[AArch64] Use calls for SVE TLSDESC
[gcc.git] / gcc / config / aarch64 / aarch64.h
1 /* Machine description for AArch64 architecture.
2 Copyright (C) 2009-2019 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 #ifndef GCC_AARCH64_H
23 #define GCC_AARCH64_H
24
25 /* Target CPU builtins. */
26 #define TARGET_CPU_CPP_BUILTINS() \
27 aarch64_cpu_cpp_builtins (pfile)
28
29 /* Target CPU versions for D. */
30 #define TARGET_D_CPU_VERSIONS aarch64_d_target_versions
31
32 \f
33
34 #define REGISTER_TARGET_PRAGMAS() aarch64_register_pragmas ()
35
36 /* Target machine storage layout. */
37
38 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
39 if (GET_MODE_CLASS (MODE) == MODE_INT \
40 && GET_MODE_SIZE (MODE) < 4) \
41 { \
42 if (MODE == QImode || MODE == HImode) \
43 { \
44 MODE = SImode; \
45 } \
46 }
47
48 /* Bits are always numbered from the LSBit. */
49 #define BITS_BIG_ENDIAN 0
50
51 /* Big/little-endian flavour. */
52 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
53 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN)
54
55 /* AdvSIMD is supported in the default configuration, unless disabled by
56 -mgeneral-regs-only or by the +nosimd extension. */
57 #define TARGET_SIMD (!TARGET_GENERAL_REGS_ONLY && AARCH64_ISA_SIMD)
58 #define TARGET_FLOAT (!TARGET_GENERAL_REGS_ONLY && AARCH64_ISA_FP)
59
60 #define UNITS_PER_WORD 8
61
62 #define UNITS_PER_VREG 16
63
64 #define PARM_BOUNDARY 64
65
66 #define STACK_BOUNDARY 128
67
68 #define FUNCTION_BOUNDARY 32
69
70 #define EMPTY_FIELD_BOUNDARY 32
71
72 #define BIGGEST_ALIGNMENT 128
73
74 #define SHORT_TYPE_SIZE 16
75
76 #define INT_TYPE_SIZE 32
77
78 #define LONG_TYPE_SIZE (TARGET_ILP32 ? 32 : 64)
79
80 #define POINTER_SIZE (TARGET_ILP32 ? 32 : 64)
81
82 #define LONG_LONG_TYPE_SIZE 64
83
84 #define FLOAT_TYPE_SIZE 32
85
86 #define DOUBLE_TYPE_SIZE 64
87
88 #define LONG_DOUBLE_TYPE_SIZE 128
89
90 /* This value is the amount of bytes a caller is allowed to drop the stack
91 before probing has to be done for stack clash protection. */
92 #define STACK_CLASH_CALLER_GUARD 1024
93
94 /* This value represents the minimum amount of bytes we expect the function's
95 outgoing arguments to be when stack-clash is enabled. */
96 #define STACK_CLASH_MIN_BYTES_OUTGOING_ARGS 8
97
98 /* This value controls how many pages we manually unroll the loop for when
99 generating stack clash probes. */
100 #define STACK_CLASH_MAX_UNROLL_PAGES 4
101
102 /* The architecture reserves all bits of the address for hardware use,
103 so the vbit must go into the delta field of pointers to member
104 functions. This is the same config as that in the AArch32
105 port. */
106 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
107
108 /* Align definitions of arrays, unions and structures so that
109 initializations and copies can be made more efficient. This is not
110 ABI-changing, so it only affects places where we can see the
111 definition. Increasing the alignment tends to introduce padding,
112 so don't do this when optimizing for size/conserving stack space. */
113 #define AARCH64_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \
114 (((COND) && ((ALIGN) < BITS_PER_WORD) \
115 && (TREE_CODE (EXP) == ARRAY_TYPE \
116 || TREE_CODE (EXP) == UNION_TYPE \
117 || TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
118
119 /* Align global data. */
120 #define DATA_ALIGNMENT(EXP, ALIGN) \
121 AARCH64_EXPAND_ALIGNMENT (!optimize_size, EXP, ALIGN)
122
123 /* Similarly, make sure that objects on the stack are sensibly aligned. */
124 #define LOCAL_ALIGNMENT(EXP, ALIGN) \
125 AARCH64_EXPAND_ALIGNMENT (!flag_conserve_stack, EXP, ALIGN)
126
127 #define STRUCTURE_SIZE_BOUNDARY 8
128
129 /* Heap alignment (same as BIGGEST_ALIGNMENT and STACK_BOUNDARY). */
130 #define MALLOC_ABI_ALIGNMENT 128
131
132 /* Defined by the ABI */
133 #define WCHAR_TYPE "unsigned int"
134 #define WCHAR_TYPE_SIZE 32
135
136 /* Using long long breaks -ansi and -std=c90, so these will need to be
137 made conditional for an LLP64 ABI. */
138
139 #define SIZE_TYPE "long unsigned int"
140
141 #define PTRDIFF_TYPE "long int"
142
143 #define PCC_BITFIELD_TYPE_MATTERS 1
144
145 /* Major revision number of the ARM Architecture implemented by the target. */
146 extern unsigned aarch64_architecture_version;
147
148 /* Instruction tuning/selection flags. */
149
150 /* Bit values used to identify processor capabilities. */
151 #define AARCH64_FL_SIMD (1 << 0) /* Has SIMD instructions. */
152 #define AARCH64_FL_FP (1 << 1) /* Has FP. */
153 #define AARCH64_FL_CRYPTO (1 << 2) /* Has crypto. */
154 #define AARCH64_FL_CRC (1 << 3) /* Has CRC. */
155 /* ARMv8.1-A architecture extensions. */
156 #define AARCH64_FL_LSE (1 << 4) /* Has Large System Extensions. */
157 #define AARCH64_FL_RDMA (1 << 5) /* Has Round Double Multiply Add. */
158 #define AARCH64_FL_V8_1 (1 << 6) /* Has ARMv8.1-A extensions. */
159 /* ARMv8.2-A architecture extensions. */
160 #define AARCH64_FL_V8_2 (1 << 8) /* Has ARMv8.2-A features. */
161 #define AARCH64_FL_F16 (1 << 9) /* Has ARMv8.2-A FP16 extensions. */
162 #define AARCH64_FL_SVE (1 << 10) /* Has Scalable Vector Extensions. */
163 /* ARMv8.3-A architecture extensions. */
164 #define AARCH64_FL_V8_3 (1 << 11) /* Has ARMv8.3-A features. */
165 #define AARCH64_FL_RCPC (1 << 12) /* Has support for RCpc model. */
166 #define AARCH64_FL_DOTPROD (1 << 13) /* Has ARMv8.2-A Dot Product ins. */
167 /* New flags to split crypto into aes and sha2. */
168 #define AARCH64_FL_AES (1 << 14) /* Has Crypto AES. */
169 #define AARCH64_FL_SHA2 (1 << 15) /* Has Crypto SHA2. */
170 /* ARMv8.4-A architecture extensions. */
