(ASM_OUTPUT_SECTION_NAME): New macro.
[gcc.git] / gcc / config / a29k / a29k.h
1 /* Definitions of target machine for GNU compiler, for AMD Am29000 CPU.
2 Copyright (C) 1988, 90-94, 1995 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@nyu.edu)
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22 /* Names to predefine in the preprocessor for this target machine. */
23
24 #define CPP_PREDEFINES "-D_AM29K -D_AM29000 -D_EPI -Acpu(a29k) -Amachine(a29k)"
25
26 /* Print subsidiary information on the compiler version in use. */
27 #define TARGET_VERSION
28
29 /* Pass -w to assembler. */
30 #define ASM_SPEC "-w"
31
32 /* Run-time compilation parameters selecting different hardware subsets. */
33
34 extern int target_flags;
35
36 /* Macro to define tables used to set the flags.
37 This is a list in braces of pairs in braces,
38 each pair being { "NAME", VALUE }
39 where VALUE is the bits to set or minus the bits to clear.
40 An empty string NAME is used to identify the default VALUE. */
41
42 /* This means that the DW bit will be enabled, to allow direct loads
43 of bytes. */
44
45 #define TARGET_DW_ENABLE (target_flags & 1)
46
47 /* This means that the external hardware does supports byte writes. */
48
49 #define TARGET_BYTE_WRITES (target_flags & 2)
50
51 /* This means that a "small memory model" has been selected where all
52 function addresses are known to be within 256K. This allows CALL to be
53 used. */
54
55 #define TARGET_SMALL_MEMORY (target_flags & 4)
56
57 /* This means that we must always used on indirect call, even when
58 calling a function in the same file, since the file might be > 256KB. */
59
60 #define TARGET_LARGE_MEMORY (target_flags & 8)
61
62 /* This means that we are compiling for a 29050. */
63
64 #define TARGET_29050 (target_flags & 16)
65
66 /* This means that we are compiling for the kernel which means that we use
67 gr64-gr95 instead of gr96-126. */
68
69 #define TARGET_KERNEL_REGISTERS (target_flags & 32)
70
71 /* This means that a call to "__msp_check" should be inserted after each stack
72 adjustment to check for stack overflow. */
73
74 #define TARGET_STACK_CHECK (target_flags & 64)
75
76 /* This handles 29k processors which cannot handle the separation
77 of a mtsrim insns and a storem insn (most 29000 chips to date, but
78 not the 29050. */
79
80 #define TARGET_NO_STOREM_BUG (target_flags & 128)
81
82 /* This forces the compiler not to use incoming argument registers except
83 for copying out arguments. It helps detect problems when a function is
84 called with fewer arguments than it is declared with. */
85
86 #define TARGET_NO_REUSE_ARGS (target_flags & 256)
87
88 /* This means that neither builtin nor emulated float operations are
89 available, and that GCC should generate libcalls instead. */
90
91 #define TARGET_SOFT_FLOAT (target_flags & 512)
92
93 /* This means that we should not emit the multm or mutmu instructions
94 that some embedded systems' trap handlers don't support. */
95
96 #define TARGET_MULTM ((target_flags & 1024) == 0)
97
98 #define TARGET_SWITCHES \
99 { {"dw", 1}, \
100 {"ndw", -1}, \
101 {"bw", 2}, \
102 {"nbw", - (1|2)}, \
103 {"small", 4}, \
104 {"normal", - (4|8)}, \
105 {"large", 8}, \
106 {"29050", 16+128}, \
107 {"29000", -16}, \
108 {"kernel-registers", 32}, \
109 {"user-registers", -32}, \
110 {"stack-check", 64}, \
111 {"no-stack-check", - 74}, \
112 {"storem-bug", -128}, \
113 {"no-storem-bug", 128}, \
114 {"reuse-arg-regs", -256}, \
115 {"no-reuse-arg-regs", 256}, \
116 {"soft-float", 512}, \
117 {"no-multm", 1024}, \
118 {"", TARGET_DEFAULT}}
119
120 #define TARGET_DEFAULT 3
121
122 /* Show we can debug even without a frame pointer. */
123 #define CAN_DEBUG_WITHOUT_FP
124 \f
125 /* target machine storage layout */
126
127 /* Define the types for size_t, ptrdiff_t, and wchar_t. These are the
128 same as those used by EPI. The type for wchar_t does not make much
129 sense, but is what is used. */
130
131 #define SIZE_TYPE "unsigned int"
132 #define PTRDIFF_TYPE "int"
133 #define WCHAR_TYPE "char"
134 #define WCHAR_TYPE_SIZE BITS_PER_UNIT
135
136 /* Define this macro if it is advisable to hold scalars in registers
137 in a wider mode than that declared by the program. In such cases,
138 the value is constrained to be within the bounds of the declared
139 type, but kept valid in the wider mode. The signedness of the
140 extension may differ from that of the type. */
141
142 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
143 if (GET_MODE_CLASS (MODE) == MODE_INT \
144 && GET_MODE_SIZE (MODE) < 4) \
145 (MODE) = SImode;
146
147 /* Define this if most significant bit is lowest numbered
148 in instructions that operate on numbered bit-fields.
149 This is arbitrary on the 29k since it has no actual bit-field insns.
150 It is better to define this as TRUE because BYTES_BIG_ENDIAN is TRUE
151 and we want to be able to convert BP position to bit position with
152 just a shift. */
153 #define BITS_BIG_ENDIAN 1
154
155 /* Define this if most significant byte of a word is the lowest numbered.
156 This is true on 29k. */
157 #define BYTES_BIG_ENDIAN 1
158
159 /* Define this if most significant word of a multiword number is lowest
160 numbered.
161
162 For 29k we can decide arbitrarily since there are no machine instructions
163 for them. Might as well be consistent with bytes. */
164 #define WORDS_BIG_ENDIAN 1
165
166 /* number of bits in an addressable storage unit */
167 #define BITS_PER_UNIT 8
168
169 /* Width in bits of a "word", which is the contents of a machine register.
170 Note that this is not necessarily the width of data type `int';
171 if using 16-bit ints on a 68000, this would still be 32.
172 But on a machine with 16-bit registers, this would be 16. */
173 #define BITS_PER_WORD 32
174
175 /* Width of a word, in units (bytes). */
176 #define UNITS_PER_WORD 4
177
178 /* Width in bits of a pointer.
179 See also the macro `Pmode' defined below. */
180 #define POINTER_SIZE 32
181
182 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
183 #define PARM_BOUNDARY 32
184
185 /* Boundary (in *bits*) on which stack pointer should be aligned. */
186 #define STACK_BOUNDARY 64
187
188 /* Allocation boundary (in *bits*) for the code of a function. */
189 #define FUNCTION_BOUNDARY 32
190
191 /* Alignment of field after `int : 0' in a structure. */
192 #define EMPTY_FIELD_BOUNDARY 32
193
194 /* Every structure's size must be a multiple of this. */
195 #define STRUCTURE_SIZE_BOUNDARY 8
196
197 /* A bitfield declared as `int' forces `int' alignment for the struct. */
198 #define PCC_BITFIELD_TYPE_MATTERS 1
199
200 /* No data type wants to be aligned rounder than this. */
201 #define BIGGEST_ALIGNMENT 32
202
203 /* Make strings word-aligned so strcpy from constants will be faster. */
204 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
205 (TREE_CODE (EXP) == STRING_CST \
206 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
207
208 /* Make arrays of chars word-aligned for the same reasons. */
209 #define DATA_ALIGNMENT(TYPE, ALIGN) \
210 (TREE_CODE (TYPE) == ARRAY_TYPE \
211 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
212 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
213
214 /* Set this non-zero if move instructions will actually fail to work
215 when given unaligned data. */
216 #define STRICT_ALIGNMENT 0
217
218 /* Set this non-zero if unaligned move instructions are extremely slow.
219
220 On the 29k, they trap. */
221 #define SLOW_UNALIGNED_ACCESS 1
222 \f
223 /* Standard register usage. */
224
225 /* Number of actual hardware registers.
226 The hardware registers are assigned numbers for the compiler
227 from 0 to just below FIRST_PSEUDO_REGISTER.
228 All registers that the compiler knows about must be given numbers,
229 even those that are not normally considered general registers.
230
231 29k has 256 registers, of which 62 are not defined. gr0 and gr1 are
232 not produced in generated RTL so we can start at gr96, and call it
233 register zero.
234
235 So 0-31 are gr96-gr127, lr0-lr127 are 32-159. To represent the input
236 arguments, whose register numbers we won't know until we are done,
237 use register 160-175. They cannot be modified. Similarly, 176 is used
238 for the frame pointer. It is assigned the last local register number
239 once the number of registers used is known.
240
241 We use 177, 178, 179, and 180 for the special registers BP, FC, CR, and Q,
242 respectively. Registers 181 through 199 are used for the other special
243 registers that may be used by the programmer, but are never used by the
244 compiler.
