vxlib.c: Fix comment typos.
[gcc.git] / gcc / config / alpha / alpha.c
1 /* Subroutines used for code generation on the DEC Alpha.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "real.h"
33 #include "insn-config.h"
34 #include "conditions.h"
35 #include "output.h"
36 #include "insn-attr.h"
37 #include "flags.h"
38 #include "recog.h"
39 #include "expr.h"
40 #include "optabs.h"
41 #include "reload.h"
42 #include "obstack.h"
43 #include "except.h"
44 #include "function.h"
45 #include "toplev.h"
46 #include "ggc.h"
47 #include "integrate.h"
48 #include "tm_p.h"
49 #include "target.h"
50 #include "target-def.h"
51 #include "debug.h"
52 #include "langhooks.h"
53 #include <splay-tree.h>
54 #include "cfglayout.h"
55
56 /* Specify which cpu to schedule for. */
57
58 enum processor_type alpha_cpu;
59 static const char * const alpha_cpu_name[] =
60 {
61 "ev4", "ev5", "ev6"
62 };
63
64 /* Specify how accurate floating-point traps need to be. */
65
66 enum alpha_trap_precision alpha_tp;
67
68 /* Specify the floating-point rounding mode. */
69
70 enum alpha_fp_rounding_mode alpha_fprm;
71
72 /* Specify which things cause traps. */
73
74 enum alpha_fp_trap_mode alpha_fptm;
75
76 /* Specify bit size of immediate TLS offsets. */
77
78 int alpha_tls_size = 32;
79
80 /* Strings decoded into the above options. */
81
82 const char *alpha_cpu_string; /* -mcpu= */
83 const char *alpha_tune_string; /* -mtune= */
84 const char *alpha_tp_string; /* -mtrap-precision=[p|s|i] */
85 const char *alpha_fprm_string; /* -mfp-rounding-mode=[n|m|c|d] */
86 const char *alpha_fptm_string; /* -mfp-trap-mode=[n|u|su|sui] */
87 const char *alpha_mlat_string; /* -mmemory-latency= */
88 const char *alpha_tls_size_string; /* -mtls-size=[16|32|64] */
89
90 /* Save information from a "cmpxx" operation until the branch or scc is
91 emitted. */
92
93 struct alpha_compare alpha_compare;
94
95 /* Nonzero if inside of a function, because the Alpha asm can't
96 handle .files inside of functions. */
97
98 static int inside_function = FALSE;
99
100 /* The number of cycles of latency we should assume on memory reads. */
101
102 int alpha_memory_latency = 3;
103
104 /* Whether the function needs the GP. */
105
106 static int alpha_function_needs_gp;
107
108 /* The alias set for prologue/epilogue register save/restore. */
109
110 static GTY(()) int alpha_sr_alias_set;
111
112 /* The assembler name of the current function. */
113
114 static const char *alpha_fnname;
115
116 /* The next explicit relocation sequence number. */
117 extern GTY(()) int alpha_next_sequence_number;
118 int alpha_next_sequence_number = 1;
119
120 /* The literal and gpdisp sequence numbers for this insn, as printed
121 by %# and %* respectively. */
122 extern GTY(()) int alpha_this_literal_sequence_number;
123 extern GTY(()) int alpha_this_gpdisp_sequence_number;
124 int alpha_this_literal_sequence_number;
125 int alpha_this_gpdisp_sequence_number;
126
127 /* Costs of various operations on the different architectures. */
128
129 struct alpha_rtx_cost_data
130 {
131 unsigned char fp_add;
132 unsigned char fp_mult;
133 unsigned char fp_div_sf;
134 unsigned char fp_div_df;
135 unsigned char int_mult_si;
136 unsigned char int_mult_di;
137 unsigned char int_shift;
138 unsigned char int_cmov;
139 };
140
141 static struct alpha_rtx_cost_data const alpha_rtx_cost_data[PROCESSOR_MAX] =
142 {
143 { /* EV4 */
144 COSTS_N_INSNS (6), /* fp_add */
145 COSTS_N_INSNS (6), /* fp_mult */
146 COSTS_N_INSNS (34), /* fp_div_sf */
147 COSTS_N_INSNS (63), /* fp_div_df */
148 COSTS_N_INSNS (23), /* int_mult_si */
149 COSTS_N_INSNS (23), /* int_mult_di */
150 COSTS_N_INSNS (2), /* int_shift */
151 COSTS_N_INSNS (2), /* int_cmov */
152 },
153 { /* EV5 */
154 COSTS_N_INSNS (4), /* fp_add */
155 COSTS_N_INSNS (4), /* fp_mult */
156 COSTS_N_INSNS (15), /* fp_div_sf */
157 COSTS_N_INSNS (22), /* fp_div_df */
158 COSTS_N_INSNS (8), /* int_mult_si */
159 COSTS_N_INSNS (12), /* int_mult_di */
160 COSTS_N_INSNS (1) + 1, /* int_shift */
161 COSTS_N_INSNS (1), /* int_cmov */
162 },
163 { /* EV6 */
164 COSTS_N_INSNS (4), /* fp_add */
165 COSTS_N_INSNS (4), /* fp_mult */
166 COSTS_N_INSNS (12), /* fp_div_sf */
167 COSTS_N_INSNS (15), /* fp_div_df */
168 COSTS_N_INSNS (7), /* int_mult_si */
169 COSTS_N_INSNS (7), /* int_mult_di */
170 COSTS_N_INSNS (1), /* int_shift */
171 COSTS_N_INSNS (2), /* int_cmov */
172 },
173 };
174
175 /* Get the number of args of a function in one of two ways. */
176 #if TARGET_ABI_OPEN_VMS || TARGET_ABI_UNICOSMK
177 #define NUM_ARGS current_function_args_info.num_args
178 #else
179 #define NUM_ARGS current_function_args_info
180 #endif
181
182 #define REG_PV 27
183 #define REG_RA 26
184
185 /* Declarations of static functions. */
186 static struct machine_function *alpha_init_machine_status (void);
187 static rtx alpha_emit_xfloating_compare (enum rtx_code, rtx, rtx);
188
189 #if TARGET_ABI_OPEN_VMS
190 static void alpha_write_linkage (FILE *, const char *, tree);
191 #endif
192
193 static void unicosmk_output_deferred_case_vectors (FILE *);
194 static void unicosmk_gen_dsib (unsigned long *);
195 static void unicosmk_output_ssib (FILE *, const char *);
196 static int unicosmk_need_dex (rtx);
197 \f
198 /* Parse target option strings. */
199
200 void
201 override_options (void)
202 {
203 int i;
204 static const struct cpu_table {
205 const char *const name;
206 const enum processor_type processor;
207 const int flags;
208 } cpu_table[] = {
209 #define EV5_MASK (MASK_CPU_EV5)
210 #define EV6_MASK (MASK_CPU_EV6|MASK_BWX|MASK_MAX|MASK_FIX)
211 { "ev4", PROCESSOR_EV4, 0 },
212 { "ev45", PROCESSOR_EV4, 0 },
213 { "21064", PROCESSOR_EV4, 0 },
214 { "ev5", PROCESSOR_EV5, EV5_MASK },
215 { "21164", PROCESSOR_EV5, EV5_MASK },
216 { "ev56", PROCESSOR_EV5, EV5_MASK|MASK_BWX },
217 { "21164a", PROCESSOR_EV5, EV5_MASK|MASK_BWX },
218 { "pca56", PROCESSOR_EV5, EV5_MASK|MASK_BWX|MASK_MAX },
219 { "21164PC",PROCESSOR_EV5, EV5_MASK|MASK_BWX|MASK_MAX },
220 { "21164pc",PROCESSOR_EV5, EV5_MASK|MASK_BWX|MASK_MAX },
221 { "ev6", PROCESSOR_EV6, EV6_MASK },
222 { "21264", PROCESSOR_EV6, EV6_MASK },
223 { "ev67", PROCESSOR_EV6, EV6_MASK|MASK_CIX },
224 { "21264a", PROCESSOR_EV6, EV6_MASK|MASK_CIX },
225 { 0, 0, 0 }
226 };
227
228 /* Unicos/Mk doesn't have shared libraries. */
229 if (TARGET_ABI_UNICOSMK && flag_pic)
230 {
231 warning ("-f%s ignored for Unicos/Mk (not supported)",
232 (flag_pic > 1) ? "PIC" : "pic");
233 flag_pic = 0;
234 }
235
236 /* On Unicos/Mk, the native compiler consistently generates /d suffices for
237 floating-point instructions. Make that the default for this target. */
238 if (TARGET_ABI_UNICOSMK)
239 alpha_fprm = ALPHA_FPRM_DYN;
240 else
241 alpha_fprm = ALPHA_FPRM_NORM;
242
243 alpha_tp = ALPHA_TP_PROG;
244 alpha_fptm = ALPHA_FPTM_N;
245
246 /* We cannot use su and sui qualifiers for conversion instructions on
247 Unicos/Mk. I'm not sure if this is due to assembler or hardware
248 limitations. Right now, we issue a warning if -mieee is specified
249 and then ignore it; eventually, we should either get it right or
250 disable the option altogether. */
251
252 if (TARGET_IEEE)
253 {
254 if (TARGET_ABI_UNICOSMK)
255 warning ("-mieee not supported on Unicos/Mk");
256 else
257 {
258 alpha_tp = ALPHA_TP_INSN;
259 alpha_fptm = ALPHA_FPTM_SU;
260 }
261 }
262
263 if (TARGET_IEEE_WITH_INEXACT)
264 {
265 if (TARGET_ABI_UNICOSMK)
266 warning ("-mieee-with-inexact not supported on Unicos/Mk");
267 else
268 {
269 alpha_tp = ALPHA_TP_INSN;
270 alpha_fptm = ALPHA_FPTM_SUI;
271 }
272 }
273
274 if (alpha_tp_string)
275 {
276 if (! strcmp (alpha_tp_string, "p"))
277 alpha_tp = ALPHA_TP_PROG;
278 else if (! strcmp (alpha_tp_string, "f"))
279 alpha_tp = ALPHA_TP_FUNC;
280 else if (! strcmp (alpha_tp_string, "i"))
281 alpha_tp = ALPHA_TP_INSN;
282 else
283 error ("bad value `%s' for -mtrap-precision switch", alpha_tp_string);
284 }
285
286 if (alpha_fprm_string)
287 {
288 if (! strcmp (alpha_fprm_string, "n"))
289 alpha_fprm = ALPHA_FPRM_NORM;
290 else if (! strcmp (alpha_fprm_string, "m"))
291 alpha_fprm = ALPHA_FPRM_MINF;
292 else if (! strcmp (alpha_fprm_string, "c"))
293 alpha_fprm = ALPHA_FPRM_CHOP;
294 else if (! strcmp (alpha_fprm_string,"d"))
295 alpha_fprm = ALPHA_FPRM_DYN;
296 else
297 error ("bad value `%s' for -mfp-rounding-mode switch",
298 alpha_fprm_string);
299 }
300
301 if (alpha_fptm_string)
302 {
303 if (strcmp (alpha_fptm_string, "n") == 0)
304 alpha_fptm = ALPHA_FPTM_N;
305 else if (strcmp (alpha_fptm_string, "u") == 0)
306 alpha_fptm = ALPHA_FPTM_U;
307 else if (strcmp (alpha_fptm_string, "su") == 0)
308 alpha_fptm = ALPHA_FPTM_SU;
309 else if (strcmp (alpha_fptm_string, "sui") == 0)
310 alpha_fptm = ALPHA_FPTM_SUI;
311 else
312 error ("bad value `%s' for -mfp-trap-mode switch", alpha_fptm_string);
313 }
314
315 if (alpha_tls_size_string)
316 {
317 if (strcmp (alpha_tls_size_string, "16") == 0)
318 alpha_tls_size = 16;
319 else if (strcmp (alpha_tls_size_string, "32") == 0)
320 alpha_tls_size = 32;
321 else if (strcmp (alpha_tls_size_string, "64") == 0)
322 alpha_tls_size = 64;
323 else
324 error ("bad value `%s' for -mtls-size switch", alpha_tls_size_string);
325 }
326
327 alpha_cpu
328 = TARGET_CPU_DEFAULT & MASK_CPU_EV6 ? PROCESSOR_EV6
329 : (TARGET_CPU_DEFAULT & MASK_CPU_EV5 ? PROCESSOR_EV5 : PROCESSOR_EV4);
330
331 if (alpha_cpu_string)
332 {
333 for (i = 0; cpu_table [i].name; i++)
334 if (! strcmp (alpha_cpu_string, cpu_table [i].name))
335 {
336 alpha_cpu = cpu_table [i].processor;
337 target_flags &= ~ (MASK_BWX | MASK_MAX | MASK_FIX | MASK_CIX
338 | MASK_CPU_EV5 | MASK_CPU_EV6);
339 target_flags |= cpu_table [i].flags;
340 break;
341 }
342 if (! cpu_table [i].name)
343 error ("bad value `%s' for -mcpu switch", alpha_cpu_string);
344 }
345
346 if (alpha_tune_string)
347 {
348 for (i = 0; cpu_table [i].name; i++)
349 if (! strcmp (alpha_tune_string, cpu_table [i].name))
350 {
351 alpha_cpu = cpu_table [i].processor;
352 break;
353 }
354 if (! cpu_table [i].name)
355 error ("bad value `%s' for -mcpu switch", alpha_tune_string);
356 }
357
358 /* Do some sanity checks on the above options. */
359
360 if (TARGET_ABI_UNICOSMK && alpha_fptm != ALPHA_FPTM_N)
361 {
362 warning ("trap mode not supported on Unicos/Mk");
363 alpha_fptm = ALPHA_FPTM_N;
364 }
365
366 if ((alpha_fptm == ALPHA_FPTM_SU || alpha_fptm == ALPHA_FPTM_SUI)
367 && alpha_tp != ALPHA_TP_INSN && ! TARGET_CPU_EV6)
368 {
369 warning ("fp software completion requires -mtrap-precision=i");
370 alpha_tp = ALPHA_TP_INSN;
371 }
372
373 if (TARGET_CPU_EV6)
374 {
375 /* Except for EV6 pass 1 (not released), we always have precise
376 arithmetic traps. Which means we can do software completion
377 without minding trap shadows. */
378 alpha_tp = ALPHA_TP_PROG;
379 }
380
381 if (TARGET_FLOAT_VAX)
382 {
383 if (alpha_fprm == ALPHA_FPRM_MINF || alpha_fprm == ALPHA_FPRM_DYN)
384 {
385 warning ("rounding mode not supported for VAX floats");
386 alpha_fprm = ALPHA_FPRM_NORM;
387 }
388 if (alpha_fptm == ALPHA_FPTM_SUI)
389 {
390 warning ("trap mode not supported for VAX floats");
391 alpha_fptm = ALPHA_FPTM_SU;
392 }
393 }
394
395 {
396 char *end;
397 int lat;
398
399 if (!alpha_mlat_string)
400 alpha_mlat_string = "L1";
401
402 if (ISDIGIT ((unsigned char)alpha_mlat_string[0])
403 && (lat = strtol (alpha_mlat_string, &end, 10), *end == '\0'))
404 ;
405 else if ((alpha_mlat_string[0] == 'L' || alpha_mlat_string[0] == 'l')
406 && ISDIGIT ((unsigned char)alpha_mlat_string[1])
407 && alpha_mlat_string[2] == '\0')
408 {
409 static int const cache_latency[][4] =
410 {
411 { 3, 30, -1 }, /* ev4 -- Bcache is a guess */
412 { 2, 12, 38 }, /* ev5 -- Bcache from PC164 LMbench numbers */
413 { 3, 12, 30 }, /* ev6 -- Bcache from DS20 LMbench. */
414 };
415
416 lat = alpha_mlat_string[1] - '0';
417 if (lat <= 0 || lat > 3 || cache_latency[alpha_cpu][lat-1] == -1)
418 {
419 warning ("L%d cache latency unknown for %s",
420 lat, alpha_cpu_name[alpha_cpu]);
421 lat = 3;
422 }
423 else
424 lat = cache_latency[alpha_cpu][lat-1];
425 }
426 else if (! strcmp (alpha_mlat_string, "main"))
427 {
428 /* Most current memories have about 370ns latency. This is
429 a reasonable guess for a fast cpu. */
430 lat = 150;
431 }
432 else
433 {
434 warning ("bad value `%s' for -mmemory-latency", alpha_mlat_string);
435 lat = 3;
436 }
437
438 alpha_memory_latency = lat;
439 }
440
441 /* Default the definition of "small data" to 8 bytes. */
442 if (!g_switch_set)
443 g_switch_value = 8;
444
445 /* Infer TARGET_SMALL_DATA from -fpic/-fPIC. */
446 if (flag_pic == 1)
447 target_flags |= MASK_SMALL_DATA;
448 else if (flag_pic == 2)
449 target_flags &= ~MASK_SMALL_DATA;
450
451 /* Align labels and loops for optimal branching. */
452 /* ??? Kludge these by not doing anything if we don't optimize and also if
453 we are writing ECOFF symbols to work around a bug in DEC's assembler. */
454 if (optimize > 0 && write_symbols != SDB_DEBUG)
455 {
456 if (align_loops <= 0)
457 align_loops = 16;
458 if (align_jumps <= 0)
459 align_jumps = 16;
460 }
461 if (align_functions <= 0)
462 align_functions = 16;
463
464 /* Acquire a unique set number for our register saves and restores. */
465 alpha_sr_alias_set = new_alias_set ();
466
467 /* Register variables and functions with the garbage collector. */
468
469 /* Set up function hooks. */
470 init_machine_status = alpha_init_machine_status;
471
472 /* Tell the compiler when we're using VAX floating point. */
473 if (TARGET_FLOAT_VAX)
474 {
475 REAL_MODE_FORMAT (SFmode) = &vax_f_format;
476 REAL_MODE_FORMAT (DFmode) = &vax_g_format;
477 REAL_MODE_FORMAT (TFmode) = NULL;
478 }
479 }
480 \f
481 /* Returns 1 if VALUE is a mask that contains full bytes of zero or ones. */
482
483 int
484 zap_mask (HOST_WIDE_INT value)
485 {
486 int i;
487
488 for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
489 i++, value >>= 8)
490 if ((value & 0xff) != 0 && (value & 0xff) != 0xff)
491 return 0;
492
493 return 1;
494 }
495
496 /* Returns 1 if OP is either the constant zero or a register. If a
497 register, it must be in the proper mode unless MODE is VOIDmode. */
498
499 int
500 reg_or_0_operand (rtx op, enum machine_mode mode)
501 {
502 return op == CONST0_RTX (mode) || register_operand (op, mode);
503 }
504
505 /* Return 1 if OP is a constant in the range of 0-63 (for a shift) or
506 any register. */
507
508 int
509 reg_or_6bit_operand (rtx op, enum machine_mode mode)
510 {
511 return ((GET_CODE (op) == CONST_INT
512 && (unsigned HOST_WIDE_INT) INTVAL (op) < 64)
513 || register_operand (op, mode));
514 }
515
516
517 /* Return 1 if OP is an 8-bit constant or any register. */
518
519 int
520 reg_or_8bit_operand (rtx op, enum machine_mode mode)
521 {
522 return ((GET_CODE (op) == CONST_INT
523 && (unsigned HOST_WIDE_INT) INTVAL (op) < 0x100)
524 || register_operand (op, mode));
525 }
526
527 /* Return 1 if OP is a constant or any register. */
528
529 int
530 reg_or_const_int_operand (rtx op, enum machine_mode mode)
531 {
532 return GET_CODE (op) == CONST_INT || register_operand (op, mode);
533 }
534
535 /* Return 1 if OP is an 8-bit constant. */
536
537 int
538 cint8_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
539 {
540 return ((GET_CODE (op) == CONST_INT
541 && (unsigned HOST_WIDE_INT) INTVAL (op) < 0x100));
542 }
543
544 /* Return 1 if the operand is a valid second operand to an add insn. */
545
546 int
547 add_operand (rtx op, enum machine_mode mode)
548 {
549 if (GET_CODE (op) == CONST_INT)
550 /* Constraints I, J, O and P are covered by K. */
551 return (CONST_OK_FOR_LETTER_P (INTVAL (op), 'K')
552 || CONST_OK_FOR_LETTER_P (INTVAL (op), 'L'));
553
554 return register_operand (op, mode);
555 }
556
557 /* Return 1 if the operand is a valid second operand to a sign-extending
558 add insn. */
559
560 int
561 sext_add_operand (rtx op, enum machine_mode mode)
562 {
563 if (GET_CODE (op) == CONST_INT)
564 return (CONST_OK_FOR_LETTER_P (INTVAL (op), 'I')
565 || CONST_OK_FOR_LETTER_P (INTVAL (op), 'O'));
566
567 return reg_not_elim_operand (op, mode);
568 }
569
570 /* Return 1 if OP is the constant 4 or 8. */
571
572 int
573 const48_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
574 {
575 return (GET_CODE (op) == CONST_INT
576 && (INTVAL (op) == 4 || INTVAL (op) == 8));
577 }
578
579 /* Return 1 if OP is a valid first operand to an AND insn. */
580
581 int
582 and_operand (rtx op, enum machine_mode mode)
583 {
584 if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == VOIDmode)
585 return (zap_mask (CONST_DOUBLE_LOW (op))
586 && zap_mask (CONST_DOUBLE_HIGH (op)));
587
588 if (GET_CODE (op) == CONST_INT)
589 return ((unsigned HOST_WIDE_INT) INTVAL (op) < 0x100
590 || (unsigned HOST_WIDE_INT) ~ INTVAL (op) < 0x100
591 || zap_mask (INTVAL (op)));
592
593 return register_operand (op, mode);
594 }
595
596 /* Return 1 if OP is a valid first operand to an IOR or XOR insn. */
597
598 int
599 or_operand (rtx op, enum machine_mode mode)
600 {
601 if (GET_CODE (op) == CONST_INT)
602 return ((unsigned HOST_WIDE_INT) INTVAL (op) < 0x100
603 || (unsigned HOST_WIDE_INT) ~ INTVAL (op) < 0x100);
604
605 return register_operand (op, mode);
606 }
607
608 /* Return 1 if OP is a constant that is the width, in bits, of an integral
609 mode smaller than DImode. */
610
611 int
612 mode_width_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
613 {
614 return (GET_CODE (op) == CONST_INT
615 && (INTVAL (op) == 8 || INTVAL (op) == 16
616 || INTVAL (op) == 32 || INTVAL (op) == 64));
617 }
618
619 /* Return 1 if OP is a constant that is the width of an integral machine mode
620 smaller than an integer. */
621
622 int
623 mode_mask_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
624 {
625 if (GET_CODE (op) == CONST_INT)
626 {
627 HOST_WIDE_INT value = INTVAL (op);
628
629 if (value == 0xff)
630 return 1;
631 if (value == 0xffff)
632 return 1;
633 if (value == 0xffffffff)
634 return 1;
635 if (value == -1)
636 return 1;
637 }
638 else if (HOST_BITS_PER_WIDE_INT == 32 && GET_CODE (op) == CONST_DOUBLE)
639 {
640 if (CONST_DOUBLE_LOW (op) == 0xffffffff && CONST_DOUBLE_HIGH (op) == 0)
641 return 1;
642 }
643
644 return 0;
645 }
646
647 /* Return 1 if OP is a multiple of 8 less than 64. */
648
649 int
650 mul8_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
651 {
652 return (GET_CODE (op) == CONST_INT
653 && (unsigned HOST_WIDE_INT) INTVAL (op) < 64
654 && (INTVAL (op) & 7) == 0);
655 }
656
657 /* Return 1 if OP is the zero constant for MODE. */
658
659 int
660 const0_operand (rtx op, enum machine_mode mode)
661 {
662 return op == CONST0_RTX (mode);
663 }
664
665 /* Return 1 if OP is a hard floating-point register. */
666
667 int
668 hard_fp_register_operand (rtx op, enum machine_mode mode)
669 {
670 if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
671 return 0;
672
673 if (GET_CODE (op) == SUBREG)
674 op = SUBREG_REG (op);
675 return GET_CODE (op) == REG && REGNO_REG_CLASS (REGNO (op)) == FLOAT_REGS;
676 }
677
678 /* Return 1 if OP is a hard general register. */
679
680 int
681 hard_int_register_operand (rtx op, enum machine_mode mode)
682 {
683 if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
684 return 0;
685
686 if (GET_CODE (op) == SUBREG)
687 op = SUBREG_REG (op);
688 return GET_CODE (op) == REG && REGNO_REG_CLASS (REGNO (op)) == GENERAL_REGS;
689 }
690
691 /* Return 1 if OP is a register or a constant integer. */
692
693
694 int
695 reg_or_cint_operand (rtx op, enum machine_mode mode)
696 {
697 return (GET_CODE (op) == CONST_INT
698 || register_operand (op, mode));
699 }
700
701 /* Return 1 if OP is something that can be reloaded into a register;
702 if it is a MEM, it need not be valid. */
703
704 int
705 some_operand (rtx op, enum machine_mode mode)
706 {
707 if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
708 return 0;
709
710 switch (GET_CODE (op))
711 {
712 case REG:
713 case MEM:
714 case CONST_INT:
715 case CONST_DOUBLE:
716 case CONST_VECTOR:
717 case LABEL_REF:
718 case SYMBOL_REF:
719 case CONST:
720 case HIGH:
721 return 1;
722
723 case SUBREG:
724 return some_operand (SUBREG_REG (op), VOIDmode);
725
726 default:
727 break;
728 }
729
730 return 0;
731 }
732
733 /* Likewise, but don't accept constants. */
734
735 int
736 some_ni_operand (rtx op, enum machine_mode mode)
737 {
738 if (GET_MODE (op) != mode && mode != VOIDmode)
739 return 0;
740
741 if (GET_CODE (op) == SUBREG)
742 op = SUBREG_REG (op);
743
744 return (GET_CODE (op) == REG || GET_CODE (op) == MEM);
745 }
746
747 /* Return 1 if OP is a valid operand for the source of a move insn. */
748
749 int
750 input_operand (rtx op, enum machine_mode mode)
751 {
752 if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
753 return 0;
754
755 if (GET_MODE_CLASS (mode) == MODE_FLOAT && GET_MODE (op) != mode)
756 return 0;
757
758 switch (GET_CODE (op))
759 {
760 case LABEL_REF:
761 case SYMBOL_REF:
762 case CONST:
763 if (TARGET_EXPLICIT_RELOCS)
764 {
765 /* We don't split symbolic operands into something unintelligable
766 until after reload, but we do not wish non-small, non-global
767 symbolic operands to be reconstructed from their high/lo_sum
768 form. */
769 return (small_symbolic_operand (op, mode)
770 || global_symbolic_operand (op, mode)
771 || gotdtp_symbolic_operand (op, mode)
772 || gottp_symbolic_operand (op, mode));
773 }
774
775 /* This handles both the Windows/NT and OSF cases. */
776 return mode == ptr_mode || mode == DImode;
777
778 case HIGH:
779 return (TARGET_EXPLICIT_RELOCS
780 && local_symbolic_operand (XEXP (op, 0), mode));
781
782 case REG:
783 case ADDRESSOF:
784 return 1;
785
786 case SUBREG:
787 if (register_operand (op, mode))
788 return 1;
789 /* ... fall through ... */
790 case MEM:
791 return ((TARGET_BWX || (mode != HImode && mode != QImode))
792 && general_operand (op, mode));
793
794 case CONST_DOUBLE:
795 case CONST_VECTOR:
796 return op == CONST0_RTX (mode);
797
798 case CONST_INT:
799 return mode == QImode || mode == HImode || add_operand (op, mode);
800
801 case CONSTANT_P_RTX:
802 return 1;
803
804 default:
805 break;
806 }
807
808 return 0;
809 }
810
811 /* Return 1 if OP is a SYMBOL_REF for a function known to be in this
812 file, and in the same section as the current function. */
813
814 int
815 samegp_function_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
816 {
817 if (GET_CODE (op) != SYMBOL_REF)
818 return false;
819
820 /* Easy test for recursion. */
821 if (op == XEXP (DECL_RTL (current_function_decl), 0))
822 return true;
823
824 /* Functions that are not local can be overridden, and thus may
825 not share the same gp. */
826 if (! SYMBOL_REF_LOCAL_P (op))
827 return false;
828
829 /* If -msmall-data is in effect, assume that there is only one GP
830 for the module, and so any local symbol has this property. We
831 need explicit relocations to be able to enforce this for symbols
832 not defined in this unit of translation, however. */
833 if (TARGET_EXPLICIT_RELOCS && TARGET_SMALL_DATA)
834 return true;
835
836 /* Functions that are not external are defined in this UoT,
837 and thus must share the same gp. */
838 return ! SYMBOL_REF_EXTERNAL_P (op);
839 }
840
841 /* Return 1 if OP is a SYMBOL_REF for which we can make a call via bsr. */
842
843 int
844 direct_call_operand (rtx op, enum machine_mode mode)
845 {
846 tree op_decl, cfun_sec, op_sec;
847
848 /* Must share the same GP. */
849 if (!samegp_function_operand (op, mode))
850 return false;
851
852 /* If profiling is implemented via linker tricks, we can't jump
853 to the nogp alternate entry point. Note that current_function_profile
854 would not be correct, since that doesn't indicate if the target
855 function uses profiling. */
856 /* ??? TARGET_PROFILING_NEEDS_GP isn't really the right test,
857 but is approximately correct for the OSF ABIs. Don't know
858 what to do for VMS, NT, or UMK. */
859 if (!TARGET_PROFILING_NEEDS_GP && profile_flag)
860 return false;
861
862 /* Must be a function. In some cases folks create thunks in static
863 data structures and then make calls to them. If we allow the
864 direct call, we'll get an error from the linker about !samegp reloc
865 against a symbol without a .prologue directive. */
866 if (!SYMBOL_REF_FUNCTION_P (op))
867 return false;
868
869 /* Must be "near" so that the branch is assumed to reach. With
870 -msmall-text, this is assumed true of all local symbols. Since
871 we've already checked samegp, locality is already assured. */
872 if (TARGET_SMALL_TEXT)
873 return true;
874
875 /* Otherwise, a decl is "near" if it is defined in the same section. */
876 if (flag_function_sections)
877 return false;
878
879 op_decl = SYMBOL_REF_DECL (op);
880 if (DECL_ONE_ONLY (current_function_decl)
881 || (op_decl && DECL_ONE_ONLY (op_decl)))
882 return false;
883
884 cfun_sec = DECL_SECTION_NAME (current_function_decl);
885 op_sec = op_decl ? DECL_SECTION_NAME (op_decl) : NULL;
886 return ((!cfun_sec && !op_sec)
887 || (cfun_sec && op_sec
888 && strcmp (TREE_STRING_POINTER (cfun_sec),
889 TREE_STRING_POINTER (op_sec)) == 0));
890 }
891
892 /* Return true if OP is a LABEL_REF, or SYMBOL_REF or CONST referencing
893 a (non-tls) variable known to be defined in this file. */
894
895 int
896 local_symbolic_operand (rtx op, enum machine_mode mode)
897 {
898 if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
899 return 0;
900
901 if (GET_CODE (op) == LABEL_REF)
902 return 1;
903
904 if (GET_CODE (op) == CONST
905 && GET_CODE (XEXP (op, 0)) == PLUS
906 && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT)
907 op = XEXP (XEXP (op, 0), 0);
908
909 if (GET_CODE (op) != SYMBOL_REF)
910 return 0;
911
912 return SYMBOL_REF_LOCAL_P (op) && !SYMBOL_REF_TLS_MODEL (op);
913 }
914
915 /* Return true if OP is a SYMBOL_REF or CONST referencing a variable
916 known to be defined in this file in the small data area. */
917
918 int
919 small_symbolic_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
920 {
921 if (! TARGET_SMALL_DATA)
922 return 0;
923
924 if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
925 return 0;
926
927 if (GET_CODE (op) == CONST
928 && GET_CODE (XEXP (op, 0)) == PLUS
929 && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT)
930 op = XEXP (XEXP (op, 0), 0);
931
932 if (GET_CODE (op) != SYMBOL_REF)
933 return 0;
934
935 /* ??? There's no encode_section_info equivalent for the rtl
936 constant pool, so SYMBOL_FLAG_SMALL never gets set. */
937 if (CONSTANT_POOL_ADDRESS_P (op))
938 return GET_MODE_SIZE (get_pool_mode (op)) <= g_switch_value;
939
940 return (SYMBOL_REF_LOCAL_P (op)
941 && SYMBOL_REF_SMALL_P (op)
942 && SYMBOL_REF_TLS_MODEL (op) == 0);
943 }
944
945 /* Return true if OP is a SYMBOL_REF or CONST referencing a variable
946 not known (or known not) to be defined in this file. */
947
948 int
949 global_symbolic_operand (rtx op, enum machine_mode mode)
950 {
951 if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
952 return 0;
953
954 if (GET_CODE (op) == CONST
955 && GET_CODE (XEXP (op, 0)) == PLUS
956 && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT)
957 op = XEXP (XEXP (op, 0), 0);
958
959 if (GET_CODE (op) != SYMBOL_REF)
960 return 0;
961
962 return !SYMBOL_REF_LOCAL_P (op) && !SYMBOL_REF_TLS_MODEL (op);
963 }
964
965 /* Return 1 if OP is a valid operand for the MEM of a CALL insn. */
966
967 int
968 call_operand (rtx op, enum machine_mode mode)
969 {
970 if (mode != Pmode)
971 return 0;
972
973 if (GET_CODE (op) == REG)
974 {
975 if (TARGET_ABI_OSF)
976 {
977 /* Disallow virtual registers to cope with pathological test cases
978 such as compile/930117-1.c in which the virtual reg decomposes
979 to the frame pointer. Which is a hard reg that is not $27. */
980 return (REGNO (op) == 27 || REGNO (op) > LAST_VIRTUAL_REGISTER);
981 }
982 else
983 return 1;
984 }
985 if (TARGET_ABI_UNICOSMK)
986 return 0;
987 if (GET_CODE (op) == SYMBOL_REF)
988 return 1;
989
990 return 0;
991 }
992
993 /* Returns 1 if OP is a symbolic operand, i.e. a symbol_ref or a label_ref,
994 possibly with an offset. */
995
996 int
997 symbolic_operand (rtx op, enum machine_mode mode)
998 {
999 if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
1000 return 0;
1001 if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF)
1002 return 1;
1003 if (GET_CODE (op) == CONST
1004 && GET_CODE (XEXP (op,0)) == PLUS
1005 && GET_CODE (XEXP (XEXP (op,0), 0)) == SYMBOL_REF
1006 && GET_CODE (XEXP (XEXP (op,0), 1)) == CONST_INT)
1007 return 1;
1008 return 0;
1009 }
1010
1011 /* Return true if OP is valid for a particular TLS relocation. */
1012
1013 static int
1014 tls_symbolic_operand_1 (rtx op, enum machine_mode mode, int size, int unspec)
1015 {
1016 if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
1017 return 0;
1018
1019 if (GET_CODE (op) != CONST)
1020 return 0;
1021 op = XEXP (op, 0);
1022
1023 if (GET_CODE (op) != UNSPEC || XINT (op, 1) != unspec)
1024 return 0;
1025 op = XVECEXP (op, 0, 0);
1026
1027 if (GET_CODE (op) != SYMBOL_REF)
1028 return 0;
1029
1030 if (SYMBOL_REF_LOCAL_P (op))
1031 {
1032 if (alpha_tls_size > size)
1033 return 0;
1034 }
1035 else
1036 {
1037 if (size != 64)
1038 return 0;
1039 }
1040
1041 switch (SYMBOL_REF_TLS_MODEL (op))
1042 {
1043 case TLS_MODEL_LOCAL_DYNAMIC:
1044 return unspec == UNSPEC_DTPREL;
1045 case TLS_MODEL_INITIAL_EXEC:
1046 return unspec == UNSPEC_TPREL && size == 64;
1047 case TLS_MODEL_LOCAL_EXEC:
1048 return unspec == UNSPEC_TPREL;
1049 default:
1050 abort ();
1051 }
1052 }
1053
1054 /* Return true if OP is valid for 16-bit DTP relative relocations. */
1055
1056 int
1057 dtp16_symbolic_operand (rtx op, enum machine_mode mode)
1058 {
1059 return tls_symbolic_operand_1 (op, mode, 16, UNSPEC_DTPREL);
1060 }
1061
1062 /* Return true if OP is valid for 32-bit DTP relative relocations. */
1063
1064 int
1065 dtp32_symbolic_operand (rtx op, enum machine_mode mode)
1066 {
1067 return tls_symbolic_operand_1 (op, mode, 32, UNSPEC_DTPREL);
1068 }
1069
1070 /* Return true if OP is valid for 64-bit DTP relative relocations. */
1071
1072 int
1073 gotdtp_symbolic_operand (rtx op, enum machine_mode mode)
1074 {
1075 return tls_symbolic_operand_1 (op, mode, 64, UNSPEC_DTPREL);
1076 }
1077
1078 /* Return true if OP is valid for 16-bit TP relative relocations. */
1079
1080 int
1081 tp16_symbolic_operand (rtx op, enum machine_mode mode)
1082 {
1083 return tls_symbolic_operand_1 (op, mode, 16, UNSPEC_TPREL);
1084 }
1085
1086 /* Return true if OP is valid for 32-bit TP relative relocations. */
1087
1088 int
1089 tp32_symbolic_operand (rtx op, enum machine_mode mode)
1090 {
1091 return tls_symbolic_operand_1 (op, mode, 32, UNSPEC_TPREL);
1092 }
1093
1094 /* Return true if OP is valid for 64-bit TP relative relocations. */
1095
1096 int
1097 gottp_symbolic_operand (rtx op, enum machine_mode mode)
1098 {
1099 return tls_symbolic_operand_1 (op, mode, 64, UNSPEC_TPREL);
1100 }
1101
1102 /* Return 1 if OP is a valid Alpha comparison operator. Here we know which
1103 comparisons are valid in which insn. */
1104
1105 int
1106 alpha_comparison_operator (rtx op, enum machine_mode mode)
1107 {
1108 enum rtx_code code = GET_CODE (op);
1109
1110 if (mode != GET_MODE (op) && mode != VOIDmode)
1111 return 0;
1112
1113 return (code == EQ || code == LE || code == LT
1114 || code == LEU || code == LTU);
1115 }
1116
1117 /* Return 1 if OP is a valid Alpha comparison operator against zero.
1118 Here we know which comparisons are valid in which insn. */
1119
1120 int
1121 alpha_zero_comparison_operator (rtx op, enum machine_mode mode)
1122 {
1123 enum rtx_code code = GET_CODE (op);
1124
1125 if (mode != GET_MODE (op) && mode != VOIDmode)
1126 return 0;
1127
1128 return (code == EQ || code == NE || code == LE || code == LT
1129 || code == LEU || code == LTU);
1130 }
1131
1132 /* Return 1 if OP is a valid Alpha swapped comparison operator. */
1133
1134 int
1135 alpha_swapped_comparison_operator (rtx op, enum machine_mode mode)
1136 {
1137 enum rtx_code code = GET_CODE (op);
1138
1139 if ((mode != GET_MODE (op) && mode != VOIDmode)
1140 || GET_RTX_CLASS (code) != '<')
1141 return 0;
1142
1143 code = swap_condition (code);
1144 return (code == EQ || code == LE || code == LT
1145 || code == LEU || code == LTU);
1146 }
1147
1148 /* Return 1 if OP is a signed comparison operation. */
1149
1150 int
1151 signed_comparison_operator (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1152 {
1153 enum rtx_code code = GET_CODE (op);
1154
1155 if (mode != GET_MODE (op) && mode != VOIDmode)
1156 return 0;
1157
1158 return (code == EQ || code == NE
1159 || code == LE || code == LT
1160 || code == GE || code == GT);
1161 }
1162
1163 /* Return 1 if OP is a valid Alpha floating point comparison operator.
1164 Here we know which comparisons are valid in which insn. */
1165
1166 int
1167 alpha_fp_comparison_operator (rtx op, enum machine_mode mode)
1168 {
1169 enum rtx_code code = GET_CODE (op);
1170
1171 if (mode != GET_MODE (op) && mode != VOIDmode)
1172 return 0;
1173
1174 return (code == EQ || code == LE || code == LT || code == UNORDERED);
1175 }
1176
1177 /* Return 1 if this is a divide or modulus operator. */
1178
1179 int
1180 divmod_operator (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1181 {
1182 enum rtx_code code = GET_CODE (op);
1183
1184 return (code == DIV || code == MOD || code == UDIV || code == UMOD);
1185 }
1186
1187 /* Return 1 if this is a float->int conversion operator. */
1188
1189 int
1190 fix_operator (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1191 {
1192 enum rtx_code code = GET_CODE (op);
1193
1194 return (code == FIX || code == UNSIGNED_FIX);
1195 }
1196
1197 /* Return 1 if this memory address is a known aligned register plus
1198 a constant. It must be a valid address. This means that we can do
1199 this as an aligned reference plus some offset.
1200
1201 Take into account what reload will do. */
1202
1203 int
1204 aligned_memory_operand (rtx op, enum machine_mode mode)
1205 {
1206 rtx base;
1207
1208 if (reload_in_progress)
1209 {
1210 rtx tmp = op;
1211 if (GET_CODE (tmp) == SUBREG)
1212 tmp = SUBREG_REG (tmp);
1213 if (GET_CODE (tmp) == REG
1214 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER)
1215 {
1216 op = reg_equiv_memory_loc[REGNO (tmp)];
1217 if (op == 0)
1218 return 0;
1219 }
1220 }
1221
1222 if (GET_CODE (op) != MEM
1223 || GET_MODE (op) != mode)
1224 return 0;
1225 op = XEXP (op, 0);
1226
1227 /* LEGITIMIZE_RELOAD_ADDRESS creates (plus (plus reg const_hi) const_lo)
1228 sorts of constructs. Dig for the real base register. */
1229 if (reload_in_progress
1230 && GET_CODE (op) == PLUS
1231 && GET_CODE (XEXP (op, 0)) == PLUS)
1232 base = XEXP (XEXP (op, 0), 0);
1233 else
1234 {
1235 if (! memory_address_p (mode, op))
1236 return 0;
1237 base = (GET_CODE (op) == PLUS ? XEXP (op, 0) : op);
1238 }
1239
1240 return (GET_CODE (base) == REG && REGNO_POINTER_ALIGN (REGNO (base)) >= 32);
1241 }
1242
1243 /* Similar, but return 1 if OP is a MEM which is not alignable. */
1244
1245 int
1246 unaligned_memory_operand (rtx op, enum machine_mode mode)
1247 {
1248 rtx base;
1249
1250 if (reload_in_progress)
1251 {
1252 rtx tmp = op;
1253 if (GET_CODE (tmp) == SUBREG)
1254 tmp = SUBREG_REG (tmp);
1255 if (GET_CODE (tmp) == REG
1256 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER)
1257 {
1258 op = reg_equiv_memory_loc[REGNO (tmp)];
1259 if (op == 0)
1260 return 0;
1261 }
1262 }
1263
1264 if (GET_CODE (op) != MEM
1265 || GET_MODE (op) != mode)
1266 return 0;
1267 op = XEXP (op, 0);
1268
1269 /* LEGITIMIZE_RELOAD_ADDRESS creates (plus (plus reg const_hi) const_lo)
1270 sorts of constructs. Dig for the real base register. */
1271 if (reload_in_progress
1272 && GET_CODE (op) == PLUS
1273 && GET_CODE (XEXP (op, 0)) == PLUS)
1274 base = XEXP (XEXP (op, 0), 0);
1275 else
1276 {
1277 if (! memory_address_p (mode, op))
1278 return 0;
1279 base = (GET_CODE (op) == PLUS ? XEXP (op, 0) : op);
1280 }
1281
1282 return (GET_CODE (base) == REG && REGNO_POINTER_ALIGN (REGNO (base)) < 32);
1283 }
1284
1285 /* Return 1 if OP is either a register or an unaligned memory location. */
1286
1287 int
1288 reg_or_unaligned_mem_operand (rtx op, enum machine_mode mode)
1289 {
1290 return register_operand (op, mode) || unaligned_memory_operand (op, mode);
1291 }
1292
1293 /* Return 1 if OP is any memory location. During reload a pseudo matches. */
1294
1295 int
1296 any_memory_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1297 {
1298 return (GET_CODE (op) == MEM
1299 || (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == REG)
1300 || (reload_in_progress && GET_CODE (op) == REG
1301 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1302 || (reload_in_progress && GET_CODE (op) == SUBREG
1303 && GET_CODE (SUBREG_REG (op)) == REG
1304 && REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER));
1305 }
1306
1307 /* Returns 1 if OP is not an eliminable register.
