98f9a8d195da3712a5c87508cc76c51a58c59ea9
[gcc.git] / gcc / config / a29k / a29k.h
1 /* Definitions of target machine for GNU compiler, for AMD Am29000 CPU.
2 Copyright (C) 1988, 90-94, 1995 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@nyu.edu)
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22 /* Names to predefine in the preprocessor for this target machine. */
23
24 #define CPP_PREDEFINES "-D_AM29K -D_AM29000 -D_EPI -Acpu(a29k) -Amachine(a29k)"
25
26 /* Print subsidiary information on the compiler version in use. */
27 #define TARGET_VERSION
28
29 /* Pass -w to assembler. */
30 #define ASM_SPEC "-w"
31
32 /* Run-time compilation parameters selecting different hardware subsets. */
33
34 extern int target_flags;
35
36 /* Macro to define tables used to set the flags.
37 This is a list in braces of pairs in braces,
38 each pair being { "NAME", VALUE }
39 where VALUE is the bits to set or minus the bits to clear.
40 An empty string NAME is used to identify the default VALUE. */
41
42 /* This means that the DW bit will be enabled, to allow direct loads
43 of bytes. */
44
45 #define TARGET_DW_ENABLE (target_flags & 1)
46
47 /* This means that the external hardware does supports byte writes. */
48
49 #define TARGET_BYTE_WRITES (target_flags & 2)
50
51 /* This means that a "small memory model" has been selected where all
52 function addresses are known to be within 256K. This allows CALL to be
53 used. */
54
55 #define TARGET_SMALL_MEMORY (target_flags & 4)
56
57 /* This means that we must always used on indirect call, even when
58 calling a function in the same file, since the file might be > 256KB. */
59
60 #define TARGET_LARGE_MEMORY (target_flags & 8)
61
62 /* This means that we are compiling for a 29050. */
63
64 #define TARGET_29050 (target_flags & 16)
65
66 /* This means that we are compiling for the kernel which means that we use
67 gr64-gr95 instead of gr96-126. */
68
69 #define TARGET_KERNEL_REGISTERS (target_flags & 32)
70
71 /* This means that a call to "__msp_check" should be inserted after each stack
72 adjustment to check for stack overflow. */
73
74 #define TARGET_STACK_CHECK (target_flags & 64)
75
76 /* This handles 29k processors which cannot handle the separation
77 of a mtsrim insns and a storem insn (most 29000 chips to date, but
78 not the 29050. */
79
80 #define TARGET_NO_STOREM_BUG (target_flags & 128)
81
82 /* This forces the compiler not to use incoming argument registers except
83 for copying out arguments. It helps detect problems when a function is
84 called with fewer arguments than it is declared with. */
85
86 #define TARGET_NO_REUSE_ARGS (target_flags & 256)
87
88 /* This means that neither builtin nor emulated float operations are
89 available, and that GCC should generate libcalls instead. */
90
91 #define TARGET_SOFT_FLOAT (target_flags & 512)
92
93 #define TARGET_SWITCHES \
94 { {"dw", 1}, \
95 {"ndw", -1}, \
96 {"bw", 2}, \
97 {"nbw", - (1|2)}, \
98 {"small", 4}, \
99 {"normal", - (4|8)}, \
100 {"large", 8}, \
101 {"29050", 16+128}, \
102 {"29000", -16}, \
103 {"kernel-registers", 32}, \
104 {"user-registers", -32}, \
105 {"stack-check", 64}, \
106 {"no-stack-check", - 74}, \
107 {"storem-bug", -128}, \
108 {"no-storem-bug", 128}, \
109 {"reuse-arg-regs", -256}, \
110 {"no-reuse-arg-regs", 256}, \
111 {"soft-float", 512}, \
112 {"", TARGET_DEFAULT}}
113
114 #define TARGET_DEFAULT 3
115
116 /* Show we can debug even without a frame pointer. */
117 #define CAN_DEBUG_WITHOUT_FP
118 \f
119 /* target machine storage layout */
120
121 /* Define the types for size_t, ptrdiff_t, and wchar_t. These are the
122 same as those used by EPI. The type for wchar_t does not make much
123 sense, but is what is used. */
124
125 #define SIZE_TYPE "unsigned int"
126 #define PTRDIFF_TYPE "int"
127 #define WCHAR_TYPE "char"
128 #define WCHAR_TYPE_SIZE BITS_PER_UNIT
129
130 /* Define this macro if it is advisable to hold scalars in registers
131 in a wider mode than that declared by the program. In such cases,
132 the value is constrained to be within the bounds of the declared
133 type, but kept valid in the wider mode. The signedness of the
134 extension may differ from that of the type. */
135
136 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
137 if (GET_MODE_CLASS (MODE) == MODE_INT \
138 && GET_MODE_SIZE (MODE) < 4) \
139 (MODE) = SImode;
140
141 /* Define this if most significant bit is lowest numbered
142 in instructions that operate on numbered bit-fields.
143 This is arbitrary on the 29k since it has no actual bit-field insns.
144 It is better to define this as TRUE because BYTES_BIG_ENDIAN is TRUE
145 and we want to be able to convert BP position to bit position with
146 just a shift. */
147 #define BITS_BIG_ENDIAN 1
148
149 /* Define this if most significant byte of a word is the lowest numbered.
150 This is true on 29k. */
151 #define BYTES_BIG_ENDIAN 1
152
153 /* Define this if most significant word of a multiword number is lowest
154 numbered.
155
156 For 29k we can decide arbitrarily since there are no machine instructions
157 for them. Might as well be consistent with bytes. */
158 #define WORDS_BIG_ENDIAN 1
159
160 /* number of bits in an addressable storage unit */
161 #define BITS_PER_UNIT 8
162
163 /* Width in bits of a "word", which is the contents of a machine register.
164 Note that this is not necessarily the width of data type `int';
165 if using 16-bit ints on a 68000, this would still be 32.
166 But on a machine with 16-bit registers, this would be 16. */
167 #define BITS_PER_WORD 32
168
169 /* Width of a word, in units (bytes). */
170 #define UNITS_PER_WORD 4
171
172 /* Width in bits of a pointer.
173 See also the macro `Pmode' defined below. */
174 #define POINTER_SIZE 32
175
176 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
177 #define PARM_BOUNDARY 32
178
179 /* Boundary (in *bits*) on which stack pointer should be aligned. */
180 #define STACK_BOUNDARY 64
181
182 /* Allocation boundary (in *bits*) for the code of a function. */
183 #define FUNCTION_BOUNDARY 32
184
185 /* Alignment of field after `int : 0' in a structure. */
186 #define EMPTY_FIELD_BOUNDARY 32
187
188 /* Every structure's size must be a multiple of this. */
189 #define STRUCTURE_SIZE_BOUNDARY 8
190
191 /* A bitfield declared as `int' forces `int' alignment for the struct. */
192 #define PCC_BITFIELD_TYPE_MATTERS 1
193
194 /* No data type wants to be aligned rounder than this. */
195 #define BIGGEST_ALIGNMENT 32
196
197 /* Make strings word-aligned so strcpy from constants will be faster. */
198 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
199 (TREE_CODE (EXP) == STRING_CST \
200 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
201
202 /* Make arrays of chars word-aligned for the same reasons. */
203 #define DATA_ALIGNMENT(TYPE, ALIGN) \
204 (TREE_CODE (TYPE) == ARRAY_TYPE \
205 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
206 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
207
208 /* Set this non-zero if move instructions will actually fail to work
209 when given unaligned data. */
210 #define STRICT_ALIGNMENT 0
211
212 /* Set this non-zero if unaligned move instructions are extremely slow.
213
214 On the 29k, they trap. */
215 #define SLOW_UNALIGNED_ACCESS 1
216 \f
217 /* Standard register usage. */
218
219 /* Number of actual hardware registers.
220 The hardware registers are assigned numbers for the compiler
221 from 0 to just below FIRST_PSEUDO_REGISTER.
222 All registers that the compiler knows about must be given numbers,
223 even those that are not normally considered general registers.
224
225 29k has 256 registers, of which 62 are not defined. gr0 and gr1 are
226 not produced in generated RTL so we can start at gr96, and call it
227 register zero.
228
229 So 0-31 are gr96-gr127, lr0-lr127 are 32-159. To represent the input
230 arguments, whose register numbers we won't know until we are done,
231 use register 160-175. They cannot be modified. Similarly, 176 is used
232 for the frame pointer. It is assigned the last local register number
233 once the number of registers used is known.
234
235 We use 177, 178, 179, and 180 for the special registers BP, FC, CR, and Q,
236 respectively. Registers 181 through 199 are used for the other special
237 registers that may be used by the programmer, but are never used by the
238 compiler.
239
240 Registers 200-203 are the four floating-point accumulator register in
241 the 29050.
