bits;
239
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
243
244 int truncation_label;
245
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
250
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
252 };
253
254
255 static vec<reg_stat_type> reg_stat;
256
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259 but during combine_split_insns new pseudos can be created. As we don't have
260 updated DF information in that case, it is hard to initialize the array
261 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
262 so instead of growing the arrays, just assume all newly created pseudos
263 during combine might be set multiple times. */
264
265 static unsigned int reg_n_sets_max;
266
267 /* Record the luid of the last insn that invalidated memory
268 (anything that writes memory, and subroutine calls, but not pushes). */
269
270 static int mem_last_set;
271
272 /* Record the luid of the last CALL_INSN
273 so we can tell whether a potential combination crosses any calls. */
274
275 static int last_call_luid;
276
277 /* When `subst' is called, this is the insn that is being modified
278 (by combining in a previous insn). The PATTERN of this insn
279 is still the old pattern partially modified and it should not be
280 looked at, but this may be used to examine the successors of the insn
281 to judge whether a simplification is valid. */
282
283 static rtx_insn *subst_insn;
284
285 /* This is the lowest LUID that `subst' is currently dealing with.
286 get_last_value will not return a value if the register was set at or
287 after this LUID. If not for this mechanism, we could get confused if
288 I2 or I1 in try_combine were an insn that used the old value of a register
289 to obtain a new value. In that case, we might erroneously get the
290 new value of the register when we wanted the old one. */
291
292 static int subst_low_luid;
293
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295 must consider all these registers to be always live. */
296
297 static HARD_REG_SET newpat_used_regs;
298
299 /* This is an insn to which a LOG_LINKS entry has been added. If this
300 insn is the earlier than I2 or I3, combine should rescan starting at
301 that location. */
302
303 static rtx_insn *added_links_insn;
304
305 /* Basic block in which we are performing combines. */
306 static basic_block this_basic_block;
307 static bool optimize_this_for_speed_p;
308
309 \f
310 /* Length of the currently allocated uid_insn_cost array. */
311
312 static int max_uid_known;
313
314 /* The following array records the insn_rtx_cost for every insn
315 in the instruction stream. */
316
317 static int *uid_insn_cost;
318
319 /* The following array records the LOG_LINKS for every insn in the
320 instruction stream as struct insn_link pointers. */
321
322 struct insn_link {
323 rtx_insn *insn;
324 unsigned int regno;
325 struct insn_link *next;
326 };
327
328 static struct insn_link **uid_log_links;
329
330 static inline int
331 insn_uid_check (const_rtx insn)
332 {
333 int uid = INSN_UID (insn);
334 gcc_checking_assert (uid <= max_uid_known);
335 return uid;
336 }
337
338 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
339 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
340
341 #define FOR_EACH_LOG_LINK(L, INSN) \
342 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
343
344 /* Links for LOG_LINKS are allocated from this obstack. */
345
346 static struct obstack insn_link_obstack;
347
348 /* Allocate a link. */
349
350 static inline struct insn_link *
351 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
352 {
353 struct insn_link *l
354 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
355 sizeof (struct insn_link));
356 l->insn = insn;
357 l->regno = regno;
358 l->next = next;
359 return l;
360 }
361
362 /* Incremented for each basic block. */
363
364 static int label_tick;
365
366 /* Reset to label_tick for each extended basic block in scanning order. */
367
368 static int label_tick_ebb_start;
369
370 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
371 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
372
373 static machine_mode nonzero_bits_mode;
374
375 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
376 be safely used. It is zero while computing them and after combine has
377 completed. This former test prevents propagating values based on
378 previously set values, which can be incorrect if a variable is modified
379 in a loop. */
380
381 static int nonzero_sign_valid;
382
383 \f
384 /* Record one modification to rtl structure
385 to be undone by storing old_contents into *where. */
386
387 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
388
389 struct undo
390 {
391 struct undo *next;
392 enum undo_kind kind;
393 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
394 union { rtx *r; int *i; struct insn_link **l; } where;
395 };
396
397 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
398 num_undo says how many are currently recorded.
399
400 other_insn is nonzero if we have modified some other insn in the process
401 of working on subst_insn. It must be verified too. */
402
403 struct undobuf
404 {
405 struct undo *undos;
406 struct undo *frees;
407 rtx_insn *other_insn;
408 };
409
410 static struct undobuf undobuf;
411
412 /* Number of times the pseudo being substituted for
413 was found and replaced. */
414
415 static int n_occurrences;
416
417 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
418 machine_mode,
419 unsigned HOST_WIDE_INT,
420 unsigned HOST_WIDE_INT *);
421 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
422 machine_mode,
423 unsigned int, unsigned int *);
424 static void do_SUBST (rtx *, rtx);
425 static void do_SUBST_INT (int *, int);
426 static void init_reg_last (void);
427 static void setup_incoming_promotions (rtx_insn *);
428 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
429 static int cant_combine_insn_p (rtx_insn *);
430 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
431 rtx_insn *, rtx_insn *, rtx *, rtx *);
432 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
433 static int contains_muldiv (rtx);
434 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
435 int *, rtx_insn *);
436 static void undo_all (void);
437 static void undo_commit (void);
438 static rtx *find_split_point (rtx *, rtx_insn *, bool);
439 static rtx subst (rtx, rtx, rtx, int, int, int);
440 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
441 static rtx simplify_if_then_else (rtx);
442 static rtx simplify_set (rtx);
443 static rtx simplify_logical (rtx);
444 static rtx expand_compound_operation (rtx);
445 static const_rtx expand_field_assignment (const_rtx);
446 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
447 rtx, unsigned HOST_WIDE_INT, int, int, int);
448 static rtx extract_left_shift (rtx, int);
449 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
450 unsigned HOST_WIDE_INT *);
451 static rtx canon_reg_for_combine (rtx, rtx);
452 static rtx force_to_mode (rtx, machine_mode,
453 unsigned HOST_WIDE_INT, int);
454 static rtx if_then_else_cond (rtx, rtx *, rtx *);
455 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
456 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
457 static rtx make_field_assignment (rtx);
458 static rtx apply_distributive_law (rtx);
459 static rtx distribute_and_simplify_rtx (rtx, int);
460 static rtx simplify_and_const_int_1 (machine_mode, rtx,
461 unsigned HOST_WIDE_INT);
462 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
463 unsigned HOST_WIDE_INT);
464 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
465 HOST_WIDE_INT, machine_mode, int *);
466 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
467 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
468 int);
469 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
470 static rtx gen_lowpart_for_combine (machine_mode, rtx);
471 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
472 rtx, rtx *);
473 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
474 static void update_table_tick (rtx);
475 static void record_value_for_reg (rtx, rtx_insn *, rtx);
476 static void check_promoted_subreg (rtx_insn *, rtx);
477 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
478 static void record_dead_and_set_regs (rtx_insn *);
479 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
480 static rtx get_last_value (const_rtx);
481 static int use_crosses_set_p (const_rtx, int);
482 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
483 static int reg_dead_at_p (rtx, rtx_insn *);
484 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
485 static int reg_bitfield_target_p (rtx, rtx);
486 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
487 static void distribute_links (struct insn_link *);
488 static void mark_used_regs_combine (rtx);
489 static void record_promoted_value (rtx_insn *, rtx);
490 static bool unmentioned_reg_p (rtx, rtx);
491 static void record_truncated_values (rtx *, void *);
492 static bool reg_truncated_to_mode (machine_mode, const_rtx);
493 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
494 \f
495
496 /* It is not safe to use ordinary gen_lowpart in combine.
497 See comments in gen_lowpart_for_combine. */
498 #undef RTL_HOOKS_GEN_LOWPART
499 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
500
501 /* Our implementation of gen_lowpart never emits a new pseudo. */
502 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
503 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
504
505 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
506 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
507
508 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
509 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
510
511 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
512 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
513
514 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
515
516 \f
517 /* Convenience wrapper for the canonicalize_comparison target hook.
518 Target hooks cannot use enum rtx_code. */
519 static inline void
520 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
521 bool op0_preserve_value)
522 {
523 int code_int = (int)*code;
524 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
525 *code = (enum rtx_code)code_int;
526 }
527
528 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
529 PATTERN can not be split. Otherwise, it returns an insn sequence.
530 This is a wrapper around split_insns which ensures that the
531 reg_stat vector is made larger if the splitter creates a new
532 register. */
533
534 static rtx_insn *
535 combine_split_insns (rtx pattern, rtx_insn *insn)
536 {
537 rtx_insn *ret;
538 unsigned int nregs;
539
540 ret = split_insns (pattern, insn);
541 nregs = max_reg_num ();
542 if (nregs > reg_stat.length ())
543 reg_stat.safe_grow_cleared (nregs);
544 return ret;
545 }
546
547 /* This is used by find_single_use to locate an rtx in LOC that
548 contains exactly one use of DEST, which is typically either a REG
549 or CC0. It returns a pointer to the innermost rtx expression
550 containing DEST. Appearances of DEST that are being used to
551 totally replace it are not counted. */
552
553 static rtx *
554 find_single_use_1 (rtx dest, rtx *loc)
555 {
556 rtx x = *loc;
557 enum rtx_code code = GET_CODE (x);
558 rtx *result = NULL;
559 rtx *this_result;
560 int i;
561 const char *fmt;
562
563 switch (code)
564 {
565 case CONST:
566 case LABEL_REF:
567 case SYMBOL_REF:
568 CASE_CONST_ANY:
569 case CLOBBER:
570 return 0;
571
572 case SET:
573 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
574 of a REG that occupies all of the REG, the insn uses DEST if
575 it is mentioned in the destination or the source. Otherwise, we
576 need just check the source. */
577 if (GET_CODE (SET_DEST (x)) != CC0
578 && GET_CODE (SET_DEST (x)) != PC
579 && !REG_P (SET_DEST (x))
580 && ! (GET_CODE (SET_DEST (x)) == SUBREG
581 && REG_P (SUBREG_REG (SET_DEST (x)))
582 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
583 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
584 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
585 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
586 break;
587
588 return find_single_use_1 (dest, &SET_SRC (x));
589
590 case MEM:
591 case SUBREG:
592 return find_single_use_1 (dest, &XEXP (x, 0));
593
594 default:
595 break;
596 }
597
598 /* If it wasn't one of the common cases above, check each expression and
599 vector of this code. Look for a unique usage of DEST. */
600
601 fmt = GET_RTX_FORMAT (code);
602 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
603 {
604 if (fmt[i] == 'e')
605 {
606 if (dest == XEXP (x, i)
607 || (REG_P (dest) && REG_P (XEXP (x, i))
608 && REGNO (dest) == REGNO (XEXP (x, i))))
609 this_result = loc;
610 else
611 this_result = find_single_use_1 (dest, &XEXP (x, i));
612
613 if (result == NULL)
614 result = this_result;
615 else if (this_result)
616 /* Duplicate usage. */
617 return NULL;
618 }
619 else if (fmt[i] == 'E')
620 {
621 int j;
622
623 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
624 {
625 if (XVECEXP (x, i, j) == dest
626 || (REG_P (dest)
627 && REG_P (XVECEXP (x, i, j))
628 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
629 this_result = loc;
630 else
631 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
632
633 if (result == NULL)
634 result = this_result;
635 else if (this_result)
636 return NULL;
637 }
638 }
639 }
640
641 return result;
642 }
643
644
645 /* See if DEST, produced in INSN, is used only a single time in the
646 sequel. If so, return a pointer to the innermost rtx expression in which
647 it is used.
648
649 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
650
651 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
652 care about REG_DEAD notes or LOG_LINKS.
653
654 Otherwise, we find the single use by finding an insn that has a
655 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
656 only referenced once in that insn, we know that it must be the first
657 and last insn referencing DEST. */
658
659 static rtx *
660 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
661 {
662 basic_block bb;
663 rtx_insn *next;
664 rtx *result;
665 struct insn_link *link;
666
667 if (dest == cc0_rtx)
668 {
669 next = NEXT_INSN (insn);
670 if (next == 0
671 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
672 return 0;
673
674 result = find_single_use_1 (dest, &PATTERN (next));
675 if (result && ploc)
676 *ploc = next;
677 return result;
678 }
679
680 if (!REG_P (dest))
681 return 0;
682
683 bb = BLOCK_FOR_INSN (insn);
684 for (next = NEXT_INSN (insn);
685 next && BLOCK_FOR_INSN (next) == bb;
686 next = NEXT_INSN (next))
687 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
688 {
689 FOR_EACH_LOG_LINK (link, next)
690 if (link->insn == insn && link->regno == REGNO (dest))
691 break;
692
693 if (link)
694 {
695 result = find_single_use_1 (dest, &PATTERN (next));
696 if (ploc)
697 *ploc = next;
698 return result;
699 }
700 }
701
702 return 0;
703 }
704 \f
705 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
706 insn. The substitution can be undone by undo_all. If INTO is already
707 set to NEWVAL, do not record this change. Because computing NEWVAL might
708 also call SUBST, we have to compute it before we put anything into
709 the undo table. */
710
711 static void
712 do_SUBST (rtx *into, rtx newval)
713 {
714 struct undo *buf;
715 rtx oldval = *into;
716
717 if (oldval == newval)
718 return;
719
720 /* We'd like to catch as many invalid transformations here as
721 possible. Unfortunately, there are way too many mode changes
722 that are perfectly valid, so we'd waste too much effort for
723 little gain doing the checks here. Focus on catching invalid
724 transformations involving integer constants. */
725 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
726 && CONST_INT_P (newval))
727 {
728 /* Sanity check that we're replacing oldval with a CONST_INT
729 that is a valid sign-extension for the original mode. */
730 gcc_assert (INTVAL (newval)
731 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
732
733 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
734 CONST_INT is not valid, because after the replacement, the
735 original mode would be gone. Unfortunately, we can't tell
736 when do_SUBST is called to replace the operand thereof, so we
737 perform this test on oldval instead, checking whether an
738 invalid replacement took place before we got here. */
739 gcc_assert (!(GET_CODE (oldval) == SUBREG
740 && CONST_INT_P (SUBREG_REG (oldval))));
741 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
742 && CONST_INT_P (XEXP (oldval, 0))));
743 }
744
745 if (undobuf.frees)
746 buf = undobuf.frees, undobuf.frees = buf->next;
747 else
748 buf = XNEW (struct undo);
749
750 buf->kind = UNDO_RTX;
751 buf->where.r = into;
752 buf->old_contents.r = oldval;
753 *into = newval;
754
755 buf->next = undobuf.undos, undobuf.undos = buf;
756 }
757
758 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
759
760 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
761 for the value of a HOST_WIDE_INT value (including CONST_INT) is
762 not safe. */
763
764 static void
765 do_SUBST_INT (int *into, int newval)
766 {
767 struct undo *buf;
768 int oldval = *into;
769
770 if (oldval == newval)
771 return;
772
773 if (undobuf.frees)
774 buf = undobuf.frees, undobuf.frees = buf->next;
775 else
776 buf = XNEW (struct undo);
777
778 buf->kind = UNDO_INT;
779 buf->where.i = into;
780 buf->old_contents.i = oldval;
781 *into = newval;
782
783 buf->next = undobuf.undos, undobuf.undos = buf;
784 }
785
786 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
787
788 /* Similar to SUBST, but just substitute the mode. This is used when
789 changing the mode of a pseudo-register, so that any other
790 references to the entry in the regno_reg_rtx array will change as
791 well. */
792
793 static void
794 do_SUBST_MODE (rtx *into, machine_mode newval)
795 {
796 struct undo *buf;
797 machine_mode oldval = GET_MODE (*into);
798
799 if (oldval == newval)
800 return;
801
802 if (undobuf.frees)
803 buf = undobuf.frees, undobuf.frees = buf->next;
804 else
805 buf = XNEW (struct undo);
806
807 buf->kind = UNDO_MODE;
808 buf->where.r = into;
809 buf->old_contents.m = oldval;
810 adjust_reg_mode (*into, newval);
811
812 buf->next = undobuf.undos, undobuf.undos = buf;
813 }
814
815 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
816
817 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
818
819 static void
820 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
821 {
822 struct undo *buf;
823 struct insn_link * oldval = *into;
824
825 if (oldval == newval)
826 return;
827
828 if (undobuf.frees)
829 buf = undobuf.frees, undobuf.frees = buf->next;
830 else
831 buf = XNEW (struct undo);
832
833 buf->kind = UNDO_LINKS;
834 buf->where.l = into;
835 buf->old_contents.l = oldval;
836 *into = newval;
837
838 buf->next = undobuf.undos, undobuf.undos = buf;
839 }
840
841 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
842 \f
843 /* Subroutine of try_combine. Determine whether the replacement patterns
844 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
845 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
846 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
847 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
848 of all the instructions can be estimated and the replacements are more
849 expensive than the original sequence. */
850
851 static bool
852 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
853 rtx newpat, rtx newi2pat, rtx newotherpat)
854 {
855 int i0_cost, i1_cost, i2_cost, i3_cost;
856 int new_i2_cost, new_i3_cost;
857 int old_cost, new_cost;
858
859 /* Lookup the original insn_rtx_costs. */
860 i2_cost = INSN_COST (i2);
861 i3_cost = INSN_COST (i3);
862
863 if (i1)
864 {
865 i1_cost = INSN_COST (i1);
866 if (i0)
867 {
868 i0_cost = INSN_COST (i0);
869 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
870 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
871 }
872 else
873 {
874 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
875 ? i1_cost + i2_cost + i3_cost : 0);
876 i0_cost = 0;
877 }
878 }
879 else
880 {
881 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
882 i1_cost = i0_cost = 0;
883 }
884
885 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
886 correct that. */
887 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
888 old_cost -= i1_cost;
889
890
891 /* Calculate the replacement insn_rtx_costs. */
892 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
893 if (newi2pat)
894 {
895 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
896 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
897 ? new_i2_cost + new_i3_cost : 0;
898 }
899 else
900 {
901 new_cost = new_i3_cost;
902 new_i2_cost = 0;
903 }
904
905 if (undobuf.other_insn)
906 {
907 int old_other_cost, new_other_cost;
908
909 old_other_cost = INSN_COST (undobuf.other_insn);
910 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
911 if (old_other_cost > 0 && new_other_cost > 0)
912 {
913 old_cost += old_other_cost;
914 new_cost += new_other_cost;
915 }
916 else
917 old_cost = 0;
918 }
919
920 /* Disallow this combination if both new_cost and old_cost are greater than
921 zero, and new_cost is greater than old cost. */
922 int reject = old_cost > 0 && new_cost > old_cost;
923
924 if (dump_file)
925 {
926 fprintf (dump_file, "%s combination of insns ",
927 reject ? "rejecting" : "allowing");
928 if (i0)
929 fprintf (dump_file, "%d, ", INSN_UID (i0));
930 if (i1 && INSN_UID (i1) != INSN_UID (i2))
931 fprintf (dump_file, "%d, ", INSN_UID (i1));
932 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
933
934 fprintf (dump_file, "original costs ");
935 if (i0)
936 fprintf (dump_file, "%d + ", i0_cost);
937 if (i1 && INSN_UID (i1) != INSN_UID (i2))
938 fprintf (dump_file, "%d + ", i1_cost);
939 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
940
941 if (newi2pat)
942 fprintf (dump_file, "replacement costs %d + %d = %d\n",
943 new_i2_cost, new_i3_cost, new_cost);
944 else
945 fprintf (dump_file, "replacement cost %d\n", new_cost);
946 }
947
948 if (reject)
949 return false;
950
951 /* Update the uid_insn_cost array with the replacement costs. */
952 INSN_COST (i2) = new_i2_cost;
953 INSN_COST (i3) = new_i3_cost;
954 if (i1)
955 {
956 INSN_COST (i1) = 0;
957 if (i0)
958 INSN_COST (i0) = 0;
959 }
960
961 return true;
962 }
963
964
965 /* Delete any insns that copy a register to itself. */
966
967 static void
968 delete_noop_moves (void)
969 {
970 rtx_insn *insn, *next;
971 basic_block bb;
972
973 FOR_EACH_BB_FN (bb, cfun)
974 {
975 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
976 {
977 next = NEXT_INSN (insn);
978 if (INSN_P (insn) && noop_move_p (insn))
979 {
980 if (dump_file)
981 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
982
983 delete_insn_and_edges (insn);
984 }
985 }
986 }
987 }
988
989 \f
990 /* Return false if we do not want to (or cannot) combine DEF. */
991 static bool
992 can_combine_def_p (df_ref def)
993 {
994 /* Do not consider if it is pre/post modification in MEM. */
995 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
996 return false;
997
998 unsigned int regno = DF_REF_REGNO (def);
999
1000 /* Do not combine frame pointer adjustments. */
1001 if ((regno == FRAME_POINTER_REGNUM
1002 && (!reload_completed || frame_pointer_needed))
1003 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1004 && regno == HARD_FRAME_POINTER_REGNUM
1005 && (!reload_completed || frame_pointer_needed))
1006 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1007 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1008 return false;
1009
1010 return true;
1011 }
1012
1013 /* Return false if we do not want to (or cannot) combine USE. */
1014 static bool
1015 can_combine_use_p (df_ref use)
1016 {
1017 /* Do not consider the usage of the stack pointer by function call. */
1018 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1019 return false;
1020
1021 return true;
1022 }
1023
1024 /* Fill in log links field for all insns. */
1025
1026 static void
1027 create_log_links (void)
1028 {
1029 basic_block bb;
1030 rtx_insn **next_use;
1031 rtx_insn *insn;
1032 df_ref def, use;
1033
1034 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1035
1036 /* Pass through each block from the end, recording the uses of each
1037 register and establishing log links when def is encountered.
1038 Note that we do not clear next_use array in order to save time,
1039 so we have to test whether the use is in the same basic block as def.
1040
1041 There are a few cases below when we do not consider the definition or
1042 usage -- these are taken from original flow.c did. Don't ask me why it is
1043 done this way; I don't know and if it works, I don't want to know. */
1044
1045 FOR_EACH_BB_FN (bb, cfun)
1046 {
1047 FOR_BB_INSNS_REVERSE (bb, insn)
1048 {
1049 if (!NONDEBUG_INSN_P (insn))
1050 continue;
1051
1052 /* Log links are created only once. */
1053 gcc_assert (!LOG_LINKS (insn));
1054
1055 FOR_EACH_INSN_DEF (def, insn)
1056 {
1057 unsigned int regno = DF_REF_REGNO (def);
1058 rtx_insn *use_insn;
1059
1060 if (!next_use[regno])
1061 continue;
1062
1063 if (!can_combine_def_p (def))
1064 continue;
1065
1066 use_insn = next_use[regno];
1067 next_use[regno] = NULL;
1068
1069 if (BLOCK_FOR_INSN (use_insn) != bb)
1070 continue;
1071
1072 /* flow.c claimed:
1073
1074 We don't build a LOG_LINK for hard registers contained
1075 in ASM_OPERANDs. If these registers get replaced,
1076 we might wind up changing the semantics of the insn,
1077 even if reload can make what appear to be valid
1078 assignments later. */
1079 if (regno < FIRST_PSEUDO_REGISTER
1080 && asm_noperands (PATTERN (use_insn)) >= 0)
1081 continue;
1082
1083 /* Don't add duplicate links between instructions. */
1084 struct insn_link *links;
1085 FOR_EACH_LOG_LINK (links, use_insn)
1086 if (insn == links->insn && regno == links->regno)
1087 break;
1088
1089 if (!links)
1090 LOG_LINKS (use_insn)
1091 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1092 }
1093
1094 FOR_EACH_INSN_USE (use, insn)
1095 if (can_combine_use_p (use))
1096 next_use[DF_REF_REGNO (use)] = insn;
1097 }
1098 }
1099
1100 free (next_use);
1101 }
1102
1103 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1104 true if we found a LOG_LINK that proves that A feeds B. This only works
1105 if there are no instructions between A and B which could have a link
1106 depending on A, since in that case we would not record a link for B.
1107 We also check the implicit dependency created by a cc0 setter/user
1108 pair. */
1109
1110 static bool
1111 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1112 {
1113 struct insn_link *links;
1114 FOR_EACH_LOG_LINK (links, b)
1115 if (links->insn == a)
1116 return true;
1117 if (HAVE_cc0 && sets_cc0_p (a))
1118 return true;
1119 return false;
1120 }
1121 \f
1122 /* Main entry point for combiner. F is the first insn of the function.
1123 NREGS is the first unused pseudo-reg number.
1124
1125 Return nonzero if the combiner has turned an indirect jump
1126 instruction into a direct jump. */
1127 static int
1128 combine_instructions (rtx_insn *f, unsigned int nregs)
1129 {
1130 rtx_insn *insn, *next;
1131 rtx_insn *prev;
1132 struct insn_link *links, *nextlinks;
1133 rtx_insn *first;
1134 basic_block last_bb;
1135
1136 int new_direct_jump_p = 0;
1137
1138 for (first = f; first && !NONDEBUG_INSN_P (first); )
1139 first = NEXT_INSN (first);
1140 if (!first)
1141 return 0;
1142
1143 combine_attempts = 0;
1144 combine_merges = 0;
1145 combine_extras = 0;
1146 combine_successes = 0;
1147
1148 rtl_hooks = combine_rtl_hooks;
1149
1150 reg_stat.safe_grow_cleared (nregs);
1151
1152 init_recog_no_volatile ();
1153
1154 /* Allocate array for insn info. */
1155 max_uid_known = get_max_uid ();
1156 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1157 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1158 gcc_obstack_init (&insn_link_obstack);
1159
1160 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1161
1162 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1163 problems when, for example, we have j <<= 1 in a loop. */
1164
1165 nonzero_sign_valid = 0;
1166 label_tick = label_tick_ebb_start = 1;
1167
1168 /* Scan all SETs and see if we can deduce anything about what
1169 bits are known to be zero for some registers and how many copies
1170 of the sign bit are known to exist for those registers.
1171
1172 Also set any known values so that we can use it while searching
1173 for what bits are known to be set. */
1174
1175 setup_incoming_promotions (first);
1176 /* Allow the entry block and the first block to fall into the same EBB.
1177 Conceptually the incoming promotions are assigned to the entry block. */
1178 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1179
1180 create_log_links ();
1181 FOR_EACH_BB_FN (this_basic_block, cfun)
1182 {
1183 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1184 last_call_luid = 0;
1185 mem_last_set = -1;
1186
1187 label_tick++;
1188 if (!single_pred_p (this_basic_block)
1189 || single_pred (this_basic_block) != last_bb)
1190 label_tick_ebb_start = label_tick;
1191 last_bb = this_basic_block;
1192
1193 FOR_BB_INSNS (this_basic_block, insn)
1194 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1195 {
1196 rtx links;
1197
1198 subst_low_luid = DF_INSN_LUID (insn);
1199 subst_insn = insn;
1200
1201 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1202 insn);
1203 record_dead_and_set_regs (insn);
1204
1205 if (AUTO_INC_DEC)
1206 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1207 if (REG_NOTE_KIND (links) == REG_INC)
1208 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1209 insn);
1210
1211 /* Record the current insn_rtx_cost of this instruction. */
1212 if (NONJUMP_INSN_P (insn))
1213 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1214 optimize_this_for_speed_p);
1215 if (dump_file)
1216 fprintf (dump_file, "insn_cost %d: %d\n",
1217 INSN_UID (insn), INSN_COST (insn));
1218 }
1219 }
1220
1221 nonzero_sign_valid = 1;
1222
1223 /* Now scan all the insns in forward order. */
1224 label_tick = label_tick_ebb_start = 1;
1225 init_reg_last ();
1226 setup_incoming_promotions (first);
1227 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1228 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1229
1230 FOR_EACH_BB_FN (this_basic_block, cfun)
1231 {
1232 rtx_insn *last_combined_insn = NULL;
1233 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1234 last_call_luid = 0;
1235 mem_last_set = -1;
1236
1237 label_tick++;
1238 if (!single_pred_p (this_basic_block)
1239 || single_pred (this_basic_block) != last_bb)
1240 label_tick_ebb_start = label_tick;
1241 last_bb = this_basic_block;
1242
1243 rtl_profile_for_bb (this_basic_block);
1244 for (insn = BB_HEAD (this_basic_block);
1245 insn != NEXT_INSN (BB_END (this_basic_block));
1246 insn = next ? next : NEXT_INSN (insn))
1247 {
1248 next = 0;
1249 if (!NONDEBUG_INSN_P (insn))
1250 continue;
1251
1252 while (last_combined_insn
1253 && last_combined_insn->deleted ())
1254 last_combined_insn = PREV_INSN (last_combined_insn);
1255 if (last_combined_insn == NULL_RTX
1256 || BARRIER_P (last_combined_insn)
1257 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1258 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1259 last_combined_insn = insn;
1260
1261 /* See if we know about function return values before this
1262 insn based upon SUBREG flags. */
1263 check_promoted_subreg (insn, PATTERN (insn));
1264
1265 /* See if we can find hardregs and subreg of pseudos in
1266 narrower modes. This could help turning TRUNCATEs
1267 into SUBREGs. */
1268 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1269
1270 /* Try this insn with each insn it links back to. */
1271
1272 FOR_EACH_LOG_LINK (links, insn)
1273 if ((next = try_combine (insn, links->insn, NULL,
1274 NULL, &new_direct_jump_p,
1275 last_combined_insn)) != 0)
1276 {
1277 statistics_counter_event (cfun, "two-insn combine", 1);
1278 goto retry;
1279 }
1280
1281 /* Try each sequence of three linked insns ending with this one. */
1282
1283 if (max_combine >= 3)
1284 FOR_EACH_LOG_LINK (links, insn)
1285 {
1286 rtx_insn *link = links->insn;
1287
1288 /* If the linked insn has been replaced by a note, then there
1289 is no point in pursuing this chain any further. */
1290 if (NOTE_P (link))
1291 continue;
1292
1293 FOR_EACH_LOG_LINK (nextlinks, link)
1294 if ((next = try_combine (insn, link, nextlinks->insn,
1295 NULL, &new_direct_jump_p,
1296 last_combined_insn)) != 0)
1297 {
1298 statistics_counter_event (cfun, "three-insn combine", 1);
1299 goto retry;
1300 }
1301 }
1302
1303 /* Try to combine a jump insn that uses CC0
1304 with a preceding insn that sets CC0, and maybe with its
1305 logical predecessor as well.
1306 This is how we make decrement-and-branch insns.
1307 We need this special code because data flow connections
1308 via CC0 do not get entered in LOG_LINKS. */
1309
1310 if (HAVE_cc0
1311 && JUMP_P (insn)
1312 && (prev = prev_nonnote_insn (insn)) != 0
1313 && NONJUMP_INSN_P (prev)
1314 && sets_cc0_p (PATTERN (prev)))
1315 {
1316 if ((next = try_combine (insn, prev, NULL, NULL,
1317 &new_direct_jump_p,
1318 last_combined_insn)) != 0)
1319 goto retry;
1320
1321 FOR_EACH_LOG_LINK (nextlinks, prev)
1322 if ((next = try_combine (insn, prev, nextlinks->insn,
1323 NULL, &new_direct_jump_p,
1324 last_combined_insn)) != 0)
1325 goto retry;
1326 }
1327
1328 /* Do the same for an insn that explicitly references CC0. */
1329 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1330 && (prev = prev_nonnote_insn (insn)) != 0
1331 && NONJUMP_INSN_P (prev)
1332 && sets_cc0_p (PATTERN (prev))
1333 && GET_CODE (PATTERN (insn)) == SET
1334 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1335 {
1336 if ((next = try_combine (insn, prev, NULL, NULL,
1337 &new_direct_jump_p,
1338 last_combined_insn)) != 0)
1339 goto retry;
1340
1341 FOR_EACH_LOG_LINK (nextlinks, prev)
1342 if ((next = try_combine (insn, prev, nextlinks->insn,
1343 NULL, &new_direct_jump_p,
1344 last_combined_insn)) != 0)
1345 goto retry;
1346 }
1347
1348 /* Finally, see if any of the insns that this insn links to
1349 explicitly references CC0. If so, try this insn, that insn,
1350 and its predecessor if it sets CC0. */
1351 if (HAVE_cc0)
1352 {
1353 FOR_EACH_LOG_LINK (links, insn)
1354 if (NONJUMP_INSN_P (links->insn)
1355 && GET_CODE (PATTERN (links->insn)) == SET
1356 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1357 && (prev = prev_nonnote_insn (links->insn)) != 0
1358 && NONJUMP_INSN_P (prev)
1359 && sets_cc0_p (PATTERN (prev))
1360 && (next = try_combine (insn, links->insn,
1361 prev, NULL, &new_direct_jump_p,
1362 last_combined_insn)) != 0)
1363 goto retry;
1364 }
1365
1366 /* Try combining an insn with two different insns whose results it
1367 uses. */
1368 if (max_combine >= 3)
1369 FOR_EACH_LOG_LINK (links, insn)
1370 for (nextlinks = links->next; nextlinks;
1371 nextlinks = nextlinks->next)
1372 if ((next = try_combine (insn, links->insn,
1373 nextlinks->insn, NULL,
1374 &new_direct_jump_p,
1375 last_combined_insn)) != 0)
1376
1377 {
1378 statistics_counter_event (cfun, "three-insn combine", 1);
1379 goto retry;
1380 }
1381
1382 /* Try four-instruction combinations. */
1383 if (max_combine >= 4)
1384 FOR_EACH_LOG_LINK (links, insn)
1385 {
1386 struct insn_link *next1;
1387 rtx_insn *link = links->insn;
1388
1389 /* If the linked insn has been replaced by a note, then there
1390 is no point in pursuing this chain any further. */
1391 if (NOTE_P (link))
1392 continue;
1393
1394 FOR_EACH_LOG_LINK (next1, link)
1395 {
1396 rtx_insn *link1 = next1->insn;
1397 if (NOTE_P (link1))
1398 continue;
1399 /* I0 -> I1 -> I2 -> I3. */
1400 FOR_EACH_LOG_LINK (nextlinks, link1)
1401 if ((next = try_combine (insn, link, link1,
1402 nextlinks->insn,
1403 &new_direct_jump_p,
1404 last_combined_insn)) != 0)
1405 {
1406 statistics_counter_event (cfun, "four-insn combine", 1);
1407 goto retry;
1408 }
1409 /* I0, I1 -> I2, I2 -> I3. */
1410 for (nextlinks = next1->next; nextlinks;
1411 nextlinks = nextlinks->next)
1412 if ((next = try_combine (insn, link, link1,
1413 nextlinks->insn,
1414 &new_direct_jump_p,
1415 last_combined_insn)) != 0)
1416 {
1417 statistics_counter_event (cfun, "four-insn combine", 1);
1418 goto retry;
1419 }
1420 }
1421
1422 for (next1 = links->next; next1; next1 = next1->next)
1423 {
1424 rtx_insn *link1 = next1->insn;
1425 if (NOTE_P (link1))
1426 continue;
1427 /* I0 -> I2; I1, I2 -> I3. */
1428 FOR_EACH_LOG_LINK (nextlinks, link)
1429 if ((next = try_combine (insn, link, link1,
1430 nextlinks->insn,
1431 &new_direct_jump_p,
1432 last_combined_insn)) != 0)
1433 {
1434 statistics_counter_event (cfun, "four-insn combine", 1);
1435 goto retry;
1436 }
1437 /* I0 -> I1; I1, I2 -> I3. */
1438 FOR_EACH_LOG_LINK (nextlinks, link1)
1439 if ((next = try_combine (insn, link, link1,
1440 nextlinks->insn,
1441 &new_direct_jump_p,
1442 last_combined_insn)) != 0)
1443 {
1444 statistics_counter_event (cfun, "four-insn combine", 1);
1445 goto retry;
1446 }
1447 }
1448 }
1449
1450 /* Try this insn with each REG_EQUAL note it links back to. */
1451 FOR_EACH_LOG_LINK (links, insn)
1452 {
1453 rtx set, note;
1454 rtx_insn *temp = links->insn;
1455 if ((set = single_set (temp)) != 0
1456 && (note = find_reg_equal_equiv_note (temp)) != 0
1457 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1458 /* Avoid using a register that may already been marked
1459 dead by an earlier instruction. */
1460 && ! unmentioned_reg_p (note, SET_SRC (set))
1461 && (GET_MODE (note) == VOIDmode
1462 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1463 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1464 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1465 || (GET_MODE (XEXP (SET_DEST (set), 0))
1466 == GET_MODE (note))))))
1467 {
1468 /* Temporarily replace the set's source with the
1469 contents of the REG_EQUAL note. The insn will
1470 be deleted or recognized by try_combine. */
1471 rtx orig_src = SET_SRC (set);
1472 rtx orig_dest = SET_DEST (set);
1473 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1474 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1475 SET_SRC (set) = note;
1476 i2mod = temp;
1477 i2mod_old_rhs = copy_rtx (orig_src);
1478 i2mod_new_rhs = copy_rtx (note);
1479 next = try_combine (insn, i2mod, NULL, NULL,
1480 &new_direct_jump_p,
1481 last_combined_insn);
1482 i2mod = NULL;
1483 if (next)
1484 {
1485 statistics_counter_event (cfun, "insn-with-note combine", 1);
1486 goto retry;
1487 }
1488 SET_SRC (set) = orig_src;
1489 SET_DEST (set) = orig_dest;
1490 }
1491 }
1492
1493 if (!NOTE_P (insn))
1494 record_dead_and_set_regs (insn);
1495
1496 retry:
1497 ;
1498 }
1499 }
1500
1501 default_rtl_profile ();
1502 clear_bb_flags ();
1503 new_direct_jump_p |= purge_all_dead_edges ();
1504 delete_noop_moves ();
1505
1506 /* Clean up. */
1507 obstack_free (&insn_link_obstack, NULL);
1508 free (uid_log_links);
1509 free (uid_insn_cost);
1510 reg_stat.release ();
1511
1512 {
1513 struct undo *undo, *next;
1514 for (undo = undobuf.frees; undo; undo = next)
1515 {
1516 next = undo->next;
1517 free (undo);
1518 }
1519 undobuf.frees = 0;
1520 }
1521
1522 total_attempts += combine_attempts;
1523 total_merges += combine_merges;
1524 total_extras += combine_extras;
1525 total_successes += combine_successes;
1526
1527 nonzero_sign_valid = 0;
1528 rtl_hooks = general_rtl_hooks;
1529
1530 /* Make recognizer allow volatile MEMs again. */
1531 init_recog ();
1532
1533 return new_direct_jump_p;
1534 }
1535
1536 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1537
1538 static void
1539 init_reg_last (void)
1540 {
1541 unsigned int i;
1542 reg_stat_type *p;
1543
1544 FOR_EACH_VEC_ELT (reg_stat, i, p)
1545 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1546 }
1547 \f
1548 /* Set up any promoted values for incoming argument registers. */
1549
1550 static void
1551 setup_incoming_promotions (rtx_insn *first)
1552 {
1553 tree arg;
1554 bool strictly_local = false;
1555
1556 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1557 arg = DECL_CHAIN (arg))
1558 {
1559 rtx x, reg = DECL_INCOMING_RTL (arg);
1560 int uns1, uns3;
1561 machine_mode mode1, mode2, mode3, mode4;
1562
1563 /* Only continue if the incoming argument is in a register. */
1564 if (!REG_P (reg))
1565 continue;
1566
1567 /* Determine, if possible, whether all call sites of the current
1568 function lie within the current compilation unit. (This does
1569 take into account the exporting of a function via taking its
1570 address, and so forth.) */
1571 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1572
1573 /* The mode and signedness of the argument before any promotions happen
1574 (equal to the mode of the pseudo holding it at that stage). */
1575 mode1 = TYPE_MODE (TREE_TYPE (arg));
1576 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1577
1578 /* The mode and signedness of the argument after any source language and
1579 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1580 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1581 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1582
1583 /* The mode and signedness of the argument as it is actually passed,
1584 see assign_parm_setup_reg in function.c. */
1585 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1586 TREE_TYPE (cfun->decl), 0);
1587
1588 /* The mode of the register in which the argument is being passed. */
1589 mode4 = GET_MODE (reg);
1590
1591 /* Eliminate sign extensions in the callee when:
1592 (a) A mode promotion has occurred; */
1593 if (mode1 == mode3)
1594 continue;
1595 /* (b) The mode of the register is the same as the mode of
1596 the argument as it is passed; */
1597 if (mode3 != mode4)
1598 continue;
1599 /* (c) There's no language level extension; */
1600 if (mode1 == mode2)
1601 ;
1602 /* (c.1) All callers are from the current compilation unit. If that's
1603 the case we don't have to rely on an ABI, we only have to know
1604 what we're generating right now, and we know that we will do the
1605 mode1 to mode2 promotion with the given sign. */
1606 else if (!strictly_local)
1607 continue;
1608 /* (c.2) The combination of the two promotions is useful. This is
1609 true when the signs match, or if the first promotion is unsigned.
1610 In the later case, (sign_extend (zero_extend x)) is the same as
1611 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1612 else if (uns1)
1613 uns3 = true;
1614 else if (uns3)
1615 continue;
1616
1617 /* Record that the value was promoted from mode1 to mode3,
1618 so that any sign extension at the head of the current
1619 function may be eliminated. */
1620 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1621 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1622 record_value_for_reg (reg, first, x);
1623 }
1624 }
1625
1626 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1627 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1628 because some machines (maybe most) will actually do the sign-extension and
1629 this is the conservative approach.
1630
1631 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1632 kludge. */
1633
1634 static rtx
1635 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1636 {
1637 if (GET_MODE_PRECISION (mode) < prec
1638 && CONST_INT_P (src)
1639 && INTVAL (src) > 0
1640 && val_signbit_known_set_p (mode, INTVAL (src)))
1641 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1642
1643 return src;
1644 }
1645
1646 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1647 and SET. */
1648
1649 static void
1650 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1651 rtx x)
1652 {
1653 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1654 unsigned HOST_WIDE_INT bits = 0;
1655 rtx reg_equal = NULL, src = SET_SRC (set);
1656 unsigned int num = 0;
1657
1658 if (reg_equal_note)
1659 reg_equal = XEXP (reg_equal_note, 0);
1660
1661 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1662 {
1663 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1664 if (reg_equal)
1665 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1666 }
1667
1668 /* Don't call nonzero_bits if it cannot change anything. */
1669 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1670 {
1671 bits = nonzero_bits (src, nonzero_bits_mode);
1672 if (reg_equal && bits)
1673 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1674 rsp->nonzero_bits |= bits;
1675 }
1676
1677 /* Don't call num_sign_bit_copies if it cannot change anything. */
1678 if (rsp->sign_bit_copies != 1)
1679 {
1680 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1681 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1682 {
1683 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1684 if (num == 0 || numeq > num)
1685 num = numeq;
1686 }
1687 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1688 rsp->sign_bit_copies = num;
1689 }
1690 }
1691
1692 /* Called via note_stores. If X is a pseudo that is narrower than
1693 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1694
1695 If we are setting only a portion of X and we can't figure out what
1696 portion, assume all bits will be used since we don't know what will
1697 be happening.
1698
1699 Similarly, set how many bits of X are known to be copies of the sign bit
1700 at all locations in the function. This is the smallest number implied
1701 by any set of X. */
1702
1703 static void
1704 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1705 {
1706 rtx_insn *insn = (rtx_insn *) data;
1707
1708 if (REG_P (x)
1709 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1710 /* If this register is undefined at the start of the file, we can't
1711 say what its contents were. */
1712 && ! REGNO_REG_SET_P
1713 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1714 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1715 {
1716 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1717
1718 if (set == 0 || GET_CODE (set) == CLOBBER)
1719 {
1720 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1721 rsp->sign_bit_copies = 1;
1722 return;
1723 }
1724
1725 /* If this register is being initialized using itself, and the
1726 register is uninitialized in this basic block, and there are
1727 no LOG_LINKS which set the register, then part of the
1728 register is uninitialized. In that case we can't assume
1729 anything about the number of nonzero bits.
1730
1731 ??? We could do better if we checked this in
1732 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1733 could avoid making assumptions about the insn which initially
1734 sets the register, while still using the information in other
1735 insns. We would have to be careful to check every insn
1736 involved in the combination. */
1737
1738 if (insn
1739 && reg_referenced_p (x, PATTERN (insn))
1740 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1741 REGNO (x)))
1742 {
1743 struct insn_link *link;
1744
1745 FOR_EACH_LOG_LINK (link, insn)
1746 if (dead_or_set_p (link->insn, x))
1747 break;
1748 if (!link)
1749 {
1750 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1751 rsp->sign_bit_copies = 1;
1752 return;
1753 }
1754 }
1755
1756 /* If this is a complex assignment, see if we can convert it into a
1757 simple assignment. */
1758 set = expand_field_assignment (set);
1759
1760 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1761 set what we know about X. */
1762
1763 if (SET_DEST (set) == x
1764 || (paradoxical_subreg_p (SET_DEST (set))
1765 && SUBREG_REG (SET_DEST (set)) == x))
1766 update_rsp_from_reg_equal (rsp, insn, set, x);
1767 else
1768 {
1769 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1770 rsp->sign_bit_copies = 1;
1771 }
1772 }
1773 }
1774 \f
1775 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1776 optionally insns that were previously combined into I3 or that will be
1777 combined into the merger of INSN and I3. The order is PRED, PRED2,
1778 INSN, SUCC, SUCC2, I3.
1779
1780 Return 0 if the combination is not allowed for any reason.
1781
1782 If the combination is allowed, *PDEST will be set to the single
1783 destination of INSN and *PSRC to the single source, and this function
1784 will return 1. */
1785
1786 static int
1787 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1788 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1789 rtx *pdest, rtx *psrc)
1790 {
1791 int i;
1792 const_rtx set = 0;
1793 rtx src, dest;
1794 rtx_insn *p;
1795 rtx link;
1796 bool all_adjacent = true;
1797 int (*is_volatile_p) (const_rtx);
1798
1799 if (succ)
1800 {
1801 if (succ2)
1802 {
1803 if (next_active_insn (succ2) != i3)
1804 all_adjacent = false;
1805 if (next_active_insn (succ) != succ2)
1806 all_adjacent = false;
1807 }
1808 else if (next_active_insn (succ) != i3)
1809 all_adjacent = false;
1810 if (next_active_insn (insn) != succ)
1811 all_adjacent = false;
1812 }
1813 else if (next_active_insn (insn) != i3)
1814 all_adjacent = false;
1815
1816 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1817 or a PARALLEL consisting of such a SET and CLOBBERs.
1818
1819 If INSN has CLOBBER parallel parts, ignore them for our processing.
1820 By definition, these happen during the execution of the insn. When it
1821 is merged with another insn, all bets are off. If they are, in fact,
1822 needed and aren't also supplied in I3, they may be added by
1823 recog_for_combine. Otherwise, it won't match.
1824
1825 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1826 note.
1827
1828 Get the source and destination of INSN. If more than one, can't
1829 combine. */
1830
1831 if (GET_CODE (PATTERN (insn)) == SET)
1832 set = PATTERN (insn);
1833 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1834 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1835 {
1836 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1837 {
1838 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1839
1840 switch (GET_CODE (elt))
1841 {
1842 /* This is important to combine floating point insns
1843 for the SH4 port. */
1844 case USE:
1845 /* Combining an isolated USE doesn't make sense.
1846 We depend here on combinable_i3pat to reject them. */
1847 /* The code below this loop only verifies that the inputs of
1848 the SET in INSN do not change. We call reg_set_between_p
1849 to verify that the REG in the USE does not change between
1850 I3 and INSN.
1851 If the USE in INSN was for a pseudo register, the matching
1852 insn pattern will likely match any register; combining this
1853 with any other USE would only be safe if we knew that the
1854 used registers have identical values, or if there was
1855 something to tell them apart, e.g. different modes. For
1856 now, we forgo such complicated tests and simply disallow
1857 combining of USES of pseudo registers with any other USE. */
1858 if (REG_P (XEXP (elt, 0))
1859 && GET_CODE (PATTERN (i3)) == PARALLEL)
1860 {
1861 rtx i3pat = PATTERN (i3);
1862 int i = XVECLEN (i3pat, 0) - 1;
1863 unsigned int regno = REGNO (XEXP (elt, 0));
1864
1865 do
1866 {
1867 rtx i3elt = XVECEXP (i3pat, 0, i);
1868
1869 if (GET_CODE (i3elt) == USE
1870 && REG_P (XEXP (i3elt, 0))
1871 && (REGNO (XEXP (i3elt, 0)) == regno
1872 ? reg_set_between_p (XEXP (elt, 0),
1873 PREV_INSN (insn), i3)
1874 : regno >= FIRST_PSEUDO_REGISTER))
1875 return 0;
1876 }
1877 while (--i >= 0);
1878 }
1879 break;
1880
1881 /* We can ignore CLOBBERs. */
1882 case CLOBBER:
1883 break;
1884
1885 case SET:
1886 /* Ignore SETs whose result isn't used but not those that
1887 have side-effects. */
1888 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1889 && insn_nothrow_p (insn)
1890 && !side_effects_p (elt))
1891 break;
1892
1893 /* If we have already found a SET, this is a second one and
1894 so we cannot combine with this insn. */
1895 if (set)
1896 return 0;
1897
1898 set = elt;
1899 break;
1900
1901 default:
1902 /* Anything else means we can't combine. */
1903 return 0;
1904 }
1905 }
1906
1907 if (set == 0
1908 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1909 so don't do anything with it. */
1910 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1911 return 0;
1912 }
1913 else
1914 return 0;
1915
1916 if (set == 0)
1917 return 0;
1918
1919 /* The simplification in expand_field_assignment may call back to
1920 get_last_value, so set safe guard here. */
1921 subst_low_luid = DF_INSN_LUID (insn);
1922
1923 set = expand_field_assignment (set);
1924 src = SET_SRC (set), dest = SET_DEST (set);
1925
1926 /* Do not eliminate user-specified register if it is in an
1927 asm input because we may break the register asm usage defined
1928 in GCC manual if allow to do so.
1929 Be aware that this may cover more cases than we expect but this
1930 should be harmless. */
1931 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1932 && extract_asm_operands (PATTERN (i3)))
1933 return 0;
1934
1935 /* Don't eliminate a store in the stack pointer. */
1936 if (dest == stack_pointer_rtx
1937 /* Don't combine with an insn that sets a register to itself if it has
1938 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1939 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1940 /* Can't merge an ASM_OPERANDS. */
1941 || GET_CODE (src) == ASM_OPERANDS
1942 /* Can't merge a function call. */
1943 || GET_CODE (src) == CALL
1944 /* Don't eliminate a function call argument. */
1945 || (CALL_P (i3)
1946 && (find_reg_fusage (i3, USE, dest)
1947 || (REG_P (dest)
1948 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1949 && global_regs[REGNO (dest)])))
1950 /* Don't substitute into an incremented register. */
1951 || FIND_REG_INC_NOTE (i3, dest)
1952 || (succ && FIND_REG_INC_NOTE (succ, dest))
1953 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1954 /* Don't substitute into a non-local goto, this confuses CFG. */
1955 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1956 /* Make sure that DEST is not used after INSN but before SUCC, or
1957 between SUCC and SUCC2. */
1958 || (succ && reg_used_between_p (dest, insn, succ))
1959 || (succ2 && reg_used_between_p (dest, succ, succ2))
1960 /* Make sure that DEST is not used after SUCC but before I3. */
1961 || (!all_adjacent
1962 && ((succ2
1963 && (reg_used_between_p (dest, succ2, i3)
1964 || reg_used_between_p (dest, succ, succ2)))
1965 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1966 /* Make sure that the value that is to be substituted for the register
1967 does not use any registers whose values alter in between. However,
1968 If the insns are adjacent, a use can't cross a set even though we
1969 think it might (this can happen for a sequence of insns each setting
1970 the same destination; last_set of that register might point to
1971 a NOTE). If INSN has a REG_EQUIV note, the register is always
1972 equivalent to the memory so the substitution is valid even if there
1973 are intervening stores. Also, don't move a volatile asm or
1974 UNSPEC_VOLATILE across any other insns. */
1975 || (! all_adjacent
1976 && (((!MEM_P (src)
1977 || ! find_reg_note (insn, REG_EQUIV, src))
1978 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1979 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1980 || GET_CODE (src) == UNSPEC_VOLATILE))
1981 /* Don't combine across a CALL_INSN, because that would possibly
1982 change whether the life span of some REGs crosses calls or not,
1983 and it is a pain to update that information.
1984 Exception: if source is a constant, moving it later can't hurt.
1985 Accept that as a special case. */
1986 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1987 return 0;
1988
1989 /* DEST must either be a REG or CC0. */
1990 if (REG_P (dest))
1991 {
1992 /* If register alignment is being enforced for multi-word items in all
1993 cases except for parameters, it is possible to have a register copy
1994 insn referencing a hard register that is not allowed to contain the
1995 mode being copied and which would not be valid as an operand of most
1996 insns. Eliminate this problem by not combining with such an insn.
1997
1998 Also, on some machines we don't want to extend the life of a hard
1999 register. */
2000
2001 if (REG_P (src)
2002 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2003 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
2004 /* Don't extend the life of a hard register unless it is
2005 user variable (if we have few registers) or it can't
2006 fit into the desired register (meaning something special
2007 is going on).
2008 Also avoid substituting a return register into I3, because
2009 reload can't handle a conflict with constraints of other
2010 inputs. */
2011 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2012 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
2013 return 0;
2014 }
2015 else if (GET_CODE (dest) != CC0)
2016 return 0;
2017
2018
2019 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2020 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2021 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2022 {
2023 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2024
2025 /* If the clobber represents an earlyclobber operand, we must not
2026 substitute an expression containing the clobbered register.
2027 As we do not analyze the constraint strings here, we have to
2028 make the conservative assumption. However, if the register is
2029 a fixed hard reg, the clobber cannot represent any operand;
2030 we leave it up to the machine description to either accept or
2031 reject use-and-clobber patterns. */
2032 if (!REG_P (reg)
2033 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2034 || !fixed_regs[REGNO (reg)])
2035 if (reg_overlap_mentioned_p (reg, src))
2036 return 0;
2037 }
2038
2039 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2040 or not), reject, unless nothing volatile comes between it and I3 */
2041
2042 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2043 {
2044 /* Make sure neither succ nor succ2 contains a volatile reference. */
2045 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2046 return 0;
2047 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2048 return 0;
2049 /* We'll check insns between INSN and I3 below. */
2050 }
2051
2052 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2053 to be an explicit register variable, and was chosen for a reason. */
2054
2055 if (GET_CODE (src) == ASM_OPERANDS
2056 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2057 return 0;
2058
2059 /* If INSN contains volatile references (specifically volatile MEMs),
2060 we cannot combine across any other volatile references.
2061 Even if INSN doesn't contain volatile references, any intervening
2062 volatile insn might affect machine state. */
2063
2064 is_volatile_p = volatile_refs_p (PATTERN (insn))
2065 ? volatile_refs_p
2066 : volatile_insn_p;
2067
2068 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2069 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2070 return 0;
2071
2072 /* If INSN contains an autoincrement or autodecrement, make sure that
2073 register is not used between there and I3, and not already used in
2074 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2075 Also insist that I3 not be a jump; if it were one
2076 and the incremented register were spilled, we would lose. */
2077
2078 if (AUTO_INC_DEC)
2079 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2080 if (REG_NOTE_KIND (link) == REG_INC
2081 && (JUMP_P (i3)
2082 || reg_used_between_p (XEXP (link, 0), insn, i3)
2083 || (pred != NULL_RTX
2084 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2085 || (pred2 != NULL_RTX
2086 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2087 || (succ != NULL_RTX
2088 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2089 || (succ2 != NULL_RTX
2090 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2091 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2092 return 0;
2093
2094 /* Don't combine an insn that follows a CC0-setting insn.
