be3030ea19930cd1f06aa11ac4eaf5f2dd912a3c
[gcc.git] / gcc / config / alpha / alpha.h
1 /* Definitions of target machine for GNU compiler, for DEC Alpha.
2 Copyright (C) 1992, 93, 94, 95, 96, 97, 1998 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* Write out the correct language type definition for the header files.
24 Unless we have assembler language, write out the symbols for C. */
25 #define CPP_SPEC "\
26 %{!.S: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
27 %{.S: -D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
28 %{.cc: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
29 %{.cxx: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
30 %{.C: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
31 %{.m: -D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C} \
32 %{mieee:-D_IEEE_FP} \
33 %{mieee-with-inexact:-D_IEEE_FP -D_IEEE_FP_INEXACT}"
34
35 /* Set the spec to use for signed char. The default tests the above macro
36 but DEC's compiler can't handle the conditional in a "constant"
37 operand. */
38
39 #define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
40
41 #define WORD_SWITCH_TAKES_ARG(STR) \
42 (!strcmp (STR, "rpath") || !strcmp (STR, "include") \
43 || !strcmp (STR, "imacros") || !strcmp (STR, "aux-info") \
44 || !strcmp (STR, "idirafter") || !strcmp (STR, "iprefix") \
45 || !strcmp (STR, "iwithprefix") || !strcmp (STR, "iwithprefixbefore") \
46 || !strcmp (STR, "isystem"))
47
48 /* Print subsidiary information on the compiler version in use. */
49 #define TARGET_VERSION
50
51 /* Run-time compilation parameters selecting different hardware subsets. */
52
53 /* Which processor to schedule for. The cpu attribute defines a list that
54 mirrors this list, so changes to alpha.md must be made at the same time. */
55
56 enum processor_type
57 {PROCESSOR_EV4, /* 2106[46]{a,} */
58 PROCESSOR_EV5, /* 21164{a,pc,} */
59 PROCESSOR_EV6}; /* 21264 */
60
61 extern enum processor_type alpha_cpu;
62
63 enum alpha_trap_precision
64 {
65 ALPHA_TP_PROG, /* No precision (default). */
66 ALPHA_TP_FUNC, /* Trap contained within originating function. */
67 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
68 };
69
70 enum alpha_fp_rounding_mode
71 {
72 ALPHA_FPRM_NORM, /* Normal rounding mode. */
73 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
74 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
75 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
76 };
77
78 enum alpha_fp_trap_mode
79 {
80 ALPHA_FPTM_N, /* Normal trap mode. */
81 ALPHA_FPTM_U, /* Underflow traps enabled. */
82 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
83 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
84 };
85
86 extern int target_flags;
87
88 extern enum alpha_trap_precision alpha_tp;
89 extern enum alpha_fp_rounding_mode alpha_fprm;
90 extern enum alpha_fp_trap_mode alpha_fptm;
91
92 /* This means that floating-point support exists in the target implementation
93 of the Alpha architecture. This is usually the default. */
94
95 #define MASK_FP 1
96 #define TARGET_FP (target_flags & MASK_FP)
97
98 /* This means that floating-point registers are allowed to be used. Note
99 that Alpha implementations without FP operations are required to
100 provide the FP registers. */
101
102 #define MASK_FPREGS 2
103 #define TARGET_FPREGS (target_flags & MASK_FPREGS)
104
105 /* This means that gas is used to process the assembler file. */
106
107 #define MASK_GAS 4
108 #define TARGET_GAS (target_flags & MASK_GAS)
109
110 /* This means that we should mark procedures as IEEE conformant. */
111
112 #define MASK_IEEE_CONFORMANT 8
113 #define TARGET_IEEE_CONFORMANT (target_flags & MASK_IEEE_CONFORMANT)
114
115 /* This means we should be IEEE-compliant except for inexact. */
116
117 #define MASK_IEEE 16
118 #define TARGET_IEEE (target_flags & MASK_IEEE)
119
120 /* This means we should be fully IEEE-compliant. */
121
122 #define MASK_IEEE_WITH_INEXACT 32
123 #define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
124
125 /* This means we must construct all constants rather than emitting
126 them as literal data. */
127
128 #define MASK_BUILD_CONSTANTS 128
129 #define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS)
130
131 /* This means we handle floating points in VAX F- (float)
132 or G- (double) Format. */
133
134 #define MASK_FLOAT_VAX 512
135 #define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX)
136
137 /* This means that the processor has byte and half word loads and stores
138 (the BWX extension). */
139
140 #define MASK_BWX 1024
141 #define TARGET_BWX (target_flags & MASK_BWX)
142
143 /* This means that the processor has the CIX extension. */
144 #define MASK_CIX 2048
145 #define TARGET_CIX (target_flags & MASK_CIX)
146
147 /* This means that the processor has the MAX extension. */
148 #define MASK_MAX 4096
149 #define TARGET_MAX (target_flags & MASK_MAX)
150
151 /* This means that the processor is an EV5, EV56, or PCA56. This is defined
152 only in TARGET_CPU_DEFAULT. */
153 #define MASK_CPU_EV5 8192
154
155 /* Likewise for EV6. */
156 #define MASK_CPU_EV6 16384
157
158 /* This means we support the .arch directive in the assembler. Only
159 defined in TARGET_CPU_DEFAULT. */
160 #define MASK_SUPPORT_ARCH 32768
161 #define TARGET_SUPPORT_ARCH (target_flags & MASK_SUPPORT_ARCH)
162
163 /* These are for target os support and cannot be changed at runtime. */
164 #ifndef TARGET_WINDOWS_NT
165 #define TARGET_WINDOWS_NT 0
166 #endif
167 #ifndef TARGET_OPEN_VMS
168 #define TARGET_OPEN_VMS 0
169 #endif
170
171 #ifndef TARGET_AS_CAN_SUBTRACT_LABELS
172 #define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
173 #endif
174
175
176 /* Macro to define tables used to set the flags.
177 This is a list in braces of pairs in braces,
178 each pair being { "NAME", VALUE }
179 where VALUE is the bits to set or minus the bits to clear.
180 An empty string NAME is used to identify the default VALUE. */
181
182 #define TARGET_SWITCHES \
183 { {"no-soft-float", MASK_FP}, \
184 {"soft-float", - MASK_FP}, \
185 {"fp-regs", MASK_FPREGS}, \
186 {"no-fp-regs", - (MASK_FP|MASK_FPREGS)}, \
187 {"alpha-as", -MASK_GAS}, \
188 {"gas", MASK_GAS}, \
189 {"ieee-conformant", MASK_IEEE_CONFORMANT}, \
190 {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT}, \
191 {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT}, \
192 {"build-constants", MASK_BUILD_CONSTANTS}, \
193 {"float-vax", MASK_FLOAT_VAX}, \
194 {"float-ieee", -MASK_FLOAT_VAX}, \
195 {"bwx", MASK_BWX}, \
196 {"no-bwx", -MASK_BWX}, \
197 {"cix", MASK_CIX}, \
198 {"no-cix", -MASK_CIX}, \
199 {"max", MASK_MAX}, \
200 {"no-max", -MASK_MAX}, \
201 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT} }
202
203 #define TARGET_DEFAULT MASK_FP|MASK_FPREGS
204
205 #ifndef TARGET_CPU_DEFAULT
206 #define TARGET_CPU_DEFAULT 0
207 #endif
208
209 /* This macro is similar to `TARGET_SWITCHES' but defines names of
210 command options that have values. Its definition is an initializer
211 with a subgrouping for each command option.
212
213 Each subgrouping contains a string constant, that defines the fixed
214 part of the option name, and the address of a variable. The
215 variable, type `char *', is set to the variable part of the given
216 option if the fixed part matches. The actual option name is made
217 by appending `-m' to the specified name.
218
219 Here is an example which defines `-mshort-data-NUMBER'. If the
220 given option is `-mshort-data-512', the variable `m88k_short_data'
221 will be set to the string `"512"'.
222
223 extern char *m88k_short_data;
224 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
225
226 extern char *alpha_cpu_string; /* For -mcpu= */
227 extern char *alpha_fprm_string; /* For -mfp-rounding-mode=[n|m|c|d] */
228 extern char *alpha_fptm_string; /* For -mfp-trap-mode=[n|u|su|sui] */
229 extern char *alpha_tp_string; /* For -mtrap-precision=[p|f|i] */
230 extern char *alpha_mlat_string; /* For -mmemory-latency= */
231
232 #define TARGET_OPTIONS \
233 { \
234 {"cpu=", &alpha_cpu_string}, \
235 {"fp-rounding-mode=", &alpha_fprm_string}, \
236 {"fp-trap-mode=", &alpha_fptm_string}, \
237 {"trap-precision=", &alpha_tp_string}, \
238 {"memory-latency=", &alpha_mlat_string}, \
239 }
240
241 /* Sometimes certain combinations of command options do not make sense
242 on a particular target machine. You can define a macro
243 `OVERRIDE_OPTIONS' to take account of this. This macro, if
244 defined, is executed once just after all the command options have
245 been parsed.
246
247 On the Alpha, it is used to translate target-option strings into
248 numeric values. */
249
250 extern void override_options ();
251 #define OVERRIDE_OPTIONS override_options ()
252
253
254 /* Define this macro to change register usage conditional on target flags.
