a1a04a94ef2f584d23f2819da8e349ba528691f4
[gcc.git] / gcc / config / arm / arm.h
1 /* Definitions of target machine for GNU compiler, for ARM.
2 Copyright (C) 1991-2015 Free Software Foundation, Inc.
3 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
4 and Martin Simmons (@harleqn.co.uk).
5 More major hacks by Richard Earnshaw (rearnsha@arm.com)
6 Minor hacks by Nick Clifton (nickc@cygnus.com)
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published
12 by the Free Software Foundation; either version 3, or (at your
13 option) any later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
18 License for more details.
19
20 Under Section 7 of GPL version 3, you are granted additional
21 permissions described in the GCC Runtime Library Exception, version
22 3.1, as published by the Free Software Foundation.
23
24 You should have received a copy of the GNU General Public License and
25 a copy of the GCC Runtime Library Exception along with this program;
26 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
27 <http://www.gnu.org/licenses/>. */
28
29 #ifndef GCC_ARM_H
30 #define GCC_ARM_H
31
32 /* We can't use machine_mode inside a generator file because it
33 hasn't been created yet; we shouldn't be using any code that
34 needs the real definition though, so this ought to be safe. */
35 #ifdef GENERATOR_FILE
36 #define MACHMODE int
37 #else
38 #include "insn-modes.h"
39 #define MACHMODE machine_mode
40 #endif
41
42 #include "config/vxworks-dummy.h"
43
44 /* The architecture define. */
45 extern char arm_arch_name[];
46
47 /* Target CPU builtins. */
48 #define TARGET_CPU_CPP_BUILTINS() arm_cpu_cpp_builtins (pfile)
49
50 #include "config/arm/arm-opts.h"
51
52 enum target_cpus
53 {
54 #define ARM_CORE(NAME, INTERNAL_IDENT, IDENT, ARCH, FLAGS, COSTS) \
55 TARGET_CPU_##INTERNAL_IDENT,
56 #include "arm-cores.def"
57 #undef ARM_CORE
58 TARGET_CPU_generic
59 };
60
61 /* The processor for which instructions should be scheduled. */
62 extern enum processor_type arm_tune;
63
64 typedef enum arm_cond_code
65 {
66 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
67 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
68 }
69 arm_cc;
70
71 extern arm_cc arm_current_cc;
72
73 #define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
74
75 /* The maximum number of instructions that is beneficial to
76 conditionally execute. */
77 #undef MAX_CONDITIONAL_EXECUTE
78 #define MAX_CONDITIONAL_EXECUTE arm_max_conditional_execute ()
79
80 extern int arm_target_label;
81 extern int arm_ccfsm_state;
82 extern GTY(()) rtx arm_target_insn;
83 /* The label of the current constant pool. */
84 extern rtx pool_vector_label;
85 /* Set to 1 when a return insn is output, this means that the epilogue
86 is not needed. */
87 extern int return_used_this_function;
88 /* Callback to output language specific object attributes. */
89 extern void (*arm_lang_output_object_attributes_hook)(void);
90 \f
91 /* Just in case configure has failed to define anything. */
92 #ifndef TARGET_CPU_DEFAULT
93 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
94 #endif
95
96
97 #undef CPP_SPEC
98 #define CPP_SPEC "%(subtarget_cpp_spec) \
99 %{mfloat-abi=soft:%{mfloat-abi=hard: \
100 %e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
101 %{mbig-endian:%{mlittle-endian: \
102 %e-mbig-endian and -mlittle-endian may not be used together}}"
103
104 #ifndef CC1_SPEC
105 #define CC1_SPEC ""
106 #endif
107
108 /* This macro defines names of additional specifications to put in the specs
109 that can be used in various specifications like CC1_SPEC. Its definition
110 is an initializer with a subgrouping for each command option.
111
112 Each subgrouping contains a string constant, that defines the
113 specification name, and a string constant that used by the GCC driver
114 program.
115
116 Do not define this macro if it does not need to do anything. */
117 #define EXTRA_SPECS \
118 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
119 { "asm_cpu_spec", ASM_CPU_SPEC }, \
120 SUBTARGET_EXTRA_SPECS
121
122 #ifndef SUBTARGET_EXTRA_SPECS
123 #define SUBTARGET_EXTRA_SPECS
124 #endif
125
126 #ifndef SUBTARGET_CPP_SPEC
127 #define SUBTARGET_CPP_SPEC ""
128 #endif
129 \f
130 /* Tree Target Specification. */
131 #define TARGET_ARM_P(flags) (!TARGET_THUMB_P (flags))
132 #define TARGET_THUMB1_P(flags) (TARGET_THUMB_P (flags) && !arm_arch_thumb2)
133 #define TARGET_THUMB2_P(flags) (TARGET_THUMB_P (flags) && arm_arch_thumb2)
134
135 /* Run-time Target Specification. */
136 #define TARGET_SOFT_FLOAT (arm_float_abi == ARM_FLOAT_ABI_SOFT)
137 /* Use hardware floating point instructions. */
138 #define TARGET_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
139 /* Use hardware floating point calling convention. */
140 #define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD)
141 #define TARGET_VFP (arm_fpu_desc->model == ARM_FP_MODEL_VFP)
142 #define TARGET_IWMMXT (arm_arch_iwmmxt)
143 #define TARGET_IWMMXT2 (arm_arch_iwmmxt2)
144 #define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_32BIT)
145 #define TARGET_REALLY_IWMMXT2 (TARGET_IWMMXT2 && TARGET_32BIT)
146 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
147 #define TARGET_ARM (! TARGET_THUMB)
148 #define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
149 #define TARGET_BACKTRACE (leaf_function_p () \
150 ? TARGET_TPCS_LEAF_FRAME \
151 : TARGET_TPCS_FRAME)
152 #define TARGET_AAPCS_BASED \
153 (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
154
155 #define TARGET_HARD_TP (target_thread_pointer == TP_CP15)
156 #define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT)
157 #define TARGET_GNU2_TLS (target_tls_dialect == TLS_GNU2)
158
159 /* Only 16-bit thumb code. */
160 #define TARGET_THUMB1 (TARGET_THUMB && !arm_arch_thumb2)
161 /* Arm or Thumb-2 32-bit code. */
162 #define TARGET_32BIT (TARGET_ARM || arm_arch_thumb2)
163 /* 32-bit Thumb-2 code. */
164 #define TARGET_THUMB2 (TARGET_THUMB && arm_arch_thumb2)
165 /* Thumb-1 only. */
166 #define TARGET_THUMB1_ONLY (TARGET_THUMB1 && !arm_arch_notm)
167
168 #define TARGET_LDRD (arm_arch5e && ARM_DOUBLEWORD_ALIGN \
169 && !TARGET_THUMB1)
170
171 #define TARGET_CRC32 (arm_arch_crc)
172
173 /* The following two macros concern the ability to execute coprocessor
174 instructions for VFPv3 or NEON. TARGET_VFP3/TARGET_VFPD32 are currently
175 only ever tested when we know we are generating for VFP hardware; we need
176 to be more careful with TARGET_NEON as noted below. */
177
178 /* FPU is has the full VFPv3/NEON register file of 32 D registers. */
179 #define TARGET_VFPD32 (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_D32)
180
181 /* FPU supports VFPv3 instructions. */
182 #define TARGET_VFP3 (TARGET_VFP && arm_fpu_desc->rev >= 3)
183
184 /* FPU supports FPv5 instructions. */
185 #define TARGET_VFP5 (TARGET_VFP && arm_fpu_desc->rev >= 5)
186
187 /* FPU only supports VFP single-precision instructions. */
188 #define TARGET_VFP_SINGLE (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_SINGLE)
189
190 /* FPU supports VFP double-precision instructions. */
191 #define TARGET_VFP_DOUBLE (TARGET_VFP && arm_fpu_desc->regs != VFP_REG_SINGLE)
192
193 /* FPU supports half-precision floating-point with NEON element load/store. */
194 #define TARGET_NEON_FP16 \
195 (TARGET_VFP \
196 && ARM_FPU_FSET_HAS (arm_fpu_desc->features, FPU_FL_NEON | FPU_FL_FP16))
197
198 /* FPU supports VFP half-precision floating-point. */
199 #define TARGET_FP16 \
200 (TARGET_VFP && ARM_FPU_FSET_HAS (arm_fpu_desc->features, FPU_FL_FP16))
201
202 /* FPU supports fused-multiply-add operations. */
203 #define TARGET_FMA (TARGET_VFP && arm_fpu_desc->rev >= 4)
204
205 /* FPU is ARMv8 compatible. */
206 #define TARGET_FPU_ARMV8 (TARGET_VFP && arm_fpu_desc->rev >= 8)
207
208 /* FPU supports Crypto extensions. */
209 #define TARGET_CRYPTO \
210 (TARGET_VFP && ARM_FPU_FSET_HAS (arm_fpu_desc->features, FPU_FL_CRYPTO))
211
212
213 /* FPU supports Neon instructions. The setting of this macro gets
214 revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
215 and TARGET_HARD_FLOAT to ensure that NEON instructions are
216 available. */
217 #define TARGET_NEON \
218 (TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP \
219 && ARM_FPU_FSET_HAS (arm_fpu_desc->features, FPU_FL_NEON))
220
221 /* Q-bit is present. */
222 #define TARGET_ARM_QBIT \
223 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7))
224 /* Saturation operation, e.g. SSAT. */
225 #define TARGET_ARM_SAT \
226 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7))
227 /* "DSP" multiply instructions, eg. SMULxy. */
228 #define TARGET_DSP_MULTIPLY \
229 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7em))
230 /* Integer SIMD instructions, and extend-accumulate instructions. */
231 #define TARGET_INT_SIMD \
232 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
233
234 /* Should MOVW/MOVT be used in preference to a constant pool. */
235 #define TARGET_USE_MOVT \
236 (arm_arch_thumb2 \
237 && (arm_disable_literal_pool \
238 || (!optimize_size && !current_tune->prefer_constant_pool)))
239
240 /* Nonzero if this chip provides the DMB instruction. */
241 #define TARGET_HAVE_DMB (arm_arch6m || arm_arch7)
242
243 /* Nonzero if this chip implements a memory barrier via CP15. */
244 #define TARGET_HAVE_DMB_MCR (arm_arch6 && ! TARGET_HAVE_DMB \
245 && ! TARGET_THUMB1)
246
247 /* Nonzero if this chip implements a memory barrier instruction. */
248 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
249
250 /* Nonzero if this chip supports ldrex and strex */
251 #define TARGET_HAVE_LDREX ((arm_arch6 && TARGET_ARM) || arm_arch7)
252
253 /* Nonzero if this chip supports ldrex{bh} and strex{bh}. */
254 #define TARGET_HAVE_LDREXBH ((arm_arch6k && TARGET_ARM) || arm_arch7)
255
256 /* Nonzero if this chip supports ldrexd and strexd. */
257 #define TARGET_HAVE_LDREXD (((arm_arch6k && TARGET_ARM) \
258 || arm_arch7) && arm_arch_notm)
259
260 /* Nonzero if this chip supports load-acquire and store-release. */
261 #define TARGET_HAVE_LDACQ (TARGET_ARM_ARCH >= 8)
262
263 /* Nonzero if integer division instructions supported. */
264 #define TARGET_IDIV ((TARGET_ARM && arm_arch_arm_hwdiv) \
265 || (TARGET_THUMB2 && arm_arch_thumb_hwdiv))
266
267 /* Nonzero if disallow volatile memory access in IT block. */
268 #define TARGET_NO_VOLATILE_CE (arm_arch_no_volatile_ce)
269
270 /* Should NEON be used for 64-bits bitops. */
271 #define TARGET_PREFER_NEON_64BITS (prefer_neon_for_64bits)
272
273 /* Should constant I be slplit for OP. */
274 #define DONT_EARLY_SPLIT_CONSTANT(i, op) \
275 ((optimize >= 2) \
276 && can_create_pseudo_p () \
277 && !const_ok_for_op (i, op))
278
279 /* True iff the full BPABI is being used. If TARGET_BPABI is true,
280 then TARGET_AAPCS_BASED must be true -- but the converse does not
281 hold. TARGET_BPABI implies the use of the BPABI runtime library,
282 etc., in addition to just the AAPCS calling conventions. */
283 #ifndef TARGET_BPABI
284 #define TARGET_BPABI false
285 #endif
286
287 /* Support for a compile-time default CPU, et cetera. The rules are:
288 --with-arch is ignored if -march or -mcpu are specified.
