arm-cores.def: Add cortex-r5.
[gcc.git] / gcc / config / arm / arm.h
1 /* Definitions of target machine for GNU compiler, for ARM.
2 Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
6 and Martin Simmons (@harleqn.co.uk).
7 More major hacks by Richard Earnshaw (rearnsha@arm.com)
8 Minor hacks by Nick Clifton (nickc@cygnus.com)
9
10 This file is part of GCC.
11
12 GCC is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published
14 by the Free Software Foundation; either version 3, or (at your
15 option) any later version.
16
17 GCC is distributed in the hope that it will be useful, but WITHOUT
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
19 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
20 License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
25
26 #ifndef GCC_ARM_H
27 #define GCC_ARM_H
28
29 /* We can't use enum machine_mode inside a generator file because it
30 hasn't been created yet; we shouldn't be using any code that
31 needs the real definition though, so this ought to be safe. */
32 #ifdef GENERATOR_FILE
33 #define MACHMODE int
34 #else
35 #include "insn-modes.h"
36 #define MACHMODE enum machine_mode
37 #endif
38
39 #include "config/vxworks-dummy.h"
40
41 /* The architecture define. */
42 extern char arm_arch_name[];
43
44 /* Target CPU builtins. */
45 #define TARGET_CPU_CPP_BUILTINS() \
46 do \
47 { \
48 /* Define __arm__ even when in thumb mode, for \
49 consistency with armcc. */ \
50 builtin_define ("__arm__"); \
51 builtin_define ("__APCS_32__"); \
52 if (TARGET_THUMB) \
53 builtin_define ("__thumb__"); \
54 if (TARGET_THUMB2) \
55 builtin_define ("__thumb2__"); \
56 \
57 if (TARGET_BIG_END) \
58 { \
59 builtin_define ("__ARMEB__"); \
60 if (TARGET_THUMB) \
61 builtin_define ("__THUMBEB__"); \
62 if (TARGET_LITTLE_WORDS) \
63 builtin_define ("__ARMWEL__"); \
64 } \
65 else \
66 { \
67 builtin_define ("__ARMEL__"); \
68 if (TARGET_THUMB) \
69 builtin_define ("__THUMBEL__"); \
70 } \
71 \
72 if (TARGET_SOFT_FLOAT) \
73 builtin_define ("__SOFTFP__"); \
74 \
75 if (TARGET_VFP) \
76 builtin_define ("__VFP_FP__"); \
77 \
78 if (TARGET_NEON) \
79 builtin_define ("__ARM_NEON__"); \
80 \
81 /* Add a define for interworking. \
82 Needed when building libgcc.a. */ \
83 if (arm_cpp_interwork) \
84 builtin_define ("__THUMB_INTERWORK__"); \
85 \
86 builtin_assert ("cpu=arm"); \
87 builtin_assert ("machine=arm"); \
88 \
89 builtin_define (arm_arch_name); \
90 if (arm_arch_cirrus) \
91 builtin_define ("__MAVERICK__"); \
92 if (arm_arch_xscale) \
93 builtin_define ("__XSCALE__"); \
94 if (arm_arch_iwmmxt) \
95 builtin_define ("__IWMMXT__"); \
96 if (TARGET_AAPCS_BASED) \
97 { \
98 if (arm_pcs_default == ARM_PCS_AAPCS_VFP) \
99 builtin_define ("__ARM_PCS_VFP"); \
100 else if (arm_pcs_default == ARM_PCS_AAPCS) \
101 builtin_define ("__ARM_PCS"); \
102 builtin_define ("__ARM_EABI__"); \
103 } \
104 if (TARGET_IDIV) \
105 builtin_define ("__ARM_ARCH_EXT_IDIV__"); \
106 } while (0)
107
108 #include "config/arm/arm-opts.h"
109
110 enum target_cpus
111 {
112 #define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
113 TARGET_CPU_##IDENT,
114 #include "arm-cores.def"
115 #undef ARM_CORE
116 TARGET_CPU_generic
117 };
118
119 /* The processor for which instructions should be scheduled. */
120 extern enum processor_type arm_tune;
121
122 enum arm_sync_generator_tag
123 {
124 arm_sync_generator_omn,
125 arm_sync_generator_omrn
126 };
127
128 /* Wrapper to pass around a polymorphic pointer to a sync instruction
129 generator and. */
130 struct arm_sync_generator
131 {
132 enum arm_sync_generator_tag op;
133 union
134 {
135 rtx (* omn) (rtx, rtx, rtx);
136 rtx (* omrn) (rtx, rtx, rtx, rtx);
137 } u;
138 };
139
140 typedef enum arm_cond_code
141 {
142 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
143 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
144 }
145 arm_cc;
146
147 extern arm_cc arm_current_cc;
148
149 #define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
150
151 extern int arm_target_label;
152 extern int arm_ccfsm_state;
153 extern GTY(()) rtx arm_target_insn;
154 /* The label of the current constant pool. */
155 extern rtx pool_vector_label;
156 /* Set to 1 when a return insn is output, this means that the epilogue
157 is not needed. */
158 extern int return_used_this_function;
159 /* Callback to output language specific object attributes. */
160 extern void (*arm_lang_output_object_attributes_hook)(void);
161 \f
162 /* Just in case configure has failed to define anything. */
163 #ifndef TARGET_CPU_DEFAULT
164 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
165 #endif
166
167
168 #undef CPP_SPEC
169 #define CPP_SPEC "%(subtarget_cpp_spec) \
170 %{mfloat-abi=soft:%{mfloat-abi=hard: \
171 %e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
172 %{mbig-endian:%{mlittle-endian: \
173 %e-mbig-endian and -mlittle-endian may not be used together}}"
174
175 #ifndef CC1_SPEC
176 #define CC1_SPEC ""
177 #endif
178
179 /* This macro defines names of additional specifications to put in the specs
180 that can be used in various specifications like CC1_SPEC. Its definition
181 is an initializer with a subgrouping for each command option.
182
183 Each subgrouping contains a string constant, that defines the
184 specification name, and a string constant that used by the GCC driver
185 program.
186
187 Do not define this macro if it does not need to do anything. */
188 #define EXTRA_SPECS \
189 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
190 SUBTARGET_EXTRA_SPECS
191
192 #ifndef SUBTARGET_EXTRA_SPECS
193 #define SUBTARGET_EXTRA_SPECS
194 #endif
195
196 #ifndef SUBTARGET_CPP_SPEC
197 #define SUBTARGET_CPP_SPEC ""
198 #endif
199 \f
200 /* Run-time Target Specification. */
201 #define TARGET_SOFT_FLOAT (arm_float_abi == ARM_FLOAT_ABI_SOFT)
202 /* Use hardware floating point instructions. */
203 #define TARGET_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
204 /* Use hardware floating point calling convention. */
205 #define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD)
206 #define TARGET_FPA (arm_fpu_desc->model == ARM_FP_MODEL_FPA)
207 #define TARGET_MAVERICK (arm_fpu_desc->model == ARM_FP_MODEL_MAVERICK)
208 #define TARGET_VFP (arm_fpu_desc->model == ARM_FP_MODEL_VFP)
209 #define TARGET_IWMMXT (arm_arch_iwmmxt)
210 #define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_32BIT)
211 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
212 #define TARGET_ARM (! TARGET_THUMB)
213 #define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
214 #define TARGET_BACKTRACE (leaf_function_p () \
215 ? TARGET_TPCS_LEAF_FRAME \
216 : TARGET_TPCS_FRAME)
217 #define TARGET_LDRD (arm_arch5e && ARM_DOUBLEWORD_ALIGN)
218 #define TARGET_AAPCS_BASED \
219 (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
220
221 #define TARGET_HARD_TP (target_thread_pointer == TP_CP15)
222 #define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT)
223
224 /* Only 16-bit thumb code. */
225 #define TARGET_THUMB1 (TARGET_THUMB && !arm_arch_thumb2)
226 /* Arm or Thumb-2 32-bit code. */
227 #define TARGET_32BIT (TARGET_ARM || arm_arch_thumb2)
228 /* 32-bit Thumb-2 code. */
229 #define TARGET_THUMB2 (TARGET_THUMB && arm_arch_thumb2)
230 /* Thumb-1 only. */
231 #define TARGET_THUMB1_ONLY (TARGET_THUMB1 && !arm_arch_notm)
232 /* FPA emulator without LFM. */
233 #define TARGET_FPA_EMU2 (TARGET_FPA && arm_fpu_desc->rev == 2)
234
235 /* The following two macros concern the ability to execute coprocessor
236 instructions for VFPv3 or NEON. TARGET_VFP3/TARGET_VFPD32 are currently
237 only ever tested when we know we are generating for VFP hardware; we need
238 to be more careful with TARGET_NEON as noted below. */
239
240 /* FPU is has the full VFPv3/NEON register file of 32 D registers. */
241 #define TARGET_VFPD32 (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_D32)
242
243 /* FPU supports VFPv3 instructions. */
244 #define TARGET_VFP3 (TARGET_VFP && arm_fpu_desc->rev >= 3)
245
246 /* FPU only supports VFP single-precision instructions. */
247 #define TARGET_VFP_SINGLE (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_SINGLE)
248
249 /* FPU supports VFP double-precision instructions. */
250 #define TARGET_VFP_DOUBLE (TARGET_VFP && arm_fpu_desc->regs != VFP_REG_SINGLE)
251
252 /* FPU supports half-precision floating-point with NEON element load/store. */
253 #define TARGET_NEON_FP16 \
254 (TARGET_VFP && arm_fpu_desc->neon && arm_fpu_desc->fp16)
255
256 /* FPU supports VFP half-precision floating-point. */
257 #define TARGET_FP16 (TARGET_VFP && arm_fpu_desc->fp16)
258
259 /* FPU supports Neon instructions. The setting of this macro gets
260 revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
261 and TARGET_HARD_FLOAT to ensure that NEON instructions are
262 available. */
263 #define TARGET_NEON (TARGET_32BIT && TARGET_HARD_FLOAT \
264 && TARGET_VFP && arm_fpu_desc->neon)
265
266 /* "DSP" multiply instructions, eg. SMULxy. */
267 #define TARGET_DSP_MULTIPLY \
268 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7em))
269 /* Integer SIMD instructions, and extend-accumulate instructions. */
270 #define TARGET_INT_SIMD \
271 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
272
273 /* Should MOVW/MOVT be used in preference to a constant pool. */
274 #define TARGET_USE_MOVT (arm_arch_thumb2 && !optimize_size)
275
276 /* We could use unified syntax for arm mode, but for now we just use it
277 for Thumb-2. */
278 #define TARGET_UNIFIED_ASM TARGET_THUMB2
279
280 /* Nonzero if this chip provides the DMB instruction. */
281 #define TARGET_HAVE_DMB (arm_arch7)
282
283 /* Nonzero if this chip implements a memory barrier via CP15. */
284 #define TARGET_HAVE_DMB_MCR (arm_arch6k && ! TARGET_HAVE_DMB)
285
286 /* Nonzero if this chip implements a memory barrier instruction. */
287 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
288
289 /* Nonzero if this chip supports ldrex and strex */
290 #define TARGET_HAVE_LDREX ((arm_arch6 && TARGET_ARM) || arm_arch7)
291
292 /* Nonzero if this chip supports ldrex{bhd} and strex{bhd}. */
293 #define TARGET_HAVE_LDREXBHD ((arm_arch6k && TARGET_ARM) || arm_arch7)
294
295 /* Nonzero if integer division instructions supported. */
296 #define TARGET_IDIV ((TARGET_ARM && arm_arch_arm_hwdiv) \
297 || (TARGET_THUMB2 && arm_arch_thumb_hwdiv))
298
299 /* True iff the full BPABI is being used. If TARGET_BPABI is true,
300 then TARGET_AAPCS_BASED must be true -- but the converse does not
301 hold. TARGET_BPABI implies the use of the BPABI runtime library,
302 etc., in addition to just the AAPCS calling conventions. */
303 #ifndef TARGET_BPABI
304 #define TARGET_BPABI false
305 #endif
306
307 /* Support for a compile-time default CPU, et cetera. The rules are:
308 --with-arch is ignored if -march or -mcpu are specified.