171 #define AARCH64_FL_V8_4 (1 << 16) /* Has ARMv8.4-A features. */
172 #define AARCH64_FL_SM4 (1 << 17) /* Has ARMv8.4-A SM3 and SM4. */
173 #define AARCH64_FL_SHA3 (1 << 18) /* Has ARMv8.4-a SHA3 and SHA512. */
174 #define AARCH64_FL_F16FML (1 << 19) /* Has ARMv8.4-a FP16 extensions. */
175 #define AARCH64_FL_RCPC8_4 (1 << 20) /* Has ARMv8.4-a RCPC extensions. */
176
177 /* Statistical Profiling extensions. */
178 #define AARCH64_FL_PROFILE (1 << 21)
179
180 /* ARMv8.5-A architecture extensions. */
181 #define AARCH64_FL_V8_5 (1 << 22) /* Has ARMv8.5-A features. */
182 #define AARCH64_FL_RNG (1 << 23) /* ARMv8.5-A Random Number Insns. */
183 #define AARCH64_FL_MEMTAG (1 << 24) /* ARMv8.5-A Memory Tagging
184 Extensions. */
185
186 /* Speculation Barrier instruction supported. */
187 #define AARCH64_FL_SB (1 << 25)
188
189 /* Speculative Store Bypass Safe instruction supported. */
190 #define AARCH64_FL_SSBS (1 << 26)
191
192 /* Execution and Data Prediction Restriction instructions supported. */
193 #define AARCH64_FL_PREDRES (1 << 27)
194
195 /* SVE2 instruction supported. */
196 #define AARCH64_FL_SVE2 (1 << 28)
197 #define AARCH64_FL_SVE2_AES (1 << 29)
198 #define AARCH64_FL_SVE2_SM4 (1 << 30)
199 #define AARCH64_FL_SVE2_SHA3 (1ULL << 31)
200 #define AARCH64_FL_SVE2_BITPERM (1ULL << 32)
201
202 /* Transactional Memory Extension. */
203 #define AARCH64_FL_TME (1ULL << 33) /* Has TME instructions. */
204
205 /* Has FP and SIMD. */
206 #define AARCH64_FL_FPSIMD (AARCH64_FL_FP | AARCH64_FL_SIMD)
207
208 /* Has FP without SIMD. */
209 #define AARCH64_FL_FPQ16 (AARCH64_FL_FP & ~AARCH64_FL_SIMD)
210
211 /* Architecture flags that effect instruction selection. */
212 #define AARCH64_FL_FOR_ARCH8 (AARCH64_FL_FPSIMD)
213 #define AARCH64_FL_FOR_ARCH8_1 \
214 (AARCH64_FL_FOR_ARCH8 | AARCH64_FL_LSE | AARCH64_FL_CRC \
215 | AARCH64_FL_RDMA | AARCH64_FL_V8_1)
216 #define AARCH64_FL_FOR_ARCH8_2 \
217 (AARCH64_FL_FOR_ARCH8_1 | AARCH64_FL_V8_2)
218 #define AARCH64_FL_FOR_ARCH8_3 \
219 (AARCH64_FL_FOR_ARCH8_2 | AARCH64_FL_V8_3)
220 #define AARCH64_FL_FOR_ARCH8_4 \
221 (AARCH64_FL_FOR_ARCH8_3 | AARCH64_FL_V8_4 | AARCH64_FL_F16FML \
222 | AARCH64_FL_DOTPROD | AARCH64_FL_RCPC8_4)
223 #define AARCH64_FL_FOR_ARCH8_5 \
224 (AARCH64_FL_FOR_ARCH8_4 | AARCH64_FL_V8_5 \
225 | AARCH64_FL_SB | AARCH64_FL_SSBS | AARCH64_FL_PREDRES)
226
227 /* Macros to test ISA flags. */
228
229 #define AARCH64_ISA_CRC (aarch64_isa_flags & AARCH64_FL_CRC)
230 #define AARCH64_ISA_CRYPTO (aarch64_isa_flags & AARCH64_FL_CRYPTO)
231 #define AARCH64_ISA_FP (aarch64_isa_flags & AARCH64_FL_FP)
232 #define AARCH64_ISA_SIMD (aarch64_isa_flags & AARCH64_FL_SIMD)
233 #define AARCH64_ISA_LSE (aarch64_isa_flags & AARCH64_FL_LSE)
234 #define AARCH64_ISA_RDMA (aarch64_isa_flags & AARCH64_FL_RDMA)
235 #define AARCH64_ISA_V8_2 (aarch64_isa_flags & AARCH64_FL_V8_2)
236 #define AARCH64_ISA_F16 (aarch64_isa_flags & AARCH64_FL_F16)
237 #define AARCH64_ISA_SVE (aarch64_isa_flags & AARCH64_FL_SVE)
238 #define AARCH64_ISA_SVE2 (aarch64_isa_flags & AARCH64_FL_SVE2)
239 #define AARCH64_ISA_V8_3 (aarch64_isa_flags & AARCH64_FL_V8_3)
240 #define AARCH64_ISA_DOTPROD (aarch64_isa_flags & AARCH64_FL_DOTPROD)
241 #define AARCH64_ISA_AES (aarch64_isa_flags & AARCH64_FL_AES)
242 #define AARCH64_ISA_SHA2 (aarch64_isa_flags & AARCH64_FL_SHA2)
243 #define AARCH64_ISA_V8_4 (aarch64_isa_flags & AARCH64_FL_V8_4)
244 #define AARCH64_ISA_SM4 (aarch64_isa_flags & AARCH64_FL_SM4)
245 #define AARCH64_ISA_SHA3 (aarch64_isa_flags & AARCH64_FL_SHA3)
246 #define AARCH64_ISA_F16FML (aarch64_isa_flags & AARCH64_FL_F16FML)
247 #define AARCH64_ISA_RCPC8_4 (aarch64_isa_flags & AARCH64_FL_RCPC8_4)
248 #define AARCH64_ISA_V8_5 (aarch64_isa_flags & AARCH64_FL_V8_5)
249 #define AARCH64_ISA_TME (aarch64_isa_flags & AARCH64_FL_TME)
250
251 /* Crypto is an optional extension to AdvSIMD. */
252 #define TARGET_CRYPTO (TARGET_SIMD && AARCH64_ISA_CRYPTO)
253
254 /* SHA2 is an optional extension to AdvSIMD. */
255 #define TARGET_SHA2 ((TARGET_SIMD && AARCH64_ISA_SHA2) || TARGET_CRYPTO)
256
257 /* SHA3 is an optional extension to AdvSIMD. */
258 #define TARGET_SHA3 (TARGET_SIMD && AARCH64_ISA_SHA3)
259
260 /* AES is an optional extension to AdvSIMD. */
261 #define TARGET_AES ((TARGET_SIMD && AARCH64_ISA_AES) || TARGET_CRYPTO)
262
263 /* SM is an optional extension to AdvSIMD. */
264 #define TARGET_SM4 (TARGET_SIMD && AARCH64_ISA_SM4)
265
266 /* FP16FML is an optional extension to AdvSIMD. */
267 #define TARGET_F16FML (TARGET_SIMD && AARCH64_ISA_F16FML && TARGET_FP_F16INST)
268
269 /* CRC instructions that can be enabled through +crc arch extension. */
270 #define TARGET_CRC32 (AARCH64_ISA_CRC)
271
272 /* Atomic instructions that can be enabled through the +lse extension. */
273 #define TARGET_LSE (AARCH64_ISA_LSE)
274
275 /* ARMv8.2-A FP16 support that can be enabled through the +fp16 extension. */
276 #define TARGET_FP_F16INST (TARGET_FLOAT && AARCH64_ISA_F16)
277 #define TARGET_SIMD_F16INST (TARGET_SIMD && AARCH64_ISA_F16)
278
279 /* Dot Product is an optional extension to AdvSIMD enabled through +dotprod. */
280 #define TARGET_DOTPROD (TARGET_SIMD && AARCH64_ISA_DOTPROD)
281
282 /* SVE instructions, enabled through +sve. */
283 #define TARGET_SVE (AARCH64_ISA_SVE)
284
285 /* SVE2 instructions, enabled through +sve2. */
286 #define TARGET_SVE2 (AARCH64_ISA_SVE2)
287
288 /* ARMv8.3-A features. */
289 #define TARGET_ARMV8_3 (AARCH64_ISA_V8_3)
290
291 /* Javascript conversion instruction from Armv8.3-a. */
292 #define TARGET_JSCVT (TARGET_FLOAT && AARCH64_ISA_V8_3)
293
294 /* Armv8.3-a Complex number extension to AdvSIMD extensions. */