1308
1309 This exists to cure a pathological abort in the s8addq (et al) patterns,
1310
1311 long foo () { long t; bar(); return (long) &t * 26107; }
1312
1313 which run afoul of a hack in reload to cure a (presumably) similar
1314 problem with lea-type instructions on other targets. But there is
1315 one of us and many of them, so work around the problem by selectively
1316 preventing combine from making the optimization. */
1317
1318 int
1319 reg_not_elim_operand (rtx op, enum machine_mode mode)
1320 {
1321 rtx inner = op;
1322 if (GET_CODE (op) == SUBREG)
1323 inner = SUBREG_REG (op);
1324 if (inner == frame_pointer_rtx || inner == arg_pointer_rtx)
1325 return 0;
1326
1327 return register_operand (op, mode);
1328 }
1329
1330 /* Return 1 is OP is a memory location that is not a reference (using
1331 an AND) to an unaligned location. Take into account what reload
1332 will do. */
1333
1334 int
1335 normal_memory_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1336 {
1337 if (reload_in_progress)
1338 {
1339 rtx tmp = op;
1340 if (GET_CODE (tmp) == SUBREG)
1341 tmp = SUBREG_REG (tmp);
1342 if (GET_CODE (tmp) == REG
1343 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER)
1344 {
1345 op = reg_equiv_memory_loc[REGNO (tmp)];
1346
1347 /* This may not have been assigned an equivalent address if it will
1348 be eliminated. In that case, it doesn't matter what we do. */
1349 if (op == 0)
1350 return 1;
1351 }
1352 }
1353
1354 return GET_CODE (op) == MEM && GET_CODE (XEXP (op, 0)) != AND;
1355 }
1356
1357 /* Accept a register, but not a subreg of any kind. This allows us to
1358 avoid pathological cases in reload wrt data movement common in
1359 int->fp conversion. */
1360
1361 int
1362 reg_no_subreg_operand (rtx op, enum machine_mode mode)
1363 {
1364 if (GET_CODE (op) != REG)
1365 return 0;
1366 return register_operand (op, mode);
1367 }
1368
1369 /* Recognize an addition operation that includes a constant. Used to
1370 convince reload to canonize (plus (plus reg c1) c2) during register
1371 elimination. */
1372
1373 int
1374 addition_operation (rtx op, enum machine_mode mode)
1375 {
1376 if (GET_MODE (op) != mode && mode != VOIDmode)
1377 return 0;
1378 if (GET_CODE (op) == PLUS
1379 && register_operand (XEXP (op, 0), mode)
1380 && GET_CODE (XEXP (op, 1)) == CONST_INT
1381 && CONST_OK_FOR_LETTER_P (INTVAL (XEXP (op, 1)), 'K'))
1382 return 1;
1383 return 0;
1384 }
1385
1386 /* Implements CONST_OK_FOR_LETTER_P. Return true if the value matches
1387 the range defined for C in [I-P]. */
1388
1389 bool
1390 alpha_const_ok_for_letter_p (HOST_WIDE_INT value, int c)
1391 {
1392 switch (c)
1393 {
1394 case 'I':
1395 /* An unsigned 8 bit constant. */
1396 return (unsigned HOST_WIDE_INT) value < 0x100;
1397 case 'J':
1398 /* The constant zero. */
1399 return value == 0;
1400 case 'K':
1401 /* A signed 16 bit constant. */
1402 return (unsigned HOST_WIDE_INT) (value + 0x8000) < 0x10000;
1403 case 'L':
1404 /* A shifted signed 16 bit constant appropriate for LDAH. */
1405 return ((value & 0xffff) == 0
1406 && ((value) >> 31 == -1 || value >> 31 == 0));
1407 case 'M':
1408 /* A constant that can be AND'ed with using a ZAP insn. */
1409 return zap_mask (value);
1410 case 'N':
1411 /* A complemented unsigned 8 bit constant. */
1412 return (unsigned HOST_WIDE_INT) (~ value) < 0x100;
1413 case 'O':
1414 /* A negated unsigned 8 bit constant. */
1415 return (unsigned HOST_WIDE_INT) (- value) < 0x100;
1416 case 'P':
1417 /* The constant 1, 2 or 3. */
1418 return value == 1 || value == 2 || value == 3;
1419
1420 default:
1421 return false;
1422 }
1423 }
1424
1425 /* Implements CONST_DOUBLE_OK_FOR_LETTER_P. Return true if VALUE
1426 matches for C in [GH]. */
1427
1428 bool
1429 alpha_const_double_ok_for_letter_p (rtx value, int c)
1430 {
1431 switch (c)
1432 {
1433 case 'G':
1434 /* The floating point zero constant. */
1435 return (GET_MODE_CLASS (GET_MODE (value)) == MODE_FLOAT
1436 && value == CONST0_RTX (GET_MODE (value)));
1437
1438 case 'H':
1439 /* A valid operand of a ZAP insn. */
1440 return (GET_MODE (value) == VOIDmode
1441 && zap_mask (CONST_DOUBLE_LOW (value))
1442 && zap_mask (CONST_DOUBLE_HIGH (value)));
1443
1444 default:
1445 return false;
1446 }
1447 }
1448
1449 /* Implements CONST_DOUBLE_OK_FOR_LETTER_P. Return true if VALUE
1450 matches for C. */
1451
1452 bool
1453 alpha_extra_constraint (rtx value, int c)
1454 {
1455 switch (c)
1456 {
1457 case 'Q':
1458 return normal_memory_operand (value, VOIDmode);
1459 case 'R':
1460 return direct_call_operand (value, Pmode);
1461 case 'S':
1462 return (GET_CODE (value) == CONST_INT
1463 && (unsigned HOST_WIDE_INT) INTVAL (value) < 64);
1464 case 'T':
1465 return GET_CODE (value) == HIGH;
1466 case 'U':
1467 return TARGET_ABI_UNICOSMK && symbolic_operand (value, VOIDmode);
1468 case 'W':
1469 return (GET_CODE (value) == CONST_VECTOR
1470 && value == CONST0_RTX (GET_MODE (value)));
1471 default:
1472 return false;
1473 }
1474 }
1475
1476 /* Return 1 if this function can directly return via $26. */
1477
1478 int
1479 direct_return (void)
1480 {
1481 return (! TARGET_ABI_OPEN_VMS && ! TARGET_ABI_UNICOSMK
1482 && reload_completed
1483 && alpha_sa_size () == 0
1484 && get_frame_size () == 0
1485 && current_function_outgoing_args_size == 0
1486 && current_function_pretend_args_size == 0);
1487 }
1488
1489 /* Return the ADDR_VEC associated with a tablejump insn. */
1490
1491 rtx
1492 alpha_tablejump_addr_vec (rtx insn)
1493 {
1494 rtx tmp;
1495
1496 tmp = JUMP_LABEL (insn);
1497 if (!tmp)
1498 return NULL_RTX;
1499 tmp = NEXT_INSN (tmp);
1500 if (!tmp)
1501 return NULL_RTX;
1502 if (GET_CODE (tmp) == JUMP_INSN
1503 && GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC)
1504 return PATTERN (tmp);
1505 return NULL_RTX;
1506 }
1507
1508 /* Return the label of the predicted edge, or CONST0_RTX if we don't know. */
1509
1510 rtx
1511 alpha_tablejump_best_label (rtx insn)
1512 {
1513 rtx jump_table = alpha_tablejump_addr_vec (insn);
1514 rtx best_label = NULL_RTX;
1515
1516 /* ??? Once the CFG doesn't keep getting completely rebuilt, look
1517 there for edge frequency counts from profile data. */
1518
1519 if (jump_table)
1520 {
1521 int n_labels = XVECLEN (jump_table, 1);
1522 int best_count = -1;
1523 int i, j;
1524
1525 for (i = 0; i < n_labels; i++)
1526 {
1527 int count = 1;
1528
1529 for (j = i + 1; j < n_labels; j++)
1530 if (XEXP (XVECEXP (jump_table, 1, i), 0)
1531 == XEXP (XVECEXP (jump_table, 1, j), 0))
1532 count++;
1533
1534 if (count > best_count)
1535 best_count = count, best_label = XVECEXP (jump_table, 1, i);
1536 }
1537 }
1538
1539 return best_label ? best_label : const0_rtx;
1540 }
1541
1542 /* Return the TLS model to use for SYMBOL. */
1543
1544 static enum tls_model
1545 tls_symbolic_operand_type (rtx symbol)
1546 {
1547 enum tls_model model;
1548
1549 if (GET_CODE (symbol) != SYMBOL_REF)
1550 return 0;
1551 model = SYMBOL_REF_TLS_MODEL (symbol);
1552
1553 /* Local-exec with a 64-bit size is the same code as initial-exec. */
1554 if (model == TLS_MODEL_LOCAL_EXEC && alpha_tls_size == 64)
1555 model = TLS_MODEL_INITIAL_EXEC;
1556
1557 return model;
1558 }
1559 \f
1560 /* Return true if the function DECL will share the same GP as any
1561 function in the current unit of translation. */
1562
1563 static bool
1564 decl_has_samegp (tree decl)
1565 {
1566 /* Functions that are not local can be overridden, and thus may
1567 not share the same gp. */
1568 if (!(*targetm.binds_local_p) (decl))
1569 return false;
1570
1571 /* If -msmall-data is in effect, assume that there is only one GP
1572 for the module, and so any local symbol has this property. We
1573 need explicit relocations to be able to enforce this for symbols
1574 not defined in this unit of translation, however. */
1575 if (TARGET_EXPLICIT_RELOCS && TARGET_SMALL_DATA)
1576 return true;
1577
1578 /* Functions that are not external are defined in this UoT. */
1579 /* ??? Irritatingly, static functions not yet emitted are still
1580 marked "external". Apply this to non-static functions only. */
1581 return !TREE_PUBLIC (decl) || !DECL_EXTERNAL (decl);
1582 }
1583
1584 /* Return true if EXP should be placed in the small data section. */
1585
1586 static bool
1587 alpha_in_small_data_p (tree exp)
1588 {
1589 /* We want to merge strings, so we never consider them small data. */
1590 if (TREE_CODE (exp) == STRING_CST)
1591 return false;
1592
1593 if (TREE_CODE (exp) == VAR_DECL && DECL_SECTION_NAME (exp))
1594 {
1595 const char *section = TREE_STRING_POINTER (DECL_SECTION_NAME (exp));
1596 if (strcmp (section, ".sdata") == 0
1597 || strcmp (section, ".sbss") == 0)
1598 return true;
1599 }
1600 else
1601 {
1602 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
1603
1604 /* If this is an incomplete type with size 0, then we can't put it
1605 in sdata because it might be too big when completed. */
1606 if (size > 0 && (unsigned HOST_WIDE_INT) size <= g_switch_value)
1607 return true;
1608 }
1609
1610 return false;
1611 }
1612
1613 #if TARGET_ABI_OPEN_VMS
1614 static bool
1615 alpha_linkage_symbol_p (const char *symname)
1616 {
1617 int symlen = strlen (symname);
1618
1619 if (symlen > 4)
1620 return strcmp (&symname [symlen - 4], "..lk") == 0;
1621
1622 return false;
1623 }
1624
1625 #define LINKAGE_SYMBOL_REF_P(X) \
1626 ((GET_CODE (X) == SYMBOL_REF \
1627 && alpha_linkage_symbol_p (XSTR (X, 0))) \
1628 || (GET_CODE (X) == CONST \
1629 && GET_CODE (XEXP (X, 0)) == PLUS \
1630 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
1631 && alpha_linkage_symbol_p (XSTR (XEXP (XEXP (X, 0), 0), 0))))
1632 #endif
1633
1634 /* legitimate_address_p recognizes an RTL expression that is a valid
1635 memory address for an instruction. The MODE argument is the
1636 machine mode for the MEM expression that wants to use this address.
1637
1638 For Alpha, we have either a constant address or the sum of a
1639 register and a constant address, or just a register. For DImode,
1640 any of those forms can be surrounded with an AND that clear the
1641 low-order three bits; this is an "unaligned" access. */
1642
1643 bool
1644 alpha_legitimate_address_p (enum machine_mode mode, rtx x, int strict)
1645 {
1646 /* If this is an ldq_u type address, discard the outer AND. */
1647 if (mode == DImode
1648 && GET_CODE (x) == AND
1649 && GET_CODE (XEXP (x, 1)) == CONST_INT
1650 && INTVAL (XEXP (x, 1)) == -8)
1651 x = XEXP (x, 0);
1652
1653 /* Discard non-paradoxical subregs. */
1654 if (GET_CODE (x) == SUBREG
1655 && (GET_MODE_SIZE (GET_MODE (x))
1656 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
1657 x = SUBREG_REG (x);
1658
1659 /* Unadorned general registers are valid. */
1660 if (REG_P (x)
1661 && (strict
1662 ? STRICT_REG_OK_FOR_BASE_P (x)
1663 : NONSTRICT_REG_OK_FOR_BASE_P (x)))
1664 return true;
1665
1666 /* Constant addresses (i.e. +/- 32k) are valid. */
1667 if (CONSTANT_ADDRESS_P (x))
1668 return true;
1669
1670 #if TARGET_ABI_OPEN_VMS
1671 if (LINKAGE_SYMBOL_REF_P (x))
1672 return true;
1673 #endif
1674
1675 /* Register plus a small constant offset is valid. */
1676 if (GET_CODE (x) == PLUS)
1677 {
1678 rtx ofs = XEXP (x, 1);
1679 x = XEXP (x, 0);
1680
1681 /* Discard non-paradoxical subregs. */
1682 if (GET_CODE (x) == SUBREG
1683 && (GET_MODE_SIZE (GET_MODE (x))
1684 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
1685 x = SUBREG_REG (x);
1686
1687 if (REG_P (x))
1688 {
1689 if (! strict
1690 && NONSTRICT_REG_OK_FP_BASE_P (x)
1691 && GET_CODE (ofs) == CONST_INT)
1692 return true;
1693 if ((strict
1694 ? STRICT_REG_OK_FOR_BASE_P (x)
1695 : NONSTRICT_REG_OK_FOR_BASE_P (x))
1696 && CONSTANT_ADDRESS_P (ofs))
1697 return true;
1698 }
1699 else if (GET_CODE (x) == ADDRESSOF
1700 && GET_CODE (ofs) == CONST_INT)
1701 return true;
1702 }
1703
1704 /* If we're managing explicit relocations, LO_SUM is valid, as
1705 are small data symbols. */
1706 else if (TARGET_EXPLICIT_RELOCS)
1707 {
1708 if (small_symbolic_operand (x, Pmode))
1709 return true;
1710
1711 if (GET_CODE (x) == LO_SUM)
1712 {
1713 rtx ofs = XEXP (x, 1);
1714 x = XEXP (x, 0);
1715
1716 /* Discard non-paradoxical subregs. */
1717 if (GET_CODE (x) == SUBREG
1718 && (GET_MODE_SIZE (GET_MODE (x))
1719 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
1720 x = SUBREG_REG (x);
1721
1722 /* Must have a valid base register. */
1723 if (! (REG_P (x)
1724 && (strict
1725 ? STRICT_REG_OK_FOR_BASE_P (x)
1726 : NONSTRICT_REG_OK_FOR_BASE_P (x))))
1727 return false;
1728
1729 /* The symbol must be local. */
1730 if (local_symbolic_operand (ofs, Pmode)
1731 || dtp32_symbolic_operand (ofs, Pmode)
1732 || tp32_symbolic_operand (ofs, Pmode))
1733 return true;
1734 }
1735 }
1736
1737 return false;
1738 }
1739
1740 /* Build the SYMBOL_REF for __tls_get_addr. */
1741
1742 static GTY(()) rtx tls_get_addr_libfunc;
1743
1744 static rtx
1745 get_tls_get_addr (void)
1746 {
1747 if (!tls_get_addr_libfunc)
1748 tls_get_addr_libfunc = init_one_libfunc ("__tls_get_addr");
1749 return tls_get_addr_libfunc;
1750 }
1751
1752 /* Try machine-dependent ways of modifying an illegitimate address
1753 to be legitimate. If we find one, return the new, valid address. */
1754
1755 rtx
1756 alpha_legitimize_address (rtx x, rtx scratch,
1757 enum machine_mode mode ATTRIBUTE_UNUSED)
1758 {
1759 HOST_WIDE_INT addend;
1760
1761 /* If the address is (plus reg const_int) and the CONST_INT is not a
1762 valid offset, compute the high part of the constant and add it to
1763 the register. Then our address is (plus temp low-part-const). */
1764 if (GET_CODE (x) == PLUS
1765 && GET_CODE (XEXP (x, 0)) == REG
1766 && GET_CODE (XEXP (x, 1)) == CONST_INT
1767 && ! CONSTANT_ADDRESS_P (XEXP (x, 1)))
1768 {
1769 addend = INTVAL (XEXP (x, 1));
1770 x = XEXP (x, 0);
1771 goto split_addend;
1772 }
1773
1774 /* If the address is (const (plus FOO const_int)), find the low-order
1775 part of the CONST_INT. Then load FOO plus any high-order part of the
1776 CONST_INT into a register. Our address is (plus reg low-part-const).
1777 This is done to reduce the number of GOT entries. */
1778 if (!no_new_pseudos
1779 && GET_CODE (x) == CONST
1780 && GET_CODE (XEXP (x, 0)) == PLUS
1781 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
1782 {
1783 addend = INTVAL (XEXP (XEXP (x, 0), 1));
1784 x = force_reg (Pmode, XEXP (XEXP (x, 0), 0));
1785 goto split_addend;
1786 }
1787
1788 /* If we have a (plus reg const), emit the load as in (2), then add
1789 the two registers, and finally generate (plus reg low-part-const) as
1790 our address. */
1791 if (!no_new_pseudos
1792 && GET_CODE (x) == PLUS
1793 && GET_CODE (XEXP (x, 0)) == REG
1794 && GET_CODE (XEXP (x, 1)) == CONST
1795 && GET_CODE (XEXP (XEXP (x, 1), 0)) == PLUS
1796 && GET_CODE (XEXP (XEXP (XEXP (x, 1), 0), 1)) == CONST_INT)
1797 {
1798 addend = INTVAL (XEXP (XEXP (XEXP (x, 1), 0), 1));
1799 x = expand_simple_binop (Pmode, PLUS, XEXP (x, 0),
1800 XEXP (XEXP (XEXP (x, 1), 0), 0),
1801 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1802 goto split_addend;
1803 }
1804
1805 /* If this is a local symbol, split the address into HIGH/LO_SUM parts. */
1806 if (TARGET_EXPLICIT_RELOCS && symbolic_operand (x, Pmode))
1807 {
1808 rtx r0, r16, eqv, tga, tp, insn, dest, seq;
1809
1810 switch (tls_symbolic_operand_type (x))
1811 {
1812 case TLS_MODEL_GLOBAL_DYNAMIC:
1813 start_sequence ();
1814
1815 r0 = gen_rtx_REG (Pmode, 0);
1816 r16 = gen_rtx_REG (Pmode, 16);
1817 tga = get_tls_get_addr ();
1818 dest = gen_reg_rtx (Pmode);
1819 seq = GEN_INT (alpha_next_sequence_number++);
1820
1821 emit_insn (gen_movdi_er_tlsgd (r16, pic_offset_table_rtx, x, seq));
1822 insn = gen_call_value_osf_tlsgd (r0, tga, seq);
1823 insn = emit_call_insn (insn);
1824 CONST_OR_PURE_CALL_P (insn) = 1;
1825 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), r16);
1826
1827 insn = get_insns ();
1828 end_sequence ();
1829
1830 emit_libcall_block (insn, dest, r0, x);
1831 return dest;
1832
1833 case TLS_MODEL_LOCAL_DYNAMIC:
1834 start_sequence ();
1835
1836 r0 = gen_rtx_REG (Pmode, 0);
1837 r16 = gen_rtx_REG (Pmode, 16);
1838 tga = get_tls_get_addr ();
1839 scratch = gen_reg_rtx (Pmode);
1840 seq = GEN_INT (alpha_next_sequence_number++);
1841
1842 emit_insn (gen_movdi_er_tlsldm (r16, pic_offset_table_rtx, seq));
1843 insn = gen_call_value_osf_tlsldm (r0, tga, seq);
1844 insn = emit_call_insn (insn);
1845 CONST_OR_PURE_CALL_P (insn) = 1;
1846 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), r16);
1847
1848 insn = get_insns ();
1849 end_sequence ();
1850
1851 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
1852 UNSPEC_TLSLDM_CALL);
1853 emit_libcall_block (insn, scratch, r0, eqv);
1854
1855 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_DTPREL);
1856 eqv = gen_rtx_CONST (Pmode, eqv);
1857
1858 if (alpha_tls_size == 64)
1859 {
1860 dest = gen_reg_rtx (Pmode);
1861 emit_insn (gen_rtx_SET (VOIDmode, dest, eqv));
1862 emit_insn (gen_adddi3 (dest, dest, scratch));
1863 return dest;
1864 }
1865 if (alpha_tls_size == 32)
1866 {
1867 insn = gen_rtx_HIGH (Pmode, eqv);
1868 insn = gen_rtx_PLUS (Pmode, scratch, insn);
1869 scratch = gen_reg_rtx (Pmode);
1870 emit_insn (gen_rtx_SET (VOIDmode, scratch, insn));
1871 }
1872 return gen_rtx_LO_SUM (Pmode, scratch, eqv);
1873
1874 case TLS_MODEL_INITIAL_EXEC:
1875 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_TPREL);
1876 eqv = gen_rtx_CONST (Pmode, eqv);
1877 tp = gen_reg_rtx (Pmode);
1878 scratch = gen_reg_rtx (Pmode);
1879 dest = gen_reg_rtx (Pmode);
1880
1881 emit_insn (gen_load_tp (tp));
1882 emit_insn (gen_rtx_SET (VOIDmode, scratch, eqv));
1883 emit_insn (gen_adddi3 (dest, tp, scratch));
1884 return dest;
1885
1886 case TLS_MODEL_LOCAL_EXEC:
1887 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_TPREL);
1888 eqv = gen_rtx_CONST (Pmode, eqv);
1889 tp = gen_reg_rtx (Pmode);
1890
1891 emit_insn (gen_load_tp (tp));
1892 if (alpha_tls_size == 32)
1893 {
1894 insn = gen_rtx_HIGH (Pmode, eqv);
1895 insn = gen_rtx_PLUS (Pmode, tp, insn);
1896 tp = gen_reg_rtx (Pmode);
1897 emit_insn (gen_rtx_SET (VOIDmode, tp, insn));
1898 }
1899 return gen_rtx_LO_SUM (Pmode, tp, eqv);
1900 }
1901
1902 if (local_symbolic_operand (x, Pmode))
1903 {
1904 if (small_symbolic_operand (x, Pmode))
1905 return x;
1906 else
1907 {
1908 if (!no_new_pseudos)
1909 scratch = gen_reg_rtx (Pmode);
1910 emit_insn (gen_rtx_SET (VOIDmode, scratch,
1911 gen_rtx_HIGH (Pmode, x)));
1912 return gen_rtx_LO_SUM (Pmode, scratch, x);
1913 }
1914 }
1915 }
1916
1917 return NULL;
1918
1919 split_addend:
1920 {
1921 HOST_WIDE_INT low, high;
1922
1923 low = ((addend & 0xffff) ^ 0x8000) - 0x8000;
1924 addend -= low;
1925 high = ((addend & 0xffffffff) ^ 0x80000000) - 0x80000000;
1926 addend -= high;
1927
1928 if (addend)
1929 x = expand_simple_binop (Pmode, PLUS, x, GEN_INT (addend),
1930 (no_new_pseudos ? scratch : NULL_RTX),
1931 1, OPTAB_LIB_WIDEN);
1932 if (high)
1933 x = expand_simple_binop (Pmode, PLUS, x, GEN_INT (high),
1934 (no_new_pseudos ? scratch : NULL_RTX),
1935 1, OPTAB_LIB_WIDEN);
1936
1937 return plus_constant (x, low);
1938 }
1939 }
1940
1941 /* We do not allow indirect calls to be optimized into sibling calls, nor
1942 can we allow a call to a function with a different GP to be optimized
1943 into a sibcall. */
1944
1945 static bool
1946 alpha_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
1947 {
1948 /* Can't do indirect tail calls, since we don't know if the target
1949 uses the same GP. */
1950 if (!decl)
1951 return false;
1952
1953 /* Otherwise, we can make a tail call if the target function shares
1954 the same GP. */
1955 return decl_has_samegp (decl);
1956 }
1957
1958 /* For TARGET_EXPLICIT_RELOCS, we don't obfuscate a SYMBOL_REF to a
1959 small symbolic operand until after reload. At which point we need
1960 to replace (mem (symbol_ref)) with (mem (lo_sum $29 symbol_ref))
1961 so that sched2 has the proper dependency information. */
1962
1963 static int
1964 some_small_symbolic_operand_1 (rtx *px, void *data ATTRIBUTE_UNUSED)
1965 {
1966 rtx x = *px;
1967
1968 /* Don't re-split. */
1969 if (GET_CODE (x) == LO_SUM)
1970 return -1;
1971
1972 return small_symbolic_operand (x, Pmode) != 0;
1973 }
1974
1975 int
1976 some_small_symbolic_operand (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
1977 {
1978 return for_each_rtx (&x, some_small_symbolic_operand_1, NULL);
1979 }
1980
1981 static int
1982 split_small_symbolic_operand_1 (rtx *px, void *data ATTRIBUTE_UNUSED)
1983 {
1984 rtx x = *px;
1985
1986 /* Don't re-split. */
1987 if (GET_CODE (x) == LO_SUM)
1988 return -1;
1989
1990 if (small_symbolic_operand (x, Pmode))
1991 {
1992 x = gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, x);
1993 *px = x;
1994 return -1;
1995 }
1996
1997 return 0;
1998 }
1999
2000 rtx
2001 split_small_symbolic_operand (rtx x)
2002 {
2003 x = copy_insn (x);
2004 for_each_rtx (&x, split_small_symbolic_operand_1, NULL);
2005 return x;
2006 }
2007
2008 /* Indicate that INSN cannot be duplicated. This is true for any insn
2009 that we've marked with gpdisp relocs, since those have to stay in
2010 1-1 correspondence with one another.
2011
2012 Technically we could copy them if we could set up a mapping from one
2013 sequence number to another, across the set of insns to be duplicated.
2014 This seems overly complicated and error-prone since interblock motion
2015 from sched-ebb could move one of the pair of insns to a different block.
2016
2017 Also cannot allow jsr insns to be duplicated. If they throw exceptions,
2018 then they'll be in a different block from their ldgp. Which could lead
2019 the bb reorder code to think that it would be ok to copy just the block
2020 containing the call and branch to the block containing the ldgp. */
2021
2022 static bool
2023 alpha_cannot_copy_insn_p (rtx insn)
2024 {
2025 if (!reload_completed || !TARGET_EXPLICIT_RELOCS)
2026 return false;
2027 if (recog_memoized (insn) >= 0)
2028 return get_attr_cannot_copy (insn);
2029 else
2030 return false;
2031 }
2032
2033
2034 /* Try a machine-dependent way of reloading an illegitimate address
2035 operand. If we find one, push the reload and return the new rtx. */
2036
2037 rtx
2038 alpha_legitimize_reload_address (rtx x,
2039 enum machine_mode mode ATTRIBUTE_UNUSED,
2040 int opnum, int type,
2041 int ind_levels ATTRIBUTE_UNUSED)
2042 {
2043 /* We must recognize output that we have already generated ourselves. */
2044 if (GET_CODE (x) == PLUS
2045 && GET_CODE (XEXP (x, 0)) == PLUS
2046 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
2047 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2048 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2049 {
2050 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
2051 BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
2052 opnum, type);
2053 return x;
2054 }
2055
2056 /* We wish to handle large displacements off a base register by
2057 splitting the addend across an ldah and the mem insn. This
2058 cuts number of extra insns needed from 3 to 1. */
2059 if (GET_CODE (x) == PLUS
2060 && GET_CODE (XEXP (x, 0)) == REG
2061 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2062 && REGNO_OK_FOR_BASE_P (REGNO (XEXP (x, 0)))
2063 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2064 {
2065 HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
2066 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000;
2067 HOST_WIDE_INT high
2068 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000;
2069
2070 /* Check for 32-bit overflow. */
2071 if (high + low != val)
2072 return NULL_RTX;
2073
2074 /* Reload the high part into a base reg; leave the low part
2075 in the mem directly. */
2076 x = gen_rtx_PLUS (GET_MODE (x),
2077 gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
2078 GEN_INT (high)),
2079 GEN_INT (low));
2080
2081 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
2082 BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
2083 opnum, type);
2084 return x;
2085 }
2086
2087 return NULL_RTX;
2088 }
2089 \f
2090 /* Compute a (partial) cost for rtx X. Return true if the complete
2091 cost has been computed, and false if subexpressions should be
2092 scanned. In either case, *TOTAL contains the cost result. */
2093
2094 static bool
2095 alpha_rtx_costs (rtx x, int code, int outer_code, int *total)
2096 {
2097 enum machine_mode mode = GET_MODE (x);
2098 bool float_mode_p = FLOAT_MODE_P (mode);
2099
2100 switch (code)
2101 {
2102 /* If this is an 8-bit constant, return zero since it can be used
2103 nearly anywhere with no cost. If it is a valid operand for an
2104 ADD or AND, likewise return 0 if we know it will be used in that
2105 context. Otherwise, return 2 since it might be used there later.
2106 All other constants take at least two insns. */
2107 case CONST_INT:
2108 if (INTVAL (x) >= 0 && INTVAL (x) < 256)
2109 {
2110 *total = 0;
2111 return true;
2112 }
2113 /* FALLTHRU */
2114
2115 case CONST_DOUBLE:
2116 if (x == CONST0_RTX (mode))
2117 *total = 0;
2118 else if ((outer_code == PLUS && add_operand (x, VOIDmode))
2119 || (outer_code == AND && and_operand (x, VOIDmode)))
2120 *total = 0;
2121 else if (add_operand (x, VOIDmode) || and_operand (x, VOIDmode))
2122 *total = 2;
2123 else
2124 *total = COSTS_N_INSNS (2);
2125 return true;
2126
2127 case CONST:
2128 case SYMBOL_REF:
2129 case LABEL_REF:
2130 if (TARGET_EXPLICIT_RELOCS && small_symbolic_operand (x, VOIDmode))
2131 *total = COSTS_N_INSNS (outer_code != MEM);
2132 else if (TARGET_EXPLICIT_RELOCS && local_symbolic_operand (x, VOIDmode))
2133 *total = COSTS_N_INSNS (1 + (outer_code != MEM));
2134 else if (tls_symbolic_operand_type (x))
2135 /* Estimate of cost for call_pal rduniq. */
2136 *total = COSTS_N_INSNS (15);
2137 else
2138 /* Otherwise we do a load from the GOT. */
2139 *total = COSTS_N_INSNS (alpha_memory_latency);
2140 return true;
2141
2142 case PLUS:
2143 case MINUS:
2144 if (float_mode_p)
2145 *total = alpha_rtx_cost_data[alpha_cpu].fp_add;
2146 else if (GET_CODE (XEXP (x, 0)) == MULT
2147 && const48_operand (XEXP (XEXP (x, 0), 1), VOIDmode))
2148 {
2149 *total = (rtx_cost (XEXP (XEXP (x, 0), 0), outer_code)
2150 + rtx_cost (XEXP (x, 1), outer_code) + 2);
2151 return true;
2152 }
2153 return false;
2154
2155 case MULT:
2156 if (float_mode_p)
2157 *total = alpha_rtx_cost_data[alpha_cpu].fp_mult;
2158 else if (mode == DImode)
2159 *total = alpha_rtx_cost_data[alpha_cpu].int_mult_di;
2160 else
2161 *total = alpha_rtx_cost_data[alpha_cpu].int_mult_si;
2162 return false;
2163
2164 case ASHIFT:
2165 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2166 && INTVAL (XEXP (x, 1)) <= 3)
2167 {
2168 *total = COSTS_N_INSNS (1);
2169 return false;
2170 }
2171 /* FALLTHRU */
2172
2173 case ASHIFTRT:
2174 case LSHIFTRT:
2175 *total = alpha_rtx_cost_data[alpha_cpu].int_shift;
2176 return false;
2177
2178 case IF_THEN_ELSE:
2179 if (float_mode_p)
2180 *total = alpha_rtx_cost_data[alpha_cpu].fp_add;
2181 else
2182 *total = alpha_rtx_cost_data[alpha_cpu].int_cmov;
2183 return false;
2184
2185 case DIV:
2186 case UDIV:
2187 case MOD:
2188 case UMOD:
2189 if (!float_mode_p)
2190 *total = COSTS_N_INSNS (70); /* ??? */
2191 else if (mode == SFmode)
2192 *total = alpha_rtx_cost_data[alpha_cpu].fp_div_sf;
2193 else
2194 *total = alpha_rtx_cost_data[alpha_cpu].fp_div_df;
2195 return false;
2196
2197 case MEM:
2198 *total = COSTS_N_INSNS (alpha_memory_latency);
2199 return true;
2200
2201 case NEG:
2202 if (! float_mode_p)
2203 {
2204 *total = COSTS_N_INSNS (1);
2205 return false;
2206 }
2207 /* FALLTHRU */
2208
2209 case ABS:
2210 if (! float_mode_p)
2211 {
2212 *total = COSTS_N_INSNS (1) + alpha_rtx_cost_data[alpha_cpu].int_cmov;
2213 return false;
2214 }
2215 /* FALLTHRU */
2216
2217 case FLOAT:
2218 case UNSIGNED_FLOAT:
2219 case FIX:
2220 case UNSIGNED_FIX:
2221 case FLOAT_EXTEND:
2222 case FLOAT_TRUNCATE:
2223 *total = alpha_rtx_cost_data[alpha_cpu].fp_add;
2224 return false;
2225
2226 default:
2227 return false;
2228 }
2229 }
2230 \f
2231 /* REF is an alignable memory location. Place an aligned SImode
2232 reference into *PALIGNED_MEM and the number of bits to shift into
2233 *PBITNUM. SCRATCH is a free register for use in reloading out
2234 of range stack slots. */
2235
2236 void
2237 get_aligned_mem (rtx ref, rtx *paligned_mem, rtx *pbitnum)
2238 {
2239 rtx base;
2240 HOST_WIDE_INT offset = 0;
2241
2242 if (GET_CODE (ref) != MEM)
2243 abort ();
2244
2245 if (reload_in_progress
2246 && ! memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
2247 {
2248 base = find_replacement (&XEXP (ref, 0));
2249
2250 if (! memory_address_p (GET_MODE (ref), base))
2251 abort ();
2252 }
2253 else
2254 {
2255 base = XEXP (ref, 0);
2256 }
2257
2258 if (GET_CODE (base) == PLUS)
2259 offset += INTVAL (XEXP (base, 1)), base = XEXP (base, 0);
2260
2261 *paligned_mem
2262 = widen_memory_access (ref, SImode, (offset & ~3) - offset);
2263
2264 if (WORDS_BIG_ENDIAN)
2265 *pbitnum = GEN_INT (32 - (GET_MODE_BITSIZE (GET_MODE (ref))
2266 + (offset & 3) * 8));
2267 else
2268 *pbitnum = GEN_INT ((offset & 3) * 8);
2269 }
2270
2271 /* Similar, but just get the address. Handle the two reload cases.
2272 Add EXTRA_OFFSET to the address we return. */
2273
2274 rtx
2275 get_unaligned_address (rtx ref, int extra_offset)
2276 {
2277 rtx base;
2278 HOST_WIDE_INT offset = 0;
2279
2280 if (GET_CODE (ref) != MEM)
2281 abort ();
2282
2283 if (reload_in_progress
2284 && ! memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
2285 {
2286 base = find_replacement (&XEXP (ref, 0));
2287
2288 if (! memory_address_p (GET_MODE (ref), base))
2289 abort ();
2290 }
2291 else
2292 {
2293 base = XEXP (ref, 0);
2294 }
2295
2296 if (GET_CODE (base) == PLUS)
2297 offset += INTVAL (XEXP (base, 1)), base = XEXP (base, 0);
2298
2299 return plus_constant (base, offset + extra_offset);
2300 }
2301
2302 /* On the Alpha, all (non-symbolic) constants except zero go into
2303 a floating-point register via memory. Note that we cannot
2304 return anything that is not a subset of CLASS, and that some
2305 symbolic constants cannot be dropped to memory. */
2306
2307 enum reg_class
2308 alpha_preferred_reload_class(rtx x, enum reg_class class)
2309 {
2310 /* Zero is present in any register class. */
2311 if (x == CONST0_RTX (GET_MODE (x)))
2312 return class;
2313
2314 /* These sorts of constants we can easily drop to memory. */
2315 if (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
2316 {
2317 if (class == FLOAT_REGS)
2318 return NO_REGS;
2319 if (class == ALL_REGS)
2320 return GENERAL_REGS;
2321 return class;
2322 }
2323
2324 /* All other kinds of constants should not (and in the case of HIGH
2325 cannot) be dropped to memory -- instead we use a GENERAL_REGS
2326 secondary reload. */
2327 if (CONSTANT_P (x))
2328 return (class == ALL_REGS ? GENERAL_REGS : class);
2329
2330 return class;
2331 }
2332
2333 /* Loading and storing HImode or QImode values to and from memory
2334 usually requires a scratch register. The exceptions are loading
2335 QImode and HImode from an aligned address to a general register
2336 unless byte instructions are permitted.
2337
2338 We also cannot load an unaligned address or a paradoxical SUBREG
2339 into an FP register.
2340
2341 We also cannot do integral arithmetic into FP regs, as might result
2342 from register elimination into a DImode fp register. */
2343
2344 enum reg_class
2345 secondary_reload_class (enum reg_class class, enum machine_mode mode,
2346 rtx x, int in)
2347 {
2348 if ((mode == QImode || mode == HImode) && ! TARGET_BWX)
2349 {
2350 if (GET_CODE (x) == MEM
2351 || (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
2352 || (GET_CODE (x) == SUBREG
2353 && (GET_CODE (SUBREG_REG (x)) == MEM
2354 || (GET_CODE (SUBREG_REG (x)) == REG
2355 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER))))
2356 {
2357 if (!in || !aligned_memory_operand(x, mode))
2358 return GENERAL_REGS;
2359 }
2360 }
2361
2362 if (class == FLOAT_REGS)
2363 {
2364 if (GET_CODE (x) == MEM && GET_CODE (XEXP (x, 0)) == AND)
2365 return GENERAL_REGS;
2366
2367 if (GET_CODE (x) == SUBREG
2368 && (GET_MODE_SIZE (GET_MODE (x))
2369 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
2370 return GENERAL_REGS;
2371
2372 if (in && INTEGRAL_MODE_P (mode)
2373 && ! (memory_operand (x, mode) || x == const0_rtx))
2374 return GENERAL_REGS;
2375 }
2376
2377 return NO_REGS;
2378 }
2379 \f
2380 /* Subfunction of the following function. Update the flags of any MEM
2381 found in part of X. */
2382
2383 static void
2384 alpha_set_memflags_1 (rtx x, int in_struct_p, int volatile_p, int unchanging_p)
2385 {
2386 int i;
2387
2388 switch (GET_CODE (x))
2389 {
2390 case SEQUENCE:
2391 abort ();
2392
2393 case PARALLEL:
2394 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2395 alpha_set_memflags_1 (XVECEXP (x, 0, i), in_struct_p, volatile_p,
2396 unchanging_p);
2397 break;
2398
2399 case INSN:
2400 alpha_set_memflags_1 (PATTERN (x), in_struct_p, volatile_p,
2401 unchanging_p);
2402 break;
2403
2404 case SET:
2405 alpha_set_memflags_1 (SET_DEST (x), in_struct_p, volatile_p,
2406 unchanging_p);
2407 alpha_set_memflags_1 (SET_SRC (x), in_struct_p, volatile_p,
2408 unchanging_p);
2409 break;
2410
2411 case MEM:
2412 MEM_IN_STRUCT_P (x) = in_struct_p;
2413 MEM_VOLATILE_P (x) = volatile_p;
2414 RTX_UNCHANGING_P (x) = unchanging_p;
2415 /* Sadly, we cannot use alias sets because the extra aliasing
2416 produced by the AND interferes. Given that two-byte quantities
2417 are the only thing we would be able to differentiate anyway,
2418 there does not seem to be any point in convoluting the early
2419 out of the alias check. */
2420 break;
2421
2422 default:
2423 break;
2424 }
2425 }
2426
2427 /* Given INSN, which is an INSN list or the PATTERN of a single insn
2428 generated to perform a memory operation, look for any MEMs in either
2429 a SET_DEST or a SET_SRC and copy the in-struct, unchanging, and
2430 volatile flags from REF into each of the MEMs found. If REF is not
2431 a MEM, don't do anything. */
2432
2433 void
2434 alpha_set_memflags (rtx insn, rtx ref)
2435 {
2436 int in_struct_p, volatile_p, unchanging_p;
2437
2438 if (GET_CODE (ref) != MEM)
2439 return;
2440
2441 in_struct_p = MEM_IN_STRUCT_P (ref);
2442 volatile_p = MEM_VOLATILE_P (ref);
2443 unchanging_p = RTX_UNCHANGING_P (ref);
2444
2445 /* This is only called from alpha.md, after having had something
2446 generated from one of the insn patterns. So if everything is
2447 zero, the pattern is already up-to-date. */
2448 if (! in_struct_p && ! volatile_p && ! unchanging_p)
2449 return;
2450
2451 alpha_set_memflags_1 (insn, in_struct_p, volatile_p, unchanging_p);
2452 }
2453 \f
2454 /* Internal routine for alpha_emit_set_const to check for N or below insns. */
2455
2456 static rtx
2457 alpha_emit_set_const_1 (rtx target, enum machine_mode mode,
2458 HOST_WIDE_INT c, int n)
2459 {
2460 HOST_WIDE_INT new;
2461 int i, bits;
2462 /* Use a pseudo if highly optimizing and still generating RTL. */
2463 rtx subtarget
2464 = (flag_expensive_optimizations && !no_new_pseudos ? 0 : target);
2465 rtx temp, insn;
2466
2467 /* If this is a sign-extended 32-bit constant, we can do this in at most
2468 three insns, so do it if we have enough insns left. We always have
2469 a sign-extended 32-bit constant when compiling on a narrow machine. */
2470
2471 if (HOST_BITS_PER_WIDE_INT != 64
2472 || c >> 31 == -1 || c >> 31 == 0)
2473 {
2474 HOST_WIDE_INT low = ((c & 0xffff) ^ 0x8000) - 0x8000;
2475 HOST_WIDE_INT tmp1 = c - low;
2476 HOST_WIDE_INT high = (((tmp1 >> 16) & 0xffff) ^ 0x8000) - 0x8000;
2477 HOST_WIDE_INT extra = 0;
2478
2479 /* If HIGH will be interpreted as negative but the constant is
2480 positive, we must adjust it to do two ldha insns. */
2481
2482 if ((high & 0x8000) != 0 && c >= 0)
2483 {
2484 extra = 0x4000;
2485 tmp1 -= 0x40000000;
2486 high = ((tmp1 >> 16) & 0xffff) - 2 * ((tmp1 >> 16) & 0x8000);
2487 }
2488
2489 if (c == low || (low == 0 && extra == 0))
2490 {
2491 /* We used to use copy_to_suggested_reg (GEN_INT (c), target, mode)
2492 but that meant that we can't handle INT_MIN on 32-bit machines
2493 (like NT/Alpha), because we recurse indefinitely through
2494 emit_move_insn to gen_movdi. So instead, since we know exactly
2495 what we want, create it explicitly. */
2496
2497 if (target == NULL)
2498 target = gen_reg_rtx (mode);
2499 emit_insn (gen_rtx_SET (VOIDmode, target, GEN_INT (c)));
2500 return target;
2501 }
2502 else if (n >= 2 + (extra != 0))
2503 {
2504 temp = copy_to_suggested_reg (GEN_INT (high << 16), subtarget, mode);
2505
2506 /* As of 2002-02-23, addsi3 is only available when not optimizing.
2507 This means that if we go through expand_binop, we'll try to
2508 generate extensions, etc, which will require new pseudos, which
2509 will fail during some split phases. The SImode add patterns
2510 still exist, but are not named. So build the insns by hand. */
2511
2512 if (extra != 0)
2513 {
2514 if (! subtarget)
2515 subtarget = gen_reg_rtx (mode);
2516 insn = gen_rtx_PLUS (mode, temp, GEN_INT (extra << 16));
2517 insn = gen_rtx_SET (VOIDmode, subtarget, insn);
2518 emit_insn (insn);
2519 temp = subtarget;
2520 }
2521
2522 if (target == NULL)
2523 target = gen_reg_rtx (mode);
2524 insn = gen_rtx_PLUS (mode, temp, GEN_INT (low));
2525 insn = gen_rtx_SET (VOIDmode, target, insn);
2526 emit_insn (insn);
2527 return target;
2528 }
2529 }
2530
2531 /* If we couldn't do it that way, try some other methods. But if we have
2532 no instructions left, don't bother. Likewise, if this is SImode and
2533 we can't make pseudos, we can't do anything since the expand_binop
2534 and expand_unop calls will widen and try to make pseudos. */
2535
2536 if (n == 1 || (mode == SImode && no_new_pseudos))
2537 return 0;
2538
2539 /* Next, see if we can load a related constant and then shift and possibly
2540 negate it to get the constant we want. Try this once each increasing
2541 numbers of insns. */
2542
2543 for (i = 1; i < n; i++)
2544 {
2545 /* First, see if minus some low bits, we've an easy load of
2546 high bits. */
2547
2548 new = ((c & 0xffff) ^ 0x8000) - 0x8000;
2549 if (new != 0
2550 && (temp = alpha_emit_set_const (subtarget, mode, c - new, i)) != 0)
2551 return expand_binop (mode, add_optab, temp, GEN_INT (new),
2552 target, 0, OPTAB_WIDEN);
2553
2554 /* Next try complementing. */
2555 if ((temp = alpha_emit_set_const (subtarget, mode, ~ c, i)) != 0)
2556 return expand_unop (mode, one_cmpl_optab, temp, target, 0);
2557
2558 /* Next try to form a constant and do a left shift. We can do this
2559 if some low-order bits are zero; the exact_log2 call below tells
2560 us that information. The bits we are shifting out could be any
2561 value, but here we'll just try the 0- and sign-extended forms of
2562 the constant. To try to increase the chance of having the same
2563 constant in more than one insn, start at the highest number of
2564 bits to shift, but try all possibilities in case a ZAPNOT will
2565 be useful. */
2566
2567 if ((bits = exact_log2 (c & - c)) > 0)
2568 for (; bits > 0; bits--)
2569 if ((temp = (alpha_emit_set_const
2570 (subtarget, mode, c >> bits, i))) != 0
2571 || ((temp = (alpha_emit_set_const
2572 (subtarget, mode,
2573 ((unsigned HOST_WIDE_INT) c) >> bits, i)))
2574 != 0))
2575 return expand_binop (mode, ashl_optab, temp, GEN_INT (bits),
2576 target, 0, OPTAB_WIDEN);
2577
2578 /* Now try high-order zero bits. Here we try the shifted-in bits as
2579 all zero and all ones. Be careful to avoid shifting outside the
2580 mode and to avoid shifting outside the host wide int size. */
2581 /* On narrow hosts, don't shift a 1 into the high bit, since we'll
2582 confuse the recursive call and set all of the high 32 bits. */
2583
2584 if ((bits = (MIN (HOST_BITS_PER_WIDE_INT, GET_MODE_SIZE (mode) * 8)
2585 - floor_log2 (c) - 1 - (HOST_BITS_PER_WIDE_INT < 64))) > 0)
2586 for (; bits > 0; bits--)
2587 if ((temp = alpha_emit_set_const (subtarget, mode,
2588 c << bits, i)) != 0
2589 || ((temp = (alpha_emit_set_const
2590 (subtarget, mode,
2591 ((c << bits) | (((HOST_WIDE_INT) 1 << bits) - 1)),
2592 i)))
2593 != 0))
2594 return expand_binop (mode, lshr_optab, temp, GEN_INT (bits),
2595 target, 1, OPTAB_WIDEN);
2596
2597 /* Now try high-order 1 bits. We get that with a sign-extension.