309 --with-cpu is ignored if -march or -mcpu are specified, and is overridden
310 by --with-arch.
311 --with-tune is ignored if -mtune or -mcpu are specified (but not affected
312 by -march).
313 --with-float is ignored if -mfloat-abi is specified.
314 --with-fpu is ignored if -mfpu is specified.
315 --with-abi is ignored is -mabi is specified. */
316 #define OPTION_DEFAULT_SPECS \
317 {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
318 {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
319 {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
320 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
321 {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
322 {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
323 {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"},
324
325 /* Which floating point model to use. */
326 enum arm_fp_model
327 {
328 ARM_FP_MODEL_UNKNOWN,
329 /* FPA model (Hardware or software). */
330 ARM_FP_MODEL_FPA,
331 /* Cirrus Maverick floating point model. */
332 ARM_FP_MODEL_MAVERICK,
333 /* VFP floating point model. */
334 ARM_FP_MODEL_VFP
335 };
336
337 enum vfp_reg_type
338 {
339 VFP_NONE = 0,
340 VFP_REG_D16,
341 VFP_REG_D32,
342 VFP_REG_SINGLE
343 };
344
345 extern const struct arm_fpu_desc
346 {
347 const char *name;
348 enum arm_fp_model model;
349 int rev;
350 enum vfp_reg_type regs;
351 int neon;
352 int fp16;
353 } *arm_fpu_desc;
354
355 /* Which floating point hardware to schedule for. */
356 extern int arm_fpu_attr;
357
358 #ifndef TARGET_DEFAULT_FLOAT_ABI
359 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
360 #endif
361
362 #define LARGEST_EXPONENT_IS_NORMAL(bits) \
363 ((bits) == 16 && arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE)
364
365 #ifndef ARM_DEFAULT_ABI
366 #define ARM_DEFAULT_ABI ARM_ABI_APCS
367 #endif
368
369 /* Nonzero if this chip supports the ARM Architecture 3M extensions. */
370 extern int arm_arch3m;
371
372 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */
373 extern int arm_arch4;
374
375 /* Nonzero if this chip supports the ARM Architecture 4T extensions. */
376 extern int arm_arch4t;
377
378 /* Nonzero if this chip supports the ARM Architecture 5 extensions. */
379 extern int arm_arch5;
380
381 /* Nonzero if this chip supports the ARM Architecture 5E extensions. */
382 extern int arm_arch5e;
383
384 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */
385 extern int arm_arch6;
386
387 /* Nonzero if this chip supports the ARM Architecture 6k extensions. */
388 extern int arm_arch6k;
389
390 /* Nonzero if this chip supports the ARM Architecture 7 extensions. */
391 extern int arm_arch7;
392
393 /* Nonzero if instructions not present in the 'M' profile can be used. */
394 extern int arm_arch_notm;
395
396 /* Nonzero if instructions present in ARMv7E-M can be used. */
397 extern int arm_arch7em;
398
399 /* Nonzero if this chip can benefit from load scheduling. */
400 extern int arm_ld_sched;
401
402 /* Nonzero if generating Thumb code, either Thumb-1 or Thumb-2. */
403 extern int thumb_code;
404
405 /* Nonzero if generating Thumb-1 code. */
406 extern int thumb1_code;
407
408 /* Nonzero if this chip is a StrongARM. */
409 extern int arm_tune_strongarm;
410
411 /* Nonzero if this chip is a Cirrus variant. */
412 extern int arm_arch_cirrus;
413
414 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */
415 extern int arm_arch_iwmmxt;
416
417 /* Nonzero if this chip is an XScale. */
418 extern int arm_arch_xscale;
419
420 /* Nonzero if tuning for XScale. */
421 extern int arm_tune_xscale;
422
423 /* Nonzero if tuning for stores via the write buffer. */
424 extern int arm_tune_wbuf;
425
426 /* Nonzero if tuning for Cortex-A9. */
427 extern int arm_tune_cortex_a9;
428
429 /* Nonzero if we should define __THUMB_INTERWORK__ in the
430 preprocessor.
431 XXX This is a bit of a hack, it's intended to help work around
432 problems in GLD which doesn't understand that armv5t code is
433 interworking clean. */
434 extern int arm_cpp_interwork;
435
436 /* Nonzero if chip supports Thumb 2. */
437 extern int arm_arch_thumb2;
438
439 /* Nonzero if chip supports integer division instruction in ARM mode. */
440 extern int arm_arch_arm_hwdiv;
441
442 /* Nonzero if chip supports integer division instruction in Thumb mode. */
443 extern int arm_arch_thumb_hwdiv;
444
445 #ifndef TARGET_DEFAULT
446 #define TARGET_DEFAULT (MASK_APCS_FRAME)
447 #endif
448
449 /* Nonzero if PIC code requires explicit qualifiers to generate
450 PLT and GOT relocs rather than the assembler doing so implicitly.
451 Subtargets can override these if required. */
452 #ifndef NEED_GOT_RELOC
453 #define NEED_GOT_RELOC 0
454 #endif
455 #ifndef NEED_PLT_RELOC
456 #define NEED_PLT_RELOC 0
457 #endif
458
459 /* Nonzero if we need to refer to the GOT with a PC-relative
460 offset. In other words, generate
461
462 .word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
463
464 rather than
465
466 .word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
467
468 The default is true, which matches NetBSD. Subtargets can
469 override this if required. */
470 #ifndef GOT_PCREL
471 #define GOT_PCREL 1
472 #endif
473 \f
474 /* Target machine storage Layout. */
475
476
477 /* Define this macro if it is advisable to hold scalars in registers
478 in a wider mode than that declared by the program. In such cases,
479 the value is constrained to be within the bounds of the declared
480 type, but kept valid in the wider mode. The signedness of the
481 extension may differ from that of the type. */
482
483 /* It is far faster to zero extend chars than to sign extend them */
484
485 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
486 if (GET_MODE_CLASS (MODE) == MODE_INT \
487 && GET_MODE_SIZE (MODE) < 4) \
488 { \
489 if (MODE == QImode) \
490 UNSIGNEDP = 1; \
491 else if (MODE == HImode) \
492 UNSIGNEDP = 1; \
493 (MODE) = SImode; \
494 }
495
496 /* Define this if most significant bit is lowest numbered
497 in instructions that operate on numbered bit-fields. */
498 #define BITS_BIG_ENDIAN 0
499
500 /* Define this if most significant byte of a word is the lowest numbered.
501 Most ARM processors are run in little endian mode, so that is the default.
502 If you want to have it run-time selectable, change the definition in a
503 cover file to be TARGET_BIG_ENDIAN. */
504 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
505
506 /* Define this if most significant word of a multiword number is the lowest
507 numbered.
508 This is always false, even when in big-endian mode. */
509 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN && ! TARGET_LITTLE_WORDS)
510
511 /* Define this if most significant word of doubles is the lowest numbered.
512 The rules are different based on whether or not we use FPA-format,
513 VFP-format or some other floating point co-processor's format doubles. */
514 #define FLOAT_WORDS_BIG_ENDIAN (arm_float_words_big_endian ())
515
516 #define UNITS_PER_WORD 4
517
518 /* True if natural alignment is used for doubleword types. */
519 #define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED
520
521 #define DOUBLEWORD_ALIGNMENT 64
522
523 #define PARM_BOUNDARY 32
524
525 #define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
526
527 #define PREFERRED_STACK_BOUNDARY \
528 (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
529
530 #define FUNCTION_BOUNDARY ((TARGET_THUMB && optimize_size) ? 16 : 32)
531
532 /* The lowest bit is used to indicate Thumb-mode functions, so the
533 vbit must go into the delta field of pointers to member
534 functions. */
535 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
536
537 #define EMPTY_FIELD_BOUNDARY 32
538
539 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
540
541 /* XXX Blah -- this macro is used directly by libobjc. Since it
542 supports no vector modes, cut out the complexity and fall back
543 on BIGGEST_FIELD_ALIGNMENT. */
544 #ifdef IN_TARGET_LIBS
545 #define BIGGEST_FIELD_ALIGNMENT 64
546 #endif
547
548 /* Make strings word-aligned so strcpy from constants will be faster. */
549 #define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
550
551 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
552 ((TREE_CODE (EXP) == STRING_CST \
553 && !optimize_size \
554 && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR) \
555 ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
556
557 /* Align definitions of arrays, unions and structures so that
558 initializations and copies can be made more efficient. This is not
559 ABI-changing, so it only affects places where we can see the
560 definition. Increasing the alignment tends to introduce padding,
561 so don't do this when optimizing for size/conserving stack space. */
562 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \
563 (((COND) && ((ALIGN) < BITS_PER_WORD) \
564 && (TREE_CODE (EXP) == ARRAY_TYPE \
565 || TREE_CODE (EXP) == UNION_TYPE \
566 || TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
567
568 /* Align global data. */
569 #define DATA_ALIGNMENT(EXP, ALIGN) \
570 ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
571
572 /* Similarly, make sure that objects on the stack are sensibly aligned. */
573 #define LOCAL_ALIGNMENT(EXP, ALIGN) \
574 ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
575
576 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
577 value set in previous versions of this toolchain was 8, which produces more
578 compact structures. The command line option -mstructure_size_boundary=<n>
579 can be used to change this value. For compatibility with the ARM SDK
580 however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
581 0020D) page 2-20 says "Structures are aligned on word boundaries".
