arm.h (PREFERRED_RELOAD_CLASS): Remove.
[gcc.git] / gcc / config / arm / arm.h
1 /* Definitions of target machine for GNU compiler, for ARM.
2 Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
6 and Martin Simmons (@harleqn.co.uk).
7 More major hacks by Richard Earnshaw (rearnsha@arm.com)
8 Minor hacks by Nick Clifton (nickc@cygnus.com)
9
10 This file is part of GCC.
11
12 GCC is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published
14 by the Free Software Foundation; either version 3, or (at your
15 option) any later version.
16
17 GCC is distributed in the hope that it will be useful, but WITHOUT
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
19 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
20 License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
25
26 #ifndef GCC_ARM_H
27 #define GCC_ARM_H
28
29 /* We can't use enum machine_mode inside a generator file because it
30 hasn't been created yet; we shouldn't be using any code that
31 needs the real definition though, so this ought to be safe. */
32 #ifdef GENERATOR_FILE
33 #define MACHMODE int
34 #else
35 #include "insn-modes.h"
36 #define MACHMODE enum machine_mode
37 #endif
38
39 #include "config/vxworks-dummy.h"
40
41 /* The architecture define. */
42 extern char arm_arch_name[];
43
44 /* Target CPU builtins. */
45 #define TARGET_CPU_CPP_BUILTINS() \
46 do \
47 { \
48 if (TARGET_DSP_MULTIPLY) \
49 builtin_define ("__ARM_FEATURE_DSP"); \
50 if (unaligned_access) \
51 builtin_define ("__ARM_FEATURE_UNALIGNED"); \
52 /* Define __arm__ even when in thumb mode, for \
53 consistency with armcc. */ \
54 builtin_define ("__arm__"); \
55 builtin_define ("__APCS_32__"); \
56 if (TARGET_THUMB) \
57 builtin_define ("__thumb__"); \
58 if (TARGET_THUMB2) \
59 builtin_define ("__thumb2__"); \
60 \
61 if (TARGET_BIG_END) \
62 { \
63 builtin_define ("__ARMEB__"); \
64 if (TARGET_THUMB) \
65 builtin_define ("__THUMBEB__"); \
66 if (TARGET_LITTLE_WORDS) \
67 builtin_define ("__ARMWEL__"); \
68 } \
69 else \
70 { \
71 builtin_define ("__ARMEL__"); \
72 if (TARGET_THUMB) \
73 builtin_define ("__THUMBEL__"); \
74 } \
75 \
76 if (TARGET_SOFT_FLOAT) \
77 builtin_define ("__SOFTFP__"); \
78 \
79 if (TARGET_VFP) \
80 builtin_define ("__VFP_FP__"); \
81 \
82 if (TARGET_NEON) \
83 builtin_define ("__ARM_NEON__"); \
84 \
85 /* Add a define for interworking. \
86 Needed when building libgcc.a. */ \
87 if (arm_cpp_interwork) \
88 builtin_define ("__THUMB_INTERWORK__"); \
89 \
90 builtin_assert ("cpu=arm"); \
91 builtin_assert ("machine=arm"); \
92 \
93 builtin_define (arm_arch_name); \
94 if (arm_arch_cirrus) \
95 builtin_define ("__MAVERICK__"); \
96 if (arm_arch_xscale) \
97 builtin_define ("__XSCALE__"); \
98 if (arm_arch_iwmmxt) \
99 builtin_define ("__IWMMXT__"); \
100 if (TARGET_AAPCS_BASED) \
101 { \
102 if (arm_pcs_default == ARM_PCS_AAPCS_VFP) \
103 builtin_define ("__ARM_PCS_VFP"); \
104 else if (arm_pcs_default == ARM_PCS_AAPCS) \
105 builtin_define ("__ARM_PCS"); \
106 builtin_define ("__ARM_EABI__"); \
107 } \
108 if (TARGET_IDIV) \
109 builtin_define ("__ARM_ARCH_EXT_IDIV__"); \
110 } while (0)
111
112 #include "config/arm/arm-opts.h"
113
114 enum target_cpus
115 {
116 #define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
117 TARGET_CPU_##IDENT,
118 #include "arm-cores.def"
119 #undef ARM_CORE
120 TARGET_CPU_generic
121 };
122
123 /* The processor for which instructions should be scheduled. */
124 extern enum processor_type arm_tune;
125
126 typedef enum arm_cond_code
127 {
128 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
129 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
130 }
131 arm_cc;
132
133 extern arm_cc arm_current_cc;
134
135 #define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
136
137 extern int arm_target_label;
138 extern int arm_ccfsm_state;
139 extern GTY(()) rtx arm_target_insn;
140 /* The label of the current constant pool. */
141 extern rtx pool_vector_label;
142 /* Set to 1 when a return insn is output, this means that the epilogue
143 is not needed. */
144 extern int return_used_this_function;
145 /* Callback to output language specific object attributes. */
146 extern void (*arm_lang_output_object_attributes_hook)(void);
147 \f
148 /* Just in case configure has failed to define anything. */
149 #ifndef TARGET_CPU_DEFAULT
150 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
151 #endif
152
153
154 #undef CPP_SPEC
155 #define CPP_SPEC "%(subtarget_cpp_spec) \
156 %{mfloat-abi=soft:%{mfloat-abi=hard: \
157 %e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
158 %{mbig-endian:%{mlittle-endian: \
159 %e-mbig-endian and -mlittle-endian may not be used together}}"
160
161 #ifndef CC1_SPEC
162 #define CC1_SPEC ""
163 #endif
164
165 /* This macro defines names of additional specifications to put in the specs
166 that can be used in various specifications like CC1_SPEC. Its definition
167 is an initializer with a subgrouping for each command option.
168
169 Each subgrouping contains a string constant, that defines the
170 specification name, and a string constant that used by the GCC driver
171 program.
172
173 Do not define this macro if it does not need to do anything. */
174 #define EXTRA_SPECS \
175 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
176 { "asm_cpu_spec", ASM_CPU_SPEC }, \
177 SUBTARGET_EXTRA_SPECS
178
179 #ifndef SUBTARGET_EXTRA_SPECS
180 #define SUBTARGET_EXTRA_SPECS
181 #endif
182
183 #ifndef SUBTARGET_CPP_SPEC
184 #define SUBTARGET_CPP_SPEC ""
185 #endif
186 \f
187 /* Run-time Target Specification. */
188 #define TARGET_SOFT_FLOAT (arm_float_abi == ARM_FLOAT_ABI_SOFT)
189 /* Use hardware floating point instructions. */
190 #define TARGET_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
191 /* Use hardware floating point calling convention. */
192 #define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD)
193 #define TARGET_FPA (arm_fpu_desc->model == ARM_FP_MODEL_FPA)
194 #define TARGET_MAVERICK (arm_fpu_desc->model == ARM_FP_MODEL_MAVERICK)
195 #define TARGET_VFP (arm_fpu_desc->model == ARM_FP_MODEL_VFP)
196 #define TARGET_IWMMXT (arm_arch_iwmmxt)
197 #define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_32BIT)
198 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
199 #define TARGET_ARM (! TARGET_THUMB)
200 #define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
201 #define TARGET_BACKTRACE (leaf_function_p () \
202 ? TARGET_TPCS_LEAF_FRAME \
203 : TARGET_TPCS_FRAME)
204 #define TARGET_LDRD (arm_arch5e && ARM_DOUBLEWORD_ALIGN)
205 #define TARGET_AAPCS_BASED \
206 (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
207
208 #define TARGET_HARD_TP (target_thread_pointer == TP_CP15)
209 #define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT)
210 #define TARGET_GNU2_TLS (target_tls_dialect == TLS_GNU2)
211
212 /* Only 16-bit thumb code. */
213 #define TARGET_THUMB1 (TARGET_THUMB && !arm_arch_thumb2)
214 /* Arm or Thumb-2 32-bit code. */
215 #define TARGET_32BIT (TARGET_ARM || arm_arch_thumb2)
216 /* 32-bit Thumb-2 code. */
217 #define TARGET_THUMB2 (TARGET_THUMB && arm_arch_thumb2)
218 /* Thumb-1 only. */
219 #define TARGET_THUMB1_ONLY (TARGET_THUMB1 && !arm_arch_notm)
220 /* FPA emulator without LFM. */
221 #define TARGET_FPA_EMU2 (TARGET_FPA && arm_fpu_desc->rev == 2)
222
223 /* The following two macros concern the ability to execute coprocessor
224 instructions for VFPv3 or NEON. TARGET_VFP3/TARGET_VFPD32 are currently
225 only ever tested when we know we are generating for VFP hardware; we need
226 to be more careful with TARGET_NEON as noted below. */
227
228 /* FPU is has the full VFPv3/NEON register file of 32 D registers. */
229 #define TARGET_VFPD32 (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_D32)
230
231 /* FPU supports VFPv3 instructions. */
232 #define TARGET_VFP3 (TARGET_VFP && arm_fpu_desc->rev >= 3)
233
234 /* FPU only supports VFP single-precision instructions. */
235 #define TARGET_VFP_SINGLE (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_SINGLE)
236
237 /* FPU supports VFP double-precision instructions. */
238 #define TARGET_VFP_DOUBLE (TARGET_VFP && arm_fpu_desc->regs != VFP_REG_SINGLE)
239
240 /* FPU supports half-precision floating-point with NEON element load/store. */
241 #define TARGET_NEON_FP16 \
242 (TARGET_VFP && arm_fpu_desc->neon && arm_fpu_desc->fp16)
243
244 /* FPU supports VFP half-precision floating-point. */
245 #define TARGET_FP16 (TARGET_VFP && arm_fpu_desc->fp16)
246
247 /* FPU supports Neon instructions. The setting of this macro gets
248 revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
249 and TARGET_HARD_FLOAT to ensure that NEON instructions are
250 available. */
251 #define TARGET_NEON (TARGET_32BIT && TARGET_HARD_FLOAT \
252 && TARGET_VFP && arm_fpu_desc->neon)
253
254 /* "DSP" multiply instructions, eg. SMULxy. */
255 #define TARGET_DSP_MULTIPLY \
256 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7em))
257 /* Integer SIMD instructions, and extend-accumulate instructions. */
258 #define TARGET_INT_SIMD \
259 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
260
261 /* Should MOVW/MOVT be used in preference to a constant pool. */
262 #define TARGET_USE_MOVT \
263 (arm_arch_thumb2 && !optimize_size && !current_tune->prefer_constant_pool)
264
265 /* We could use unified syntax for arm mode, but for now we just use it
266 for Thumb-2. */
267 #define TARGET_UNIFIED_ASM TARGET_THUMB2
268
269 /* Nonzero if this chip provides the DMB instruction. */
270 #define TARGET_HAVE_DMB (arm_arch7)
271
272 /* Nonzero if this chip implements a memory barrier via CP15. */
273 #define TARGET_HAVE_DMB_MCR (arm_arch6 && ! TARGET_HAVE_DMB \
274 && ! TARGET_THUMB1)
275
276 /* Nonzero if this chip implements a memory barrier instruction. */
277 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
278
279 /* Nonzero if this chip supports ldrex and strex */
280 #define TARGET_HAVE_LDREX ((arm_arch6 && TARGET_ARM) || arm_arch7)
281
282 /* Nonzero if this chip supports ldrex{bh} and strex{bh}. */
283 #define TARGET_HAVE_LDREXBH ((arm_arch6k && TARGET_ARM) || arm_arch7)
284
285 /* Nonzero if this chip supports ldrexd and strexd. */
286 #define TARGET_HAVE_LDREXD (((arm_arch6k && TARGET_ARM) || arm_arch7) \
287 && arm_arch_notm)
288
289 /* Nonzero if integer division instructions supported. */
290 #define TARGET_IDIV ((TARGET_ARM && arm_arch_arm_hwdiv) \
291 || (TARGET_THUMB2 && arm_arch_thumb_hwdiv))
292
293 /* True iff the full BPABI is being used. If TARGET_BPABI is true,
294 then TARGET_AAPCS_BASED must be true -- but the converse does not
295 hold. TARGET_BPABI implies the use of the BPABI runtime library,
296 etc., in addition to just the AAPCS calling conventions. */
297 #ifndef TARGET_BPABI
298 #define TARGET_BPABI false
299 #endif
300
301 /* Support for a compile-time default CPU, et cetera. The rules are:
302 --with-arch is ignored if -march or -mcpu are specified.