255
256 On the Alpha, we use this to disable the floating-point registers when
257 they don't exist. */
258
259 #define CONDITIONAL_REGISTER_USAGE \
260 if (! TARGET_FPREGS) \
261 for (i = 32; i < 63; i++) \
262 fixed_regs[i] = call_used_regs[i] = 1;
263
264 /* Show we can debug even without a frame pointer. */
265 #define CAN_DEBUG_WITHOUT_FP
266 \f
267 /* target machine storage layout */
268
269 /* Define to enable software floating point emulation. */
270 #define REAL_ARITHMETIC
271
272 /* The following #defines are used when compiling the routines in
273 libgcc1.c. Since the Alpha calling conventions require single
274 precision floats to be passed in the floating-point registers
275 (rather than in the general registers) we have to build the
276 libgcc1.c routines in such a way that they know the actual types
277 of their formal arguments and the actual types of their return
278 values. Otherwise, gcc will generate calls to the libgcc1.c
279 routines, passing arguments in the floating-point registers,
280 but the libgcc1.c routines will expect their arguments on the
281 stack (where the Alpha calling conventions require structs &
282 unions to be passed). */
283
284 #define FLOAT_VALUE_TYPE double
285 #define INTIFY(FLOATVAL) (FLOATVAL)
286 #define FLOATIFY(INTVAL) (INTVAL)
287 #define FLOAT_ARG_TYPE double
288
289 /* Define the size of `int'. The default is the same as the word size. */
290 #define INT_TYPE_SIZE 32
291
292 /* Define the size of `long long'. The default is the twice the word size. */
293 #define LONG_LONG_TYPE_SIZE 64
294
295 /* The two floating-point formats we support are S-floating, which is
296 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
297 and `long double' are T. */
298
299 #define FLOAT_TYPE_SIZE 32
300 #define DOUBLE_TYPE_SIZE 64
301 #define LONG_DOUBLE_TYPE_SIZE 64
302
303 #define WCHAR_TYPE "unsigned int"
304 #define WCHAR_TYPE_SIZE 32
305
306 /* Define this macro if it is advisable to hold scalars in registers
307 in a wider mode than that declared by the program. In such cases,
308 the value is constrained to be within the bounds of the declared
309 type, but kept valid in the wider mode. The signedness of the
310 extension may differ from that of the type.
311
312 For Alpha, we always store objects in a full register. 32-bit objects
313 are always sign-extended, but smaller objects retain their signedness. */
314
315 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
316 if (GET_MODE_CLASS (MODE) == MODE_INT \
317 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
318 { \
319 if ((MODE) == SImode) \
320 (UNSIGNEDP) = 0; \
321 (MODE) = DImode; \
322 }
323
324 /* Define this if function arguments should also be promoted using the above
325 procedure. */
326
327 #define PROMOTE_FUNCTION_ARGS
328
329 /* Likewise, if the function return value is promoted. */
330
331 #define PROMOTE_FUNCTION_RETURN
332
333 /* Define this if most significant bit is lowest numbered
334 in instructions that operate on numbered bit-fields.
335
336 There are no such instructions on the Alpha, but the documentation
337 is little endian. */
338 #define BITS_BIG_ENDIAN 0
339
340 /* Define this if most significant byte of a word is the lowest numbered.
341 This is false on the Alpha. */
342 #define BYTES_BIG_ENDIAN 0
343
344 /* Define this if most significant word of a multiword number is lowest
345 numbered.
346
347 For Alpha we can decide arbitrarily since there are no machine instructions
348 for them. Might as well be consistent with bytes. */
349 #define WORDS_BIG_ENDIAN 0
350
351 /* number of bits in an addressable storage unit */
352 #define BITS_PER_UNIT 8
353
354 /* Width in bits of a "word", which is the contents of a machine register.
355 Note that this is not necessarily the width of data type `int';
356 if using 16-bit ints on a 68000, this would still be 32.
357 But on a machine with 16-bit registers, this would be 16. */
358 #define BITS_PER_WORD 64
359
360 /* Width of a word, in units (bytes). */
361 #define UNITS_PER_WORD 8
362
363 /* Width in bits of a pointer.
364 See also the macro `Pmode' defined below. */
365 #define POINTER_SIZE 64
366
367 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
368 #define PARM_BOUNDARY 64
369
370 /* Boundary (in *bits*) on which stack pointer should be aligned. */
371 #define STACK_BOUNDARY 64
372
373 /* Allocation boundary (in *bits*) for the code of a function. */
374 #define FUNCTION_BOUNDARY 64
375
376 /* Alignment of field after `int : 0' in a structure. */
377 #define EMPTY_FIELD_BOUNDARY 64
378
379 /* Every structure's size must be a multiple of this. */
380 #define STRUCTURE_SIZE_BOUNDARY 8
381
382 /* A bitfield declared as `int' forces `int' alignment for the struct. */
383 #define PCC_BITFIELD_TYPE_MATTERS 1
384
385 /* Align loop starts for optimal branching.
386
387 ??? Kludge this and the next macro for the moment by not doing anything if
388 we don't optimize and also if we are writing ECOFF symbols to work around
389 a bug in DEC's assembler. */
390 /* Aligning past 2**3 wastes insn cache lines, and doesn't buy much
391 issue-wise on average anyway. */
392
393 #define LOOP_ALIGN(LABEL) \
394 (optimize > 0 && write_symbols != SDB_DEBUG ? 3 : 0)
395
396 /* This is how to align an instruction for optimal branching.
397 On Alpha we'll get better performance by aligning on a quadword
398 boundary. */
399 /* Aligning past 2**3 wastes insn cache lines, and doesn't buy much
400 issue-wise on average anyway. */
401
402 #define ALIGN_LABEL_AFTER_BARRIER(FILE) \
403 (optimize > 0 && write_symbols != SDB_DEBUG ? 3 : 0)
404
405 /* No data type wants to be aligned rounder than this. */
406 #define BIGGEST_ALIGNMENT 64
407
408 /* For atomic access to objects, must have at least 32-bit alignment
409 unless the machine has byte operations. */
410 #define MINIMUM_ATOMIC_ALIGNMENT (TARGET_BWX ? 8 : 32)
411
412 /* Align all constants and variables to at least a word boundary so
413 we can pick up pieces of them faster. */
414 /* ??? Only if block-move stuff knows about different source/destination
415 alignment. */
416 #if 0
417 #define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
418 #define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
419 #endif
420
421 /* Set this non-zero if move instructions will actually fail to work
422 when given unaligned data.
423
424 Since we get an error message when we do one, call them invalid. */
425
426 #define STRICT_ALIGNMENT 1
427
428 /* Set this non-zero if unaligned move instructions are extremely slow.
429
430 On the Alpha, they trap. */
431
432 #define SLOW_UNALIGNED_ACCESS 1
433 \f
434 /* Standard register usage. */
435
436 /* Number of actual hardware registers.
437 The hardware registers are assigned numbers for the compiler
438 from 0 to just below FIRST_PSEUDO_REGISTER.
439 All registers that the compiler knows about must be given numbers,
440 even those that are not normally considered general registers.
441
442 We define all 32 integer registers, even though $31 is always zero,
443 and all 32 floating-point registers, even though $f31 is also
444 always zero. We do not bother defining the FP status register and
445 there are no other registers.
446
447 Since $31 is always zero, we will use register number 31 as the
448 argument pointer. It will never appear in the generated code
449 because we will always be eliminating it in favor of the stack
450 pointer or hardware frame pointer.
451
452 Likewise, we use $f31 for the frame pointer, which will always
453 be eliminated in favor of the hardware frame pointer or the
454 stack pointer. */
455
456 #define FIRST_PSEUDO_REGISTER 64
457
458 /* 1 for registers that have pervasive standard uses
459 and are not available for the register allocator. */
460
461 #define FIXED_REGISTERS \
462 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
463 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
464 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
465 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
466
467 /* 1 for registers not available across function calls.
468 These must include the FIXED_REGISTERS and also any
469 registers that can be used without being saved.
470 The latter must include the registers where values are returned
471 and the register where structure-value addresses are passed.
472 Aside from that, you can include as many other registers as you like. */
473 #define CALL_USED_REGISTERS \
474 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
475 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
476 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
477 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
478
479 /* List the order in which to allocate registers. Each register must be
480 listed once, even those in FIXED_REGISTERS.
481
482 We allocate in the following order:
483 $f1 (nonsaved floating-point register)
484 $f10-$f15 (likewise)
485 $f22-$f30 (likewise)
486 $f21-$f16 (likewise, but input args)
487 $f0 (nonsaved, but return value)
488 $f2-$f9 (saved floating-point registers)
489 $1-$8 (nonsaved integer registers)
490 $22-$25 (likewise)
491 $28 (likewise)
492 $0 (likewise, but return value)
493 $21-$16 (likewise, but input args)
494 $27 (procedure value in OSF, nonsaved in NT)
495 $9-$14 (saved integer registers)
496 $26 (return PC)
497 $15 (frame pointer)
498 $29 (global pointer)
499 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
500
501 #define REG_ALLOC_ORDER \
502 {33, \
503 42, 43, 44, 45, 46, 47, \
504 54, 55, 56, 57, 58, 59, 60, 61, 62, \
505 53, 52, 51, 50, 49, 48, \
506 32, \
507 34, 35, 36, 37, 38, 39, 40, 41, \
508 1, 2, 3, 4, 5, 6, 7, 8, \
509 22, 23, 24, 25, \
510 28, \
511 0, \
512 21, 20, 19, 18, 17, 16, \
513 27, \
514 9, 10, 11, 12, 13, 14, \
515 26, \
516 15, \
517 29, \
518 30, 31, 63 }
519
520 /* Return number of consecutive hard regs needed starting at reg REGNO
521 to hold something of mode MODE.
522 This is ordinarily the length in words of a value of mode MODE
523 but can be less for certain modes in special long registers. */
524
525 #define HARD_REGNO_NREGS(REGNO, MODE) \
526 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
527
528 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
529 On Alpha, the integer registers can hold any mode. The floating-point
530 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
531 or 8-bit values. If we only allowed the larger integers into FP registers,
532 we'd have to say that QImode and SImode aren't tiable, which is a
533 pain. So say all registers can hold everything and see how that works. */
534
535 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
536
537 /* Value is 1 if it is a good idea to tie two pseudo registers
538 when one has mode MODE1 and one has mode MODE2.
539 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
540 for any hard reg, then this must be 0 for correct output. */
541
542 #define MODES_TIEABLE_P(MODE1, MODE2) 1
543
544 /* Specify the registers used for certain standard purposes.
545 The values of these macros are register numbers. */
546
547 /* Alpha pc isn't overloaded on a register that the compiler knows about. */
548 /* #define PC_REGNUM */
549
550 /* Register to use for pushing function arguments. */
551 #define STACK_POINTER_REGNUM 30
552
553 /* Base register for access to local variables of the function. */
554 #define HARD_FRAME_POINTER_REGNUM 15
555
556 /* Value should be nonzero if functions must have frame pointers.
557 Zero means the frame pointer need not be set up (and parms
558 may be accessed via the stack pointer) in functions that seem suitable.
559 This is computed in `reload', in reload1.c. */
560 #define FRAME_POINTER_REQUIRED 0
561
562 /* Base register for access to arguments of the function. */
563 #define ARG_POINTER_REGNUM 31
564
565 /* Base register for access to local variables of function. */
566 #define FRAME_POINTER_REGNUM 63
567
568 /* Register in which static-chain is passed to a function.
