calls.c: Include target.h.
[gcc.git] / gcc / config / alpha / alpha.h
1 /* Definitions of target machine for GNU compiler, for DEC Alpha.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5
6 This file is part of GNU CC.
7
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* Target CPU builtins. */
24 #define TARGET_CPU_CPP_BUILTINS() \
25 do \
26 { \
27 builtin_define ("__alpha"); \
28 builtin_define ("__alpha__"); \
29 builtin_assert ("cpu=alpha"); \
30 builtin_assert ("machine=alpha"); \
31 if (TARGET_CIX) \
32 { \
33 builtin_define ("__alpha_cix__"); \
34 builtin_assert ("cpu=cix"); \
35 } \
36 if (TARGET_FIX) \
37 { \
38 builtin_define ("__alpha_fix__"); \
39 builtin_assert ("cpu=fix"); \
40 } \
41 if (TARGET_BWX) \
42 { \
43 builtin_define ("__alpha_bwx__"); \
44 builtin_assert ("cpu=bwx"); \
45 } \
46 if (TARGET_MAX) \
47 { \
48 builtin_define ("__alpha_max__"); \
49 builtin_assert ("cpu=max"); \
50 } \
51 if (TARGET_CPU_EV6) \
52 { \
53 builtin_define ("__alpha_ev6__"); \
54 builtin_assert ("cpu=ev6"); \
55 } \
56 else if (TARGET_CPU_EV5) \
57 { \
58 builtin_define ("__alpha_ev5__"); \
59 builtin_assert ("cpu=ev5"); \
60 } \
61 else /* Presumably ev4. */ \
62 { \
63 builtin_define ("__alpha_ev4__"); \
64 builtin_assert ("cpu=ev4"); \
65 } \
66 if (TARGET_IEEE || TARGET_IEEE_WITH_INEXACT) \
67 builtin_define ("_IEEE_FP"); \
68 if (TARGET_IEEE_WITH_INEXACT) \
69 builtin_define ("_IEEE_FP_INEXACT"); \
70 \
71 /* Macros dependent on the C dialect. */ \
72 if (preprocessing_asm_p ()) \
73 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
74 else if (c_language == clk_c) \
75 builtin_define_std ("LANGUAGE_C"); \
76 else if (c_language == clk_cplusplus) \
77 { \
78 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
79 builtin_define ("__LANGUAGE_C_PLUS_PLUS__");\
80 } \
81 if (flag_objc) \
82 { \
83 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
84 builtin_define ("__LANGUAGE_OBJECTIVE_C__");\
85 } \
86 } while (0)
87
88 #define CPP_SPEC "%(cpp_subtarget)"
89
90 #ifndef CPP_SUBTARGET_SPEC
91 #define CPP_SUBTARGET_SPEC ""
92 #endif
93
94 #define WORD_SWITCH_TAKES_ARG(STR) \
95 (!strcmp (STR, "rpath") || DEFAULT_WORD_SWITCH_TAKES_ARG(STR))
96
97 /* Print subsidiary information on the compiler version in use. */
98 #define TARGET_VERSION
99
100 /* Run-time compilation parameters selecting different hardware subsets. */
101
102 /* Which processor to schedule for. The cpu attribute defines a list that
103 mirrors this list, so changes to alpha.md must be made at the same time. */
104
105 enum processor_type
106 {PROCESSOR_EV4, /* 2106[46]{a,} */
107 PROCESSOR_EV5, /* 21164{a,pc,} */
108 PROCESSOR_EV6}; /* 21264 */
109
110 extern enum processor_type alpha_cpu;
111
112 enum alpha_trap_precision
113 {
114 ALPHA_TP_PROG, /* No precision (default). */
115 ALPHA_TP_FUNC, /* Trap contained within originating function. */
116 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
117 };
118
119 enum alpha_fp_rounding_mode
120 {
121 ALPHA_FPRM_NORM, /* Normal rounding mode. */
122 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
123 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
124 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
125 };
126
127 enum alpha_fp_trap_mode
128 {
129 ALPHA_FPTM_N, /* Normal trap mode. */
130 ALPHA_FPTM_U, /* Underflow traps enabled. */
131 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
132 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
133 };
134
135 extern int target_flags;
136
137 extern enum alpha_trap_precision alpha_tp;
138 extern enum alpha_fp_rounding_mode alpha_fprm;
139 extern enum alpha_fp_trap_mode alpha_fptm;
140 extern int alpha_tls_size;
141
142 /* This means that floating-point support exists in the target implementation
143 of the Alpha architecture. This is usually the default. */
144 #define MASK_FP (1 << 0)
145 #define TARGET_FP (target_flags & MASK_FP)
146
147 /* This means that floating-point registers are allowed to be used. Note
148 that Alpha implementations without FP operations are required to
149 provide the FP registers. */
150
151 #define MASK_FPREGS (1 << 1)
152 #define TARGET_FPREGS (target_flags & MASK_FPREGS)
153
154 /* This means that gas is used to process the assembler file. */
155
156 #define MASK_GAS (1 << 2)
157 #define TARGET_GAS (target_flags & MASK_GAS)
158
159 /* This means that we should mark procedures as IEEE conformant. */
160
161 #define MASK_IEEE_CONFORMANT (1 << 3)
162 #define TARGET_IEEE_CONFORMANT (target_flags & MASK_IEEE_CONFORMANT)
163
164 /* This means we should be IEEE-compliant except for inexact. */
165
166 #define MASK_IEEE (1 << 4)
167 #define TARGET_IEEE (target_flags & MASK_IEEE)
168
169 /* This means we should be fully IEEE-compliant. */
170
171 #define MASK_IEEE_WITH_INEXACT (1 << 5)
172 #define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
173
174 /* This means we must construct all constants rather than emitting
175 them as literal data. */
176
177 #define MASK_BUILD_CONSTANTS (1 << 6)
178 #define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS)
179
180 /* This means we handle floating points in VAX F- (float)
181 or G- (double) Format. */
182
183 #define MASK_FLOAT_VAX (1 << 7)
184 #define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX)
185
186 /* This means that the processor has byte and half word loads and stores
187 (the BWX extension). */
188
189 #define MASK_BWX (1 << 8)
190 #define TARGET_BWX (target_flags & MASK_BWX)
191
192 /* This means that the processor has the MAX extension. */
193 #define MASK_MAX (1 << 9)
194 #define TARGET_MAX (target_flags & MASK_MAX)
195
196 /* This means that the processor has the FIX extension. */
197 #define MASK_FIX (1 << 10)
198 #define TARGET_FIX (target_flags & MASK_FIX)
199
200 /* This means that the processor has the CIX extension. */
201 #define MASK_CIX (1 << 11)
202 #define TARGET_CIX (target_flags & MASK_CIX)
203
204 /* This means use !literal style explicit relocations. */
205 #define MASK_EXPLICIT_RELOCS (1 << 12)
206 #define TARGET_EXPLICIT_RELOCS (target_flags & MASK_EXPLICIT_RELOCS)
207
208 /* This means use 16-bit relocations to .sdata/.sbss. */
209 #define MASK_SMALL_DATA (1 << 13)
210 #define TARGET_SMALL_DATA (target_flags & MASK_SMALL_DATA)
211
212 /* This means emit thread pointer loads for kernel not user. */
213 #define MASK_TLS_KERNEL (1 << 14)
214 #define TARGET_TLS_KERNEL (target_flags & MASK_TLS_KERNEL)
215
216 /* This means that the processor is an EV5, EV56, or PCA56.
217 Unlike alpha_cpu this is not affected by -mtune= setting. */
218 #define MASK_CPU_EV5 (1 << 28)
219 #define TARGET_CPU_EV5 (target_flags & MASK_CPU_EV5)
220
221 /* Likewise for EV6. */
222 #define MASK_CPU_EV6 (1 << 29)
223 #define TARGET_CPU_EV6 (target_flags & MASK_CPU_EV6)
224
225 /* This means we support the .arch directive in the assembler. Only
226 defined in TARGET_CPU_DEFAULT. */
227 #define MASK_SUPPORT_ARCH (1 << 30)
228 #define TARGET_SUPPORT_ARCH (target_flags & MASK_SUPPORT_ARCH)
229
230 /* These are for target os support and cannot be changed at runtime. */
231 #define TARGET_ABI_WINDOWS_NT 0
232 #define TARGET_ABI_OPEN_VMS 0
233 #define TARGET_ABI_UNICOSMK 0
234 #define TARGET_ABI_OSF (!TARGET_ABI_WINDOWS_NT \
235 && !TARGET_ABI_OPEN_VMS \
236 && !TARGET_ABI_UNICOSMK)
237
238 #ifndef TARGET_AS_CAN_SUBTRACT_LABELS
239 #define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
240 #endif
241 #ifndef TARGET_AS_SLASH_BEFORE_SUFFIX
242 #define TARGET_AS_SLASH_BEFORE_SUFFIX TARGET_GAS
243 #endif
244 #ifndef TARGET_CAN_FAULT_IN_PROLOGUE
245 #define TARGET_CAN_FAULT_IN_PROLOGUE 0
246 #endif
247 #ifndef TARGET_HAS_XFLOATING_LIBS
248 #define TARGET_HAS_XFLOATING_LIBS 0
249 #endif
250 #ifndef TARGET_PROFILING_NEEDS_GP
251 #define TARGET_PROFILING_NEEDS_GP 0
252 #endif
253 #ifndef TARGET_LD_BUGGY_LDGP
254 #define TARGET_LD_BUGGY_LDGP 0
255 #endif
256 #ifndef TARGET_FIXUP_EV5_PREFETCH
257 #define TARGET_FIXUP_EV5_PREFETCH 0
258 #endif
259 #ifndef HAVE_AS_TLS
260 #define HAVE_AS_TLS 0
261 #endif
262
263 /* Macro to define tables used to set the flags.
264 This is a list in braces of pairs in braces,
265 each pair being { "NAME", VALUE }
266 where VALUE is the bits to set or minus the bits to clear.