2598 But one bit isn't enough here. Be careful to avoid shifting outside
2599 the mode and to avoid shifting outside the host wide int size. */
2600
2601 if ((bits = (MIN (HOST_BITS_PER_WIDE_INT, GET_MODE_SIZE (mode) * 8)
2602 - floor_log2 (~ c) - 2)) > 0)
2603 for (; bits > 0; bits--)
2604 if ((temp = alpha_emit_set_const (subtarget, mode,
2605 c << bits, i)) != 0
2606 || ((temp = (alpha_emit_set_const
2607 (subtarget, mode,
2608 ((c << bits) | (((HOST_WIDE_INT) 1 << bits) - 1)),
2609 i)))
2610 != 0))
2611 return expand_binop (mode, ashr_optab, temp, GEN_INT (bits),
2612 target, 0, OPTAB_WIDEN);
2613 }
2614
2615 #if HOST_BITS_PER_WIDE_INT == 64
2616 /* Finally, see if can load a value into the target that is the same as the
2617 constant except that all bytes that are 0 are changed to be 0xff. If we
2618 can, then we can do a ZAPNOT to obtain the desired constant. */
2619
2620 new = c;
2621 for (i = 0; i < 64; i += 8)
2622 if ((new & ((HOST_WIDE_INT) 0xff << i)) == 0)
2623 new |= (HOST_WIDE_INT) 0xff << i;
2624
2625 /* We are only called for SImode and DImode. If this is SImode, ensure that
2626 we are sign extended to a full word. */
2627
2628 if (mode == SImode)
2629 new = ((new & 0xffffffff) ^ 0x80000000) - 0x80000000;
2630
2631 if (new != c && new != -1
2632 && (temp = alpha_emit_set_const (subtarget, mode, new, n - 1)) != 0)
2633 return expand_binop (mode, and_optab, temp, GEN_INT (c | ~ new),
2634 target, 0, OPTAB_WIDEN);
2635 #endif
2636
2637 return 0;
2638 }
2639
2640 /* Try to output insns to set TARGET equal to the constant C if it can be
2641 done in less than N insns. Do all computations in MODE. Returns the place
2642 where the output has been placed if it can be done and the insns have been
2643 emitted. If it would take more than N insns, zero is returned and no
2644 insns and emitted. */
2645
2646 rtx
2647 alpha_emit_set_const (rtx target, enum machine_mode mode,
2648 HOST_WIDE_INT c, int n)
2649 {
2650 rtx result = 0;
2651 rtx orig_target = target;
2652 int i;
2653
2654 /* If we can't make any pseudos, TARGET is an SImode hard register, we
2655 can't load this constant in one insn, do this in DImode. */
2656 if (no_new_pseudos && mode == SImode
2657 && GET_CODE (target) == REG && REGNO (target) < FIRST_PSEUDO_REGISTER
2658 && (result = alpha_emit_set_const_1 (target, mode, c, 1)) == 0)
2659 {
2660 target = gen_lowpart (DImode, target);
2661 mode = DImode;
2662 }
2663
2664 /* Try 1 insn, then 2, then up to N. */
2665 for (i = 1; i <= n; i++)
2666 {
2667 result = alpha_emit_set_const_1 (target, mode, c, i);
2668 if (result)
2669 {
2670 rtx insn = get_last_insn ();
2671 rtx set = single_set (insn);
2672 if (! CONSTANT_P (SET_SRC (set)))
2673 set_unique_reg_note (get_last_insn (), REG_EQUAL, GEN_INT (c));
2674 break;
2675 }
2676 }
2677
2678 /* Allow for the case where we changed the mode of TARGET. */
2679 if (result == target)
2680 result = orig_target;
2681
2682 return result;
2683 }
2684
2685 /* Having failed to find a 3 insn sequence in alpha_emit_set_const,
2686 fall back to a straight forward decomposition. We do this to avoid
2687 exponential run times encountered when looking for longer sequences
2688 with alpha_emit_set_const. */
2689
2690 rtx
2691 alpha_emit_set_long_const (rtx target, HOST_WIDE_INT c1, HOST_WIDE_INT c2)
2692 {
2693 HOST_WIDE_INT d1, d2, d3, d4;
2694
2695 /* Decompose the entire word */
2696 #if HOST_BITS_PER_WIDE_INT >= 64
2697 if (c2 != -(c1 < 0))
2698 abort ();
2699 d1 = ((c1 & 0xffff) ^ 0x8000) - 0x8000;
2700 c1 -= d1;
2701 d2 = ((c1 & 0xffffffff) ^ 0x80000000) - 0x80000000;
2702 c1 = (c1 - d2) >> 32;
2703 d3 = ((c1 & 0xffff) ^ 0x8000) - 0x8000;
2704 c1 -= d3;
2705 d4 = ((c1 & 0xffffffff) ^ 0x80000000) - 0x80000000;
2706 if (c1 != d4)
2707 abort ();
2708 #else
2709 d1 = ((c1 & 0xffff) ^ 0x8000) - 0x8000;
2710 c1 -= d1;
2711 d2 = ((c1 & 0xffffffff) ^ 0x80000000) - 0x80000000;
2712 if (c1 != d2)
2713 abort ();
2714 c2 += (d2 < 0);
2715 d3 = ((c2 & 0xffff) ^ 0x8000) - 0x8000;
2716 c2 -= d3;
2717 d4 = ((c2 & 0xffffffff) ^ 0x80000000) - 0x80000000;
2718 if (c2 != d4)
2719 abort ();
2720 #endif
2721
2722 /* Construct the high word */
2723 if (d4)
2724 {
2725 emit_move_insn (target, GEN_INT (d4));
2726 if (d3)
2727 emit_move_insn (target, gen_rtx_PLUS (DImode, target, GEN_INT (d3)));
2728 }
2729 else
2730 emit_move_insn (target, GEN_INT (d3));
2731
2732 /* Shift it into place */
2733 emit_move_insn (target, gen_rtx_ASHIFT (DImode, target, GEN_INT (32)));
2734
2735 /* Add in the low bits. */
2736 if (d2)
2737 emit_move_insn (target, gen_rtx_PLUS (DImode, target, GEN_INT (d2)));
2738 if (d1)
2739 emit_move_insn (target, gen_rtx_PLUS (DImode, target, GEN_INT (d1)));
2740
2741 return target;
2742 }
2743
2744 /* Expand a move instruction; return true if all work is done.
2745 We don't handle non-bwx subword loads here. */
2746
2747 bool
2748 alpha_expand_mov (enum machine_mode mode, rtx *operands)
2749 {
2750 /* If the output is not a register, the input must be. */
2751 if (GET_CODE (operands[0]) == MEM
2752 && ! reg_or_0_operand (operands[1], mode))
2753 operands[1] = force_reg (mode, operands[1]);
2754
2755 /* Allow legitimize_address to perform some simplifications. */
2756 if (mode == Pmode && symbolic_operand (operands[1], mode))
2757 {
2758 rtx tmp;
2759
2760 /* With RTL inlining, at -O3, rtl is generated, stored, then actually
2761 compiled at the end of compilation. In the meantime, someone can
2762 re-encode-section-info on some symbol changing it e.g. from global
2763 to local-not-small. If this happens, we'd have emitted a plain
2764 load rather than a high+losum load and not recognize the insn.
2765
2766 So if rtl inlining is in effect, we delay the global/not-global
2767 decision until rest_of_compilation by wrapping it in an
2768 UNSPEC_SYMBOL. */
2769 if (TARGET_EXPLICIT_RELOCS && flag_inline_functions
2770 && rtx_equal_function_value_matters
2771 && global_symbolic_operand (operands[1], mode))
2772 {
2773 emit_insn (gen_movdi_er_maybe_g (operands[0], operands[1]));
2774 return true;
2775 }
2776
2777 tmp = alpha_legitimize_address (operands[1], operands[0], mode);
2778 if (tmp)
2779 {
2780 if (tmp == operands[0])
2781 return true;
2782 operands[1] = tmp;
2783 return false;
2784 }
2785 }
2786
2787 /* Early out for non-constants and valid constants. */
2788 if (! CONSTANT_P (operands[1]) || input_operand (operands[1], mode))
2789 return false;
2790
2791 /* Split large integers. */
2792 if (GET_CODE (operands[1]) == CONST_INT
2793 || GET_CODE (operands[1]) == CONST_DOUBLE)
2794 {
2795 HOST_WIDE_INT i0, i1;
2796 rtx temp = NULL_RTX;
2797
2798 if (GET_CODE (operands[1]) == CONST_INT)
2799 {
2800 i0 = INTVAL (operands[1]);
2801 i1 = -(i0 < 0);
2802 }
2803 else if (HOST_BITS_PER_WIDE_INT >= 64)
2804 {
2805 i0 = CONST_DOUBLE_LOW (operands[1]);
2806 i1 = -(i0 < 0);
2807 }
2808 else
2809 {
2810 i0 = CONST_DOUBLE_LOW (operands[1]);
2811 i1 = CONST_DOUBLE_HIGH (operands[1]);
2812 }
2813
2814 if (HOST_BITS_PER_WIDE_INT >= 64 || i1 == -(i0 < 0))
2815 temp = alpha_emit_set_const (operands[0], mode, i0, 3);
2816
2817 if (!temp && TARGET_BUILD_CONSTANTS)
2818 temp = alpha_emit_set_long_const (operands[0], i0, i1);
2819
2820 if (temp)
2821 {
2822 if (rtx_equal_p (operands[0], temp))
2823 return true;
2824 operands[1] = temp;
2825 return false;
2826 }
2827 }
2828
2829 /* Otherwise we've nothing left but to drop the thing to memory. */
2830 operands[1] = force_const_mem (mode, operands[1]);
2831 if (reload_in_progress)
2832 {
2833 emit_move_insn (operands[0], XEXP (operands[1], 0));
2834 operands[1] = copy_rtx (operands[1]);
2835 XEXP (operands[1], 0) = operands[0];
2836 }
2837 else
2838 operands[1] = validize_mem (operands[1]);
2839 return false;
2840 }
2841
2842 /* Expand a non-bwx QImode or HImode move instruction;
2843 return true if all work is done. */
2844
2845 bool
2846 alpha_expand_mov_nobwx (enum machine_mode mode, rtx *operands)
2847 {
2848 /* If the output is not a register, the input must be. */
2849 if (GET_CODE (operands[0]) == MEM)
2850 operands[1] = force_reg (mode, operands[1]);
2851
2852 /* Handle four memory cases, unaligned and aligned for either the input
2853 or the output. The only case where we can be called during reload is
2854 for aligned loads; all other cases require temporaries. */
2855
2856 if (GET_CODE (operands[1]) == MEM
2857 || (GET_CODE (operands[1]) == SUBREG
2858 && GET_CODE (SUBREG_REG (operands[1])) == MEM)
2859 || (reload_in_progress && GET_CODE (operands[1]) == REG
2860 && REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER)
2861 || (reload_in_progress && GET_CODE (operands[1]) == SUBREG
2862 && GET_CODE (SUBREG_REG (operands[1])) == REG
2863 && REGNO (SUBREG_REG (operands[1])) >= FIRST_PSEUDO_REGISTER))
2864 {
2865 if (aligned_memory_operand (operands[1], mode))
2866 {
2867 if (reload_in_progress)
2868 {
2869 emit_insn ((mode == QImode
2870 ? gen_reload_inqi_help
2871 : gen_reload_inhi_help)
2872 (operands[0], operands[1],
2873 gen_rtx_REG (SImode, REGNO (operands[0]))));
2874 }
2875 else
2876 {
2877 rtx aligned_mem, bitnum;
2878 rtx scratch = gen_reg_rtx (SImode);
2879
2880 get_aligned_mem (operands[1], &aligned_mem, &bitnum);
2881
2882 emit_insn ((mode == QImode
2883 ? gen_aligned_loadqi
2884 : gen_aligned_loadhi)
2885 (operands[0], aligned_mem, bitnum, scratch));
2886 }
2887 }
2888 else
2889 {
2890 /* Don't pass these as parameters since that makes the generated
2891 code depend on parameter evaluation order which will cause
2892 bootstrap failures. */
2893
2894 rtx temp1 = gen_reg_rtx (DImode);
2895 rtx temp2 = gen_reg_rtx (DImode);
2896 rtx seq = ((mode == QImode
2897 ? gen_unaligned_loadqi
2898 : gen_unaligned_loadhi)
2899 (operands[0], get_unaligned_address (operands[1], 0),
2900 temp1, temp2));
2901
2902 alpha_set_memflags (seq, operands[1]);
2903 emit_insn (seq);
2904 }
2905 return true;
2906 }
2907
2908 if (GET_CODE (operands[0]) == MEM
2909 || (GET_CODE (operands[0]) == SUBREG
2910 && GET_CODE (SUBREG_REG (operands[0])) == MEM)
2911 || (reload_in_progress && GET_CODE (operands[0]) == REG
2912 && REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER)
2913 || (reload_in_progress && GET_CODE (operands[0]) == SUBREG
2914 && GET_CODE (SUBREG_REG (operands[0])) == REG
2915 && REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER))
2916 {
2917 if (aligned_memory_operand (operands[0], mode))
2918 {
2919 rtx aligned_mem, bitnum;
2920 rtx temp1 = gen_reg_rtx (SImode);
2921 rtx temp2 = gen_reg_rtx (SImode);
2922
2923 get_aligned_mem (operands[0], &aligned_mem, &bitnum);
2924
2925 emit_insn (gen_aligned_store (aligned_mem, operands[1], bitnum,
2926 temp1, temp2));
2927 }
2928 else
2929 {
2930 rtx temp1 = gen_reg_rtx (DImode);
2931 rtx temp2 = gen_reg_rtx (DImode);
2932 rtx temp3 = gen_reg_rtx (DImode);
2933 rtx seq = ((mode == QImode
2934 ? gen_unaligned_storeqi
2935 : gen_unaligned_storehi)
2936 (get_unaligned_address (operands[0], 0),
2937 operands[1], temp1, temp2, temp3));
2938
2939 alpha_set_memflags (seq, operands[0]);
2940 emit_insn (seq);
2941 }
2942 return true;
2943 }
2944
2945 return false;
2946 }
2947
2948 /* Generate an unsigned DImode to FP conversion. This is the same code
2949 optabs would emit if we didn't have TFmode patterns.
2950
2951 For SFmode, this is the only construction I've found that can pass
2952 gcc.c-torture/execute/ieee/rbug.c. No scenario that uses DFmode
2953 intermediates will work, because you'll get intermediate rounding
2954 that ruins the end result. Some of this could be fixed by turning
2955 on round-to-positive-infinity, but that requires diddling the fpsr,
2956 which kills performance. I tried turning this around and converting
2957 to a negative number, so that I could turn on /m, but either I did
2958 it wrong or there's something else cause I wound up with the exact
2959 same single-bit error. There is a branch-less form of this same code:
2960
2961 srl $16,1,$1
2962 and $16,1,$2
2963 cmplt $16,0,$3
2964 or $1,$2,$2
2965 cmovge $16,$16,$2
2966 itoft $3,$f10
2967 itoft $2,$f11
2968 cvtqs $f11,$f11
2969 adds $f11,$f11,$f0
2970 fcmoveq $f10,$f11,$f0
2971
2972 I'm not using it because it's the same number of instructions as
2973 this branch-full form, and it has more serialized long latency
2974 instructions on the critical path.
2975
2976 For DFmode, we can avoid rounding errors by breaking up the word
2977 into two pieces, converting them separately, and adding them back:
2978
2979 LC0: .long 0,0x5f800000
2980
2981 itoft $16,$f11
2982 lda $2,LC0
2983 cmplt $16,0,$1
2984 cpyse $f11,$f31,$f10
2985 cpyse $f31,$f11,$f11
2986 s4addq $1,$2,$1
2987 lds $f12,0($1)
2988 cvtqt $f10,$f10
2989 cvtqt $f11,$f11
2990 addt $f12,$f10,$f0
2991 addt $f0,$f11,$f0
2992
2993 This doesn't seem to be a clear-cut win over the optabs form.
2994 It probably all depends on the distribution of numbers being
2995 converted -- in the optabs form, all but high-bit-set has a
2996 much lower minimum execution time. */
2997
2998 void
2999 alpha_emit_floatuns (rtx operands[2])
3000 {
3001 rtx neglab, donelab, i0, i1, f0, in, out;
3002 enum machine_mode mode;
3003
3004 out = operands[0];
3005 in = force_reg (DImode, operands[1]);
3006 mode = GET_MODE (out);
3007 neglab = gen_label_rtx ();
3008 donelab = gen_label_rtx ();
3009 i0 = gen_reg_rtx (DImode);
3010 i1 = gen_reg_rtx (DImode);
3011 f0 = gen_reg_rtx (mode);
3012
3013 emit_cmp_and_jump_insns (in, const0_rtx, LT, const0_rtx, DImode, 0, neglab);
3014
3015 emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_FLOAT (mode, in)));
3016 emit_jump_insn (gen_jump (donelab));
3017 emit_barrier ();
3018
3019 emit_label (neglab);
3020
3021 emit_insn (gen_lshrdi3 (i0, in, const1_rtx));
3022 emit_insn (gen_anddi3 (i1, in, const1_rtx));
3023 emit_insn (gen_iordi3 (i0, i0, i1));
3024 emit_insn (gen_rtx_SET (VOIDmode, f0, gen_rtx_FLOAT (mode, i0)));
3025 emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_PLUS (mode, f0, f0)));
3026
3027 emit_label (donelab);
3028 }
3029
3030 /* Generate the comparison for a conditional branch. */
3031
3032 rtx
3033 alpha_emit_conditional_branch (enum rtx_code code)
3034 {
3035 enum rtx_code cmp_code, branch_code;
3036 enum machine_mode cmp_mode, branch_mode = VOIDmode;
3037 rtx op0 = alpha_compare.op0, op1 = alpha_compare.op1;
3038 rtx tem;
3039
3040 if (alpha_compare.fp_p && GET_MODE (op0) == TFmode)
3041 {
3042 if (! TARGET_HAS_XFLOATING_LIBS)
3043 abort ();
3044
3045 /* X_floating library comparison functions return
3046 -1 unordered
3047 0 false
3048 1 true
3049 Convert the compare against the raw return value. */
3050
3051 switch (code)
3052 {
3053 case UNORDERED:
3054 cmp_code = EQ;
3055 code = LT;
3056 break;
3057 case ORDERED:
3058 cmp_code = EQ;
3059 code = GE;
3060 break;
3061 case NE:
3062 cmp_code = NE;
3063 code = NE;
3064 break;
3065 default:
3066 cmp_code = code;
3067 code = GT;
3068 break;
3069 }
3070
3071 op0 = alpha_emit_xfloating_compare (cmp_code, op0, op1);
3072 op1 = const0_rtx;
3073 alpha_compare.fp_p = 0;
3074 }
3075
3076 /* The general case: fold the comparison code to the types of compares
3077 that we have, choosing the branch as necessary. */
3078 switch (code)
3079 {
3080 case EQ: case LE: case LT: case LEU: case LTU:
3081 case UNORDERED:
3082 /* We have these compares: */
3083 cmp_code = code, branch_code = NE;
3084 break;
3085
3086 case NE:
3087 case ORDERED:
3088 /* These must be reversed. */
3089 cmp_code = reverse_condition (code), branch_code = EQ;
3090 break;
3091
3092 case GE: case GT: case GEU: case GTU:
3093 /* For FP, we swap them, for INT, we reverse them. */
3094 if (alpha_compare.fp_p)
3095 {
3096 cmp_code = swap_condition (code);
3097 branch_code = NE;
3098 tem = op0, op0 = op1, op1 = tem;
3099 }
3100 else
3101 {
3102 cmp_code = reverse_condition (code);
3103 branch_code = EQ;
3104 }
3105 break;
3106
3107 default:
3108 abort ();
3109 }
3110
3111 if (alpha_compare.fp_p)
3112 {
3113 cmp_mode = DFmode;
3114 if (flag_unsafe_math_optimizations)
3115 {
3116 /* When we are not as concerned about non-finite values, and we
3117 are comparing against zero, we can branch directly. */
3118 if (op1 == CONST0_RTX (DFmode))
3119 cmp_code = NIL, branch_code = code;
3120 else if (op0 == CONST0_RTX (DFmode))
3121 {
3122 /* Undo the swap we probably did just above. */
3123 tem = op0, op0 = op1, op1 = tem;
3124 branch_code = swap_condition (cmp_code);
3125 cmp_code = NIL;
3126 }
3127 }
3128 else
3129 {
3130 /* ??? We mark the branch mode to be CCmode to prevent the
3131 compare and branch from being combined, since the compare
3132 insn follows IEEE rules that the branch does not. */
3133 branch_mode = CCmode;
3134 }
3135 }
3136 else
3137 {
3138 cmp_mode = DImode;
3139
3140 /* The following optimizations are only for signed compares. */
3141 if (code != LEU && code != LTU && code != GEU && code != GTU)
3142 {
3143 /* Whee. Compare and branch against 0 directly. */
3144 if (op1 == const0_rtx)
3145 cmp_code = NIL, branch_code = code;
3146
3147 /* If the constants doesn't fit into an immediate, but can
3148 be generated by lda/ldah, we adjust the argument and
3149 compare against zero, so we can use beq/bne directly. */
3150 else if (GET_CODE (op1) == CONST_INT && (code == EQ || code == NE))
3151 {
3152 HOST_WIDE_INT v = INTVAL (op1), n = -v;
3153
3154 if (! CONST_OK_FOR_LETTER_P (v, 'I')
3155 && (CONST_OK_FOR_LETTER_P (n, 'K')
3156 || CONST_OK_FOR_LETTER_P (n, 'L')))
3157 {
3158 cmp_code = PLUS, branch_code = code;
3159 op1 = GEN_INT (n);
3160 }
3161 }
3162 }
3163
3164 if (!reg_or_0_operand (op0, DImode))
3165 op0 = force_reg (DImode, op0);
3166 if (cmp_code != PLUS && !reg_or_8bit_operand (op1, DImode))
3167 op1 = force_reg (DImode, op1);
3168 }
3169
3170 /* Emit an initial compare instruction, if necessary. */
3171 tem = op0;
3172 if (cmp_code != NIL)
3173 {
3174 tem = gen_reg_rtx (cmp_mode);
3175 emit_move_insn (tem, gen_rtx_fmt_ee (cmp_code, cmp_mode, op0, op1));
3176 }
3177
3178 /* Zero the operands. */
3179 memset (&alpha_compare, 0, sizeof (alpha_compare));
3180
3181 /* Return the branch comparison. */
3182 return gen_rtx_fmt_ee (branch_code, branch_mode, tem, CONST0_RTX (cmp_mode));
3183 }
3184
3185 /* Certain simplifications can be done to make invalid setcc operations
3186 valid. Return the final comparison, or NULL if we can't work. */
3187
3188 rtx
3189 alpha_emit_setcc (enum rtx_code code)
3190 {
3191 enum rtx_code cmp_code;
3192 rtx op0 = alpha_compare.op0, op1 = alpha_compare.op1;
3193 int fp_p = alpha_compare.fp_p;
3194 rtx tmp;
3195
3196 /* Zero the operands. */
3197 memset (&alpha_compare, 0, sizeof (alpha_compare));
3198
3199 if (fp_p && GET_MODE (op0) == TFmode)
3200 {
3201 if (! TARGET_HAS_XFLOATING_LIBS)
3202 abort ();
3203
3204 /* X_floating library comparison functions return
3205 -1 unordered
3206 0 false
3207 1 true
3208 Convert the compare against the raw return value. */
3209
3210 if (code == UNORDERED || code == ORDERED)
3211 cmp_code = EQ;
3212 else
3213 cmp_code = code;
3214
3215 op0 = alpha_emit_xfloating_compare (cmp_code, op0, op1);
3216 op1 = const0_rtx;
3217 fp_p = 0;
3218
3219 if (code == UNORDERED)
3220 code = LT;
3221 else if (code == ORDERED)
3222 code = GE;
3223 else
3224 code = GT;
3225 }
3226
3227 if (fp_p && !TARGET_FIX)
3228 return NULL_RTX;
3229
3230 /* The general case: fold the comparison code to the types of compares
3231 that we have, choosing the branch as necessary. */
3232
3233 cmp_code = NIL;
3234 switch (code)
3235 {
3236 case EQ: case LE: case LT: case LEU: case LTU:
3237 case UNORDERED:
3238 /* We have these compares. */
3239 if (fp_p)
3240 cmp_code = code, code = NE;
3241 break;
3242
3243 case NE:
3244 if (!fp_p && op1 == const0_rtx)
3245 break;
3246 /* FALLTHRU */
3247
3248 case ORDERED:
3249 cmp_code = reverse_condition (code);
3250 code = EQ;
3251 break;
3252
3253 case GE: case GT: case GEU: case GTU:
3254 /* These normally need swapping, but for integer zero we have
3255 special patterns that recognize swapped operands. */
3256 if (!fp_p && op1 == const0_rtx)
3257 break;
3258 code = swap_condition (code);
3259 if (fp_p)
3260 cmp_code = code, code = NE;
3261 tmp = op0, op0 = op1, op1 = tmp;
3262 break;
3263
3264 default:
3265 abort ();
3266 }
3267
3268 if (!fp_p)
3269 {
3270 if (!register_operand (op0, DImode))
3271 op0 = force_reg (DImode, op0);
3272 if (!reg_or_8bit_operand (op1, DImode))
3273 op1 = force_reg (DImode, op1);
3274 }
3275
3276 /* Emit an initial compare instruction, if necessary. */
3277 if (cmp_code != NIL)
3278 {
3279 enum machine_mode mode = fp_p ? DFmode : DImode;
3280
3281 tmp = gen_reg_rtx (mode);
3282 emit_insn (gen_rtx_SET (VOIDmode, tmp,
3283 gen_rtx_fmt_ee (cmp_code, mode, op0, op1)));
3284
3285 op0 = fp_p ? gen_lowpart (DImode, tmp) : tmp;
3286 op1 = const0_rtx;
3287 }
3288
3289 /* Return the setcc comparison. */
3290 return gen_rtx_fmt_ee (code, DImode, op0, op1);
3291 }
3292
3293
3294 /* Rewrite a comparison against zero CMP of the form
3295 (CODE (cc0) (const_int 0)) so it can be written validly in
3296 a conditional move (if_then_else CMP ...).
3297 If both of the operands that set cc0 are nonzero we must emit
3298 an insn to perform the compare (it can't be done within
3299 the conditional move). */
3300
3301 rtx
3302 alpha_emit_conditional_move (rtx cmp, enum machine_mode mode)
3303 {
3304 enum rtx_code code = GET_CODE (cmp);
3305 enum rtx_code cmov_code = NE;
3306 rtx op0 = alpha_compare.op0;
3307 rtx op1 = alpha_compare.op1;
3308 int fp_p = alpha_compare.fp_p;
3309 enum machine_mode cmp_mode
3310 = (GET_MODE (op0) == VOIDmode ? DImode : GET_MODE (op0));
3311 enum machine_mode cmp_op_mode = fp_p ? DFmode : DImode;
3312 enum machine_mode cmov_mode = VOIDmode;
3313 int local_fast_math = flag_unsafe_math_optimizations;
3314 rtx tem;
3315
3316 /* Zero the operands. */
3317 memset (&alpha_compare, 0, sizeof (alpha_compare));
3318
3319 if (fp_p != FLOAT_MODE_P (mode))
3320 {
3321 enum rtx_code cmp_code;
3322
3323 if (! TARGET_FIX)
3324 return 0;
3325
3326 /* If we have fp<->int register move instructions, do a cmov by
3327 performing the comparison in fp registers, and move the
3328 zero/nonzero value to integer registers, where we can then
3329 use a normal cmov, or vice-versa. */
3330
3331 switch (code)
3332 {
3333 case EQ: case LE: case LT: case LEU: case LTU:
3334 /* We have these compares. */
3335 cmp_code = code, code = NE;
3336 break;
3337
3338 case NE:
3339 /* This must be reversed. */
3340 cmp_code = EQ, code = EQ;
3341 break;
3342
3343 case GE: case GT: case GEU: case GTU:
3344 /* These normally need swapping, but for integer zero we have
3345 special patterns that recognize swapped operands. */
3346 if (!fp_p && op1 == const0_rtx)
3347 cmp_code = code, code = NE;
3348 else
3349 {
3350 cmp_code = swap_condition (code);
3351 code = NE;
3352 tem = op0, op0 = op1, op1 = tem;
3353 }
3354 break;
3355
3356 default:
3357 abort ();
3358 }
3359
3360 tem = gen_reg_rtx (cmp_op_mode);
3361 emit_insn (gen_rtx_SET (VOIDmode, tem,
3362 gen_rtx_fmt_ee (cmp_code, cmp_op_mode,
3363 op0, op1)));
3364
3365 cmp_mode = cmp_op_mode = fp_p ? DImode : DFmode;
3366 op0 = gen_lowpart (cmp_op_mode, tem);
3367 op1 = CONST0_RTX (cmp_op_mode);
3368 fp_p = !fp_p;
3369 local_fast_math = 1;
3370 }
3371
3372 /* We may be able to use a conditional move directly.
3373 This avoids emitting spurious compares. */
3374 if (signed_comparison_operator (cmp, VOIDmode)
3375 && (!fp_p || local_fast_math)
3376 && (op0 == CONST0_RTX (cmp_mode) || op1 == CONST0_RTX (cmp_mode)))
3377 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
3378
3379 /* We can't put the comparison inside the conditional move;
3380 emit a compare instruction and put that inside the
3381 conditional move. Make sure we emit only comparisons we have;
3382 swap or reverse as necessary. */
3383
3384 if (no_new_pseudos)
3385 return NULL_RTX;
3386
3387 switch (code)
3388 {
3389 case EQ: case LE: case LT: case LEU: case LTU:
3390 /* We have these compares: */
3391 break;
3392
3393 case NE:
3394 /* This must be reversed. */
3395 code = reverse_condition (code);
3396 cmov_code = EQ;
3397 break;
3398
3399 case GE: case GT: case GEU: case GTU:
3400 /* These must be swapped. */
3401 if (op1 != CONST0_RTX (cmp_mode))
3402 {
3403 code = swap_condition (code);
3404 tem = op0, op0 = op1, op1 = tem;
3405 }
3406 break;
3407
3408 default:
3409 abort ();
3410 }
3411
3412 if (!fp_p)
3413 {
3414 if (!reg_or_0_operand (op0, DImode))
3415 op0 = force_reg (DImode, op0);
3416 if (!reg_or_8bit_operand (op1, DImode))
3417 op1 = force_reg (DImode, op1);
3418 }
3419
3420 /* ??? We mark the branch mode to be CCmode to prevent the compare
3421 and cmov from being combined, since the compare insn follows IEEE
3422 rules that the cmov does not. */
3423 if (fp_p && !local_fast_math)
3424 cmov_mode = CCmode;
3425
3426 tem = gen_reg_rtx (cmp_op_mode);
3427 emit_move_insn (tem, gen_rtx_fmt_ee (code, cmp_op_mode, op0, op1));
3428 return gen_rtx_fmt_ee (cmov_code, cmov_mode, tem, CONST0_RTX (cmp_op_mode));
3429 }
3430
3431 /* Simplify a conditional move of two constants into a setcc with
3432 arithmetic. This is done with a splitter since combine would
3433 just undo the work if done during code generation. It also catches
3434 cases we wouldn't have before cse. */
3435
3436 int
3437 alpha_split_conditional_move (enum rtx_code code, rtx dest, rtx cond,
3438 rtx t_rtx, rtx f_rtx)
3439 {
3440 HOST_WIDE_INT t, f, diff;
3441 enum machine_mode mode;
3442 rtx target, subtarget, tmp;
3443
3444 mode = GET_MODE (dest);
3445 t = INTVAL (t_rtx);
3446 f = INTVAL (f_rtx);
3447 diff = t - f;
3448
3449 if (((code == NE || code == EQ) && diff < 0)
3450 || (code == GE || code == GT))
3451 {
3452 code = reverse_condition (code);
3453 diff = t, t = f, f = diff;
3454 diff = t - f;
3455 }
3456
3457 subtarget = target = dest;
3458 if (mode != DImode)
3459 {
3460 target = gen_lowpart (DImode, dest);
3461 if (! no_new_pseudos)
3462 subtarget = gen_reg_rtx (DImode);
3463 else
3464 subtarget = target;
3465 }
3466 /* Below, we must be careful to use copy_rtx on target and subtarget
3467 in intermediate insns, as they may be a subreg rtx, which may not
3468 be shared. */
3469
3470 if (f == 0 && exact_log2 (diff) > 0
3471 /* On EV6, we've got enough shifters to make non-arithmetic shifts
3472 viable over a longer latency cmove. On EV5, the E0 slot is a
3473 scarce resource, and on EV4 shift has the same latency as a cmove. */
3474 && (diff <= 8 || alpha_cpu == PROCESSOR_EV6))
3475 {
3476 tmp = gen_rtx_fmt_ee (code, DImode, cond, const0_rtx);
3477 emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (subtarget), tmp));
3478
3479 tmp = gen_rtx_ASHIFT (DImode, copy_rtx (subtarget),
3480 GEN_INT (exact_log2 (t)));
3481 emit_insn (gen_rtx_SET (VOIDmode, target, tmp));
3482 }
3483 else if (f == 0 && t == -1)
3484 {
3485 tmp = gen_rtx_fmt_ee (code, DImode, cond, const0_rtx);
3486 emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (subtarget), tmp));
3487
3488 emit_insn (gen_negdi2 (target, copy_rtx (subtarget)));
3489 }
3490 else if (diff == 1 || diff == 4 || diff == 8)
3491 {
3492 rtx add_op;
3493
3494 tmp = gen_rtx_fmt_ee (code, DImode, cond, const0_rtx);
3495 emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (subtarget), tmp));
3496
3497 if (diff == 1)
3498 emit_insn (gen_adddi3 (target, copy_rtx (subtarget), GEN_INT (f)));
3499 else
3500 {
3501 add_op = GEN_INT (f);
3502 if (sext_add_operand (add_op, mode))
3503 {
3504 tmp = gen_rtx_MULT (DImode, copy_rtx (subtarget),
3505 GEN_INT (diff));
3506 tmp = gen_rtx_PLUS (DImode, tmp, add_op);
3507 emit_insn (gen_rtx_SET (VOIDmode, target, tmp));
3508 }
3509 else
3510 return 0;
3511 }
3512 }
3513 else
3514 return 0;
3515
3516 return 1;
3517 }
3518 \f
3519 /* Look up the function X_floating library function name for the
3520 given operation. */
3521
3522 static const char *
3523 alpha_lookup_xfloating_lib_func (enum rtx_code code)
3524 {
3525 struct xfloating_op
3526 {
3527 const enum rtx_code code;
3528 const char *const func;
3529 };
3530
3531 static const struct xfloating_op vms_xfloating_ops[] =
3532 {
3533 { PLUS, "OTS$ADD_X" },
3534 { MINUS, "OTS$SUB_X" },
3535 { MULT, "OTS$MUL_X" },
3536 { DIV, "OTS$DIV_X" },
3537 { EQ, "OTS$EQL_X" },
3538 { NE, "OTS$NEQ_X" },
3539 { LT, "OTS$LSS_X" },
3540 { LE, "OTS$LEQ_X" },
3541 { GT, "OTS$GTR_X" },
3542 { GE, "OTS$GEQ_X" },
3543 { FIX, "OTS$CVTXQ" },
3544 { FLOAT, "OTS$CVTQX" },
3545 { UNSIGNED_FLOAT, "OTS$CVTQUX" },
3546 { FLOAT_EXTEND, "OTS$CVT_FLOAT_T_X" },
3547 { FLOAT_TRUNCATE, "OTS$CVT_FLOAT_X_T" },
3548 };
3549
3550 static const struct xfloating_op osf_xfloating_ops[] =
3551 {
3552 { PLUS, "_OtsAddX" },
3553 { MINUS, "_OtsSubX" },
3554 { MULT, "_OtsMulX" },
3555 { DIV, "_OtsDivX" },
3556 { EQ, "_OtsEqlX" },
3557 { NE, "_OtsNeqX" },
3558 { LT, "_OtsLssX" },
3559 { LE, "_OtsLeqX" },
3560 { GT, "_OtsGtrX" },
3561 { GE, "_OtsGeqX" },
3562 { FIX, "_OtsCvtXQ" },
3563 { FLOAT, "_OtsCvtQX" },
3564 { UNSIGNED_FLOAT, "_OtsCvtQUX" },
3565 { FLOAT_EXTEND, "_OtsConvertFloatTX" },
3566 { FLOAT_TRUNCATE, "_OtsConvertFloatXT" },
3567 };
3568
3569 const struct xfloating_op *ops;
3570 const long n = ARRAY_SIZE (osf_xfloating_ops);
3571 long i;
3572
3573 /* How irritating. Nothing to key off for the table. Hardcode
3574 knowledge of the G_floating routines. */
3575 if (TARGET_FLOAT_VAX)
3576 {
3577 if (TARGET_ABI_OPEN_VMS)
3578 {
3579 if (code == FLOAT_EXTEND)
3580 return "OTS$CVT_FLOAT_G_X";
3581 if (code == FLOAT_TRUNCATE)
3582 return "OTS$CVT_FLOAT_X_G";
3583 }
3584 else
3585 {
3586 if (code == FLOAT_EXTEND)
3587 return "_OtsConvertFloatGX";
3588 if (code == FLOAT_TRUNCATE)
3589 return "_OtsConvertFloatXG";
3590 }
3591 }
3592
3593 if (TARGET_ABI_OPEN_VMS)
3594 ops = vms_xfloating_ops;
3595 else
3596 ops = osf_xfloating_ops;
3597
3598 for (i = 0; i < n; ++i)
3599 if (ops[i].code == code)
3600 return ops[i].func;
3601
3602 abort();
3603 }
3604
3605 /* Most X_floating operations take the rounding mode as an argument.
3606 Compute that here. */
3607
3608 static int
3609 alpha_compute_xfloating_mode_arg (enum rtx_code code,
3610 enum alpha_fp_rounding_mode round)
3611 {
3612 int mode;
3613
3614 switch (round)
3615 {
3616 case ALPHA_FPRM_NORM:
3617 mode = 2;
3618 break;
3619 case ALPHA_FPRM_MINF:
3620 mode = 1;
3621 break;
3622 case ALPHA_FPRM_CHOP:
3623 mode = 0;
3624 break;
3625 case ALPHA_FPRM_DYN:
3626 mode = 4;
3627 break;
3628 default:
3629 abort ();
3630
3631 /* XXX For reference, round to +inf is mode = 3. */
3632 }
3633
3634 if (code == FLOAT_TRUNCATE && alpha_fptm == ALPHA_FPTM_N)
3635 mode |= 0x10000;
3636
3637 return mode;
3638 }
3639
3640 /* Emit an X_floating library function call.
3641
3642 Note that these functions do not follow normal calling conventions:
3643 TFmode arguments are passed in two integer registers (as opposed to
3644 indirect); TFmode return values appear in R16+R17.