2095 An insn that uses CC0 must not be separated from the one that sets it.
2096 We do, however, allow I2 to follow a CC0-setting insn if that insn
2097 is passed as I1; in that case it will be deleted also.
2098 We also allow combining in this case if all the insns are adjacent
2099 because that would leave the two CC0 insns adjacent as well.
2100 It would be more logical to test whether CC0 occurs inside I1 or I2,
2101 but that would be much slower, and this ought to be equivalent. */
2102
2103 if (HAVE_cc0)
2104 {
2105 p = prev_nonnote_insn (insn);
2106 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2107 && ! all_adjacent)
2108 return 0;
2109 }
2110
2111 /* If we get here, we have passed all the tests and the combination is
2112 to be allowed. */
2113
2114 *pdest = dest;
2115 *psrc = src;
2116
2117 return 1;
2118 }
2119 \f
2120 /* LOC is the location within I3 that contains its pattern or the component
2121 of a PARALLEL of the pattern. We validate that it is valid for combining.
2122
2123 One problem is if I3 modifies its output, as opposed to replacing it
2124 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2125 doing so would produce an insn that is not equivalent to the original insns.
2126
2127 Consider:
2128
2129 (set (reg:DI 101) (reg:DI 100))
2130 (set (subreg:SI (reg:DI 101) 0) <foo>)
2131
2132 This is NOT equivalent to:
2133
2134 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2135 (set (reg:DI 101) (reg:DI 100))])
2136
2137 Not only does this modify 100 (in which case it might still be valid
2138 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2139
2140 We can also run into a problem if I2 sets a register that I1
2141 uses and I1 gets directly substituted into I3 (not via I2). In that
2142 case, we would be getting the wrong value of I2DEST into I3, so we
2143 must reject the combination. This case occurs when I2 and I1 both
2144 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2145 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2146 of a SET must prevent combination from occurring. The same situation
2147 can occur for I0, in which case I0_NOT_IN_SRC is set.
2148
2149 Before doing the above check, we first try to expand a field assignment
2150 into a set of logical operations.
2151
2152 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2153 we place a register that is both set and used within I3. If more than one
2154 such register is detected, we fail.
2155
2156 Return 1 if the combination is valid, zero otherwise. */
2157
2158 static int
2159 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2160 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2161 {
2162 rtx x = *loc;
2163
2164 if (GET_CODE (x) == SET)
2165 {
2166 rtx set = x ;
2167 rtx dest = SET_DEST (set);
2168 rtx src = SET_SRC (set);
2169 rtx inner_dest = dest;
2170 rtx subdest;
2171
2172 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2173 || GET_CODE (inner_dest) == SUBREG
2174 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2175 inner_dest = XEXP (inner_dest, 0);
2176
2177 /* Check for the case where I3 modifies its output, as discussed
2178 above. We don't want to prevent pseudos from being combined
2179 into the address of a MEM, so only prevent the combination if
2180 i1 or i2 set the same MEM. */
2181 if ((inner_dest != dest &&
2182 (!MEM_P (inner_dest)
2183 || rtx_equal_p (i2dest, inner_dest)
2184 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2185 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2186 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2187 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2188 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2189
2190 /* This is the same test done in can_combine_p except we can't test
2191 all_adjacent; we don't have to, since this instruction will stay
2192 in place, thus we are not considering increasing the lifetime of
2193 INNER_DEST.
2194
2195 Also, if this insn sets a function argument, combining it with
2196 something that might need a spill could clobber a previous
2197 function argument; the all_adjacent test in can_combine_p also
2198 checks this; here, we do a more specific test for this case. */
2199
2200 || (REG_P (inner_dest)
2201 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2202 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2203 GET_MODE (inner_dest))))
2204 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2205 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2206 return 0;
2207
2208 /* If DEST is used in I3, it is being killed in this insn, so
2209 record that for later. We have to consider paradoxical
2210 subregs here, since they kill the whole register, but we
2211 ignore partial subregs, STRICT_LOW_PART, etc.
2212 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2213 STACK_POINTER_REGNUM, since these are always considered to be
2214 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2215 subdest = dest;
2216 if (GET_CODE (subdest) == SUBREG
2217 && (GET_MODE_SIZE (GET_MODE (subdest))
2218 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2219 subdest = SUBREG_REG (subdest);
2220 if (pi3dest_killed
2221 && REG_P (subdest)
2222 && reg_referenced_p (subdest, PATTERN (i3))
2223 && REGNO (subdest) != FRAME_POINTER_REGNUM
2224 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2225 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2226 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2227 || (REGNO (subdest) != ARG_POINTER_REGNUM
2228 || ! fixed_regs [REGNO (subdest)]))
2229 && REGNO (subdest) != STACK_POINTER_REGNUM)
2230 {
2231 if (*pi3dest_killed)
2232 return 0;
2233
2234 *pi3dest_killed = subdest;
2235 }
2236 }
2237
2238 else if (GET_CODE (x) == PARALLEL)
2239 {
2240 int i;
2241
2242 for (i = 0; i < XVECLEN (x, 0); i++)
2243 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2244 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2245 return 0;
2246 }
2247
2248 return 1;
2249 }
2250 \f
2251 /* Return 1 if X is an arithmetic expression that contains a multiplication
2252 and division. We don't count multiplications by powers of two here. */
2253
2254 static int
2255 contains_muldiv (rtx x)
2256 {
2257 switch (GET_CODE (x))
2258 {
2259 case MOD: case DIV: case UMOD: case UDIV:
2260 return 1;
2261
2262 case MULT:
2263 return ! (CONST_INT_P (XEXP (x, 1))
2264 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2265 default:
2266 if (BINARY_P (x))
2267 return contains_muldiv (XEXP (x, 0))
2268 || contains_muldiv (XEXP (x, 1));
2269
2270 if (UNARY_P (x))
2271 return contains_muldiv (XEXP (x, 0));
2272
2273 return 0;
2274 }
2275 }
2276 \f
2277 /* Determine whether INSN can be used in a combination. Return nonzero if
2278 not. This is used in try_combine to detect early some cases where we
2279 can't perform combinations. */
2280
2281 static int
2282 cant_combine_insn_p (rtx_insn *insn)
2283 {
2284 rtx set;
2285 rtx src, dest;
2286
2287 /* If this isn't really an insn, we can't do anything.
2288 This can occur when flow deletes an insn that it has merged into an
2289 auto-increment address. */
2290 if (!NONDEBUG_INSN_P (insn))
2291 return 1;
2292
2293 /* Never combine loads and stores involving hard regs that are likely
2294 to be spilled. The register allocator can usually handle such
2295 reg-reg moves by tying. If we allow the combiner to make
2296 substitutions of likely-spilled regs, reload might die.
2297 As an exception, we allow combinations involving fixed regs; these are
2298 not available to the register allocator so there's no risk involved. */
2299
2300 set = single_set (insn);
2301 if (! set)
2302 return 0;
2303 src = SET_SRC (set);
2304 dest = SET_DEST (set);
2305 if (GET_CODE (src) == SUBREG)
2306 src = SUBREG_REG (src);
2307 if (GET_CODE (dest) == SUBREG)
2308 dest = SUBREG_REG (dest);
2309 if (REG_P (src) && REG_P (dest)
2310 && ((HARD_REGISTER_P (src)
2311 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2312 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2313 || (HARD_REGISTER_P (dest)
2314 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2315 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2316 return 1;
2317
2318 return 0;
2319 }
2320
2321 struct likely_spilled_retval_info
2322 {
2323 unsigned regno, nregs;
2324 unsigned mask;
2325 };
2326
2327 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2328 hard registers that are known to be written to / clobbered in full. */
2329 static void
2330 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2331 {
2332 struct likely_spilled_retval_info *const info =
2333 (struct likely_spilled_retval_info *) data;
2334 unsigned regno, nregs;
2335 unsigned new_mask;
2336
2337 if (!REG_P (XEXP (set, 0)))
2338 return;
2339 regno = REGNO (x);
2340 if (regno >= info->regno + info->nregs)
2341 return;
2342 nregs = REG_NREGS (x);
2343 if (regno + nregs <= info->regno)
2344 return;
2345 new_mask = (2U << (nregs - 1)) - 1;
2346 if (regno < info->regno)
2347 new_mask >>= info->regno - regno;
2348 else
2349 new_mask <<= regno - info->regno;
2350 info->mask &= ~new_mask;
2351 }
2352
2353 /* Return nonzero iff part of the return value is live during INSN, and
2354 it is likely spilled. This can happen when more than one insn is needed
2355 to copy the return value, e.g. when we consider to combine into the
2356 second copy insn for a complex value. */
2357
2358 static int
2359 likely_spilled_retval_p (rtx_insn *insn)
2360 {
2361 rtx_insn *use = BB_END (this_basic_block);
2362 rtx reg;
2363 rtx_insn *p;
2364 unsigned regno, nregs;
2365 /* We assume here that no machine mode needs more than
2366 32 hard registers when the value overlaps with a register
2367 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2368 unsigned mask;
2369 struct likely_spilled_retval_info info;
2370
2371 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2372 return 0;
2373 reg = XEXP (PATTERN (use), 0);
2374 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2375 return 0;
2376 regno = REGNO (reg);
2377 nregs = REG_NREGS (reg);
2378 if (nregs == 1)
2379 return 0;
2380 mask = (2U << (nregs - 1)) - 1;
2381
2382 /* Disregard parts of the return value that are set later. */
2383 info.regno = regno;
2384 info.nregs = nregs;
2385 info.mask = mask;
2386 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2387 if (INSN_P (p))
2388 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2389 mask = info.mask;
2390
2391 /* Check if any of the (probably) live return value registers is
2392 likely spilled. */
2393 nregs --;
2394 do
2395 {
2396 if ((mask & 1 << nregs)
2397 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2398 return 1;
2399 } while (nregs--);
2400 return 0;
2401 }
2402
2403 /* Adjust INSN after we made a change to its destination.
2404
2405 Changing the destination can invalidate notes that say something about
2406 the results of the insn and a LOG_LINK pointing to the insn. */
2407
2408 static void
2409 adjust_for_new_dest (rtx_insn *insn)
2410 {
2411 /* For notes, be conservative and simply remove them. */
2412 remove_reg_equal_equiv_notes (insn);
2413
2414 /* The new insn will have a destination that was previously the destination
2415 of an insn just above it. Call distribute_links to make a LOG_LINK from
2416 the next use of that destination. */
2417
2418 rtx set = single_set (insn);
2419 gcc_assert (set);
2420
2421 rtx reg = SET_DEST (set);
2422
2423 while (GET_CODE (reg) == ZERO_EXTRACT
2424 || GET_CODE (reg) == STRICT_LOW_PART
2425 || GET_CODE (reg) == SUBREG)
2426 reg = XEXP (reg, 0);
2427 gcc_assert (REG_P (reg));
2428
2429 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2430
2431 df_insn_rescan (insn);
2432 }
2433
2434 /* Return TRUE if combine can reuse reg X in mode MODE.
2435 ADDED_SETS is nonzero if the original set is still required. */
2436 static bool
2437 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2438 {
2439 unsigned int regno;
2440
2441 if (!REG_P (x))
2442 return false;
2443
2444 regno = REGNO (x);
2445 /* Allow hard registers if the new mode is legal, and occupies no more
2446 registers than the old mode. */
2447 if (regno < FIRST_PSEUDO_REGISTER)
2448 return (HARD_REGNO_MODE_OK (regno, mode)
2449 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2450
2451 /* Or a pseudo that is only used once. */
2452 return (regno < reg_n_sets_max
2453 && REG_N_SETS (regno) == 1
2454 && !added_sets
2455 && !REG_USERVAR_P (x));
2456 }
2457
2458
2459 /* Check whether X, the destination of a set, refers to part of
2460 the register specified by REG. */
2461
2462 static bool
2463 reg_subword_p (rtx x, rtx reg)
2464 {
2465 /* Check that reg is an integer mode register. */
2466 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2467 return false;
2468
2469 if (GET_CODE (x) == STRICT_LOW_PART
2470 || GET_CODE (x) == ZERO_EXTRACT)
2471 x = XEXP (x, 0);
2472
2473 return GET_CODE (x) == SUBREG
2474 && SUBREG_REG (x) == reg
2475 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2476 }
2477
2478 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2479 Note that the INSN should be deleted *after* removing dead edges, so
2480 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2481 but not for a (set (pc) (label_ref FOO)). */
2482
2483 static void
2484 update_cfg_for_uncondjump (rtx_insn *insn)
2485 {
2486 basic_block bb = BLOCK_FOR_INSN (insn);
2487 gcc_assert (BB_END (bb) == insn);
2488
2489 purge_dead_edges (bb);
2490
2491 delete_insn (insn);
2492 if (EDGE_COUNT (bb->succs) == 1)
2493 {
2494 rtx_insn *insn;
2495
2496 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2497
2498 /* Remove barriers from the footer if there are any. */
2499 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2500 if (BARRIER_P (insn))
2501 {
2502 if (PREV_INSN (insn))
2503 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2504 else
2505 BB_FOOTER (bb) = NEXT_INSN (insn);
2506 if (NEXT_INSN (insn))
2507 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2508 }
2509 else if (LABEL_P (insn))
2510 break;
2511 }
2512 }
2513
2514 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2515 by an arbitrary number of CLOBBERs. */
2516 static bool
2517 is_parallel_of_n_reg_sets (rtx pat, int n)
2518 {
2519 if (GET_CODE (pat) != PARALLEL)
2520 return false;
2521
2522 int len = XVECLEN (pat, 0);
2523 if (len < n)
2524 return false;
2525
2526 int i;
2527 for (i = 0; i < n; i++)
2528 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2529 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2530 return false;
2531 for ( ; i < len; i++)
2532 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2533 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2534 return false;
2535
2536 return true;
2537 }
2538
2539 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2540 CLOBBERs), can be split into individual SETs in that order, without
2541 changing semantics. */
2542 static bool
2543 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2544 {
2545 if (!insn_nothrow_p (insn))
2546 return false;
2547
2548 rtx pat = PATTERN (insn);
2549
2550 int i, j;
2551 for (i = 0; i < n; i++)
2552 {
2553 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2554 return false;
2555
2556 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2557
2558 for (j = i + 1; j < n; j++)
2559 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2560 return false;
2561 }
2562
2563 return true;
2564 }
2565
2566 /* Try to combine the insns I0, I1 and I2 into I3.
2567 Here I0, I1 and I2 appear earlier than I3.
2568 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2569 I3.
2570
2571 If we are combining more than two insns and the resulting insn is not
2572 recognized, try splitting it into two insns. If that happens, I2 and I3
2573 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2574 Otherwise, I0, I1 and I2 are pseudo-deleted.
2575
2576 Return 0 if the combination does not work. Then nothing is changed.
2577 If we did the combination, return the insn at which combine should
2578 resume scanning.
2579
2580 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2581 new direct jump instruction.
2582
2583 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2584 been I3 passed to an earlier try_combine within the same basic
2585 block. */
2586
2587 static rtx_insn *
2588 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2589 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2590 {
2591 /* New patterns for I3 and I2, respectively. */
2592 rtx newpat, newi2pat = 0;
2593 rtvec newpat_vec_with_clobbers = 0;
2594 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2595 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2596 dead. */
2597 int added_sets_0, added_sets_1, added_sets_2;
2598 /* Total number of SETs to put into I3. */
2599 int total_sets;
2600 /* Nonzero if I2's or I1's body now appears in I3. */
2601 int i2_is_used = 0, i1_is_used = 0;
2602 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2603 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2604 /* Contains I3 if the destination of I3 is used in its source, which means
2605 that the old life of I3 is being killed. If that usage is placed into
2606 I2 and not in I3, a REG_DEAD note must be made. */
2607 rtx i3dest_killed = 0;
2608 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2609 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2610 /* Copy of SET_SRC of I1 and I0, if needed. */
2611 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2612 /* Set if I2DEST was reused as a scratch register. */
2613 bool i2scratch = false;
2614 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2615 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2616 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2617 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2618 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2619 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2620 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2621 /* Notes that must be added to REG_NOTES in I3 and I2. */
2622 rtx new_i3_notes, new_i2_notes;
2623 /* Notes that we substituted I3 into I2 instead of the normal case. */
2624 int i3_subst_into_i2 = 0;
2625 /* Notes that I1, I2 or I3 is a MULT operation. */
2626 int have_mult = 0;
2627 int swap_i2i3 = 0;
2628 int changed_i3_dest = 0;
2629
2630 int maxreg;
2631 rtx_insn *temp_insn;
2632 rtx temp_expr;
2633 struct insn_link *link;
2634 rtx other_pat = 0;
2635 rtx new_other_notes;
2636 int i;
2637
2638 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2639 never be). */
2640 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2641 return 0;
2642
2643 /* Only try four-insn combinations when there's high likelihood of
2644 success. Look for simple insns, such as loads of constants or
2645 binary operations involving a constant. */
2646 if (i0)
2647 {
2648 int i;
2649 int ngood = 0;
2650 int nshift = 0;
2651 rtx set0, set3;
2652
2653 if (!flag_expensive_optimizations)
2654 return 0;
2655
2656 for (i = 0; i < 4; i++)
2657 {
2658 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2659 rtx set = single_set (insn);
2660 rtx src;
2661 if (!set)
2662 continue;
2663 src = SET_SRC (set);
2664 if (CONSTANT_P (src))
2665 {
2666 ngood += 2;
2667 break;
2668 }
2669 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2670 ngood++;
2671 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2672 || GET_CODE (src) == LSHIFTRT)
2673 nshift++;
2674 }
2675
2676 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2677 are likely manipulating its value. Ideally we'll be able to combine
2678 all four insns into a bitfield insertion of some kind.
2679
2680 Note the source in I0 might be inside a sign/zero extension and the
2681 memory modes in I0 and I3 might be different. So extract the address
2682 from the destination of I3 and search for it in the source of I0.
2683
2684 In the event that there's a match but the source/dest do not actually
2685 refer to the same memory, the worst that happens is we try some
2686 combinations that we wouldn't have otherwise. */
2687 if ((set0 = single_set (i0))
2688 /* Ensure the source of SET0 is a MEM, possibly buried inside
2689 an extension. */
2690 && (GET_CODE (SET_SRC (set0)) == MEM
2691 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2692 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2693 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2694 && (set3 = single_set (i3))
2695 /* Ensure the destination of SET3 is a MEM. */
2696 && GET_CODE (SET_DEST (set3)) == MEM
2697 /* Would it be better to extract the base address for the MEM
2698 in SET3 and look for that? I don't have cases where it matters
2699 but I could envision such cases. */
2700 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2701 ngood += 2;
2702
2703 if (ngood < 2 && nshift < 2)
2704 return 0;
2705 }
2706
2707 /* Exit early if one of the insns involved can't be used for
2708 combinations. */
2709 if (CALL_P (i2)
2710 || (i1 && CALL_P (i1))
2711 || (i0 && CALL_P (i0))
2712 || cant_combine_insn_p (i3)
2713 || cant_combine_insn_p (i2)
2714 || (i1 && cant_combine_insn_p (i1))
2715 || (i0 && cant_combine_insn_p (i0))
2716 || likely_spilled_retval_p (i3))
2717 return 0;
2718
2719 combine_attempts++;
2720 undobuf.other_insn = 0;
2721
2722 /* Reset the hard register usage information. */
2723 CLEAR_HARD_REG_SET (newpat_used_regs);
2724
2725 if (dump_file && (dump_flags & TDF_DETAILS))
2726 {
2727 if (i0)
2728 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2729 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2730 else if (i1)
2731 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2732 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2733 else
2734 fprintf (dump_file, "\nTrying %d -> %d:\n",
2735 INSN_UID (i2), INSN_UID (i3));
2736 }
2737
2738 /* If multiple insns feed into one of I2 or I3, they can be in any
2739 order. To simplify the code below, reorder them in sequence. */
2740 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2741 std::swap (i0, i2);
2742 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2743 std::swap (i0, i1);
2744 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2745 std::swap (i1, i2);
2746
2747 added_links_insn = 0;
2748
2749 /* First check for one important special case that the code below will
2750 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2751 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2752 we may be able to replace that destination with the destination of I3.
2753 This occurs in the common code where we compute both a quotient and
2754 remainder into a structure, in which case we want to do the computation
2755 directly into the structure to avoid register-register copies.
2756
2757 Note that this case handles both multiple sets in I2 and also cases
2758 where I2 has a number of CLOBBERs inside the PARALLEL.
2759
2760 We make very conservative checks below and only try to handle the
2761 most common cases of this. For example, we only handle the case
2762 where I2 and I3 are adjacent to avoid making difficult register
2763 usage tests. */
2764
2765 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2766 && REG_P (SET_SRC (PATTERN (i3)))
2767 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2768 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2769 && GET_CODE (PATTERN (i2)) == PARALLEL
2770 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2771 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2772 below would need to check what is inside (and reg_overlap_mentioned_p
2773 doesn't support those codes anyway). Don't allow those destinations;
2774 the resulting insn isn't likely to be recognized anyway. */
2775 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2776 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2777 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2778 SET_DEST (PATTERN (i3)))
2779 && next_active_insn (i2) == i3)
2780 {
2781 rtx p2 = PATTERN (i2);
2782
2783 /* Make sure that the destination of I3,
2784 which we are going to substitute into one output of I2,
2785 is not used within another output of I2. We must avoid making this:
2786 (parallel [(set (mem (reg 69)) ...)
2787 (set (reg 69) ...)])
2788 which is not well-defined as to order of actions.
2789 (Besides, reload can't handle output reloads for this.)
2790
2791 The problem can also happen if the dest of I3 is a memory ref,
2792 if another dest in I2 is an indirect memory ref.
2793
2794 Neither can this PARALLEL be an asm. We do not allow combining
2795 that usually (see can_combine_p), so do not here either. */
2796 bool ok = true;
2797 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2798 {
2799 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2800 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2801 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2802 SET_DEST (XVECEXP (p2, 0, i))))
2803 ok = false;
2804 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2805 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2806 ok = false;
2807 }
2808
2809 if (ok)
2810 for (i = 0; i < XVECLEN (p2, 0); i++)
2811 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2812 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2813 {
2814 combine_merges++;
2815
2816 subst_insn = i3;
2817 subst_low_luid = DF_INSN_LUID (i2);
2818
2819 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2820 i2src = SET_SRC (XVECEXP (p2, 0, i));
2821 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2822 i2dest_killed = dead_or_set_p (i2, i2dest);
2823
2824 /* Replace the dest in I2 with our dest and make the resulting
2825 insn the new pattern for I3. Then skip to where we validate
2826 the pattern. Everything was set up above. */
2827 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2828 newpat = p2;
2829 i3_subst_into_i2 = 1;
2830 goto validate_replacement;
2831 }
2832 }
2833
2834 /* If I2 is setting a pseudo to a constant and I3 is setting some
2835 sub-part of it to another constant, merge them by making a new
2836 constant. */
2837 if (i1 == 0
2838 && (temp_expr = single_set (i2)) != 0
2839 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2840 && GET_CODE (PATTERN (i3)) == SET
2841 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2842 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2843 {
2844 rtx dest = SET_DEST (PATTERN (i3));
2845 int offset = -1;
2846 int width = 0;
2847
2848 if (GET_CODE (dest) == ZERO_EXTRACT)
2849 {
2850 if (CONST_INT_P (XEXP (dest, 1))
2851 && CONST_INT_P (XEXP (dest, 2)))
2852 {
2853 width = INTVAL (XEXP (dest, 1));
2854 offset = INTVAL (XEXP (dest, 2));
2855 dest = XEXP (dest, 0);
2856 if (BITS_BIG_ENDIAN)
2857 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2858 }
2859 }
2860 else
2861 {
2862 if (GET_CODE (dest) == STRICT_LOW_PART)
2863 dest = XEXP (dest, 0);
2864 width = GET_MODE_PRECISION (GET_MODE (dest));
2865 offset = 0;
2866 }
2867
2868 if (offset >= 0)
2869 {
2870 /* If this is the low part, we're done. */
2871 if (subreg_lowpart_p (dest))
2872 ;
2873 /* Handle the case where inner is twice the size of outer. */
2874 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2875 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2876 offset += GET_MODE_PRECISION (GET_MODE (dest));
2877 /* Otherwise give up for now. */
2878 else
2879 offset = -1;
2880 }
2881
2882 if (offset >= 0)
2883 {
2884 rtx inner = SET_SRC (PATTERN (i3));
2885 rtx outer = SET_SRC (temp_expr);
2886
2887 wide_int o
2888 = wi::insert (rtx_mode_t (outer, GET_MODE (SET_DEST (temp_expr))),
2889 rtx_mode_t (inner, GET_MODE (dest)),
2890 offset, width);
2891
2892 combine_merges++;
2893 subst_insn = i3;
2894 subst_low_luid = DF_INSN_LUID (i2);
2895 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2896 i2dest = SET_DEST (temp_expr);
2897 i2dest_killed = dead_or_set_p (i2, i2dest);
2898
2899 /* Replace the source in I2 with the new constant and make the
2900 resulting insn the new pattern for I3. Then skip to where we
2901 validate the pattern. Everything was set up above. */
2902 SUBST (SET_SRC (temp_expr),
2903 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2904
2905 newpat = PATTERN (i2);
2906
2907 /* The dest of I3 has been replaced with the dest of I2. */
2908 changed_i3_dest = 1;
2909 goto validate_replacement;
2910 }
2911 }
2912
2913 /* If we have no I1 and I2 looks like:
2914 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2915 (set Y OP)])
2916 make up a dummy I1 that is
2917 (set Y OP)
2918 and change I2 to be
2919 (set (reg:CC X) (compare:CC Y (const_int 0)))
2920
2921 (We can ignore any trailing CLOBBERs.)
2922
2923 This undoes a previous combination and allows us to match a branch-and-
2924 decrement insn. */
2925
2926 if (!HAVE_cc0 && i1 == 0
2927 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2928 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2929 == MODE_CC)
2930 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2931 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2932 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2933 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2934 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2935 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2936 {
2937 /* We make I1 with the same INSN_UID as I2. This gives it
2938 the same DF_INSN_LUID for value tracking. Our fake I1 will
2939 never appear in the insn stream so giving it the same INSN_UID
2940 as I2 will not cause a problem. */
2941
2942 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2943 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2944 -1, NULL_RTX);
2945 INSN_UID (i1) = INSN_UID (i2);
2946
2947 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2948 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2949 SET_DEST (PATTERN (i1)));
2950 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2951 SUBST_LINK (LOG_LINKS (i2),
2952 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2953 }
2954
2955 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2956 make those two SETs separate I1 and I2 insns, and make an I0 that is
2957 the original I1. */
2958 if (!HAVE_cc0 && i0 == 0
2959 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2960 && can_split_parallel_of_n_reg_sets (i2, 2)
2961 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2962 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2963 {
2964 /* If there is no I1, there is no I0 either. */
2965 i0 = i1;
2966
2967 /* We make I1 with the same INSN_UID as I2. This gives it
2968 the same DF_INSN_LUID for value tracking. Our fake I1 will
2969 never appear in the insn stream so giving it the same INSN_UID
2970 as I2 will not cause a problem. */
2971
2972 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2973 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2974 -1, NULL_RTX);
2975 INSN_UID (i1) = INSN_UID (i2);
2976
2977 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2978 }
2979
2980 /* Verify that I2 and I1 are valid for combining. */
2981 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2982 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2983 &i1dest, &i1src))
2984 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2985 &i0dest, &i0src)))
2986 {
2987 undo_all ();
2988 return 0;
2989 }
2990
2991 /* Record whether I2DEST is used in I2SRC and similarly for the other
2992 cases. Knowing this will help in register status updating below. */
2993 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2994 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2995 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2996 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2997 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2998 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2999 i2dest_killed = dead_or_set_p (i2, i2dest);
3000 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3001 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3002
3003 /* For the earlier insns, determine which of the subsequent ones they
3004 feed. */
3005 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3006 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3007 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3008 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3009 && reg_overlap_mentioned_p (i0dest, i2src))));
3010
3011 /* Ensure that I3's pattern can be the destination of combines. */
3012 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3013 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3014 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3015 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3016 &i3dest_killed))
3017 {
3018 undo_all ();
3019 return 0;
3020 }
3021
3022 /* See if any of the insns is a MULT operation. Unless one is, we will
3023 reject a combination that is, since it must be slower. Be conservative
3024 here. */
3025 if (GET_CODE (i2src) == MULT
3026 || (i1 != 0 && GET_CODE (i1src) == MULT)
3027 || (i0 != 0 && GET_CODE (i0src) == MULT)
3028 || (GET_CODE (PATTERN (i3)) == SET
3029 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3030 have_mult = 1;
3031
3032 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3033 We used to do this EXCEPT in one case: I3 has a post-inc in an
3034 output operand. However, that exception can give rise to insns like
3035 mov r3,(r3)+
3036 which is a famous insn on the PDP-11 where the value of r3 used as the
3037 source was model-dependent. Avoid this sort of thing. */
3038
3039 #if 0
3040 if (!(GET_CODE (PATTERN (i3)) == SET
3041 && REG_P (SET_SRC (PATTERN (i3)))
3042 && MEM_P (SET_DEST (PATTERN (i3)))
3043 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3044 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3045 /* It's not the exception. */
3046 #endif
3047 if (AUTO_INC_DEC)
3048 {
3049 rtx link;
3050 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3051 if (REG_NOTE_KIND (link) == REG_INC
3052 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3053 || (i1 != 0
3054 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3055 {
3056 undo_all ();
3057 return 0;
3058 }
3059 }
3060
3061 /* See if the SETs in I1 or I2 need to be kept around in the merged
3062 instruction: whenever the value set there is still needed past I3.
3063 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3064
3065 For the SET in I1, we have two cases: if I1 and I2 independently feed
3066 into I3, the set in I1 needs to be kept around unless I1DEST dies
3067 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3068 in I1 needs to be kept around unless I1DEST dies or is set in either
3069 I2 or I3. The same considerations apply to I0. */
3070
3071 added_sets_2 = !dead_or_set_p (i3, i2dest);
3072
3073 if (i1)
3074 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3075 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3076 else
3077 added_sets_1 = 0;
3078
3079 if (i0)
3080 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3081 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3082 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3083 && dead_or_set_p (i2, i0dest)));
3084 else
3085 added_sets_0 = 0;
3086
3087 /* We are about to copy insns for the case where they need to be kept
3088 around. Check that they can be copied in the merged instruction. */
3089
3090 if (targetm.cannot_copy_insn_p
3091 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3092 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3093 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3094 {
3095 undo_all ();
3096 return 0;
3097 }
3098
3099 /* If the set in I2 needs to be kept around, we must make a copy of
3100 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3101 PATTERN (I2), we are only substituting for the original I1DEST, not into
3102 an already-substituted copy. This also prevents making self-referential
3103 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3104 I2DEST. */
3105
3106 if (added_sets_2)
3107 {
3108 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3109 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3110 else
3111 i2pat = copy_rtx (PATTERN (i2));
3112 }
3113
3114 if (added_sets_1)
3115 {
3116 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3117 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3118 else
3119 i1pat = copy_rtx (PATTERN (i1));
3120 }
3121
3122 if (added_sets_0)
3123 {
3124 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3125 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3126 else
3127 i0pat = copy_rtx (PATTERN (i0));
3128 }
3129
3130 combine_merges++;
3131
3132 /* Substitute in the latest insn for the regs set by the earlier ones. */
3133
3134 maxreg = max_reg_num ();
3135
3136 subst_insn = i3;
3137
3138 /* Many machines that don't use CC0 have insns that can both perform an
3139 arithmetic operation and set the condition code. These operations will
3140 be represented as a PARALLEL with the first element of the vector
3141 being a COMPARE of an arithmetic operation with the constant zero.
3142 The second element of the vector will set some pseudo to the result
3143 of the same arithmetic operation. If we simplify the COMPARE, we won't
3144 match such a pattern and so will generate an extra insn. Here we test
3145 for this case, where both the comparison and the operation result are
3146 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3147 I2SRC. Later we will make the PARALLEL that contains I2. */
3148
3149 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3150 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3151 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3152 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3153 {
3154 rtx newpat_dest;
3155 rtx *cc_use_loc = NULL;
3156 rtx_insn *cc_use_insn = NULL;
3157 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3158 machine_mode compare_mode, orig_compare_mode;
3159 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3160
3161 newpat = PATTERN (i3);
3162 newpat_dest = SET_DEST (newpat);
3163 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3164
3165 if (undobuf.other_insn == 0
3166 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3167 &cc_use_insn)))
3168 {
3169 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3170 compare_code = simplify_compare_const (compare_code,
3171 GET_MODE (i2dest), op0, &op1);
3172 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3173 }
3174
3175 /* Do the rest only if op1 is const0_rtx, which may be the
3176 result of simplification. */
3177 if (op1 == const0_rtx)
3178 {
3179 /* If a single use of the CC is found, prepare to modify it
3180 when SELECT_CC_MODE returns a new CC-class mode, or when
3181 the above simplify_compare_const() returned a new comparison
3182 operator. undobuf.other_insn is assigned the CC use insn
3183 when modifying it. */
3184 if (cc_use_loc)
3185 {
3186 #ifdef SELECT_CC_MODE
3187 machine_mode new_mode
3188 = SELECT_CC_MODE (compare_code, op0, op1);
3189 if (new_mode != orig_compare_mode
3190 && can_change_dest_mode (SET_DEST (newpat),
3191 added_sets_2, new_mode))
3192 {
3193 unsigned int regno = REGNO (newpat_dest);
3194 compare_mode = new_mode;
3195 if (regno < FIRST_PSEUDO_REGISTER)
3196 newpat_dest = gen_rtx_REG (compare_mode, regno);
3197 else
3198 {
3199 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3200 newpat_dest = regno_reg_rtx[regno];
3201 }
3202 }
3203 #endif
3204 /* Cases for modifying the CC-using comparison. */
3205 if (compare_code != orig_compare_code
3206 /* ??? Do we need to verify the zero rtx? */
3207 && XEXP (*cc_use_loc, 1) == const0_rtx)
3208 {
3209 /* Replace cc_use_loc with entire new RTX. */
3210 SUBST (*cc_use_loc,
3211 gen_rtx_fmt_ee (compare_code, compare_mode,
3212 newpat_dest, const0_rtx));
3213 undobuf.other_insn = cc_use_insn;
3214 }
3215 else if (compare_mode != orig_compare_mode)
3216 {
3217 /* Just replace the CC reg with a new mode. */
3218 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3219 undobuf.other_insn = cc_use_insn;
3220 }
3221 }
3222
3223 /* Now we modify the current newpat:
3224 First, SET_DEST(newpat) is updated if the CC mode has been
3225 altered. For targets without SELECT_CC_MODE, this should be
3226 optimized away. */
3227 if (compare_mode != orig_compare_mode)
3228 SUBST (SET_DEST (newpat), newpat_dest);
3229 /* This is always done to propagate i2src into newpat. */
3230 SUBST (SET_SRC (newpat),
3231 gen_rtx_COMPARE (compare_mode, op0, op1));
3232 /* Create new version of i2pat if needed; the below PARALLEL
3233 creation needs this to work correctly. */
3234 if (! rtx_equal_p (i2src, op0))
3235 i2pat = gen_rtx_SET (i2dest, op0);
3236 i2_is_used = 1;
3237 }
3238 }
3239
3240 if (i2_is_used == 0)
3241 {
3242 /* It is possible that the source of I2 or I1 may be performing
3243 an unneeded operation, such as a ZERO_EXTEND of something
3244 that is known to have the high part zero. Handle that case
3245 by letting subst look at the inner insns.
3246
3247 Another way to do this would be to have a function that tries
3248 to simplify a single insn instead of merging two or more
3249 insns. We don't do this because of the potential of infinite
3250 loops and because of the potential extra memory required.
3251 However, doing it the way we are is a bit of a kludge and
3252 doesn't catch all cases.
3253
3254 But only do this if -fexpensive-optimizations since it slows
3255 things down and doesn't usually win.
3256
3257 This is not done in the COMPARE case above because the
3258 unmodified I2PAT is used in the PARALLEL and so a pattern
3259 with a modified I2SRC would not match. */
3260
3261 if (flag_expensive_optimizations)
3262 {
3263 /* Pass pc_rtx so no substitutions are done, just
3264 simplifications. */
3265 if (i1)
3266 {
3267 subst_low_luid = DF_INSN_LUID (i1);
3268 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3269 }
3270
3271 subst_low_luid = DF_INSN_LUID (i2);
3272 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3273 }
3274
3275 n_occurrences = 0; /* `subst' counts here */
3276 subst_low_luid = DF_INSN_LUID (i2);
3277
3278 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3279 copy of I2SRC each time we substitute it, in order to avoid creating
3280 self-referential RTL when we will be substituting I1SRC for I1DEST
3281 later. Likewise if I0 feeds into I2, either directly or indirectly
3282 through I1, and I0DEST is in I0SRC. */
3283 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3284 (i1_feeds_i2_n && i1dest_in_i1src)
3285 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3286 && i0dest_in_i0src));
3287 substed_i2 = 1;
3288
3289 /* Record whether I2's body now appears within I3's body. */
3290 i2_is_used = n_occurrences;
3291 }
3292
3293 /* If we already got a failure, don't try to do more. Otherwise, try to
3294 substitute I1 if we have it. */
3295
3296 if (i1 && GET_CODE (newpat) != CLOBBER)
3297 {
3298 /* Check that an autoincrement side-effect on I1 has not been lost.
3299 This happens if I1DEST is mentioned in I2 and dies there, and
3300 has disappeared from the new pattern. */
3301 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3302 && i1_feeds_i2_n
3303 && dead_or_set_p (i2, i1dest)
3304 && !reg_overlap_mentioned_p (i1dest, newpat))
3305 /* Before we can do this substitution, we must redo the test done
3306 above (see detailed comments there) that ensures I1DEST isn't
3307 mentioned in any SETs in NEWPAT that are field assignments. */
3308 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3309 0, 0, 0))
3310 {
3311 undo_all ();
3312 return 0;
3313 }
3314
3315 n_occurrences = 0;
3316 subst_low_luid = DF_INSN_LUID (i1);
3317
3318 /* If the following substitution will modify I1SRC, make a copy of it
3319 for the case where it is substituted for I1DEST in I2PAT later. */
3320 if (added_sets_2 && i1_feeds_i2_n)
3321 i1src_copy = copy_rtx (i1src);
3322
3323 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3324 copy of I1SRC each time we substitute it, in order to avoid creating
3325 self-referential RTL when we will be substituting I0SRC for I0DEST
3326 later. */
3327 newpat = subst (newpat, i1dest, i1src, 0, 0,
3328 i0_feeds_i1_n && i0dest_in_i0src);
3329 substed_i1 = 1;
3330
3331 /* Record whether I1's body now appears within I3's body. */
3332 i1_is_used = n_occurrences;
3333 }
3334
3335 /* Likewise for I0 if we have it. */
3336
3337 if (i0 && GET_CODE (newpat) != CLOBBER)
3338 {
3339 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3340 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3341 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3342 && !reg_overlap_mentioned_p (i0dest, newpat))
3343 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3344 0, 0, 0))
3345 {
3346 undo_all ();
3347 return 0;
3348 }
3349
3350 /* If the following substitution will modify I0SRC, make a copy of it
3351 for the case where it is substituted for I0DEST in I1PAT later. */
3352 if (added_sets_1 && i0_feeds_i1_n)
3353 i0src_copy = copy_rtx (i0src);
3354 /* And a copy for I0DEST in I2PAT substitution. */
3355 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3356 || (i0_feeds_i2_n)))
3357 i0src_copy2 = copy_rtx (i0src);
3358
3359 n_occurrences = 0;
3360 subst_low_luid = DF_INSN_LUID (i0);
3361 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3362 substed_i0 = 1;
3363 }
3364
3365 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3366 to count all the ways that I2SRC and I1SRC can be used. */
3367 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3368 && i2_is_used + added_sets_2 > 1)
3369 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3370 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3371 > 1))
3372 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3373 && (n_occurrences + added_sets_0
3374 + (added_sets_1 && i0_feeds_i1_n)
3375 + (added_sets_2 && i0_feeds_i2_n)
3376 > 1))
3377 /* Fail if we tried to make a new register. */
3378 || max_reg_num () != maxreg
3379 /* Fail if we couldn't do something and have a CLOBBER. */
3380 || GET_CODE (newpat) == CLOBBER
3381 /* Fail if this new pattern is a MULT and we didn't have one before
3382 at the outer level. */
3383 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3384 && ! have_mult))
3385 {
3386 undo_all ();
3387 return 0;
3388 }
3389
3390 /* If the actions of the earlier insns must be kept
3391 in addition to substituting them into the latest one,
3392 we must make a new PARALLEL for the latest insn
3393 to hold additional the SETs. */
3394
3395 if (added_sets_0 || added_sets_1 || added_sets_2)
3396 {
3397 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3398 combine_extras++;
3399
3400 if (GET_CODE (newpat) == PARALLEL)
3401 {
3402 rtvec old = XVEC (newpat, 0);
3403 total_sets = XVECLEN (newpat, 0) + extra_sets;
3404 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3405 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3406 sizeof (old->elem[0]) * old->num_elem);
3407 }
3408 else
3409 {
3410 rtx old = newpat;
3411 total_sets = 1 + extra_sets;
3412 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3413 XVECEXP (newpat, 0, 0) = old;
3414 }
3415
3416 if (added_sets_0)
3417 XVECEXP (newpat, 0, --total_sets) = i0pat;
3418
3419 if (added_sets_1)
3420 {
3421 rtx t = i1pat;
3422 if (i0_feeds_i1_n)
3423 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3424
3425 XVECEXP (newpat, 0, --total_sets) = t;
3426 }
3427 if (added_sets_2)
3428 {
3429 rtx t = i2pat;
3430 if (i1_feeds_i2_n)
3431 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3432 i0_feeds_i1_n && i0dest_in_i0src);
3433 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3434 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3435
3436 XVECEXP (newpat, 0, --total_sets) = t;
3437 }
3438 }
3439
3440 validate_replacement:
3441
3442 /* Note which hard regs this insn has as inputs. */
3443 mark_used_regs_combine (newpat);
3444
3445 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3446 consider splitting this pattern, we might need these clobbers. */
3447 if (i1 && GET_CODE (newpat) == PARALLEL
3448 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3449 {
3450 int len = XVECLEN (newpat, 0);
3451
3452 newpat_vec_with_clobbers = rtvec_alloc (len);
3453 for (i = 0; i < len; i++)
3454 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3455 }
3456
3457 /* We have recognized nothing yet. */
3458 insn_code_number = -1;
3459
3460 /* See if this is a PARALLEL of two SETs where one SET's destination is
3461 a register that is unused and this isn't marked as an instruction that
3462 might trap in an EH region. In that case, we just need the other SET.
3463 We prefer this over the PARALLEL.
3464
3465 This can occur when simplifying a divmod insn. We *must* test for this
3466 case here because the code below that splits two independent SETs doesn't
3467 handle this case correctly when it updates the register status.
3468
3469 It's pointless doing this if we originally had two sets, one from
3470 i3, and one from i2. Combining then splitting the parallel results
3471 in the original i2 again plus an invalid insn (which we delete).
3472 The net effect is only to move instructions around, which makes
3473 debug info less accurate. */
3474
3475 if (!(added_sets_2 && i1 == 0)
3476 && is_parallel_of_n_reg_sets (newpat, 2)
3477 && asm_noperands (newpat) < 0)
3478 {
3479 rtx set0 = XVECEXP (newpat, 0, 0);
3480 rtx set1 = XVECEXP (newpat, 0, 1);
3481 rtx oldpat = newpat;
3482
3483 if (((REG_P (SET_DEST (set1))
3484 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3485 || (GET_CODE (SET_DEST (set1)) == SUBREG
3486 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3487 && insn_nothrow_p (i3)
3488 && !side_effects_p (SET_SRC (set1)))
3489 {
3490 newpat = set0;
3491 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3492 }
3493
3494 else if (((REG_P (SET_DEST (set0))
3495 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3496 || (GET_CODE (SET_DEST (set0)) == SUBREG
3497 && find_reg_note (i3, REG_UNUSED,
3498 SUBREG_REG (SET_DEST (set0)))))
3499 && insn_nothrow_p (i3)
3500 && !side_effects_p (SET_SRC (set0)))
3501 {
3502 newpat = set1;
3503 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3504
3505 if (insn_code_number >= 0)
3506 changed_i3_dest = 1;
3507 }
3508
3509 if (insn_code_number < 0)
3510 newpat = oldpat;
3511 }
3512
3513 /* Is the result of combination a valid instruction? */
3514 if (insn_code_number < 0)
3515 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3516
3517 /* If we were combining three insns and the result is a simple SET
3518 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3519 insns. There are two ways to do this. It can be split using a
3520 machine-specific method (like when you have an addition of a large
3521 constant) or by combine in the function find_split_point. */
3522
3523 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3524 && asm_noperands (newpat) < 0)
3525 {
3526 rtx parallel, *split;
3527 rtx_insn *m_split_insn;
3528
3529 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3530 use I2DEST as a scratch register will help. In the latter case,
3531 convert I2DEST to the mode of the source of NEWPAT if we can. */
3532
3533 m_split_insn = combine_split_insns (newpat, i3);
3534
3535 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3536 inputs of NEWPAT. */
3537
3538 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3539 possible to try that as a scratch reg. This would require adding
3540 more code to make it work though. */
3541
3542 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3543 {
3544 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3545
3546 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3547 (temporarily, until we are committed to this instruction
3548 combination) does not work: for example, any call to nonzero_bits
3549 on the register (from a splitter in the MD file, for example)
3550 will get the old information, which is invalid.
3551
3552 Since nowadays we can create registers during combine just fine,
3553 we should just create a new one here, not reuse i2dest. */
3554
3555 /* First try to split using the original register as a
3556 scratch register. */
3557 parallel = gen_rtx_PARALLEL (VOIDmode,
3558 gen_rtvec (2, newpat,
3559 gen_rtx_CLOBBER (VOIDmode,
3560 i2dest)));
3561 m_split_insn = combine_split_insns (parallel, i3);
3562
3563 /* If that didn't work, try changing the mode of I2DEST if
3564 we can. */
3565 if (m_split_insn == 0
3566 && new_mode != GET_MODE (i2dest)
3567 && new_mode != VOIDmode
3568 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3569 {
3570 machine_mode old_mode = GET_MODE (i2dest);
3571 rtx ni2dest;
3572
3573 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3574 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3575 else
3576 {
3577 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3578 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3579 }
3580
3581 parallel = (gen_rtx_PARALLEL
3582 (VOIDmode,
3583 gen_rtvec (2, newpat,
3584 gen_rtx_CLOBBER (VOIDmode,
3585 ni2dest))));
3586 m_split_insn = combine_split_insns (parallel, i3);
3587
3588 if (m_split_insn == 0
3589 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3590 {
3591 struct undo *buf;
3592
3593 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3594 buf = undobuf.undos;
3595 undobuf.undos = buf->next;
3596 buf->next = undobuf.frees;
3597 undobuf.frees = buf;
3598 }
3599 }
3600
3601 i2scratch = m_split_insn != 0;
3602 }
3603
3604 /* If recog_for_combine has discarded clobbers, try to use them
3605 again for the split. */
3606 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3607 {
3608 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3609 m_split_insn = combine_split_insns (parallel, i3);
3610 }
3611
3612 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3613 {
3614 rtx m_split_pat = PATTERN (m_split_insn);
3615 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3616 if (insn_code_number >= 0)
3617 newpat = m_split_pat;
3618 }
3619 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3620 && (next_nonnote_nondebug_insn (i2) == i3
3621 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3622 {
3623 rtx i2set, i3set;
3624 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3625 newi2pat = PATTERN (m_split_insn);
3626
3627 i3set = single_set (NEXT_INSN (m_split_insn));
3628 i2set = single_set (m_split_insn);
3629
3630 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3631
3632 /* If I2 or I3 has multiple SETs, we won't know how to track
3633 register status, so don't use these insns. If I2's destination
3634 is used between I2 and I3, we also can't use these insns. */
3635
3636 if (i2_code_number >= 0 && i2set && i3set
3637 && (next_nonnote_nondebug_insn (i2) == i3
3638 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3639 insn_code_number = recog_for_combine (&newi3pat, i3,
3640 &new_i3_notes);
3641 if (insn_code_number >= 0)
3642 newpat = newi3pat;
3643
3644 /* It is possible that both insns now set the destination of I3.
3645 If so, we must show an extra use of it. */
3646
3647 if (insn_code_number >= 0)
3648 {
3649 rtx new_i3_dest = SET_DEST (i3set);
3650 rtx new_i2_dest = SET_DEST (i2set);
3651
3652 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3653 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3654 || GET_CODE (new_i3_dest) == SUBREG)
3655 new_i3_dest = XEXP (new_i3_dest, 0);
3656
3657 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3658 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3659 || GET_CODE (new_i2_dest) == SUBREG)
3660 new_i2_dest = XEXP (new_i2_dest, 0);
3661
3662 if (REG_P (new_i3_dest)
3663 && REG_P (new_i2_dest)
3664 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3665 && REGNO (new_i2_dest) < reg_n_sets_max)
3666 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3667 }
3668 }
3669
3670 /* If we can split it and use I2DEST, go ahead and see if that
3671 helps things be recognized. Verify that none of the registers
3672 are set between I2 and I3. */
3673 if (insn_code_number < 0
3674 && (split = find_split_point (&newpat, i3, false)) != 0
3675 && (!HAVE_cc0 || REG_P (i2dest))
3676 /* We need I2DEST in the proper mode. If it is a hard register
3677 or the only use of a pseudo, we can change its mode.
3678 Make sure we don't change a hard register to have a mode that
3679 isn't valid for it, or change the number of registers. */
3680 && (GET_MODE (*split) == GET_MODE (i2dest)
3681 || GET_MODE (*split) == VOIDmode
3682 || can_change_dest_mode (i2dest, added_sets_2,
3683 GET_MODE (*split)))
3684 && (next_nonnote_nondebug_insn (i2) == i3
3685 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3686 /* We can't overwrite I2DEST if its value is still used by
3687 NEWPAT. */
3688 && ! reg_referenced_p (i2dest, newpat))
3689 {
3690 rtx newdest = i2dest;
3691 enum rtx_code split_code = GET_CODE (*split);
3692 machine_mode split_mode = GET_MODE (*split);
3693 bool subst_done = false;
3694 newi2pat = NULL_RTX;
3695
3696 i2scratch = true;
3697
3698 /* *SPLIT may be part of I2SRC, so make sure we have the
3699 original expression around for later debug processing.
3700 We should not need I2SRC any more in other cases. */
3701 if (MAY_HAVE_DEBUG_INSNS)
3702 i2src = copy_rtx (i2src);
3703 else
3704 i2src = NULL;
3705
3706 /* Get NEWDEST as a register in the proper mode. We have already
3707 validated that we can do this. */
3708 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3709 {
3710 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3711 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3712 else
3713 {
3714 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3715 newdest = regno_reg_rtx[REGNO (i2dest)];
3716 }
3717 }
3718
3719 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3720 an ASHIFT. This can occur if it was inside a PLUS and hence
3721 appeared to be a memory address. This is a kludge. */
3722 if (split_code == MULT
3723 && CONST_INT_P (XEXP (*split, 1))
3724 && INTVAL (XEXP (*split, 1)) > 0
3725 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3726 {
3727 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3728 XEXP (*split, 0), GEN_INT (i)));
3729 /* Update split_code because we may not have a multiply
3730 anymore. */
3731 split_code = GET_CODE (*split);
3732 }
3733
3734 /* Similarly for (plus (mult FOO (const_int pow2))). */
3735 if (split_code == PLUS
3736 && GET_CODE (XEXP (*split, 0)) == MULT
3737 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3738 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3739 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3740 {
3741 rtx nsplit = XEXP (*split, 0);
3742 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3743 XEXP (nsplit, 0), GEN_INT (i)));
3744 /* Update split_code because we may not have a multiply
3745 anymore. */
3746 split_code = GET_CODE (*split);
3747 }
3748
3749 #ifdef INSN_SCHEDULING
3750 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3751 be written as a ZERO_EXTEND. */
3752 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3753 {
3754 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3755 what it really is. */
3756 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3757 == SIGN_EXTEND)
3758 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3759 SUBREG_REG (*split)));
3760 else
3761 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3762 SUBREG_REG (*split)));
3763 }
3764 #endif
3765
3766 /* Attempt to split binary operators using arithmetic identities. */
3767 if (BINARY_P (SET_SRC (newpat))
3768 && split_mode == GET_MODE (SET_SRC (newpat))
3769 && ! side_effects_p (SET_SRC (newpat)))
3770 {
3771 rtx setsrc = SET_SRC (newpat);
3772 machine_mode mode = GET_MODE (setsrc);
3773 enum rtx_code code = GET_CODE (setsrc);
3774 rtx src_op0 = XEXP (setsrc, 0);
3775 rtx src_op1 = XEXP (setsrc, 1);
3776
3777 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3778 if (rtx_equal_p (src_op0, src_op1))
3779 {
3780 newi2pat = gen_rtx_SET (newdest, src_op0);
3781 SUBST (XEXP (setsrc, 0), newdest);
3782 SUBST (XEXP (setsrc, 1), newdest);
3783 subst_done = true;
3784 }
3785 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3786 else if ((code == PLUS || code == MULT)
3787 && GET_CODE (src_op0) == code
3788 && GET_CODE (XEXP (src_op0, 0)) == code
3789 && (INTEGRAL_MODE_P (mode)
3790 || (FLOAT_MODE_P (mode)
3791 && flag_unsafe_math_optimizations)))
3792 {
3793 rtx p = XEXP (XEXP (src_op0, 0), 0);
3794 rtx q = XEXP (XEXP (src_op0, 0), 1);
3795 rtx r = XEXP (src_op0, 1);
3796 rtx s = src_op1;
3797
3798 /* Split both "((X op Y) op X) op Y" and
3799 "((X op Y) op Y) op X" as "T op T" where T is
3800 "X op Y". */
3801 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3802 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3803 {
3804 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3805 SUBST (XEXP (setsrc, 0), newdest);
3806 SUBST (XEXP (setsrc, 1), newdest);
3807 subst_done = true;
3808 }
3809 /* Split "((X op X) op Y) op Y)" as "T op T" where
3810 T is "X op Y". */
3811 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3812 {
3813 rtx tmp = simplify_gen_binary (code, mode, p, r);
3814 newi2pat = gen_rtx_SET (newdest, tmp);
3815 SUBST (XEXP (setsrc, 0), newdest);
3816 SUBST (XEXP (setsrc, 1), newdest);
3817 subst_done = true;
3818 }
3819 }
3820 }
3821
3822 if (!subst_done)
3823 {
3824 newi2pat = gen_rtx_SET (newdest, *split);
3825 SUBST (*split, newdest);
3826 }
3827
3828 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3829
3830 /* recog_for_combine might have added CLOBBERs to newi2pat.
3831 Make sure NEWPAT does not depend on the clobbered regs. */
3832 if (GET_CODE (newi2pat) == PARALLEL)
3833 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3834 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3835 {
3836 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3837 if (reg_overlap_mentioned_p (reg, newpat))
3838 {
3839 undo_all ();
3840 return 0;
3841 }
3842 }
3843
3844 /* If the split point was a MULT and we didn't have one before,
3845 don't use one now. */
3846 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3847 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3848 }
3849 }
3850
3851 /* Check for a case where we loaded from memory in a narrow mode and
3852 then sign extended it, but we need both registers. In that case,
3853 we have a PARALLEL with both loads from the same memory location.