289 --with-cpu is ignored if -march or -mcpu are specified, and is overridden
290 by --with-arch.
291 --with-tune is ignored if -mtune or -mcpu are specified (but not affected
292 by -march).
293 --with-float is ignored if -mfloat-abi is specified.
294 --with-fpu is ignored if -mfpu is specified.
295 --with-abi is ignored if -mabi is specified.
296 --with-tls is ignored if -mtls-dialect is specified. */
297 #define OPTION_DEFAULT_SPECS \
298 {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
299 {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
300 {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
301 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
302 {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
303 {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
304 {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"}, \
305 {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"},
306
307 /* FPU feature sets. */
308
309 typedef unsigned long arm_fpu_feature_set;
310
311 /* Test for an FPU feature. */
312 #define ARM_FPU_FSET_HAS(S,F) (((S) & (F)) == (F))
313
314 /* FPU Features. */
315 #define FPU_FL_NONE (0)
316 #define FPU_FL_NEON (1 << 0) /* NEON instructions. */
317 #define FPU_FL_FP16 (1 << 1) /* Half-precision. */
318 #define FPU_FL_CRYPTO (1 << 2) /* Crypto extensions. */
319
320 /* Which floating point model to use. */
321 enum arm_fp_model
322 {
323 ARM_FP_MODEL_UNKNOWN,
324 /* VFP floating point model. */
325 ARM_FP_MODEL_VFP
326 };
327
328 enum vfp_reg_type
329 {
330 VFP_NONE = 0,
331 VFP_REG_D16,
332 VFP_REG_D32,
333 VFP_REG_SINGLE
334 };
335
336 extern const struct arm_fpu_desc
337 {
338 const char *name;
339 enum arm_fp_model model;
340 int rev;
341 enum vfp_reg_type regs;
342 arm_fpu_feature_set features;
343 } *arm_fpu_desc;
344
345 /* Which floating point hardware to schedule for. */
346 extern int arm_fpu_attr;
347
348 #ifndef TARGET_DEFAULT_FLOAT_ABI
349 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
350 #endif
351
352 #ifndef ARM_DEFAULT_ABI
353 #define ARM_DEFAULT_ABI ARM_ABI_APCS
354 #endif
355
356 /* Map each of the micro-architecture variants to their corresponding
357 major architecture revision. */
358
359 enum base_architecture
360 {
361 BASE_ARCH_0 = 0,
362 BASE_ARCH_2 = 2,
363 BASE_ARCH_3 = 3,
364 BASE_ARCH_3M = 3,
365 BASE_ARCH_4 = 4,
366 BASE_ARCH_4T = 4,
367 BASE_ARCH_5 = 5,
368 BASE_ARCH_5E = 5,
369 BASE_ARCH_5T = 5,
370 BASE_ARCH_5TE = 5,
371 BASE_ARCH_5TEJ = 5,
372 BASE_ARCH_6 = 6,
373 BASE_ARCH_6J = 6,
374 BASE_ARCH_6KZ = 6,
375 BASE_ARCH_6K = 6,
376 BASE_ARCH_6T2 = 6,
377 BASE_ARCH_6M = 6,
378 BASE_ARCH_6Z = 6,
379 BASE_ARCH_7 = 7,
380 BASE_ARCH_7A = 7,
381 BASE_ARCH_7R = 7,
382 BASE_ARCH_7M = 7,
383 BASE_ARCH_7EM = 7,
384 BASE_ARCH_8A = 8
385 };
386
387 /* The major revision number of the ARM Architecture implemented by the target. */
388 extern enum base_architecture arm_base_arch;
389
390 /* Nonzero if this chip supports the ARM Architecture 3M extensions. */
391 extern int arm_arch3m;
392
393 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */
394 extern int arm_arch4;
395
396 /* Nonzero if this chip supports the ARM Architecture 4T extensions. */
397 extern int arm_arch4t;
398
399 /* Nonzero if this chip supports the ARM Architecture 5 extensions. */
400 extern int arm_arch5;
401
402 /* Nonzero if this chip supports the ARM Architecture 5E extensions. */
403 extern int arm_arch5e;
404
405 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */
406 extern int arm_arch6;
407
408 /* Nonzero if this chip supports the ARM Architecture 6k extensions. */
409 extern int arm_arch6k;
410
411 /* Nonzero if instructions present in ARMv6-M can be used. */
412 extern int arm_arch6m;
413
414 /* Nonzero if this chip supports the ARM Architecture 7 extensions. */
415 extern int arm_arch7;
416
417 /* Nonzero if instructions not present in the 'M' profile can be used. */
418 extern int arm_arch_notm;
419
420 /* Nonzero if instructions present in ARMv7E-M can be used. */
421 extern int arm_arch7em;
422
423 /* Nonzero if this chip supports the ARM Architecture 8 extensions. */
424 extern int arm_arch8;
425
426 /* Nonzero if this chip can benefit from load scheduling. */
427 extern int arm_ld_sched;
428
429 /* Nonzero if this chip is a StrongARM. */
430 extern int arm_tune_strongarm;
431
432 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */
433 extern int arm_arch_iwmmxt;
434
435 /* Nonzero if this chip supports Intel Wireless MMX2 technology. */
436 extern int arm_arch_iwmmxt2;
437
438 /* Nonzero if this chip is an XScale. */
439 extern int arm_arch_xscale;
440
441 /* Nonzero if tuning for XScale. */
442 extern int arm_tune_xscale;
443
444 /* Nonzero if tuning for stores via the write buffer. */
445 extern int arm_tune_wbuf;
446
447 /* Nonzero if tuning for Cortex-A9. */
448 extern int arm_tune_cortex_a9;
449
450 /* Nonzero if we should define __THUMB_INTERWORK__ in the
451 preprocessor.
452 XXX This is a bit of a hack, it's intended to help work around
453 problems in GLD which doesn't understand that armv5t code is
454 interworking clean. */
455 extern int arm_cpp_interwork;
456
457 /* Nonzero if chip supports Thumb 2. */
458 extern int arm_arch_thumb2;
459
460 /* Nonzero if chip supports integer division instruction in ARM mode. */
461 extern int arm_arch_arm_hwdiv;
462
463 /* Nonzero if chip supports integer division instruction in Thumb mode. */
464 extern int arm_arch_thumb_hwdiv;
465
466 /* Nonzero if chip disallows volatile memory access in IT block. */
467 extern int arm_arch_no_volatile_ce;
468
469 /* Nonzero if we should use Neon to handle 64-bits operations rather
470 than core registers. */
471 extern int prefer_neon_for_64bits;
472
473 /* Nonzero if we shouldn't use literal pools. */
474 #ifndef USED_FOR_TARGET
475 extern bool arm_disable_literal_pool;
476 #endif
477
478 /* Nonzero if chip supports the ARMv8 CRC instructions. */
479 extern int arm_arch_crc;
480
481 #ifndef TARGET_DEFAULT
482 #define TARGET_DEFAULT (MASK_APCS_FRAME)
483 #endif
484
485 /* Nonzero if PIC code requires explicit qualifiers to generate
486 PLT and GOT relocs rather than the assembler doing so implicitly.
487 Subtargets can override these if required. */
488 #ifndef NEED_GOT_RELOC
489 #define NEED_GOT_RELOC 0
490 #endif
491 #ifndef NEED_PLT_RELOC
492 #define NEED_PLT_RELOC 0
493 #endif
494
495 #ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
496 #define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
497 #endif
498
499 /* Nonzero if we need to refer to the GOT with a PC-relative
500 offset. In other words, generate
501
502 .word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
503
504 rather than
505
506 .word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
507
508 The default is true, which matches NetBSD. Subtargets can
509 override this if required. */
510 #ifndef GOT_PCREL
511 #define GOT_PCREL 1
512 #endif
513 \f
514 /* Target machine storage Layout. */
515
516
517 /* Define this macro if it is advisable to hold scalars in registers
518 in a wider mode than that declared by the program. In such cases,
519 the value is constrained to be within the bounds of the declared
520 type, but kept valid in the wider mode. The signedness of the
521 extension may differ from that of the type. */
522
523 /* It is far faster to zero extend chars than to sign extend them */
524
525 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
526 if (GET_MODE_CLASS (MODE) == MODE_INT \
527 && GET_MODE_SIZE (MODE) < 4) \
528 { \
529 if (MODE == QImode) \
530 UNSIGNEDP = 1; \
531 else if (MODE == HImode) \
532 UNSIGNEDP = 1; \
533 (MODE) = SImode; \
534 }
535
536 /* Define this if most significant bit is lowest numbered
537 in instructions that operate on numbered bit-fields. */
538 #define BITS_BIG_ENDIAN 0
539
540 /* Define this if most significant byte of a word is the lowest numbered.