267 An empty string NAME is used to identify the default VALUE. */
268
269 #define TARGET_SWITCHES \
270 { {"no-soft-float", MASK_FP, N_("Use hardware fp")}, \
271 {"soft-float", - MASK_FP, N_("Do not use hardware fp")}, \
272 {"fp-regs", MASK_FPREGS, N_("Use fp registers")}, \
273 {"no-fp-regs", - (MASK_FP|MASK_FPREGS), \
274 N_("Do not use fp registers")}, \
275 {"alpha-as", -MASK_GAS, N_("Do not assume GAS")}, \
276 {"gas", MASK_GAS, N_("Assume GAS")}, \
277 {"ieee-conformant", MASK_IEEE_CONFORMANT, \
278 N_("Request IEEE-conformant math library routines (OSF/1)")}, \
279 {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT, \
280 N_("Emit IEEE-conformant code, without inexact exceptions")}, \
281 {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT, \
282 N_("Emit IEEE-conformant code, with inexact exceptions")}, \
283 {"build-constants", MASK_BUILD_CONSTANTS, \
284 N_("Do not emit complex integer constants to read-only memory")}, \
285 {"float-vax", MASK_FLOAT_VAX, N_("Use VAX fp")}, \
286 {"float-ieee", -MASK_FLOAT_VAX, N_("Do not use VAX fp")}, \
287 {"bwx", MASK_BWX, N_("Emit code for the byte/word ISA extension")}, \
288 {"no-bwx", -MASK_BWX, ""}, \
289 {"max", MASK_MAX, \
290 N_("Emit code for the motion video ISA extension")}, \
291 {"no-max", -MASK_MAX, ""}, \
292 {"fix", MASK_FIX, \
293 N_("Emit code for the fp move and sqrt ISA extension")}, \
294 {"no-fix", -MASK_FIX, ""}, \
295 {"cix", MASK_CIX, N_("Emit code for the counting ISA extension")}, \
296 {"no-cix", -MASK_CIX, ""}, \
297 {"explicit-relocs", MASK_EXPLICIT_RELOCS, \
298 N_("Emit code using explicit relocation directives")}, \
299 {"no-explicit-relocs", -MASK_EXPLICIT_RELOCS, ""}, \
300 {"small-data", MASK_SMALL_DATA, \
301 N_("Emit 16-bit relocations to the small data areas")}, \
302 {"large-data", -MASK_SMALL_DATA, \
303 N_("Emit 32-bit relocations to the small data areas")}, \
304 {"tls-kernel", MASK_TLS_KERNEL, \
305 N_("Emit rdval instead of rduniq for thread pointer")}, \
306 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT \
307 | TARGET_DEFAULT_EXPLICIT_RELOCS, ""} }
308
309 #define TARGET_DEFAULT MASK_FP|MASK_FPREGS
310
311 #ifndef TARGET_CPU_DEFAULT
312 #define TARGET_CPU_DEFAULT 0
313 #endif
314
315 #ifndef TARGET_DEFAULT_EXPLICIT_RELOCS
316 #ifdef HAVE_AS_EXPLICIT_RELOCS
317 #define TARGET_DEFAULT_EXPLICIT_RELOCS MASK_EXPLICIT_RELOCS
318 #else
319 #define TARGET_DEFAULT_EXPLICIT_RELOCS 0
320 #endif
321 #endif
322
323 extern const char *alpha_cpu_string; /* For -mcpu= */
324 extern const char *alpha_tune_string; /* For -mtune= */
325 extern const char *alpha_fprm_string; /* For -mfp-rounding-mode=[n|m|c|d] */
326 extern const char *alpha_fptm_string; /* For -mfp-trap-mode=[n|u|su|sui] */
327 extern const char *alpha_tp_string; /* For -mtrap-precision=[p|f|i] */
328 extern const char *alpha_mlat_string; /* For -mmemory-latency= */
329 extern const char *alpha_tls_size_string; /* For -mtls-size= */
330
331 #define TARGET_OPTIONS \
332 { \
333 {"cpu=", &alpha_cpu_string, \
334 N_("Use features of and schedule given CPU")}, \
335 {"tune=", &alpha_tune_string, \
336 N_("Schedule given CPU")}, \
337 {"fp-rounding-mode=", &alpha_fprm_string, \
338 N_("Control the generated fp rounding mode")}, \
339 {"fp-trap-mode=", &alpha_fptm_string, \
340 N_("Control the IEEE trap mode")}, \
341 {"trap-precision=", &alpha_tp_string, \
342 N_("Control the precision given to fp exceptions")}, \
343 {"memory-latency=", &alpha_mlat_string, \
344 N_("Tune expected memory latency")}, \
345 {"tls-size=", &alpha_tls_size_string, \
346 N_("Specify bit size of immediate TLS offsets")}, \
347 }
348
349 /* This macro defines names of additional specifications to put in the
350 specs that can be used in various specifications like CC1_SPEC. Its
351 definition is an initializer with a subgrouping for each command option.
352
353 Each subgrouping contains a string constant, that defines the
354 specification name, and a string constant that used by the GNU CC driver
355 program.
356
357 Do not define this macro if it does not need to do anything. */
358
359 #ifndef SUBTARGET_EXTRA_SPECS
360 #define SUBTARGET_EXTRA_SPECS
361 #endif
362
363 #define EXTRA_SPECS \
364 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
365 SUBTARGET_EXTRA_SPECS
366
367
368 /* Sometimes certain combinations of command options do not make sense
369 on a particular target machine. You can define a macro
370 `OVERRIDE_OPTIONS' to take account of this. This macro, if
371 defined, is executed once just after all the command options have
372 been parsed.
373
374 On the Alpha, it is used to translate target-option strings into
375 numeric values. */
376
377 #define OVERRIDE_OPTIONS override_options ()
378
379
380 /* Define this macro to change register usage conditional on target flags.
381
382 On the Alpha, we use this to disable the floating-point registers when
383 they don't exist. */
384
385 #define CONDITIONAL_REGISTER_USAGE \
386 { \
387 int i; \
388 if (! TARGET_FPREGS) \
389 for (i = 32; i < 63; i++) \
390 fixed_regs[i] = call_used_regs[i] = 1; \
391 }
392
393
394 /* Show we can debug even without a frame pointer. */
395 #define CAN_DEBUG_WITHOUT_FP
396 \f
397 /* target machine storage layout */
398
399 /* Define the size of `int'. The default is the same as the word size. */
400 #define INT_TYPE_SIZE 32
401
402 /* Define the size of `long long'. The default is the twice the word size. */
403 #define LONG_LONG_TYPE_SIZE 64
404
405 /* The two floating-point formats we support are S-floating, which is
406 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
407 and `long double' are T. */
408
409 #define FLOAT_TYPE_SIZE 32
410 #define DOUBLE_TYPE_SIZE 64
411 #define LONG_DOUBLE_TYPE_SIZE 64
412
413 #define WCHAR_TYPE "unsigned int"
414 #define WCHAR_TYPE_SIZE 32
415
416 /* Define this macro if it is advisable to hold scalars in registers
417 in a wider mode than that declared by the program. In such cases,
418 the value is constrained to be within the bounds of the declared
419 type, but kept valid in the wider mode. The signedness of the
420 extension may differ from that of the type.
421
422 For Alpha, we always store objects in a full register. 32-bit objects
423 are always sign-extended, but smaller objects retain their signedness. */
424
425 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
426 if (GET_MODE_CLASS (MODE) == MODE_INT \
427 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
428 { \
429 if ((MODE) == SImode) \
430 (UNSIGNEDP) = 0; \
431 (MODE) = DImode; \
432 }
433
434 /* Define this if function arguments should also be promoted using the above
435 procedure. */
436
437 #define PROMOTE_FUNCTION_ARGS
438
439 /* Likewise, if the function return value is promoted. */
440
441 #define PROMOTE_FUNCTION_RETURN
442
443 /* Define this if most significant bit is lowest numbered
444 in instructions that operate on numbered bit-fields.
445
446 There are no such instructions on the Alpha, but the documentation
447 is little endian. */
448 #define BITS_BIG_ENDIAN 0
449
450 /* Define this if most significant byte of a word is the lowest numbered.
451 This is false on the Alpha. */
452 #define BYTES_BIG_ENDIAN 0
453
454 /* Define this if most significant word of a multiword number is lowest
455 numbered.
456
457 For Alpha we can decide arbitrarily since there are no machine instructions
458 for them. Might as well be consistent with bytes. */
459 #define WORDS_BIG_ENDIAN 0
460
461 /* Width of a word, in units (bytes). */
462 #define UNITS_PER_WORD 8
463
464 /* Width in bits of a pointer.
465 See also the macro `Pmode' defined below. */
466 #define POINTER_SIZE 64
467
468 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
469 #define PARM_BOUNDARY 64
470
471 /* Boundary (in *bits*) on which stack pointer should be aligned. */
472 #define STACK_BOUNDARY 64
473
474 /* Allocation boundary (in *bits*) for the code of a function. */
475 #define FUNCTION_BOUNDARY 32
476
477 /* Alignment of field after `int : 0' in a structure. */
478 #define EMPTY_FIELD_BOUNDARY 64
479
480 /* Every structure's size must be a multiple of this. */
481 #define STRUCTURE_SIZE_BOUNDARY 8
482
483 /* A bitfield declared as `int' forces `int' alignment for the struct. */
484 #define PCC_BITFIELD_TYPE_MATTERS 1
485
486 /* No data type wants to be aligned rounder than this. */
487 #define BIGGEST_ALIGNMENT 128
488
489 /* For atomic access to objects, must have at least 32-bit alignment
490 unless the machine has byte operations. */
491 #define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
492
493 /* Align all constants and variables to at least a word boundary so
494 we can pick up pieces of them faster. */
495 /* ??? Only if block-move stuff knows about different source/destination
496 alignment. */
497 #if 0
498 #define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
499 #define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
500 #endif
501
502 /* Set this non-zero if move instructions will actually fail to work
503 when given unaligned data.