242
243 Registers 204-235 are the 32 global registers for kernel mode when
244 -mkernel-registers is not specified, and the 32 global user registers
245 when it is.
246
247 When -mkernel-registers is specified, we still use the same register
248 map but change the names so 0-31 print as gr64-gr95. */
249
250 #define FIRST_PSEUDO_REGISTER 236
251
252 /* Because of the large number of registers on the 29k, we define macros
253 to refer to each group of registers and then define the number for some
254 registers used in the calling sequence. */
255
256 #define R_GR(N) ((N) - 96) /* gr96 is register number 0 */
257 #define R_LR(N) ((N) + 32) /* lr0 is register number 32 */
258 #define R_FP 176 /* frame pointer is register 176 */
259 #define R_AR(N) ((N) + 160) /* first incoming arg reg is 160 */
260 #define R_KR(N) ((N) + 204) /* kernel registers (gr64 to gr95) */
261
262 /* Define the numbers of the special registers. */
263 #define R_BP 177
264 #define R_FC 178
265 #define R_CR 179
266 #define R_Q 180
267
268 /* These special registers are not used by the compiler, but may be referenced
269 by the programmer via asm declarations. */
270
271 #define R_VAB 181
272 #define R_OPS 182
273 #define R_CPS 183
274 #define R_CFG 184
275 #define R_CHA 185
276 #define R_CHD 186
277 #define R_CHC 187
278 #define R_RBP 188
279 #define R_TMC 189
280 #define R_TMR 190
281 #define R_PC0 191
282 #define R_PC1 192
283 #define R_PC2 193
284 #define R_MMU 194
285 #define R_LRU 195
286 #define R_FPE 196
287 #define R_INT 197
288 #define R_FPS 198
289 #define R_EXO 199
290
291 /* Define the number for floating-point accumulator N. */
292 #define R_ACU(N) ((N) + 200)
293
294 /* Now define the registers used in the calling sequence. */
295 #define R_TAV R_GR (121)
296 #define R_TPC R_GR (122)
297 #define R_LRP R_GR (123)
298 #define R_SLP R_GR (124)
299 #define R_MSP R_GR (125)
300 #define R_RAB R_GR (126)
301 #define R_RFB R_GR (127)
302
303 /* 1 for registers that have pervasive standard uses
304 and are not available for the register allocator. */
305
306 #define FIXED_REGISTERS \
307 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
308 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, \
309 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
310 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
311 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
312 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
313 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
314 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
315 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
316 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
317 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
318 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
319 1, 1, 1, 1, 1, 1, 1, 1, \
320 0, 0, 0, 0, \
321 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
322 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
323
324 /* 1 for registers not available across function calls.
325 These must include the FIXED_REGISTERS and also any
326 registers that can be used without being saved.
327 The latter must include the registers where values are returned
328 and the register where structure-value addresses are passed.
329 Aside from that, you can include as many other registers as you like. */
330 #define CALL_USED_REGISTERS \
331 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
332 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
333 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
334 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
335 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
336 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
337 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
338 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
339 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
340 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
341 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
342 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
343 1, 1, 1, 1, 1, 1, 1, 1, \
344 1, 1, 1, 1, \
345 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
346 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
347
348 /* List the order in which to allocate registers. Each register must be
349 listed once, even those in FIXED_REGISTERS.
350
351 We allocate in the following order:
352 gr116-gr120 (not used for anything but temps)
353 gr96-gr111 (function return values, reverse order)
354 argument registers (160-175)
355 lr0-lr127 (locals, saved)
356 acc3-0 (acc0 special)
357 everything else */
358
359 #define REG_ALLOC_ORDER \
360 {R_GR (116), R_GR (117), R_GR (118), R_GR (119), R_GR (120), \
361 R_GR (111), R_GR (110), R_GR (109), R_GR (108), R_GR (107), \
362 R_GR (106), R_GR (105), R_GR (104), R_GR (103), R_GR (102), \
363 R_GR (101), R_GR (100), R_GR (99), R_GR (98), R_GR (97), R_GR (96), \
364 R_AR (0), R_AR (1), R_AR (2), R_AR (3), R_AR (4), R_AR (5), \
365 R_AR (6), R_AR (7), R_AR (8), R_AR (9), R_AR (10), R_AR (11), \
366 R_AR (12), R_AR (13), R_AR (14), R_AR (15), \
367 R_LR (0), R_LR (1), R_LR (2), R_LR (3), R_LR (4), R_LR (5), \
368 R_LR (6), R_LR (7), R_LR (8), R_LR (9), R_LR (10), R_LR (11), \
369 R_LR (12), R_LR (13), R_LR (14), R_LR (15), R_LR (16), R_LR (17), \
370 R_LR (18), R_LR (19), R_LR (20), R_LR (21), R_LR (22), R_LR (23), \
371 R_LR (24), R_LR (25), R_LR (26), R_LR (27), R_LR (28), R_LR (29), \
372 R_LR (30), R_LR (31), R_LR (32), R_LR (33), R_LR (34), R_LR (35), \
373 R_LR (36), R_LR (37), R_LR (38), R_LR (39), R_LR (40), R_LR (41), \
374 R_LR (42), R_LR (43), R_LR (44), R_LR (45), R_LR (46), R_LR (47), \
375 R_LR (48), R_LR (49), R_LR (50), R_LR (51), R_LR (52), R_LR (53), \
376 R_LR (54), R_LR (55), R_LR (56), R_LR (57), R_LR (58), R_LR (59), \
377 R_LR (60), R_LR (61), R_LR (62), R_LR (63), R_LR (64), R_LR (65), \
378 R_LR (66), R_LR (67), R_LR (68), R_LR (69), R_LR (70), R_LR (71), \
379 R_LR (72), R_LR (73), R_LR (74), R_LR (75), R_LR (76), R_LR (77), \
380 R_LR (78), R_LR (79), R_LR (80), R_LR (81), R_LR (82), R_LR (83), \
381 R_LR (84), R_LR (85), R_LR (86), R_LR (87), R_LR (88), R_LR (89), \
382 R_LR (90), R_LR (91), R_LR (92), R_LR (93), R_LR (94), R_LR (95), \
383 R_LR (96), R_LR (97), R_LR (98), R_LR (99), R_LR (100), R_LR (101), \
384 R_LR (102), R_LR (103), R_LR (104), R_LR (105), R_LR (106), \
385 R_LR (107), R_LR (108), R_LR (109), R_LR (110), R_LR (111), \
386 R_LR (112), R_LR (113), R_LR (114), R_LR (115), R_LR (116), \
387 R_LR (117), R_LR (118), R_LR (119), R_LR (120), R_LR (121), \
388 R_LR (122), R_LR (123), R_LR (124), R_LR (124), R_LR (126), \
389 R_LR (127), \
390 R_ACU (3), R_ACU (2), R_ACU (1), R_ACU (0), \
391 R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (121), \
392 R_GR (122), R_GR (123), R_GR (124), R_GR (125), R_GR (126), \
393 R_GR (127), \
394 R_FP, R_BP, R_FC, R_CR, R_Q, \
395 R_VAB, R_OPS, R_CPS, R_CFG, R_CHA, R_CHD, R_CHC, R_RBP, R_TMC, \
396 R_TMR, R_PC0, R_PC1, R_PC2, R_MMU, R_LRU, R_FPE, R_INT, R_FPS, \
397 R_EXO, \
398 R_KR (0), R_KR (1), R_KR (2), R_KR (3), R_KR (4), R_KR (5), \
399 R_KR (6), R_KR (7), R_KR (8), R_KR (9), R_KR (10), R_KR (11), \
400 R_KR (12), R_KR (13), R_KR (14), R_KR (15), R_KR (16), R_KR (17), \
401 R_KR (18), R_KR (19), R_KR (20), R_KR (21), R_KR (22), R_KR (23), \
402 R_KR (24), R_KR (25), R_KR (26), R_KR (27), R_KR (28), R_KR (29), \
403 R_KR (30), R_KR (31) }
404
405 /* Return number of consecutive hard regs needed starting at reg REGNO
406 to hold something of mode MODE.
407 This is ordinarily the length in words of a value of mode MODE
408 but can be less for certain modes in special long registers. */
409
410 #define HARD_REGNO_NREGS(REGNO, MODE) \
411 ((REGNO) >= R_ACU (0) && (REGNO) <= R_ACU (3)? 1 \
412 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
413
414 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
415 On 29k, the cpu registers can hold any mode. But a double-precision
416 floating-point value should start at an even register. The special
417 registers cannot hold floating-point values, BP, CR, and FC cannot
418 hold integer or floating-point values, and the accumulators cannot
419 hold integer values.