541 Most ARM processors are run in little endian mode, so that is the default.
542 If you want to have it run-time selectable, change the definition in a
543 cover file to be TARGET_BIG_ENDIAN. */
544 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
545
546 /* Define this if most significant word of a multiword number is the lowest
547 numbered. */
548 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN)
549
550 #define UNITS_PER_WORD 4
551
552 /* True if natural alignment is used for doubleword types. */
553 #define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED
554
555 #define DOUBLEWORD_ALIGNMENT 64
556
557 #define PARM_BOUNDARY 32
558
559 #define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
560
561 #define PREFERRED_STACK_BOUNDARY \
562 (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
563
564 #define FUNCTION_BOUNDARY_P(flags) (TARGET_THUMB_P (flags) ? 16 : 32)
565 #define FUNCTION_BOUNDARY (FUNCTION_BOUNDARY_P (target_flags))
566
567 /* The lowest bit is used to indicate Thumb-mode functions, so the
568 vbit must go into the delta field of pointers to member
569 functions. */
570 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
571
572 #define EMPTY_FIELD_BOUNDARY 32
573
574 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
575
576 #define MALLOC_ABI_ALIGNMENT BIGGEST_ALIGNMENT
577
578 /* XXX Blah -- this macro is used directly by libobjc. Since it
579 supports no vector modes, cut out the complexity and fall back
580 on BIGGEST_FIELD_ALIGNMENT. */
581 #ifdef IN_TARGET_LIBS
582 #define BIGGEST_FIELD_ALIGNMENT 64
583 #endif
584
585 /* Make strings word-aligned so strcpy from constants will be faster. */
586 #define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
587
588 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
589 ((TREE_CODE (EXP) == STRING_CST \
590 && !optimize_size \
591 && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR) \
592 ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
593
594 /* Align definitions of arrays, unions and structures so that
595 initializations and copies can be made more efficient. This is not
596 ABI-changing, so it only affects places where we can see the
597 definition. Increasing the alignment tends to introduce padding,
598 so don't do this when optimizing for size/conserving stack space. */
599 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \
600 (((COND) && ((ALIGN) < BITS_PER_WORD) \
601 && (TREE_CODE (EXP) == ARRAY_TYPE \
602 || TREE_CODE (EXP) == UNION_TYPE \
603 || TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
604
605 /* Align global data. */
606 #define DATA_ALIGNMENT(EXP, ALIGN) \
607 ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
608
609 /* Similarly, make sure that objects on the stack are sensibly aligned. */
610 #define LOCAL_ALIGNMENT(EXP, ALIGN) \
611 ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
612
613 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
614 value set in previous versions of this toolchain was 8, which produces more
615 compact structures. The command line option -mstructure_size_boundary=<n>
616 can be used to change this value. For compatibility with the ARM SDK
617 however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
618 0020D) page 2-20 says "Structures are aligned on word boundaries".
619 The AAPCS specifies a value of 8. */
620 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
621
622 /* This is the value used to initialize arm_structure_size_boundary. If a
623 particular arm target wants to change the default value it should change
624 the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h
625 for an example of this. */
626 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
627 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
628 #endif
629
630 /* Nonzero if move instructions will actually fail to work
631 when given unaligned data. */
632 #define STRICT_ALIGNMENT 1
633
634 /* wchar_t is unsigned under the AAPCS. */
635 #ifndef WCHAR_TYPE
636 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
637
638 #define WCHAR_TYPE_SIZE BITS_PER_WORD
639 #endif
640
641 /* Sized for fixed-point types. */
642
643 #define SHORT_FRACT_TYPE_SIZE 8
644 #define FRACT_TYPE_SIZE 16
645 #define LONG_FRACT_TYPE_SIZE 32
646 #define LONG_LONG_FRACT_TYPE_SIZE 64
647
648 #define SHORT_ACCUM_TYPE_SIZE 16
649 #define ACCUM_TYPE_SIZE 32
650 #define LONG_ACCUM_TYPE_SIZE 64
651 #define LONG_LONG_ACCUM_TYPE_SIZE 64
652
653 #define MAX_FIXED_MODE_SIZE 64
654
655 #ifndef SIZE_TYPE
656 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
657 #endif
658
659 #ifndef PTRDIFF_TYPE
660 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
661 #endif
662
663 /* AAPCS requires that structure alignment is affected by bitfields. */
664 #ifndef PCC_BITFIELD_TYPE_MATTERS
665 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
666 #endif
667
668 /* The maximum size of the sync library functions supported. */
669 #ifndef MAX_SYNC_LIBFUNC_SIZE
670 #define MAX_SYNC_LIBFUNC_SIZE (2 * UNITS_PER_WORD)
671 #endif
672
673 \f
674 /* Standard register usage. */
675
676 /* Register allocation in ARM Procedure Call Standard
677 (S - saved over call).
678
679 r0 * argument word/integer result
680 r1-r3 argument word
681
682 r4-r8 S register variable
683 r9 S (rfp) register variable (real frame pointer)
684
685 r10 F S (sl) stack limit (used by -mapcs-stack-check)
686 r11 F S (fp) argument pointer
687 r12 (ip) temp workspace
688 r13 F S (sp) lower end of current stack frame
689 r14 (lr) link address/workspace
690 r15 F (pc) program counter
691
692 cc This is NOT a real register, but is used internally
693 to represent things that use or set the condition
694 codes.
695 sfp This isn't either. It is used during rtl generation
696 since the offset between the frame pointer and the
697 auto's isn't known until after register allocation.
698 afp Nor this, we only need this because of non-local
699 goto. Without it fp appears to be used and the
700 elimination code won't get rid of sfp. It tracks
701 fp exactly at all times.
702
703 *: See TARGET_CONDITIONAL_REGISTER_USAGE */
704
705 /* s0-s15 VFP scratch (aka d0-d7).
706 s16-s31 S VFP variable (aka d8-d15).
707 vfpcc Not a real register. Represents the VFP condition
708 code flags. */
709
710 /* The stack backtrace structure is as follows:
711 fp points to here: | save code pointer | [fp]
712 | return link value | [fp, #-4]
713 | return sp value | [fp, #-8]
714 | return fp value | [fp, #-12]
715 [| saved r10 value |]
716 [| saved r9 value |]
717 [| saved r8 value |]
718 [| saved r7 value |]
719 [| saved r6 value |]
720 [| saved r5 value |]
721 [| saved r4 value |]
722 [| saved r3 value |]
723 [| saved r2 value |]
724 [| saved r1 value |]
725 [| saved r0 value |]
726 r0-r3 are not normally saved in a C function. */
727
728 /* 1 for registers that have pervasive standard uses
729 and are not available for the register allocator. */
730 #define FIXED_REGISTERS \
731 { \
732 /* Core regs. */ \
733 0,0,0,0,0,0,0,0, \
734 0,0,0,0,0,1,0,1, \
735 /* VFP regs. */ \
736 1,1,1,1,1,1,1,1, \
737 1,1,1,1,1,1,1,1, \
738 1,1,1,1,1,1,1,1, \
739 1,1,1,1,1,1,1,1, \
740 1,1,1,1,1,1,1,1, \
741 1,1,1,1,1,1,1,1, \
742 1,1,1,1,1,1,1,1, \
743 1,1,1,1,1,1,1,1, \
744 /* IWMMXT regs. */ \
745 1,1,1,1,1,1,1,1, \
746 1,1,1,1,1,1,1,1, \
747 1,1,1,1, \
748 /* Specials. */ \
749 1,1,1,1 \
750 }
751
752 /* 1 for registers not available across function calls.
753 These must include the FIXED_REGISTERS and also any
754 registers that can be used without being saved.
755 The latter must include the registers where values are returned
756 and the register where structure-value addresses are passed.
757 Aside from that, you can include as many other registers as you like.
758 The CC is not preserved over function calls on the ARM 6, so it is
759 easier to assume this for all. SFP is preserved, since FP is. */
760 #define CALL_USED_REGISTERS \
761 { \
762 /* Core regs. */ \
763 1,1,1,1,0,0,0,0, \
764 0,0,0,0,1,1,1,1, \
765 /* VFP Regs. */ \
766 1,1,1,1,1,1,1,1, \
767 1,1,1,1,1,1,1,1, \
768 1,1,1,1,1,1,1,1, \
769 1,1,1,1,1,1,1,1, \
770 1,1,1,1,1,1,1,1, \
771 1,1,1,1,1,1,1,1, \
772 1,1,1,1,1,1,1,1, \
773 1,1,1,1,1,1,1,1, \
774 /* IWMMXT regs. */ \
775 1,1,1,1,1,1,1,1, \
776 1,1,1,1,1,1,1,1, \
777 1,1,1,1, \
778 /* Specials. */ \
779 1,1,1,1 \
780 }
781
782 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
783 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
784 #endif
785
786 /* These are a couple of extensions to the formats accepted
787 by asm_fprintf:
788 %@ prints out ASM_COMMENT_START
789 %r prints out REGISTER_PREFIX reg_names[arg] */
790 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
791 case '@': \
792 fputs (ASM_COMMENT_START, FILE); \
793 break; \
794 \
795 case 'r': \
796 fputs (REGISTER_PREFIX, FILE); \
797 fputs (reg_names [va_arg (ARGS, int)], FILE); \
798 break;
799
800 /* Round X up to the nearest word. */
801 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
802
803 /* Convert fron bytes to ints. */
804 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
805
806 /* The number of (integer) registers required to hold a quantity of type MODE.
807 Also used for VFP registers. */
808 #define ARM_NUM_REGS(MODE) \
809 ARM_NUM_INTS (GET_MODE_SIZE (MODE))
810
811 /* The number of (integer) registers required to hold a quantity of TYPE MODE. */
812 #define ARM_NUM_REGS2(MODE, TYPE) \
813 ARM_NUM_INTS ((MODE) == BLKmode ? \
814 int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
815
816 /* The number of (integer) argument register available. */
817 #define NUM_ARG_REGS 4
818
819 /* And similarly for the VFP. */
820 #define NUM_VFP_ARG_REGS 16
821
822 /* Return the register number of the N'th (integer) argument. */
823 #define ARG_REGISTER(N) (N - 1)
824
825 /* Specify the registers used for certain standard purposes.
826 The values of these macros are register numbers. */
827
828 /* The number of the last argument register. */
829 #define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
830
831 /* The numbers of the Thumb register ranges. */
832 #define FIRST_LO_REGNUM 0
833 #define LAST_LO_REGNUM 7
834 #define FIRST_HI_REGNUM 8
835 #define LAST_HI_REGNUM 11
836
837 /* Overridden by config/arm/bpabi.h. */
838 #ifndef ARM_UNWIND_INFO
839 #define ARM_UNWIND_INFO 0
840 #endif
841
842 /* Use r0 and r1 to pass exception handling information. */
843 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
844
845 /* The register that holds the return address in exception handlers. */
846 #define ARM_EH_STACKADJ_REGNUM 2
847 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
848
849 #ifndef ARM_TARGET2_DWARF_FORMAT
850 #define ARM_TARGET2_DWARF_FORMAT DW_EH_PE_pcrel
851 #endif
852
853 /* ttype entries (the only interesting data references used)
854 use TARGET2 relocations. */
855 #define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
856 (((code) == 0 && (data) == 1 && ARM_UNWIND_INFO) ? ARM_TARGET2_DWARF_FORMAT \
857 : DW_EH_PE_absptr)
858
859 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
860 as an invisible last argument (possible since varargs don't exist in
861 Pascal), so the following is not true. */
862 #define STATIC_CHAIN_REGNUM 12
863
864 /* Define this to be where the real frame pointer is if it is not possible to
865 work out the offset between the frame pointer and the automatic variables
866 until after register allocation has taken place. FRAME_POINTER_REGNUM
867 should point to a special register that we will make sure is eliminated.
868
869 For the Thumb we have another problem. The TPCS defines the frame pointer
870 as r11, and GCC believes that it is always possible to use the frame pointer
871 as base register for addressing purposes. (See comments in
872 find_reloads_address()). But - the Thumb does not allow high registers,
873 including r11, to be used as base address registers. Hence our problem.