3854 We can split this into a load from memory followed by a register-register
3855 copy. This saves at least one insn, more if register allocation can
3856 eliminate the copy.
3857
3858 We cannot do this if the destination of the first assignment is a
3859 condition code register or cc0. We eliminate this case by making sure
3860 the SET_DEST and SET_SRC have the same mode.
3861
3862 We cannot do this if the destination of the second assignment is
3863 a register that we have already assumed is zero-extended. Similarly
3864 for a SUBREG of such a register. */
3865
3866 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3867 && GET_CODE (newpat) == PARALLEL
3868 && XVECLEN (newpat, 0) == 2
3869 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3870 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3871 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3872 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3873 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3874 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3875 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3876 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3877 DF_INSN_LUID (i2))
3878 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3879 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3880 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3881 (REG_P (temp_expr)
3882 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3883 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3884 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3885 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3886 != GET_MODE_MASK (word_mode))))
3887 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3888 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3889 (REG_P (temp_expr)
3890 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3891 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3892 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3893 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3894 != GET_MODE_MASK (word_mode)))))
3895 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3896 SET_SRC (XVECEXP (newpat, 0, 1)))
3897 && ! find_reg_note (i3, REG_UNUSED,
3898 SET_DEST (XVECEXP (newpat, 0, 0))))
3899 {
3900 rtx ni2dest;
3901
3902 newi2pat = XVECEXP (newpat, 0, 0);
3903 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3904 newpat = XVECEXP (newpat, 0, 1);
3905 SUBST (SET_SRC (newpat),
3906 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3907 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3908
3909 if (i2_code_number >= 0)
3910 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3911
3912 if (insn_code_number >= 0)
3913 swap_i2i3 = 1;
3914 }
3915
3916 /* Similarly, check for a case where we have a PARALLEL of two independent
3917 SETs but we started with three insns. In this case, we can do the sets
3918 as two separate insns. This case occurs when some SET allows two
3919 other insns to combine, but the destination of that SET is still live.
3920
3921 Also do this if we started with two insns and (at least) one of the
3922 resulting sets is a noop; this noop will be deleted later. */
3923
3924 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3925 && GET_CODE (newpat) == PARALLEL
3926 && XVECLEN (newpat, 0) == 2
3927 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3928 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3929 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3930 || set_noop_p (XVECEXP (newpat, 0, 1)))
3931 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3932 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3933 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3934 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3935 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3936 XVECEXP (newpat, 0, 0))
3937 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3938 XVECEXP (newpat, 0, 1))
3939 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3940 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3941 {
3942 rtx set0 = XVECEXP (newpat, 0, 0);
3943 rtx set1 = XVECEXP (newpat, 0, 1);
3944
3945 /* Normally, it doesn't matter which of the two is done first,
3946 but the one that references cc0 can't be the second, and
3947 one which uses any regs/memory set in between i2 and i3 can't
3948 be first. The PARALLEL might also have been pre-existing in i3,
3949 so we need to make sure that we won't wrongly hoist a SET to i2
3950 that would conflict with a death note present in there. */
3951 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3952 && !(REG_P (SET_DEST (set1))
3953 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3954 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3955 && find_reg_note (i2, REG_DEAD,
3956 SUBREG_REG (SET_DEST (set1))))
3957 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3958 /* If I3 is a jump, ensure that set0 is a jump so that
3959 we do not create invalid RTL. */
3960 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3961 )
3962 {
3963 newi2pat = set1;
3964 newpat = set0;
3965 }
3966 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3967 && !(REG_P (SET_DEST (set0))
3968 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3969 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3970 && find_reg_note (i2, REG_DEAD,
3971 SUBREG_REG (SET_DEST (set0))))
3972 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3973 /* If I3 is a jump, ensure that set1 is a jump so that
3974 we do not create invalid RTL. */
3975 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3976 )
3977 {
3978 newi2pat = set0;
3979 newpat = set1;
3980 }
3981 else
3982 {
3983 undo_all ();
3984 return 0;
3985 }
3986
3987 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3988
3989 if (i2_code_number >= 0)
3990 {
3991 /* recog_for_combine might have added CLOBBERs to newi2pat.
3992 Make sure NEWPAT does not depend on the clobbered regs. */
3993 if (GET_CODE (newi2pat) == PARALLEL)
3994 {
3995 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3996 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3997 {
3998 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3999 if (reg_overlap_mentioned_p (reg, newpat))
4000 {
4001 undo_all ();
4002 return 0;
4003 }
4004 }
4005 }
4006
4007 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4008 }
4009 }
4010
4011 /* If it still isn't recognized, fail and change things back the way they
4012 were. */
4013 if ((insn_code_number < 0
4014 /* Is the result a reasonable ASM_OPERANDS? */
4015 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4016 {
4017 undo_all ();
4018 return 0;
4019 }
4020
4021 /* If we had to change another insn, make sure it is valid also. */
4022 if (undobuf.other_insn)
4023 {
4024 CLEAR_HARD_REG_SET (newpat_used_regs);
4025
4026 other_pat = PATTERN (undobuf.other_insn);
4027 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4028 &new_other_notes);
4029
4030 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4031 {
4032 undo_all ();
4033 return 0;
4034 }
4035 }
4036
4037 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4038 they are adjacent to each other or not. */
4039 if (HAVE_cc0)
4040 {
4041 rtx_insn *p = prev_nonnote_insn (i3);
4042 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4043 && sets_cc0_p (newi2pat))
4044 {
4045 undo_all ();
4046 return 0;
4047 }
4048 }
4049
4050 /* Only allow this combination if insn_rtx_costs reports that the
4051 replacement instructions are cheaper than the originals. */
4052 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4053 {
4054 undo_all ();
4055 return 0;
4056 }
4057
4058 if (MAY_HAVE_DEBUG_INSNS)
4059 {
4060 struct undo *undo;
4061
4062 for (undo = undobuf.undos; undo; undo = undo->next)
4063 if (undo->kind == UNDO_MODE)
4064 {
4065 rtx reg = *undo->where.r;
4066 machine_mode new_mode = GET_MODE (reg);
4067 machine_mode old_mode = undo->old_contents.m;
4068
4069 /* Temporarily revert mode back. */
4070 adjust_reg_mode (reg, old_mode);
4071
4072 if (reg == i2dest && i2scratch)
4073 {
4074 /* If we used i2dest as a scratch register with a
4075 different mode, substitute it for the original
4076 i2src while its original mode is temporarily
4077 restored, and then clear i2scratch so that we don't
4078 do it again later. */
4079 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4080 this_basic_block);
4081 i2scratch = false;
4082 /* Put back the new mode. */
4083 adjust_reg_mode (reg, new_mode);
4084 }
4085 else
4086 {
4087 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4088 rtx_insn *first, *last;
4089
4090 if (reg == i2dest)
4091 {
4092 first = i2;
4093 last = last_combined_insn;
4094 }
4095 else
4096 {
4097 first = i3;
4098 last = undobuf.other_insn;
4099 gcc_assert (last);
4100 if (DF_INSN_LUID (last)
4101 < DF_INSN_LUID (last_combined_insn))
4102 last = last_combined_insn;
4103 }
4104
4105 /* We're dealing with a reg that changed mode but not
4106 meaning, so we want to turn it into a subreg for
4107 the new mode. However, because of REG sharing and
4108 because its mode had already changed, we have to do
4109 it in two steps. First, replace any debug uses of
4110 reg, with its original mode temporarily restored,
4111 with this copy we have created; then, replace the
4112 copy with the SUBREG of the original shared reg,
4113 once again changed to the new mode. */
4114 propagate_for_debug (first, last, reg, tempreg,
4115 this_basic_block);
4116 adjust_reg_mode (reg, new_mode);
4117 propagate_for_debug (first, last, tempreg,
4118 lowpart_subreg (old_mode, reg, new_mode),
4119 this_basic_block);
4120 }
4121 }
4122 }
4123
4124 /* If we will be able to accept this, we have made a
4125 change to the destination of I3. This requires us to
4126 do a few adjustments. */
4127
4128 if (changed_i3_dest)
4129 {
4130 PATTERN (i3) = newpat;
4131 adjust_for_new_dest (i3);
4132 }
4133
4134 /* We now know that we can do this combination. Merge the insns and
4135 update the status of registers and LOG_LINKS. */
4136
4137 if (undobuf.other_insn)
4138 {
4139 rtx note, next;
4140
4141 PATTERN (undobuf.other_insn) = other_pat;
4142
4143 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4144 ensure that they are still valid. Then add any non-duplicate
4145 notes added by recog_for_combine. */
4146 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4147 {
4148 next = XEXP (note, 1);
4149
4150 if ((REG_NOTE_KIND (note) == REG_DEAD
4151 && !reg_referenced_p (XEXP (note, 0),
4152 PATTERN (undobuf.other_insn)))
4153 ||(REG_NOTE_KIND (note) == REG_UNUSED
4154 && !reg_set_p (XEXP (note, 0),
4155 PATTERN (undobuf.other_insn)))
4156 /* Simply drop equal note since it may be no longer valid
4157 for other_insn. It may be possible to record that CC
4158 register is changed and only discard those notes, but
4159 in practice it's unnecessary complication and doesn't
4160 give any meaningful improvement.
4161
4162 See PR78559. */
4163 || REG_NOTE_KIND (note) == REG_EQUAL
4164 || REG_NOTE_KIND (note) == REG_EQUIV)
4165 remove_note (undobuf.other_insn, note);
4166 }
4167
4168 distribute_notes (new_other_notes, undobuf.other_insn,
4169 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4170 NULL_RTX);
4171 }
4172
4173 if (swap_i2i3)
4174 {
4175 rtx_insn *insn;
4176 struct insn_link *link;
4177 rtx ni2dest;
4178
4179 /* I3 now uses what used to be its destination and which is now
4180 I2's destination. This requires us to do a few adjustments. */
4181 PATTERN (i3) = newpat;
4182 adjust_for_new_dest (i3);
4183
4184 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4185 so we still will.
4186
4187 However, some later insn might be using I2's dest and have
4188 a LOG_LINK pointing at I3. We must remove this link.
4189 The simplest way to remove the link is to point it at I1,
4190 which we know will be a NOTE. */
4191
4192 /* newi2pat is usually a SET here; however, recog_for_combine might
4193 have added some clobbers. */
4194 if (GET_CODE (newi2pat) == PARALLEL)
4195 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4196 else
4197 ni2dest = SET_DEST (newi2pat);
4198
4199 for (insn = NEXT_INSN (i3);
4200 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4201 || insn != BB_HEAD (this_basic_block->next_bb));
4202 insn = NEXT_INSN (insn))
4203 {
4204 if (NONDEBUG_INSN_P (insn)
4205 && reg_referenced_p (ni2dest, PATTERN (insn)))
4206 {
4207 FOR_EACH_LOG_LINK (link, insn)
4208 if (link->insn == i3)
4209 link->insn = i1;
4210
4211 break;
4212 }
4213 }
4214 }
4215
4216 {
4217 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4218 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4219 rtx midnotes = 0;
4220 int from_luid;
4221 /* Compute which registers we expect to eliminate. newi2pat may be setting
4222 either i3dest or i2dest, so we must check it. */
4223 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4224 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4225 || !i2dest_killed
4226 ? 0 : i2dest);
4227 /* For i1, we need to compute both local elimination and global
4228 elimination information with respect to newi2pat because i1dest
4229 may be the same as i3dest, in which case newi2pat may be setting
4230 i1dest. Global information is used when distributing REG_DEAD
4231 note for i2 and i3, in which case it does matter if newi2pat sets
4232 i1dest or not.
4233
4234 Local information is used when distributing REG_DEAD note for i1,
4235 in which case it doesn't matter if newi2pat sets i1dest or not.
4236 See PR62151, if we have four insns combination:
4237 i0: r0 <- i0src
4238 i1: r1 <- i1src (using r0)
4239 REG_DEAD (r0)
4240 i2: r0 <- i2src (using r1)
4241 i3: r3 <- i3src (using r0)
4242 ix: using r0
4243 From i1's point of view, r0 is eliminated, no matter if it is set
4244 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4245 should be discarded.
4246
4247 Note local information only affects cases in forms like "I1->I2->I3",
4248 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4249 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4250 i0dest anyway. */
4251 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4252 || !i1dest_killed
4253 ? 0 : i1dest);
4254 rtx elim_i1 = (local_elim_i1 == 0
4255 || (newi2pat && reg_set_p (i1dest, newi2pat))
4256 ? 0 : i1dest);
4257 /* Same case as i1. */
4258 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4259 ? 0 : i0dest);
4260 rtx elim_i0 = (local_elim_i0 == 0
4261 || (newi2pat && reg_set_p (i0dest, newi2pat))
4262 ? 0 : i0dest);
4263
4264 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4265 clear them. */
4266 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4267 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4268 if (i1)
4269 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4270 if (i0)
4271 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4272
4273 /* Ensure that we do not have something that should not be shared but
4274 occurs multiple times in the new insns. Check this by first
4275 resetting all the `used' flags and then copying anything is shared. */
4276
4277 reset_used_flags (i3notes);
4278 reset_used_flags (i2notes);
4279 reset_used_flags (i1notes);
4280 reset_used_flags (i0notes);
4281 reset_used_flags (newpat);
4282 reset_used_flags (newi2pat);
4283 if (undobuf.other_insn)
4284 reset_used_flags (PATTERN (undobuf.other_insn));
4285
4286 i3notes = copy_rtx_if_shared (i3notes);
4287 i2notes = copy_rtx_if_shared (i2notes);
4288 i1notes = copy_rtx_if_shared (i1notes);
4289 i0notes = copy_rtx_if_shared (i0notes);
4290 newpat = copy_rtx_if_shared (newpat);
4291 newi2pat = copy_rtx_if_shared (newi2pat);
4292 if (undobuf.other_insn)
4293 reset_used_flags (PATTERN (undobuf.other_insn));
4294
4295 INSN_CODE (i3) = insn_code_number;
4296 PATTERN (i3) = newpat;
4297
4298 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4299 {
4300 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4301 link = XEXP (link, 1))
4302 {
4303 if (substed_i2)
4304 {
4305 /* I2SRC must still be meaningful at this point. Some
4306 splitting operations can invalidate I2SRC, but those
4307 operations do not apply to calls. */
4308 gcc_assert (i2src);
4309 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4310 i2dest, i2src);
4311 }
4312 if (substed_i1)
4313 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4314 i1dest, i1src);
4315 if (substed_i0)
4316 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4317 i0dest, i0src);
4318 }
4319 }
4320
4321 if (undobuf.other_insn)
4322 INSN_CODE (undobuf.other_insn) = other_code_number;
4323
4324 /* We had one special case above where I2 had more than one set and
4325 we replaced a destination of one of those sets with the destination
4326 of I3. In that case, we have to update LOG_LINKS of insns later
4327 in this basic block. Note that this (expensive) case is rare.
4328
4329 Also, in this case, we must pretend that all REG_NOTEs for I2
4330 actually came from I3, so that REG_UNUSED notes from I2 will be
4331 properly handled. */
4332
4333 if (i3_subst_into_i2)
4334 {
4335 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4336 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4337 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4338 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4339 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4340 && ! find_reg_note (i2, REG_UNUSED,
4341 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4342 for (temp_insn = NEXT_INSN (i2);
4343 temp_insn
4344 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4345 || BB_HEAD (this_basic_block) != temp_insn);
4346 temp_insn = NEXT_INSN (temp_insn))
4347 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4348 FOR_EACH_LOG_LINK (link, temp_insn)
4349 if (link->insn == i2)
4350 link->insn = i3;
4351
4352 if (i3notes)
4353 {
4354 rtx link = i3notes;
4355 while (XEXP (link, 1))
4356 link = XEXP (link, 1);
4357 XEXP (link, 1) = i2notes;
4358 }
4359 else
4360 i3notes = i2notes;
4361 i2notes = 0;
4362 }
4363
4364 LOG_LINKS (i3) = NULL;
4365 REG_NOTES (i3) = 0;
4366 LOG_LINKS (i2) = NULL;
4367 REG_NOTES (i2) = 0;
4368
4369 if (newi2pat)
4370 {
4371 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4372 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4373 this_basic_block);
4374 INSN_CODE (i2) = i2_code_number;
4375 PATTERN (i2) = newi2pat;
4376 }
4377 else
4378 {
4379 if (MAY_HAVE_DEBUG_INSNS && i2src)
4380 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4381 this_basic_block);
4382 SET_INSN_DELETED (i2);
4383 }
4384
4385 if (i1)
4386 {
4387 LOG_LINKS (i1) = NULL;
4388 REG_NOTES (i1) = 0;
4389 if (MAY_HAVE_DEBUG_INSNS)
4390 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4391 this_basic_block);
4392 SET_INSN_DELETED (i1);
4393 }
4394
4395 if (i0)
4396 {
4397 LOG_LINKS (i0) = NULL;
4398 REG_NOTES (i0) = 0;
4399 if (MAY_HAVE_DEBUG_INSNS)
4400 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4401 this_basic_block);
4402 SET_INSN_DELETED (i0);
4403 }
4404
4405 /* Get death notes for everything that is now used in either I3 or
4406 I2 and used to die in a previous insn. If we built two new
4407 patterns, move from I1 to I2 then I2 to I3 so that we get the
4408 proper movement on registers that I2 modifies. */
4409
4410 if (i0)
4411 from_luid = DF_INSN_LUID (i0);
4412 else if (i1)
4413 from_luid = DF_INSN_LUID (i1);
4414 else
4415 from_luid = DF_INSN_LUID (i2);
4416 if (newi2pat)
4417 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4418 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4419
4420 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4421 if (i3notes)
4422 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4423 elim_i2, elim_i1, elim_i0);
4424 if (i2notes)
4425 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4426 elim_i2, elim_i1, elim_i0);
4427 if (i1notes)
4428 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4429 elim_i2, local_elim_i1, local_elim_i0);
4430 if (i0notes)
4431 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4432 elim_i2, elim_i1, local_elim_i0);
4433 if (midnotes)
4434 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4435 elim_i2, elim_i1, elim_i0);
4436
4437 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4438 know these are REG_UNUSED and want them to go to the desired insn,
4439 so we always pass it as i3. */
4440
4441 if (newi2pat && new_i2_notes)
4442 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4443 NULL_RTX);
4444
4445 if (new_i3_notes)
4446 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4447 NULL_RTX);
4448
4449 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4450 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4451 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4452 in that case, it might delete I2. Similarly for I2 and I1.
4453 Show an additional death due to the REG_DEAD note we make here. If
4454 we discard it in distribute_notes, we will decrement it again. */
4455
4456 if (i3dest_killed)
4457 {
4458 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4459 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4460 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4461 elim_i1, elim_i0);
4462 else
4463 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4464 elim_i2, elim_i1, elim_i0);
4465 }
4466
4467 if (i2dest_in_i2src)
4468 {
4469 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4470 if (newi2pat && reg_set_p (i2dest, newi2pat))
4471 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4472 NULL_RTX, NULL_RTX);
4473 else
4474 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4475 NULL_RTX, NULL_RTX, NULL_RTX);
4476 }
4477
4478 if (i1dest_in_i1src)
4479 {
4480 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4481 if (newi2pat && reg_set_p (i1dest, newi2pat))
4482 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4483 NULL_RTX, NULL_RTX);
4484 else
4485 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4486 NULL_RTX, NULL_RTX, NULL_RTX);
4487 }
4488
4489 if (i0dest_in_i0src)
4490 {
4491 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4492 if (newi2pat && reg_set_p (i0dest, newi2pat))
4493 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4494 NULL_RTX, NULL_RTX);
4495 else
4496 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4497 NULL_RTX, NULL_RTX, NULL_RTX);
4498 }
4499
4500 distribute_links (i3links);
4501 distribute_links (i2links);
4502 distribute_links (i1links);
4503 distribute_links (i0links);
4504
4505 if (REG_P (i2dest))
4506 {
4507 struct insn_link *link;
4508 rtx_insn *i2_insn = 0;
4509 rtx i2_val = 0, set;
4510
4511 /* The insn that used to set this register doesn't exist, and
4512 this life of the register may not exist either. See if one of
4513 I3's links points to an insn that sets I2DEST. If it does,
4514 that is now the last known value for I2DEST. If we don't update
4515 this and I2 set the register to a value that depended on its old
4516 contents, we will get confused. If this insn is used, thing
4517 will be set correctly in combine_instructions. */
4518 FOR_EACH_LOG_LINK (link, i3)
4519 if ((set = single_set (link->insn)) != 0
4520 && rtx_equal_p (i2dest, SET_DEST (set)))
4521 i2_insn = link->insn, i2_val = SET_SRC (set);
4522
4523 record_value_for_reg (i2dest, i2_insn, i2_val);
4524
4525 /* If the reg formerly set in I2 died only once and that was in I3,
4526 zero its use count so it won't make `reload' do any work. */
4527 if (! added_sets_2
4528 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4529 && ! i2dest_in_i2src
4530 && REGNO (i2dest) < reg_n_sets_max)
4531 INC_REG_N_SETS (REGNO (i2dest), -1);
4532 }
4533
4534 if (i1 && REG_P (i1dest))
4535 {
4536 struct insn_link *link;
4537 rtx_insn *i1_insn = 0;
4538 rtx i1_val = 0, set;
4539
4540 FOR_EACH_LOG_LINK (link, i3)
4541 if ((set = single_set (link->insn)) != 0
4542 && rtx_equal_p (i1dest, SET_DEST (set)))
4543 i1_insn = link->insn, i1_val = SET_SRC (set);
4544
4545 record_value_for_reg (i1dest, i1_insn, i1_val);
4546
4547 if (! added_sets_1
4548 && ! i1dest_in_i1src
4549 && REGNO (i1dest) < reg_n_sets_max)
4550 INC_REG_N_SETS (REGNO (i1dest), -1);
4551 }
4552
4553 if (i0 && REG_P (i0dest))
4554 {
4555 struct insn_link *link;
4556 rtx_insn *i0_insn = 0;
4557 rtx i0_val = 0, set;
4558
4559 FOR_EACH_LOG_LINK (link, i3)
4560 if ((set = single_set (link->insn)) != 0
4561 && rtx_equal_p (i0dest, SET_DEST (set)))
4562 i0_insn = link->insn, i0_val = SET_SRC (set);
4563
4564 record_value_for_reg (i0dest, i0_insn, i0_val);
4565
4566 if (! added_sets_0
4567 && ! i0dest_in_i0src
4568 && REGNO (i0dest) < reg_n_sets_max)
4569 INC_REG_N_SETS (REGNO (i0dest), -1);
4570 }
4571
4572 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4573 been made to this insn. The order is important, because newi2pat
4574 can affect nonzero_bits of newpat. */
4575 if (newi2pat)
4576 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4577 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4578 }
4579
4580 if (undobuf.other_insn != NULL_RTX)
4581 {
4582 if (dump_file)
4583 {
4584 fprintf (dump_file, "modifying other_insn ");
4585 dump_insn_slim (dump_file, undobuf.other_insn);
4586 }
4587 df_insn_rescan (undobuf.other_insn);
4588 }
4589
4590 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4591 {
4592 if (dump_file)
4593 {
4594 fprintf (dump_file, "modifying insn i0 ");
4595 dump_insn_slim (dump_file, i0);
4596 }
4597 df_insn_rescan (i0);
4598 }
4599
4600 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4601 {
4602 if (dump_file)
4603 {
4604 fprintf (dump_file, "modifying insn i1 ");
4605 dump_insn_slim (dump_file, i1);
4606 }
4607 df_insn_rescan (i1);
4608 }
4609
4610 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4611 {
4612 if (dump_file)
4613 {
4614 fprintf (dump_file, "modifying insn i2 ");
4615 dump_insn_slim (dump_file, i2);
4616 }
4617 df_insn_rescan (i2);
4618 }
4619
4620 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4621 {
4622 if (dump_file)
4623 {
4624 fprintf (dump_file, "modifying insn i3 ");
4625 dump_insn_slim (dump_file, i3);
4626 }
4627 df_insn_rescan (i3);
4628 }
4629
4630 /* Set new_direct_jump_p if a new return or simple jump instruction
4631 has been created. Adjust the CFG accordingly. */
4632 if (returnjump_p (i3) || any_uncondjump_p (i3))
4633 {
4634 *new_direct_jump_p = 1;
4635 mark_jump_label (PATTERN (i3), i3, 0);
4636 update_cfg_for_uncondjump (i3);
4637 }
4638
4639 if (undobuf.other_insn != NULL_RTX
4640 && (returnjump_p (undobuf.other_insn)
4641 || any_uncondjump_p (undobuf.other_insn)))
4642 {
4643 *new_direct_jump_p = 1;
4644 update_cfg_for_uncondjump (undobuf.other_insn);
4645 }
4646
4647 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4648 && XEXP (PATTERN (i3), 0) == const1_rtx)
4649 {
4650 basic_block bb = BLOCK_FOR_INSN (i3);
4651 gcc_assert (bb);
4652 remove_edge (split_block (bb, i3));
4653 emit_barrier_after_bb (bb);
4654 *new_direct_jump_p = 1;
4655 }
4656
4657 if (undobuf.other_insn
4658 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4659 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4660 {
4661 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4662 gcc_assert (bb);
4663 remove_edge (split_block (bb, undobuf.other_insn));
4664 emit_barrier_after_bb (bb);
4665 *new_direct_jump_p = 1;
4666 }
4667
4668 /* A noop might also need cleaning up of CFG, if it comes from the
4669 simplification of a jump. */
4670 if (JUMP_P (i3)
4671 && GET_CODE (newpat) == SET
4672 && SET_SRC (newpat) == pc_rtx
4673 && SET_DEST (newpat) == pc_rtx)
4674 {
4675 *new_direct_jump_p = 1;
4676 update_cfg_for_uncondjump (i3);
4677 }
4678
4679 if (undobuf.other_insn != NULL_RTX
4680 && JUMP_P (undobuf.other_insn)
4681 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4682 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4683 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4684 {
4685 *new_direct_jump_p = 1;
4686 update_cfg_for_uncondjump (undobuf.other_insn);
4687 }
4688
4689 combine_successes++;
4690 undo_commit ();
4691
4692 if (added_links_insn
4693 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4694 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4695 return added_links_insn;
4696 else
4697 return newi2pat ? i2 : i3;
4698 }
4699 \f
4700 /* Get a marker for undoing to the current state. */
4701
4702 static void *
4703 get_undo_marker (void)
4704 {
4705 return undobuf.undos;
4706 }
4707
4708 /* Undo the modifications up to the marker. */
4709
4710 static void
4711 undo_to_marker (void *marker)
4712 {
4713 struct undo *undo, *next;
4714
4715 for (undo = undobuf.undos; undo != marker; undo = next)
4716 {
4717 gcc_assert (undo);
4718
4719 next = undo->next;
4720 switch (undo->kind)
4721 {
4722 case UNDO_RTX:
4723 *undo->where.r = undo->old_contents.r;
4724 break;
4725 case UNDO_INT:
4726 *undo->where.i = undo->old_contents.i;
4727 break;
4728 case UNDO_MODE:
4729 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4730 break;
4731 case UNDO_LINKS:
4732 *undo->where.l = undo->old_contents.l;
4733 break;
4734 default:
4735 gcc_unreachable ();
4736 }
4737
4738 undo->next = undobuf.frees;
4739 undobuf.frees = undo;
4740 }
4741
4742 undobuf.undos = (struct undo *) marker;
4743 }
4744
4745 /* Undo all the modifications recorded in undobuf. */
4746
4747 static void
4748 undo_all (void)
4749 {
4750 undo_to_marker (0);
4751 }
4752
4753 /* We've committed to accepting the changes we made. Move all
4754 of the undos to the free list. */
4755
4756 static void
4757 undo_commit (void)
4758 {
4759 struct undo *undo, *next;
4760
4761 for (undo = undobuf.undos; undo; undo = next)
4762 {
4763 next = undo->next;
4764 undo->next = undobuf.frees;
4765 undobuf.frees = undo;
4766 }
4767 undobuf.undos = 0;
4768 }
4769 \f
4770 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4771 where we have an arithmetic expression and return that point. LOC will
4772 be inside INSN.
4773
4774 try_combine will call this function to see if an insn can be split into
4775 two insns. */
4776
4777 static rtx *
4778 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4779 {
4780 rtx x = *loc;
4781 enum rtx_code code = GET_CODE (x);
4782 rtx *split;
4783 unsigned HOST_WIDE_INT len = 0;
4784 HOST_WIDE_INT pos = 0;
4785 int unsignedp = 0;
4786 rtx inner = NULL_RTX;
4787
4788 /* First special-case some codes. */
4789 switch (code)
4790 {
4791 case SUBREG:
4792 #ifdef INSN_SCHEDULING
4793 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4794 point. */
4795 if (MEM_P (SUBREG_REG (x)))
4796 return loc;
4797 #endif
4798 return find_split_point (&SUBREG_REG (x), insn, false);
4799
4800 case MEM:
4801 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4802 using LO_SUM and HIGH. */
4803 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4804 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4805 {
4806 machine_mode address_mode = get_address_mode (x);
4807
4808 SUBST (XEXP (x, 0),
4809 gen_rtx_LO_SUM (address_mode,
4810 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4811 XEXP (x, 0)));
4812 return &XEXP (XEXP (x, 0), 0);
4813 }
4814
4815 /* If we have a PLUS whose second operand is a constant and the
4816 address is not valid, perhaps will can split it up using
4817 the machine-specific way to split large constants. We use
4818 the first pseudo-reg (one of the virtual regs) as a placeholder;
4819 it will not remain in the result. */
4820 if (GET_CODE (XEXP (x, 0)) == PLUS
4821 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4822 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4823 MEM_ADDR_SPACE (x)))
4824 {
4825 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4826 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4827 subst_insn);
4828
4829 /* This should have produced two insns, each of which sets our
4830 placeholder. If the source of the second is a valid address,
4831 we can make put both sources together and make a split point
4832 in the middle. */
4833
4834 if (seq
4835 && NEXT_INSN (seq) != NULL_RTX
4836 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4837 && NONJUMP_INSN_P (seq)
4838 && GET_CODE (PATTERN (seq)) == SET
4839 && SET_DEST (PATTERN (seq)) == reg
4840 && ! reg_mentioned_p (reg,
4841 SET_SRC (PATTERN (seq)))
4842 && NONJUMP_INSN_P (NEXT_INSN (seq))
4843 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4844 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4845 && memory_address_addr_space_p
4846 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4847 MEM_ADDR_SPACE (x)))
4848 {
4849 rtx src1 = SET_SRC (PATTERN (seq));
4850 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4851
4852 /* Replace the placeholder in SRC2 with SRC1. If we can
4853 find where in SRC2 it was placed, that can become our
4854 split point and we can replace this address with SRC2.
4855 Just try two obvious places. */
4856
4857 src2 = replace_rtx (src2, reg, src1);
4858 split = 0;
4859 if (XEXP (src2, 0) == src1)
4860 split = &XEXP (src2, 0);
4861 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4862 && XEXP (XEXP (src2, 0), 0) == src1)
4863 split = &XEXP (XEXP (src2, 0), 0);
4864
4865 if (split)
4866 {
4867 SUBST (XEXP (x, 0), src2);
4868 return split;
4869 }
4870 }
4871
4872 /* If that didn't work, perhaps the first operand is complex and
4873 needs to be computed separately, so make a split point there.
4874 This will occur on machines that just support REG + CONST
4875 and have a constant moved through some previous computation. */
4876
4877 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4878 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4879 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4880 return &XEXP (XEXP (x, 0), 0);
4881 }
4882
4883 /* If we have a PLUS whose first operand is complex, try computing it
4884 separately by making a split there. */
4885 if (GET_CODE (XEXP (x, 0)) == PLUS
4886 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4887 MEM_ADDR_SPACE (x))
4888 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4889 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4890 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4891 return &XEXP (XEXP (x, 0), 0);
4892 break;
4893
4894 case SET:
4895 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4896 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4897 we need to put the operand into a register. So split at that
4898 point. */
4899
4900 if (SET_DEST (x) == cc0_rtx
4901 && GET_CODE (SET_SRC (x)) != COMPARE
4902 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4903 && !OBJECT_P (SET_SRC (x))
4904 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4905 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4906 return &SET_SRC (x);
4907
4908 /* See if we can split SET_SRC as it stands. */
4909 split = find_split_point (&SET_SRC (x), insn, true);
4910 if (split && split != &SET_SRC (x))
4911 return split;
4912
4913 /* See if we can split SET_DEST as it stands. */
4914 split = find_split_point (&SET_DEST (x), insn, false);
4915 if (split && split != &SET_DEST (x))
4916 return split;
4917
4918 /* See if this is a bitfield assignment with everything constant. If
4919 so, this is an IOR of an AND, so split it into that. */
4920 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4921 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4922 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4923 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4924 && CONST_INT_P (SET_SRC (x))
4925 && ((INTVAL (XEXP (SET_DEST (x), 1))
4926 + INTVAL (XEXP (SET_DEST (x), 2)))
4927 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4928 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4929 {
4930 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4931 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4932 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4933 rtx dest = XEXP (SET_DEST (x), 0);
4934 machine_mode mode = GET_MODE (dest);
4935 unsigned HOST_WIDE_INT mask
4936 = (HOST_WIDE_INT_1U << len) - 1;
4937 rtx or_mask;
4938
4939 if (BITS_BIG_ENDIAN)
4940 pos = GET_MODE_PRECISION (mode) - len - pos;
4941
4942 or_mask = gen_int_mode (src << pos, mode);
4943 if (src == mask)
4944 SUBST (SET_SRC (x),
4945 simplify_gen_binary (IOR, mode, dest, or_mask));
4946 else
4947 {
4948 rtx negmask = gen_int_mode (~(mask << pos), mode);
4949 SUBST (SET_SRC (x),
4950 simplify_gen_binary (IOR, mode,
4951 simplify_gen_binary (AND, mode,
4952 dest, negmask),
4953 or_mask));
4954 }
4955
4956 SUBST (SET_DEST (x), dest);
4957
4958 split = find_split_point (&SET_SRC (x), insn, true);
4959 if (split && split != &SET_SRC (x))
4960 return split;
4961 }
4962
4963 /* Otherwise, see if this is an operation that we can split into two.
4964 If so, try to split that. */
4965 code = GET_CODE (SET_SRC (x));
4966
4967 switch (code)
4968 {
4969 case AND:
4970 /* If we are AND'ing with a large constant that is only a single
4971 bit and the result is only being used in a context where we
4972 need to know if it is zero or nonzero, replace it with a bit
4973 extraction. This will avoid the large constant, which might
4974 have taken more than one insn to make. If the constant were
4975 not a valid argument to the AND but took only one insn to make,
4976 this is no worse, but if it took more than one insn, it will
4977 be better. */
4978
4979 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4980 && REG_P (XEXP (SET_SRC (x), 0))
4981 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4982 && REG_P (SET_DEST (x))
4983 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4984 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4985 && XEXP (*split, 0) == SET_DEST (x)
4986 && XEXP (*split, 1) == const0_rtx)
4987 {
4988 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4989 XEXP (SET_SRC (x), 0),
4990 pos, NULL_RTX, 1, 1, 0, 0);
4991 if (extraction != 0)
4992 {
4993 SUBST (SET_SRC (x), extraction);
4994 return find_split_point (loc, insn, false);
4995 }
4996 }
4997 break;
4998
4999 case NE:
5000 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5001 is known to be on, this can be converted into a NEG of a shift. */
5002 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5003 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5004 && 1 <= (pos = exact_log2
5005 (nonzero_bits (XEXP (SET_SRC (x), 0),
5006 GET_MODE (XEXP (SET_SRC (x), 0))))))
5007 {
5008 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5009
5010 SUBST (SET_SRC (x),
5011 gen_rtx_NEG (mode,
5012 gen_rtx_LSHIFTRT (mode,
5013 XEXP (SET_SRC (x), 0),
5014 GEN_INT (pos))));
5015
5016 split = find_split_point (&SET_SRC (x), insn, true);
5017 if (split && split != &SET_SRC (x))
5018 return split;
5019 }
5020 break;
5021
5022 case SIGN_EXTEND:
5023 inner = XEXP (SET_SRC (x), 0);
5024
5025 /* We can't optimize if either mode is a partial integer
5026 mode as we don't know how many bits are significant
5027 in those modes. */
5028 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
5029 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5030 break;
5031
5032 pos = 0;
5033 len = GET_MODE_PRECISION (GET_MODE (inner));
5034 unsignedp = 0;
5035 break;
5036
5037 case SIGN_EXTRACT:
5038 case ZERO_EXTRACT:
5039 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5040 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5041 {
5042 inner = XEXP (SET_SRC (x), 0);
5043 len = INTVAL (XEXP (SET_SRC (x), 1));
5044 pos = INTVAL (XEXP (SET_SRC (x), 2));
5045
5046 if (BITS_BIG_ENDIAN)
5047 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
5048 unsignedp = (code == ZERO_EXTRACT);
5049 }
5050 break;
5051
5052 default:
5053 break;
5054 }
5055
5056 if (len && pos >= 0
5057 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
5058 {
5059 machine_mode mode = GET_MODE (SET_SRC (x));
5060
5061 /* For unsigned, we have a choice of a shift followed by an
5062 AND or two shifts. Use two shifts for field sizes where the
5063 constant might be too large. We assume here that we can
5064 always at least get 8-bit constants in an AND insn, which is
5065 true for every current RISC. */
5066
5067 if (unsignedp && len <= 8)
5068 {
5069 unsigned HOST_WIDE_INT mask
5070 = (HOST_WIDE_INT_1U << len) - 1;
5071 SUBST (SET_SRC (x),
5072 gen_rtx_AND (mode,
5073 gen_rtx_LSHIFTRT
5074 (mode, gen_lowpart (mode, inner),
5075 GEN_INT (pos)),
5076 gen_int_mode (mask, mode)));
5077
5078 split = find_split_point (&SET_SRC (x), insn, true);
5079 if (split && split != &SET_SRC (x))
5080 return split;
5081 }
5082 else
5083 {
5084 SUBST (SET_SRC (x),
5085 gen_rtx_fmt_ee
5086 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5087 gen_rtx_ASHIFT (mode,
5088 gen_lowpart (mode, inner),
5089 GEN_INT (GET_MODE_PRECISION (mode)
5090 - len - pos)),
5091 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5092
5093 split = find_split_point (&SET_SRC (x), insn, true);
5094 if (split && split != &SET_SRC (x))
5095 return split;
5096 }
5097 }
5098
5099 /* See if this is a simple operation with a constant as the second
5100 operand. It might be that this constant is out of range and hence
5101 could be used as a split point. */
5102 if (BINARY_P (SET_SRC (x))
5103 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5104 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5105 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5106 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5107 return &XEXP (SET_SRC (x), 1);
5108
5109 /* Finally, see if this is a simple operation with its first operand
5110 not in a register. The operation might require this operand in a
5111 register, so return it as a split point. We can always do this
5112 because if the first operand were another operation, we would have
5113 already found it as a split point. */
5114 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5115 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5116 return &XEXP (SET_SRC (x), 0);
5117
5118 return 0;
5119
5120 case AND:
5121 case IOR:
5122 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5123 it is better to write this as (not (ior A B)) so we can split it.
5124 Similarly for IOR. */
5125 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5126 {
5127 SUBST (*loc,
5128 gen_rtx_NOT (GET_MODE (x),
5129 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5130 GET_MODE (x),
5131 XEXP (XEXP (x, 0), 0),
5132 XEXP (XEXP (x, 1), 0))));
5133 return find_split_point (loc, insn, set_src);
5134 }
5135
5136 /* Many RISC machines have a large set of logical insns. If the
5137 second operand is a NOT, put it first so we will try to split the
5138 other operand first. */
5139 if (GET_CODE (XEXP (x, 1)) == NOT)
5140 {
5141 rtx tem = XEXP (x, 0);
5142 SUBST (XEXP (x, 0), XEXP (x, 1));
5143 SUBST (XEXP (x, 1), tem);
5144 }
5145 break;
5146
5147 case PLUS:
5148 case MINUS:
5149 /* Canonicalization can produce (minus A (mult B C)), where C is a
5150 constant. It may be better to try splitting (plus (mult B -C) A)
5151 instead if this isn't a multiply by a power of two. */
5152 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5153 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5154 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5155 {
5156 machine_mode mode = GET_MODE (x);
5157 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5158 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5159 SUBST (*loc, gen_rtx_PLUS (mode,
5160 gen_rtx_MULT (mode,
5161 XEXP (XEXP (x, 1), 0),
5162 gen_int_mode (other_int,
5163 mode)),
5164 XEXP (x, 0)));
5165 return find_split_point (loc, insn, set_src);
5166 }
5167
5168 /* Split at a multiply-accumulate instruction. However if this is
5169 the SET_SRC, we likely do not have such an instruction and it's
5170 worthless to try this split. */
5171 if (!set_src
5172 && (GET_CODE (XEXP (x, 0)) == MULT
5173 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5174 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5175 return loc;
5176
5177 default:
5178 break;
5179 }
5180
5181 /* Otherwise, select our actions depending on our rtx class. */
5182 switch (GET_RTX_CLASS (code))
5183 {
5184 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5185 case RTX_TERNARY:
5186 split = find_split_point (&XEXP (x, 2), insn, false);
5187 if (split)
5188 return split;
5189 /* fall through */
5190 case RTX_BIN_ARITH:
5191 case RTX_COMM_ARITH:
5192 case RTX_COMPARE:
5193 case RTX_COMM_COMPARE:
5194 split = find_split_point (&XEXP (x, 1), insn, false);
5195 if (split)
5196 return split;
5197 /* fall through */
5198 case RTX_UNARY:
5199 /* Some machines have (and (shift ...) ...) insns. If X is not
5200 an AND, but XEXP (X, 0) is, use it as our split point. */
5201 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5202 return &XEXP (x, 0);
5203
5204 split = find_split_point (&XEXP (x, 0), insn, false);
5205 if (split)
5206 return split;
5207 return loc;
5208
5209 default:
5210 /* Otherwise, we don't have a split point. */
5211 return 0;
5212 }
5213 }
5214 \f
5215 /* Throughout X, replace FROM with TO, and return the result.
5216 The result is TO if X is FROM;
5217 otherwise the result is X, but its contents may have been modified.
5218 If they were modified, a record was made in undobuf so that
5219 undo_all will (among other things) return X to its original state.
5220
5221 If the number of changes necessary is too much to record to undo,
5222 the excess changes are not made, so the result is invalid.
5223 The changes already made can still be undone.
5224 undobuf.num_undo is incremented for such changes, so by testing that
5225 the caller can tell whether the result is valid.
5226
5227 `n_occurrences' is incremented each time FROM is replaced.
5228
5229 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5230
5231 IN_COND is nonzero if we are at the top level of a condition.
5232
5233 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5234 by copying if `n_occurrences' is nonzero. */
5235
5236 static rtx
5237 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5238 {
5239 enum rtx_code code = GET_CODE (x);
5240 machine_mode op0_mode = VOIDmode;
5241 const char *fmt;
5242 int len, i;
5243 rtx new_rtx;
5244
5245 /* Two expressions are equal if they are identical copies of a shared
5246 RTX or if they are both registers with the same register number
5247 and mode. */
5248
5249 #define COMBINE_RTX_EQUAL_P(X,Y) \
5250 ((X) == (Y) \
5251 || (REG_P (X) && REG_P (Y) \
5252 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5253
5254 /* Do not substitute into clobbers of regs -- this will never result in
5255 valid RTL. */
5256 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5257 return x;
5258
5259 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5260 {
5261 n_occurrences++;
5262 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5263 }
5264
5265 /* If X and FROM are the same register but different modes, they
5266 will not have been seen as equal above. However, the log links code
5267 will make a LOG_LINKS entry for that case. If we do nothing, we
5268 will try to rerecognize our original insn and, when it succeeds,
5269 we will delete the feeding insn, which is incorrect.
5270
5271 So force this insn not to match in this (rare) case. */
5272 if (! in_dest && code == REG && REG_P (from)
5273 && reg_overlap_mentioned_p (x, from))
5274 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5275
5276 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5277 of which may contain things that can be combined. */
5278 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5279 return x;
5280
5281 /* It is possible to have a subexpression appear twice in the insn.
5282 Suppose that FROM is a register that appears within TO.
5283 Then, after that subexpression has been scanned once by `subst',
5284 the second time it is scanned, TO may be found. If we were
5285 to scan TO here, we would find FROM within it and create a
5286 self-referent rtl structure which is completely wrong. */
5287 if (COMBINE_RTX_EQUAL_P (x, to))
5288 return to;
5289
5290 /* Parallel asm_operands need special attention because all of the
5291 inputs are shared across the arms. Furthermore, unsharing the
5292 rtl results in recognition failures. Failure to handle this case
5293 specially can result in circular rtl.
5294
5295 Solve this by doing a normal pass across the first entry of the
5296 parallel, and only processing the SET_DESTs of the subsequent
5297 entries. Ug. */
5298
5299 if (code == PARALLEL
5300 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5301 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5302 {
5303 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5304
5305 /* If this substitution failed, this whole thing fails. */
5306 if (GET_CODE (new_rtx) == CLOBBER
5307 && XEXP (new_rtx, 0) == const0_rtx)
5308 return new_rtx;
5309
5310 SUBST (XVECEXP (x, 0, 0), new_rtx);
5311
5312 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5313 {
5314 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5315
5316 if (!REG_P (dest)
5317 && GET_CODE (dest) != CC0
5318 && GET_CODE (dest) != PC)
5319 {
5320 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5321
5322 /* If this substitution failed, this whole thing fails. */
5323 if (GET_CODE (new_rtx) == CLOBBER
5324 && XEXP (new_rtx, 0) == const0_rtx)
5325 return new_rtx;
5326
5327 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5328 }
5329 }
5330 }
5331 else
5332 {
5333 len = GET_RTX_LENGTH (code);
5334 fmt = GET_RTX_FORMAT (code);
5335
5336 /* We don't need to process a SET_DEST that is a register, CC0,
5337 or PC, so set up to skip this common case. All other cases
5338 where we want to suppress replacing something inside a
5339 SET_SRC are handled via the IN_DEST operand. */
5340 if (code == SET
5341 && (REG_P (SET_DEST (x))
5342 || GET_CODE (SET_DEST (x)) == CC0
5343 || GET_CODE (SET_DEST (x)) == PC))
5344 fmt = "ie";
5345
5346 /* Trying to simplify the operands of a widening MULT is not likely
5347 to create RTL matching a machine insn. */
5348 if (code == MULT
5349 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5350 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5351 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5352 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5353 && REG_P (XEXP (XEXP (x, 0), 0))
5354 && REG_P (XEXP (XEXP (x, 1), 0))
5355 && from == to)
5356 return x;
5357
5358
5359 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5360 constant. */
5361 if (fmt[0] == 'e')
5362 op0_mode = GET_MODE (XEXP (x, 0));
5363
5364 for (i = 0; i < len; i++)
5365 {
5366 if (fmt[i] == 'E')
5367 {
5368 int j;
5369 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5370 {
5371 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5372 {
5373 new_rtx = (unique_copy && n_occurrences
5374 ? copy_rtx (to) : to);
5375 n_occurrences++;
5376 }
5377 else
5378 {
5379 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5380 unique_copy);
5381
5382 /* If this substitution failed, this whole thing
5383 fails. */
5384 if (GET_CODE (new_rtx) == CLOBBER
5385 && XEXP (new_rtx, 0) == const0_rtx)
5386 return new_rtx;
5387 }
5388
5389 SUBST (XVECEXP (x, i, j), new_rtx);
5390 }
5391 }
5392 else if (fmt[i] == 'e')
5393 {
5394 /* If this is a register being set, ignore it. */
5395 new_rtx = XEXP (x, i);
5396 if (in_dest
5397 && i == 0
5398 && (((code == SUBREG || code == ZERO_EXTRACT)
5399 && REG_P (new_rtx))
5400 || code == STRICT_LOW_PART))
5401 ;
5402
5403 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5404 {
5405 /* In general, don't install a subreg involving two
5406 modes not tieable. It can worsen register
5407 allocation, and can even make invalid reload
5408 insns, since the reg inside may need to be copied
5409 from in the outside mode, and that may be invalid
5410 if it is an fp reg copied in integer mode.
5411
5412 We allow two exceptions to this: It is valid if
5413 it is inside another SUBREG and the mode of that
5414 SUBREG and the mode of the inside of TO is
5415 tieable and it is valid if X is a SET that copies
5416 FROM to CC0. */
5417
5418 if (GET_CODE (to) == SUBREG
5419 && ! MODES_TIEABLE_P (GET_MODE (to),
5420 GET_MODE (SUBREG_REG (to)))
5421 && ! (code == SUBREG
5422 && MODES_TIEABLE_P (GET_MODE (x),
5423 GET_MODE (SUBREG_REG (to))))
5424 && (!HAVE_cc0
5425 || (! (code == SET
5426 && i == 1
5427 && XEXP (x, 0) == cc0_rtx))))
5428 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5429
5430 if (code == SUBREG
5431 && REG_P (to)
5432 && REGNO (to) < FIRST_PSEUDO_REGISTER
5433 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5434 SUBREG_BYTE (x),
5435 GET_MODE (x)) < 0)
5436 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5437
5438 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5439 n_occurrences++;
5440 }
5441 else
5442 /* If we are in a SET_DEST, suppress most cases unless we
5443 have gone inside a MEM, in which case we want to
5444 simplify the address. We assume here that things that
5445 are actually part of the destination have their inner
5446 parts in the first expression. This is true for SUBREG,
5447 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5448 things aside from REG and MEM that should appear in a
5449 SET_DEST. */
5450 new_rtx = subst (XEXP (x, i), from, to,
5451 (((in_dest
5452 && (code == SUBREG || code == STRICT_LOW_PART
5453 || code == ZERO_EXTRACT))
5454 || code == SET)
5455 && i == 0),
5456 code == IF_THEN_ELSE && i == 0,
5457 unique_copy);
5458
5459 /* If we found that we will have to reject this combination,
5460 indicate that by returning the CLOBBER ourselves, rather than
5461 an expression containing it. This will speed things up as
5462 well as prevent accidents where two CLOBBERs are considered
5463 to be equal, thus producing an incorrect simplification. */
5464
5465 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5466 return new_rtx;
5467
5468 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5469 {
5470 machine_mode mode = GET_MODE (x);
5471
5472 x = simplify_subreg (GET_MODE (x), new_rtx,
5473 GET_MODE (SUBREG_REG (x)),
5474 SUBREG_BYTE (x));
5475 if (! x)
5476 x = gen_rtx_CLOBBER (mode, const0_rtx);
5477 }
5478 else if (CONST_SCALAR_INT_P (new_rtx)
5479 && GET_CODE (x) == ZERO_EXTEND)
5480 {
5481 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5482 new_rtx, GET_MODE (XEXP (x, 0)));
5483 gcc_assert (x);
5484 }
5485 else
5486 SUBST (XEXP (x, i), new_rtx);
5487 }
5488 }
5489 }
5490
5491 /* Check if we are loading something from the constant pool via float
5492 extension; in this case we would undo compress_float_constant
5493 optimization and degenerate constant load to an immediate value. */
5494 if (GET_CODE (x) == FLOAT_EXTEND
5495 && MEM_P (XEXP (x, 0))
5496 && MEM_READONLY_P (XEXP (x, 0)))
5497 {
5498 rtx tmp = avoid_constant_pool_reference (x);
5499 if (x != tmp)
5500 return x;
5501 }
5502
5503 /* Try to simplify X. If the simplification changed the code, it is likely
5504 that further simplification will help, so loop, but limit the number
5505 of repetitions that will be performed. */
5506
5507 for (i = 0; i < 4; i++)
5508 {
5509 /* If X is sufficiently simple, don't bother trying to do anything
5510 with it. */
5511 if (code != CONST_INT && code != REG && code != CLOBBER)
5512 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5513
5514 if (GET_CODE (x) == code)
5515 break;
5516
5517 code = GET_CODE (x);
5518
5519 /* We no longer know the original mode of operand 0 since we
5520 have changed the form of X) */
5521 op0_mode = VOIDmode;
5522 }
5523
5524 return x;
5525 }
5526 \f
5527 /* If X is a commutative operation whose operands are not in the canonical
5528 order, use substitutions to swap them. */
5529
5530 static void
5531 maybe_swap_commutative_operands (rtx x)
5532 {
5533 if (COMMUTATIVE_ARITH_P (x)
5534 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5535 {
5536 rtx temp = XEXP (x, 0);
5537 SUBST (XEXP (x, 0), XEXP (x, 1));
5538 SUBST (XEXP (x, 1), temp);
5539 }
5540 }
5541
5542 /* Simplify X, a piece of RTL. We just operate on the expression at the
5543 outer level; call `subst' to simplify recursively. Return the new
5544 expression.
5545
5546 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5547 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5548 of a condition. */
5549
5550 static rtx
5551 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5552 int in_cond)
5553 {
5554 enum rtx_code code = GET_CODE (x);
5555 machine_mode mode = GET_MODE (x);
5556 rtx temp;
5557 int i;
5558
5559 /* If this is a commutative operation, put a constant last and a complex
5560 expression first. We don't need to do this for comparisons here. */
5561 maybe_swap_commutative_operands (x);
5562
5563 /* Try to fold this expression in case we have constants that weren't
5564 present before. */
5565 temp = 0;
5566 switch (GET_RTX_CLASS (code))
5567 {
5568 case RTX_UNARY:
5569 if (op0_mode == VOIDmode)
5570 op0_mode = GET_MODE (XEXP (x, 0));
5571 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5572 break;
5573 case RTX_COMPARE:
5574 case RTX_COMM_COMPARE:
5575 {
5576 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5577 if (cmp_mode == VOIDmode)
5578 {
5579 cmp_mode = GET_MODE (XEXP (x, 1));
5580 if (cmp_mode == VOIDmode)
5581 cmp_mode = op0_mode;
5582 }
5583 temp = simplify_relational_operation (code, mode, cmp_mode,
5584 XEXP (x, 0), XEXP (x, 1));
5585 }
5586 break;
5587 case RTX_COMM_ARITH:
5588 case RTX_BIN_ARITH:
5589 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5590 break;
5591 case RTX_BITFIELD_OPS:
5592 case RTX_TERNARY:
5593 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5594 XEXP (x, 1), XEXP (x, 2));
5595 break;
5596 default:
5597 break;
5598 }
5599
5600 if (temp)
5601 {
5602 x = temp;
5603 code = GET_CODE (temp);
5604 op0_mode = VOIDmode;
5605 mode = GET_MODE (temp);
5606 }
5607
5608 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5609 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5610 things. Check for cases where both arms are testing the same
5611 condition.