295 #define TARGET_COMPLEX (TARGET_SIMD && TARGET_ARMV8_3)
296
297 /* Floating-point rounding instructions from Armv8.5-a. */
298 #define TARGET_FRINT (AARCH64_ISA_V8_5 && TARGET_FLOAT)
299
300 /* TME instructions are enabled. */
301 #define TARGET_TME (AARCH64_ISA_TME)
302
303 /* Make sure this is always defined so we don't have to check for ifdefs
304 but rather use normal ifs. */
305 #ifndef TARGET_FIX_ERR_A53_835769_DEFAULT
306 #define TARGET_FIX_ERR_A53_835769_DEFAULT 0
307 #else
308 #undef TARGET_FIX_ERR_A53_835769_DEFAULT
309 #define TARGET_FIX_ERR_A53_835769_DEFAULT 1
310 #endif
311
312 /* Apply the workaround for Cortex-A53 erratum 835769. */
313 #define TARGET_FIX_ERR_A53_835769 \
314 ((aarch64_fix_a53_err835769 == 2) \
315 ? TARGET_FIX_ERR_A53_835769_DEFAULT : aarch64_fix_a53_err835769)
316
317 /* Make sure this is always defined so we don't have to check for ifdefs
318 but rather use normal ifs. */
319 #ifndef TARGET_FIX_ERR_A53_843419_DEFAULT
320 #define TARGET_FIX_ERR_A53_843419_DEFAULT 0
321 #else
322 #undef TARGET_FIX_ERR_A53_843419_DEFAULT
323 #define TARGET_FIX_ERR_A53_843419_DEFAULT 1
324 #endif
325
326 /* Apply the workaround for Cortex-A53 erratum 843419. */
327 #define TARGET_FIX_ERR_A53_843419 \
328 ((aarch64_fix_a53_err843419 == 2) \
329 ? TARGET_FIX_ERR_A53_843419_DEFAULT : aarch64_fix_a53_err843419)
330
331 /* ARMv8.1-A Adv.SIMD support. */
332 #define TARGET_SIMD_RDMA (TARGET_SIMD && AARCH64_ISA_RDMA)
333
334 /* Standard register usage. */
335
336 /* 31 64-bit general purpose registers R0-R30:
337 R30 LR (link register)
338 R29 FP (frame pointer)
339 R19-R28 Callee-saved registers
340 R18 The platform register; use as temporary register.
341 R17 IP1 The second intra-procedure-call temporary register
342 (can be used by call veneers and PLT code); otherwise use
343 as a temporary register
344 R16 IP0 The first intra-procedure-call temporary register (can
345 be used by call veneers and PLT code); otherwise use as a
346 temporary register
347 R9-R15 Temporary registers
348 R8 Structure value parameter / temporary register
349 R0-R7 Parameter/result registers
350
351 SP stack pointer, encoded as X/R31 where permitted.
352 ZR zero register, encoded as X/R31 elsewhere
353
354 32 x 128-bit floating-point/vector registers
355 V16-V31 Caller-saved (temporary) registers
356 V8-V15 Callee-saved registers
357 V0-V7 Parameter/result registers
358
359 The vector register V0 holds scalar B0, H0, S0 and D0 in its least
360 significant bits. Unlike AArch32 S1 is not packed into D0, etc.
361
362 P0-P7 Predicate low registers: valid in all predicate contexts
363 P8-P15 Predicate high registers: used as scratch space
364
365 VG Pseudo "vector granules" register
366
367 VG is the number of 64-bit elements in an SVE vector. We define
368 it as a hard register so that we can easily map it to the DWARF VG
369 register. GCC internally uses the poly_int variable aarch64_sve_vg
370 instead. */
371
372 #define FIXED_REGISTERS \
373 { \
374 0, 0, 0, 0, 0, 0, 0, 0, /* R0 - R7 */ \
375 0, 0, 0, 0, 0, 0, 0, 0, /* R8 - R15 */ \
376 0, 0, 0, 0, 0, 0, 0, 0, /* R16 - R23 */ \
377 0, 0, 0, 0, 0, 1, 0, 1, /* R24 - R30, SP */ \
378 0, 0, 0, 0, 0, 0, 0, 0, /* V0 - V7 */ \
379 0, 0, 0, 0, 0, 0, 0, 0, /* V8 - V15 */ \
380 0, 0, 0, 0, 0, 0, 0, 0, /* V16 - V23 */ \
381 0, 0, 0, 0, 0, 0, 0, 0, /* V24 - V31 */ \
382 1, 1, 1, 1, /* SFP, AP, CC, VG */ \
383 0, 0, 0, 0, 0, 0, 0, 0, /* P0 - P7 */ \
384 0, 0, 0, 0, 0, 0, 0, 0, /* P8 - P15 */ \
385 }
386
387 /* X30 is marked as caller-saved which is in line with regular function call
388 behavior since the call instructions clobber it; AARCH64_EXPAND_CALL does
389 that for regular function calls and avoids it for sibcalls. X30 is
390 considered live for sibcalls; EPILOGUE_USES helps achieve that by returning
391 true but not until function epilogues have been generated. This ensures
392 that X30 is available for use in leaf functions if needed. */
393
394 #define CALL_USED_REGISTERS \
395 { \
396 1, 1, 1, 1, 1, 1, 1, 1, /* R0 - R7 */ \
397 1, 1, 1, 1, 1, 1, 1, 1, /* R8 - R15 */ \
398 1, 1, 1, 0, 0, 0, 0, 0, /* R16 - R23 */ \
399 0, 0, 0, 0, 0, 1, 1, 1, /* R24 - R30, SP */ \
400 1, 1, 1, 1, 1, 1, 1, 1, /* V0 - V7 */ \
401 0, 0, 0, 0, 0, 0, 0, 0, /* V8 - V15 */ \
402 1, 1, 1, 1, 1, 1, 1, 1, /* V16 - V23 */ \
403 1, 1, 1, 1, 1, 1, 1, 1, /* V24 - V31 */ \
404 1, 1, 1, 1, /* SFP, AP, CC, VG */ \
405 1, 1, 1, 1, 1, 1, 1, 1, /* P0 - P7 */ \
406 1, 1, 1, 1, 1, 1, 1, 1, /* P8 - P15 */ \
407 }
408
409 #define REGISTER_NAMES \
410 { \
411 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", \
412 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", \
413 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", \
414 "x24", "x25", "x26", "x27", "x28", "x29", "x30", "sp", \
415 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
416 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
417 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
418 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", \
419 "sfp", "ap", "cc", "vg", \
420 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", \
421 "p8", "p9", "p10", "p11", "p12", "p13", "p14", "p15", \
422 }
423
424 /* Generate the register aliases for core register N */
425 #define R_ALIASES(N) {"r" # N, R0_REGNUM + (N)}, \
426 {"w" # N, R0_REGNUM + (N)}
427
428 #define V_ALIASES(N) {"q" # N, V0_REGNUM + (N)}, \
429 {"d" # N, V0_REGNUM + (N)}, \
430 {"s" # N, V0_REGNUM + (N)}, \
431 {"h" # N, V0_REGNUM + (N)}, \
432 {"b" # N, V0_REGNUM + (N)}, \
433 {"z" # N, V0_REGNUM + (N)}
434
435 /* Provide aliases for all of the ISA defined register name forms.