874
875 The solution used here, and in the old thumb port is to use r7 instead of
876 r11 as the hard frame pointer and to have special code to generate
877 backtrace structures on the stack (if required to do so via a command line
878 option) using r11. This is the only 'user visible' use of r11 as a frame
879 pointer. */
880 #define ARM_HARD_FRAME_POINTER_REGNUM 11
881 #define THUMB_HARD_FRAME_POINTER_REGNUM 7
882
883 #define HARD_FRAME_POINTER_REGNUM \
884 (TARGET_ARM \
885 ? ARM_HARD_FRAME_POINTER_REGNUM \
886 : THUMB_HARD_FRAME_POINTER_REGNUM)
887
888 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
889 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
890
891 #define FP_REGNUM HARD_FRAME_POINTER_REGNUM
892
893 /* Register to use for pushing function arguments. */
894 #define STACK_POINTER_REGNUM SP_REGNUM
895
896 #define FIRST_IWMMXT_REGNUM (LAST_HI_VFP_REGNUM + 1)
897 #define LAST_IWMMXT_REGNUM (FIRST_IWMMXT_REGNUM + 15)
898
899 /* Need to sync with WCGR in iwmmxt.md. */
900 #define FIRST_IWMMXT_GR_REGNUM (LAST_IWMMXT_REGNUM + 1)
901 #define LAST_IWMMXT_GR_REGNUM (FIRST_IWMMXT_GR_REGNUM + 3)
902
903 #define IS_IWMMXT_REGNUM(REGNUM) \
904 (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
905 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
906 (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
907
908 /* Base register for access to local variables of the function. */
909 #define FRAME_POINTER_REGNUM 102
910
911 /* Base register for access to arguments of the function. */
912 #define ARG_POINTER_REGNUM 103
913
914 #define FIRST_VFP_REGNUM 16
915 #define D7_VFP_REGNUM (FIRST_VFP_REGNUM + 15)
916 #define LAST_VFP_REGNUM \
917 (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
918
919 #define IS_VFP_REGNUM(REGNUM) \
920 (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
921
922 /* VFP registers are split into two types: those defined by VFP versions < 3
923 have D registers overlaid on consecutive pairs of S registers. VFP version 3
924 defines 16 new D registers (d16-d31) which, for simplicity and correctness
925 in various parts of the backend, we implement as "fake" single-precision
926 registers (which would be S32-S63, but cannot be used in that way). The
927 following macros define these ranges of registers. */
928 #define LAST_LO_VFP_REGNUM (FIRST_VFP_REGNUM + 31)
929 #define FIRST_HI_VFP_REGNUM (LAST_LO_VFP_REGNUM + 1)
930 #define LAST_HI_VFP_REGNUM (FIRST_HI_VFP_REGNUM + 31)
931
932 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
933 ((REGNUM) <= LAST_LO_VFP_REGNUM)
934
935 /* DFmode values are only valid in even register pairs. */
936 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
937 ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
938
939 /* Neon Quad values must start at a multiple of four registers. */
940 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
941 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
942
943 /* Neon structures of vectors must be in even register pairs and there
944 must be enough registers available. Because of various patterns
945 requiring quad registers, we require them to start at a multiple of
946 four. */
947 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
948 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
949 && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
950
951 /* The number of hard registers is 16 ARM + 1 CC + 1 SFP + 1 AFP. */
952 /* Intel Wireless MMX Technology registers add 16 + 4 more. */
953 /* VFP (VFP3) adds 32 (64) + 1 VFPCC. */
954 #define FIRST_PSEUDO_REGISTER 104
955
956 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
957
958 /* Value should be nonzero if functions must have frame pointers.
959 Zero means the frame pointer need not be set up (and parms may be accessed
960 via the stack pointer) in functions that seem suitable.
961 If we have to have a frame pointer we might as well make use of it.
962 APCS says that the frame pointer does not need to be pushed in leaf
963 functions, or simple tail call functions. */
964
965 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
966 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
967 #endif
968
969 /* Return number of consecutive hard regs needed starting at reg REGNO
970 to hold something of mode MODE.
971 This is ordinarily the length in words of a value of mode MODE
972 but can be less for certain modes in special long registers.
973
974 On the ARM core regs are UNITS_PER_WORD bits wide. */
975 #define HARD_REGNO_NREGS(REGNO, MODE) \
976 ((TARGET_32BIT \
977 && REGNO > PC_REGNUM \
978 && REGNO != FRAME_POINTER_REGNUM \
979 && REGNO != ARG_POINTER_REGNUM) \
980 && !IS_VFP_REGNUM (REGNO) \
981 ? 1 : ARM_NUM_REGS (MODE))
982
983 /* Return true if REGNO is suitable for holding a quantity of type MODE. */
984 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
985 arm_hard_regno_mode_ok ((REGNO), (MODE))
986
987 #define MODES_TIEABLE_P(MODE1, MODE2) arm_modes_tieable_p (MODE1, MODE2)
988
989 #define VALID_IWMMXT_REG_MODE(MODE) \
990 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
991
992 /* Modes valid for Neon D registers. */
993 #define VALID_NEON_DREG_MODE(MODE) \
994 ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
995 || (MODE) == V4HFmode || (MODE) == V2SFmode || (MODE) == DImode)
996
997 /* Modes valid for Neon Q registers. */
998 #define VALID_NEON_QREG_MODE(MODE) \
999 ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1000 || (MODE) == V8HFmode || (MODE) == V4SFmode || (MODE) == V2DImode)
1001
1002 /* Structure modes valid for Neon registers. */
1003 #define VALID_NEON_STRUCT_MODE(MODE) \
1004 ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1005 || (MODE) == CImode || (MODE) == XImode)
1006
1007 /* The register numbers in sequence, for passing to arm_gen_load_multiple. */
1008 extern int arm_regs_in_sequence[];
1009
1010 /* The order in which register should be allocated. It is good to use ip
1011 since no saving is required (though calls clobber it) and it never contains
1012 function parameters. It is quite good to use lr since other calls may
1013 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
1014 least likely to contain a function parameter; in addition results are
1015 returned in r0.
1016 For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1017 then D8-D15. The reason for doing this is to attempt to reduce register
1018 pressure when both single- and double-precision registers are used in a
1019 function. */
1020
1021 #define VREG(X) (FIRST_VFP_REGNUM + (X))
1022 #define WREG(X) (FIRST_IWMMXT_REGNUM + (X))
1023 #define WGREG(X) (FIRST_IWMMXT_GR_REGNUM + (X))
1024
1025 #define REG_ALLOC_ORDER \
1026 { \
1027 /* General registers. */ \
1028 3, 2, 1, 0, 12, 14, 4, 5, \
1029 6, 7, 8, 9, 10, 11, \
1030 /* High VFP registers. */ \
1031 VREG(32), VREG(33), VREG(34), VREG(35), \
1032 VREG(36), VREG(37), VREG(38), VREG(39), \
1033 VREG(40), VREG(41), VREG(42), VREG(43), \
1034 VREG(44), VREG(45), VREG(46), VREG(47), \
1035 VREG(48), VREG(49), VREG(50), VREG(51), \
1036 VREG(52), VREG(53), VREG(54), VREG(55), \
1037 VREG(56), VREG(57), VREG(58), VREG(59), \
1038 VREG(60), VREG(61), VREG(62), VREG(63), \
1039 /* VFP argument registers. */ \
1040 VREG(15), VREG(14), VREG(13), VREG(12), \
1041 VREG(11), VREG(10), VREG(9), VREG(8), \
1042 VREG(7), VREG(6), VREG(5), VREG(4), \
1043 VREG(3), VREG(2), VREG(1), VREG(0), \
1044 /* VFP call-saved registers. */ \
1045 VREG(16), VREG(17), VREG(18), VREG(19), \
1046 VREG(20), VREG(21), VREG(22), VREG(23), \
1047 VREG(24), VREG(25), VREG(26), VREG(27), \
1048 VREG(28), VREG(29), VREG(30), VREG(31), \
1049 /* IWMMX registers. */ \
1050 WREG(0), WREG(1), WREG(2), WREG(3), \
1051 WREG(4), WREG(5), WREG(6), WREG(7), \
1052 WREG(8), WREG(9), WREG(10), WREG(11), \
1053 WREG(12), WREG(13), WREG(14), WREG(15), \
1054 WGREG(0), WGREG(1), WGREG(2), WGREG(3), \
1055 /* Registers not for general use. */ \
1056 CC_REGNUM, VFPCC_REGNUM, \
1057 FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM, \
1058 SP_REGNUM, PC_REGNUM \
1059 }
1060
1061 /* Use different register alloc ordering for Thumb. */
1062 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1063
1064 /* Tell IRA to use the order we define rather than messing it up with its
1065 own cost calculations. */
1066 #define HONOR_REG_ALLOC_ORDER 1
1067
1068 /* Interrupt functions can only use registers that have already been
1069 saved by the prologue, even if they would normally be
1070 call-clobbered. */
1071 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1072 (! IS_INTERRUPT (cfun->machine->func_type) || \
1073 df_regs_ever_live_p (DST))
1074 \f
1075 /* Register and constant classes. */
1076
1077 /* Register classes. */
1078 enum reg_class
1079 {
1080 NO_REGS,
1081 LO_REGS,
1082 STACK_REG,
1083 BASE_REGS,
1084 HI_REGS,
1085 CALLER_SAVE_REGS,
1086 GENERAL_REGS,
1087 CORE_REGS,
1088 VFP_D0_D7_REGS,
1089 VFP_LO_REGS,
1090 VFP_HI_REGS,
1091 VFP_REGS,
1092 IWMMXT_REGS,
1093 IWMMXT_GR_REGS,
1094 CC_REG,
1095 VFPCC_REG,
1096 SFP_REG,
1097 AFP_REG,
1098 ALL_REGS,
1099 LIM_REG_CLASSES
1100 };
1101
1102 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1103
1104 /* Give names of register classes as strings for dump file. */
1105 #define REG_CLASS_NAMES \
1106 { \
1107 "NO_REGS", \
1108 "LO_REGS", \
1109 "STACK_REG", \
1110 "BASE_REGS", \
1111 "HI_REGS", \
1112 "CALLER_SAVE_REGS", \
1113 "GENERAL_REGS", \
1114 "CORE_REGS", \
1115 "VFP_D0_D7_REGS", \
1116 "VFP_LO_REGS", \
1117 "VFP_HI_REGS", \
1118 "VFP_REGS", \
1119 "IWMMXT_REGS", \
1120 "IWMMXT_GR_REGS", \
1121 "CC_REG", \
1122 "VFPCC_REG", \
1123 "SFP_REG", \
1124 "AFP_REG", \
1125 "ALL_REGS" \
1126 }
1127
1128 /* Define which registers fit in which classes.