245
246 Registers 200-203 are the four floating-point accumulator register in
247 the 29050.
248
249 Registers 204-235 are the 32 global registers for kernel mode when
250 -mkernel-registers is not specified, and the 32 global user registers
251 when it is.
252
253 When -mkernel-registers is specified, we still use the same register
254 map but change the names so 0-31 print as gr64-gr95. */
255
256 #define FIRST_PSEUDO_REGISTER 236
257
258 /* Because of the large number of registers on the 29k, we define macros
259 to refer to each group of registers and then define the number for some
260 registers used in the calling sequence. */
261
262 #define R_GR(N) ((N) - 96) /* gr96 is register number 0 */
263 #define R_LR(N) ((N) + 32) /* lr0 is register number 32 */
264 #define R_FP 176 /* frame pointer is register 176 */
265 #define R_AR(N) ((N) + 160) /* first incoming arg reg is 160 */
266 #define R_KR(N) ((N) + 204) /* kernel registers (gr64 to gr95) */
267
268 /* Define the numbers of the special registers. */
269 #define R_BP 177
270 #define R_FC 178
271 #define R_CR 179
272 #define R_Q 180
273
274 /* These special registers are not used by the compiler, but may be referenced
275 by the programmer via asm declarations. */
276
277 #define R_VAB 181
278 #define R_OPS 182
279 #define R_CPS 183
280 #define R_CFG 184
281 #define R_CHA 185
282 #define R_CHD 186
283 #define R_CHC 187
284 #define R_RBP 188
285 #define R_TMC 189
286 #define R_TMR 190
287 #define R_PC0 191
288 #define R_PC1 192
289 #define R_PC2 193
290 #define R_MMU 194
291 #define R_LRU 195
292 #define R_FPE 196
293 #define R_INT 197
294 #define R_FPS 198
295 #define R_EXO 199
296
297 /* Define the number for floating-point accumulator N. */
298 #define R_ACU(N) ((N) + 200)
299
300 /* Now define the registers used in the calling sequence. */
301 #define R_TAV R_GR (121)
302 #define R_TPC R_GR (122)
303 #define R_LRP R_GR (123)
304 #define R_SLP R_GR (124)
305 #define R_MSP R_GR (125)
306 #define R_RAB R_GR (126)
307 #define R_RFB R_GR (127)
308
309 /* 1 for registers that have pervasive standard uses
310 and are not available for the register allocator. */
311
312 #define FIXED_REGISTERS \
313 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
314 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, \
315 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
316 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
317 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
318 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
319 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
320 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
321 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
322 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
323 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
324 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
325 1, 1, 1, 1, 1, 1, 1, 1, \
326 0, 0, 0, 0, \
327 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
328 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
329
330 /* 1 for registers not available across function calls.
331 These must include the FIXED_REGISTERS and also any
332 registers that can be used without being saved.
333 The latter must include the registers where values are returned
334 and the register where structure-value addresses are passed.
335 Aside from that, you can include as many other registers as you like. */
336 #define CALL_USED_REGISTERS \
337 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
338 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
339 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
340 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
341 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
342 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
343 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
344 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
345 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
346 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
347 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
348 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
349 1, 1, 1, 1, 1, 1, 1, 1, \
350 1, 1, 1, 1, \
351 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
352 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
353
354 /* List the order in which to allocate registers. Each register must be
355 listed once, even those in FIXED_REGISTERS.
356
357 We allocate in the following order:
358 gr116-gr120 (not used for anything but temps)
359 gr96-gr111 (function return values, reverse order)
360 argument registers (160-175)
361 lr0-lr127 (locals, saved)
362 acc3-0 (acc0 special)
363 everything else */
364
365 #define REG_ALLOC_ORDER \
366 {R_GR (116), R_GR (117), R_GR (118), R_GR (119), R_GR (120), \
367 R_GR (111), R_GR (110), R_GR (109), R_GR (108), R_GR (107), \
368 R_GR (106), R_GR (105), R_GR (104), R_GR (103), R_GR (102), \
369 R_GR (101), R_GR (100), R_GR (99), R_GR (98), R_GR (97), R_GR (96), \
370 R_AR (0), R_AR (1), R_AR (2), R_AR (3), R_AR (4), R_AR (5), \
371 R_AR (6), R_AR (7), R_AR (8), R_AR (9), R_AR (10), R_AR (11), \
372 R_AR (12), R_AR (13), R_AR (14), R_AR (15), \
373 R_LR (0), R_LR (1), R_LR (2), R_LR (3), R_LR (4), R_LR (5), \
374 R_LR (6), R_LR (7), R_LR (8), R_LR (9), R_LR (10), R_LR (11), \
375 R_LR (12), R_LR (13), R_LR (14), R_LR (15), R_LR (16), R_LR (17), \
376 R_LR (18), R_LR (19), R_LR (20), R_LR (21), R_LR (22), R_LR (23), \
377 R_LR (24), R_LR (25), R_LR (26), R_LR (27), R_LR (28), R_LR (29), \
378 R_LR (30), R_LR (31), R_LR (32), R_LR (33), R_LR (34), R_LR (35), \
379 R_LR (36), R_LR (37), R_LR (38), R_LR (39), R_LR (40), R_LR (41), \
380 R_LR (42), R_LR (43), R_LR (44), R_LR (45), R_LR (46), R_LR (47), \
381 R_LR (48), R_LR (49), R_LR (50), R_LR (51), R_LR (52), R_LR (53), \
382 R_LR (54), R_LR (55), R_LR (56), R_LR (57), R_LR (58), R_LR (59), \
383 R_LR (60), R_LR (61), R_LR (62), R_LR (63), R_LR (64), R_LR (65), \
384 R_LR (66), R_LR (67), R_LR (68), R_LR (69), R_LR (70), R_LR (71), \
385 R_LR (72), R_LR (73), R_LR (74), R_LR (75), R_LR (76), R_LR (77), \
386 R_LR (78), R_LR (79), R_LR (80), R_LR (81), R_LR (82), R_LR (83), \
387 R_LR (84), R_LR (85), R_LR (86), R_LR (87), R_LR (88), R_LR (89), \
388 R_LR (90), R_LR (91), R_LR (92), R_LR (93), R_LR (94), R_LR (95), \
389 R_LR (96), R_LR (97), R_LR (98), R_LR (99), R_LR (100), R_LR (101), \
390 R_LR (102), R_LR (103), R_LR (104), R_LR (105), R_LR (106), \
391 R_LR (107), R_LR (108), R_LR (109), R_LR (110), R_LR (111), \
392 R_LR (112), R_LR (113), R_LR (114), R_LR (115), R_LR (116), \
393 R_LR (117), R_LR (118), R_LR (119), R_LR (120), R_LR (121), \
394 R_LR (122), R_LR (123), R_LR (124), R_LR (124), R_LR (126), \
395 R_LR (127), \
396 R_ACU (3), R_ACU (2), R_ACU (1), R_ACU (0), \
397 R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (121), \
398 R_GR (122), R_GR (123), R_GR (124), R_GR (125), R_GR (126), \
399 R_GR (127), \
400 R_FP, R_BP, R_FC, R_CR, R_Q, \
401 R_VAB, R_OPS, R_CPS, R_CFG, R_CHA, R_CHD, R_CHC, R_RBP, R_TMC, \
402 R_TMR, R_PC0, R_PC1, R_PC2, R_MMU, R_LRU, R_FPE, R_INT, R_FPS, \
403 R_EXO, \
404 R_KR (0), R_KR (1), R_KR (2), R_KR (3), R_KR (4), R_KR (5), \
405 R_KR (6), R_KR (7), R_KR (8), R_KR (9), R_KR (10), R_KR (11), \
406 R_KR (12), R_KR (13), R_KR (14), R_KR (15), R_KR (16), R_KR (17), \
407 R_KR (18), R_KR (19), R_KR (20), R_KR (21), R_KR (22), R_KR (23), \
408 R_KR (24), R_KR (25), R_KR (26), R_KR (27), R_KR (28), R_KR (29), \
409 R_KR (30), R_KR (31) }
410
411 /* Return number of consecutive hard regs needed starting at reg REGNO
412 to hold something of mode MODE.
413 This is ordinarily the length in words of a value of mode MODE
414 but can be less for certain modes in special long registers. */
415
416 #define HARD_REGNO_NREGS(REGNO, MODE) \
417 ((REGNO) >= R_ACU (0) && (REGNO) <= R_ACU (3)? 1 \
418 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
419
420 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
421 On 29k, the cpu registers can hold any mode. But a double-precision
422 floating-point value should start at an even register. The special
423 registers cannot hold floating-point values, BP, CR, and FC cannot
424 hold integer or floating-point values, and the accumulators cannot
425 hold integer values.