420
421 DImode and larger values should start at an even register just like
422 DFmode values, even though the instruction set doesn't require it, in order
423 to prevent reload from aborting due to a modes_equiv_for_class_p failure.
424
425 (I'd like to use the "?:" syntax to make this more readable, but Sun's
426 compiler doesn't seem to accept it.) */
427 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
428 (((REGNO) >= R_ACU (0) && (REGNO) <= R_ACU (3) \
429 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
430 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)) \
431 || ((REGNO) >= R_BP && (REGNO) <= R_CR \
432 && GET_MODE_CLASS (MODE) == MODE_PARTIAL_INT) \
433 || ((REGNO) >= R_Q && (REGNO) < R_ACU (0) \
434 && GET_MODE_CLASS (MODE) != MODE_FLOAT \
435 && GET_MODE_CLASS (MODE) != MODE_COMPLEX_FLOAT) \
436 || (((REGNO) < R_BP || (REGNO) >= R_KR (0)) \
437 && ((((REGNO) & 1) == 0) \
438 || GET_MODE_UNIT_SIZE (MODE) <= UNITS_PER_WORD)))
439
440 /* Value is 1 if it is a good idea to tie two pseudo registers
441 when one has mode MODE1 and one has mode MODE2.
442 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
443 for any hard reg, then this must be 0 for correct output.
444
445 On the 29k, normally we'd just have problems with DFmode because of the
446 even alignment. However, we also have to be a bit concerned about
447 the special register's restriction to non-floating and the floating-point
448 accumulator's restriction to only floating. This probably won't
449 cause any great inefficiencies in practice. */
450
451 #define MODES_TIEABLE_P(MODE1, MODE2) \
452 ((MODE1) == (MODE2) \
453 || (GET_MODE_CLASS (MODE1) == MODE_INT \
454 && GET_MODE_CLASS (MODE2) == MODE_INT))
455
456 /* Specify the registers used for certain standard purposes.
457 The values of these macros are register numbers. */
458
459 /* 29k pc isn't overloaded on a register that the compiler knows about. */
460 /* #define PC_REGNUM */
461
462 /* Register to use for pushing function arguments. */
463 #define STACK_POINTER_REGNUM R_GR (125)
464
465 /* Base register for access to local variables of the function. */
466 #define FRAME_POINTER_REGNUM R_FP
467
468 /* Value should be nonzero if functions must have frame pointers.
469 Zero means the frame pointer need not be set up (and parms
470 may be accessed via the stack pointer) in functions that seem suitable.
471 This is computed in `reload', in reload1.c. */
472 #define FRAME_POINTER_REQUIRED 0
473
474 /* Base register for access to arguments of the function. */
475 #define ARG_POINTER_REGNUM R_FP
476
477 /* Register in which static-chain is passed to a function. */
478 #define STATIC_CHAIN_REGNUM R_SLP
479
480 /* Register in which address to store a structure value
481 is passed to a function. */
482 #define STRUCT_VALUE_REGNUM R_LRP
483 \f
484 /* Define the classes of registers for register constraints in the
485 machine description. Also define ranges of constants.
486
487 One of the classes must always be named ALL_REGS and include all hard regs.
488 If there is more than one class, another class must be named NO_REGS
489 and contain no registers.
490
491 The name GENERAL_REGS must be the name of a class (or an alias for
492 another name such as ALL_REGS). This is the class of registers
493 that is allowed by "g" or "r" in a register constraint.
494 Also, registers outside this class are allocated only when
495 instructions express preferences for them.
496
497 The classes must be numbered in nondecreasing order; that is,
498 a larger-numbered class must never be contained completely
499 in a smaller-numbered class.
500
501 For any two classes, it is very desirable that there be another
502 class that represents their union.
503
504 The 29k has nine registers classes: LR0_REGS, GENERAL_REGS, SPECIAL_REGS,
505 BP_REGS, FC_REGS, CR_REGS, Q_REGS, ACCUM_REGS, and ACCUM0_REGS.
506 LR0_REGS, BP_REGS, FC_REGS, CR_REGS, and Q_REGS contain just the single
507 register. The latter two classes are used to represent the floating-point
508 accumulator registers in the 29050. We also define the union class
509 FLOAT_REGS to represent any register that can be used to hold a
510 floating-point value. The union of SPECIAL_REGS and ACCUM_REGS isn't
511 useful as the former cannot contain floating-point and the latter can only
512 contain floating-point. */
513
514 enum reg_class { NO_REGS, LR0_REGS, GENERAL_REGS, BP_REGS, FC_REGS, CR_REGS,
515 Q_REGS, SPECIAL_REGS, ACCUM0_REGS, ACCUM_REGS, FLOAT_REGS,
516 ALL_REGS, LIM_REG_CLASSES };
517
518 #define N_REG_CLASSES (int) LIM_REG_CLASSES
519
520 /* Give names of register classes as strings for dump file. */
521
522 #define REG_CLASS_NAMES \
523 {"NO_REGS", "LR0_REGS", "GENERAL_REGS", "BP_REGS", "FC_REGS", "CR_REGS", \
524 "Q_REGS", "SPECIAL_REGS", "ACCUM0_REGS", "ACCUM_REGS", "FLOAT_REGS", \
525 "ALL_REGS" }
526
527 /* Define which registers fit in which classes.
528 This is an initializer for a vector of HARD_REG_SET
529 of length N_REG_CLASSES. */
530
531 #define REG_CLASS_CONTENTS \
532 { {0, 0, 0, 0, 0, 0, 0, 0}, \
533 {0, 1, 0, 0, 0, 0, 0, 0}, \
534 {~0, ~0, ~0, ~0, ~0, ~ 0xfffe0000, ~ 0xfff, 0xfff}, \
535 {0, 0, 0, 0, 0, 0x20000, 0, 0}, \
536 {0, 0, 0, 0, 0, 0x40000, 0, 0}, \
537 {0, 0, 0, 0, 0, 0x80000, 0, 0}, \
538 {0, 0, 0, 0, 0, 0x100000, 0, 0}, \
539 {0, 0, 0, 0, 0, 0xfffe0000, 0xff, 0}, \
540 {0, 0, 0, 0, 0, 0, 0x100, 0}, \
541 {0, 0, 0, 0, 0, 0, 0xf00, 0}, \
542 {~0, ~0, ~0, ~0, ~0, ~ 0xfffe0000, ~ 0xff, 0xfff}, \
543 {~0, ~0, ~0, ~0, ~0, ~0, ~0, 0xfff} }
544
545 /* The same information, inverted:
546 Return the class number of the smallest class containing
547 reg number REGNO. This could be a conditional expression
548 or could index an array. */
549
550 #define REGNO_REG_CLASS(REGNO) \
551 ((REGNO) == R_BP ? BP_REGS \
552 : (REGNO) == R_FC ? FC_REGS \
553 : (REGNO) == R_CR ? CR_REGS \
554 : (REGNO) == R_Q ? Q_REGS \
555 : (REGNO) > R_BP && (REGNO) <= R_EXO ? SPECIAL_REGS \
556 : (REGNO) == R_ACU (0) ? ACCUM0_REGS \
557 : (REGNO) >= R_KR (0) ? GENERAL_REGS \
558 : (REGNO) > R_ACU (0) ? ACCUM_REGS \
559 : (REGNO) == R_LR (0) ? LR0_REGS \
560 : GENERAL_REGS)
561
562 /* The class value for index registers, and the one for base regs. */
563 #define INDEX_REG_CLASS NO_REGS
564 #define BASE_REG_CLASS GENERAL_REGS
565
566 /* Get reg_class from a letter such as appears in the machine description. */
567
568 #define REG_CLASS_FROM_LETTER(C) \
569 ((C) == 'r' ? GENERAL_REGS \
570 : (C) == 'l' ? LR0_REGS \
571 : (C) == 'b' ? BP_REGS \
572 : (C) == 'f' ? FC_REGS \
573 : (C) == 'c' ? CR_REGS \
574 : (C) == 'q' ? Q_REGS \
575 : (C) == 'h' ? SPECIAL_REGS \
576 : (C) == 'a' ? ACCUM_REGS \
577 : (C) == 'A' ? ACCUM0_REGS \
578 : (C) == 'f' ? FLOAT_REGS \
579 : NO_REGS)
580
581 /* Define this macro to change register usage conditional on target flags.
582
583 On the 29k, we use this to change the register names for kernel mapping. */
584
585 #define CONDITIONAL_REGISTER_USAGE \
586 { \
587 char *p; \
588 int i; \
589 \
590 if (TARGET_KERNEL_REGISTERS) \
591 for (i = 0; i < 32; i++) \
592 { \
593 p = reg_names[i]; \
594 reg_names[i] = reg_names[R_KR (i)]; \
595 reg_names[R_KR (i)] = p; \
596 } \
597 }
598
599 /* The letters I, J, K, L, M, N, O, and P in a register constraint string
600 can be used to stand for particular ranges of immediate operands.