436 These aliases are convenient for use in the clobber lists of inline
437 asm statements. */
438
439 #define ADDITIONAL_REGISTER_NAMES \
440 { R_ALIASES(0), R_ALIASES(1), R_ALIASES(2), R_ALIASES(3), \
441 R_ALIASES(4), R_ALIASES(5), R_ALIASES(6), R_ALIASES(7), \
442 R_ALIASES(8), R_ALIASES(9), R_ALIASES(10), R_ALIASES(11), \
443 R_ALIASES(12), R_ALIASES(13), R_ALIASES(14), R_ALIASES(15), \
444 R_ALIASES(16), R_ALIASES(17), R_ALIASES(18), R_ALIASES(19), \
445 R_ALIASES(20), R_ALIASES(21), R_ALIASES(22), R_ALIASES(23), \
446 R_ALIASES(24), R_ALIASES(25), R_ALIASES(26), R_ALIASES(27), \
447 R_ALIASES(28), R_ALIASES(29), R_ALIASES(30), {"wsp", R0_REGNUM + 31}, \
448 V_ALIASES(0), V_ALIASES(1), V_ALIASES(2), V_ALIASES(3), \
449 V_ALIASES(4), V_ALIASES(5), V_ALIASES(6), V_ALIASES(7), \
450 V_ALIASES(8), V_ALIASES(9), V_ALIASES(10), V_ALIASES(11), \
451 V_ALIASES(12), V_ALIASES(13), V_ALIASES(14), V_ALIASES(15), \
452 V_ALIASES(16), V_ALIASES(17), V_ALIASES(18), V_ALIASES(19), \
453 V_ALIASES(20), V_ALIASES(21), V_ALIASES(22), V_ALIASES(23), \
454 V_ALIASES(24), V_ALIASES(25), V_ALIASES(26), V_ALIASES(27), \
455 V_ALIASES(28), V_ALIASES(29), V_ALIASES(30), V_ALIASES(31) \
456 }
457
458 #define EPILOGUE_USES(REGNO) (aarch64_epilogue_uses (REGNO))
459
460 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
461 the stack pointer does not matter. This is only true if the function
462 uses alloca. */
463 #define EXIT_IGNORE_STACK (cfun->calls_alloca)
464
465 #define STATIC_CHAIN_REGNUM R18_REGNUM
466 #define HARD_FRAME_POINTER_REGNUM R29_REGNUM
467 #define FRAME_POINTER_REGNUM SFP_REGNUM
468 #define STACK_POINTER_REGNUM SP_REGNUM
469 #define ARG_POINTER_REGNUM AP_REGNUM
470 #define FIRST_PSEUDO_REGISTER (P15_REGNUM + 1)
471
472 /* The number of (integer) argument register available. */
473 #define NUM_ARG_REGS 8
474 #define NUM_FP_ARG_REGS 8
475
476 /* A Homogeneous Floating-Point or Short-Vector Aggregate may have at most
477 four members. */
478 #define HA_MAX_NUM_FLDS 4
479
480 /* External dwarf register number scheme. These number are used to
481 identify registers in dwarf debug information, the values are
482 defined by the AArch64 ABI. The numbering scheme is independent of
483 GCC's internal register numbering scheme. */
484
485 #define AARCH64_DWARF_R0 0
486
487 /* The number of R registers, note 31! not 32. */
488 #define AARCH64_DWARF_NUMBER_R 31
489
490 #define AARCH64_DWARF_SP 31
491 #define AARCH64_DWARF_VG 46
492 #define AARCH64_DWARF_P0 48
493 #define AARCH64_DWARF_V0 64
494
495 /* The number of V registers. */
496 #define AARCH64_DWARF_NUMBER_V 32
497
498 /* For signal frames we need to use an alternative return column. This
499 value must not correspond to a hard register and must be out of the
500 range of DWARF_FRAME_REGNUM(). */
501 #define DWARF_ALT_FRAME_RETURN_COLUMN \
502 (AARCH64_DWARF_V0 + AARCH64_DWARF_NUMBER_V)
503
504 /* We add 1 extra frame register for use as the
505 DWARF_ALT_FRAME_RETURN_COLUMN. */
506 #define DWARF_FRAME_REGISTERS (DWARF_ALT_FRAME_RETURN_COLUMN + 1)
507
508
509 #define DBX_REGISTER_NUMBER(REGNO) aarch64_dbx_register_number (REGNO)
510 /* Provide a definition of DWARF_FRAME_REGNUM here so that fallback unwinders
511 can use DWARF_ALT_FRAME_RETURN_COLUMN defined below. This is just the same
512 as the default definition in dwarf2out.c. */
513 #undef DWARF_FRAME_REGNUM
514 #define DWARF_FRAME_REGNUM(REGNO) DBX_REGISTER_NUMBER (REGNO)
515
516 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
517
518 #define DWARF2_UNWIND_INFO 1
519
520 /* Use R0 through R3 to pass exception handling information. */
521 #define EH_RETURN_DATA_REGNO(N) \
522 ((N) < 4 ? ((unsigned int) R0_REGNUM + (N)) : INVALID_REGNUM)
523
524 /* Select a format to encode pointers in exception handling data. */
525 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
526 aarch64_asm_preferred_eh_data_format ((CODE), (GLOBAL))
527
528 /* Output the assembly strings we want to add to a function definition. */
529 #define ASM_DECLARE_FUNCTION_NAME(STR, NAME, DECL) \
530 aarch64_declare_function_name (STR, NAME, DECL)
531
532 /* Output assembly strings for alias definition. */
533 #define ASM_OUTPUT_DEF_FROM_DECLS(STR, DECL, TARGET) \
534 aarch64_asm_output_alias (STR, DECL, TARGET)
535
536 /* Output assembly strings for undefined extern symbols. */
537 #undef ASM_OUTPUT_EXTERNAL
538 #define ASM_OUTPUT_EXTERNAL(STR, DECL, NAME) \
539 aarch64_asm_output_external (STR, DECL, NAME)
540
541 /* Output assembly strings after .cfi_startproc is emitted. */
542 #define ASM_POST_CFI_STARTPROC aarch64_post_cfi_startproc
543
544 /* For EH returns X4 contains the stack adjustment. */
545 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, R4_REGNUM)
546 #define EH_RETURN_HANDLER_RTX aarch64_eh_return_handler_rtx ()
547
548 /* Don't use __builtin_setjmp until we've defined it. */
549 #undef DONT_USE_BUILTIN_SETJMP
550 #define DONT_USE_BUILTIN_SETJMP 1
551
552 #undef TARGET_COMPUTE_FRAME_LAYOUT
553 #define TARGET_COMPUTE_FRAME_LAYOUT aarch64_layout_frame
554
555 /* Register in which the structure value is to be returned. */
556 #define AARCH64_STRUCT_VALUE_REGNUM R8_REGNUM
557
558 /* Non-zero if REGNO is part of the Core register set.