426
427 DImode and larger values should start at an even register just like
428 DFmode values, even though the instruction set doesn't require it, in order
429 to prevent reload from aborting due to a modes_equiv_for_class_p failure.
430
431 (I'd like to use the "?:" syntax to make this more readable, but Sun's
432 compiler doesn't seem to accept it.) */
433 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
434 (((REGNO) >= R_ACU (0) && (REGNO) <= R_ACU (3) \
435 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
436 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)) \
437 || ((REGNO) >= R_BP && (REGNO) <= R_CR \
438 && GET_MODE_CLASS (MODE) == MODE_PARTIAL_INT) \
439 || ((REGNO) >= R_Q && (REGNO) < R_ACU (0) \
440 && GET_MODE_CLASS (MODE) != MODE_FLOAT \
441 && GET_MODE_CLASS (MODE) != MODE_COMPLEX_FLOAT) \
442 || (((REGNO) < R_BP || (REGNO) >= R_KR (0)) \
443 && ((((REGNO) & 1) == 0) \
444 || GET_MODE_UNIT_SIZE (MODE) <= UNITS_PER_WORD)))
445
446 /* Value is 1 if it is a good idea to tie two pseudo registers
447 when one has mode MODE1 and one has mode MODE2.
448 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
449 for any hard reg, then this must be 0 for correct output.
450
451 On the 29k, normally we'd just have problems with DFmode because of the
452 even alignment. However, we also have to be a bit concerned about
453 the special register's restriction to non-floating and the floating-point
454 accumulator's restriction to only floating. This probably won't
455 cause any great inefficiencies in practice. */
456
457 #define MODES_TIEABLE_P(MODE1, MODE2) \
458 ((MODE1) == (MODE2) \
459 || (GET_MODE_CLASS (MODE1) == MODE_INT \
460 && GET_MODE_CLASS (MODE2) == MODE_INT))
461
462 /* Specify the registers used for certain standard purposes.
463 The values of these macros are register numbers. */
464
465 /* 29k pc isn't overloaded on a register that the compiler knows about. */
466 /* #define PC_REGNUM */
467
468 /* Register to use for pushing function arguments. */
469 #define STACK_POINTER_REGNUM R_GR (125)
470
471 /* Base register for access to local variables of the function. */
472 #define FRAME_POINTER_REGNUM R_FP
473
474 /* Value should be nonzero if functions must have frame pointers.
475 Zero means the frame pointer need not be set up (and parms
476 may be accessed via the stack pointer) in functions that seem suitable.
477 This is computed in `reload', in reload1.c. */
478 #define FRAME_POINTER_REQUIRED 0
479
480 /* Base register for access to arguments of the function. */
481 #define ARG_POINTER_REGNUM R_FP
482
483 /* Register in which static-chain is passed to a function. */
484 #define STATIC_CHAIN_REGNUM R_SLP
485
486 /* Register in which address to store a structure value
487 is passed to a function. */
488 #define STRUCT_VALUE_REGNUM R_LRP
489 \f
490 /* Define the classes of registers for register constraints in the
491 machine description. Also define ranges of constants.
492
493 One of the classes must always be named ALL_REGS and include all hard regs.
494 If there is more than one class, another class must be named NO_REGS
495 and contain no registers.
496
497 The name GENERAL_REGS must be the name of a class (or an alias for
498 another name such as ALL_REGS). This is the class of registers
499 that is allowed by "g" or "r" in a register constraint.
500 Also, registers outside this class are allocated only when
501 instructions express preferences for them.
502
503 The classes must be numbered in nondecreasing order; that is,
504 a larger-numbered class must never be contained completely
505 in a smaller-numbered class.
506
507 For any two classes, it is very desirable that there be another
508 class that represents their union.
509
510 The 29k has nine registers classes: LR0_REGS, GENERAL_REGS, SPECIAL_REGS,
511 BP_REGS, FC_REGS, CR_REGS, Q_REGS, ACCUM_REGS, and ACCUM0_REGS.
512 LR0_REGS, BP_REGS, FC_REGS, CR_REGS, and Q_REGS contain just the single
513 register. The latter two classes are used to represent the floating-point
514 accumulator registers in the 29050. We also define the union class
515 FLOAT_REGS to represent any register that can be used to hold a
516 floating-point value. The union of SPECIAL_REGS and ACCUM_REGS isn't
517 useful as the former cannot contain floating-point and the latter can only
518 contain floating-point. */
519
520 enum reg_class { NO_REGS, LR0_REGS, GENERAL_REGS, BP_REGS, FC_REGS, CR_REGS,
521 Q_REGS, SPECIAL_REGS, ACCUM0_REGS, ACCUM_REGS, FLOAT_REGS,
522 ALL_REGS, LIM_REG_CLASSES };
523
524 #define N_REG_CLASSES (int) LIM_REG_CLASSES
525
526 /* Give names of register classes as strings for dump file. */
527
528 #define REG_CLASS_NAMES \
529 {"NO_REGS", "LR0_REGS", "GENERAL_REGS", "BP_REGS", "FC_REGS", "CR_REGS", \
530 "Q_REGS", "SPECIAL_REGS", "ACCUM0_REGS", "ACCUM_REGS", "FLOAT_REGS", \
531 "ALL_REGS" }
532
533 /* Define which registers fit in which classes.
534 This is an initializer for a vector of HARD_REG_SET
535 of length N_REG_CLASSES. */
536
537 #define REG_CLASS_CONTENTS \
538 { {0, 0, 0, 0, 0, 0, 0, 0}, \
539 {0, 1, 0, 0, 0, 0, 0, 0}, \
540 {~0, ~0, ~0, ~0, ~0, ~ 0xfffe0000, ~ 0xfff, 0xfff}, \
541 {0, 0, 0, 0, 0, 0x20000, 0, 0}, \
542 {0, 0, 0, 0, 0, 0x40000, 0, 0}, \
543 {0, 0, 0, 0, 0, 0x80000, 0, 0}, \
544 {0, 0, 0, 0, 0, 0x100000, 0, 0}, \
545 {0, 0, 0, 0, 0, 0xfffe0000, 0xff, 0}, \
546 {0, 0, 0, 0, 0, 0, 0x100, 0}, \
547 {0, 0, 0, 0, 0, 0, 0xf00, 0}, \
548 {~0, ~0, ~0, ~0, ~0, ~ 0xfffe0000, ~ 0xff, 0xfff}, \
549 {~0, ~0, ~0, ~0, ~0, ~0, ~0, 0xfff} }
550
551 /* The same information, inverted:
552 Return the class number of the smallest class containing
553 reg number REGNO. This could be a conditional expression
554 or could index an array. */
555
556 #define REGNO_REG_CLASS(REGNO) \
557 ((REGNO) == R_BP ? BP_REGS \
558 : (REGNO) == R_FC ? FC_REGS \
559 : (REGNO) == R_CR ? CR_REGS \
560 : (REGNO) == R_Q ? Q_REGS \
561 : (REGNO) > R_BP && (REGNO) <= R_EXO ? SPECIAL_REGS \
562 : (REGNO) == R_ACU (0) ? ACCUM0_REGS \
563 : (REGNO) >= R_KR (0) ? GENERAL_REGS \
564 : (REGNO) > R_ACU (0) ? ACCUM_REGS \
565 : (REGNO) == R_LR (0) ? LR0_REGS \
566 : GENERAL_REGS)
567
568 /* The class value for index registers, and the one for base regs. */
569 #define INDEX_REG_CLASS NO_REGS
570 #define BASE_REG_CLASS GENERAL_REGS
571
572 /* Get reg_class from a letter such as appears in the machine description. */
573
574 #define REG_CLASS_FROM_LETTER(C) \
575 ((C) == 'r' ? GENERAL_REGS \
576 : (C) == 'l' ? LR0_REGS \
577 : (C) == 'b' ? BP_REGS \
578 : (C) == 'f' ? FC_REGS \
579 : (C) == 'c' ? CR_REGS \
580 : (C) == 'q' ? Q_REGS \
581 : (C) == 'h' ? SPECIAL_REGS \
582 : (C) == 'a' ? ACCUM_REGS \
583 : (C) == 'A' ? ACCUM0_REGS \
584 : (C) == 'f' ? FLOAT_REGS \
585 : NO_REGS)
586
587 /* Define this macro to change register usage conditional on target flags.
588
589 On the 29k, we use this to change the register names for kernel mapping. */
590
591 #define CONDITIONAL_REGISTER_USAGE \
592 { \
593 char *p; \
594 int i; \
595 \
596 if (TARGET_KERNEL_REGISTERS) \
597 for (i = 0; i < 32; i++) \
598 { \
599 p = reg_names[i]; \
600 reg_names[i] = reg_names[R_KR (i)]; \
601 reg_names[R_KR (i)] = p; \
602 } \
603 }
604
605 /* The letters I, J, K, L, M, N, O, and P in a register constraint string
606 can be used to stand for particular ranges of immediate operands.