303 --with-cpu is ignored if -march or -mcpu are specified, and is overridden
304 by --with-arch.
305 --with-tune is ignored if -mtune or -mcpu are specified (but not affected
306 by -march).
307 --with-float is ignored if -mfloat-abi is specified.
308 --with-fpu is ignored if -mfpu is specified.
309 --with-abi is ignored if -mabi is specified.
310 --with-tls is ignored if -mtls-dialect is specified. */
311 #define OPTION_DEFAULT_SPECS \
312 {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
313 {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
314 {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
315 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
316 {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
317 {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
318 {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"}, \
319 {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"},
320
321 /* Which floating point model to use. */
322 enum arm_fp_model
323 {
324 ARM_FP_MODEL_UNKNOWN,
325 /* FPA model (Hardware or software). */
326 ARM_FP_MODEL_FPA,
327 /* Cirrus Maverick floating point model. */
328 ARM_FP_MODEL_MAVERICK,
329 /* VFP floating point model. */
330 ARM_FP_MODEL_VFP
331 };
332
333 enum vfp_reg_type
334 {
335 VFP_NONE = 0,
336 VFP_REG_D16,
337 VFP_REG_D32,
338 VFP_REG_SINGLE
339 };
340
341 extern const struct arm_fpu_desc
342 {
343 const char *name;
344 enum arm_fp_model model;
345 int rev;
346 enum vfp_reg_type regs;
347 int neon;
348 int fp16;
349 } *arm_fpu_desc;
350
351 /* Which floating point hardware to schedule for. */
352 extern int arm_fpu_attr;
353
354 #ifndef TARGET_DEFAULT_FLOAT_ABI
355 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
356 #endif
357
358 #define LARGEST_EXPONENT_IS_NORMAL(bits) \
359 ((bits) == 16 && arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE)
360
361 #ifndef ARM_DEFAULT_ABI
362 #define ARM_DEFAULT_ABI ARM_ABI_APCS
363 #endif
364
365 /* Nonzero if this chip supports the ARM Architecture 3M extensions. */
366 extern int arm_arch3m;
367
368 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */
369 extern int arm_arch4;
370
371 /* Nonzero if this chip supports the ARM Architecture 4T extensions. */
372 extern int arm_arch4t;
373
374 /* Nonzero if this chip supports the ARM Architecture 5 extensions. */
375 extern int arm_arch5;
376
377 /* Nonzero if this chip supports the ARM Architecture 5E extensions. */
378 extern int arm_arch5e;
379
380 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */
381 extern int arm_arch6;
382
383 /* Nonzero if this chip supports the ARM Architecture 6k extensions. */
384 extern int arm_arch6k;
385
386 /* Nonzero if this chip supports the ARM Architecture 7 extensions. */
387 extern int arm_arch7;
388
389 /* Nonzero if instructions not present in the 'M' profile can be used. */
390 extern int arm_arch_notm;
391
392 /* Nonzero if instructions present in ARMv7E-M can be used. */
393 extern int arm_arch7em;
394
395 /* Nonzero if this chip can benefit from load scheduling. */
396 extern int arm_ld_sched;
397
398 /* Nonzero if generating Thumb code, either Thumb-1 or Thumb-2. */
399 extern int thumb_code;
400
401 /* Nonzero if generating Thumb-1 code. */
402 extern int thumb1_code;
403
404 /* Nonzero if this chip is a StrongARM. */
405 extern int arm_tune_strongarm;
406
407 /* Nonzero if this chip is a Cirrus variant. */
408 extern int arm_arch_cirrus;
409
410 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */
411 extern int arm_arch_iwmmxt;
412
413 /* Nonzero if this chip is an XScale. */
414 extern int arm_arch_xscale;
415
416 /* Nonzero if tuning for XScale. */
417 extern int arm_tune_xscale;
418
419 /* Nonzero if tuning for stores via the write buffer. */
420 extern int arm_tune_wbuf;
421
422 /* Nonzero if tuning for Cortex-A9. */
423 extern int arm_tune_cortex_a9;
424
425 /* Nonzero if we should define __THUMB_INTERWORK__ in the
426 preprocessor.
427 XXX This is a bit of a hack, it's intended to help work around
428 problems in GLD which doesn't understand that armv5t code is
429 interworking clean. */
430 extern int arm_cpp_interwork;
431
432 /* Nonzero if chip supports Thumb 2. */
433 extern int arm_arch_thumb2;
434
435 /* Nonzero if chip supports integer division instruction in ARM mode. */
436 extern int arm_arch_arm_hwdiv;
437
438 /* Nonzero if chip supports integer division instruction in Thumb mode. */
439 extern int arm_arch_thumb_hwdiv;
440
441 #ifndef TARGET_DEFAULT
442 #define TARGET_DEFAULT (MASK_APCS_FRAME)
443 #endif
444
445 /* Nonzero if PIC code requires explicit qualifiers to generate
446 PLT and GOT relocs rather than the assembler doing so implicitly.
447 Subtargets can override these if required. */
448 #ifndef NEED_GOT_RELOC
449 #define NEED_GOT_RELOC 0
450 #endif
451 #ifndef NEED_PLT_RELOC
452 #define NEED_PLT_RELOC 0
453 #endif
454
455 /* Nonzero if we need to refer to the GOT with a PC-relative
456 offset. In other words, generate
457
458 .word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
459
460 rather than
461
462 .word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
463
464 The default is true, which matches NetBSD. Subtargets can
465 override this if required. */
466 #ifndef GOT_PCREL
467 #define GOT_PCREL 1
468 #endif
469 \f
470 /* Target machine storage Layout. */
471
472
473 /* Define this macro if it is advisable to hold scalars in registers
474 in a wider mode than that declared by the program. In such cases,
475 the value is constrained to be within the bounds of the declared
476 type, but kept valid in the wider mode. The signedness of the
477 extension may differ from that of the type. */
478
479 /* It is far faster to zero extend chars than to sign extend them */
480
481 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
482 if (GET_MODE_CLASS (MODE) == MODE_INT \
483 && GET_MODE_SIZE (MODE) < 4) \
484 { \
485 if (MODE == QImode) \
486 UNSIGNEDP = 1; \
487 else if (MODE == HImode) \
488 UNSIGNEDP = 1; \
489 (MODE) = SImode; \
490 }
491
492 /* Define this if most significant bit is lowest numbered
493 in instructions that operate on numbered bit-fields. */
494 #define BITS_BIG_ENDIAN 0
495
496 /* Define this if most significant byte of a word is the lowest numbered.
497 Most ARM processors are run in little endian mode, so that is the default.
498 If you want to have it run-time selectable, change the definition in a
499 cover file to be TARGET_BIG_ENDIAN. */
500 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
501
502 /* Define this if most significant word of a multiword number is the lowest
503 numbered.
504 This is always false, even when in big-endian mode. */
505 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN && ! TARGET_LITTLE_WORDS)
506
507 /* Define this if most significant word of doubles is the lowest numbered.
508 The rules are different based on whether or not we use FPA-format,
509 VFP-format or some other floating point co-processor's format doubles. */
510 #define FLOAT_WORDS_BIG_ENDIAN (arm_float_words_big_endian ())
511
512 #define UNITS_PER_WORD 4
513
514 /* True if natural alignment is used for doubleword types. */
515 #define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED
516
517 #define DOUBLEWORD_ALIGNMENT 64
518
519 #define PARM_BOUNDARY 32
520
521 #define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
522
523 #define PREFERRED_STACK_BOUNDARY \
524 (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
525
526 #define FUNCTION_BOUNDARY ((TARGET_THUMB && optimize_size) ? 16 : 32)
527
528 /* The lowest bit is used to indicate Thumb-mode functions, so the
529 vbit must go into the delta field of pointers to member
530 functions. */
531 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
532
533 #define EMPTY_FIELD_BOUNDARY 32
534
535 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
536
537 /* XXX Blah -- this macro is used directly by libobjc. Since it
538 supports no vector modes, cut out the complexity and fall back
539 on BIGGEST_FIELD_ALIGNMENT. */
540 #ifdef IN_TARGET_LIBS
541 #define BIGGEST_FIELD_ALIGNMENT 64
542 #endif
543
544 /* Make strings word-aligned so strcpy from constants will be faster. */
545 #define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
546
547 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
548 ((TREE_CODE (EXP) == STRING_CST \
549 && !optimize_size \
550 && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR) \
551 ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
552
553 /* Align definitions of arrays, unions and structures so that
554 initializations and copies can be made more efficient. This is not
555 ABI-changing, so it only affects places where we can see the
556 definition. Increasing the alignment tends to introduce padding,
557 so don't do this when optimizing for size/conserving stack space. */
558 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \
559 (((COND) && ((ALIGN) < BITS_PER_WORD) \
560 && (TREE_CODE (EXP) == ARRAY_TYPE \
561 || TREE_CODE (EXP) == UNION_TYPE \
562 || TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
563
564 /* Align global data. */
565 #define DATA_ALIGNMENT(EXP, ALIGN) \
566 ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
567
568 /* Similarly, make sure that objects on the stack are sensibly aligned. */
569 #define LOCAL_ALIGNMENT(EXP, ALIGN) \
570 ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
571
572 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
573 value set in previous versions of this toolchain was 8, which produces more
574 compact structures. The command line option -mstructure_size_boundary=<n>
575 can be used to change this value. For compatibility with the ARM SDK
576 however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
577 0020D) page 2-20 says "Structures are aligned on word boundaries".