559
560 The rather unusual way of expressing this check is to avoid
561 warnings when building the compiler when R0_REGNUM is 0 and REGNO
562 is unsigned. */
563 #define GP_REGNUM_P(REGNO) \
564 (((unsigned) (REGNO - R0_REGNUM)) <= (R30_REGNUM - R0_REGNUM))
565
566 #define FP_REGNUM_P(REGNO) \
567 (((unsigned) (REGNO - V0_REGNUM)) <= (V31_REGNUM - V0_REGNUM))
568
569 #define FP_LO_REGNUM_P(REGNO) \
570 (((unsigned) (REGNO - V0_REGNUM)) <= (V15_REGNUM - V0_REGNUM))
571
572 #define FP_LO8_REGNUM_P(REGNO) \
573 (((unsigned) (REGNO - V0_REGNUM)) <= (V7_REGNUM - V0_REGNUM))
574
575 #define PR_REGNUM_P(REGNO)\
576 (((unsigned) (REGNO - P0_REGNUM)) <= (P15_REGNUM - P0_REGNUM))
577
578 #define PR_LO_REGNUM_P(REGNO)\
579 (((unsigned) (REGNO - P0_REGNUM)) <= (P7_REGNUM - P0_REGNUM))
580
581 #define FP_SIMD_SAVED_REGNUM_P(REGNO) \
582 (((unsigned) (REGNO - V8_REGNUM)) <= (V23_REGNUM - V8_REGNUM))
583 \f
584 /* Register and constant classes. */
585
586 enum reg_class
587 {
588 NO_REGS,
589 TAILCALL_ADDR_REGS,
590 GENERAL_REGS,
591 STACK_REG,
592 POINTER_REGS,
593 FP_LO8_REGS,
594 FP_LO_REGS,
595 FP_REGS,
596 POINTER_AND_FP_REGS,
597 PR_LO_REGS,
598 PR_HI_REGS,
599 PR_REGS,
600 ALL_REGS,
601 LIM_REG_CLASSES /* Last */
602 };
603
604 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
605
606 #define REG_CLASS_NAMES \
607 { \
608 "NO_REGS", \
609 "TAILCALL_ADDR_REGS", \
610 "GENERAL_REGS", \
611 "STACK_REG", \
612 "POINTER_REGS", \
613 "FP_LO8_REGS", \
614 "FP_LO_REGS", \
615 "FP_REGS", \
616 "POINTER_AND_FP_REGS", \
617 "PR_LO_REGS", \
618 "PR_HI_REGS", \
619 "PR_REGS", \
620 "ALL_REGS" \
621 }
622
623 #define REG_CLASS_CONTENTS \
624 { \
625 { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
626 { 0x00030000, 0x00000000, 0x00000000 }, /* TAILCALL_ADDR_REGS */\
627 { 0x7fffffff, 0x00000000, 0x00000003 }, /* GENERAL_REGS */ \
628 { 0x80000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
629 { 0xffffffff, 0x00000000, 0x00000003 }, /* POINTER_REGS */ \
630 { 0x00000000, 0x000000ff, 0x00000000 }, /* FP_LO8_REGS */ \
631 { 0x00000000, 0x0000ffff, 0x00000000 }, /* FP_LO_REGS */ \
632 { 0x00000000, 0xffffffff, 0x00000000 }, /* FP_REGS */ \
633 { 0xffffffff, 0xffffffff, 0x00000003 }, /* POINTER_AND_FP_REGS */\
634 { 0x00000000, 0x00000000, 0x00000ff0 }, /* PR_LO_REGS */ \
635 { 0x00000000, 0x00000000, 0x000ff000 }, /* PR_HI_REGS */ \
636 { 0x00000000, 0x00000000, 0x000ffff0 }, /* PR_REGS */ \
637 { 0xffffffff, 0xffffffff, 0x000fffff } /* ALL_REGS */ \
638 }
639
640 #define REGNO_REG_CLASS(REGNO) aarch64_regno_regclass (REGNO)
641
642 #define INDEX_REG_CLASS GENERAL_REGS
643 #define BASE_REG_CLASS POINTER_REGS
644
645 /* Register pairs used to eliminate unneeded registers that point into
646 the stack frame. */
647 #define ELIMINABLE_REGS \
648 { \
649 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
650 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
651 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
652 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
653 }
654
655 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
656 (OFFSET) = aarch64_initial_elimination_offset (FROM, TO)
657
658 /* CPU/ARCH option handling. */
659 #include "config/aarch64/aarch64-opts.h"
660
661 enum target_cpus
662 {
663 #define AARCH64_CORE(NAME, INTERNAL_IDENT, SCHED, ARCH, FLAGS, COSTS, IMP, PART, VARIANT) \
664 TARGET_CPU_##INTERNAL_IDENT,
665 #include "aarch64-cores.def"
666 TARGET_CPU_generic
667 };
668
669 /* If there is no CPU defined at configure, use generic as default. */
670 #ifndef TARGET_CPU_DEFAULT
671 #define TARGET_CPU_DEFAULT \
672 (TARGET_CPU_generic | (AARCH64_CPU_DEFAULT_FLAGS << 6))
673 #endif
674
675 /* If inserting NOP before a mult-accumulate insn remember to adjust the
676 length so that conditional branching code is updated appropriately. */
677 #define ADJUST_INSN_LENGTH(insn, length) \
678 do \
679 { \
680 if (aarch64_madd_needs_nop (insn)) \
681 length += 4; \
682 } while (0)
683
684 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
685 aarch64_final_prescan_insn (INSN); \
686
687 /* The processor for which instructions should be scheduled. */
688 extern enum aarch64_processor aarch64_tune;
689
690 /* RTL generation support. */
691 #define INIT_EXPANDERS aarch64_init_expanders ()
692 \f
693
694 /* Stack layout; function entry, exit and calling. */
695 #define STACK_GROWS_DOWNWARD 1
696
697 #define FRAME_GROWS_DOWNWARD 1
698
699 #define ACCUMULATE_OUTGOING_ARGS 1
700
701 #define FIRST_PARM_OFFSET(FNDECL) 0
702
703 /* Fix for VFP */
704 #define LIBCALL_VALUE(MODE) \
705 gen_rtx_REG (MODE, FLOAT_MODE_P (MODE) ? V0_REGNUM : R0_REGNUM)
706
707 #define DEFAULT_PCC_STRUCT_RETURN 0
708
709 #ifdef HAVE_POLY_INT_H
710 struct GTY (()) aarch64_frame
711 {
712 HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
713
714 /* The number of extra stack bytes taken up by register varargs.