3645
3646 FUNC is the function name to call.
3647 TARGET is where the output belongs.
3648 OPERANDS are the inputs.
3649 NOPERANDS is the count of inputs.
3650 EQUIV is the expression equivalent for the function.
3651 */
3652
3653 static void
3654 alpha_emit_xfloating_libcall (const char *func, rtx target, rtx operands[],
3655 int noperands, rtx equiv)
3656 {
3657 rtx usage = NULL_RTX, tmp, reg;
3658 int regno = 16, i;
3659
3660 start_sequence ();
3661
3662 for (i = 0; i < noperands; ++i)
3663 {
3664 switch (GET_MODE (operands[i]))
3665 {
3666 case TFmode:
3667 reg = gen_rtx_REG (TFmode, regno);
3668 regno += 2;
3669 break;
3670
3671 case DFmode:
3672 reg = gen_rtx_REG (DFmode, regno + 32);
3673 regno += 1;
3674 break;
3675
3676 case VOIDmode:
3677 if (GET_CODE (operands[i]) != CONST_INT)
3678 abort ();
3679 /* FALLTHRU */
3680 case DImode:
3681 reg = gen_rtx_REG (DImode, regno);
3682 regno += 1;
3683 break;
3684
3685 default:
3686 abort ();
3687 }
3688
3689 emit_move_insn (reg, operands[i]);
3690 usage = alloc_EXPR_LIST (0, gen_rtx_USE (VOIDmode, reg), usage);
3691 }
3692
3693 switch (GET_MODE (target))
3694 {
3695 case TFmode:
3696 reg = gen_rtx_REG (TFmode, 16);
3697 break;
3698 case DFmode:
3699 reg = gen_rtx_REG (DFmode, 32);
3700 break;
3701 case DImode:
3702 reg = gen_rtx_REG (DImode, 0);
3703 break;
3704 default:
3705 abort ();
3706 }
3707
3708 tmp = gen_rtx_MEM (QImode, init_one_libfunc (func));
3709 tmp = emit_call_insn (GEN_CALL_VALUE (reg, tmp, const0_rtx,
3710 const0_rtx, const0_rtx));
3711 CALL_INSN_FUNCTION_USAGE (tmp) = usage;
3712
3713 tmp = get_insns ();
3714 end_sequence ();
3715
3716 emit_libcall_block (tmp, target, reg, equiv);
3717 }
3718
3719 /* Emit an X_floating library function call for arithmetic (+,-,*,/). */
3720
3721 void
3722 alpha_emit_xfloating_arith (enum rtx_code code, rtx operands[])
3723 {
3724 const char *func;
3725 int mode;
3726 rtx out_operands[3];
3727
3728 func = alpha_lookup_xfloating_lib_func (code);
3729 mode = alpha_compute_xfloating_mode_arg (code, alpha_fprm);
3730
3731 out_operands[0] = operands[1];
3732 out_operands[1] = operands[2];
3733 out_operands[2] = GEN_INT (mode);
3734 alpha_emit_xfloating_libcall (func, operands[0], out_operands, 3,
3735 gen_rtx_fmt_ee (code, TFmode, operands[1],
3736 operands[2]));
3737 }
3738
3739 /* Emit an X_floating library function call for a comparison. */
3740
3741 static rtx
3742 alpha_emit_xfloating_compare (enum rtx_code code, rtx op0, rtx op1)
3743 {
3744 const char *func;
3745 rtx out, operands[2];
3746
3747 func = alpha_lookup_xfloating_lib_func (code);
3748
3749 operands[0] = op0;
3750 operands[1] = op1;
3751 out = gen_reg_rtx (DImode);
3752
3753 /* ??? Strange mode for equiv because what's actually returned
3754 is -1,0,1, not a proper boolean value. */
3755 alpha_emit_xfloating_libcall (func, out, operands, 2,
3756 gen_rtx_fmt_ee (code, CCmode, op0, op1));
3757
3758 return out;
3759 }
3760
3761 /* Emit an X_floating library function call for a conversion. */
3762
3763 void
3764 alpha_emit_xfloating_cvt (enum rtx_code orig_code, rtx operands[])
3765 {
3766 int noperands = 1, mode;
3767 rtx out_operands[2];
3768 const char *func;
3769 enum rtx_code code = orig_code;
3770
3771 if (code == UNSIGNED_FIX)
3772 code = FIX;
3773
3774 func = alpha_lookup_xfloating_lib_func (code);
3775
3776 out_operands[0] = operands[1];
3777
3778 switch (code)
3779 {
3780 case FIX:
3781 mode = alpha_compute_xfloating_mode_arg (code, ALPHA_FPRM_CHOP);
3782 out_operands[1] = GEN_INT (mode);
3783 noperands = 2;
3784 break;
3785 case FLOAT_TRUNCATE:
3786 mode = alpha_compute_xfloating_mode_arg (code, alpha_fprm);
3787 out_operands[1] = GEN_INT (mode);
3788 noperands = 2;
3789 break;
3790 default:
3791 break;
3792 }
3793
3794 alpha_emit_xfloating_libcall (func, operands[0], out_operands, noperands,
3795 gen_rtx_fmt_e (orig_code,
3796 GET_MODE (operands[0]),
3797 operands[1]));
3798 }
3799
3800 /* Split a TFmode OP[1] into DImode OP[2,3] and likewise for
3801 OP[0] into OP[0,1]. Naturally, output operand ordering is
3802 little-endian. */
3803
3804 void
3805 alpha_split_tfmode_pair (rtx operands[4])
3806 {
3807 if (GET_CODE (operands[1]) == REG)
3808 {
3809 operands[3] = gen_rtx_REG (DImode, REGNO (operands[1]) + 1);
3810 operands[2] = gen_rtx_REG (DImode, REGNO (operands[1]));
3811 }
3812 else if (GET_CODE (operands[1]) == MEM)
3813 {
3814 operands[3] = adjust_address (operands[1], DImode, 8);
3815 operands[2] = adjust_address (operands[1], DImode, 0);
3816 }
3817 else if (operands[1] == CONST0_RTX (TFmode))
3818 operands[2] = operands[3] = const0_rtx;
3819 else
3820 abort ();
3821
3822 if (GET_CODE (operands[0]) == REG)
3823 {
3824 operands[1] = gen_rtx_REG (DImode, REGNO (operands[0]) + 1);
3825 operands[0] = gen_rtx_REG (DImode, REGNO (operands[0]));
3826 }
3827 else if (GET_CODE (operands[0]) == MEM)
3828 {
3829 operands[1] = adjust_address (operands[0], DImode, 8);
3830 operands[0] = adjust_address (operands[0], DImode, 0);
3831 }
3832 else
3833 abort ();
3834 }
3835
3836 /* Implement negtf2 or abstf2. Op0 is destination, op1 is source,
3837 op2 is a register containing the sign bit, operation is the
3838 logical operation to be performed. */
3839
3840 void
3841 alpha_split_tfmode_frobsign (rtx operands[3], rtx (*operation) (rtx, rtx, rtx))
3842 {
3843 rtx high_bit = operands[2];
3844 rtx scratch;
3845 int move;
3846
3847 alpha_split_tfmode_pair (operands);
3848
3849 /* Detect three flavors of operand overlap. */
3850 move = 1;
3851 if (rtx_equal_p (operands[0], operands[2]))
3852 move = 0;
3853 else if (rtx_equal_p (operands[1], operands[2]))
3854 {
3855 if (rtx_equal_p (operands[0], high_bit))
3856 move = 2;
3857 else
3858 move = -1;
3859 }
3860
3861 if (move < 0)
3862 emit_move_insn (operands[0], operands[2]);
3863
3864 /* ??? If the destination overlaps both source tf and high_bit, then
3865 assume source tf is dead in its entirety and use the other half
3866 for a scratch register. Otherwise "scratch" is just the proper
3867 destination register. */
3868 scratch = operands[move < 2 ? 1 : 3];
3869
3870 emit_insn ((*operation) (scratch, high_bit, operands[3]));
3871
3872 if (move > 0)
3873 {
3874 emit_move_insn (operands[0], operands[2]);
3875 if (move > 1)
3876 emit_move_insn (operands[1], scratch);
3877 }
3878 }
3879 \f
3880 /* Use ext[wlq][lh] as the Architecture Handbook describes for extracting
3881 unaligned data:
3882
3883 unsigned: signed:
3884 word: ldq_u r1,X(r11) ldq_u r1,X(r11)
3885 ldq_u r2,X+1(r11) ldq_u r2,X+1(r11)
3886 lda r3,X(r11) lda r3,X+2(r11)
3887 extwl r1,r3,r1 extql r1,r3,r1
3888 extwh r2,r3,r2 extqh r2,r3,r2
3889 or r1.r2.r1 or r1,r2,r1
3890 sra r1,48,r1
3891
3892 long: ldq_u r1,X(r11) ldq_u r1,X(r11)
3893 ldq_u r2,X+3(r11) ldq_u r2,X+3(r11)
3894 lda r3,X(r11) lda r3,X(r11)
3895 extll r1,r3,r1 extll r1,r3,r1
3896 extlh r2,r3,r2 extlh r2,r3,r2
3897 or r1.r2.r1 addl r1,r2,r1
3898
3899 quad: ldq_u r1,X(r11)
3900 ldq_u r2,X+7(r11)
3901 lda r3,X(r11)
3902 extql r1,r3,r1
3903 extqh r2,r3,r2
3904 or r1.r2.r1
3905 */
3906
3907 void
3908 alpha_expand_unaligned_load (rtx tgt, rtx mem, HOST_WIDE_INT size,
3909 HOST_WIDE_INT ofs, int sign)
3910 {
3911 rtx meml, memh, addr, extl, exth, tmp, mema;
3912 enum machine_mode mode;
3913
3914 meml = gen_reg_rtx (DImode);
3915 memh = gen_reg_rtx (DImode);
3916 addr = gen_reg_rtx (DImode);
3917 extl = gen_reg_rtx (DImode);
3918 exth = gen_reg_rtx (DImode);
3919
3920 mema = XEXP (mem, 0);
3921 if (GET_CODE (mema) == LO_SUM)
3922 mema = force_reg (Pmode, mema);
3923
3924 /* AND addresses cannot be in any alias set, since they may implicitly
3925 alias surrounding code. Ideally we'd have some alias set that
3926 covered all types except those with alignment 8 or higher. */
3927
3928 tmp = change_address (mem, DImode,
3929 gen_rtx_AND (DImode,
3930 plus_constant (mema, ofs),
3931 GEN_INT (-8)));
3932 set_mem_alias_set (tmp, 0);
3933 emit_move_insn (meml, tmp);
3934
3935 tmp = change_address (mem, DImode,
3936 gen_rtx_AND (DImode,
3937 plus_constant (mema, ofs + size - 1),
3938 GEN_INT (-8)));
3939 set_mem_alias_set (tmp, 0);
3940 emit_move_insn (memh, tmp);
3941
3942 if (WORDS_BIG_ENDIAN && sign && (size == 2 || size == 4))
3943 {
3944 emit_move_insn (addr, plus_constant (mema, -1));
3945
3946 emit_insn (gen_extqh_be (extl, meml, addr));
3947 emit_insn (gen_extxl_be (exth, memh, GEN_INT (64), addr));
3948
3949 addr = expand_binop (DImode, ior_optab, extl, exth, tgt, 1, OPTAB_WIDEN);
3950 addr = expand_binop (DImode, ashr_optab, addr, GEN_INT (64 - size*8),
3951 addr, 1, OPTAB_WIDEN);
3952 }
3953 else if (sign && size == 2)
3954 {
3955 emit_move_insn (addr, plus_constant (mema, ofs+2));
3956
3957 emit_insn (gen_extxl_le (extl, meml, GEN_INT (64), addr));
3958 emit_insn (gen_extqh_le (exth, memh, addr));
3959
3960 /* We must use tgt here for the target. Alpha-vms port fails if we use
3961 addr for the target, because addr is marked as a pointer and combine
3962 knows that pointers are always sign-extended 32 bit values. */
3963 addr = expand_binop (DImode, ior_optab, extl, exth, tgt, 1, OPTAB_WIDEN);
3964 addr = expand_binop (DImode, ashr_optab, addr, GEN_INT (48),
3965 addr, 1, OPTAB_WIDEN);
3966 }
3967 else
3968 {
3969 if (WORDS_BIG_ENDIAN)
3970 {
3971 emit_move_insn (addr, plus_constant (mema, ofs+size-1));
3972 switch ((int) size)
3973 {
3974 case 2:
3975 emit_insn (gen_extwh_be (extl, meml, addr));
3976 mode = HImode;
3977 break;
3978
3979 case 4:
3980 emit_insn (gen_extlh_be (extl, meml, addr));
3981 mode = SImode;
3982 break;
3983
3984 case 8:
3985 emit_insn (gen_extqh_be (extl, meml, addr));
3986 mode = DImode;
3987 break;
3988
3989 default:
3990 abort ();
3991 }
3992 emit_insn (gen_extxl_be (exth, memh, GEN_INT (size*8), addr));
3993 }
3994 else
3995 {
3996 emit_move_insn (addr, plus_constant (mema, ofs));
3997 emit_insn (gen_extxl_le (extl, meml, GEN_INT (size*8), addr));
3998 switch ((int) size)
3999 {
4000 case 2:
4001 emit_insn (gen_extwh_le (exth, memh, addr));
4002 mode = HImode;
4003 break;
4004
4005 case 4:
4006 emit_insn (gen_extlh_le (exth, memh, addr));
4007 mode = SImode;
4008 break;
4009
4010 case 8:
4011 emit_insn (gen_extqh_le (exth, memh, addr));
4012 mode = DImode;
4013 break;
4014
4015 default:
4016 abort();
4017 }
4018 }
4019
4020 addr = expand_binop (mode, ior_optab, gen_lowpart (mode, extl),
4021 gen_lowpart (mode, exth), gen_lowpart (mode, tgt),
4022 sign, OPTAB_WIDEN);
4023 }
4024
4025 if (addr != tgt)
4026 emit_move_insn (tgt, gen_lowpart(GET_MODE (tgt), addr));
4027 }
4028
4029 /* Similarly, use ins and msk instructions to perform unaligned stores. */
4030
4031 void
4032 alpha_expand_unaligned_store (rtx dst, rtx src,
4033 HOST_WIDE_INT size, HOST_WIDE_INT ofs)
4034 {
4035 rtx dstl, dsth, addr, insl, insh, meml, memh, dsta;
4036
4037 dstl = gen_reg_rtx (DImode);
4038 dsth = gen_reg_rtx (DImode);
4039 insl = gen_reg_rtx (DImode);
4040 insh = gen_reg_rtx (DImode);
4041
4042 dsta = XEXP (dst, 0);
4043 if (GET_CODE (dsta) == LO_SUM)
4044 dsta = force_reg (Pmode, dsta);
4045
4046 /* AND addresses cannot be in any alias set, since they may implicitly
4047 alias surrounding code. Ideally we'd have some alias set that
4048 covered all types except those with alignment 8 or higher. */
4049
4050 meml = change_address (dst, DImode,
4051 gen_rtx_AND (DImode,
4052 plus_constant (dsta, ofs),
4053 GEN_INT (-8)));
4054 set_mem_alias_set (meml, 0);
4055
4056 memh = change_address (dst, DImode,
4057 gen_rtx_AND (DImode,
4058 plus_constant (dsta, ofs + size - 1),
4059 GEN_INT (-8)));
4060 set_mem_alias_set (memh, 0);
4061
4062 emit_move_insn (dsth, memh);
4063 emit_move_insn (dstl, meml);
4064 if (WORDS_BIG_ENDIAN)
4065 {
4066 addr = copy_addr_to_reg (plus_constant (dsta, ofs+size-1));
4067
4068 if (src != const0_rtx)
4069 {
4070 switch ((int) size)
4071 {
4072 case 2:
4073 emit_insn (gen_inswl_be (insh, gen_lowpart (HImode,src), addr));
4074 break;
4075 case 4:
4076 emit_insn (gen_insll_be (insh, gen_lowpart (SImode,src), addr));
4077 break;
4078 case 8:
4079 emit_insn (gen_insql_be (insh, gen_lowpart (DImode,src), addr));
4080 break;
4081 }
4082 emit_insn (gen_insxh (insl, gen_lowpart (DImode, src),
4083 GEN_INT (size*8), addr));
4084 }
4085
4086 switch ((int) size)
4087 {
4088 case 2:
4089 emit_insn (gen_mskxl_be (dsth, dsth, GEN_INT (0xffff), addr));
4090 break;
4091 case 4:
4092 {
4093 rtx msk = immed_double_const (0xffffffff, 0, DImode);
4094 emit_insn (gen_mskxl_be (dsth, dsth, msk, addr));
4095 break;
4096 }
4097 case 8:
4098 emit_insn (gen_mskxl_be (dsth, dsth, constm1_rtx, addr));
4099 break;
4100 }
4101
4102 emit_insn (gen_mskxh (dstl, dstl, GEN_INT (size*8), addr));
4103 }
4104 else
4105 {
4106 addr = copy_addr_to_reg (plus_constant (dsta, ofs));
4107
4108 if (src != const0_rtx)
4109 {
4110 emit_insn (gen_insxh (insh, gen_lowpart (DImode, src),
4111 GEN_INT (size*8), addr));
4112
4113 switch ((int) size)
4114 {
4115 case 2:
4116 emit_insn (gen_inswl_le (insl, gen_lowpart (HImode, src), addr));
4117 break;
4118 case 4:
4119 emit_insn (gen_insll_le (insl, gen_lowpart (SImode, src), addr));
4120 break;
4121 case 8:
4122 emit_insn (gen_insql_le (insl, src, addr));
4123 break;
4124 }
4125 }
4126
4127 emit_insn (gen_mskxh (dsth, dsth, GEN_INT (size*8), addr));
4128
4129 switch ((int) size)
4130 {
4131 case 2:
4132 emit_insn (gen_mskxl_le (dstl, dstl, GEN_INT (0xffff), addr));
4133 break;
4134 case 4:
4135 {
4136 rtx msk = immed_double_const (0xffffffff, 0, DImode);
4137 emit_insn (gen_mskxl_le (dstl, dstl, msk, addr));
4138 break;
4139 }
4140 case 8:
4141 emit_insn (gen_mskxl_le (dstl, dstl, constm1_rtx, addr));
4142 break;
4143 }
4144 }
4145
4146 if (src != const0_rtx)
4147 {
4148 dsth = expand_binop (DImode, ior_optab, insh, dsth, dsth, 0, OPTAB_WIDEN);
4149 dstl = expand_binop (DImode, ior_optab, insl, dstl, dstl, 0, OPTAB_WIDEN);
4150 }
4151
4152 if (WORDS_BIG_ENDIAN)
4153 {
4154 emit_move_insn (meml, dstl);
4155 emit_move_insn (memh, dsth);
4156 }
4157 else
4158 {
4159 /* Must store high before low for degenerate case of aligned. */
4160 emit_move_insn (memh, dsth);
4161 emit_move_insn (meml, dstl);
4162 }
4163 }
4164
4165 /* The block move code tries to maximize speed by separating loads and
4166 stores at the expense of register pressure: we load all of the data
4167 before we store it back out. There are two secondary effects worth
4168 mentioning, that this speeds copying to/from aligned and unaligned
4169 buffers, and that it makes the code significantly easier to write. */
4170
4171 #define MAX_MOVE_WORDS 8
4172
4173 /* Load an integral number of consecutive unaligned quadwords. */
4174
4175 static void
4176 alpha_expand_unaligned_load_words (rtx *out_regs, rtx smem,
4177 HOST_WIDE_INT words, HOST_WIDE_INT ofs)
4178 {
4179 rtx const im8 = GEN_INT (-8);
4180 rtx const i64 = GEN_INT (64);
4181 rtx ext_tmps[MAX_MOVE_WORDS], data_regs[MAX_MOVE_WORDS+1];
4182 rtx sreg, areg, tmp, smema;
4183 HOST_WIDE_INT i;
4184
4185 smema = XEXP (smem, 0);
4186 if (GET_CODE (smema) == LO_SUM)
4187 smema = force_reg (Pmode, smema);
4188
4189 /* Generate all the tmp registers we need. */
4190 for (i = 0; i < words; ++i)
4191 {
4192 data_regs[i] = out_regs[i];
4193 ext_tmps[i] = gen_reg_rtx (DImode);
4194 }
4195 data_regs[words] = gen_reg_rtx (DImode);
4196
4197 if (ofs != 0)
4198 smem = adjust_address (smem, GET_MODE (smem), ofs);
4199
4200 /* Load up all of the source data. */
4201 for (i = 0; i < words; ++i)
4202 {
4203 tmp = change_address (smem, DImode,
4204 gen_rtx_AND (DImode,
4205 plus_constant (smema, 8*i),
4206 im8));
4207 set_mem_alias_set (tmp, 0);
4208 emit_move_insn (data_regs[i], tmp);
4209 }
4210
4211 tmp = change_address (smem, DImode,
4212 gen_rtx_AND (DImode,
4213 plus_constant (smema, 8*words - 1),
4214 im8));
4215 set_mem_alias_set (tmp, 0);
4216 emit_move_insn (data_regs[words], tmp);
4217
4218 /* Extract the half-word fragments. Unfortunately DEC decided to make
4219 extxh with offset zero a noop instead of zeroing the register, so
4220 we must take care of that edge condition ourselves with cmov. */
4221
4222 sreg = copy_addr_to_reg (smema);
4223 areg = expand_binop (DImode, and_optab, sreg, GEN_INT (7), NULL,
4224 1, OPTAB_WIDEN);
4225 if (WORDS_BIG_ENDIAN)
4226 emit_move_insn (sreg, plus_constant (sreg, 7));
4227 for (i = 0; i < words; ++i)
4228 {
4229 if (WORDS_BIG_ENDIAN)
4230 {
4231 emit_insn (gen_extqh_be (data_regs[i], data_regs[i], sreg));
4232 emit_insn (gen_extxl_be (ext_tmps[i], data_regs[i+1], i64, sreg));
4233 }
4234 else
4235 {
4236 emit_insn (gen_extxl_le (data_regs[i], data_regs[i], i64, sreg));
4237 emit_insn (gen_extqh_le (ext_tmps[i], data_regs[i+1], sreg));
4238 }
4239 emit_insn (gen_rtx_SET (VOIDmode, ext_tmps[i],
4240 gen_rtx_IF_THEN_ELSE (DImode,
4241 gen_rtx_EQ (DImode, areg,
4242 const0_rtx),
4243 const0_rtx, ext_tmps[i])));
4244 }
4245
4246 /* Merge the half-words into whole words. */
4247 for (i = 0; i < words; ++i)
4248 {
4249 out_regs[i] = expand_binop (DImode, ior_optab, data_regs[i],
4250 ext_tmps[i], data_regs[i], 1, OPTAB_WIDEN);
4251 }
4252 }
4253
4254 /* Store an integral number of consecutive unaligned quadwords. DATA_REGS
4255 may be NULL to store zeros. */
4256
4257 static void
4258 alpha_expand_unaligned_store_words (rtx *data_regs, rtx dmem,
4259 HOST_WIDE_INT words, HOST_WIDE_INT ofs)
4260 {
4261 rtx const im8 = GEN_INT (-8);
4262 rtx const i64 = GEN_INT (64);
4263 rtx ins_tmps[MAX_MOVE_WORDS];
4264 rtx st_tmp_1, st_tmp_2, dreg;
4265 rtx st_addr_1, st_addr_2, dmema;
4266 HOST_WIDE_INT i;
4267
4268 dmema = XEXP (dmem, 0);
4269 if (GET_CODE (dmema) == LO_SUM)
4270 dmema = force_reg (Pmode, dmema);
4271
4272 /* Generate all the tmp registers we need. */
4273 if (data_regs != NULL)
4274 for (i = 0; i < words; ++i)
4275 ins_tmps[i] = gen_reg_rtx(DImode);
4276 st_tmp_1 = gen_reg_rtx(DImode);
4277 st_tmp_2 = gen_reg_rtx(DImode);
4278
4279 if (ofs != 0)
4280 dmem = adjust_address (dmem, GET_MODE (dmem), ofs);
4281
4282 st_addr_2 = change_address (dmem, DImode,
4283 gen_rtx_AND (DImode,
4284 plus_constant (dmema, words*8 - 1),
4285 im8));
4286 set_mem_alias_set (st_addr_2, 0);
4287
4288 st_addr_1 = change_address (dmem, DImode,
4289 gen_rtx_AND (DImode, dmema, im8));
4290 set_mem_alias_set (st_addr_1, 0);
4291
4292 /* Load up the destination end bits. */
4293 emit_move_insn (st_tmp_2, st_addr_2);
4294 emit_move_insn (st_tmp_1, st_addr_1);
4295
4296 /* Shift the input data into place. */
4297 dreg = copy_addr_to_reg (dmema);
4298 if (WORDS_BIG_ENDIAN)
4299 emit_move_insn (dreg, plus_constant (dreg, 7));
4300 if (data_regs != NULL)
4301 {
4302 for (i = words-1; i >= 0; --i)
4303 {
4304 if (WORDS_BIG_ENDIAN)
4305 {
4306 emit_insn (gen_insql_be (ins_tmps[i], data_regs[i], dreg));
4307 emit_insn (gen_insxh (data_regs[i], data_regs[i], i64, dreg));
4308 }
4309 else
4310 {
4311 emit_insn (gen_insxh (ins_tmps[i], data_regs[i], i64, dreg));
4312 emit_insn (gen_insql_le (data_regs[i], data_regs[i], dreg));
4313 }
4314 }
4315 for (i = words-1; i > 0; --i)
4316 {
4317 ins_tmps[i-1] = expand_binop (DImode, ior_optab, data_regs[i],
4318 ins_tmps[i-1], ins_tmps[i-1], 1,
4319 OPTAB_WIDEN);
4320 }
4321 }
4322
4323 /* Split and merge the ends with the destination data. */
4324 if (WORDS_BIG_ENDIAN)
4325 {
4326 emit_insn (gen_mskxl_be (st_tmp_2, st_tmp_2, constm1_rtx, dreg));
4327 emit_insn (gen_mskxh (st_tmp_1, st_tmp_1, i64, dreg));
4328 }
4329 else
4330 {
4331 emit_insn (gen_mskxh (st_tmp_2, st_tmp_2, i64, dreg));
4332 emit_insn (gen_mskxl_le (st_tmp_1, st_tmp_1, constm1_rtx, dreg));
4333 }
4334
4335 if (data_regs != NULL)
4336 {
4337 st_tmp_2 = expand_binop (DImode, ior_optab, st_tmp_2, ins_tmps[words-1],
4338 st_tmp_2, 1, OPTAB_WIDEN);
4339 st_tmp_1 = expand_binop (DImode, ior_optab, st_tmp_1, data_regs[0],
4340 st_tmp_1, 1, OPTAB_WIDEN);
4341 }
4342
4343 /* Store it all. */
4344 if (WORDS_BIG_ENDIAN)
4345 emit_move_insn (st_addr_1, st_tmp_1);
4346 else
4347 emit_move_insn (st_addr_2, st_tmp_2);
4348 for (i = words-1; i > 0; --i)
4349 {
4350 rtx tmp = change_address (dmem, DImode,
4351 gen_rtx_AND (DImode,
4352 plus_constant(dmema,
4353 WORDS_BIG_ENDIAN ? i*8-1 : i*8),
4354 im8));
4355 set_mem_alias_set (tmp, 0);
4356 emit_move_insn (tmp, data_regs ? ins_tmps[i-1] : const0_rtx);
4357 }
4358 if (WORDS_BIG_ENDIAN)
4359 emit_move_insn (st_addr_2, st_tmp_2);
4360 else
4361 emit_move_insn (st_addr_1, st_tmp_1);
4362 }
4363
4364
4365 /* Expand string/block move operations.
4366
4367 operands[0] is the pointer to the destination.
4368 operands[1] is the pointer to the source.
4369 operands[2] is the number of bytes to move.
4370 operands[3] is the alignment. */
4371
4372 int
4373 alpha_expand_block_move (rtx operands[])
4374 {
4375 rtx bytes_rtx = operands[2];
4376 rtx align_rtx = operands[3];
4377 HOST_WIDE_INT orig_bytes = INTVAL (bytes_rtx);
4378 HOST_WIDE_INT bytes = orig_bytes;
4379 HOST_WIDE_INT src_align = INTVAL (align_rtx) * BITS_PER_UNIT;
4380 HOST_WIDE_INT dst_align = src_align;
4381 rtx orig_src = operands[1];
4382 rtx orig_dst = operands[0];
4383 rtx data_regs[2 * MAX_MOVE_WORDS + 16];
4384 rtx tmp;
4385 unsigned int i, words, ofs, nregs = 0;
4386
4387 if (orig_bytes <= 0)
4388 return 1;
4389 else if (orig_bytes > MAX_MOVE_WORDS * UNITS_PER_WORD)
4390 return 0;
4391
4392 /* Look for additional alignment information from recorded register info. */
4393
4394 tmp = XEXP (orig_src, 0);
4395 if (GET_CODE (tmp) == REG)
4396 src_align = MAX (src_align, REGNO_POINTER_ALIGN (REGNO (tmp)));
4397 else if (GET_CODE (tmp) == PLUS
4398 && GET_CODE (XEXP (tmp, 0)) == REG
4399 && GET_CODE (XEXP (tmp, 1)) == CONST_INT)
4400 {
4401 unsigned HOST_WIDE_INT c = INTVAL (XEXP (tmp, 1));
4402 unsigned int a = REGNO_POINTER_ALIGN (REGNO (XEXP (tmp, 0)));
4403
4404 if (a > src_align)
4405 {
4406 if (a >= 64 && c % 8 == 0)
4407 src_align = 64;
4408 else if (a >= 32 && c % 4 == 0)
4409 src_align = 32;
4410 else if (a >= 16 && c % 2 == 0)
4411 src_align = 16;
4412 }
4413 }
4414
4415 tmp = XEXP (orig_dst, 0);
4416 if (GET_CODE (tmp) == REG)
4417 dst_align = MAX (dst_align, REGNO_POINTER_ALIGN (REGNO (tmp)));
4418 else if (GET_CODE (tmp) == PLUS
4419 && GET_CODE (XEXP (tmp, 0)) == REG
4420 && GET_CODE (XEXP (tmp, 1)) == CONST_INT)
4421 {
4422 unsigned HOST_WIDE_INT c = INTVAL (XEXP (tmp, 1));
4423 unsigned int a = REGNO_POINTER_ALIGN (REGNO (XEXP (tmp, 0)));
4424
4425 if (a > dst_align)
4426 {
4427 if (a >= 64 && c % 8 == 0)
4428 dst_align = 64;
4429 else if (a >= 32 && c % 4 == 0)
4430 dst_align = 32;
4431 else if (a >= 16 && c % 2 == 0)
4432 dst_align = 16;
4433 }
4434 }
4435
4436 /* Load the entire block into registers. */
4437 if (GET_CODE (XEXP (orig_src, 0)) == ADDRESSOF)
4438 {
4439 enum machine_mode mode;
4440
4441 tmp = XEXP (XEXP (orig_src, 0), 0);
4442
4443 /* Don't use the existing register if we're reading more than
4444 is held in the register. Nor if there is not a mode that
4445 handles the exact size. */
4446 mode = mode_for_size (bytes * BITS_PER_UNIT, MODE_INT, 1);
4447 if (GET_CODE (tmp) == REG
4448 && mode != BLKmode
4449 && GET_MODE_SIZE (GET_MODE (tmp)) >= bytes)
4450 {
4451 if (mode == TImode)
4452 {
4453 data_regs[nregs] = gen_lowpart (DImode, tmp);
4454 data_regs[nregs + 1] = gen_highpart (DImode, tmp);
4455 nregs += 2;
4456 }
4457 else
4458 data_regs[nregs++] = gen_lowpart (mode, tmp);
4459
4460 goto src_done;
4461 }
4462
4463 /* No appropriate mode; fall back on memory. */
4464 orig_src = replace_equiv_address (orig_src,
4465 copy_addr_to_reg (XEXP (orig_src, 0)));
4466 src_align = GET_MODE_BITSIZE (GET_MODE (tmp));
4467 }
4468
4469 ofs = 0;
4470 if (src_align >= 64 && bytes >= 8)
4471 {
4472 words = bytes / 8;
4473
4474 for (i = 0; i < words; ++i)
4475 data_regs[nregs + i] = gen_reg_rtx (DImode);
4476
4477 for (i = 0; i < words; ++i)
4478 emit_move_insn (data_regs[nregs + i],
4479 adjust_address (orig_src, DImode, ofs + i * 8));
4480
4481 nregs += words;
4482 bytes -= words * 8;
4483 ofs += words * 8;
4484 }
4485
4486 if (src_align >= 32 && bytes >= 4)
4487 {
4488 words = bytes / 4;
4489
4490 for (i = 0; i < words; ++i)
4491 data_regs[nregs + i] = gen_reg_rtx (SImode);
4492
4493 for (i = 0; i < words; ++i)
4494 emit_move_insn (data_regs[nregs + i],
4495 adjust_address (orig_src, SImode, ofs + i * 4));
4496
4497 nregs += words;
4498 bytes -= words * 4;
4499 ofs += words * 4;
4500 }
4501
4502 if (bytes >= 8)
4503 {
4504 words = bytes / 8;
4505
4506 for (i = 0; i < words+1; ++i)
4507 data_regs[nregs + i] = gen_reg_rtx (DImode);
4508
4509 alpha_expand_unaligned_load_words (data_regs + nregs, orig_src,
4510 words, ofs);
4511
4512 nregs += words;
4513 bytes -= words * 8;
4514 ofs += words * 8;
4515 }
4516
4517 if (! TARGET_BWX && bytes >= 4)
4518 {
4519 data_regs[nregs++] = tmp = gen_reg_rtx (SImode);
4520 alpha_expand_unaligned_load (tmp, orig_src, 4, ofs, 0);
4521 bytes -= 4;
4522 ofs += 4;
4523 }
4524
4525 if (bytes >= 2)
4526 {
4527 if (src_align >= 16)
4528 {
4529 do {
4530 data_regs[nregs++] = tmp = gen_reg_rtx (HImode);
4531 emit_move_insn (tmp, adjust_address (orig_src, HImode, ofs));
4532 bytes -= 2;
4533 ofs += 2;
4534 } while (bytes >= 2);
4535 }
4536 else if (! TARGET_BWX)
4537 {
4538 data_regs[nregs++] = tmp = gen_reg_rtx (HImode);
4539 alpha_expand_unaligned_load (tmp, orig_src, 2, ofs, 0);
4540 bytes -= 2;
4541 ofs += 2;
4542 }
4543 }
4544
4545 while (bytes > 0)
4546 {
4547 data_regs[nregs++] = tmp = gen_reg_rtx (QImode);
4548 emit_move_insn (tmp, adjust_address (orig_src, QImode, ofs));
4549 bytes -= 1;
4550 ofs += 1;
4551 }
4552
4553 src_done:
4554
4555 if (nregs > ARRAY_SIZE (data_regs))
4556 abort ();
4557
4558 /* Now save it back out again. */
4559
4560 i = 0, ofs = 0;
4561
4562 if (GET_CODE (XEXP (orig_dst, 0)) == ADDRESSOF)
4563 {
4564 enum machine_mode mode;
4565 tmp = XEXP (XEXP (orig_dst, 0), 0);
4566
4567 mode = mode_for_size (orig_bytes * BITS_PER_UNIT, MODE_INT, 1);
4568 if (GET_CODE (tmp) == REG && GET_MODE (tmp) == mode)
4569 {
4570 if (nregs == 1)
4571 {
4572 emit_move_insn (tmp, data_regs[0]);
4573 i = 1;
4574 goto dst_done;
4575 }
4576
4577 else if (nregs == 2 && mode == TImode)
4578 {
4579 /* Undo the subregging done above when copying between
4580 two TImode registers. */
4581 if (GET_CODE (data_regs[0]) == SUBREG
4582 && GET_MODE (SUBREG_REG (data_regs[0])) == TImode)
4583 emit_move_insn (tmp, SUBREG_REG (data_regs[0]));
4584 else
4585 {
4586 rtx seq;
4587
4588 start_sequence ();
4589 emit_move_insn (gen_lowpart (DImode, tmp), data_regs[0]);
4590 emit_move_insn (gen_highpart (DImode, tmp), data_regs[1]);
4591 seq = get_insns ();
4592 end_sequence ();
4593
4594 emit_no_conflict_block (seq, tmp, data_regs[0],
4595 data_regs[1], NULL_RTX);
4596 }
4597
4598 i = 2;
4599 goto dst_done;
4600 }
4601 }
4602
4603 /* ??? If nregs > 1, consider reconstructing the word in regs. */
4604 /* ??? Optimize mode < dst_mode with strict_low_part. */
4605
4606 /* No appropriate mode; fall back on memory. We can speed things
4607 up by recognizing extra alignment information. */
4608 orig_dst = replace_equiv_address (orig_dst,
4609 copy_addr_to_reg (XEXP (orig_dst, 0)));
4610 dst_align = GET_MODE_BITSIZE (GET_MODE (tmp));
4611 }
4612
4613 /* Write out the data in whatever chunks reading the source allowed. */
4614 if (dst_align >= 64)
4615 {
4616 while (i < nregs && GET_MODE (data_regs[i]) == DImode)
4617 {
4618 emit_move_insn (adjust_address (orig_dst, DImode, ofs),
4619 data_regs[i]);
4620 ofs += 8;
4621 i++;
4622 }
4623 }
4624
4625 if (dst_align >= 32)
4626 {
4627 /* If the source has remaining DImode regs, write them out in
4628 two pieces. */
4629 while (i < nregs && GET_MODE (data_regs[i]) == DImode)
4630 {
4631 tmp = expand_binop (DImode, lshr_optab, data_regs[i], GEN_INT (32),
4632 NULL_RTX, 1, OPTAB_WIDEN);
4633
4634 emit_move_insn (adjust_address (orig_dst, SImode, ofs),
4635 gen_lowpart (SImode, data_regs[i]));
4636 emit_move_insn (adjust_address (orig_dst, SImode, ofs + 4),
4637 gen_lowpart (SImode, tmp));
4638 ofs += 8;
4639 i++;
4640 }
4641
4642 while (i < nregs && GET_MODE (data_regs[i]) == SImode)
4643 {
4644 emit_move_insn (adjust_address (orig_dst, SImode, ofs),
4645 data_regs[i]);
4646 ofs += 4;
4647 i++;
4648 }
4649 }
4650
4651 if (i < nregs && GET_MODE (data_regs[i]) == DImode)
4652 {
4653 /* Write out a remaining block of words using unaligned methods. */
4654
4655 for (words = 1; i + words < nregs; words++)
4656 if (GET_MODE (data_regs[i + words]) != DImode)
4657 break;
4658
4659 if (words == 1)
4660 alpha_expand_unaligned_store (orig_dst, data_regs[i], 8, ofs);
4661 else
4662 alpha_expand_unaligned_store_words (data_regs + i, orig_dst,
4663 words, ofs);
4664
4665 i += words;
4666 ofs += words * 8;
4667 }
4668
4669 /* Due to the above, this won't be aligned. */
4670 /* ??? If we have more than one of these, consider constructing full
4671 words in registers and using alpha_expand_unaligned_store_words. */
4672 while (i < nregs && GET_MODE (data_regs[i]) == SImode)
4673 {
4674 alpha_expand_unaligned_store (orig_dst, data_regs[i], 4, ofs);
4675 ofs += 4;
4676 i++;
4677 }
4678
4679 if (dst_align >= 16)
4680 while (i < nregs && GET_MODE (data_regs[i]) == HImode)
4681 {
4682 emit_move_insn (adjust_address (orig_dst, HImode, ofs), data_regs[i]);
4683 i++;
4684 ofs += 2;
4685 }
4686 else
4687 while (i < nregs && GET_MODE (data_regs[i]) == HImode)
4688 {
4689 alpha_expand_unaligned_store (orig_dst, data_regs[i], 2, ofs);
4690 i++;
4691 ofs += 2;
4692 }
4693
4694 while (i < nregs && GET_MODE (data_regs[i]) == QImode)
4695 {
4696 emit_move_insn (adjust_address (orig_dst, QImode, ofs), data_regs[i]);
4697 i++;
4698 ofs += 1;
4699 }
4700
4701 dst_done:
4702
4703 if (i != nregs)
4704 abort ();
4705
4706 return 1;
4707 }
4708
4709 int
4710 alpha_expand_block_clear (rtx operands[])
4711 {
4712 rtx bytes_rtx = operands[1];
4713 rtx align_rtx = operands[2];
4714 HOST_WIDE_INT orig_bytes = INTVAL (bytes_rtx);
4715 HOST_WIDE_INT bytes = orig_bytes;
4716 HOST_WIDE_INT align = INTVAL (align_rtx) * BITS_PER_UNIT;
4717 HOST_WIDE_INT alignofs = 0;
4718 rtx orig_dst = operands[0];
4719 rtx tmp;
4720 int i, words, ofs = 0;
4721
4722 if (orig_bytes <= 0)
4723 return 1;
4724 if (orig_bytes > MAX_MOVE_WORDS * UNITS_PER_WORD)
4725 return 0;
4726
4727 /* Look for stricter alignment. */
4728 tmp = XEXP (orig_dst, 0);
4729 if (GET_CODE (tmp) == REG)
4730 align = MAX (align, REGNO_POINTER_ALIGN (REGNO (tmp)));
4731 else if (GET_CODE (tmp) == PLUS
4732 && GET_CODE (XEXP (tmp, 0)) == REG
4733 && GET_CODE (XEXP (tmp, 1)) == CONST_INT)
4734 {
4735 HOST_WIDE_INT c = INTVAL (XEXP (tmp, 1));
4736 int a = REGNO_POINTER_ALIGN (REGNO (XEXP (tmp, 0)));
4737
4738 if (a > align)
4739 {
4740 if (a >= 64)
4741 align = a, alignofs = 8 - c % 8;
4742 else if (a >= 32)
4743 align = a, alignofs = 4 - c % 4;
4744 else if (a >= 16)
4745 align = a, alignofs = 2 - c % 2;
4746 }
4747 }
4748 else if (GET_CODE (tmp) == ADDRESSOF)
4749 {
4750 enum machine_mode mode;
4751
4752 mode = mode_for_size (bytes * BITS_PER_UNIT, MODE_INT, 1);
4753 if (GET_MODE (XEXP (tmp, 0)) == mode)
4754 {
4755 emit_move_insn (XEXP (tmp, 0), const0_rtx);
4756 return 1;
4757 }
4758
4759 /* No appropriate mode; fall back on memory. */
4760 orig_dst = replace_equiv_address (orig_dst, copy_addr_to_reg (tmp));
4761 align = GET_MODE_BITSIZE (GET_MODE (XEXP (tmp, 0)));
4762 }
4763
4764 /* Handle an unaligned prefix first. */
4765
4766 if (alignofs > 0)
4767 {
4768 #if HOST_BITS_PER_WIDE_INT >= 64
4769 /* Given that alignofs is bounded by align, the only time BWX could
4770 generate three stores is for a 7 byte fill. Prefer two individual
4771 stores over a load/mask/store sequence. */
4772 if ((!TARGET_BWX || alignofs == 7)
4773 && align >= 32
4774 && !(alignofs == 4 && bytes >= 4))
4775 {
4776 enum machine_mode mode = (align >= 64 ? DImode : SImode);
4777 int inv_alignofs = (align >= 64 ? 8 : 4) - alignofs;
4778 rtx mem, tmp;
4779 HOST_WIDE_INT mask;
4780
4781 mem = adjust_address (orig_dst, mode, ofs - inv_alignofs);
4782 set_mem_alias_set (mem, 0);
4783
4784 mask = ~(~(HOST_WIDE_INT)0 << (inv_alignofs * 8));
4785 if (bytes < alignofs)
4786 {
4787 mask |= ~(HOST_WIDE_INT)0 << ((inv_alignofs + bytes) * 8);
4788 ofs += bytes;
4789 bytes = 0;
4790 }
4791 else
4792 {
4793 bytes -= alignofs;
4794 ofs += alignofs;
4795 }
4796 alignofs = 0;
4797
4798 tmp = expand_binop (mode, and_optab, mem, GEN_INT (mask),
4799 NULL_RTX, 1, OPTAB_WIDEN);
4800
4801 emit_move_insn (mem, tmp);
4802 }
4803 #endif
4804
4805 if (TARGET_BWX && (alignofs & 1) && bytes >= 1)
4806 {
4807 emit_move_insn (adjust_address (orig_dst, QImode, ofs), const0_rtx);
4808 bytes -= 1;
4809 ofs += 1;
4810 alignofs -= 1;
4811 }
4812 if (TARGET_BWX && align >= 16 && (alignofs & 3) == 2 && bytes >= 2)
4813 {
4814 emit_move_insn (adjust_address (orig_dst, HImode, ofs), const0_rtx);
4815 bytes -= 2;
4816 ofs += 2;
4817 alignofs -= 2;
4818 }
4819 if (alignofs == 4 && bytes >= 4)
4820 {
4821 emit_move_insn (adjust_address (orig_dst, SImode, ofs), const0_rtx);
4822 bytes -= 4;
4823 ofs += 4;
4824 alignofs = 0;
4825 }
4826
4827 /* If we've not used the extra lead alignment information by now,
4828 we won't be able to. Downgrade align to match what's left over. */
4829 if (alignofs > 0)
4830 {
4831 alignofs = alignofs & -alignofs;
4832 align = MIN (align, alignofs * BITS_PER_UNIT);
4833 }
4834 }
4835
4836 /* Handle a block of contiguous long-words. */
4837
4838 if (align >= 64 && bytes >= 8)
4839 {
4840 words = bytes / 8;
4841
4842 for (i = 0; i < words; ++i)
4843 emit_move_insn (adjust_address (orig_dst, DImode, ofs + i * 8),
4844 const0_rtx);
4845
4846 bytes -= words * 8;
4847 ofs += words * 8;
4848 }
4849
4850 /* If the block is large and appropriately aligned, emit a single
4851 store followed by a sequence of stq_u insns. */
4852
4853 if (align >= 32 && bytes > 16)
4854 {
4855 rtx orig_dsta;
4856
4857 emit_move_insn (adjust_address (orig_dst, SImode, ofs), const0_rtx);
4858 bytes -= 4;
4859 ofs += 4;
4860
4861 orig_dsta = XEXP (orig_dst, 0);
4862 if (GET_CODE (orig_dsta) == LO_SUM)
4863 orig_dsta = force_reg (Pmode, orig_dsta);
4864
4865 words = bytes / 8;
4866 for (i = 0; i < words; ++i)
4867 {
4868 rtx mem
4869 = change_address (orig_dst, DImode,
4870 gen_rtx_AND (DImode,
4871 plus_constant (orig_dsta, ofs + i*8),
4872 GEN_INT (-8)));
4873 set_mem_alias_set (mem, 0);
4874 emit_move_insn (mem, const0_rtx);
4875 }
4876
4877 /* Depending on the alignment, the first stq_u may have overlapped
4878 with the initial stl, which means that the last stq_u didn't
4879 write as much as it would appear. Leave those questionable bytes
4880 unaccounted for. */
4881 bytes -= words * 8 - 4;
4882 ofs += words * 8 - 4;
4883 }
4884
4885 /* Handle a smaller block of aligned words. */
4886
4887 if ((align >= 64 && bytes == 4)
4888 || (align == 32 && bytes >= 4))
4889 {
4890 words = bytes / 4;
4891
4892 for (i = 0; i < words; ++i)
4893 emit_move_insn (adjust_address (orig_dst, SImode, ofs + i * 4),
4894 const0_rtx);
4895
4896 bytes -= words * 4;
4897 ofs += words * 4;
4898 }
4899
4900 /* An unaligned block uses stq_u stores for as many as possible. */
4901
4902 if (bytes >= 8)
4903 {
4904 words = bytes / 8;
4905
4906 alpha_expand_unaligned_store_words (NULL, orig_dst, words, ofs);
4907
4908 bytes -= words * 8;
4909 ofs += words * 8;
4910 }
4911
4912 /* Next clean up any trailing pieces. */
4913
4914 #if HOST_BITS_PER_WIDE_INT >= 64
4915 /* Count the number of bits in BYTES for which aligned stores could
4916 be emitted. */
4917 words = 0;
4918 for (i = (TARGET_BWX ? 1 : 4); i * BITS_PER_UNIT <= align ; i <<= 1)
4919 if (bytes & i)
4920 words += 1;
4921
4922 /* If we have appropriate alignment (and it wouldn't take too many
4923 instructions otherwise), mask out the bytes we need. */
4924 if (TARGET_BWX ? words > 2 : bytes > 0)
4925 {
4926 if (align >= 64)
4927 {
4928 rtx mem, tmp;
4929 HOST_WIDE_INT mask;
4930
4931 mem = adjust_address (orig_dst, DImode, ofs);
4932 set_mem_alias_set (mem, 0);
4933
4934 mask = ~(HOST_WIDE_INT)0 << (bytes * 8);
4935
4936 tmp = expand_binop (DImode, and_optab, mem, GEN_INT (mask),
4937 NULL_RTX, 1, OPTAB_WIDEN);
4938
4939 emit_move_insn (mem, tmp);
4940 return 1;
4941 }
4942 else if (align >= 32 && bytes < 4)
4943 {
4944 rtx mem, tmp;
4945 HOST_WIDE_INT mask;
4946
4947 mem = adjust_address (orig_dst, SImode, ofs);
4948 set_mem_alias_set (mem, 0);
4949
4950 mask = ~(HOST_WIDE_INT)0 << (bytes * 8);
4951
4952 tmp = expand_binop (SImode, and_optab, mem, GEN_INT (mask),
4953 NULL_RTX, 1, OPTAB_WIDEN);
4954
4955 emit_move_insn (mem, tmp);
4956 return 1;
4957 }
4958 }
4959 #endif
4960
4961 if (!TARGET_BWX && bytes >= 4)
4962 {
4963 alpha_expand_unaligned_store (orig_dst, const0_rtx, 4, ofs);
4964 bytes -= 4;
4965 ofs += 4;
4966 }
4967
4968 if (bytes >= 2)
4969 {
4970 if (align >= 16)
4971 {
4972 do {
4973 emit_move_insn (adjust_address (orig_dst, HImode, ofs),
4974 const0_rtx);
4975 bytes -= 2;
4976 ofs += 2;
4977 } while (bytes >= 2);
4978 }
4979 else if (! TARGET_BWX)
4980 {
4981 alpha_expand_unaligned_store (orig_dst, const0_rtx, 2, ofs);
4982 bytes -= 2;
4983 ofs += 2;
4984 }
4985 }
4986
4987 while (bytes > 0)
4988 {
4989 emit_move_insn (adjust_address (orig_dst, QImode, ofs), const0_rtx);
4990 bytes -= 1;
4991 ofs += 1;
4992 }
4993
4994 return 1;
4995 }
4996
4997 /* Returns a mask so that zap(x, value) == x & mask. */
4998
4999 rtx
5000 alpha_expand_zap_mask (HOST_WIDE_INT value)
5001 {
5002 rtx result;
5003 int i;
5004
5005 if (HOST_BITS_PER_WIDE_INT >= 64)
5006 {
5007 HOST_WIDE_INT mask = 0;
5008
5009 for (i = 7; i >= 0; --i)
5010 {
5011 mask <<= 8;
5012 if (!((value >> i) & 1))
5013 mask |= 0xff;
5014 }
5015
5016 result = gen_int_mode (mask, DImode);
5017 }
5018 else if (HOST_BITS_PER_WIDE_INT == 32)
5019 {
5020 HOST_WIDE_INT mask_lo = 0, mask_hi = 0;
5021
5022 for (i = 7; i >= 4; --i)
5023 {
5024 mask_hi <<= 8;
5025 if (!((value >> i) & 1))
5026 mask_hi |= 0xff;
5027 }
5028
5029 for (i = 3; i >= 0; --i)
5030 {
5031 mask_lo <<= 8;
5032 if (!((value >> i) & 1))
5033 mask_lo |= 0xff;
5034 }
5035
5036 result = immed_double_const (mask_lo, mask_hi, DImode);
5037 }
5038 else
5039 abort ();
5040
5041 return result;
5042 }
5043
5044 void
5045 alpha_expand_builtin_vector_binop (rtx (*gen) (rtx, rtx, rtx),
5046 enum machine_mode mode,
5047 rtx op0, rtx op1, rtx op2)
5048 {
5049 op0 = gen_lowpart (mode, op0);
5050
5051 if (op1 == const0_rtx)
5052 op1 = CONST0_RTX (mode);
5053 else
5054 op1 = gen_lowpart (mode, op1);
5055
5056 if (op2 == const0_rtx)
5057 op2 = CONST0_RTX (mode);
5058 else
5059 op2 = gen_lowpart (mode, op2);
5060
5061 emit_insn ((*gen) (op0, op1, op2));
5062 }
5063 \f
5064 /* Adjust the cost of a scheduling dependency. Return the new cost of
5065 a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
5066
5067 static int
5068 alpha_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
5069 {
5070 enum attr_type insn_type, dep_insn_type;
5071
5072 /* If the dependence is an anti-dependence, there is no cost. For an
5073 output dependence, there is sometimes a cost, but it doesn't seem
5074 worth handling those few cases. */
5075 if (REG_NOTE_KIND (link) != 0)
5076 return cost;
5077
5078 /* If we can't recognize the insns, we can't really do anything. */
5079 if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0)
5080 return cost;
5081
5082 insn_type = get_attr_type (insn);
5083 dep_insn_type = get_attr_type (dep_insn);
5084
5085 /* Bring in the user-defined memory latency. */
5086 if (dep_insn_type == TYPE_ILD
5087 || dep_insn_type == TYPE_FLD
5088 || dep_insn_type == TYPE_LDSYM)
5089 cost += alpha_memory_latency-1;
5090
5091 /* Everything else handled in DFA bypasses now. */
5092
5093 return cost;
5094 }
5095
5096 /* The number of instructions that can be issued per cycle. */
5097
5098 static int
5099 alpha_issue_rate (void)
5100 {
5101 return (alpha_cpu == PROCESSOR_EV4 ? 2 : 4);
5102 }
5103
5104 static int
5105 alpha_use_dfa_pipeline_interface (void)
5106 {
5107 return true;
5108 }
5109
5110 /* How many alternative schedules to try. This should be as wide as the
5111 scheduling freedom in the DFA, but no wider. Making this value too
5112 large results extra work for the scheduler.