569
570 For the Alpha, this is based on an example; the calling sequence
571 doesn't seem to specify this. */
572 #define STATIC_CHAIN_REGNUM 1
573
574 /* Register in which address to store a structure value
575 arrives in the function. On the Alpha, the address is passed
576 as a hidden argument. */
577 #define STRUCT_VALUE 0
578 \f
579 /* Define the classes of registers for register constraints in the
580 machine description. Also define ranges of constants.
581
582 One of the classes must always be named ALL_REGS and include all hard regs.
583 If there is more than one class, another class must be named NO_REGS
584 and contain no registers.
585
586 The name GENERAL_REGS must be the name of a class (or an alias for
587 another name such as ALL_REGS). This is the class of registers
588 that is allowed by "g" or "r" in a register constraint.
589 Also, registers outside this class are allocated only when
590 instructions express preferences for them.
591
592 The classes must be numbered in nondecreasing order; that is,
593 a larger-numbered class must never be contained completely
594 in a smaller-numbered class.
595
596 For any two classes, it is very desirable that there be another
597 class that represents their union. */
598
599 enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
600 LIM_REG_CLASSES };
601
602 #define N_REG_CLASSES (int) LIM_REG_CLASSES
603
604 /* Give names of register classes as strings for dump file. */
605
606 #define REG_CLASS_NAMES \
607 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
608
609 /* Define which registers fit in which classes.
610 This is an initializer for a vector of HARD_REG_SET
611 of length N_REG_CLASSES. */
612
613 #define REG_CLASS_CONTENTS \
614 { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
615
616 /* The same information, inverted:
617 Return the class number of the smallest class containing
618 reg number REGNO. This could be a conditional expression
619 or could index an array. */
620
621 #define REGNO_REG_CLASS(REGNO) \
622 ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
623
624 /* The class value for index registers, and the one for base regs. */
625 #define INDEX_REG_CLASS NO_REGS
626 #define BASE_REG_CLASS GENERAL_REGS
627
628 /* Get reg_class from a letter such as appears in the machine description. */
629
630 #define REG_CLASS_FROM_LETTER(C) \
631 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
632
633 /* Define this macro to change register usage conditional on target flags. */
634 /* #define CONDITIONAL_REGISTER_USAGE */
635
636 /* The letters I, J, K, L, M, N, O, and P in a register constraint string
637 can be used to stand for particular ranges of immediate operands.
638 This macro defines what the ranges are.
639 C is the letter, and VALUE is a constant value.
640 Return 1 if VALUE is in the range specified by C.
641
642 For Alpha:
643 `I' is used for the range of constants most insns can contain.
644 `J' is the constant zero.
645 `K' is used for the constant in an LDA insn.
646 `L' is used for the constant in a LDAH insn.
647 `M' is used for the constants that can be AND'ed with using a ZAP insn.
648 `N' is used for complemented 8-bit constants.
649 `O' is used for negated 8-bit constants.
650 `P' is used for the constants 1, 2 and 3. */
651
652 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
653 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
654 : (C) == 'J' ? (VALUE) == 0 \
655 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
656 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
657 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
658 : (C) == 'M' ? zap_mask (VALUE) \
659 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
660 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
661 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
662 : 0)
663
664 /* Similar, but for floating or large integer constants, and defining letters
665 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
666
667 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
668 that is the operand of a ZAP insn. */
669
670 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
671 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
672 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
673 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
674 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
675 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
676 : 0)
677
678 /* Optional extra constraints for this machine.
679
680 For the Alpha, `Q' means that this is a memory operand but not a
681 reference to an unaligned location.
682 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
683 function. */
684
685 #define EXTRA_CONSTRAINT(OP, C) \
686 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) != AND \
687 : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
688 : 0)
689
690 /* Given an rtx X being reloaded into a reg required to be
691 in class CLASS, return the class of reg to actually use.
692 In general this is just CLASS; but on some machines
693 in some cases it is preferable to use a more restrictive class.
694
695 On the Alpha, all constants except zero go into a floating-point
696 register via memory. */
697
698 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
699 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
700 ? ((CLASS) == FLOAT_REGS || (CLASS) == NO_REGS ? NO_REGS : GENERAL_REGS)\
701 : (CLASS))
702
703 /* Loading and storing HImode or QImode values to and from memory
704 usually requires a scratch register. The exceptions are loading
705 QImode and HImode from an aligned address to a general register
706 unless byte instructions are permitted.
707 We also cannot load an unaligned address or a paradoxical SUBREG into an
708 FP register. */
709
710 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
711 (((GET_CODE (IN) == MEM \
712 || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
713 || (GET_CODE (IN) == SUBREG \
714 && (GET_CODE (SUBREG_REG (IN)) == MEM \
715 || (GET_CODE (SUBREG_REG (IN)) == REG \
716 && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
717 && (((CLASS) == FLOAT_REGS \
718 && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
719 || (((MODE) == QImode || (MODE) == HImode) \
720 && ! TARGET_BWX && unaligned_memory_operand (IN, MODE)))) \
721 ? GENERAL_REGS \
722 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
723 && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
724 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == SUBREG \
725 && (GET_MODE_SIZE (GET_MODE (IN)) \
726 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (IN))))) ? GENERAL_REGS \
727 : NO_REGS)
728
729 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
730 (((GET_CODE (OUT) == MEM \
731 || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
732 || (GET_CODE (OUT) == SUBREG \
733 && (GET_CODE (SUBREG_REG (OUT)) == MEM \
734 || (GET_CODE (SUBREG_REG (OUT)) == REG \
735 && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
736 && ((((MODE) == HImode || (MODE) == QImode) \
737 && (! TARGET_BWX || (CLASS) == FLOAT_REGS)) \
738 || ((MODE) == SImode && (CLASS) == FLOAT_REGS))) \
739 ? GENERAL_REGS \
740 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
741 && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
742 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == SUBREG \
743 && (GET_MODE_SIZE (GET_MODE (OUT)) \
744 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (OUT))))) ? GENERAL_REGS \
745 : NO_REGS)
746
747 /* If we are copying between general and FP registers, we need a memory
748 location unless the CIX extension is available. */
749
750 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
751 (! TARGET_CIX && (CLASS1) != (CLASS2))
752
753 /* Specify the mode to be used for memory when a secondary memory
754 location is needed. If MODE is floating-point, use it. Otherwise,
755 widen to a word like the default. This is needed because we always
756 store integers in FP registers in quadword format. This whole
757 area is very tricky! */
758 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
759 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
760 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
761 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
762
763 /* Return the maximum number of consecutive registers
764 needed to represent mode MODE in a register of class CLASS. */
765
766 #define CLASS_MAX_NREGS(CLASS, MODE) \
767 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
768
769 /* If defined, gives a class of registers that cannot be used as the
770 operand of a SUBREG that changes the size of the object. */
771
772 #define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
773
774 /* Define the cost of moving between registers of various classes. Moving
775 between FLOAT_REGS and anything else except float regs is expensive.
776 In fact, we make it quite expensive because we really don't want to
777 do these moves unless it is clearly worth it. Optimizations may
778 reduce the impact of not being able to allocate a pseudo to a
779 hard register. */
780
781 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
782 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) \
783 ? 2 \
784 : TARGET_CIX ? 3 : 4+2*alpha_memory_latency)
785
786 /* A C expressions returning the cost of moving data of MODE from a register to
787 or from memory.
788
789 On the Alpha, bump this up a bit. */
790
791 extern int alpha_memory_latency;
792 #define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
793
794 /* Provide the cost of a branch. Exact meaning under development. */
795 #define BRANCH_COST 5
796
797 /* Adjust the cost of dependencies. */
798
799 #define ADJUST_COST(INSN,LINK,DEP,COST) \
800 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
801 \f
802 /* Stack layout; function entry, exit and calling. */
803
804 /* Define this if pushing a word on the stack
805 makes the stack pointer a smaller address. */
806 #define STACK_GROWS_DOWNWARD
807
808 /* Define this if the nominal address of the stack frame
809 is at the high-address end of the local variables;
810 that is, each additional local variable allocated
811 goes at a more negative offset in the frame. */
812 /* #define FRAME_GROWS_DOWNWARD */
813
814 /* Offset within stack frame to start allocating local variables at.
815 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
816 first local allocated. Otherwise, it is the offset to the BEGINNING
817 of the first local allocated. */
818
819 #define STARTING_FRAME_OFFSET 0
820
821 /* If we generate an insn to push BYTES bytes,
822 this says how many the stack pointer really advances by.
823 On Alpha, don't define this because there are no push insns. */
824 /* #define PUSH_ROUNDING(BYTES) */
825
826 /* Define this to be nonzero if stack checking is built into the ABI. */
827 #define STACK_CHECK_BUILTIN 1
828
829 /* Define this if the maximum size of all the outgoing args is to be
830 accumulated and pushed during the prologue. The amount can be
831 found in the variable current_function_outgoing_args_size. */
832 #define ACCUMULATE_OUTGOING_ARGS
833
834 /* Offset of first parameter from the argument pointer register value. */
835
836 #define FIRST_PARM_OFFSET(FNDECL) 0
837
838 /* Definitions for register eliminations.
839
840 We have two registers that can be eliminated on the Alpha. First, the
841 frame pointer register can often be eliminated in favor of the stack
842 pointer register. Secondly, the argument pointer register can always be
843 eliminated; it is replaced with either the stack or frame pointer. */
844
845 /* This is an array of structures. Each structure initializes one pair
846 of eliminable registers. The "from" register number is given first,
847 followed by "to". Eliminations of the same "from" register are listed
848 in order of preference. */
849
850 #define ELIMINABLE_REGS \
851 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
852 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
853 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
854 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
855
856 /* Given FROM and TO register numbers, say whether this elimination is allowed.
857 Frame pointer elimination is automatically handled.
858
859 All eliminations are valid since the cases where FP can't be
860 eliminated are already handled. */
861
862 #define CAN_ELIMINATE(FROM, TO) 1
863
864 /* Round up to a multiple of 16 bytes. */
865 #define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
866
867 /* Define the offset between two registers, one to be eliminated, and the other
868 its replacement, at the start of a routine. */
869 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
870 { if ((FROM) == FRAME_POINTER_REGNUM) \
871 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
872 + alpha_sa_size ()); \
873 else if ((FROM) == ARG_POINTER_REGNUM) \
874 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
875 + alpha_sa_size () \
876 + (ALPHA_ROUND (get_frame_size () \
877 + current_function_pretend_args_size) \
878 - current_function_pretend_args_size)); \
879 }
880
881 /* Define this if stack space is still allocated for a parameter passed
882 in a register. */
883 /* #define REG_PARM_STACK_SPACE */
884
885 /* Value is the number of bytes of arguments automatically
886 popped when returning from a subroutine call.