504
505 Since we get an error message when we do one, call them invalid. */
506
507 #define STRICT_ALIGNMENT 1
508
509 /* Set this non-zero if unaligned move instructions are extremely slow.
510
511 On the Alpha, they trap. */
512
513 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
514 \f
515 /* Standard register usage. */
516
517 /* Number of actual hardware registers.
518 The hardware registers are assigned numbers for the compiler
519 from 0 to just below FIRST_PSEUDO_REGISTER.
520 All registers that the compiler knows about must be given numbers,
521 even those that are not normally considered general registers.
522
523 We define all 32 integer registers, even though $31 is always zero,
524 and all 32 floating-point registers, even though $f31 is also
525 always zero. We do not bother defining the FP status register and
526 there are no other registers.
527
528 Since $31 is always zero, we will use register number 31 as the
529 argument pointer. It will never appear in the generated code
530 because we will always be eliminating it in favor of the stack
531 pointer or hardware frame pointer.
532
533 Likewise, we use $f31 for the frame pointer, which will always
534 be eliminated in favor of the hardware frame pointer or the
535 stack pointer. */
536
537 #define FIRST_PSEUDO_REGISTER 64
538
539 /* 1 for registers that have pervasive standard uses
540 and are not available for the register allocator. */
541
542 #define FIXED_REGISTERS \
543 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
544 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
545 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
546 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
547
548 /* 1 for registers not available across function calls.
549 These must include the FIXED_REGISTERS and also any
550 registers that can be used without being saved.
551 The latter must include the registers where values are returned
552 and the register where structure-value addresses are passed.
553 Aside from that, you can include as many other registers as you like. */
554 #define CALL_USED_REGISTERS \
555 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
556 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
557 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
558 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
559
560 /* List the order in which to allocate registers. Each register must be
561 listed once, even those in FIXED_REGISTERS.
562
563 We allocate in the following order:
564 $f10-$f15 (nonsaved floating-point register)
565 $f22-$f30 (likewise)
566 $f21-$f16 (likewise, but input args)
567 $f0 (nonsaved, but return value)
568 $f1 (nonsaved, but immediate before saved)
569 $f2-$f9 (saved floating-point registers)
570 $1-$8 (nonsaved integer registers)
571 $22-$25 (likewise)
572 $28 (likewise)
573 $0 (likewise, but return value)
574 $21-$16 (likewise, but input args)
575 $27 (procedure value in OSF, nonsaved in NT)
576 $9-$14 (saved integer registers)
577 $26 (return PC)
578 $15 (frame pointer)
579 $29 (global pointer)
580 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
581
582 #define REG_ALLOC_ORDER \
583 {42, 43, 44, 45, 46, 47, \
584 54, 55, 56, 57, 58, 59, 60, 61, 62, \
585 53, 52, 51, 50, 49, 48, \
586 32, 33, \
587 34, 35, 36, 37, 38, 39, 40, 41, \
588 1, 2, 3, 4, 5, 6, 7, 8, \
589 22, 23, 24, 25, \
590 28, \
591 0, \
592 21, 20, 19, 18, 17, 16, \
593 27, \
594 9, 10, 11, 12, 13, 14, \
595 26, \
596 15, \
597 29, \
598 30, 31, 63 }
599
600 /* Return number of consecutive hard regs needed starting at reg REGNO
601 to hold something of mode MODE.
602 This is ordinarily the length in words of a value of mode MODE
603 but can be less for certain modes in special long registers. */
604
605 #define HARD_REGNO_NREGS(REGNO, MODE) \
606 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
607
608 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
609 On Alpha, the integer registers can hold any mode. The floating-point
610 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
611 or 8-bit values. */
612
613 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
614 ((REGNO) >= 32 && (REGNO) <= 62 \
615 ? GET_MODE_UNIT_SIZE (MODE) == 8 || GET_MODE_UNIT_SIZE (MODE) == 4 \
616 : 1)
617
618 /* Value is 1 if MODE is a supported vector mode. */
619
620 #define VECTOR_MODE_SUPPORTED_P(MODE) \
621 (TARGET_MAX \
622 && ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode))
623
624 /* A C expression that is nonzero if a value of mode
625 MODE1 is accessible in mode MODE2 without copying.
626
627 This asymmetric test is true when MODE1 could be put
628 in an FP register but MODE2 could not. */
629
630 #define MODES_TIEABLE_P(MODE1, MODE2) \
631 (HARD_REGNO_MODE_OK (32, (MODE1)) \
632 ? HARD_REGNO_MODE_OK (32, (MODE2)) \
633 : 1)
634
635 /* Specify the registers used for certain standard purposes.
636 The values of these macros are register numbers. */
637
638 /* Alpha pc isn't overloaded on a register that the compiler knows about. */
639 /* #define PC_REGNUM */
640
641 /* Register to use for pushing function arguments. */
642 #define STACK_POINTER_REGNUM 30
643
644 /* Base register for access to local variables of the function. */
645 #define HARD_FRAME_POINTER_REGNUM 15
646
647 /* Value should be nonzero if functions must have frame pointers.
648 Zero means the frame pointer need not be set up (and parms
649 may be accessed via the stack pointer) in functions that seem suitable.
650 This is computed in `reload', in reload1.c. */
651 #define FRAME_POINTER_REQUIRED 0
652
653 /* Base register for access to arguments of the function. */
654 #define ARG_POINTER_REGNUM 31
655
656 /* Base register for access to local variables of function. */
657 #define FRAME_POINTER_REGNUM 63
658
659 /* Register in which static-chain is passed to a function.
660
661 For the Alpha, this is based on an example; the calling sequence
662 doesn't seem to specify this. */
663 #define STATIC_CHAIN_REGNUM 1
664
665 /* The register number of the register used to address a table of
666 static data addresses in memory. */
667 #define PIC_OFFSET_TABLE_REGNUM 29
668
669 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM'
670 is clobbered by calls. */
671 /* ??? It is and it isn't. It's required to be valid for a given
672 function when the function returns. It isn't clobbered by
673 current_file functions. Moreover, we do not expose the ldgp
674 until after reload, so we're probably safe. */
675 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
676
677 /* Register in which address to store a structure value
678 arrives in the function. On the Alpha, the address is passed
679 as a hidden argument. */
680 #define STRUCT_VALUE 0
681 \f
682 /* Define the classes of registers for register constraints in the
683 machine description. Also define ranges of constants.
684
685 One of the classes must always be named ALL_REGS and include all hard regs.
686 If there is more than one class, another class must be named NO_REGS
687 and contain no registers.
688
689 The name GENERAL_REGS must be the name of a class (or an alias for
690 another name such as ALL_REGS). This is the class of registers
691 that is allowed by "g" or "r" in a register constraint.
692 Also, registers outside this class are allocated only when
693 instructions express preferences for them.
694
695 The classes must be numbered in nondecreasing order; that is,
696 a larger-numbered class must never be contained completely
697 in a smaller-numbered class.
698
699 For any two classes, it is very desirable that there be another
700 class that represents their union. */
701
702 enum reg_class {
703 NO_REGS, R0_REG, R24_REG, R25_REG, R27_REG,
704 GENERAL_REGS, FLOAT_REGS, ALL_REGS,
705 LIM_REG_CLASSES
706 };
707
708 #define N_REG_CLASSES (int) LIM_REG_CLASSES
709
710 /* Give names of register classes as strings for dump file. */
711
712 #define REG_CLASS_NAMES \
713 {"NO_REGS", "R0_REG", "R24_REG", "R25_REG", "R27_REG", \
714 "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
715
716 /* Define which registers fit in which classes.
717 This is an initializer for a vector of HARD_REG_SET
718 of length N_REG_CLASSES. */
719
720 #define REG_CLASS_CONTENTS \
721 { {0x00000000, 0x00000000}, /* NO_REGS */ \
722 {0x00000001, 0x00000000}, /* R0_REG */ \
723 {0x01000000, 0x00000000}, /* R24_REG */ \
724 {0x02000000, 0x00000000}, /* R25_REG */ \
725 {0x08000000, 0x00000000}, /* R27_REG */ \
726 {0xffffffff, 0x80000000}, /* GENERAL_REGS */ \
727 {0x00000000, 0x7fffffff}, /* FLOAT_REGS */ \
728 {0xffffffff, 0xffffffff} }
729
730 /* The same information, inverted:
731 Return the class number of the smallest class containing
732 reg number REGNO. This could be a conditional expression
733 or could index an array. */
734
735 #define REGNO_REG_CLASS(REGNO) \
736 ((REGNO) == 0 ? R0_REG \
737 : (REGNO) == 24 ? R24_REG \
738 : (REGNO) == 25 ? R25_REG \
739 : (REGNO) == 27 ? R27_REG \
740 : (REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS \
741 : GENERAL_REGS)
742
743 /* The class value for index registers, and the one for base regs. */
744 #define INDEX_REG_CLASS NO_REGS
745 #define BASE_REG_CLASS GENERAL_REGS
746
747 /* Get reg_class from a letter such as appears in the machine description. */
748
749 #define REG_CLASS_FROM_LETTER(C) \
750 ((C) == 'a' ? R24_REG \
751 : (C) == 'b' ? R25_REG \
752 : (C) == 'c' ? R27_REG \
753 : (C) == 'f' ? FLOAT_REGS \
754 : (C) == 'v' ? R0_REG \
755 : NO_REGS)
756
757 /* Define this macro to change register usage conditional on target flags. */
758 /* #define CONDITIONAL_REGISTER_USAGE */
759
760 /* The letters I, J, K, L, M, N, O, and P in a register constraint string
761 can be used to stand for particular ranges of immediate operands.
762 This macro defines what the ranges are.
763 C is the letter, and VALUE is a constant value.
764 Return 1 if VALUE is in the range specified by C.
765
766 For Alpha:
767 `I' is used for the range of constants most insns can contain.
768 `J' is the constant zero.
769 `K' is used for the constant in an LDA insn.
770 `L' is used for the constant in a LDAH insn.
