e45b9274323f48d5fb88f543af20d4f808da3cbe
[gcc.git] / gcc / config / arm / arm.h
1 /* Definitions of target machine for GNU compiler, for ARM.
2 Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
6 and Martin Simmons (@harleqn.co.uk).
7 More major hacks by Richard Earnshaw (rearnsha@arm.com)
8 Minor hacks by Nick Clifton (nickc@cygnus.com)
9
10 This file is part of GCC.
11
12 GCC is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published
14 by the Free Software Foundation; either version 3, or (at your
15 option) any later version.
16
17 GCC is distributed in the hope that it will be useful, but WITHOUT
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
19 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
20 License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
25
26 #ifndef GCC_ARM_H
27 #define GCC_ARM_H
28
29 /* We can't use enum machine_mode inside a generator file because it
30 hasn't been created yet; we shouldn't be using any code that
31 needs the real definition though, so this ought to be safe. */
32 #ifdef GENERATOR_FILE
33 #define MACHMODE int
34 #else
35 #include "insn-modes.h"
36 #define MACHMODE enum machine_mode
37 #endif
38
39 #include "config/vxworks-dummy.h"
40
41 /* The architecture define. */
42 extern char arm_arch_name[];
43
44 /* Target CPU builtins. */
45 #define TARGET_CPU_CPP_BUILTINS() \
46 do \
47 { \
48 /* Define __arm__ even when in thumb mode, for \
49 consistency with armcc. */ \
50 builtin_define ("__arm__"); \
51 builtin_define ("__APCS_32__"); \
52 if (TARGET_THUMB) \
53 builtin_define ("__thumb__"); \
54 if (TARGET_THUMB2) \
55 builtin_define ("__thumb2__"); \
56 \
57 if (TARGET_BIG_END) \
58 { \
59 builtin_define ("__ARMEB__"); \
60 if (TARGET_THUMB) \
61 builtin_define ("__THUMBEB__"); \
62 if (TARGET_LITTLE_WORDS) \
63 builtin_define ("__ARMWEL__"); \
64 } \
65 else \
66 { \
67 builtin_define ("__ARMEL__"); \
68 if (TARGET_THUMB) \
69 builtin_define ("__THUMBEL__"); \
70 } \
71 \
72 if (TARGET_SOFT_FLOAT) \
73 builtin_define ("__SOFTFP__"); \
74 \
75 if (TARGET_VFP) \
76 builtin_define ("__VFP_FP__"); \
77 \
78 if (TARGET_NEON) \
79 builtin_define ("__ARM_NEON__"); \
80 \
81 /* Add a define for interworking. \
82 Needed when building libgcc.a. */ \
83 if (arm_cpp_interwork) \
84 builtin_define ("__THUMB_INTERWORK__"); \
85 \
86 builtin_assert ("cpu=arm"); \
87 builtin_assert ("machine=arm"); \
88 \
89 builtin_define (arm_arch_name); \
90 if (arm_arch_cirrus) \
91 builtin_define ("__MAVERICK__"); \
92 if (arm_arch_xscale) \
93 builtin_define ("__XSCALE__"); \
94 if (arm_arch_iwmmxt) \
95 builtin_define ("__IWMMXT__"); \
96 if (TARGET_AAPCS_BASED) \
97 { \
98 if (arm_pcs_default == ARM_PCS_AAPCS_VFP) \
99 builtin_define ("__ARM_PCS_VFP"); \
100 else if (arm_pcs_default == ARM_PCS_AAPCS) \
101 builtin_define ("__ARM_PCS"); \
102 builtin_define ("__ARM_EABI__"); \
103 } \
104 } while (0)
105
106 #include "config/arm/arm-opts.h"
107
108 enum target_cpus
109 {
110 #define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
111 TARGET_CPU_##IDENT,
112 #include "arm-cores.def"
113 #undef ARM_CORE
114 TARGET_CPU_generic
115 };
116
117 /* The processor for which instructions should be scheduled. */
118 extern enum processor_type arm_tune;
119
120 enum arm_sync_generator_tag
121 {
122 arm_sync_generator_omn,
123 arm_sync_generator_omrn
124 };
125
126 /* Wrapper to pass around a polymorphic pointer to a sync instruction
127 generator and. */
128 struct arm_sync_generator
129 {
130 enum arm_sync_generator_tag op;
131 union
132 {
133 rtx (* omn) (rtx, rtx, rtx);
134 rtx (* omrn) (rtx, rtx, rtx, rtx);
135 } u;
136 };
137
138 typedef enum arm_cond_code
139 {
140 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
141 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
142 }
143 arm_cc;
144
145 extern arm_cc arm_current_cc;
146
147 #define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
148
149 extern int arm_target_label;
150 extern int arm_ccfsm_state;
151 extern GTY(()) rtx arm_target_insn;
152 /* The label of the current constant pool. */
153 extern rtx pool_vector_label;
154 /* Set to 1 when a return insn is output, this means that the epilogue
155 is not needed. */
156 extern int return_used_this_function;
157 /* Callback to output language specific object attributes. */
158 extern void (*arm_lang_output_object_attributes_hook)(void);
159 \f
160 /* Just in case configure has failed to define anything. */
161 #ifndef TARGET_CPU_DEFAULT
162 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
163 #endif
164
165
166 #undef CPP_SPEC
167 #define CPP_SPEC "%(subtarget_cpp_spec) \
168 %{mfloat-abi=soft:%{mfloat-abi=hard: \
169 %e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
170 %{mbig-endian:%{mlittle-endian: \
171 %e-mbig-endian and -mlittle-endian may not be used together}}"
172
173 #ifndef CC1_SPEC
174 #define CC1_SPEC ""
175 #endif
176
177 /* This macro defines names of additional specifications to put in the specs
178 that can be used in various specifications like CC1_SPEC. Its definition
179 is an initializer with a subgrouping for each command option.