578 The AAPCS specifies a value of 8. */
579 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
580
581 /* This is the value used to initialize arm_structure_size_boundary. If a
582 particular arm target wants to change the default value it should change
583 the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h
584 for an example of this. */
585 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
586 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
587 #endif
588
589 /* Nonzero if move instructions will actually fail to work
590 when given unaligned data. */
591 #define STRICT_ALIGNMENT 1
592
593 /* wchar_t is unsigned under the AAPCS. */
594 #ifndef WCHAR_TYPE
595 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
596
597 #define WCHAR_TYPE_SIZE BITS_PER_WORD
598 #endif
599
600 /* Sized for fixed-point types. */
601
602 #define SHORT_FRACT_TYPE_SIZE 8
603 #define FRACT_TYPE_SIZE 16
604 #define LONG_FRACT_TYPE_SIZE 32
605 #define LONG_LONG_FRACT_TYPE_SIZE 64
606
607 #define SHORT_ACCUM_TYPE_SIZE 16
608 #define ACCUM_TYPE_SIZE 32
609 #define LONG_ACCUM_TYPE_SIZE 64
610 #define LONG_LONG_ACCUM_TYPE_SIZE 64
611
612 #define MAX_FIXED_MODE_SIZE 64
613
614 #ifndef SIZE_TYPE
615 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
616 #endif
617
618 #ifndef PTRDIFF_TYPE
619 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
620 #endif
621
622 /* AAPCS requires that structure alignment is affected by bitfields. */
623 #ifndef PCC_BITFIELD_TYPE_MATTERS
624 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
625 #endif
626
627 \f
628 /* Standard register usage. */
629
630 /* Register allocation in ARM Procedure Call Standard (as used on RISCiX):
631 (S - saved over call).
632
633 r0 * argument word/integer result
634 r1-r3 argument word
635
636 r4-r8 S register variable
637 r9 S (rfp) register variable (real frame pointer)
638
639 r10 F S (sl) stack limit (used by -mapcs-stack-check)
640 r11 F S (fp) argument pointer
641 r12 (ip) temp workspace
642 r13 F S (sp) lower end of current stack frame
643 r14 (lr) link address/workspace
644 r15 F (pc) program counter
645
646 f0 floating point result
647 f1-f3 floating point scratch
648
649 f4-f7 S floating point variable
650
651 cc This is NOT a real register, but is used internally
652 to represent things that use or set the condition
653 codes.
654 sfp This isn't either. It is used during rtl generation
655 since the offset between the frame pointer and the
656 auto's isn't known until after register allocation.
657 afp Nor this, we only need this because of non-local
658 goto. Without it fp appears to be used and the
659 elimination code won't get rid of sfp. It tracks
660 fp exactly at all times.
661
662 *: See TARGET_CONDITIONAL_REGISTER_USAGE */
663
664 /*
665 mvf0 Cirrus floating point result
666 mvf1-mvf3 Cirrus floating point scratch
667 mvf4-mvf15 S Cirrus floating point variable. */
668
669 /* s0-s15 VFP scratch (aka d0-d7).
670 s16-s31 S VFP variable (aka d8-d15).
671 vfpcc Not a real register. Represents the VFP condition
672 code flags. */
673
674 /* The stack backtrace structure is as follows:
675 fp points to here: | save code pointer | [fp]
676 | return link value | [fp, #-4]
677 | return sp value | [fp, #-8]
678 | return fp value | [fp, #-12]
679 [| saved r10 value |]
680 [| saved r9 value |]
681 [| saved r8 value |]
682 [| saved r7 value |]
683 [| saved r6 value |]
684 [| saved r5 value |]
685 [| saved r4 value |]
686 [| saved r3 value |]
687 [| saved r2 value |]
688 [| saved r1 value |]
689 [| saved r0 value |]
690 [| saved f7 value |] three words
691 [| saved f6 value |] three words
692 [| saved f5 value |] three words
693 [| saved f4 value |] three words
694 r0-r3 are not normally saved in a C function. */
695
696 /* 1 for registers that have pervasive standard uses
697 and are not available for the register allocator. */
698 #define FIXED_REGISTERS \
699 { \
700 0,0,0,0,0,0,0,0, \
701 0,0,0,0,0,1,0,1, \
702 0,0,0,0,0,0,0,0, \
703 1,1,1, \
704 1,1,1,1,1,1,1,1, \
705 1,1,1,1,1,1,1,1, \
706 1,1,1,1,1,1,1,1, \
707 1,1,1,1,1,1,1,1, \
708 1,1,1,1, \
709 1,1,1,1,1,1,1,1, \
710 1,1,1,1,1,1,1,1, \
711 1,1,1,1,1,1,1,1, \
712 1,1,1,1,1,1,1,1, \
713 1,1,1,1,1,1,1,1, \
714 1,1,1,1,1,1,1,1, \
715 1,1,1,1,1,1,1,1, \
716 1,1,1,1,1,1,1,1, \
717 1 \
718 }
719
720 /* 1 for registers not available across function calls.
721 These must include the FIXED_REGISTERS and also any
722 registers that can be used without being saved.
723 The latter must include the registers where values are returned
724 and the register where structure-value addresses are passed.
725 Aside from that, you can include as many other registers as you like.
726 The CC is not preserved over function calls on the ARM 6, so it is
727 easier to assume this for all. SFP is preserved, since FP is. */
728 #define CALL_USED_REGISTERS \
729 { \
730 1,1,1,1,0,0,0,0, \
731 0,0,0,0,1,1,1,1, \
732 1,1,1,1,0,0,0,0, \
733 1,1,1, \
734 1,1,1,1,1,1,1,1, \
735 1,1,1,1,1,1,1,1, \
736 1,1,1,1,1,1,1,1, \
737 1,1,1,1,1,1,1,1, \
738 1,1,1,1, \
739 1,1,1,1,1,1,1,1, \
740 1,1,1,1,1,1,1,1, \
741 1,1,1,1,1,1,1,1, \
742 1,1,1,1,1,1,1,1, \
743 1,1,1,1,1,1,1,1, \
744 1,1,1,1,1,1,1,1, \
745 1,1,1,1,1,1,1,1, \
746 1,1,1,1,1,1,1,1, \
747 1 \
748 }
749
750 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
751 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
752 #endif
753
754 /* These are a couple of extensions to the formats accepted
755 by asm_fprintf:
756 %@ prints out ASM_COMMENT_START
757 %r prints out REGISTER_PREFIX reg_names[arg] */
758 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
759 case '@': \
760 fputs (ASM_COMMENT_START, FILE); \
761 break; \
762 \
763 case 'r': \
764 fputs (REGISTER_PREFIX, FILE); \
765 fputs (reg_names [va_arg (ARGS, int)], FILE); \
766 break;
767
768 /* Round X up to the nearest word. */
769 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
770
771 /* Convert fron bytes to ints. */
772 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
773
774 /* The number of (integer) registers required to hold a quantity of type MODE.
775 Also used for VFP registers. */
776 #define ARM_NUM_REGS(MODE) \
777 ARM_NUM_INTS (GET_MODE_SIZE (MODE))
778
779 /* The number of (integer) registers required to hold a quantity of TYPE MODE. */
780 #define ARM_NUM_REGS2(MODE, TYPE) \
781 ARM_NUM_INTS ((MODE) == BLKmode ? \
782 int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
783
784 /* The number of (integer) argument register available. */
785 #define NUM_ARG_REGS 4
786
787 /* And similarly for the VFP. */
788 #define NUM_VFP_ARG_REGS 16
789
790 /* Return the register number of the N'th (integer) argument. */
791 #define ARG_REGISTER(N) (N - 1)
792
793 /* Specify the registers used for certain standard purposes.
794 The values of these macros are register numbers. */
795
796 /* The number of the last argument register. */
797 #define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
798
799 /* The numbers of the Thumb register ranges. */
800 #define FIRST_LO_REGNUM 0
801 #define LAST_LO_REGNUM 7
802 #define FIRST_HI_REGNUM 8
803 #define LAST_HI_REGNUM 11
804
805 /* Overridden by config/arm/bpabi.h. */
806 #ifndef ARM_UNWIND_INFO
807 #define ARM_UNWIND_INFO 0
808 #endif
809
810 /* Use r0 and r1 to pass exception handling information. */
811 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
812
813 /* The register that holds the return address in exception handlers. */
814 #define ARM_EH_STACKADJ_REGNUM 2
815 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
816
817 #ifndef ARM_TARGET2_DWARF_FORMAT
818 #define ARM_TARGET2_DWARF_FORMAT DW_EH_PE_pcrel
819
820 /* ttype entries (the only interesting data references used)
821 use TARGET2 relocations. */
822 #define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
823 (((code) == 0 && (data) == 1 && ARM_UNWIND_INFO) ? ARM_TARGET2_DWARF_FORMAT \
824 : DW_EH_PE_absptr)
825 #endif
826
827 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
828 as an invisible last argument (possible since varargs don't exist in
829 Pascal), so the following is not true. */
830 #define STATIC_CHAIN_REGNUM 12
831
832 /* Define this to be where the real frame pointer is if it is not possible to
833 work out the offset between the frame pointer and the automatic variables
834 until after register allocation has taken place. FRAME_POINTER_REGNUM
835 should point to a special register that we will make sure is eliminated.
836
837 For the Thumb we have another problem. The TPCS defines the frame pointer
838 as r11, and GCC believes that it is always possible to use the frame pointer
839 as base register for addressing purposes. (See comments in
840 find_reloads_address()). But - the Thumb does not allow high registers,
841 including r11, to be used as base address registers. Hence our problem.