5113
5114 For EV4, loads can be issued to either IB0 or IB1, thus we have 2
5115 alternative schedules. For EV5, we can choose between E0/E1 and
5116 FA/FM. For EV6, an arithmetic insn can be issued to U0/U1/L0/L1. */
5117
5118 static int
5119 alpha_multipass_dfa_lookahead (void)
5120 {
5121 return (alpha_cpu == PROCESSOR_EV6 ? 4 : 2);
5122 }
5123 \f
5124 /* Machine-specific function data. */
5125
5126 struct machine_function GTY(())
5127 {
5128 /* For unicosmk. */
5129 /* List of call information words for calls from this function. */
5130 struct rtx_def *first_ciw;
5131 struct rtx_def *last_ciw;
5132 int ciw_count;
5133
5134 /* List of deferred case vectors. */
5135 struct rtx_def *addr_list;
5136
5137 /* For OSF. */
5138 const char *some_ld_name;
5139 };
5140
5141 /* How to allocate a 'struct machine_function'. */
5142
5143 static struct machine_function *
5144 alpha_init_machine_status (void)
5145 {
5146 return ((struct machine_function *)
5147 ggc_alloc_cleared (sizeof (struct machine_function)));
5148 }
5149
5150 /* Functions to save and restore alpha_return_addr_rtx. */
5151
5152 /* Start the ball rolling with RETURN_ADDR_RTX. */
5153
5154 rtx
5155 alpha_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
5156 {
5157 if (count != 0)
5158 return const0_rtx;
5159
5160 return get_hard_reg_initial_val (Pmode, REG_RA);
5161 }
5162
5163 /* Return or create a pseudo containing the gp value for the current
5164 function. Needed only if TARGET_LD_BUGGY_LDGP. */
5165
5166 rtx
5167 alpha_gp_save_rtx (void)
5168 {
5169 rtx r = get_hard_reg_initial_val (DImode, 29);
5170 if (GET_CODE (r) != MEM)
5171 r = gen_mem_addressof (r, NULL_TREE, /*rescan=*/true);
5172 return r;
5173 }
5174
5175 static int
5176 alpha_ra_ever_killed (void)
5177 {
5178 rtx top;
5179
5180 if (!has_hard_reg_initial_val (Pmode, REG_RA))
5181 return regs_ever_live[REG_RA];
5182
5183 push_topmost_sequence ();
5184 top = get_insns ();
5185 pop_topmost_sequence ();
5186
5187 return reg_set_between_p (gen_rtx_REG (Pmode, REG_RA), top, NULL_RTX);
5188 }
5189
5190 \f
5191 /* Return the trap mode suffix applicable to the current
5192 instruction, or NULL. */
5193
5194 static const char *
5195 get_trap_mode_suffix (void)
5196 {
5197 enum attr_trap_suffix s = get_attr_trap_suffix (current_output_insn);
5198
5199 switch (s)
5200 {
5201 case TRAP_SUFFIX_NONE:
5202 return NULL;
5203
5204 case TRAP_SUFFIX_SU:
5205 if (alpha_fptm >= ALPHA_FPTM_SU)
5206 return "su";
5207 return NULL;
5208
5209 case TRAP_SUFFIX_SUI:
5210 if (alpha_fptm >= ALPHA_FPTM_SUI)
5211 return "sui";
5212 return NULL;
5213
5214 case TRAP_SUFFIX_V_SV:
5215 switch (alpha_fptm)
5216 {
5217 case ALPHA_FPTM_N:
5218 return NULL;
5219 case ALPHA_FPTM_U:
5220 return "v";
5221 case ALPHA_FPTM_SU:
5222 case ALPHA_FPTM_SUI:
5223 return "sv";
5224 }
5225 break;
5226
5227 case TRAP_SUFFIX_V_SV_SVI:
5228 switch (alpha_fptm)
5229 {
5230 case ALPHA_FPTM_N:
5231 return NULL;
5232 case ALPHA_FPTM_U:
5233 return "v";
5234 case ALPHA_FPTM_SU:
5235 return "sv";
5236 case ALPHA_FPTM_SUI:
5237 return "svi";
5238 }
5239 break;
5240
5241 case TRAP_SUFFIX_U_SU_SUI:
5242 switch (alpha_fptm)
5243 {
5244 case ALPHA_FPTM_N:
5245 return NULL;
5246 case ALPHA_FPTM_U:
5247 return "u";
5248 case ALPHA_FPTM_SU:
5249 return "su";
5250 case ALPHA_FPTM_SUI:
5251 return "sui";
5252 }
5253 break;
5254 }
5255 abort ();
5256 }
5257
5258 /* Return the rounding mode suffix applicable to the current
5259 instruction, or NULL. */
5260
5261 static const char *
5262 get_round_mode_suffix (void)
5263 {
5264 enum attr_round_suffix s = get_attr_round_suffix (current_output_insn);
5265
5266 switch (s)
5267 {
5268 case ROUND_SUFFIX_NONE:
5269 return NULL;
5270 case ROUND_SUFFIX_NORMAL:
5271 switch (alpha_fprm)
5272 {
5273 case ALPHA_FPRM_NORM:
5274 return NULL;
5275 case ALPHA_FPRM_MINF:
5276 return "m";
5277 case ALPHA_FPRM_CHOP:
5278 return "c";
5279 case ALPHA_FPRM_DYN:
5280 return "d";
5281 }
5282 break;
5283
5284 case ROUND_SUFFIX_C:
5285 return "c";
5286 }
5287 abort ();
5288 }
5289
5290 /* Locate some local-dynamic symbol still in use by this function
5291 so that we can print its name in some movdi_er_tlsldm pattern. */
5292
5293 static int
5294 get_some_local_dynamic_name_1 (rtx *px, void *data ATTRIBUTE_UNUSED)
5295 {
5296 rtx x = *px;
5297
5298 if (GET_CODE (x) == SYMBOL_REF
5299 && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
5300 {
5301 cfun->machine->some_ld_name = XSTR (x, 0);
5302 return 1;
5303 }
5304
5305 return 0;
5306 }
5307
5308 static const char *
5309 get_some_local_dynamic_name (void)
5310 {
5311 rtx insn;
5312
5313 if (cfun->machine->some_ld_name)
5314 return cfun->machine->some_ld_name;
5315
5316 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
5317 if (INSN_P (insn)
5318 && for_each_rtx (&PATTERN (insn), get_some_local_dynamic_name_1, 0))
5319 return cfun->machine->some_ld_name;
5320
5321 abort ();
5322 }
5323
5324 /* Print an operand. Recognize special options, documented below. */
5325
5326 void
5327 print_operand (FILE *file, rtx x, int code)
5328 {
5329 int i;
5330
5331 switch (code)
5332 {
5333 case '~':
5334 /* Print the assembler name of the current function. */
5335 assemble_name (file, alpha_fnname);
5336 break;
5337
5338 case '&':
5339 assemble_name (file, get_some_local_dynamic_name ());
5340 break;
5341
5342 case '/':
5343 {
5344 const char *trap = get_trap_mode_suffix ();
5345 const char *round = get_round_mode_suffix ();
5346
5347 if (trap || round)
5348 fprintf (file, (TARGET_AS_SLASH_BEFORE_SUFFIX ? "/%s%s" : "%s%s"),
5349 (trap ? trap : ""), (round ? round : ""));
5350 break;
5351 }
5352
5353 case ',':
5354 /* Generates single precision instruction suffix. */
5355 fputc ((TARGET_FLOAT_VAX ? 'f' : 's'), file);
5356 break;
5357
5358 case '-':
5359 /* Generates double precision instruction suffix. */
5360 fputc ((TARGET_FLOAT_VAX ? 'g' : 't'), file);
5361 break;
5362
5363 case '+':
5364 /* Generates a nop after a noreturn call at the very end of the
5365 function. */
5366 if (next_real_insn (current_output_insn) == 0)
5367 fprintf (file, "\n\tnop");
5368 break;
5369
5370 case '#':
5371 if (alpha_this_literal_sequence_number == 0)
5372 alpha_this_literal_sequence_number = alpha_next_sequence_number++;
5373 fprintf (file, "%d", alpha_this_literal_sequence_number);
5374 break;
5375
5376 case '*':
5377 if (alpha_this_gpdisp_sequence_number == 0)
5378 alpha_this_gpdisp_sequence_number = alpha_next_sequence_number++;
5379 fprintf (file, "%d", alpha_this_gpdisp_sequence_number);
5380 break;
5381
5382 case 'H':
5383 if (GET_CODE (x) == HIGH)
5384 output_addr_const (file, XEXP (x, 0));
5385 else
5386 output_operand_lossage ("invalid %%H value");
5387 break;
5388
5389 case 'J':
5390 {
5391 const char *lituse;
5392
5393 if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLSGD_CALL)
5394 {
5395 x = XVECEXP (x, 0, 0);
5396 lituse = "lituse_tlsgd";
5397 }
5398 else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLSLDM_CALL)
5399 {
5400 x = XVECEXP (x, 0, 0);
5401 lituse = "lituse_tlsldm";
5402 }
5403 else if (GET_CODE (x) == CONST_INT)
5404 lituse = "lituse_jsr";
5405 else
5406 {
5407 output_operand_lossage ("invalid %%J value");
5408 break;
5409 }
5410
5411 if (x != const0_rtx)
5412 fprintf (file, "\t\t!%s!%d", lituse, (int) INTVAL (x));
5413 }
5414 break;
5415
5416 case 'r':
5417 /* If this operand is the constant zero, write it as "$31". */
5418 if (GET_CODE (x) == REG)
5419 fprintf (file, "%s", reg_names[REGNO (x)]);
5420 else if (x == CONST0_RTX (GET_MODE (x)))
5421 fprintf (file, "$31");
5422 else
5423 output_operand_lossage ("invalid %%r value");
5424 break;
5425
5426 case 'R':
5427 /* Similar, but for floating-point. */
5428 if (GET_CODE (x) == REG)
5429 fprintf (file, "%s", reg_names[REGNO (x)]);
5430 else if (x == CONST0_RTX (GET_MODE (x)))
5431 fprintf (file, "$f31");
5432 else
5433 output_operand_lossage ("invalid %%R value");
5434 break;
5435
5436 case 'N':
5437 /* Write the 1's complement of a constant. */
5438 if (GET_CODE (x) != CONST_INT)
5439 output_operand_lossage ("invalid %%N value");
5440
5441 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ~ INTVAL (x));
5442 break;
5443
5444 case 'P':
5445 /* Write 1 << C, for a constant C. */
5446 if (GET_CODE (x) != CONST_INT)
5447 output_operand_lossage ("invalid %%P value");
5448
5449 fprintf (file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT) 1 << INTVAL (x));
5450 break;
5451
5452 case 'h':
5453 /* Write the high-order 16 bits of a constant, sign-extended. */
5454 if (GET_CODE (x) != CONST_INT)
5455 output_operand_lossage ("invalid %%h value");
5456
5457 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) >> 16);
5458 break;
5459
5460 case 'L':
5461 /* Write the low-order 16 bits of a constant, sign-extended. */
5462 if (GET_CODE (x) != CONST_INT)
5463 output_operand_lossage ("invalid %%L value");
5464
5465 fprintf (file, HOST_WIDE_INT_PRINT_DEC,
5466 (INTVAL (x) & 0xffff) - 2 * (INTVAL (x) & 0x8000));
5467 break;
5468
5469 case 'm':
5470 /* Write mask for ZAP insn. */
5471 if (GET_CODE (x) == CONST_DOUBLE)
5472 {
5473 HOST_WIDE_INT mask = 0;
5474 HOST_WIDE_INT value;
5475
5476 value = CONST_DOUBLE_LOW (x);
5477 for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
5478 i++, value >>= 8)
5479 if (value & 0xff)
5480 mask |= (1 << i);
5481
5482 value = CONST_DOUBLE_HIGH (x);
5483 for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
5484 i++, value >>= 8)
5485 if (value & 0xff)
5486 mask |= (1 << (i + sizeof (int)));
5487
5488 fprintf (file, HOST_WIDE_INT_PRINT_DEC, mask & 0xff);
5489 }
5490
5491 else if (GET_CODE (x) == CONST_INT)
5492 {
5493 HOST_WIDE_INT mask = 0, value = INTVAL (x);
5494
5495 for (i = 0; i < 8; i++, value >>= 8)
5496 if (value & 0xff)
5497 mask |= (1 << i);
5498
5499 fprintf (file, HOST_WIDE_INT_PRINT_DEC, mask);
5500 }
5501 else
5502 output_operand_lossage ("invalid %%m value");
5503 break;
5504
5505 case 'M':
5506 /* 'b', 'w', 'l', or 'q' as the value of the constant. */
5507 if (GET_CODE (x) != CONST_INT
5508 || (INTVAL (x) != 8 && INTVAL (x) != 16
5509 && INTVAL (x) != 32 && INTVAL (x) != 64))
5510 output_operand_lossage ("invalid %%M value");
5511
5512 fprintf (file, "%s",
5513 (INTVAL (x) == 8 ? "b"
5514 : INTVAL (x) == 16 ? "w"
5515 : INTVAL (x) == 32 ? "l"
5516 : "q"));
5517 break;
5518
5519 case 'U':
5520 /* Similar, except do it from the mask. */
5521 if (GET_CODE (x) == CONST_INT)
5522 {
5523 HOST_WIDE_INT value = INTVAL (x);
5524
5525 if (value == 0xff)
5526 {
5527 fputc ('b', file);
5528 break;
5529 }
5530 if (value == 0xffff)
5531 {
5532 fputc ('w', file);
5533 break;
5534 }
5535 if (value == 0xffffffff)
5536 {
5537 fputc ('l', file);
5538 break;
5539 }
5540 if (value == -1)
5541 {
5542 fputc ('q', file);
5543 break;
5544 }
5545 }
5546 else if (HOST_BITS_PER_WIDE_INT == 32
5547 && GET_CODE (x) == CONST_DOUBLE
5548 && CONST_DOUBLE_LOW (x) == 0xffffffff
5549 && CONST_DOUBLE_HIGH (x) == 0)
5550 {
5551 fputc ('l', file);
5552 break;
5553 }
5554 output_operand_lossage ("invalid %%U value");
5555 break;
5556
5557 case 's':
5558 /* Write the constant value divided by 8 for little-endian mode or
5559 (56 - value) / 8 for big-endian mode. */
5560
5561 if (GET_CODE (x) != CONST_INT
5562 || (unsigned HOST_WIDE_INT) INTVAL (x) >= (WORDS_BIG_ENDIAN
5563 ? 56
5564 : 64)
5565 || (INTVAL (x) & 7) != 0)
5566 output_operand_lossage ("invalid %%s value");
5567
5568 fprintf (file, HOST_WIDE_INT_PRINT_DEC,
5569 WORDS_BIG_ENDIAN
5570 ? (56 - INTVAL (x)) / 8
5571 : INTVAL (x) / 8);
5572 break;
5573
5574 case 'S':
5575 /* Same, except compute (64 - c) / 8 */
5576
5577 if (GET_CODE (x) != CONST_INT
5578 && (unsigned HOST_WIDE_INT) INTVAL (x) >= 64
5579 && (INTVAL (x) & 7) != 8)
5580 output_operand_lossage ("invalid %%s value");
5581
5582 fprintf (file, HOST_WIDE_INT_PRINT_DEC, (64 - INTVAL (x)) / 8);
5583 break;
5584
5585 case 't':
5586 {
5587 /* On Unicos/Mk systems: use a DEX expression if the symbol
5588 clashes with a register name. */
5589 int dex = unicosmk_need_dex (x);
5590 if (dex)
5591 fprintf (file, "DEX(%d)", dex);
5592 else
5593 output_addr_const (file, x);
5594 }
5595 break;
5596
5597 case 'C': case 'D': case 'c': case 'd':
5598 /* Write out comparison name. */
5599 {
5600 enum rtx_code c = GET_CODE (x);
5601
5602 if (GET_RTX_CLASS (c) != '<')
5603 output_operand_lossage ("invalid %%C value");
5604
5605 else if (code == 'D')
5606 c = reverse_condition (c);
5607 else if (code == 'c')
5608 c = swap_condition (c);
5609 else if (code == 'd')
5610 c = swap_condition (reverse_condition (c));
5611
5612 if (c == LEU)
5613 fprintf (file, "ule");
5614 else if (c == LTU)
5615 fprintf (file, "ult");
5616 else if (c == UNORDERED)
5617 fprintf (file, "un");
5618 else
5619 fprintf (file, "%s", GET_RTX_NAME (c));
5620 }
5621 break;
5622
5623 case 'E':
5624 /* Write the divide or modulus operator. */
5625 switch (GET_CODE (x))
5626 {
5627 case DIV:
5628 fprintf (file, "div%s", GET_MODE (x) == SImode ? "l" : "q");
5629 break;
5630 case UDIV:
5631 fprintf (file, "div%su", GET_MODE (x) == SImode ? "l" : "q");
5632 break;
5633 case MOD:
5634 fprintf (file, "rem%s", GET_MODE (x) == SImode ? "l" : "q");
5635 break;
5636 case UMOD:
5637 fprintf (file, "rem%su", GET_MODE (x) == SImode ? "l" : "q");
5638 break;
5639 default:
5640 output_operand_lossage ("invalid %%E value");
5641 break;
5642 }
5643 break;
5644
5645 case 'A':
5646 /* Write "_u" for unaligned access. */
5647 if (GET_CODE (x) == MEM && GET_CODE (XEXP (x, 0)) == AND)
5648 fprintf (file, "_u");
5649 break;
5650
5651 case 0:
5652 if (GET_CODE (x) == REG)
5653 fprintf (file, "%s", reg_names[REGNO (x)]);
5654 else if (GET_CODE (x) == MEM)
5655 output_address (XEXP (x, 0));
5656 else if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == UNSPEC)
5657 {
5658 switch (XINT (XEXP (x, 0), 1))
5659 {
5660 case UNSPEC_DTPREL:
5661 case UNSPEC_TPREL:
5662 output_addr_const (file, XVECEXP (XEXP (x, 0), 0, 0));
5663 break;
5664 default:
5665 output_operand_lossage ("unknown relocation unspec");
5666 break;
5667 }
5668 }
5669 else
5670 output_addr_const (file, x);
5671 break;
5672
5673 default:
5674 output_operand_lossage ("invalid %%xn code");
5675 }
5676 }
5677
5678 void
5679 print_operand_address (FILE *file, rtx addr)
5680 {
5681 int basereg = 31;
5682 HOST_WIDE_INT offset = 0;
5683
5684 if (GET_CODE (addr) == AND)
5685 addr = XEXP (addr, 0);
5686
5687 if (GET_CODE (addr) == PLUS
5688 && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5689 {
5690 offset = INTVAL (XEXP (addr, 1));
5691 addr = XEXP (addr, 0);
5692 }
5693
5694 if (GET_CODE (addr) == LO_SUM)
5695 {
5696 const char *reloc16, *reloclo;
5697 rtx op1 = XEXP (addr, 1);
5698
5699 if (GET_CODE (op1) == CONST && GET_CODE (XEXP (op1, 0)) == UNSPEC)
5700 {
5701 op1 = XEXP (op1, 0);
5702 switch (XINT (op1, 1))
5703 {
5704 case UNSPEC_DTPREL:
5705 reloc16 = NULL;
5706 reloclo = (alpha_tls_size == 16 ? "dtprel" : "dtprello");
5707 break;
5708 case UNSPEC_TPREL:
5709 reloc16 = NULL;
5710 reloclo = (alpha_tls_size == 16 ? "tprel" : "tprello");
5711 break;
5712 default:
5713 output_operand_lossage ("unknown relocation unspec");
5714 return;
5715 }
5716
5717 output_addr_const (file, XVECEXP (op1, 0, 0));
5718 }
5719 else
5720 {
5721 reloc16 = "gprel";
5722 reloclo = "gprellow";
5723 output_addr_const (file, op1);
5724 }
5725
5726 if (offset)
5727 fprintf (file, "+" HOST_WIDE_INT_PRINT_DEC, offset);
5728
5729 addr = XEXP (addr, 0);
5730 if (GET_CODE (addr) == REG)
5731 basereg = REGNO (addr);
5732 else if (GET_CODE (addr) == SUBREG
5733 && GET_CODE (SUBREG_REG (addr)) == REG)
5734 basereg = subreg_regno (addr);
5735 else
5736 abort ();
5737
5738 fprintf (file, "($%d)\t\t!%s", basereg,
5739 (basereg == 29 ? reloc16 : reloclo));
5740 return;
5741 }
5742
5743 if (GET_CODE (addr) == REG)
5744 basereg = REGNO (addr);
5745 else if (GET_CODE (addr) == SUBREG
5746 && GET_CODE (SUBREG_REG (addr)) == REG)
5747 basereg = subreg_regno (addr);
5748 else if (GET_CODE (addr) == CONST_INT)
5749 offset = INTVAL (addr);
5750
5751 #if TARGET_ABI_OPEN_VMS
5752 else if (GET_CODE (addr) == SYMBOL_REF)
5753 {
5754 fprintf (file, "%s", XSTR (addr, 0));
5755 return;
5756 }
5757 else if (GET_CODE (addr) == CONST
5758 && GET_CODE (XEXP (addr, 0)) == PLUS
5759 && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF)
5760 {
5761 fprintf (file, "%s+" HOST_WIDE_INT_PRINT_DEC,
5762 XSTR (XEXP (XEXP (addr, 0), 0), 0),
5763 INTVAL (XEXP (XEXP (addr, 0), 1)));
5764 return;
5765 }
5766 #endif
5767
5768 else
5769 abort ();
5770
5771 fprintf (file, HOST_WIDE_INT_PRINT_DEC "($%d)", offset, basereg);
5772 }
5773 \f
5774 /* Emit RTL insns to initialize the variable parts of a trampoline at
5775 TRAMP. FNADDR is an RTX for the address of the function's pure
5776 code. CXT is an RTX for the static chain value for the function.
5777
5778 The three offset parameters are for the individual template's
5779 layout. A JMPOFS < 0 indicates that the trampoline does not
5780 contain instructions at all.
5781
5782 We assume here that a function will be called many more times than
5783 its address is taken (e.g., it might be passed to qsort), so we
5784 take the trouble to initialize the "hint" field in the JMP insn.
5785 Note that the hint field is PC (new) + 4 * bits 13:0. */
5786
5787 void
5788 alpha_initialize_trampoline (rtx tramp, rtx fnaddr, rtx cxt,
5789 int fnofs, int cxtofs, int jmpofs)
5790 {
5791 rtx temp, temp1, addr;
5792 /* VMS really uses DImode pointers in memory at this point. */
5793 enum machine_mode mode = TARGET_ABI_OPEN_VMS ? Pmode : ptr_mode;
5794
5795 #ifdef POINTERS_EXTEND_UNSIGNED
5796 fnaddr = convert_memory_address (mode, fnaddr);
5797 cxt = convert_memory_address (mode, cxt);
5798 #endif
5799
5800 /* Store function address and CXT. */
5801 addr = memory_address (mode, plus_constant (tramp, fnofs));
5802 emit_move_insn (gen_rtx_MEM (mode, addr), fnaddr);
5803 addr = memory_address (mode, plus_constant (tramp, cxtofs));
5804 emit_move_insn (gen_rtx_MEM (mode, addr), cxt);
5805
5806 /* This has been disabled since the hint only has a 32k range, and in
5807 no existing OS is the stack within 32k of the text segment. */
5808 if (0 && jmpofs >= 0)
5809 {
5810 /* Compute hint value. */
5811 temp = force_operand (plus_constant (tramp, jmpofs+4), NULL_RTX);
5812 temp = expand_binop (DImode, sub_optab, fnaddr, temp, temp, 1,
5813 OPTAB_WIDEN);
5814 temp = expand_shift (RSHIFT_EXPR, Pmode, temp,
5815 build_int_2 (2, 0), NULL_RTX, 1);
5816 temp = expand_and (SImode, gen_lowpart (SImode, temp),
5817 GEN_INT (0x3fff), 0);
5818
5819 /* Merge in the hint. */
5820 addr = memory_address (SImode, plus_constant (tramp, jmpofs));
5821 temp1 = force_reg (SImode, gen_rtx_MEM (SImode, addr));
5822 temp1 = expand_and (SImode, temp1, GEN_INT (0xffffc000), NULL_RTX);
5823 temp1 = expand_binop (SImode, ior_optab, temp1, temp, temp1, 1,
5824 OPTAB_WIDEN);
5825 emit_move_insn (gen_rtx_MEM (SImode, addr), temp1);
5826 }
5827
5828 #ifdef TRANSFER_FROM_TRAMPOLINE
5829 emit_library_call (init_one_libfunc ("__enable_execute_stack"),
5830 0, VOIDmode, 1, tramp, Pmode);
5831 #endif
5832
5833 if (jmpofs >= 0)
5834 emit_insn (gen_imb ());
5835 }
5836 \f
5837 /* Determine where to put an argument to a function.
5838 Value is zero to push the argument on the stack,
5839 or a hard register in which to store the argument.
5840
5841 MODE is the argument's machine mode.
5842 TYPE is the data type of the argument (as a tree).
5843 This is null for libcalls where that information may
5844 not be available.
5845 CUM is a variable of type CUMULATIVE_ARGS which gives info about
5846 the preceding args and about the function being called.
5847 NAMED is nonzero if this argument is a named parameter
5848 (otherwise it is an extra parameter matching an ellipsis).
5849
5850 On Alpha the first 6 words of args are normally in registers
5851 and the rest are pushed. */
5852
5853 rtx
5854 function_arg (CUMULATIVE_ARGS cum, enum machine_mode mode, tree type,
5855 int named ATTRIBUTE_UNUSED)
5856 {
5857 int basereg;
5858 int num_args;
5859
5860 /* Don't get confused and pass small structures in FP registers. */
5861 if (type && AGGREGATE_TYPE_P (type))
5862 basereg = 16;
5863 else
5864 {
5865 #ifdef ENABLE_CHECKING
5866 /* With SPLIT_COMPLEX_ARGS, we shouldn't see any raw complex
5867 values here. */
5868 if (COMPLEX_MODE_P (mode))
5869 abort ();
5870 #endif
5871
5872 /* Set up defaults for FP operands passed in FP registers, and
5873 integral operands passed in integer registers. */
5874 if (TARGET_FPREGS && GET_MODE_CLASS (mode) == MODE_FLOAT)
5875 basereg = 32 + 16;
5876 else
5877 basereg = 16;
5878 }
5879
5880 /* ??? Irritatingly, the definition of CUMULATIVE_ARGS is different for
5881 the three platforms, so we can't avoid conditional compilation. */
5882 #if TARGET_ABI_OPEN_VMS
5883 {
5884 if (mode == VOIDmode)
5885 return alpha_arg_info_reg_val (cum);
5886
5887 num_args = cum.num_args;
5888 if (num_args >= 6 || MUST_PASS_IN_STACK (mode, type))
5889 return NULL_RTX;
5890 }
5891 #elif TARGET_ABI_UNICOSMK
5892 {
5893 int size;
5894
5895 /* If this is the last argument, generate the call info word (CIW). */
5896 /* ??? We don't include the caller's line number in the CIW because
5897 I don't know how to determine it if debug infos are turned off. */
5898 if (mode == VOIDmode)
5899 {
5900 int i;
5901 HOST_WIDE_INT lo;
5902 HOST_WIDE_INT hi;
5903 rtx ciw;
5904
5905 lo = 0;
5906
5907 for (i = 0; i < cum.num_reg_words && i < 5; i++)
5908 if (cum.reg_args_type[i])
5909 lo |= (1 << (7 - i));
5910
5911 if (cum.num_reg_words == 6 && cum.reg_args_type[5])
5912 lo |= 7;
5913 else
5914 lo |= cum.num_reg_words;
5915
5916 #if HOST_BITS_PER_WIDE_INT == 32
5917 hi = (cum.num_args << 20) | cum.num_arg_words;
5918 #else
5919 lo = lo | ((HOST_WIDE_INT) cum.num_args << 52)
5920 | ((HOST_WIDE_INT) cum.num_arg_words << 32);
5921 hi = 0;
5922 #endif
5923 ciw = immed_double_const (lo, hi, DImode);
5924
5925 return gen_rtx_UNSPEC (DImode, gen_rtvec (1, ciw),
5926 UNSPEC_UMK_LOAD_CIW);
5927 }
5928
5929 size = ALPHA_ARG_SIZE (mode, type, named);
5930 num_args = cum.num_reg_words;
5931 if (MUST_PASS_IN_STACK (mode, type)
5932 || cum.num_reg_words + size > 6 || cum.force_stack)
5933 return NULL_RTX;
5934 else if (type && TYPE_MODE (type) == BLKmode)
5935 {
5936 rtx reg1, reg2;
5937
5938 reg1 = gen_rtx_REG (DImode, num_args + 16);
5939 reg1 = gen_rtx_EXPR_LIST (DImode, reg1, const0_rtx);
5940
5941 /* The argument fits in two registers. Note that we still need to
5942 reserve a register for empty structures. */
5943 if (size == 0)
5944 return NULL_RTX;
5945 else if (size == 1)
5946 return gen_rtx_PARALLEL (mode, gen_rtvec (1, reg1));
5947 else
5948 {
5949 reg2 = gen_rtx_REG (DImode, num_args + 17);
5950 reg2 = gen_rtx_EXPR_LIST (DImode, reg2, GEN_INT (8));
5951 return gen_rtx_PARALLEL (mode, gen_rtvec (2, reg1, reg2));
5952 }
5953 }
5954 }
5955 #elif TARGET_ABI_OSF
5956 {
5957 if (cum >= 6)
5958 return NULL_RTX;
5959 num_args = cum;
5960
5961 /* VOID is passed as a special flag for "last argument". */
5962 if (type == void_type_node)
5963 basereg = 16;
5964 else if (MUST_PASS_IN_STACK (mode, type))
5965 return NULL_RTX;
5966 else if (FUNCTION_ARG_PASS_BY_REFERENCE (cum, mode, type, named))
5967 basereg = 16;
5968 }
5969 #else
5970 #error Unhandled ABI
5971 #endif
5972
5973 return gen_rtx_REG (mode, num_args + basereg);
5974 }
5975
5976 /* Return true if TYPE must be returned in memory, instead of in registers. */
5977
5978 static bool
5979 alpha_return_in_memory (tree type, tree fndecl ATTRIBUTE_UNUSED)
5980 {
5981 enum machine_mode mode = VOIDmode;
5982 int size;
5983
5984 if (type)
5985 {
5986 mode = TYPE_MODE (type);
5987
5988 /* All aggregates are returned in memory. */
5989 if (AGGREGATE_TYPE_P (type))
5990 return true;
5991 }
5992
5993 size = GET_MODE_SIZE (mode);
5994 switch (GET_MODE_CLASS (mode))
5995 {
5996 case MODE_VECTOR_FLOAT:
5997 /* Pass all float vectors in memory, like an aggregate. */
5998 return true;
5999
6000 case MODE_COMPLEX_FLOAT:
6001 /* We judge complex floats on the size of their element,
6002 not the size of the whole type. */
6003 size = GET_MODE_UNIT_SIZE (mode);
6004 break;
6005
6006 case MODE_INT:
6007 case MODE_FLOAT:
6008 case MODE_COMPLEX_INT:
6009 case MODE_VECTOR_INT:
6010 break;
6011
6012 default:
6013 /* ??? We get called on all sorts of random stuff from
6014 aggregate_value_p. We can't abort, but it's not clear
6015 what's safe to return. Pretend it's a struct I guess. */
6016 return true;
6017 }
6018
6019 /* Otherwise types must fit in one register. */
6020 return size > UNITS_PER_WORD;
6021 }
6022
6023 /* Define how to find the value returned by a function. VALTYPE is the
6024 data type of the value (as a tree). If the precise function being
6025 called is known, FUNC is its FUNCTION_DECL; otherwise, FUNC is 0.
6026 MODE is set instead of VALTYPE for libcalls.
6027
6028 On Alpha the value is found in $0 for integer functions and
6029 $f0 for floating-point functions. */
6030
6031 rtx
6032 function_value (tree valtype, tree func ATTRIBUTE_UNUSED,
6033 enum machine_mode mode)
6034 {
6035 unsigned int regnum;
6036 enum mode_class class;
6037
6038 #ifdef ENABLE_CHECKING
6039 if (valtype && alpha_return_in_memory (valtype, func))
6040 abort ();
6041 #endif
6042
6043 if (valtype)
6044 mode = TYPE_MODE (valtype);
6045
6046 class = GET_MODE_CLASS (mode);
6047 switch (class)
6048 {
6049 case MODE_INT:
6050 /* Do the same thing as PROMOTE_MODE. */
6051 mode = DImode;
6052 /* FALLTHRU */
6053
6054 case MODE_COMPLEX_INT:
6055 case MODE_VECTOR_INT:
6056 regnum = 0;
6057 break;
6058
6059 case MODE_FLOAT:
6060 regnum = 32;
6061 break;
6062
6063 case MODE_COMPLEX_FLOAT:
6064 {
6065 enum machine_mode cmode = GET_MODE_INNER (mode);
6066
6067 return gen_rtx_PARALLEL
6068 (VOIDmode,
6069 gen_rtvec (2,
6070 gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (cmode, 32),
6071 GEN_INT (0)),
6072 gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (cmode, 33),
6073 GEN_INT (GET_MODE_SIZE (cmode)))));
6074 }
6075
6076 default:
6077 abort ();
6078 }
6079
6080 return gen_rtx_REG (mode, regnum);
6081 }
6082
6083 static tree
6084 alpha_build_builtin_va_list (void)
6085 {
6086 tree base, ofs, space, record, type_decl;
6087
6088 if (TARGET_ABI_OPEN_VMS || TARGET_ABI_UNICOSMK)
6089 return ptr_type_node;
6090
6091 record = (*lang_hooks.types.make_type) (RECORD_TYPE);
6092 type_decl = build_decl (TYPE_DECL, get_identifier ("__va_list_tag"), record);
6093 TREE_CHAIN (record) = type_decl;
6094 TYPE_NAME (record) = type_decl;
6095
6096 /* C++? SET_IS_AGGR_TYPE (record, 1); */
6097
6098 /* Dummy field to prevent alignment warnings. */
6099 space = build_decl (FIELD_DECL, NULL_TREE, integer_type_node);
6100 DECL_FIELD_CONTEXT (space) = record;
6101 DECL_ARTIFICIAL (space) = 1;
6102 DECL_IGNORED_P (space) = 1;
6103
6104 ofs = build_decl (FIELD_DECL, get_identifier ("__offset"),
6105 integer_type_node);
6106 DECL_FIELD_CONTEXT (ofs) = record;
6107 TREE_CHAIN (ofs) = space;
6108
6109 base = build_decl (FIELD_DECL, get_identifier ("__base"),
6110 ptr_type_node);
6111 DECL_FIELD_CONTEXT (base) = record;
6112 TREE_CHAIN (base) = ofs;
6113
6114 TYPE_FIELDS (record) = base;
6115 layout_type (record);
6116
6117 return record;
6118 }
6119
6120 /* Perform any needed actions needed for a function that is receiving a
6121 variable number of arguments. */
6122
6123 static void
6124 alpha_setup_incoming_varargs (CUMULATIVE_ARGS *pcum,
6125 enum machine_mode mode ATTRIBUTE_UNUSED,
6126 tree type ATTRIBUTE_UNUSED,
6127 int *pretend_size, int no_rtl)
6128 {
6129 #if TARGET_ABI_UNICOSMK
6130 /* On Unicos/Mk, the standard subroutine __T3E_MISMATCH stores all register
6131 arguments on the stack. Unfortunately, it doesn't always store the first
6132 one (i.e. the one that arrives in $16 or $f16). This is not a problem
6133 with stdargs as we always have at least one named argument there. */
6134 int num_reg_words = pcum->num_reg_words;
6135 if (num_reg_words < 6)
6136 {
6137 if (!no_rtl)
6138 {
6139 emit_insn (gen_umk_mismatch_args (GEN_INT (num_reg_words + 1)));
6140 emit_insn (gen_arg_home_umk ());
6141 }
6142 *pretend_size = 0;
6143 }
6144 #elif TARGET_ABI_OPEN_VMS
6145 /* For VMS, we allocate space for all 6 arg registers plus a count.
6146
6147 However, if NO registers need to be saved, don't allocate any space.
6148 This is not only because we won't need the space, but because AP
6149 includes the current_pretend_args_size and we don't want to mess up
6150 any ap-relative addresses already made. */
6151 if (pcum->num_args < 6)
6152 {
6153 if (!no_rtl)
6154 {
6155 emit_move_insn (gen_rtx_REG (DImode, 1), virtual_incoming_args_rtx);
6156 emit_insn (gen_arg_home ());
6157 }
6158 *pretend_size = 7 * UNITS_PER_WORD;
6159 }
6160 #else
6161 /* On OSF/1 and friends, we allocate space for all 12 arg registers, but
6162 only push those that are remaining. However, if NO registers need to
6163 be saved, don't allocate any space. This is not only because we won't
6164 need the space, but because AP includes the current_pretend_args_size
6165 and we don't want to mess up any ap-relative addresses already made.
6166
6167 If we are not to use the floating-point registers, save the integer
6168 registers where we would put the floating-point registers. This is
6169 not the most efficient way to implement varargs with just one register
6170 class, but it isn't worth doing anything more efficient in this rare
6171 case. */
6172 CUMULATIVE_ARGS cum = *pcum;
6173
6174 if (cum >= 6)
6175 return;
6176
6177 if (!no_rtl)
6178 {
6179 int set = get_varargs_alias_set ();
6180 rtx tmp;
6181
6182 tmp = gen_rtx_MEM (BLKmode,
6183 plus_constant (virtual_incoming_args_rtx,
6184 (cum + 6) * UNITS_PER_WORD));
6185 set_mem_alias_set (tmp, set);
6186 move_block_from_reg (16 + cum, tmp, 6 - cum);
6187
6188 tmp = gen_rtx_MEM (BLKmode,
6189 plus_constant (virtual_incoming_args_rtx,
6190 cum * UNITS_PER_WORD));
6191 set_mem_alias_set (tmp, set);
6192 move_block_from_reg (16 + (TARGET_FPREGS ? 32 : 0) + cum, tmp,
6193 6 - cum);
6194 }
6195 *pretend_size = 12 * UNITS_PER_WORD;
6196 #endif
6197 }
6198
6199 void
6200 alpha_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED)
6201 {
6202 HOST_WIDE_INT offset;
6203 tree t, offset_field, base_field;
6204
6205 if (TREE_CODE (TREE_TYPE (valist)) == ERROR_MARK)
6206 return;
6207
6208 if (TARGET_ABI_UNICOSMK)
6209 std_expand_builtin_va_start (valist, nextarg);
6210
6211 /* For Unix, SETUP_INCOMING_VARARGS moves the starting address base
6212 up by 48, storing fp arg registers in the first 48 bytes, and the
6213 integer arg registers in the next 48 bytes. This is only done,
6214 however, if any integer registers need to be stored.
6215
6216 If no integer registers need be stored, then we must subtract 48
6217 in order to account for the integer arg registers which are counted
6218 in argsize above, but which are not actually stored on the stack.
6219 Must further be careful here about structures straddling the last
6220 integer argument register; that futzes with pretend_args_size,
6221 which changes the meaning of AP. */
6222
6223 if (NUM_ARGS <= 6)
6224 offset = TARGET_ABI_OPEN_VMS ? UNITS_PER_WORD : 6 * UNITS_PER_WORD;
6225 else
6226 offset = -6 * UNITS_PER_WORD + current_function_pretend_args_size;
6227
6228 if (TARGET_ABI_OPEN_VMS)
6229 {
6230 nextarg = plus_constant (nextarg, offset);
6231 nextarg = plus_constant (nextarg, NUM_ARGS * UNITS_PER_WORD);
6232 t = build (MODIFY_EXPR, TREE_TYPE (valist), valist,
6233 make_tree (ptr_type_node, nextarg));
6234 TREE_SIDE_EFFECTS (t) = 1;
6235
6236 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6237 }
6238 else
6239 {
6240 base_field = TYPE_FIELDS (TREE_TYPE (valist));
6241 offset_field = TREE_CHAIN (base_field);
6242
6243 base_field = build (COMPONENT_REF, TREE_TYPE (base_field),
6244 valist, base_field);
6245 offset_field = build (COMPONENT_REF, TREE_TYPE (offset_field),
6246 valist, offset_field);
6247
6248 t = make_tree (ptr_type_node, virtual_incoming_args_rtx);
6249 t = build (PLUS_EXPR, ptr_type_node, t, build_int_2 (offset, 0));
6250 t = build (MODIFY_EXPR, TREE_TYPE (base_field), base_field, t);
6251 TREE_SIDE_EFFECTS (t) = 1;
6252 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6253
6254 t = build_int_2 (NUM_ARGS * UNITS_PER_WORD, 0);
6255 t = build (MODIFY_EXPR, TREE_TYPE (offset_field), offset_field, t);
6256 TREE_SIDE_EFFECTS (t) = 1;
6257 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6258 }
6259 }
6260
6261 rtx
6262 alpha_va_arg (tree valist, tree type)
6263 {
6264 rtx addr;
6265 tree t, type_size, rounded_size;
6266 tree offset_field, base_field, addr_tree, addend;
6267 tree wide_type, wide_ofs;
6268 int indirect = 0;
6269
6270 if (TARGET_ABI_OPEN_VMS || TARGET_ABI_UNICOSMK)
6271 return std_expand_builtin_va_arg (valist, type);
6272
6273 if (type == error_mark_node
6274 || (type_size = TYPE_SIZE_UNIT (TYPE_MAIN_VARIANT (type))) == NULL
6275 || TREE_OVERFLOW (type_size))
6276 rounded_size = size_zero_node;
6277 else
6278 rounded_size = fold (build (MULT_EXPR, sizetype,
6279 fold (build (TRUNC_DIV_EXPR, sizetype,
6280 fold (build (PLUS_EXPR, sizetype,
6281 type_size,
6282 size_int (7))),
6283 size_int (8))),
6284 size_int (8)));
6285
6286 base_field = TYPE_FIELDS (TREE_TYPE (valist));
6287 offset_field = TREE_CHAIN (base_field);
6288
6289 base_field = build (COMPONENT_REF, TREE_TYPE (base_field),
6290 valist, base_field);
6291 offset_field = build (COMPONENT_REF, TREE_TYPE (offset_field),
6292 valist, offset_field);
6293
6294 /* If the type could not be passed in registers, skip the block
6295 reserved for the registers. */
6296 if (MUST_PASS_IN_STACK (TYPE_MODE (type), type))
6297 {
6298 t = build (MODIFY_EXPR, TREE_TYPE (offset_field), offset_field,
6299 build (MAX_EXPR, TREE_TYPE (offset_field),
6300 offset_field, build_int_2 (6*8, 0)));
6301 TREE_SIDE_EFFECTS (t) = 1;
6302 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6303 }
6304
6305 wide_type = make_signed_type (64);
6306 wide_ofs = save_expr (build1 (CONVERT_EXPR, wide_type, offset_field));
6307
6308 addend = wide_ofs;
6309
6310 if (TYPE_MODE (type) == TFmode || TYPE_MODE (type) == TCmode)
6311 {
6312 indirect = 1;
6313 rounded_size = size_int (UNITS_PER_WORD);
6314 }
6315 else if (TREE_CODE (type) == COMPLEX_TYPE)
6316 {
6317 rtx real_part, imag_part, value, tmp;
6318
6319 real_part = alpha_va_arg (valist, TREE_TYPE (type));
6320 imag_part = alpha_va_arg (valist, TREE_TYPE (type));
6321
6322 /* ??? Most irritatingly, we're not returning the value here,
6323 but the address. Since real_part and imag_part are not
6324 necessarily contiguous, we must copy to local storage. */
6325
6326 real_part = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (type)), real_part);
6327 imag_part = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (type)), imag_part);
6328 value = gen_rtx_CONCAT (TYPE_MODE (type), real_part, imag_part);
6329
6330 tmp = assign_temp (type, 0, 1, 0);
6331 emit_move_insn (tmp, value);
6332
6333 return XEXP (tmp, 0);
6334 }
6335 else if (TREE_CODE (type) == REAL_TYPE)
6336 {
6337 tree fpaddend, cond;
6338
6339 fpaddend = fold (build (PLUS_EXPR, TREE_TYPE (addend),
6340 addend, build_int_2 (-6*8, 0)));
6341
6342 cond = fold (build (LT_EXPR, integer_type_node,
6343 wide_ofs, build_int_2 (6*8, 0)));
6344
6345 addend = fold (build (COND_EXPR, TREE_TYPE (addend), cond,
6346 fpaddend, addend));
6347 }
6348
6349 addr_tree = build (PLUS_EXPR, TREE_TYPE (base_field),
6350 base_field, addend);
6351
6352 addr = expand_expr (addr_tree, NULL_RTX, Pmode, EXPAND_NORMAL);
6353 addr = copy_to_reg (addr);
6354
6355 t = build (MODIFY_EXPR, TREE_TYPE (offset_field), offset_field,
6356 build (PLUS_EXPR, TREE_TYPE (offset_field),
6357 offset_field, rounded_size));
6358 TREE_SIDE_EFFECTS (t) = 1;
6359 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6360
6361 if (indirect)
6362 {
6363 addr = force_reg (Pmode, addr);
6364 addr = gen_rtx_MEM (Pmode, addr);
6365 }
6366
6367 return addr;
6368 }
6369 \f
6370 /* Builtins. */
6371
6372 enum alpha_builtin
6373 {
6374 ALPHA_BUILTIN_CMPBGE,
6375 ALPHA_BUILTIN_EXTBL,
6376 ALPHA_BUILTIN_EXTWL,
6377 ALPHA_BUILTIN_EXTLL,
6378 ALPHA_BUILTIN_EXTQL,
6379 ALPHA_BUILTIN_EXTWH,
6380 ALPHA_BUILTIN_EXTLH,
6381 ALPHA_BUILTIN_EXTQH,
6382 ALPHA_BUILTIN_INSBL,
6383 ALPHA_BUILTIN_INSWL,
6384 ALPHA_BUILTIN_INSLL,
6385 ALPHA_BUILTIN_INSQL,
6386 ALPHA_BUILTIN_INSWH,
6387 ALPHA_BUILTIN_INSLH,
6388 ALPHA_BUILTIN_INSQH,
6389 ALPHA_BUILTIN_MSKBL,
6390 ALPHA_BUILTIN_MSKWL,
6391 ALPHA_BUILTIN_MSKLL,
6392 ALPHA_BUILTIN_MSKQL,
6393 ALPHA_BUILTIN_MSKWH,
6394 ALPHA_BUILTIN_MSKLH,
6395 ALPHA_BUILTIN_MSKQH,
6396 ALPHA_BUILTIN_UMULH,
6397 ALPHA_BUILTIN_ZAP,
6398 ALPHA_BUILTIN_ZAPNOT,
6399 ALPHA_BUILTIN_AMASK,
6400 ALPHA_BUILTIN_IMPLVER,
6401 ALPHA_BUILTIN_RPCC,
6402 ALPHA_BUILTIN_THREAD_POINTER,
6403 ALPHA_BUILTIN_SET_THREAD_POINTER,
6404
6405 /* TARGET_MAX */
6406 ALPHA_BUILTIN_MINUB8,
6407 ALPHA_BUILTIN_MINSB8,
6408 ALPHA_BUILTIN_MINUW4,
6409 ALPHA_BUILTIN_MINSW4,
6410 ALPHA_BUILTIN_MAXUB8,
6411 ALPHA_BUILTIN_MAXSB8,
6412 ALPHA_BUILTIN_MAXUW4,
6413 ALPHA_BUILTIN_MAXSW4,
6414 ALPHA_BUILTIN_PERR,
6415 ALPHA_BUILTIN_PKLB,
6416 ALPHA_BUILTIN_PKWB,
6417 ALPHA_BUILTIN_UNPKBL,
6418 ALPHA_BUILTIN_UNPKBW,
6419
6420 /* TARGET_CIX */
6421 ALPHA_BUILTIN_CTTZ,
6422 ALPHA_BUILTIN_CTLZ,
6423 ALPHA_BUILTIN_CTPOP,
6424
6425 ALPHA_BUILTIN_max
6426 };
6427
6428 static unsigned int const code_for_builtin[ALPHA_BUILTIN_max] = {
6429 CODE_FOR_builtin_cmpbge,
6430 CODE_FOR_builtin_extbl,
6431 CODE_FOR_builtin_extwl,
6432 CODE_FOR_builtin_extll,
6433 CODE_FOR_builtin_extql,
6434 CODE_FOR_builtin_extwh,
6435 CODE_FOR_builtin_extlh,
6436 CODE_FOR_builtin_extqh,
6437 CODE_FOR_builtin_insbl,
6438 CODE_FOR_builtin_inswl,
6439 CODE_FOR_builtin_insll,
6440 CODE_FOR_builtin_insql,
6441 CODE_FOR_builtin_inswh,
6442 CODE_FOR_builtin_inslh,
6443 CODE_FOR_builtin_insqh,
6444 CODE_FOR_builtin_mskbl,
6445 CODE_FOR_builtin_mskwl,
6446 CODE_FOR_builtin_mskll,
6447 CODE_FOR_builtin_mskql,
6448 CODE_FOR_builtin_mskwh,
6449 CODE_FOR_builtin_msklh,
6450 CODE_FOR_builtin_mskqh,
6451 CODE_FOR_umuldi3_highpart,
6452 CODE_FOR_builtin_zap,
6453 CODE_FOR_builtin_zapnot,
6454 CODE_FOR_builtin_amask,
6455 CODE_FOR_builtin_implver,
6456 CODE_FOR_builtin_rpcc,
6457 CODE_FOR_load_tp,
6458 CODE_FOR_set_tp,
6459
6460 /* TARGET_MAX */
6461 CODE_FOR_builtin_minub8,
6462 CODE_FOR_builtin_minsb8,
6463 CODE_FOR_builtin_minuw4,
6464 CODE_FOR_builtin_minsw4,
6465 CODE_FOR_builtin_maxub8,
6466 CODE_FOR_builtin_maxsb8,
6467 CODE_FOR_builtin_maxuw4,
6468 CODE_FOR_builtin_maxsw4,
6469 CODE_FOR_builtin_perr,
6470 CODE_FOR_builtin_pklb,
6471 CODE_FOR_builtin_pkwb,
6472 CODE_FOR_builtin_unpkbl,
6473 CODE_FOR_builtin_unpkbw,
6474
6475 /* TARGET_CIX */
6476 CODE_FOR_builtin_cttz,
6477 CODE_FOR_builtin_ctlz,
6478 CODE_FOR_builtin_ctpop
6479 };
6480
6481 struct alpha_builtin_def
6482 {
6483 const char *name;
6484 enum alpha_builtin code;
6485 unsigned int target_mask;
6486 };
6487
6488 static struct alpha_builtin_def const zero_arg_builtins[] = {
6489 { "__builtin_alpha_implver", ALPHA_BUILTIN_IMPLVER, 0 },
6490 { "__builtin_alpha_rpcc", ALPHA_BUILTIN_RPCC, 0 }
6491 };
6492
6493 static struct alpha_builtin_def const one_arg_builtins[] = {
6494 { "__builtin_alpha_amask", ALPHA_BUILTIN_AMASK, 0 },
6495 { "__builtin_alpha_pklb", ALPHA_BUILTIN_PKLB, MASK_MAX },
6496 { "__builtin_alpha_pkwb", ALPHA_BUILTIN_PKWB, MASK_MAX },
6497 { "__builtin_alpha_unpkbl", ALPHA_BUILTIN_UNPKBL, MASK_MAX },
6498 { "__builtin_alpha_unpkbw", ALPHA_BUILTIN_UNPKBW, MASK_MAX },
6499 { "__builtin_alpha_cttz", ALPHA_BUILTIN_CTTZ, MASK_CIX },
6500 { "__builtin_alpha_ctlz", ALPHA_BUILTIN_CTLZ, MASK_CIX },
6501 { "__builtin_alpha_ctpop", ALPHA_BUILTIN_CTPOP, MASK_CIX }
6502 };
6503
6504 static struct alpha_builtin_def const two_arg_builtins[] = {
6505 { "__builtin_alpha_cmpbge", ALPHA_BUILTIN_CMPBGE, 0 },
6506 { "__builtin_alpha_extbl", ALPHA_BUILTIN_EXTBL, 0 },
6507 { "__builtin_alpha_extwl", ALPHA_BUILTIN_EXTWL, 0 },
6508 { "__builtin_alpha_extll", ALPHA_BUILTIN_EXTLL, 0 },
6509 { "__builtin_alpha_extql", ALPHA_BUILTIN_EXTQL, 0 },
6510 { "__builtin_alpha_extwh", ALPHA_BUILTIN_EXTWH, 0 },
6511 { "__builtin_alpha_extlh", ALPHA_BUILTIN_EXTLH, 0 },
6512 { "__builtin_alpha_extqh", ALPHA_BUILTIN_EXTQH, 0 },
6513 { "__builtin_alpha_insbl", ALPHA_BUILTIN_INSBL, 0 },
6514 { "__builtin_alpha_inswl", ALPHA_BUILTIN_INSWL, 0 },
6515 { "__builtin_alpha_insll", ALPHA_BUILTIN_INSLL, 0 },
6516 { "__builtin_alpha_insql", ALPHA_BUILTIN_INSQL, 0 },
6517 { "__builtin_alpha_inswh", ALPHA_BUILTIN_INSWH, 0 },
6518 { "__builtin_alpha_inslh", ALPHA_BUILTIN_INSLH, 0 },
6519 { "__builtin_alpha_insqh", ALPHA_BUILTIN_INSQH, 0 },
6520 { "__builtin_alpha_mskbl", ALPHA_BUILTIN_MSKBL, 0 },
6521 { "__builtin_alpha_mskwl", ALPHA_BUILTIN_MSKWL, 0 },
6522 { "__builtin_alpha_mskll", ALPHA_BUILTIN_MSKLL, 0 },
6523 { "__builtin_alpha_mskql", ALPHA_BUILTIN_MSKQL, 0 },
6524 { "__builtin_alpha_mskwh", ALPHA_BUILTIN_MSKWH, 0 },
6525 { "__builtin_alpha_msklh", ALPHA_BUILTIN_MSKLH, 0 },
6526 { "__builtin_alpha_mskqh", ALPHA_BUILTIN_MSKQH, 0 },
6527 { "__builtin_alpha_umulh", ALPHA_BUILTIN_UMULH, 0 },
6528 { "__builtin_alpha_zap", ALPHA_BUILTIN_ZAP, 0 },
6529 { "__builtin_alpha_zapnot", ALPHA_BUILTIN_ZAPNOT, 0 },
6530 { "__builtin_alpha_minub8", ALPHA_BUILTIN_MINUB8, MASK_MAX },
6531 { "__builtin_alpha_minsb8", ALPHA_BUILTIN_MINSB8, MASK_MAX },
6532 { "__builtin_alpha_minuw4", ALPHA_BUILTIN_MINUW4, MASK_MAX },
6533 { "__builtin_alpha_minsw4", ALPHA_BUILTIN_MINSW4, MASK_MAX },
6534 { "__builtin_alpha_maxub8", ALPHA_BUILTIN_MAXUB8, MASK_MAX },
6535 { "__builtin_alpha_maxsb8", ALPHA_BUILTIN_MAXSB8, MASK_MAX },
6536 { "__builtin_alpha_maxuw4", ALPHA_BUILTIN_MAXUW4, MASK_MAX },
6537 { "__builtin_alpha_maxsw4", ALPHA_BUILTIN_MAXSW4, MASK_MAX },
6538 { "__builtin_alpha_perr", ALPHA_BUILTIN_PERR, MASK_MAX }
6539 };
6540
6541 static void
6542 alpha_init_builtins (void)
6543 {
6544 const struct alpha_builtin_def *p;
6545 tree ftype;
6546 size_t i;
6547
6548 ftype = build_function_type (long_integer_type_node, void_list_node);
6549
6550 p = zero_arg_builtins;
6551 for (i = 0; i < ARRAY_SIZE (zero_arg_builtins); ++i, ++p)
6552 if ((target_flags & p->target_mask) == p->target_mask)
6553 builtin_function (p->name, ftype, p->code, BUILT_IN_MD,
6554 NULL, NULL_TREE);
6555
6556 ftype = build_function_type_list (long_integer_type_node,
6557 long_integer_type_node, NULL_TREE);
6558
6559 p = one_arg_builtins;
6560 for (i = 0; i < ARRAY_SIZE (one_arg_builtins); ++i, ++p)
6561 if ((target_flags & p->target_mask) == p->target_mask)
6562 builtin_function (p->name, ftype, p->code, BUILT_IN_MD,
6563 NULL, NULL_TREE);
6564
6565 ftype = build_function_type_list (long_integer_type_node,
6566 long_integer_type_node,
6567 long_integer_type_node, NULL_TREE);
6568
6569 p = two_arg_builtins;
6570 for (i = 0; i < ARRAY_SIZE (two_arg_builtins); ++i, ++p)
6571 if ((target_flags & p->target_mask) == p->target_mask)
6572 builtin_function (p->name, ftype, p->code, BUILT_IN_MD,
6573 NULL, NULL_TREE);
6574
6575 ftype = build_function_type (ptr_type_node, void_list_node);
6576 builtin_function ("__builtin_thread_pointer", ftype,
6577 ALPHA_BUILTIN_THREAD_POINTER, BUILT_IN_MD,
6578 NULL, NULL_TREE);
6579
6580 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
6581 builtin_function ("__builtin_set_thread_pointer", ftype,
6582 ALPHA_BUILTIN_SET_THREAD_POINTER, BUILT_IN_MD,
6583 NULL, NULL_TREE);
6584 }
6585
6586 /* Expand an expression EXP that calls a built-in function,
6587 with result going to TARGET if that's convenient
6588 (and in mode MODE if that's convenient).