887 FUNDECL is the declaration node of the function (as a tree),
888 FUNTYPE is the data type of the function (as a tree),
889 or for a library call it is an identifier node for the subroutine name.
890 SIZE is the number of bytes of arguments passed on the stack. */
891
892 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
893
894 /* Define how to find the value returned by a function.
895 VALTYPE is the data type of the value (as a tree).
896 If the precise function being called is known, FUNC is its FUNCTION_DECL;
897 otherwise, FUNC is 0.
898
899 On Alpha the value is found in $0 for integer functions and
900 $f0 for floating-point functions. */
901
902 #define FUNCTION_VALUE(VALTYPE, FUNC) \
903 gen_rtx (REG, \
904 ((INTEGRAL_TYPE_P (VALTYPE) \
905 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
906 || POINTER_TYPE_P (VALTYPE)) \
907 ? word_mode : TYPE_MODE (VALTYPE), \
908 ((TARGET_FPREGS \
909 && (TREE_CODE (VALTYPE) == REAL_TYPE \
910 || TREE_CODE (VALTYPE) == COMPLEX_TYPE)) \
911 ? 32 : 0))
912
913 /* Define how to find the value returned by a library function
914 assuming the value has mode MODE. */
915
916 #define LIBCALL_VALUE(MODE) \
917 gen_rtx (REG, MODE, \
918 (TARGET_FPREGS \
919 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
920 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
921 ? 32 : 0))
922
923 /* The definition of this macro implies that there are cases where
924 a scalar value cannot be returned in registers.
925
926 For the Alpha, any structure or union type is returned in memory, as
927 are integers whose size is larger than 64 bits. */
928
929 #define RETURN_IN_MEMORY(TYPE) \
930 (TYPE_MODE (TYPE) == BLKmode \
931 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
932
933 /* 1 if N is a possible register number for a function value
934 as seen by the caller. */
935
936 #define FUNCTION_VALUE_REGNO_P(N) \
937 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
938
939 /* 1 if N is a possible register number for function argument passing.
940 On Alpha, these are $16-$21 and $f16-$f21. */
941
942 #define FUNCTION_ARG_REGNO_P(N) \
943 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
944 \f
945 /* Define a data type for recording info about an argument list
946 during the scan of that argument list. This data type should
947 hold all necessary information about the function itself
948 and about the args processed so far, enough to enable macros
949 such as FUNCTION_ARG to determine where the next arg should go.
950
951 On Alpha, this is a single integer, which is a number of words
952 of arguments scanned so far.
953 Thus 6 or more means all following args should go on the stack. */
954
955 #define CUMULATIVE_ARGS int
956
957 /* Initialize a variable CUM of type CUMULATIVE_ARGS
958 for a call to a function whose data type is FNTYPE.
959 For a library call, FNTYPE is 0. */
960
961 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0
962
963 /* Define intermediate macro to compute the size (in registers) of an argument
964 for the Alpha. */
965
966 #define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
967 ((MODE) != BLKmode \
968 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
969 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
970
971 /* Update the data in CUM to advance over an argument
972 of mode MODE and data type TYPE.
973 (TYPE is null for libcalls where that information may not be available.) */
974
975 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
976 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
977 (CUM) = 6; \
978 else \
979 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
980
981 /* Determine where to put an argument to a function.
982 Value is zero to push the argument on the stack,
983 or a hard register in which to store the argument.
984
985 MODE is the argument's machine mode.
986 TYPE is the data type of the argument (as a tree).
987 This is null for libcalls where that information may
988 not be available.
989 CUM is a variable of type CUMULATIVE_ARGS which gives info about
990 the preceding args and about the function being called.
991 NAMED is nonzero if this argument is a named parameter
992 (otherwise it is an extra parameter matching an ellipsis).
993
994 On Alpha the first 6 words of args are normally in registers
995 and the rest are pushed. */
996
997 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
998 ((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
999 ? gen_rtx(REG, (MODE), \
1000 (CUM) + 16 + ((TARGET_FPREGS \
1001 && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
1002 || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
1003 * 32)) \
1004 : 0)
1005
1006 /* Specify the padding direction of arguments.
1007
1008 On the Alpha, we must pad upwards in order to be able to pass args in
1009 registers. */
1010
1011 #define FUNCTION_ARG_PADDING(MODE, TYPE) upward
1012
1013 /* For an arg passed partly in registers and partly in memory,
1014 this is the number of registers used.
1015 For args passed entirely in registers or entirely in memory, zero. */
1016
1017 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1018 ((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
1019 ? 6 - (CUM) : 0)
1020
1021 /* Perform any needed actions needed for a function that is receiving a
1022 variable number of arguments.
1023
1024 CUM is as above.
1025
1026 MODE and TYPE are the mode and type of the current parameter.
1027
1028 PRETEND_SIZE is a variable that should be set to the amount of stack
1029 that must be pushed by the prolog to pretend that our caller pushed
1030 it.
1031
1032 Normally, this macro will push all remaining incoming registers on the
1033 stack and set PRETEND_SIZE to the length of the registers pushed.
1034
1035 On the Alpha, we allocate space for all 12 arg registers, but only
1036 push those that are remaining.
1037
1038 However, if NO registers need to be saved, don't allocate any space.
1039 This is not only because we won't need the space, but because AP includes
1040 the current_pretend_args_size and we don't want to mess up any
1041 ap-relative addresses already made.
1042
1043 If we are not to use the floating-point registers, save the integer
1044 registers where we would put the floating-point registers. This is
1045 not the most efficient way to implement varargs with just one register
1046 class, but it isn't worth doing anything more efficient in this rare
1047 case. */
1048
1049
1050 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1051 { if ((CUM) < 6) \
1052 { \
1053 if (! (NO_RTL)) \
1054 { \
1055 move_block_from_reg \
1056 (16 + CUM, \
1057 gen_rtx (MEM, BLKmode, \
1058 plus_constant (virtual_incoming_args_rtx, \
1059 ((CUM) + 6)* UNITS_PER_WORD)), \
1060 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
1061 move_block_from_reg \
1062 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, \
1063 gen_rtx (MEM, BLKmode, \
1064 plus_constant (virtual_incoming_args_rtx, \
1065 (CUM) * UNITS_PER_WORD)), \
1066 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
1067 emit_insn (gen_blockage ()); \
1068 } \
1069 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
1070 } \
1071 }
1072
1073 /* Try to output insns to set TARGET equal to the constant C if it can be
1074 done in less than N insns. Do all computations in MODE. Returns the place
1075 where the output has been placed if it can be done and the insns have been
1076 emitted. If it would take more than N insns, zero is returned and no
1077 insns and emitted. */
1078 extern struct rtx_def *alpha_emit_set_const ();
1079 extern struct rtx_def *alpha_emit_set_long_const ();
1080 extern struct rtx_def *alpha_emit_conditional_move ();
1081
1082 /* Generate necessary RTL for __builtin_saveregs().
1083 ARGLIST is the argument list; see expr.c. */
1084 extern struct rtx_def *alpha_builtin_saveregs ();
1085 #define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
1086
1087 /* Define the information needed to generate branch and scc insns. This is
1088 stored from the compare operation. Note that we can't use "rtx" here
1089 since it hasn't been defined! */
1090
1091 extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
1092 extern int alpha_compare_fp_p;
1093
1094 /* Make (or fake) .linkage entry for function call.
1095
1096 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
1097 extern void alpha_need_linkage ();
1098
1099 /* This macro defines the start of an assembly comment. */
1100
1101 #define ASM_COMMENT_START " #"
1102
1103 /* This macro produces the initial definition of a function name. On the
1104 Alpha, we need to save the function name for the prologue and epilogue. */
1105
1106 extern char *alpha_function_name;
1107
1108 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1109 { \
1110 alpha_function_name = NAME; \
1111 }
1112
1113 /* This macro generates the assembly code for function entry.
1114 FILE is a stdio stream to output the code to.
1115 SIZE is an int: how many units of temporary storage to allocate.
1116 Refer to the array `regs_ever_live' to determine which registers
1117 to save; `regs_ever_live[I]' is nonzero if register number I
1118 is ever used in the function. This macro is responsible for
1119 knowing which registers should not be saved even if used. */
1120
1121 #define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
1122
1123 /* Output assembler code to FILE to increment profiler label # LABELNO
1124 for profiling a function entry. Under OSF/1, profiling is enabled
1125 by simply passing -pg to the assembler and linker. */
1126
1127 #define FUNCTION_PROFILER(FILE, LABELNO)
1128
1129 /* Output assembler code to FILE to initialize this source file's
1130 basic block profiling info, if that has not already been done.
1131 This assumes that __bb_init_func doesn't garble a1-a5. */
1132
1133 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1134 do { \
1135 ASM_OUTPUT_REG_PUSH (FILE, 16); \
1136 fputs ("\tlda $16,$PBX32\n", (FILE)); \
1137 fputs ("\tldq $26,0($16)\n", (FILE)); \
1138 fputs ("\tbne $26,1f\n", (FILE)); \
1139 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
1140 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
1141 fputs ("\tldgp $29,0($26)\n", (FILE)); \
1142 fputs ("1:\n", (FILE)); \
1143 ASM_OUTPUT_REG_POP (FILE, 16); \
1144 } while (0);
1145
1146 /* Output assembler code to FILE to increment the entry-count for
1147 the BLOCKNO'th basic block in this source file. */
1148
1149 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1150 do { \
1151 int blockn = (BLOCKNO); \
1152 fputs ("\tsubq $30,16,$30\n", (FILE)); \
1153 fputs ("\tstq $26,0($30)\n", (FILE)); \
1154 fputs ("\tstq $27,8($30)\n", (FILE)); \
1155 fputs ("\tlda $26,$PBX34\n", (FILE)); \
1156 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
1157 fputs ("\taddq $27,1,$27\n", (FILE)); \
1158 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
1159 fputs ("\tldq $26,0($30)\n", (FILE)); \
1160 fputs ("\tldq $27,8($30)\n", (FILE)); \
1161 fputs ("\taddq $30,16,$30\n", (FILE)); \
1162 } while (0)
1163
1164
1165 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1166 the stack pointer does not matter. The value is tested only in
1167 functions that have frame pointers.