582 The AAPCS specifies a value of 8. */
583 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
584
585 /* This is the value used to initialize arm_structure_size_boundary. If a
586 particular arm target wants to change the default value it should change
587 the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h
588 for an example of this. */
589 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
590 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
591 #endif
592
593 /* Nonzero if move instructions will actually fail to work
594 when given unaligned data. */
595 #define STRICT_ALIGNMENT 1
596
597 /* wchar_t is unsigned under the AAPCS. */
598 #ifndef WCHAR_TYPE
599 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
600
601 #define WCHAR_TYPE_SIZE BITS_PER_WORD
602 #endif
603
604 #ifndef SIZE_TYPE
605 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
606 #endif
607
608 #ifndef PTRDIFF_TYPE
609 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
610 #endif
611
612 /* AAPCS requires that structure alignment is affected by bitfields. */
613 #ifndef PCC_BITFIELD_TYPE_MATTERS
614 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
615 #endif
616
617 \f
618 /* Standard register usage. */
619
620 /* Register allocation in ARM Procedure Call Standard (as used on RISCiX):
621 (S - saved over call).
622
623 r0 * argument word/integer result
624 r1-r3 argument word
625
626 r4-r8 S register variable
627 r9 S (rfp) register variable (real frame pointer)
628
629 r10 F S (sl) stack limit (used by -mapcs-stack-check)
630 r11 F S (fp) argument pointer
631 r12 (ip) temp workspace
632 r13 F S (sp) lower end of current stack frame
633 r14 (lr) link address/workspace
634 r15 F (pc) program counter
635
636 f0 floating point result
637 f1-f3 floating point scratch
638
639 f4-f7 S floating point variable
640
641 cc This is NOT a real register, but is used internally
642 to represent things that use or set the condition
643 codes.
644 sfp This isn't either. It is used during rtl generation
645 since the offset between the frame pointer and the
646 auto's isn't known until after register allocation.
647 afp Nor this, we only need this because of non-local
648 goto. Without it fp appears to be used and the
649 elimination code won't get rid of sfp. It tracks
650 fp exactly at all times.
651
652 *: See TARGET_CONDITIONAL_REGISTER_USAGE */
653
654 /*
655 mvf0 Cirrus floating point result
656 mvf1-mvf3 Cirrus floating point scratch
657 mvf4-mvf15 S Cirrus floating point variable. */
658
659 /* s0-s15 VFP scratch (aka d0-d7).
660 s16-s31 S VFP variable (aka d8-d15).
661 vfpcc Not a real register. Represents the VFP condition
662 code flags. */
663
664 /* The stack backtrace structure is as follows:
665 fp points to here: | save code pointer | [fp]
666 | return link value | [fp, #-4]
667 | return sp value | [fp, #-8]
668 | return fp value | [fp, #-12]
669 [| saved r10 value |]
670 [| saved r9 value |]
671 [| saved r8 value |]
672 [| saved r7 value |]
673 [| saved r6 value |]
674 [| saved r5 value |]
675 [| saved r4 value |]
676 [| saved r3 value |]
677 [| saved r2 value |]
678 [| saved r1 value |]
679 [| saved r0 value |]
680 [| saved f7 value |] three words
681 [| saved f6 value |] three words
682 [| saved f5 value |] three words
683 [| saved f4 value |] three words
684 r0-r3 are not normally saved in a C function. */
685
686 /* 1 for registers that have pervasive standard uses
687 and are not available for the register allocator. */
688 #define FIXED_REGISTERS \
689 { \
690 0,0,0,0,0,0,0,0, \
691 0,0,0,0,0,1,0,1, \
692 0,0,0,0,0,0,0,0, \
693 1,1,1, \
694 1,1,1,1,1,1,1,1, \
695 1,1,1,1,1,1,1,1, \
696 1,1,1,1,1,1,1,1, \
697 1,1,1,1,1,1,1,1, \
698 1,1,1,1, \
699 1,1,1,1,1,1,1,1, \
700 1,1,1,1,1,1,1,1, \
701 1,1,1,1,1,1,1,1, \
702 1,1,1,1,1,1,1,1, \
703 1,1,1,1,1,1,1,1, \
704 1,1,1,1,1,1,1,1, \
705 1,1,1,1,1,1,1,1, \
706 1,1,1,1,1,1,1,1, \
707 1 \
708 }
709
710 /* 1 for registers not available across function calls.
711 These must include the FIXED_REGISTERS and also any
712 registers that can be used without being saved.
713 The latter must include the registers where values are returned
714 and the register where structure-value addresses are passed.
715 Aside from that, you can include as many other registers as you like.
716 The CC is not preserved over function calls on the ARM 6, so it is
717 easier to assume this for all. SFP is preserved, since FP is. */
718 #define CALL_USED_REGISTERS \
719 { \
720 1,1,1,1,0,0,0,0, \
721 0,0,0,0,1,1,1,1, \
722 1,1,1,1,0,0,0,0, \
723 1,1,1, \
724 1,1,1,1,1,1,1,1, \
725 1,1,1,1,1,1,1,1, \
726 1,1,1,1,1,1,1,1, \
727 1,1,1,1,1,1,1,1, \
728 1,1,1,1, \
729 1,1,1,1,1,1,1,1, \
730 1,1,1,1,1,1,1,1, \
731 1,1,1,1,1,1,1,1, \
732 1,1,1,1,1,1,1,1, \
733 1,1,1,1,1,1,1,1, \
734 1,1,1,1,1,1,1,1, \
735 1,1,1,1,1,1,1,1, \
736 1,1,1,1,1,1,1,1, \
737 1 \
738 }
739
740 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
741 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
742 #endif
743
744 /* These are a couple of extensions to the formats accepted
745 by asm_fprintf:
746 %@ prints out ASM_COMMENT_START
747 %r prints out REGISTER_PREFIX reg_names[arg] */
748 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
749 case '@': \
750 fputs (ASM_COMMENT_START, FILE); \
751 break; \
752 \
753 case 'r': \
754 fputs (REGISTER_PREFIX, FILE); \
755 fputs (reg_names [va_arg (ARGS, int)], FILE); \
756 break;
757
758 /* Round X up to the nearest word. */
759 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
760
761 /* Convert fron bytes to ints. */
762 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
763
764 /* The number of (integer) registers required to hold a quantity of type MODE.
765 Also used for VFP registers. */
766 #define ARM_NUM_REGS(MODE) \
767 ARM_NUM_INTS (GET_MODE_SIZE (MODE))
768
769 /* The number of (integer) registers required to hold a quantity of TYPE MODE. */
770 #define ARM_NUM_REGS2(MODE, TYPE) \
771 ARM_NUM_INTS ((MODE) == BLKmode ? \
772 int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
773
774 /* The number of (integer) argument register available. */
775 #define NUM_ARG_REGS 4
776
777 /* And similarly for the VFP. */
778 #define NUM_VFP_ARG_REGS 16
779
780 /* Return the register number of the N'th (integer) argument. */
781 #define ARG_REGISTER(N) (N - 1)
782
783 /* Specify the registers used for certain standard purposes.
784 The values of these macros are register numbers. */
785
786 /* The number of the last argument register. */
787 #define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
788
789 /* The numbers of the Thumb register ranges. */
790 #define FIRST_LO_REGNUM 0
791 #define LAST_LO_REGNUM 7
792 #define FIRST_HI_REGNUM 8
793 #define LAST_HI_REGNUM 11
794
795 /* Overridden by config/arm/bpabi.h. */
796 #ifndef ARM_UNWIND_INFO
797 #define ARM_UNWIND_INFO 0
798 #endif
799
800 /* Use r0 and r1 to pass exception handling information. */
801 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
802
803 /* The register that holds the return address in exception handlers. */
804 #define ARM_EH_STACKADJ_REGNUM 2
805 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
806
807 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
808 as an invisible last argument (possible since varargs don't exist in
809 Pascal), so the following is not true. */
810 #define STATIC_CHAIN_REGNUM 12
811
812 /* Define this to be where the real frame pointer is if it is not possible to
813 work out the offset between the frame pointer and the automatic variables
814 until after register allocation has taken place. FRAME_POINTER_REGNUM
815 should point to a special register that we will make sure is eliminated.
816
817 For the Thumb we have another problem. The TPCS defines the frame pointer
818 as r11, and GCC believes that it is always possible to use the frame pointer
819 as base register for addressing purposes. (See comments in
820 find_reloads_address()). But - the Thumb does not allow high registers,
821 including r11, to be used as base address registers. Hence our problem.
822
823 The solution used here, and in the old thumb port is to use r7 instead of
824 r11 as the hard frame pointer and to have special code to generate
825 backtrace structures on the stack (if required to do so via a command line
826 option) using r11. This is the only 'user visible' use of r11 as a frame
827 pointer. */
828 #define ARM_HARD_FRAME_POINTER_REGNUM 11
829 #define THUMB_HARD_FRAME_POINTER_REGNUM 7
830
831 #define HARD_FRAME_POINTER_REGNUM \
832 (TARGET_ARM \
833 ? ARM_HARD_FRAME_POINTER_REGNUM \
834 : THUMB_HARD_FRAME_POINTER_REGNUM)
835
836 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
837 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
838
839 #define FP_REGNUM HARD_FRAME_POINTER_REGNUM
840
841 /* Register to use for pushing function arguments. */
842 #define STACK_POINTER_REGNUM SP_REGNUM
843
844 /* ARM floating pointer registers. */
845 #define FIRST_FPA_REGNUM 16
846 #define LAST_FPA_REGNUM 23
847 #define IS_FPA_REGNUM(REGNUM) \
848 (((REGNUM) >= FIRST_FPA_REGNUM) && ((REGNUM) <= LAST_FPA_REGNUM))
849
850 #define FIRST_IWMMXT_GR_REGNUM 43
851 #define LAST_IWMMXT_GR_REGNUM 46
852 #define FIRST_IWMMXT_REGNUM 47
853 #define LAST_IWMMXT_REGNUM 62
854 #define IS_IWMMXT_REGNUM(REGNUM) \
855 (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
856 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
857 (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
858
859 /* Base register for access to local variables of the function. */
860 #define FRAME_POINTER_REGNUM 25
861
862 /* Base register for access to arguments of the function. */
863 #define ARG_POINTER_REGNUM 26
864
865 #define FIRST_CIRRUS_FP_REGNUM 27
866 #define LAST_CIRRUS_FP_REGNUM 42
867 #define IS_CIRRUS_REGNUM(REGNUM) \
868 (((REGNUM) >= FIRST_CIRRUS_FP_REGNUM) && ((REGNUM) <= LAST_CIRRUS_FP_REGNUM))
869
870 #define FIRST_VFP_REGNUM 63
871 #define D7_VFP_REGNUM 78 /* Registers 77 and 78 == VFP reg D7. */
872 #define LAST_VFP_REGNUM \
873 (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
874
875 #define IS_VFP_REGNUM(REGNUM) \
876 (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
877
878 /* VFP registers are split into two types: those defined by VFP versions < 3
879 have D registers overlaid on consecutive pairs of S registers. VFP version 3
880 defines 16 new D registers (d16-d31) which, for simplicity and correctness
881 in various parts of the backend, we implement as "fake" single-precision
882 registers (which would be S32-S63, but cannot be used in that way). The
883 following macros define these ranges of registers. */
884 #define LAST_LO_VFP_REGNUM 94
885 #define FIRST_HI_VFP_REGNUM 95
886 #define LAST_HI_VFP_REGNUM 126
887
888 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
889 ((REGNUM) <= LAST_LO_VFP_REGNUM)
890
891 /* DFmode values are only valid in even register pairs. */
892 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
893 ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
894
895 /* Neon Quad values must start at a multiple of four registers. */
896 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
897 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
898
899 /* Neon structures of vectors must be in even register pairs and there
900 must be enough registers available. Because of various patterns
901 requiring quad registers, we require them to start at a multiple of
902 four. */
903 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
904 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
905 && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
906
907 /* The number of hard registers is 16 ARM + 8 FPA + 1 CC + 1 SFP + 1 AFP. */
908 /* + 16 Cirrus registers take us up to 43. */
909 /* Intel Wireless MMX Technology registers add 16 + 4 more. */
910 /* VFP (VFP3) adds 32 (64) + 1 more. */
911 #define FIRST_PSEUDO_REGISTER 128
912
913 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
914
915 /* Value should be nonzero if functions must have frame pointers.