607 This macro defines what the ranges are.
608 C is the letter, and VALUE is a constant value.
609 Return 1 if VALUE is in the range specified by C.
610
611 For 29k:
612 `I' is used for the range of constants most insns can contain.
613 `J' is for the few 16-bit insns.
614 `K' is a constant whose high-order 24 bits are all one
615 `L' is a HImode constant whose high-order 8 bits are all one
616 `M' is a 32-bit constant whose high-order 16 bits are all one (for CONSTN)
617 `N' is a 32-bit constant whose negative is 8 bits
618 `O' is the 32-bit constant 0x80000000, any constant with low-order
619 16 bits zero for 29050.
620 `P' is a HImode constant whose negative is 8 bits */
621
622 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
623 ((C) == 'I' ? (unsigned) (VALUE) < 0x100 \
624 : (C) == 'J' ? (unsigned) (VALUE) < 0x10000 \
625 : (C) == 'K' ? ((VALUE) & 0xffffff00) == 0xffffff00 \
626 : (C) == 'L' ? ((VALUE) & 0xff00) == 0xff00 \
627 : (C) == 'M' ? ((VALUE) & 0xffff0000) == 0xffff0000 \
628 : (C) == 'N' ? ((VALUE) < 0 && (VALUE) > -256) \
629 : (C) == 'O' ? ((VALUE) == 0x80000000 \
630 || (TARGET_29050 && ((VALUE) & 0xffff) == 0)) \
631 : (C) == 'P' ? (((VALUE) | 0xffff0000) < 0 \
632 && ((VALUE) | 0xffff0000) > -256) \
633 : 0)
634
635 /* Similar, but for floating constants, and defining letters G and H.
636 Here VALUE is the CONST_DOUBLE rtx itself.
637 All floating-point constants are valid on 29k. */
638
639 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
640
641 /* Given an rtx X being reloaded into a reg required to be
642 in class CLASS, return the class of reg to actually use.
643 In general this is just CLASS; but on some machines
644 in some cases it is preferable to use a more restrictive class. */
645
646 #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
647
648 /* Return the register class of a scratch register needed to copy IN into
649 or out of a register in CLASS in MODE. If it can be done directly,
650 NO_REGS is returned. */
651
652 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
653 secondary_reload_class (CLASS, MODE, IN)
654
655 /* This function is used to get the address of an object. */
656
657 extern struct rtx_def *a29k_get_reloaded_address ();
658
659 /* Return the maximum number of consecutive registers
660 needed to represent mode MODE in a register of class CLASS.
661
662 On 29k, this is the size of MODE in words except that the floating-point
663 accumulators only require one word for anything they can hold. */
664
665 #define CLASS_MAX_NREGS(CLASS, MODE) \
666 (((CLASS) == ACCUM_REGS || (CLASS) == ACCUM0_REGS) ? 1 \
667 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
668
669 /* Define the cost of moving between registers of various classes. Everything
670 involving a general register is cheap, but moving between the other types
671 (even within a class) is two insns. */
672
673 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
674 ((CLASS1) == GENERAL_REGS || (CLASS2) == GENERAL_REGS ? 2 : 4)
675
676 /* A C expressions returning the cost of moving data of MODE from a register to
677 or from memory.
678
679 It takes extra insns on the 29k to form addresses, so we want to make
680 this higher. In addition, we need to keep it more expensive than the
681 most expensive register-register copy. */
682
683 #define MEMORY_MOVE_COST(MODE) 6
684
685 /* A C statement (sans semicolon) to update the integer variable COST
686 based on the relationship between INSN that is dependent on
687 DEP_INSN through the dependence LINK. The default is to make no
688 adjustment to COST. On the a29k, ignore the cost of anti- and
689 output-dependencies. */
690 #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
691 if (REG_NOTE_KIND (LINK) != 0) \
692 (COST) = 0; /* Anti or output dependence. */
693 \f
694 /* Stack layout; function entry, exit and calling. */
695
696 /* Define this if pushing a word on the stack
697 makes the stack pointer a smaller address. */
698 #define STACK_GROWS_DOWNWARD
699
700 /* Define this if the nominal address of the stack frame
701 is at the high-address end of the local variables;
702 that is, each additional local variable allocated
703 goes at a more negative offset in the frame. */
704 #define FRAME_GROWS_DOWNWARD
705
706 /* Offset within stack frame to start allocating local variables at.
707 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
708 first local allocated. Otherwise, it is the offset to the BEGINNING
709 of the first local allocated. */
710
711 #define STARTING_FRAME_OFFSET (- current_function_pretend_args_size)
712
713 /* If we generate an insn to push BYTES bytes,
714 this says how many the stack pointer really advances by.
715 On 29k, don't define this because there are no push insns. */
716 /* #define PUSH_ROUNDING(BYTES) */
717
718 /* Define this if the maximum size of all the outgoing args is to be
719 accumulated and pushed during the prologue. The amount can be
720 found in the variable current_function_outgoing_args_size. */
721 #define ACCUMULATE_OUTGOING_ARGS
722
723 /* Offset of first parameter from the argument pointer register value. */
724
725 #define FIRST_PARM_OFFSET(FNDECL) (- current_function_pretend_args_size)
726
727 /* Define this if stack space is still allocated for a parameter passed
728 in a register. */
729 /* #define REG_PARM_STACK_SPACE */
730
731 /* Value is the number of bytes of arguments automatically
732 popped when returning from a subroutine call.
733 FUNDECL is the declaration node of the function (as a tree),
734 FUNTYPE is the data type of the function (as a tree),
735 or for a library call it is an identifier node for the subroutine name.
736 SIZE is the number of bytes of arguments passed on the stack. */
737
738 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
739
740 /* Define how to find the value returned by a function.
741 VALTYPE is the data type of the value (as a tree).
742 If the precise function being called is known, FUNC is its FUNCTION_DECL;
743 otherwise, FUNC is 0.
744
745 On 29k the value is found in gr96. */
746
747 #define FUNCTION_VALUE(VALTYPE, FUNC) \
748 gen_rtx (REG, TYPE_MODE (VALTYPE), R_GR (96))
749
750 /* Define how to find the value returned by a library function
751 assuming the value has mode MODE. */
752
753 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, R_GR (96))
754
755 /* 1 if N is a possible register number for a function value
756 as seen by the caller.
757 On 29k, gr96-gr111 are used. */
758
759 #define FUNCTION_VALUE_REGNO_P(N) ((N) == R_GR (96))
760
761 /* 1 if N is a possible register number for function argument passing.
762 On 29k, these are lr2-lr17. */
763
764 #define FUNCTION_ARG_REGNO_P(N) ((N) <= R_LR (17) && (N) >= R_LR (2))
765 \f
766 /* Define a data type for recording info about an argument list
767 during the scan of that argument list. This data type should
768 hold all necessary information about the function itself
769 and about the args processed so far, enough to enable macros
770 such as FUNCTION_ARG to determine where the next arg should go.
771
772 On 29k, this is a single integer, which is a number of words
773 of arguments scanned so far.
774 Thus 16 or more means all following args should go on the stack. */
775
776 #define CUMULATIVE_ARGS int
777
778 /* Initialize a variable CUM of type CUMULATIVE_ARGS
779 for a call to a function whose data type is FNTYPE.
780 For a library call, FNTYPE is 0. */
781
782 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) (CUM) = 0
783
784 /* Same, but called for incoming args.
785
786 On the 29k, we use this to set all argument registers to fixed and
787 set the last 16 local regs, less two, (lr110-lr125) to available. Some
788 will later be changed to call-saved by FUNCTION_INCOMING_ARG.
789 lr126,lr127 are always fixed, they are place holders for the caller's
790 lr0,lr1. */
791
792 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
793 { int i; \
794 for (i = R_AR (0) - 2; i < R_AR (16); i++) \
795 { \
796 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1; \
797 SET_HARD_REG_BIT (fixed_reg_set, i); \
798 SET_HARD_REG_BIT (call_used_reg_set, i); \
799 SET_HARD_REG_BIT (call_fixed_reg_set, i); \
800 } \
801 for (i = R_LR (110); i < R_LR (126); i++) \
802 { \
803 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 0; \
804 CLEAR_HARD_REG_BIT (fixed_reg_set, i); \
805 CLEAR_HARD_REG_BIT (call_used_reg_set, i); \
806 CLEAR_HARD_REG_BIT (call_fixed_reg_set, i); \
807 } \
808 (CUM) = 0; \
809 }
810
811 /* Define intermediate macro to compute the size (in registers) of an argument
812 for the 29k. */
813
814 #define A29K_ARG_SIZE(MODE, TYPE, NAMED) \
815 (! (NAMED) ? 0 \
816 : (MODE) != BLKmode \
817 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
818 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
819
820 /* Update the data in CUM to advance over an argument
821 of mode MODE and data type TYPE.