601 This macro defines what the ranges are.
602 C is the letter, and VALUE is a constant value.
603 Return 1 if VALUE is in the range specified by C.
604
605 For 29k:
606 `I' is used for the range of constants most insns can contain.
607 `J' is for the few 16-bit insns.
608 `K' is a constant whose high-order 24 bits are all one
609 `L' is a HImode constant whose high-order 8 bits are all one
610 `M' is a 32-bit constant whose high-order 16 bits are all one (for CONSTN)
611 `N' is a 32-bit constant whose negative is 8 bits
612 `O' is the 32-bit constant 0x80000000, any constant with low-order
613 16 bits zero for 29050.
614 `P' is a HImode constant whose negative is 8 bits */
615
616 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
617 ((C) == 'I' ? (unsigned) (VALUE) < 0x100 \
618 : (C) == 'J' ? (unsigned) (VALUE) < 0x10000 \
619 : (C) == 'K' ? ((VALUE) & 0xffffff00) == 0xffffff00 \
620 : (C) == 'L' ? ((VALUE) & 0xff00) == 0xff00 \
621 : (C) == 'M' ? ((VALUE) & 0xffff0000) == 0xffff0000 \
622 : (C) == 'N' ? ((VALUE) < 0 && (VALUE) > -256) \
623 : (C) == 'O' ? ((VALUE) == 0x80000000 \
624 || (TARGET_29050 && ((VALUE) & 0xffff) == 0)) \
625 : (C) == 'P' ? (((VALUE) | 0xffff0000) < 0 \
626 && ((VALUE) | 0xffff0000) > -256) \
627 : 0)
628
629 /* Similar, but for floating constants, and defining letters G and H.
630 Here VALUE is the CONST_DOUBLE rtx itself.
631 All floating-point constants are valid on 29k. */
632
633 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
634
635 /* Given an rtx X being reloaded into a reg required to be
636 in class CLASS, return the class of reg to actually use.
637 In general this is just CLASS; but on some machines
638 in some cases it is preferable to use a more restrictive class. */
639
640 #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
641
642 /* Return the register class of a scratch register needed to copy IN into
643 or out of a register in CLASS in MODE. If it can be done directly,
644 NO_REGS is returned. */
645
646 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
647 secondary_reload_class (CLASS, MODE, IN)
648
649 /* This function is used to get the address of an object. */
650
651 extern struct rtx_def *a29k_get_reloaded_address ();
652
653 /* Return the maximum number of consecutive registers
654 needed to represent mode MODE in a register of class CLASS.
655
656 On 29k, this is the size of MODE in words except that the floating-point
657 accumulators only require one word for anything they can hold. */
658
659 #define CLASS_MAX_NREGS(CLASS, MODE) \
660 (((CLASS) == ACCUM_REGS || (CLASS) == ACCUM0_REGS) ? 1 \
661 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
662
663 /* Define the cost of moving between registers of various classes. Everything
664 involving a general register is cheap, but moving between the other types
665 (even within a class) is two insns. */
666
667 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
668 ((CLASS1) == GENERAL_REGS || (CLASS2) == GENERAL_REGS ? 2 : 4)
669
670 /* A C expressions returning the cost of moving data of MODE from a register to
671 or from memory.
672
673 It takes extra insns on the 29k to form addresses, so we want to make
674 this higher. In addition, we need to keep it more expensive than the
675 most expensive register-register copy. */
676
677 #define MEMORY_MOVE_COST(MODE) 6
678
679 /* A C statement (sans semicolon) to update the integer variable COST
680 based on the relationship between INSN that is dependent on
681 DEP_INSN through the dependence LINK. The default is to make no
682 adjustment to COST. On the a29k, ignore the cost of anti- and
683 output-dependencies. */
684 #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
685 if (REG_NOTE_KIND (LINK) != 0) \
686 (COST) = 0; /* Anti or output dependence. */
687 \f
688 /* Stack layout; function entry, exit and calling. */
689
690 /* Define this if pushing a word on the stack
691 makes the stack pointer a smaller address. */
692 #define STACK_GROWS_DOWNWARD
693
694 /* Define this if the nominal address of the stack frame
695 is at the high-address end of the local variables;
696 that is, each additional local variable allocated
697 goes at a more negative offset in the frame. */
698 #define FRAME_GROWS_DOWNWARD
699
700 /* Offset within stack frame to start allocating local variables at.
701 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
702 first local allocated. Otherwise, it is the offset to the BEGINNING
703 of the first local allocated. */
704
705 #define STARTING_FRAME_OFFSET (- current_function_pretend_args_size)
706
707 /* If we generate an insn to push BYTES bytes,
708 this says how many the stack pointer really advances by.
709 On 29k, don't define this because there are no push insns. */
710 /* #define PUSH_ROUNDING(BYTES) */
711
712 /* Define this if the maximum size of all the outgoing args is to be
713 accumulated and pushed during the prologue. The amount can be
714 found in the variable current_function_outgoing_args_size. */
715 #define ACCUMULATE_OUTGOING_ARGS
716
717 /* Offset of first parameter from the argument pointer register value. */
718
719 #define FIRST_PARM_OFFSET(FNDECL) (- current_function_pretend_args_size)
720
721 /* Define this if stack space is still allocated for a parameter passed
722 in a register. */
723 /* #define REG_PARM_STACK_SPACE */
724
725 /* Value is the number of bytes of arguments automatically
726 popped when returning from a subroutine call.
727 FUNTYPE is the data type of the function (as a tree),
728 or for a library call it is an identifier node for the subroutine name.
729 SIZE is the number of bytes of arguments passed on the stack. */
730
731 #define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
732
733 /* Define how to find the value returned by a function.
734 VALTYPE is the data type of the value (as a tree).
735 If the precise function being called is known, FUNC is its FUNCTION_DECL;
736 otherwise, FUNC is 0.
737
738 On 29k the value is found in gr96. */
739
740 #define FUNCTION_VALUE(VALTYPE, FUNC) \
741 gen_rtx (REG, TYPE_MODE (VALTYPE), R_GR (96))
742
743 /* Define how to find the value returned by a library function
744 assuming the value has mode MODE. */
745
746 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, R_GR (96))
747
748 /* 1 if N is a possible register number for a function value
749 as seen by the caller.
750 On 29k, gr96-gr111 are used. */
751
752 #define FUNCTION_VALUE_REGNO_P(N) ((N) == R_GR (96))
753
754 /* 1 if N is a possible register number for function argument passing.
755 On 29k, these are lr2-lr17. */
756
757 #define FUNCTION_ARG_REGNO_P(N) ((N) <= R_LR (17) && (N) >= R_LR (2))
758 \f
759 /* Define a data type for recording info about an argument list
760 during the scan of that argument list. This data type should
761 hold all necessary information about the function itself
762 and about the args processed so far, enough to enable macros
763 such as FUNCTION_ARG to determine where the next arg should go.
764
765 On 29k, this is a single integer, which is a number of words
766 of arguments scanned so far.
767 Thus 16 or more means all following args should go on the stack. */
768
769 #define CUMULATIVE_ARGS int
770
771 /* Initialize a variable CUM of type CUMULATIVE_ARGS
772 for a call to a function whose data type is FNTYPE.
773 For a library call, FNTYPE is 0. */
774
775 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) (CUM) = 0
776
777 /* Same, but called for incoming args.
778
779 On the 29k, we use this to set all argument registers to fixed and
780 set the last 16 local regs, less two, (lr110-lr125) to available. Some
781 will later be changed to call-saved by FUNCTION_INCOMING_ARG.
782 lr126,lr127 are always fixed, they are place holders for the caller's
783 lr0,lr1. */
784
785 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
786 { int i; \
787 for (i = R_AR (0) - 2; i < R_AR (16); i++) \
788 { \
789 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1; \
790 SET_HARD_REG_BIT (fixed_reg_set, i); \
791 SET_HARD_REG_BIT (call_used_reg_set, i); \
792 SET_HARD_REG_BIT (call_fixed_reg_set, i); \
793 } \
794 for (i = R_LR (110); i < R_LR (126); i++) \
795 { \
796 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 0; \
797 CLEAR_HARD_REG_BIT (fixed_reg_set, i); \
798 CLEAR_HARD_REG_BIT (call_used_reg_set, i); \
799 CLEAR_HARD_REG_BIT (call_fixed_reg_set, i); \
800 } \
801 (CUM) = 0; \
802 }
803
804 /* Define intermediate macro to compute the size (in registers) of an argument
805 for the 29k. */
806
807 #define A29K_ARG_SIZE(MODE, TYPE, NAMED) \
808 (! (NAMED) ? 0 \
809 : (MODE) != BLKmode \
810 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
811 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
812
813 /* Update the data in CUM to advance over an argument
814 of mode MODE and data type TYPE.