916 Zero means the frame pointer need not be set up (and parms may be accessed
917 via the stack pointer) in functions that seem suitable.
918 If we have to have a frame pointer we might as well make use of it.
919 APCS says that the frame pointer does not need to be pushed in leaf
920 functions, or simple tail call functions. */
921
922 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
923 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
924 #endif
925
926 /* Return number of consecutive hard regs needed starting at reg REGNO
927 to hold something of mode MODE.
928 This is ordinarily the length in words of a value of mode MODE
929 but can be less for certain modes in special long registers.
930
931 On the ARM regs are UNITS_PER_WORD bits wide; FPA regs can hold any FP
932 mode. */
933 #define HARD_REGNO_NREGS(REGNO, MODE) \
934 ((TARGET_32BIT \
935 && REGNO >= FIRST_FPA_REGNUM \
936 && REGNO != FRAME_POINTER_REGNUM \
937 && REGNO != ARG_POINTER_REGNUM) \
938 && !IS_VFP_REGNUM (REGNO) \
939 ? 1 : ARM_NUM_REGS (MODE))
940
941 /* Return true if REGNO is suitable for holding a quantity of type MODE. */
942 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
943 arm_hard_regno_mode_ok ((REGNO), (MODE))
944
945 /* Value is 1 if it is a good idea to tie two pseudo registers
946 when one has mode MODE1 and one has mode MODE2.
947 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
948 for any hard reg, then this must be 0 for correct output. */
949 #define MODES_TIEABLE_P(MODE1, MODE2) \
950 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
951
952 #define VALID_IWMMXT_REG_MODE(MODE) \
953 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
954
955 /* Modes valid for Neon D registers. */
956 #define VALID_NEON_DREG_MODE(MODE) \
957 ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
958 || (MODE) == V2SFmode || (MODE) == DImode)
959
960 /* Modes valid for Neon Q registers. */
961 #define VALID_NEON_QREG_MODE(MODE) \
962 ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
963 || (MODE) == V4SFmode || (MODE) == V2DImode)
964
965 /* Structure modes valid for Neon registers. */
966 #define VALID_NEON_STRUCT_MODE(MODE) \
967 ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
968 || (MODE) == CImode || (MODE) == XImode)
969
970 /* The register numbers in sequence, for passing to arm_gen_load_multiple. */
971 extern int arm_regs_in_sequence[];
972
973 /* The order in which register should be allocated. It is good to use ip
974 since no saving is required (though calls clobber it) and it never contains
975 function parameters. It is quite good to use lr since other calls may
976 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
977 least likely to contain a function parameter; in addition results are
978 returned in r0.
979 For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
980 then D8-D15. The reason for doing this is to attempt to reduce register
981 pressure when both single- and double-precision registers are used in a
982 function. */
983
984 #define REG_ALLOC_ORDER \
985 { \
986 3, 2, 1, 0, 12, 14, 4, 5, \
987 6, 7, 8, 10, 9, 11, 13, 15, \
988 16, 17, 18, 19, 20, 21, 22, 23, \
989 27, 28, 29, 30, 31, 32, 33, 34, \
990 35, 36, 37, 38, 39, 40, 41, 42, \
991 43, 44, 45, 46, 47, 48, 49, 50, \
992 51, 52, 53, 54, 55, 56, 57, 58, \
993 59, 60, 61, 62, \
994 24, 25, 26, \
995 95, 96, 97, 98, 99, 100, 101, 102, \
996 103, 104, 105, 106, 107, 108, 109, 110, \
997 111, 112, 113, 114, 115, 116, 117, 118, \
998 119, 120, 121, 122, 123, 124, 125, 126, \
999 78, 77, 76, 75, 74, 73, 72, 71, \
1000 70, 69, 68, 67, 66, 65, 64, 63, \
1001 79, 80, 81, 82, 83, 84, 85, 86, \
1002 87, 88, 89, 90, 91, 92, 93, 94, \
1003 127 \
1004 }
1005
1006 /* Use different register alloc ordering for Thumb. */
1007 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1008
1009 /* Tell IRA to use the order we define rather than messing it up with its
1010 own cost calculations. */
1011 #define HONOR_REG_ALLOC_ORDER
1012
1013 /* Interrupt functions can only use registers that have already been
1014 saved by the prologue, even if they would normally be
1015 call-clobbered. */
1016 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1017 (! IS_INTERRUPT (cfun->machine->func_type) || \
1018 df_regs_ever_live_p (DST))
1019 \f
1020 /* Register and constant classes. */
1021
1022 /* Register classes: used to be simple, just all ARM regs or all FPA regs
1023 Now that the Thumb is involved it has become more complicated. */
1024 enum reg_class
1025 {
1026 NO_REGS,
1027 FPA_REGS,
1028 CIRRUS_REGS,
1029 VFP_D0_D7_REGS,
1030 VFP_LO_REGS,
1031 VFP_HI_REGS,
1032 VFP_REGS,
1033 IWMMXT_GR_REGS,
1034 IWMMXT_REGS,
1035 LO_REGS,
1036 STACK_REG,
1037 BASE_REGS,
1038 HI_REGS,
1039 CC_REG,
1040 VFPCC_REG,
1041 GENERAL_REGS,
1042 CORE_REGS,
1043 ALL_REGS,
1044 LIM_REG_CLASSES
1045 };
1046
1047 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1048
1049 /* Give names of register classes as strings for dump file. */
1050 #define REG_CLASS_NAMES \
1051 { \
1052 "NO_REGS", \
1053 "FPA_REGS", \
1054 "CIRRUS_REGS", \
1055 "VFP_D0_D7_REGS", \
1056 "VFP_LO_REGS", \
1057 "VFP_HI_REGS", \
1058 "VFP_REGS", \
1059 "IWMMXT_GR_REGS", \
1060 "IWMMXT_REGS", \
1061 "LO_REGS", \
1062 "STACK_REG", \
1063 "BASE_REGS", \
1064 "HI_REGS", \
1065 "CC_REG", \
1066 "VFPCC_REG", \
1067 "GENERAL_REGS", \
1068 "CORE_REGS", \
1069 "ALL_REGS", \
1070 }
1071
1072 /* Define which registers fit in which classes.
1073 This is an initializer for a vector of HARD_REG_SET
1074 of length N_REG_CLASSES. */
1075 #define REG_CLASS_CONTENTS \
1076 { \
1077 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1078 { 0x00FF0000, 0x00000000, 0x00000000, 0x00000000 }, /* FPA_REGS */ \
1079 { 0xF8000000, 0x000007FF, 0x00000000, 0x00000000 }, /* CIRRUS_REGS */ \
1080 { 0x00000000, 0x80000000, 0x00007FFF, 0x00000000 }, /* VFP_D0_D7_REGS */ \
1081 { 0x00000000, 0x80000000, 0x7FFFFFFF, 0x00000000 }, /* VFP_LO_REGS */ \
1082 { 0x00000000, 0x00000000, 0x80000000, 0x7FFFFFFF }, /* VFP_HI_REGS */ \
1083 { 0x00000000, 0x80000000, 0xFFFFFFFF, 0x7FFFFFFF }, /* VFP_REGS */ \
1084 { 0x00000000, 0x00007800, 0x00000000, 0x00000000 }, /* IWMMXT_GR_REGS */ \
1085 { 0x00000000, 0x7FFF8000, 0x00000000, 0x00000000 }, /* IWMMXT_REGS */ \
1086 { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */ \
1087 { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
1088 { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */ \
1089 { 0x0000DF00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */ \
1090 { 0x01000000, 0x00000000, 0x00000000, 0x00000000 }, /* CC_REG */ \
1091 { 0x00000000, 0x00000000, 0x00000000, 0x80000000 }, /* VFPCC_REG */ \
1092 { 0x0000DFFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1093 { 0x0000FFFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */ \
1094 { 0xFAFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF } /* ALL_REGS */ \
1095 }
1096
1097 /* Any of the VFP register classes. */
1098 #define IS_VFP_CLASS(X) \
1099 ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1100 || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1101
1102 /* The same information, inverted:
1103 Return the class number of the smallest class containing
1104 reg number REGNO. This could be a conditional expression
1105 or could index an array. */
1106 #define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
1107
1108 /* FPA registers can't do subreg as all values are reformatted to internal
1109 precision. In VFPv1, VFP registers could only be accessed in the mode
1110 they were set, so subregs would be invalid there too. However, we don't
1111 support VFPv1 at the moment, and the restriction was lifted in VFPv2. */
1112 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1113 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1114 ? reg_classes_intersect_p (FPA_REGS, (CLASS)) \
1115 : 0)
1116
1117 /* The class value for index registers, and the one for base regs. */
1118 #define INDEX_REG_CLASS (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1119 #define BASE_REG_CLASS (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1120
1121 /* For the Thumb the high registers cannot be used as base registers
1122 when addressing quantities in QI or HI mode; if we don't know the
1123 mode, then we must be conservative. */
1124 #define MODE_BASE_REG_CLASS(MODE) \
1125 (TARGET_ARM || (TARGET_THUMB2 && !optimize_size) ? CORE_REGS : \
1126 (((MODE) == SImode) ? BASE_REGS : LO_REGS))
1127
1128 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1129 instead of BASE_REGS. */
1130 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1131
1132 /* When this hook returns true for MODE, the compiler allows
1133 registers explicitly used in the rtl to be used as spill registers
1134 but prevents the compiler from extending the lifetime of these
1135 registers. */
1136 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1137 arm_small_register_classes_for_mode_p
1138
1139 /* Given an rtx X being reloaded into a reg required to be
1140 in class CLASS, return the class of reg to actually use.