1129 This is an initializer for a vector of HARD_REG_SET
1130 of length N_REG_CLASSES. */
1131 #define REG_CLASS_CONTENTS \
1132 { \
1133 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1134 { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */ \
1135 { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
1136 { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */ \
1137 { 0x00005F00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */ \
1138 { 0x0000100F, 0x00000000, 0x00000000, 0x00000000 }, /* CALLER_SAVE_REGS */ \
1139 { 0x00005FFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1140 { 0x00007FFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */ \
1141 { 0xFFFF0000, 0x00000000, 0x00000000, 0x00000000 }, /* VFP_D0_D7_REGS */ \
1142 { 0xFFFF0000, 0x0000FFFF, 0x00000000, 0x00000000 }, /* VFP_LO_REGS */ \
1143 { 0x00000000, 0xFFFF0000, 0x0000FFFF, 0x00000000 }, /* VFP_HI_REGS */ \
1144 { 0xFFFF0000, 0xFFFFFFFF, 0x0000FFFF, 0x00000000 }, /* VFP_REGS */ \
1145 { 0x00000000, 0x00000000, 0xFFFF0000, 0x00000000 }, /* IWMMXT_REGS */ \
1146 { 0x00000000, 0x00000000, 0x00000000, 0x0000000F }, /* IWMMXT_GR_REGS */ \
1147 { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, /* CC_REG */ \
1148 { 0x00000000, 0x00000000, 0x00000000, 0x00000020 }, /* VFPCC_REG */ \
1149 { 0x00000000, 0x00000000, 0x00000000, 0x00000040 }, /* SFP_REG */ \
1150 { 0x00000000, 0x00000000, 0x00000000, 0x00000080 }, /* AFP_REG */ \
1151 { 0xFFFF7FFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0000000F } /* ALL_REGS */ \
1152 }
1153
1154 /* Any of the VFP register classes. */
1155 #define IS_VFP_CLASS(X) \
1156 ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1157 || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1158
1159 /* The same information, inverted:
1160 Return the class number of the smallest class containing
1161 reg number REGNO. This could be a conditional expression
1162 or could index an array. */
1163 #define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
1164
1165 /* In VFPv1, VFP registers could only be accessed in the mode they
1166 were set, so subregs would be invalid there. However, we don't
1167 support VFPv1 at the moment, and the restriction was lifted in
1168 VFPv2.
1169 In big-endian mode, modes greater than word size (i.e. DFmode) are stored in
1170 VFP registers in little-endian order. We can't describe that accurately to
1171 GCC, so avoid taking subregs of such values.
1172 The only exception is going from a 128-bit to a 64-bit type. In that case
1173 the data layout happens to be consistent for big-endian, so we explicitly allow
1174 that case. */
1175 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1176 (TARGET_VFP && TARGET_BIG_END \
1177 && !(GET_MODE_SIZE (FROM) == 16 && GET_MODE_SIZE (TO) == 8) \
1178 && (GET_MODE_SIZE (FROM) > UNITS_PER_WORD \
1179 || GET_MODE_SIZE (TO) > UNITS_PER_WORD) \
1180 && reg_classes_intersect_p (VFP_REGS, (CLASS)))
1181
1182 /* The class value for index registers, and the one for base regs. */
1183 #define INDEX_REG_CLASS (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1184 #define BASE_REG_CLASS (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1185
1186 /* For the Thumb the high registers cannot be used as base registers
1187 when addressing quantities in QI or HI mode; if we don't know the
1188 mode, then we must be conservative. */
1189 #define MODE_BASE_REG_CLASS(MODE) \
1190 (TARGET_32BIT ? CORE_REGS \
1191 : GET_MODE_SIZE (MODE) >= 4 ? BASE_REGS \
1192 : LO_REGS)
1193
1194 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1195 instead of BASE_REGS. */
1196 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1197
1198 /* When this hook returns true for MODE, the compiler allows
1199 registers explicitly used in the rtl to be used as spill registers
1200 but prevents the compiler from extending the lifetime of these
1201 registers. */
1202 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1203 arm_small_register_classes_for_mode_p
1204
1205 /* Must leave BASE_REGS reloads alone */
1206 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1207 (lra_in_progress ? NO_REGS \
1208 : ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1209 ? ((true_regnum (X) == -1 ? LO_REGS \
1210 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1211 : NO_REGS)) \
1212 : NO_REGS))
1213
1214 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1215 (lra_in_progress ? NO_REGS \
1216 : (CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1217 ? ((true_regnum (X) == -1 ? LO_REGS \
1218 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1219 : NO_REGS)) \
1220 : NO_REGS)
1221
1222 /* Return the register class of a scratch register needed to copy IN into
1223 or out of a register in CLASS in MODE. If it can be done directly,
1224 NO_REGS is returned. */
1225 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1226 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1227 ((TARGET_VFP && TARGET_HARD_FLOAT \
1228 && IS_VFP_CLASS (CLASS)) \
1229 ? coproc_secondary_reload_class (MODE, X, FALSE) \
1230 : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \
1231 ? coproc_secondary_reload_class (MODE, X, TRUE) \
1232 : TARGET_32BIT \
1233 ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1234 ? GENERAL_REGS : NO_REGS) \
1235 : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1236
1237 /* If we need to load shorts byte-at-a-time, then we need a scratch. */
1238 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1239 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1240 ((TARGET_VFP && TARGET_HARD_FLOAT \
1241 && IS_VFP_CLASS (CLASS)) \
1242 ? coproc_secondary_reload_class (MODE, X, FALSE) : \
1243 (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \
1244 coproc_secondary_reload_class (MODE, X, TRUE) : \
1245 (TARGET_32BIT ? \
1246 (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \
1247 && CONSTANT_P (X)) \
1248 ? GENERAL_REGS : \
1249 (((MODE) == HImode && ! arm_arch4 \
1250 && (MEM_P (X) \
1251 || ((REG_P (X) || GET_CODE (X) == SUBREG) \
1252 && true_regnum (X) == -1))) \
1253 ? GENERAL_REGS : NO_REGS) \
1254 : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1255
1256 /* Return the maximum number of consecutive registers
1257 needed to represent mode MODE in a register of class CLASS.
1258 ARM regs are UNITS_PER_WORD bits.
1259 FIXME: Is this true for iWMMX? */
1260 #define CLASS_MAX_NREGS(CLASS, MODE) \
1261 (ARM_NUM_REGS (MODE))
1262
1263 /* If defined, gives a class of registers that cannot be used as the
1264 operand of a SUBREG that changes the mode of the object illegally. */
1265 \f
1266 /* Stack layout; function entry, exit and calling. */
1267
1268 /* Define this if pushing a word on the stack
1269 makes the stack pointer a smaller address. */
1270 #define STACK_GROWS_DOWNWARD 1
1271
1272 /* Define this to nonzero if the nominal address of the stack frame
1273 is at the high-address end of the local variables;
1274 that is, each additional local variable allocated
1275 goes at a more negative offset in the frame. */
1276 #define FRAME_GROWS_DOWNWARD 1
1277
1278 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1279 When present, it is one word in size, and sits at the top of the frame,
1280 between the soft frame pointer and either r7 or r11.
1281
1282 We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1283 and only then if some outgoing arguments are passed on the stack. It would
1284 be tempting to also check whether the stack arguments are passed by indirect
1285 calls, but there seems to be no reason in principle why a post-reload pass
1286 couldn't convert a direct call into an indirect one. */
1287 #define CALLER_INTERWORKING_SLOT_SIZE \
1288 (TARGET_CALLER_INTERWORKING \
1289 && crtl->outgoing_args_size != 0 \
1290 ? UNITS_PER_WORD : 0)
1291
1292 /* Offset within stack frame to start allocating local variables at.
1293 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1294 first local allocated. Otherwise, it is the offset to the BEGINNING
1295 of the first local allocated. */
1296 #define STARTING_FRAME_OFFSET 0
1297
1298 /* If we generate an insn to push BYTES bytes,
1299 this says how many the stack pointer really advances by. */
1300 /* The push insns do not do this rounding implicitly.
1301 So don't define this. */
1302 /* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */
1303
1304 /* Define this if the maximum size of all the outgoing args is to be
1305 accumulated and pushed during the prologue. The amount can be
1306 found in the variable crtl->outgoing_args_size. */
1307 #define ACCUMULATE_OUTGOING_ARGS 1
1308
1309 /* Offset of first parameter from the argument pointer register value. */
1310 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
1311
1312 /* Amount of memory needed for an untyped call to save all possible return
1313 registers. */
1314 #define APPLY_RESULT_SIZE arm_apply_result_size()
1315
1316 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1317 values must be in memory. On the ARM, they need only do so if larger
1318 than a word, or if they contain elements offset from zero in the struct. */
1319 #define DEFAULT_PCC_STRUCT_RETURN 0
1320
1321 /* These bits describe the different types of function supported
1322 by the ARM backend. They are exclusive. i.e. a function cannot be both a
1323 normal function and an interworked function, for example. Knowing the
1324 type of a function is important for determining its prologue and
1325 epilogue sequences.
1326 Note value 7 is currently unassigned. Also note that the interrupt
1327 function types all have bit 2 set, so that they can be tested for easily.
1328 Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1329 machine_function structure is initialized (to zero) func_type will
1330 default to unknown. This will force the first use of arm_current_func_type
1331 to call arm_compute_func_type. */
1332 #define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
1333 #define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
1334 #define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
1335 #define ARM_FT_ISR 4 /* An interrupt service routine. */
1336 #define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
1337 #define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
1338
1339 #define ARM_FT_TYPE_MASK ((1 << 3) - 1)
1340
1341 /* In addition functions can have several type modifiers,
1342 outlined by these bit masks: */
1343 #define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
1344 #define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
1345 #define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
1346 #define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
1347 #define ARM_FT_STACKALIGN (1 << 6) /* Called with misaligned stack. */
1348
1349 /* Some macros to test these flags. */
1350 #define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
1351 #define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
1352 #define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
1353 #define IS_NAKED(t) (t & ARM_FT_NAKED)
1354 #define IS_NESTED(t) (t & ARM_FT_NESTED)
1355 #define IS_STACKALIGN(t) (t & ARM_FT_STACKALIGN)
1356
1357
1358 /* Structure used to hold the function stack frame layout. Offsets are
1359 relative to the stack pointer on function entry. Positive offsets are
1360 in the direction of stack growth.
1361 Only soft_frame is used in thumb mode. */
1362
1363 typedef struct GTY(()) arm_stack_offsets
1364 {
1365 int saved_args; /* ARG_POINTER_REGNUM. */
1366 int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */
1367 int saved_regs;
1368 int soft_frame; /* FRAME_POINTER_REGNUM. */
1369 int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */
1370 int outgoing_args; /* STACK_POINTER_REGNUM. */
1371 unsigned int saved_regs_mask;
1372 }
1373 arm_stack_offsets;
1374
1375 #if !defined(GENERATOR_FILE) && !defined (USED_FOR_TARGET)
1376 /* A C structure for machine-specific, per-function data.