715 This area is allocated by the callee at the very top of the
716 frame. This value is rounded up to a multiple of
717 STACK_BOUNDARY. */
718 HOST_WIDE_INT saved_varargs_size;
719
720 /* The size of the saved callee-save int/FP registers. */
721
722 HOST_WIDE_INT saved_regs_size;
723
724 /* Offset from the base of the frame (incomming SP) to the
725 top of the locals area. This value is always a multiple of
726 STACK_BOUNDARY. */
727 poly_int64 locals_offset;
728
729 /* Offset from the base of the frame (incomming SP) to the
730 hard_frame_pointer. This value is always a multiple of
731 STACK_BOUNDARY. */
732 poly_int64 hard_fp_offset;
733
734 /* The size of the frame. This value is the offset from base of the
735 frame (incomming SP) to the stack_pointer. This value is always
736 a multiple of STACK_BOUNDARY. */
737 poly_int64 frame_size;
738
739 /* The size of the initial stack adjustment before saving callee-saves. */
740 poly_int64 initial_adjust;
741
742 /* The writeback value when pushing callee-save registers.
743 It is zero when no push is used. */
744 HOST_WIDE_INT callee_adjust;
745
746 /* The offset from SP to the callee-save registers after initial_adjust.
747 It may be non-zero if no push is used (ie. callee_adjust == 0). */
748 poly_int64 callee_offset;
749
750 /* The size of the stack adjustment after saving callee-saves. */
751 poly_int64 final_adjust;
752
753 /* Store FP,LR and setup a frame pointer. */
754 bool emit_frame_chain;
755
756 unsigned wb_candidate1;
757 unsigned wb_candidate2;
758
759 bool laid_out;
760 };
761
762 typedef struct GTY (()) machine_function
763 {
764 struct aarch64_frame frame;
765 /* One entry for each hard register. */
766 bool reg_is_wrapped_separately[LAST_SAVED_REGNUM];
767 } machine_function;
768 #endif
769
770 /* Which ABI to use. */
771 enum aarch64_abi_type
772 {
773 AARCH64_ABI_LP64 = 0,
774 AARCH64_ABI_ILP32 = 1
775 };
776
777 #ifndef AARCH64_ABI_DEFAULT
778 #define AARCH64_ABI_DEFAULT AARCH64_ABI_LP64
779 #endif
780
781 #define TARGET_ILP32 (aarch64_abi & AARCH64_ABI_ILP32)
782
783 enum arm_pcs
784 {
785 ARM_PCS_AAPCS64, /* Base standard AAPCS for 64 bit. */
786 ARM_PCS_SIMD, /* For aarch64_vector_pcs functions. */
787 ARM_PCS_TLSDESC, /* For targets of tlsdesc calls. */
788 ARM_PCS_UNKNOWN
789 };
790
791
792
793
794 /* We can't use machine_mode inside a generator file because it
795 hasn't been created yet; we shouldn't be using any code that
796 needs the real definition though, so this ought to be safe. */
797 #ifdef GENERATOR_FILE
798 #define MACHMODE int
799 #else
800 #include "insn-modes.h"
801 #define MACHMODE machine_mode
802 #endif
803
804 #ifndef USED_FOR_TARGET
805 /* AAPCS related state tracking. */
806 typedef struct
807 {
808 enum arm_pcs pcs_variant;
809 int aapcs_arg_processed; /* No need to lay out this argument again. */
810 int aapcs_ncrn; /* Next Core register number. */
811 int aapcs_nextncrn; /* Next next core register number. */
812 int aapcs_nvrn; /* Next Vector register number. */
813 int aapcs_nextnvrn; /* Next Next Vector register number. */
814 rtx aapcs_reg; /* Register assigned to this argument. This
815 is NULL_RTX if this parameter goes on
816 the stack. */
817 MACHMODE aapcs_vfp_rmode;
818 int aapcs_stack_words; /* If the argument is passed on the stack, this
819 is the number of words needed, after rounding
820 up. Only meaningful when
821 aapcs_reg == NULL_RTX. */
822 int aapcs_stack_size; /* The total size (in words, per 8 byte) of the
823 stack arg area so far. */
824 } CUMULATIVE_ARGS;
825 #endif
826
827 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
828 (aarch64_pad_reg_upward (MODE, TYPE, FIRST) ? PAD_UPWARD : PAD_DOWNWARD)
829
830 #define PAD_VARARGS_DOWN 0
831
832 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
833 aarch64_init_cumulative_args (&(CUM), FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS)
834
835 #define FUNCTION_ARG_REGNO_P(REGNO) \
836 aarch64_function_arg_regno_p(REGNO)
837 \f
838
839 /* ISA Features. */
840
841 /* Addressing modes, etc. */
842 #define HAVE_POST_INCREMENT 1
843 #define HAVE_PRE_INCREMENT 1
844 #define HAVE_POST_DECREMENT 1
845 #define HAVE_PRE_DECREMENT 1
846 #define HAVE_POST_MODIFY_DISP 1
847 #define HAVE_PRE_MODIFY_DISP 1
848
849 #define MAX_REGS_PER_ADDRESS 2
850
851 #define CONSTANT_ADDRESS_P(X) aarch64_constant_address_p(X)
852
853 #define REGNO_OK_FOR_BASE_P(REGNO) \
854 aarch64_regno_ok_for_base_p (REGNO, true)
855
856 #define REGNO_OK_FOR_INDEX_P(REGNO) \
857 aarch64_regno_ok_for_index_p (REGNO, true)
858
859 #define LEGITIMATE_PIC_OPERAND_P(X) \
860 aarch64_legitimate_pic_operand_p (X)
861
862 #define CASE_VECTOR_MODE Pmode
863
864 #define DEFAULT_SIGNED_CHAR 0
865
866 /* An integer expression for the size in bits of the largest integer machine
867 mode that should actually be used. We allow pairs of registers. */
868 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
869
870 /* Maximum bytes moved by a single instruction (load/store pair). */
871 #define MOVE_MAX (UNITS_PER_WORD * 2)
872
873 /* The base cost overhead of a memcpy call, for MOVE_RATIO and friends. */
874 #define AARCH64_CALL_RATIO 8
875
876 /* MOVE_RATIO dictates when we will use the move_by_pieces infrastructure.