771 `M' is used for the constants that can be AND'ed with using a ZAP insn.
772 `N' is used for complemented 8-bit constants.
773 `O' is used for negated 8-bit constants.
774 `P' is used for the constants 1, 2 and 3. */
775
776 #define CONST_OK_FOR_LETTER_P alpha_const_ok_for_letter_p
777
778 /* Similar, but for floating or large integer constants, and defining letters
779 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
780
781 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
782 that is the operand of a ZAP insn. */
783
784 #define CONST_DOUBLE_OK_FOR_LETTER_P alpha_const_double_ok_for_letter_p
785
786 /* Optional extra constraints for this machine.
787
788 For the Alpha, `Q' means that this is a memory operand but not a
789 reference to an unaligned location.
790
791 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
792 function.
793
794 'S' is a 6-bit constant (valid for a shift insn).
795
796 'T' is a HIGH.
797
798 'U' is a symbolic operand.
799
800 'W' is a vector zero. */
801
802 #define EXTRA_CONSTRAINT alpha_extra_constraint
803
804 /* Given an rtx X being reloaded into a reg required to be
805 in class CLASS, return the class of reg to actually use.
806 In general this is just CLASS; but on some machines
807 in some cases it is preferable to use a more restrictive class. */
808
809 #define PREFERRED_RELOAD_CLASS alpha_preferred_reload_class
810
811 /* Loading and storing HImode or QImode values to and from memory
812 usually requires a scratch register. The exceptions are loading
813 QImode and HImode from an aligned address to a general register
814 unless byte instructions are permitted.
815 We also cannot load an unaligned address or a paradoxical SUBREG into an
816 FP register. */
817
818 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
819 secondary_reload_class((CLASS), (MODE), (IN), 1)
820
821 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
822 secondary_reload_class((CLASS), (MODE), (OUT), 0)
823
824 /* If we are copying between general and FP registers, we need a memory
825 location unless the FIX extension is available. */
826
827 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
828 (! TARGET_FIX && (((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS) \
829 || ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS)))
830
831 /* Specify the mode to be used for memory when a secondary memory
832 location is needed. If MODE is floating-point, use it. Otherwise,
833 widen to a word like the default. This is needed because we always
834 store integers in FP registers in quadword format. This whole
835 area is very tricky! */
836 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
837 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
838 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
839 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
840
841 /* Return the maximum number of consecutive registers
842 needed to represent mode MODE in a register of class CLASS. */
843
844 #define CLASS_MAX_NREGS(CLASS, MODE) \
845 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
846
847 /* If defined, gives a class of registers that cannot be used as the
848 operand of a SUBREG that changes the mode of the object illegally. */
849
850 #define CLASS_CANNOT_CHANGE_MODE FLOAT_REGS
851
852 /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
853
854 #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
855 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
856
857 /* Define the cost of moving between registers of various classes. Moving
858 between FLOAT_REGS and anything else except float regs is expensive.
859 In fact, we make it quite expensive because we really don't want to
860 do these moves unless it is clearly worth it. Optimizations may
861 reduce the impact of not being able to allocate a pseudo to a
862 hard register. */
863
864 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
865 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) \
866 ? 2 \
867 : TARGET_FIX ? 3 : 4+2*alpha_memory_latency)
868
869 /* A C expressions returning the cost of moving data of MODE from a register to
870 or from memory.
871
872 On the Alpha, bump this up a bit. */
873
874 extern int alpha_memory_latency;
875 #define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
876
877 /* Provide the cost of a branch. Exact meaning under development. */
878 #define BRANCH_COST 5
879 \f
880 /* Stack layout; function entry, exit and calling. */
881
882 /* Define this if pushing a word on the stack
883 makes the stack pointer a smaller address. */
884 #define STACK_GROWS_DOWNWARD
885
886 /* Define this if the nominal address of the stack frame
887 is at the high-address end of the local variables;
888 that is, each additional local variable allocated
889 goes at a more negative offset in the frame. */
890 /* #define FRAME_GROWS_DOWNWARD */
891
892 /* Offset within stack frame to start allocating local variables at.
893 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
894 first local allocated. Otherwise, it is the offset to the BEGINNING
895 of the first local allocated. */
896
897 #define STARTING_FRAME_OFFSET 0
898
899 /* If we generate an insn to push BYTES bytes,
900 this says how many the stack pointer really advances by.
901 On Alpha, don't define this because there are no push insns. */
902 /* #define PUSH_ROUNDING(BYTES) */
903
904 /* Define this to be nonzero if stack checking is built into the ABI. */
905 #define STACK_CHECK_BUILTIN 1
906
907 /* Define this if the maximum size of all the outgoing args is to be
908 accumulated and pushed during the prologue. The amount can be
909 found in the variable current_function_outgoing_args_size. */
910 #define ACCUMULATE_OUTGOING_ARGS 1
911
912 /* Offset of first parameter from the argument pointer register value. */
913
914 #define FIRST_PARM_OFFSET(FNDECL) 0
915
916 /* Definitions for register eliminations.
917
918 We have two registers that can be eliminated on the Alpha. First, the
919 frame pointer register can often be eliminated in favor of the stack
920 pointer register. Secondly, the argument pointer register can always be
921 eliminated; it is replaced with either the stack or frame pointer. */
922
923 /* This is an array of structures. Each structure initializes one pair
924 of eliminable registers. The "from" register number is given first,
925 followed by "to". Eliminations of the same "from" register are listed
926 in order of preference. */
927
928 #define ELIMINABLE_REGS \
929 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
930 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
931 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
932 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
933
934 /* Given FROM and TO register numbers, say whether this elimination is allowed.
935 Frame pointer elimination is automatically handled.
936
937 All eliminations are valid since the cases where FP can't be
938 eliminated are already handled. */
939
940 #define CAN_ELIMINATE(FROM, TO) 1
941
942 /* Round up to a multiple of 16 bytes. */
943 #define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
944
945 /* Define the offset between two registers, one to be eliminated, and the other
946 its replacement, at the start of a routine. */
947 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
948 { if ((FROM) == FRAME_POINTER_REGNUM) \
949 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
950 + alpha_sa_size ()); \
951 else if ((FROM) == ARG_POINTER_REGNUM) \
952 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
953 + alpha_sa_size () \
954 + (ALPHA_ROUND (get_frame_size () \
955 + current_function_pretend_args_size) \
956 - current_function_pretend_args_size)); \
957 else \
958 abort (); \
959 }
960
961 /* Define this if stack space is still allocated for a parameter passed
962 in a register. */
963 /* #define REG_PARM_STACK_SPACE */
964
965 /* Value is the number of bytes of arguments automatically
966 popped when returning from a subroutine call.
967 FUNDECL is the declaration node of the function (as a tree),
968 FUNTYPE is the data type of the function (as a tree),
969 or for a library call it is an identifier node for the subroutine name.
970 SIZE is the number of bytes of arguments passed on the stack. */
971
972 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
973
974 /* Define how to find the value returned by a function.
975 VALTYPE is the data type of the value (as a tree).
976 If the precise function being called is known, FUNC is its FUNCTION_DECL;
977 otherwise, FUNC is 0.
978
979 On Alpha the value is found in $0 for integer functions and
980 $f0 for floating-point functions. */
981
982 #define FUNCTION_VALUE(VALTYPE, FUNC) \
983 gen_rtx_REG (((INTEGRAL_TYPE_P (VALTYPE) \
984 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
985 || POINTER_TYPE_P (VALTYPE)) \
986 ? word_mode : TYPE_MODE (VALTYPE), \
987 ((TARGET_FPREGS \
988 && (TREE_CODE (VALTYPE) == REAL_TYPE \
989 || TREE_CODE (VALTYPE) == COMPLEX_TYPE)) \
990 ? 32 : 0))
991
992 /* Define how to find the value returned by a library function
993 assuming the value has mode MODE. */
994
995 #define LIBCALL_VALUE(MODE) \
996 gen_rtx_REG (MODE, \
997 (TARGET_FPREGS \
998 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
999 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1000 ? 32 : 0))
1001
1002 /* The definition of this macro implies that there are cases where
1003 a scalar value cannot be returned in registers.
1004
1005 For the Alpha, any structure or union type is returned in memory, as
1006 are integers whose size is larger than 64 bits. */
1007
1008 #define RETURN_IN_MEMORY(TYPE) \
1009 (TYPE_MODE (TYPE) == BLKmode \
1010 || TYPE_MODE (TYPE) == TFmode \
1011 || TYPE_MODE (TYPE) == TCmode \
1012 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
1013
1014 /* 1 if N is a possible register number for a function value
1015 as seen by the caller. */
1016
1017 #define FUNCTION_VALUE_REGNO_P(N) \
1018 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
1019
1020 /* 1 if N is a possible register number for function argument passing.
1021 On Alpha, these are $16-$21 and $f16-$f21. */
1022
1023 #define FUNCTION_ARG_REGNO_P(N) \
1024 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
1025 \f
1026 /* Define a data type for recording info about an argument list
1027 during the scan of that argument list. This data type should
1028 hold all necessary information about the function itself
1029 and about the args processed so far, enough to enable macros
1030 such as FUNCTION_ARG to determine where the next arg should go.
1031
1032 On Alpha, this is a single integer, which is a number of words
1033 of arguments scanned so far.
1034 Thus 6 or more means all following args should go on the stack. */
1035
1036 #define CUMULATIVE_ARGS int
1037
1038 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1039 for a call to a function whose data type is FNTYPE.
1040 For a library call, FNTYPE is 0. */
1041
1042 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0
1043
1044 /* Define intermediate macro to compute the size (in registers) of an argument
1045 for the Alpha. */
1046
1047 #define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
1048 ((MODE) == TFmode || (MODE) == TCmode ? 1 \
1049 : (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
1050 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1051
1052 /* Update the data in CUM to advance over an argument
1053 of mode MODE and data type TYPE.
1054 (TYPE is null for libcalls where that information may not be available.) */
1055
1056 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1057 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
1058 (CUM) = 6; \
1059 else \
1060 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
1061
1062 /* Determine where to put an argument to a function.