822 (TYPE is null for libcalls where that information may not be available.) */
823
824 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
825 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
826 (CUM) = 16; \
827 else \
828 (CUM) += A29K_ARG_SIZE (MODE, TYPE, NAMED)
829
830 /* Determine where to put an argument to a function.
831 Value is zero to push the argument on the stack,
832 or a hard register in which to store the argument.
833
834 MODE is the argument's machine mode.
835 TYPE is the data type of the argument (as a tree).
836 This is null for libcalls where that information may
837 not be available.
838 CUM is a variable of type CUMULATIVE_ARGS which gives info about
839 the preceding args and about the function being called.
840 NAMED is nonzero if this argument is a named parameter
841 (otherwise it is an extra parameter matching an ellipsis).
842
843 On 29k the first 16 words of args are normally in registers
844 and the rest are pushed. */
845
846 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
847 ((CUM) < 16 && (NAMED) && ! MUST_PASS_IN_STACK (MODE, TYPE) \
848 ? gen_rtx(REG, (MODE), R_LR (2) + (CUM)) : 0)
849
850 /* Define where a function finds its arguments.
851 This is different from FUNCTION_ARG because of register windows.
852
853 On the 29k, we hack this to call a function that sets the used registers
854 as non-fixed and not used by calls. */
855
856 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
857 ((CUM) < 16 && (NAMED) && ! MUST_PASS_IN_STACK (MODE, TYPE) \
858 ? gen_rtx (REG, MODE, \
859 incoming_reg (CUM, A29K_ARG_SIZE (MODE, TYPE, NAMED))) \
860 : 0)
861
862 /* This indicates that an argument is to be passed with an invisible reference
863 (i.e., a pointer to the object is passed).
864
865 On the 29k, we do this if it must be passed on the stack. */
866
867 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
868 (MUST_PASS_IN_STACK (MODE, TYPE))
869
870 /* Specify the padding direction of arguments.
871
872 On the 29k, we must pad upwards in order to be able to pass args in
873 registers. */
874
875 #define FUNCTION_ARG_PADDING(MODE, TYPE) upward
876
877 /* For an arg passed partly in registers and partly in memory,
878 this is the number of registers used.
879 For args passed entirely in registers or entirely in memory, zero. */
880
881 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
882 ((CUM) < 16 && 16 < (CUM) + A29K_ARG_SIZE (MODE, TYPE, NAMED) && (NAMED) \
883 ? 16 - (CUM) : 0)
884
885 /* Perform any needed actions needed for a function that is receiving a
886 variable number of arguments.
887
888 CUM is as above.
889
890 MODE and TYPE are the mode and type of the current parameter.
891
892 PRETEND_SIZE is a variable that should be set to the amount of stack
893 that must be pushed by the prolog to pretend that our caller pushed
894 it.
895
896 Normally, this macro will push all remaining incoming registers on the
897 stack and set PRETEND_SIZE to the length of the registers pushed. */
898
899 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
900 { if ((CUM) < 16) \
901 { \
902 int first_reg_offset = (CUM); \
903 \
904 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
905 first_reg_offset += A29K_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1); \
906 \
907 if (first_reg_offset > 16) \
908 first_reg_offset = 16; \
909 \
910 if (! (NO_RTL) && first_reg_offset != 16) \
911 move_block_from_reg \
912 (R_AR (0) + first_reg_offset, \
913 gen_rtx (MEM, BLKmode, virtual_incoming_args_rtx), \
914 16 - first_reg_offset, (16 - first_reg_offset) * UNITS_PER_WORD); \
915 PRETEND_SIZE = (16 - first_reg_offset) * UNITS_PER_WORD; \
916 } \
917 }
918
919 /* Define the information needed to generate branch and scc insns. This is
920 stored from the compare operation. Note that we can't use "rtx" here
921 since it hasn't been defined! */
922
923 extern struct rtx_def *a29k_compare_op0, *a29k_compare_op1;
924 extern int a29k_compare_fp_p;
925
926 /* This macro produces the initial definition of a function name.
927
928 For the 29k, we need the prolog to contain one or two words prior to
929 the declaration of the function name. So just store away the name and
930 write it as part of the prolog. */
931
932 extern char *a29k_function_name;
933
934 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
935 a29k_function_name = NAME;
936
937 /* This macro generates the assembly code for function entry.
938 FILE is a stdio stream to output the code to.
939 SIZE is an int: how many units of temporary storage to allocate.
940 Refer to the array `regs_ever_live' to determine which registers
941 to save; `regs_ever_live[I]' is nonzero if register number I
942 is ever used in the function. This macro is responsible for
943 knowing which registers should not be saved even if used. */
944
945 #define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
946
947 /* Output assembler code to FILE to increment profiler label # LABELNO
948 for profiling a function entry. */
949
950 #define FUNCTION_PROFILER(FILE, LABELNO)
951
952 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
953 the stack pointer does not matter. The value is tested only in
954 functions that have frame pointers.
955 No definition is equivalent to always zero. */
956
957 #define EXIT_IGNORE_STACK 1
958
959 /* This macro generates the assembly code for function exit,
960 on machines that need it. If FUNCTION_EPILOGUE is not defined
961 then individual return instructions are generated for each
962 return statement. Args are same as for FUNCTION_PROLOGUE.
963
964 The function epilogue should not depend on the current stack pointer!
965 It should use the frame pointer only. This is mandatory because
966 of alloca; we also take advantage of it to omit stack adjustments
967 before returning. */
968
969 #define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
970
971 /* Define the number of delay slots needed for the function epilogue.
972
973 On the 29k, we need a slot except when we have a register stack adjustment,
974 have a memory stack adjustment, and have no frame pointer. */
975
976 #define DELAY_SLOTS_FOR_EPILOGUE \
977 (! (needs_regstack_p () \
978 && (get_frame_size () + current_function_pretend_args_size \
979 + current_function_outgoing_args_size) != 0 \
980 && ! frame_pointer_needed))
981
982 /* Define whether INSN can be placed in delay slot N for the epilogue.
983
984 On the 29k, we must be able to place it in a delay slot, it must
985 not use sp if the frame pointer cannot be eliminated, and it cannot
986 use local regs if we need to push the register stack. */
987
988 #define ELIGIBLE_FOR_EPILOGUE_DELAY(INSN,N) \
989 (get_attr_in_delay_slot (INSN) == IN_DELAY_SLOT_YES \
990 && ! (frame_pointer_needed \
991 && reg_mentioned_p (stack_pointer_rtx, PATTERN (INSN))) \
992 && ! (needs_regstack_p () && uses_local_reg_p (PATTERN (INSN))))
993 \f
994 /* Output assembler code for a block containing the constant parts
995 of a trampoline, leaving space for the variable parts.
996
997 The trampoline should set the static chain pointer to value placed
998 into the trampoline and should branch to the specified routine. We
999 use gr121 (tav) as a temporary. */
1000
1001 #define TRAMPOLINE_TEMPLATE(FILE) \
1002 { \
1003 fprintf (FILE, "\tconst %s,0\n", reg_names[R_TAV]); \
1004 fprintf (FILE, "\tconsth %s,0\n", reg_names[R_TAV]); \
1005 fprintf (FILE, "\tconst %s,0\n", reg_names[R_SLP]); \
1006 fprintf (FILE, "\tjmpi %s\n", reg_names[R_TAV]); \
1007 fprintf (FILE, "\tconsth %s,0\n", reg_names[R_SLP]); \
1008 }
1009
1010 /* Length in units of the trampoline for entering a nested function. */
1011
1012 #define TRAMPOLINE_SIZE 20
1013
1014 /* Emit RTL insns to initialize the variable parts of a trampoline.
1015 FNADDR is an RTX for the address of the function's pure code.
1016 CXT is an RTX for the static chain value for the function.
1017
1018 We do this on the 29k by writing the bytes of the addresses into the
1019 trampoline one byte at a time. */
1020
1021 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1022 { \
1023 INITIALIZE_TRAMPOLINE_VALUE (TRAMP, FNADDR, 0, 4); \
1024 INITIALIZE_TRAMPOLINE_VALUE (TRAMP, CXT, 8, 16); \
1025 }
1026
1027 /* Define a sub-macro to initialize one value into the trampoline.