180
181 Each subgrouping contains a string constant, that defines the
182 specification name, and a string constant that used by the GCC driver
183 program.
184
185 Do not define this macro if it does not need to do anything. */
186 #define EXTRA_SPECS \
187 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
188 SUBTARGET_EXTRA_SPECS
189
190 #ifndef SUBTARGET_EXTRA_SPECS
191 #define SUBTARGET_EXTRA_SPECS
192 #endif
193
194 #ifndef SUBTARGET_CPP_SPEC
195 #define SUBTARGET_CPP_SPEC ""
196 #endif
197 \f
198 /* Run-time Target Specification. */
199 #define TARGET_SOFT_FLOAT (arm_float_abi == ARM_FLOAT_ABI_SOFT)
200 /* Use hardware floating point instructions. */
201 #define TARGET_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
202 /* Use hardware floating point calling convention. */
203 #define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD)
204 #define TARGET_FPA (arm_fpu_desc->model == ARM_FP_MODEL_FPA)
205 #define TARGET_MAVERICK (arm_fpu_desc->model == ARM_FP_MODEL_MAVERICK)
206 #define TARGET_VFP (arm_fpu_desc->model == ARM_FP_MODEL_VFP)
207 #define TARGET_IWMMXT (arm_arch_iwmmxt)
208 #define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_32BIT)
209 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
210 #define TARGET_ARM (! TARGET_THUMB)
211 #define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
212 #define TARGET_BACKTRACE (leaf_function_p () \
213 ? TARGET_TPCS_LEAF_FRAME \
214 : TARGET_TPCS_FRAME)
215 #define TARGET_LDRD (arm_arch5e && ARM_DOUBLEWORD_ALIGN)
216 #define TARGET_AAPCS_BASED \
217 (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
218
219 #define TARGET_HARD_TP (target_thread_pointer == TP_CP15)
220 #define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT)
221
222 /* Only 16-bit thumb code. */
223 #define TARGET_THUMB1 (TARGET_THUMB && !arm_arch_thumb2)
224 /* Arm or Thumb-2 32-bit code. */
225 #define TARGET_32BIT (TARGET_ARM || arm_arch_thumb2)
226 /* 32-bit Thumb-2 code. */
227 #define TARGET_THUMB2 (TARGET_THUMB && arm_arch_thumb2)
228 /* Thumb-1 only. */
229 #define TARGET_THUMB1_ONLY (TARGET_THUMB1 && !arm_arch_notm)
230 /* FPA emulator without LFM. */
231 #define TARGET_FPA_EMU2 (TARGET_FPA && arm_fpu_desc->rev == 2)
232
233 /* The following two macros concern the ability to execute coprocessor
234 instructions for VFPv3 or NEON. TARGET_VFP3/TARGET_VFPD32 are currently
235 only ever tested when we know we are generating for VFP hardware; we need
236 to be more careful with TARGET_NEON as noted below. */
237
238 /* FPU is has the full VFPv3/NEON register file of 32 D registers. */
239 #define TARGET_VFPD32 (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_D32)
240
241 /* FPU supports VFPv3 instructions. */
242 #define TARGET_VFP3 (TARGET_VFP && arm_fpu_desc->rev >= 3)
243
244 /* FPU only supports VFP single-precision instructions. */
245 #define TARGET_VFP_SINGLE (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_SINGLE)
246
247 /* FPU supports VFP double-precision instructions. */
248 #define TARGET_VFP_DOUBLE (TARGET_VFP && arm_fpu_desc->regs != VFP_REG_SINGLE)
249
250 /* FPU supports half-precision floating-point with NEON element load/store. */
251 #define TARGET_NEON_FP16 \
252 (TARGET_VFP && arm_fpu_desc->neon && arm_fpu_desc->fp16)
253
254 /* FPU supports VFP half-precision floating-point. */
255 #define TARGET_FP16 (TARGET_VFP && arm_fpu_desc->fp16)
256
257 /* FPU supports Neon instructions. The setting of this macro gets
258 revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
259 and TARGET_HARD_FLOAT to ensure that NEON instructions are
260 available. */
261 #define TARGET_NEON (TARGET_32BIT && TARGET_HARD_FLOAT \
262 && TARGET_VFP && arm_fpu_desc->neon)
263
264 /* "DSP" multiply instructions, eg. SMULxy. */
265 #define TARGET_DSP_MULTIPLY \
266 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7em))
267 /* Integer SIMD instructions, and extend-accumulate instructions. */