5612
5613 Don't do anything if all operands are very simple. */
5614
5615 if ((BINARY_P (x)
5616 && ((!OBJECT_P (XEXP (x, 0))
5617 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5618 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5619 || (!OBJECT_P (XEXP (x, 1))
5620 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5621 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5622 || (UNARY_P (x)
5623 && (!OBJECT_P (XEXP (x, 0))
5624 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5625 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5626 {
5627 rtx cond, true_rtx, false_rtx;
5628
5629 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5630 if (cond != 0
5631 /* If everything is a comparison, what we have is highly unlikely
5632 to be simpler, so don't use it. */
5633 && ! (COMPARISON_P (x)
5634 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5635 {
5636 rtx cop1 = const0_rtx;
5637 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5638
5639 if (cond_code == NE && COMPARISON_P (cond))
5640 return x;
5641
5642 /* Simplify the alternative arms; this may collapse the true and
5643 false arms to store-flag values. Be careful to use copy_rtx
5644 here since true_rtx or false_rtx might share RTL with x as a
5645 result of the if_then_else_cond call above. */
5646 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5647 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5648
5649 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5650 is unlikely to be simpler. */
5651 if (general_operand (true_rtx, VOIDmode)
5652 && general_operand (false_rtx, VOIDmode))
5653 {
5654 enum rtx_code reversed;
5655
5656 /* Restarting if we generate a store-flag expression will cause
5657 us to loop. Just drop through in this case. */
5658
5659 /* If the result values are STORE_FLAG_VALUE and zero, we can
5660 just make the comparison operation. */
5661 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5662 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5663 cond, cop1);
5664 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5665 && ((reversed = reversed_comparison_code_parts
5666 (cond_code, cond, cop1, NULL))
5667 != UNKNOWN))
5668 x = simplify_gen_relational (reversed, mode, VOIDmode,
5669 cond, cop1);
5670
5671 /* Likewise, we can make the negate of a comparison operation
5672 if the result values are - STORE_FLAG_VALUE and zero. */
5673 else if (CONST_INT_P (true_rtx)
5674 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5675 && false_rtx == const0_rtx)
5676 x = simplify_gen_unary (NEG, mode,
5677 simplify_gen_relational (cond_code,
5678 mode, VOIDmode,
5679 cond, cop1),
5680 mode);
5681 else if (CONST_INT_P (false_rtx)
5682 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5683 && true_rtx == const0_rtx
5684 && ((reversed = reversed_comparison_code_parts
5685 (cond_code, cond, cop1, NULL))
5686 != UNKNOWN))
5687 x = simplify_gen_unary (NEG, mode,
5688 simplify_gen_relational (reversed,
5689 mode, VOIDmode,
5690 cond, cop1),
5691 mode);
5692 else
5693 return gen_rtx_IF_THEN_ELSE (mode,
5694 simplify_gen_relational (cond_code,
5695 mode,
5696 VOIDmode,
5697 cond,
5698 cop1),
5699 true_rtx, false_rtx);
5700
5701 code = GET_CODE (x);
5702 op0_mode = VOIDmode;
5703 }
5704 }
5705 }
5706
5707 /* First see if we can apply the inverse distributive law. */
5708 if (code == PLUS || code == MINUS
5709 || code == AND || code == IOR || code == XOR)
5710 {
5711 x = apply_distributive_law (x);
5712 code = GET_CODE (x);
5713 op0_mode = VOIDmode;
5714 }
5715
5716 /* If CODE is an associative operation not otherwise handled, see if we
5717 can associate some operands. This can win if they are constants or
5718 if they are logically related (i.e. (a & b) & a). */
5719 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5720 || code == AND || code == IOR || code == XOR
5721 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5722 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5723 || (flag_associative_math && FLOAT_MODE_P (mode))))
5724 {
5725 if (GET_CODE (XEXP (x, 0)) == code)
5726 {
5727 rtx other = XEXP (XEXP (x, 0), 0);
5728 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5729 rtx inner_op1 = XEXP (x, 1);
5730 rtx inner;
5731
5732 /* Make sure we pass the constant operand if any as the second
5733 one if this is a commutative operation. */
5734 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5735 std::swap (inner_op0, inner_op1);
5736 inner = simplify_binary_operation (code == MINUS ? PLUS
5737 : code == DIV ? MULT
5738 : code,
5739 mode, inner_op0, inner_op1);
5740
5741 /* For commutative operations, try the other pair if that one
5742 didn't simplify. */
5743 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5744 {
5745 other = XEXP (XEXP (x, 0), 1);
5746 inner = simplify_binary_operation (code, mode,
5747 XEXP (XEXP (x, 0), 0),
5748 XEXP (x, 1));
5749 }
5750
5751 if (inner)
5752 return simplify_gen_binary (code, mode, other, inner);
5753 }
5754 }
5755
5756 /* A little bit of algebraic simplification here. */
5757 switch (code)
5758 {
5759 case MEM:
5760 /* Ensure that our address has any ASHIFTs converted to MULT in case
5761 address-recognizing predicates are called later. */
5762 temp = make_compound_operation (XEXP (x, 0), MEM);
5763 SUBST (XEXP (x, 0), temp);
5764 break;
5765
5766 case SUBREG:
5767 if (op0_mode == VOIDmode)
5768 op0_mode = GET_MODE (SUBREG_REG (x));
5769
5770 /* See if this can be moved to simplify_subreg. */
5771 if (CONSTANT_P (SUBREG_REG (x))
5772 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5773 /* Don't call gen_lowpart if the inner mode
5774 is VOIDmode and we cannot simplify it, as SUBREG without
5775 inner mode is invalid. */
5776 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5777 || gen_lowpart_common (mode, SUBREG_REG (x))))
5778 return gen_lowpart (mode, SUBREG_REG (x));
5779
5780 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5781 break;
5782 {
5783 rtx temp;
5784 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5785 SUBREG_BYTE (x));
5786 if (temp)
5787 return temp;
5788
5789 /* If op is known to have all lower bits zero, the result is zero. */
5790 if (!in_dest
5791 && SCALAR_INT_MODE_P (mode)
5792 && SCALAR_INT_MODE_P (op0_mode)
5793 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5794 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5795 && HWI_COMPUTABLE_MODE_P (op0_mode)
5796 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5797 & GET_MODE_MASK (mode)) == 0)
5798 return CONST0_RTX (mode);
5799 }
5800
5801 /* Don't change the mode of the MEM if that would change the meaning
5802 of the address. */
5803 if (MEM_P (SUBREG_REG (x))
5804 && (MEM_VOLATILE_P (SUBREG_REG (x))
5805 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5806 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5807 return gen_rtx_CLOBBER (mode, const0_rtx);
5808
5809 /* Note that we cannot do any narrowing for non-constants since
5810 we might have been counting on using the fact that some bits were
5811 zero. We now do this in the SET. */
5812
5813 break;
5814
5815 case NEG:
5816 temp = expand_compound_operation (XEXP (x, 0));
5817
5818 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5819 replaced by (lshiftrt X C). This will convert
5820 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5821
5822 if (GET_CODE (temp) == ASHIFTRT
5823 && CONST_INT_P (XEXP (temp, 1))
5824 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5825 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5826 INTVAL (XEXP (temp, 1)));
5827
5828 /* If X has only a single bit that might be nonzero, say, bit I, convert
5829 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5830 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5831 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5832 or a SUBREG of one since we'd be making the expression more
5833 complex if it was just a register. */
5834
5835 if (!REG_P (temp)
5836 && ! (GET_CODE (temp) == SUBREG
5837 && REG_P (SUBREG_REG (temp)))
5838 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5839 {
5840 rtx temp1 = simplify_shift_const
5841 (NULL_RTX, ASHIFTRT, mode,
5842 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5843 GET_MODE_PRECISION (mode) - 1 - i),
5844 GET_MODE_PRECISION (mode) - 1 - i);
5845
5846 /* If all we did was surround TEMP with the two shifts, we
5847 haven't improved anything, so don't use it. Otherwise,
5848 we are better off with TEMP1. */
5849 if (GET_CODE (temp1) != ASHIFTRT
5850 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5851 || XEXP (XEXP (temp1, 0), 0) != temp)
5852 return temp1;
5853 }
5854 break;
5855
5856 case TRUNCATE:
5857 /* We can't handle truncation to a partial integer mode here
5858 because we don't know the real bitsize of the partial
5859 integer mode. */
5860 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5861 break;
5862
5863 if (HWI_COMPUTABLE_MODE_P (mode))
5864 SUBST (XEXP (x, 0),
5865 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5866 GET_MODE_MASK (mode), 0));
5867
5868 /* We can truncate a constant value and return it. */
5869 if (CONST_INT_P (XEXP (x, 0)))
5870 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5871
5872 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5873 whose value is a comparison can be replaced with a subreg if
5874 STORE_FLAG_VALUE permits. */
5875 if (HWI_COMPUTABLE_MODE_P (mode)
5876 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5877 && (temp = get_last_value (XEXP (x, 0)))
5878 && COMPARISON_P (temp))
5879 return gen_lowpart (mode, XEXP (x, 0));
5880 break;
5881
5882 case CONST:
5883 /* (const (const X)) can become (const X). Do it this way rather than
5884 returning the inner CONST since CONST can be shared with a
5885 REG_EQUAL note. */
5886 if (GET_CODE (XEXP (x, 0)) == CONST)
5887 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5888 break;
5889
5890 case LO_SUM:
5891 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5892 can add in an offset. find_split_point will split this address up
5893 again if it doesn't match. */
5894 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5895 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5896 return XEXP (x, 1);
5897 break;
5898
5899 case PLUS:
5900 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5901 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5902 bit-field and can be replaced by either a sign_extend or a
5903 sign_extract. The `and' may be a zero_extend and the two
5904 <c>, -<c> constants may be reversed. */
5905 if (GET_CODE (XEXP (x, 0)) == XOR
5906 && CONST_INT_P (XEXP (x, 1))
5907 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5908 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5909 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5910 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5911 && HWI_COMPUTABLE_MODE_P (mode)
5912 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5913 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5914 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5915 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
5916 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5917 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5918 == (unsigned int) i + 1))))
5919 return simplify_shift_const
5920 (NULL_RTX, ASHIFTRT, mode,
5921 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5922 XEXP (XEXP (XEXP (x, 0), 0), 0),
5923 GET_MODE_PRECISION (mode) - (i + 1)),
5924 GET_MODE_PRECISION (mode) - (i + 1));
5925
5926 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5927 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5928 the bitsize of the mode - 1. This allows simplification of
5929 "a = (b & 8) == 0;" */
5930 if (XEXP (x, 1) == constm1_rtx
5931 && !REG_P (XEXP (x, 0))
5932 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5933 && REG_P (SUBREG_REG (XEXP (x, 0))))
5934 && nonzero_bits (XEXP (x, 0), mode) == 1)
5935 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5936 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5937 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5938 GET_MODE_PRECISION (mode) - 1),
5939 GET_MODE_PRECISION (mode) - 1);
5940
5941 /* If we are adding two things that have no bits in common, convert
5942 the addition into an IOR. This will often be further simplified,
5943 for example in cases like ((a & 1) + (a & 2)), which can
5944 become a & 3. */
5945
5946 if (HWI_COMPUTABLE_MODE_P (mode)
5947 && (nonzero_bits (XEXP (x, 0), mode)
5948 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5949 {
5950 /* Try to simplify the expression further. */
5951 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5952 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5953
5954 /* If we could, great. If not, do not go ahead with the IOR
5955 replacement, since PLUS appears in many special purpose
5956 address arithmetic instructions. */
5957 if (GET_CODE (temp) != CLOBBER
5958 && (GET_CODE (temp) != IOR
5959 || ((XEXP (temp, 0) != XEXP (x, 0)
5960 || XEXP (temp, 1) != XEXP (x, 1))
5961 && (XEXP (temp, 0) != XEXP (x, 1)
5962 || XEXP (temp, 1) != XEXP (x, 0)))))
5963 return temp;
5964 }
5965
5966 /* Canonicalize x + x into x << 1. */
5967 if (GET_MODE_CLASS (mode) == MODE_INT
5968 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
5969 && !side_effects_p (XEXP (x, 0)))
5970 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
5971
5972 break;
5973
5974 case MINUS:
5975 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5976 (and <foo> (const_int pow2-1)) */
5977 if (GET_CODE (XEXP (x, 1)) == AND
5978 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5979 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
5980 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5981 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5982 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5983 break;
5984
5985 case MULT:
5986 /* If we have (mult (plus A B) C), apply the distributive law and then
5987 the inverse distributive law to see if things simplify. This
5988 occurs mostly in addresses, often when unrolling loops. */
5989
5990 if (GET_CODE (XEXP (x, 0)) == PLUS)
5991 {
5992 rtx result = distribute_and_simplify_rtx (x, 0);
5993 if (result)
5994 return result;
5995 }
5996
5997 /* Try simplify a*(b/c) as (a*b)/c. */
5998 if (FLOAT_MODE_P (mode) && flag_associative_math
5999 && GET_CODE (XEXP (x, 0)) == DIV)
6000 {
6001 rtx tem = simplify_binary_operation (MULT, mode,
6002 XEXP (XEXP (x, 0), 0),
6003 XEXP (x, 1));
6004 if (tem)
6005 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6006 }
6007 break;
6008
6009 case UDIV:
6010 /* If this is a divide by a power of two, treat it as a shift if
6011 its first operand is a shift. */
6012 if (CONST_INT_P (XEXP (x, 1))
6013 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6014 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6015 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6016 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6017 || GET_CODE (XEXP (x, 0)) == ROTATE
6018 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6019 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
6020 break;
6021
6022 case EQ: case NE:
6023 case GT: case GTU: case GE: case GEU:
6024 case LT: case LTU: case LE: case LEU:
6025 case UNEQ: case LTGT:
6026 case UNGT: case UNGE:
6027 case UNLT: case UNLE:
6028 case UNORDERED: case ORDERED:
6029 /* If the first operand is a condition code, we can't do anything
6030 with it. */
6031 if (GET_CODE (XEXP (x, 0)) == COMPARE
6032 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6033 && ! CC0_P (XEXP (x, 0))))
6034 {
6035 rtx op0 = XEXP (x, 0);
6036 rtx op1 = XEXP (x, 1);
6037 enum rtx_code new_code;
6038
6039 if (GET_CODE (op0) == COMPARE)
6040 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6041
6042 /* Simplify our comparison, if possible. */
6043 new_code = simplify_comparison (code, &op0, &op1);
6044
6045 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6046 if only the low-order bit is possibly nonzero in X (such as when
6047 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6048 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6049 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6050 (plus X 1).
6051
6052 Remove any ZERO_EXTRACT we made when thinking this was a
6053 comparison. It may now be simpler to use, e.g., an AND. If a
6054 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6055 the call to make_compound_operation in the SET case.
6056
6057 Don't apply these optimizations if the caller would
6058 prefer a comparison rather than a value.
6059 E.g., for the condition in an IF_THEN_ELSE most targets need
6060 an explicit comparison. */
6061
6062 if (in_cond)
6063 ;
6064
6065 else if (STORE_FLAG_VALUE == 1
6066 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6067 && op1 == const0_rtx
6068 && mode == GET_MODE (op0)
6069 && nonzero_bits (op0, mode) == 1)
6070 return gen_lowpart (mode,
6071 expand_compound_operation (op0));
6072
6073 else if (STORE_FLAG_VALUE == 1
6074 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6075 && op1 == const0_rtx
6076 && mode == GET_MODE (op0)
6077 && (num_sign_bit_copies (op0, mode)
6078 == GET_MODE_PRECISION (mode)))
6079 {
6080 op0 = expand_compound_operation (op0);
6081 return simplify_gen_unary (NEG, mode,
6082 gen_lowpart (mode, op0),
6083 mode);
6084 }
6085
6086 else if (STORE_FLAG_VALUE == 1
6087 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6088 && op1 == const0_rtx
6089 && mode == GET_MODE (op0)
6090 && nonzero_bits (op0, mode) == 1)
6091 {
6092 op0 = expand_compound_operation (op0);
6093 return simplify_gen_binary (XOR, mode,
6094 gen_lowpart (mode, op0),
6095 const1_rtx);
6096 }
6097
6098 else if (STORE_FLAG_VALUE == 1
6099 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6100 && op1 == const0_rtx
6101 && mode == GET_MODE (op0)
6102 && (num_sign_bit_copies (op0, mode)
6103 == GET_MODE_PRECISION (mode)))
6104 {
6105 op0 = expand_compound_operation (op0);
6106 return plus_constant (mode, gen_lowpart (mode, op0), 1);
6107 }
6108
6109 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6110 those above. */
6111 if (in_cond)
6112 ;
6113
6114 else if (STORE_FLAG_VALUE == -1
6115 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6116 && op1 == const0_rtx
6117 && mode == GET_MODE (op0)
6118 && (num_sign_bit_copies (op0, mode)
6119 == GET_MODE_PRECISION (mode)))
6120 return gen_lowpart (mode,
6121 expand_compound_operation (op0));
6122
6123 else if (STORE_FLAG_VALUE == -1
6124 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6125 && op1 == const0_rtx
6126 && mode == GET_MODE (op0)
6127 && nonzero_bits (op0, mode) == 1)
6128 {
6129 op0 = expand_compound_operation (op0);
6130 return simplify_gen_unary (NEG, mode,
6131 gen_lowpart (mode, op0),
6132 mode);
6133 }
6134
6135 else if (STORE_FLAG_VALUE == -1
6136 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6137 && op1 == const0_rtx
6138 && mode == GET_MODE (op0)
6139 && (num_sign_bit_copies (op0, mode)
6140 == GET_MODE_PRECISION (mode)))
6141 {
6142 op0 = expand_compound_operation (op0);
6143 return simplify_gen_unary (NOT, mode,
6144 gen_lowpart (mode, op0),
6145 mode);
6146 }
6147
6148 /* If X is 0/1, (eq X 0) is X-1. */
6149 else if (STORE_FLAG_VALUE == -1
6150 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6151 && op1 == const0_rtx
6152 && mode == GET_MODE (op0)
6153 && nonzero_bits (op0, mode) == 1)
6154 {
6155 op0 = expand_compound_operation (op0);
6156 return plus_constant (mode, gen_lowpart (mode, op0), -1);
6157 }
6158
6159 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6160 one bit that might be nonzero, we can convert (ne x 0) to
6161 (ashift x c) where C puts the bit in the sign bit. Remove any
6162 AND with STORE_FLAG_VALUE when we are done, since we are only
6163 going to test the sign bit. */
6164 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6165 && HWI_COMPUTABLE_MODE_P (mode)
6166 && val_signbit_p (mode, STORE_FLAG_VALUE)
6167 && op1 == const0_rtx
6168 && mode == GET_MODE (op0)
6169 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6170 {
6171 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6172 expand_compound_operation (op0),
6173 GET_MODE_PRECISION (mode) - 1 - i);
6174 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6175 return XEXP (x, 0);
6176 else
6177 return x;
6178 }
6179
6180 /* If the code changed, return a whole new comparison.
6181 We also need to avoid using SUBST in cases where
6182 simplify_comparison has widened a comparison with a CONST_INT,
6183 since in that case the wider CONST_INT may fail the sanity
6184 checks in do_SUBST. */
6185 if (new_code != code
6186 || (CONST_INT_P (op1)
6187 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6188 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6189 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6190
6191 /* Otherwise, keep this operation, but maybe change its operands.
6192 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6193 SUBST (XEXP (x, 0), op0);
6194 SUBST (XEXP (x, 1), op1);
6195 }
6196 break;
6197
6198 case IF_THEN_ELSE:
6199 return simplify_if_then_else (x);
6200
6201 case ZERO_EXTRACT:
6202 case SIGN_EXTRACT:
6203 case ZERO_EXTEND:
6204 case SIGN_EXTEND:
6205 /* If we are processing SET_DEST, we are done. */
6206 if (in_dest)
6207 return x;
6208
6209 return expand_compound_operation (x);
6210
6211 case SET:
6212 return simplify_set (x);
6213
6214 case AND:
6215 case IOR:
6216 return simplify_logical (x);
6217
6218 case ASHIFT:
6219 case LSHIFTRT:
6220 case ASHIFTRT:
6221 case ROTATE:
6222 case ROTATERT:
6223 /* If this is a shift by a constant amount, simplify it. */
6224 if (CONST_INT_P (XEXP (x, 1)))
6225 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6226 INTVAL (XEXP (x, 1)));
6227
6228 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6229 SUBST (XEXP (x, 1),
6230 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6231 (HOST_WIDE_INT_1U
6232 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6233 - 1,
6234 0));
6235 break;
6236
6237 default:
6238 break;
6239 }
6240
6241 return x;
6242 }
6243 \f
6244 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6245
6246 static rtx
6247 simplify_if_then_else (rtx x)
6248 {
6249 machine_mode mode = GET_MODE (x);
6250 rtx cond = XEXP (x, 0);
6251 rtx true_rtx = XEXP (x, 1);
6252 rtx false_rtx = XEXP (x, 2);
6253 enum rtx_code true_code = GET_CODE (cond);
6254 int comparison_p = COMPARISON_P (cond);
6255 rtx temp;
6256 int i;
6257 enum rtx_code false_code;
6258 rtx reversed;
6259
6260 /* Simplify storing of the truth value. */
6261 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6262 return simplify_gen_relational (true_code, mode, VOIDmode,
6263 XEXP (cond, 0), XEXP (cond, 1));
6264
6265 /* Also when the truth value has to be reversed. */
6266 if (comparison_p
6267 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6268 && (reversed = reversed_comparison (cond, mode)))
6269 return reversed;
6270
6271 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6272 in it is being compared against certain values. Get the true and false
6273 comparisons and see if that says anything about the value of each arm. */
6274
6275 if (comparison_p
6276 && ((false_code = reversed_comparison_code (cond, NULL))
6277 != UNKNOWN)
6278 && REG_P (XEXP (cond, 0)))
6279 {
6280 HOST_WIDE_INT nzb;
6281 rtx from = XEXP (cond, 0);
6282 rtx true_val = XEXP (cond, 1);
6283 rtx false_val = true_val;
6284 int swapped = 0;
6285
6286 /* If FALSE_CODE is EQ, swap the codes and arms. */
6287
6288 if (false_code == EQ)
6289 {
6290 swapped = 1, true_code = EQ, false_code = NE;
6291 std::swap (true_rtx, false_rtx);
6292 }
6293
6294 /* If we are comparing against zero and the expression being tested has
6295 only a single bit that might be nonzero, that is its value when it is
6296 not equal to zero. Similarly if it is known to be -1 or 0. */
6297
6298 if (true_code == EQ && true_val == const0_rtx
6299 && pow2p_hwi (nzb = nonzero_bits (from, GET_MODE (from))))
6300 {
6301 false_code = EQ;
6302 false_val = gen_int_mode (nzb, GET_MODE (from));
6303 }
6304 else if (true_code == EQ && true_val == const0_rtx
6305 && (num_sign_bit_copies (from, GET_MODE (from))
6306 == GET_MODE_PRECISION (GET_MODE (from))))
6307 {
6308 false_code = EQ;
6309 false_val = constm1_rtx;
6310 }
6311
6312 /* Now simplify an arm if we know the value of the register in the
6313 branch and it is used in the arm. Be careful due to the potential
6314 of locally-shared RTL. */
6315
6316 if (reg_mentioned_p (from, true_rtx))
6317 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6318 from, true_val),
6319 pc_rtx, pc_rtx, 0, 0, 0);
6320 if (reg_mentioned_p (from, false_rtx))
6321 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6322 from, false_val),
6323 pc_rtx, pc_rtx, 0, 0, 0);
6324
6325 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6326 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6327
6328 true_rtx = XEXP (x, 1);
6329 false_rtx = XEXP (x, 2);
6330 true_code = GET_CODE (cond);
6331 }
6332
6333 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6334 reversed, do so to avoid needing two sets of patterns for
6335 subtract-and-branch insns. Similarly if we have a constant in the true
6336 arm, the false arm is the same as the first operand of the comparison, or
6337 the false arm is more complicated than the true arm. */
6338
6339 if (comparison_p
6340 && reversed_comparison_code (cond, NULL) != UNKNOWN
6341 && (true_rtx == pc_rtx
6342 || (CONSTANT_P (true_rtx)
6343 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6344 || true_rtx == const0_rtx
6345 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6346 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6347 && !OBJECT_P (false_rtx))
6348 || reg_mentioned_p (true_rtx, false_rtx)
6349 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6350 {
6351 true_code = reversed_comparison_code (cond, NULL);
6352 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6353 SUBST (XEXP (x, 1), false_rtx);
6354 SUBST (XEXP (x, 2), true_rtx);
6355
6356 std::swap (true_rtx, false_rtx);
6357 cond = XEXP (x, 0);
6358
6359 /* It is possible that the conditional has been simplified out. */
6360 true_code = GET_CODE (cond);
6361 comparison_p = COMPARISON_P (cond);
6362 }
6363
6364 /* If the two arms are identical, we don't need the comparison. */
6365
6366 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6367 return true_rtx;
6368
6369 /* Convert a == b ? b : a to "a". */
6370 if (true_code == EQ && ! side_effects_p (cond)
6371 && !HONOR_NANS (mode)
6372 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6373 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6374 return false_rtx;
6375 else if (true_code == NE && ! side_effects_p (cond)
6376 && !HONOR_NANS (mode)
6377 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6378 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6379 return true_rtx;
6380
6381 /* Look for cases where we have (abs x) or (neg (abs X)). */
6382
6383 if (GET_MODE_CLASS (mode) == MODE_INT
6384 && comparison_p
6385 && XEXP (cond, 1) == const0_rtx
6386 && GET_CODE (false_rtx) == NEG
6387 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6388 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6389 && ! side_effects_p (true_rtx))
6390 switch (true_code)
6391 {
6392 case GT:
6393 case GE:
6394 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6395 case LT:
6396 case LE:
6397 return
6398 simplify_gen_unary (NEG, mode,
6399 simplify_gen_unary (ABS, mode, true_rtx, mode),
6400 mode);
6401 default:
6402 break;
6403 }
6404
6405 /* Look for MIN or MAX. */
6406
6407 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6408 && comparison_p
6409 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6410 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6411 && ! side_effects_p (cond))
6412 switch (true_code)
6413 {
6414 case GE:
6415 case GT:
6416 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6417 case LE:
6418 case LT:
6419 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6420 case GEU:
6421 case GTU:
6422 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6423 case LEU:
6424 case LTU:
6425 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6426 default:
6427 break;
6428 }
6429
6430 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6431 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6432 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6433 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6434 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6435 neither 1 or -1, but it isn't worth checking for. */
6436
6437 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6438 && comparison_p
6439 && GET_MODE_CLASS (mode) == MODE_INT
6440 && ! side_effects_p (x))
6441 {
6442 rtx t = make_compound_operation (true_rtx, SET);
6443 rtx f = make_compound_operation (false_rtx, SET);
6444 rtx cond_op0 = XEXP (cond, 0);
6445 rtx cond_op1 = XEXP (cond, 1);
6446 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6447 machine_mode m = mode;
6448 rtx z = 0, c1 = NULL_RTX;
6449
6450 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6451 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6452 || GET_CODE (t) == ASHIFT
6453 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6454 && rtx_equal_p (XEXP (t, 0), f))
6455 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6456
6457 /* If an identity-zero op is commutative, check whether there
6458 would be a match if we swapped the operands. */
6459 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6460 || GET_CODE (t) == XOR)
6461 && rtx_equal_p (XEXP (t, 1), f))
6462 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6463 else if (GET_CODE (t) == SIGN_EXTEND
6464 && (GET_CODE (XEXP (t, 0)) == PLUS
6465 || GET_CODE (XEXP (t, 0)) == MINUS
6466 || GET_CODE (XEXP (t, 0)) == IOR
6467 || GET_CODE (XEXP (t, 0)) == XOR
6468 || GET_CODE (XEXP (t, 0)) == ASHIFT
6469 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6470 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6471 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6472 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6473 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6474 && (num_sign_bit_copies (f, GET_MODE (f))
6475 > (unsigned int)
6476 (GET_MODE_PRECISION (mode)
6477 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6478 {
6479 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6480 extend_op = SIGN_EXTEND;
6481 m = GET_MODE (XEXP (t, 0));
6482 }
6483 else if (GET_CODE (t) == SIGN_EXTEND
6484 && (GET_CODE (XEXP (t, 0)) == PLUS
6485 || GET_CODE (XEXP (t, 0)) == IOR
6486 || GET_CODE (XEXP (t, 0)) == XOR)
6487 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6488 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6489 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6490 && (num_sign_bit_copies (f, GET_MODE (f))
6491 > (unsigned int)
6492 (GET_MODE_PRECISION (mode)
6493 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6494 {
6495 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6496 extend_op = SIGN_EXTEND;
6497 m = GET_MODE (XEXP (t, 0));
6498 }
6499 else if (GET_CODE (t) == ZERO_EXTEND
6500 && (GET_CODE (XEXP (t, 0)) == PLUS
6501 || GET_CODE (XEXP (t, 0)) == MINUS
6502 || GET_CODE (XEXP (t, 0)) == IOR
6503 || GET_CODE (XEXP (t, 0)) == XOR
6504 || GET_CODE (XEXP (t, 0)) == ASHIFT
6505 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6506 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6507 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6508 && HWI_COMPUTABLE_MODE_P (mode)
6509 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6510 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6511 && ((nonzero_bits (f, GET_MODE (f))
6512 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6513 == 0))
6514 {
6515 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6516 extend_op = ZERO_EXTEND;
6517 m = GET_MODE (XEXP (t, 0));
6518 }
6519 else if (GET_CODE (t) == ZERO_EXTEND
6520 && (GET_CODE (XEXP (t, 0)) == PLUS
6521 || GET_CODE (XEXP (t, 0)) == IOR
6522 || GET_CODE (XEXP (t, 0)) == XOR)
6523 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6524 && HWI_COMPUTABLE_MODE_P (mode)
6525 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6526 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6527 && ((nonzero_bits (f, GET_MODE (f))
6528 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6529 == 0))
6530 {
6531 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6532 extend_op = ZERO_EXTEND;
6533 m = GET_MODE (XEXP (t, 0));
6534 }
6535
6536 if (z)
6537 {
6538 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6539 cond_op0, cond_op1),
6540 pc_rtx, pc_rtx, 0, 0, 0);
6541 temp = simplify_gen_binary (MULT, m, temp,
6542 simplify_gen_binary (MULT, m, c1,
6543 const_true_rtx));
6544 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6545 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6546
6547 if (extend_op != UNKNOWN)
6548 temp = simplify_gen_unary (extend_op, mode, temp, m);
6549
6550 return temp;
6551 }
6552 }
6553
6554 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6555 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6556 negation of a single bit, we can convert this operation to a shift. We
6557 can actually do this more generally, but it doesn't seem worth it. */
6558
6559 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6560 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6561 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6562 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6563 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6564 == GET_MODE_PRECISION (mode))
6565 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6566 return
6567 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6568 gen_lowpart (mode, XEXP (cond, 0)), i);
6569
6570 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6571 non-zero bit in A is C1. */
6572 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6573 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6574 && INTEGRAL_MODE_P (GET_MODE (XEXP (cond, 0)))
6575 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6576 == nonzero_bits (XEXP (cond, 0), GET_MODE (XEXP (cond, 0)))
6577 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6578 {
6579 rtx val = XEXP (cond, 0);
6580 enum machine_mode val_mode = GET_MODE (val);
6581 if (val_mode == mode)
6582 return val;
6583 else if (GET_MODE_PRECISION (val_mode) < GET_MODE_PRECISION (mode))
6584 return simplify_gen_unary (ZERO_EXTEND, mode, val, val_mode);
6585 }
6586
6587 return x;
6588 }
6589 \f
6590 /* Simplify X, a SET expression. Return the new expression. */
6591
6592 static rtx
6593 simplify_set (rtx x)
6594 {
6595 rtx src = SET_SRC (x);
6596 rtx dest = SET_DEST (x);
6597 machine_mode mode
6598 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6599 rtx_insn *other_insn;
6600 rtx *cc_use;
6601
6602 /* (set (pc) (return)) gets written as (return). */
6603 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6604 return src;
6605
6606 /* Now that we know for sure which bits of SRC we are using, see if we can
6607 simplify the expression for the object knowing that we only need the
6608 low-order bits. */
6609
6610 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6611 {
6612 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6613 SUBST (SET_SRC (x), src);
6614 }
6615
6616 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6617 the comparison result and try to simplify it unless we already have used
6618 undobuf.other_insn. */
6619 if ((GET_MODE_CLASS (mode) == MODE_CC
6620 || GET_CODE (src) == COMPARE
6621 || CC0_P (dest))
6622 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6623 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6624 && COMPARISON_P (*cc_use)
6625 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6626 {
6627 enum rtx_code old_code = GET_CODE (*cc_use);
6628 enum rtx_code new_code;
6629 rtx op0, op1, tmp;
6630 int other_changed = 0;
6631 rtx inner_compare = NULL_RTX;
6632 machine_mode compare_mode = GET_MODE (dest);
6633
6634 if (GET_CODE (src) == COMPARE)
6635 {
6636 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6637 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6638 {
6639 inner_compare = op0;
6640 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6641 }
6642 }
6643 else
6644 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6645
6646 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6647 op0, op1);
6648 if (!tmp)
6649 new_code = old_code;
6650 else if (!CONSTANT_P (tmp))
6651 {
6652 new_code = GET_CODE (tmp);
6653 op0 = XEXP (tmp, 0);
6654 op1 = XEXP (tmp, 1);
6655 }
6656 else
6657 {
6658 rtx pat = PATTERN (other_insn);
6659 undobuf.other_insn = other_insn;
6660 SUBST (*cc_use, tmp);
6661
6662 /* Attempt to simplify CC user. */
6663 if (GET_CODE (pat) == SET)
6664 {
6665 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6666 if (new_rtx != NULL_RTX)
6667 SUBST (SET_SRC (pat), new_rtx);
6668 }
6669
6670 /* Convert X into a no-op move. */
6671 SUBST (SET_DEST (x), pc_rtx);
6672 SUBST (SET_SRC (x), pc_rtx);
6673 return x;
6674 }
6675
6676 /* Simplify our comparison, if possible. */
6677 new_code = simplify_comparison (new_code, &op0, &op1);
6678
6679 #ifdef SELECT_CC_MODE
6680 /* If this machine has CC modes other than CCmode, check to see if we
6681 need to use a different CC mode here. */
6682 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6683 compare_mode = GET_MODE (op0);
6684 else if (inner_compare
6685 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6686 && new_code == old_code
6687 && op0 == XEXP (inner_compare, 0)
6688 && op1 == XEXP (inner_compare, 1))
6689 compare_mode = GET_MODE (inner_compare);
6690 else
6691 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6692
6693 /* If the mode changed, we have to change SET_DEST, the mode in the
6694 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6695 a hard register, just build new versions with the proper mode. If it
6696 is a pseudo, we lose unless it is only time we set the pseudo, in
6697 which case we can safely change its mode. */
6698 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6699 {
6700 if (can_change_dest_mode (dest, 0, compare_mode))
6701 {
6702 unsigned int regno = REGNO (dest);
6703 rtx new_dest;
6704
6705 if (regno < FIRST_PSEUDO_REGISTER)
6706 new_dest = gen_rtx_REG (compare_mode, regno);
6707 else
6708 {
6709 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6710 new_dest = regno_reg_rtx[regno];
6711 }
6712
6713 SUBST (SET_DEST (x), new_dest);
6714 SUBST (XEXP (*cc_use, 0), new_dest);
6715 other_changed = 1;
6716
6717 dest = new_dest;
6718 }
6719 }
6720 #endif /* SELECT_CC_MODE */
6721
6722 /* If the code changed, we have to build a new comparison in
6723 undobuf.other_insn. */
6724 if (new_code != old_code)
6725 {
6726 int other_changed_previously = other_changed;
6727 unsigned HOST_WIDE_INT mask;
6728 rtx old_cc_use = *cc_use;
6729
6730 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6731 dest, const0_rtx));
6732 other_changed = 1;
6733
6734 /* If the only change we made was to change an EQ into an NE or
6735 vice versa, OP0 has only one bit that might be nonzero, and OP1
6736 is zero, check if changing the user of the condition code will
6737 produce a valid insn. If it won't, we can keep the original code
6738 in that insn by surrounding our operation with an XOR. */
6739
6740 if (((old_code == NE && new_code == EQ)
6741 || (old_code == EQ && new_code == NE))
6742 && ! other_changed_previously && op1 == const0_rtx
6743 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6744 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6745 {
6746 rtx pat = PATTERN (other_insn), note = 0;
6747
6748 if ((recog_for_combine (&pat, other_insn, &note) < 0
6749 && ! check_asm_operands (pat)))
6750 {
6751 *cc_use = old_cc_use;
6752 other_changed = 0;
6753
6754 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6755 gen_int_mode (mask,
6756 GET_MODE (op0)));
6757 }
6758 }
6759 }
6760
6761 if (other_changed)
6762 undobuf.other_insn = other_insn;
6763
6764 /* Don't generate a compare of a CC with 0, just use that CC. */
6765 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6766 {
6767 SUBST (SET_SRC (x), op0);
6768 src = SET_SRC (x);
6769 }
6770 /* Otherwise, if we didn't previously have the same COMPARE we
6771 want, create it from scratch. */
6772 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6773 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6774 {
6775 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6776 src = SET_SRC (x);
6777 }
6778 }
6779 else
6780 {
6781 /* Get SET_SRC in a form where we have placed back any
6782 compound expressions. Then do the checks below. */
6783 src = make_compound_operation (src, SET);
6784 SUBST (SET_SRC (x), src);
6785 }
6786
6787 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6788 and X being a REG or (subreg (reg)), we may be able to convert this to
6789 (set (subreg:m2 x) (op)).
6790
6791 We can always do this if M1 is narrower than M2 because that means that
6792 we only care about the low bits of the result.
6793
6794 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6795 perform a narrower operation than requested since the high-order bits will
6796 be undefined. On machine where it is defined, this transformation is safe
6797 as long as M1 and M2 have the same number of words. */
6798
6799 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6800 && !OBJECT_P (SUBREG_REG (src))
6801 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6802 / UNITS_PER_WORD)
6803 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6804 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6805 && (WORD_REGISTER_OPERATIONS
6806 || (GET_MODE_SIZE (GET_MODE (src))
6807 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
6808 #ifdef CANNOT_CHANGE_MODE_CLASS
6809 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6810 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6811 GET_MODE (SUBREG_REG (src)),
6812 GET_MODE (src)))
6813 #endif
6814 && (REG_P (dest)
6815 || (GET_CODE (dest) == SUBREG
6816 && REG_P (SUBREG_REG (dest)))))
6817 {
6818 SUBST (SET_DEST (x),
6819 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6820 dest));
6821 SUBST (SET_SRC (x), SUBREG_REG (src));
6822
6823 src = SET_SRC (x), dest = SET_DEST (x);
6824 }
6825
6826 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6827 in SRC. */
6828 if (dest == cc0_rtx
6829 && GET_CODE (src) == SUBREG
6830 && subreg_lowpart_p (src)
6831 && (GET_MODE_PRECISION (GET_MODE (src))
6832 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6833 {
6834 rtx inner = SUBREG_REG (src);
6835 machine_mode inner_mode = GET_MODE (inner);
6836
6837 /* Here we make sure that we don't have a sign bit on. */
6838 if (val_signbit_known_clear_p (GET_MODE (src),
6839 nonzero_bits (inner, inner_mode)))
6840 {
6841 SUBST (SET_SRC (x), inner);
6842 src = SET_SRC (x);
6843 }
6844 }
6845
6846 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6847 would require a paradoxical subreg. Replace the subreg with a
6848 zero_extend to avoid the reload that would otherwise be required. */
6849
6850 enum rtx_code extend_op;
6851 if (paradoxical_subreg_p (src)
6852 && MEM_P (SUBREG_REG (src))
6853 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
6854 {
6855 SUBST (SET_SRC (x),
6856 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
6857
6858 src = SET_SRC (x);
6859 }
6860
6861 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6862 are comparing an item known to be 0 or -1 against 0, use a logical
6863 operation instead. Check for one of the arms being an IOR of the other
6864 arm with some value. We compute three terms to be IOR'ed together. In
6865 practice, at most two will be nonzero. Then we do the IOR's. */
6866
6867 if (GET_CODE (dest) != PC
6868 && GET_CODE (src) == IF_THEN_ELSE
6869 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6870 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6871 && XEXP (XEXP (src, 0), 1) == const0_rtx
6872 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6873 && (!HAVE_conditional_move
6874 || ! can_conditionally_move_p (GET_MODE (src)))
6875 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6876 GET_MODE (XEXP (XEXP (src, 0), 0)))
6877 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6878 && ! side_effects_p (src))
6879 {
6880 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6881 ? XEXP (src, 1) : XEXP (src, 2));
6882 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6883 ? XEXP (src, 2) : XEXP (src, 1));
6884 rtx term1 = const0_rtx, term2, term3;
6885
6886 if (GET_CODE (true_rtx) == IOR
6887 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6888 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6889 else if (GET_CODE (true_rtx) == IOR
6890 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6891 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6892 else if (GET_CODE (false_rtx) == IOR
6893 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6894 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6895 else if (GET_CODE (false_rtx) == IOR
6896 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6897 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6898
6899 term2 = simplify_gen_binary (AND, GET_MODE (src),
6900 XEXP (XEXP (src, 0), 0), true_rtx);
6901 term3 = simplify_gen_binary (AND, GET_MODE (src),
6902 simplify_gen_unary (NOT, GET_MODE (src),
6903 XEXP (XEXP (src, 0), 0),
6904 GET_MODE (src)),
6905 false_rtx);
6906
6907 SUBST (SET_SRC (x),
6908 simplify_gen_binary (IOR, GET_MODE (src),
6909 simplify_gen_binary (IOR, GET_MODE (src),
6910 term1, term2),
6911 term3));
6912
6913 src = SET_SRC (x);
6914 }
6915
6916 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6917 whole thing fail. */
6918 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6919 return src;
6920 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6921 return dest;
6922 else
6923 /* Convert this into a field assignment operation, if possible. */
6924 return make_field_assignment (x);
6925 }
6926 \f
6927 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6928 result. */
6929
6930 static rtx
6931 simplify_logical (rtx x)
6932 {
6933 machine_mode mode = GET_MODE (x);
6934 rtx op0 = XEXP (x, 0);
6935 rtx op1 = XEXP (x, 1);
6936
6937 switch (GET_CODE (x))
6938 {
6939 case AND:
6940 /* We can call simplify_and_const_int only if we don't lose
6941 any (sign) bits when converting INTVAL (op1) to
6942 "unsigned HOST_WIDE_INT". */
6943 if (CONST_INT_P (op1)
6944 && (HWI_COMPUTABLE_MODE_P (mode)
6945 || INTVAL (op1) > 0))
6946 {
6947 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6948 if (GET_CODE (x) != AND)
6949 return x;
6950
6951 op0 = XEXP (x, 0);
6952 op1 = XEXP (x, 1);
6953 }
6954
6955 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6956 apply the distributive law and then the inverse distributive
6957 law to see if things simplify. */
6958 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6959 {
6960 rtx result = distribute_and_simplify_rtx (x, 0);
6961 if (result)
6962 return result;
6963 }
6964 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6965 {
6966 rtx result = distribute_and_simplify_rtx (x, 1);
6967 if (result)
6968 return result;
6969 }
6970 break;
6971
6972 case IOR:
6973 /* If we have (ior (and A B) C), apply the distributive law and then
6974 the inverse distributive law to see if things simplify. */
6975
6976 if (GET_CODE (op0) == AND)
6977 {
6978 rtx result = distribute_and_simplify_rtx (x, 0);
6979 if (result)
6980 return result;
6981 }
6982
6983 if (GET_CODE (op1) == AND)
6984 {
6985 rtx result = distribute_and_simplify_rtx (x, 1);
6986 if (result)
6987 return result;
6988 }
6989 break;
6990
6991 default:
6992 gcc_unreachable ();
6993 }
6994
6995 return x;
6996 }
6997 \f
6998 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6999 operations" because they can be replaced with two more basic operations.
7000 ZERO_EXTEND is also considered "compound" because it can be replaced with
7001 an AND operation, which is simpler, though only one operation.
7002
7003 The function expand_compound_operation is called with an rtx expression
7004 and will convert it to the appropriate shifts and AND operations,
7005 simplifying at each stage.
7006
7007 The function make_compound_operation is called to convert an expression
7008 consisting of shifts and ANDs into the equivalent compound expression.
7009 It is the inverse of this function, loosely speaking. */
7010
7011 static rtx
7012 expand_compound_operation (rtx x)
7013 {
7014 unsigned HOST_WIDE_INT pos = 0, len;
7015 int unsignedp = 0;
7016 unsigned int modewidth;
7017 rtx tem;
7018
7019 switch (GET_CODE (x))
7020 {
7021 case ZERO_EXTEND:
7022 unsignedp = 1;
7023 /* FALLTHRU */
7024 case SIGN_EXTEND:
7025 /* We can't necessarily use a const_int for a multiword mode;
7026 it depends on implicitly extending the value.
7027 Since we don't know the right way to extend it,
7028 we can't tell whether the implicit way is right.
7029
7030 Even for a mode that is no wider than a const_int,
7031 we can't win, because we need to sign extend one of its bits through
7032 the rest of it, and we don't know which bit. */
7033 if (CONST_INT_P (XEXP (x, 0)))
7034 return x;
7035
7036 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7037 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7038 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7039 reloaded. If not for that, MEM's would very rarely be safe.
7040
7041 Reject MODEs bigger than a word, because we might not be able
7042 to reference a two-register group starting with an arbitrary register
7043 (and currently gen_lowpart might crash for a SUBREG). */
7044
7045 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
7046 return x;
7047
7048 /* Reject MODEs that aren't scalar integers because turning vector
7049 or complex modes into shifts causes problems. */
7050
7051 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7052 return x;
7053
7054 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
7055 /* If the inner object has VOIDmode (the only way this can happen
7056 is if it is an ASM_OPERANDS), we can't do anything since we don't
7057 know how much masking to do. */
7058 if (len == 0)
7059 return x;
7060
7061 break;
7062
7063 case ZERO_EXTRACT:
7064 unsignedp = 1;
7065
7066 /* fall through */
7067
7068 case SIGN_EXTRACT:
7069 /* If the operand is a CLOBBER, just return it. */
7070 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7071 return XEXP (x, 0);
7072
7073 if (!CONST_INT_P (XEXP (x, 1))
7074 || !CONST_INT_P (XEXP (x, 2))
7075 || GET_MODE (XEXP (x, 0)) == VOIDmode)
7076 return x;
7077
7078 /* Reject MODEs that aren't scalar integers because turning vector
7079 or complex modes into shifts causes problems. */
7080
7081 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7082 return x;
7083
7084 len = INTVAL (XEXP (x, 1));
7085 pos = INTVAL (XEXP (x, 2));
7086
7087 /* This should stay within the object being extracted, fail otherwise. */
7088 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
7089 return x;
7090
7091 if (BITS_BIG_ENDIAN)
7092 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7093
7094 break;
7095
7096 default:
7097 return x;
7098 }
7099 /* Convert sign extension to zero extension, if we know that the high
7100 bit is not set, as this is easier to optimize. It will be converted
7101 back to cheaper alternative in make_extraction. */
7102 if (GET_CODE (x) == SIGN_EXTEND
7103 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7104 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7105 & ~(((unsigned HOST_WIDE_INT)
7106 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7107 >> 1))
7108 == 0)))
7109 {
7110 machine_mode mode = GET_MODE (x);
7111 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7112 rtx temp2 = expand_compound_operation (temp);
7113
7114 /* Make sure this is a profitable operation. */
7115 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7116 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7117 return temp2;
7118 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7119 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7120 return temp;
7121 else
7122 return x;
7123 }
7124
7125 /* We can optimize some special cases of ZERO_EXTEND. */
7126 if (GET_CODE (x) == ZERO_EXTEND)
7127 {
7128 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7129 know that the last value didn't have any inappropriate bits
7130 set. */
7131 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7132 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7133 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7134 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7135 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7136 return XEXP (XEXP (x, 0), 0);
7137
7138 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7139 if (GET_CODE (XEXP (x, 0)) == SUBREG
7140 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7141 && subreg_lowpart_p (XEXP (x, 0))
7142 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7143 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7144 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7145 return SUBREG_REG (XEXP (x, 0));
7146
7147 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7148 is a comparison and STORE_FLAG_VALUE permits. This is like
7149 the first case, but it works even when GET_MODE (x) is larger
7150 than HOST_WIDE_INT. */
7151 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7152 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7153 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7154 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7155 <= HOST_BITS_PER_WIDE_INT)
7156 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7157 return XEXP (XEXP (x, 0), 0);
7158
7159 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7160 if (GET_CODE (XEXP (x, 0)) == SUBREG
7161 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7162 && subreg_lowpart_p (XEXP (x, 0))
7163 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7164 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7165 <= HOST_BITS_PER_WIDE_INT)
7166 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7167 return SUBREG_REG (XEXP (x, 0));
7168
7169 }
7170
7171 /* If we reach here, we want to return a pair of shifts. The inner
7172 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7173 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7174 logical depending on the value of UNSIGNEDP.
7175
7176 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7177 converted into an AND of a shift.
7178
7179 We must check for the case where the left shift would have a negative
7180 count. This can happen in a case like (x >> 31) & 255 on machines
7181 that can't shift by a constant. On those machines, we would first
7182 combine the shift with the AND to produce a variable-position
7183 extraction. Then the constant of 31 would be substituted in
7184 to produce such a position. */
7185
7186 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7187 if (modewidth >= pos + len)
7188 {
7189 machine_mode mode = GET_MODE (x);
7190 tem = gen_lowpart (mode, XEXP (x, 0));
7191 if (!tem || GET_CODE (tem) == CLOBBER)
7192 return x;
7193 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7194 tem, modewidth - pos - len);
7195 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7196 mode, tem, modewidth - len);
7197 }
7198 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7199 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7200 simplify_shift_const (NULL_RTX, LSHIFTRT,
7201 GET_MODE (x),
7202 XEXP (x, 0), pos),
7203 (HOST_WIDE_INT_1U << len) - 1);
7204 else
7205 /* Any other cases we can't handle. */
7206 return x;
7207
7208 /* If we couldn't do this for some reason, return the original
7209 expression. */
7210 if (GET_CODE (tem) == CLOBBER)
7211 return x;
7212
7213 return tem;
7214 }
7215 \f
7216 /* X is a SET which contains an assignment of one object into
7217 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7218 or certain SUBREGS). If possible, convert it into a series of
7219 logical operations.
7220
7221 We half-heartedly support variable positions, but do not at all
7222 support variable lengths. */
7223
7224 static const_rtx
7225 expand_field_assignment (const_rtx x)
7226 {
7227 rtx inner;
7228 rtx pos; /* Always counts from low bit. */
7229 int len;
7230 rtx mask, cleared, masked;
7231 machine_mode compute_mode;
7232
7233 /* Loop until we find something we can't simplify. */
7234 while (1)
7235 {
7236 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7237 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7238 {
7239 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7240 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7241 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7242 }
7243 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7244 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7245 {
7246 inner = XEXP (SET_DEST (x), 0);
7247 len = INTVAL (XEXP (SET_DEST (x), 1));
7248 pos = XEXP (SET_DEST (x), 2);
7249
7250 /* A constant position should stay within the width of INNER. */
7251 if (CONST_INT_P (pos)
7252 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7253 break;
7254
7255 if (BITS_BIG_ENDIAN)
7256 {
7257 if (CONST_INT_P (pos))
7258 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7259 - INTVAL (pos));
7260 else if (GET_CODE (pos) == MINUS
7261 && CONST_INT_P (XEXP (pos, 1))
7262 && (INTVAL (XEXP (pos, 1))
7263 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7264 /* If position is ADJUST - X, new position is X. */
7265 pos = XEXP (pos, 0);
7266 else
7267 {
7268 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7269 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7270 gen_int_mode (prec - len,
7271 GET_MODE (pos)),
7272 pos);
7273 }
7274 }
7275 }
7276
7277 /* A SUBREG between two modes that occupy the same numbers of words
7278 can be done by moving the SUBREG to the source. */
7279 else if (GET_CODE (SET_DEST (x)) == SUBREG
7280 /* We need SUBREGs to compute nonzero_bits properly. */
7281 && nonzero_sign_valid
7282 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7283 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7284 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7285 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7286 {
7287 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7288 gen_lowpart
7289 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7290 SET_SRC (x)));
7291 continue;
7292 }
7293 else
7294 break;
7295
7296 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7297 inner = SUBREG_REG (inner);
7298
7299 compute_mode = GET_MODE (inner);
7300
7301 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7302 if (! SCALAR_INT_MODE_P (compute_mode))
7303 {
7304 machine_mode imode;
7305
7306 /* Don't do anything for vector or complex integral types. */
7307 if (! FLOAT_MODE_P (compute_mode))
7308 break;
7309
7310 /* Try to find an integral mode to pun with. */
7311 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7312 if (imode == BLKmode)
7313 break;
7314
7315 compute_mode = imode;
7316 inner = gen_lowpart (imode, inner);
7317 }
7318
7319 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7320 if (len >= HOST_BITS_PER_WIDE_INT)
7321 break;
7322
7323 /* Don't try to compute in too wide unsupported modes. */
7324 if (!targetm.scalar_mode_supported_p (compute_mode))
7325 break;
7326
7327 /* Now compute the equivalent expression. Make a copy of INNER
7328 for the SET_DEST in case it is a MEM into which we will substitute;
7329 we don't want shared RTL in that case. */
7330 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7331 compute_mode);
7332 cleared = simplify_gen_binary (AND, compute_mode,
7333 simplify_gen_unary (NOT, compute_mode,
7334 simplify_gen_binary (ASHIFT,
7335 compute_mode,
7336 mask, pos),
7337 compute_mode),
7338 inner);
7339 masked = simplify_gen_binary (ASHIFT, compute_mode,
7340 simplify_gen_binary (
7341 AND, compute_mode,
7342 gen_lowpart (compute_mode, SET_SRC (x)),
7343 mask),
7344 pos);
7345
7346 x = gen_rtx_SET (copy_rtx (inner),
7347 simplify_gen_binary (IOR, compute_mode,
7348 cleared, masked));
7349 }
7350
7351 return x;
7352 }
7353 \f
7354 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7355 it is an RTX that represents the (variable) starting position; otherwise,
7356 POS is the (constant) starting bit position. Both are counted from the LSB.
7357
7358 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7359
7360 IN_DEST is nonzero if this is a reference in the destination of a SET.
7361 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7362 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7363 be used.
7364
7365 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7366 ZERO_EXTRACT should be built even for bits starting at bit 0.
7367
7368 MODE is the desired mode of the result (if IN_DEST == 0).
7369
7370 The result is an RTX for the extraction or NULL_RTX if the target
7371 can't handle it. */
7372
7373 static rtx
7374 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7375 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7376 int in_dest, int in_compare)
7377 {
7378 /* This mode describes the size of the storage area
7379 to fetch the overall value from. Within that, we
7380 ignore the POS lowest bits, etc. */
7381 machine_mode is_mode = GET_MODE (inner);
7382 machine_mode inner_mode;
7383 machine_mode wanted_inner_mode;
7384 machine_mode wanted_inner_reg_mode = word_mode;
7385 machine_mode pos_mode = word_mode;
7386 machine_mode extraction_mode = word_mode;
7387 machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7388 rtx new_rtx = 0;
7389 rtx orig_pos_rtx = pos_rtx;
7390 HOST_WIDE_INT orig_pos;
7391
7392 if (pos_rtx && CONST_INT_P (pos_rtx))
7393 pos = INTVAL (pos_rtx), pos_rtx = 0;
7394
7395 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7396 {
7397 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7398 consider just the QI as the memory to extract from.