1141 In general this is just CLASS, but for the Thumb core registers and
1142 immediate constants we prefer a LO_REGS class or a subset. */
1143 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1144 (TARGET_32BIT ? (CLASS) : \
1145 ((CLASS) == GENERAL_REGS || (CLASS) == HI_REGS \
1146 || (CLASS) == NO_REGS || (CLASS) == STACK_REG \
1147 ? LO_REGS : (CLASS)))
1148
1149 /* Must leave BASE_REGS reloads alone */
1150 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1151 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1152 ? ((true_regnum (X) == -1 ? LO_REGS \
1153 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1154 : NO_REGS)) \
1155 : NO_REGS)
1156
1157 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1158 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1159 ? ((true_regnum (X) == -1 ? LO_REGS \
1160 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1161 : NO_REGS)) \
1162 : NO_REGS)
1163
1164 /* Return the register class of a scratch register needed to copy IN into
1165 or out of a register in CLASS in MODE. If it can be done directly,
1166 NO_REGS is returned. */
1167 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1168 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1169 ((TARGET_VFP && TARGET_HARD_FLOAT \
1170 && IS_VFP_CLASS (CLASS)) \
1171 ? coproc_secondary_reload_class (MODE, X, FALSE) \
1172 : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \
1173 ? coproc_secondary_reload_class (MODE, X, TRUE) \
1174 : TARGET_32BIT \
1175 ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1176 ? GENERAL_REGS : NO_REGS) \
1177 : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1178
1179 /* If we need to load shorts byte-at-a-time, then we need a scratch. */
1180 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1181 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1182 ((TARGET_VFP && TARGET_HARD_FLOAT \
1183 && IS_VFP_CLASS (CLASS)) \
1184 ? coproc_secondary_reload_class (MODE, X, FALSE) : \
1185 (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \
1186 coproc_secondary_reload_class (MODE, X, TRUE) : \
1187 /* Cannot load constants into Cirrus registers. */ \
1188 (TARGET_MAVERICK && TARGET_HARD_FLOAT \
1189 && (CLASS) == CIRRUS_REGS \
1190 && (CONSTANT_P (X) || GET_CODE (X) == SYMBOL_REF)) \
1191 ? GENERAL_REGS : \
1192 (TARGET_32BIT ? \
1193 (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \
1194 && CONSTANT_P (X)) \
1195 ? GENERAL_REGS : \
1196 (((MODE) == HImode && ! arm_arch4 \
1197 && (GET_CODE (X) == MEM \
1198 || ((GET_CODE (X) == REG || GET_CODE (X) == SUBREG) \
1199 && true_regnum (X) == -1))) \
1200 ? GENERAL_REGS : NO_REGS) \
1201 : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1202
1203 /* Try a machine-dependent way of reloading an illegitimate address
1204 operand. If we find one, push the reload and jump to WIN. This
1205 macro is used in only one place: `find_reloads_address' in reload.c.
1206
1207 For the ARM, we wish to handle large displacements off a base
1208 register by splitting the addend across a MOV and the mem insn.
1209 This can cut the number of reloads needed. */
1210 #define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN) \
1211 do \
1212 { \
1213 if (arm_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND)) \
1214 goto WIN; \
1215 } \
1216 while (0)
1217
1218 /* XXX If an HImode FP+large_offset address is converted to an HImode
1219 SP+large_offset address, then reload won't know how to fix it. It sees
1220 only that SP isn't valid for HImode, and so reloads the SP into an index
1221 register, but the resulting address is still invalid because the offset
1222 is too big. We fix it here instead by reloading the entire address. */
1223 /* We could probably achieve better results by defining PROMOTE_MODE to help
1224 cope with the variances between the Thumb's signed and unsigned byte and
1225 halfword load instructions. */
1226 /* ??? This should be safe for thumb2, but we may be able to do better. */
1227 #define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_L, WIN) \
1228 do { \
1229 rtx new_x = thumb_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND_L); \
1230 if (new_x) \
1231 { \
1232 X = new_x; \
1233 goto WIN; \
1234 } \
1235 } while (0)
1236
1237 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) \
1238 if (TARGET_ARM) \
1239 ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \
1240 else \
1241 THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)
1242
1243 /* Return the maximum number of consecutive registers
1244 needed to represent mode MODE in a register of class CLASS.
1245 ARM regs are UNITS_PER_WORD bits while FPA regs can hold any FP mode */
1246 #define CLASS_MAX_NREGS(CLASS, MODE) \
1247 (((CLASS) == FPA_REGS || (CLASS) == CIRRUS_REGS) ? 1 : ARM_NUM_REGS (MODE))
1248
1249 /* If defined, gives a class of registers that cannot be used as the
1250 operand of a SUBREG that changes the mode of the object illegally. */
1251
1252 /* Moves between FPA_REGS and GENERAL_REGS are two memory insns.
1253 Moves between VFP_REGS and GENERAL_REGS are a single insn, but
1254 it is typically more expensive than a single memory access. We set
1255 the cost to less than two memory accesses so that floating
1256 point to integer conversion does not go through memory. */
1257 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
1258 (TARGET_32BIT ? \
1259 ((FROM) == FPA_REGS && (TO) != FPA_REGS ? 20 : \
1260 (FROM) != FPA_REGS && (TO) == FPA_REGS ? 20 : \
1261 IS_VFP_CLASS (FROM) && !IS_VFP_CLASS (TO) ? 15 : \
1262 !IS_VFP_CLASS (FROM) && IS_VFP_CLASS (TO) ? 15 : \
1263 (FROM) == IWMMXT_REGS && (TO) != IWMMXT_REGS ? 4 : \
1264 (FROM) != IWMMXT_REGS && (TO) == IWMMXT_REGS ? 4 : \
1265 (FROM) == IWMMXT_GR_REGS || (TO) == IWMMXT_GR_REGS ? 20 : \
1266 (FROM) == CIRRUS_REGS && (TO) != CIRRUS_REGS ? 20 : \
1267 (FROM) != CIRRUS_REGS && (TO) == CIRRUS_REGS ? 20 : \
1268 2) \
1269 : \
1270 ((FROM) == HI_REGS || (TO) == HI_REGS) ? 4 : 2)
1271 \f
1272 /* Stack layout; function entry, exit and calling. */
1273
1274 /* Define this if pushing a word on the stack
1275 makes the stack pointer a smaller address. */
1276 #define STACK_GROWS_DOWNWARD 1
1277
1278 /* Define this to nonzero if the nominal address of the stack frame
1279 is at the high-address end of the local variables;
1280 that is, each additional local variable allocated
1281 goes at a more negative offset in the frame. */
1282 #define FRAME_GROWS_DOWNWARD 1
1283
1284 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1285 When present, it is one word in size, and sits at the top of the frame,
1286 between the soft frame pointer and either r7 or r11.
1287
1288 We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1289 and only then if some outgoing arguments are passed on the stack. It would
1290 be tempting to also check whether the stack arguments are passed by indirect
1291 calls, but there seems to be no reason in principle why a post-reload pass
1292 couldn't convert a direct call into an indirect one. */
1293 #define CALLER_INTERWORKING_SLOT_SIZE \
1294 (TARGET_CALLER_INTERWORKING \
1295 && crtl->outgoing_args_size != 0 \
1296 ? UNITS_PER_WORD : 0)
1297
1298 /* Offset within stack frame to start allocating local variables at.
1299 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1300 first local allocated. Otherwise, it is the offset to the BEGINNING
1301 of the first local allocated. */
1302 #define STARTING_FRAME_OFFSET 0
1303
1304 /* If we generate an insn to push BYTES bytes,
1305 this says how many the stack pointer really advances by. */
1306 /* The push insns do not do this rounding implicitly.
1307 So don't define this. */
1308 /* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */
1309
1310 /* Define this if the maximum size of all the outgoing args is to be
1311 accumulated and pushed during the prologue. The amount can be
1312 found in the variable crtl->outgoing_args_size. */
1313 #define ACCUMULATE_OUTGOING_ARGS 1
1314
1315 /* Offset of first parameter from the argument pointer register value. */
1316 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
1317
1318 /* Define how to find the value returned by a library function
1319 assuming the value has mode MODE. */
1320 #define LIBCALL_VALUE(MODE) \
1321 (TARGET_AAPCS_BASED ? aapcs_libcall_value (MODE) \
1322 : (TARGET_32BIT && TARGET_HARD_FLOAT_ABI && TARGET_FPA \
1323 && GET_MODE_CLASS (MODE) == MODE_FLOAT) \
1324 ? gen_rtx_REG (MODE, FIRST_FPA_REGNUM) \
1325 : TARGET_32BIT && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK \
1326 && GET_MODE_CLASS (MODE) == MODE_FLOAT \
1327 ? gen_rtx_REG (MODE, FIRST_CIRRUS_FP_REGNUM) \
1328 : TARGET_IWMMXT_ABI && arm_vector_mode_supported_p (MODE) \
1329 ? gen_rtx_REG (MODE, FIRST_IWMMXT_REGNUM) \
1330 : gen_rtx_REG (MODE, ARG_REGISTER (1)))
1331
1332 /* 1 if REGNO is a possible register number for a function value. */
1333 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1334 ((REGNO) == ARG_REGISTER (1) \
1335 || (TARGET_AAPCS_BASED && TARGET_32BIT \
1336 && TARGET_VFP && TARGET_HARD_FLOAT \
1337 && (REGNO) == FIRST_VFP_REGNUM) \
1338 || (TARGET_32BIT && ((REGNO) == FIRST_CIRRUS_FP_REGNUM) \
1339 && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK) \
1340 || ((REGNO) == FIRST_IWMMXT_REGNUM && TARGET_IWMMXT_ABI) \
1341 || (TARGET_32BIT && ((REGNO) == FIRST_FPA_REGNUM) \
1342 && TARGET_HARD_FLOAT_ABI && TARGET_FPA))
1343
1344 /* Amount of memory needed for an untyped call to save all possible return
1345 registers. */
1346 #define APPLY_RESULT_SIZE arm_apply_result_size()
1347
1348 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1349 values must be in memory. On the ARM, they need only do so if larger
1350 than a word, or if they contain elements offset from zero in the struct. */
1351 #define DEFAULT_PCC_STRUCT_RETURN 0
1352
1353 /* These bits describe the different types of function supported
1354 by the ARM backend. They are exclusive. i.e. a function cannot be both a
1355 normal function and an interworked function, for example. Knowing the
1356 type of a function is important for determining its prologue and
1357 epilogue sequences.