842
843 The solution used here, and in the old thumb port is to use r7 instead of
844 r11 as the hard frame pointer and to have special code to generate
845 backtrace structures on the stack (if required to do so via a command line
846 option) using r11. This is the only 'user visible' use of r11 as a frame
847 pointer. */
848 #define ARM_HARD_FRAME_POINTER_REGNUM 11
849 #define THUMB_HARD_FRAME_POINTER_REGNUM 7
850
851 #define HARD_FRAME_POINTER_REGNUM \
852 (TARGET_ARM \
853 ? ARM_HARD_FRAME_POINTER_REGNUM \
854 : THUMB_HARD_FRAME_POINTER_REGNUM)
855
856 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
857 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
858
859 #define FP_REGNUM HARD_FRAME_POINTER_REGNUM
860
861 /* Register to use for pushing function arguments. */
862 #define STACK_POINTER_REGNUM SP_REGNUM
863
864 /* ARM floating pointer registers. */
865 #define FIRST_FPA_REGNUM 16
866 #define LAST_FPA_REGNUM 23
867 #define IS_FPA_REGNUM(REGNUM) \
868 (((REGNUM) >= FIRST_FPA_REGNUM) && ((REGNUM) <= LAST_FPA_REGNUM))
869
870 #define FIRST_IWMMXT_GR_REGNUM 43
871 #define LAST_IWMMXT_GR_REGNUM 46
872 #define FIRST_IWMMXT_REGNUM 47
873 #define LAST_IWMMXT_REGNUM 62
874 #define IS_IWMMXT_REGNUM(REGNUM) \
875 (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
876 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
877 (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
878
879 /* Base register for access to local variables of the function. */
880 #define FRAME_POINTER_REGNUM 25
881
882 /* Base register for access to arguments of the function. */
883 #define ARG_POINTER_REGNUM 26
884
885 #define FIRST_CIRRUS_FP_REGNUM 27
886 #define LAST_CIRRUS_FP_REGNUM 42
887 #define IS_CIRRUS_REGNUM(REGNUM) \
888 (((REGNUM) >= FIRST_CIRRUS_FP_REGNUM) && ((REGNUM) <= LAST_CIRRUS_FP_REGNUM))
889
890 #define FIRST_VFP_REGNUM 63
891 #define D7_VFP_REGNUM 78 /* Registers 77 and 78 == VFP reg D7. */
892 #define LAST_VFP_REGNUM \
893 (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
894
895 #define IS_VFP_REGNUM(REGNUM) \
896 (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
897
898 /* VFP registers are split into two types: those defined by VFP versions < 3
899 have D registers overlaid on consecutive pairs of S registers. VFP version 3
900 defines 16 new D registers (d16-d31) which, for simplicity and correctness
901 in various parts of the backend, we implement as "fake" single-precision
902 registers (which would be S32-S63, but cannot be used in that way). The
903 following macros define these ranges of registers. */
904 #define LAST_LO_VFP_REGNUM 94
905 #define FIRST_HI_VFP_REGNUM 95
906 #define LAST_HI_VFP_REGNUM 126
907
908 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
909 ((REGNUM) <= LAST_LO_VFP_REGNUM)
910
911 /* DFmode values are only valid in even register pairs. */
912 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
913 ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
914
915 /* Neon Quad values must start at a multiple of four registers. */
916 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
917 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
918
919 /* Neon structures of vectors must be in even register pairs and there
920 must be enough registers available. Because of various patterns
921 requiring quad registers, we require them to start at a multiple of
922 four. */
923 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
924 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
925 && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
926
927 /* The number of hard registers is 16 ARM + 8 FPA + 1 CC + 1 SFP + 1 AFP. */
928 /* + 16 Cirrus registers take us up to 43. */
929 /* Intel Wireless MMX Technology registers add 16 + 4 more. */
930 /* VFP (VFP3) adds 32 (64) + 1 more. */
931 #define FIRST_PSEUDO_REGISTER 128
932
933 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
934
935 /* Value should be nonzero if functions must have frame pointers.
936 Zero means the frame pointer need not be set up (and parms may be accessed
937 via the stack pointer) in functions that seem suitable.
938 If we have to have a frame pointer we might as well make use of it.
939 APCS says that the frame pointer does not need to be pushed in leaf
940 functions, or simple tail call functions. */
941
942 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
943 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
944 #endif
945
946 /* Return number of consecutive hard regs needed starting at reg REGNO
947 to hold something of mode MODE.
948 This is ordinarily the length in words of a value of mode MODE
949 but can be less for certain modes in special long registers.
950
951 On the ARM regs are UNITS_PER_WORD bits wide; FPA regs can hold any FP
952 mode. */
953 #define HARD_REGNO_NREGS(REGNO, MODE) \
954 ((TARGET_32BIT \
955 && REGNO >= FIRST_FPA_REGNUM \
956 && REGNO != FRAME_POINTER_REGNUM \
957 && REGNO != ARG_POINTER_REGNUM) \
958 && !IS_VFP_REGNUM (REGNO) \
959 ? 1 : ARM_NUM_REGS (MODE))
960
961 /* Return true if REGNO is suitable for holding a quantity of type MODE. */
962 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
963 arm_hard_regno_mode_ok ((REGNO), (MODE))
964
965 #define MODES_TIEABLE_P(MODE1, MODE2) arm_modes_tieable_p (MODE1, MODE2)
966
967 #define VALID_IWMMXT_REG_MODE(MODE) \
968 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
969
970 /* Modes valid for Neon D registers. */
971 #define VALID_NEON_DREG_MODE(MODE) \
972 ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
973 || (MODE) == V2SFmode || (MODE) == DImode)
974
975 /* Modes valid for Neon Q registers. */
976 #define VALID_NEON_QREG_MODE(MODE) \
977 ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
978 || (MODE) == V4SFmode || (MODE) == V2DImode)
979
980 /* Structure modes valid for Neon registers. */
981 #define VALID_NEON_STRUCT_MODE(MODE) \
982 ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
983 || (MODE) == CImode || (MODE) == XImode)
984
985 /* The register numbers in sequence, for passing to arm_gen_load_multiple. */
986 extern int arm_regs_in_sequence[];
987
988 /* The order in which register should be allocated. It is good to use ip
989 since no saving is required (though calls clobber it) and it never contains
990 function parameters. It is quite good to use lr since other calls may
991 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
992 least likely to contain a function parameter; in addition results are
993 returned in r0.
994 For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
995 then D8-D15. The reason for doing this is to attempt to reduce register
996 pressure when both single- and double-precision registers are used in a
997 function. */
998
999 #define REG_ALLOC_ORDER \
1000 { \
1001 3, 2, 1, 0, 12, 14, 4, 5, \
1002 6, 7, 8, 10, 9, 11, 13, 15, \
1003 16, 17, 18, 19, 20, 21, 22, 23, \
1004 27, 28, 29, 30, 31, 32, 33, 34, \
1005 35, 36, 37, 38, 39, 40, 41, 42, \
1006 43, 44, 45, 46, 47, 48, 49, 50, \
1007 51, 52, 53, 54, 55, 56, 57, 58, \
1008 59, 60, 61, 62, \
1009 24, 25, 26, \
1010 95, 96, 97, 98, 99, 100, 101, 102, \
1011 103, 104, 105, 106, 107, 108, 109, 110, \
1012 111, 112, 113, 114, 115, 116, 117, 118, \
1013 119, 120, 121, 122, 123, 124, 125, 126, \
1014 78, 77, 76, 75, 74, 73, 72, 71, \
1015 70, 69, 68, 67, 66, 65, 64, 63, \
1016 79, 80, 81, 82, 83, 84, 85, 86, \
1017 87, 88, 89, 90, 91, 92, 93, 94, \
1018 127 \
1019 }
1020
1021 /* Use different register alloc ordering for Thumb. */
1022 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1023
1024 /* Tell IRA to use the order we define rather than messing it up with its
1025 own cost calculations. */
1026 #define HONOR_REG_ALLOC_ORDER
1027
1028 /* Interrupt functions can only use registers that have already been
1029 saved by the prologue, even if they would normally be
1030 call-clobbered. */
1031 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1032 (! IS_INTERRUPT (cfun->machine->func_type) || \
1033 df_regs_ever_live_p (DST))
1034 \f
1035 /* Register and constant classes. */
1036
1037 /* Register classes: used to be simple, just all ARM regs or all FPA regs
1038 Now that the Thumb is involved it has become more complicated. */
1039 enum reg_class
1040 {
1041 NO_REGS,
1042 FPA_REGS,
1043 CIRRUS_REGS,
1044 VFP_D0_D7_REGS,
1045 VFP_LO_REGS,
1046 VFP_HI_REGS,
1047 VFP_REGS,
1048 IWMMXT_GR_REGS,
1049 IWMMXT_REGS,
1050 LO_REGS,
1051 STACK_REG,
1052 BASE_REGS,
1053 HI_REGS,
1054 CC_REG,
1055 VFPCC_REG,
1056 GENERAL_REGS,
1057 CORE_REGS,
1058 ALL_REGS,
1059 LIM_REG_CLASSES
1060 };
1061
1062 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1063
1064 /* Give names of register classes as strings for dump file. */
1065 #define REG_CLASS_NAMES \
1066 { \
1067 "NO_REGS", \
1068 "FPA_REGS", \
1069 "CIRRUS_REGS", \
1070 "VFP_D0_D7_REGS", \
1071 "VFP_LO_REGS", \
1072 "VFP_HI_REGS", \
1073 "VFP_REGS", \
1074 "IWMMXT_GR_REGS", \
1075 "IWMMXT_REGS", \
1076 "LO_REGS", \
1077 "STACK_REG", \
1078 "BASE_REGS", \
1079 "HI_REGS", \
1080 "CC_REG", \
1081 "VFPCC_REG", \
1082 "GENERAL_REGS", \
1083 "CORE_REGS", \
1084 "ALL_REGS", \
1085 }
1086
1087 /* Define which registers fit in which classes.