1028 We specify the offsets of the CONST and CONSTH instructions, respectively
1029 and copy the value a byte at a time into these instructions. */
1030
1031 #define INITIALIZE_TRAMPOLINE_VALUE(TRAMP, VALUE, CONST, CONSTH) \
1032 { \
1033 rtx _addr, _temp; \
1034 rtx _val = force_reg (SImode, VALUE); \
1035 \
1036 _addr = memory_address (QImode, plus_constant (TRAMP, (CONST) + 3)); \
1037 emit_move_insn (gen_rtx (MEM, QImode, _addr), \
1038 gen_lowpart (QImode, _val)); \
1039 \
1040 _temp = expand_shift (RSHIFT_EXPR, SImode, _val, \
1041 build_int_2 (8, 0), 0, 1); \
1042 _addr = memory_address (QImode, plus_constant (TRAMP, (CONST) + 1)); \
1043 emit_move_insn (gen_rtx (MEM, QImode, _addr), \
1044 gen_lowpart (QImode, _temp)); \
1045 \
1046 _temp = expand_shift (RSHIFT_EXPR, SImode, _temp, \
1047 build_int_2 (8, 0), _temp, 1); \
1048 _addr = memory_address (QImode, plus_constant (TRAMP, (CONSTH) + 3)); \
1049 emit_move_insn (gen_rtx (MEM, QImode, _addr), \
1050 gen_lowpart (QImode, _temp)); \
1051 \
1052 _temp = expand_shift (RSHIFT_EXPR, SImode, _temp, \
1053 build_int_2 (8, 0), _temp, 1); \
1054 _addr = memory_address (QImode, plus_constant (TRAMP, (CONSTH) + 1)); \
1055 emit_move_insn (gen_rtx (MEM, QImode, _addr), \
1056 gen_lowpart (QImode, _temp)); \
1057 }
1058 \f
1059 /* Addressing modes, and classification of registers for them. */
1060
1061 /* #define HAVE_POST_INCREMENT */
1062 /* #define HAVE_POST_DECREMENT */
1063
1064 /* #define HAVE_PRE_DECREMENT */
1065 /* #define HAVE_PRE_INCREMENT */
1066
1067 /* Macros to check register numbers against specific register classes. */
1068
1069 /* These assume that REGNO is a hard or pseudo reg number.
1070 They give nonzero only if REGNO is a hard reg of the suitable class
1071 or a pseudo reg currently allocated to a suitable hard reg.
1072 Since they use reg_renumber, they are safe only once reg_renumber
1073 has been allocated, which happens in local-alloc.c. */
1074
1075 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
1076 #define REGNO_OK_FOR_BASE_P(REGNO) 1
1077
1078 /* Given the value returned from get_frame_size, compute the actual size
1079 of the frame we will allocate. We include the pretend and outgoing
1080 arg sizes and round to a doubleword. */
1081
1082 #define ACTUAL_FRAME_SIZE(SIZE) \
1083 (((SIZE) + current_function_pretend_args_size \
1084 + current_function_outgoing_args_size + 7) & ~7)
1085
1086 /* Define the initial offset between the frame and stack pointer. */
1087
1088 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
1089 (DEPTH) = ACTUAL_FRAME_SIZE (get_frame_size ())
1090 \f
1091 /* Maximum number of registers that can appear in a valid memory address. */
1092 #define MAX_REGS_PER_ADDRESS 1
1093
1094 /* Recognize any constant value that is a valid address. */
1095
1096 #define CONSTANT_ADDRESS_P(X) \
1097 (GET_CODE (X) == CONST_INT && (unsigned) INTVAL (X) < 0x100)
1098
1099 /* Include all constant integers and constant doubles */
1100 #define LEGITIMATE_CONSTANT_P(X) 1
1101
1102 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1103 and check its validity for a certain class.
1104 We have two alternate definitions for each of them.
1105 The usual definition accepts all pseudo regs; the other rejects
1106 them unless they have been allocated suitable hard regs.
1107 The symbol REG_OK_STRICT causes the latter definition to be used.
1108
1109 Most source files want to accept pseudo regs in the hope that
1110 they will get allocated to the class that the insn wants them to be in.
1111 Source files for reload pass need to be strict.
1112 After reload, it makes no difference, since pseudo regs have
1113 been eliminated by then. */
1114
1115 #ifndef REG_OK_STRICT
1116
1117 /* Nonzero if X is a hard reg that can be used as an index
1118 or if it is a pseudo reg. */
1119 #define REG_OK_FOR_INDEX_P(X) 0
1120 /* Nonzero if X is a hard reg that can be used as a base reg
1121 or if it is a pseudo reg. */
1122 #define REG_OK_FOR_BASE_P(X) 1
1123
1124 #else
1125
1126 /* Nonzero if X is a hard reg that can be used as an index. */
1127 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1128 /* Nonzero if X is a hard reg that can be used as a base reg. */
1129 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1130
1131 #endif
1132 \f
1133 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1134 that is a valid memory address for an instruction.
1135 The MODE argument is the machine mode for the MEM expression
1136 that wants to use this address.
1137
1138 On the 29k, a legitimate address is a register and so is a
1139 constant of less than 256. */
1140
1141 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1142 { if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1143 goto ADDR; \
1144 if (GET_CODE (X) == CONST_INT \
1145 && (unsigned) INTVAL (X) < 0x100) \
1146 goto ADDR; \
1147 }
1148
1149 /* Try machine-dependent ways of modifying an illegitimate address
1150 to be legitimate. If we find one, return the new, valid address.
1151 This macro is used in only one place: `memory_address' in explow.c.
1152
1153 OLDX is the address as it was before break_out_memory_refs was called.
1154 In some cases it is useful to look at this to decide what needs to be done.
1155
1156 MODE and WIN are passed so that this macro can use
1157 GO_IF_LEGITIMATE_ADDRESS.
1158
1159 It is always safe for this macro to do nothing. It exists to recognize
1160 opportunities to optimize the output.
1161
1162 For the 29k, we need not do anything. However, if we don't,
1163 `memory_address' will try lots of things to get a valid address, most of
1164 which will result in dead code and extra pseudos. So we make the address
1165 valid here.
1166
1167 This is easy: The only valid addresses are an offset from a register
1168 and we know the address isn't valid. So just call either `force_operand'
1169 or `force_reg' unless this is a (plus (reg ...) (const_int 0)). */
1170
1171 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1172 { if (GET_CODE (X) == PLUS && XEXP (X, 1) == const0_rtx) \
1173 X = XEXP (x, 0); \
1174 if (GET_CODE (X) == MULT || GET_CODE (X) == PLUS) \
1175 X = force_operand (X, 0); \
1176 else \
1177 X = force_reg (Pmode, X); \
1178 goto WIN; \
1179 }
1180
1181 /* Go to LABEL if ADDR (a legitimate address expression)
1182 has an effect that depends on the machine mode it is used for.
1183 On the 29k this is never true. */
1184
1185 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1186
1187 /* Compute the cost of an address. For the 29k, all valid addresses are
1188 the same cost. */
1189
1190 #define ADDRESS_COST(X) 0
1191
1192 /* Define this if some processing needs to be done immediately before
1193 emitting code for an insn. */
1194
1195 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1196 \f
1197 /* Specify the machine mode that this machine uses
1198 for the index in the tablejump instruction. */
1199 #define CASE_VECTOR_MODE SImode
1200
1201 /* Define this if the tablejump instruction expects the table
1202 to contain offsets from the address of the table.
1203 Do not define this if the table should contain absolute addresses. */
1204 /* #define CASE_VECTOR_PC_RELATIVE */
1205
1206 /* Specify the tree operation to be used to convert reals to integers. */
1207 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1208
1209 /* This is the kind of divide that is easiest to do in the general case. */
1210 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1211
1212 /* Define this as 1 if `char' should by default be signed; else as 0. */
1213 #define DEFAULT_SIGNED_CHAR 0
1214
1215 /* This flag, if defined, says the same insns that convert to a signed fixnum
1216 also convert validly to an unsigned one.
1217
1218 We actually lie a bit here as overflow conditions are different. But
1219 they aren't being checked anyway. */
1220
1221 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1222
1223 /* Max number of bytes we can move to of from memory
1224 in one reasonably fast instruction.
1225
1226 For the 29k, we will define movti, so put this at 4 words. */
1227 #define MOVE_MAX 16
1228
1229 /* Largest number of bytes of an object that can be placed in a register.
1230 On the 29k we have plenty of registers, so use TImode. */
1231 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1232
1233 /* Nonzero if access to memory by bytes is no faster than for words.
1234 Also non-zero if doing byte operations (specifically shifts) in registers
1235 is undesirable.
1236
1237 On the 29k, large masks are expensive, so we want to use bytes to
1238 manipulate fields. */
1239 #define SLOW_BYTE_ACCESS 0
1240
1241 /* Define if operations between registers always perform the operation
1242 on the full register even if a narrower mode is specified. */
1243 #define WORD_REGISTER_OPERATIONS
1244
1245 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1246 will either zero-extend or sign-extend. The value of this macro should
1247 be the code that says which one of the two operations is implicitly
1248 done, NIL if none. */
1249 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1250
1251 /* Define if the object format being used is COFF or a superset. */
1252 #define OBJECT_FORMAT_COFF
1253
1254 /* This uses COFF, so it wants SDB format. */
1255 #define SDB_DEBUGGING_INFO
1256
1257 /* Define this to be the delimiter between SDB sub-sections. The default
1258 is ";". */
1259 #define SDB_DELIM "\n"
1260
1261 /* Do not break .stabs pseudos into continuations. */
1262 #define DBX_CONTIN_LENGTH 0
1263
1264 /* Don't try to use the `x' type-cross-reference character in DBX data.