1358 Note value 7 is currently unassigned. Also note that the interrupt
1359 function types all have bit 2 set, so that they can be tested for easily.
1360 Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1361 machine_function structure is initialized (to zero) func_type will
1362 default to unknown. This will force the first use of arm_current_func_type
1363 to call arm_compute_func_type. */
1364 #define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
1365 #define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
1366 #define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
1367 #define ARM_FT_ISR 4 /* An interrupt service routine. */
1368 #define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
1369 #define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
1370
1371 #define ARM_FT_TYPE_MASK ((1 << 3) - 1)
1372
1373 /* In addition functions can have several type modifiers,
1374 outlined by these bit masks: */
1375 #define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
1376 #define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
1377 #define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
1378 #define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
1379 #define ARM_FT_STACKALIGN (1 << 6) /* Called with misaligned stack. */
1380
1381 /* Some macros to test these flags. */
1382 #define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
1383 #define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
1384 #define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
1385 #define IS_NAKED(t) (t & ARM_FT_NAKED)
1386 #define IS_NESTED(t) (t & ARM_FT_NESTED)
1387 #define IS_STACKALIGN(t) (t & ARM_FT_STACKALIGN)
1388
1389
1390 /* Structure used to hold the function stack frame layout. Offsets are
1391 relative to the stack pointer on function entry. Positive offsets are
1392 in the direction of stack growth.
1393 Only soft_frame is used in thumb mode. */
1394
1395 typedef struct GTY(()) arm_stack_offsets
1396 {
1397 int saved_args; /* ARG_POINTER_REGNUM. */
1398 int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */
1399 int saved_regs;
1400 int soft_frame; /* FRAME_POINTER_REGNUM. */
1401 int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */
1402 int outgoing_args; /* STACK_POINTER_REGNUM. */
1403 unsigned int saved_regs_mask;
1404 }
1405 arm_stack_offsets;
1406
1407 #ifndef GENERATOR_FILE
1408 /* A C structure for machine-specific, per-function data.
1409 This is added to the cfun structure. */
1410 typedef struct GTY(()) machine_function
1411 {
1412 /* Additional stack adjustment in __builtin_eh_throw. */
1413 rtx eh_epilogue_sp_ofs;
1414 /* Records if LR has to be saved for far jumps. */
1415 int far_jump_used;
1416 /* Records if ARG_POINTER was ever live. */
1417 int arg_pointer_live;
1418 /* Records if the save of LR has been eliminated. */
1419 int lr_save_eliminated;
1420 /* The size of the stack frame. Only valid after reload. */
1421 arm_stack_offsets stack_offsets;
1422 /* Records the type of the current function. */
1423 unsigned long func_type;
1424 /* Record if the function has a variable argument list. */
1425 int uses_anonymous_args;
1426 /* Records if sibcalls are blocked because an argument
1427 register is needed to preserve stack alignment. */
1428 int sibcall_blocked;
1429 /* The PIC register for this function. This might be a pseudo. */
1430 rtx pic_reg;
1431 /* Labels for per-function Thumb call-via stubs. One per potential calling
1432 register. We can never call via LR or PC. We can call via SP if a
1433 trampoline happens to be on the top of the stack. */
1434 rtx call_via[14];
1435 /* Set to 1 when a return insn is output, this means that the epilogue
1436 is not needed. */
1437 int return_used_this_function;
1438 /* When outputting Thumb-1 code, record the last insn that provides
1439 information about condition codes, and the comparison operands. */
1440 rtx thumb1_cc_insn;
1441 rtx thumb1_cc_op0;
1442 rtx thumb1_cc_op1;
1443 /* Also record the CC mode that is supported. */
1444 enum machine_mode thumb1_cc_mode;
1445 }
1446 machine_function;
1447 #endif
1448
1449 /* As in the machine_function, a global set of call-via labels, for code
1450 that is in text_section. */
1451 extern GTY(()) rtx thumb_call_via_label[14];
1452
1453 /* The number of potential ways of assigning to a co-processor. */
1454 #define ARM_NUM_COPROC_SLOTS 1
1455
1456 /* Enumeration of procedure calling standard variants. We don't really
1457 support all of these yet. */
1458 enum arm_pcs
1459 {
1460 ARM_PCS_AAPCS, /* Base standard AAPCS. */
1461 ARM_PCS_AAPCS_VFP, /* Use VFP registers for floating point values. */
1462 ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors. */
1463 /* This must be the last AAPCS variant. */
1464 ARM_PCS_AAPCS_LOCAL, /* Private call within this compilation unit. */
1465 ARM_PCS_ATPCS, /* ATPCS. */
1466 ARM_PCS_APCS, /* APCS (legacy Linux etc). */
1467 ARM_PCS_UNKNOWN
1468 };
1469
1470 /* Default procedure calling standard of current compilation unit. */
1471 extern enum arm_pcs arm_pcs_default;
1472
1473 /* A C type for declaring a variable that is used as the first argument of
1474 `FUNCTION_ARG' and other related values. */
1475 typedef struct
1476 {
1477 /* This is the number of registers of arguments scanned so far. */
1478 int nregs;
1479 /* This is the number of iWMMXt register arguments scanned so far. */
1480 int iwmmxt_nregs;
1481 int named_count;
1482 int nargs;
1483 /* Which procedure call variant to use for this call. */
1484 enum arm_pcs pcs_variant;
1485
1486 /* AAPCS related state tracking. */
1487 int aapcs_arg_processed; /* No need to lay out this argument again. */
1488 int aapcs_cprc_slot; /* Index of co-processor rules to handle
1489 this argument, or -1 if using core
1490 registers. */
1491 int aapcs_ncrn;
1492 int aapcs_next_ncrn;
1493 rtx aapcs_reg; /* Register assigned to this argument. */
1494 int aapcs_partial; /* How many bytes are passed in regs (if
1495 split between core regs and stack.
1496 Zero otherwise. */
1497 int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1498 int can_split; /* Argument can be split between core regs
1499 and the stack. */
1500 /* Private data for tracking VFP register allocation */
1501 unsigned aapcs_vfp_regs_free;
1502 unsigned aapcs_vfp_reg_alloc;
1503 int aapcs_vfp_rcount;
1504 MACHMODE aapcs_vfp_rmode;
1505 } CUMULATIVE_ARGS;
1506
1507 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1508 (arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
1509
1510 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1511 (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
1512
1513 /* For AAPCS, padding should never be below the argument. For other ABIs,
1514 * mimic the default. */
1515 #define PAD_VARARGS_DOWN \
1516 ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1517
1518 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1519 for a call to a function whose data type is FNTYPE.
1520 For a library call, FNTYPE is 0.
1521 On the ARM, the offset starts at 0. */
1522 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1523 arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1524
1525 /* 1 if N is a possible register number for function argument passing.
1526 On the ARM, r0-r3 are used to pass args. */
1527 #define FUNCTION_ARG_REGNO_P(REGNO) \
1528 (IN_RANGE ((REGNO), 0, 3) \
1529 || (TARGET_AAPCS_BASED && TARGET_VFP && TARGET_HARD_FLOAT \
1530 && IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15)) \
1531 || (TARGET_IWMMXT_ABI \
1532 && IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1533
1534 \f
1535 /* If your target environment doesn't prefix user functions with an
1536 underscore, you may wish to re-define this to prevent any conflicts. */
1537 #ifndef ARM_MCOUNT_NAME
1538 #define ARM_MCOUNT_NAME "*mcount"
1539 #endif
1540
1541 /* Call the function profiler with a given profile label. The Acorn
1542 compiler puts this BEFORE the prolog but gcc puts it afterwards.
1543 On the ARM the full profile code will look like:
1544 .data
1545 LP1
1546 .word 0
1547 .text
1548 mov ip, lr
1549 bl mcount
1550 .word LP1
1551
1552 profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1553 will output the .text section.
1554
1555 The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1556 ``prof'' doesn't seem to mind about this!
1557
1558 Note - this version of the code is designed to work in both ARM and
1559 Thumb modes. */
1560 #ifndef ARM_FUNCTION_PROFILER
1561 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
1562 { \
1563 char temp[20]; \
1564 rtx sym; \
1565 \
1566 asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
1567 IP_REGNUM, LR_REGNUM); \
1568 assemble_name (STREAM, ARM_MCOUNT_NAME); \
1569 fputc ('\n', STREAM); \
1570 ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
1571 sym = gen_rtx_SYMBOL_REF (Pmode, temp); \
1572 assemble_aligned_integer (UNITS_PER_WORD, sym); \
1573 }
1574 #endif
1575
1576 #ifdef THUMB_FUNCTION_PROFILER
1577 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1578 if (TARGET_ARM) \
1579 ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
1580 else \
1581 THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1582 #else
1583 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1584 ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1585 #endif
1586
1587 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1588 the stack pointer does not matter. The value is tested only in
1589 functions that have frame pointers.
1590 No definition is equivalent to always zero.
1591
1592 On the ARM, the function epilogue recovers the stack pointer from the
1593 frame. */
1594 #define EXIT_IGNORE_STACK 1
1595
1596 #define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNUM)
1597
1598 /* Determine if the epilogue should be output as RTL.
1599 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1600 #define USE_RETURN_INSN(ISCOND) \
1601 (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1602
1603 /* Definitions for register eliminations.
1604
1605 This is an array of structures. Each structure initializes one pair
1606 of eliminable registers. The "from" register number is given first,
1607 followed by "to". Eliminations of the same "from" register are listed
1608 in order of preference.