815 (TYPE is null for libcalls where that information may not be available.) */
816
817 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
818 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
819 (CUM) = 16; \
820 else \
821 (CUM) += A29K_ARG_SIZE (MODE, TYPE, NAMED)
822
823 /* Determine where to put an argument to a function.
824 Value is zero to push the argument on the stack,
825 or a hard register in which to store the argument.
826
827 MODE is the argument's machine mode.
828 TYPE is the data type of the argument (as a tree).
829 This is null for libcalls where that information may
830 not be available.
831 CUM is a variable of type CUMULATIVE_ARGS which gives info about
832 the preceding args and about the function being called.
833 NAMED is nonzero if this argument is a named parameter
834 (otherwise it is an extra parameter matching an ellipsis).
835
836 On 29k the first 16 words of args are normally in registers
837 and the rest are pushed. */
838
839 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
840 ((CUM) < 16 && (NAMED) && ! MUST_PASS_IN_STACK (MODE, TYPE) \
841 ? gen_rtx(REG, (MODE), R_LR (2) + (CUM)) : 0)
842
843 /* Define where a function finds its arguments.
844 This is different from FUNCTION_ARG because of register windows.
845
846 On the 29k, we hack this to call a function that sets the used registers
847 as non-fixed and not used by calls. */
848
849 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
850 ((CUM) < 16 && (NAMED) && ! MUST_PASS_IN_STACK (MODE, TYPE) \
851 ? gen_rtx (REG, MODE, \
852 incoming_reg (CUM, A29K_ARG_SIZE (MODE, TYPE, NAMED))) \
853 : 0)
854
855 /* This indicates that an argument is to be passed with an invisible reference
856 (i.e., a pointer to the object is passed).
857
858 On the 29k, we do this if it must be passed on the stack. */
859
860 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
861 (MUST_PASS_IN_STACK (MODE, TYPE))
862
863 /* Specify the padding direction of arguments.
864
865 On the 29k, we must pad upwards in order to be able to pass args in
866 registers. */
867
868 #define FUNCTION_ARG_PADDING(MODE, TYPE) upward
869
870 /* For an arg passed partly in registers and partly in memory,
871 this is the number of registers used.
872 For args passed entirely in registers or entirely in memory, zero. */
873
874 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
875 ((CUM) < 16 && 16 < (CUM) + A29K_ARG_SIZE (MODE, TYPE, NAMED) && (NAMED) \
876 ? 16 - (CUM) : 0)
877
878 /* Perform any needed actions needed for a function that is receiving a
879 variable number of arguments.
880
881 CUM is as above.
882
883 MODE and TYPE are the mode and type of the current parameter.
884
885 PRETEND_SIZE is a variable that should be set to the amount of stack
886 that must be pushed by the prolog to pretend that our caller pushed
887 it.
888
889 Normally, this macro will push all remaining incoming registers on the
890 stack and set PRETEND_SIZE to the length of the registers pushed. */
891
892 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
893 { if ((CUM) < 16) \
894 { \
895 int first_reg_offset = (CUM); \
896 \
897 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
898 first_reg_offset += A29K_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1); \
899 \
900 if (first_reg_offset > 16) \
901 first_reg_offset = 16; \
902 \
903 if (! (NO_RTL) && first_reg_offset != 16) \
904 move_block_from_reg \
905 (R_AR (0) + first_reg_offset, \
906 gen_rtx (MEM, BLKmode, virtual_incoming_args_rtx), \
907 16 - first_reg_offset, (16 - first_reg_offset) * UNITS_PER_WORD); \
908 PRETEND_SIZE = (16 - first_reg_offset) * UNITS_PER_WORD; \
909 } \
910 }
911
912 /* Define the information needed to generate branch and scc insns. This is
913 stored from the compare operation. Note that we can't use "rtx" here
914 since it hasn't been defined! */
915
916 extern struct rtx_def *a29k_compare_op0, *a29k_compare_op1;
917 extern int a29k_compare_fp_p;
918
919 /* This macro produces the initial definition of a function name.
920
921 For the 29k, we need the prolog to contain one or two words prior to
922 the declaration of the function name. So just store away the name and
923 write it as part of the prolog. */
924
925 extern char *a29k_function_name;
926
927 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
928 a29k_function_name = NAME;
929
930 /* This macro generates the assembly code for function entry.
931 FILE is a stdio stream to output the code to.
932 SIZE is an int: how many units of temporary storage to allocate.
933 Refer to the array `regs_ever_live' to determine which registers
934 to save; `regs_ever_live[I]' is nonzero if register number I
935 is ever used in the function. This macro is responsible for
936 knowing which registers should not be saved even if used. */
937
938 #define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
939
940 /* Output assembler code to FILE to increment profiler label # LABELNO
941 for profiling a function entry. */
942
943 #define FUNCTION_PROFILER(FILE, LABELNO)
944
945 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
946 the stack pointer does not matter. The value is tested only in
947 functions that have frame pointers.
948 No definition is equivalent to always zero. */
949
950 #define EXIT_IGNORE_STACK 1
951
952 /* This macro generates the assembly code for function exit,
953 on machines that need it. If FUNCTION_EPILOGUE is not defined
954 then individual return instructions are generated for each
955 return statement. Args are same as for FUNCTION_PROLOGUE.
956
957 The function epilogue should not depend on the current stack pointer!
958 It should use the frame pointer only. This is mandatory because
959 of alloca; we also take advantage of it to omit stack adjustments
960 before returning. */
961
962 #define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
963
964 /* Define the number of delay slots needed for the function epilogue.
965
966 On the 29k, we need a slot except when we have a register stack adjustment,
967 have a memory stack adjustment, and have no frame pointer. */
968
969 #define DELAY_SLOTS_FOR_EPILOGUE \
970 (! (needs_regstack_p () \
971 && (get_frame_size () + current_function_pretend_args_size \
972 + current_function_outgoing_args_size) != 0 \
973 && ! frame_pointer_needed))
974
975 /* Define whether INSN can be placed in delay slot N for the epilogue.
976
977 On the 29k, we must be able to place it in a delay slot, it must
978 not use sp if the frame pointer cannot be eliminated, and it cannot
979 use local regs if we need to push the register stack. */
980
981 #define ELIGIBLE_FOR_EPILOGUE_DELAY(INSN,N) \
982 (get_attr_in_delay_slot (INSN) == IN_DELAY_SLOT_YES \
983 && ! (frame_pointer_needed \
984 && reg_mentioned_p (stack_pointer_rtx, PATTERN (INSN))) \
985 && ! (needs_regstack_p () && uses_local_reg_p (PATTERN (INSN))))
986 \f
987 /* Output assembler code for a block containing the constant parts
988 of a trampoline, leaving space for the variable parts.
989
990 The trampoline should set the static chain pointer to value placed
991 into the trampoline and should branch to the specified routine. We
992 use gr121 (tav) as a temporary. */
993
994 #define TRAMPOLINE_TEMPLATE(FILE) \
995 { \
996 fprintf (FILE, "\tconst %s,0\n", reg_names[R_TAV]); \
997 fprintf (FILE, "\tconsth %s,0\n", reg_names[R_TAV]); \
998 fprintf (FILE, "\tconst %s,0\n", reg_names[R_SLP]); \
999 fprintf (FILE, "\tjmpi %s\n", reg_names[R_TAV]); \
1000 fprintf (FILE, "\tconsth %s,0\n", reg_names[R_SLP]); \
1001 }
1002
1003 /* Length in units of the trampoline for entering a nested function. */
1004
1005 #define TRAMPOLINE_SIZE 20
1006
1007 /* Emit RTL insns to initialize the variable parts of a trampoline.
1008 FNADDR is an RTX for the address of the function's pure code.
1009 CXT is an RTX for the static chain value for the function.
1010
1011 We do this on the 29k by writing the bytes of the addresses into the
1012 trampoline one byte at a time. */
1013
1014 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1015 { \
1016 INITIALIZE_TRAMPOLINE_VALUE (TRAMP, FNADDR, 0, 4); \
1017 INITIALIZE_TRAMPOLINE_VALUE (TRAMP, CXT, 8, 16); \
1018 }
1019
1020 /* Define a sub-macro to initialize one value into the trampoline.