6589 SUBTARGET may be used as the target for computing one of EXP's operands.
6590 IGNORE is nonzero if the value is to be ignored. */
6591
6592 static rtx
6593 alpha_expand_builtin (tree exp, rtx target,
6594 rtx subtarget ATTRIBUTE_UNUSED,
6595 enum machine_mode mode ATTRIBUTE_UNUSED,
6596 int ignore ATTRIBUTE_UNUSED)
6597 {
6598 #define MAX_ARGS 2
6599
6600 tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6601 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
6602 tree arglist = TREE_OPERAND (exp, 1);
6603 enum insn_code icode;
6604 rtx op[MAX_ARGS], pat;
6605 int arity;
6606 bool nonvoid;
6607
6608 if (fcode >= ALPHA_BUILTIN_max)
6609 internal_error ("bad builtin fcode");
6610 icode = code_for_builtin[fcode];
6611 if (icode == 0)
6612 internal_error ("bad builtin fcode");
6613
6614 nonvoid = TREE_TYPE (TREE_TYPE (fndecl)) != void_type_node;
6615
6616 for (arglist = TREE_OPERAND (exp, 1), arity = 0;
6617 arglist;
6618 arglist = TREE_CHAIN (arglist), arity++)
6619 {
6620 const struct insn_operand_data *insn_op;
6621
6622 tree arg = TREE_VALUE (arglist);
6623 if (arg == error_mark_node)
6624 return NULL_RTX;
6625 if (arity > MAX_ARGS)
6626 return NULL_RTX;
6627
6628 insn_op = &insn_data[icode].operand[arity + nonvoid];
6629
6630 op[arity] = expand_expr (arg, NULL_RTX, insn_op->mode, 0);
6631
6632 if (!(*insn_op->predicate) (op[arity], insn_op->mode))
6633 op[arity] = copy_to_mode_reg (insn_op->mode, op[arity]);
6634 }
6635
6636 if (nonvoid)
6637 {
6638 enum machine_mode tmode = insn_data[icode].operand[0].mode;
6639 if (!target
6640 || GET_MODE (target) != tmode
6641 || !(*insn_data[icode].operand[0].predicate) (target, tmode))
6642 target = gen_reg_rtx (tmode);
6643 }
6644
6645 switch (arity)
6646 {
6647 case 0:
6648 pat = GEN_FCN (icode) (target);
6649 break;
6650 case 1:
6651 if (nonvoid)
6652 pat = GEN_FCN (icode) (target, op[0]);
6653 else
6654 pat = GEN_FCN (icode) (op[0]);
6655 break;
6656 case 2:
6657 pat = GEN_FCN (icode) (target, op[0], op[1]);
6658 break;
6659 default:
6660 abort ();
6661 }
6662 if (!pat)
6663 return NULL_RTX;
6664 emit_insn (pat);
6665
6666 if (nonvoid)
6667 return target;
6668 else
6669 return const0_rtx;
6670 }
6671 \f
6672 /* This page contains routines that are used to determine what the function
6673 prologue and epilogue code will do and write them out. */
6674
6675 /* Compute the size of the save area in the stack. */
6676
6677 /* These variables are used for communication between the following functions.
6678 They indicate various things about the current function being compiled
6679 that are used to tell what kind of prologue, epilogue and procedure
6680 descriptor to generate. */
6681
6682 /* Nonzero if we need a stack procedure. */
6683 enum alpha_procedure_types {PT_NULL = 0, PT_REGISTER = 1, PT_STACK = 2};
6684 static enum alpha_procedure_types alpha_procedure_type;
6685
6686 /* Register number (either FP or SP) that is used to unwind the frame. */
6687 static int vms_unwind_regno;
6688
6689 /* Register number used to save FP. We need not have one for RA since
6690 we don't modify it for register procedures. This is only defined
6691 for register frame procedures. */
6692 static int vms_save_fp_regno;
6693
6694 /* Register number used to reference objects off our PV. */
6695 static int vms_base_regno;
6696
6697 /* Compute register masks for saved registers. */
6698
6699 static void
6700 alpha_sa_mask (unsigned long *imaskP, unsigned long *fmaskP)
6701 {
6702 unsigned long imask = 0;
6703 unsigned long fmask = 0;
6704 unsigned int i;
6705
6706 /* Irritatingly, there are two kinds of thunks -- those created with
6707 TARGET_ASM_OUTPUT_MI_THUNK and those with DECL_THUNK_P that go
6708 through the regular part of the compiler. In the
6709 TARGET_ASM_OUTPUT_MI_THUNK case we don't have valid register life
6710 info, but assemble_start_function wants to output .frame and
6711 .mask directives. */
6712 if (current_function_is_thunk && !no_new_pseudos)
6713 {
6714 *imaskP = 0;
6715 *fmaskP = 0;
6716 return;
6717 }
6718
6719 if (TARGET_ABI_OPEN_VMS && alpha_procedure_type == PT_STACK)
6720 imask |= (1UL << HARD_FRAME_POINTER_REGNUM);
6721
6722 /* One for every register we have to save. */
6723 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6724 if (! fixed_regs[i] && ! call_used_regs[i]
6725 && regs_ever_live[i] && i != REG_RA
6726 && (!TARGET_ABI_UNICOSMK || i != HARD_FRAME_POINTER_REGNUM))
6727 {
6728 if (i < 32)
6729 imask |= (1UL << i);
6730 else
6731 fmask |= (1UL << (i - 32));
6732 }
6733
6734 /* We need to restore these for the handler. */
6735 if (current_function_calls_eh_return)
6736 {
6737 for (i = 0; ; ++i)
6738 {
6739 unsigned regno = EH_RETURN_DATA_REGNO (i);
6740 if (regno == INVALID_REGNUM)
6741 break;
6742 imask |= 1UL << regno;
6743 }
6744
6745 /* Glibc likes to use $31 as an unwind stopper for crt0. To
6746 avoid hackery in unwind-dw2.c, we need to actively store a
6747 zero in the prologue of _Unwind_RaiseException et al. */
6748 imask |= 1UL << 31;
6749 }
6750
6751 /* If any register spilled, then spill the return address also. */
6752 /* ??? This is required by the Digital stack unwind specification
6753 and isn't needed if we're doing Dwarf2 unwinding. */
6754 if (imask || fmask || alpha_ra_ever_killed ())
6755 imask |= (1UL << REG_RA);
6756
6757 *imaskP = imask;
6758 *fmaskP = fmask;
6759 }
6760
6761 int
6762 alpha_sa_size (void)
6763 {
6764 unsigned long mask[2];
6765 int sa_size = 0;
6766 int i, j;
6767
6768 alpha_sa_mask (&mask[0], &mask[1]);
6769
6770 if (TARGET_ABI_UNICOSMK)
6771 {
6772 if (mask[0] || mask[1])
6773 sa_size = 14;
6774 }
6775 else
6776 {
6777 for (j = 0; j < 2; ++j)
6778 for (i = 0; i < 32; ++i)
6779 if ((mask[j] >> i) & 1)
6780 sa_size++;
6781 }
6782
6783 if (TARGET_ABI_UNICOSMK)
6784 {
6785 /* We might not need to generate a frame if we don't make any calls
6786 (including calls to __T3E_MISMATCH if this is a vararg function),
6787 don't have any local variables which require stack slots, don't
6788 use alloca and have not determined that we need a frame for other
6789 reasons. */
6790
6791 alpha_procedure_type
6792 = (sa_size || get_frame_size() != 0
6793 || current_function_outgoing_args_size
6794 || current_function_stdarg || current_function_calls_alloca
6795 || frame_pointer_needed)
6796 ? PT_STACK : PT_REGISTER;
6797
6798 /* Always reserve space for saving callee-saved registers if we
6799 need a frame as required by the calling convention. */
6800 if (alpha_procedure_type == PT_STACK)
6801 sa_size = 14;
6802 }
6803 else if (TARGET_ABI_OPEN_VMS)
6804 {
6805 /* Start by assuming we can use a register procedure if we don't
6806 make any calls (REG_RA not used) or need to save any
6807 registers and a stack procedure if we do. */
6808 if ((mask[0] >> REG_RA) & 1)
6809 alpha_procedure_type = PT_STACK;
6810 else if (get_frame_size() != 0)
6811 alpha_procedure_type = PT_REGISTER;
6812 else
6813 alpha_procedure_type = PT_NULL;
6814
6815 /* Don't reserve space for saving FP & RA yet. Do that later after we've
6816 made the final decision on stack procedure vs register procedure. */
6817 if (alpha_procedure_type == PT_STACK)
6818 sa_size -= 2;
6819
6820 /* Decide whether to refer to objects off our PV via FP or PV.
6821 If we need FP for something else or if we receive a nonlocal
6822 goto (which expects PV to contain the value), we must use PV.
6823 Otherwise, start by assuming we can use FP. */
6824
6825 vms_base_regno
6826 = (frame_pointer_needed
6827 || current_function_has_nonlocal_label
6828 || alpha_procedure_type == PT_STACK
6829 || current_function_outgoing_args_size)
6830 ? REG_PV : HARD_FRAME_POINTER_REGNUM;
6831
6832 /* If we want to copy PV into FP, we need to find some register
6833 in which to save FP. */
6834
6835 vms_save_fp_regno = -1;
6836 if (vms_base_regno == HARD_FRAME_POINTER_REGNUM)
6837 for (i = 0; i < 32; i++)
6838 if (! fixed_regs[i] && call_used_regs[i] && ! regs_ever_live[i])
6839 vms_save_fp_regno = i;
6840
6841 if (vms_save_fp_regno == -1 && alpha_procedure_type == PT_REGISTER)
6842 vms_base_regno = REG_PV, alpha_procedure_type = PT_STACK;
6843 else if (alpha_procedure_type == PT_NULL)
6844 vms_base_regno = REG_PV;
6845
6846 /* Stack unwinding should be done via FP unless we use it for PV. */
6847 vms_unwind_regno = (vms_base_regno == REG_PV
6848 ? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM);
6849
6850 /* If this is a stack procedure, allow space for saving FP and RA. */
6851 if (alpha_procedure_type == PT_STACK)
6852 sa_size += 2;
6853 }
6854 else
6855 {
6856 /* Our size must be even (multiple of 16 bytes). */
6857 if (sa_size & 1)
6858 sa_size++;
6859 }
6860
6861 return sa_size * 8;
6862 }
6863
6864 /* Define the offset between two registers, one to be eliminated,
6865 and the other its replacement, at the start of a routine. */
6866
6867 HOST_WIDE_INT
6868 alpha_initial_elimination_offset (unsigned int from,
6869 unsigned int to ATTRIBUTE_UNUSED)
6870 {
6871 HOST_WIDE_INT ret;
6872
6873 ret = alpha_sa_size ();
6874 ret += ALPHA_ROUND (current_function_outgoing_args_size);
6875
6876 if (from == FRAME_POINTER_REGNUM)
6877 ;
6878 else if (from == ARG_POINTER_REGNUM)
6879 ret += (ALPHA_ROUND (get_frame_size ()
6880 + current_function_pretend_args_size)
6881 - current_function_pretend_args_size);
6882 else
6883 abort ();
6884
6885 return ret;
6886 }
6887
6888 int
6889 alpha_pv_save_size (void)
6890 {
6891 alpha_sa_size ();
6892 return alpha_procedure_type == PT_STACK ? 8 : 0;
6893 }
6894
6895 int
6896 alpha_using_fp (void)
6897 {
6898 alpha_sa_size ();
6899 return vms_unwind_regno == HARD_FRAME_POINTER_REGNUM;
6900 }
6901
6902 #if TARGET_ABI_OPEN_VMS
6903
6904 const struct attribute_spec vms_attribute_table[] =
6905 {
6906 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
6907 { "overlaid", 0, 0, true, false, false, NULL },
6908 { "global", 0, 0, true, false, false, NULL },
6909 { "initialize", 0, 0, true, false, false, NULL },
6910 { NULL, 0, 0, false, false, false, NULL }
6911 };
6912
6913 #endif
6914
6915 static int
6916 find_lo_sum_using_gp (rtx *px, void *data ATTRIBUTE_UNUSED)
6917 {
6918 return GET_CODE (*px) == LO_SUM && XEXP (*px, 0) == pic_offset_table_rtx;
6919 }
6920
6921 int
6922 alpha_find_lo_sum_using_gp (rtx insn)
6923 {
6924 return for_each_rtx (&PATTERN (insn), find_lo_sum_using_gp, NULL) > 0;
6925 }
6926
6927 static int
6928 alpha_does_function_need_gp (void)
6929 {
6930 rtx insn;
6931
6932 /* The GP being variable is an OSF abi thing. */
6933 if (! TARGET_ABI_OSF)
6934 return 0;
6935
6936 /* We need the gp to load the address of __mcount. */
6937 if (TARGET_PROFILING_NEEDS_GP && current_function_profile)
6938 return 1;
6939
6940 /* The code emitted by alpha_output_mi_thunk_osf uses the gp. */
6941 if (current_function_is_thunk)
6942 return 1;
6943
6944 /* The nonlocal receiver pattern assumes that the gp is valid for
6945 the nested function. Reasonable because it's almost always set
6946 correctly already. For the cases where that's wrong, make sure
6947 the nested function loads its gp on entry. */
6948 if (current_function_has_nonlocal_goto)
6949 return 1;
6950
6951 /* If we need a GP (we have a LDSYM insn or a CALL_INSN), load it first.
6952 Even if we are a static function, we still need to do this in case
6953 our address is taken and passed to something like qsort. */
6954
6955 push_topmost_sequence ();
6956 insn = get_insns ();
6957 pop_topmost_sequence ();
6958
6959 for (; insn; insn = NEXT_INSN (insn))
6960 if (INSN_P (insn)
6961 && GET_CODE (PATTERN (insn)) != USE
6962 && GET_CODE (PATTERN (insn)) != CLOBBER
6963 && get_attr_usegp (insn))
6964 return 1;
6965
6966 return 0;
6967 }
6968
6969 \f
6970 /* Helper function to set RTX_FRAME_RELATED_P on instructions, including
6971 sequences. */
6972
6973 static rtx
6974 set_frame_related_p (void)
6975 {
6976 rtx seq = get_insns ();
6977 rtx insn;
6978
6979 end_sequence ();
6980
6981 if (!seq)
6982 return NULL_RTX;
6983
6984 if (INSN_P (seq))
6985 {
6986 insn = seq;
6987 while (insn != NULL_RTX)
6988 {
6989 RTX_FRAME_RELATED_P (insn) = 1;
6990 insn = NEXT_INSN (insn);
6991 }
6992 seq = emit_insn (seq);
6993 }
6994 else
6995 {
6996 seq = emit_insn (seq);
6997 RTX_FRAME_RELATED_P (seq) = 1;
6998 }
6999 return seq;
7000 }
7001
7002 #define FRP(exp) (start_sequence (), exp, set_frame_related_p ())
7003
7004 /* Write function prologue. */
7005
7006 /* On vms we have two kinds of functions:
7007
7008 - stack frame (PROC_STACK)
7009 these are 'normal' functions with local vars and which are
7010 calling other functions
7011 - register frame (PROC_REGISTER)
7012 keeps all data in registers, needs no stack
7013
7014 We must pass this to the assembler so it can generate the
7015 proper pdsc (procedure descriptor)
7016 This is done with the '.pdesc' command.
7017
7018 On not-vms, we don't really differentiate between the two, as we can
7019 simply allocate stack without saving registers. */
7020
7021 void
7022 alpha_expand_prologue (void)
7023 {
7024 /* Registers to save. */
7025 unsigned long imask = 0;
7026 unsigned long fmask = 0;
7027 /* Stack space needed for pushing registers clobbered by us. */
7028 HOST_WIDE_INT sa_size;
7029 /* Complete stack size needed. */
7030 HOST_WIDE_INT frame_size;
7031 /* Offset from base reg to register save area. */
7032 HOST_WIDE_INT reg_offset;
7033 rtx sa_reg, mem;
7034 int i;
7035
7036 sa_size = alpha_sa_size ();
7037
7038 frame_size = get_frame_size ();
7039 if (TARGET_ABI_OPEN_VMS)
7040 frame_size = ALPHA_ROUND (sa_size
7041 + (alpha_procedure_type == PT_STACK ? 8 : 0)
7042 + frame_size
7043 + current_function_pretend_args_size);
7044 else if (TARGET_ABI_UNICOSMK)
7045 /* We have to allocate space for the DSIB if we generate a frame. */
7046 frame_size = ALPHA_ROUND (sa_size
7047 + (alpha_procedure_type == PT_STACK ? 48 : 0))
7048 + ALPHA_ROUND (frame_size
7049 + current_function_outgoing_args_size);
7050 else
7051 frame_size = (ALPHA_ROUND (current_function_outgoing_args_size)
7052 + sa_size
7053 + ALPHA_ROUND (frame_size
7054 + current_function_pretend_args_size));
7055
7056 if (TARGET_ABI_OPEN_VMS)
7057 reg_offset = 8;
7058 else
7059 reg_offset = ALPHA_ROUND (current_function_outgoing_args_size);
7060
7061 alpha_sa_mask (&imask, &fmask);
7062
7063 /* Emit an insn to reload GP, if needed. */
7064 if (TARGET_ABI_OSF)
7065 {
7066 alpha_function_needs_gp = alpha_does_function_need_gp ();
7067 if (alpha_function_needs_gp)
7068 emit_insn (gen_prologue_ldgp ());
7069 }
7070
7071 /* TARGET_PROFILING_NEEDS_GP actually implies that we need to insert
7072 the call to mcount ourselves, rather than having the linker do it
7073 magically in response to -pg. Since _mcount has special linkage,
7074 don't represent the call as a call. */
7075 if (TARGET_PROFILING_NEEDS_GP && current_function_profile)
7076 emit_insn (gen_prologue_mcount ());
7077
7078 if (TARGET_ABI_UNICOSMK)
7079 unicosmk_gen_dsib (&imask);
7080
7081 /* Adjust the stack by the frame size. If the frame size is > 4096
7082 bytes, we need to be sure we probe somewhere in the first and last
7083 4096 bytes (we can probably get away without the latter test) and
7084 every 8192 bytes in between. If the frame size is > 32768, we
7085 do this in a loop. Otherwise, we generate the explicit probe
7086 instructions.
7087
7088 Note that we are only allowed to adjust sp once in the prologue. */
7089
7090 if (frame_size <= 32768)
7091 {
7092 if (frame_size > 4096)
7093 {
7094 int probed = 4096;
7095
7096 do
7097 emit_insn (gen_probe_stack (GEN_INT (TARGET_ABI_UNICOSMK
7098 ? -probed + 64
7099 : -probed)));
7100 while ((probed += 8192) < frame_size);
7101
7102 /* We only have to do this probe if we aren't saving registers. */
7103 if (sa_size == 0 && probed + 4096 < frame_size)
7104 emit_insn (gen_probe_stack (GEN_INT (-frame_size)));
7105 }
7106
7107 if (frame_size != 0)
7108 FRP (emit_insn (gen_adddi3 (stack_pointer_rtx, stack_pointer_rtx,
7109 GEN_INT (TARGET_ABI_UNICOSMK
7110 ? -frame_size + 64
7111 : -frame_size))));
7112 }
7113 else
7114 {
7115 /* Here we generate code to set R22 to SP + 4096 and set R23 to the
7116 number of 8192 byte blocks to probe. We then probe each block
7117 in the loop and then set SP to the proper location. If the
7118 amount remaining is > 4096, we have to do one more probe if we
7119 are not saving any registers. */
7120
7121 HOST_WIDE_INT blocks = (frame_size + 4096) / 8192;
7122 HOST_WIDE_INT leftover = frame_size + 4096 - blocks * 8192;
7123 rtx ptr = gen_rtx_REG (DImode, 22);
7124 rtx count = gen_rtx_REG (DImode, 23);
7125 rtx seq;
7126
7127 emit_move_insn (count, GEN_INT (blocks));
7128 emit_insn (gen_adddi3 (ptr, stack_pointer_rtx,
7129 GEN_INT (TARGET_ABI_UNICOSMK ? 4096 - 64 : 4096)));
7130
7131 /* Because of the difficulty in emitting a new basic block this
7132 late in the compilation, generate the loop as a single insn. */
7133 emit_insn (gen_prologue_stack_probe_loop (count, ptr));
7134
7135 if (leftover > 4096 && sa_size == 0)
7136 {
7137 rtx last = gen_rtx_MEM (DImode, plus_constant (ptr, -leftover));
7138 MEM_VOLATILE_P (last) = 1;
7139 emit_move_insn (last, const0_rtx);
7140 }
7141
7142 if (TARGET_ABI_WINDOWS_NT)
7143 {
7144 /* For NT stack unwind (done by 'reverse execution'), it's
7145 not OK to take the result of a loop, even though the value
7146 is already in ptr, so we reload it via a single operation
7147 and subtract it to sp.
7148
7149 Yes, that's correct -- we have to reload the whole constant
7150 into a temporary via ldah+lda then subtract from sp. To
7151 ensure we get ldah+lda, we use a special pattern. */
7152
7153 HOST_WIDE_INT lo, hi;
7154 lo = ((frame_size & 0xffff) ^ 0x8000) - 0x8000;
7155 hi = frame_size - lo;
7156
7157 emit_move_insn (ptr, GEN_INT (hi));
7158 emit_insn (gen_nt_lda (ptr, GEN_INT (lo)));
7159 seq = emit_insn (gen_subdi3 (stack_pointer_rtx, stack_pointer_rtx,
7160 ptr));
7161 }
7162 else
7163 {
7164 seq = emit_insn (gen_adddi3 (stack_pointer_rtx, ptr,
7165 GEN_INT (-leftover)));
7166 }
7167
7168 /* This alternative is special, because the DWARF code cannot
7169 possibly intuit through the loop above. So we invent this
7170 note it looks at instead. */
7171 RTX_FRAME_RELATED_P (seq) = 1;
7172 REG_NOTES (seq)
7173 = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
7174 gen_rtx_SET (VOIDmode, stack_pointer_rtx,
7175 gen_rtx_PLUS (Pmode, stack_pointer_rtx,
7176 GEN_INT (TARGET_ABI_UNICOSMK
7177 ? -frame_size + 64
7178 : -frame_size))),
7179 REG_NOTES (seq));
7180 }
7181
7182 if (!TARGET_ABI_UNICOSMK)
7183 {
7184 /* Cope with very large offsets to the register save area. */
7185 sa_reg = stack_pointer_rtx;
7186 if (reg_offset + sa_size > 0x8000)
7187 {
7188 int low = ((reg_offset & 0xffff) ^ 0x8000) - 0x8000;
7189 HOST_WIDE_INT bias;
7190
7191 if (low + sa_size <= 0x8000)
7192 bias = reg_offset - low, reg_offset = low;
7193 else
7194 bias = reg_offset, reg_offset = 0;
7195
7196 sa_reg = gen_rtx_REG (DImode, 24);
7197 FRP (emit_insn (gen_adddi3 (sa_reg, stack_pointer_rtx,
7198 GEN_INT (bias))));
7199 }
7200
7201 /* Save regs in stack order. Beginning with VMS PV. */
7202 if (TARGET_ABI_OPEN_VMS && alpha_procedure_type == PT_STACK)
7203 {
7204 mem = gen_rtx_MEM (DImode, stack_pointer_rtx);
7205 set_mem_alias_set (mem, alpha_sr_alias_set);
7206 FRP (emit_move_insn (mem, gen_rtx_REG (DImode, REG_PV)));
7207 }
7208
7209 /* Save register RA next. */
7210 if (imask & (1UL << REG_RA))
7211 {
7212 mem = gen_rtx_MEM (DImode, plus_constant (sa_reg, reg_offset));
7213 set_mem_alias_set (mem, alpha_sr_alias_set);
7214 FRP (emit_move_insn (mem, gen_rtx_REG (DImode, REG_RA)));
7215 imask &= ~(1UL << REG_RA);
7216 reg_offset += 8;
7217 }
7218
7219 /* Now save any other registers required to be saved. */
7220 for (i = 0; i < 31; i++)
7221 if (imask & (1UL << i))
7222 {
7223 mem = gen_rtx_MEM (DImode, plus_constant (sa_reg, reg_offset));
7224 set_mem_alias_set (mem, alpha_sr_alias_set);
7225 FRP (emit_move_insn (mem, gen_rtx_REG (DImode, i)));
7226 reg_offset += 8;
7227 }
7228
7229 /* Store a zero if requested for unwinding. */
7230 if (imask & (1UL << 31))
7231 {
7232 rtx insn, t;
7233
7234 mem = gen_rtx_MEM (DImode, plus_constant (sa_reg, reg_offset));
7235 set_mem_alias_set (mem, alpha_sr_alias_set);
7236 insn = emit_move_insn (mem, const0_rtx);
7237
7238 RTX_FRAME_RELATED_P (insn) = 1;
7239 t = gen_rtx_REG (Pmode, 31);
7240 t = gen_rtx_SET (VOIDmode, mem, t);
7241 t = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, t, REG_NOTES (insn));
7242 REG_NOTES (insn) = t;
7243
7244 reg_offset += 8;
7245 }
7246
7247 for (i = 0; i < 31; i++)
7248 if (fmask & (1UL << i))
7249 {
7250 mem = gen_rtx_MEM (DFmode, plus_constant (sa_reg, reg_offset));
7251 set_mem_alias_set (mem, alpha_sr_alias_set);
7252 FRP (emit_move_insn (mem, gen_rtx_REG (DFmode, i+32)));
7253 reg_offset += 8;
7254 }
7255 }
7256 else if (TARGET_ABI_UNICOSMK && alpha_procedure_type == PT_STACK)
7257 {
7258 /* The standard frame on the T3E includes space for saving registers.
7259 We just have to use it. We don't have to save the return address and
7260 the old frame pointer here - they are saved in the DSIB. */
7261
7262 reg_offset = -56;
7263 for (i = 9; i < 15; i++)
7264 if (imask & (1UL << i))
7265 {
7266 mem = gen_rtx_MEM (DImode, plus_constant(hard_frame_pointer_rtx,
7267 reg_offset));
7268 set_mem_alias_set (mem, alpha_sr_alias_set);
7269 FRP (emit_move_insn (mem, gen_rtx_REG (DImode, i)));
7270 reg_offset -= 8;
7271 }
7272 for (i = 2; i < 10; i++)
7273 if (fmask & (1UL << i))
7274 {
7275 mem = gen_rtx_MEM (DFmode, plus_constant (hard_frame_pointer_rtx,
7276 reg_offset));
7277 set_mem_alias_set (mem, alpha_sr_alias_set);
7278 FRP (emit_move_insn (mem, gen_rtx_REG (DFmode, i+32)));
7279 reg_offset -= 8;
7280 }
7281 }
7282
7283 if (TARGET_ABI_OPEN_VMS)
7284 {
7285 if (alpha_procedure_type == PT_REGISTER)
7286 /* Register frame procedures save the fp.
7287 ?? Ought to have a dwarf2 save for this. */
7288 emit_move_insn (gen_rtx_REG (DImode, vms_save_fp_regno),
7289 hard_frame_pointer_rtx);
7290
7291 if (alpha_procedure_type != PT_NULL && vms_base_regno != REG_PV)
7292 emit_insn (gen_force_movdi (gen_rtx_REG (DImode, vms_base_regno),
7293 gen_rtx_REG (DImode, REG_PV)));
7294
7295 if (alpha_procedure_type != PT_NULL
7296 && vms_unwind_regno == HARD_FRAME_POINTER_REGNUM)
7297 FRP (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx));
7298
7299 /* If we have to allocate space for outgoing args, do it now. */
7300 if (current_function_outgoing_args_size != 0)
7301 {
7302 rtx seq
7303 = emit_move_insn (stack_pointer_rtx,
7304 plus_constant
7305 (hard_frame_pointer_rtx,
7306 - (ALPHA_ROUND
7307 (current_function_outgoing_args_size))));
7308
7309 /* Only set FRAME_RELATED_P on the stack adjustment we just emitted
7310 if ! frame_pointer_needed. Setting the bit will change the CFA
7311 computation rule to use sp again, which would be wrong if we had
7312 frame_pointer_needed, as this means sp might move unpredictably
7313 later on.
7314
7315 Also, note that
7316 frame_pointer_needed
7317 => vms_unwind_regno == HARD_FRAME_POINTER_REGNUM
7318 and
7319 current_function_outgoing_args_size != 0
7320 => alpha_procedure_type != PT_NULL,
7321
7322 so when we are not setting the bit here, we are guaranteed to
7323 have emitted an FRP frame pointer update just before. */
7324 RTX_FRAME_RELATED_P (seq) = ! frame_pointer_needed;
7325 }
7326 }
7327 else if (!TARGET_ABI_UNICOSMK)
7328 {
7329 /* If we need a frame pointer, set it from the stack pointer. */
7330 if (frame_pointer_needed)
7331 {
7332 if (TARGET_CAN_FAULT_IN_PROLOGUE)
7333 FRP (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx));
7334 else
7335 /* This must always be the last instruction in the
7336 prologue, thus we emit a special move + clobber. */
7337 FRP (emit_insn (gen_init_fp (hard_frame_pointer_rtx,
7338 stack_pointer_rtx, sa_reg)));
7339 }
7340 }
7341
7342 /* The ABIs for VMS and OSF/1 say that while we can schedule insns into
7343 the prologue, for exception handling reasons, we cannot do this for
7344 any insn that might fault. We could prevent this for mems with a
7345 (clobber:BLK (scratch)), but this doesn't work for fp insns. So we
7346 have to prevent all such scheduling with a blockage.
7347
7348 Linux, on the other hand, never bothered to implement OSF/1's
7349 exception handling, and so doesn't care about such things. Anyone
7350 planning to use dwarf2 frame-unwind info can also omit the blockage. */
7351
7352 if (! TARGET_CAN_FAULT_IN_PROLOGUE)
7353 emit_insn (gen_blockage ());
7354 }
7355
7356 /* Output the textual info surrounding the prologue. */
7357
7358 void
7359 alpha_start_function (FILE *file, const char *fnname,
7360 tree decl ATTRIBUTE_UNUSED)
7361 {
7362 unsigned long imask = 0;
7363 unsigned long fmask = 0;
7364 /* Stack space needed for pushing registers clobbered by us. */
7365 HOST_WIDE_INT sa_size;
7366 /* Complete stack size needed. */
7367 unsigned HOST_WIDE_INT frame_size;
7368 /* Offset from base reg to register save area. */
7369 HOST_WIDE_INT reg_offset;
7370 char *entry_label = (char *) alloca (strlen (fnname) + 6);
7371 int i;
7372
7373 /* Don't emit an extern directive for functions defined in the same file. */
7374 if (TARGET_ABI_UNICOSMK)
7375 {
7376 tree name_tree;
7377 name_tree = get_identifier (fnname);
7378 TREE_ASM_WRITTEN (name_tree) = 1;
7379 }
7380
7381 alpha_fnname = fnname;
7382 sa_size = alpha_sa_size ();
7383
7384 frame_size = get_frame_size ();
7385 if (TARGET_ABI_OPEN_VMS)
7386 frame_size = ALPHA_ROUND (sa_size
7387 + (alpha_procedure_type == PT_STACK ? 8 : 0)
7388 + frame_size
7389 + current_function_pretend_args_size);
7390 else if (TARGET_ABI_UNICOSMK)
7391 frame_size = ALPHA_ROUND (sa_size
7392 + (alpha_procedure_type == PT_STACK ? 48 : 0))
7393 + ALPHA_ROUND (frame_size
7394 + current_function_outgoing_args_size);
7395 else
7396 frame_size = (ALPHA_ROUND (current_function_outgoing_args_size)
7397 + sa_size
7398 + ALPHA_ROUND (frame_size
7399 + current_function_pretend_args_size));
7400
7401 if (TARGET_ABI_OPEN_VMS)
7402 reg_offset = 8;
7403 else
7404 reg_offset = ALPHA_ROUND (current_function_outgoing_args_size);
7405
7406 alpha_sa_mask (&imask, &fmask);
7407
7408 /* Ecoff can handle multiple .file directives, so put out file and lineno.
7409 We have to do that before the .ent directive as we cannot switch
7410 files within procedures with native ecoff because line numbers are
7411 linked to procedure descriptors.
7412 Outputting the lineno helps debugging of one line functions as they
7413 would otherwise get no line number at all. Please note that we would
7414 like to put out last_linenum from final.c, but it is not accessible. */
7415
7416 if (write_symbols == SDB_DEBUG)
7417 {
7418 #ifdef ASM_OUTPUT_SOURCE_FILENAME
7419 ASM_OUTPUT_SOURCE_FILENAME (file,
7420 DECL_SOURCE_FILE (current_function_decl));
7421 #endif
7422 #ifdef ASM_OUTPUT_SOURCE_LINE
7423 if (debug_info_level != DINFO_LEVEL_TERSE)
7424 ASM_OUTPUT_SOURCE_LINE (file,
7425 DECL_SOURCE_LINE (current_function_decl), 0);
7426 #endif
7427 }
7428
7429 /* Issue function start and label. */
7430 if (TARGET_ABI_OPEN_VMS
7431 || (!TARGET_ABI_UNICOSMK && !flag_inhibit_size_directive))
7432 {
7433 fputs ("\t.ent ", file);
7434 assemble_name (file, fnname);
7435 putc ('\n', file);
7436
7437 /* If the function needs GP, we'll write the "..ng" label there.