1377 This is added to the cfun structure. */
1378 typedef struct GTY(()) machine_function
1379 {
1380 /* Additional stack adjustment in __builtin_eh_throw. */
1381 rtx eh_epilogue_sp_ofs;
1382 /* Records if LR has to be saved for far jumps. */
1383 int far_jump_used;
1384 /* Records if ARG_POINTER was ever live. */
1385 int arg_pointer_live;
1386 /* Records if the save of LR has been eliminated. */
1387 int lr_save_eliminated;
1388 /* The size of the stack frame. Only valid after reload. */
1389 arm_stack_offsets stack_offsets;
1390 /* Records the type of the current function. */
1391 unsigned long func_type;
1392 /* Record if the function has a variable argument list. */
1393 int uses_anonymous_args;
1394 /* Records if sibcalls are blocked because an argument
1395 register is needed to preserve stack alignment. */
1396 int sibcall_blocked;
1397 /* The PIC register for this function. This might be a pseudo. */
1398 rtx pic_reg;
1399 /* Labels for per-function Thumb call-via stubs. One per potential calling
1400 register. We can never call via LR or PC. We can call via SP if a
1401 trampoline happens to be on the top of the stack. */
1402 rtx call_via[14];
1403 /* Set to 1 when a return insn is output, this means that the epilogue
1404 is not needed. */
1405 int return_used_this_function;
1406 /* When outputting Thumb-1 code, record the last insn that provides
1407 information about condition codes, and the comparison operands. */
1408 rtx thumb1_cc_insn;
1409 rtx thumb1_cc_op0;
1410 rtx thumb1_cc_op1;
1411 /* Also record the CC mode that is supported. */
1412 machine_mode thumb1_cc_mode;
1413 /* Set to 1 after arm_reorg has started. */
1414 int after_arm_reorg;
1415 }
1416 machine_function;
1417 #endif
1418
1419 /* As in the machine_function, a global set of call-via labels, for code
1420 that is in text_section. */
1421 extern GTY(()) rtx thumb_call_via_label[14];
1422
1423 /* The number of potential ways of assigning to a co-processor. */
1424 #define ARM_NUM_COPROC_SLOTS 1
1425
1426 /* Enumeration of procedure calling standard variants. We don't really
1427 support all of these yet. */
1428 enum arm_pcs
1429 {
1430 ARM_PCS_AAPCS, /* Base standard AAPCS. */
1431 ARM_PCS_AAPCS_VFP, /* Use VFP registers for floating point values. */
1432 ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors. */
1433 /* This must be the last AAPCS variant. */
1434 ARM_PCS_AAPCS_LOCAL, /* Private call within this compilation unit. */
1435 ARM_PCS_ATPCS, /* ATPCS. */
1436 ARM_PCS_APCS, /* APCS (legacy Linux etc). */
1437 ARM_PCS_UNKNOWN
1438 };
1439
1440 /* Default procedure calling standard of current compilation unit. */
1441 extern enum arm_pcs arm_pcs_default;
1442
1443 #if !defined (USED_FOR_TARGET)
1444 /* A C type for declaring a variable that is used as the first argument of
1445 `FUNCTION_ARG' and other related values. */
1446 typedef struct
1447 {
1448 /* This is the number of registers of arguments scanned so far. */
1449 int nregs;
1450 /* This is the number of iWMMXt register arguments scanned so far. */
1451 int iwmmxt_nregs;
1452 int named_count;
1453 int nargs;
1454 /* Which procedure call variant to use for this call. */
1455 enum arm_pcs pcs_variant;
1456
1457 /* AAPCS related state tracking. */
1458 int aapcs_arg_processed; /* No need to lay out this argument again. */
1459 int aapcs_cprc_slot; /* Index of co-processor rules to handle
1460 this argument, or -1 if using core
1461 registers. */
1462 int aapcs_ncrn;
1463 int aapcs_next_ncrn;
1464 rtx aapcs_reg; /* Register assigned to this argument. */
1465 int aapcs_partial; /* How many bytes are passed in regs (if
1466 split between core regs and stack.
1467 Zero otherwise. */
1468 int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1469 int can_split; /* Argument can be split between core regs
1470 and the stack. */
1471 /* Private data for tracking VFP register allocation */
1472 unsigned aapcs_vfp_regs_free;
1473 unsigned aapcs_vfp_reg_alloc;
1474 int aapcs_vfp_rcount;
1475 MACHMODE aapcs_vfp_rmode;
1476 } CUMULATIVE_ARGS;
1477 #endif
1478
1479 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1480 (arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
1481
1482 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1483 (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
1484
1485 /* For AAPCS, padding should never be below the argument. For other ABIs,
1486 * mimic the default. */
1487 #define PAD_VARARGS_DOWN \
1488 ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1489
1490 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1491 for a call to a function whose data type is FNTYPE.
1492 For a library call, FNTYPE is 0.
1493 On the ARM, the offset starts at 0. */
1494 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1495 arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1496
1497 /* 1 if N is a possible register number for function argument passing.
1498 On the ARM, r0-r3 are used to pass args. */
1499 #define FUNCTION_ARG_REGNO_P(REGNO) \
1500 (IN_RANGE ((REGNO), 0, 3) \
1501 || (TARGET_AAPCS_BASED && TARGET_VFP && TARGET_HARD_FLOAT \
1502 && IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15)) \
1503 || (TARGET_IWMMXT_ABI \
1504 && IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1505
1506 \f
1507 /* If your target environment doesn't prefix user functions with an
1508 underscore, you may wish to re-define this to prevent any conflicts. */
1509 #ifndef ARM_MCOUNT_NAME
1510 #define ARM_MCOUNT_NAME "*mcount"
1511 #endif
1512
1513 /* Call the function profiler with a given profile label. The Acorn
1514 compiler puts this BEFORE the prolog but gcc puts it afterwards.
1515 On the ARM the full profile code will look like:
1516 .data
1517 LP1
1518 .word 0
1519 .text
1520 mov ip, lr
1521 bl mcount
1522 .word LP1
1523
1524 profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1525 will output the .text section.
1526
1527 The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1528 ``prof'' doesn't seem to mind about this!
1529
1530 Note - this version of the code is designed to work in both ARM and
1531 Thumb modes. */
1532 #ifndef ARM_FUNCTION_PROFILER
1533 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
1534 { \
1535 char temp[20]; \
1536 rtx sym; \
1537 \
1538 asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
1539 IP_REGNUM, LR_REGNUM); \
1540 assemble_name (STREAM, ARM_MCOUNT_NAME); \
1541 fputc ('\n', STREAM); \
1542 ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
1543 sym = gen_rtx_SYMBOL_REF (Pmode, temp); \
1544 assemble_aligned_integer (UNITS_PER_WORD, sym); \
1545 }
1546 #endif
1547
1548 #ifdef THUMB_FUNCTION_PROFILER
1549 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1550 if (TARGET_ARM) \
1551 ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
1552 else \
1553 THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1554 #else
1555 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1556 ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1557 #endif
1558
1559 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1560 the stack pointer does not matter. The value is tested only in
1561 functions that have frame pointers.
1562 No definition is equivalent to always zero.
1563
1564 On the ARM, the function epilogue recovers the stack pointer from the
1565 frame. */
1566 #define EXIT_IGNORE_STACK 1
1567
1568 #define EPILOGUE_USES(REGNO) (epilogue_completed && (REGNO) == LR_REGNUM)
1569
1570 /* Determine if the epilogue should be output as RTL.
1571 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1572 #define USE_RETURN_INSN(ISCOND) \
1573 (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1574
1575 /* Definitions for register eliminations.
1576
1577 This is an array of structures. Each structure initializes one pair
1578 of eliminable registers. The "from" register number is given first,
1579 followed by "to". Eliminations of the same "from" register are listed
1580 in order of preference.
1581
1582 We have two registers that can be eliminated on the ARM. First, the
1583 arg pointer register can often be eliminated in favor of the stack
1584 pointer register. Secondly, the pseudo frame pointer register can always
1585 be eliminated; it is replaced with either the stack or the real frame
1586 pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1587 because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
1588
1589 #define ELIMINABLE_REGS \
1590 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1591 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
1592 { ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1593 { ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
1594 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1595 { FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1596 { FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
1597
1598 /* Define the offset between two registers, one to be eliminated, and the
1599 other its replacement, at the start of a routine. */
1600 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1601 if (TARGET_ARM) \
1602 (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
1603 else \
1604 (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1605
1606 /* Special case handling of the location of arguments passed on the stack. */
1607 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1608
1609 /* Initialize data used by insn expanders. This is called from insn_emit,
1610 once for every function before code is generated. */
1611 #define INIT_EXPANDERS arm_init_expanders ()
1612
1613 /* Length in units of the trampoline for entering a nested function. */
1614 #define TRAMPOLINE_SIZE (TARGET_32BIT ? 16 : 20)
1615
1616 /* Alignment required for a trampoline in bits. */
1617 #define TRAMPOLINE_ALIGNMENT 32
1618 \f
1619 /* Addressing modes, and classification of registers for them. */
1620 #define HAVE_POST_INCREMENT 1
1621 #define HAVE_PRE_INCREMENT TARGET_32BIT
1622 #define HAVE_POST_DECREMENT TARGET_32BIT
1623 #define HAVE_PRE_DECREMENT TARGET_32BIT
1624 #define HAVE_PRE_MODIFY_DISP TARGET_32BIT
1625 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1626 #define HAVE_PRE_MODIFY_REG TARGET_32BIT
1627 #define HAVE_POST_MODIFY_REG TARGET_32BIT
1628
1629 enum arm_auto_incmodes
1630 {
1631 ARM_POST_INC,
1632 ARM_PRE_INC,
1633 ARM_POST_DEC,
1634 ARM_PRE_DEC
1635 };
1636
1637 #define ARM_AUTOINC_VALID_FOR_MODE_P(mode, code) \
1638 (TARGET_32BIT && arm_autoinc_modes_ok_p (mode, code))
1639 #define USE_LOAD_POST_INCREMENT(mode) \
1640 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_INC)
1641 #define USE_LOAD_PRE_INCREMENT(mode) \
1642 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_INC)
1643 #define USE_LOAD_POST_DECREMENT(mode) \
1644 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_DEC)
1645 #define USE_LOAD_PRE_DECREMENT(mode) \
1646 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_DEC)
1647
1648 #define USE_STORE_PRE_DECREMENT(mode) USE_LOAD_PRE_DECREMENT(mode)
1649 #define USE_STORE_PRE_INCREMENT(mode) USE_LOAD_PRE_INCREMENT(mode)
1650 #define USE_STORE_POST_DECREMENT(mode) USE_LOAD_POST_DECREMENT(mode)
1651 #define USE_STORE_POST_INCREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
1652
1653 /* Macros to check register numbers against specific register classes. */
1654
1655 /* These assume that REGNO is a hard or pseudo reg number.
1656 They give nonzero only if REGNO is a hard reg of the suitable class
1657 or a pseudo reg currently allocated to a suitable hard reg.