1265 Also has the consequence of putting each struct, union or enum
1266 into a separate .stabs, containing only cross-refs to the others. */
1267 #define DBX_NO_XREFS
1268
1269 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1270 is done just by pretending it is already truncated. */
1271 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1272
1273 /* We assume that the store-condition-codes instructions store 0 for false
1274 and some other value for true. This is the value stored for true. */
1275
1276 #define STORE_FLAG_VALUE 0x80000000
1277
1278 /* Specify the machine mode that pointers have.
1279 After generation of rtl, the compiler makes no further distinction
1280 between pointers and any other objects of this machine mode. */
1281 #define Pmode SImode
1282
1283 /* Mode of a function address in a call instruction (for indexing purposes).
1284
1285 Doesn't matter on 29k. */
1286 #define FUNCTION_MODE SImode
1287
1288 /* Define this if addresses of constant functions
1289 shouldn't be put through pseudo regs where they can be cse'd.
1290 Desirable on machines where ordinary constants are expensive
1291 but a CALL with constant address is cheap. */
1292 #define NO_FUNCTION_CSE
1293
1294 /* Define this to be nonzero if shift instructions ignore all but the low-order
1295 few bits. */
1296 #define SHIFT_COUNT_TRUNCATED 1
1297
1298 /* Compute the cost of computing a constant rtl expression RTX
1299 whose rtx-code is CODE. The body of this macro is a portion
1300 of a switch statement. If the code is computed here,
1301 return it with a return statement. Otherwise, break from the switch.
1302
1303 We only care about the cost if it is valid in an insn. The only
1304 constants that cause an insn to generate more than one machine
1305 instruction are those involving floating-point or address. So
1306 only these need be expensive. */
1307
1308 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1309 case CONST_INT: \
1310 return 0; \
1311 case CONST: \
1312 case LABEL_REF: \
1313 case SYMBOL_REF: \
1314 return 6; \
1315 case CONST_DOUBLE: \
1316 return GET_MODE (RTX) == SFmode ? 6 : 8;
1317
1318 /* Provide the costs of a rtl expression. This is in the body of a
1319 switch on CODE.
1320
1321 All MEMs cost the same if they are valid. This is used to ensure
1322 that (mem (symbol_ref ...)) is placed into a CALL when valid.
1323
1324 The multiply cost depends on whether this is a 29050 or not. */
1325
1326 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1327 case MULT: \
1328 return TARGET_29050 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (40); \
1329 case DIV: \
1330 case UDIV: \
1331 case MOD: \
1332 case UMOD: \
1333 return COSTS_N_INSNS (50); \
1334 case MEM: \
1335 return COSTS_N_INSNS (2);
1336 \f
1337 /* Control the assembler format that we output. */
1338
1339 /* Output at beginning of assembler file. */
1340
1341 #define ASM_FILE_START(FILE) \
1342 { char *p, *after_dir = main_input_filename; \
1343 if (TARGET_29050) \
1344 fprintf (FILE, "\t.cputype 29050\n"); \
1345 for (p = main_input_filename; *p; p++) \
1346 if (*p == '/') \
1347 after_dir = p + 1; \
1348 fprintf (FILE, "\t.file "); \
1349 output_quoted_string (FILE, after_dir); \
1350 fprintf (FILE, "\n"); \
1351 fprintf (FILE, "\t.sect .lit,lit\n"); }
1352
1353 /* Output to assembler file text saying following lines
1354 may contain character constants, extra white space, comments, etc. */
1355
1356 #define ASM_APP_ON ""
1357
1358 /* Output to assembler file text saying following lines
1359 no longer contain unusual constructs. */
1360
1361 #define ASM_APP_OFF ""
1362
1363 /* The next few macros don't have tabs on most machines, but
1364 at least one 29K assembler wants them. */
1365
1366 /* Output before instructions. */
1367
1368 #define TEXT_SECTION_ASM_OP "\t.text"
1369
1370 /* Output before read-only data. */
1371
1372 #define READONLY_DATA_SECTION_ASM_OP "\t.use .lit"
1373
1374 /* Output before writable data. */
1375
1376 #define DATA_SECTION_ASM_OP "\t.data"
1377
1378 /* Define an extra section for read-only data, a routine to enter it, and
1379 indicate that it is for read-only data. */
1380
1381 #define EXTRA_SECTIONS readonly_data
1382
1383 #define EXTRA_SECTION_FUNCTIONS \
1384 void \
1385 literal_section () \
1386 { \
1387 if (in_section != readonly_data) \
1388 { \
1389 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
1390 in_section = readonly_data; \
1391 } \
1392 } \
1393
1394 #define READONLY_DATA_SECTION literal_section
1395
1396 /* If we are referencing a function that is static or is known to be
1397 in this file, make the SYMBOL_REF special. We can use this to indicate
1398 that we can branch to this function without emitting a no-op after the
1399 call. */
1400
1401 #define ENCODE_SECTION_INFO(DECL) \
1402 if (TREE_CODE (DECL) == FUNCTION_DECL \
1403 && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \
1404 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1405
1406 /* How to refer to registers in assembler output.
1407 This sequence is indexed by compiler's hard-register-number (see above). */
1408
1409 #define REGISTER_NAMES \
1410 {"gr96", "gr97", "gr98", "gr99", "gr100", "gr101", "gr102", "gr103", "gr104", \
1411 "gr105", "gr106", "gr107", "gr108", "gr109", "gr110", "gr111", "gr112", \
1412 "gr113", "gr114", "gr115", "gr116", "gr117", "gr118", "gr119", "gr120", \
1413 "gr121", "gr122", "gr123", "gr124", "gr125", "gr126", "gr127", \
1414 "lr0", "lr1", "lr2", "lr3", "lr4", "lr5", "lr6", "lr7", "lr8", "lr9", \
1415 "lr10", "lr11", "lr12", "lr13", "lr14", "lr15", "lr16", "lr17", "lr18", \
1416 "lr19", "lr20", "lr21", "lr22", "lr23", "lr24", "lr25", "lr26", "lr27", \
1417 "lr28", "lr29", "lr30", "lr31", "lr32", "lr33", "lr34", "lr35", "lr36", \
1418 "lr37", "lr38", "lr39", "lr40", "lr41", "lr42", "lr43", "lr44", "lr45", \
1419 "lr46", "lr47", "lr48", "lr49", "lr50", "lr51", "lr52", "lr53", "lr54", \
1420 "lr55", "lr56", "lr57", "lr58", "lr59", "lr60", "lr61", "lr62", "lr63", \
1421 "lr64", "lr65", "lr66", "lr67", "lr68", "lr69", "lr70", "lr71", "lr72", \
1422 "lr73", "lr74", "lr75", "lr76", "lr77", "lr78", "lr79", "lr80", "lr81", \
1423 "lr82", "lr83", "lr84", "lr85", "lr86", "lr87", "lr88", "lr89", "lr90", \
1424 "lr91", "lr92", "lr93", "lr94", "lr95", "lr96", "lr97", "lr98", "lr99", \
1425 "lr100", "lr101", "lr102", "lr103", "lr104", "lr105", "lr106", "lr107", \
1426 "lr108", "lr109", "lr110", "lr111", "lr112", "lr113", "lr114", "lr115", \
1427 "lr116", "lr117", "lr118", "lr119", "lr120", "lr121", "lr122", "lr123", \
1428 "lr124", "lr125", "lr126", "lr127", \
1429 "AI0", "AI1", "AI2", "AI3", "AI4", "AI5", "AI6", "AI7", "AI8", "AI9", \
1430 "AI10", "AI11", "AI12", "AI13", "AI14", "AI15", "FP", \
1431 "bp", "fc", "cr", "q", \
1432 "vab", "ops", "cps", "cfg", "cha", "chd", "chc", "rbp", "tmc", "tmr", \
1433 "pc0", "pc1", "pc2", "mmu", "lru", "fpe", "int", "fps", "exo", \
1434 "0", "1", "2", "3", \
1435 "gr64", "gr65", "gr66", "gr67", "gr68", "gr69", "gr70", "gr71", \
1436 "gr72", "gr73", "gr74", "gr75", "gr76", "gr77", "gr78", "gr79", \
1437 "gr80", "gr81", "gr82", "gr83", "gr84", "gr85", "gr86", "gr87", \
1438 "gr88", "gr89", "gr90", "gr91", "gr92", "gr93", "gr94", "gr95" }
1439
1440 /* How to renumber registers for dbx and gdb. */
1441
1442 extern int a29k_debug_reg_map[];
1443 #define DBX_REGISTER_NUMBER(REGNO) a29k_debug_reg_map[REGNO]
1444
1445 /* This how to write an assembler directive to FILE to switch to
1446 section NAME for DECL. */
1447
1448 #define ASM_OUTPUT_SECTION_NAME(FILE, DECL, NAME) \
1449 fprintf (FILE, "\t.sect %s, bss\n\t.use %s\n", NAME, NAME)
1450
1451 /* This is how to output the definition of a user-level label named NAME,
1452 such as the label on a static function or variable NAME. */
1453
1454 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1455 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1456
1457 /* This is how to output a command to make the user-level label named NAME
1458 defined for reference from other files. */
1459
1460 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1461 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1462
1463 /* This is how to output a reference to a user-level label named NAME.