7438 Otherwise, do it here. */
7439 if (TARGET_ABI_OSF
7440 && ! alpha_function_needs_gp
7441 && ! current_function_is_thunk)
7442 {
7443 putc ('$', file);
7444 assemble_name (file, fnname);
7445 fputs ("..ng:\n", file);
7446 }
7447 }
7448
7449 strcpy (entry_label, fnname);
7450 if (TARGET_ABI_OPEN_VMS)
7451 strcat (entry_label, "..en");
7452
7453 /* For public functions, the label must be globalized by appending an
7454 additional colon. */
7455 if (TARGET_ABI_UNICOSMK && TREE_PUBLIC (decl))
7456 strcat (entry_label, ":");
7457
7458 ASM_OUTPUT_LABEL (file, entry_label);
7459 inside_function = TRUE;
7460
7461 if (TARGET_ABI_OPEN_VMS)
7462 fprintf (file, "\t.base $%d\n", vms_base_regno);
7463
7464 if (!TARGET_ABI_OPEN_VMS && !TARGET_ABI_UNICOSMK && TARGET_IEEE_CONFORMANT
7465 && !flag_inhibit_size_directive)
7466 {
7467 /* Set flags in procedure descriptor to request IEEE-conformant
7468 math-library routines. The value we set it to is PDSC_EXC_IEEE
7469 (/usr/include/pdsc.h). */
7470 fputs ("\t.eflag 48\n", file);
7471 }
7472
7473 /* Set up offsets to alpha virtual arg/local debugging pointer. */
7474 alpha_auto_offset = -frame_size + current_function_pretend_args_size;
7475 alpha_arg_offset = -frame_size + 48;
7476
7477 /* Describe our frame. If the frame size is larger than an integer,
7478 print it as zero to avoid an assembler error. We won't be
7479 properly describing such a frame, but that's the best we can do. */
7480 if (TARGET_ABI_UNICOSMK)
7481 ;
7482 else if (TARGET_ABI_OPEN_VMS)
7483 fprintf (file, "\t.frame $%d," HOST_WIDE_INT_PRINT_DEC ",$26,"
7484 HOST_WIDE_INT_PRINT_DEC "\n",
7485 vms_unwind_regno,
7486 frame_size >= (1UL << 31) ? 0 : frame_size,
7487 reg_offset);
7488 else if (!flag_inhibit_size_directive)
7489 fprintf (file, "\t.frame $%d," HOST_WIDE_INT_PRINT_DEC ",$26,%d\n",
7490 (frame_pointer_needed
7491 ? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM),
7492 frame_size >= (1UL << 31) ? 0 : frame_size,
7493 current_function_pretend_args_size);
7494
7495 /* Describe which registers were spilled. */
7496 if (TARGET_ABI_UNICOSMK)
7497 ;
7498 else if (TARGET_ABI_OPEN_VMS)
7499 {
7500 if (imask)
7501 /* ??? Does VMS care if mask contains ra? The old code didn't
7502 set it, so I don't here. */
7503 fprintf (file, "\t.mask 0x%lx,0\n", imask & ~(1UL << REG_RA));
7504 if (fmask)
7505 fprintf (file, "\t.fmask 0x%lx,0\n", fmask);
7506 if (alpha_procedure_type == PT_REGISTER)
7507 fprintf (file, "\t.fp_save $%d\n", vms_save_fp_regno);
7508 }
7509 else if (!flag_inhibit_size_directive)
7510 {
7511 if (imask)
7512 {
7513 fprintf (file, "\t.mask 0x%lx," HOST_WIDE_INT_PRINT_DEC "\n", imask,
7514 frame_size >= (1UL << 31) ? 0 : reg_offset - frame_size);
7515
7516 for (i = 0; i < 32; ++i)
7517 if (imask & (1UL << i))
7518 reg_offset += 8;
7519 }
7520
7521 if (fmask)
7522 fprintf (file, "\t.fmask 0x%lx," HOST_WIDE_INT_PRINT_DEC "\n", fmask,
7523 frame_size >= (1UL << 31) ? 0 : reg_offset - frame_size);
7524 }
7525
7526 #if TARGET_ABI_OPEN_VMS
7527 /* Ifdef'ed cause link_section are only available then. */
7528 readonly_data_section ();
7529 fprintf (file, "\t.align 3\n");
7530 assemble_name (file, fnname); fputs ("..na:\n", file);
7531 fputs ("\t.ascii \"", file);
7532 assemble_name (file, fnname);
7533 fputs ("\\0\"\n", file);
7534 alpha_need_linkage (fnname, 1);
7535 text_section ();
7536 #endif
7537 }
7538
7539 /* Emit the .prologue note at the scheduled end of the prologue. */
7540
7541 static void
7542 alpha_output_function_end_prologue (FILE *file)
7543 {
7544 if (TARGET_ABI_UNICOSMK)
7545 ;
7546 else if (TARGET_ABI_OPEN_VMS)
7547 fputs ("\t.prologue\n", file);
7548 else if (TARGET_ABI_WINDOWS_NT)
7549 fputs ("\t.prologue 0\n", file);
7550 else if (!flag_inhibit_size_directive)
7551 fprintf (file, "\t.prologue %d\n",
7552 alpha_function_needs_gp || current_function_is_thunk);
7553 }
7554
7555 /* Write function epilogue. */
7556
7557 /* ??? At some point we will want to support full unwind, and so will
7558 need to mark the epilogue as well. At the moment, we just confuse
7559 dwarf2out. */
7560 #undef FRP
7561 #define FRP(exp) exp
7562
7563 void
7564 alpha_expand_epilogue (void)
7565 {
7566 /* Registers to save. */
7567 unsigned long imask = 0;
7568 unsigned long fmask = 0;
7569 /* Stack space needed for pushing registers clobbered by us. */
7570 HOST_WIDE_INT sa_size;
7571 /* Complete stack size needed. */
7572 HOST_WIDE_INT frame_size;
7573 /* Offset from base reg to register save area. */
7574 HOST_WIDE_INT reg_offset;
7575 int fp_is_frame_pointer, fp_offset;
7576 rtx sa_reg, sa_reg_exp = NULL;
7577 rtx sp_adj1, sp_adj2, mem;
7578 rtx eh_ofs;
7579 int i;
7580
7581 sa_size = alpha_sa_size ();
7582
7583 frame_size = get_frame_size ();
7584 if (TARGET_ABI_OPEN_VMS)
7585 frame_size = ALPHA_ROUND (sa_size
7586 + (alpha_procedure_type == PT_STACK ? 8 : 0)
7587 + frame_size
7588 + current_function_pretend_args_size);
7589 else if (TARGET_ABI_UNICOSMK)
7590 frame_size = ALPHA_ROUND (sa_size
7591 + (alpha_procedure_type == PT_STACK ? 48 : 0))
7592 + ALPHA_ROUND (frame_size
7593 + current_function_outgoing_args_size);
7594 else
7595 frame_size = (ALPHA_ROUND (current_function_outgoing_args_size)
7596 + sa_size
7597 + ALPHA_ROUND (frame_size
7598 + current_function_pretend_args_size));
7599
7600 if (TARGET_ABI_OPEN_VMS)
7601 {
7602 if (alpha_procedure_type == PT_STACK)
7603 reg_offset = 8;
7604 else
7605 reg_offset = 0;
7606 }
7607 else
7608 reg_offset = ALPHA_ROUND (current_function_outgoing_args_size);
7609
7610 alpha_sa_mask (&imask, &fmask);
7611
7612 fp_is_frame_pointer
7613 = ((TARGET_ABI_OPEN_VMS && alpha_procedure_type == PT_STACK)
7614 || (!TARGET_ABI_OPEN_VMS && frame_pointer_needed));
7615 fp_offset = 0;
7616 sa_reg = stack_pointer_rtx;
7617
7618 if (current_function_calls_eh_return)
7619 eh_ofs = EH_RETURN_STACKADJ_RTX;
7620 else
7621 eh_ofs = NULL_RTX;
7622
7623 if (!TARGET_ABI_UNICOSMK && sa_size)
7624 {
7625 /* If we have a frame pointer, restore SP from it. */
7626 if ((TARGET_ABI_OPEN_VMS
7627 && vms_unwind_regno == HARD_FRAME_POINTER_REGNUM)
7628 || (!TARGET_ABI_OPEN_VMS && frame_pointer_needed))
7629 FRP (emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx));
7630
7631 /* Cope with very large offsets to the register save area. */
7632 if (reg_offset + sa_size > 0x8000)
7633 {
7634 int low = ((reg_offset & 0xffff) ^ 0x8000) - 0x8000;
7635 HOST_WIDE_INT bias;
7636
7637 if (low + sa_size <= 0x8000)
7638 bias = reg_offset - low, reg_offset = low;
7639 else
7640 bias = reg_offset, reg_offset = 0;
7641
7642 sa_reg = gen_rtx_REG (DImode, 22);
7643 sa_reg_exp = plus_constant (stack_pointer_rtx, bias);
7644
7645 FRP (emit_move_insn (sa_reg, sa_reg_exp));
7646 }
7647
7648 /* Restore registers in order, excepting a true frame pointer. */
7649
7650 mem = gen_rtx_MEM (DImode, plus_constant (sa_reg, reg_offset));
7651 if (! eh_ofs)
7652 set_mem_alias_set (mem, alpha_sr_alias_set);
7653 FRP (emit_move_insn (gen_rtx_REG (DImode, REG_RA), mem));
7654
7655 reg_offset += 8;
7656 imask &= ~(1UL << REG_RA);
7657
7658 for (i = 0; i < 31; ++i)
7659 if (imask & (1UL << i))
7660 {
7661 if (i == HARD_FRAME_POINTER_REGNUM && fp_is_frame_pointer)
7662 fp_offset = reg_offset;
7663 else
7664 {
7665 mem = gen_rtx_MEM (DImode, plus_constant(sa_reg, reg_offset));
7666 set_mem_alias_set (mem, alpha_sr_alias_set);
7667 FRP (emit_move_insn (gen_rtx_REG (DImode, i), mem));
7668 }
7669 reg_offset += 8;
7670 }
7671
7672 if (imask & (1UL << 31))
7673 reg_offset += 8;
7674
7675 for (i = 0; i < 31; ++i)
7676 if (fmask & (1UL << i))
7677 {
7678 mem = gen_rtx_MEM (DFmode, plus_constant(sa_reg, reg_offset));
7679 set_mem_alias_set (mem, alpha_sr_alias_set);
7680 FRP (emit_move_insn (gen_rtx_REG (DFmode, i+32), mem));
7681 reg_offset += 8;
7682 }
7683 }
7684 else if (TARGET_ABI_UNICOSMK && alpha_procedure_type == PT_STACK)
7685 {
7686 /* Restore callee-saved general-purpose registers. */
7687
7688 reg_offset = -56;
7689
7690 for (i = 9; i < 15; i++)
7691 if (imask & (1UL << i))
7692 {
7693 mem = gen_rtx_MEM (DImode, plus_constant(hard_frame_pointer_rtx,
7694 reg_offset));
7695 set_mem_alias_set (mem, alpha_sr_alias_set);
7696 FRP (emit_move_insn (gen_rtx_REG (DImode, i), mem));
7697 reg_offset -= 8;
7698 }
7699
7700 for (i = 2; i < 10; i++)
7701 if (fmask & (1UL << i))
7702 {
7703 mem = gen_rtx_MEM (DFmode, plus_constant(hard_frame_pointer_rtx,
7704 reg_offset));
7705 set_mem_alias_set (mem, alpha_sr_alias_set);
7706 FRP (emit_move_insn (gen_rtx_REG (DFmode, i+32), mem));
7707 reg_offset -= 8;
7708 }
7709
7710 /* Restore the return address from the DSIB. */
7711
7712 mem = gen_rtx_MEM (DImode, plus_constant(hard_frame_pointer_rtx, -8));
7713 set_mem_alias_set (mem, alpha_sr_alias_set);
7714 FRP (emit_move_insn (gen_rtx_REG (DImode, REG_RA), mem));
7715 }
7716
7717 if (frame_size || eh_ofs)
7718 {
7719 sp_adj1 = stack_pointer_rtx;
7720
7721 if (eh_ofs)
7722 {
7723 sp_adj1 = gen_rtx_REG (DImode, 23);
7724 emit_move_insn (sp_adj1,
7725 gen_rtx_PLUS (Pmode, stack_pointer_rtx, eh_ofs));
7726 }
7727
7728 /* If the stack size is large, begin computation into a temporary
7729 register so as not to interfere with a potential fp restore,
7730 which must be consecutive with an SP restore. */
7731 if (frame_size < 32768
7732 && ! (TARGET_ABI_UNICOSMK && current_function_calls_alloca))
7733 sp_adj2 = GEN_INT (frame_size);
7734 else if (TARGET_ABI_UNICOSMK)
7735 {
7736 sp_adj1 = gen_rtx_REG (DImode, 23);
7737 FRP (emit_move_insn (sp_adj1, hard_frame_pointer_rtx));
7738 sp_adj2 = const0_rtx;
7739 }
7740 else if (frame_size < 0x40007fffL)
7741 {
7742 int low = ((frame_size & 0xffff) ^ 0x8000) - 0x8000;
7743
7744 sp_adj2 = plus_constant (sp_adj1, frame_size - low);
7745 if (sa_reg_exp && rtx_equal_p (sa_reg_exp, sp_adj2))
7746 sp_adj1 = sa_reg;
7747 else
7748 {
7749 sp_adj1 = gen_rtx_REG (DImode, 23);
7750 FRP (emit_move_insn (sp_adj1, sp_adj2));
7751 }
7752 sp_adj2 = GEN_INT (low);
7753 }
7754 else
7755 {
7756 rtx tmp = gen_rtx_REG (DImode, 23);
7757 FRP (sp_adj2 = alpha_emit_set_const (tmp, DImode, frame_size, 3));
7758 if (!sp_adj2)
7759 {
7760 /* We can't drop new things to memory this late, afaik,
7761 so build it up by pieces. */
7762 FRP (sp_adj2 = alpha_emit_set_long_const (tmp, frame_size,
7763 -(frame_size < 0)));
7764 if (!sp_adj2)
7765 abort ();
7766 }
7767 }
7768
7769 /* From now on, things must be in order. So emit blockages. */
7770
7771 /* Restore the frame pointer. */
7772 if (TARGET_ABI_UNICOSMK)
7773 {
7774 emit_insn (gen_blockage ());
7775 mem = gen_rtx_MEM (DImode,
7776 plus_constant (hard_frame_pointer_rtx, -16));
7777 set_mem_alias_set (mem, alpha_sr_alias_set);
7778 FRP (emit_move_insn (hard_frame_pointer_rtx, mem));
7779 }
7780 else if (fp_is_frame_pointer)
7781 {
7782 emit_insn (gen_blockage ());
7783 mem = gen_rtx_MEM (DImode, plus_constant (sa_reg, fp_offset));
7784 set_mem_alias_set (mem, alpha_sr_alias_set);
7785 FRP (emit_move_insn (hard_frame_pointer_rtx, mem));
7786 }
7787 else if (TARGET_ABI_OPEN_VMS)
7788 {
7789 emit_insn (gen_blockage ());
7790 FRP (emit_move_insn (hard_frame_pointer_rtx,
7791 gen_rtx_REG (DImode, vms_save_fp_regno)));
7792 }
7793
7794 /* Restore the stack pointer. */
7795 emit_insn (gen_blockage ());
7796 if (sp_adj2 == const0_rtx)
7797 FRP (emit_move_insn (stack_pointer_rtx, sp_adj1));
7798 else
7799 FRP (emit_move_insn (stack_pointer_rtx,
7800 gen_rtx_PLUS (DImode, sp_adj1, sp_adj2)));
7801 }
7802 else
7803 {
7804 if (TARGET_ABI_OPEN_VMS && alpha_procedure_type == PT_REGISTER)
7805 {
7806 emit_insn (gen_blockage ());
7807 FRP (emit_move_insn (hard_frame_pointer_rtx,
7808 gen_rtx_REG (DImode, vms_save_fp_regno)));
7809 }
7810 else if (TARGET_ABI_UNICOSMK && alpha_procedure_type != PT_STACK)
7811 {
7812 /* Decrement the frame pointer if the function does not have a
7813 frame. */
7814
7815 emit_insn (gen_blockage ());
7816 FRP (emit_insn (gen_adddi3 (hard_frame_pointer_rtx,
7817 hard_frame_pointer_rtx, GEN_INT (-1))));
7818 }
7819 }
7820 }
7821 \f
7822 /* Output the rest of the textual info surrounding the epilogue. */
7823
7824 void
7825 alpha_end_function (FILE *file, const char *fnname, tree decl ATTRIBUTE_UNUSED)
7826 {
7827 /* End the function. */
7828 if (!TARGET_ABI_UNICOSMK && !flag_inhibit_size_directive)
7829 {
7830 fputs ("\t.end ", file);
7831 assemble_name (file, fnname);
7832 putc ('\n', file);
7833 }
7834 inside_function = FALSE;
7835
7836 #if TARGET_ABI_OPEN_VMS
7837 alpha_write_linkage (file, fnname, decl);
7838 #endif
7839
7840 /* Output jump tables and the static subroutine information block. */
7841 if (TARGET_ABI_UNICOSMK)
7842 {
7843 unicosmk_output_ssib (file, fnname);
7844 unicosmk_output_deferred_case_vectors (file);
7845 }
7846 }
7847
7848 #if TARGET_ABI_OSF
7849 /* Emit a tail call to FUNCTION after adjusting THIS by DELTA.
7850
7851 In order to avoid the hordes of differences between generated code
7852 with and without TARGET_EXPLICIT_RELOCS, and to avoid duplicating
7853 lots of code loading up large constants, generate rtl and emit it
7854 instead of going straight to text.
7855
7856 Not sure why this idea hasn't been explored before... */
7857
7858 static void
7859 alpha_output_mi_thunk_osf (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
7860 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
7861 tree function)
7862 {
7863 HOST_WIDE_INT hi, lo;
7864 rtx this, insn, funexp;
7865
7866 /* We always require a valid GP. */
7867 emit_insn (gen_prologue_ldgp ());
7868 emit_note (NOTE_INSN_PROLOGUE_END);
7869
7870 /* Find the "this" pointer. If the function returns a structure,
7871 the structure return pointer is in $16. */
7872 if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
7873 this = gen_rtx_REG (Pmode, 17);
7874 else
7875 this = gen_rtx_REG (Pmode, 16);
7876
7877 /* Add DELTA. When possible we use ldah+lda. Otherwise load the
7878 entire constant for the add. */
7879 lo = ((delta & 0xffff) ^ 0x8000) - 0x8000;
7880 hi = (((delta - lo) & 0xffffffff) ^ 0x80000000) - 0x80000000;
7881 if (hi + lo == delta)
7882 {
7883 if (hi)
7884 emit_insn (gen_adddi3 (this, this, GEN_INT (hi)));
7885 if (lo)
7886 emit_insn (gen_adddi3 (this, this, GEN_INT (lo)));
7887 }
7888 else
7889 {
7890 rtx tmp = alpha_emit_set_long_const (gen_rtx_REG (Pmode, 0),
7891 delta, -(delta < 0));
7892 emit_insn (gen_adddi3 (this, this, tmp));
7893 }
7894
7895 /* Add a delta stored in the vtable at VCALL_OFFSET. */
7896 if (vcall_offset)
7897 {
7898 rtx tmp, tmp2;
7899
7900 tmp = gen_rtx_REG (Pmode, 0);
7901 emit_move_insn (tmp, gen_rtx_MEM (Pmode, this));
7902
7903 lo = ((vcall_offset & 0xffff) ^ 0x8000) - 0x8000;
7904 hi = (((vcall_offset - lo) & 0xffffffff) ^ 0x80000000) - 0x80000000;
7905 if (hi + lo == vcall_offset)
7906 {
7907 if (hi)
7908 emit_insn (gen_adddi3 (tmp, tmp, GEN_INT (hi)));
7909 }
7910 else
7911 {
7912 tmp2 = alpha_emit_set_long_const (gen_rtx_REG (Pmode, 1),
7913 vcall_offset, -(vcall_offset < 0));
7914 emit_insn (gen_adddi3 (tmp, tmp, tmp2));
7915 lo = 0;
7916 }
7917 if (lo)
7918 tmp2 = gen_rtx_PLUS (Pmode, tmp, GEN_INT (lo));
7919 else
7920 tmp2 = tmp;
7921 emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp2));
7922
7923 emit_insn (gen_adddi3 (this, this, tmp));
7924 }
7925
7926 /* Generate a tail call to the target function. */
7927 if (! TREE_USED (function))
7928 {
7929 assemble_external (function);
7930 TREE_USED (function) = 1;
7931 }
7932 funexp = XEXP (DECL_RTL (function), 0);
7933 funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);
7934 insn = emit_call_insn (gen_sibcall (funexp, const0_rtx));
7935 SIBLING_CALL_P (insn) = 1;
7936
7937 /* Run just enough of rest_of_compilation to get the insns emitted.
7938 There's not really enough bulk here to make other passes such as
7939 instruction scheduling worth while. Note that use_thunk calls
7940 assemble_start_function and assemble_end_function. */
7941 insn = get_insns ();
7942 insn_locators_initialize ();
7943 shorten_branches (insn);
7944 final_start_function (insn, file, 1);
7945 final (insn, file, 1, 0);
7946 final_end_function ();
7947 }
7948 #endif /* TARGET_ABI_OSF */
7949 \f
7950 /* Debugging support. */
7951
7952 #include "gstab.h"
7953
7954 /* Count the number of sdb related labels are generated (to find block
7955 start and end boundaries). */
7956
7957 int sdb_label_count = 0;
7958
7959 /* Next label # for each statement. */
7960
7961 static int sym_lineno = 0;
7962
7963 /* Count the number of .file directives, so that .loc is up to date. */
7964
7965 static int num_source_filenames = 0;
7966
7967 /* Name of the file containing the current function. */
7968
7969 static const char *current_function_file = "";
7970
7971 /* Offsets to alpha virtual arg/local debugging pointers. */
7972
7973 long alpha_arg_offset;
7974 long alpha_auto_offset;
7975 \f
7976 /* Emit a new filename to a stream. */
7977
7978 void
7979 alpha_output_filename (FILE *stream, const char *name)
7980 {
7981 static int first_time = TRUE;
7982 char ltext_label_name[100];
7983
7984 if (first_time)
7985 {
7986 first_time = FALSE;
7987 ++num_source_filenames;
7988 current_function_file = name;
7989 fprintf (stream, "\t.file\t%d ", num_source_filenames);
7990 output_quoted_string (stream, name);
7991 fprintf (stream, "\n");
7992 if (!TARGET_GAS && write_symbols == DBX_DEBUG)
7993 fprintf (stream, "\t#@stabs\n");
7994 }
7995
7996 else if (write_symbols == DBX_DEBUG)
7997 {
7998 ASM_GENERATE_INTERNAL_LABEL (ltext_label_name, "Ltext", 0);
7999 fprintf (stream, "%s", ASM_STABS_OP);
8000 output_quoted_string (stream, name);
8001 fprintf (stream, ",%d,0,0,%s\n", N_SOL, &ltext_label_name[1]);
8002 }
8003
8004 else if (name != current_function_file
8005 && strcmp (name, current_function_file) != 0)
8006 {
8007 if (inside_function && ! TARGET_GAS)
8008 fprintf (stream, "\t#.file\t%d ", num_source_filenames);
8009 else
8010 {
8011 ++num_source_filenames;
8012 current_function_file = name;
8013 fprintf (stream, "\t.file\t%d ", num_source_filenames);
8014 }
8015
8016 output_quoted_string (stream, name);
8017 fprintf (stream, "\n");
8018 }
8019 }
8020
8021 /* Emit a linenumber to a stream. */
8022
8023 void
8024 alpha_output_lineno (FILE *stream, int line)
8025 {
8026 if (write_symbols == DBX_DEBUG)
8027 {
8028 /* mips-tfile doesn't understand .stabd directives. */
8029 ++sym_lineno;
8030 fprintf (stream, "$LM%d:\n%s%d,0,%d,$LM%d\n",
8031 sym_lineno, ASM_STABN_OP, N_SLINE, line, sym_lineno);
8032 }
8033 else
8034 fprintf (stream, "\n\t.loc\t%d %d\n", num_source_filenames, line);
8035 }
8036 \f
8037 /* Structure to show the current status of registers and memory. */
8038
8039 struct shadow_summary
8040 {
8041 struct {
8042 unsigned int i : 31; /* Mask of int regs */
8043 unsigned int fp : 31; /* Mask of fp regs */
8044 unsigned int mem : 1; /* mem == imem | fpmem */
8045 } used, defd;
8046 };
8047
8048 /* Summary the effects of expression X on the machine. Update SUM, a pointer
8049 to the summary structure. SET is nonzero if the insn is setting the
8050 object, otherwise zero. */
8051
8052 static void
8053 summarize_insn (rtx x, struct shadow_summary *sum, int set)
8054 {
8055 const char *format_ptr;
8056 int i, j;
8057
8058 if (x == 0)
8059 return;
8060
8061 switch (GET_CODE (x))
8062 {
8063 /* ??? Note that this case would be incorrect if the Alpha had a
8064 ZERO_EXTRACT in SET_DEST. */
8065 case SET:
8066 summarize_insn (SET_SRC (x), sum, 0);
8067 summarize_insn (SET_DEST (x), sum, 1);
8068 break;
8069
8070 case CLOBBER:
8071 summarize_insn (XEXP (x, 0), sum, 1);
8072 break;
8073
8074 case USE:
8075 summarize_insn (XEXP (x, 0), sum, 0);
8076 break;
8077
8078 case ASM_OPERANDS:
8079 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
8080 summarize_insn (ASM_OPERANDS_INPUT (x, i), sum, 0);
8081 break;
8082
8083 case PARALLEL:
8084 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
8085 summarize_insn (XVECEXP (x, 0, i), sum, 0);
8086 break;
8087
8088 case SUBREG:
8089 summarize_insn (SUBREG_REG (x), sum, 0);
8090 break;
8091
8092 case REG:
8093 {
8094 int regno = REGNO (x);
8095 unsigned long mask = ((unsigned long) 1) << (regno % 32);
8096
8097 if (regno == 31 || regno == 63)
8098 break;
8099
8100 if (set)
8101 {
8102 if (regno < 32)
8103 sum->defd.i |= mask;
8104 else
8105 sum->defd.fp |= mask;
8106 }
8107 else
8108 {
8109 if (regno < 32)
8110 sum->used.i |= mask;
8111 else
8112 sum->used.fp |= mask;
8113 }
8114 }
8115 break;
8116
8117 case MEM:
8118 if (set)
8119 sum->defd.mem = 1;
8120 else
8121 sum->used.mem = 1;
8122
8123 /* Find the regs used in memory address computation: */
8124 summarize_insn (XEXP (x, 0), sum, 0);
8125 break;
8126
8127 case CONST_INT: case CONST_DOUBLE:
8128 case SYMBOL_REF: case LABEL_REF: case CONST:
8129 case SCRATCH: case ASM_INPUT:
8130 break;
8131
8132 /* Handle common unary and binary ops for efficiency. */
8133 case COMPARE: case PLUS: case MINUS: case MULT: case DIV:
8134 case MOD: case UDIV: case UMOD: case AND: case IOR:
8135 case XOR: case ASHIFT: case ROTATE: case ASHIFTRT: case LSHIFTRT:
8136 case ROTATERT: case SMIN: case SMAX: case UMIN: case UMAX:
8137 case NE: case EQ: case GE: case GT: case LE:
8138 case LT: case GEU: case GTU: case LEU: case LTU:
8139 summarize_insn (XEXP (x, 0), sum, 0);
8140 summarize_insn (XEXP (x, 1), sum, 0);
8141 break;
8142
8143 case NEG: case NOT: case SIGN_EXTEND: case ZERO_EXTEND:
8144 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE: case FLOAT:
8145 case FIX: case UNSIGNED_FLOAT: case UNSIGNED_FIX: case ABS:
8146 case SQRT: case FFS:
8147 summarize_insn (XEXP (x, 0), sum, 0);
8148 break;
8149
8150 default:
8151 format_ptr = GET_RTX_FORMAT (GET_CODE (x));
8152 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
8153 switch (format_ptr[i])
8154 {
8155 case 'e':
8156 summarize_insn (XEXP (x, i), sum, 0);
8157 break;
8158
8159 case 'E':
8160 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8161 summarize_insn (XVECEXP (x, i, j), sum, 0);
8162 break;
8163
8164 case 'i':
8165 break;
8166
8167 default:
8168 abort ();
8169 }
8170 }
8171 }
8172
8173 /* Ensure a sufficient number of `trapb' insns are in the code when
8174 the user requests code with a trap precision of functions or
8175 instructions.
8176
8177 In naive mode, when the user requests a trap-precision of
8178 "instruction", a trapb is needed after every instruction that may
8179 generate a trap. This ensures that the code is resumption safe but
8180 it is also slow.
8181
8182 When optimizations are turned on, we delay issuing a trapb as long
8183 as possible. In this context, a trap shadow is the sequence of
8184 instructions that starts with a (potentially) trap generating
8185 instruction and extends to the next trapb or call_pal instruction
8186 (but GCC never generates call_pal by itself). We can delay (and
8187 therefore sometimes omit) a trapb subject to the following
8188 conditions:
8189
8190 (a) On entry to the trap shadow, if any Alpha register or memory
8191 location contains a value that is used as an operand value by some
8192 instruction in the trap shadow (live on entry), then no instruction
8193 in the trap shadow may modify the register or memory location.
8194
8195 (b) Within the trap shadow, the computation of the base register
8196 for a memory load or store instruction may not involve using the
8197 result of an instruction that might generate an UNPREDICTABLE
8198 result.
8199
8200 (c) Within the trap shadow, no register may be used more than once
8201 as a destination register. (This is to make life easier for the
8202 trap-handler.)
8203
8204 (d) The trap shadow may not include any branch instructions. */
8205
8206 static void
8207 alpha_handle_trap_shadows (void)
8208 {
8209 struct shadow_summary shadow;
8210 int trap_pending, exception_nesting;
8211 rtx i, n;
8212
8213 trap_pending = 0;
8214 exception_nesting = 0;
8215 shadow.used.i = 0;
8216 shadow.used.fp = 0;
8217 shadow.used.mem = 0;
8218 shadow.defd = shadow.used;
8219
8220 for (i = get_insns (); i ; i = NEXT_INSN (i))
8221 {
8222 if (GET_CODE (i) == NOTE)
8223 {
8224 switch (NOTE_LINE_NUMBER (i))
8225 {
8226 case NOTE_INSN_EH_REGION_BEG:
8227 exception_nesting++;
8228 if (trap_pending)
8229 goto close_shadow;
8230 break;
8231
8232 case NOTE_INSN_EH_REGION_END:
8233 exception_nesting--;
8234 if (trap_pending)
8235 goto close_shadow;
8236 break;
8237
8238 case NOTE_INSN_EPILOGUE_BEG:
8239 if (trap_pending && alpha_tp >= ALPHA_TP_FUNC)
8240 goto close_shadow;
8241 break;
8242 }
8243 }
8244 else if (trap_pending)
8245 {
8246 if (alpha_tp == ALPHA_TP_FUNC)
8247 {
8248 if (GET_CODE (i) == JUMP_INSN
8249 && GET_CODE (PATTERN (i)) == RETURN)
8250 goto close_shadow;
8251 }
8252 else if (alpha_tp == ALPHA_TP_INSN)
8253 {
8254 if (optimize > 0)
8255 {
8256 struct shadow_summary sum;
8257
8258 sum.used.i = 0;
8259 sum.used.fp = 0;
8260 sum.used.mem = 0;
8261 sum.defd = sum.used;
8262
8263 switch (GET_CODE (i))
8264 {
8265 case INSN:
8266 /* Annoyingly, get_attr_trap will abort on these. */
8267 if (GET_CODE (PATTERN (i)) == USE
8268 || GET_CODE (PATTERN (i)) == CLOBBER)
8269 break;
8270
8271 summarize_insn (PATTERN (i), &sum, 0);
8272
8273 if ((sum.defd.i & shadow.defd.i)
8274 || (sum.defd.fp & shadow.defd.fp))
8275 {
8276 /* (c) would be violated */
8277 goto close_shadow;
8278 }
8279
8280 /* Combine shadow with summary of current insn: */
8281 shadow.used.i |= sum.used.i;
8282 shadow.used.fp |= sum.used.fp;
8283 shadow.used.mem |= sum.used.mem;
8284 shadow.defd.i |= sum.defd.i;
8285 shadow.defd.fp |= sum.defd.fp;
8286 shadow.defd.mem |= sum.defd.mem;
8287
8288 if ((sum.defd.i & shadow.used.i)
8289 || (sum.defd.fp & shadow.used.fp)
8290 || (sum.defd.mem & shadow.used.mem))
8291 {
8292 /* (a) would be violated (also takes care of (b)) */
8293 if (get_attr_trap (i) == TRAP_YES
8294 && ((sum.defd.i & sum.used.i)
8295 || (sum.defd.fp & sum.used.fp)))
8296 abort ();
8297
8298 goto close_shadow;
8299 }
8300 break;
8301
8302 case JUMP_INSN:
8303 case CALL_INSN:
8304 case CODE_LABEL:
8305 goto close_shadow;
8306
8307 default:
8308 abort ();
8309 }
8310 }
8311 else
8312 {
8313 close_shadow:
8314 n = emit_insn_before (gen_trapb (), i);
8315 PUT_MODE (n, TImode);
8316 PUT_MODE (i, TImode);
8317 trap_pending = 0;
8318 shadow.used.i = 0;
8319 shadow.used.fp = 0;
8320 shadow.used.mem = 0;
8321 shadow.defd = shadow.used;
8322 }
8323 }
8324 }
8325
8326 if ((exception_nesting > 0 || alpha_tp >= ALPHA_TP_FUNC)
8327 && GET_CODE (i) == INSN
8328 && GET_CODE (PATTERN (i)) != USE
8329 && GET_CODE (PATTERN (i)) != CLOBBER
8330 && get_attr_trap (i) == TRAP_YES)
8331 {
8332 if (optimize && !trap_pending)
8333 summarize_insn (PATTERN (i), &shadow, 0);
8334 trap_pending = 1;
8335 }
8336 }
8337 }
8338 \f
8339 /* Alpha can only issue instruction groups simultaneously if they are
8340 suitably aligned. This is very processor-specific. */
8341
8342 enum alphaev4_pipe {
8343 EV4_STOP = 0,
8344 EV4_IB0 = 1,
8345 EV4_IB1 = 2,
8346 EV4_IBX = 4
8347 };
8348
8349 enum alphaev5_pipe {
8350 EV5_STOP = 0,
8351 EV5_NONE = 1,
8352 EV5_E01 = 2,
8353 EV5_E0 = 4,
8354 EV5_E1 = 8,
8355 EV5_FAM = 16,
8356 EV5_FA = 32,
8357 EV5_FM = 64
8358 };
8359
8360 static enum alphaev4_pipe
8361 alphaev4_insn_pipe (rtx insn)
8362 {
8363 if (recog_memoized (insn) < 0)
8364 return EV4_STOP;
8365 if (get_attr_length (insn) != 4)
8366 return EV4_STOP;
8367
8368 switch (get_attr_type (insn))
8369 {
8370 case TYPE_ILD:
8371 case TYPE_FLD:
8372 return EV4_IBX;
8373
8374 case TYPE_LDSYM:
8375 case TYPE_IADD:
8376 case TYPE_ILOG:
8377 case TYPE_ICMOV:
8378 case TYPE_ICMP:
8379 case TYPE_IST:
8380 case TYPE_FST:
8381 case TYPE_SHIFT:
8382 case TYPE_IMUL:
8383 case TYPE_FBR:
8384 return EV4_IB0;
8385
8386 case TYPE_MISC:
8387 case TYPE_IBR:
8388 case TYPE_JSR:
8389 case TYPE_CALLPAL:
8390 case TYPE_FCPYS:
8391 case TYPE_FCMOV:
8392 case TYPE_FADD:
8393 case TYPE_FDIV:
8394 case TYPE_FMUL:
8395 return EV4_IB1;
8396
8397 default:
8398 abort ();
8399 }
8400 }
8401
8402 static enum alphaev5_pipe
8403 alphaev5_insn_pipe (rtx insn)
8404 {
8405 if (recog_memoized (insn) < 0)
8406 return EV5_STOP;
8407 if (get_attr_length (insn) != 4)
8408 return EV5_STOP;
8409
8410 switch (get_attr_type (insn))
8411 {
8412 case TYPE_ILD:
8413 case TYPE_FLD:
8414 case TYPE_LDSYM:
8415 case TYPE_IADD:
8416 case TYPE_ILOG:
8417 case TYPE_ICMOV:
8418 case TYPE_ICMP:
8419 return EV5_E01;
8420
8421 case TYPE_IST:
8422 case TYPE_FST:
8423 case TYPE_SHIFT:
8424 case TYPE_IMUL:
8425 case TYPE_MISC:
8426 case TYPE_MVI:
8427 return EV5_E0;
8428
8429 case TYPE_IBR:
8430 case TYPE_JSR:
8431 case TYPE_CALLPAL:
8432 return EV5_E1;
8433
8434 case TYPE_FCPYS:
8435 return EV5_FAM;
8436
8437 case TYPE_FBR:
8438 case TYPE_FCMOV:
8439 case TYPE_FADD:
8440 case TYPE_FDIV:
8441 return EV5_FA;
8442
8443 case TYPE_FMUL:
8444 return EV5_FM;
8445
8446 default:
8447 abort();
8448 }
8449 }
8450
8451 /* IN_USE is a mask of the slots currently filled within the insn group.
8452 The mask bits come from alphaev4_pipe above. If EV4_IBX is set, then
8453 the insn in EV4_IB0 can be swapped by the hardware into EV4_IB1.
8454
8455 LEN is, of course, the length of the group in bytes. */
8456
8457 static rtx
8458 alphaev4_next_group (rtx insn, int *pin_use, int *plen)
8459 {
8460 int len, in_use;
8461
8462 len = in_use = 0;
8463
8464 if (! INSN_P (insn)
8465 || GET_CODE (PATTERN (insn)) == CLOBBER
8466 || GET_CODE (PATTERN (insn)) == USE)
8467 goto next_and_done;
8468
8469 while (1)
8470 {
8471 enum alphaev4_pipe pipe;
8472
8473 pipe = alphaev4_insn_pipe (insn);
8474 switch (pipe)
8475 {
8476 case EV4_STOP:
8477 /* Force complex instructions to start new groups. */
8478 if (in_use)
8479 goto done;
8480
8481 /* If this is a completely unrecognized insn, its an asm.
8482 We don't know how long it is, so record length as -1 to
8483 signal a needed realignment. */
8484 if (recog_memoized (insn) < 0)
8485 len = -1;
8486 else
8487 len = get_attr_length (insn);
8488 goto next_and_done;
8489
8490 case EV4_IBX:
8491 if (in_use & EV4_IB0)
8492 {
8493 if (in_use & EV4_IB1)
8494 goto done;
8495 in_use |= EV4_IB1;
8496 }
8497 else
8498 in_use |= EV4_IB0 | EV4_IBX;
8499 break;
8500
8501 case EV4_IB0:
8502 if (in_use & EV4_IB0)
8503 {
8504 if (!(in_use & EV4_IBX) || (in_use & EV4_IB1))
8505 goto done;
8506 in_use |= EV4_IB1;
8507 }
8508 in_use |= EV4_IB0;
8509 break;
8510
8511 case EV4_IB1:
8512 if (in_use & EV4_IB1)
8513 goto done;
8514 in_use |= EV4_IB1;
8515 break;
8516
8517 default:
8518 abort();
8519 }
8520 len += 4;
8521
8522 /* Haifa doesn't do well scheduling branches. */
8523 if (GET_CODE (insn) == JUMP_INSN)
8524 goto next_and_done;
8525
8526 next:
8527 insn = next_nonnote_insn (insn);
8528
8529 if (!insn || ! INSN_P (insn))
8530 goto done;
8531
8532 /* Let Haifa tell us where it thinks insn group boundaries are. */
8533 if (GET_MODE (insn) == TImode)
8534 goto done;
8535
8536 if (GET_CODE (insn) == CLOBBER || GET_CODE (insn) == USE)
8537 goto next;
8538 }
8539
8540 next_and_done:
8541 insn = next_nonnote_insn (insn);
8542
8543 done:
8544 *plen = len;
8545 *pin_use = in_use;
8546 return insn;
8547 }
8548
8549 /* IN_USE is a mask of the slots currently filled within the insn group.
8550 The mask bits come from alphaev5_pipe above. If EV5_E01 is set, then
8551 the insn in EV5_E0 can be swapped by the hardware into EV5_E1.
8552
8553 LEN is, of course, the length of the group in bytes. */
8554
8555 static rtx
8556 alphaev5_next_group (rtx insn, int *pin_use, int *plen)
8557 {
8558 int len, in_use;
8559
8560 len = in_use = 0;
8561
8562 if (! INSN_P (insn)
8563 || GET_CODE (PATTERN (insn)) == CLOBBER
8564 || GET_CODE (PATTERN (insn)) == USE)
8565 goto next_and_done;
8566
8567 while (1)
8568 {
8569 enum alphaev5_pipe pipe;
8570
8571 pipe = alphaev5_insn_pipe (insn);
8572 switch (pipe)
8573 {
8574 case EV5_STOP:
8575 /* Force complex instructions to start new groups. */
8576 if (in_use)
8577 goto done;
8578
8579 /* If this is a completely unrecognized insn, its an asm.
8580 We don't know how long it is, so record length as -1 to
8581 signal a needed realignment. */
8582 if (recog_memoized (insn) < 0)
8583 len = -1;
8584 else
8585 len = get_attr_length (insn);
8586 goto next_and_done;
8587
8588 /* ??? Most of the places below, we would like to abort, as
8589 it would indicate an error either in Haifa, or in the
8590 scheduling description. Unfortunately, Haifa never
8591 schedules the last instruction of the BB, so we don't
8592 have an accurate TI bit to go off. */
8593 case EV5_E01:
8594 if (in_use & EV5_E0)
8595 {
8596 if (in_use & EV5_E1)
8597 goto done;
8598 in_use |= EV5_E1;
8599 }
8600 else
8601 in_use |= EV5_E0 | EV5_E01;
8602 break;
8603
8604 case EV5_E0:
8605 if (in_use & EV5_E0)
8606 {
8607 if (!(in_use & EV5_E01) || (in_use & EV5_E1))
8608 goto done;
8609 in_use |= EV5_E1;
8610 }
8611 in_use |= EV5_E0;
8612 break;
8613
8614 case EV5_E1:
8615 if (in_use & EV5_E1)
8616 goto done;
8617 in_use |= EV5_E1;
8618 break;
8619
8620 case EV5_FAM:
8621 if (in_use & EV5_FA)
8622 {
8623 if (in_use & EV5_FM)
8624 goto done;
8625 in_use |= EV5_FM;
8626 }
8627 else
8628 in_use |= EV5_FA | EV5_FAM;
8629 break;
8630
8631 case EV5_FA:
8632 if (in_use & EV5_FA)
8633 goto done;
8634 in_use |= EV5_FA;
8635 break;
8636
8637 case EV5_FM:
8638 if (in_use & EV5_FM)
8639 goto done;
8640 in_use |= EV5_FM;
8641 break;
8642
8643 case EV5_NONE:
8644 break;
8645
8646 default:
8647 abort();
8648 }
8649 len += 4;
8650
8651 /* Haifa doesn't do well scheduling branches. */
8652 /* ??? If this is predicted not-taken, slotting continues, except
8653 that no more IBR, FBR, or JSR insns may be slotted. */
8654 if (GET_CODE (insn) == JUMP_INSN)
8655 goto next_and_done;
8656
8657 next:
8658 insn = next_nonnote_insn (insn);
8659
8660 if (!insn || ! INSN_P (insn))
8661 goto done;
8662
8663 /* Let Haifa tell us where it thinks insn group boundaries are. */
8664 if (GET_MODE (insn) == TImode)
8665 goto done;
8666
8667 if (GET_CODE (insn) == CLOBBER || GET_CODE (insn) == USE)
8668 goto next;
8669 }
8670
8671 next_and_done:
8672 insn = next_nonnote_insn (insn);
8673
8674 done:
8675 *plen = len;
8676 *pin_use = in_use;
8677 return insn;
8678 }
8679
8680 static rtx
8681 alphaev4_next_nop (int *pin_use)
8682 {
8683 int in_use = *pin_use;
8684 rtx nop;
8685
8686 if (!(in_use & EV4_IB0))
8687 {
8688 in_use |= EV4_IB0;
8689 nop = gen_nop ();
8690 }
8691 else if ((in_use & (EV4_IBX|EV4_IB1)) == EV4_IBX)
8692 {
8693 in_use |= EV4_IB1;
8694 nop = gen_nop ();
8695 }
8696 else if (TARGET_FP && !(in_use & EV4_IB1))
8697 {
8698 in_use |= EV4_IB1;
8699 nop = gen_fnop ();
8700 }
8701 else
8702 nop = gen_unop ();
8703
8704 *pin_use = in_use;
8705 return nop;
8706 }
8707
8708 static rtx
8709 alphaev5_next_nop (int *pin_use)
8710 {
8711 int in_use = *pin_use;
8712 rtx nop;
8713
8714 if (!(in_use & EV5_E1))
8715 {
8716 in_use |= EV5_E1;
8717 nop = gen_nop ();
8718 }
8719 else if (TARGET_FP && !(in_use & EV5_FA))
8720 {
8721 in_use |= EV5_FA;
8722 nop = gen_fnop ();
8723 }
8724 else if (TARGET_FP && !(in_use & EV5_FM))
8725 {
8726 in_use |= EV5_FM;
8727 nop = gen_fnop ();
8728 }
8729 else
8730 nop = gen_unop ();
8731
8732 *pin_use = in_use;
8733 return nop;
8734 }
8735
8736 /* The instruction group alignment main loop. */
8737
8738 static void
8739 alpha_align_insns (unsigned int max_align,
8740 rtx (*next_group) (rtx, int *, int *),
8741 rtx (*next_nop) (int *))
8742 {
8743 /* ALIGN is the known alignment for the insn group. */
8744 unsigned int align;
8745 /* OFS is the offset of the current insn in the insn group. */
8746 int ofs;
8747 int prev_in_use, in_use, len;
8748 rtx i, next;
8749
8750 /* Let shorten branches care for assigning alignments to code labels. */
8751 shorten_branches (get_insns ());
8752
8753 if (align_functions < 4)
8754 align = 4;
8755 else if ((unsigned int) align_functions < max_align)
8756 align = align_functions;
8757 else
8758 align = max_align;
8759
8760 ofs = prev_in_use = 0;
8761 i = get_insns ();
8762 if (GET_CODE (i) == NOTE)
8763 i = next_nonnote_insn (i);
8764
8765 while (i)
8766 {
8767 next = (*next_group) (i, &in_use, &len);
8768
8769 /* When we see a label, resync alignment etc. */
8770 if (GET_CODE (i) == CODE_LABEL)
8771 {
8772 unsigned int new_align = 1 << label_to_alignment (i);
8773
8774 if (new_align >= align)
8775 {
8776 align = new_align < max_align ? new_align : max_align;
8777 ofs = 0;
8778 }
8779
8780 else if (ofs & (new_align-1))
8781 ofs = (ofs | (new_align-1)) + 1;
8782 if (len != 0)
8783 abort();
8784 }
8785
8786 /* Handle complex instructions special. */
8787 else if (in_use == 0)
8788 {
8789 /* Asms will have length < 0. This is a signal that we have
8790 lost alignment knowledge. Assume, however, that the asm
8791 will not mis-align instructions. */
8792 if (len < 0)
8793 {
8794 ofs = 0;
8795 align = 4;
8796 len = 0;
8797 }
8798 }
8799
8800 /* If the known alignment is smaller than the recognized insn group,
8801 realign the output. */
8802 else if ((int) align < len)
8803 {
8804 unsigned int new_log_align = len > 8 ? 4 : 3;
8805 rtx prev, where;
8806
8807 where = prev = prev_nonnote_insn (i);
8808 if (!where || GET_CODE (where) != CODE_LABEL)
8809 where = i;
8810
8811 /* Can't realign between a call and its gp reload. */
8812 if (! (TARGET_EXPLICIT_RELOCS
8813 && prev && GET_CODE (prev) == CALL_INSN))
8814 {
8815 emit_insn_before (gen_realign (GEN_INT (new_log_align)), where);
8816 align = 1 << new_log_align;
8817 ofs = 0;
8818 }
8819 }
8820
8821 /* If the group won't fit in the same INT16 as the previous,
8822 we need to add padding to keep the group together. Rather
8823 than simply leaving the insn filling to the assembler, we
8824 can make use of the knowledge of what sorts of instructions
8825 were issued in the previous group to make sure that all of
8826 the added nops are really free. */
8827 else if (ofs + len > (int) align)
8828 {
8829 int nop_count = (align - ofs) / 4;
8830 rtx where;
8831
8832 /* Insert nops before labels, branches, and calls to truly merge
8833 the execution of the nops with the previous instruction group. */
8834 where = prev_nonnote_insn (i);
8835 if (where)
8836 {
8837 if (GET_CODE (where) == CODE_LABEL)
8838 {
8839 rtx where2 = prev_nonnote_insn (where);
8840 if (where2 && GET_CODE (where2) == JUMP_INSN)
8841 where = where2;
8842 }
8843 else if (GET_CODE (where) == INSN)
8844 where = i;
8845 }
8846 else
8847 where = i;
8848
8849 do
8850 emit_insn_before ((*next_nop)(&prev_in_use), where);
8851 while (--nop_count);
8852 ofs = 0;
8853 }
8854
8855 ofs = (ofs + len) & (align - 1);
8856 prev_in_use = in_use;
8857 i = next;
8858 }
8859 }
8860 \f
8861 /* Machine dependent reorg pass. */
8862
8863 static void
8864 alpha_reorg (void)
8865 {
8866 if (alpha_tp != ALPHA_TP_PROG || flag_exceptions)
8867 alpha_handle_trap_shadows ();
8868
8869 /* Due to the number of extra trapb insns, don't bother fixing up
8870 alignment when trap precision is instruction. Moreover, we can
8871 only do our job when sched2 is run. */
8872 if (optimize && !optimize_size
8873 && alpha_tp != ALPHA_TP_INSN
8874 && flag_schedule_insns_after_reload)
8875 {
8876 if (alpha_cpu == PROCESSOR_EV4)
8877 alpha_align_insns (8, alphaev4_next_group, alphaev4_next_nop);
8878 else if (alpha_cpu == PROCESSOR_EV5)
8879 alpha_align_insns (16, alphaev5_next_group, alphaev5_next_nop);
8880 }
8881 }
8882 \f
8883 #if !TARGET_ABI_UNICOSMK
8884
8885 #ifdef HAVE_STAMP_H
8886 #include <stamp.h>
8887 #endif
8888
8889 static void
8890 alpha_file_start (void)
8891 {
8892 #ifdef OBJECT_FORMAT_ELF
8893 /* If emitting dwarf2 debug information, we cannot generate a .file
8894 directive to start the file, as it will conflict with dwarf2out
8895 file numbers. So it's only useful when emitting mdebug output. */
8896 targetm.file_start_file_directive = (write_symbols == DBX_DEBUG);
8897 #endif
8898
8899 default_file_start ();
8900 #ifdef MS_STAMP
8901 fprintf (asm_out_file, "\t.verstamp %d %d\n", MS_STAMP, LS_STAMP);
8902 #endif
8903
8904 fputs ("\t.set noreorder\n", asm_out_file);
8905 fputs ("\t.set volatile\n", asm_out_file);
8906 if (!TARGET_ABI_OPEN_VMS)
8907 fputs ("\t.set noat\n", asm_out_file);
8908 if (TARGET_EXPLICIT_RELOCS)
8909 fputs ("\t.set nomacro\n", asm_out_file);
8910 if (TARGET_SUPPORT_ARCH | TARGET_BWX | TARGET_MAX | TARGET_FIX | TARGET_CIX)
8911 fprintf (asm_out_file,
8912 "\t.arch %s\n",
8913 TARGET_CPU_EV6 ? "ev6"
8914 : (TARGET_CPU_EV5
8915 ? (TARGET_MAX ? "pca56" : TARGET_BWX ? "ev56" : "ev5")
8916 : "ev4"));
8917 }
8918 #endif
8919
8920 #ifdef OBJECT_FORMAT_ELF
8921
8922 /* Switch to the section to which we should output X. The only thing
8923 special we do here is to honor small data. */
8924
8925 static void
8926 alpha_elf_select_rtx_section (enum machine_mode mode, rtx x,
8927 unsigned HOST_WIDE_INT align)
8928 {
8929 if (TARGET_SMALL_DATA && GET_MODE_SIZE (mode) <= g_switch_value)
8930 /* ??? Consider using mergeable sdata sections. */
8931 sdata_section ();
8932 else
8933 default_elf_select_rtx_section (mode, x, align);
8934 }
8935
8936 #endif /* OBJECT_FORMAT_ELF */
8937 \f
8938 /* Structure to collect function names for final output in link section. */
8939 /* Note that items marked with GTY can't be ifdef'ed out. */
8940
8941 enum links_kind {KIND_UNUSED, KIND_LOCAL, KIND_EXTERN};
8942 enum reloc_kind {KIND_LINKAGE, KIND_CODEADDR};
8943
8944 struct alpha_links GTY(())
8945 {
8946 int num;
8947 rtx linkage;
8948 enum links_kind lkind;
8949 enum reloc_kind rkind;
8950 };
8951
8952 struct alpha_funcs GTY(())
8953 {
8954 int num;
8955 splay_tree GTY ((param1_is (char *), param2_is (struct alpha_links *)))
8956 links;
8957 };
8958
8959 static GTY ((param1_is (char *), param2_is (struct alpha_links *)))
8960 splay_tree alpha_links_tree;
8961 static GTY ((param1_is (tree), param2_is (struct alpha_funcs *)))
8962 splay_tree alpha_funcs_tree;
8963
8964 static GTY(()) int alpha_funcs_num;
8965
8966 #if TARGET_ABI_OPEN_VMS
8967
8968 /* Return the VMS argument type corresponding to MODE. */
8969
8970 enum avms_arg_type
8971 alpha_arg_type (enum machine_mode mode)
8972 {
8973 switch (mode)
8974 {
8975 case SFmode:
8976 return TARGET_FLOAT_VAX ? FF : FS;
8977 case DFmode:
8978 return TARGET_FLOAT_VAX ? FD : FT;
8979 default:
8980 return I64;
8981 }
8982 }
8983
8984 /* Return an rtx for an integer representing the VMS Argument Information
8985 register value. */
8986
8987 rtx
8988 alpha_arg_info_reg_val (CUMULATIVE_ARGS cum)
8989 {
8990 unsigned HOST_WIDE_INT regval = cum.num_args;
8991 int i;
8992
8993 for (i = 0; i < 6; i++)
8994 regval |= ((int) cum.atypes[i]) << (i * 3 + 8);
8995
8996 return GEN_INT (regval);
8997 }
8998 \f
8999 /* Make (or fake) .linkage entry for function call.