1658 Since they use reg_renumber, they are safe only once reg_renumber
1659 has been allocated, which happens in reginfo.c during register
1660 allocation. */
1661 #define TEST_REGNO(R, TEST, VALUE) \
1662 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1663
1664 /* Don't allow the pc to be used. */
1665 #define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
1666 (TEST_REGNO (REGNO, <, PC_REGNUM) \
1667 || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
1668 || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1669
1670 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1671 (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
1672 || (GET_MODE_SIZE (MODE) >= 4 \
1673 && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1674
1675 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1676 (TARGET_THUMB1 \
1677 ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
1678 : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1679
1680 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1681 For Thumb, we can not use SP + reg, so reject SP. */
1682 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1683 REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1684
1685 /* For ARM code, we don't care about the mode, but for Thumb, the index
1686 must be suitable for use in a QImode load. */
1687 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1688 (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1689 && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1690
1691 /* Maximum number of registers that can appear in a valid memory address.
1692 Shifts in addresses can't be by a register. */
1693 #define MAX_REGS_PER_ADDRESS 2
1694
1695 /* Recognize any constant value that is a valid address. */
1696 /* XXX We can address any constant, eventually... */
1697 /* ??? Should the TARGET_ARM here also apply to thumb2? */
1698 #define CONSTANT_ADDRESS_P(X) \
1699 (GET_CODE (X) == SYMBOL_REF \
1700 && (CONSTANT_POOL_ADDRESS_P (X) \
1701 || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1702
1703 /* True if SYMBOL + OFFSET constants must refer to something within
1704 SYMBOL's section. */
1705 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1706
1707 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32. */
1708 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1709 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1710 #endif
1711
1712 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1713 #define SUBTARGET_NAME_ENCODING_LENGTHS
1714 #endif
1715
1716 /* This is a C fragment for the inside of a switch statement.
1717 Each case label should return the number of characters to
1718 be stripped from the start of a function's name, if that
1719 name starts with the indicated character. */
1720 #define ARM_NAME_ENCODING_LENGTHS \
1721 case '*': return 1; \
1722 SUBTARGET_NAME_ENCODING_LENGTHS
1723
1724 /* This is how to output a reference to a user-level label named NAME.
1725 `assemble_name' uses this. */
1726 #undef ASM_OUTPUT_LABELREF
1727 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1728 arm_asm_output_labelref (FILE, NAME)
1729
1730 /* Output IT instructions for conditionally executed Thumb-2 instructions. */
1731 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1732 if (TARGET_THUMB2) \
1733 thumb2_asm_output_opcode (STREAM);
1734
1735 /* The EABI specifies that constructors should go in .init_array.
1736 Other targets use .ctors for compatibility. */
1737 #ifndef ARM_EABI_CTORS_SECTION_OP
1738 #define ARM_EABI_CTORS_SECTION_OP \
1739 "\t.section\t.init_array,\"aw\",%init_array"
1740 #endif
1741 #ifndef ARM_EABI_DTORS_SECTION_OP
1742 #define ARM_EABI_DTORS_SECTION_OP \
1743 "\t.section\t.fini_array,\"aw\",%fini_array"
1744 #endif
1745 #define ARM_CTORS_SECTION_OP \
1746 "\t.section\t.ctors,\"aw\",%progbits"
1747 #define ARM_DTORS_SECTION_OP \
1748 "\t.section\t.dtors,\"aw\",%progbits"
1749
1750 /* Define CTORS_SECTION_ASM_OP. */
1751 #undef CTORS_SECTION_ASM_OP
1752 #undef DTORS_SECTION_ASM_OP
1753 #ifndef IN_LIBGCC2
1754 # define CTORS_SECTION_ASM_OP \
1755 (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1756 # define DTORS_SECTION_ASM_OP \
1757 (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1758 #else /* !defined (IN_LIBGCC2) */
1759 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1760 so we cannot use the definition above. */
1761 # ifdef __ARM_EABI__
1762 /* The .ctors section is not part of the EABI, so we do not define
1763 CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1764 from trying to use it. We do define it when doing normal
1765 compilation, as .init_array can be used instead of .ctors. */
1766 /* There is no need to emit begin or end markers when using
1767 init_array; the dynamic linker will compute the size of the
1768 array itself based on special symbols created by the static
1769 linker. However, we do need to arrange to set up
1770 exception-handling here. */
1771 # define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1772 # define CTOR_LIST_END /* empty */
1773 # define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1774 # define DTOR_LIST_END /* empty */
1775 # else /* !defined (__ARM_EABI__) */
1776 # define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1777 # define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1778 # endif /* !defined (__ARM_EABI__) */
1779 #endif /* !defined (IN_LIBCC2) */
1780
1781 /* True if the operating system can merge entities with vague linkage
1782 (e.g., symbols in COMDAT group) during dynamic linking. */
1783 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1784 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1785 #endif
1786
1787 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1788
1789 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1790 and check its validity for a certain class.
1791 We have two alternate definitions for each of them.
1792 The usual definition accepts all pseudo regs; the other rejects
1793 them unless they have been allocated suitable hard regs.
1794 The symbol REG_OK_STRICT causes the latter definition to be used.
1795 Thumb-2 has the same restrictions as arm. */
1796 #ifndef REG_OK_STRICT
1797
1798 #define ARM_REG_OK_FOR_BASE_P(X) \
1799 (REGNO (X) <= LAST_ARM_REGNUM \
1800 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1801 || REGNO (X) == FRAME_POINTER_REGNUM \
1802 || REGNO (X) == ARG_POINTER_REGNUM)
1803
1804 #define ARM_REG_OK_FOR_INDEX_P(X) \
1805 ((REGNO (X) <= LAST_ARM_REGNUM \
1806 && REGNO (X) != STACK_POINTER_REGNUM) \
1807 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1808 || REGNO (X) == FRAME_POINTER_REGNUM \
1809 || REGNO (X) == ARG_POINTER_REGNUM)
1810
1811 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1812 (REGNO (X) <= LAST_LO_REGNUM \
1813 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1814 || (GET_MODE_SIZE (MODE) >= 4 \
1815 && (REGNO (X) == STACK_POINTER_REGNUM \
1816 || (X) == hard_frame_pointer_rtx \
1817 || (X) == arg_pointer_rtx)))
1818
1819 #define REG_STRICT_P 0
1820
1821 #else /* REG_OK_STRICT */
1822
1823 #define ARM_REG_OK_FOR_BASE_P(X) \
1824 ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1825
1826 #define ARM_REG_OK_FOR_INDEX_P(X) \
1827 ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1828
1829 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1830 THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1831
1832 #define REG_STRICT_P 1
1833
1834 #endif /* REG_OK_STRICT */
1835
1836 /* Now define some helpers in terms of the above. */
1837
1838 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1839 (TARGET_THUMB1 \
1840 ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE) \
1841 : ARM_REG_OK_FOR_BASE_P (X))
1842
1843 /* For 16-bit Thumb, a valid index register is anything that can be used in
1844 a byte load instruction. */
1845 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
1846 THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
1847
1848 /* Nonzero if X is a hard reg that can be used as an index
1849 or if it is a pseudo reg. On the Thumb, the stack pointer
1850 is not suitable. */
1851 #define REG_OK_FOR_INDEX_P(X) \
1852 (TARGET_THUMB1 \
1853 ? THUMB1_REG_OK_FOR_INDEX_P (X) \
1854 : ARM_REG_OK_FOR_INDEX_P (X))
1855
1856 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1857 For Thumb, we can not use SP + reg, so reject SP. */
1858 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1859 REG_OK_FOR_INDEX_P (X)
1860 \f
1861 #define ARM_BASE_REGISTER_RTX_P(X) \
1862 (REG_P (X) && ARM_REG_OK_FOR_BASE_P (X))
1863
1864 #define ARM_INDEX_REGISTER_RTX_P(X) \
1865 (REG_P (X) && ARM_REG_OK_FOR_INDEX_P (X))
1866 \f
1867 /* Specify the machine mode that this machine uses
1868 for the index in the tablejump instruction. */
1869 #define CASE_VECTOR_MODE Pmode
1870
1871 #define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2 \
1872 || (TARGET_THUMB1 \
1873 && (optimize_size || flag_pic)))
1874
1875 #define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
1876 (TARGET_THUMB1 \
1877 ? (min >= 0 && max < 512 \
1878 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode) \
1879 : min >= -256 && max < 256 \
1880 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode) \
1881 : min >= 0 && max < 8192 \
1882 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode) \
1883 : min >= -4096 && max < 4096 \
1884 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode) \
1885 : SImode) \
1886 : ((min < 0 || max >= 0x20000 || !TARGET_THUMB2) ? SImode \
1887 : (max >= 0x200) ? HImode \
1888 : QImode))
1889
1890 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
1891 unsigned is probably best, but may break some code. */
1892 #ifndef DEFAULT_SIGNED_CHAR
1893 #define DEFAULT_SIGNED_CHAR 0
1894 #endif
1895
1896 /* Max number of bytes we can move from memory to memory
1897 in one reasonably fast instruction. */
1898 #define MOVE_MAX 4
1899
1900 #undef MOVE_RATIO
1901 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
1902
1903 /* Define if operations between registers always perform the operation
1904 on the full register even if a narrower mode is specified. */
1905 #define WORD_REGISTER_OPERATIONS 1
1906
1907 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1908 will either zero-extend or sign-extend. The value of this macro should
1909 be the code that says which one of the two operations is implicitly
1910 done, UNKNOWN if none. */
1911 #define LOAD_EXTEND_OP(MODE) \
1912 (TARGET_THUMB ? ZERO_EXTEND : \
1913 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
1914 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
1915
1916 /* Nonzero if access to memory by bytes is slow and undesirable. */
1917 #define SLOW_BYTE_ACCESS 0
1918
1919 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
1920
1921 /* Immediate shift counts are truncated by the output routines (or was it
1922 the assembler?). Shift counts in a register are truncated by ARM. Note
1923 that the native compiler puts too large (> 32) immediate shift counts
1924 into a register and shifts by the register, letting the ARM decide what
1925 to do instead of doing that itself. */
1926 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
1927 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
1928 On the arm, Y in a register is used modulo 256 for the shift. Only for
1929 rotates is modulo 32 used. */
1930 /* #define SHIFT_COUNT_TRUNCATED 1 */
1931
1932 /* All integers have the same format so truncation is easy. */
1933 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1934
1935 /* Calling from registers is a massive pain. */
1936 #define NO_FUNCTION_CSE 1
1937
1938 /* The machine modes of pointers and functions */
1939 #define Pmode SImode
1940 #define FUNCTION_MODE Pmode
1941
1942 #define ARM_FRAME_RTX(X) \
1943 ( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
1944 || (X) == arg_pointer_rtx)
1945
1946 /* Try to generate sequences that don't involve branches, we can then use
1947 conditional instructions. */
1948 #define BRANCH_COST(speed_p, predictable_p) \
1949 (current_tune->branch_cost (speed_p, predictable_p))
1950
1951 /* False if short circuit operation is preferred. */
1952 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
1953 ((optimize_size) \
1954 ? (TARGET_THUMB ? false : true) \
1955 : TARGET_THUMB ? static_cast<bool> (current_tune->logical_op_non_short_circuit_thumb) \
1956 : static_cast<bool> (current_tune->logical_op_non_short_circuit_arm))
1957
1958 \f
1959 /* Position Independent Code. */
1960 /* We decide which register to use based on the compilation options and
1961 the assembler in use; this is more general than the APCS restriction of
1962 using sb (r9) all the time. */
1963 extern unsigned arm_pic_register;
1964
1965 /* The register number of the register used to address a table of static
1966 data addresses in memory. */
1967 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
1968
1969 /* We can't directly access anything that contains a symbol,
1970 nor can we indirect via the constant pool. One exception is
1971 UNSPEC_TLS, which is always PIC. */
1972 #define LEGITIMATE_PIC_OPERAND_P(X) \
1973 (!(symbol_mentioned_p (X) \
1974 || label_mentioned_p (X) \
1975 || (GET_CODE (X) == SYMBOL_REF \
1976 && CONSTANT_POOL_ADDRESS_P (X) \
1977 && (symbol_mentioned_p (get_pool_constant (X)) \
1978 || label_mentioned_p (get_pool_constant (X))))) \
1979 || tls_mentioned_p (X))
1980
1981 /* We need to know when we are making a constant pool; this determines
1982 whether data needs to be in the GOT or can be referenced via a GOT
1983 offset. */
1984 extern int making_const_table;
1985 \f
1986 /* Handle pragmas for compatibility with Intel's compilers. */
1987 /* Also abuse this to register additional C specific EABI attributes. */
1988 #define REGISTER_TARGET_PRAGMAS() do { \
1989 c_register_pragma (0, "long_calls", arm_pr_long_calls); \
1990 c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \
1991 c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \
1992 arm_lang_object_attributes_init(); \
1993 arm_register_target_pragmas(); \
1994 } while (0)
1995
1996 /* Condition code information. */
1997 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1998 return the mode to be used for the comparison. */
1999
2000 #define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
2001
2002 #define REVERSIBLE_CC_MODE(MODE) 1
2003
2004 #define REVERSE_CONDITION(CODE,MODE) \
2005 (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2006 ? reverse_condition_maybe_unordered (code) \
2007 : reverse_condition (code))
2008
2009 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2010 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2011 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2012 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2013 \f
2014 #define CC_STATUS_INIT \
2015 do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2016
2017 #undef ASM_APP_ON
2018 #define ASM_APP_ON (inline_asm_unified ? "\t.syntax unified\n" : \
2019 "\t.syntax divided\n")
2020
2021 #undef ASM_APP_OFF
2022 #define ASM_APP_OFF "\t.syntax unified\n"
2023
2024 /* Output a push or a pop instruction (only used when profiling).