1063 Value is zero to push the argument on the stack,
1064 or a hard register in which to store the argument.
1065
1066 MODE is the argument's machine mode.
1067 TYPE is the data type of the argument (as a tree).
1068 This is null for libcalls where that information may
1069 not be available.
1070 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1071 the preceding args and about the function being called.
1072 NAMED is nonzero if this argument is a named parameter
1073 (otherwise it is an extra parameter matching an ellipsis).
1074
1075 On Alpha the first 6 words of args are normally in registers
1076 and the rest are pushed. */
1077
1078 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1079 function_arg((CUM), (MODE), (TYPE), (NAMED))
1080
1081 /* A C expression that indicates when an argument must be passed by
1082 reference. If nonzero for an argument, a copy of that argument is
1083 made in memory and a pointer to the argument is passed instead of
1084 the argument itself. The pointer is passed in whatever way is
1085 appropriate for passing a pointer to that type. */
1086
1087 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1088 ((MODE) == TFmode || (MODE) == TCmode)
1089
1090 /* Specify the padding direction of arguments.
1091
1092 On the Alpha, we must pad upwards in order to be able to pass args in
1093 registers. */
1094
1095 #define FUNCTION_ARG_PADDING(MODE, TYPE) upward
1096
1097 /* For an arg passed partly in registers and partly in memory,
1098 this is the number of registers used.
1099 For args passed entirely in registers or entirely in memory, zero. */
1100
1101 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1102 ((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
1103 ? 6 - (CUM) : 0)
1104
1105 /* Perform any needed actions needed for a function that is receiving a
1106 variable number of arguments.
1107
1108 CUM is as above.
1109
1110 MODE and TYPE are the mode and type of the current parameter.
1111
1112 PRETEND_SIZE is a variable that should be set to the amount of stack
1113 that must be pushed by the prolog to pretend that our caller pushed
1114 it.
1115
1116 Normally, this macro will push all remaining incoming registers on the
1117 stack and set PRETEND_SIZE to the length of the registers pushed.
1118
1119 On the Alpha, we allocate space for all 12 arg registers, but only
1120 push those that are remaining.
1121
1122 However, if NO registers need to be saved, don't allocate any space.
1123 This is not only because we won't need the space, but because AP includes
1124 the current_pretend_args_size and we don't want to mess up any
1125 ap-relative addresses already made.
1126
1127 If we are not to use the floating-point registers, save the integer
1128 registers where we would put the floating-point registers. This is
1129 not the most efficient way to implement varargs with just one register
1130 class, but it isn't worth doing anything more efficient in this rare
1131 case. */
1132
1133 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1134 { if ((CUM) < 6) \
1135 { \
1136 if (! (NO_RTL)) \
1137 { \
1138 rtx tmp; int set = get_varargs_alias_set (); \
1139 tmp = gen_rtx_MEM (BLKmode, \
1140 plus_constant (virtual_incoming_args_rtx, \
1141 ((CUM) + 6)* UNITS_PER_WORD)); \
1142 set_mem_alias_set (tmp, set); \
1143 move_block_from_reg \
1144 (16 + CUM, tmp, \
1145 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
1146 \
1147 tmp = gen_rtx_MEM (BLKmode, \
1148 plus_constant (virtual_incoming_args_rtx, \
1149 (CUM) * UNITS_PER_WORD)); \
1150 set_mem_alias_set (tmp, set); \
1151 move_block_from_reg \
1152 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, tmp, \
1153 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
1154 } \
1155 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
1156 } \
1157 }
1158
1159 /* We do not allow indirect calls to be optimized into sibling calls, nor
1160 can we allow a call to a function in a different compilation unit to
1161 be optimized into a sibcall. */
1162 #define FUNCTION_OK_FOR_SIBCALL(DECL) \
1163 (DECL \
1164 && (! TREE_PUBLIC (DECL) \
1165 || (TREE_ASM_WRITTEN (DECL) && (*targetm.binds_local_p) (DECL))))
1166
1167 /* Try to output insns to set TARGET equal to the constant C if it can be
1168 done in less than N insns. Do all computations in MODE. Returns the place
1169 where the output has been placed if it can be done and the insns have been
1170 emitted. If it would take more than N insns, zero is returned and no
1171 insns and emitted. */
1172
1173 /* Define the information needed to generate branch and scc insns. This is
1174 stored from the compare operation. Note that we can't use "rtx" here
1175 since it hasn't been defined! */
1176
1177 struct alpha_compare
1178 {
1179 struct rtx_def *op0, *op1;
1180 int fp_p;
1181 };
1182
1183 extern struct alpha_compare alpha_compare;
1184
1185 /* Make (or fake) .linkage entry for function call.
1186 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
1187
1188 /* This macro defines the start of an assembly comment. */
1189
1190 #define ASM_COMMENT_START " #"
1191
1192 /* This macro produces the initial definition of a function. */
1193
1194 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1195 alpha_start_function(FILE,NAME,DECL);
1196
1197 /* This macro closes up a function definition for the assembler. */
1198
1199 #define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
1200 alpha_end_function(FILE,NAME,DECL)
1201
1202 /* Output any profiling code before the prologue. */
1203
1204 #define PROFILE_BEFORE_PROLOGUE 1
1205
1206 /* Output assembler code to FILE to increment profiler label # LABELNO
1207 for profiling a function entry. Under OSF/1, profiling is enabled
1208 by simply passing -pg to the assembler and linker. */
1209
1210 #define FUNCTION_PROFILER(FILE, LABELNO)
1211
1212 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1213 the stack pointer does not matter. The value is tested only in
1214 functions that have frame pointers.
1215 No definition is equivalent to always zero. */
1216
1217 #define EXIT_IGNORE_STACK 1
1218
1219 /* Define registers used by the epilogue and return instruction. */
1220
1221 #define EPILOGUE_USES(REGNO) ((REGNO) == 26)
1222 \f
1223 /* Output assembler code for a block containing the constant parts
1224 of a trampoline, leaving space for the variable parts.
1225
1226 The trampoline should set the static chain pointer to value placed
1227 into the trampoline and should branch to the specified routine.
1228 Note that $27 has been set to the address of the trampoline, so we can
1229 use it for addressability of the two data items. */
1230
1231 #define TRAMPOLINE_TEMPLATE(FILE) \
1232 do { \
1233 fprintf (FILE, "\tldq $1,24($27)\n"); \
1234 fprintf (FILE, "\tldq $27,16($27)\n"); \
1235 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1236 fprintf (FILE, "\tnop\n"); \
1237 fprintf (FILE, "\t.quad 0,0\n"); \
1238 } while (0)
1239
1240 /* Section in which to place the trampoline. On Alpha, instructions
1241 may only be placed in a text segment. */
1242
1243 #define TRAMPOLINE_SECTION text_section
1244
1245 /* Length in units of the trampoline for entering a nested function. */
1246
1247 #define TRAMPOLINE_SIZE 32
1248
1249 /* The alignment of a trampoline, in bits. */
1250
1251 #define TRAMPOLINE_ALIGNMENT 64
1252
1253 /* Emit RTL insns to initialize the variable parts of a trampoline.
1254 FNADDR is an RTX for the address of the function's pure code.
1255 CXT is an RTX for the static chain value for the function. */
1256
1257 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1258 alpha_initialize_trampoline (TRAMP, FNADDR, CXT, 16, 24, 8)
1259
1260 /* A C expression whose value is RTL representing the value of the return
1261 address for the frame COUNT steps up from the current frame.
1262 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
1263 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined. */
1264
1265 #define RETURN_ADDR_RTX alpha_return_addr
1266
1267 /* Before the prologue, RA lives in $26. */
1268 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 26)
1269 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
1270
1271 /* Describe how we implement __builtin_eh_return. */
1272 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 16 : INVALID_REGNUM)
1273 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 28)
1274 #define EH_RETURN_HANDLER_RTX \
1275 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
1276 current_function_outgoing_args_size))
1277 \f
1278 /* Addressing modes, and classification of registers for them. */
1279
1280 /* #define HAVE_POST_INCREMENT 0 */
1281 /* #define HAVE_POST_DECREMENT 0 */
1282
1283 /* #define HAVE_PRE_DECREMENT 0 */
1284 /* #define HAVE_PRE_INCREMENT 0 */
1285
1286 /* Macros to check register numbers against specific register classes. */
1287
1288 /* These assume that REGNO is a hard or pseudo reg number.
1289 They give nonzero only if REGNO is a hard reg of the suitable class
1290 or a pseudo reg currently allocated to a suitable hard reg.
1291 Since they use reg_renumber, they are safe only once reg_renumber
1292 has been allocated, which happens in local-alloc.c. */
1293
1294 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
1295 #define REGNO_OK_FOR_BASE_P(REGNO) \
1296 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1297 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1298 \f
1299 /* Maximum number of registers that can appear in a valid memory address. */
1300 #define MAX_REGS_PER_ADDRESS 1
1301
1302 /* Recognize any constant value that is a valid address. For the Alpha,
1303 there are only constants none since we want to use LDA to load any
1304 symbolic addresses into registers. */
1305
1306 #define CONSTANT_ADDRESS_P(X) \
1307 (GET_CODE (X) == CONST_INT \
1308 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1309
1310 /* Include all constant integers and constant doubles, but not
1311 floating-point, except for floating-point zero. */
1312
1313 #define LEGITIMATE_CONSTANT_P(X) \
1314 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1315 || (X) == CONST0_RTX (GET_MODE (X)))
1316
1317 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1318 and check its validity for a certain class.
1319 We have two alternate definitions for each of them.
1320 The usual definition accepts all pseudo regs; the other rejects
1321 them unless they have been allocated suitable hard regs.
1322 The symbol REG_OK_STRICT causes the latter definition to be used.
1323
1324 Most source files want to accept pseudo regs in the hope that
1325 they will get allocated to the class that the insn wants them to be in.