7399 The subreg adds or removes high bits; its mode is
7400 irrelevant to the meaning of this extraction,
7401 since POS and LEN count from the lsb. */
7402 if (MEM_P (SUBREG_REG (inner)))
7403 is_mode = GET_MODE (SUBREG_REG (inner));
7404 inner = SUBREG_REG (inner);
7405 }
7406 else if (GET_CODE (inner) == ASHIFT
7407 && CONST_INT_P (XEXP (inner, 1))
7408 && pos_rtx == 0 && pos == 0
7409 && len > UINTVAL (XEXP (inner, 1)))
7410 {
7411 /* We're extracting the least significant bits of an rtx
7412 (ashift X (const_int C)), where LEN > C. Extract the
7413 least significant (LEN - C) bits of X, giving an rtx
7414 whose mode is MODE, then shift it left C times. */
7415 new_rtx = make_extraction (mode, XEXP (inner, 0),
7416 0, 0, len - INTVAL (XEXP (inner, 1)),
7417 unsignedp, in_dest, in_compare);
7418 if (new_rtx != 0)
7419 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7420 }
7421 else if (GET_CODE (inner) == TRUNCATE)
7422 inner = XEXP (inner, 0);
7423
7424 inner_mode = GET_MODE (inner);
7425
7426 /* See if this can be done without an extraction. We never can if the
7427 width of the field is not the same as that of some integer mode. For
7428 registers, we can only avoid the extraction if the position is at the
7429 low-order bit and this is either not in the destination or we have the
7430 appropriate STRICT_LOW_PART operation available.
7431
7432 For MEM, we can avoid an extract if the field starts on an appropriate
7433 boundary and we can change the mode of the memory reference. */
7434
7435 if (tmode != BLKmode
7436 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7437 && !MEM_P (inner)
7438 && (pos == 0 || REG_P (inner))
7439 && (inner_mode == tmode
7440 || !REG_P (inner)
7441 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7442 || reg_truncated_to_mode (tmode, inner))
7443 && (! in_dest
7444 || (REG_P (inner)
7445 && have_insn_for (STRICT_LOW_PART, tmode))))
7446 || (MEM_P (inner) && pos_rtx == 0
7447 && (pos
7448 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7449 : BITS_PER_UNIT)) == 0
7450 /* We can't do this if we are widening INNER_MODE (it
7451 may not be aligned, for one thing). */
7452 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7453 && (inner_mode == tmode
7454 || (! mode_dependent_address_p (XEXP (inner, 0),
7455 MEM_ADDR_SPACE (inner))
7456 && ! MEM_VOLATILE_P (inner))))))
7457 {
7458 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7459 field. If the original and current mode are the same, we need not
7460 adjust the offset. Otherwise, we do if bytes big endian.
7461
7462 If INNER is not a MEM, get a piece consisting of just the field
7463 of interest (in this case POS % BITS_PER_WORD must be 0). */
7464
7465 if (MEM_P (inner))
7466 {
7467 HOST_WIDE_INT offset;
7468
7469 /* POS counts from lsb, but make OFFSET count in memory order. */
7470 if (BYTES_BIG_ENDIAN)
7471 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7472 else
7473 offset = pos / BITS_PER_UNIT;
7474
7475 new_rtx = adjust_address_nv (inner, tmode, offset);
7476 }
7477 else if (REG_P (inner))
7478 {
7479 if (tmode != inner_mode)
7480 {
7481 /* We can't call gen_lowpart in a DEST since we
7482 always want a SUBREG (see below) and it would sometimes
7483 return a new hard register. */
7484 if (pos || in_dest)
7485 {
7486 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7487
7488 if (WORDS_BIG_ENDIAN
7489 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7490 final_word = ((GET_MODE_SIZE (inner_mode)
7491 - GET_MODE_SIZE (tmode))
7492 / UNITS_PER_WORD) - final_word;
7493
7494 final_word *= UNITS_PER_WORD;
7495 if (BYTES_BIG_ENDIAN &&
7496 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7497 final_word += (GET_MODE_SIZE (inner_mode)
7498 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7499
7500 /* Avoid creating invalid subregs, for example when
7501 simplifying (x>>32)&255. */
7502 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7503 return NULL_RTX;
7504
7505 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7506 }
7507 else
7508 new_rtx = gen_lowpart (tmode, inner);
7509 }
7510 else
7511 new_rtx = inner;
7512 }
7513 else
7514 new_rtx = force_to_mode (inner, tmode,
7515 len >= HOST_BITS_PER_WIDE_INT
7516 ? HOST_WIDE_INT_M1U
7517 : (HOST_WIDE_INT_1U << len) - 1, 0);
7518
7519 /* If this extraction is going into the destination of a SET,
7520 make a STRICT_LOW_PART unless we made a MEM. */
7521
7522 if (in_dest)
7523 return (MEM_P (new_rtx) ? new_rtx
7524 : (GET_CODE (new_rtx) != SUBREG
7525 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7526 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7527
7528 if (mode == tmode)
7529 return new_rtx;
7530
7531 if (CONST_SCALAR_INT_P (new_rtx))
7532 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7533 mode, new_rtx, tmode);
7534
7535 /* If we know that no extraneous bits are set, and that the high
7536 bit is not set, convert the extraction to the cheaper of
7537 sign and zero extension, that are equivalent in these cases. */
7538 if (flag_expensive_optimizations
7539 && (HWI_COMPUTABLE_MODE_P (tmode)
7540 && ((nonzero_bits (new_rtx, tmode)
7541 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7542 == 0)))
7543 {
7544 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7545 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7546
7547 /* Prefer ZERO_EXTENSION, since it gives more information to
7548 backends. */
7549 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7550 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7551 return temp;
7552 return temp1;
7553 }
7554
7555 /* Otherwise, sign- or zero-extend unless we already are in the
7556 proper mode. */
7557
7558 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7559 mode, new_rtx));
7560 }
7561
7562 /* Unless this is a COMPARE or we have a funny memory reference,
7563 don't do anything with zero-extending field extracts starting at
7564 the low-order bit since they are simple AND operations. */
7565 if (pos_rtx == 0 && pos == 0 && ! in_dest
7566 && ! in_compare && unsignedp)
7567 return 0;
7568
7569 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7570 if the position is not a constant and the length is not 1. In all
7571 other cases, we would only be going outside our object in cases when
7572 an original shift would have been undefined. */
7573 if (MEM_P (inner)
7574 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7575 || (pos_rtx != 0 && len != 1)))
7576 return 0;
7577
7578 enum extraction_pattern pattern = (in_dest ? EP_insv
7579 : unsignedp ? EP_extzv : EP_extv);
7580
7581 /* If INNER is not from memory, we want it to have the mode of a register
7582 extraction pattern's structure operand, or word_mode if there is no
7583 such pattern. The same applies to extraction_mode and pos_mode
7584 and their respective operands.
7585
7586 For memory, assume that the desired extraction_mode and pos_mode
7587 are the same as for a register operation, since at present we don't
7588 have named patterns for aligned memory structures. */
7589 struct extraction_insn insn;
7590 if (get_best_reg_extraction_insn (&insn, pattern,
7591 GET_MODE_BITSIZE (inner_mode), mode))
7592 {
7593 wanted_inner_reg_mode = insn.struct_mode;
7594 pos_mode = insn.pos_mode;
7595 extraction_mode = insn.field_mode;
7596 }
7597
7598 /* Never narrow an object, since that might not be safe. */
7599
7600 if (mode != VOIDmode
7601 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7602 extraction_mode = mode;
7603
7604 if (!MEM_P (inner))
7605 wanted_inner_mode = wanted_inner_reg_mode;
7606 else
7607 {
7608 /* Be careful not to go beyond the extracted object and maintain the
7609 natural alignment of the memory. */
7610 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7611 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7612 > GET_MODE_BITSIZE (wanted_inner_mode))
7613 {
7614 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7615 gcc_assert (wanted_inner_mode != VOIDmode);
7616 }
7617 }
7618
7619 orig_pos = pos;
7620
7621 if (BITS_BIG_ENDIAN)
7622 {
7623 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7624 BITS_BIG_ENDIAN style. If position is constant, compute new
7625 position. Otherwise, build subtraction.
7626 Note that POS is relative to the mode of the original argument.
7627 If it's a MEM we need to recompute POS relative to that.
7628 However, if we're extracting from (or inserting into) a register,
7629 we want to recompute POS relative to wanted_inner_mode. */
7630 int width = (MEM_P (inner)
7631 ? GET_MODE_BITSIZE (is_mode)
7632 : GET_MODE_BITSIZE (wanted_inner_mode));
7633
7634 if (pos_rtx == 0)
7635 pos = width - len - pos;
7636 else
7637 pos_rtx
7638 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7639 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7640 pos_rtx);
7641 /* POS may be less than 0 now, but we check for that below.
7642 Note that it can only be less than 0 if !MEM_P (inner). */
7643 }
7644
7645 /* If INNER has a wider mode, and this is a constant extraction, try to
7646 make it smaller and adjust the byte to point to the byte containing
7647 the value. */
7648 if (wanted_inner_mode != VOIDmode
7649 && inner_mode != wanted_inner_mode
7650 && ! pos_rtx
7651 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7652 && MEM_P (inner)
7653 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7654 && ! MEM_VOLATILE_P (inner))
7655 {
7656 int offset = 0;
7657
7658 /* The computations below will be correct if the machine is big
7659 endian in both bits and bytes or little endian in bits and bytes.
7660 If it is mixed, we must adjust. */
7661
7662 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7663 adjust OFFSET to compensate. */
7664 if (BYTES_BIG_ENDIAN
7665 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7666 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7667
7668 /* We can now move to the desired byte. */
7669 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7670 * GET_MODE_SIZE (wanted_inner_mode);
7671 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7672
7673 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7674 && is_mode != wanted_inner_mode)
7675 offset = (GET_MODE_SIZE (is_mode)
7676 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7677
7678 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7679 }
7680
7681 /* If INNER is not memory, get it into the proper mode. If we are changing
7682 its mode, POS must be a constant and smaller than the size of the new
7683 mode. */
7684 else if (!MEM_P (inner))
7685 {
7686 /* On the LHS, don't create paradoxical subregs implicitely truncating
7687 the register unless TRULY_NOOP_TRUNCATION. */
7688 if (in_dest
7689 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7690 wanted_inner_mode))
7691 return NULL_RTX;
7692
7693 if (GET_MODE (inner) != wanted_inner_mode
7694 && (pos_rtx != 0
7695 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7696 return NULL_RTX;
7697
7698 if (orig_pos < 0)
7699 return NULL_RTX;
7700
7701 inner = force_to_mode (inner, wanted_inner_mode,
7702 pos_rtx
7703 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7704 ? HOST_WIDE_INT_M1U
7705 : (((HOST_WIDE_INT_1U << len) - 1)
7706 << orig_pos),
7707 0);
7708 }
7709
7710 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7711 have to zero extend. Otherwise, we can just use a SUBREG. */
7712 if (pos_rtx != 0
7713 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7714 {
7715 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7716 GET_MODE (pos_rtx));
7717
7718 /* If we know that no extraneous bits are set, and that the high
7719 bit is not set, convert extraction to cheaper one - either
7720 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7721 cases. */
7722 if (flag_expensive_optimizations
7723 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7724 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7725 & ~(((unsigned HOST_WIDE_INT)
7726 GET_MODE_MASK (GET_MODE (pos_rtx)))
7727 >> 1))
7728 == 0)))
7729 {
7730 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7731 GET_MODE (pos_rtx));
7732
7733 /* Prefer ZERO_EXTENSION, since it gives more information to
7734 backends. */
7735 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7736 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7737 temp = temp1;
7738 }
7739 pos_rtx = temp;
7740 }
7741
7742 /* Make POS_RTX unless we already have it and it is correct. If we don't
7743 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7744 be a CONST_INT. */
7745 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7746 pos_rtx = orig_pos_rtx;
7747
7748 else if (pos_rtx == 0)
7749 pos_rtx = GEN_INT (pos);
7750
7751 /* Make the required operation. See if we can use existing rtx. */
7752 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7753 extraction_mode, inner, GEN_INT (len), pos_rtx);
7754 if (! in_dest)
7755 new_rtx = gen_lowpart (mode, new_rtx);
7756
7757 return new_rtx;
7758 }
7759 \f
7760 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7761 with any other operations in X. Return X without that shift if so. */
7762
7763 static rtx
7764 extract_left_shift (rtx x, int count)
7765 {
7766 enum rtx_code code = GET_CODE (x);
7767 machine_mode mode = GET_MODE (x);
7768 rtx tem;
7769
7770 switch (code)
7771 {
7772 case ASHIFT:
7773 /* This is the shift itself. If it is wide enough, we will return
7774 either the value being shifted if the shift count is equal to
7775 COUNT or a shift for the difference. */
7776 if (CONST_INT_P (XEXP (x, 1))
7777 && INTVAL (XEXP (x, 1)) >= count)
7778 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7779 INTVAL (XEXP (x, 1)) - count);
7780 break;
7781
7782 case NEG: case NOT:
7783 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7784 return simplify_gen_unary (code, mode, tem, mode);
7785
7786 break;
7787
7788 case PLUS: case IOR: case XOR: case AND:
7789 /* If we can safely shift this constant and we find the inner shift,
7790 make a new operation. */
7791 if (CONST_INT_P (XEXP (x, 1))
7792 && (UINTVAL (XEXP (x, 1))
7793 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7794 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7795 {
7796 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7797 return simplify_gen_binary (code, mode, tem,
7798 gen_int_mode (val, mode));
7799 }
7800 break;
7801
7802 default:
7803 break;
7804 }
7805
7806 return 0;
7807 }
7808 \f
7809 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7810 level of the expression and MODE is its mode. IN_CODE is as for
7811 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7812 that should be used when recursing on operands of *X_PTR.
7813
7814 There are two possible actions:
7815
7816 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7817 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7818
7819 - Return a new rtx, which the caller returns directly. */
7820
7821 static rtx
7822 make_compound_operation_int (machine_mode mode, rtx *x_ptr,
7823 enum rtx_code in_code,
7824 enum rtx_code *next_code_ptr)
7825 {
7826 rtx x = *x_ptr;
7827 enum rtx_code next_code = *next_code_ptr;
7828 enum rtx_code code = GET_CODE (x);
7829 int mode_width = GET_MODE_PRECISION (mode);
7830 rtx rhs, lhs;
7831 rtx new_rtx = 0;
7832 int i;
7833 rtx tem;
7834 bool equality_comparison = false;
7835
7836 if (in_code == EQ)
7837 {
7838 equality_comparison = true;
7839 in_code = COMPARE;
7840 }
7841
7842 /* Process depending on the code of this operation. If NEW is set
7843 nonzero, it will be returned. */
7844
7845 switch (code)
7846 {
7847 case ASHIFT:
7848 /* Convert shifts by constants into multiplications if inside
7849 an address. */
7850 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7851 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7852 && INTVAL (XEXP (x, 1)) >= 0)
7853 {
7854 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7855 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7856
7857 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7858 if (GET_CODE (new_rtx) == NEG)
7859 {
7860 new_rtx = XEXP (new_rtx, 0);
7861 multval = -multval;
7862 }
7863 multval = trunc_int_for_mode (multval, mode);
7864 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7865 }
7866 break;
7867
7868 case PLUS:
7869 lhs = XEXP (x, 0);
7870 rhs = XEXP (x, 1);
7871 lhs = make_compound_operation (lhs, next_code);
7872 rhs = make_compound_operation (rhs, next_code);
7873 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
7874 {
7875 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7876 XEXP (lhs, 1));
7877 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7878 }
7879 else if (GET_CODE (lhs) == MULT
7880 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7881 {
7882 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7883 simplify_gen_unary (NEG, mode,
7884 XEXP (lhs, 1),
7885 mode));
7886 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7887 }
7888 else
7889 {
7890 SUBST (XEXP (x, 0), lhs);
7891 SUBST (XEXP (x, 1), rhs);
7892 }
7893 maybe_swap_commutative_operands (x);
7894 return x;
7895
7896 case MINUS:
7897 lhs = XEXP (x, 0);
7898 rhs = XEXP (x, 1);
7899 lhs = make_compound_operation (lhs, next_code);
7900 rhs = make_compound_operation (rhs, next_code);
7901 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
7902 {
7903 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7904 XEXP (rhs, 1));
7905 return simplify_gen_binary (PLUS, mode, tem, lhs);
7906 }
7907 else if (GET_CODE (rhs) == MULT
7908 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7909 {
7910 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7911 simplify_gen_unary (NEG, mode,
7912 XEXP (rhs, 1),
7913 mode));
7914 return simplify_gen_binary (PLUS, mode, tem, lhs);
7915 }
7916 else
7917 {
7918 SUBST (XEXP (x, 0), lhs);
7919 SUBST (XEXP (x, 1), rhs);
7920 return x;
7921 }
7922
7923 case AND:
7924 /* If the second operand is not a constant, we can't do anything
7925 with it. */
7926 if (!CONST_INT_P (XEXP (x, 1)))
7927 break;
7928
7929 /* If the constant is a power of two minus one and the first operand
7930 is a logical right shift, make an extraction. */
7931 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7932 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7933 {
7934 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7935 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7936 0, in_code == COMPARE);
7937 }
7938
7939 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7940 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7941 && subreg_lowpart_p (XEXP (x, 0))
7942 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7943 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7944 {
7945 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
7946 machine_mode inner_mode = GET_MODE (inner_x0);
7947 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
7948 new_rtx = make_extraction (inner_mode, new_rtx, 0,
7949 XEXP (inner_x0, 1),
7950 i, 1, 0, in_code == COMPARE);
7951
7952 if (new_rtx)
7953 {
7954 /* If we narrowed the mode when dropping the subreg, then
7955 we must zero-extend to keep the semantics of the AND. */
7956 if (GET_MODE_SIZE (inner_mode) >= GET_MODE_SIZE (mode))
7957 ;
7958 else if (SCALAR_INT_MODE_P (inner_mode))
7959 new_rtx = simplify_gen_unary (ZERO_EXTEND, mode,
7960 new_rtx, inner_mode);
7961 else
7962 new_rtx = NULL;
7963 }
7964
7965 /* If that didn't give anything, see if the AND simplifies on
7966 its own. */
7967 if (!new_rtx && i >= 0)
7968 {
7969 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7970 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
7971 0, in_code == COMPARE);
7972 }
7973 }
7974 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7975 else if ((GET_CODE (XEXP (x, 0)) == XOR
7976 || GET_CODE (XEXP (x, 0)) == IOR)
7977 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7978 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7979 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7980 {
7981 /* Apply the distributive law, and then try to make extractions. */
7982 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7983 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7984 XEXP (x, 1)),
7985 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7986 XEXP (x, 1)));
7987 new_rtx = make_compound_operation (new_rtx, in_code);
7988 }
7989
7990 /* If we are have (and (rotate X C) M) and C is larger than the number
7991 of bits in M, this is an extraction. */
7992
7993 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7994 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7995 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7996 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7997 {
7998 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7999 new_rtx = make_extraction (mode, new_rtx,
8000 (GET_MODE_PRECISION (mode)
8001 - INTVAL (XEXP (XEXP (x, 0), 1))),
8002 NULL_RTX, i, 1, 0, in_code == COMPARE);
8003 }
8004
8005 /* On machines without logical shifts, if the operand of the AND is
8006 a logical shift and our mask turns off all the propagated sign
8007 bits, we can replace the logical shift with an arithmetic shift. */
8008 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8009 && !have_insn_for (LSHIFTRT, mode)
8010 && have_insn_for (ASHIFTRT, mode)
8011 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8012 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8013 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8014 && mode_width <= HOST_BITS_PER_WIDE_INT)
8015 {
8016 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8017
8018 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8019 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8020 SUBST (XEXP (x, 0),
8021 gen_rtx_ASHIFTRT (mode,
8022 make_compound_operation
8023 (XEXP (XEXP (x, 0), 0), next_code),
8024 XEXP (XEXP (x, 0), 1)));
8025 }
8026
8027 /* If the constant is one less than a power of two, this might be
8028 representable by an extraction even if no shift is present.
8029 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8030 we are in a COMPARE. */
8031 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8032 new_rtx = make_extraction (mode,
8033 make_compound_operation (XEXP (x, 0),
8034 next_code),
8035 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8036
8037 /* If we are in a comparison and this is an AND with a power of two,
8038 convert this into the appropriate bit extract. */
8039 else if (in_code == COMPARE
8040 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8041 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8042 new_rtx = make_extraction (mode,
8043 make_compound_operation (XEXP (x, 0),
8044 next_code),
8045 i, NULL_RTX, 1, 1, 0, 1);
8046
8047 /* If the one operand is a paradoxical subreg of a register or memory and
8048 the constant (limited to the smaller mode) has only zero bits where
8049 the sub expression has known zero bits, this can be expressed as
8050 a zero_extend. */
8051 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8052 {
8053 rtx sub;
8054
8055 sub = XEXP (XEXP (x, 0), 0);
8056 machine_mode sub_mode = GET_MODE (sub);
8057 if ((REG_P (sub) || MEM_P (sub))
8058 && GET_MODE_PRECISION (sub_mode) < mode_width)
8059 {
8060 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8061 unsigned HOST_WIDE_INT mask;
8062
8063 /* original AND constant with all the known zero bits set */
8064 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8065 if ((mask & mode_mask) == mode_mask)
8066 {
8067 new_rtx = make_compound_operation (sub, next_code);
8068 new_rtx = make_extraction (mode, new_rtx, 0, 0,
8069 GET_MODE_PRECISION (sub_mode),
8070 1, 0, in_code == COMPARE);
8071 }
8072 }
8073 }
8074
8075 break;
8076
8077 case LSHIFTRT:
8078 /* If the sign bit is known to be zero, replace this with an
8079 arithmetic shift. */
8080 if (have_insn_for (ASHIFTRT, mode)
8081 && ! have_insn_for (LSHIFTRT, mode)
8082 && mode_width <= HOST_BITS_PER_WIDE_INT
8083 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8084 {
8085 new_rtx = gen_rtx_ASHIFTRT (mode,
8086 make_compound_operation (XEXP (x, 0),
8087 next_code),
8088 XEXP (x, 1));
8089 break;
8090 }
8091
8092 /* fall through */
8093
8094 case ASHIFTRT:
8095 lhs = XEXP (x, 0);
8096 rhs = XEXP (x, 1);
8097
8098 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8099 this is a SIGN_EXTRACT. */
8100 if (CONST_INT_P (rhs)
8101 && GET_CODE (lhs) == ASHIFT
8102 && CONST_INT_P (XEXP (lhs, 1))
8103 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8104 && INTVAL (XEXP (lhs, 1)) >= 0
8105 && INTVAL (rhs) < mode_width)
8106 {
8107 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8108 new_rtx = make_extraction (mode, new_rtx,
8109 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8110 NULL_RTX, mode_width - INTVAL (rhs),
8111 code == LSHIFTRT, 0, in_code == COMPARE);
8112 break;
8113 }
8114
8115 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8116 If so, try to merge the shifts into a SIGN_EXTEND. We could
8117 also do this for some cases of SIGN_EXTRACT, but it doesn't
8118 seem worth the effort; the case checked for occurs on Alpha. */
8119
8120 if (!OBJECT_P (lhs)
8121 && ! (GET_CODE (lhs) == SUBREG
8122 && (OBJECT_P (SUBREG_REG (lhs))))
8123 && CONST_INT_P (rhs)
8124 && INTVAL (rhs) >= 0
8125 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8126 && INTVAL (rhs) < mode_width
8127 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8128 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8129 0, NULL_RTX, mode_width - INTVAL (rhs),
8130 code == LSHIFTRT, 0, in_code == COMPARE);
8131
8132 break;
8133
8134 case SUBREG:
8135 /* Call ourselves recursively on the inner expression. If we are
8136 narrowing the object and it has a different RTL code from
8137 what it originally did, do this SUBREG as a force_to_mode. */
8138 {
8139 rtx inner = SUBREG_REG (x), simplified;
8140 enum rtx_code subreg_code = in_code;
8141
8142 /* If the SUBREG is masking of a logical right shift,
8143 make an extraction. */
8144 if (GET_CODE (inner) == LSHIFTRT
8145 && CONST_INT_P (XEXP (inner, 1))
8146 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8147 && (UINTVAL (XEXP (inner, 1))
8148 < GET_MODE_PRECISION (GET_MODE (inner)))
8149 && subreg_lowpart_p (x))
8150 {
8151 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8152 int width = GET_MODE_PRECISION (GET_MODE (inner))
8153 - INTVAL (XEXP (inner, 1));
8154 if (width > mode_width)
8155 width = mode_width;
8156 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8157 width, 1, 0, in_code == COMPARE);
8158 break;
8159 }
8160
8161 /* If in_code is COMPARE, it isn't always safe to pass it through
8162 to the recursive make_compound_operation call. */
8163 if (subreg_code == COMPARE
8164 && (!subreg_lowpart_p (x)
8165 || GET_CODE (inner) == SUBREG
8166 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8167 is (const_int 0), rather than
8168 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
8169 || (GET_CODE (inner) == AND
8170 && CONST_INT_P (XEXP (inner, 1))
8171 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8172 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8173 >= GET_MODE_BITSIZE (mode))))
8174 subreg_code = SET;
8175
8176 tem = make_compound_operation (inner, subreg_code);
8177
8178 simplified
8179 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8180 if (simplified)
8181 tem = simplified;
8182
8183 if (GET_CODE (tem) != GET_CODE (inner)
8184 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8185 && subreg_lowpart_p (x))
8186 {
8187 rtx newer
8188 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8189
8190 /* If we have something other than a SUBREG, we might have
8191 done an expansion, so rerun ourselves. */
8192 if (GET_CODE (newer) != SUBREG)
8193 newer = make_compound_operation (newer, in_code);
8194
8195 /* force_to_mode can expand compounds. If it just re-expanded the
8196 compound, use gen_lowpart to convert to the desired mode. */
8197 if (rtx_equal_p (newer, x)
8198 /* Likewise if it re-expanded the compound only partially.
8199 This happens for SUBREG of ZERO_EXTRACT if they extract
8200 the same number of bits. */
8201 || (GET_CODE (newer) == SUBREG
8202 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8203 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8204 && GET_CODE (inner) == AND
8205 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8206 return gen_lowpart (GET_MODE (x), tem);
8207
8208 return newer;
8209 }
8210
8211 if (simplified)
8212 return tem;
8213 }
8214 break;
8215
8216 default:
8217 break;
8218 }
8219
8220 if (new_rtx)
8221 *x_ptr = gen_lowpart (mode, new_rtx);
8222 *next_code_ptr = next_code;
8223 return NULL_RTX;
8224 }
8225
8226 /* Look at the expression rooted at X. Look for expressions
8227 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8228 Form these expressions.
8229
8230 Return the new rtx, usually just X.
8231
8232 Also, for machines like the VAX that don't have logical shift insns,
8233 try to convert logical to arithmetic shift operations in cases where
8234 they are equivalent. This undoes the canonicalizations to logical
8235 shifts done elsewhere.
8236
8237 We try, as much as possible, to re-use rtl expressions to save memory.
8238
8239 IN_CODE says what kind of expression we are processing. Normally, it is
8240 SET. In a memory address it is MEM. When processing the arguments of
8241 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8242 precisely it is an equality comparison against zero. */
8243
8244 rtx
8245 make_compound_operation (rtx x, enum rtx_code in_code)
8246 {
8247 enum rtx_code code = GET_CODE (x);
8248 const char *fmt;
8249 int i, j;
8250 enum rtx_code next_code;
8251 rtx new_rtx, tem;
8252
8253 /* Select the code to be used in recursive calls. Once we are inside an
8254 address, we stay there. If we have a comparison, set to COMPARE,
8255 but once inside, go back to our default of SET. */
8256
8257 next_code = (code == MEM ? MEM
8258 : ((code == COMPARE || COMPARISON_P (x))
8259 && XEXP (x, 1) == const0_rtx) ? COMPARE
8260 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8261
8262 if (SCALAR_INT_MODE_P (GET_MODE (x)))
8263 {
8264 rtx new_rtx = make_compound_operation_int (GET_MODE (x), &x,
8265 in_code, &next_code);
8266 if (new_rtx)
8267 return new_rtx;
8268 code = GET_CODE (x);
8269 }
8270
8271 /* Now recursively process each operand of this operation. We need to
8272 handle ZERO_EXTEND specially so that we don't lose track of the
8273 inner mode. */
8274 if (code == ZERO_EXTEND)
8275 {
8276 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8277 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8278 new_rtx, GET_MODE (XEXP (x, 0)));
8279 if (tem)
8280 return tem;
8281 SUBST (XEXP (x, 0), new_rtx);
8282 return x;
8283 }
8284
8285 fmt = GET_RTX_FORMAT (code);
8286 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8287 if (fmt[i] == 'e')
8288 {
8289 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8290 SUBST (XEXP (x, i), new_rtx);
8291 }
8292 else if (fmt[i] == 'E')
8293 for (j = 0; j < XVECLEN (x, i); j++)
8294 {
8295 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8296 SUBST (XVECEXP (x, i, j), new_rtx);
8297 }
8298
8299 maybe_swap_commutative_operands (x);
8300 return x;
8301 }
8302 \f
8303 /* Given M see if it is a value that would select a field of bits
8304 within an item, but not the entire word. Return -1 if not.
8305 Otherwise, return the starting position of the field, where 0 is the
8306 low-order bit.
8307
8308 *PLEN is set to the length of the field. */
8309
8310 static int
8311 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8312 {
8313 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8314 int pos = m ? ctz_hwi (m) : -1;
8315 int len = 0;
8316
8317 if (pos >= 0)
8318 /* Now shift off the low-order zero bits and see if we have a
8319 power of two minus 1. */
8320 len = exact_log2 ((m >> pos) + 1);
8321
8322 if (len <= 0)
8323 pos = -1;
8324
8325 *plen = len;
8326 return pos;
8327 }
8328 \f
8329 /* If X refers to a register that equals REG in value, replace these
8330 references with REG. */
8331 static rtx
8332 canon_reg_for_combine (rtx x, rtx reg)
8333 {
8334 rtx op0, op1, op2;
8335 const char *fmt;
8336 int i;
8337 bool copied;
8338
8339 enum rtx_code code = GET_CODE (x);
8340 switch (GET_RTX_CLASS (code))
8341 {
8342 case RTX_UNARY:
8343 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8344 if (op0 != XEXP (x, 0))
8345 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8346 GET_MODE (reg));
8347 break;
8348
8349 case RTX_BIN_ARITH:
8350 case RTX_COMM_ARITH:
8351 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8352 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8353 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8354 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8355 break;
8356
8357 case RTX_COMPARE:
8358 case RTX_COMM_COMPARE:
8359 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8360 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8361 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8362 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8363 GET_MODE (op0), op0, op1);
8364 break;
8365
8366 case RTX_TERNARY:
8367 case RTX_BITFIELD_OPS:
8368 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8369 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8370 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8371 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8372 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8373 GET_MODE (op0), op0, op1, op2);
8374 /* FALLTHRU */
8375
8376 case RTX_OBJ:
8377 if (REG_P (x))
8378 {
8379 if (rtx_equal_p (get_last_value (reg), x)
8380 || rtx_equal_p (reg, get_last_value (x)))
8381 return reg;
8382 else
8383 break;
8384 }
8385
8386 /* fall through */
8387
8388 default:
8389 fmt = GET_RTX_FORMAT (code);
8390 copied = false;
8391 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8392 if (fmt[i] == 'e')
8393 {
8394 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8395 if (op != XEXP (x, i))
8396 {
8397 if (!copied)
8398 {
8399 copied = true;
8400 x = copy_rtx (x);
8401 }
8402 XEXP (x, i) = op;
8403 }
8404 }
8405 else if (fmt[i] == 'E')
8406 {
8407 int j;
8408 for (j = 0; j < XVECLEN (x, i); j++)
8409 {
8410 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8411 if (op != XVECEXP (x, i, j))
8412 {
8413 if (!copied)
8414 {
8415 copied = true;
8416 x = copy_rtx (x);
8417 }
8418 XVECEXP (x, i, j) = op;
8419 }
8420 }
8421 }
8422
8423 break;
8424 }
8425
8426 return x;
8427 }
8428
8429 /* Return X converted to MODE. If the value is already truncated to
8430 MODE we can just return a subreg even though in the general case we
8431 would need an explicit truncation. */
8432
8433 static rtx
8434 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8435 {
8436 if (!CONST_INT_P (x)
8437 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8438 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8439 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8440 {
8441 /* Bit-cast X into an integer mode. */
8442 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8443 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8444 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8445 x, GET_MODE (x));
8446 }
8447
8448 return gen_lowpart (mode, x);
8449 }
8450
8451 /* See if X can be simplified knowing that we will only refer to it in
8452 MODE and will only refer to those bits that are nonzero in MASK.
8453 If other bits are being computed or if masking operations are done
8454 that select a superset of the bits in MASK, they can sometimes be
8455 ignored.
8456
8457 Return a possibly simplified expression, but always convert X to
8458 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8459
8460 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8461 are all off in X. This is used when X will be complemented, by either
8462 NOT, NEG, or XOR. */
8463
8464 static rtx
8465 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8466 int just_select)
8467 {
8468 enum rtx_code code = GET_CODE (x);
8469 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8470 machine_mode op_mode;
8471 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8472 rtx op0, op1, temp;
8473
8474 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8475 code below will do the wrong thing since the mode of such an
8476 expression is VOIDmode.
8477
8478 Also do nothing if X is a CLOBBER; this can happen if X was
8479 the return value from a call to gen_lowpart. */
8480 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8481 return x;
8482
8483 /* We want to perform the operation in its present mode unless we know
8484 that the operation is valid in MODE, in which case we do the operation
8485 in MODE. */
8486 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8487 && have_insn_for (code, mode))
8488 ? mode : GET_MODE (x));
8489
8490 /* It is not valid to do a right-shift in a narrower mode
8491 than the one it came in with. */
8492 if ((code == LSHIFTRT || code == ASHIFTRT)
8493 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8494 op_mode = GET_MODE (x);
8495
8496 /* Truncate MASK to fit OP_MODE. */
8497 if (op_mode)
8498 mask &= GET_MODE_MASK (op_mode);
8499
8500 /* When we have an arithmetic operation, or a shift whose count we
8501 do not know, we need to assume that all bits up to the highest-order
8502 bit in MASK will be needed. This is how we form such a mask. */
8503 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8504 fuller_mask = HOST_WIDE_INT_M1U;
8505 else
8506 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8507 - 1);
8508
8509 /* Determine what bits of X are guaranteed to be (non)zero. */
8510 nonzero = nonzero_bits (x, mode);
8511
8512 /* If none of the bits in X are needed, return a zero. */
8513 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8514 x = const0_rtx;
8515
8516 /* If X is a CONST_INT, return a new one. Do this here since the
8517 test below will fail. */
8518 if (CONST_INT_P (x))
8519 {
8520 if (SCALAR_INT_MODE_P (mode))
8521 return gen_int_mode (INTVAL (x) & mask, mode);
8522 else
8523 {
8524 x = GEN_INT (INTVAL (x) & mask);
8525 return gen_lowpart_common (mode, x);
8526 }
8527 }
8528
8529 /* If X is narrower than MODE and we want all the bits in X's mode, just
8530 get X in the proper mode. */
8531 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8532 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8533 return gen_lowpart (mode, x);
8534
8535 /* We can ignore the effect of a SUBREG if it narrows the mode or
8536 if the constant masks to zero all the bits the mode doesn't have. */
8537 if (GET_CODE (x) == SUBREG
8538 && subreg_lowpart_p (x)
8539 && ((GET_MODE_SIZE (GET_MODE (x))
8540 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8541 || (0 == (mask
8542 & GET_MODE_MASK (GET_MODE (x))
8543 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8544 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8545
8546 /* The arithmetic simplifications here only work for scalar integer modes. */
8547 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8548 return gen_lowpart_or_truncate (mode, x);
8549
8550 switch (code)
8551 {
8552 case CLOBBER:
8553 /* If X is a (clobber (const_int)), return it since we know we are
8554 generating something that won't match. */
8555 return x;
8556
8557 case SIGN_EXTEND:
8558 case ZERO_EXTEND:
8559 case ZERO_EXTRACT:
8560 case SIGN_EXTRACT:
8561 x = expand_compound_operation (x);
8562 if (GET_CODE (x) != code)
8563 return force_to_mode (x, mode, mask, next_select);
8564 break;
8565
8566 case TRUNCATE:
8567 /* Similarly for a truncate. */
8568 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8569
8570 case AND:
8571 /* If this is an AND with a constant, convert it into an AND
8572 whose constant is the AND of that constant with MASK. If it
8573 remains an AND of MASK, delete it since it is redundant. */
8574
8575 if (CONST_INT_P (XEXP (x, 1)))
8576 {
8577 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8578 mask & INTVAL (XEXP (x, 1)));
8579
8580 /* If X is still an AND, see if it is an AND with a mask that
8581 is just some low-order bits. If so, and it is MASK, we don't
8582 need it. */
8583
8584 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8585 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8586 == mask))
8587 x = XEXP (x, 0);
8588
8589 /* If it remains an AND, try making another AND with the bits
8590 in the mode mask that aren't in MASK turned on. If the
8591 constant in the AND is wide enough, this might make a
8592 cheaper constant. */
8593
8594 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8595 && GET_MODE_MASK (GET_MODE (x)) != mask
8596 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8597 {
8598 unsigned HOST_WIDE_INT cval
8599 = UINTVAL (XEXP (x, 1))
8600 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8601 rtx y;
8602
8603 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8604 gen_int_mode (cval, GET_MODE (x)));
8605 if (set_src_cost (y, GET_MODE (x), optimize_this_for_speed_p)
8606 < set_src_cost (x, GET_MODE (x), optimize_this_for_speed_p))
8607 x = y;
8608 }
8609
8610 break;
8611 }
8612
8613 goto binop;
8614
8615 case PLUS:
8616 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8617 low-order bits (as in an alignment operation) and FOO is already
8618 aligned to that boundary, mask C1 to that boundary as well.
8619 This may eliminate that PLUS and, later, the AND. */
8620
8621 {
8622 unsigned int width = GET_MODE_PRECISION (mode);
8623 unsigned HOST_WIDE_INT smask = mask;
8624
8625 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8626 number, sign extend it. */
8627
8628 if (width < HOST_BITS_PER_WIDE_INT
8629 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8630 smask |= HOST_WIDE_INT_M1U << width;
8631
8632 if (CONST_INT_P (XEXP (x, 1))
8633 && pow2p_hwi (- smask)
8634 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8635 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8636 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8637 (INTVAL (XEXP (x, 1)) & smask)),
8638 mode, smask, next_select);
8639 }
8640
8641 /* fall through */
8642
8643 case MULT:
8644 /* Substituting into the operands of a widening MULT is not likely to
8645 create RTL matching a machine insn. */
8646 if (code == MULT
8647 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8648 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8649 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8650 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8651 && REG_P (XEXP (XEXP (x, 0), 0))
8652 && REG_P (XEXP (XEXP (x, 1), 0)))
8653 return gen_lowpart_or_truncate (mode, x);
8654
8655 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8656 most significant bit in MASK since carries from those bits will
8657 affect the bits we are interested in. */
8658 mask = fuller_mask;
8659 goto binop;
8660
8661 case MINUS:
8662 /* If X is (minus C Y) where C's least set bit is larger than any bit
8663 in the mask, then we may replace with (neg Y). */
8664 if (CONST_INT_P (XEXP (x, 0))
8665 && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8666 {
8667 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8668 GET_MODE (x));
8669 return force_to_mode (x, mode, mask, next_select);
8670 }
8671
8672 /* Similarly, if C contains every bit in the fuller_mask, then we may
8673 replace with (not Y). */
8674 if (CONST_INT_P (XEXP (x, 0))
8675 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8676 {
8677 x = simplify_gen_unary (NOT, GET_MODE (x),
8678 XEXP (x, 1), GET_MODE (x));
8679 return force_to_mode (x, mode, mask, next_select);
8680 }
8681
8682 mask = fuller_mask;
8683 goto binop;
8684
8685 case IOR:
8686 case XOR:
8687 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8688 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8689 operation which may be a bitfield extraction. Ensure that the
8690 constant we form is not wider than the mode of X. */
8691
8692 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8693 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8694 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8695 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8696 && CONST_INT_P (XEXP (x, 1))
8697 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8698 + floor_log2 (INTVAL (XEXP (x, 1))))
8699 < GET_MODE_PRECISION (GET_MODE (x)))
8700 && (UINTVAL (XEXP (x, 1))
8701 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8702 {
8703 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8704 << INTVAL (XEXP (XEXP (x, 0), 1)),
8705 GET_MODE (x));
8706 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8707 XEXP (XEXP (x, 0), 0), temp);
8708 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8709 XEXP (XEXP (x, 0), 1));
8710 return force_to_mode (x, mode, mask, next_select);
8711 }
8712
8713 binop:
8714 /* For most binary operations, just propagate into the operation and
8715 change the mode if we have an operation of that mode. */
8716
8717 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8718 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8719
8720 /* If we ended up truncating both operands, truncate the result of the
8721 operation instead. */
8722 if (GET_CODE (op0) == TRUNCATE
8723 && GET_CODE (op1) == TRUNCATE)
8724 {
8725 op0 = XEXP (op0, 0);
8726 op1 = XEXP (op1, 0);
8727 }
8728
8729 op0 = gen_lowpart_or_truncate (op_mode, op0);
8730 op1 = gen_lowpart_or_truncate (op_mode, op1);
8731
8732 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8733 x = simplify_gen_binary (code, op_mode, op0, op1);
8734 break;
8735
8736 case ASHIFT:
8737 /* For left shifts, do the same, but just for the first operand.
8738 However, we cannot do anything with shifts where we cannot
8739 guarantee that the counts are smaller than the size of the mode
8740 because such a count will have a different meaning in a
8741 wider mode. */
8742
8743 if (! (CONST_INT_P (XEXP (x, 1))
8744 && INTVAL (XEXP (x, 1)) >= 0
8745 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8746 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8747 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8748 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8749 break;
8750
8751 /* If the shift count is a constant and we can do arithmetic in
8752 the mode of the shift, refine which bits we need. Otherwise, use the
8753 conservative form of the mask. */
8754 if (CONST_INT_P (XEXP (x, 1))
8755 && INTVAL (XEXP (x, 1)) >= 0
8756 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8757 && HWI_COMPUTABLE_MODE_P (op_mode))
8758 mask >>= INTVAL (XEXP (x, 1));
8759 else
8760 mask = fuller_mask;
8761
8762 op0 = gen_lowpart_or_truncate (op_mode,
8763 force_to_mode (XEXP (x, 0), op_mode,
8764 mask, next_select));
8765
8766 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8767 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8768 break;
8769
8770 case LSHIFTRT:
8771 /* Here we can only do something if the shift count is a constant,
8772 this shift constant is valid for the host, and we can do arithmetic
8773 in OP_MODE. */
8774
8775 if (CONST_INT_P (XEXP (x, 1))
8776 && INTVAL (XEXP (x, 1)) >= 0
8777 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8778 && HWI_COMPUTABLE_MODE_P (op_mode))
8779 {
8780 rtx inner = XEXP (x, 0);
8781 unsigned HOST_WIDE_INT inner_mask;
8782
8783 /* Select the mask of the bits we need for the shift operand. */
8784 inner_mask = mask << INTVAL (XEXP (x, 1));
8785
8786 /* We can only change the mode of the shift if we can do arithmetic
8787 in the mode of the shift and INNER_MASK is no wider than the
8788 width of X's mode. */
8789 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8790 op_mode = GET_MODE (x);
8791
8792 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8793
8794 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8795 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8796 }
8797
8798 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8799 shift and AND produces only copies of the sign bit (C2 is one less
8800 than a power of two), we can do this with just a shift. */
8801
8802 if (GET_CODE (x) == LSHIFTRT
8803 && CONST_INT_P (XEXP (x, 1))
8804 /* The shift puts one of the sign bit copies in the least significant
8805 bit. */
8806 && ((INTVAL (XEXP (x, 1))
8807 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8808 >= GET_MODE_PRECISION (GET_MODE (x)))
8809 && pow2p_hwi (mask + 1)
8810 /* Number of bits left after the shift must be more than the mask
8811 needs. */
8812 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8813 <= GET_MODE_PRECISION (GET_MODE (x)))
8814 /* Must be more sign bit copies than the mask needs. */
8815 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8816 >= exact_log2 (mask + 1)))
8817 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8818 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8819 - exact_log2 (mask + 1)));
8820
8821 goto shiftrt;
8822
8823 case ASHIFTRT:
8824 /* If we are just looking for the sign bit, we don't need this shift at
8825 all, even if it has a variable count. */
8826 if (val_signbit_p (GET_MODE (x), mask))
8827 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8828
8829 /* If this is a shift by a constant, get a mask that contains those bits
8830 that are not copies of the sign bit. We then have two cases: If
8831 MASK only includes those bits, this can be a logical shift, which may
8832 allow simplifications. If MASK is a single-bit field not within
8833 those bits, we are requesting a copy of the sign bit and hence can
8834 shift the sign bit to the appropriate location. */
8835
8836 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8837 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8838 {
8839 int i;
8840
8841 /* If the considered data is wider than HOST_WIDE_INT, we can't
8842 represent a mask for all its bits in a single scalar.
8843 But we only care about the lower bits, so calculate these. */
8844
8845 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8846 {
8847 nonzero = HOST_WIDE_INT_M1U;
8848
8849 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8850 is the number of bits a full-width mask would have set.
8851 We need only shift if these are fewer than nonzero can
8852 hold. If not, we must keep all bits set in nonzero. */
8853
8854 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8855 < HOST_BITS_PER_WIDE_INT)
8856 nonzero >>= INTVAL (XEXP (x, 1))
8857 + HOST_BITS_PER_WIDE_INT
8858 - GET_MODE_PRECISION (GET_MODE (x)) ;
8859 }
8860 else
8861 {
8862 nonzero = GET_MODE_MASK (GET_MODE (x));
8863 nonzero >>= INTVAL (XEXP (x, 1));
8864 }
8865
8866 if ((mask & ~nonzero) == 0)
8867 {
8868 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8869 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8870 if (GET_CODE (x) != ASHIFTRT)
8871 return force_to_mode (x, mode, mask, next_select);
8872 }
8873
8874 else if ((i = exact_log2 (mask)) >= 0)
8875 {
8876 x = simplify_shift_const
8877 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8878 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8879
8880 if (GET_CODE (x) != ASHIFTRT)
8881 return force_to_mode (x, mode, mask, next_select);
8882 }
8883 }
8884
8885 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8886 even if the shift count isn't a constant. */
8887 if (mask == 1)
8888 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8889 XEXP (x, 0), XEXP (x, 1));
8890
8891 shiftrt:
8892
8893 /* If this is a zero- or sign-extension operation that just affects bits
8894 we don't care about, remove it. Be sure the call above returned
8895 something that is still a shift. */
8896
8897 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8898 && CONST_INT_P (XEXP (x, 1))
8899 && INTVAL (XEXP (x, 1)) >= 0
8900 && (INTVAL (XEXP (x, 1))
8901 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8902 && GET_CODE (XEXP (x, 0)) == ASHIFT
8903 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8904 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8905 next_select);
8906
8907 break;
8908
8909 case ROTATE:
8910 case ROTATERT:
8911 /* If the shift count is constant and we can do computations
8912 in the mode of X, compute where the bits we care about are.
8913 Otherwise, we can't do anything. Don't change the mode of
8914 the shift or propagate MODE into the shift, though. */
8915 if (CONST_INT_P (XEXP (x, 1))
8916 && INTVAL (XEXP (x, 1)) >= 0)
8917 {
8918 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8919 GET_MODE (x),
8920 gen_int_mode (mask, GET_MODE (x)),
8921 XEXP (x, 1));
8922 if (temp && CONST_INT_P (temp))
8923 x = simplify_gen_binary (code, GET_MODE (x),
8924 force_to_mode (XEXP (x, 0), GET_MODE (x),
8925 INTVAL (temp), next_select),
8926 XEXP (x, 1));
8927 }
8928 break;
8929
8930 case NEG:
8931 /* If we just want the low-order bit, the NEG isn't needed since it
8932 won't change the low-order bit. */
8933 if (mask == 1)
8934 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8935
8936 /* We need any bits less significant than the most significant bit in
8937 MASK since carries from those bits will affect the bits we are
8938 interested in. */
8939 mask = fuller_mask;
8940 goto unop;
8941
8942 case NOT:
8943 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8944 same as the XOR case above. Ensure that the constant we form is not
8945 wider than the mode of X. */
8946
8947 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8948 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8949 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8950 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8951 < GET_MODE_PRECISION (GET_MODE (x)))
8952 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8953 {
8954 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8955 GET_MODE (x));
8956 temp = simplify_gen_binary (XOR, GET_MODE (x),
8957 XEXP (XEXP (x, 0), 0), temp);
8958 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8959 temp, XEXP (XEXP (x, 0), 1));
8960
8961 return force_to_mode (x, mode, mask, next_select);
8962 }
8963
8964 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8965 use the full mask inside the NOT. */
8966 mask = fuller_mask;
8967
8968 unop:
8969 op0 = gen_lowpart_or_truncate (op_mode,
8970 force_to_mode (XEXP (x, 0), mode, mask,
8971 next_select));
8972 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8973 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8974 break;
8975
8976 case NE:
8977 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8978 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8979 which is equal to STORE_FLAG_VALUE. */
8980 if ((mask & ~STORE_FLAG_VALUE) == 0
8981 && XEXP (x, 1) == const0_rtx
8982 && GET_MODE (XEXP (x, 0)) == mode
8983 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
8984 && (nonzero_bits (XEXP (x, 0), mode)
8985 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8986 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8987
8988 break;
8989
8990 case IF_THEN_ELSE:
8991 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8992 written in a narrower mode. We play it safe and do not do so. */
8993
8994 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8995 force_to_mode (XEXP (x, 1), mode,
8996 mask, next_select));
8997 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8998 force_to_mode (XEXP (x, 2), mode,
8999 mask, next_select));
9000 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9001 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
9002 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9003 op0, op1);
9004 break;
9005
9006 default:
9007 break;
9008 }
9009
9010 /* Ensure we return a value of the proper mode. */
9011 return gen_lowpart_or_truncate (mode, x);
9012 }
9013 \f
9014 /* Return nonzero if X is an expression that has one of two values depending on
9015 whether some other value is zero or nonzero. In that case, we return the
9016 value that is being tested, *PTRUE is set to the value if the rtx being
9017 returned has a nonzero value, and *PFALSE is set to the other alternative.
9018
9019 If we return zero, we set *PTRUE and *PFALSE to X. */
9020
9021 static rtx
9022 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9023 {
9024 machine_mode mode = GET_MODE (x);
9025 enum rtx_code code = GET_CODE (x);
9026 rtx cond0, cond1, true0, true1, false0, false1;
9027 unsigned HOST_WIDE_INT nz;
9028
9029 /* If we are comparing a value against zero, we are done. */
9030 if ((code == NE || code == EQ)
9031 && XEXP (x, 1) == const0_rtx)
9032 {
9033 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9034 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9035 return XEXP (x, 0);
9036 }
9037
9038 /* If this is a unary operation whose operand has one of two values, apply
9039 our opcode to compute those values. */
9040 else if (UNARY_P (x)
9041 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9042 {
9043 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9044 *pfalse = simplify_gen_unary (code, mode, false0,
9045 GET_MODE (XEXP (x, 0)));
9046 return cond0;
9047 }
9048
9049 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9050 make can't possibly match and would suppress other optimizations. */
9051 else if (code == COMPARE)
9052 ;
9053
9054 /* If this is a binary operation, see if either side has only one of two
9055 values. If either one does or if both do and they are conditional on
9056 the same value, compute the new true and false values. */
9057 else if (BINARY_P (x))
9058 {
9059 rtx op0 = XEXP (x, 0);
9060 rtx op1 = XEXP (x, 1);
9061 cond0 = if_then_else_cond (op0, &true0, &false0);
9062 cond1 = if_then_else_cond (op1, &true1, &false1);
9063
9064 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9065 && (REG_P (op0) || REG_P (op1)))
9066 {
9067 /* Try to enable a simplification by undoing work done by
9068 if_then_else_cond if it converted a REG into something more
9069 complex. */
9070 if (REG_P (op0))
9071 {
9072 cond0 = 0;
9073 true0 = false0 = op0;
9074 }
9075 else
9076 {
9077 cond1 = 0;
9078 true1 = false1 = op1;
9079 }
9080 }
9081
9082 if ((cond0 != 0 || cond1 != 0)
9083 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9084 {
9085 /* If if_then_else_cond returned zero, then true/false are the
9086 same rtl. We must copy one of them to prevent invalid rtl
9087 sharing. */
9088 if (cond0 == 0)
9089 true0 = copy_rtx (true0);
9090 else if (cond1 == 0)
9091 true1 = copy_rtx (true1);
9092
9093 if (COMPARISON_P (x))
9094 {
9095 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9096 true0, true1);
9097 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9098 false0, false1);
9099 }
9100 else
9101 {
9102 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9103 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9104 }
9105
9106 return cond0 ? cond0 : cond1;
9107 }
9108
9109 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9110 operands is zero when the other is nonzero, and vice-versa,
9111 and STORE_FLAG_VALUE is 1 or -1. */
9112
9113 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9114 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9115 || code == UMAX)
9116 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9117 {
9118 rtx op0 = XEXP (XEXP (x, 0), 1);
9119 rtx op1 = XEXP (XEXP (x, 1), 1);
9120
9121 cond0 = XEXP (XEXP (x, 0), 0);
9122 cond1 = XEXP (XEXP (x, 1), 0);
9123
9124 if (COMPARISON_P (cond0)
9125 && COMPARISON_P (cond1)
9126 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9127 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9128 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9129 || ((swap_condition (GET_CODE (cond0))
9130 == reversed_comparison_code (cond1, NULL))
9131 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9132 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9133 && ! side_effects_p (x))
9134 {
9135 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9136 *pfalse = simplify_gen_binary (MULT, mode,
9137 (code == MINUS
9138 ? simplify_gen_unary (NEG, mode,
9139 op1, mode)
9140 : op1),
9141 const_true_rtx);
9142 return cond0;
9143 }
9144 }
9145
9146 /* Similarly for MULT, AND and UMIN, except that for these the result
9147 is always zero. */
9148 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9149 && (code == MULT || code == AND || code == UMIN)
9150 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9151 {
9152 cond0 = XEXP (XEXP (x, 0), 0);
9153 cond1 = XEXP (XEXP (x, 1), 0);
9154
9155 if (COMPARISON_P (cond0)
9156 && COMPARISON_P (cond1)
9157 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9158 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9159 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9160 || ((swap_condition (GET_CODE (cond0))
9161 == reversed_comparison_code (cond1, NULL))
9162 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9163 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9164 && ! side_effects_p (x))
9165 {
9166 *ptrue = *pfalse = const0_rtx;
9167 return cond0;
9168 }
9169 }
9170 }
9171
9172 else if (code == IF_THEN_ELSE)
9173 {
9174 /* If we have IF_THEN_ELSE already, extract the condition and
9175 canonicalize it if it is NE or EQ. */
9176 cond0 = XEXP (x, 0);
9177 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9178 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9179 return XEXP (cond0, 0);
9180 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9181 {
9182 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9183 return XEXP (cond0, 0);
9184 }
9185 else
9186 return cond0;
9187 }
9188
9189 /* If X is a SUBREG, we can narrow both the true and false values
9190 if the inner expression, if there is a condition. */
9191 else if (code == SUBREG
9192 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9193 &true0, &false0)))
9194 {
9195 true0 = simplify_gen_subreg (mode, true0,
9196 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9197 false0 = simplify_gen_subreg (mode, false0,
9198 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9199 if (true0 && false0)
9200 {
9201 *ptrue = true0;
9202 *pfalse = false0;
9203 return cond0;
9204 }
9205 }
9206
9207 /* If X is a constant, this isn't special and will cause confusions
9208 if we treat it as such. Likewise if it is equivalent to a constant. */
9209 else if (CONSTANT_P (x)
9210 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9211 ;
9212
9213 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9214 will be least confusing to the rest of the compiler. */
9215 else if (mode == BImode)
9216 {
9217 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9218 return x;
9219 }
9220
9221 /* If X is known to be either 0 or -1, those are the true and
9222 false values when testing X. */
9223 else if (x == constm1_rtx || x == const0_rtx
9224 || (mode != VOIDmode && mode != BLKmode
9225 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9226 {
9227 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9228 return x;
9229 }
9230
9231 /* Likewise for 0 or a single bit. */
9232 else if (HWI_COMPUTABLE_MODE_P (mode)
9233 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9234 {
9235 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9236 return x;
9237 }
9238
9239 /* Otherwise fail; show no condition with true and false values the same. */
9240 *ptrue = *pfalse = x;
9241 return 0;
9242 }
9243 \f
9244 /* Return the value of expression X given the fact that condition COND
9245 is known to be true when applied to REG as its first operand and VAL
9246 as its second. X is known to not be shared and so can be modified in
9247 place.