877 move_by_pieces will continually copy the largest safe chunks. So a
878 7-byte copy is a 4-byte + 2-byte + byte copy. This proves inefficient
879 for both size and speed of copy, so we will instead use the "cpymem"
880 standard name to implement the copy. This logic does not apply when
881 targeting -mstrict-align, so keep a sensible default in that case. */
882 #define MOVE_RATIO(speed) \
883 (!STRICT_ALIGNMENT ? 2 : (((speed) ? 15 : AARCH64_CALL_RATIO) / 2))
884
885 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
886 of the length of a memset call, but use the default otherwise. */
887 #define CLEAR_RATIO(speed) \
888 ((speed) ? 15 : AARCH64_CALL_RATIO)
889
890 /* SET_RATIO is similar to CLEAR_RATIO, but for a non-zero constant, so when
891 optimizing for size adjust the ratio to account for the overhead of loading
892 the constant. */
893 #define SET_RATIO(speed) \
894 ((speed) ? 15 : AARCH64_CALL_RATIO - 2)
895
896 /* Disable auto-increment in move_by_pieces et al. Use of auto-increment is
897 rarely a good idea in straight-line code since it adds an extra address
898 dependency between each instruction. Better to use incrementing offsets. */
899 #define USE_LOAD_POST_INCREMENT(MODE) 0
900 #define USE_LOAD_POST_DECREMENT(MODE) 0
901 #define USE_LOAD_PRE_INCREMENT(MODE) 0
902 #define USE_LOAD_PRE_DECREMENT(MODE) 0
903 #define USE_STORE_POST_INCREMENT(MODE) 0
904 #define USE_STORE_POST_DECREMENT(MODE) 0
905 #define USE_STORE_PRE_INCREMENT(MODE) 0
906 #define USE_STORE_PRE_DECREMENT(MODE) 0
907
908 /* WORD_REGISTER_OPERATIONS does not hold for AArch64.
909 The assigned word_mode is DImode but operations narrower than SImode
910 behave as 32-bit operations if using the W-form of the registers rather
911 than as word_mode (64-bit) operations as WORD_REGISTER_OPERATIONS
912 expects. */
913 #define WORD_REGISTER_OPERATIONS 0
914
915 /* Define if loading from memory in MODE, an integral mode narrower than
916 BITS_PER_WORD will either zero-extend or sign-extend. The value of this
917 macro should be the code that says which one of the two operations is
918 implicitly done, or UNKNOWN if none. */
919 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
920
921 /* Define this macro to be non-zero if instructions will fail to work
922 if given data not on the nominal alignment. */
923 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
924
925 /* Define this macro to be non-zero if accessing less than a word of
926 memory is no faster than accessing a word of memory, i.e., if such
927 accesses require more than one instruction or if there is no
928 difference in cost.
929 Although there's no difference in instruction count or cycles,
930 in AArch64 we don't want to expand to a sub-word to a 64-bit access
931 if we don't have to, for power-saving reasons. */
932 #define SLOW_BYTE_ACCESS 0
933
934 #define NO_FUNCTION_CSE 1
935
936 /* Specify the machine mode that the hardware addresses have.
937 After generation of rtl, the compiler makes no further distinction
938 between pointers and any other objects of this machine mode. */
939 #define Pmode DImode
940
941 /* A C expression whose value is zero if pointers that need to be extended
942 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
943 greater then zero if they are zero-extended and less then zero if the
944 ptr_extend instruction should be used. */
945 #define POINTERS_EXTEND_UNSIGNED 1
946
947 /* Mode of a function address in a call instruction (for indexing purposes). */
948 #define FUNCTION_MODE Pmode
949
950 #define SELECT_CC_MODE(OP, X, Y) aarch64_select_cc_mode (OP, X, Y)
951
952 #define REVERSIBLE_CC_MODE(MODE) 1
953
954 #define REVERSE_CONDITION(CODE, MODE) \
955 (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
956 ? reverse_condition_maybe_unordered (CODE) \
957 : reverse_condition (CODE))
958
959 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
960 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
961 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
962 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
963
964 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
965
966 #define RETURN_ADDR_RTX aarch64_return_addr
967
968 /* BTI c + 3 insns + 2 pointer-sized entries. */
969 #define TRAMPOLINE_SIZE (TARGET_ILP32 ? 24 : 32)
970
971 /* Trampolines contain dwords, so must be dword aligned. */
972 #define TRAMPOLINE_ALIGNMENT 64
973
974 /* Put trampolines in the text section so that mapping symbols work
975 correctly. */
976 #define TRAMPOLINE_SECTION text_section
977
978 /* To start with. */
979 #define BRANCH_COST(SPEED_P, PREDICTABLE_P) \
980 (aarch64_branch_cost (SPEED_P, PREDICTABLE_P))
981 \f
982
983 /* Assembly output. */
984
985 /* For now we'll make all jump tables pc-relative. */
986 #define CASE_VECTOR_PC_RELATIVE 1
987
988 #define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
989 ((min < -0x1fff0 || max > 0x1fff0) ? SImode \
990 : (min < -0x1f0 || max > 0x1f0) ? HImode \
991 : QImode)
992
993 /* Jump table alignment is explicit in ASM_OUTPUT_CASE_LABEL. */
994 #define ADDR_VEC_ALIGN(JUMPTABLE) 0
995
996 #define MCOUNT_NAME "_mcount"
997
998 #define NO_PROFILE_COUNTERS 1
999
1000 /* Emit rtl for profiling. Output assembler code to FILE
1001 to call "_mcount" for profiling a function entry. */
1002 #define PROFILE_HOOK(LABEL) \
1003 { \
1004 rtx fun, lr; \
1005 lr = get_hard_reg_initial_val (Pmode, LR_REGNUM); \
1006 fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_NAME); \
1007 emit_library_call (fun, LCT_NORMAL, VOIDmode, lr, Pmode); \
1008 }
1009
1010 /* All the work done in PROFILE_HOOK, but still required. */
1011 #define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
1012
1013 /* For some reason, the Linux headers think they know how to define
1014 these macros. They don't!!! */
1015 #undef ASM_APP_ON
1016 #undef ASM_APP_OFF
1017 #define ASM_APP_ON "\t" ASM_COMMENT_START " Start of user assembly\n"
1018 #define ASM_APP_OFF "\t" ASM_COMMENT_START " End of user assembly\n"