1021 We specify the offsets of the CONST and CONSTH instructions, respectively
1022 and copy the value a byte at a time into these instructions. */
1023
1024 #define INITIALIZE_TRAMPOLINE_VALUE(TRAMP, VALUE, CONST, CONSTH) \
1025 { \
1026 rtx _addr, _temp; \
1027 rtx _val = force_reg (SImode, VALUE); \
1028 \
1029 _addr = memory_address (QImode, plus_constant (TRAMP, (CONST) + 3)); \
1030 emit_move_insn (gen_rtx (MEM, QImode, _addr), \
1031 gen_lowpart (QImode, _val)); \
1032 \
1033 _temp = expand_shift (RSHIFT_EXPR, SImode, _val, \
1034 build_int_2 (8, 0), 0, 1); \
1035 _addr = memory_address (QImode, plus_constant (TRAMP, (CONST) + 1)); \
1036 emit_move_insn (gen_rtx (MEM, QImode, _addr), \
1037 gen_lowpart (QImode, _temp)); \
1038 \
1039 _temp = expand_shift (RSHIFT_EXPR, SImode, _temp, \
1040 build_int_2 (8, 0), _temp, 1); \
1041 _addr = memory_address (QImode, plus_constant (TRAMP, (CONSTH) + 3)); \
1042 emit_move_insn (gen_rtx (MEM, QImode, _addr), \
1043 gen_lowpart (QImode, _temp)); \
1044 \
1045 _temp = expand_shift (RSHIFT_EXPR, SImode, _temp, \
1046 build_int_2 (8, 0), _temp, 1); \
1047 _addr = memory_address (QImode, plus_constant (TRAMP, (CONSTH) + 1)); \
1048 emit_move_insn (gen_rtx (MEM, QImode, _addr), \
1049 gen_lowpart (QImode, _temp)); \
1050 }
1051 \f
1052 /* Addressing modes, and classification of registers for them. */
1053
1054 /* #define HAVE_POST_INCREMENT */
1055 /* #define HAVE_POST_DECREMENT */
1056
1057 /* #define HAVE_PRE_DECREMENT */
1058 /* #define HAVE_PRE_INCREMENT */
1059
1060 /* Macros to check register numbers against specific register classes. */
1061
1062 /* These assume that REGNO is a hard or pseudo reg number.
1063 They give nonzero only if REGNO is a hard reg of the suitable class
1064 or a pseudo reg currently allocated to a suitable hard reg.
1065 Since they use reg_renumber, they are safe only once reg_renumber
1066 has been allocated, which happens in local-alloc.c. */
1067
1068 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
1069 #define REGNO_OK_FOR_BASE_P(REGNO) 1
1070
1071 /* Given the value returned from get_frame_size, compute the actual size
1072 of the frame we will allocate. We include the pretend and outgoing
1073 arg sizes and round to a doubleword. */
1074
1075 #define ACTUAL_FRAME_SIZE(SIZE) \
1076 (((SIZE) + current_function_pretend_args_size \
1077 + current_function_outgoing_args_size + 7) & ~7)
1078
1079 /* Define the initial offset between the frame and stack pointer. */
1080
1081 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
1082 (DEPTH) = ACTUAL_FRAME_SIZE (get_frame_size ())
1083 \f
1084 /* Maximum number of registers that can appear in a valid memory address. */
1085 #define MAX_REGS_PER_ADDRESS 1
1086
1087 /* Recognize any constant value that is a valid address.
1088
1089 None are on the 29K. */
1090 #define CONSTANT_ADDRESS_P(X) 0
1091
1092 /* Include all constant integers and constant doubles */
1093 #define LEGITIMATE_CONSTANT_P(X) 1
1094
1095 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1096 and check its validity for a certain class.
1097 We have two alternate definitions for each of them.
1098 The usual definition accepts all pseudo regs; the other rejects
1099 them unless they have been allocated suitable hard regs.
1100 The symbol REG_OK_STRICT causes the latter definition to be used.
1101
1102 Most source files want to accept pseudo regs in the hope that
1103 they will get allocated to the class that the insn wants them to be in.
1104 Source files for reload pass need to be strict.
1105 After reload, it makes no difference, since pseudo regs have
1106 been eliminated by then. */
1107
1108 #ifndef REG_OK_STRICT
1109
1110 /* Nonzero if X is a hard reg that can be used as an index
1111 or if it is a pseudo reg. */
1112 #define REG_OK_FOR_INDEX_P(X) 0
1113 /* Nonzero if X is a hard reg that can be used as a base reg
1114 or if it is a pseudo reg. */
1115 #define REG_OK_FOR_BASE_P(X) 1
1116
1117 #else
1118
1119 /* Nonzero if X is a hard reg that can be used as an index. */
1120 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1121 /* Nonzero if X is a hard reg that can be used as a base reg. */
1122 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1123
1124 #endif
1125 \f
1126 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1127 that is a valid memory address for an instruction.
1128 The MODE argument is the machine mode for the MEM expression
1129 that wants to use this address.
1130
1131 On the 29k, a legitimate address is a register and so is a
1132 constant of less than 256. */
1133
1134 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1135 { if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1136 goto ADDR; \
1137 if (GET_CODE (X) == CONST_INT \
1138 && (unsigned) INTVAL (X) < 0x100) \
1139 goto ADDR; \
1140 }
1141
1142 /* Try machine-dependent ways of modifying an illegitimate address
1143 to be legitimate. If we find one, return the new, valid address.
1144 This macro is used in only one place: `memory_address' in explow.c.
1145
1146 OLDX is the address as it was before break_out_memory_refs was called.
1147 In some cases it is useful to look at this to decide what needs to be done.
1148
1149 MODE and WIN are passed so that this macro can use
1150 GO_IF_LEGITIMATE_ADDRESS.
1151
1152 It is always safe for this macro to do nothing. It exists to recognize
1153 opportunities to optimize the output.
1154
1155 For the 29k, we need not do anything. However, if we don't,
1156 `memory_address' will try lots of things to get a valid address, most of
1157 which will result in dead code and extra pseudos. So we make the address
1158 valid here.
1159
1160 This is easy: The only valid addresses are an offset from a register
1161 and we know the address isn't valid. So just call either `force_operand'
1162 or `force_reg' unless this is a (plus (reg ...) (const_int 0)). */
1163
1164 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1165 { if (GET_CODE (X) == PLUS && XEXP (X, 1) == const0_rtx) \
1166 X = XEXP (x, 0); \
1167 if (GET_CODE (X) == MULT || GET_CODE (X) == PLUS) \
1168 X = force_operand (X, 0); \
1169 else \
1170 X = force_reg (Pmode, X); \
1171 goto WIN; \
1172 }
1173
1174 /* Go to LABEL if ADDR (a legitimate address expression)
1175 has an effect that depends on the machine mode it is used for.
1176 On the 29k this is never true. */
1177
1178 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1179
1180 /* Compute the cost of an address. For the 29k, all valid addresses are
1181 the same cost. */
1182
1183 #define ADDRESS_COST(X) 0
1184
1185 /* Define this if some processing needs to be done immediately before
1186 emitting code for an insn. */
1187
1188 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1189 \f
1190 /* Specify the machine mode that this machine uses
1191 for the index in the tablejump instruction. */
1192 #define CASE_VECTOR_MODE SImode
1193
1194 /* Define this if the tablejump instruction expects the table
1195 to contain offsets from the address of the table.
1196 Do not define this if the table should contain absolute addresses. */
1197 /* #define CASE_VECTOR_PC_RELATIVE */
1198
1199 /* Specify the tree operation to be used to convert reals to integers. */
1200 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1201
1202 /* This is the kind of divide that is easiest to do in the general case. */
1203 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1204
1205 /* Define this as 1 if `char' should by default be signed; else as 0. */
1206 #define DEFAULT_SIGNED_CHAR 0
1207
1208 /* This flag, if defined, says the same insns that convert to a signed fixnum
1209 also convert validly to an unsigned one.
1210
1211 We actually lie a bit here as overflow conditions are different. But
1212 they aren't being checked anyway. */
1213
1214 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1215
1216 /* Max number of bytes we can move to of from memory
1217 in one reasonably fast instruction.
1218
1219 For the 29k, we will define movti, so put this at 4 words. */
1220 #define MOVE_MAX 16
1221
1222 /* Largest number of bytes of an object that can be placed in a register.
1223 On the 29k we have plenty of registers, so use TImode. */
1224 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1225
1226 /* Nonzero if access to memory by bytes is no faster than for words.
1227 Also non-zero if doing byte operations (specifically shifts) in registers
1228 is undesirable.
1229
1230 On the 29k, large masks are expensive, so we want to use bytes to
1231 manipulate fields. */
1232 #define SLOW_BYTE_ACCESS 0
1233
1234 /* Define if operations between registers always perform the operation
1235 on the full register even if a narrower mode is specified. */
1236 #define WORD_REGISTER_OPERATIONS
1237
1238 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1239 will either zero-extend or sign-extend. The value of this macro should
1240 be the code that says which one of the two operations is implicitly
1241 done, NIL if none. */
1242 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1243
1244 /* Define if the object format being used is COFF or a superset. */
1245 #define OBJECT_FORMAT_COFF
1246
1247 /* This uses COFF, so it wants SDB format. */
1248 #define SDB_DEBUGGING_INFO
1249
1250 /* Define this to be the delimiter between SDB sub-sections. The default
1251 is ";". */
1252 #define SDB_DELIM "\n"
1253
1254 /* Do not break .stabs pseudos into continuations. */
1255 #define DBX_CONTIN_LENGTH 0
1256
1257 /* Don't try to use the `x' type-cross-reference character in DBX data.