9248
9249 We only handle the simplest cases, and specifically those cases that
9250 arise with IF_THEN_ELSE expressions. */
9251
9252 static rtx
9253 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9254 {
9255 enum rtx_code code = GET_CODE (x);
9256 const char *fmt;
9257 int i, j;
9258
9259 if (side_effects_p (x))
9260 return x;
9261
9262 /* If either operand of the condition is a floating point value,
9263 then we have to avoid collapsing an EQ comparison. */
9264 if (cond == EQ
9265 && rtx_equal_p (x, reg)
9266 && ! FLOAT_MODE_P (GET_MODE (x))
9267 && ! FLOAT_MODE_P (GET_MODE (val)))
9268 return val;
9269
9270 if (cond == UNEQ && rtx_equal_p (x, reg))
9271 return val;
9272
9273 /* If X is (abs REG) and we know something about REG's relationship
9274 with zero, we may be able to simplify this. */
9275
9276 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9277 switch (cond)
9278 {
9279 case GE: case GT: case EQ:
9280 return XEXP (x, 0);
9281 case LT: case LE:
9282 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9283 XEXP (x, 0),
9284 GET_MODE (XEXP (x, 0)));
9285 default:
9286 break;
9287 }
9288
9289 /* The only other cases we handle are MIN, MAX, and comparisons if the
9290 operands are the same as REG and VAL. */
9291
9292 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9293 {
9294 if (rtx_equal_p (XEXP (x, 0), val))
9295 {
9296 std::swap (val, reg);
9297 cond = swap_condition (cond);
9298 }
9299
9300 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9301 {
9302 if (COMPARISON_P (x))
9303 {
9304 if (comparison_dominates_p (cond, code))
9305 return const_true_rtx;
9306
9307 code = reversed_comparison_code (x, NULL);
9308 if (code != UNKNOWN
9309 && comparison_dominates_p (cond, code))
9310 return const0_rtx;
9311 else
9312 return x;
9313 }
9314 else if (code == SMAX || code == SMIN
9315 || code == UMIN || code == UMAX)
9316 {
9317 int unsignedp = (code == UMIN || code == UMAX);
9318
9319 /* Do not reverse the condition when it is NE or EQ.
9320 This is because we cannot conclude anything about
9321 the value of 'SMAX (x, y)' when x is not equal to y,
9322 but we can when x equals y. */
9323 if ((code == SMAX || code == UMAX)
9324 && ! (cond == EQ || cond == NE))
9325 cond = reverse_condition (cond);
9326
9327 switch (cond)
9328 {
9329 case GE: case GT:
9330 return unsignedp ? x : XEXP (x, 1);
9331 case LE: case LT:
9332 return unsignedp ? x : XEXP (x, 0);
9333 case GEU: case GTU:
9334 return unsignedp ? XEXP (x, 1) : x;
9335 case LEU: case LTU:
9336 return unsignedp ? XEXP (x, 0) : x;
9337 default:
9338 break;
9339 }
9340 }
9341 }
9342 }
9343 else if (code == SUBREG)
9344 {
9345 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9346 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9347
9348 if (SUBREG_REG (x) != r)
9349 {
9350 /* We must simplify subreg here, before we lose track of the
9351 original inner_mode. */
9352 new_rtx = simplify_subreg (GET_MODE (x), r,
9353 inner_mode, SUBREG_BYTE (x));
9354 if (new_rtx)
9355 return new_rtx;
9356 else
9357 SUBST (SUBREG_REG (x), r);
9358 }
9359
9360 return x;
9361 }
9362 /* We don't have to handle SIGN_EXTEND here, because even in the
9363 case of replacing something with a modeless CONST_INT, a
9364 CONST_INT is already (supposed to be) a valid sign extension for
9365 its narrower mode, which implies it's already properly
9366 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9367 story is different. */
9368 else if (code == ZERO_EXTEND)
9369 {
9370 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9371 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9372
9373 if (XEXP (x, 0) != r)
9374 {
9375 /* We must simplify the zero_extend here, before we lose
9376 track of the original inner_mode. */
9377 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9378 r, inner_mode);
9379 if (new_rtx)
9380 return new_rtx;
9381 else
9382 SUBST (XEXP (x, 0), r);
9383 }
9384
9385 return x;
9386 }
9387
9388 fmt = GET_RTX_FORMAT (code);
9389 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9390 {
9391 if (fmt[i] == 'e')
9392 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9393 else if (fmt[i] == 'E')
9394 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9395 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9396 cond, reg, val));
9397 }
9398
9399 return x;
9400 }
9401 \f
9402 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9403 assignment as a field assignment. */
9404
9405 static int
9406 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9407 {
9408 if (widen_x && GET_MODE (x) != GET_MODE (y))
9409 {
9410 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9411 return 0;
9412 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9413 return 0;
9414 /* For big endian, adjust the memory offset. */
9415 if (BYTES_BIG_ENDIAN)
9416 x = adjust_address_nv (x, GET_MODE (y),
9417 -subreg_lowpart_offset (GET_MODE (x),
9418 GET_MODE (y)));
9419 else
9420 x = adjust_address_nv (x, GET_MODE (y), 0);
9421 }
9422
9423 if (x == y || rtx_equal_p (x, y))
9424 return 1;
9425
9426 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9427 return 0;
9428
9429 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9430 Note that all SUBREGs of MEM are paradoxical; otherwise they
9431 would have been rewritten. */
9432 if (MEM_P (x) && GET_CODE (y) == SUBREG
9433 && MEM_P (SUBREG_REG (y))
9434 && rtx_equal_p (SUBREG_REG (y),
9435 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9436 return 1;
9437
9438 if (MEM_P (y) && GET_CODE (x) == SUBREG
9439 && MEM_P (SUBREG_REG (x))
9440 && rtx_equal_p (SUBREG_REG (x),
9441 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9442 return 1;
9443
9444 /* We used to see if get_last_value of X and Y were the same but that's
9445 not correct. In one direction, we'll cause the assignment to have
9446 the wrong destination and in the case, we'll import a register into this
9447 insn that might have already have been dead. So fail if none of the
9448 above cases are true. */
9449 return 0;
9450 }
9451 \f
9452 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9453 Return that assignment if so.
9454
9455 We only handle the most common cases. */
9456
9457 static rtx
9458 make_field_assignment (rtx x)
9459 {
9460 rtx dest = SET_DEST (x);
9461 rtx src = SET_SRC (x);
9462 rtx assign;
9463 rtx rhs, lhs;
9464 HOST_WIDE_INT c1;
9465 HOST_WIDE_INT pos;
9466 unsigned HOST_WIDE_INT len;
9467 rtx other;
9468 machine_mode mode;
9469
9470 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9471 a clear of a one-bit field. We will have changed it to
9472 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9473 for a SUBREG. */
9474
9475 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9476 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9477 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9478 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9479 {
9480 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9481 1, 1, 1, 0);
9482 if (assign != 0)
9483 return gen_rtx_SET (assign, const0_rtx);
9484 return x;
9485 }
9486
9487 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9488 && subreg_lowpart_p (XEXP (src, 0))
9489 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9490 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9491 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9492 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9493 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9494 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9495 {
9496 assign = make_extraction (VOIDmode, dest, 0,
9497 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9498 1, 1, 1, 0);
9499 if (assign != 0)
9500 return gen_rtx_SET (assign, const0_rtx);
9501 return x;
9502 }
9503
9504 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9505 one-bit field. */
9506 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9507 && XEXP (XEXP (src, 0), 0) == const1_rtx
9508 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9509 {
9510 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9511 1, 1, 1, 0);
9512 if (assign != 0)
9513 return gen_rtx_SET (assign, const1_rtx);
9514 return x;
9515 }
9516
9517 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9518 SRC is an AND with all bits of that field set, then we can discard
9519 the AND. */
9520 if (GET_CODE (dest) == ZERO_EXTRACT
9521 && CONST_INT_P (XEXP (dest, 1))
9522 && GET_CODE (src) == AND
9523 && CONST_INT_P (XEXP (src, 1)))
9524 {
9525 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9526 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9527 unsigned HOST_WIDE_INT ze_mask;
9528
9529 if (width >= HOST_BITS_PER_WIDE_INT)
9530 ze_mask = -1;
9531 else
9532 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9533
9534 /* Complete overlap. We can remove the source AND. */
9535 if ((and_mask & ze_mask) == ze_mask)
9536 return gen_rtx_SET (dest, XEXP (src, 0));
9537
9538 /* Partial overlap. We can reduce the source AND. */
9539 if ((and_mask & ze_mask) != and_mask)
9540 {
9541 mode = GET_MODE (src);
9542 src = gen_rtx_AND (mode, XEXP (src, 0),
9543 gen_int_mode (and_mask & ze_mask, mode));
9544 return gen_rtx_SET (dest, src);
9545 }
9546 }
9547
9548 /* The other case we handle is assignments into a constant-position
9549 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9550 a mask that has all one bits except for a group of zero bits and
9551 OTHER is known to have zeros where C1 has ones, this is such an
9552 assignment. Compute the position and length from C1. Shift OTHER
9553 to the appropriate position, force it to the required mode, and
9554 make the extraction. Check for the AND in both operands. */
9555
9556 /* One or more SUBREGs might obscure the constant-position field
9557 assignment. The first one we are likely to encounter is an outer
9558 narrowing SUBREG, which we can just strip for the purposes of
9559 identifying the constant-field assignment. */
9560 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9561 src = SUBREG_REG (src);
9562
9563 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9564 return x;
9565
9566 rhs = expand_compound_operation (XEXP (src, 0));
9567 lhs = expand_compound_operation (XEXP (src, 1));
9568
9569 if (GET_CODE (rhs) == AND
9570 && CONST_INT_P (XEXP (rhs, 1))
9571 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9572 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9573 /* The second SUBREG that might get in the way is a paradoxical
9574 SUBREG around the first operand of the AND. We want to
9575 pretend the operand is as wide as the destination here. We
9576 do this by adjusting the MEM to wider mode for the sole
9577 purpose of the call to rtx_equal_for_field_assignment_p. Also
9578 note this trick only works for MEMs. */
9579 else if (GET_CODE (rhs) == AND
9580 && paradoxical_subreg_p (XEXP (rhs, 0))
9581 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9582 && CONST_INT_P (XEXP (rhs, 1))
9583 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9584 dest, true))
9585 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9586 else if (GET_CODE (lhs) == AND
9587 && CONST_INT_P (XEXP (lhs, 1))
9588 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9589 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9590 /* The second SUBREG that might get in the way is a paradoxical
9591 SUBREG around the first operand of the AND. We want to
9592 pretend the operand is as wide as the destination here. We
9593 do this by adjusting the MEM to wider mode for the sole
9594 purpose of the call to rtx_equal_for_field_assignment_p. Also
9595 note this trick only works for MEMs. */
9596 else if (GET_CODE (lhs) == AND
9597 && paradoxical_subreg_p (XEXP (lhs, 0))
9598 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9599 && CONST_INT_P (XEXP (lhs, 1))
9600 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9601 dest, true))
9602 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9603 else
9604 return x;
9605
9606 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9607 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9608 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9609 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9610 return x;
9611
9612 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9613 if (assign == 0)
9614 return x;
9615
9616 /* The mode to use for the source is the mode of the assignment, or of
9617 what is inside a possible STRICT_LOW_PART. */
9618 mode = (GET_CODE (assign) == STRICT_LOW_PART
9619 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9620
9621 /* Shift OTHER right POS places and make it the source, restricting it
9622 to the proper length and mode. */
9623
9624 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9625 GET_MODE (src),
9626 other, pos),
9627 dest);
9628 src = force_to_mode (src, mode,
9629 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9630 ? HOST_WIDE_INT_M1U
9631 : (HOST_WIDE_INT_1U << len) - 1,
9632 0);
9633
9634 /* If SRC is masked by an AND that does not make a difference in
9635 the value being stored, strip it. */
9636 if (GET_CODE (assign) == ZERO_EXTRACT
9637 && CONST_INT_P (XEXP (assign, 1))
9638 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9639 && GET_CODE (src) == AND
9640 && CONST_INT_P (XEXP (src, 1))
9641 && UINTVAL (XEXP (src, 1))
9642 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9643 src = XEXP (src, 0);
9644
9645 return gen_rtx_SET (assign, src);
9646 }
9647 \f
9648 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9649 if so. */
9650
9651 static rtx
9652 apply_distributive_law (rtx x)
9653 {
9654 enum rtx_code code = GET_CODE (x);
9655 enum rtx_code inner_code;
9656 rtx lhs, rhs, other;
9657 rtx tem;
9658
9659 /* Distributivity is not true for floating point as it can change the
9660 value. So we don't do it unless -funsafe-math-optimizations. */
9661 if (FLOAT_MODE_P (GET_MODE (x))
9662 && ! flag_unsafe_math_optimizations)
9663 return x;
9664
9665 /* The outer operation can only be one of the following: */
9666 if (code != IOR && code != AND && code != XOR
9667 && code != PLUS && code != MINUS)
9668 return x;
9669
9670 lhs = XEXP (x, 0);
9671 rhs = XEXP (x, 1);
9672
9673 /* If either operand is a primitive we can't do anything, so get out
9674 fast. */
9675 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9676 return x;
9677
9678 lhs = expand_compound_operation (lhs);
9679 rhs = expand_compound_operation (rhs);
9680 inner_code = GET_CODE (lhs);
9681 if (inner_code != GET_CODE (rhs))
9682 return x;
9683
9684 /* See if the inner and outer operations distribute. */
9685 switch (inner_code)
9686 {
9687 case LSHIFTRT:
9688 case ASHIFTRT:
9689 case AND:
9690 case IOR:
9691 /* These all distribute except over PLUS. */
9692 if (code == PLUS || code == MINUS)
9693 return x;
9694 break;
9695
9696 case MULT:
9697 if (code != PLUS && code != MINUS)
9698 return x;
9699 break;
9700
9701 case ASHIFT:
9702 /* This is also a multiply, so it distributes over everything. */
9703 break;
9704
9705 /* This used to handle SUBREG, but this turned out to be counter-
9706 productive, since (subreg (op ...)) usually is not handled by
9707 insn patterns, and this "optimization" therefore transformed
9708 recognizable patterns into unrecognizable ones. Therefore the
9709 SUBREG case was removed from here.
9710
9711 It is possible that distributing SUBREG over arithmetic operations
9712 leads to an intermediate result than can then be optimized further,
9713 e.g. by moving the outer SUBREG to the other side of a SET as done
9714 in simplify_set. This seems to have been the original intent of
9715 handling SUBREGs here.
9716
9717 However, with current GCC this does not appear to actually happen,
9718 at least on major platforms. If some case is found where removing
9719 the SUBREG case here prevents follow-on optimizations, distributing
9720 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9721
9722 default:
9723 return x;
9724 }
9725
9726 /* Set LHS and RHS to the inner operands (A and B in the example
9727 above) and set OTHER to the common operand (C in the example).
9728 There is only one way to do this unless the inner operation is
9729 commutative. */
9730 if (COMMUTATIVE_ARITH_P (lhs)
9731 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9732 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9733 else if (COMMUTATIVE_ARITH_P (lhs)
9734 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9735 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9736 else if (COMMUTATIVE_ARITH_P (lhs)
9737 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9738 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9739 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9740 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9741 else
9742 return x;
9743
9744 /* Form the new inner operation, seeing if it simplifies first. */
9745 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9746
9747 /* There is one exception to the general way of distributing:
9748 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9749 if (code == XOR && inner_code == IOR)
9750 {
9751 inner_code = AND;
9752 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9753 }
9754
9755 /* We may be able to continuing distributing the result, so call
9756 ourselves recursively on the inner operation before forming the
9757 outer operation, which we return. */
9758 return simplify_gen_binary (inner_code, GET_MODE (x),
9759 apply_distributive_law (tem), other);
9760 }
9761
9762 /* See if X is of the form (* (+ A B) C), and if so convert to
9763 (+ (* A C) (* B C)) and try to simplify.
9764
9765 Most of the time, this results in no change. However, if some of
9766 the operands are the same or inverses of each other, simplifications
9767 will result.
9768
9769 For example, (and (ior A B) (not B)) can occur as the result of
9770 expanding a bit field assignment. When we apply the distributive
9771 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9772 which then simplifies to (and (A (not B))).
9773
9774 Note that no checks happen on the validity of applying the inverse
9775 distributive law. This is pointless since we can do it in the
9776 few places where this routine is called.
9777
9778 N is the index of the term that is decomposed (the arithmetic operation,
9779 i.e. (+ A B) in the first example above). !N is the index of the term that
9780 is distributed, i.e. of C in the first example above. */
9781 static rtx
9782 distribute_and_simplify_rtx (rtx x, int n)
9783 {
9784 machine_mode mode;
9785 enum rtx_code outer_code, inner_code;
9786 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9787
9788 /* Distributivity is not true for floating point as it can change the
9789 value. So we don't do it unless -funsafe-math-optimizations. */
9790 if (FLOAT_MODE_P (GET_MODE (x))
9791 && ! flag_unsafe_math_optimizations)
9792 return NULL_RTX;
9793
9794 decomposed = XEXP (x, n);
9795 if (!ARITHMETIC_P (decomposed))
9796 return NULL_RTX;
9797
9798 mode = GET_MODE (x);
9799 outer_code = GET_CODE (x);
9800 distributed = XEXP (x, !n);
9801
9802 inner_code = GET_CODE (decomposed);
9803 inner_op0 = XEXP (decomposed, 0);
9804 inner_op1 = XEXP (decomposed, 1);
9805
9806 /* Special case (and (xor B C) (not A)), which is equivalent to
9807 (xor (ior A B) (ior A C)) */
9808 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9809 {
9810 distributed = XEXP (distributed, 0);
9811 outer_code = IOR;
9812 }
9813
9814 if (n == 0)
9815 {
9816 /* Distribute the second term. */
9817 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9818 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9819 }
9820 else
9821 {
9822 /* Distribute the first term. */
9823 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9824 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9825 }
9826
9827 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9828 new_op0, new_op1));
9829 if (GET_CODE (tmp) != outer_code
9830 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9831 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9832 return tmp;
9833
9834 return NULL_RTX;
9835 }
9836 \f
9837 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9838 in MODE. Return an equivalent form, if different from (and VAROP
9839 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9840
9841 static rtx
9842 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9843 unsigned HOST_WIDE_INT constop)
9844 {
9845 unsigned HOST_WIDE_INT nonzero;
9846 unsigned HOST_WIDE_INT orig_constop;
9847 rtx orig_varop;
9848 int i;
9849
9850 orig_varop = varop;
9851 orig_constop = constop;
9852 if (GET_CODE (varop) == CLOBBER)
9853 return NULL_RTX;
9854
9855 /* Simplify VAROP knowing that we will be only looking at some of the
9856 bits in it.
9857
9858 Note by passing in CONSTOP, we guarantee that the bits not set in
9859 CONSTOP are not significant and will never be examined. We must
9860 ensure that is the case by explicitly masking out those bits
9861 before returning. */
9862 varop = force_to_mode (varop, mode, constop, 0);
9863
9864 /* If VAROP is a CLOBBER, we will fail so return it. */
9865 if (GET_CODE (varop) == CLOBBER)
9866 return varop;
9867
9868 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9869 to VAROP and return the new constant. */
9870 if (CONST_INT_P (varop))
9871 return gen_int_mode (INTVAL (varop) & constop, mode);
9872
9873 /* See what bits may be nonzero in VAROP. Unlike the general case of
9874 a call to nonzero_bits, here we don't care about bits outside
9875 MODE. */
9876
9877 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9878
9879 /* Turn off all bits in the constant that are known to already be zero.
9880 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9881 which is tested below. */
9882
9883 constop &= nonzero;
9884
9885 /* If we don't have any bits left, return zero. */
9886 if (constop == 0)
9887 return const0_rtx;
9888
9889 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9890 a power of two, we can replace this with an ASHIFT. */
9891 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9892 && (i = exact_log2 (constop)) >= 0)
9893 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9894
9895 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9896 or XOR, then try to apply the distributive law. This may eliminate
9897 operations if either branch can be simplified because of the AND.
9898 It may also make some cases more complex, but those cases probably
9899 won't match a pattern either with or without this. */
9900
9901 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9902 return
9903 gen_lowpart
9904 (mode,
9905 apply_distributive_law
9906 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9907 simplify_and_const_int (NULL_RTX,
9908 GET_MODE (varop),
9909 XEXP (varop, 0),
9910 constop),
9911 simplify_and_const_int (NULL_RTX,
9912 GET_MODE (varop),
9913 XEXP (varop, 1),
9914 constop))));
9915
9916 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9917 the AND and see if one of the operands simplifies to zero. If so, we
9918 may eliminate it. */
9919
9920 if (GET_CODE (varop) == PLUS
9921 && pow2p_hwi (constop + 1))
9922 {
9923 rtx o0, o1;
9924
9925 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9926 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9927 if (o0 == const0_rtx)
9928 return o1;
9929 if (o1 == const0_rtx)
9930 return o0;
9931 }
9932
9933 /* Make a SUBREG if necessary. If we can't make it, fail. */
9934 varop = gen_lowpart (mode, varop);
9935 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9936 return NULL_RTX;
9937
9938 /* If we are only masking insignificant bits, return VAROP. */
9939 if (constop == nonzero)
9940 return varop;
9941
9942 if (varop == orig_varop && constop == orig_constop)
9943 return NULL_RTX;
9944
9945 /* Otherwise, return an AND. */
9946 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9947 }
9948
9949
9950 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9951 in MODE.
9952
9953 Return an equivalent form, if different from X. Otherwise, return X. If
9954 X is zero, we are to always construct the equivalent form. */
9955
9956 static rtx
9957 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9958 unsigned HOST_WIDE_INT constop)
9959 {
9960 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9961 if (tem)
9962 return tem;
9963
9964 if (!x)
9965 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9966 gen_int_mode (constop, mode));
9967 if (GET_MODE (x) != mode)
9968 x = gen_lowpart (mode, x);
9969 return x;
9970 }
9971 \f
9972 /* Given a REG, X, compute which bits in X can be nonzero.
9973 We don't care about bits outside of those defined in MODE.
9974
9975 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9976 a shift, AND, or zero_extract, we can do better. */
9977
9978 static rtx
9979 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9980 const_rtx known_x ATTRIBUTE_UNUSED,
9981 machine_mode known_mode ATTRIBUTE_UNUSED,
9982 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9983 unsigned HOST_WIDE_INT *nonzero)
9984 {
9985 rtx tem;
9986 reg_stat_type *rsp;
9987
9988 /* If X is a register whose nonzero bits value is current, use it.
9989 Otherwise, if X is a register whose value we can find, use that
9990 value. Otherwise, use the previously-computed global nonzero bits
9991 for this register. */
9992
9993 rsp = &reg_stat[REGNO (x)];
9994 if (rsp->last_set_value != 0
9995 && (rsp->last_set_mode == mode
9996 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9997 && GET_MODE_CLASS (mode) == MODE_INT))
9998 && ((rsp->last_set_label >= label_tick_ebb_start
9999 && rsp->last_set_label < label_tick)
10000 || (rsp->last_set_label == label_tick
10001 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10002 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10003 && REGNO (x) < reg_n_sets_max
10004 && REG_N_SETS (REGNO (x)) == 1
10005 && !REGNO_REG_SET_P
10006 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10007 REGNO (x)))))
10008 {
10009 /* Note that, even if the precision of last_set_mode is lower than that
10010 of mode, record_value_for_reg invoked nonzero_bits on the register
10011 with nonzero_bits_mode (because last_set_mode is necessarily integral
10012 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10013 are all valid, hence in mode too since nonzero_bits_mode is defined
10014 to the largest HWI_COMPUTABLE_MODE_P mode. */
10015 *nonzero &= rsp->last_set_nonzero_bits;
10016 return NULL;
10017 }
10018
10019 tem = get_last_value (x);
10020 if (tem)
10021 {
10022 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10023 tem = sign_extend_short_imm (tem, GET_MODE (x),
10024 GET_MODE_PRECISION (mode));
10025
10026 return tem;
10027 }
10028
10029 if (nonzero_sign_valid && rsp->nonzero_bits)
10030 {
10031 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10032
10033 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
10034 /* We don't know anything about the upper bits. */
10035 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
10036
10037 *nonzero &= mask;
10038 }
10039
10040 return NULL;
10041 }
10042
10043 /* Return the number of bits at the high-order end of X that are known to
10044 be equal to the sign bit. X will be used in mode MODE; if MODE is
10045 VOIDmode, X will be used in its own mode. The returned value will always
10046 be between 1 and the number of bits in MODE. */
10047
10048 static rtx
10049 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
10050 const_rtx known_x ATTRIBUTE_UNUSED,
10051 machine_mode known_mode
10052 ATTRIBUTE_UNUSED,
10053 unsigned int known_ret ATTRIBUTE_UNUSED,
10054 unsigned int *result)
10055 {
10056 rtx tem;
10057 reg_stat_type *rsp;
10058
10059 rsp = &reg_stat[REGNO (x)];
10060 if (rsp->last_set_value != 0
10061 && rsp->last_set_mode == mode
10062 && ((rsp->last_set_label >= label_tick_ebb_start
10063 && rsp->last_set_label < label_tick)
10064 || (rsp->last_set_label == label_tick
10065 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10066 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10067 && REGNO (x) < reg_n_sets_max
10068 && REG_N_SETS (REGNO (x)) == 1
10069 && !REGNO_REG_SET_P
10070 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10071 REGNO (x)))))
10072 {
10073 *result = rsp->last_set_sign_bit_copies;
10074 return NULL;
10075 }
10076
10077 tem = get_last_value (x);
10078 if (tem != 0)
10079 return tem;
10080
10081 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10082 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
10083 *result = rsp->sign_bit_copies;
10084
10085 return NULL;
10086 }
10087 \f
10088 /* Return the number of "extended" bits there are in X, when interpreted
10089 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10090 unsigned quantities, this is the number of high-order zero bits.
10091 For signed quantities, this is the number of copies of the sign bit
10092 minus 1. In both case, this function returns the number of "spare"
10093 bits. For example, if two quantities for which this function returns
10094 at least 1 are added, the addition is known not to overflow.
10095
10096 This function will always return 0 unless called during combine, which
10097 implies that it must be called from a define_split. */
10098
10099 unsigned int
10100 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10101 {
10102 if (nonzero_sign_valid == 0)
10103 return 0;
10104
10105 return (unsignedp
10106 ? (HWI_COMPUTABLE_MODE_P (mode)
10107 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
10108 - floor_log2 (nonzero_bits (x, mode)))
10109 : 0)
10110 : num_sign_bit_copies (x, mode) - 1);
10111 }
10112
10113 /* This function is called from `simplify_shift_const' to merge two
10114 outer operations. Specifically, we have already found that we need
10115 to perform operation *POP0 with constant *PCONST0 at the outermost
10116 position. We would now like to also perform OP1 with constant CONST1
10117 (with *POP0 being done last).
10118
10119 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10120 the resulting operation. *PCOMP_P is set to 1 if we would need to
10121 complement the innermost operand, otherwise it is unchanged.
10122
10123 MODE is the mode in which the operation will be done. No bits outside
10124 the width of this mode matter. It is assumed that the width of this mode
10125 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10126
10127 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10128 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10129 result is simply *PCONST0.
10130
10131 If the resulting operation cannot be expressed as one operation, we
10132 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10133
10134 static int
10135 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10136 {
10137 enum rtx_code op0 = *pop0;
10138 HOST_WIDE_INT const0 = *pconst0;
10139
10140 const0 &= GET_MODE_MASK (mode);
10141 const1 &= GET_MODE_MASK (mode);
10142
10143 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10144 if (op0 == AND)
10145 const1 &= const0;
10146
10147 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10148 if OP0 is SET. */
10149
10150 if (op1 == UNKNOWN || op0 == SET)
10151 return 1;
10152
10153 else if (op0 == UNKNOWN)
10154 op0 = op1, const0 = const1;
10155
10156 else if (op0 == op1)
10157 {
10158 switch (op0)
10159 {
10160 case AND:
10161 const0 &= const1;
10162 break;
10163 case IOR:
10164 const0 |= const1;
10165 break;
10166 case XOR:
10167 const0 ^= const1;
10168 break;
10169 case PLUS:
10170 const0 += const1;
10171 break;
10172 case NEG:
10173 op0 = UNKNOWN;
10174 break;
10175 default:
10176 break;
10177 }
10178 }
10179
10180 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10181 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10182 return 0;
10183
10184 /* If the two constants aren't the same, we can't do anything. The
10185 remaining six cases can all be done. */
10186 else if (const0 != const1)
10187 return 0;
10188
10189 else
10190 switch (op0)
10191 {
10192 case IOR:
10193 if (op1 == AND)
10194 /* (a & b) | b == b */
10195 op0 = SET;
10196 else /* op1 == XOR */
10197 /* (a ^ b) | b == a | b */
10198 {;}
10199 break;
10200
10201 case XOR:
10202 if (op1 == AND)
10203 /* (a & b) ^ b == (~a) & b */
10204 op0 = AND, *pcomp_p = 1;
10205 else /* op1 == IOR */
10206 /* (a | b) ^ b == a & ~b */
10207 op0 = AND, const0 = ~const0;
10208 break;
10209
10210 case AND:
10211 if (op1 == IOR)
10212 /* (a | b) & b == b */
10213 op0 = SET;
10214 else /* op1 == XOR */
10215 /* (a ^ b) & b) == (~a) & b */
10216 *pcomp_p = 1;
10217 break;
10218 default:
10219 break;
10220 }
10221
10222 /* Check for NO-OP cases. */
10223 const0 &= GET_MODE_MASK (mode);
10224 if (const0 == 0
10225 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10226 op0 = UNKNOWN;
10227 else if (const0 == 0 && op0 == AND)
10228 op0 = SET;
10229 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10230 && op0 == AND)
10231 op0 = UNKNOWN;
10232
10233 *pop0 = op0;
10234
10235 /* ??? Slightly redundant with the above mask, but not entirely.
10236 Moving this above means we'd have to sign-extend the mode mask
10237 for the final test. */
10238 if (op0 != UNKNOWN && op0 != NEG)
10239 *pconst0 = trunc_int_for_mode (const0, mode);
10240
10241 return 1;
10242 }
10243 \f
10244 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10245 the shift in. The original shift operation CODE is performed on OP in
10246 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10247 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10248 result of the shift is subject to operation OUTER_CODE with operand
10249 OUTER_CONST. */
10250
10251 static machine_mode
10252 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10253 machine_mode orig_mode, machine_mode mode,
10254 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10255 {
10256 if (orig_mode == mode)
10257 return mode;
10258 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10259
10260 /* In general we can't perform in wider mode for right shift and rotate. */
10261 switch (code)
10262 {
10263 case ASHIFTRT:
10264 /* We can still widen if the bits brought in from the left are identical
10265 to the sign bit of ORIG_MODE. */
10266 if (num_sign_bit_copies (op, mode)
10267 > (unsigned) (GET_MODE_PRECISION (mode)
10268 - GET_MODE_PRECISION (orig_mode)))
10269 return mode;
10270 return orig_mode;
10271
10272 case LSHIFTRT:
10273 /* Similarly here but with zero bits. */
10274 if (HWI_COMPUTABLE_MODE_P (mode)
10275 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10276 return mode;
10277
10278 /* We can also widen if the bits brought in will be masked off. This
10279 operation is performed in ORIG_MODE. */
10280 if (outer_code == AND)
10281 {
10282 int care_bits = low_bitmask_len (orig_mode, outer_const);
10283
10284 if (care_bits >= 0
10285 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10286 return mode;
10287 }
10288 /* fall through */
10289
10290 case ROTATE:
10291 return orig_mode;
10292
10293 case ROTATERT:
10294 gcc_unreachable ();
10295
10296 default:
10297 return mode;
10298 }
10299 }
10300
10301 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10302 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10303 if we cannot simplify it. Otherwise, return a simplified value.
10304
10305 The shift is normally computed in the widest mode we find in VAROP, as
10306 long as it isn't a different number of words than RESULT_MODE. Exceptions
10307 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10308
10309 static rtx
10310 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10311 rtx varop, int orig_count)
10312 {
10313 enum rtx_code orig_code = code;
10314 rtx orig_varop = varop;
10315 int count;
10316 machine_mode mode = result_mode;
10317 machine_mode shift_mode, tmode;
10318 unsigned int mode_words
10319 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10320 /* We form (outer_op (code varop count) (outer_const)). */
10321 enum rtx_code outer_op = UNKNOWN;
10322 HOST_WIDE_INT outer_const = 0;
10323 int complement_p = 0;
10324 rtx new_rtx, x;
10325
10326 /* Make sure and truncate the "natural" shift on the way in. We don't
10327 want to do this inside the loop as it makes it more difficult to
10328 combine shifts. */
10329 if (SHIFT_COUNT_TRUNCATED)
10330 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10331
10332 /* If we were given an invalid count, don't do anything except exactly
10333 what was requested. */
10334
10335 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10336 return NULL_RTX;
10337
10338 count = orig_count;
10339
10340 /* Unless one of the branches of the `if' in this loop does a `continue',
10341 we will `break' the loop after the `if'. */
10342
10343 while (count != 0)
10344 {
10345 /* If we have an operand of (clobber (const_int 0)), fail. */
10346 if (GET_CODE (varop) == CLOBBER)
10347 return NULL_RTX;
10348
10349 /* Convert ROTATERT to ROTATE. */
10350 if (code == ROTATERT)
10351 {
10352 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10353 code = ROTATE;
10354 count = bitsize - count;
10355 }
10356
10357 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10358 mode, outer_op, outer_const);
10359 machine_mode shift_unit_mode = GET_MODE_INNER (shift_mode);
10360
10361 /* Handle cases where the count is greater than the size of the mode
10362 minus 1. For ASHIFT, use the size minus one as the count (this can
10363 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10364 take the count modulo the size. For other shifts, the result is
10365 zero.
10366
10367 Since these shifts are being produced by the compiler by combining
10368 multiple operations, each of which are defined, we know what the
10369 result is supposed to be. */
10370
10371 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10372 {
10373 if (code == ASHIFTRT)
10374 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10375 else if (code == ROTATE || code == ROTATERT)
10376 count %= GET_MODE_PRECISION (shift_unit_mode);
10377 else
10378 {
10379 /* We can't simply return zero because there may be an
10380 outer op. */
10381 varop = const0_rtx;
10382 count = 0;
10383 break;
10384 }
10385 }
10386
10387 /* If we discovered we had to complement VAROP, leave. Making a NOT
10388 here would cause an infinite loop. */
10389 if (complement_p)
10390 break;
10391
10392 if (shift_mode == shift_unit_mode)
10393 {
10394 /* An arithmetic right shift of a quantity known to be -1 or 0
10395 is a no-op. */
10396 if (code == ASHIFTRT
10397 && (num_sign_bit_copies (varop, shift_unit_mode)
10398 == GET_MODE_PRECISION (shift_unit_mode)))
10399 {
10400 count = 0;
10401 break;
10402 }
10403
10404 /* If we are doing an arithmetic right shift and discarding all but
10405 the sign bit copies, this is equivalent to doing a shift by the
10406 bitsize minus one. Convert it into that shift because it will
10407 often allow other simplifications. */
10408
10409 if (code == ASHIFTRT
10410 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10411 >= GET_MODE_PRECISION (shift_unit_mode)))
10412 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10413
10414 /* We simplify the tests below and elsewhere by converting
10415 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10416 `make_compound_operation' will convert it to an ASHIFTRT for
10417 those machines (such as VAX) that don't have an LSHIFTRT. */
10418 if (code == ASHIFTRT
10419 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10420 && val_signbit_known_clear_p (shift_unit_mode,
10421 nonzero_bits (varop,
10422 shift_unit_mode)))
10423 code = LSHIFTRT;
10424
10425 if (((code == LSHIFTRT
10426 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10427 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10428 || (code == ASHIFT
10429 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10430 && !((nonzero_bits (varop, shift_unit_mode) << count)
10431 & GET_MODE_MASK (shift_unit_mode))))
10432 && !side_effects_p (varop))
10433 varop = const0_rtx;
10434 }
10435
10436 switch (GET_CODE (varop))
10437 {
10438 case SIGN_EXTEND:
10439 case ZERO_EXTEND:
10440 case SIGN_EXTRACT:
10441 case ZERO_EXTRACT:
10442 new_rtx = expand_compound_operation (varop);
10443 if (new_rtx != varop)
10444 {
10445 varop = new_rtx;
10446 continue;
10447 }
10448 break;
10449
10450 case MEM:
10451 /* The following rules apply only to scalars. */
10452 if (shift_mode != shift_unit_mode)
10453 break;
10454
10455 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10456 minus the width of a smaller mode, we can do this with a
10457 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10458 if ((code == ASHIFTRT || code == LSHIFTRT)
10459 && ! mode_dependent_address_p (XEXP (varop, 0),
10460 MEM_ADDR_SPACE (varop))
10461 && ! MEM_VOLATILE_P (varop)
10462 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10463 MODE_INT, 1)) != BLKmode)
10464 {
10465 new_rtx = adjust_address_nv (varop, tmode,
10466 BYTES_BIG_ENDIAN ? 0
10467 : count / BITS_PER_UNIT);
10468
10469 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10470 : ZERO_EXTEND, mode, new_rtx);
10471 count = 0;
10472 continue;
10473 }
10474 break;
10475
10476 case SUBREG:
10477 /* The following rules apply only to scalars. */
10478 if (shift_mode != shift_unit_mode)
10479 break;
10480
10481 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10482 the same number of words as what we've seen so far. Then store
10483 the widest mode in MODE. */
10484 if (subreg_lowpart_p (varop)
10485 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10486 > GET_MODE_SIZE (GET_MODE (varop)))
10487 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10488 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10489 == mode_words
10490 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10491 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10492 {
10493 varop = SUBREG_REG (varop);
10494 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10495 mode = GET_MODE (varop);
10496 continue;
10497 }
10498 break;
10499
10500 case MULT:
10501 /* Some machines use MULT instead of ASHIFT because MULT
10502 is cheaper. But it is still better on those machines to
10503 merge two shifts into one. */
10504 if (CONST_INT_P (XEXP (varop, 1))
10505 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10506 {
10507 varop
10508 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10509 XEXP (varop, 0),
10510 GEN_INT (exact_log2 (
10511 UINTVAL (XEXP (varop, 1)))));
10512 continue;
10513 }
10514 break;
10515
10516 case UDIV:
10517 /* Similar, for when divides are cheaper. */
10518 if (CONST_INT_P (XEXP (varop, 1))
10519 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10520 {
10521 varop
10522 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10523 XEXP (varop, 0),
10524 GEN_INT (exact_log2 (
10525 UINTVAL (XEXP (varop, 1)))));
10526 continue;
10527 }
10528 break;
10529
10530 case ASHIFTRT:
10531 /* If we are extracting just the sign bit of an arithmetic
10532 right shift, that shift is not needed. However, the sign
10533 bit of a wider mode may be different from what would be
10534 interpreted as the sign bit in a narrower mode, so, if
10535 the result is narrower, don't discard the shift. */
10536 if (code == LSHIFTRT
10537 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10538 && (GET_MODE_UNIT_BITSIZE (result_mode)
10539 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10540 {
10541 varop = XEXP (varop, 0);
10542 continue;
10543 }
10544
10545 /* fall through */
10546
10547 case LSHIFTRT:
10548 case ASHIFT:
10549 case ROTATE:
10550 /* The following rules apply only to scalars. */
10551 if (shift_mode != shift_unit_mode)
10552 break;
10553
10554 /* Here we have two nested shifts. The result is usually the
10555 AND of a new shift with a mask. We compute the result below. */
10556 if (CONST_INT_P (XEXP (varop, 1))
10557 && INTVAL (XEXP (varop, 1)) >= 0
10558 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10559 && HWI_COMPUTABLE_MODE_P (result_mode)
10560 && HWI_COMPUTABLE_MODE_P (mode))
10561 {
10562 enum rtx_code first_code = GET_CODE (varop);
10563 unsigned int first_count = INTVAL (XEXP (varop, 1));
10564 unsigned HOST_WIDE_INT mask;
10565 rtx mask_rtx;
10566
10567 /* We have one common special case. We can't do any merging if
10568 the inner code is an ASHIFTRT of a smaller mode. However, if
10569 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10570 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10571 we can convert it to
10572 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10573 This simplifies certain SIGN_EXTEND operations. */
10574 if (code == ASHIFT && first_code == ASHIFTRT
10575 && count == (GET_MODE_PRECISION (result_mode)
10576 - GET_MODE_PRECISION (GET_MODE (varop))))
10577 {
10578 /* C3 has the low-order C1 bits zero. */
10579
10580 mask = GET_MODE_MASK (mode)
10581 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10582
10583 varop = simplify_and_const_int (NULL_RTX, result_mode,
10584 XEXP (varop, 0), mask);
10585 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10586 varop, count);
10587 count = first_count;
10588 code = ASHIFTRT;
10589 continue;
10590 }
10591
10592 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10593 than C1 high-order bits equal to the sign bit, we can convert
10594 this to either an ASHIFT or an ASHIFTRT depending on the
10595 two counts.
10596
10597 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10598
10599 if (code == ASHIFTRT && first_code == ASHIFT
10600 && GET_MODE (varop) == shift_mode
10601 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10602 > first_count))
10603 {
10604 varop = XEXP (varop, 0);
10605 count -= first_count;
10606 if (count < 0)
10607 {
10608 count = -count;
10609 code = ASHIFT;
10610 }
10611
10612 continue;
10613 }
10614
10615 /* There are some cases we can't do. If CODE is ASHIFTRT,
10616 we can only do this if FIRST_CODE is also ASHIFTRT.
10617
10618 We can't do the case when CODE is ROTATE and FIRST_CODE is
10619 ASHIFTRT.
10620
10621 If the mode of this shift is not the mode of the outer shift,
10622 we can't do this if either shift is a right shift or ROTATE.
10623
10624 Finally, we can't do any of these if the mode is too wide
10625 unless the codes are the same.
10626
10627 Handle the case where the shift codes are the same
10628 first. */
10629
10630 if (code == first_code)
10631 {
10632 if (GET_MODE (varop) != result_mode
10633 && (code == ASHIFTRT || code == LSHIFTRT
10634 || code == ROTATE))
10635 break;
10636
10637 count += first_count;
10638 varop = XEXP (varop, 0);
10639 continue;
10640 }
10641
10642 if (code == ASHIFTRT
10643 || (code == ROTATE && first_code == ASHIFTRT)
10644 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10645 || (GET_MODE (varop) != result_mode
10646 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10647 || first_code == ROTATE
10648 || code == ROTATE)))
10649 break;
10650
10651 /* To compute the mask to apply after the shift, shift the
10652 nonzero bits of the inner shift the same way the
10653 outer shift will. */
10654
10655 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10656 result_mode);
10657
10658 mask_rtx
10659 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10660 GEN_INT (count));
10661
10662 /* Give up if we can't compute an outer operation to use. */
10663 if (mask_rtx == 0
10664 || !CONST_INT_P (mask_rtx)
10665 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10666 INTVAL (mask_rtx),
10667 result_mode, &complement_p))
10668 break;
10669
10670 /* If the shifts are in the same direction, we add the
10671 counts. Otherwise, we subtract them. */
10672 if ((code == ASHIFTRT || code == LSHIFTRT)
10673 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10674 count += first_count;
10675 else
10676 count -= first_count;
10677
10678 /* If COUNT is positive, the new shift is usually CODE,
10679 except for the two exceptions below, in which case it is
10680 FIRST_CODE. If the count is negative, FIRST_CODE should
10681 always be used */
10682 if (count > 0
10683 && ((first_code == ROTATE && code == ASHIFT)
10684 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10685 code = first_code;
10686 else if (count < 0)
10687 code = first_code, count = -count;
10688
10689 varop = XEXP (varop, 0);
10690 continue;
10691 }
10692
10693 /* If we have (A << B << C) for any shift, we can convert this to
10694 (A << C << B). This wins if A is a constant. Only try this if
10695 B is not a constant. */
10696
10697 else if (GET_CODE (varop) == code
10698 && CONST_INT_P (XEXP (varop, 0))
10699 && !CONST_INT_P (XEXP (varop, 1)))
10700 {
10701 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10702 sure the result will be masked. See PR70222. */
10703 if (code == LSHIFTRT
10704 && mode != result_mode
10705 && !merge_outer_ops (&outer_op, &outer_const, AND,
10706 GET_MODE_MASK (result_mode)
10707 >> orig_count, result_mode,
10708 &complement_p))
10709 break;
10710 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10711 up outer sign extension (often left and right shift) is
10712 hardly more efficient than the original. See PR70429. */
10713 if (code == ASHIFTRT && mode != result_mode)
10714 break;
10715
10716 rtx new_rtx = simplify_const_binary_operation (code, mode,
10717 XEXP (varop, 0),
10718 GEN_INT (count));
10719 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10720 count = 0;
10721 continue;
10722 }
10723 break;
10724
10725 case NOT:
10726 /* The following rules apply only to scalars. */
10727 if (shift_mode != shift_unit_mode)
10728 break;
10729
10730 /* Make this fit the case below. */
10731 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10732 continue;
10733
10734 case IOR:
10735 case AND:
10736 case XOR:
10737 /* The following rules apply only to scalars. */
10738 if (shift_mode != shift_unit_mode)
10739 break;
10740
10741 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10742 with C the size of VAROP - 1 and the shift is logical if
10743 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10744 we have an (le X 0) operation. If we have an arithmetic shift
10745 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10746 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10747
10748 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10749 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10750 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10751 && (code == LSHIFTRT || code == ASHIFTRT)
10752 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10753 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10754 {
10755 count = 0;
10756 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10757 const0_rtx);
10758
10759 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10760 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10761
10762 continue;
10763 }
10764
10765 /* If we have (shift (logical)), move the logical to the outside
10766 to allow it to possibly combine with another logical and the
10767 shift to combine with another shift. This also canonicalizes to
10768 what a ZERO_EXTRACT looks like. Also, some machines have
10769 (and (shift)) insns. */
10770
10771 if (CONST_INT_P (XEXP (varop, 1))
10772 /* We can't do this if we have (ashiftrt (xor)) and the
10773 constant has its sign bit set in shift_mode with shift_mode
10774 wider than result_mode. */
10775 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10776 && result_mode != shift_mode
10777 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10778 shift_mode))
10779 && (new_rtx = simplify_const_binary_operation
10780 (code, result_mode,
10781 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10782 GEN_INT (count))) != 0
10783 && CONST_INT_P (new_rtx)
10784 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10785 INTVAL (new_rtx), result_mode, &complement_p))
10786 {
10787 varop = XEXP (varop, 0);
10788 continue;
10789 }
10790
10791 /* If we can't do that, try to simplify the shift in each arm of the
10792 logical expression, make a new logical expression, and apply
10793 the inverse distributive law. This also can't be done for
10794 (ashiftrt (xor)) where we've widened the shift and the constant
10795 changes the sign bit. */
10796 if (CONST_INT_P (XEXP (varop, 1))
10797 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10798 && result_mode != shift_mode
10799 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10800 shift_mode)))
10801 {
10802 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10803 XEXP (varop, 0), count);
10804 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10805 XEXP (varop, 1), count);
10806
10807 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10808 lhs, rhs);
10809 varop = apply_distributive_law (varop);
10810
10811 count = 0;
10812 continue;
10813 }
10814 break;
10815
10816 case EQ:
10817 /* The following rules apply only to scalars. */
10818 if (shift_mode != shift_unit_mode)
10819 break;
10820
10821 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10822 says that the sign bit can be tested, FOO has mode MODE, C is
10823 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10824 that may be nonzero. */
10825 if (code == LSHIFTRT
10826 && XEXP (varop, 1) == const0_rtx
10827 && GET_MODE (XEXP (varop, 0)) == result_mode
10828 && count == (GET_MODE_PRECISION (result_mode) - 1)
10829 && HWI_COMPUTABLE_MODE_P (result_mode)
10830 && STORE_FLAG_VALUE == -1
10831 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10832 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10833 &complement_p))
10834 {
10835 varop = XEXP (varop, 0);
10836 count = 0;
10837 continue;
10838 }
10839 break;
10840
10841 case NEG:
10842 /* The following rules apply only to scalars. */
10843 if (shift_mode != shift_unit_mode)
10844 break;
10845
10846 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10847 than the number of bits in the mode is equivalent to A. */
10848 if (code == LSHIFTRT
10849 && count == (GET_MODE_PRECISION (result_mode) - 1)
10850 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10851 {
10852 varop = XEXP (varop, 0);
10853 count = 0;
10854 continue;
10855 }
10856
10857 /* NEG commutes with ASHIFT since it is multiplication. Move the
10858 NEG outside to allow shifts to combine. */
10859 if (code == ASHIFT
10860 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10861 &complement_p))
10862 {
10863 varop = XEXP (varop, 0);
10864 continue;
10865 }
10866 break;
10867
10868 case PLUS:
10869 /* The following rules apply only to scalars. */
10870 if (shift_mode != shift_unit_mode)
10871 break;
10872
10873 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10874 is one less than the number of bits in the mode is
10875 equivalent to (xor A 1). */
10876 if (code == LSHIFTRT
10877 && count == (GET_MODE_PRECISION (result_mode) - 1)
10878 && XEXP (varop, 1) == constm1_rtx
10879 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10880 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10881 &complement_p))
10882 {
10883 count = 0;
10884 varop = XEXP (varop, 0);
10885 continue;
10886 }
10887
10888 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10889 that might be nonzero in BAR are those being shifted out and those
10890 bits are known zero in FOO, we can replace the PLUS with FOO.
10891 Similarly in the other operand order. This code occurs when
10892 we are computing the size of a variable-size array. */
10893
10894 if ((code == ASHIFTRT || code == LSHIFTRT)
10895 && count < HOST_BITS_PER_WIDE_INT
10896 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10897 && (nonzero_bits (XEXP (varop, 1), result_mode)
10898 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10899 {
10900 varop = XEXP (varop, 0);
10901 continue;
10902 }
10903 else if ((code == ASHIFTRT || code == LSHIFTRT)
10904 && count < HOST_BITS_PER_WIDE_INT
10905 && HWI_COMPUTABLE_MODE_P (result_mode)
10906 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10907 >> count)
10908 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10909 & nonzero_bits (XEXP (varop, 1),
10910 result_mode)))
10911 {
10912 varop = XEXP (varop, 1);
10913 continue;
10914 }
10915
10916 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10917 if (code == ASHIFT
10918 && CONST_INT_P (XEXP (varop, 1))
10919 && (new_rtx = simplify_const_binary_operation
10920 (ASHIFT, result_mode,
10921 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10922 GEN_INT (count))) != 0
10923 && CONST_INT_P (new_rtx)
10924 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10925 INTVAL (new_rtx), result_mode, &complement_p))
10926 {
10927 varop = XEXP (varop, 0);
10928 continue;
10929 }
10930
10931 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10932 signbit', and attempt to change the PLUS to an XOR and move it to
10933 the outer operation as is done above in the AND/IOR/XOR case
10934 leg for shift(logical). See details in logical handling above
10935 for reasoning in doing so. */
10936 if (code == LSHIFTRT
10937 && CONST_INT_P (XEXP (varop, 1))
10938 && mode_signbit_p (result_mode, XEXP (varop, 1))
10939 && (new_rtx = simplify_const_binary_operation
10940 (code, result_mode,
10941 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10942 GEN_INT (count))) != 0
10943 && CONST_INT_P (new_rtx)
10944 && merge_outer_ops (&outer_op, &outer_const, XOR,
10945 INTVAL (new_rtx), result_mode, &complement_p))
10946 {
10947 varop = XEXP (varop, 0);
10948 continue;
10949 }
10950
10951 break;
10952
10953 case MINUS:
10954 /* The following rules apply only to scalars. */
10955 if (shift_mode != shift_unit_mode)
10956 break;
10957
10958 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10959 with C the size of VAROP - 1 and the shift is logical if
10960 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10961 we have a (gt X 0) operation. If the shift is arithmetic with
10962 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10963 we have a (neg (gt X 0)) operation. */
10964
10965 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10966 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10967 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10968 && (code == LSHIFTRT || code == ASHIFTRT)
10969 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10970 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10971 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10972 {
10973 count = 0;
10974 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10975 const0_rtx);
10976
10977 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10978 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10979
10980 continue;
10981 }
10982 break;
10983
10984 case TRUNCATE:
10985 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10986 if the truncate does not affect the value. */
10987 if (code == LSHIFTRT
10988 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10989 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10990 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10991 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
10992 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
10993 {
10994 rtx varop_inner = XEXP (varop, 0);
10995
10996 varop_inner
10997 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10998 XEXP (varop_inner, 0),
10999 GEN_INT
11000 (count + INTVAL (XEXP (varop_inner, 1))));
11001 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11002 count = 0;
11003 continue;
11004 }
11005 break;
11006
11007 default:
11008 break;
11009 }
11010
11011 break;
11012 }
11013
11014 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
11015 outer_op, outer_const);
11016
11017 /* We have now finished analyzing the shift. The result should be
11018 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11019 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11020 to the result of the shift. OUTER_CONST is the relevant constant,
11021 but we must turn off all bits turned off in the shift. */
11022
11023 if (outer_op == UNKNOWN
11024 && orig_code == code && orig_count == count
11025 && varop == orig_varop
11026 && shift_mode == GET_MODE (varop))
11027 return NULL_RTX;
11028
11029 /* Make a SUBREG if necessary. If we can't make it, fail. */
11030 varop = gen_lowpart (shift_mode, varop);
11031 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11032 return NULL_RTX;
11033
11034 /* If we have an outer operation and we just made a shift, it is
11035 possible that we could have simplified the shift were it not
11036 for the outer operation. So try to do the simplification
11037 recursively. */
11038
11039 if (outer_op != UNKNOWN)
11040 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11041 else
11042 x = NULL_RTX;
11043
11044 if (x == NULL_RTX)
11045 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
11046
11047 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11048 turn off all the bits that the shift would have turned off. */
11049 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11050 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
11051 GET_MODE_MASK (result_mode) >> orig_count);
11052
11053 /* Do the remainder of the processing in RESULT_MODE. */
11054 x = gen_lowpart_or_truncate (result_mode, x);
11055
11056 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11057 operation. */
11058 if (complement_p)
11059 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11060
11061 if (outer_op != UNKNOWN)
11062 {
11063 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11064 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
11065 outer_const = trunc_int_for_mode (outer_const, result_mode);
11066
11067 if (outer_op == AND)
11068 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
11069 else if (outer_op == SET)
11070 {
11071 /* This means that we have determined that the result is
11072 equivalent to a constant. This should be rare. */
11073 if (!side_effects_p (x))
11074 x = GEN_INT (outer_const);
11075 }
11076 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11077 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
11078 else
11079 x = simplify_gen_binary (outer_op, result_mode, x,
11080 GEN_INT (outer_const));
11081 }
11082
11083 return x;
11084 }
11085
11086 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11087 The result of the shift is RESULT_MODE. If we cannot simplify it,
11088 return X or, if it is NULL, synthesize the expression with
11089 simplify_gen_binary. Otherwise, return a simplified value.