1326 Source files for reload pass need to be strict.
1327 After reload, it makes no difference, since pseudo regs have
1328 been eliminated by then. */
1329
1330 /* Nonzero if X is a hard reg that can be used as an index
1331 or if it is a pseudo reg. */
1332 #define REG_OK_FOR_INDEX_P(X) 0
1333
1334 /* Nonzero if X is a hard reg that can be used as a base reg
1335 or if it is a pseudo reg. */
1336 #define NONSTRICT_REG_OK_FOR_BASE_P(X) \
1337 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1338
1339 /* ??? Nonzero if X is the frame pointer, or some virtual register
1340 that may eliminate to the frame pointer. These will be allowed to
1341 have offsets greater than 32K. This is done because register
1342 elimination offsets will change the hi/lo split, and if we split
1343 before reload, we will require additional instructions. */
1344 #define NONSTRICT_REG_OK_FP_BASE_P(X) \
1345 (REGNO (X) == 31 || REGNO (X) == 63 \
1346 || (REGNO (X) >= FIRST_PSEUDO_REGISTER \
1347 && REGNO (X) < LAST_VIRTUAL_REGISTER))
1348
1349 /* Nonzero if X is a hard reg that can be used as a base reg. */
1350 #define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1351
1352 #ifdef REG_OK_STRICT
1353 #define REG_OK_FOR_BASE_P(X) STRICT_REG_OK_FOR_BASE_P (X)
1354 #else
1355 #define REG_OK_FOR_BASE_P(X) NONSTRICT_REG_OK_FOR_BASE_P (X)
1356 #endif
1357 \f
1358 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1359 valid memory address for an instruction. */
1360
1361 #ifdef REG_OK_STRICT
1362 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
1363 do { \
1364 if (alpha_legitimate_address_p (MODE, X, 1)) \
1365 goto WIN; \
1366 } while (0)
1367 #else
1368 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
1369 do { \
1370 if (alpha_legitimate_address_p (MODE, X, 0)) \
1371 goto WIN; \
1372 } while (0)
1373 #endif
1374
1375 /* Try machine-dependent ways of modifying an illegitimate address
1376 to be legitimate. If we find one, return the new, valid address.
1377 This macro is used in only one place: `memory_address' in explow.c. */
1378
1379 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1380 do { \
1381 rtx new_x = alpha_legitimize_address (X, NULL_RTX, MODE); \
1382 if (new_x) \
1383 { \
1384 X = new_x; \
1385 goto WIN; \
1386 } \
1387 } while (0)
1388
1389 /* Try a machine-dependent way of reloading an illegitimate address
1390 operand. If we find one, push the reload and jump to WIN. This
1391 macro is used in only one place: `find_reloads_address' in reload.c. */
1392
1393 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN) \
1394 do { \
1395 rtx new_x = alpha_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
1396 if (new_x) \
1397 { \
1398 X = new_x; \
1399 goto WIN; \
1400 } \
1401 } while (0)
1402
1403 /* Go to LABEL if ADDR (a legitimate address expression)
1404 has an effect that depends on the machine mode it is used for.
1405 On the Alpha this is true only for the unaligned modes. We can
1406 simplify this test since we know that the address must be valid. */
1407
1408 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1409 { if (GET_CODE (ADDR) == AND) goto LABEL; }
1410
1411 /* Compute the cost of an address. For the Alpha, all valid addresses are
1412 the same cost. */
1413
1414 #define ADDRESS_COST(X) 0
1415
1416 /* Machine-dependent reorg pass. */
1417 #define MACHINE_DEPENDENT_REORG(X) alpha_reorg(X)
1418 \f
1419 /* Specify the machine mode that this machine uses
1420 for the index in the tablejump instruction. */
1421 #define CASE_VECTOR_MODE SImode
1422
1423 /* Define as C expression which evaluates to nonzero if the tablejump
1424 instruction expects the table to contain offsets from the address of the
1425 table.
1426
1427 Do not define this if the table should contain absolute addresses.
1428 On the Alpha, the table is really GP-relative, not relative to the PC
1429 of the table, but we pretend that it is PC-relative; this should be OK,
1430 but we should try to find some better way sometime. */
1431 #define CASE_VECTOR_PC_RELATIVE 1
1432
1433 /* Define this as 1 if `char' should by default be signed; else as 0. */
1434 #define DEFAULT_SIGNED_CHAR 1
1435
1436 /* This flag, if defined, says the same insns that convert to a signed fixnum
1437 also convert validly to an unsigned one.
1438
1439 We actually lie a bit here as overflow conditions are different. But
1440 they aren't being checked anyway. */
1441
1442 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1443
1444 /* Max number of bytes we can move to or from memory
1445 in one reasonably fast instruction. */
1446
1447 #define MOVE_MAX 8
1448
1449 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1450 move-instruction pairs, we will do a movstr or libcall instead.
1451
1452 Without byte/word accesses, we want no more than four instructions;
1453 with, several single byte accesses are better. */
1454
1455 #define MOVE_RATIO (TARGET_BWX ? 7 : 2)
1456
1457 /* Largest number of bytes of an object that can be placed in a register.
1458 On the Alpha we have plenty of registers, so use TImode. */
1459 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1460
1461 /* Nonzero if access to memory by bytes is no faster than for words.
1462 Also non-zero if doing byte operations (specifically shifts) in registers
1463 is undesirable.
1464
1465 On the Alpha, we want to not use the byte operation and instead use
1466 masking operations to access fields; these will save instructions. */
1467
1468 #define SLOW_BYTE_ACCESS 1
1469
1470 /* Define if operations between registers always perform the operation
1471 on the full register even if a narrower mode is specified. */
1472 #define WORD_REGISTER_OPERATIONS
1473
1474 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1475 will either zero-extend or sign-extend. The value of this macro should
1476 be the code that says which one of the two operations is implicitly
1477 done, NIL if none. */
1478 #define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1479
1480 /* Define if loading short immediate values into registers sign extends. */
1481 #define SHORT_IMMEDIATES_SIGN_EXTEND
1482
1483 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1484 is done just by pretending it is already truncated. */
1485 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1486
1487 /* We assume that the store-condition-codes instructions store 0 for false
1488 and some other value for true. This is the value stored for true. */
1489
1490 #define STORE_FLAG_VALUE 1
1491
1492 /* Define the value returned by a floating-point comparison instruction. */
1493
1494 #define FLOAT_STORE_FLAG_VALUE(MODE) \
1495 REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
1496
1497 /* Canonicalize a comparison from one we don't have to one we do have. */
1498
1499 #define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1500 do { \
1501 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1502 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1503 { \
1504 rtx tem = (OP0); \
1505 (OP0) = (OP1); \
1506 (OP1) = tem; \
1507 (CODE) = swap_condition (CODE); \
1508 } \
1509 if (((CODE) == LT || (CODE) == LTU) \
1510 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1511 { \
1512 (CODE) = (CODE) == LT ? LE : LEU; \
1513 (OP1) = GEN_INT (255); \
1514 } \
1515 } while (0)
1516
1517 /* Specify the machine mode that pointers have.
1518 After generation of rtl, the compiler makes no further distinction
1519 between pointers and any other objects of this machine mode. */
1520 #define Pmode DImode
1521
1522 /* Mode of a function address in a call instruction (for indexing purposes). */
1523
1524 #define FUNCTION_MODE Pmode
1525
1526 /* Define this if addresses of constant functions
1527 shouldn't be put through pseudo regs where they can be cse'd.
1528 Desirable on machines where ordinary constants are expensive
1529 but a CALL with constant address is cheap.
1530
1531 We define this on the Alpha so that gen_call and gen_call_value
1532 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1533 then copy it into a register, thus actually letting the address be
1534 cse'ed. */
1535
1536 #define NO_FUNCTION_CSE
1537
1538 /* Define this to be nonzero if shift instructions ignore all but the low-order
1539 few bits. */
1540 #define SHIFT_COUNT_TRUNCATED 1
1541
1542 /* Compute the cost of computing a constant rtl expression RTX
1543 whose rtx-code is CODE. The body of this macro is a portion
1544 of a switch statement. If the code is computed here,
1545 return it with a return statement. Otherwise, break from the switch.
1546
1547 If this is an 8-bit constant, return zero since it can be used
1548 nearly anywhere with no cost. If it is a valid operand for an
1549 ADD or AND, likewise return 0 if we know it will be used in that
1550 context. Otherwise, return 2 since it might be used there later.