1258 Also has the consequence of putting each struct, union or enum
1259 into a separate .stabs, containing only cross-refs to the others. */
1260 #define DBX_NO_XREFS
1261
1262 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1263 is done just by pretending it is already truncated. */
1264 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1265
1266 /* We assume that the store-condition-codes instructions store 0 for false
1267 and some other value for true. This is the value stored for true. */
1268
1269 #define STORE_FLAG_VALUE 0x80000000
1270
1271 /* Specify the machine mode that pointers have.
1272 After generation of rtl, the compiler makes no further distinction
1273 between pointers and any other objects of this machine mode. */
1274 #define Pmode SImode
1275
1276 /* Mode of a function address in a call instruction (for indexing purposes).
1277
1278 Doesn't matter on 29k. */
1279 #define FUNCTION_MODE SImode
1280
1281 /* Define this if addresses of constant functions
1282 shouldn't be put through pseudo regs where they can be cse'd.
1283 Desirable on machines where ordinary constants are expensive
1284 but a CALL with constant address is cheap. */
1285 #define NO_FUNCTION_CSE
1286
1287 /* Define this to be nonzero if shift instructions ignore all but the low-order
1288 few bits. */
1289 #define SHIFT_COUNT_TRUNCATED 1
1290
1291 /* Compute the cost of computing a constant rtl expression RTX
1292 whose rtx-code is CODE. The body of this macro is a portion
1293 of a switch statement. If the code is computed here,
1294 return it with a return statement. Otherwise, break from the switch.
1295
1296 We only care about the cost if it is valid in an insn. The only
1297 constants that cause an insn to generate more than one machine
1298 instruction are those involving floating-point or address. So
1299 only these need be expensive. */
1300
1301 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1302 case CONST_INT: \
1303 return 0; \
1304 case CONST: \
1305 case LABEL_REF: \
1306 case SYMBOL_REF: \
1307 return 6; \
1308 case CONST_DOUBLE: \
1309 return GET_MODE (RTX) == SFmode ? 6 : 8;
1310
1311 /* Provide the costs of a rtl expression. This is in the body of a
1312 switch on CODE.
1313
1314 All MEMs cost the same if they are valid. This is used to ensure
1315 that (mem (symbol_ref ...)) is placed into a CALL when valid.
1316
1317 The multiply cost depends on whether this is a 29050 or not. */
1318
1319 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1320 case MULT: \
1321 return TARGET_29050 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (40); \
1322 case DIV: \
1323 case UDIV: \
1324 case MOD: \
1325 case UMOD: \
1326 return COSTS_N_INSNS (50); \
1327 case MEM: \
1328 return COSTS_N_INSNS (2);
1329 \f
1330 /* Control the assembler format that we output. */
1331
1332 /* Output at beginning of assembler file. */
1333
1334 #define ASM_FILE_START(FILE) \
1335 { char *p, *after_dir = main_input_filename; \
1336 if (TARGET_29050) \
1337 fprintf (FILE, "\t.cputype 29050\n"); \
1338 for (p = main_input_filename; *p; p++) \
1339 if (*p == '/') \
1340 after_dir = p + 1; \
1341 fprintf (FILE, "\t.file "); \
1342 output_quoted_string (FILE, after_dir); \
1343 fprintf (FILE, "\n"); \
1344 fprintf (FILE, "\t.sect .lit,lit\n"); }
1345
1346 /* Output to assembler file text saying following lines
1347 may contain character constants, extra white space, comments, etc. */
1348
1349 #define ASM_APP_ON ""
1350
1351 /* Output to assembler file text saying following lines
1352 no longer contain unusual constructs. */
1353
1354 #define ASM_APP_OFF ""
1355
1356 /* The next few macros don't have tabs on most machines, but
1357 at least one 29K assembler wants them. */
1358
1359 /* Output before instructions. */
1360
1361 #define TEXT_SECTION_ASM_OP "\t.text"
1362
1363 /* Output before read-only data. */
1364
1365 #define READONLY_DATA_SECTION_ASM_OP "\t.use .lit"
1366
1367 /* Output before writable data. */
1368
1369 #define DATA_SECTION_ASM_OP "\t.data"
1370
1371 /* Define an extra section for read-only data, a routine to enter it, and
1372 indicate that it is for read-only data. */
1373
1374 #define EXTRA_SECTIONS readonly_data
1375
1376 #define EXTRA_SECTION_FUNCTIONS \
1377 void \
1378 literal_section () \
1379 { \
1380 if (in_section != readonly_data) \
1381 { \
1382 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
1383 in_section = readonly_data; \
1384 } \
1385 } \
1386
1387 #define READONLY_DATA_SECTION literal_section
1388
1389 /* If we are referencing a function that is static or is known to be
1390 in this file, make the SYMBOL_REF special. We can use this to indicate
1391 that we can branch to this function without emitting a no-op after the
1392 call. */
1393
1394 #define ENCODE_SECTION_INFO(DECL) \
1395 if (TREE_CODE (DECL) == FUNCTION_DECL \
1396 && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \
1397 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1398
1399 /* How to refer to registers in assembler output.
1400 This sequence is indexed by compiler's hard-register-number (see above). */
1401
1402 #define REGISTER_NAMES \
1403 {"gr96", "gr97", "gr98", "gr99", "gr100", "gr101", "gr102", "gr103", "gr104", \
1404 "gr105", "gr106", "gr107", "gr108", "gr109", "gr110", "gr111", "gr112", \
1405 "gr113", "gr114", "gr115", "gr116", "gr117", "gr118", "gr119", "gr120", \
1406 "gr121", "gr122", "gr123", "gr124", "gr125", "gr126", "gr127", \
1407 "lr0", "lr1", "lr2", "lr3", "lr4", "lr5", "lr6", "lr7", "lr8", "lr9", \
1408 "lr10", "lr11", "lr12", "lr13", "lr14", "lr15", "lr16", "lr17", "lr18", \
1409 "lr19", "lr20", "lr21", "lr22", "lr23", "lr24", "lr25", "lr26", "lr27", \
1410 "lr28", "lr29", "lr30", "lr31", "lr32", "lr33", "lr34", "lr35", "lr36", \
1411 "lr37", "lr38", "lr39", "lr40", "lr41", "lr42", "lr43", "lr44", "lr45", \
1412 "lr46", "lr47", "lr48", "lr49", "lr50", "lr51", "lr52", "lr53", "lr54", \
1413 "lr55", "lr56", "lr57", "lr58", "lr59", "lr60", "lr61", "lr62", "lr63", \
1414 "lr64", "lr65", "lr66", "lr67", "lr68", "lr69", "lr70", "lr71", "lr72", \
1415 "lr73", "lr74", "lr75", "lr76", "lr77", "lr78", "lr79", "lr80", "lr81", \
1416 "lr82", "lr83", "lr84", "lr85", "lr86", "lr87", "lr88", "lr89", "lr90", \
1417 "lr91", "lr92", "lr93", "lr94", "lr95", "lr96", "lr97", "lr98", "lr99", \
1418 "lr100", "lr101", "lr102", "lr103", "lr104", "lr105", "lr106", "lr107", \
1419 "lr108", "lr109", "lr110", "lr111", "lr112", "lr113", "lr114", "lr115", \
1420 "lr116", "lr117", "lr118", "lr119", "lr120", "lr121", "lr122", "lr123", \
1421 "lr124", "lr125", "lr126", "lr127", \
1422 "AI0", "AI1", "AI2", "AI3", "AI4", "AI5", "AI6", "AI7", "AI8", "AI9", \
1423 "AI10", "AI11", "AI12", "AI13", "AI14", "AI15", "FP", \
1424 "bp", "fc", "cr", "q", \
1425 "vab", "ops", "cps", "cfg", "cha", "chd", "chc", "rbp", "tmc", "tmr", \
1426 "pc0", "pc1", "pc2", "mmu", "lru", "fpe", "int", "fps", "exo", \
1427 "0", "1", "2", "3", \
1428 "gr64", "gr65", "gr66", "gr67", "gr68", "gr69", "gr70", "gr71", \
1429 "gr72", "gr73", "gr74", "gr75", "gr76", "gr77", "gr78", "gr79", \
1430 "gr80", "gr81", "gr82", "gr83", "gr84", "gr85", "gr86", "gr87", \
1431 "gr88", "gr89", "gr90", "gr91", "gr92", "gr93", "gr94", "gr95" }
1432
1433 /* How to renumber registers for dbx and gdb. */
1434
1435 extern int a29k_debug_reg_map[];
1436 #define DBX_REGISTER_NUMBER(REGNO) a29k_debug_reg_map[REGNO]
1437
1438 /* This is how to output the definition of a user-level label named NAME,
1439 such as the label on a static function or variable NAME. */
1440
1441 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1442 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1443
1444 /* This is how to output a command to make the user-level label named NAME
1445 defined for reference from other files. */
1446
1447 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1448 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1449
1450 /* This is how to output a reference to a user-level label named NAME.