11090
11091 The shift is normally computed in the widest mode we find in VAROP, as
11092 long as it isn't a different number of words than RESULT_MODE. Exceptions
11093 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11094
11095 static rtx
11096 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11097 rtx varop, int count)
11098 {
11099 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11100 if (tem)
11101 return tem;
11102
11103 if (!x)
11104 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
11105 if (GET_MODE (x) != result_mode)
11106 x = gen_lowpart (result_mode, x);
11107 return x;
11108 }
11109
11110 \f
11111 /* A subroutine of recog_for_combine. See there for arguments and
11112 return value. */
11113
11114 static int
11115 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11116 {
11117 rtx pat = *pnewpat;
11118 rtx pat_without_clobbers;
11119 int insn_code_number;
11120 int num_clobbers_to_add = 0;
11121 int i;
11122 rtx notes = NULL_RTX;
11123 rtx old_notes, old_pat;
11124 int old_icode;
11125
11126 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11127 we use to indicate that something didn't match. If we find such a
11128 thing, force rejection. */
11129 if (GET_CODE (pat) == PARALLEL)
11130 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11131 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11132 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11133 return -1;
11134
11135 old_pat = PATTERN (insn);
11136 old_notes = REG_NOTES (insn);
11137 PATTERN (insn) = pat;
11138 REG_NOTES (insn) = NULL_RTX;
11139
11140 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11141 if (dump_file && (dump_flags & TDF_DETAILS))
11142 {
11143 if (insn_code_number < 0)
11144 fputs ("Failed to match this instruction:\n", dump_file);
11145 else
11146 fputs ("Successfully matched this instruction:\n", dump_file);
11147 print_rtl_single (dump_file, pat);
11148 }
11149
11150 /* If it isn't, there is the possibility that we previously had an insn
11151 that clobbered some register as a side effect, but the combined
11152 insn doesn't need to do that. So try once more without the clobbers
11153 unless this represents an ASM insn. */
11154
11155 if (insn_code_number < 0 && ! check_asm_operands (pat)
11156 && GET_CODE (pat) == PARALLEL)
11157 {
11158 int pos;
11159
11160 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11161 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11162 {
11163 if (i != pos)
11164 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11165 pos++;
11166 }
11167
11168 SUBST_INT (XVECLEN (pat, 0), pos);
11169
11170 if (pos == 1)
11171 pat = XVECEXP (pat, 0, 0);
11172
11173 PATTERN (insn) = pat;
11174 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11175 if (dump_file && (dump_flags & TDF_DETAILS))
11176 {
11177 if (insn_code_number < 0)
11178 fputs ("Failed to match this instruction:\n", dump_file);
11179 else
11180 fputs ("Successfully matched this instruction:\n", dump_file);
11181 print_rtl_single (dump_file, pat);
11182 }
11183 }
11184
11185 pat_without_clobbers = pat;
11186
11187 PATTERN (insn) = old_pat;
11188 REG_NOTES (insn) = old_notes;
11189
11190 /* Recognize all noop sets, these will be killed by followup pass. */
11191 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11192 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11193
11194 /* If we had any clobbers to add, make a new pattern than contains
11195 them. Then check to make sure that all of them are dead. */
11196 if (num_clobbers_to_add)
11197 {
11198 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11199 rtvec_alloc (GET_CODE (pat) == PARALLEL
11200 ? (XVECLEN (pat, 0)
11201 + num_clobbers_to_add)
11202 : num_clobbers_to_add + 1));
11203
11204 if (GET_CODE (pat) == PARALLEL)
11205 for (i = 0; i < XVECLEN (pat, 0); i++)
11206 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11207 else
11208 XVECEXP (newpat, 0, 0) = pat;
11209
11210 add_clobbers (newpat, insn_code_number);
11211
11212 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11213 i < XVECLEN (newpat, 0); i++)
11214 {
11215 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11216 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11217 return -1;
11218 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11219 {
11220 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11221 notes = alloc_reg_note (REG_UNUSED,
11222 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11223 }
11224 }
11225 pat = newpat;
11226 }
11227
11228 if (insn_code_number >= 0
11229 && insn_code_number != NOOP_MOVE_INSN_CODE)
11230 {
11231 old_pat = PATTERN (insn);
11232 old_notes = REG_NOTES (insn);
11233 old_icode = INSN_CODE (insn);
11234 PATTERN (insn) = pat;
11235 REG_NOTES (insn) = notes;
11236 INSN_CODE (insn) = insn_code_number;
11237
11238 /* Allow targets to reject combined insn. */
11239 if (!targetm.legitimate_combined_insn (insn))
11240 {
11241 if (dump_file && (dump_flags & TDF_DETAILS))
11242 fputs ("Instruction not appropriate for target.",
11243 dump_file);
11244
11245 /* Callers expect recog_for_combine to strip
11246 clobbers from the pattern on failure. */
11247 pat = pat_without_clobbers;
11248 notes = NULL_RTX;
11249
11250 insn_code_number = -1;
11251 }
11252
11253 PATTERN (insn) = old_pat;
11254 REG_NOTES (insn) = old_notes;
11255 INSN_CODE (insn) = old_icode;
11256 }
11257
11258 *pnewpat = pat;
11259 *pnotes = notes;
11260
11261 return insn_code_number;
11262 }
11263
11264 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11265 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11266 Return whether anything was so changed. */
11267
11268 static bool
11269 change_zero_ext (rtx pat)
11270 {
11271 bool changed = false;
11272 rtx *src = &SET_SRC (pat);
11273
11274 subrtx_ptr_iterator::array_type array;
11275 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11276 {
11277 rtx x = **iter;
11278 machine_mode mode = GET_MODE (x);
11279 int size;
11280
11281 if (GET_CODE (x) == ZERO_EXTRACT
11282 && CONST_INT_P (XEXP (x, 1))
11283 && CONST_INT_P (XEXP (x, 2))
11284 && GET_MODE (XEXP (x, 0)) != VOIDmode
11285 && GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
11286 <= GET_MODE_PRECISION (mode))
11287 {
11288 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
11289
11290 size = INTVAL (XEXP (x, 1));
11291
11292 int start = INTVAL (XEXP (x, 2));
11293 if (BITS_BIG_ENDIAN)
11294 start = GET_MODE_PRECISION (inner_mode) - size - start;
11295
11296 if (start)
11297 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0), GEN_INT (start));
11298 else
11299 x = XEXP (x, 0);
11300 if (mode != inner_mode)
11301 x = gen_lowpart_SUBREG (mode, x);
11302 }
11303 else if (GET_CODE (x) == ZERO_EXTEND
11304 && SCALAR_INT_MODE_P (mode)
11305 && GET_CODE (XEXP (x, 0)) == SUBREG
11306 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11307 && !paradoxical_subreg_p (XEXP (x, 0))
11308 && subreg_lowpart_p (XEXP (x, 0)))
11309 {
11310 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11311 x = SUBREG_REG (XEXP (x, 0));
11312 if (GET_MODE (x) != mode)
11313 x = gen_lowpart_SUBREG (mode, x);
11314 }
11315 else if (GET_CODE (x) == ZERO_EXTEND
11316 && SCALAR_INT_MODE_P (mode)
11317 && REG_P (XEXP (x, 0))
11318 && HARD_REGISTER_P (XEXP (x, 0))
11319 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11320 {
11321 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11322 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11323 }
11324 else
11325 continue;
11326
11327 if (!(GET_CODE (x) == LSHIFTRT
11328 && CONST_INT_P (XEXP (x, 1))
11329 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11330 {
11331 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11332 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11333 }
11334
11335 SUBST (**iter, x);
11336 changed = true;
11337 }
11338
11339 if (changed)
11340 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11341 maybe_swap_commutative_operands (**iter);
11342
11343 rtx *dst = &SET_DEST (pat);
11344 if (GET_CODE (*dst) == ZERO_EXTRACT
11345 && REG_P (XEXP (*dst, 0))
11346 && CONST_INT_P (XEXP (*dst, 1))
11347 && CONST_INT_P (XEXP (*dst, 2)))
11348 {
11349 rtx reg = XEXP (*dst, 0);
11350 int width = INTVAL (XEXP (*dst, 1));
11351 int offset = INTVAL (XEXP (*dst, 2));
11352 machine_mode mode = GET_MODE (reg);
11353 int reg_width = GET_MODE_PRECISION (mode);
11354 if (BITS_BIG_ENDIAN)
11355 offset = reg_width - width - offset;
11356
11357 rtx x, y, z, w;
11358 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11359 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11360 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11361 if (offset)
11362 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11363 else
11364 y = SET_SRC (pat);
11365 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11366 w = gen_rtx_IOR (mode, x, z);
11367 SUBST (SET_DEST (pat), reg);
11368 SUBST (SET_SRC (pat), w);
11369
11370 changed = true;
11371 }
11372
11373 return changed;
11374 }
11375
11376 /* Like recog, but we receive the address of a pointer to a new pattern.
11377 We try to match the rtx that the pointer points to.
11378 If that fails, we may try to modify or replace the pattern,
11379 storing the replacement into the same pointer object.
11380
11381 Modifications include deletion or addition of CLOBBERs. If the
11382 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11383 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11384 (and undo if that fails).
11385
11386 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11387 the CLOBBERs are placed.
11388
11389 The value is the final insn code from the pattern ultimately matched,
11390 or -1. */
11391
11392 static int
11393 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11394 {
11395 rtx pat = *pnewpat;
11396 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11397 if (insn_code_number >= 0 || check_asm_operands (pat))
11398 return insn_code_number;
11399
11400 void *marker = get_undo_marker ();
11401 bool changed = false;
11402
11403 if (GET_CODE (pat) == SET)
11404 changed = change_zero_ext (pat);
11405 else if (GET_CODE (pat) == PARALLEL)
11406 {
11407 int i;
11408 for (i = 0; i < XVECLEN (pat, 0); i++)
11409 {
11410 rtx set = XVECEXP (pat, 0, i);
11411 if (GET_CODE (set) == SET)
11412 changed |= change_zero_ext (set);
11413 }
11414 }
11415
11416 if (changed)
11417 {
11418 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11419
11420 if (insn_code_number < 0)
11421 undo_to_marker (marker);
11422 }
11423
11424 return insn_code_number;
11425 }
11426 \f
11427 /* Like gen_lowpart_general but for use by combine. In combine it
11428 is not possible to create any new pseudoregs. However, it is
11429 safe to create invalid memory addresses, because combine will
11430 try to recognize them and all they will do is make the combine
11431 attempt fail.
11432
11433 If for some reason this cannot do its job, an rtx
11434 (clobber (const_int 0)) is returned.
11435 An insn containing that will not be recognized. */
11436
11437 static rtx
11438 gen_lowpart_for_combine (machine_mode omode, rtx x)
11439 {
11440 machine_mode imode = GET_MODE (x);
11441 unsigned int osize = GET_MODE_SIZE (omode);
11442 unsigned int isize = GET_MODE_SIZE (imode);
11443 rtx result;
11444
11445 if (omode == imode)
11446 return x;
11447
11448 /* We can only support MODE being wider than a word if X is a
11449 constant integer or has a mode the same size. */
11450 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11451 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11452 goto fail;
11453
11454 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11455 won't know what to do. So we will strip off the SUBREG here and
11456 process normally. */
11457 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11458 {
11459 x = SUBREG_REG (x);
11460
11461 /* For use in case we fall down into the address adjustments
11462 further below, we need to adjust the known mode and size of
11463 x; imode and isize, since we just adjusted x. */
11464 imode = GET_MODE (x);
11465
11466 if (imode == omode)
11467 return x;
11468
11469 isize = GET_MODE_SIZE (imode);
11470 }
11471
11472 result = gen_lowpart_common (omode, x);
11473
11474 if (result)
11475 return result;
11476
11477 if (MEM_P (x))
11478 {
11479 int offset = 0;
11480
11481 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11482 address. */
11483 if (MEM_VOLATILE_P (x)
11484 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11485 goto fail;
11486
11487 /* If we want to refer to something bigger than the original memref,
11488 generate a paradoxical subreg instead. That will force a reload
11489 of the original memref X. */
11490 if (isize < osize)
11491 return gen_rtx_SUBREG (omode, x, 0);
11492
11493 if (WORDS_BIG_ENDIAN)
11494 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11495
11496 /* Adjust the address so that the address-after-the-data is
11497 unchanged. */
11498 if (BYTES_BIG_ENDIAN)
11499 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11500
11501 return adjust_address_nv (x, omode, offset);
11502 }
11503
11504 /* If X is a comparison operator, rewrite it in a new mode. This
11505 probably won't match, but may allow further simplifications. */
11506 else if (COMPARISON_P (x))
11507 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11508
11509 /* If we couldn't simplify X any other way, just enclose it in a
11510 SUBREG. Normally, this SUBREG won't match, but some patterns may
11511 include an explicit SUBREG or we may simplify it further in combine. */
11512 else
11513 {
11514 rtx res;
11515
11516 if (imode == VOIDmode)
11517 {
11518 imode = int_mode_for_mode (omode);
11519 x = gen_lowpart_common (imode, x);
11520 if (x == NULL)
11521 goto fail;
11522 }
11523 res = lowpart_subreg (omode, x, imode);
11524 if (res)
11525 return res;
11526 }
11527
11528 fail:
11529 return gen_rtx_CLOBBER (omode, const0_rtx);
11530 }
11531 \f
11532 /* Try to simplify a comparison between OP0 and a constant OP1,
11533 where CODE is the comparison code that will be tested, into a
11534 (CODE OP0 const0_rtx) form.
11535
11536 The result is a possibly different comparison code to use.
11537 *POP1 may be updated. */
11538
11539 static enum rtx_code
11540 simplify_compare_const (enum rtx_code code, machine_mode mode,
11541 rtx op0, rtx *pop1)
11542 {
11543 unsigned int mode_width = GET_MODE_PRECISION (mode);
11544 HOST_WIDE_INT const_op = INTVAL (*pop1);
11545
11546 /* Get the constant we are comparing against and turn off all bits
11547 not on in our mode. */
11548 if (mode != VOIDmode)
11549 const_op = trunc_int_for_mode (const_op, mode);
11550
11551 /* If we are comparing against a constant power of two and the value
11552 being compared can only have that single bit nonzero (e.g., it was
11553 `and'ed with that bit), we can replace this with a comparison
11554 with zero. */
11555 if (const_op
11556 && (code == EQ || code == NE || code == GE || code == GEU
11557 || code == LT || code == LTU)
11558 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11559 && pow2p_hwi (const_op & GET_MODE_MASK (mode))
11560 && (nonzero_bits (op0, mode)
11561 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11562 {
11563 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11564 const_op = 0;
11565 }
11566
11567 /* Similarly, if we are comparing a value known to be either -1 or
11568 0 with -1, change it to the opposite comparison against zero. */
11569 if (const_op == -1
11570 && (code == EQ || code == NE || code == GT || code == LE
11571 || code == GEU || code == LTU)
11572 && num_sign_bit_copies (op0, mode) == mode_width)
11573 {
11574 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11575 const_op = 0;
11576 }
11577
11578 /* Do some canonicalizations based on the comparison code. We prefer
11579 comparisons against zero and then prefer equality comparisons.
11580 If we can reduce the size of a constant, we will do that too. */
11581 switch (code)
11582 {
11583 case LT:
11584 /* < C is equivalent to <= (C - 1) */
11585 if (const_op > 0)
11586 {
11587 const_op -= 1;
11588 code = LE;
11589 /* ... fall through to LE case below. */
11590 gcc_fallthrough ();
11591 }
11592 else
11593 break;
11594
11595 case LE:
11596 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11597 if (const_op < 0)
11598 {
11599 const_op += 1;
11600 code = LT;
11601 }
11602
11603 /* If we are doing a <= 0 comparison on a value known to have
11604 a zero sign bit, we can replace this with == 0. */
11605 else if (const_op == 0
11606 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11607 && (nonzero_bits (op0, mode)
11608 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11609 == 0)
11610 code = EQ;
11611 break;
11612
11613 case GE:
11614 /* >= C is equivalent to > (C - 1). */
11615 if (const_op > 0)
11616 {
11617 const_op -= 1;
11618 code = GT;
11619 /* ... fall through to GT below. */
11620 gcc_fallthrough ();
11621 }
11622 else
11623 break;
11624
11625 case GT:
11626 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11627 if (const_op < 0)
11628 {
11629 const_op += 1;
11630 code = GE;
11631 }
11632
11633 /* If we are doing a > 0 comparison on a value known to have
11634 a zero sign bit, we can replace this with != 0. */
11635 else if (const_op == 0
11636 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11637 && (nonzero_bits (op0, mode)
11638 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11639 == 0)
11640 code = NE;
11641 break;
11642
11643 case LTU:
11644 /* < C is equivalent to <= (C - 1). */
11645 if (const_op > 0)
11646 {
11647 const_op -= 1;
11648 code = LEU;
11649 /* ... fall through ... */
11650 }
11651 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11652 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11653 && (unsigned HOST_WIDE_INT) const_op
11654 == HOST_WIDE_INT_1U << (mode_width - 1))
11655 {
11656 const_op = 0;
11657 code = GE;
11658 break;
11659 }
11660 else
11661 break;
11662
11663 case LEU:
11664 /* unsigned <= 0 is equivalent to == 0 */
11665 if (const_op == 0)
11666 code = EQ;
11667 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11668 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11669 && (unsigned HOST_WIDE_INT) const_op
11670 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11671 {
11672 const_op = 0;
11673 code = GE;
11674 }
11675 break;
11676
11677 case GEU:
11678 /* >= C is equivalent to > (C - 1). */
11679 if (const_op > 1)
11680 {
11681 const_op -= 1;
11682 code = GTU;
11683 /* ... fall through ... */
11684 }
11685
11686 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11687 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11688 && (unsigned HOST_WIDE_INT) const_op
11689 == HOST_WIDE_INT_1U << (mode_width - 1))
11690 {
11691 const_op = 0;
11692 code = LT;
11693 break;
11694 }
11695 else
11696 break;
11697
11698 case GTU:
11699 /* unsigned > 0 is equivalent to != 0 */
11700 if (const_op == 0)
11701 code = NE;
11702 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11703 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11704 && (unsigned HOST_WIDE_INT) const_op
11705 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11706 {
11707 const_op = 0;
11708 code = LT;
11709 }
11710 break;
11711
11712 default:
11713 break;
11714 }
11715
11716 *pop1 = GEN_INT (const_op);
11717 return code;
11718 }
11719 \f
11720 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11721 comparison code that will be tested.
11722
11723 The result is a possibly different comparison code to use. *POP0 and
11724 *POP1 may be updated.
11725
11726 It is possible that we might detect that a comparison is either always
11727 true or always false. However, we do not perform general constant
11728 folding in combine, so this knowledge isn't useful. Such tautologies
11729 should have been detected earlier. Hence we ignore all such cases. */
11730
11731 static enum rtx_code
11732 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11733 {
11734 rtx op0 = *pop0;
11735 rtx op1 = *pop1;
11736 rtx tem, tem1;
11737 int i;
11738 machine_mode mode, tmode;
11739
11740 /* Try a few ways of applying the same transformation to both operands. */
11741 while (1)
11742 {
11743 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11744 so check specially. */
11745 if (!WORD_REGISTER_OPERATIONS
11746 && code != GTU && code != GEU && code != LTU && code != LEU
11747 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11748 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11749 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11750 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11751 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11752 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11753 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11754 && CONST_INT_P (XEXP (op0, 1))
11755 && XEXP (op0, 1) == XEXP (op1, 1)
11756 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11757 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11758 && (INTVAL (XEXP (op0, 1))
11759 == (GET_MODE_PRECISION (GET_MODE (op0))
11760 - (GET_MODE_PRECISION
11761 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11762 {
11763 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11764 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11765 }
11766
11767 /* If both operands are the same constant shift, see if we can ignore the
11768 shift. We can if the shift is a rotate or if the bits shifted out of
11769 this shift are known to be zero for both inputs and if the type of
11770 comparison is compatible with the shift. */
11771 if (GET_CODE (op0) == GET_CODE (op1)
11772 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11773 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11774 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11775 && (code != GT && code != LT && code != GE && code != LE))
11776 || (GET_CODE (op0) == ASHIFTRT
11777 && (code != GTU && code != LTU
11778 && code != GEU && code != LEU)))
11779 && CONST_INT_P (XEXP (op0, 1))
11780 && INTVAL (XEXP (op0, 1)) >= 0
11781 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11782 && XEXP (op0, 1) == XEXP (op1, 1))
11783 {
11784 machine_mode mode = GET_MODE (op0);
11785 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11786 int shift_count = INTVAL (XEXP (op0, 1));
11787
11788 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11789 mask &= (mask >> shift_count) << shift_count;
11790 else if (GET_CODE (op0) == ASHIFT)
11791 mask = (mask & (mask << shift_count)) >> shift_count;
11792
11793 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11794 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11795 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11796 else
11797 break;
11798 }
11799
11800 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11801 SUBREGs are of the same mode, and, in both cases, the AND would
11802 be redundant if the comparison was done in the narrower mode,
11803 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11804 and the operand's possibly nonzero bits are 0xffffff01; in that case
11805 if we only care about QImode, we don't need the AND). This case
11806 occurs if the output mode of an scc insn is not SImode and
11807 STORE_FLAG_VALUE == 1 (e.g., the 386).
11808
11809 Similarly, check for a case where the AND's are ZERO_EXTEND
11810 operations from some narrower mode even though a SUBREG is not
11811 present. */
11812
11813 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11814 && CONST_INT_P (XEXP (op0, 1))
11815 && CONST_INT_P (XEXP (op1, 1)))
11816 {
11817 rtx inner_op0 = XEXP (op0, 0);
11818 rtx inner_op1 = XEXP (op1, 0);
11819 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11820 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11821 int changed = 0;
11822
11823 if (paradoxical_subreg_p (inner_op0)
11824 && GET_CODE (inner_op1) == SUBREG
11825 && (GET_MODE (SUBREG_REG (inner_op0))
11826 == GET_MODE (SUBREG_REG (inner_op1)))
11827 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11828 <= HOST_BITS_PER_WIDE_INT)
11829 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11830 GET_MODE (SUBREG_REG (inner_op0)))))
11831 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11832 GET_MODE (SUBREG_REG (inner_op1))))))
11833 {
11834 op0 = SUBREG_REG (inner_op0);
11835 op1 = SUBREG_REG (inner_op1);
11836
11837 /* The resulting comparison is always unsigned since we masked
11838 off the original sign bit. */
11839 code = unsigned_condition (code);
11840
11841 changed = 1;
11842 }
11843
11844 else if (c0 == c1)
11845 for (tmode = GET_CLASS_NARROWEST_MODE
11846 (GET_MODE_CLASS (GET_MODE (op0)));
11847 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11848 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11849 {
11850 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
11851 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
11852 code = unsigned_condition (code);
11853 changed = 1;
11854 break;
11855 }
11856
11857 if (! changed)
11858 break;
11859 }
11860
11861 /* If both operands are NOT, we can strip off the outer operation
11862 and adjust the comparison code for swapped operands; similarly for
11863 NEG, except that this must be an equality comparison. */
11864 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11865 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11866 && (code == EQ || code == NE)))
11867 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11868
11869 else
11870 break;
11871 }
11872
11873 /* If the first operand is a constant, swap the operands and adjust the
11874 comparison code appropriately, but don't do this if the second operand
11875 is already a constant integer. */
11876 if (swap_commutative_operands_p (op0, op1))
11877 {
11878 std::swap (op0, op1);
11879 code = swap_condition (code);
11880 }
11881
11882 /* We now enter a loop during which we will try to simplify the comparison.
11883 For the most part, we only are concerned with comparisons with zero,
11884 but some things may really be comparisons with zero but not start
11885 out looking that way. */
11886
11887 while (CONST_INT_P (op1))
11888 {
11889 machine_mode mode = GET_MODE (op0);
11890 unsigned int mode_width = GET_MODE_PRECISION (mode);
11891 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11892 int equality_comparison_p;
11893 int sign_bit_comparison_p;
11894 int unsigned_comparison_p;
11895 HOST_WIDE_INT const_op;
11896
11897 /* We only want to handle integral modes. This catches VOIDmode,
11898 CCmode, and the floating-point modes. An exception is that we
11899 can handle VOIDmode if OP0 is a COMPARE or a comparison
11900 operation. */
11901
11902 if (GET_MODE_CLASS (mode) != MODE_INT
11903 && ! (mode == VOIDmode
11904 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11905 break;
11906
11907 /* Try to simplify the compare to constant, possibly changing the
11908 comparison op, and/or changing op1 to zero. */
11909 code = simplify_compare_const (code, mode, op0, &op1);
11910 const_op = INTVAL (op1);
11911
11912 /* Compute some predicates to simplify code below. */
11913
11914 equality_comparison_p = (code == EQ || code == NE);
11915 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11916 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11917 || code == GEU);
11918
11919 /* If this is a sign bit comparison and we can do arithmetic in
11920 MODE, say that we will only be needing the sign bit of OP0. */
11921 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11922 op0 = force_to_mode (op0, mode,
11923 HOST_WIDE_INT_1U
11924 << (GET_MODE_PRECISION (mode) - 1),
11925 0);
11926
11927 /* Now try cases based on the opcode of OP0. If none of the cases
11928 does a "continue", we exit this loop immediately after the
11929 switch. */
11930
11931 switch (GET_CODE (op0))
11932 {
11933 case ZERO_EXTRACT:
11934 /* If we are extracting a single bit from a variable position in
11935 a constant that has only a single bit set and are comparing it
11936 with zero, we can convert this into an equality comparison
11937 between the position and the location of the single bit. */
11938 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11939 have already reduced the shift count modulo the word size. */
11940 if (!SHIFT_COUNT_TRUNCATED
11941 && CONST_INT_P (XEXP (op0, 0))
11942 && XEXP (op0, 1) == const1_rtx
11943 && equality_comparison_p && const_op == 0
11944 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11945 {
11946 if (BITS_BIG_ENDIAN)
11947 i = BITS_PER_WORD - 1 - i;
11948
11949 op0 = XEXP (op0, 2);
11950 op1 = GEN_INT (i);
11951 const_op = i;
11952
11953 /* Result is nonzero iff shift count is equal to I. */
11954 code = reverse_condition (code);
11955 continue;
11956 }
11957
11958 /* fall through */
11959
11960 case SIGN_EXTRACT:
11961 tem = expand_compound_operation (op0);
11962 if (tem != op0)
11963 {
11964 op0 = tem;
11965 continue;
11966 }
11967 break;
11968
11969 case NOT:
11970 /* If testing for equality, we can take the NOT of the constant. */
11971 if (equality_comparison_p
11972 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11973 {
11974 op0 = XEXP (op0, 0);
11975 op1 = tem;
11976 continue;
11977 }
11978
11979 /* If just looking at the sign bit, reverse the sense of the
11980 comparison. */
11981 if (sign_bit_comparison_p)
11982 {
11983 op0 = XEXP (op0, 0);
11984 code = (code == GE ? LT : GE);
11985 continue;
11986 }
11987 break;
11988
11989 case NEG:
11990 /* If testing for equality, we can take the NEG of the constant. */
11991 if (equality_comparison_p
11992 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11993 {
11994 op0 = XEXP (op0, 0);
11995 op1 = tem;
11996 continue;
11997 }
11998
11999 /* The remaining cases only apply to comparisons with zero. */
12000 if (const_op != 0)
12001 break;
12002
12003 /* When X is ABS or is known positive,
12004 (neg X) is < 0 if and only if X != 0. */
12005
12006 if (sign_bit_comparison_p
12007 && (GET_CODE (XEXP (op0, 0)) == ABS
12008 || (mode_width <= HOST_BITS_PER_WIDE_INT
12009 && (nonzero_bits (XEXP (op0, 0), mode)
12010 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12011 == 0)))
12012 {
12013 op0 = XEXP (op0, 0);
12014 code = (code == LT ? NE : EQ);
12015 continue;
12016 }
12017
12018 /* If we have NEG of something whose two high-order bits are the
12019 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12020 if (num_sign_bit_copies (op0, mode) >= 2)
12021 {
12022 op0 = XEXP (op0, 0);
12023 code = swap_condition (code);
12024 continue;
12025 }
12026 break;
12027
12028 case ROTATE:
12029 /* If we are testing equality and our count is a constant, we
12030 can perform the inverse operation on our RHS. */
12031 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12032 && (tem = simplify_binary_operation (ROTATERT, mode,
12033 op1, XEXP (op0, 1))) != 0)
12034 {
12035 op0 = XEXP (op0, 0);
12036 op1 = tem;
12037 continue;
12038 }
12039
12040 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12041 a particular bit. Convert it to an AND of a constant of that
12042 bit. This will be converted into a ZERO_EXTRACT. */
12043 if (const_op == 0 && sign_bit_comparison_p
12044 && CONST_INT_P (XEXP (op0, 1))
12045 && mode_width <= HOST_BITS_PER_WIDE_INT)
12046 {
12047 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12048 (HOST_WIDE_INT_1U
12049 << (mode_width - 1
12050 - INTVAL (XEXP (op0, 1)))));
12051 code = (code == LT ? NE : EQ);
12052 continue;
12053 }
12054
12055 /* Fall through. */
12056
12057 case ABS:
12058 /* ABS is ignorable inside an equality comparison with zero. */
12059 if (const_op == 0 && equality_comparison_p)
12060 {
12061 op0 = XEXP (op0, 0);
12062 continue;
12063 }
12064 break;
12065
12066 case SIGN_EXTEND:
12067 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12068 (compare FOO CONST) if CONST fits in FOO's mode and we
12069 are either testing inequality or have an unsigned
12070 comparison with ZERO_EXTEND or a signed comparison with
12071 SIGN_EXTEND. But don't do it if we don't have a compare
12072 insn of the given mode, since we'd have to revert it
12073 later on, and then we wouldn't know whether to sign- or
12074 zero-extend. */
12075 mode = GET_MODE (XEXP (op0, 0));
12076 if (GET_MODE_CLASS (mode) == MODE_INT
12077 && ! unsigned_comparison_p
12078 && HWI_COMPUTABLE_MODE_P (mode)
12079 && trunc_int_for_mode (const_op, mode) == const_op
12080 && have_insn_for (COMPARE, mode))
12081 {
12082 op0 = XEXP (op0, 0);
12083 continue;
12084 }
12085 break;
12086
12087 case SUBREG:
12088 /* Check for the case where we are comparing A - C1 with C2, that is
12089
12090 (subreg:MODE (plus (A) (-C1))) op (C2)
12091
12092 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12093 comparison in the wider mode. One of the following two conditions
12094 must be true in order for this to be valid:
12095
12096 1. The mode extension results in the same bit pattern being added
12097 on both sides and the comparison is equality or unsigned. As
12098 C2 has been truncated to fit in MODE, the pattern can only be
12099 all 0s or all 1s.
12100
12101 2. The mode extension results in the sign bit being copied on
12102 each side.
12103
12104 The difficulty here is that we have predicates for A but not for
12105 (A - C1) so we need to check that C1 is within proper bounds so
12106 as to perturbate A as little as possible. */
12107
12108 if (mode_width <= HOST_BITS_PER_WIDE_INT
12109 && subreg_lowpart_p (op0)
12110 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
12111 && GET_CODE (SUBREG_REG (op0)) == PLUS
12112 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12113 {
12114 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
12115 rtx a = XEXP (SUBREG_REG (op0), 0);
12116 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12117
12118 if ((c1 > 0
12119 && (unsigned HOST_WIDE_INT) c1
12120 < HOST_WIDE_INT_1U << (mode_width - 1)
12121 && (equality_comparison_p || unsigned_comparison_p)
12122 /* (A - C1) zero-extends if it is positive and sign-extends
12123 if it is negative, C2 both zero- and sign-extends. */
12124 && ((0 == (nonzero_bits (a, inner_mode)
12125 & ~GET_MODE_MASK (mode))
12126 && const_op >= 0)
12127 /* (A - C1) sign-extends if it is positive and 1-extends
12128 if it is negative, C2 both sign- and 1-extends. */
12129 || (num_sign_bit_copies (a, inner_mode)
12130 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12131 - mode_width)
12132 && const_op < 0)))
12133 || ((unsigned HOST_WIDE_INT) c1
12134 < HOST_WIDE_INT_1U << (mode_width - 2)
12135 /* (A - C1) always sign-extends, like C2. */
12136 && num_sign_bit_copies (a, inner_mode)
12137 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12138 - (mode_width - 1))))
12139 {
12140 op0 = SUBREG_REG (op0);
12141 continue;
12142 }
12143 }
12144
12145 /* If the inner mode is narrower and we are extracting the low part,
12146 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12147 if (subreg_lowpart_p (op0)
12148 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
12149 ;
12150 else if (subreg_lowpart_p (op0)
12151 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12152 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12153 && (code == NE || code == EQ)
12154 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12155 <= HOST_BITS_PER_WIDE_INT)
12156 && !paradoxical_subreg_p (op0)
12157 && (nonzero_bits (SUBREG_REG (op0),
12158 GET_MODE (SUBREG_REG (op0)))
12159 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12160 {
12161 /* Remove outer subregs that don't do anything. */
12162 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12163
12164 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12165 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12166 {
12167 op0 = SUBREG_REG (op0);
12168 op1 = tem;
12169 continue;
12170 }
12171 break;
12172 }
12173 else
12174 break;
12175
12176 /* FALLTHROUGH */
12177
12178 case ZERO_EXTEND:
12179 mode = GET_MODE (XEXP (op0, 0));
12180 if (GET_MODE_CLASS (mode) == MODE_INT
12181 && (unsigned_comparison_p || equality_comparison_p)
12182 && HWI_COMPUTABLE_MODE_P (mode)
12183 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12184 && const_op >= 0
12185 && have_insn_for (COMPARE, mode))
12186 {
12187 op0 = XEXP (op0, 0);
12188 continue;
12189 }
12190 break;
12191
12192 case PLUS:
12193 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12194 this for equality comparisons due to pathological cases involving
12195 overflows. */
12196 if (equality_comparison_p
12197 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12198 op1, XEXP (op0, 1))))
12199 {
12200 op0 = XEXP (op0, 0);
12201 op1 = tem;
12202 continue;
12203 }
12204
12205 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12206 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12207 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12208 {
12209 op0 = XEXP (XEXP (op0, 0), 0);
12210 code = (code == LT ? EQ : NE);
12211 continue;
12212 }
12213 break;
12214
12215 case MINUS:
12216 /* We used to optimize signed comparisons against zero, but that
12217 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12218 arrive here as equality comparisons, or (GEU, LTU) are
12219 optimized away. No need to special-case them. */
12220
12221 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12222 (eq B (minus A C)), whichever simplifies. We can only do
12223 this for equality comparisons due to pathological cases involving
12224 overflows. */
12225 if (equality_comparison_p
12226 && 0 != (tem = simplify_binary_operation (PLUS, mode,
12227 XEXP (op0, 1), op1)))
12228 {
12229 op0 = XEXP (op0, 0);
12230 op1 = tem;
12231 continue;
12232 }
12233
12234 if (equality_comparison_p
12235 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12236 XEXP (op0, 0), op1)))
12237 {
12238 op0 = XEXP (op0, 1);
12239 op1 = tem;
12240 continue;
12241 }
12242
12243 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12244 of bits in X minus 1, is one iff X > 0. */
12245 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12246 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12247 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12248 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12249 {
12250 op0 = XEXP (op0, 1);
12251 code = (code == GE ? LE : GT);
12252 continue;
12253 }
12254 break;
12255
12256 case XOR:
12257 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12258 if C is zero or B is a constant. */
12259 if (equality_comparison_p
12260 && 0 != (tem = simplify_binary_operation (XOR, mode,
12261 XEXP (op0, 1), op1)))
12262 {
12263 op0 = XEXP (op0, 0);
12264 op1 = tem;
12265 continue;
12266 }
12267 break;
12268
12269 case EQ: case NE:
12270 case UNEQ: case LTGT:
12271 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
12272 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
12273 case UNORDERED: case ORDERED:
12274 /* We can't do anything if OP0 is a condition code value, rather
12275 than an actual data value. */
12276 if (const_op != 0
12277 || CC0_P (XEXP (op0, 0))
12278 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12279 break;
12280
12281 /* Get the two operands being compared. */
12282 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12283 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12284 else
12285 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12286
12287 /* Check for the cases where we simply want the result of the
12288 earlier test or the opposite of that result. */
12289 if (code == NE || code == EQ
12290 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
12291 && (code == LT || code == GE)))
12292 {
12293 enum rtx_code new_code;
12294 if (code == LT || code == NE)
12295 new_code = GET_CODE (op0);
12296 else
12297 new_code = reversed_comparison_code (op0, NULL);
12298
12299 if (new_code != UNKNOWN)
12300 {
12301 code = new_code;
12302 op0 = tem;
12303 op1 = tem1;
12304 continue;
12305 }
12306 }
12307 break;
12308
12309 case IOR:
12310 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12311 iff X <= 0. */
12312 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12313 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12314 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12315 {
12316 op0 = XEXP (op0, 1);
12317 code = (code == GE ? GT : LE);
12318 continue;
12319 }
12320 break;
12321
12322 case AND:
12323 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12324 will be converted to a ZERO_EXTRACT later. */
12325 if (const_op == 0 && equality_comparison_p
12326 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12327 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12328 {
12329 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12330 XEXP (XEXP (op0, 0), 1));
12331 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12332 continue;
12333 }
12334
12335 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12336 zero and X is a comparison and C1 and C2 describe only bits set
12337 in STORE_FLAG_VALUE, we can compare with X. */
12338 if (const_op == 0 && equality_comparison_p
12339 && mode_width <= HOST_BITS_PER_WIDE_INT
12340 && CONST_INT_P (XEXP (op0, 1))
12341 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12342 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12343 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12344 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12345 {
12346 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12347 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12348 if ((~STORE_FLAG_VALUE & mask) == 0
12349 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12350 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12351 && COMPARISON_P (tem))))
12352 {
12353 op0 = XEXP (XEXP (op0, 0), 0);
12354 continue;
12355 }
12356 }
12357
12358 /* If we are doing an equality comparison of an AND of a bit equal
12359 to the sign bit, replace this with a LT or GE comparison of
12360 the underlying value. */
12361 if (equality_comparison_p
12362 && const_op == 0
12363 && CONST_INT_P (XEXP (op0, 1))
12364 && mode_width <= HOST_BITS_PER_WIDE_INT
12365 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12366 == HOST_WIDE_INT_1U << (mode_width - 1)))
12367 {
12368 op0 = XEXP (op0, 0);
12369 code = (code == EQ ? GE : LT);
12370 continue;
12371 }
12372
12373 /* If this AND operation is really a ZERO_EXTEND from a narrower
12374 mode, the constant fits within that mode, and this is either an
12375 equality or unsigned comparison, try to do this comparison in
12376 the narrower mode.
12377
12378 Note that in:
12379
12380 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12381 -> (ne:DI (reg:SI 4) (const_int 0))
12382
12383 unless TRULY_NOOP_TRUNCATION allows it or the register is
12384 known to hold a value of the required mode the
12385 transformation is invalid. */
12386 if ((equality_comparison_p || unsigned_comparison_p)
12387 && CONST_INT_P (XEXP (op0, 1))
12388 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12389 & GET_MODE_MASK (mode))
12390 + 1)) >= 0
12391 && const_op >> i == 0
12392 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
12393 {
12394 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12395 continue;
12396 }
12397
12398 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12399 fits in both M1 and M2 and the SUBREG is either paradoxical
12400 or represents the low part, permute the SUBREG and the AND
12401 and try again. */
12402 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12403 && CONST_INT_P (XEXP (op0, 1)))
12404 {
12405 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12406 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12407 /* Require an integral mode, to avoid creating something like
12408 (AND:SF ...). */
12409 if (SCALAR_INT_MODE_P (tmode)
12410 /* It is unsafe to commute the AND into the SUBREG if the
12411 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12412 not defined. As originally written the upper bits
12413 have a defined value due to the AND operation.
12414 However, if we commute the AND inside the SUBREG then
12415 they no longer have defined values and the meaning of
12416 the code has been changed.
12417 Also C1 should not change value in the smaller mode,
12418 see PR67028 (a positive C1 can become negative in the
12419 smaller mode, so that the AND does no longer mask the
12420 upper bits). */
12421 && ((WORD_REGISTER_OPERATIONS
12422 && mode_width > GET_MODE_PRECISION (tmode)
12423 && mode_width <= BITS_PER_WORD
12424 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12425 || (mode_width <= GET_MODE_PRECISION (tmode)
12426 && subreg_lowpart_p (XEXP (op0, 0))))
12427 && mode_width <= HOST_BITS_PER_WIDE_INT
12428 && HWI_COMPUTABLE_MODE_P (tmode)
12429 && (c1 & ~mask) == 0
12430 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12431 && c1 != mask
12432 && c1 != GET_MODE_MASK (tmode))
12433 {
12434 op0 = simplify_gen_binary (AND, tmode,
12435 SUBREG_REG (XEXP (op0, 0)),
12436 gen_int_mode (c1, tmode));
12437 op0 = gen_lowpart (mode, op0);
12438 continue;
12439 }
12440 }
12441
12442 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12443 if (const_op == 0 && equality_comparison_p
12444 && XEXP (op0, 1) == const1_rtx
12445 && GET_CODE (XEXP (op0, 0)) == NOT)
12446 {
12447 op0 = simplify_and_const_int (NULL_RTX, mode,
12448 XEXP (XEXP (op0, 0), 0), 1);
12449 code = (code == NE ? EQ : NE);
12450 continue;
12451 }
12452
12453 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12454 (eq (and (lshiftrt X) 1) 0).
12455 Also handle the case where (not X) is expressed using xor. */
12456 if (const_op == 0 && equality_comparison_p
12457 && XEXP (op0, 1) == const1_rtx
12458 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12459 {
12460 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12461 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12462
12463 if (GET_CODE (shift_op) == NOT
12464 || (GET_CODE (shift_op) == XOR
12465 && CONST_INT_P (XEXP (shift_op, 1))
12466 && CONST_INT_P (shift_count)
12467 && HWI_COMPUTABLE_MODE_P (mode)
12468 && (UINTVAL (XEXP (shift_op, 1))
12469 == HOST_WIDE_INT_1U
12470 << INTVAL (shift_count))))
12471 {
12472 op0
12473 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12474 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12475 code = (code == NE ? EQ : NE);
12476 continue;
12477 }
12478 }
12479 break;
12480
12481 case ASHIFT:
12482 /* If we have (compare (ashift FOO N) (const_int C)) and
12483 the high order N bits of FOO (N+1 if an inequality comparison)
12484 are known to be zero, we can do this by comparing FOO with C
12485 shifted right N bits so long as the low-order N bits of C are
12486 zero. */
12487 if (CONST_INT_P (XEXP (op0, 1))
12488 && INTVAL (XEXP (op0, 1)) >= 0
12489 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12490 < HOST_BITS_PER_WIDE_INT)
12491 && (((unsigned HOST_WIDE_INT) const_op
12492 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12493 - 1)) == 0)
12494 && mode_width <= HOST_BITS_PER_WIDE_INT
12495 && (nonzero_bits (XEXP (op0, 0), mode)
12496 & ~(mask >> (INTVAL (XEXP (op0, 1))
12497 + ! equality_comparison_p))) == 0)
12498 {
12499 /* We must perform a logical shift, not an arithmetic one,
12500 as we want the top N bits of C to be zero. */
12501 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12502
12503 temp >>= INTVAL (XEXP (op0, 1));
12504 op1 = gen_int_mode (temp, mode);
12505 op0 = XEXP (op0, 0);
12506 continue;
12507 }
12508
12509 /* If we are doing a sign bit comparison, it means we are testing
12510 a particular bit. Convert it to the appropriate AND. */
12511 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12512 && mode_width <= HOST_BITS_PER_WIDE_INT)
12513 {
12514 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12515 (HOST_WIDE_INT_1U
12516 << (mode_width - 1
12517 - INTVAL (XEXP (op0, 1)))));
12518 code = (code == LT ? NE : EQ);
12519 continue;
12520 }
12521
12522 /* If this an equality comparison with zero and we are shifting
12523 the low bit to the sign bit, we can convert this to an AND of the
12524 low-order bit. */
12525 if (const_op == 0 && equality_comparison_p
12526 && CONST_INT_P (XEXP (op0, 1))
12527 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12528 {
12529 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12530 continue;
12531 }
12532 break;
12533
12534 case ASHIFTRT:
12535 /* If this is an equality comparison with zero, we can do this
12536 as a logical shift, which might be much simpler. */
12537 if (equality_comparison_p && const_op == 0
12538 && CONST_INT_P (XEXP (op0, 1)))
12539 {
12540 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12541 XEXP (op0, 0),
12542 INTVAL (XEXP (op0, 1)));
12543 continue;
12544 }
12545
12546 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12547 do the comparison in a narrower mode. */
12548 if (! unsigned_comparison_p
12549 && CONST_INT_P (XEXP (op0, 1))
12550 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12551 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12552 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12553 MODE_INT, 1)) != BLKmode
12554 && (((unsigned HOST_WIDE_INT) const_op
12555 + (GET_MODE_MASK (tmode) >> 1) + 1)
12556 <= GET_MODE_MASK (tmode)))
12557 {
12558 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12559 continue;
12560 }
12561
12562 /* Likewise if OP0 is a PLUS of a sign extension with a
12563 constant, which is usually represented with the PLUS
12564 between the shifts. */
12565 if (! unsigned_comparison_p
12566 && CONST_INT_P (XEXP (op0, 1))
12567 && GET_CODE (XEXP (op0, 0)) == PLUS
12568 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12569 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12570 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12571 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12572 MODE_INT, 1)) != BLKmode
12573 && (((unsigned HOST_WIDE_INT) const_op
12574 + (GET_MODE_MASK (tmode) >> 1) + 1)
12575 <= GET_MODE_MASK (tmode)))
12576 {
12577 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12578 rtx add_const = XEXP (XEXP (op0, 0), 1);
12579 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12580 add_const, XEXP (op0, 1));
12581
12582 op0 = simplify_gen_binary (PLUS, tmode,
12583 gen_lowpart (tmode, inner),
12584 new_const);
12585 continue;
12586 }
12587
12588 /* FALLTHROUGH */
12589 case LSHIFTRT:
12590 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12591 the low order N bits of FOO are known to be zero, we can do this
12592 by comparing FOO with C shifted left N bits so long as no
12593 overflow occurs. Even if the low order N bits of FOO aren't known
12594 to be zero, if the comparison is >= or < we can use the same
12595 optimization and for > or <= by setting all the low
12596 order N bits in the comparison constant. */
12597 if (CONST_INT_P (XEXP (op0, 1))
12598 && INTVAL (XEXP (op0, 1)) > 0
12599 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12600 && mode_width <= HOST_BITS_PER_WIDE_INT
12601 && (((unsigned HOST_WIDE_INT) const_op
12602 + (GET_CODE (op0) != LSHIFTRT
12603 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12604 + 1)
12605 : 0))
12606 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12607 {
12608 unsigned HOST_WIDE_INT low_bits
12609 = (nonzero_bits (XEXP (op0, 0), mode)
12610 & ((HOST_WIDE_INT_1U
12611 << INTVAL (XEXP (op0, 1))) - 1));
12612 if (low_bits == 0 || !equality_comparison_p)
12613 {
12614 /* If the shift was logical, then we must make the condition
12615 unsigned. */
12616 if (GET_CODE (op0) == LSHIFTRT)
12617 code = unsigned_condition (code);
12618
12619 const_op = (unsigned HOST_WIDE_INT) const_op
12620 << INTVAL (XEXP (op0, 1));
12621 if (low_bits != 0
12622 && (code == GT || code == GTU
12623 || code == LE || code == LEU))
12624 const_op
12625 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12626 op1 = GEN_INT (const_op);
12627 op0 = XEXP (op0, 0);
12628 continue;
12629 }
12630 }
12631
12632 /* If we are using this shift to extract just the sign bit, we
12633 can replace this with an LT or GE comparison. */
12634 if (const_op == 0
12635 && (equality_comparison_p || sign_bit_comparison_p)
12636 && CONST_INT_P (XEXP (op0, 1))
12637 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12638 {
12639 op0 = XEXP (op0, 0);
12640 code = (code == NE || code == GT ? LT : GE);
12641 continue;
12642 }
12643 break;
12644
12645 default:
12646 break;
12647 }
12648
12649 break;
12650 }
12651
12652 /* Now make any compound operations involved in this comparison. Then,
12653 check for an outmost SUBREG on OP0 that is not doing anything or is
12654 paradoxical. The latter transformation must only be performed when
12655 it is known that the "extra" bits will be the same in op0 and op1 or
12656 that they don't matter. There are three cases to consider:
12657
12658 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12659 care bits and we can assume they have any convenient value. So
12660 making the transformation is safe.
12661
12662 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12663 In this case the upper bits of op0 are undefined. We should not make
12664 the simplification in that case as we do not know the contents of
12665 those bits.
12666
12667 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12668 In that case we know those bits are zeros or ones. We must also be
12669 sure that they are the same as the upper bits of op1.
12670
12671 We can never remove a SUBREG for a non-equality comparison because
12672 the sign bit is in a different place in the underlying object. */
12673
12674 rtx_code op0_mco_code = SET;
12675 if (op1 == const0_rtx)
12676 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12677
12678 op0 = make_compound_operation (op0, op0_mco_code);
12679 op1 = make_compound_operation (op1, SET);
12680
12681 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12682 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12683 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12684 && (code == NE || code == EQ))
12685 {
12686 if (paradoxical_subreg_p (op0))
12687 {
12688 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12689 implemented. */
12690 if (REG_P (SUBREG_REG (op0)))
12691 {
12692 op0 = SUBREG_REG (op0);
12693 op1 = gen_lowpart (GET_MODE (op0), op1);
12694 }
12695 }
12696 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12697 <= HOST_BITS_PER_WIDE_INT)
12698 && (nonzero_bits (SUBREG_REG (op0),
12699 GET_MODE (SUBREG_REG (op0)))
12700 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12701 {
12702 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12703
12704 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12705 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12706 op0 = SUBREG_REG (op0), op1 = tem;
12707 }
12708 }
12709
12710 /* We now do the opposite procedure: Some machines don't have compare
12711 insns in all modes. If OP0's mode is an integer mode smaller than a
12712 word and we can't do a compare in that mode, see if there is a larger
12713 mode for which we can do the compare. There are a number of cases in
12714 which we can use the wider mode. */
12715
12716 mode = GET_MODE (op0);
12717 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12718 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12719 && ! have_insn_for (COMPARE, mode))
12720 for (tmode = GET_MODE_WIDER_MODE (mode);
12721 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12722 tmode = GET_MODE_WIDER_MODE (tmode))
12723 if (have_insn_for (COMPARE, tmode))
12724 {
12725 int zero_extended;
12726
12727 /* If this is a test for negative, we can make an explicit
12728 test of the sign bit. Test this first so we can use
12729 a paradoxical subreg to extend OP0. */
12730
12731 if (op1 == const0_rtx && (code == LT || code == GE)
12732 && HWI_COMPUTABLE_MODE_P (mode))
12733 {
12734 unsigned HOST_WIDE_INT sign
12735 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12736 op0 = simplify_gen_binary (AND, tmode,
12737 gen_lowpart (tmode, op0),
12738 gen_int_mode (sign, tmode));
12739 code = (code == LT) ? NE : EQ;
12740 break;
12741 }
12742
12743 /* If the only nonzero bits in OP0 and OP1 are those in the
12744 narrower mode and this is an equality or unsigned comparison,
12745 we can use the wider mode. Similarly for sign-extended
12746 values, in which case it is true for all comparisons. */
12747 zero_extended = ((code == EQ || code == NE
12748 || code == GEU || code == GTU
12749 || code == LEU || code == LTU)
12750 && (nonzero_bits (op0, tmode)
12751 & ~GET_MODE_MASK (mode)) == 0
12752 && ((CONST_INT_P (op1)
12753 || (nonzero_bits (op1, tmode)
12754 & ~GET_MODE_MASK (mode)) == 0)));
12755
12756 if (zero_extended
12757 || ((num_sign_bit_copies (op0, tmode)
12758 > (unsigned int) (GET_MODE_PRECISION (tmode)
12759 - GET_MODE_PRECISION (mode)))
12760 && (num_sign_bit_copies (op1, tmode)
12761 > (unsigned int) (GET_MODE_PRECISION (tmode)
12762 - GET_MODE_PRECISION (mode)))))
12763 {
12764 /* If OP0 is an AND and we don't have an AND in MODE either,
12765 make a new AND in the proper mode. */
12766 if (GET_CODE (op0) == AND
12767 && !have_insn_for (AND, mode))
12768 op0 = simplify_gen_binary (AND, tmode,
12769 gen_lowpart (tmode,
12770 XEXP (op0, 0)),
12771 gen_lowpart (tmode,
12772 XEXP (op0, 1)));
12773 else
12774 {
12775 if (zero_extended)
12776 {
12777 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12778 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12779 }
12780 else
12781 {
12782 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12783 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12784 }
12785 break;
12786 }
12787 }
12788 }
12789
12790 /* We may have changed the comparison operands. Re-canonicalize. */
12791 if (swap_commutative_operands_p (op0, op1))
12792 {
12793 std::swap (op0, op1);
12794 code = swap_condition (code);
12795 }
12796
12797 /* If this machine only supports a subset of valid comparisons, see if we
12798 can convert an unsupported one into a supported one. */
12799 target_canonicalize_comparison (&code, &op0, &op1, 0);
12800
12801 *pop0 = op0;
12802 *pop1 = op1;
12803
12804 return code;
12805 }
12806 \f
12807 /* Utility function for record_value_for_reg. Count number of
12808 rtxs in X. */
12809 static int
12810 count_rtxs (rtx x)
12811 {
12812 enum rtx_code code = GET_CODE (x);
12813 const char *fmt;
12814 int i, j, ret = 1;
12815
12816 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12817 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12818 {
12819 rtx x0 = XEXP (x, 0);
12820 rtx x1 = XEXP (x, 1);
12821
12822 if (x0 == x1)
12823 return 1 + 2 * count_rtxs (x0);
12824
12825 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12826 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12827 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12828 return 2 + 2 * count_rtxs (x0)
12829 + count_rtxs (x == XEXP (x1, 0)
12830 ? XEXP (x1, 1) : XEXP (x1, 0));
12831
12832 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12833 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12834 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12835 return 2 + 2 * count_rtxs (x1)
12836 + count_rtxs (x == XEXP (x0, 0)
12837 ? XEXP (x0, 1) : XEXP (x0, 0));
12838 }
12839
12840 fmt = GET_RTX_FORMAT (code);
12841 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12842 if (fmt[i] == 'e')
12843 ret += count_rtxs (XEXP (x, i));
12844 else if (fmt[i] == 'E')
12845 for (j = 0; j < XVECLEN (x, i); j++)
12846 ret += count_rtxs (XVECEXP (x, i, j));
12847
12848 return ret;
12849 }
12850 \f
12851 /* Utility function for following routine. Called when X is part of a value
12852 being stored into last_set_value. Sets last_set_table_tick
12853 for each register mentioned. Similar to mention_regs in cse.c */
12854
12855 static void
12856 update_table_tick (rtx x)
12857 {
12858 enum rtx_code code = GET_CODE (x);
12859 const char *fmt = GET_RTX_FORMAT (code);
12860 int i, j;
12861
12862 if (code == REG)
12863 {
12864 unsigned int regno = REGNO (x);
12865 unsigned int endregno = END_REGNO (x);
12866 unsigned int r;
12867
12868 for (r = regno; r < endregno; r++)
12869 {
12870 reg_stat_type *rsp = &reg_stat[r];
12871 rsp->last_set_table_tick = label_tick;
12872 }
12873
12874 return;
12875 }
12876
12877 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12878 if (fmt[i] == 'e')
12879 {
12880 /* Check for identical subexpressions. If x contains
12881 identical subexpression we only have to traverse one of
12882 them. */
12883 if (i == 0 && ARITHMETIC_P (x))
12884 {
12885 /* Note that at this point x1 has already been
12886 processed. */
12887 rtx x0 = XEXP (x, 0);
12888 rtx x1 = XEXP (x, 1);
12889
12890 /* If x0 and x1 are identical then there is no need to
12891 process x0. */
12892 if (x0 == x1)
12893 break;
12894
12895 /* If x0 is identical to a subexpression of x1 then while
12896 processing x1, x0 has already been processed. Thus we
12897 are done with x. */
12898 if (ARITHMETIC_P (x1)
12899 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12900 break;
12901
12902 /* If x1 is identical to a subexpression of x0 then we
12903 still have to process the rest of x0. */
12904 if (ARITHMETIC_P (x0)
12905 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12906 {
12907 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12908 break;
12909 }
12910 }
12911
12912 update_table_tick (XEXP (x, i));
12913 }
12914 else if (fmt[i] == 'E')
12915 for (j = 0; j < XVECLEN (x, i); j++)
12916 update_table_tick (XVECEXP (x, i, j));
12917 }
12918
12919 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12920 are saying that the register is clobbered and we no longer know its
12921 value. If INSN is zero, don't update reg_stat[].last_set; this is
12922 only permitted with VALUE also zero and is used to invalidate the
12923 register. */
12924
12925 static void
12926 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12927 {
12928 unsigned int regno = REGNO (reg);
12929 unsigned int endregno = END_REGNO (reg);
12930 unsigned int i;
12931 reg_stat_type *rsp;
12932
12933 /* If VALUE contains REG and we have a previous value for REG, substitute
12934 the previous value. */
12935 if (value && insn && reg_overlap_mentioned_p (reg, value))
12936 {
12937 rtx tem;
12938
12939 /* Set things up so get_last_value is allowed to see anything set up to
12940 our insn. */
12941 subst_low_luid = DF_INSN_LUID (insn);
12942 tem = get_last_value (reg);
12943
12944 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12945 it isn't going to be useful and will take a lot of time to process,
12946 so just use the CLOBBER. */
12947
12948 if (tem)
12949 {
12950 if (ARITHMETIC_P (tem)
12951 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12952 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12953 tem = XEXP (tem, 0);
12954 else if (count_occurrences (value, reg, 1) >= 2)
12955 {
12956 /* If there are two or more occurrences of REG in VALUE,
12957 prevent the value from growing too much. */
12958 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12959 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12960 }
12961
12962 value = replace_rtx (copy_rtx (value), reg, tem);
12963 }
12964 }
12965
12966 /* For each register modified, show we don't know its value, that
12967 we don't know about its bitwise content, that its value has been
12968 updated, and that we don't know the location of the death of the
12969 register. */
12970 for (i = regno; i < endregno; i++)
12971 {
12972 rsp = &reg_stat[i];
12973
12974 if (insn)
12975 rsp->last_set = insn;
12976
12977 rsp->last_set_value = 0;
12978 rsp->last_set_mode = VOIDmode;
12979 rsp->last_set_nonzero_bits = 0;
12980 rsp->last_set_sign_bit_copies = 0;
12981 rsp->last_death = 0;
12982 rsp->truncated_to_mode = VOIDmode;
12983 }
12984
12985 /* Mark registers that are being referenced in this value. */
12986 if (value)
12987 update_table_tick (value);
12988
12989 /* Now update the status of each register being set.