1551 All other constants take at least two insns. */
1552
1553 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1554 case CONST_INT: \
1555 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
1556 return 0; \
1557 case CONST_DOUBLE: \
1558 if ((RTX) == CONST0_RTX (GET_MODE (RTX))) \
1559 return 0; \
1560 else if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
1561 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1562 return 0; \
1563 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1564 return 2; \
1565 else \
1566 return COSTS_N_INSNS (2); \
1567 case CONST: \
1568 case SYMBOL_REF: \
1569 case LABEL_REF: \
1570 switch (alpha_cpu) \
1571 { \
1572 case PROCESSOR_EV4: \
1573 return COSTS_N_INSNS (3); \
1574 case PROCESSOR_EV5: \
1575 case PROCESSOR_EV6: \
1576 return COSTS_N_INSNS (2); \
1577 default: abort(); \
1578 }
1579
1580 /* Provide the costs of a rtl expression. This is in the body of a
1581 switch on CODE. */
1582
1583 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1584 case PLUS: case MINUS: \
1585 if (FLOAT_MODE_P (GET_MODE (X))) \
1586 switch (alpha_cpu) \
1587 { \
1588 case PROCESSOR_EV4: \
1589 return COSTS_N_INSNS (6); \
1590 case PROCESSOR_EV5: \
1591 case PROCESSOR_EV6: \
1592 return COSTS_N_INSNS (4); \
1593 default: abort(); \
1594 } \
1595 else if (GET_CODE (XEXP (X, 0)) == MULT \
1596 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
1597 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1598 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1599 break; \
1600 case MULT: \
1601 switch (alpha_cpu) \
1602 { \
1603 case PROCESSOR_EV4: \
1604 if (FLOAT_MODE_P (GET_MODE (X))) \
1605 return COSTS_N_INSNS (6); \
1606 return COSTS_N_INSNS (23); \
1607 case PROCESSOR_EV5: \
1608 if (FLOAT_MODE_P (GET_MODE (X))) \
1609 return COSTS_N_INSNS (4); \
1610 else if (GET_MODE (X) == DImode) \
1611 return COSTS_N_INSNS (12); \
1612 else \
1613 return COSTS_N_INSNS (8); \
1614 case PROCESSOR_EV6: \
1615 if (FLOAT_MODE_P (GET_MODE (X))) \
1616 return COSTS_N_INSNS (4); \
1617 else \
1618 return COSTS_N_INSNS (7); \
1619 default: abort(); \
1620 } \
1621 case ASHIFT: \
1622 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1623 && INTVAL (XEXP (X, 1)) <= 3) \
1624 break; \
1625 /* ... fall through ... */ \
1626 case ASHIFTRT: case LSHIFTRT: \
1627 switch (alpha_cpu) \
1628 { \
1629 case PROCESSOR_EV4: \
1630 return COSTS_N_INSNS (2); \
1631 case PROCESSOR_EV5: \
1632 case PROCESSOR_EV6: \
1633 return COSTS_N_INSNS (1); \
1634 default: abort(); \
1635 } \
1636 case IF_THEN_ELSE: \
1637 switch (alpha_cpu) \
1638 { \
1639 case PROCESSOR_EV4: \
1640 case PROCESSOR_EV6: \
1641 return COSTS_N_INSNS (2); \
1642 case PROCESSOR_EV5: \
1643 return COSTS_N_INSNS (1); \
1644 default: abort(); \
1645 } \
1646 case DIV: case UDIV: case MOD: case UMOD: \
1647 switch (alpha_cpu) \
1648 { \
1649 case PROCESSOR_EV4: \
1650 if (GET_MODE (X) == SFmode) \
1651 return COSTS_N_INSNS (34); \
1652 else if (GET_MODE (X) == DFmode) \
1653 return COSTS_N_INSNS (63); \
1654 else \
1655 return COSTS_N_INSNS (70); \
1656 case PROCESSOR_EV5: \
1657 if (GET_MODE (X) == SFmode) \
1658 return COSTS_N_INSNS (15); \
1659 else if (GET_MODE (X) == DFmode) \
1660 return COSTS_N_INSNS (22); \
1661 else \
1662 return COSTS_N_INSNS (70); /* ??? */ \
1663 case PROCESSOR_EV6: \
1664 if (GET_MODE (X) == SFmode) \
1665 return COSTS_N_INSNS (12); \
1666 else if (GET_MODE (X) == DFmode) \
1667 return COSTS_N_INSNS (15); \
1668 else \
1669 return COSTS_N_INSNS (70); /* ??? */ \
1670 default: abort(); \
1671 } \
1672 case MEM: \
1673 switch (alpha_cpu) \
1674 { \
1675 case PROCESSOR_EV4: \
1676 case PROCESSOR_EV6: \
1677 return COSTS_N_INSNS (3); \
1678 case PROCESSOR_EV5: \
1679 return COSTS_N_INSNS (2); \
1680 default: abort(); \
1681 } \
1682 case NEG: case ABS: \
1683 if (! FLOAT_MODE_P (GET_MODE (X))) \
1684 break; \
1685 /* ... fall through ... */ \
1686 case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
1687 case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
1688 switch (alpha_cpu) \
1689 { \
1690 case PROCESSOR_EV4: \
1691 return COSTS_N_INSNS (6); \
1692 case PROCESSOR_EV5: \
1693 case PROCESSOR_EV6: \
1694 return COSTS_N_INSNS (4); \
1695 default: abort(); \
1696 }
1697 \f
1698 /* Control the assembler format that we output. */
1699
1700 /* Output to assembler file text saying following lines
1701 may contain character constants, extra white space, comments, etc. */
1702 #define ASM_APP_ON (TARGET_EXPLICIT_RELOCS ? "\t.set\tmacro\n" : "")
1703
1704 /* Output to assembler file text saying following lines
1705 no longer contain unusual constructs. */
1706 #define ASM_APP_OFF (TARGET_EXPLICIT_RELOCS ? "\t.set\tnomacro\n" : "")
1707
1708 #define TEXT_SECTION_ASM_OP "\t.text"
1709
1710 /* Output before read-only data. */
1711
1712 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata"
1713
1714 /* Output before writable data. */
1715
1716 #define DATA_SECTION_ASM_OP "\t.data"
1717
1718 /* How to refer to registers in assembler output.
1719 This sequence is indexed by compiler's hard-register-number (see above). */
1720
1721 #define REGISTER_NAMES \
1722 {"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1723 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1724 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
1725 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1726 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1727 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1728 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
1729 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1730
1731 /* Strip name encoding when emitting labels. */
1732
1733 #define ASM_OUTPUT_LABELREF(STREAM, NAME) \
1734 do { \
1735 const char *name_ = NAME; \
1736 if (*name_ == '@' || *name_ == '%') \
1737 name_ += 2; \
1738 if (*name_ == '*') \
1739 name_++; \
1740 else \
1741 fputs (user_label_prefix, STREAM); \
1742 fputs (name_, STREAM); \
1743 } while (0)
1744
1745 /* Globalizing directive for a label. */
1746 #define GLOBAL_ASM_OP "\t.globl "
1747
1748 /* The prefix to add to user-visible assembler symbols. */
1749
1750 #define USER_LABEL_PREFIX ""
1751
1752 /* This is how to output an internal numbered label where
1753 PREFIX is the class of label and NUM is the number within the class. */
1754
1755 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1756 fprintf (FILE, "$%s%d:\n", PREFIX, NUM)
1757
1758 /* This is how to output a label for a jump table. Arguments are the same as
1759 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1760 passed. */
1761
1762 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1763 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1764
1765 /* This is how to store into the string LABEL
1766 the symbol_ref name of an internal numbered label where
1767 PREFIX is the class of label and NUM is the number within the class.
1768 This is suitable for output with `assemble_name'. */
1769
1770 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1771 sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1772
1773 /* Check a floating-point value for validity for a particular machine mode. */
1774
1775 #define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
1776 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
1777
1778 /* We use the default ASCII-output routine, except that we don't write more
1779 than 50 characters since the assembler doesn't support very long lines. */
1780
1781 #define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1782 do { \
1783 FILE *_hide_asm_out_file = (MYFILE); \
1784 const unsigned char *_hide_p = (const unsigned char *) (MYSTRING); \
1785 int _hide_thissize = (MYLENGTH); \
1786 int _size_so_far = 0; \
1787 { \
1788 FILE *asm_out_file = _hide_asm_out_file; \
1789 const unsigned char *p = _hide_p; \
1790 int thissize = _hide_thissize; \
1791 int i; \
1792 fprintf (asm_out_file, "\t.ascii \""); \
1793 \
1794 for (i = 0; i < thissize; i++) \
1795 { \
1796 register int c = p[i]; \
1797 \
1798 if (_size_so_far ++ > 50 && i < thissize - 4) \
1799 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1800 \
1801 if (c == '\"' || c == '\\') \
1802 putc ('\\', asm_out_file); \
1803 if (c >= ' ' && c < 0177) \
1804 putc (c, asm_out_file); \
1805 else \
1806 { \
1807 fprintf (asm_out_file, "\\%o", c); \
1808 /* After an octal-escape, if a digit follows, \
1809 terminate one string constant and start another. \
1810 The VAX assembler fails to stop reading the escape \
1811 after three digits, so this is the only way we \
1812 can get it to parse the data properly. */ \
1813 if (i < thissize - 1 && ISDIGIT (p[i + 1])) \
1814 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1815 } \
1816 } \
1817 fprintf (asm_out_file, "\"\n"); \
1818 } \
1819 } \
1820 while (0)
1821
1822 /* This is how to output an insn to push a register on the stack.
1823 It need not be very fast code. */
1824
1825 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1826 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
1827 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1828 (REGNO) & 31);
1829
1830 /* This is how to output an insn to pop a register from the stack.
1831 It need not be very fast code. */
1832
1833 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1834 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
1835 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1836 (REGNO) & 31);
1837
1838 /* This is how to output an element of a case-vector that is absolute.
1839 (Alpha does not use such vectors, but we must define this macro anyway.) */
1840
1841 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1842
1843 /* This is how to output an element of a case-vector that is relative. */
1844
1845 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1846 fprintf (FILE, "\t.%s $L%d\n", TARGET_ABI_WINDOWS_NT ? "long" : "gprel32", \
1847 (VALUE))
1848
1849 /* This is how to output an assembler line
1850 that says to advance the location counter
1851 to a multiple of 2**LOG bytes. */
1852
1853 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1854 if ((LOG) != 0) \
1855 fprintf (FILE, "\t.align %d\n", LOG);
1856
1857 /* This is how to advance the location counter by SIZE bytes. */
1858
1859 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1860 fprintf (FILE, "\t.space %d\n", (SIZE))
1861
1862 /* This says how to output an assembler line
1863 to define a global common symbol. */
1864
1865 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1866 ( fputs ("\t.comm ", (FILE)), \
1867 assemble_name ((FILE), (NAME)), \
1868 fprintf ((FILE), ",%d\n", (SIZE)))
1869
1870 /* This says how to output an assembler line
1871 to define a local common symbol. */
1872
1873 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1874 ( fputs ("\t.lcomm ", (FILE)), \
1875 assemble_name ((FILE), (NAME)), \
1876 fprintf ((FILE), ",%d\n", (SIZE)))
1877
1878 /* Store in OUTPUT a string (made with alloca) containing
1879 an assembler-name for a local static variable named NAME.
1880 LABELNO is an integer which is different for each call. */
1881
1882 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1883 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1884 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1885 \f
1886
1887 /* Print operand X (an rtx) in assembler syntax to file FILE.