1168 No definition is equivalent to always zero. */
1169
1170 #define EXIT_IGNORE_STACK 1
1171
1172 /* This macro generates the assembly code for function exit,
1173 on machines that need it. If FUNCTION_EPILOGUE is not defined
1174 then individual return instructions are generated for each
1175 return statement. Args are same as for FUNCTION_PROLOGUE.
1176
1177 The function epilogue should not depend on the current stack pointer!
1178 It should use the frame pointer only. This is mandatory because
1179 of alloca; we also take advantage of it to omit stack adjustments
1180 before returning. */
1181
1182 #define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
1183
1184 \f
1185 /* Output assembler code for a block containing the constant parts
1186 of a trampoline, leaving space for the variable parts.
1187
1188 The trampoline should set the static chain pointer to value placed
1189 into the trampoline and should branch to the specified routine.
1190 Note that $27 has been set to the address of the trampoline, so we can
1191 use it for addressability of the two data items. Trampolines are always
1192 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
1193
1194 #define TRAMPOLINE_TEMPLATE(FILE) \
1195 { \
1196 fprintf (FILE, "\tldq $1,24($27)\n"); \
1197 fprintf (FILE, "\tldq $27,16($27)\n"); \
1198 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1199 fprintf (FILE, "\tnop\n"); \
1200 fprintf (FILE, "\t.quad 0,0\n"); \
1201 }
1202
1203 /* Section in which to place the trampoline. On Alpha, instructions
1204 may only be placed in a text segment. */
1205
1206 #define TRAMPOLINE_SECTION text_section
1207
1208 /* Length in units of the trampoline for entering a nested function. */
1209
1210 #define TRAMPOLINE_SIZE 32
1211
1212 /* Emit RTL insns to initialize the variable parts of a trampoline.
1213 FNADDR is an RTX for the address of the function's pure code.
1214 CXT is an RTX for the static chain value for the function. We assume
1215 here that a function will be called many more times than its address
1216 is taken (e.g., it might be passed to qsort), so we take the trouble
1217 to initialize the "hint" field in the JMP insn. Note that the hint
1218 field is PC (new) + 4 * bits 13:0. */
1219
1220 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1221 { \
1222 rtx _temp, _temp1, _addr; \
1223 \
1224 _addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
1225 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (FNADDR)); \
1226 _addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
1227 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (CXT)); \
1228 \
1229 _temp = force_operand (plus_constant ((TRAMP), 12), NULL_RTX); \
1230 _temp = expand_binop (DImode, sub_optab, (FNADDR), _temp, _temp, 1, \
1231 OPTAB_WIDEN); \
1232 _temp = expand_shift (RSHIFT_EXPR, Pmode, _temp, \
1233 build_int_2 (2, 0), NULL_RTX, 1); \
1234 _temp = expand_and (gen_lowpart (SImode, _temp), \
1235 GEN_INT (0x3fff), 0); \
1236 \
1237 _addr = memory_address (SImode, plus_constant ((TRAMP), 8)); \
1238 _temp1 = force_reg (SImode, gen_rtx (MEM, SImode, _addr)); \
1239 _temp1 = expand_and (_temp1, GEN_INT (0xffffc000), NULL_RTX); \
1240 _temp1 = expand_binop (SImode, ior_optab, _temp1, _temp, _temp1, 1, \
1241 OPTAB_WIDEN); \
1242 \
1243 emit_move_insn (gen_rtx (MEM, SImode, _addr), _temp1); \
1244 \
1245 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \
1246 "__enable_execute_stack"), \
1247 0, VOIDmode, 1,_addr, Pmode); \
1248 \
1249 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
1250 gen_rtvec (1, const0_rtx), 0)); \
1251 }
1252
1253 /* Attempt to turn on access permissions for the stack. */
1254
1255 #define TRANSFER_FROM_TRAMPOLINE \
1256 \
1257 void \
1258 __enable_execute_stack (addr) \
1259 void *addr; \
1260 { \
1261 long size = getpagesize (); \
1262 long mask = ~(size-1); \
1263 char *page = (char *) (((long) addr) & mask); \
1264 char *end = (char *) ((((long) (addr + TRAMPOLINE_SIZE)) & mask) + size); \
1265 \
1266 /* 7 is PROT_READ | PROT_WRITE | PROT_EXEC */ \
1267 if (mprotect (page, end - page, 7) < 0) \
1268 perror ("mprotect of trampoline code"); \
1269 }
1270
1271 /* A C expression whose value is RTL representing the value of the return
1272 address for the frame COUNT steps up from the current frame.
1273 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
1274 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME} is defined. */
1275
1276 #define RETURN_ADDR_RTX alpha_return_addr
1277 extern struct rtx_def *alpha_return_addr ();
1278
1279 /* Initialize data used by insn expanders. This is called from insn_emit,
1280 once for every function before code is generated. */
1281
1282 #define INIT_EXPANDERS alpha_init_expanders ()
1283 extern void alpha_init_expanders ();
1284
1285 \f
1286 /* Addressing modes, and classification of registers for them. */
1287
1288 /* #define HAVE_POST_INCREMENT */
1289 /* #define HAVE_POST_DECREMENT */
1290
1291 /* #define HAVE_PRE_DECREMENT */
1292 /* #define HAVE_PRE_INCREMENT */
1293
1294 /* Macros to check register numbers against specific register classes. */
1295
1296 /* These assume that REGNO is a hard or pseudo reg number.
1297 They give nonzero only if REGNO is a hard reg of the suitable class
1298 or a pseudo reg currently allocated to a suitable hard reg.
1299 Since they use reg_renumber, they are safe only once reg_renumber
1300 has been allocated, which happens in local-alloc.c. */
1301
1302 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
1303 #define REGNO_OK_FOR_BASE_P(REGNO) \
1304 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1305 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1306 \f
1307 /* Maximum number of registers that can appear in a valid memory address. */
1308 #define MAX_REGS_PER_ADDRESS 1
1309
1310 /* Recognize any constant value that is a valid address. For the Alpha,
1311 there are only constants none since we want to use LDA to load any
1312 symbolic addresses into registers. */
1313
1314 #define CONSTANT_ADDRESS_P(X) \
1315 (GET_CODE (X) == CONST_INT \
1316 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1317
1318 /* Include all constant integers and constant doubles, but not
1319 floating-point, except for floating-point zero. */
1320
1321 #define LEGITIMATE_CONSTANT_P(X) \
1322 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1323 || (X) == CONST0_RTX (GET_MODE (X)))
1324
1325 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1326 and check its validity for a certain class.
1327 We have two alternate definitions for each of them.
1328 The usual definition accepts all pseudo regs; the other rejects
1329 them unless they have been allocated suitable hard regs.
1330 The symbol REG_OK_STRICT causes the latter definition to be used.
1331
1332 Most source files want to accept pseudo regs in the hope that
1333 they will get allocated to the class that the insn wants them to be in.
1334 Source files for reload pass need to be strict.
1335 After reload, it makes no difference, since pseudo regs have
1336 been eliminated by then. */
1337
1338 #ifndef REG_OK_STRICT
1339
1340 /* Nonzero if X is a hard reg that can be used as an index
1341 or if it is a pseudo reg. */
1342 #define REG_OK_FOR_INDEX_P(X) 0
1343 /* Nonzero if X is a hard reg that can be used as a base reg
1344 or if it is a pseudo reg. */
1345 #define REG_OK_FOR_BASE_P(X) \
1346 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1347
1348 #else
1349
1350 /* Nonzero if X is a hard reg that can be used as an index. */
1351 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1352 /* Nonzero if X is a hard reg that can be used as a base reg. */
1353 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1354
1355 #endif
1356 \f
1357 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1358 that is a valid memory address for an instruction.
1359 The MODE argument is the machine mode for the MEM expression
1360 that wants to use this address.
1361
1362 For Alpha, we have either a constant address or the sum of a register
1363 and a constant address, or just a register. For DImode, any of those
1364 forms can be surrounded with an AND that clear the low-order three bits;
1365 this is an "unaligned" access.
1366
1367 First define the basic valid address. */
1368
1369 #define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1370 { if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1371 goto ADDR; \
1372 if (CONSTANT_ADDRESS_P (X)) \
1373 goto ADDR; \
1374 if (GET_CODE (X) == PLUS \
1375 && REG_P (XEXP (X, 0)) \
1376 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1377 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1378 goto ADDR; \
1379 }
1380
1381 /* Now accept the simple address, or, for DImode only, an AND of a simple
1382 address that turns off the low three bits. */
1383
1384 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1385 { GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1386 if ((MODE) == DImode \
1387 && GET_CODE (X) == AND \
1388 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1389 && INTVAL (XEXP (X, 1)) == -8) \
1390 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1391 }
1392
1393 /* Try machine-dependent ways of modifying an illegitimate address
1394 to be legitimate. If we find one, return the new, valid address.
1395 This macro is used in only one place: `memory_address' in explow.c.
1396
1397 OLDX is the address as it was before break_out_memory_refs was called.
1398 In some cases it is useful to look at this to decide what needs to be done.
1399
1400 MODE and WIN are passed so that this macro can use
1401 GO_IF_LEGITIMATE_ADDRESS.
1402
1403 It is always safe for this macro to do nothing. It exists to recognize
1404 opportunities to optimize the output.
1405
1406 For the Alpha, there are three cases we handle:
1407
1408 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1409 valid offset, compute the high part of the constant and add it to the
1410 register. Then our address is (plus temp low-part-const).