1088 This is an initializer for a vector of HARD_REG_SET
1089 of length N_REG_CLASSES. */
1090 #define REG_CLASS_CONTENTS \
1091 { \
1092 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1093 { 0x00FF0000, 0x00000000, 0x00000000, 0x00000000 }, /* FPA_REGS */ \
1094 { 0xF8000000, 0x000007FF, 0x00000000, 0x00000000 }, /* CIRRUS_REGS */ \
1095 { 0x00000000, 0x80000000, 0x00007FFF, 0x00000000 }, /* VFP_D0_D7_REGS */ \
1096 { 0x00000000, 0x80000000, 0x7FFFFFFF, 0x00000000 }, /* VFP_LO_REGS */ \
1097 { 0x00000000, 0x00000000, 0x80000000, 0x7FFFFFFF }, /* VFP_HI_REGS */ \
1098 { 0x00000000, 0x80000000, 0xFFFFFFFF, 0x7FFFFFFF }, /* VFP_REGS */ \
1099 { 0x00000000, 0x00007800, 0x00000000, 0x00000000 }, /* IWMMXT_GR_REGS */ \
1100 { 0x00000000, 0x7FFF8000, 0x00000000, 0x00000000 }, /* IWMMXT_REGS */ \
1101 { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */ \
1102 { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
1103 { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */ \
1104 { 0x0000DF00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */ \
1105 { 0x01000000, 0x00000000, 0x00000000, 0x00000000 }, /* CC_REG */ \
1106 { 0x00000000, 0x00000000, 0x00000000, 0x80000000 }, /* VFPCC_REG */ \
1107 { 0x0000DFFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1108 { 0x0000FFFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */ \
1109 { 0xFAFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF } /* ALL_REGS */ \
1110 }
1111
1112 /* Any of the VFP register classes. */
1113 #define IS_VFP_CLASS(X) \
1114 ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1115 || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1116
1117 /* The same information, inverted:
1118 Return the class number of the smallest class containing
1119 reg number REGNO. This could be a conditional expression
1120 or could index an array. */
1121 #define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
1122
1123 /* FPA registers can't do subreg as all values are reformatted to internal
1124 precision. In VFPv1, VFP registers could only be accessed in the mode
1125 they were set, so subregs would be invalid there too. However, we don't
1126 support VFPv1 at the moment, and the restriction was lifted in VFPv2. */
1127 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1128 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1129 ? reg_classes_intersect_p (FPA_REGS, (CLASS)) \
1130 : 0)
1131
1132 /* The class value for index registers, and the one for base regs. */
1133 #define INDEX_REG_CLASS (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1134 #define BASE_REG_CLASS (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1135
1136 /* For the Thumb the high registers cannot be used as base registers
1137 when addressing quantities in QI or HI mode; if we don't know the
1138 mode, then we must be conservative. */
1139 #define MODE_BASE_REG_CLASS(MODE) \
1140 (TARGET_ARM || (TARGET_THUMB2 && !optimize_size) ? CORE_REGS : \
1141 (((MODE) == SImode) ? BASE_REGS : LO_REGS))
1142
1143 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1144 instead of BASE_REGS. */
1145 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1146
1147 /* When this hook returns true for MODE, the compiler allows
1148 registers explicitly used in the rtl to be used as spill registers
1149 but prevents the compiler from extending the lifetime of these
1150 registers. */
1151 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1152 arm_small_register_classes_for_mode_p
1153
1154 /* Must leave BASE_REGS reloads alone */
1155 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1156 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1157 ? ((true_regnum (X) == -1 ? LO_REGS \
1158 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1159 : NO_REGS)) \
1160 : NO_REGS)
1161
1162 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1163 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1164 ? ((true_regnum (X) == -1 ? LO_REGS \
1165 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1166 : NO_REGS)) \
1167 : NO_REGS)
1168
1169 /* Return the register class of a scratch register needed to copy IN into
1170 or out of a register in CLASS in MODE. If it can be done directly,
1171 NO_REGS is returned. */
1172 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1173 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1174 ((TARGET_VFP && TARGET_HARD_FLOAT \
1175 && IS_VFP_CLASS (CLASS)) \
1176 ? coproc_secondary_reload_class (MODE, X, FALSE) \
1177 : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \
1178 ? coproc_secondary_reload_class (MODE, X, TRUE) \
1179 : TARGET_32BIT \
1180 ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1181 ? GENERAL_REGS : NO_REGS) \
1182 : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1183
1184 /* If we need to load shorts byte-at-a-time, then we need a scratch. */
1185 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1186 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1187 ((TARGET_VFP && TARGET_HARD_FLOAT \
1188 && IS_VFP_CLASS (CLASS)) \
1189 ? coproc_secondary_reload_class (MODE, X, FALSE) : \
1190 (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \
1191 coproc_secondary_reload_class (MODE, X, TRUE) : \
1192 /* Cannot load constants into Cirrus registers. */ \
1193 (TARGET_MAVERICK && TARGET_HARD_FLOAT \
1194 && (CLASS) == CIRRUS_REGS \
1195 && (CONSTANT_P (X) || GET_CODE (X) == SYMBOL_REF)) \
1196 ? GENERAL_REGS : \
1197 (TARGET_32BIT ? \
1198 (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \
1199 && CONSTANT_P (X)) \
1200 ? GENERAL_REGS : \
1201 (((MODE) == HImode && ! arm_arch4 \
1202 && (GET_CODE (X) == MEM \
1203 || ((GET_CODE (X) == REG || GET_CODE (X) == SUBREG) \
1204 && true_regnum (X) == -1))) \
1205 ? GENERAL_REGS : NO_REGS) \
1206 : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1207
1208 /* Try a machine-dependent way of reloading an illegitimate address
1209 operand. If we find one, push the reload and jump to WIN. This
1210 macro is used in only one place: `find_reloads_address' in reload.c.
1211
1212 For the ARM, we wish to handle large displacements off a base
1213 register by splitting the addend across a MOV and the mem insn.
1214 This can cut the number of reloads needed. */
1215 #define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN) \
1216 do \
1217 { \
1218 if (arm_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND)) \
1219 goto WIN; \
1220 } \
1221 while (0)
1222
1223 /* XXX If an HImode FP+large_offset address is converted to an HImode
1224 SP+large_offset address, then reload won't know how to fix it. It sees
1225 only that SP isn't valid for HImode, and so reloads the SP into an index
1226 register, but the resulting address is still invalid because the offset
1227 is too big. We fix it here instead by reloading the entire address. */
1228 /* We could probably achieve better results by defining PROMOTE_MODE to help
1229 cope with the variances between the Thumb's signed and unsigned byte and
1230 halfword load instructions. */
1231 /* ??? This should be safe for thumb2, but we may be able to do better. */
1232 #define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_L, WIN) \
1233 do { \
1234 rtx new_x = thumb_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND_L); \
1235 if (new_x) \
1236 { \
1237 X = new_x; \
1238 goto WIN; \
1239 } \
1240 } while (0)
1241
1242 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) \
1243 if (TARGET_ARM) \
1244 ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \
1245 else \
1246 THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)
1247
1248 /* Return the maximum number of consecutive registers
1249 needed to represent mode MODE in a register of class CLASS.
1250 ARM regs are UNITS_PER_WORD bits while FPA regs can hold any FP mode */
1251 #define CLASS_MAX_NREGS(CLASS, MODE) \
1252 (((CLASS) == FPA_REGS || (CLASS) == CIRRUS_REGS) ? 1 : ARM_NUM_REGS (MODE))
1253
1254 /* If defined, gives a class of registers that cannot be used as the
1255 operand of a SUBREG that changes the mode of the object illegally. */
1256 \f
1257 /* Stack layout; function entry, exit and calling. */
1258
1259 /* Define this if pushing a word on the stack
1260 makes the stack pointer a smaller address. */
1261 #define STACK_GROWS_DOWNWARD 1
1262
1263 /* Define this to nonzero if the nominal address of the stack frame
1264 is at the high-address end of the local variables;
1265 that is, each additional local variable allocated
1266 goes at a more negative offset in the frame. */
1267 #define FRAME_GROWS_DOWNWARD 1
1268
1269 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1270 When present, it is one word in size, and sits at the top of the frame,
1271 between the soft frame pointer and either r7 or r11.
1272
1273 We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1274 and only then if some outgoing arguments are passed on the stack. It would
1275 be tempting to also check whether the stack arguments are passed by indirect
1276 calls, but there seems to be no reason in principle why a post-reload pass
1277 couldn't convert a direct call into an indirect one. */
1278 #define CALLER_INTERWORKING_SLOT_SIZE \
1279 (TARGET_CALLER_INTERWORKING \
1280 && crtl->outgoing_args_size != 0 \
1281 ? UNITS_PER_WORD : 0)
1282
1283 /* Offset within stack frame to start allocating local variables at.
1284 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1285 first local allocated. Otherwise, it is the offset to the BEGINNING
1286 of the first local allocated. */
1287 #define STARTING_FRAME_OFFSET 0
1288
1289 /* If we generate an insn to push BYTES bytes,
1290 this says how many the stack pointer really advances by. */
1291 /* The push insns do not do this rounding implicitly.
1292 So don't define this. */
1293 /* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */
1294
1295 /* Define this if the maximum size of all the outgoing args is to be
1296 accumulated and pushed during the prologue. The amount can be
1297 found in the variable crtl->outgoing_args_size. */
1298 #define ACCUMULATE_OUTGOING_ARGS 1
1299
1300 /* Offset of first parameter from the argument pointer register value. */
1301 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
1302
1303 /* Amount of memory needed for an untyped call to save all possible return
1304 registers. */
1305 #define APPLY_RESULT_SIZE arm_apply_result_size()
1306
1307 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1308 values must be in memory. On the ARM, they need only do so if larger
1309 than a word, or if they contain elements offset from zero in the struct. */
1310 #define DEFAULT_PCC_STRUCT_RETURN 0
1311
1312 /* These bits describe the different types of function supported
1313 by the ARM backend. They are exclusive. i.e. a function cannot be both a
1314 normal function and an interworked function, for example. Knowing the
1315 type of a function is important for determining its prologue and
1316 epilogue sequences.
1317 Note value 7 is currently unassigned. Also note that the interrupt
1318 function types all have bit 2 set, so that they can be tested for easily.
1319 Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1320 machine_function structure is initialized (to zero) func_type will
1321 default to unknown. This will force the first use of arm_current_func_type
1322 to call arm_compute_func_type. */
1323 #define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
1324 #define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
1325 #define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
1326 #define ARM_FT_ISR 4 /* An interrupt service routine. */
1327 #define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
1328 #define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
1329
1330 #define ARM_FT_TYPE_MASK ((1 << 3) - 1)
1331
1332 /* In addition functions can have several type modifiers,
1333 outlined by these bit masks: */
1334 #define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
1335 #define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
1336 #define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
1337 #define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
1338 #define ARM_FT_STACKALIGN (1 << 6) /* Called with misaligned stack. */
1339
1340 /* Some macros to test these flags. */
1341 #define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
1342 #define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
1343 #define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
1344 #define IS_NAKED(t) (t & ARM_FT_NAKED)
1345 #define IS_NESTED(t) (t & ARM_FT_NESTED)
1346 #define IS_STACKALIGN(t) (t & ARM_FT_STACKALIGN)
1347
1348
1349 /* Structure used to hold the function stack frame layout. Offsets are
1350 relative to the stack pointer on function entry. Positive offsets are
1351 in the direction of stack growth.