1609
1610 We have two registers that can be eliminated on the ARM. First, the
1611 arg pointer register can often be eliminated in favor of the stack
1612 pointer register. Secondly, the pseudo frame pointer register can always
1613 be eliminated; it is replaced with either the stack or the real frame
1614 pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1615 because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
1616
1617 #define ELIMINABLE_REGS \
1618 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1619 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
1620 { ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1621 { ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
1622 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1623 { FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1624 { FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
1625
1626 /* Define the offset between two registers, one to be eliminated, and the
1627 other its replacement, at the start of a routine. */
1628 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1629 if (TARGET_ARM) \
1630 (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
1631 else \
1632 (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1633
1634 /* Special case handling of the location of arguments passed on the stack. */
1635 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1636
1637 /* Initialize data used by insn expanders. This is called from insn_emit,
1638 once for every function before code is generated. */
1639 #define INIT_EXPANDERS arm_init_expanders ()
1640
1641 /* Length in units of the trampoline for entering a nested function. */
1642 #define TRAMPOLINE_SIZE (TARGET_32BIT ? 16 : 20)
1643
1644 /* Alignment required for a trampoline in bits. */
1645 #define TRAMPOLINE_ALIGNMENT 32
1646 \f
1647 /* Addressing modes, and classification of registers for them. */
1648 #define HAVE_POST_INCREMENT 1
1649 #define HAVE_PRE_INCREMENT TARGET_32BIT
1650 #define HAVE_POST_DECREMENT TARGET_32BIT
1651 #define HAVE_PRE_DECREMENT TARGET_32BIT
1652 #define HAVE_PRE_MODIFY_DISP TARGET_32BIT
1653 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1654 #define HAVE_PRE_MODIFY_REG TARGET_32BIT
1655 #define HAVE_POST_MODIFY_REG TARGET_32BIT
1656
1657 /* Macros to check register numbers against specific register classes. */
1658
1659 /* These assume that REGNO is a hard or pseudo reg number.
1660 They give nonzero only if REGNO is a hard reg of the suitable class
1661 or a pseudo reg currently allocated to a suitable hard reg.
1662 Since they use reg_renumber, they are safe only once reg_renumber
1663 has been allocated, which happens in local-alloc.c. */
1664 #define TEST_REGNO(R, TEST, VALUE) \
1665 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1666
1667 /* Don't allow the pc to be used. */
1668 #define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
1669 (TEST_REGNO (REGNO, <, PC_REGNUM) \
1670 || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
1671 || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1672
1673 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1674 (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
1675 || (GET_MODE_SIZE (MODE) >= 4 \
1676 && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1677
1678 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1679 (TARGET_THUMB1 \
1680 ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
1681 : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1682
1683 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1684 For Thumb, we can not use SP + reg, so reject SP. */
1685 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1686 REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1687
1688 /* For ARM code, we don't care about the mode, but for Thumb, the index
1689 must be suitable for use in a QImode load. */
1690 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1691 (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1692 && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1693
1694 /* Maximum number of registers that can appear in a valid memory address.
1695 Shifts in addresses can't be by a register. */
1696 #define MAX_REGS_PER_ADDRESS 2
1697
1698 /* Recognize any constant value that is a valid address. */
1699 /* XXX We can address any constant, eventually... */
1700 /* ??? Should the TARGET_ARM here also apply to thumb2? */
1701 #define CONSTANT_ADDRESS_P(X) \
1702 (GET_CODE (X) == SYMBOL_REF \
1703 && (CONSTANT_POOL_ADDRESS_P (X) \
1704 || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1705
1706 /* True if SYMBOL + OFFSET constants must refer to something within
1707 SYMBOL's section. */
1708 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1709
1710 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32. */
1711 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1712 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1713 #endif
1714
1715 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1716 #define SUBTARGET_NAME_ENCODING_LENGTHS
1717 #endif
1718
1719 /* This is a C fragment for the inside of a switch statement.
1720 Each case label should return the number of characters to
1721 be stripped from the start of a function's name, if that
1722 name starts with the indicated character. */
1723 #define ARM_NAME_ENCODING_LENGTHS \
1724 case '*': return 1; \
1725 SUBTARGET_NAME_ENCODING_LENGTHS
1726
1727 /* This is how to output a reference to a user-level label named NAME.
1728 `assemble_name' uses this. */
1729 #undef ASM_OUTPUT_LABELREF
1730 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1731 arm_asm_output_labelref (FILE, NAME)
1732
1733 /* Output IT instructions for conditionally executed Thumb-2 instructions. */
1734 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1735 if (TARGET_THUMB2) \
1736 thumb2_asm_output_opcode (STREAM);
1737
1738 /* The EABI specifies that constructors should go in .init_array.
1739 Other targets use .ctors for compatibility. */
1740 #ifndef ARM_EABI_CTORS_SECTION_OP
1741 #define ARM_EABI_CTORS_SECTION_OP \
1742 "\t.section\t.init_array,\"aw\",%init_array"
1743 #endif
1744 #ifndef ARM_EABI_DTORS_SECTION_OP
1745 #define ARM_EABI_DTORS_SECTION_OP \
1746 "\t.section\t.fini_array,\"aw\",%fini_array"
1747 #endif
1748 #define ARM_CTORS_SECTION_OP \
1749 "\t.section\t.ctors,\"aw\",%progbits"
1750 #define ARM_DTORS_SECTION_OP \
1751 "\t.section\t.dtors,\"aw\",%progbits"
1752
1753 /* Define CTORS_SECTION_ASM_OP. */
1754 #undef CTORS_SECTION_ASM_OP
1755 #undef DTORS_SECTION_ASM_OP
1756 #ifndef IN_LIBGCC2
1757 # define CTORS_SECTION_ASM_OP \
1758 (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1759 # define DTORS_SECTION_ASM_OP \
1760 (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1761 #else /* !defined (IN_LIBGCC2) */
1762 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1763 so we cannot use the definition above. */
1764 # ifdef __ARM_EABI__
1765 /* The .ctors section is not part of the EABI, so we do not define
1766 CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1767 from trying to use it. We do define it when doing normal
1768 compilation, as .init_array can be used instead of .ctors. */
1769 /* There is no need to emit begin or end markers when using
1770 init_array; the dynamic linker will compute the size of the
1771 array itself based on special symbols created by the static
1772 linker. However, we do need to arrange to set up
1773 exception-handling here. */
1774 # define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1775 # define CTOR_LIST_END /* empty */
1776 # define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1777 # define DTOR_LIST_END /* empty */
1778 # else /* !defined (__ARM_EABI__) */
1779 # define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1780 # define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1781 # endif /* !defined (__ARM_EABI__) */
1782 #endif /* !defined (IN_LIBCC2) */
1783
1784 /* True if the operating system can merge entities with vague linkage
1785 (e.g., symbols in COMDAT group) during dynamic linking. */
1786 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1787 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1788 #endif
1789
1790 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1791
1792 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1793 and check its validity for a certain class.
1794 We have two alternate definitions for each of them.
1795 The usual definition accepts all pseudo regs; the other rejects
1796 them unless they have been allocated suitable hard regs.
1797 The symbol REG_OK_STRICT causes the latter definition to be used.
1798 Thumb-2 has the same restrictions as arm. */
1799 #ifndef REG_OK_STRICT
1800
1801 #define ARM_REG_OK_FOR_BASE_P(X) \
1802 (REGNO (X) <= LAST_ARM_REGNUM \
1803 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1804 || REGNO (X) == FRAME_POINTER_REGNUM \
1805 || REGNO (X) == ARG_POINTER_REGNUM)
1806
1807 #define ARM_REG_OK_FOR_INDEX_P(X) \
1808 ((REGNO (X) <= LAST_ARM_REGNUM \
1809 && REGNO (X) != STACK_POINTER_REGNUM) \
1810 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1811 || REGNO (X) == FRAME_POINTER_REGNUM \
1812 || REGNO (X) == ARG_POINTER_REGNUM)
1813
1814 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1815 (REGNO (X) <= LAST_LO_REGNUM \
1816 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1817 || (GET_MODE_SIZE (MODE) >= 4 \
1818 && (REGNO (X) == STACK_POINTER_REGNUM \
1819 || (X) == hard_frame_pointer_rtx \
1820 || (X) == arg_pointer_rtx)))
1821
1822 #define REG_STRICT_P 0
1823
1824 #else /* REG_OK_STRICT */
1825
1826 #define ARM_REG_OK_FOR_BASE_P(X) \
1827 ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1828
1829 #define ARM_REG_OK_FOR_INDEX_P(X) \
1830 ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1831
1832 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1833 THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1834
1835 #define REG_STRICT_P 1
1836
1837 #endif /* REG_OK_STRICT */
1838
1839 /* Now define some helpers in terms of the above. */
1840
1841 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1842 (TARGET_THUMB1 \
1843 ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE) \
1844 : ARM_REG_OK_FOR_BASE_P (X))
1845
1846 /* For 16-bit Thumb, a valid index register is anything that can be used in
1847 a byte load instruction. */
1848 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
1849 THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
1850
1851 /* Nonzero if X is a hard reg that can be used as an index
1852 or if it is a pseudo reg. On the Thumb, the stack pointer
1853 is not suitable. */
1854 #define REG_OK_FOR_INDEX_P(X) \
1855 (TARGET_THUMB1 \
1856 ? THUMB1_REG_OK_FOR_INDEX_P (X) \
1857 : ARM_REG_OK_FOR_INDEX_P (X))
1858
1859 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1860 For Thumb, we can not use SP + reg, so reject SP. */
1861 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1862 REG_OK_FOR_INDEX_P (X)
1863 \f
1864 #define ARM_BASE_REGISTER_RTX_P(X) \
1865 (GET_CODE (X) == REG && ARM_REG_OK_FOR_BASE_P (X))
1866
1867 #define ARM_INDEX_REGISTER_RTX_P(X) \
1868 (GET_CODE (X) == REG && ARM_REG_OK_FOR_INDEX_P (X))
1869 \f
1870 /* Specify the machine mode that this machine uses
1871 for the index in the tablejump instruction. */
1872 #define CASE_VECTOR_MODE Pmode
1873
1874 #define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2 \
1875 || (TARGET_THUMB1 \
1876 && (optimize_size || flag_pic)))
1877
1878 #define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
1879 (TARGET_THUMB1 \
1880 ? (min >= 0 && max < 512 \
1881 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode) \
1882 : min >= -256 && max < 256 \
1883 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode) \
1884 : min >= 0 && max < 8192 \
1885 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode) \
1886 : min >= -4096 && max < 4096 \
1887 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode) \
1888 : SImode) \
1889 : ((min < 0 || max >= 0x2000 || !TARGET_THUMB2) ? SImode \
1890 : (max >= 0x200) ? HImode \
1891 : QImode))
1892
1893 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