1019
1020 #define CONSTANT_POOL_BEFORE_FUNCTION 0
1021
1022 /* This definition should be relocated to aarch64-elf-raw.h. This macro
1023 should be undefined in aarch64-linux.h and a clear_cache pattern
1024 implmented to emit either the call to __aarch64_sync_cache_range()
1025 directly or preferably the appropriate sycall or cache clear
1026 instructions inline. */
1027 #define CLEAR_INSN_CACHE(beg, end) \
1028 extern void __aarch64_sync_cache_range (void *, void *); \
1029 __aarch64_sync_cache_range (beg, end)
1030
1031 #define SHIFT_COUNT_TRUNCATED (!TARGET_SIMD)
1032
1033 /* Choose appropriate mode for caller saves, so we do the minimum
1034 required size of load/store. */
1035 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1036 aarch64_hard_regno_caller_save_mode ((REGNO), (NREGS), (MODE))
1037
1038 #undef SWITCHABLE_TARGET
1039 #define SWITCHABLE_TARGET 1
1040
1041 /* Check TLS Descriptors mechanism is selected. */
1042 #define TARGET_TLS_DESC (aarch64_tls_dialect == TLS_DESCRIPTORS)
1043
1044 extern enum aarch64_code_model aarch64_cmodel;
1045
1046 /* When using the tiny addressing model conditional and unconditional branches
1047 can span the whole of the available address space (1MB). */
1048 #define HAS_LONG_COND_BRANCH \
1049 (aarch64_cmodel == AARCH64_CMODEL_TINY \
1050 || aarch64_cmodel == AARCH64_CMODEL_TINY_PIC)
1051
1052 #define HAS_LONG_UNCOND_BRANCH \
1053 (aarch64_cmodel == AARCH64_CMODEL_TINY \
1054 || aarch64_cmodel == AARCH64_CMODEL_TINY_PIC)
1055
1056 #define TARGET_SUPPORTS_WIDE_INT 1
1057
1058 /* Modes valid for AdvSIMD D registers, i.e. that fit in half a Q register. */
1059 #define AARCH64_VALID_SIMD_DREG_MODE(MODE) \
1060 ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
1061 || (MODE) == V2SFmode || (MODE) == V4HFmode || (MODE) == DImode \
1062 || (MODE) == DFmode)
1063
1064 /* Modes valid for AdvSIMD Q registers. */
1065 #define AARCH64_VALID_SIMD_QREG_MODE(MODE) \
1066 ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1067 || (MODE) == V4SFmode || (MODE) == V8HFmode || (MODE) == V2DImode \
1068 || (MODE) == V2DFmode)
1069
1070 #define ENDIAN_LANE_N(NUNITS, N) \
1071 (BYTES_BIG_ENDIAN ? NUNITS - 1 - N : N)
1072
1073 /* Support for a configure-time default CPU, etc. We currently support
1074 --with-arch and --with-cpu. Both are ignored if either is specified
1075 explicitly on the command line at run time. */
1076 #define OPTION_DEFAULT_SPECS \
1077 {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
1078 {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" },
1079
1080 #define MCPU_TO_MARCH_SPEC \
1081 " %{mcpu=*:-march=%:rewrite_mcpu(%{mcpu=*:%*})}"
1082
1083 extern const char *aarch64_rewrite_mcpu (int argc, const char **argv);
1084 #define MCPU_TO_MARCH_SPEC_FUNCTIONS \
1085 { "rewrite_mcpu", aarch64_rewrite_mcpu },
1086
1087 #if defined(__aarch64__)
1088 extern const char *host_detect_local_cpu (int argc, const char **argv);
1089 #define HAVE_LOCAL_CPU_DETECT
1090 # define EXTRA_SPEC_FUNCTIONS \
1091 { "local_cpu_detect", host_detect_local_cpu }, \
1092 MCPU_TO_MARCH_SPEC_FUNCTIONS
1093
1094 # define MCPU_MTUNE_NATIVE_SPECS \
1095 " %{march=native:%<march=native %:local_cpu_detect(arch)}" \
1096 " %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}" \
1097 " %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
1098 #else
1099 # define MCPU_MTUNE_NATIVE_SPECS ""
1100 # define EXTRA_SPEC_FUNCTIONS MCPU_TO_MARCH_SPEC_FUNCTIONS
1101 #endif
1102
1103 #define ASM_CPU_SPEC \
1104 MCPU_TO_MARCH_SPEC
1105
1106 #define EXTRA_SPECS \
1107 { "asm_cpu_spec", ASM_CPU_SPEC }
1108
1109 #define ASM_OUTPUT_POOL_EPILOGUE aarch64_asm_output_pool_epilogue
1110
1111 /* This type is the user-visible __fp16, and a pointer to that type. We
1112 need it in many places in the backend. Defined in aarch64-builtins.c. */
1113 extern tree aarch64_fp16_type_node;
1114 extern tree aarch64_fp16_ptr_type_node;
1115
1116 /* The generic unwind code in libgcc does not initialize the frame pointer.
1117 So in order to unwind a function using a frame pointer, the very first
1118 function that is unwound must save the frame pointer. That way the frame
1119 pointer is restored and its value is now valid - otherwise _Unwind_GetGR
1120 crashes. Libgcc can now be safely built with -fomit-frame-pointer. */
1121 #define LIBGCC2_UNWIND_ATTRIBUTE \
1122 __attribute__((optimize ("no-omit-frame-pointer")))
1123
1124 #ifndef USED_FOR_TARGET
1125 extern poly_uint16 aarch64_sve_vg;
1126
1127 /* The number of bits and bytes in an SVE vector. */
1128 #define BITS_PER_SVE_VECTOR (poly_uint16 (aarch64_sve_vg * 64))
1129 #define BYTES_PER_SVE_VECTOR (poly_uint16 (aarch64_sve_vg * 8))
1130
1131 /* The number of bytes in an SVE predicate. */
1132 #define BYTES_PER_SVE_PRED aarch64_sve_vg
1133
1134 /* The SVE mode for a vector of bytes. */
1135 #define SVE_BYTE_MODE VNx16QImode
1136
1137 /* The maximum number of bytes in a fixed-size vector. This is 256 bytes
1138 (for -msve-vector-bits=2048) multiplied by the maximum number of
1139 vectors in a structure mode (4).
1140
1141 This limit must not be used for variable-size vectors, since
1142 VL-agnostic code must work with arbitary vector lengths. */
1143 #define MAX_COMPILE_TIME_VEC_BYTES (256 * 4)
1144 #endif
1145
1146 #define REGMODE_NATURAL_SIZE(MODE) aarch64_regmode_natural_size (MODE)
1147
1148 /* Allocate a minimum of STACK_CLASH_MIN_BYTES_OUTGOING_ARGS bytes for the
1149 outgoing arguments if stack clash protection is enabled. This is essential
1150 as the extra arg space allows us to skip a check in alloca. */
1151 #undef STACK_DYNAMIC_OFFSET
1152 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1153 ((flag_stack_clash_protection \
1154 && cfun->calls_alloca \
1155 && known_lt (crtl->outgoing_args_size, \
1156 STACK_CLASH_MIN_BYTES_OUTGOING_ARGS)) \
1157 ? ROUND_UP (STACK_CLASH_MIN_BYTES_OUTGOING_ARGS, \
1158 STACK_BOUNDARY / BITS_PER_UNIT) \
1159 : (crtl->outgoing_args_size + STACK_POINTER_OFFSET))
1160
1161 #endif /* GCC_AARCH64_H */