1888 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1889 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1890
1891 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1892
1893 /* Determine which codes are valid without a following integer. These must
1894 not be alphabetic.
1895
1896 ~ Generates the name of the current function.
1897
1898 / Generates the instruction suffix. The TRAP_SUFFIX and ROUND_SUFFIX
1899 attributes are examined to determine what is appropriate.
1900
1901 , Generates single precision suffix for floating point
1902 instructions (s for IEEE, f for VAX)
1903
1904 - Generates double precision suffix for floating point
1905 instructions (t for IEEE, g for VAX)
1906 */
1907
1908 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1909 ((CODE) == '/' || (CODE) == ',' || (CODE) == '-' || (CODE) == '~' \
1910 || (CODE) == '#' || (CODE) == '*' || (CODE) == '&')
1911 \f
1912 /* Print a memory address as an operand to reference that memory location. */
1913
1914 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1915 print_operand_address((FILE), (ADDR))
1916
1917 /* Define the codes that are matched by predicates in alpha.c. */
1918
1919 #define PREDICATE_CODES \
1920 {"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE, \
1921 CONST_VECTOR}}, \
1922 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
1923 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
1924 {"reg_or_const_int_operand", {SUBREG, REG, CONST_INT}}, \
1925 {"cint8_operand", {CONST_INT}}, \
1926 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
1927 {"add_operand", {SUBREG, REG, CONST_INT}}, \
1928 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
1929 {"const48_operand", {CONST_INT}}, \
1930 {"and_operand", {SUBREG, REG, CONST_INT}}, \
1931 {"or_operand", {SUBREG, REG, CONST_INT}}, \
1932 {"mode_mask_operand", {CONST_INT}}, \
1933 {"mul8_operand", {CONST_INT}}, \
1934 {"mode_width_operand", {CONST_INT}}, \
1935 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
1936 {"alpha_zero_comparison_operator", {EQ, NE, LE, LT, LEU, LTU}}, \
1937 {"alpha_swapped_comparison_operator", {EQ, GE, GT, GEU, GTU}}, \
1938 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
1939 {"alpha_fp_comparison_operator", {EQ, LE, LT, UNORDERED}}, \
1940 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
1941 {"const0_operand", {CONST_INT, CONST_DOUBLE, CONST_VECTOR}}, \
1942 {"current_file_function_operand", {SYMBOL_REF}}, \
1943 {"direct_call_operand", {SYMBOL_REF}}, \
1944 {"local_symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
1945 {"small_symbolic_operand", {SYMBOL_REF, CONST}}, \
1946 {"global_symbolic_operand", {SYMBOL_REF, CONST}}, \
1947 {"dtp16_symbolic_operand", {CONST}}, \
1948 {"dtp32_symbolic_operand", {CONST}}, \
1949 {"gotdtp_symbolic_operand", {CONST}}, \
1950 {"tp16_symbolic_operand", {CONST}}, \
1951 {"tp32_symbolic_operand", {CONST}}, \
1952 {"gottp_symbolic_operand", {CONST}}, \
1953 {"call_operand", {REG, SYMBOL_REF}}, \
1954 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
1955 CONST_VECTOR, SYMBOL_REF, CONST, LABEL_REF, HIGH}},\
1956 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
1957 CONST_VECTOR, SYMBOL_REF, CONST, LABEL_REF, HIGH}}, \
1958 {"some_ni_operand", {SUBREG, REG, MEM}}, \
1959 {"aligned_memory_operand", {MEM}}, \
1960 {"unaligned_memory_operand", {MEM}}, \
1961 {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}}, \
1962 {"any_memory_operand", {MEM}}, \
1963 {"hard_fp_register_operand", {SUBREG, REG}}, \
1964 {"hard_int_register_operand", {SUBREG, REG}}, \
1965 {"reg_not_elim_operand", {SUBREG, REG}}, \
1966 {"reg_no_subreg_operand", {REG}}, \
1967 {"addition_operation", {PLUS}}, \
1968 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
1969 {"some_small_symbolic_operand", {SET, PARALLEL, PREFETCH, UNSPEC, \
1970 UNSPEC_VOLATILE}},
1971 \f
1972 /* Define the `__builtin_va_list' type for the ABI. */
1973 #define BUILD_VA_LIST_TYPE(VALIST) \
1974 (VALIST) = alpha_build_va_list ()
1975
1976 /* Implement `va_start' for varargs and stdarg. */
1977 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1978 alpha_va_start (valist, nextarg)
1979
1980 /* Implement `va_arg'. */
1981 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1982 alpha_va_arg (valist, type)
1983 \f
1984 /* Tell collect that the object format is ECOFF. */
1985 #define OBJECT_FORMAT_COFF
1986 #define EXTENDED_COFF
1987
1988 /* If we use NM, pass -g to it so it only lists globals. */
1989 #define NM_FLAGS "-pg"
1990
1991 /* Definitions for debugging. */
1992
1993 #define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
1994 #define DBX_DEBUGGING_INFO /* generate embedded stabs */
1995 #define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
1996
1997 #ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
1998 #define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
1999 #endif
2000
2001
2002 /* Correct the offset of automatic variables and arguments. Note that
2003 the Alpha debug format wants all automatic variables and arguments
2004 to be in terms of two different offsets from the virtual frame pointer,
2005 which is the stack pointer before any adjustment in the function.
2006 The offset for the argument pointer is fixed for the native compiler,
2007 it is either zero (for the no arguments case) or large enough to hold
2008 all argument registers.
2009 The offset for the auto pointer is the fourth argument to the .frame
2010 directive (local_offset).
2011 To stay compatible with the native tools we use the same offsets
2012 from the virtual frame pointer and adjust the debugger arg/auto offsets
2013 accordingly. These debugger offsets are set up in output_prolog. */
2014
2015 extern long alpha_arg_offset;
2016 extern long alpha_auto_offset;
2017 #define DEBUGGER_AUTO_OFFSET(X) \
2018 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
2019 #define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
2020
2021
2022 #define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2023 alpha_output_lineno (STREAM, LINE)
2024
2025 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
2026 alpha_output_filename (STREAM, NAME)
2027
2028 /* mips-tfile.c limits us to strings of one page. We must underestimate this
2029 number, because the real length runs past this up to the next
2030 continuation point. This is really a dbxout.c bug. */
2031 #define DBX_CONTIN_LENGTH 3000
2032
2033 /* By default, turn on GDB extensions. */
2034 #define DEFAULT_GDB_EXTENSIONS 1
2035
2036 /* Stabs-in-ECOFF can't handle dbxout_function_end(). */
2037 #define NO_DBX_FUNCTION_END 1
2038
2039 /* If we are smuggling stabs through the ALPHA ECOFF object
2040 format, put a comment in front of the .stab<x> operation so
2041 that the ALPHA assembler does not choke. The mips-tfile program
2042 will correctly put the stab into the object file. */
2043
2044 #define ASM_STABS_OP ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
2045 #define ASM_STABN_OP ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
2046 #define ASM_STABD_OP ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
2047
2048 /* Forward references to tags are allowed. */
2049 #define SDB_ALLOW_FORWARD_REFERENCES
2050
2051 /* Unknown tags are also allowed. */
2052 #define SDB_ALLOW_UNKNOWN_REFERENCES
2053
2054 #define PUT_SDB_DEF(a) \
2055 do { \
2056 fprintf (asm_out_file, "\t%s.def\t", \
2057 (TARGET_GAS) ? "" : "#"); \
2058 ASM_OUTPUT_LABELREF (asm_out_file, a); \
2059 fputc (';', asm_out_file); \
2060 } while (0)
2061
2062 #define PUT_SDB_PLAIN_DEF(a) \
2063 do { \
2064 fprintf (asm_out_file, "\t%s.def\t.%s;", \
2065 (TARGET_GAS) ? "" : "#", (a)); \
2066 } while (0)
2067
2068 #define PUT_SDB_TYPE(a) \
2069 do { \
2070 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
2071 } while (0)
2072
2073 /* For block start and end, we create labels, so that
2074 later we can figure out where the correct offset is.
2075 The normal .ent/.end serve well enough for functions,
2076 so those are just commented out. */
2077
2078 extern int sdb_label_count; /* block start/end next label # */
2079
2080 #define PUT_SDB_BLOCK_START(LINE) \
2081 do { \
2082 fprintf (asm_out_file, \
2083 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
2084 sdb_label_count, \
2085 (TARGET_GAS) ? "" : "#", \
2086 sdb_label_count, \
2087 (LINE)); \
2088 sdb_label_count++; \
2089 } while (0)
2090
2091 #define PUT_SDB_BLOCK_END(LINE) \
2092 do { \
2093 fprintf (asm_out_file, \
2094 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
2095 sdb_label_count, \
2096 (TARGET_GAS) ? "" : "#", \
2097 sdb_label_count, \
2098 (LINE)); \
2099 sdb_label_count++; \
2100 } while (0)
2101
2102 #define PUT_SDB_FUNCTION_START(LINE)
2103
2104 #define PUT_SDB_FUNCTION_END(LINE)
2105
2106 #define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
2107
2108 /* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2109 mips-tdump.c to print them out.
2110
2111 These must match the corresponding definitions in gdb/mipsread.c.
2112 Unfortunately, gcc and gdb do not currently share any directories. */
2113
2114 #define CODE_MASK 0x8F300
2115 #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2116 #define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2117 #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2118
2119 /* Override some mips-tfile definitions. */
2120
2121 #define SHASH_SIZE 511
2122 #define THASH_SIZE 55
2123
2124 /* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2125
2126 #define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2127
2128 /* The system headers under Alpha systems are generally C++-aware. */
2129 #define NO_IMPLICIT_EXTERN_C
2130
2131 /* Generate calls to memcpy, etc., not bcopy, etc. */
2132 #define TARGET_MEM_FUNCTIONS 1
2133
2134 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
2135 Used for C++ multiple inheritance. */
2136 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
2137 alpha_output_mi_thunk_osf (FILE, THUNK_FNDECL, DELTA, FUNCTION)