1894 unsigned is probably best, but may break some code. */
1895 #ifndef DEFAULT_SIGNED_CHAR
1896 #define DEFAULT_SIGNED_CHAR 0
1897 #endif
1898
1899 /* Max number of bytes we can move from memory to memory
1900 in one reasonably fast instruction. */
1901 #define MOVE_MAX 4
1902
1903 #undef MOVE_RATIO
1904 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
1905
1906 /* Define if operations between registers always perform the operation
1907 on the full register even if a narrower mode is specified. */
1908 #define WORD_REGISTER_OPERATIONS
1909
1910 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1911 will either zero-extend or sign-extend. The value of this macro should
1912 be the code that says which one of the two operations is implicitly
1913 done, UNKNOWN if none. */
1914 #define LOAD_EXTEND_OP(MODE) \
1915 (TARGET_THUMB ? ZERO_EXTEND : \
1916 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
1917 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
1918
1919 /* Nonzero if access to memory by bytes is slow and undesirable. */
1920 #define SLOW_BYTE_ACCESS 0
1921
1922 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
1923
1924 /* Immediate shift counts are truncated by the output routines (or was it
1925 the assembler?). Shift counts in a register are truncated by ARM. Note
1926 that the native compiler puts too large (> 32) immediate shift counts
1927 into a register and shifts by the register, letting the ARM decide what
1928 to do instead of doing that itself. */
1929 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
1930 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
1931 On the arm, Y in a register is used modulo 256 for the shift. Only for
1932 rotates is modulo 32 used. */
1933 /* #define SHIFT_COUNT_TRUNCATED 1 */
1934
1935 /* All integers have the same format so truncation is easy. */
1936 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1937
1938 /* Calling from registers is a massive pain. */
1939 #define NO_FUNCTION_CSE 1
1940
1941 /* The machine modes of pointers and functions */
1942 #define Pmode SImode
1943 #define FUNCTION_MODE Pmode
1944
1945 #define ARM_FRAME_RTX(X) \
1946 ( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
1947 || (X) == arg_pointer_rtx)
1948
1949 /* Moves to and from memory are quite expensive */
1950 #define MEMORY_MOVE_COST(M, CLASS, IN) \
1951 (TARGET_32BIT ? 10 : \
1952 ((GET_MODE_SIZE (M) < 4 ? 8 : 2 * GET_MODE_SIZE (M)) \
1953 * (CLASS == LO_REGS ? 1 : 2)))
1954
1955 /* Try to generate sequences that don't involve branches, we can then use
1956 conditional instructions */
1957 #define BRANCH_COST(speed_p, predictable_p) \
1958 (TARGET_32BIT ? (TARGET_THUMB2 && !speed_p ? 1 : 4) \
1959 : (optimize > 0 ? 2 : 0))
1960 \f
1961 /* Position Independent Code. */
1962 /* We decide which register to use based on the compilation options and
1963 the assembler in use; this is more general than the APCS restriction of
1964 using sb (r9) all the time. */
1965 extern unsigned arm_pic_register;
1966
1967 /* The register number of the register used to address a table of static
1968 data addresses in memory. */
1969 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
1970
1971 /* We can't directly access anything that contains a symbol,
1972 nor can we indirect via the constant pool. One exception is
1973 UNSPEC_TLS, which is always PIC. */
1974 #define LEGITIMATE_PIC_OPERAND_P(X) \
1975 (!(symbol_mentioned_p (X) \
1976 || label_mentioned_p (X) \
1977 || (GET_CODE (X) == SYMBOL_REF \
1978 && CONSTANT_POOL_ADDRESS_P (X) \
1979 && (symbol_mentioned_p (get_pool_constant (X)) \
1980 || label_mentioned_p (get_pool_constant (X))))) \
1981 || tls_mentioned_p (X))
1982
1983 /* We need to know when we are making a constant pool; this determines
1984 whether data needs to be in the GOT or can be referenced via a GOT
1985 offset. */
1986 extern int making_const_table;
1987 \f
1988 /* Handle pragmas for compatibility with Intel's compilers. */
1989 /* Also abuse this to register additional C specific EABI attributes. */
1990 #define REGISTER_TARGET_PRAGMAS() do { \
1991 c_register_pragma (0, "long_calls", arm_pr_long_calls); \
1992 c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \
1993 c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \
1994 arm_lang_object_attributes_init(); \
1995 } while (0)
1996
1997 /* Condition code information. */
1998 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1999 return the mode to be used for the comparison. */
2000
2001 #define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
2002
2003 #define REVERSIBLE_CC_MODE(MODE) 1
2004
2005 #define REVERSE_CONDITION(CODE,MODE) \
2006 (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2007 ? reverse_condition_maybe_unordered (code) \
2008 : reverse_condition (code))
2009
2010 #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
2011 (CODE) = arm_canonicalize_comparison (CODE, &(OP0), &(OP1))
2012
2013 /* The arm5 clz instruction returns 32. */
2014 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
2015 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
2016 \f
2017 #define CC_STATUS_INIT \
2018 do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2019
2020 #undef ASM_APP_OFF
2021 #define ASM_APP_OFF (TARGET_THUMB1 ? "\t.code\t16\n" : \
2022 TARGET_THUMB2 ? "\t.thumb\n" : "")
2023
2024 /* Output a push or a pop instruction (only used when profiling).
2025 We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1. We know
2026 that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2027 that r7 isn't used by the function profiler, so we can use it as a
2028 scratch reg. WARNING: This isn't safe in the general case! It may be
2029 sensitive to future changes in final.c:profile_function. */
2030 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
2031 do \
2032 { \
2033 if (TARGET_ARM) \
2034 asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n", \
2035 STACK_POINTER_REGNUM, REGNO); \
2036 else if (TARGET_THUMB1 \
2037 && (REGNO) == STATIC_CHAIN_REGNUM) \
2038 { \
2039 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2040 asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2041 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2042 } \
2043 else \
2044 asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \
2045 } while (0)
2046
2047
2048 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue. */
2049 #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
2050 do \
2051 { \
2052 if (TARGET_ARM) \
2053 asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n", \
2054 STACK_POINTER_REGNUM, REGNO); \
2055 else if (TARGET_THUMB1 \
2056 && (REGNO) == STATIC_CHAIN_REGNUM) \
2057 { \
2058 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2059 asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2060 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2061 } \
2062 else \
2063 asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \
2064 } while (0)
2065
2066 /* Jump table alignment is explicit in ASM_OUTPUT_CASE_LABEL. */
2067 #define ADDR_VEC_ALIGN(JUMPTABLE) 0
2068
2069 /* This is how to output a label which precedes a jumptable. Since
2070 Thumb instructions are 2 bytes, we may need explicit alignment here. */
2071 #undef ASM_OUTPUT_CASE_LABEL
2072 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, JUMPTABLE) \
2073 do \
2074 { \
2075 if (TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) \
2076 ASM_OUTPUT_ALIGN (FILE, 2); \
2077 (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); \
2078 } \
2079 while (0)
2080
2081 /* Make sure subsequent insns are aligned after a TBB. */
2082 #define ASM_OUTPUT_CASE_END(FILE, NUM, JUMPTABLE) \
2083 do \
2084 { \
2085 if (GET_MODE (PATTERN (JUMPTABLE)) == QImode) \
2086 ASM_OUTPUT_ALIGN (FILE, 1); \
2087 } \
2088 while (0)
2089
2090 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
2091 do \
2092 { \
2093 if (TARGET_THUMB) \
2094 { \
2095 if (is_called_in_ARM_mode (DECL) \
2096 || (TARGET_THUMB1 && !TARGET_THUMB1_ONLY \
2097 && cfun->is_thunk)) \
2098 fprintf (STREAM, "\t.code 32\n") ; \
2099 else if (TARGET_THUMB1) \
2100 fprintf (STREAM, "\t.code\t16\n\t.thumb_func\n") ; \
2101 else \
2102 fprintf (STREAM, "\t.thumb\n\t.thumb_func\n") ; \
2103 } \
2104 if (TARGET_POKE_FUNCTION_NAME) \
2105 arm_poke_function_name (STREAM, (const char *) NAME); \
2106 } \
2107 while (0)
2108
2109 /* For aliases of functions we use .thumb_set instead. */
2110 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
2111 do \
2112 { \
2113 const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2114 const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
2115 \
2116 if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
2117 { \
2118 fprintf (FILE, "\t.thumb_set "); \
2119 assemble_name (FILE, LABEL1); \
2120 fprintf (FILE, ","); \
2121 assemble_name (FILE, LABEL2); \
2122 fprintf (FILE, "\n"); \
2123 } \
2124 else \
2125 ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
2126 } \
2127 while (0)
2128
2129 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2130 /* To support -falign-* switches we need to use .p2align so
2131 that alignment directives in code sections will be padded
2132 with no-op instructions, rather than zeroes. */
2133 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \
2134 if ((LOG) != 0) \
2135 { \
2136 if ((MAX_SKIP) == 0) \
2137 fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \
2138 else \
2139 fprintf ((FILE), "\t.p2align %d,,%d\n", \
2140 (int) (LOG), (int) (MAX_SKIP)); \
2141 }
2142 #endif
2143 \f
2144 /* Add two bytes to the length of conditionally executed Thumb-2
2145 instructions for the IT instruction. */
2146 #define ADJUST_INSN_LENGTH(insn, length) \
2147 if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2148 length += 2;
2149
2150 /* Only perform branch elimination (by making instructions conditional) if
2151 we're optimizing. For Thumb-2 check if any IT instructions need
2152 outputting. */
2153 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2154 if (TARGET_ARM && optimize) \
2155 arm_final_prescan_insn (INSN); \
2156 else if (TARGET_THUMB2) \
2157 thumb2_final_prescan_insn (INSN); \
2158 else if (TARGET_THUMB1) \
2159 thumb1_final_prescan_insn (INSN)
2160
2161 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
2162 (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
2163 : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2164 ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2165 ? ((~ (unsigned HOST_WIDE_INT) 0) \
2166 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
2167 : 0))))
2168
2169 /* A C expression whose value is RTL representing the value of the return
2170 address for the frame COUNT steps up from the current frame. */
2171
2172 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2173 arm_return_addr (COUNT, FRAME)
2174
2175 /* Mask of the bits in the PC that contain the real return address
2176 when running in 26-bit mode. */
2177 #define RETURN_ADDR_MASK26 (0x03fffffc)
2178
2179 /* Pick up the return address upon entry to a procedure. Used for
2180 dwarf2 unwind information. This also enables the table driven
2181 mechanism. */
2182 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
2183 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
2184
2185 /* Used to mask out junk bits from the return address, such as
2186 processor state, interrupt status, condition codes and the like. */
2187 #define MASK_RETURN_ADDR \
2188 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
2189 in 26 bit mode, the condition codes must be masked out of the \
2190 return address. This does not apply to ARM6 and later processors \
2191 when running in 32 bit mode. */ \
2192 ((arm_arch4 || TARGET_THUMB) \
2193 ? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \
2194 : arm_gen_return_addr_mask ())
2195
2196 \f
2197 /* Do not emit .note.GNU-stack by default. */
2198 #ifndef NEED_INDICATE_EXEC_STACK
2199 #define NEED_INDICATE_EXEC_STACK 0
2200 #endif
2201
2202 /* The maximum number of parallel loads or stores we support in an ldm/stm
2203 instruction. */
2204 #define MAX_LDM_STM_OPS 4
2205
2206 #endif /* ! GCC_ARM_H */