1411 (2) If the address is (const (plus FOO const_int)), find the low-order
1412 part of the CONST_INT. Then load FOO plus any high-order part of the
1413 CONST_INT into a register. Our address is (plus reg low-part-const).
1414 This is done to reduce the number of GOT entries.
1415 (3) If we have a (plus reg const), emit the load as in (2), then add
1416 the two registers, and finally generate (plus reg low-part-const) as
1417 our address. */
1418
1419 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1420 { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1421 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1422 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1423 { \
1424 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1425 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1426 HOST_WIDE_INT highpart = val - lowpart; \
1427 rtx high = GEN_INT (highpart); \
1428 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
1429 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1430 \
1431 (X) = plus_constant (temp, lowpart); \
1432 goto WIN; \
1433 } \
1434 else if (GET_CODE (X) == CONST \
1435 && GET_CODE (XEXP (X, 0)) == PLUS \
1436 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1437 { \
1438 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1439 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1440 HOST_WIDE_INT highpart = val - lowpart; \
1441 rtx high = XEXP (XEXP (X, 0), 0); \
1442 \
1443 if (highpart) \
1444 high = plus_constant (high, highpart); \
1445 \
1446 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1447 goto WIN; \
1448 } \
1449 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1450 && GET_CODE (XEXP (X, 1)) == CONST \
1451 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1452 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1453 { \
1454 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1455 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1456 HOST_WIDE_INT highpart = val - lowpart; \
1457 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1458 \
1459 if (highpart) \
1460 high = plus_constant (high, highpart); \
1461 \
1462 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1463 force_reg (Pmode, high), \
1464 high, 1, OPTAB_LIB_WIDEN); \
1465 (X) = plus_constant (high, lowpart); \
1466 goto WIN; \
1467 } \
1468 }
1469
1470 /* Go to LABEL if ADDR (a legitimate address expression)
1471 has an effect that depends on the machine mode it is used for.
1472 On the Alpha this is true only for the unaligned modes. We can
1473 simplify this test since we know that the address must be valid. */
1474
1475 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1476 { if (GET_CODE (ADDR) == AND) goto LABEL; }
1477
1478 /* Compute the cost of an address. For the Alpha, all valid addresses are
1479 the same cost. */
1480
1481 #define ADDRESS_COST(X) 0
1482
1483 /* Machine-dependent reorg pass. */
1484 #define MACHINE_DEPENDENT_REORG(X) alpha_reorg(X)
1485 \f
1486 /* Specify the machine mode that this machine uses
1487 for the index in the tablejump instruction. */
1488 #define CASE_VECTOR_MODE SImode
1489
1490 /* Define as C expression which evaluates to nonzero if the tablejump
1491 instruction expects the table to contain offsets from the address of the
1492 table.
1493
1494 Do not define this if the table should contain absolute addresses.
1495 On the Alpha, the table is really GP-relative, not relative to the PC
1496 of the table, but we pretend that it is PC-relative; this should be OK,
1497 but we should try to find some better way sometime. */
1498 #define CASE_VECTOR_PC_RELATIVE 1
1499
1500 /* Specify the tree operation to be used to convert reals to integers. */
1501 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1502
1503 /* This is the kind of divide that is easiest to do in the general case. */
1504 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1505
1506 /* Define this as 1 if `char' should by default be signed; else as 0. */
1507 #define DEFAULT_SIGNED_CHAR 1
1508
1509 /* This flag, if defined, says the same insns that convert to a signed fixnum
1510 also convert validly to an unsigned one.
1511
1512 We actually lie a bit here as overflow conditions are different. But
1513 they aren't being checked anyway. */
1514
1515 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1516
1517 /* Max number of bytes we can move to or from memory
1518 in one reasonably fast instruction. */
1519
1520 #define MOVE_MAX 8
1521
1522 /* Controls how many units are moved by expr.c before resorting to movstr.
1523 Without byte/word accesses, we want no more than one; with, several single
1524 byte accesses are better. */
1525
1526 #define MOVE_RATIO (TARGET_BWX ? 7 : 2)
1527
1528 /* Largest number of bytes of an object that can be placed in a register.
1529 On the Alpha we have plenty of registers, so use TImode. */
1530 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1531
1532 /* Nonzero if access to memory by bytes is no faster than for words.
1533 Also non-zero if doing byte operations (specifically shifts) in registers
1534 is undesirable.
1535
1536 On the Alpha, we want to not use the byte operation and instead use
1537 masking operations to access fields; these will save instructions. */
1538
1539 #define SLOW_BYTE_ACCESS 1
1540
1541 /* Define if operations between registers always perform the operation
1542 on the full register even if a narrower mode is specified. */
1543 #define WORD_REGISTER_OPERATIONS
1544
1545 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1546 will either zero-extend or sign-extend. The value of this macro should
1547 be the code that says which one of the two operations is implicitly
1548 done, NIL if none. */
1549 #define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1550
1551 /* Define if loading short immediate values into registers sign extends. */
1552 #define SHORT_IMMEDIATES_SIGN_EXTEND
1553
1554 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1555 is done just by pretending it is already truncated. */
1556 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1557
1558 /* We assume that the store-condition-codes instructions store 0 for false
1559 and some other value for true. This is the value stored for true. */
1560
1561 #define STORE_FLAG_VALUE 1
1562
1563 /* Define the value returned by a floating-point comparison instruction. */
1564
1565 #define FLOAT_STORE_FLAG_VALUE (TARGET_FLOAT_VAX ? 0.5 : 2.0)
1566
1567 /* Canonicalize a comparison from one we don't have to one we do have. */
1568
1569 #define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1570 do { \
1571 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1572 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1573 { \
1574 rtx tem = (OP0); \
1575 (OP0) = (OP1); \
1576 (OP1) = tem; \
1577 (CODE) = swap_condition (CODE); \
1578 } \
1579 if (((CODE) == LT || (CODE) == LTU) \
1580 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1581 { \
1582 (CODE) = (CODE) == LT ? LE : LEU; \
1583 (OP1) = GEN_INT (255); \
1584 } \
1585 } while (0)
1586
1587 /* Specify the machine mode that pointers have.
1588 After generation of rtl, the compiler makes no further distinction
1589 between pointers and any other objects of this machine mode. */
1590 #define Pmode DImode
1591
1592 /* Mode of a function address in a call instruction (for indexing purposes). */
1593
1594 #define FUNCTION_MODE Pmode
1595
1596 /* Define this if addresses of constant functions
1597 shouldn't be put through pseudo regs where they can be cse'd.
1598 Desirable on machines where ordinary constants are expensive
1599 but a CALL with constant address is cheap.
1600
1601 We define this on the Alpha so that gen_call and gen_call_value
1602 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1603 then copy it into a register, thus actually letting the address be
1604 cse'ed. */
1605
1606 #define NO_FUNCTION_CSE
1607
1608 /* Define this to be nonzero if shift instructions ignore all but the low-order
1609 few bits. */
1610 #define SHIFT_COUNT_TRUNCATED 1
1611
1612 /* Use atexit for static constructors/destructors, instead of defining
1613 our own exit function. */
1614 #define HAVE_ATEXIT
1615
1616 /* The EV4 is dual issue; EV5/EV6 are quad issue. */
1617 #define ISSUE_RATE (alpha_cpu == PROCESSOR_EV4 ? 2 : 4)
1618
1619 /* Compute the cost of computing a constant rtl expression RTX
1620 whose rtx-code is CODE. The body of this macro is a portion
1621 of a switch statement. If the code is computed here,
1622 return it with a return statement. Otherwise, break from the switch.
1623
1624 If this is an 8-bit constant, return zero since it can be used
1625 nearly anywhere with no cost. If it is a valid operand for an
1626 ADD or AND, likewise return 0 if we know it will be used in that
1627 context. Otherwise, return 2 since it might be used there later.
1628 All other constants take at least two insns. */
1629
1630 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1631 case CONST_INT: \
1632 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
1633 return 0; \
1634 case CONST_DOUBLE: \
1635 if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
1636 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1637 return 0; \
1638 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1639 return 2; \
1640 else \
1641 return COSTS_N_INSNS (2); \
1642 case CONST: \
1643 case SYMBOL_REF: \
1644 case LABEL_REF: \
1645 switch (alpha_cpu) \
1646 { \
1647 case PROCESSOR_EV4: \
1648 return COSTS_N_INSNS (3); \
1649 case PROCESSOR_EV5: \
1650 return COSTS_N_INSNS (2); \
1651 }
1652
1653 /* Provide the costs of a rtl expression. This is in the body of a
1654 switch on CODE. */
1655
1656 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1657 case PLUS: case MINUS: \
1658 if (FLOAT_MODE_P (GET_MODE (X))) \
1659 switch (alpha_cpu) \
1660 { \
1661 case PROCESSOR_EV4: \
1662 return COSTS_N_INSNS (6); \
1663 case PROCESSOR_EV5: \
1664 return COSTS_N_INSNS (4); \
1665 } \
1666 else if (GET_CODE (XEXP (X, 0)) == MULT \
1667 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
1668 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1669 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1670 break; \
1671 case MULT: \
1672 switch (alpha_cpu) \
1673 { \
1674 case PROCESSOR_EV4: \
1675 if (FLOAT_MODE_P (GET_MODE (X))) \
1676 return COSTS_N_INSNS (6); \
1677 return COSTS_N_INSNS (23); \
1678 case PROCESSOR_EV5: \
1679 if (FLOAT_MODE_P (GET_MODE (X))) \
1680 return COSTS_N_INSNS (4); \
1681 else if (GET_MODE (X) == DImode) \
1682 return COSTS_N_INSNS (12); \
1683 else \
1684 return COSTS_N_INSNS (8); \
1685 } \
1686 case ASHIFT: \
1687 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1688 && INTVAL (XEXP (X, 1)) <= 3) \
1689 break; \
1690 /* ... fall through ... */ \
1691 case ASHIFTRT: case LSHIFTRT: case IF_THEN_ELSE: \
1692 switch (alpha_cpu) \
1693 { \
1694 case PROCESSOR_EV4: \
1695 return COSTS_N_INSNS (2); \
1696 case PROCESSOR_EV5: \
1697 return COSTS_N_INSNS (1); \
1698 } \
1699 case DIV: case UDIV: case MOD: case UMOD: \
1700 switch (alpha_cpu) \
1701 { \
1702 case PROCESSOR_EV4: \
1703 if (GET_MODE (X) == SFmode) \
1704 return COSTS_N_INSNS (34); \
1705 else if (GET_MODE (X) == DFmode) \
1706 return COSTS_N_INSNS (63); \
1707 else \
1708 return COSTS_N_INSNS (70); \
1709 case PROCESSOR_EV5: \
1710 if (GET_MODE (X) == SFmode) \
1711 return COSTS_N_INSNS (15); \
1712 else if (GET_MODE (X) == DFmode) \
1713 return COSTS_N_INSNS (22); \
1714 else \
1715 return COSTS_N_INSNS (70); /* EV5 ??? */ \
1716 } \
1717 case MEM: \
1718 switch (alpha_cpu) \
1719 { \
1720 case PROCESSOR_EV4: \
1721 return COSTS_N_INSNS (3); \
1722 case PROCESSOR_EV5: \
1723 return COSTS_N_INSNS (2); \
1724 } \
1725 case NEG: case ABS: \
1726 if (! FLOAT_MODE_P (GET_MODE (X))) \
1727 break; \
1728 /* ... fall through ... */ \
1729 case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
1730 case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
1731 switch (alpha_cpu) \
1732 { \
1733 case PROCESSOR_EV4: \
1734 return COSTS_N_INSNS (6); \
1735 case PROCESSOR_EV5: \
1736 return COSTS_N_INSNS (4); \
1737 }
1738 \f
1739 /* Control the assembler format that we output. */
1740
1741 /* Output to assembler file text saying following lines
1742 may contain character constants, extra white space, comments, etc. */
1743
1744 #define ASM_APP_ON ""
1745
1746 /* Output to assembler file text saying following lines
1747 no longer contain unusual constructs. */
1748
1749 #define ASM_APP_OFF ""
1750
1751 #define TEXT_SECTION_ASM_OP ".text"
1752
1753 /* Output before read-only data. */
1754
1755 #define READONLY_DATA_SECTION_ASM_OP ".rdata"
1756
1757 /* Output before writable data. */
1758
1759 #define DATA_SECTION_ASM_OP ".data"
1760
1761 /* Define an extra section for read-only data, a routine to enter it, and
1762 indicate that it is for read-only data.