1464 `assemble_name' uses this. */
1465
1466 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1467 fprintf (FILE, "_%s", NAME)
1468
1469 /* This is how to output an internal numbered label where
1470 PREFIX is the class of label and NUM is the number within the class. */
1471
1472 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1473 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1474
1475 /* This is how to output a label for a jump table. Arguments are the same as
1476 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1477 passed. */
1478
1479 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1480 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1481
1482 /* This is how to store into the string LABEL
1483 the symbol_ref name of an internal numbered label where
1484 PREFIX is the class of label and NUM is the number within the class.
1485 This is suitable for output with `assemble_name'. */
1486
1487 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1488 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1489
1490 /* This is how to output an assembler line defining a `double' constant. */
1491
1492 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1493 fprintf (FILE, "\t.double %.20e\n", (VALUE))
1494
1495 /* This is how to output an assembler line defining a `float' constant. */
1496
1497 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1498 fprintf (FILE, "\t.float %.20e\n", (VALUE))
1499
1500 /* This is how to output an assembler line defining an `int' constant. */
1501
1502 #define ASM_OUTPUT_INT(FILE,VALUE) \
1503 ( fprintf (FILE, "\t.word "), \
1504 output_addr_const (FILE, (VALUE)), \
1505 fprintf (FILE, "\n"))
1506
1507 /* Likewise for `char' and `short' constants. */
1508
1509 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1510 ( fprintf (FILE, "\t.hword "), \
1511 output_addr_const (FILE, (VALUE)), \
1512 fprintf (FILE, "\n"))
1513
1514 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1515 ( fprintf (FILE, "\t.byte "), \
1516 output_addr_const (FILE, (VALUE)), \
1517 fprintf (FILE, "\n"))
1518
1519 /* This is how to output an insn to push a register on the stack.
1520 It need not be very fast code. */
1521
1522 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1523 fprintf (FILE, "\tsub %s,%s,4\n\tstore 0,0,%s,%s\n", \
1524 reg_names[R_MSP], reg_names[R_MSP], reg_names[REGNO], \
1525 reg_names[R_MSP]);
1526
1527 /* This is how to output an insn to pop a register from the stack.
1528 It need not be very fast code. */
1529
1530 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1531 fprintf (FILE, "\tload 0,0,%s,%s\n\tadd %s,%s,4\n", \
1532 reg_names[REGNO], reg_names[R_MSP], reg_names[R_MSP], \
1533 reg_names[R_MSP]);
1534
1535 /* This is how to output an assembler line for a numeric constant byte. */
1536
1537 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1538 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1539
1540 /* This is how to output an element of a case-vector that is absolute. */
1541
1542 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1543 fprintf (FILE, "\t.word L%d\n", VALUE)
1544
1545 /* This is how to output an element of a case-vector that is relative.
1546 (29k does not use such vectors,
1547 but we must define this macro anyway.) */
1548
1549 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) abort ()
1550
1551 /* This is how to output an assembler line
1552 that says to advance the location counter
1553 to a multiple of 2**LOG bytes. */
1554
1555 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1556 if ((LOG) != 0) \
1557 fprintf (FILE, "\t.align %d\n", 1 << (LOG))
1558
1559 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1560 fprintf (FILE, "\t.block %d\n", (SIZE))
1561
1562 /* This says how to output an assembler line
1563 to define a global common symbol. */
1564
1565 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1566 ( fputs ("\t.comm ", (FILE)), \
1567 assemble_name ((FILE), (NAME)), \
1568 fprintf ((FILE), ",%d\n", (SIZE)))
1569
1570 /* This says how to output an assembler line
1571 to define a local common symbol. */
1572
1573 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1574 ( fputs ("\t.lcomm ", (FILE)), \
1575 assemble_name ((FILE), (NAME)), \
1576 fprintf ((FILE), ",%d\n", (SIZE)))
1577
1578 /* Store in OUTPUT a string (made with alloca) containing
1579 an assembler-name for a local static variable named NAME.
1580 LABELNO is an integer which is different for each call. */
1581
1582 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1583 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1584 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1585
1586 /* Define the parentheses used to group arithmetic operations
1587 in assembler code. */
1588
1589 #define ASM_OPEN_PAREN "("
1590 #define ASM_CLOSE_PAREN ")"
1591
1592 /* Define results of standard character escape sequences. */
1593 #define TARGET_BELL 007
1594 #define TARGET_BS 010
1595 #define TARGET_TAB 011
1596 #define TARGET_NEWLINE 012
1597 #define TARGET_VT 013
1598 #define TARGET_FF 014
1599 #define TARGET_CR 015
1600
1601 /* Print operand X (an rtx) in assembler syntax to file FILE.
1602 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1603 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1604
1605 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1606
1607 /* Determine which codes are valid without a following integer. These must
1608 not be alphabetic.
1609
1610 We support `#' which is null if a delay slot exists, otherwise
1611 "\n\tnop" and `*' which prints the register name for TPC (gr122). */
1612
1613 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '#' || (CODE) == '*')
1614 \f
1615 /* Print a memory address as an operand to reference that memory location. */
1616
1617 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1618 { register rtx addr = ADDR; \
1619 if (!REG_P (addr) \
1620 && ! (GET_CODE (addr) == CONST_INT \
1621 && INTVAL (addr) >= 0 && INTVAL (addr) < 256)) \
1622 abort (); \
1623 output_operand (addr, 0); \
1624 }
1625 /* Define the codes that are matched by predicates in a29k.c. */
1626
1627 #define PREDICATE_CODES \
1628 {"cint_8_operand", {CONST_INT}}, \
1629 {"cint_16_operand", {CONST_INT}}, \
1630 {"long_const_operand", {CONST_INT, CONST, CONST_DOUBLE, \
1631 LABEL_REF, SYMBOL_REF}}, \
1632 {"shift_constant_operand", {CONST_INT, ASHIFT}}, \
1633 {"const_0_operand", {CONST_INT, ASHIFT}}, \
1634 {"const_8_operand", {CONST_INT, ASHIFT}}, \
1635 {"const_16_operand", {CONST_INT, ASHIFT}}, \
1636 {"const_24_operand", {CONST_INT, ASHIFT}}, \
1637 {"float_const_operand", {CONST_DOUBLE}}, \
1638 {"gpc_reg_operand", {SUBREG, REG}}, \
1639 {"gpc_reg_or_float_constant_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1640 {"gpc_reg_or_integer_constant_operand", {SUBREG, REG, \
1641 CONST_INT, CONST_DOUBLE}}, \
1642 {"gpc_reg_or_immediate_operand", {SUBREG, REG, CONST_INT, \
1643 CONST_DOUBLE, CONST, \
1644 SYMBOL_REF, LABEL_REF}}, \
1645 {"spec_reg_operand", {REG}}, \
1646 {"accum_reg_operand", {REG}}, \
1647 {"srcb_operand", {SUBREG, REG, CONST_INT}}, \
1648 {"cmplsrcb_operand", {SUBREG, REG, CONST_INT}}, \
1649 {"reg_or_immediate_operand", {SUBREG, REG, CONST_INT, CONST, \
1650 CONST_DOUBLE, CONST, SYMBOL_REF, LABEL_REF}}, \
1651 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
1652 {"and_operand", {SUBREG, REG, CONST_INT}}, \
1653 {"add_operand", {SUBREG, REG, CONST_INT}}, \
1654 {"call_operand", {SYMBOL_REF, CONST_INT}}, \
1655 {"in_operand", {SUBREG, MEM, REG, CONST_INT, CONST, SYMBOL_REF, \
1656 LABEL_REF, CONST_DOUBLE}}, \
1657 {"out_operand", {SUBREG, REG, MEM}}, \
1658 {"reload_memory_operand", {SUBREG, REG, MEM}}, \
1659 {"fp_comparison_operator", {EQ, GT, GE}}, \
1660 {"branch_operator", {GE, LT}}, \
1661 {"load_multiple_operation", {PARALLEL}}, \
1662 {"store_multiple_operation", {PARALLEL}}, \
1663 {"epilogue_operand", {CODE_LABEL}},