1352 Only soft_frame is used in thumb mode. */
1353
1354 typedef struct GTY(()) arm_stack_offsets
1355 {
1356 int saved_args; /* ARG_POINTER_REGNUM. */
1357 int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */
1358 int saved_regs;
1359 int soft_frame; /* FRAME_POINTER_REGNUM. */
1360 int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */
1361 int outgoing_args; /* STACK_POINTER_REGNUM. */
1362 unsigned int saved_regs_mask;
1363 }
1364 arm_stack_offsets;
1365
1366 #ifndef GENERATOR_FILE
1367 /* A C structure for machine-specific, per-function data.
1368 This is added to the cfun structure. */
1369 typedef struct GTY(()) machine_function
1370 {
1371 /* Additional stack adjustment in __builtin_eh_throw. */
1372 rtx eh_epilogue_sp_ofs;
1373 /* Records if LR has to be saved for far jumps. */
1374 int far_jump_used;
1375 /* Records if ARG_POINTER was ever live. */
1376 int arg_pointer_live;
1377 /* Records if the save of LR has been eliminated. */
1378 int lr_save_eliminated;
1379 /* The size of the stack frame. Only valid after reload. */
1380 arm_stack_offsets stack_offsets;
1381 /* Records the type of the current function. */
1382 unsigned long func_type;
1383 /* Record if the function has a variable argument list. */
1384 int uses_anonymous_args;
1385 /* Records if sibcalls are blocked because an argument
1386 register is needed to preserve stack alignment. */
1387 int sibcall_blocked;
1388 /* The PIC register for this function. This might be a pseudo. */
1389 rtx pic_reg;
1390 /* Labels for per-function Thumb call-via stubs. One per potential calling
1391 register. We can never call via LR or PC. We can call via SP if a
1392 trampoline happens to be on the top of the stack. */
1393 rtx call_via[14];
1394 /* Set to 1 when a return insn is output, this means that the epilogue
1395 is not needed. */
1396 int return_used_this_function;
1397 /* When outputting Thumb-1 code, record the last insn that provides
1398 information about condition codes, and the comparison operands. */
1399 rtx thumb1_cc_insn;
1400 rtx thumb1_cc_op0;
1401 rtx thumb1_cc_op1;
1402 /* Also record the CC mode that is supported. */
1403 enum machine_mode thumb1_cc_mode;
1404 }
1405 machine_function;
1406 #endif
1407
1408 /* As in the machine_function, a global set of call-via labels, for code
1409 that is in text_section. */
1410 extern GTY(()) rtx thumb_call_via_label[14];
1411
1412 /* The number of potential ways of assigning to a co-processor. */
1413 #define ARM_NUM_COPROC_SLOTS 1
1414
1415 /* Enumeration of procedure calling standard variants. We don't really
1416 support all of these yet. */
1417 enum arm_pcs
1418 {
1419 ARM_PCS_AAPCS, /* Base standard AAPCS. */
1420 ARM_PCS_AAPCS_VFP, /* Use VFP registers for floating point values. */
1421 ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors. */
1422 /* This must be the last AAPCS variant. */
1423 ARM_PCS_AAPCS_LOCAL, /* Private call within this compilation unit. */
1424 ARM_PCS_ATPCS, /* ATPCS. */
1425 ARM_PCS_APCS, /* APCS (legacy Linux etc). */
1426 ARM_PCS_UNKNOWN
1427 };
1428
1429 /* Default procedure calling standard of current compilation unit. */
1430 extern enum arm_pcs arm_pcs_default;
1431
1432 /* A C type for declaring a variable that is used as the first argument of
1433 `FUNCTION_ARG' and other related values. */
1434 typedef struct
1435 {
1436 /* This is the number of registers of arguments scanned so far. */
1437 int nregs;
1438 /* This is the number of iWMMXt register arguments scanned so far. */
1439 int iwmmxt_nregs;
1440 int named_count;
1441 int nargs;
1442 /* Which procedure call variant to use for this call. */
1443 enum arm_pcs pcs_variant;
1444
1445 /* AAPCS related state tracking. */
1446 int aapcs_arg_processed; /* No need to lay out this argument again. */
1447 int aapcs_cprc_slot; /* Index of co-processor rules to handle
1448 this argument, or -1 if using core
1449 registers. */
1450 int aapcs_ncrn;
1451 int aapcs_next_ncrn;
1452 rtx aapcs_reg; /* Register assigned to this argument. */
1453 int aapcs_partial; /* How many bytes are passed in regs (if
1454 split between core regs and stack.
1455 Zero otherwise. */
1456 int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1457 int can_split; /* Argument can be split between core regs
1458 and the stack. */
1459 /* Private data for tracking VFP register allocation */
1460 unsigned aapcs_vfp_regs_free;
1461 unsigned aapcs_vfp_reg_alloc;
1462 int aapcs_vfp_rcount;
1463 MACHMODE aapcs_vfp_rmode;
1464 } CUMULATIVE_ARGS;
1465
1466 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1467 (arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
1468
1469 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1470 (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
1471
1472 /* For AAPCS, padding should never be below the argument. For other ABIs,
1473 * mimic the default. */
1474 #define PAD_VARARGS_DOWN \
1475 ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1476
1477 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1478 for a call to a function whose data type is FNTYPE.
1479 For a library call, FNTYPE is 0.
1480 On the ARM, the offset starts at 0. */
1481 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1482 arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1483
1484 /* 1 if N is a possible register number for function argument passing.
1485 On the ARM, r0-r3 are used to pass args. */
1486 #define FUNCTION_ARG_REGNO_P(REGNO) \
1487 (IN_RANGE ((REGNO), 0, 3) \
1488 || (TARGET_AAPCS_BASED && TARGET_VFP && TARGET_HARD_FLOAT \
1489 && IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15)) \
1490 || (TARGET_IWMMXT_ABI \
1491 && IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1492
1493 \f
1494 /* If your target environment doesn't prefix user functions with an
1495 underscore, you may wish to re-define this to prevent any conflicts. */
1496 #ifndef ARM_MCOUNT_NAME
1497 #define ARM_MCOUNT_NAME "*mcount"
1498 #endif
1499
1500 /* Call the function profiler with a given profile label. The Acorn
1501 compiler puts this BEFORE the prolog but gcc puts it afterwards.
1502 On the ARM the full profile code will look like:
1503 .data
1504 LP1
1505 .word 0
1506 .text
1507 mov ip, lr
1508 bl mcount
1509 .word LP1
1510
1511 profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1512 will output the .text section.
1513
1514 The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1515 ``prof'' doesn't seem to mind about this!
1516
1517 Note - this version of the code is designed to work in both ARM and
1518 Thumb modes. */
1519 #ifndef ARM_FUNCTION_PROFILER
1520 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
1521 { \
1522 char temp[20]; \
1523 rtx sym; \
1524 \
1525 asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
1526 IP_REGNUM, LR_REGNUM); \
1527 assemble_name (STREAM, ARM_MCOUNT_NAME); \
1528 fputc ('\n', STREAM); \
1529 ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
1530 sym = gen_rtx_SYMBOL_REF (Pmode, temp); \
1531 assemble_aligned_integer (UNITS_PER_WORD, sym); \
1532 }
1533 #endif
1534
1535 #ifdef THUMB_FUNCTION_PROFILER
1536 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1537 if (TARGET_ARM) \
1538 ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
1539 else \
1540 THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1541 #else
1542 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1543 ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1544 #endif
1545
1546 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1547 the stack pointer does not matter. The value is tested only in
1548 functions that have frame pointers.
1549 No definition is equivalent to always zero.
1550
1551 On the ARM, the function epilogue recovers the stack pointer from the
1552 frame. */
1553 #define EXIT_IGNORE_STACK 1
1554
1555 #define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNUM)
1556
1557 /* Determine if the epilogue should be output as RTL.
1558 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1559 #define USE_RETURN_INSN(ISCOND) \
1560 (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1561
1562 /* Definitions for register eliminations.
1563
1564 This is an array of structures. Each structure initializes one pair
1565 of eliminable registers. The "from" register number is given first,
1566 followed by "to". Eliminations of the same "from" register are listed
1567 in order of preference.
1568
1569 We have two registers that can be eliminated on the ARM. First, the
1570 arg pointer register can often be eliminated in favor of the stack
1571 pointer register. Secondly, the pseudo frame pointer register can always
1572 be eliminated; it is replaced with either the stack or the real frame
1573 pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1574 because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
1575
1576 #define ELIMINABLE_REGS \
1577 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1578 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
1579 { ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1580 { ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
1581 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1582 { FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1583 { FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
1584
1585 /* Define the offset between two registers, one to be eliminated, and the
1586 other its replacement, at the start of a routine. */
1587 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1588 if (TARGET_ARM) \
1589 (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
1590 else \
1591 (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1592
1593 /* Special case handling of the location of arguments passed on the stack. */
1594 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1595
1596 /* Initialize data used by insn expanders. This is called from insn_emit,
1597 once for every function before code is generated. */
1598 #define INIT_EXPANDERS arm_init_expanders ()
1599
1600 /* Length in units of the trampoline for entering a nested function. */
1601 #define TRAMPOLINE_SIZE (TARGET_32BIT ? 16 : 20)
1602
1603 /* Alignment required for a trampoline in bits. */
1604 #define TRAMPOLINE_ALIGNMENT 32
1605 \f
1606 /* Addressing modes, and classification of registers for them. */
1607 #define HAVE_POST_INCREMENT 1
1608 #define HAVE_PRE_INCREMENT TARGET_32BIT
1609 #define HAVE_POST_DECREMENT TARGET_32BIT
1610 #define HAVE_PRE_DECREMENT TARGET_32BIT
1611 #define HAVE_PRE_MODIFY_DISP TARGET_32BIT
1612 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1613 #define HAVE_PRE_MODIFY_REG TARGET_32BIT
1614 #define HAVE_POST_MODIFY_REG TARGET_32BIT
1615
1616 /* Macros to check register numbers against specific register classes. */
1617
1618 /* These assume that REGNO is a hard or pseudo reg number.
1619 They give nonzero only if REGNO is a hard reg of the suitable class
1620 or a pseudo reg currently allocated to a suitable hard reg.