1763
1764 The first time we enter the readonly data section for a file, we write
1765 eight bytes of zero. This works around a bug in DEC's assembler in
1766 some versions of OSF/1 V3.x. */
1767
1768 #define EXTRA_SECTIONS readonly_data
1769
1770 #define EXTRA_SECTION_FUNCTIONS \
1771 void \
1772 literal_section () \
1773 { \
1774 if (in_section != readonly_data) \
1775 { \
1776 static int firsttime = 1; \
1777 \
1778 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
1779 if (firsttime) \
1780 { \
1781 firsttime = 0; \
1782 ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx); \
1783 } \
1784 \
1785 in_section = readonly_data; \
1786 } \
1787 } \
1788
1789 #define READONLY_DATA_SECTION literal_section
1790
1791 /* If we are referencing a function that is static, make the SYMBOL_REF
1792 special. We use this to see indicate we can branch to this function
1793 without setting PV or restoring GP. */
1794
1795 #define ENCODE_SECTION_INFO(DECL) \
1796 if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
1797 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1798
1799 /* How to refer to registers in assembler output.
1800 This sequence is indexed by compiler's hard-register-number (see above). */
1801
1802 #define REGISTER_NAMES \
1803 {"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1804 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1805 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
1806 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1807 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1808 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1809 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
1810 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1811
1812 /* How to renumber registers for dbx and gdb. */
1813
1814 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1815
1816 /* This is how to output the definition of a user-level label named NAME,
1817 such as the label on a static function or variable NAME. */
1818
1819 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1820 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1821
1822 /* This is how to output a command to make the user-level label named NAME
1823 defined for reference from other files. */
1824
1825 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1826 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1827
1828 /* The prefix to add to user-visible assembler symbols. */
1829
1830 #define USER_LABEL_PREFIX ""
1831
1832 /* This is how to output an internal numbered label where
1833 PREFIX is the class of label and NUM is the number within the class. */
1834
1835 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1836 fprintf (FILE, "$%s%d:\n", PREFIX, NUM)
1837
1838 /* This is how to output a label for a jump table. Arguments are the same as
1839 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1840 passed. */
1841
1842 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1843 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1844
1845 /* This is how to store into the string LABEL
1846 the symbol_ref name of an internal numbered label where
1847 PREFIX is the class of label and NUM is the number within the class.
1848 This is suitable for output with `assemble_name'. */
1849
1850 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1851 sprintf (LABEL, "*$%s%d", PREFIX, NUM)
1852
1853 /* Check a floating-point value for validity for a particular machine mode. */
1854
1855 #define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
1856 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
1857
1858 /* This is how to output an assembler line defining a `double' constant. */
1859
1860 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1861 { \
1862 if (REAL_VALUE_ISINF (VALUE) \
1863 || REAL_VALUE_ISNAN (VALUE) \
1864 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1865 { \
1866 long t[2]; \
1867 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1868 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
1869 t[1] & 0xffffffff, t[0] & 0xffffffff); \
1870 } \
1871 else \
1872 { \
1873 char str[30]; \
1874 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
1875 fprintf (FILE, "\t.%c_floating %s\n", (TARGET_FLOAT_VAX)?'g':'t', str); \
1876 } \
1877 }
1878
1879 /* This is how to output an assembler line defining a `float' constant. */
1880
1881 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1882 do { \
1883 long t; \
1884 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1885 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
1886 } while (0)
1887
1888 /* This is how to output an assembler line defining an `int' constant. */
1889
1890 #define ASM_OUTPUT_INT(FILE,VALUE) \
1891 ( fprintf (FILE, "\t.long "), \
1892 output_addr_const (FILE, (VALUE)), \
1893 fprintf (FILE, "\n"))
1894
1895 /* This is how to output an assembler line defining a `long' constant. */
1896
1897 #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1898 ( fprintf (FILE, "\t.quad "), \
1899 output_addr_const (FILE, (VALUE)), \
1900 fprintf (FILE, "\n"))
1901
1902 /* Likewise for `char' and `short' constants. */
1903
1904 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1905 fprintf (FILE, "\t.word %d\n", \
1906 (GET_CODE (VALUE) == CONST_INT \
1907 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1908
1909 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1910 fprintf (FILE, "\t.byte %d\n", \
1911 (GET_CODE (VALUE) == CONST_INT \
1912 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1913
1914 /* We use the default ASCII-output routine, except that we don't write more
1915 than 50 characters since the assembler doesn't support very long lines. */
1916
1917 #define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1918 do { \
1919 FILE *_hide_asm_out_file = (MYFILE); \
1920 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
1921 int _hide_thissize = (MYLENGTH); \
1922 int _size_so_far = 0; \
1923 { \
1924 FILE *asm_out_file = _hide_asm_out_file; \
1925 unsigned char *p = _hide_p; \
1926 int thissize = _hide_thissize; \
1927 int i; \
1928 fprintf (asm_out_file, "\t.ascii \""); \
1929 \
1930 for (i = 0; i < thissize; i++) \
1931 { \
1932 register int c = p[i]; \
1933 \
1934 if (_size_so_far ++ > 50 && i < thissize - 4) \
1935 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1936 \
1937 if (c == '\"' || c == '\\') \
1938 putc ('\\', asm_out_file); \
1939 if (c >= ' ' && c < 0177) \
1940 putc (c, asm_out_file); \
1941 else \
1942 { \
1943 fprintf (asm_out_file, "\\%o", c); \
1944 /* After an octal-escape, if a digit follows, \
1945 terminate one string constant and start another. \
1946 The Vax assembler fails to stop reading the escape \
1947 after three digits, so this is the only way we \
1948 can get it to parse the data properly. */ \
1949 if (i < thissize - 1 \
1950 && p[i + 1] >= '0' && p[i + 1] <= '9') \
1951 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1952 } \
1953 } \
1954 fprintf (asm_out_file, "\"\n"); \
1955 } \
1956 } \
1957 while (0)
1958
1959 /* This is how to output an insn to push a register on the stack.
1960 It need not be very fast code. */
1961
1962 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1963 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
1964 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1965 (REGNO) & 31);
1966
1967 /* This is how to output an insn to pop a register from the stack.
1968 It need not be very fast code. */
1969
1970 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1971 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
1972 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1973 (REGNO) & 31);
1974
1975 /* This is how to output an assembler line for a numeric constant byte. */
1976
1977 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1978 fprintf (FILE, "\t.byte 0x%x\n", (VALUE) & 0xff)
1979
1980 /* This is how to output an element of a case-vector that is absolute.
1981 (Alpha does not use such vectors, but we must define this macro anyway.) */
1982
1983 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1984
1985 /* This is how to output an element of a case-vector that is relative. */
1986
1987 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1988 fprintf (FILE, "\t.%s $L%d\n", TARGET_WINDOWS_NT ? "long" : "gprel32", \
1989 (VALUE))
1990
1991 /* This is how to output an assembler line
1992 that says to advance the location counter
1993 to a multiple of 2**LOG bytes. */
1994
1995 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1996 if ((LOG) != 0) \
1997 fprintf (FILE, "\t.align %d\n", LOG);
1998
1999 /* This is how to advance the location counter by SIZE bytes. */
2000
2001 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
2002 fprintf (FILE, "\t.space %d\n", (SIZE))
2003
2004 /* This says how to output an assembler line
2005 to define a global common symbol. */
2006
2007 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2008 ( fputs ("\t.comm ", (FILE)), \
2009 assemble_name ((FILE), (NAME)), \
2010 fprintf ((FILE), ",%d\n", (SIZE)))
2011
2012 /* This says how to output an assembler line
2013 to define a local common symbol. */
2014
2015 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
2016 ( fputs ("\t.lcomm ", (FILE)), \
2017 assemble_name ((FILE), (NAME)), \
2018 fprintf ((FILE), ",%d\n", (SIZE)))
2019
2020 /* Store in OUTPUT a string (made with alloca) containing
2021 an assembler-name for a local static variable named NAME.