12990 If someone is using this register in this block, set this register
12991 to invalid since we will get confused between the two lives in this
12992 basic block. This makes using this register always invalid. In cse, we
12993 scan the table to invalidate all entries using this register, but this
12994 is too much work for us. */
12995
12996 for (i = regno; i < endregno; i++)
12997 {
12998 rsp = &reg_stat[i];
12999 rsp->last_set_label = label_tick;
13000 if (!insn
13001 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13002 rsp->last_set_invalid = 1;
13003 else
13004 rsp->last_set_invalid = 0;
13005 }
13006
13007 /* The value being assigned might refer to X (like in "x++;"). In that
13008 case, we must replace it with (clobber (const_int 0)) to prevent
13009 infinite loops. */
13010 rsp = &reg_stat[regno];
13011 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13012 {
13013 value = copy_rtx (value);
13014 if (!get_last_value_validate (&value, insn, label_tick, 1))
13015 value = 0;
13016 }
13017
13018 /* For the main register being modified, update the value, the mode, the
13019 nonzero bits, and the number of sign bit copies. */
13020
13021 rsp->last_set_value = value;
13022
13023 if (value)
13024 {
13025 machine_mode mode = GET_MODE (reg);
13026 subst_low_luid = DF_INSN_LUID (insn);
13027 rsp->last_set_mode = mode;
13028 if (GET_MODE_CLASS (mode) == MODE_INT
13029 && HWI_COMPUTABLE_MODE_P (mode))
13030 mode = nonzero_bits_mode;
13031 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13032 rsp->last_set_sign_bit_copies
13033 = num_sign_bit_copies (value, GET_MODE (reg));
13034 }
13035 }
13036
13037 /* Called via note_stores from record_dead_and_set_regs to handle one
13038 SET or CLOBBER in an insn. DATA is the instruction in which the
13039 set is occurring. */
13040
13041 static void
13042 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13043 {
13044 rtx_insn *record_dead_insn = (rtx_insn *) data;
13045
13046 if (GET_CODE (dest) == SUBREG)
13047 dest = SUBREG_REG (dest);
13048
13049 if (!record_dead_insn)
13050 {
13051 if (REG_P (dest))
13052 record_value_for_reg (dest, NULL, NULL_RTX);
13053 return;
13054 }
13055
13056 if (REG_P (dest))
13057 {
13058 /* If we are setting the whole register, we know its value. Otherwise
13059 show that we don't know the value. We can handle SUBREG in
13060 some cases. */
13061 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13062 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13063 else if (GET_CODE (setter) == SET
13064 && GET_CODE (SET_DEST (setter)) == SUBREG
13065 && SUBREG_REG (SET_DEST (setter)) == dest
13066 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
13067 && subreg_lowpart_p (SET_DEST (setter)))
13068 record_value_for_reg (dest, record_dead_insn,
13069 gen_lowpart (GET_MODE (dest),
13070 SET_SRC (setter)));
13071 else
13072 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13073 }
13074 else if (MEM_P (dest)
13075 /* Ignore pushes, they clobber nothing. */
13076 && ! push_operand (dest, GET_MODE (dest)))
13077 mem_last_set = DF_INSN_LUID (record_dead_insn);
13078 }
13079
13080 /* Update the records of when each REG was most recently set or killed
13081 for the things done by INSN. This is the last thing done in processing
13082 INSN in the combiner loop.
13083
13084 We update reg_stat[], in particular fields last_set, last_set_value,
13085 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13086 last_death, and also the similar information mem_last_set (which insn
13087 most recently modified memory) and last_call_luid (which insn was the
13088 most recent subroutine call). */
13089
13090 static void
13091 record_dead_and_set_regs (rtx_insn *insn)
13092 {
13093 rtx link;
13094 unsigned int i;
13095
13096 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13097 {
13098 if (REG_NOTE_KIND (link) == REG_DEAD
13099 && REG_P (XEXP (link, 0)))
13100 {
13101 unsigned int regno = REGNO (XEXP (link, 0));
13102 unsigned int endregno = END_REGNO (XEXP (link, 0));
13103
13104 for (i = regno; i < endregno; i++)
13105 {
13106 reg_stat_type *rsp;
13107
13108 rsp = &reg_stat[i];
13109 rsp->last_death = insn;
13110 }
13111 }
13112 else if (REG_NOTE_KIND (link) == REG_INC)
13113 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13114 }
13115
13116 if (CALL_P (insn))
13117 {
13118 hard_reg_set_iterator hrsi;
13119 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13120 {
13121 reg_stat_type *rsp;
13122
13123 rsp = &reg_stat[i];
13124 rsp->last_set_invalid = 1;
13125 rsp->last_set = insn;
13126 rsp->last_set_value = 0;
13127 rsp->last_set_mode = VOIDmode;
13128 rsp->last_set_nonzero_bits = 0;
13129 rsp->last_set_sign_bit_copies = 0;
13130 rsp->last_death = 0;
13131 rsp->truncated_to_mode = VOIDmode;
13132 }
13133
13134 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13135
13136 /* We can't combine into a call pattern. Remember, though, that
13137 the return value register is set at this LUID. We could
13138 still replace a register with the return value from the
13139 wrong subroutine call! */
13140 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13141 }
13142 else
13143 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13144 }
13145
13146 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13147 register present in the SUBREG, so for each such SUBREG go back and
13148 adjust nonzero and sign bit information of the registers that are
13149 known to have some zero/sign bits set.
13150
13151 This is needed because when combine blows the SUBREGs away, the
13152 information on zero/sign bits is lost and further combines can be
13153 missed because of that. */
13154
13155 static void
13156 record_promoted_value (rtx_insn *insn, rtx subreg)
13157 {
13158 struct insn_link *links;
13159 rtx set;
13160 unsigned int regno = REGNO (SUBREG_REG (subreg));
13161 machine_mode mode = GET_MODE (subreg);
13162
13163 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
13164 return;
13165
13166 for (links = LOG_LINKS (insn); links;)
13167 {
13168 reg_stat_type *rsp;
13169
13170 insn = links->insn;
13171 set = single_set (insn);
13172
13173 if (! set || !REG_P (SET_DEST (set))
13174 || REGNO (SET_DEST (set)) != regno
13175 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13176 {
13177 links = links->next;
13178 continue;
13179 }
13180
13181 rsp = &reg_stat[regno];
13182 if (rsp->last_set == insn)
13183 {
13184 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13185 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13186 }
13187
13188 if (REG_P (SET_SRC (set)))
13189 {
13190 regno = REGNO (SET_SRC (set));
13191 links = LOG_LINKS (insn);
13192 }
13193 else
13194 break;
13195 }
13196 }
13197
13198 /* Check if X, a register, is known to contain a value already
13199 truncated to MODE. In this case we can use a subreg to refer to
13200 the truncated value even though in the generic case we would need
13201 an explicit truncation. */
13202
13203 static bool
13204 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13205 {
13206 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13207 machine_mode truncated = rsp->truncated_to_mode;
13208
13209 if (truncated == 0
13210 || rsp->truncation_label < label_tick_ebb_start)
13211 return false;
13212 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
13213 return true;
13214 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13215 return true;
13216 return false;
13217 }
13218
13219 /* If X is a hard reg or a subreg record the mode that the register is
13220 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
13221 to turn a truncate into a subreg using this information. Return true
13222 if traversing X is complete. */
13223
13224 static bool
13225 record_truncated_value (rtx x)
13226 {
13227 machine_mode truncated_mode;
13228 reg_stat_type *rsp;
13229
13230 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13231 {
13232 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13233 truncated_mode = GET_MODE (x);
13234
13235 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
13236 return true;
13237
13238 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13239 return true;
13240
13241 x = SUBREG_REG (x);
13242 }
13243 /* ??? For hard-regs we now record everything. We might be able to
13244 optimize this using last_set_mode. */
13245 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13246 truncated_mode = GET_MODE (x);
13247 else
13248 return false;
13249
13250 rsp = &reg_stat[REGNO (x)];
13251 if (rsp->truncated_to_mode == 0
13252 || rsp->truncation_label < label_tick_ebb_start
13253 || (GET_MODE_SIZE (truncated_mode)
13254 < GET_MODE_SIZE (rsp->truncated_to_mode)))
13255 {
13256 rsp->truncated_to_mode = truncated_mode;
13257 rsp->truncation_label = label_tick;
13258 }
13259
13260 return true;
13261 }
13262
13263 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13264 the modes they are used in. This can help truning TRUNCATEs into
13265 SUBREGs. */
13266
13267 static void
13268 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13269 {
13270 subrtx_var_iterator::array_type array;
13271 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13272 if (record_truncated_value (*iter))
13273 iter.skip_subrtxes ();
13274 }
13275
13276 /* Scan X for promoted SUBREGs. For each one found,
13277 note what it implies to the registers used in it. */
13278
13279 static void
13280 check_promoted_subreg (rtx_insn *insn, rtx x)
13281 {
13282 if (GET_CODE (x) == SUBREG
13283 && SUBREG_PROMOTED_VAR_P (x)
13284 && REG_P (SUBREG_REG (x)))
13285 record_promoted_value (insn, x);
13286 else
13287 {
13288 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13289 int i, j;
13290
13291 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13292 switch (format[i])
13293 {
13294 case 'e':
13295 check_promoted_subreg (insn, XEXP (x, i));
13296 break;
13297 case 'V':
13298 case 'E':
13299 if (XVEC (x, i) != 0)
13300 for (j = 0; j < XVECLEN (x, i); j++)
13301 check_promoted_subreg (insn, XVECEXP (x, i, j));
13302 break;
13303 }
13304 }
13305 }
13306 \f
13307 /* Verify that all the registers and memory references mentioned in *LOC are
13308 still valid. *LOC was part of a value set in INSN when label_tick was
13309 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13310 the invalid references with (clobber (const_int 0)) and return 1. This
13311 replacement is useful because we often can get useful information about
13312 the form of a value (e.g., if it was produced by a shift that always
13313 produces -1 or 0) even though we don't know exactly what registers it
13314 was produced from. */
13315
13316 static int
13317 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13318 {
13319 rtx x = *loc;
13320 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13321 int len = GET_RTX_LENGTH (GET_CODE (x));
13322 int i, j;
13323
13324 if (REG_P (x))
13325 {
13326 unsigned int regno = REGNO (x);
13327 unsigned int endregno = END_REGNO (x);
13328 unsigned int j;
13329
13330 for (j = regno; j < endregno; j++)
13331 {
13332 reg_stat_type *rsp = &reg_stat[j];
13333 if (rsp->last_set_invalid
13334 /* If this is a pseudo-register that was only set once and not
13335 live at the beginning of the function, it is always valid. */
13336 || (! (regno >= FIRST_PSEUDO_REGISTER
13337 && regno < reg_n_sets_max
13338 && REG_N_SETS (regno) == 1
13339 && (!REGNO_REG_SET_P
13340 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13341 regno)))
13342 && rsp->last_set_label > tick))
13343 {
13344 if (replace)
13345 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13346 return replace;
13347 }
13348 }
13349
13350 return 1;
13351 }
13352 /* If this is a memory reference, make sure that there were no stores after
13353 it that might have clobbered the value. We don't have alias info, so we
13354 assume any store invalidates it. Moreover, we only have local UIDs, so
13355 we also assume that there were stores in the intervening basic blocks. */
13356 else if (MEM_P (x) && !MEM_READONLY_P (x)
13357 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13358 {
13359 if (replace)
13360 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13361 return replace;
13362 }
13363
13364 for (i = 0; i < len; i++)
13365 {
13366 if (fmt[i] == 'e')
13367 {
13368 /* Check for identical subexpressions. If x contains
13369 identical subexpression we only have to traverse one of
13370 them. */
13371 if (i == 1 && ARITHMETIC_P (x))
13372 {
13373 /* Note that at this point x0 has already been checked
13374 and found valid. */
13375 rtx x0 = XEXP (x, 0);
13376 rtx x1 = XEXP (x, 1);
13377
13378 /* If x0 and x1 are identical then x is also valid. */
13379 if (x0 == x1)
13380 return 1;
13381
13382 /* If x1 is identical to a subexpression of x0 then
13383 while checking x0, x1 has already been checked. Thus
13384 it is valid and so as x. */
13385 if (ARITHMETIC_P (x0)
13386 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13387 return 1;
13388
13389 /* If x0 is identical to a subexpression of x1 then x is
13390 valid iff the rest of x1 is valid. */
13391 if (ARITHMETIC_P (x1)
13392 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13393 return
13394 get_last_value_validate (&XEXP (x1,
13395 x0 == XEXP (x1, 0) ? 1 : 0),
13396 insn, tick, replace);
13397 }
13398
13399 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13400 replace) == 0)
13401 return 0;
13402 }
13403 else if (fmt[i] == 'E')
13404 for (j = 0; j < XVECLEN (x, i); j++)
13405 if (get_last_value_validate (&XVECEXP (x, i, j),
13406 insn, tick, replace) == 0)
13407 return 0;
13408 }
13409
13410 /* If we haven't found a reason for it to be invalid, it is valid. */
13411 return 1;
13412 }
13413
13414 /* Get the last value assigned to X, if known. Some registers
13415 in the value may be replaced with (clobber (const_int 0)) if their value
13416 is known longer known reliably. */
13417
13418 static rtx
13419 get_last_value (const_rtx x)
13420 {
13421 unsigned int regno;
13422 rtx value;
13423 reg_stat_type *rsp;
13424
13425 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13426 then convert it to the desired mode. If this is a paradoxical SUBREG,
13427 we cannot predict what values the "extra" bits might have. */
13428 if (GET_CODE (x) == SUBREG
13429 && subreg_lowpart_p (x)
13430 && !paradoxical_subreg_p (x)
13431 && (value = get_last_value (SUBREG_REG (x))) != 0)
13432 return gen_lowpart (GET_MODE (x), value);
13433
13434 if (!REG_P (x))
13435 return 0;
13436
13437 regno = REGNO (x);
13438 rsp = &reg_stat[regno];
13439 value = rsp->last_set_value;
13440
13441 /* If we don't have a value, or if it isn't for this basic block and
13442 it's either a hard register, set more than once, or it's a live
13443 at the beginning of the function, return 0.
13444
13445 Because if it's not live at the beginning of the function then the reg
13446 is always set before being used (is never used without being set).
13447 And, if it's set only once, and it's always set before use, then all
13448 uses must have the same last value, even if it's not from this basic
13449 block. */
13450
13451 if (value == 0
13452 || (rsp->last_set_label < label_tick_ebb_start
13453 && (regno < FIRST_PSEUDO_REGISTER
13454 || regno >= reg_n_sets_max
13455 || REG_N_SETS (regno) != 1
13456 || REGNO_REG_SET_P
13457 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13458 return 0;
13459
13460 /* If the value was set in a later insn than the ones we are processing,
13461 we can't use it even if the register was only set once. */
13462 if (rsp->last_set_label == label_tick
13463 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13464 return 0;
13465
13466 /* If fewer bits were set than what we are asked for now, we cannot use
13467 the value. */
13468 if (GET_MODE_PRECISION (rsp->last_set_mode)
13469 < GET_MODE_PRECISION (GET_MODE (x)))
13470 return 0;
13471
13472 /* If the value has all its registers valid, return it. */
13473 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13474 return value;
13475
13476 /* Otherwise, make a copy and replace any invalid register with
13477 (clobber (const_int 0)). If that fails for some reason, return 0. */
13478
13479 value = copy_rtx (value);
13480 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13481 return value;
13482
13483 return 0;
13484 }
13485 \f
13486 /* Return nonzero if expression X refers to a REG or to memory
13487 that is set in an instruction more recent than FROM_LUID. */
13488
13489 static int
13490 use_crosses_set_p (const_rtx x, int from_luid)
13491 {
13492 const char *fmt;
13493 int i;
13494 enum rtx_code code = GET_CODE (x);
13495
13496 if (code == REG)
13497 {
13498 unsigned int regno = REGNO (x);
13499 unsigned endreg = END_REGNO (x);
13500
13501 #ifdef PUSH_ROUNDING
13502 /* Don't allow uses of the stack pointer to be moved,
13503 because we don't know whether the move crosses a push insn. */
13504 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13505 return 1;
13506 #endif
13507 for (; regno < endreg; regno++)
13508 {
13509 reg_stat_type *rsp = &reg_stat[regno];
13510 if (rsp->last_set
13511 && rsp->last_set_label == label_tick
13512 && DF_INSN_LUID (rsp->last_set) > from_luid)
13513 return 1;
13514 }
13515 return 0;
13516 }
13517
13518 if (code == MEM && mem_last_set > from_luid)
13519 return 1;
13520
13521 fmt = GET_RTX_FORMAT (code);
13522
13523 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13524 {
13525 if (fmt[i] == 'E')
13526 {
13527 int j;
13528 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13529 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13530 return 1;
13531 }
13532 else if (fmt[i] == 'e'
13533 && use_crosses_set_p (XEXP (x, i), from_luid))
13534 return 1;
13535 }
13536 return 0;
13537 }
13538 \f
13539 /* Define three variables used for communication between the following
13540 routines. */
13541
13542 static unsigned int reg_dead_regno, reg_dead_endregno;
13543 static int reg_dead_flag;
13544
13545 /* Function called via note_stores from reg_dead_at_p.
13546
13547 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13548 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13549
13550 static void
13551 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13552 {
13553 unsigned int regno, endregno;
13554
13555 if (!REG_P (dest))
13556 return;
13557
13558 regno = REGNO (dest);
13559 endregno = END_REGNO (dest);
13560 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13561 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13562 }
13563
13564 /* Return nonzero if REG is known to be dead at INSN.
13565
13566 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13567 referencing REG, it is dead. If we hit a SET referencing REG, it is
13568 live. Otherwise, see if it is live or dead at the start of the basic
13569 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13570 must be assumed to be always live. */
13571
13572 static int
13573 reg_dead_at_p (rtx reg, rtx_insn *insn)
13574 {
13575 basic_block block;
13576 unsigned int i;
13577
13578 /* Set variables for reg_dead_at_p_1. */
13579 reg_dead_regno = REGNO (reg);
13580 reg_dead_endregno = END_REGNO (reg);
13581
13582 reg_dead_flag = 0;
13583
13584 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13585 we allow the machine description to decide whether use-and-clobber
13586 patterns are OK. */
13587 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13588 {
13589 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13590 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13591 return 0;
13592 }
13593
13594 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13595 beginning of basic block. */
13596 block = BLOCK_FOR_INSN (insn);
13597 for (;;)
13598 {
13599 if (INSN_P (insn))
13600 {
13601 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13602 return 1;
13603
13604 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13605 if (reg_dead_flag)
13606 return reg_dead_flag == 1 ? 1 : 0;
13607
13608 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13609 return 1;
13610 }
13611
13612 if (insn == BB_HEAD (block))
13613 break;
13614
13615 insn = PREV_INSN (insn);
13616 }
13617
13618 /* Look at live-in sets for the basic block that we were in. */
13619 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13620 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13621 return 0;
13622
13623 return 1;
13624 }
13625 \f
13626 /* Note hard registers in X that are used. */
13627
13628 static void
13629 mark_used_regs_combine (rtx x)
13630 {
13631 RTX_CODE code = GET_CODE (x);
13632 unsigned int regno;
13633 int i;
13634
13635 switch (code)
13636 {
13637 case LABEL_REF:
13638 case SYMBOL_REF:
13639 case CONST:
13640 CASE_CONST_ANY:
13641 case PC:
13642 case ADDR_VEC:
13643 case ADDR_DIFF_VEC:
13644 case ASM_INPUT:
13645 /* CC0 must die in the insn after it is set, so we don't need to take
13646 special note of it here. */
13647 case CC0:
13648 return;
13649
13650 case CLOBBER:
13651 /* If we are clobbering a MEM, mark any hard registers inside the
13652 address as used. */
13653 if (MEM_P (XEXP (x, 0)))
13654 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13655 return;
13656
13657 case REG:
13658 regno = REGNO (x);
13659 /* A hard reg in a wide mode may really be multiple registers.
13660 If so, mark all of them just like the first. */
13661 if (regno < FIRST_PSEUDO_REGISTER)
13662 {
13663 /* None of this applies to the stack, frame or arg pointers. */
13664 if (regno == STACK_POINTER_REGNUM
13665 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13666 && regno == HARD_FRAME_POINTER_REGNUM)
13667 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13668 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13669 || regno == FRAME_POINTER_REGNUM)
13670 return;
13671
13672 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13673 }
13674 return;
13675
13676 case SET:
13677 {
13678 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13679 the address. */
13680 rtx testreg = SET_DEST (x);
13681
13682 while (GET_CODE (testreg) == SUBREG
13683 || GET_CODE (testreg) == ZERO_EXTRACT
13684 || GET_CODE (testreg) == STRICT_LOW_PART)
13685 testreg = XEXP (testreg, 0);
13686
13687 if (MEM_P (testreg))
13688 mark_used_regs_combine (XEXP (testreg, 0));
13689
13690 mark_used_regs_combine (SET_SRC (x));
13691 }
13692 return;
13693
13694 default:
13695 break;
13696 }
13697
13698 /* Recursively scan the operands of this expression. */
13699
13700 {
13701 const char *fmt = GET_RTX_FORMAT (code);
13702
13703 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13704 {
13705 if (fmt[i] == 'e')
13706 mark_used_regs_combine (XEXP (x, i));
13707 else if (fmt[i] == 'E')
13708 {
13709 int j;
13710
13711 for (j = 0; j < XVECLEN (x, i); j++)
13712 mark_used_regs_combine (XVECEXP (x, i, j));
13713 }
13714 }
13715 }
13716 }
13717 \f
13718 /* Remove register number REGNO from the dead registers list of INSN.
13719
13720 Return the note used to record the death, if there was one. */
13721
13722 rtx
13723 remove_death (unsigned int regno, rtx_insn *insn)
13724 {
13725 rtx note = find_regno_note (insn, REG_DEAD, regno);
13726
13727 if (note)
13728 remove_note (insn, note);
13729
13730 return note;
13731 }
13732
13733 /* For each register (hardware or pseudo) used within expression X, if its
13734 death is in an instruction with luid between FROM_LUID (inclusive) and
13735 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13736 list headed by PNOTES.
13737
13738 That said, don't move registers killed by maybe_kill_insn.
13739
13740 This is done when X is being merged by combination into TO_INSN. These
13741 notes will then be distributed as needed. */
13742
13743 static void
13744 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13745 rtx *pnotes)
13746 {
13747 const char *fmt;
13748 int len, i;
13749 enum rtx_code code = GET_CODE (x);
13750
13751 if (code == REG)
13752 {
13753 unsigned int regno = REGNO (x);
13754 rtx_insn *where_dead = reg_stat[regno].last_death;
13755
13756 /* Don't move the register if it gets killed in between from and to. */
13757 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13758 && ! reg_referenced_p (x, maybe_kill_insn))
13759 return;
13760
13761 if (where_dead
13762 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13763 && DF_INSN_LUID (where_dead) >= from_luid
13764 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13765 {
13766 rtx note = remove_death (regno, where_dead);
13767
13768 /* It is possible for the call above to return 0. This can occur
13769 when last_death points to I2 or I1 that we combined with.
13770 In that case make a new note.
13771
13772 We must also check for the case where X is a hard register
13773 and NOTE is a death note for a range of hard registers
13774 including X. In that case, we must put REG_DEAD notes for
13775 the remaining registers in place of NOTE. */
13776
13777 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13778 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13779 > GET_MODE_SIZE (GET_MODE (x))))
13780 {
13781 unsigned int deadregno = REGNO (XEXP (note, 0));
13782 unsigned int deadend = END_REGNO (XEXP (note, 0));
13783 unsigned int ourend = END_REGNO (x);
13784 unsigned int i;
13785
13786 for (i = deadregno; i < deadend; i++)
13787 if (i < regno || i >= ourend)
13788 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13789 }
13790
13791 /* If we didn't find any note, or if we found a REG_DEAD note that
13792 covers only part of the given reg, and we have a multi-reg hard
13793 register, then to be safe we must check for REG_DEAD notes
13794 for each register other than the first. They could have
13795 their own REG_DEAD notes lying around. */
13796 else if ((note == 0
13797 || (note != 0
13798 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13799 < GET_MODE_SIZE (GET_MODE (x)))))
13800 && regno < FIRST_PSEUDO_REGISTER
13801 && REG_NREGS (x) > 1)
13802 {
13803 unsigned int ourend = END_REGNO (x);
13804 unsigned int i, offset;
13805 rtx oldnotes = 0;
13806
13807 if (note)
13808 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13809 else
13810 offset = 1;
13811
13812 for (i = regno + offset; i < ourend; i++)
13813 move_deaths (regno_reg_rtx[i],
13814 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13815 }
13816
13817 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13818 {
13819 XEXP (note, 1) = *pnotes;
13820 *pnotes = note;
13821 }
13822 else
13823 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13824 }
13825
13826 return;
13827 }
13828
13829 else if (GET_CODE (x) == SET)
13830 {
13831 rtx dest = SET_DEST (x);
13832
13833 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13834
13835 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13836 that accesses one word of a multi-word item, some
13837 piece of everything register in the expression is used by
13838 this insn, so remove any old death. */
13839 /* ??? So why do we test for equality of the sizes? */
13840
13841 if (GET_CODE (dest) == ZERO_EXTRACT
13842 || GET_CODE (dest) == STRICT_LOW_PART
13843 || (GET_CODE (dest) == SUBREG
13844 && (((GET_MODE_SIZE (GET_MODE (dest))
13845 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13846 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13847 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13848 {
13849 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13850 return;
13851 }
13852
13853 /* If this is some other SUBREG, we know it replaces the entire
13854 value, so use that as the destination. */
13855 if (GET_CODE (dest) == SUBREG)
13856 dest = SUBREG_REG (dest);
13857
13858 /* If this is a MEM, adjust deaths of anything used in the address.
13859 For a REG (the only other possibility), the entire value is
13860 being replaced so the old value is not used in this insn. */
13861
13862 if (MEM_P (dest))
13863 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13864 to_insn, pnotes);
13865 return;
13866 }
13867
13868 else if (GET_CODE (x) == CLOBBER)
13869 return;
13870
13871 len = GET_RTX_LENGTH (code);
13872 fmt = GET_RTX_FORMAT (code);
13873
13874 for (i = 0; i < len; i++)
13875 {
13876 if (fmt[i] == 'E')
13877 {
13878 int j;
13879 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13880 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13881 to_insn, pnotes);
13882 }
13883 else if (fmt[i] == 'e')
13884 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13885 }
13886 }
13887 \f
13888 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13889 pattern of an insn. X must be a REG. */
13890
13891 static int
13892 reg_bitfield_target_p (rtx x, rtx body)
13893 {
13894 int i;
13895
13896 if (GET_CODE (body) == SET)
13897 {
13898 rtx dest = SET_DEST (body);
13899 rtx target;
13900 unsigned int regno, tregno, endregno, endtregno;
13901
13902 if (GET_CODE (dest) == ZERO_EXTRACT)
13903 target = XEXP (dest, 0);
13904 else if (GET_CODE (dest) == STRICT_LOW_PART)
13905 target = SUBREG_REG (XEXP (dest, 0));
13906 else
13907 return 0;
13908
13909 if (GET_CODE (target) == SUBREG)
13910 target = SUBREG_REG (target);
13911
13912 if (!REG_P (target))
13913 return 0;
13914
13915 tregno = REGNO (target), regno = REGNO (x);
13916 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13917 return target == x;
13918
13919 endtregno = end_hard_regno (GET_MODE (target), tregno);
13920 endregno = end_hard_regno (GET_MODE (x), regno);
13921
13922 return endregno > tregno && regno < endtregno;
13923 }
13924
13925 else if (GET_CODE (body) == PARALLEL)
13926 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13927 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13928 return 1;
13929
13930 return 0;
13931 }
13932 \f
13933 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13934 as appropriate. I3 and I2 are the insns resulting from the combination
13935 insns including FROM (I2 may be zero).
13936
13937 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13938 not need REG_DEAD notes because they are being substituted for. This
13939 saves searching in the most common cases.
13940
13941 Each note in the list is either ignored or placed on some insns, depending
13942 on the type of note. */
13943
13944 static void
13945 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13946 rtx elim_i2, rtx elim_i1, rtx elim_i0)
13947 {
13948 rtx note, next_note;
13949 rtx tem_note;
13950 rtx_insn *tem_insn;
13951
13952 for (note = notes; note; note = next_note)
13953 {
13954 rtx_insn *place = 0, *place2 = 0;
13955
13956 next_note = XEXP (note, 1);
13957 switch (REG_NOTE_KIND (note))
13958 {
13959 case REG_BR_PROB:
13960 case REG_BR_PRED:
13961 /* Doesn't matter much where we put this, as long as it's somewhere.
13962 It is preferable to keep these notes on branches, which is most
13963 likely to be i3. */
13964 place = i3;
13965 break;
13966
13967 case REG_NON_LOCAL_GOTO:
13968 if (JUMP_P (i3))
13969 place = i3;
13970 else
13971 {
13972 gcc_assert (i2 && JUMP_P (i2));
13973 place = i2;
13974 }
13975 break;
13976
13977 case REG_EH_REGION:
13978 /* These notes must remain with the call or trapping instruction. */
13979 if (CALL_P (i3))
13980 place = i3;
13981 else if (i2 && CALL_P (i2))
13982 place = i2;
13983 else
13984 {
13985 gcc_assert (cfun->can_throw_non_call_exceptions);
13986 if (may_trap_p (i3))
13987 place = i3;
13988 else if (i2 && may_trap_p (i2))
13989 place = i2;
13990 /* ??? Otherwise assume we've combined things such that we
13991 can now prove that the instructions can't trap. Drop the
13992 note in this case. */
13993 }
13994 break;
13995
13996 case REG_ARGS_SIZE:
13997 /* ??? How to distribute between i3-i1. Assume i3 contains the
13998 entire adjustment. Assert i3 contains at least some adjust. */
13999 if (!noop_move_p (i3))
14000 {
14001 int old_size, args_size = INTVAL (XEXP (note, 0));
14002 /* fixup_args_size_notes looks at REG_NORETURN note,
14003 so ensure the note is placed there first. */
14004 if (CALL_P (i3))
14005 {
14006 rtx *np;
14007 for (np = &next_note; *np; np = &XEXP (*np, 1))
14008 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14009 {
14010 rtx n = *np;
14011 *np = XEXP (n, 1);
14012 XEXP (n, 1) = REG_NOTES (i3);
14013 REG_NOTES (i3) = n;
14014 break;
14015 }
14016 }
14017 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14018 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14019 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14020 gcc_assert (old_size != args_size
14021 || (CALL_P (i3)
14022 && !ACCUMULATE_OUTGOING_ARGS
14023 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14024 }
14025 break;
14026
14027 case REG_NORETURN:
14028 case REG_SETJMP:
14029 case REG_TM:
14030 case REG_CALL_DECL:
14031 /* These notes must remain with the call. It should not be
14032 possible for both I2 and I3 to be a call. */
14033 if (CALL_P (i3))
14034 place = i3;
14035 else
14036 {
14037 gcc_assert (i2 && CALL_P (i2));
14038 place = i2;
14039 }
14040 break;
14041
14042 case REG_UNUSED:
14043 /* Any clobbers for i3 may still exist, and so we must process
14044 REG_UNUSED notes from that insn.
14045
14046 Any clobbers from i2 or i1 can only exist if they were added by
14047 recog_for_combine. In that case, recog_for_combine created the
14048 necessary REG_UNUSED notes. Trying to keep any original
14049 REG_UNUSED notes from these insns can cause incorrect output
14050 if it is for the same register as the original i3 dest.
14051 In that case, we will notice that the register is set in i3,
14052 and then add a REG_UNUSED note for the destination of i3, which
14053 is wrong. However, it is possible to have REG_UNUSED notes from
14054 i2 or i1 for register which were both used and clobbered, so
14055 we keep notes from i2 or i1 if they will turn into REG_DEAD
14056 notes. */
14057
14058 /* If this register is set or clobbered in I3, put the note there
14059 unless there is one already. */
14060 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14061 {
14062 if (from_insn != i3)
14063 break;
14064
14065 if (! (REG_P (XEXP (note, 0))
14066 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14067 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14068 place = i3;
14069 }
14070 /* Otherwise, if this register is used by I3, then this register
14071 now dies here, so we must put a REG_DEAD note here unless there
14072 is one already. */
14073 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14074 && ! (REG_P (XEXP (note, 0))
14075 ? find_regno_note (i3, REG_DEAD,
14076 REGNO (XEXP (note, 0)))
14077 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14078 {
14079 PUT_REG_NOTE_KIND (note, REG_DEAD);
14080 place = i3;
14081 }
14082 break;
14083
14084 case REG_EQUAL:
14085 case REG_EQUIV:
14086 case REG_NOALIAS:
14087 /* These notes say something about results of an insn. We can
14088 only support them if they used to be on I3 in which case they
14089 remain on I3. Otherwise they are ignored.
14090
14091 If the note refers to an expression that is not a constant, we
14092 must also ignore the note since we cannot tell whether the
14093 equivalence is still true. It might be possible to do
14094 slightly better than this (we only have a problem if I2DEST
14095 or I1DEST is present in the expression), but it doesn't
14096 seem worth the trouble. */
14097
14098 if (from_insn == i3
14099 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14100 place = i3;
14101 break;
14102
14103 case REG_INC:
14104 /* These notes say something about how a register is used. They must
14105 be present on any use of the register in I2 or I3. */
14106 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14107 place = i3;
14108
14109 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14110 {
14111 if (place)
14112 place2 = i2;
14113 else
14114 place = i2;
14115 }
14116 break;
14117
14118 case REG_LABEL_TARGET:
14119 case REG_LABEL_OPERAND:
14120 /* This can show up in several ways -- either directly in the
14121 pattern, or hidden off in the constant pool with (or without?)
14122 a REG_EQUAL note. */
14123 /* ??? Ignore the without-reg_equal-note problem for now. */
14124 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14125 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14126 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14127 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14128 place = i3;
14129
14130 if (i2
14131 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14132 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14133 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14134 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14135 {
14136 if (place)
14137 place2 = i2;
14138 else
14139 place = i2;
14140 }
14141
14142 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14143 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14144 there. */
14145 if (place && JUMP_P (place)
14146 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14147 && (JUMP_LABEL (place) == NULL
14148 || JUMP_LABEL (place) == XEXP (note, 0)))
14149 {
14150 rtx label = JUMP_LABEL (place);
14151
14152 if (!label)
14153 JUMP_LABEL (place) = XEXP (note, 0);
14154 else if (LABEL_P (label))
14155 LABEL_NUSES (label)--;
14156 }
14157
14158 if (place2 && JUMP_P (place2)
14159 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14160 && (JUMP_LABEL (place2) == NULL
14161 || JUMP_LABEL (place2) == XEXP (note, 0)))
14162 {
14163 rtx label = JUMP_LABEL (place2);
14164
14165 if (!label)
14166 JUMP_LABEL (place2) = XEXP (note, 0);
14167 else if (LABEL_P (label))
14168 LABEL_NUSES (label)--;
14169 place2 = 0;
14170 }
14171 break;
14172
14173 case REG_NONNEG:
14174 /* This note says something about the value of a register prior
14175 to the execution of an insn. It is too much trouble to see
14176 if the note is still correct in all situations. It is better
14177 to simply delete it. */
14178 break;
14179
14180 case REG_DEAD:
14181 /* If we replaced the right hand side of FROM_INSN with a
14182 REG_EQUAL note, the original use of the dying register
14183 will not have been combined into I3 and I2. In such cases,
14184 FROM_INSN is guaranteed to be the first of the combined
14185 instructions, so we simply need to search back before
14186 FROM_INSN for the previous use or set of this register,
14187 then alter the notes there appropriately.
14188
14189 If the register is used as an input in I3, it dies there.
14190 Similarly for I2, if it is nonzero and adjacent to I3.
14191
14192 If the register is not used as an input in either I3 or I2
14193 and it is not one of the registers we were supposed to eliminate,
14194 there are two possibilities. We might have a non-adjacent I2
14195 or we might have somehow eliminated an additional register
14196 from a computation. For example, we might have had A & B where
14197 we discover that B will always be zero. In this case we will
14198 eliminate the reference to A.
14199
14200 In both cases, we must search to see if we can find a previous
14201 use of A and put the death note there. */
14202
14203 if (from_insn
14204 && from_insn == i2mod
14205 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14206 tem_insn = from_insn;
14207 else
14208 {
14209 if (from_insn
14210 && CALL_P (from_insn)
14211 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14212 place = from_insn;
14213 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14214 place = i3;
14215 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14216 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14217 place = i2;
14218 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14219 && !(i2mod
14220 && reg_overlap_mentioned_p (XEXP (note, 0),
14221 i2mod_old_rhs)))
14222 || rtx_equal_p (XEXP (note, 0), elim_i1)
14223 || rtx_equal_p (XEXP (note, 0), elim_i0))
14224 break;
14225 tem_insn = i3;
14226 /* If the new I2 sets the same register that is marked dead
14227 in the note, we do not know where to put the note.
14228 Give up. */
14229 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14230 break;
14231 }
14232
14233 if (place == 0)
14234 {
14235 basic_block bb = this_basic_block;
14236
14237 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14238 {
14239 if (!NONDEBUG_INSN_P (tem_insn))
14240 {
14241 if (tem_insn == BB_HEAD (bb))
14242 break;
14243 continue;
14244 }
14245
14246 /* If the register is being set at TEM_INSN, see if that is all
14247 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14248 into a REG_UNUSED note instead. Don't delete sets to
14249 global register vars. */
14250 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14251 || !global_regs[REGNO (XEXP (note, 0))])
14252 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14253 {
14254 rtx set = single_set (tem_insn);
14255 rtx inner_dest = 0;
14256 rtx_insn *cc0_setter = NULL;
14257
14258 if (set != 0)
14259 for (inner_dest = SET_DEST (set);
14260 (GET_CODE (inner_dest) == STRICT_LOW_PART
14261 || GET_CODE (inner_dest) == SUBREG
14262 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14263 inner_dest = XEXP (inner_dest, 0))
14264 ;
14265
14266 /* Verify that it was the set, and not a clobber that
14267 modified the register.
14268
14269 CC0 targets must be careful to maintain setter/user
14270 pairs. If we cannot delete the setter due to side
14271 effects, mark the user with an UNUSED note instead
14272 of deleting it. */
14273
14274 if (set != 0 && ! side_effects_p (SET_SRC (set))
14275 && rtx_equal_p (XEXP (note, 0), inner_dest)
14276 && (!HAVE_cc0
14277 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14278 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14279 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14280 {
14281 /* Move the notes and links of TEM_INSN elsewhere.
14282 This might delete other dead insns recursively.
14283 First set the pattern to something that won't use
14284 any register. */
14285 rtx old_notes = REG_NOTES (tem_insn);
14286
14287 PATTERN (tem_insn) = pc_rtx;
14288 REG_NOTES (tem_insn) = NULL;
14289
14290 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14291 NULL_RTX, NULL_RTX, NULL_RTX);
14292 distribute_links (LOG_LINKS (tem_insn));
14293
14294 unsigned int regno = REGNO (XEXP (note, 0));
14295 reg_stat_type *rsp = &reg_stat[regno];
14296 if (rsp->last_set == tem_insn)
14297 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14298
14299 SET_INSN_DELETED (tem_insn);
14300 if (tem_insn == i2)
14301 i2 = NULL;
14302
14303 /* Delete the setter too. */
14304 if (cc0_setter)
14305 {
14306 PATTERN (cc0_setter) = pc_rtx;
14307 old_notes = REG_NOTES (cc0_setter);
14308 REG_NOTES (cc0_setter) = NULL;
14309
14310 distribute_notes (old_notes, cc0_setter,
14311 cc0_setter, NULL,
14312 NULL_RTX, NULL_RTX, NULL_RTX);
14313 distribute_links (LOG_LINKS (cc0_setter));
14314
14315 SET_INSN_DELETED (cc0_setter);
14316 if (cc0_setter == i2)
14317 i2 = NULL;
14318 }
14319 }
14320 else
14321 {
14322 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14323
14324 /* If there isn't already a REG_UNUSED note, put one
14325 here. Do not place a REG_DEAD note, even if
14326 the register is also used here; that would not
14327 match the algorithm used in lifetime analysis
14328 and can cause the consistency check in the
14329 scheduler to fail. */
14330 if (! find_regno_note (tem_insn, REG_UNUSED,
14331 REGNO (XEXP (note, 0))))
14332 place = tem_insn;
14333 break;
14334 }
14335 }
14336 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14337 || (CALL_P (tem_insn)
14338 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14339 {
14340 place = tem_insn;
14341
14342 /* If we are doing a 3->2 combination, and we have a
14343 register which formerly died in i3 and was not used
14344 by i2, which now no longer dies in i3 and is used in
14345 i2 but does not die in i2, and place is between i2
14346 and i3, then we may need to move a link from place to
14347 i2. */
14348 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14349 && from_insn
14350 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14351 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14352 {
14353 struct insn_link *links = LOG_LINKS (place);
14354 LOG_LINKS (place) = NULL;
14355 distribute_links (links);
14356 }
14357 break;
14358 }
14359
14360 if (tem_insn == BB_HEAD (bb))
14361 break;
14362 }
14363
14364 }
14365
14366 /* If the register is set or already dead at PLACE, we needn't do
14367 anything with this note if it is still a REG_DEAD note.
14368 We check here if it is set at all, not if is it totally replaced,
14369 which is what `dead_or_set_p' checks, so also check for it being
14370 set partially. */
14371
14372 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14373 {
14374 unsigned int regno = REGNO (XEXP (note, 0));
14375 reg_stat_type *rsp = &reg_stat[regno];
14376
14377 if (dead_or_set_p (place, XEXP (note, 0))
14378 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14379 {
14380 /* Unless the register previously died in PLACE, clear
14381 last_death. [I no longer understand why this is
14382 being done.] */
14383 if (rsp->last_death != place)
14384 rsp->last_death = 0;
14385 place = 0;
14386 }
14387 else
14388 rsp->last_death = place;
14389
14390 /* If this is a death note for a hard reg that is occupying
14391 multiple registers, ensure that we are still using all
14392 parts of the object. If we find a piece of the object
14393 that is unused, we must arrange for an appropriate REG_DEAD
14394 note to be added for it. However, we can't just emit a USE
14395 and tag the note to it, since the register might actually
14396 be dead; so we recourse, and the recursive call then finds
14397 the previous insn that used this register. */
14398
14399 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14400 {
14401 unsigned int endregno = END_REGNO (XEXP (note, 0));
14402 bool all_used = true;
14403 unsigned int i;
14404
14405 for (i = regno; i < endregno; i++)
14406 if ((! refers_to_regno_p (i, PATTERN (place))
14407 && ! find_regno_fusage (place, USE, i))
14408 || dead_or_set_regno_p (place, i))
14409 {
14410 all_used = false;
14411 break;
14412 }
14413
14414 if (! all_used)
14415 {
14416 /* Put only REG_DEAD notes for pieces that are
14417 not already dead or set. */
14418
14419 for (i = regno; i < endregno;
14420 i += hard_regno_nregs[i][reg_raw_mode[i]])
14421 {
14422 rtx piece = regno_reg_rtx[i];
14423 basic_block bb = this_basic_block;
14424
14425 if (! dead_or_set_p (place, piece)
14426 && ! reg_bitfield_target_p (piece,
14427 PATTERN (place)))
14428 {
14429 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14430 NULL_RTX);
14431
14432 distribute_notes (new_note, place, place,
14433 NULL, NULL_RTX, NULL_RTX,
14434 NULL_RTX);
14435 }
14436 else if (! refers_to_regno_p (i, PATTERN (place))
14437 && ! find_regno_fusage (place, USE, i))
14438 for (tem_insn = PREV_INSN (place); ;
14439 tem_insn = PREV_INSN (tem_insn))
14440 {
14441 if (!NONDEBUG_INSN_P (tem_insn))
14442 {
14443 if (tem_insn == BB_HEAD (bb))
14444 break;
14445 continue;
14446 }
14447 if (dead_or_set_p (tem_insn, piece)
14448 || reg_bitfield_target_p (piece,
14449 PATTERN (tem_insn)))
14450 {
14451 add_reg_note (tem_insn, REG_UNUSED, piece);
14452 break;
14453 }
14454 }
14455 }
14456
14457 place = 0;
14458 }
14459 }
14460 }
14461 break;
14462
14463 default:
14464 /* Any other notes should not be present at this point in the
14465 compilation. */
14466 gcc_unreachable ();
14467 }
14468
14469 if (place)
14470 {
14471 XEXP (note, 1) = REG_NOTES (place);
14472 REG_NOTES (place) = note;
14473 }
14474
14475 if (place2)
14476 add_shallow_copy_of_reg_note (place2, note);
14477 }
14478 }
14479 \f
14480 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14481 I3, I2, and I1 to new locations. This is also called to add a link
14482 pointing at I3 when I3's destination is changed. */
14483
14484 static void
14485 distribute_links (struct insn_link *links)
14486 {
14487 struct insn_link *link, *next_link;
14488
14489 for (link = links; link; link = next_link)
14490 {
14491 rtx_insn *place = 0;
14492 rtx_insn *insn;
14493 rtx set, reg;
14494
14495 next_link = link->next;
14496
14497 /* If the insn that this link points to is a NOTE, ignore it. */
14498 if (NOTE_P (link->insn))
14499 continue;
14500
14501 set = 0;
14502 rtx pat = PATTERN (link->insn);
14503 if (GET_CODE (pat) == SET)
14504 set = pat;
14505 else if (GET_CODE (pat) == PARALLEL)
14506 {
14507 int i;
14508 for (i = 0; i < XVECLEN (pat, 0); i++)
14509 {
14510 set = XVECEXP (pat, 0, i);
14511 if (GET_CODE (set) != SET)
14512 continue;
14513
14514 reg = SET_DEST (set);
14515 while (GET_CODE (reg) == ZERO_EXTRACT
14516 || GET_CODE (reg) == STRICT_LOW_PART
14517 || GET_CODE (reg) == SUBREG)
14518 reg = XEXP (reg, 0);
14519
14520 if (!REG_P (reg))
14521 continue;
14522
14523 if (REGNO (reg) == link->regno)
14524 break;
14525 }
14526 if (i == XVECLEN (pat, 0))
14527 continue;
14528 }
14529 else
14530 continue;
14531
14532 reg = SET_DEST (set);
14533
14534 while (GET_CODE (reg) == ZERO_EXTRACT
14535 || GET_CODE (reg) == STRICT_LOW_PART
14536 || GET_CODE (reg) == SUBREG)
14537 reg = XEXP (reg, 0);
14538
14539 /* A LOG_LINK is defined as being placed on the first insn that uses
14540 a register and points to the insn that sets the register. Start
14541 searching at the next insn after the target of the link and stop
14542 when we reach a set of the register or the end of the basic block.
14543
14544 Note that this correctly handles the link that used to point from
14545 I3 to I2. Also note that not much searching is typically done here
14546 since most links don't point very far away. */
14547
14548 for (insn = NEXT_INSN (link->insn);
14549 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14550 || BB_HEAD (this_basic_block->next_bb) != insn));
14551 insn = NEXT_INSN (insn))
14552 if (DEBUG_INSN_P (insn))
14553 continue;
14554 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14555 {
14556 if (reg_referenced_p (reg, PATTERN (insn)))
14557 place = insn;
14558 break;
14559 }
14560 else if (CALL_P (insn)
14561 && find_reg_fusage (insn, USE, reg))
14562 {
14563 place = insn;
14564 break;
14565 }
14566 else if (INSN_P (insn) && reg_set_p (reg, insn))
14567 break;
14568
14569 /* If we found a place to put the link, place it there unless there
14570 is already a link to the same insn as LINK at that point. */
14571
14572 if (place)
14573 {
14574 struct insn_link *link2;
14575
14576 FOR_EACH_LOG_LINK (link2, place)
14577 if (link2->insn == link->insn && link2->regno == link->regno)
14578 break;
14579
14580 if (link2 == NULL)
14581 {
14582 link->next = LOG_LINKS (place);
14583 LOG_LINKS (place) = link;
14584
14585 /* Set added_links_insn to the earliest insn we added a
14586 link to. */
14587 if (added_links_insn == 0
14588 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14589 added_links_insn = place;
14590 }
14591 }
14592 }
14593 }
14594 \f
14595 /* Check for any register or memory mentioned in EQUIV that is not
14596 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14597 of EXPR where some registers may have been replaced by constants. */
14598
14599 static bool
14600 unmentioned_reg_p (rtx equiv, rtx expr)
14601 {
14602 subrtx_iterator::array_type array;
14603 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14604 {
14605 const_rtx x = *iter;
14606 if ((REG_P (x) || MEM_P (x))
14607 && !reg_mentioned_p (x, expr))
14608 return true;
14609 }
14610 return false;
14611 }
14612 \f
14613 DEBUG_FUNCTION void
14614 dump_combine_stats (FILE *file)
14615 {
14616 fprintf
14617 (file,
14618 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14619 combine_attempts, combine_merges, combine_extras, combine_successes);
14620 }
14621
14622 void
14623 dump_combine_total_stats (FILE *file)
14624 {
14625 fprintf
14626 (file,
14627 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14628 total_attempts, total_merges, total_extras, total_successes);
14629 }
14630 \f
14631 /* Try combining insns through substitution. */
14632 static unsigned int
14633 rest_of_handle_combine (void)
14634 {
14635 int rebuild_jump_labels_after_combine;
14636
14637 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14638 df_note_add_problem ();
14639 df_analyze ();
14640
14641 regstat_init_n_sets_and_refs ();
14642 reg_n_sets_max = max_reg_num ();
14643
14644 rebuild_jump_labels_after_combine
14645 = combine_instructions (get_insns (), max_reg_num ());
14646
14647 /* Combining insns may have turned an indirect jump into a
14648 direct jump. Rebuild the JUMP_LABEL fields of jumping
14649 instructions. */
14650 if (rebuild_jump_labels_after_combine)
14651 {
14652 if (dom_info_available_p (CDI_DOMINATORS))
14653 free_dominance_info (CDI_DOMINATORS);
14654 timevar_push (TV_JUMP);
14655 rebuild_jump_labels (get_insns ());
14656 cleanup_cfg (0);
14657 timevar_pop (TV_JUMP);
14658 }
14659
14660 regstat_free_n_sets_and_refs ();
14661 return 0;
14662 }
14663
14664 namespace {
14665
14666 const pass_data pass_data_combine =
14667 {
14668 RTL_PASS, /* type */
14669 "combine", /* name */
14670 OPTGROUP_NONE, /* optinfo_flags */
14671 TV_COMBINE, /* tv_id */
14672 PROP_cfglayout, /* properties_required */
14673 0, /* properties_provided */
14674 0, /* properties_destroyed */
14675 0, /* todo_flags_start */
14676 TODO_df_finish, /* todo_flags_finish */
14677 };
14678
14679 class pass_combine : public rtl_opt_pass
14680 {
14681 public:
14682 pass_combine (gcc::context *ctxt)
14683 : rtl_opt_pass (pass_data_combine, ctxt)
14684 {}
14685
14686 /* opt_pass methods: */
14687 virtual bool gate (function *) { return (optimize > 0); }
14688 virtual unsigned int execute (function *)
14689 {
14690 return rest_of_handle_combine ();
14691 }
14692
14693 }; // class pass_combine
14694
14695 } // anon namespace
14696
14697 rtl_opt_pass *
14698 make_pass_combine (gcc::context *ctxt)
14699 {
14700 return new pass_combine (ctxt);
14701 }