9000
9001 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition.
9002
9003 Return an SYMBOL_REF rtx for the linkage. */
9004
9005 rtx
9006 alpha_need_linkage (const char *name, int is_local)
9007 {
9008 splay_tree_node node;
9009 struct alpha_links *al;
9010
9011 if (name[0] == '*')
9012 name++;
9013
9014 if (is_local)
9015 {
9016 struct alpha_funcs *cfaf;
9017
9018 if (!alpha_funcs_tree)
9019 alpha_funcs_tree = splay_tree_new_ggc ((splay_tree_compare_fn)
9020 splay_tree_compare_pointers);
9021
9022 cfaf = (struct alpha_funcs *) ggc_alloc (sizeof (struct alpha_funcs));
9023
9024 cfaf->links = 0;
9025 cfaf->num = ++alpha_funcs_num;
9026
9027 splay_tree_insert (alpha_funcs_tree,
9028 (splay_tree_key) current_function_decl,
9029 (splay_tree_value) cfaf);
9030 }
9031
9032 if (alpha_links_tree)
9033 {
9034 /* Is this name already defined? */
9035
9036 node = splay_tree_lookup (alpha_links_tree, (splay_tree_key) name);
9037 if (node)
9038 {
9039 al = (struct alpha_links *) node->value;
9040 if (is_local)
9041 {
9042 /* Defined here but external assumed. */
9043 if (al->lkind == KIND_EXTERN)
9044 al->lkind = KIND_LOCAL;
9045 }
9046 else
9047 {
9048 /* Used here but unused assumed. */
9049 if (al->lkind == KIND_UNUSED)
9050 al->lkind = KIND_LOCAL;
9051 }
9052 return al->linkage;
9053 }
9054 }
9055 else
9056 alpha_links_tree = splay_tree_new_ggc ((splay_tree_compare_fn) strcmp);
9057
9058 al = (struct alpha_links *) ggc_alloc (sizeof (struct alpha_links));
9059 name = ggc_strdup (name);
9060
9061 /* Assume external if no definition. */
9062 al->lkind = (is_local ? KIND_UNUSED : KIND_EXTERN);
9063
9064 /* Ensure we have an IDENTIFIER so assemble_name can mark it used. */
9065 get_identifier (name);
9066
9067 /* Construct a SYMBOL_REF for us to call. */
9068 {
9069 size_t name_len = strlen (name);
9070 char *linksym = alloca (name_len + 6);
9071 linksym[0] = '$';
9072 memcpy (linksym + 1, name, name_len);
9073 memcpy (linksym + 1 + name_len, "..lk", 5);
9074 al->linkage = gen_rtx_SYMBOL_REF (Pmode,
9075 ggc_alloc_string (linksym, name_len + 5));
9076 }
9077
9078 splay_tree_insert (alpha_links_tree, (splay_tree_key) name,
9079 (splay_tree_value) al);
9080
9081 return al->linkage;
9082 }
9083
9084 rtx
9085 alpha_use_linkage (rtx linkage, tree cfundecl, int lflag, int rflag)
9086 {
9087 splay_tree_node cfunnode;
9088 struct alpha_funcs *cfaf;
9089 struct alpha_links *al;
9090 const char *name = XSTR (linkage, 0);
9091
9092 cfaf = (struct alpha_funcs *) 0;
9093 al = (struct alpha_links *) 0;
9094
9095 cfunnode = splay_tree_lookup (alpha_funcs_tree, (splay_tree_key) cfundecl);
9096 cfaf = (struct alpha_funcs *) cfunnode->value;
9097
9098 if (cfaf->links)
9099 {
9100 splay_tree_node lnode;
9101
9102 /* Is this name already defined? */
9103
9104 lnode = splay_tree_lookup (cfaf->links, (splay_tree_key) name);
9105 if (lnode)
9106 al = (struct alpha_links *) lnode->value;
9107 }
9108 else
9109 cfaf->links = splay_tree_new_ggc ((splay_tree_compare_fn) strcmp);
9110
9111 if (!al)
9112 {
9113 size_t name_len;
9114 size_t buflen;
9115 char buf [512];
9116 char *linksym;
9117 splay_tree_node node = 0;
9118 struct alpha_links *anl;
9119
9120 if (name[0] == '*')
9121 name++;
9122
9123 name_len = strlen (name);
9124
9125 al = (struct alpha_links *) ggc_alloc (sizeof (struct alpha_links));
9126 al->num = cfaf->num;
9127
9128 node = splay_tree_lookup (alpha_links_tree, (splay_tree_key) name);
9129 if (node)
9130 {
9131 anl = (struct alpha_links *) node->value;
9132 al->lkind = anl->lkind;
9133 }
9134
9135 sprintf (buf, "$%d..%s..lk", cfaf->num, name);
9136 buflen = strlen (buf);
9137 linksym = alloca (buflen + 1);
9138 memcpy (linksym, buf, buflen + 1);
9139
9140 al->linkage = gen_rtx_SYMBOL_REF
9141 (Pmode, ggc_alloc_string (linksym, buflen + 1));
9142
9143 splay_tree_insert (cfaf->links, (splay_tree_key) name,
9144 (splay_tree_value) al);
9145 }
9146
9147 if (rflag)
9148 al->rkind = KIND_CODEADDR;
9149 else
9150 al->rkind = KIND_LINKAGE;
9151
9152 if (lflag)
9153 return gen_rtx_MEM (Pmode, plus_constant (al->linkage, 8));
9154 else
9155 return al->linkage;
9156 }
9157
9158 static int
9159 alpha_write_one_linkage (splay_tree_node node, void *data)
9160 {
9161 const char *const name = (const char *) node->key;
9162 struct alpha_links *link = (struct alpha_links *) node->value;
9163 FILE *stream = (FILE *) data;
9164
9165 fprintf (stream, "$%d..%s..lk:\n", link->num, name);
9166 if (link->rkind == KIND_CODEADDR)
9167 {
9168 if (link->lkind == KIND_LOCAL)
9169 {
9170 /* Local and used */
9171 fprintf (stream, "\t.quad %s..en\n", name);
9172 }
9173 else
9174 {
9175 /* External and used, request code address. */
9176 fprintf (stream, "\t.code_address %s\n", name);
9177 }
9178 }
9179 else
9180 {
9181 if (link->lkind == KIND_LOCAL)
9182 {
9183 /* Local and used, build linkage pair. */
9184 fprintf (stream, "\t.quad %s..en\n", name);
9185 fprintf (stream, "\t.quad %s\n", name);
9186 }
9187 else
9188 {
9189 /* External and used, request linkage pair. */
9190 fprintf (stream, "\t.linkage %s\n", name);
9191 }
9192 }
9193
9194 return 0;
9195 }
9196
9197 static void
9198 alpha_write_linkage (FILE *stream, const char *funname, tree fundecl)
9199 {
9200 splay_tree_node node;
9201 struct alpha_funcs *func;
9202
9203 link_section ();
9204 fprintf (stream, "\t.align 3\n");
9205 node = splay_tree_lookup (alpha_funcs_tree, (splay_tree_key) fundecl);
9206 func = (struct alpha_funcs *) node->value;
9207
9208 fputs ("\t.name ", stream);
9209 assemble_name (stream, funname);
9210 fputs ("..na\n", stream);
9211 ASM_OUTPUT_LABEL (stream, funname);
9212 fprintf (stream, "\t.pdesc ");
9213 assemble_name (stream, funname);
9214 fprintf (stream, "..en,%s\n",
9215 alpha_procedure_type == PT_STACK ? "stack"
9216 : alpha_procedure_type == PT_REGISTER ? "reg" : "null");
9217
9218 if (func->links)
9219 {
9220 splay_tree_foreach (func->links, alpha_write_one_linkage, stream);
9221 /* splay_tree_delete (func->links); */
9222 }
9223 }
9224
9225 /* Given a decl, a section name, and whether the decl initializer
9226 has relocs, choose attributes for the section. */
9227
9228 #define SECTION_VMS_OVERLAY SECTION_FORGET
9229 #define SECTION_VMS_GLOBAL SECTION_MACH_DEP
9230 #define SECTION_VMS_INITIALIZE (SECTION_VMS_GLOBAL << 1)
9231
9232 static unsigned int
9233 vms_section_type_flags (tree decl, const char *name, int reloc)
9234 {
9235 unsigned int flags = default_section_type_flags (decl, name, reloc);
9236
9237 if (decl && DECL_ATTRIBUTES (decl)
9238 && lookup_attribute ("overlaid", DECL_ATTRIBUTES (decl)))
9239 flags |= SECTION_VMS_OVERLAY;
9240 if (decl && DECL_ATTRIBUTES (decl)
9241 && lookup_attribute ("global", DECL_ATTRIBUTES (decl)))
9242 flags |= SECTION_VMS_GLOBAL;
9243 if (decl && DECL_ATTRIBUTES (decl)
9244 && lookup_attribute ("initialize", DECL_ATTRIBUTES (decl)))
9245 flags |= SECTION_VMS_INITIALIZE;
9246
9247 return flags;
9248 }
9249
9250 /* Switch to an arbitrary section NAME with attributes as specified
9251 by FLAGS. ALIGN specifies any known alignment requirements for
9252 the section; 0 if the default should be used. */
9253
9254 static void
9255 vms_asm_named_section (const char *name, unsigned int flags)
9256 {
9257 fputc ('\n', asm_out_file);
9258 fprintf (asm_out_file, ".section\t%s", name);
9259
9260 if (flags & SECTION_VMS_OVERLAY)
9261 fprintf (asm_out_file, ",OVR");
9262 if (flags & SECTION_VMS_GLOBAL)
9263 fprintf (asm_out_file, ",GBL");
9264 if (flags & SECTION_VMS_INITIALIZE)
9265 fprintf (asm_out_file, ",NOMOD");
9266 if (flags & SECTION_DEBUG)
9267 fprintf (asm_out_file, ",NOWRT");
9268
9269 fputc ('\n', asm_out_file);
9270 }
9271
9272 /* Record an element in the table of global constructors. SYMBOL is
9273 a SYMBOL_REF of the function to be called; PRIORITY is a number
9274 between 0 and MAX_INIT_PRIORITY.
9275
9276 Differs from default_ctors_section_asm_out_constructor in that the
9277 width of the .ctors entry is always 64 bits, rather than the 32 bits
9278 used by a normal pointer. */
9279
9280 static void
9281 vms_asm_out_constructor (rtx symbol, int priority ATTRIBUTE_UNUSED)
9282 {
9283 ctors_section ();
9284 assemble_align (BITS_PER_WORD);
9285 assemble_integer (symbol, UNITS_PER_WORD, BITS_PER_WORD, 1);
9286 }
9287
9288 static void
9289 vms_asm_out_destructor (rtx symbol, int priority ATTRIBUTE_UNUSED)
9290 {
9291 dtors_section ();
9292 assemble_align (BITS_PER_WORD);
9293 assemble_integer (symbol, UNITS_PER_WORD, BITS_PER_WORD, 1);
9294 }
9295 #else
9296
9297 rtx
9298 alpha_need_linkage (const char *name ATTRIBUTE_UNUSED,
9299 int is_local ATTRIBUTE_UNUSED)
9300 {
9301 return NULL_RTX;
9302 }
9303
9304 rtx
9305 alpha_use_linkage (rtx linkage ATTRIBUTE_UNUSED,
9306 tree cfundecl ATTRIBUTE_UNUSED,
9307 int lflag ATTRIBUTE_UNUSED,
9308 int rflag ATTRIBUTE_UNUSED)
9309 {
9310 return NULL_RTX;
9311 }
9312
9313 #endif /* TARGET_ABI_OPEN_VMS */
9314 \f
9315 #if TARGET_ABI_UNICOSMK
9316
9317 /* Define the offset between two registers, one to be eliminated, and the
9318 other its replacement, at the start of a routine. */
9319
9320 int
9321 unicosmk_initial_elimination_offset (int from, int to)
9322 {
9323 int fixed_size;
9324
9325 fixed_size = alpha_sa_size();
9326 if (fixed_size != 0)
9327 fixed_size += 48;
9328
9329 if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
9330 return -fixed_size;
9331 else if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
9332 return 0;
9333 else if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
9334 return (ALPHA_ROUND (current_function_outgoing_args_size)
9335 + ALPHA_ROUND (get_frame_size()));
9336 else if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
9337 return (ALPHA_ROUND (fixed_size)
9338 + ALPHA_ROUND (get_frame_size()
9339 + current_function_outgoing_args_size));
9340 else
9341 abort ();
9342 }
9343
9344 /* Output the module name for .ident and .end directives. We have to strip
9345 directories and add make sure that the module name starts with a letter
9346 or '$'. */
9347
9348 static void
9349 unicosmk_output_module_name (FILE *file)
9350 {
9351 const char *name = lbasename (main_input_filename);
9352 unsigned len = strlen (name);
9353 char *clean_name = alloca (len + 2);
9354 char *ptr = clean_name;
9355
9356 /* CAM only accepts module names that start with a letter or '$'. We
9357 prefix the module name with a '$' if necessary. */
9358
9359 if (!ISALPHA (*name))
9360 *ptr++ = '$';
9361 memcpy (ptr, name, len + 1);
9362 clean_symbol_name (clean_name);
9363 fputs (clean_name, file);
9364 }
9365
9366 /* Output the definition of a common variable. */
9367
9368 void
9369 unicosmk_output_common (FILE *file, const char *name, int size, int align)
9370 {
9371 tree name_tree;
9372 printf ("T3E__: common %s\n", name);
9373
9374 common_section ();
9375 fputs("\t.endp\n\n\t.psect ", file);
9376 assemble_name(file, name);
9377 fprintf(file, ",%d,common\n", floor_log2 (align / BITS_PER_UNIT));
9378 fprintf(file, "\t.byte\t0:%d\n", size);
9379
9380 /* Mark the symbol as defined in this module. */
9381 name_tree = get_identifier (name);
9382 TREE_ASM_WRITTEN (name_tree) = 1;
9383 }
9384
9385 #define SECTION_PUBLIC SECTION_MACH_DEP
9386 #define SECTION_MAIN (SECTION_PUBLIC << 1)
9387 static int current_section_align;
9388
9389 static unsigned int
9390 unicosmk_section_type_flags (tree decl, const char *name,
9391 int reloc ATTRIBUTE_UNUSED)
9392 {
9393 unsigned int flags = default_section_type_flags (decl, name, reloc);
9394
9395 if (!decl)
9396 return flags;
9397
9398 if (TREE_CODE (decl) == FUNCTION_DECL)
9399 {
9400 current_section_align = floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT);
9401 if (align_functions_log > current_section_align)
9402 current_section_align = align_functions_log;
9403
9404 if (! strcmp (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)), "main"))
9405 flags |= SECTION_MAIN;
9406 }
9407 else
9408 current_section_align = floor_log2 (DECL_ALIGN (decl) / BITS_PER_UNIT);
9409
9410 if (TREE_PUBLIC (decl))
9411 flags |= SECTION_PUBLIC;
9412
9413 return flags;
9414 }
9415
9416 /* Generate a section name for decl and associate it with the
9417 declaration. */
9418
9419 static void
9420 unicosmk_unique_section (tree decl, int reloc ATTRIBUTE_UNUSED)
9421 {
9422 const char *name;
9423 int len;
9424
9425 if (!decl)
9426 abort ();
9427
9428 name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
9429 name = default_strip_name_encoding (name);
9430 len = strlen (name);
9431
9432 if (TREE_CODE (decl) == FUNCTION_DECL)
9433 {
9434 char *string;
9435
9436 /* It is essential that we prefix the section name here because
9437 otherwise the section names generated for constructors and
9438 destructors confuse collect2. */
9439
9440 string = alloca (len + 6);
9441 sprintf (string, "code@%s", name);
9442 DECL_SECTION_NAME (decl) = build_string (len + 5, string);
9443 }
9444 else if (TREE_PUBLIC (decl))
9445 DECL_SECTION_NAME (decl) = build_string (len, name);
9446 else
9447 {
9448 char *string;
9449
9450 string = alloca (len + 6);
9451 sprintf (string, "data@%s", name);
9452 DECL_SECTION_NAME (decl) = build_string (len + 5, string);
9453 }
9454 }
9455
9456 /* Switch to an arbitrary section NAME with attributes as specified
9457 by FLAGS. ALIGN specifies any known alignment requirements for
9458 the section; 0 if the default should be used. */
9459
9460 static void
9461 unicosmk_asm_named_section (const char *name, unsigned int flags)
9462 {
9463 const char *kind;
9464
9465 /* Close the previous section. */
9466
9467 fputs ("\t.endp\n\n", asm_out_file);
9468
9469 /* Find out what kind of section we are opening. */
9470
9471 if (flags & SECTION_MAIN)
9472 fputs ("\t.start\tmain\n", asm_out_file);
9473
9474 if (flags & SECTION_CODE)
9475 kind = "code";
9476 else if (flags & SECTION_PUBLIC)
9477 kind = "common";
9478 else
9479 kind = "data";
9480
9481 if (current_section_align != 0)
9482 fprintf (asm_out_file, "\t.psect\t%s,%d,%s\n", name,
9483 current_section_align, kind);
9484 else
9485 fprintf (asm_out_file, "\t.psect\t%s,%s\n", name, kind);
9486 }
9487
9488 static void
9489 unicosmk_insert_attributes (tree decl, tree *attr_ptr ATTRIBUTE_UNUSED)
9490 {
9491 if (DECL_P (decl)
9492 && (TREE_PUBLIC (decl) || TREE_CODE (decl) == FUNCTION_DECL))
9493 unicosmk_unique_section (decl, 0);
9494 }
9495
9496 /* Output an alignment directive. We have to use the macro 'gcc@code@align'
9497 in code sections because .align fill unused space with zeroes. */
9498
9499 void
9500 unicosmk_output_align (FILE *file, int align)
9501 {
9502 if (inside_function)
9503 fprintf (file, "\tgcc@code@align\t%d\n", align);
9504 else
9505 fprintf (file, "\t.align\t%d\n", align);
9506 }
9507
9508 /* Add a case vector to the current function's list of deferred case
9509 vectors. Case vectors have to be put into a separate section because CAM
9510 does not allow data definitions in code sections. */
9511
9512 void
9513 unicosmk_defer_case_vector (rtx lab, rtx vec)
9514 {
9515 struct machine_function *machine = cfun->machine;
9516
9517 vec = gen_rtx_EXPR_LIST (VOIDmode, lab, vec);
9518 machine->addr_list = gen_rtx_EXPR_LIST (VOIDmode, vec,
9519 machine->addr_list);
9520 }
9521
9522 /* Output a case vector. */
9523
9524 static void
9525 unicosmk_output_addr_vec (FILE *file, rtx vec)
9526 {
9527 rtx lab = XEXP (vec, 0);
9528 rtx body = XEXP (vec, 1);
9529 int vlen = XVECLEN (body, 0);
9530 int idx;
9531
9532 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (lab));
9533
9534 for (idx = 0; idx < vlen; idx++)
9535 {
9536 ASM_OUTPUT_ADDR_VEC_ELT
9537 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
9538 }
9539 }
9540
9541 /* Output current function's deferred case vectors. */
9542
9543 static void
9544 unicosmk_output_deferred_case_vectors (FILE *file)
9545 {
9546 struct machine_function *machine = cfun->machine;
9547 rtx t;
9548
9549 if (machine->addr_list == NULL_RTX)
9550 return;
9551
9552 data_section ();
9553 for (t = machine->addr_list; t; t = XEXP (t, 1))
9554 unicosmk_output_addr_vec (file, XEXP (t, 0));
9555 }
9556
9557 /* Generate the name of the SSIB section for the current function. */
9558
9559 #define SSIB_PREFIX "__SSIB_"
9560 #define SSIB_PREFIX_LEN 7
9561
9562 static const char *
9563 unicosmk_ssib_name (void)
9564 {
9565 /* This is ok since CAM won't be able to deal with names longer than that
9566 anyway. */
9567
9568 static char name[256];
9569
9570 rtx x;
9571 const char *fnname;
9572 int len;
9573
9574 x = DECL_RTL (cfun->decl);
9575 if (GET_CODE (x) != MEM)
9576 abort ();
9577 x = XEXP (x, 0);
9578 if (GET_CODE (x) != SYMBOL_REF)
9579 abort ();
9580 fnname = XSTR (x, 0);
9581
9582 len = strlen (fnname);
9583 if (len + SSIB_PREFIX_LEN > 255)
9584 len = 255 - SSIB_PREFIX_LEN;
9585
9586 strcpy (name, SSIB_PREFIX);
9587 strncpy (name + SSIB_PREFIX_LEN, fnname, len);
9588 name[len + SSIB_PREFIX_LEN] = 0;
9589
9590 return name;
9591 }
9592
9593 /* Set up the dynamic subprogram information block (DSIB) and update the
9594 frame pointer register ($15) for subroutines which have a frame. If the
9595 subroutine doesn't have a frame, simply increment $15. */
9596
9597 static void
9598 unicosmk_gen_dsib (unsigned long *imaskP)
9599 {
9600 if (alpha_procedure_type == PT_STACK)
9601 {
9602 const char *ssib_name;
9603 rtx mem;
9604
9605 /* Allocate 64 bytes for the DSIB. */
9606
9607 FRP (emit_insn (gen_adddi3 (stack_pointer_rtx, stack_pointer_rtx,
9608 GEN_INT (-64))));
9609 emit_insn (gen_blockage ());
9610
9611 /* Save the return address. */
9612
9613 mem = gen_rtx_MEM (DImode, plus_constant (stack_pointer_rtx, 56));
9614 set_mem_alias_set (mem, alpha_sr_alias_set);
9615 FRP (emit_move_insn (mem, gen_rtx_REG (DImode, REG_RA)));
9616 (*imaskP) &= ~(1UL << REG_RA);
9617
9618 /* Save the old frame pointer. */
9619
9620 mem = gen_rtx_MEM (DImode, plus_constant (stack_pointer_rtx, 48));
9621 set_mem_alias_set (mem, alpha_sr_alias_set);
9622 FRP (emit_move_insn (mem, hard_frame_pointer_rtx));
9623 (*imaskP) &= ~(1UL << HARD_FRAME_POINTER_REGNUM);
9624
9625 emit_insn (gen_blockage ());
9626
9627 /* Store the SSIB pointer. */
9628
9629 ssib_name = ggc_strdup (unicosmk_ssib_name ());
9630 mem = gen_rtx_MEM (DImode, plus_constant (stack_pointer_rtx, 32));
9631 set_mem_alias_set (mem, alpha_sr_alias_set);
9632
9633 FRP (emit_move_insn (gen_rtx_REG (DImode, 5),
9634 gen_rtx_SYMBOL_REF (Pmode, ssib_name)));
9635 FRP (emit_move_insn (mem, gen_rtx_REG (DImode, 5)));
9636
9637 /* Save the CIW index. */
9638
9639 mem = gen_rtx_MEM (DImode, plus_constant (stack_pointer_rtx, 24));
9640 set_mem_alias_set (mem, alpha_sr_alias_set);
9641 FRP (emit_move_insn (mem, gen_rtx_REG (DImode, 25)));
9642
9643 emit_insn (gen_blockage ());
9644
9645 /* Set the new frame pointer. */
9646
9647 FRP (emit_insn (gen_adddi3 (hard_frame_pointer_rtx,
9648 stack_pointer_rtx, GEN_INT (64))));
9649
9650 }
9651 else
9652 {
9653 /* Increment the frame pointer register to indicate that we do not
9654 have a frame. */
9655
9656 FRP (emit_insn (gen_adddi3 (hard_frame_pointer_rtx,
9657 hard_frame_pointer_rtx, GEN_INT (1))));
9658 }
9659 }
9660
9661 /* Output the static subroutine information block for the current
9662 function. */
9663
9664 static void
9665 unicosmk_output_ssib (FILE *file, const char *fnname)
9666 {
9667 int len;
9668 int i;
9669 rtx x;
9670 rtx ciw;
9671 struct machine_function *machine = cfun->machine;
9672
9673 ssib_section ();
9674 fprintf (file, "\t.endp\n\n\t.psect\t%s%s,data\n", user_label_prefix,
9675 unicosmk_ssib_name ());
9676
9677 /* Some required stuff and the function name length. */
9678
9679 len = strlen (fnname);
9680 fprintf (file, "\t.quad\t^X20008%2.2X28\n", len);
9681
9682 /* Saved registers
9683 ??? We don't do that yet. */
9684
9685 fputs ("\t.quad\t0\n", file);
9686
9687 /* Function address. */
9688
9689 fputs ("\t.quad\t", file);
9690 assemble_name (file, fnname);
9691 putc ('\n', file);
9692
9693 fputs ("\t.quad\t0\n", file);
9694 fputs ("\t.quad\t0\n", file);
9695
9696 /* Function name.
9697 ??? We do it the same way Cray CC does it but this could be
9698 simplified. */
9699
9700 for( i = 0; i < len; i++ )
9701 fprintf (file, "\t.byte\t%d\n", (int)(fnname[i]));
9702 if( (len % 8) == 0 )
9703 fputs ("\t.quad\t0\n", file);
9704 else
9705 fprintf (file, "\t.bits\t%d : 0\n", (8 - (len % 8))*8);
9706
9707 /* All call information words used in the function. */
9708
9709 for (x = machine->first_ciw; x; x = XEXP (x, 1))
9710 {
9711 ciw = XEXP (x, 0);
9712 #if HOST_BITS_PER_WIDE_INT == 32
9713 fprintf (file, "\t.quad\t" HOST_WIDE_INT_PRINT_DOUBLE_HEX "\n",
9714 CONST_DOUBLE_HIGH (ciw), CONST_DOUBLE_LOW (ciw));
9715 #else
9716 fprintf (file, "\t.quad\t" HOST_WIDE_INT_PRINT_HEX "\n", INTVAL (ciw));
9717 #endif
9718 }
9719 }
9720
9721 /* Add a call information word (CIW) to the list of the current function's
9722 CIWs and return its index.
9723
9724 X is a CONST_INT or CONST_DOUBLE representing the CIW. */
9725
9726 rtx
9727 unicosmk_add_call_info_word (rtx x)
9728 {
9729 rtx node;
9730 struct machine_function *machine = cfun->machine;
9731
9732 node = gen_rtx_EXPR_LIST (VOIDmode, x, NULL_RTX);
9733 if (machine->first_ciw == NULL_RTX)
9734 machine->first_ciw = node;
9735 else
9736 XEXP (machine->last_ciw, 1) = node;
9737
9738 machine->last_ciw = node;
9739 ++machine->ciw_count;
9740
9741 return GEN_INT (machine->ciw_count
9742 + strlen (current_function_name)/8 + 5);
9743 }
9744
9745 static char unicosmk_section_buf[100];
9746
9747 char *
9748 unicosmk_text_section (void)
9749 {
9750 static int count = 0;
9751 sprintf (unicosmk_section_buf, "\t.endp\n\n\t.psect\tgcc@text___%d,code",
9752 count++);
9753 return unicosmk_section_buf;
9754 }
9755
9756 char *
9757 unicosmk_data_section (void)
9758 {
9759 static int count = 1;
9760 sprintf (unicosmk_section_buf, "\t.endp\n\n\t.psect\tgcc@data___%d,data",
9761 count++);
9762 return unicosmk_section_buf;
9763 }
9764
9765 /* The Cray assembler doesn't accept extern declarations for symbols which
9766 are defined in the same file. We have to keep track of all global
9767 symbols which are referenced and/or defined in a source file and output
9768 extern declarations for those which are referenced but not defined at
9769 the end of file. */
9770
9771 /* List of identifiers for which an extern declaration might have to be
9772 emitted. */
9773 /* FIXME: needs to use GC, so it can be saved and restored for PCH. */
9774
9775 struct unicosmk_extern_list
9776 {
9777 struct unicosmk_extern_list *next;
9778 const char *name;
9779 };
9780
9781 static struct unicosmk_extern_list *unicosmk_extern_head = 0;
9782
9783 /* Output extern declarations which are required for every asm file. */
9784
9785 static void
9786 unicosmk_output_default_externs (FILE *file)
9787 {
9788 static const char *const externs[] =
9789 { "__T3E_MISMATCH" };
9790
9791 int i;
9792 int n;
9793
9794 n = ARRAY_SIZE (externs);
9795
9796 for (i = 0; i < n; i++)
9797 fprintf (file, "\t.extern\t%s\n", externs[i]);
9798 }
9799
9800 /* Output extern declarations for global symbols which are have been
9801 referenced but not defined. */
9802
9803 static void
9804 unicosmk_output_externs (FILE *file)
9805 {
9806 struct unicosmk_extern_list *p;
9807 const char *real_name;
9808 int len;
9809 tree name_tree;
9810
9811 len = strlen (user_label_prefix);
9812 for (p = unicosmk_extern_head; p != 0; p = p->next)
9813 {
9814 /* We have to strip the encoding and possibly remove user_label_prefix
9815 from the identifier in order to handle -fleading-underscore and
9816 explicit asm names correctly (cf. gcc.dg/asm-names-1.c). */
9817 real_name = default_strip_name_encoding (p->name);
9818 if (len && p->name[0] == '*'
9819 && !memcmp (real_name, user_label_prefix, len))
9820 real_name += len;
9821
9822 name_tree = get_identifier (real_name);
9823 if (! TREE_ASM_WRITTEN (name_tree))
9824 {
9825 TREE_ASM_WRITTEN (name_tree) = 1;
9826 fputs ("\t.extern\t", file);
9827 assemble_name (file, p->name);
9828 putc ('\n', file);
9829 }
9830 }
9831 }
9832
9833 /* Record an extern. */
9834
9835 void
9836 unicosmk_add_extern (const char *name)
9837 {
9838 struct unicosmk_extern_list *p;
9839
9840 p = (struct unicosmk_extern_list *)
9841 xmalloc (sizeof (struct unicosmk_extern_list));
9842 p->next = unicosmk_extern_head;
9843 p->name = name;
9844 unicosmk_extern_head = p;
9845 }
9846
9847 /* The Cray assembler generates incorrect code if identifiers which
9848 conflict with register names are used as instruction operands. We have
9849 to replace such identifiers with DEX expressions. */
9850
9851 /* Structure to collect identifiers which have been replaced by DEX
9852 expressions. */
9853 /* FIXME: needs to use GC, so it can be saved and restored for PCH. */
9854
9855 struct unicosmk_dex {
9856 struct unicosmk_dex *next;
9857 const char *name;
9858 };
9859
9860 /* List of identifiers which have been replaced by DEX expressions. The DEX
9861 number is determined by the position in the list. */
9862
9863 static struct unicosmk_dex *unicosmk_dex_list = NULL;
9864
9865 /* The number of elements in the DEX list. */
9866
9867 static int unicosmk_dex_count = 0;
9868
9869 /* Check if NAME must be replaced by a DEX expression. */
9870
9871 static int
9872 unicosmk_special_name (const char *name)
9873 {
9874 if (name[0] == '*')
9875 ++name;
9876
9877 if (name[0] == '$')
9878 ++name;
9879
9880 if (name[0] != 'r' && name[0] != 'f' && name[0] != 'R' && name[0] != 'F')
9881 return 0;
9882
9883 switch (name[1])
9884 {
9885 case '1': case '2':
9886 return (name[2] == '\0' || (ISDIGIT (name[2]) && name[3] == '\0'));
9887
9888 case '3':
9889 return (name[2] == '\0'
9890 || ((name[2] == '0' || name[2] == '1') && name[3] == '\0'));
9891
9892 default:
9893 return (ISDIGIT (name[1]) && name[2] == '\0');
9894 }
9895 }
9896
9897 /* Return the DEX number if X must be replaced by a DEX expression and 0
9898 otherwise. */
9899
9900 static int
9901 unicosmk_need_dex (rtx x)
9902 {
9903 struct unicosmk_dex *dex;
9904 const char *name;
9905 int i;
9906
9907 if (GET_CODE (x) != SYMBOL_REF)
9908 return 0;
9909
9910 name = XSTR (x,0);
9911 if (! unicosmk_special_name (name))
9912 return 0;
9913
9914 i = unicosmk_dex_count;
9915 for (dex = unicosmk_dex_list; dex; dex = dex->next)
9916 {
9917 if (! strcmp (name, dex->name))
9918 return i;
9919 --i;
9920 }
9921
9922 dex = (struct unicosmk_dex *) xmalloc (sizeof (struct unicosmk_dex));
9923 dex->name = name;
9924 dex->next = unicosmk_dex_list;
9925 unicosmk_dex_list = dex;
9926
9927 ++unicosmk_dex_count;
9928 return unicosmk_dex_count;
9929 }
9930
9931 /* Output the DEX definitions for this file. */
9932
9933 static void
9934 unicosmk_output_dex (FILE *file)
9935 {
9936 struct unicosmk_dex *dex;
9937 int i;
9938
9939 if (unicosmk_dex_list == NULL)
9940 return;
9941
9942 fprintf (file, "\t.dexstart\n");
9943
9944 i = unicosmk_dex_count;
9945 for (dex = unicosmk_dex_list; dex; dex = dex->next)
9946 {
9947 fprintf (file, "\tDEX (%d) = ", i);
9948 assemble_name (file, dex->name);
9949 putc ('\n', file);
9950 --i;
9951 }
9952
9953 fprintf (file, "\t.dexend\n");
9954 }
9955
9956 /* Output text that to appear at the beginning of an assembler file. */
9957
9958 static void
9959 unicosmk_file_start (void)
9960 {
9961 int i;
9962
9963 fputs ("\t.ident\t", asm_out_file);
9964 unicosmk_output_module_name (asm_out_file);
9965 fputs ("\n\n", asm_out_file);
9966
9967 /* The Unicos/Mk assembler uses different register names. Instead of trying
9968 to support them, we simply use micro definitions. */
9969
9970 /* CAM has different register names: rN for the integer register N and fN
9971 for the floating-point register N. Instead of trying to use these in
9972 alpha.md, we define the symbols $N and $fN to refer to the appropriate
9973 register. */
9974
9975 for (i = 0; i < 32; ++i)
9976 fprintf (asm_out_file, "$%d <- r%d\n", i, i);
9977
9978 for (i = 0; i < 32; ++i)
9979 fprintf (asm_out_file, "$f%d <- f%d\n", i, i);
9980
9981 putc ('\n', asm_out_file);
9982
9983 /* The .align directive fill unused space with zeroes which does not work
9984 in code sections. We define the macro 'gcc@code@align' which uses nops
9985 instead. Note that it assumes that code sections always have the
9986 biggest possible alignment since . refers to the current offset from
9987 the beginning of the section. */
9988
9989 fputs ("\t.macro gcc@code@align n\n", asm_out_file);
9990 fputs ("gcc@n@bytes = 1 << n\n", asm_out_file);
9991 fputs ("gcc@here = . % gcc@n@bytes\n", asm_out_file);
9992 fputs ("\t.if ne, gcc@here, 0\n", asm_out_file);
9993 fputs ("\t.repeat (gcc@n@bytes - gcc@here) / 4\n", asm_out_file);
9994 fputs ("\tbis r31,r31,r31\n", asm_out_file);
9995 fputs ("\t.endr\n", asm_out_file);
9996 fputs ("\t.endif\n", asm_out_file);
9997 fputs ("\t.endm gcc@code@align\n\n", asm_out_file);
9998
9999 /* Output extern declarations which should always be visible. */
10000 unicosmk_output_default_externs (asm_out_file);
10001
10002 /* Open a dummy section. We always need to be inside a section for the
10003 section-switching code to work correctly.
10004 ??? This should be a module id or something like that. I still have to
10005 figure out what the rules for those are. */
10006 fputs ("\n\t.psect\t$SG00000,data\n", asm_out_file);
10007 }
10008
10009 /* Output text to appear at the end of an assembler file. This includes all
10010 pending extern declarations and DEX expressions. */
10011
10012 static void
10013 unicosmk_file_end (void)
10014 {
10015 fputs ("\t.endp\n\n", asm_out_file);
10016
10017 /* Output all pending externs. */
10018
10019 unicosmk_output_externs (asm_out_file);
10020
10021 /* Output dex definitions used for functions whose names conflict with
10022 register names. */
10023
10024 unicosmk_output_dex (asm_out_file);
10025
10026 fputs ("\t.end\t", asm_out_file);
10027 unicosmk_output_module_name (asm_out_file);
10028 putc ('\n', asm_out_file);
10029 }
10030
10031 #else
10032
10033 static void
10034 unicosmk_output_deferred_case_vectors (FILE *file ATTRIBUTE_UNUSED)
10035 {}
10036
10037 static void
10038 unicosmk_gen_dsib (unsigned long *imaskP ATTRIBUTE_UNUSED)
10039 {}
10040
10041 static void
10042 unicosmk_output_ssib (FILE * file ATTRIBUTE_UNUSED,
10043 const char * fnname ATTRIBUTE_UNUSED)
10044 {}
10045
10046 rtx
10047 unicosmk_add_call_info_word (rtx x ATTRIBUTE_UNUSED)
10048 {
10049 return NULL_RTX;
10050 }
10051
10052 static int
10053 unicosmk_need_dex (rtx x ATTRIBUTE_UNUSED)
10054 {
10055 return 0;
10056 }
10057
10058 #endif /* TARGET_ABI_UNICOSMK */
10059
10060 static void
10061 alpha_init_libfuncs (void)
10062 {
10063 if (TARGET_ABI_UNICOSMK)
10064 {
10065 /* Prevent gcc from generating calls to __divsi3. */
10066 set_optab_libfunc (sdiv_optab, SImode, 0);
10067 set_optab_libfunc (udiv_optab, SImode, 0);
10068
10069 /* Use the functions provided by the system library
10070 for DImode integer division. */
10071 set_optab_libfunc (sdiv_optab, DImode, "$sldiv");
10072 set_optab_libfunc (udiv_optab, DImode, "$uldiv");
10073 }
10074 else if (TARGET_ABI_OPEN_VMS)
10075 {
10076 /* Use the VMS runtime library functions for division and
10077 remainder. */
10078 set_optab_libfunc (sdiv_optab, SImode, "OTS$DIV_I");
10079 set_optab_libfunc (sdiv_optab, DImode, "OTS$DIV_L");
10080 set_optab_libfunc (udiv_optab, SImode, "OTS$DIV_UI");
10081 set_optab_libfunc (udiv_optab, DImode, "OTS$DIV_UL");
10082 set_optab_libfunc (smod_optab, SImode, "OTS$REM_I");
10083 set_optab_libfunc (smod_optab, DImode, "OTS$REM_L");
10084 set_optab_libfunc (umod_optab, SImode, "OTS$REM_UI");
10085 set_optab_libfunc (umod_optab, DImode, "OTS$REM_UL");
10086 }
10087 }
10088
10089 \f
10090 /* Initialize the GCC target structure. */
10091 #if TARGET_ABI_OPEN_VMS
10092 # undef TARGET_ATTRIBUTE_TABLE
10093 # define TARGET_ATTRIBUTE_TABLE vms_attribute_table
10094 # undef TARGET_SECTION_TYPE_FLAGS
10095 # define TARGET_SECTION_TYPE_FLAGS vms_section_type_flags
10096 #endif
10097
10098 #undef TARGET_IN_SMALL_DATA_P
10099 #define TARGET_IN_SMALL_DATA_P alpha_in_small_data_p
10100
10101 #if TARGET_ABI_UNICOSMK
10102 # undef TARGET_INSERT_ATTRIBUTES
10103 # define TARGET_INSERT_ATTRIBUTES unicosmk_insert_attributes
10104 # undef TARGET_SECTION_TYPE_FLAGS
10105 # define TARGET_SECTION_TYPE_FLAGS unicosmk_section_type_flags
10106 # undef TARGET_ASM_UNIQUE_SECTION
10107 # define TARGET_ASM_UNIQUE_SECTION unicosmk_unique_section
10108 # undef TARGET_ASM_GLOBALIZE_LABEL
10109 # define TARGET_ASM_GLOBALIZE_LABEL hook_void_FILEptr_constcharptr
10110 #endif
10111
10112 #undef TARGET_ASM_ALIGNED_HI_OP
10113 #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
10114 #undef TARGET_ASM_ALIGNED_DI_OP
10115 #define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
10116
10117 /* Default unaligned ops are provided for ELF systems. To get unaligned
10118 data for non-ELF systems, we have to turn off auto alignment. */
10119 #ifndef OBJECT_FORMAT_ELF
10120 #undef TARGET_ASM_UNALIGNED_HI_OP
10121 #define TARGET_ASM_UNALIGNED_HI_OP "\t.align 0\n\t.word\t"
10122 #undef TARGET_ASM_UNALIGNED_SI_OP
10123 #define TARGET_ASM_UNALIGNED_SI_OP "\t.align 0\n\t.long\t"
10124 #undef TARGET_ASM_UNALIGNED_DI_OP
10125 #define TARGET_ASM_UNALIGNED_DI_OP "\t.align 0\n\t.quad\t"
10126 #endif
10127
10128 #ifdef OBJECT_FORMAT_ELF
10129 #undef TARGET_ASM_SELECT_RTX_SECTION
10130 #define TARGET_ASM_SELECT_RTX_SECTION alpha_elf_select_rtx_section
10131 #endif
10132
10133 #undef TARGET_ASM_FUNCTION_END_PROLOGUE
10134 #define TARGET_ASM_FUNCTION_END_PROLOGUE alpha_output_function_end_prologue
10135
10136 #undef TARGET_INIT_LIBFUNCS
10137 #define TARGET_INIT_LIBFUNCS alpha_init_libfuncs
10138
10139 #if TARGET_ABI_UNICOSMK
10140 #undef TARGET_ASM_FILE_START
10141 #define TARGET_ASM_FILE_START unicosmk_file_start
10142 #undef TARGET_ASM_FILE_END
10143 #define TARGET_ASM_FILE_END unicosmk_file_end
10144 #else
10145 #undef TARGET_ASM_FILE_START
10146 #define TARGET_ASM_FILE_START alpha_file_start
10147 #undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
10148 #define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
10149 #endif
10150
10151 #undef TARGET_SCHED_ADJUST_COST
10152 #define TARGET_SCHED_ADJUST_COST alpha_adjust_cost
10153 #undef TARGET_SCHED_ISSUE_RATE
10154 #define TARGET_SCHED_ISSUE_RATE alpha_issue_rate
10155 #undef TARGET_SCHED_USE_DFA_PIPELINE_INTERFACE
10156 #define TARGET_SCHED_USE_DFA_PIPELINE_INTERFACE \
10157 alpha_use_dfa_pipeline_interface
10158 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
10159 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
10160 alpha_multipass_dfa_lookahead
10161
10162 #undef TARGET_HAVE_TLS
10163 #define TARGET_HAVE_TLS HAVE_AS_TLS
10164
10165 #undef TARGET_INIT_BUILTINS
10166 #define TARGET_INIT_BUILTINS alpha_init_builtins
10167 #undef TARGET_EXPAND_BUILTIN
10168 #define TARGET_EXPAND_BUILTIN alpha_expand_builtin
10169
10170 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
10171 #define TARGET_FUNCTION_OK_FOR_SIBCALL alpha_function_ok_for_sibcall
10172 #undef TARGET_CANNOT_COPY_INSN_P
10173 #define TARGET_CANNOT_COPY_INSN_P alpha_cannot_copy_insn_p
10174
10175 #if TARGET_ABI_OSF
10176 #undef TARGET_ASM_OUTPUT_MI_THUNK
10177 #define TARGET_ASM_OUTPUT_MI_THUNK alpha_output_mi_thunk_osf
10178 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
10179 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_tree_hwi_hwi_tree_true
10180 #endif
10181
10182 #undef TARGET_RTX_COSTS
10183 #define TARGET_RTX_COSTS alpha_rtx_costs
10184 #undef TARGET_ADDRESS_COST
10185 #define TARGET_ADDRESS_COST hook_int_rtx_0
10186
10187 #undef TARGET_MACHINE_DEPENDENT_REORG
10188 #define TARGET_MACHINE_DEPENDENT_REORG alpha_reorg
10189
10190 #undef TARGET_PROMOTE_FUNCTION_ARGS
10191 #define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true
10192 #undef TARGET_PROMOTE_FUNCTION_RETURN
10193 #define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
10194 #undef TARGET_PROMOTE_PROTOTYPES
10195 #define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_false
10196 #undef TARGET_STRUCT_VALUE_RTX
10197 #define TARGET_STRUCT_VALUE_RTX hook_rtx_tree_int_null
10198 #undef TARGET_RETURN_IN_MEMORY
10199 #define TARGET_RETURN_IN_MEMORY alpha_return_in_memory
10200 #undef TARGET_SETUP_INCOMING_VARARGS
10201 #define TARGET_SETUP_INCOMING_VARARGS alpha_setup_incoming_varargs
10202 #undef TARGET_STRICT_ARGUMENT_NAMING
10203 #define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
10204 #undef TARGET_PRETEND_OUTGOING_VARARGS_NAMED
10205 #define TARGET_PRETEND_OUTGOING_VARARGS_NAMED hook_bool_CUMULATIVE_ARGS_true
10206
10207 #undef TARGET_BUILD_BUILTIN_VA_LIST
10208 #define TARGET_BUILD_BUILTIN_VA_LIST alpha_build_builtin_va_list
10209
10210 struct gcc_target targetm = TARGET_INITIALIZER;
10211
10212 \f
10213 #include "gt-alpha.h"
10214