2022 LABELNO is an integer which is different for each call. */
2023
2024 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2025 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2026 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2027
2028 /* Define the parentheses used to group arithmetic operations
2029 in assembler code. */
2030
2031 #define ASM_OPEN_PAREN "("
2032 #define ASM_CLOSE_PAREN ")"
2033
2034 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
2035 Used for C++ multiple inheritance. */
2036
2037 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
2038 do { \
2039 char *fn_name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (FUNCTION)); \
2040 \
2041 fprintf (FILE, "\t.ent "); \
2042 assemble_name (FILE, alpha_function_name); \
2043 fputc ('\n', FILE); \
2044 ASM_OUTPUT_LABEL (FILE, alpha_function_name); \
2045 fprintf (FILE, "\tldgp $29,0($27)\n"); \
2046 fputc ('$', FILE); \
2047 assemble_name (FILE, alpha_function_name); \
2048 fprintf (FILE, "..ng:\n"); \
2049 fprintf (FILE, "\t.frame $30,0,$26,0\n"); \
2050 fprintf (FILE, "\t.prologue 1\n"); \
2051 \
2052 /* Rely on the assembler to macro expand a large delta. */ \
2053 fprintf (FILE, "\tlda $16,%ld($16)\n", (long)(DELTA)); \
2054 \
2055 if (current_file_function_operand (XEXP (DECL_RTL (FUNCTION), 0))) \
2056 { \
2057 fprintf (FILE, "\tbr $31,$"); \
2058 assemble_name (FILE, fn_name); \
2059 fprintf (FILE, "..ng\n"); \
2060 } \
2061 else \
2062 { \
2063 fprintf (FILE, "\tlda $27,"); \
2064 assemble_name (FILE, fn_name); \
2065 fprintf (FILE, "\n\tjmp $31,($27),"); \
2066 assemble_name (FILE, fn_name); \
2067 fputc ('\n', FILE); \
2068 } \
2069 \
2070 fprintf (FILE, "\t.end "); \
2071 assemble_name (FILE, alpha_function_name); \
2072 fputc ('\n', FILE); \
2073 } while (0)
2074
2075 \f
2076 /* Define results of standard character escape sequences. */
2077 #define TARGET_BELL 007
2078 #define TARGET_BS 010
2079 #define TARGET_TAB 011
2080 #define TARGET_NEWLINE 012
2081 #define TARGET_VT 013
2082 #define TARGET_FF 014
2083 #define TARGET_CR 015
2084
2085 /* Print operand X (an rtx) in assembler syntax to file FILE.
2086 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2087 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2088
2089 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2090
2091 /* Determine which codes are valid without a following integer. These must
2092 not be alphabetic (the characters are chosen so that
2093 PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when
2094 using ASCII).
2095
2096 & Generates fp-rounding mode suffix: nothing for normal, 'c' for
2097 chopped, 'm' for minus-infinity, and 'd' for dynamic rounding
2098 mode. alpha_fprm controls which suffix is generated.
2099
2100 ' Generates trap-mode suffix for instructions that accept the
2101 su suffix only (cmpt et al).
2102
2103 ) Generates trap-mode suffix for instructions that accept the
2104 u, su, and sui suffix. This is the bulk of the IEEE floating
2105 point instructions (addt et al).
2106
2107 + Generates trap-mode suffix for instructions that accept the
2108 sui suffix (cvtqt and cvtqs).
2109
2110 , Generates single precision suffix for floating point
2111 instructions (s for IEEE, f for VAX)
2112
2113 - Generates double precision suffix for floating point
2114 instructions (t for IEEE, g for VAX)
2115 */
2116
2117 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2118 ((CODE) == '&' || (CODE) == '\'' || (CODE) == ')' || (CODE) == '+' \
2119 || (CODE) == ',' || (CODE) == '-')
2120 \f
2121 /* Print a memory address as an operand to reference that memory location. */
2122
2123 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2124 { rtx addr = (ADDR); \
2125 int basereg = 31; \
2126 HOST_WIDE_INT offset = 0; \
2127 \
2128 if (GET_CODE (addr) == AND) \
2129 addr = XEXP (addr, 0); \
2130 \
2131 if (GET_CODE (addr) == REG) \
2132 basereg = REGNO (addr); \
2133 else if (GET_CODE (addr) == CONST_INT) \
2134 offset = INTVAL (addr); \
2135 else if (GET_CODE (addr) == PLUS \
2136 && GET_CODE (XEXP (addr, 0)) == REG \
2137 && GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2138 basereg = REGNO (XEXP (addr, 0)), offset = INTVAL (XEXP (addr, 1)); \
2139 else \
2140 abort (); \
2141 \
2142 fprintf (FILE, "%d($%d)", offset, basereg); \
2143 }
2144 /* Define the codes that are matched by predicates in alpha.c. */
2145
2146 #define PREDICATE_CODES \
2147 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
2148 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
2149 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
2150 {"cint8_operand", {CONST_INT}}, \
2151 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2152 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2153 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
2154 {"const48_operand", {CONST_INT}}, \
2155 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2156 {"or_operand", {SUBREG, REG, CONST_INT}}, \
2157 {"mode_mask_operand", {CONST_INT}}, \
2158 {"mul8_operand", {CONST_INT}}, \
2159 {"mode_width_operand", {CONST_INT}}, \
2160 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2161 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
2162 {"alpha_swapped_comparison_operator", {EQ, GE, GT, GEU, GTU}}, \
2163 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
2164 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
2165 {"fp0_operand", {CONST_DOUBLE}}, \
2166 {"current_file_function_operand", {SYMBOL_REF}}, \
2167 {"call_operand", {REG, SYMBOL_REF}}, \
2168 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2169 SYMBOL_REF, CONST, LABEL_REF}}, \
2170 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2171 SYMBOL_REF, CONST, LABEL_REF}}, \
2172 {"aligned_memory_operand", {MEM}}, \
2173 {"unaligned_memory_operand", {MEM}}, \
2174 {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}}, \
2175 {"any_memory_operand", {MEM}},
2176 \f
2177 /* Tell collect that the object format is ECOFF. */
2178 #define OBJECT_FORMAT_COFF
2179 #define EXTENDED_COFF
2180
2181 /* If we use NM, pass -g to it so it only lists globals. */
2182 #define NM_FLAGS "-pg"
2183
2184 /* Definitions for debugging. */
2185
2186 #define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
2187 #define DBX_DEBUGGING_INFO /* generate embedded stabs */
2188 #define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
2189
2190 #ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
2191 #define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
2192 #endif
2193
2194
2195 /* Correct the offset of automatic variables and arguments. Note that
2196 the Alpha debug format wants all automatic variables and arguments
2197 to be in terms of two different offsets from the virtual frame pointer,
2198 which is the stack pointer before any adjustment in the function.
2199 The offset for the argument pointer is fixed for the native compiler,
2200 it is either zero (for the no arguments case) or large enough to hold
2201 all argument registers.
2202 The offset for the auto pointer is the fourth argument to the .frame
2203 directive (local_offset).
2204 To stay compatible with the native tools we use the same offsets
2205 from the virtual frame pointer and adjust the debugger arg/auto offsets
2206 accordingly. These debugger offsets are set up in output_prolog. */
2207
2208 extern long alpha_arg_offset;
2209 extern long alpha_auto_offset;
2210 #define DEBUGGER_AUTO_OFFSET(X) \
2211 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
2212 #define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
2213
2214
2215 #define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2216 alpha_output_lineno (STREAM, LINE)
2217 extern void alpha_output_lineno ();
2218
2219 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
2220 alpha_output_filename (STREAM, NAME)
2221 extern void alpha_output_filename ();
2222
2223 /* mips-tfile.c limits us to strings of one page. */
2224 #define DBX_CONTIN_LENGTH 4000
2225
2226 /* By default, turn on GDB extensions. */
2227 #define DEFAULT_GDB_EXTENSIONS 1
2228
2229 /* Stabs-in-ECOFF can't handle dbxout_function_end(). */
2230 #define NO_DBX_FUNCTION_END 1
2231
2232 /* If we are smuggling stabs through the ALPHA ECOFF object
2233 format, put a comment in front of the .stab<x> operation so
2234 that the ALPHA assembler does not choke. The mips-tfile program
2235 will correctly put the stab into the object file. */
2236
2237 #define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
2238 #define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
2239 #define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
2240
2241 /* Forward references to tags are allowed. */
2242 #define SDB_ALLOW_FORWARD_REFERENCES
2243
2244 /* Unknown tags are also allowed. */
2245 #define SDB_ALLOW_UNKNOWN_REFERENCES
2246
2247 #define PUT_SDB_DEF(a) \
2248 do { \
2249 fprintf (asm_out_file, "\t%s.def\t", \
2250 (TARGET_GAS) ? "" : "#"); \
2251 ASM_OUTPUT_LABELREF (asm_out_file, a); \
2252 fputc (';', asm_out_file); \
2253 } while (0)
2254
2255 #define PUT_SDB_PLAIN_DEF(a) \
2256 do { \
2257 fprintf (asm_out_file, "\t%s.def\t.%s;", \
2258 (TARGET_GAS) ? "" : "#", (a)); \
2259 } while (0)
2260
2261 #define PUT_SDB_TYPE(a) \
2262 do { \
2263 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
2264 } while (0)
2265
2266 /* For block start and end, we create labels, so that
2267 later we can figure out where the correct offset is.
2268 The normal .ent/.end serve well enough for functions,
2269 so those are just commented out. */
2270
2271 extern int sdb_label_count; /* block start/end next label # */
2272
2273 #define PUT_SDB_BLOCK_START(LINE) \
2274 do { \
2275 fprintf (asm_out_file, \
2276 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
2277 sdb_label_count, \
2278 (TARGET_GAS) ? "" : "#", \
2279 sdb_label_count, \
2280 (LINE)); \
2281 sdb_label_count++; \
2282 } while (0)
2283
2284 #define PUT_SDB_BLOCK_END(LINE) \
2285 do { \
2286 fprintf (asm_out_file, \
2287 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
2288 sdb_label_count, \
2289 (TARGET_GAS) ? "" : "#", \
2290 sdb_label_count, \
2291 (LINE)); \
2292 sdb_label_count++; \
2293 } while (0)
2294
2295 #define PUT_SDB_FUNCTION_START(LINE)
2296
2297 #define PUT_SDB_FUNCTION_END(LINE)
2298
2299 #define PUT_SDB_EPILOGUE_END(NAME)
2300
2301 /* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2302 mips-tdump.c to print them out.
2303
2304 These must match the corresponding definitions in gdb/mipsread.c.
2305 Unfortunately, gcc and gdb do not currently share any directories. */
2306
2307 #define CODE_MASK 0x8F300
2308 #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2309 #define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2310 #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2311
2312 /* Override some mips-tfile definitions. */
2313
2314 #define SHASH_SIZE 511
2315 #define THASH_SIZE 55
2316
2317 /* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2318
2319 #define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2320
2321 /* The linker will stick __main into the .init section. */
2322 #define HAS_INIT_SECTION
2323 #define LD_INIT_SWITCH "-init"
2324 #define LD_FINI_SWITCH "-fini"
2325
2326 /* The system headers under Alpha systems are generally C++-aware. */
2327 #define NO_IMPLICIT_EXTERN_C