1621 Since they use reg_renumber, they are safe only once reg_renumber
1622 has been allocated, which happens in local-alloc.c. */
1623 #define TEST_REGNO(R, TEST, VALUE) \
1624 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1625
1626 /* Don't allow the pc to be used. */
1627 #define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
1628 (TEST_REGNO (REGNO, <, PC_REGNUM) \
1629 || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
1630 || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1631
1632 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1633 (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
1634 || (GET_MODE_SIZE (MODE) >= 4 \
1635 && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1636
1637 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1638 (TARGET_THUMB1 \
1639 ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
1640 : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1641
1642 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1643 For Thumb, we can not use SP + reg, so reject SP. */
1644 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1645 REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1646
1647 /* For ARM code, we don't care about the mode, but for Thumb, the index
1648 must be suitable for use in a QImode load. */
1649 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1650 (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1651 && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1652
1653 /* Maximum number of registers that can appear in a valid memory address.
1654 Shifts in addresses can't be by a register. */
1655 #define MAX_REGS_PER_ADDRESS 2
1656
1657 /* Recognize any constant value that is a valid address. */
1658 /* XXX We can address any constant, eventually... */
1659 /* ??? Should the TARGET_ARM here also apply to thumb2? */
1660 #define CONSTANT_ADDRESS_P(X) \
1661 (GET_CODE (X) == SYMBOL_REF \
1662 && (CONSTANT_POOL_ADDRESS_P (X) \
1663 || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1664
1665 /* True if SYMBOL + OFFSET constants must refer to something within
1666 SYMBOL's section. */
1667 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1668
1669 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32. */
1670 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1671 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1672 #endif
1673
1674 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1675 #define SUBTARGET_NAME_ENCODING_LENGTHS
1676 #endif
1677
1678 /* This is a C fragment for the inside of a switch statement.
1679 Each case label should return the number of characters to
1680 be stripped from the start of a function's name, if that
1681 name starts with the indicated character. */
1682 #define ARM_NAME_ENCODING_LENGTHS \
1683 case '*': return 1; \
1684 SUBTARGET_NAME_ENCODING_LENGTHS
1685
1686 /* This is how to output a reference to a user-level label named NAME.
1687 `assemble_name' uses this. */
1688 #undef ASM_OUTPUT_LABELREF
1689 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1690 arm_asm_output_labelref (FILE, NAME)
1691
1692 /* Output IT instructions for conditionally executed Thumb-2 instructions. */
1693 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1694 if (TARGET_THUMB2) \
1695 thumb2_asm_output_opcode (STREAM);
1696
1697 /* The EABI specifies that constructors should go in .init_array.
1698 Other targets use .ctors for compatibility. */
1699 #ifndef ARM_EABI_CTORS_SECTION_OP
1700 #define ARM_EABI_CTORS_SECTION_OP \
1701 "\t.section\t.init_array,\"aw\",%init_array"
1702 #endif
1703 #ifndef ARM_EABI_DTORS_SECTION_OP
1704 #define ARM_EABI_DTORS_SECTION_OP \
1705 "\t.section\t.fini_array,\"aw\",%fini_array"
1706 #endif
1707 #define ARM_CTORS_SECTION_OP \
1708 "\t.section\t.ctors,\"aw\",%progbits"
1709 #define ARM_DTORS_SECTION_OP \
1710 "\t.section\t.dtors,\"aw\",%progbits"
1711
1712 /* Define CTORS_SECTION_ASM_OP. */
1713 #undef CTORS_SECTION_ASM_OP
1714 #undef DTORS_SECTION_ASM_OP
1715 #ifndef IN_LIBGCC2
1716 # define CTORS_SECTION_ASM_OP \
1717 (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1718 # define DTORS_SECTION_ASM_OP \
1719 (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1720 #else /* !defined (IN_LIBGCC2) */
1721 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1722 so we cannot use the definition above. */
1723 # ifdef __ARM_EABI__
1724 /* The .ctors section is not part of the EABI, so we do not define
1725 CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1726 from trying to use it. We do define it when doing normal
1727 compilation, as .init_array can be used instead of .ctors. */
1728 /* There is no need to emit begin or end markers when using
1729 init_array; the dynamic linker will compute the size of the
1730 array itself based on special symbols created by the static
1731 linker. However, we do need to arrange to set up
1732 exception-handling here. */
1733 # define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1734 # define CTOR_LIST_END /* empty */
1735 # define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1736 # define DTOR_LIST_END /* empty */
1737 # else /* !defined (__ARM_EABI__) */
1738 # define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1739 # define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1740 # endif /* !defined (__ARM_EABI__) */
1741 #endif /* !defined (IN_LIBCC2) */
1742
1743 /* True if the operating system can merge entities with vague linkage
1744 (e.g., symbols in COMDAT group) during dynamic linking. */
1745 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1746 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1747 #endif
1748
1749 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1750
1751 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1752 and check its validity for a certain class.
1753 We have two alternate definitions for each of them.
1754 The usual definition accepts all pseudo regs; the other rejects
1755 them unless they have been allocated suitable hard regs.
1756 The symbol REG_OK_STRICT causes the latter definition to be used.
1757 Thumb-2 has the same restrictions as arm. */
1758 #ifndef REG_OK_STRICT
1759
1760 #define ARM_REG_OK_FOR_BASE_P(X) \
1761 (REGNO (X) <= LAST_ARM_REGNUM \
1762 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1763 || REGNO (X) == FRAME_POINTER_REGNUM \
1764 || REGNO (X) == ARG_POINTER_REGNUM)
1765
1766 #define ARM_REG_OK_FOR_INDEX_P(X) \
1767 ((REGNO (X) <= LAST_ARM_REGNUM \
1768 && REGNO (X) != STACK_POINTER_REGNUM) \
1769 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1770 || REGNO (X) == FRAME_POINTER_REGNUM \
1771 || REGNO (X) == ARG_POINTER_REGNUM)
1772
1773 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1774 (REGNO (X) <= LAST_LO_REGNUM \
1775 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1776 || (GET_MODE_SIZE (MODE) >= 4 \
1777 && (REGNO (X) == STACK_POINTER_REGNUM \
1778 || (X) == hard_frame_pointer_rtx \
1779 || (X) == arg_pointer_rtx)))
1780
1781 #define REG_STRICT_P 0
1782
1783 #else /* REG_OK_STRICT */
1784
1785 #define ARM_REG_OK_FOR_BASE_P(X) \
1786 ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1787
1788 #define ARM_REG_OK_FOR_INDEX_P(X) \
1789 ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1790
1791 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1792 THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1793
1794 #define REG_STRICT_P 1
1795
1796 #endif /* REG_OK_STRICT */
1797
1798 /* Now define some helpers in terms of the above. */
1799
1800 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1801 (TARGET_THUMB1 \
1802 ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE) \
1803 : ARM_REG_OK_FOR_BASE_P (X))
1804
1805 /* For 16-bit Thumb, a valid index register is anything that can be used in
1806 a byte load instruction. */
1807 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
1808 THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
1809
1810 /* Nonzero if X is a hard reg that can be used as an index
1811 or if it is a pseudo reg. On the Thumb, the stack pointer
1812 is not suitable. */
1813 #define REG_OK_FOR_INDEX_P(X) \
1814 (TARGET_THUMB1 \
1815 ? THUMB1_REG_OK_FOR_INDEX_P (X) \
1816 : ARM_REG_OK_FOR_INDEX_P (X))
1817
1818 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1819 For Thumb, we can not use SP + reg, so reject SP. */
1820 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1821 REG_OK_FOR_INDEX_P (X)
1822 \f
1823 #define ARM_BASE_REGISTER_RTX_P(X) \
1824 (GET_CODE (X) == REG && ARM_REG_OK_FOR_BASE_P (X))
1825
1826 #define ARM_INDEX_REGISTER_RTX_P(X) \
1827 (GET_CODE (X) == REG && ARM_REG_OK_FOR_INDEX_P (X))
1828 \f
1829 /* Specify the machine mode that this machine uses
1830 for the index in the tablejump instruction. */
1831 #define CASE_VECTOR_MODE Pmode
1832
1833 #define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2 \
1834 || (TARGET_THUMB1 \
1835 && (optimize_size || flag_pic)))
1836
1837 #define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
1838 (TARGET_THUMB1 \
1839 ? (min >= 0 && max < 512 \
1840 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode) \
1841 : min >= -256 && max < 256 \
1842 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode) \
1843 : min >= 0 && max < 8192 \
1844 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode) \
1845 : min >= -4096 && max < 4096 \
1846 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode) \
1847 : SImode) \
1848 : ((min < 0 || max >= 0x20000 || !TARGET_THUMB2) ? SImode \
1849 : (max >= 0x200) ? HImode \
1850 : QImode))
1851
1852 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
1853 unsigned is probably best, but may break some code. */
1854 #ifndef DEFAULT_SIGNED_CHAR
1855 #define DEFAULT_SIGNED_CHAR 0
1856 #endif
1857
1858 /* Max number of bytes we can move from memory to memory
1859 in one reasonably fast instruction. */
1860 #define MOVE_MAX 4
1861
1862 #undef MOVE_RATIO
1863 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
1864
1865 /* Define if operations between registers always perform the operation
1866 on the full register even if a narrower mode is specified. */
1867 #define WORD_REGISTER_OPERATIONS
1868
1869 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1870 will either zero-extend or sign-extend. The value of this macro should
1871 be the code that says which one of the two operations is implicitly
1872 done, UNKNOWN if none. */
1873 #define LOAD_EXTEND_OP(MODE) \
1874 (TARGET_THUMB ? ZERO_EXTEND : \
1875 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
1876 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
1877
1878 /* Nonzero if access to memory by bytes is slow and undesirable. */
1879 #define SLOW_BYTE_ACCESS 0
1880
1881 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
1882
1883 /* Immediate shift counts are truncated by the output routines (or was it
1884 the assembler?). Shift counts in a register are truncated by ARM. Note
1885 that the native compiler puts too large (> 32) immediate shift counts
1886 into a register and shifts by the register, letting the ARM decide what
1887 to do instead of doing that itself. */
1888 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
1889 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
1890 On the arm, Y in a register is used modulo 256 for the shift. Only for
1891 rotates is modulo 32 used. */
1892 /* #define SHIFT_COUNT_TRUNCATED 1 */
1893
1894 /* All integers have the same format so truncation is easy. */
1895 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1896
1897 /* Calling from registers is a massive pain. */
1898 #define NO_FUNCTION_CSE 1
1899
1900 /* The machine modes of pointers and functions */
1901 #define Pmode SImode
1902 #define FUNCTION_MODE Pmode
1903
1904 #define ARM_FRAME_RTX(X) \
1905 ( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
1906 || (X) == arg_pointer_rtx)
1907
1908 /* Try to generate sequences that don't involve branches, we can then use
1909 conditional instructions */
1910 #define BRANCH_COST(speed_p, predictable_p) \
1911 (current_tune->branch_cost (speed_p, predictable_p))
1912
1913 \f
1914 /* Position Independent Code. */
1915 /* We decide which register to use based on the compilation options and
1916 the assembler in use; this is more general than the APCS restriction of
1917 using sb (r9) all the time. */
1918 extern unsigned arm_pic_register;
1919
1920 /* The register number of the register used to address a table of static
1921 data addresses in memory. */
1922 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
1923
1924 /* We can't directly access anything that contains a symbol,
1925 nor can we indirect via the constant pool. One exception is
1926 UNSPEC_TLS, which is always PIC. */
1927 #define LEGITIMATE_PIC_OPERAND_P(X) \
1928 (!(symbol_mentioned_p (X) \
1929 || label_mentioned_p (X) \
1930 || (GET_CODE (X) == SYMBOL_REF \
1931 && CONSTANT_POOL_ADDRESS_P (X) \
1932 && (symbol_mentioned_p (get_pool_constant (X)) \
1933 || label_mentioned_p (get_pool_constant (X))))) \
1934 || tls_mentioned_p (X))
1935
1936 /* We need to know when we are making a constant pool; this determines
1937 whether data needs to be in the GOT or can be referenced via a GOT
1938 offset. */
1939 extern int making_const_table;
1940 \f
1941 /* Handle pragmas for compatibility with Intel's compilers. */
1942 /* Also abuse this to register additional C specific EABI attributes. */
1943 #define REGISTER_TARGET_PRAGMAS() do { \
1944 c_register_pragma (0, "long_calls", arm_pr_long_calls); \
1945 c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \
1946 c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \
1947 arm_lang_object_attributes_init(); \
1948 } while (0)
1949
1950 /* Condition code information. */
1951 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1952 return the mode to be used for the comparison. */
1953
1954 #define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
1955
1956 #define REVERSIBLE_CC_MODE(MODE) 1
1957
1958 #define REVERSE_CONDITION(CODE,MODE) \
1959 (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
1960 ? reverse_condition_maybe_unordered (code) \
1961 : reverse_condition (code))
1962
1963 #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
1964 (CODE) = arm_canonicalize_comparison (CODE, &(OP0), &(OP1))
1965
1966 /* The arm5 clz instruction returns 32. */
1967 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
1968 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
1969 \f
1970 #define CC_STATUS_INIT \
1971 do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
1972
1973 #undef ASM_APP_OFF
1974 #define ASM_APP_OFF (TARGET_THUMB1 ? "\t.code\t16\n" : \
1975 TARGET_THUMB2 ? "\t.thumb\n" : "")
1976
1977 /* Output a push or a pop instruction (only used when profiling).