2025 We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1. We know
2026 that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2027 that r7 isn't used by the function profiler, so we can use it as a
2028 scratch reg. WARNING: This isn't safe in the general case! It may be
2029 sensitive to future changes in final.c:profile_function. */
2030 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
2031 do \
2032 { \
2033 if (TARGET_THUMB1 \
2034 && (REGNO) == STATIC_CHAIN_REGNUM) \
2035 { \
2036 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2037 asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2038 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2039 } \
2040 else \
2041 asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \
2042 } while (0)
2043
2044
2045 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue. */
2046 #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
2047 do \
2048 { \
2049 if (TARGET_THUMB1 \
2050 && (REGNO) == STATIC_CHAIN_REGNUM) \
2051 { \
2052 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2053 asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2054 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2055 } \
2056 else \
2057 asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \
2058 } while (0)
2059
2060 #define ADDR_VEC_ALIGN(JUMPTABLE) \
2061 ((TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) ? 2 : 0)
2062
2063 /* Alignment for case labels comes from ADDR_VEC_ALIGN; avoid the
2064 default alignment from elfos.h. */
2065 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
2066 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE) /* Empty. */
2067
2068 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) \
2069 (GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
2070 ? 1 : 0)
2071
2072 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
2073 arm_declare_function_name ((STREAM), (NAME), (DECL));
2074
2075 /* For aliases of functions we use .thumb_set instead. */
2076 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
2077 do \
2078 { \
2079 const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2080 const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
2081 \
2082 if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
2083 { \
2084 fprintf (FILE, "\t.thumb_set "); \
2085 assemble_name (FILE, LABEL1); \
2086 fprintf (FILE, ","); \
2087 assemble_name (FILE, LABEL2); \
2088 fprintf (FILE, "\n"); \
2089 } \
2090 else \
2091 ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
2092 } \
2093 while (0)
2094
2095 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2096 /* To support -falign-* switches we need to use .p2align so
2097 that alignment directives in code sections will be padded
2098 with no-op instructions, rather than zeroes. */
2099 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \
2100 if ((LOG) != 0) \
2101 { \
2102 if ((MAX_SKIP) == 0) \
2103 fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \
2104 else \
2105 fprintf ((FILE), "\t.p2align %d,,%d\n", \
2106 (int) (LOG), (int) (MAX_SKIP)); \
2107 }
2108 #endif
2109 \f
2110 /* Add two bytes to the length of conditionally executed Thumb-2
2111 instructions for the IT instruction. */
2112 #define ADJUST_INSN_LENGTH(insn, length) \
2113 if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2114 length += 2;
2115
2116 /* Only perform branch elimination (by making instructions conditional) if
2117 we're optimizing. For Thumb-2 check if any IT instructions need
2118 outputting. */
2119 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2120 if (TARGET_ARM && optimize) \
2121 arm_final_prescan_insn (INSN); \
2122 else if (TARGET_THUMB2) \
2123 thumb2_final_prescan_insn (INSN); \
2124 else if (TARGET_THUMB1) \
2125 thumb1_final_prescan_insn (INSN)
2126
2127 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
2128 (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
2129 : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2130 ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2131 ? ((~ (unsigned HOST_WIDE_INT) 0) \
2132 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
2133 : 0))))
2134
2135 /* A C expression whose value is RTL representing the value of the return
2136 address for the frame COUNT steps up from the current frame. */
2137
2138 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2139 arm_return_addr (COUNT, FRAME)
2140
2141 /* Mask of the bits in the PC that contain the real return address
2142 when running in 26-bit mode. */
2143 #define RETURN_ADDR_MASK26 (0x03fffffc)
2144
2145 /* Pick up the return address upon entry to a procedure. Used for
2146 dwarf2 unwind information. This also enables the table driven
2147 mechanism. */
2148 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
2149 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
2150
2151 /* Used to mask out junk bits from the return address, such as
2152 processor state, interrupt status, condition codes and the like. */
2153 #define MASK_RETURN_ADDR \
2154 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
2155 in 26 bit mode, the condition codes must be masked out of the \
2156 return address. This does not apply to ARM6 and later processors \
2157 when running in 32 bit mode. */ \
2158 ((arm_arch4 || TARGET_THUMB) \
2159 ? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \
2160 : arm_gen_return_addr_mask ())
2161
2162 \f
2163 /* Do not emit .note.GNU-stack by default. */
2164 #ifndef NEED_INDICATE_EXEC_STACK
2165 #define NEED_INDICATE_EXEC_STACK 0
2166 #endif
2167
2168 #define TARGET_ARM_ARCH \
2169 (arm_base_arch) \
2170
2171 #define TARGET_ARM_V6M (!arm_arch_notm && !arm_arch_thumb2)
2172 #define TARGET_ARM_V7M (!arm_arch_notm && arm_arch_thumb2)
2173
2174 /* The highest Thumb instruction set version supported by the chip. */
2175 #define TARGET_ARM_ARCH_ISA_THUMB \
2176 (arm_arch_thumb2 ? 2 \
2177 : ((TARGET_ARM_ARCH >= 5 || arm_arch4t) ? 1 : 0))
2178
2179 /* Expands to an upper-case char of the target's architectural
2180 profile. */
2181 #define TARGET_ARM_ARCH_PROFILE \
2182 (!arm_arch_notm \
2183 ? 'M' \
2184 : (arm_arch7 \
2185 ? (strlen (arm_arch_name) >=3 \
2186 ? (arm_arch_name[strlen (arm_arch_name) - 3]) \
2187 : 0) \
2188 : 0))
2189
2190 /* Bit-field indicating what size LDREX/STREX loads/stores are available.
2191 Bit 0 for bytes, up to bit 3 for double-words. */
2192 #define TARGET_ARM_FEATURE_LDREX \
2193 ((TARGET_HAVE_LDREX ? 4 : 0) \
2194 | (TARGET_HAVE_LDREXBH ? 3 : 0) \
2195 | (TARGET_HAVE_LDREXD ? 8 : 0))
2196
2197 /* Set as a bit mask indicating the available widths of hardware floating
2198 point types. Where bit 1 indicates 16-bit support, bit 2 indicates
2199 32-bit support, bit 3 indicates 64-bit support. */
2200 #define TARGET_ARM_FP \
2201 (!TARGET_SOFT_FLOAT ? (TARGET_VFP_SINGLE ? 4 \
2202 : (TARGET_VFP_DOUBLE ? (TARGET_FP16 ? 14 : 12) : 0)) \
2203 : 0)
2204
2205
2206 /* Set as a bit mask indicating the available widths of floating point
2207 types for hardware NEON floating point. This is the same as
2208 TARGET_ARM_FP without the 64-bit bit set. */
2209 #define TARGET_NEON_FP \
2210 (TARGET_NEON ? (TARGET_ARM_FP & (0xff ^ 0x08)) \
2211 : 0)
2212
2213 /* The maximum number of parallel loads or stores we support in an ldm/stm
2214 instruction. */
2215 #define MAX_LDM_STM_OPS 4
2216
2217 #define BIG_LITTLE_SPEC \
2218 " %{mcpu=*:-mcpu=%:rewrite_mcpu(%{mcpu=*:%*})}"
2219
2220 extern const char *arm_rewrite_mcpu (int argc, const char **argv);
2221 #define BIG_LITTLE_CPU_SPEC_FUNCTIONS \
2222 { "rewrite_mcpu", arm_rewrite_mcpu },
2223
2224 #define ASM_CPU_SPEC \
2225 " %{mcpu=generic-*:-march=%*;" \
2226 " :%{march=*:-march=%*}}" \
2227 BIG_LITTLE_SPEC
2228
2229 /* -mcpu=native handling only makes sense with compiler running on
2230 an ARM chip. */
2231 #if defined(__arm__)
2232 extern const char *host_detect_local_cpu (int argc, const char **argv);
2233 # define EXTRA_SPEC_FUNCTIONS \
2234 { "local_cpu_detect", host_detect_local_cpu }, \
2235 BIG_LITTLE_CPU_SPEC_FUNCTIONS
2236
2237 # define MCPU_MTUNE_NATIVE_SPECS \
2238 " %{march=native:%<march=native %:local_cpu_detect(arch)}" \
2239 " %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}" \
2240 " %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
2241 #else
2242 # define MCPU_MTUNE_NATIVE_SPECS ""
2243 # define EXTRA_SPEC_FUNCTIONS BIG_LITTLE_CPU_SPEC_FUNCTIONS
2244 #endif
2245
2246 #define DRIVER_SELF_SPECS MCPU_MTUNE_NATIVE_SPECS
2247 #define TARGET_SUPPORTS_WIDE_INT 1
2248
2249 /* For switching between functions with different target attributes. */
2250 #define SWITCHABLE_TARGET 1
2251
2252 #endif /* ! GCC_ARM_H */