1451 `assemble_name' uses this. */
1452
1453 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1454 fprintf (FILE, "_%s", NAME)
1455
1456 /* This is how to output an internal numbered label where
1457 PREFIX is the class of label and NUM is the number within the class. */
1458
1459 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1460 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1461
1462 /* This is how to output a label for a jump table. Arguments are the same as
1463 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1464 passed. */
1465
1466 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1467 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1468
1469 /* This is how to store into the string LABEL
1470 the symbol_ref name of an internal numbered label where
1471 PREFIX is the class of label and NUM is the number within the class.
1472 This is suitable for output with `assemble_name'. */
1473
1474 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1475 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1476
1477 /* This is how to output an assembler line defining a `double' constant. */
1478
1479 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1480 fprintf (FILE, "\t.double %.20e\n", (VALUE))
1481
1482 /* This is how to output an assembler line defining a `float' constant. */
1483
1484 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1485 fprintf (FILE, "\t.float %.20e\n", (VALUE))
1486
1487 /* This is how to output an assembler line defining an `int' constant. */
1488
1489 #define ASM_OUTPUT_INT(FILE,VALUE) \
1490 ( fprintf (FILE, "\t.word "), \
1491 output_addr_const (FILE, (VALUE)), \
1492 fprintf (FILE, "\n"))
1493
1494 /* Likewise for `char' and `short' constants. */
1495
1496 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1497 ( fprintf (FILE, "\t.hword "), \
1498 output_addr_const (FILE, (VALUE)), \
1499 fprintf (FILE, "\n"))
1500
1501 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1502 ( fprintf (FILE, "\t.byte "), \
1503 output_addr_const (FILE, (VALUE)), \
1504 fprintf (FILE, "\n"))
1505
1506 /* This is how to output an insn to push a register on the stack.
1507 It need not be very fast code. */
1508
1509 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1510 fprintf (FILE, "\tsub %s,%s,4\n\tstore 0,0,%s,%s\n", \
1511 reg_names[R_MSP], reg_names[R_MSP], reg_names[REGNO], \
1512 reg_names[R_MSP]);
1513
1514 /* This is how to output an insn to pop a register from the stack.
1515 It need not be very fast code. */
1516
1517 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1518 fprintf (FILE, "\tload 0,0,%s,%s\n\tadd %s,%s,4\n", \
1519 reg_names[REGNO], reg_names[R_MSP], reg_names[R_MSP], \
1520 reg_names[R_MSP]);
1521
1522 /* This is how to output an assembler line for a numeric constant byte. */
1523
1524 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1525 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1526
1527 /* This is how to output an element of a case-vector that is absolute. */
1528
1529 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1530 fprintf (FILE, "\t.word L%d\n", VALUE)
1531
1532 /* This is how to output an element of a case-vector that is relative.
1533 (29k does not use such vectors,
1534 but we must define this macro anyway.) */
1535
1536 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) abort ()
1537
1538 /* This is how to output an assembler line
1539 that says to advance the location counter
1540 to a multiple of 2**LOG bytes. */
1541
1542 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1543 if ((LOG) != 0) \
1544 fprintf (FILE, "\t.align %d\n", 1 << (LOG))
1545
1546 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1547 fprintf (FILE, "\t.block %d\n", (SIZE))
1548
1549 /* This says how to output an assembler line
1550 to define a global common symbol. */
1551
1552 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1553 ( fputs ("\t.comm ", (FILE)), \
1554 assemble_name ((FILE), (NAME)), \
1555 fprintf ((FILE), ",%d\n", (SIZE)))
1556
1557 /* This says how to output an assembler line
1558 to define a local common symbol. */
1559
1560 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1561 ( fputs ("\t.lcomm ", (FILE)), \
1562 assemble_name ((FILE), (NAME)), \
1563 fprintf ((FILE), ",%d\n", (SIZE)))
1564
1565 /* Store in OUTPUT a string (made with alloca) containing
1566 an assembler-name for a local static variable named NAME.
1567 LABELNO is an integer which is different for each call. */
1568
1569 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1570 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1571 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1572
1573 /* Define the parentheses used to group arithmetic operations
1574 in assembler code. */
1575
1576 #define ASM_OPEN_PAREN "("
1577 #define ASM_CLOSE_PAREN ")"
1578
1579 /* Define results of standard character escape sequences. */
1580 #define TARGET_BELL 007
1581 #define TARGET_BS 010
1582 #define TARGET_TAB 011
1583 #define TARGET_NEWLINE 012
1584 #define TARGET_VT 013
1585 #define TARGET_FF 014
1586 #define TARGET_CR 015
1587
1588 /* Print operand X (an rtx) in assembler syntax to file FILE.
1589 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1590 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1591
1592 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1593
1594 /* Determine which codes are valid without a following integer. These must
1595 not be alphabetic.
1596
1597 We support `#' which is null if a delay slot exists, otherwise
1598 "\n\tnop" and `*' which prints the register name for TPC (gr122). */
1599
1600 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '#' || (CODE) == '*')
1601 \f
1602 /* Print a memory address as an operand to reference that memory location. */
1603
1604 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1605 { register rtx addr = ADDR; \
1606 if (!REG_P (addr) \
1607 && ! (GET_CODE (addr) == CONST_INT \
1608 && INTVAL (addr) >= 0 && INTVAL (addr) < 256)) \
1609 abort (); \
1610 output_operand (addr, 0); \
1611 }
1612 /* Define the codes that are matched by predicates in a29k.c. */
1613
1614 #define PREDICATE_CODES \
1615 {"cint_8_operand", {CONST_INT}}, \
1616 {"cint_16_operand", {CONST_INT}}, \
1617 {"long_const_operand", {CONST_INT, CONST, CONST_DOUBLE, \
1618 LABEL_REF, SYMBOL_REF}}, \
1619 {"shift_constant_operand", {CONST_INT, ASHIFT}}, \
1620 {"const_0_operand", {CONST_INT, ASHIFT}}, \
1621 {"const_8_operand", {CONST_INT, ASHIFT}}, \
1622 {"const_16_operand", {CONST_INT, ASHIFT}}, \
1623 {"const_24_operand", {CONST_INT, ASHIFT}}, \
1624 {"float_const_operand", {CONST_DOUBLE}}, \
1625 {"gpc_reg_operand", {SUBREG, REG}}, \
1626 {"gpc_reg_or_float_constant_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1627 {"gpc_reg_or_integer_constant_operand", {SUBREG, REG, \
1628 CONST_INT, CONST_DOUBLE}}, \
1629 {"gpc_reg_or_immediate_operand", {SUBREG, REG, CONST_INT, \
1630 CONST_DOUBLE, CONST, \
1631 SYMBOL_REF, LABEL_REF}}, \
1632 {"spec_reg_operand", {REG}}, \
1633 {"accum_reg_operand", {REG}}, \
1634 {"srcb_operand", {SUBREG, REG, CONST_INT}}, \
1635 {"cmplsrcb_operand", {SUBREG, REG, CONST_INT}}, \
1636 {"reg_or_immediate_operand", {SUBREG, REG, CONST_INT, CONST, \
1637 CONST_DOUBLE, CONST, SYMBOL_REF, LABEL_REF}}, \
1638 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
1639 {"and_operand", {SUBREG, REG, CONST_INT}}, \
1640 {"add_operand", {SUBREG, REG, CONST_INT}}, \
1641 {"call_operand", {SYMBOL_REF, CONST_INT}}, \
1642 {"in_operand", {SUBREG, MEM, REG, CONST_INT, CONST, SYMBOL_REF, \
1643 LABEL_REF, CONST_DOUBLE}}, \
1644 {"out_operand", {SUBREG, REG, MEM}}, \
1645 {"reload_memory_operand", {SUBREG, REG, MEM}}, \
1646 {"fp_comparison_operator", {EQ, GT, GE}}, \
1647 {"branch_operator", {GE, LT}}, \
1648 {"load_multiple_operation", {PARALLEL}}, \
1649 {"store_multiple_operation", {PARALLEL}}, \
1650 {"epilogue_operand", {CODE_LABEL}},