1978 We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1. We know
1979 that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
1980 that r7 isn't used by the function profiler, so we can use it as a
1981 scratch reg. WARNING: This isn't safe in the general case! It may be
1982 sensitive to future changes in final.c:profile_function. */
1983 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
1984 do \
1985 { \
1986 if (TARGET_ARM) \
1987 asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n", \
1988 STACK_POINTER_REGNUM, REGNO); \
1989 else if (TARGET_THUMB1 \
1990 && (REGNO) == STATIC_CHAIN_REGNUM) \
1991 { \
1992 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
1993 asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
1994 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
1995 } \
1996 else \
1997 asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \
1998 } while (0)
1999
2000
2001 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue. */
2002 #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
2003 do \
2004 { \
2005 if (TARGET_ARM) \
2006 asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n", \
2007 STACK_POINTER_REGNUM, REGNO); \
2008 else if (TARGET_THUMB1 \
2009 && (REGNO) == STATIC_CHAIN_REGNUM) \
2010 { \
2011 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2012 asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2013 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2014 } \
2015 else \
2016 asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \
2017 } while (0)
2018
2019 /* Jump table alignment is explicit in ASM_OUTPUT_CASE_LABEL. */
2020 #define ADDR_VEC_ALIGN(JUMPTABLE) 0
2021
2022 /* This is how to output a label which precedes a jumptable. Since
2023 Thumb instructions are 2 bytes, we may need explicit alignment here. */
2024 #undef ASM_OUTPUT_CASE_LABEL
2025 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, JUMPTABLE) \
2026 do \
2027 { \
2028 if (TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) \
2029 ASM_OUTPUT_ALIGN (FILE, 2); \
2030 (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); \
2031 } \
2032 while (0)
2033
2034 /* Make sure subsequent insns are aligned after a TBB. */
2035 #define ASM_OUTPUT_CASE_END(FILE, NUM, JUMPTABLE) \
2036 do \
2037 { \
2038 if (GET_MODE (PATTERN (JUMPTABLE)) == QImode) \
2039 ASM_OUTPUT_ALIGN (FILE, 1); \
2040 } \
2041 while (0)
2042
2043 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
2044 do \
2045 { \
2046 if (TARGET_THUMB) \
2047 { \
2048 if (is_called_in_ARM_mode (DECL) \
2049 || (TARGET_THUMB1 && !TARGET_THUMB1_ONLY \
2050 && cfun->is_thunk)) \
2051 fprintf (STREAM, "\t.code 32\n") ; \
2052 else if (TARGET_THUMB1) \
2053 fprintf (STREAM, "\t.code\t16\n\t.thumb_func\n") ; \
2054 else \
2055 fprintf (STREAM, "\t.thumb\n\t.thumb_func\n") ; \
2056 } \
2057 if (TARGET_POKE_FUNCTION_NAME) \
2058 arm_poke_function_name (STREAM, (const char *) NAME); \
2059 } \
2060 while (0)
2061
2062 /* For aliases of functions we use .thumb_set instead. */
2063 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
2064 do \
2065 { \
2066 const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2067 const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
2068 \
2069 if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
2070 { \
2071 fprintf (FILE, "\t.thumb_set "); \
2072 assemble_name (FILE, LABEL1); \
2073 fprintf (FILE, ","); \
2074 assemble_name (FILE, LABEL2); \
2075 fprintf (FILE, "\n"); \
2076 } \
2077 else \
2078 ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
2079 } \
2080 while (0)
2081
2082 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2083 /* To support -falign-* switches we need to use .p2align so
2084 that alignment directives in code sections will be padded
2085 with no-op instructions, rather than zeroes. */
2086 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \
2087 if ((LOG) != 0) \
2088 { \
2089 if ((MAX_SKIP) == 0) \
2090 fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \
2091 else \
2092 fprintf ((FILE), "\t.p2align %d,,%d\n", \
2093 (int) (LOG), (int) (MAX_SKIP)); \
2094 }
2095 #endif
2096 \f
2097 /* Add two bytes to the length of conditionally executed Thumb-2
2098 instructions for the IT instruction. */
2099 #define ADJUST_INSN_LENGTH(insn, length) \
2100 if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2101 length += 2;
2102
2103 /* Only perform branch elimination (by making instructions conditional) if
2104 we're optimizing. For Thumb-2 check if any IT instructions need
2105 outputting. */
2106 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2107 if (TARGET_ARM && optimize) \
2108 arm_final_prescan_insn (INSN); \
2109 else if (TARGET_THUMB2) \
2110 thumb2_final_prescan_insn (INSN); \
2111 else if (TARGET_THUMB1) \
2112 thumb1_final_prescan_insn (INSN)
2113
2114 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
2115 (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
2116 : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2117 ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2118 ? ((~ (unsigned HOST_WIDE_INT) 0) \
2119 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
2120 : 0))))
2121
2122 /* A C expression whose value is RTL representing the value of the return
2123 address for the frame COUNT steps up from the current frame. */
2124
2125 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2126 arm_return_addr (COUNT, FRAME)
2127
2128 /* Mask of the bits in the PC that contain the real return address
2129 when running in 26-bit mode. */
2130 #define RETURN_ADDR_MASK26 (0x03fffffc)
2131
2132 /* Pick up the return address upon entry to a procedure. Used for
2133 dwarf2 unwind information. This also enables the table driven
2134 mechanism. */
2135 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
2136 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
2137
2138 /* Used to mask out junk bits from the return address, such as
2139 processor state, interrupt status, condition codes and the like. */
2140 #define MASK_RETURN_ADDR \
2141 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
2142 in 26 bit mode, the condition codes must be masked out of the \
2143 return address. This does not apply to ARM6 and later processors \
2144 when running in 32 bit mode. */ \
2145 ((arm_arch4 || TARGET_THUMB) \
2146 ? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \
2147 : arm_gen_return_addr_mask ())
2148
2149 \f
2150 /* Do not emit .note.GNU-stack by default. */
2151 #ifndef NEED_INDICATE_EXEC_STACK
2152 #define NEED_INDICATE_EXEC_STACK 0
2153 #endif
2154
2155 /* The maximum number of parallel loads or stores we support in an ldm/stm
2156 instruction. */
2157 #define MAX_LDM_STM_OPS 4
2158
2159 #define ASM_CPU_SPEC \
2160 " %{mcpu=generic-*:-march=%*;" \
2161 " :%{mcpu=*:-mcpu=%*} %{march=*:-march=%*}}"
2162
2163 /* This macro is used to emit an EABI tag and its associated value.
2164 We emit the numerical value of the tag in case the assembler does not
2165 support textual tags. (Eg gas prior to 2.20). If requested we include
2166 the tag name in a comment so that anyone reading the assembler output
2167 will know which tag is being set. */
2168 #define EMIT_EABI_ATTRIBUTE(NAME,NUM,VAL) \
2169 do \
2170 { \
2171 asm_fprintf (asm_out_file, "\t.eabi_attribute %d, %d", NUM, VAL); \
2172 if (flag_verbose_asm || flag_debug_asm) \
2173 asm_fprintf (asm_out_file, "\t%s " #NAME, ASM_COMMENT_START); \
2174 asm_fprintf (asm_out_file, "\n"); \
2175 } \
2176 while (0)
2177
2178 /* -mcpu=native handling only makes sense with compiler running on
2179 an ARM chip. */
2180 #if defined(__arm__)
2181 extern const char *host_detect_local_cpu (int argc, const char **argv);
2182 # define EXTRA_SPEC_FUNCTIONS \
2183 { "local_cpu_detect", host_detect_local_cpu },
2184
2185 # define MCPU_MTUNE_NATIVE_SPECS \
2186 " %{march=native:%<march=native %:local_cpu_detect(arch)}" \
2187 " %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}" \
2188 " %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
2189 #else
2190 # define MCPU_MTUNE_NATIVE_SPECS ""
2191 #endif
2192
2193 #define DRIVER_SELF_SPECS MCPU_MTUNE_NATIVE_SPECS
2194
2195 #endif /* ! GCC_ARM_H */