268 #define TARGET_INT_SIMD \
269 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
270
271 /* Should MOVW/MOVT be used in preference to a constant pool. */
272 #define TARGET_USE_MOVT (arm_arch_thumb2 && !optimize_size)
273
274 /* We could use unified syntax for arm mode, but for now we just use it
275 for Thumb-2. */
276 #define TARGET_UNIFIED_ASM TARGET_THUMB2
277
278 /* Nonzero if this chip provides the DMB instruction. */
279 #define TARGET_HAVE_DMB (arm_arch7)
280
281 /* Nonzero if this chip implements a memory barrier via CP15. */
282 #define TARGET_HAVE_DMB_MCR (arm_arch6k && ! TARGET_HAVE_DMB)
283
284 /* Nonzero if this chip implements a memory barrier instruction. */
285 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
286
287 /* Nonzero if this chip supports ldrex and strex */
288 #define TARGET_HAVE_LDREX ((arm_arch6 && TARGET_ARM) || arm_arch7)
289
290 /* Nonzero if this chip supports ldrex{bhd} and strex{bhd}. */
291 #define TARGET_HAVE_LDREXBHD ((arm_arch6k && TARGET_ARM) || arm_arch7)
292
293 /* True iff the full BPABI is being used. If TARGET_BPABI is true,
294 then TARGET_AAPCS_BASED must be true -- but the converse does not
295 hold. TARGET_BPABI implies the use of the BPABI runtime library,
296 etc., in addition to just the AAPCS calling conventions. */
297 #ifndef TARGET_BPABI
298 #define TARGET_BPABI false
299 #endif
300
301 /* Support for a compile-time default CPU, et cetera. The rules are:
302 --with-arch is ignored if -march or -mcpu are specified.
303 --with-cpu is ignored if -march or -mcpu are specified, and is overridden
304 by --with-arch.
305 --with-tune is ignored if -mtune or -mcpu are specified (but not affected
306 by -march).
307 --with-float is ignored if -mfloat-abi is specified.
308 --with-fpu is ignored if -mfpu is specified.
309 --with-abi is ignored is -mabi is specified. */
310 #define OPTION_DEFAULT_SPECS \
311 {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
312 {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
313 {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
314 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
315 {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
316 {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
317 {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"},
318
319 /* Which floating point model to use. */
320 enum arm_fp_model
321 {
322 ARM_FP_MODEL_UNKNOWN,
323 /* FPA model (Hardware or software). */
324 ARM_FP_MODEL_FPA,
325 /* Cirrus Maverick floating point model. */
326 ARM_FP_MODEL_MAVERICK,
327 /* VFP floating point model. */
328 ARM_FP_MODEL_VFP
329 };
330
331 enum vfp_reg_type
332 {
333 VFP_NONE = 0,
334 VFP_REG_D16,
335 VFP_REG_D32,
336 VFP_REG_SINGLE
337 };
338
339 extern const struct arm_fpu_desc
340 {
341 const char *name;
342 enum arm_fp_model model;
343 int rev;
344 enum vfp_reg_type regs;
345 int neon;
346 int fp16;
347 } *arm_fpu_desc;
348
349 /* Which floating point hardware to schedule for. */
350 extern int arm_fpu_attr;
351
352 enum float_abi_type
353 {
354 ARM_FLOAT_ABI_SOFT,
355 ARM_FLOAT_ABI_SOFTFP,
356 ARM_FLOAT_ABI_HARD
357 };
358
359 extern enum float_abi_type arm_float_abi;
360
361 #ifndef TARGET_DEFAULT_FLOAT_ABI
362 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
363 #endif
364
365 /* Which __fp16 format to use.
366 The enumeration values correspond to the numbering for the
367 Tag_ABI_FP_16bit_format attribute.
368 */
369 enum arm_fp16_format_type
370 {
371 ARM_FP16_FORMAT_NONE = 0,
372 ARM_FP16_FORMAT_IEEE = 1,
373 ARM_FP16_FORMAT_ALTERNATIVE = 2
374 };
375
376 extern enum arm_fp16_format_type arm_fp16_format;
377 #define LARGEST_EXPONENT_IS_NORMAL(bits) \
378 ((bits) == 16 && arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE)
379
380 /* Which ABI to use. */
381 enum arm_abi_type
382 {
383 ARM_ABI_APCS,
384 ARM_ABI_ATPCS,
385 ARM_ABI_AAPCS,
386 ARM_ABI_IWMMXT,
387 ARM_ABI_AAPCS_LINUX
388 };
389
390 extern enum arm_abi_type arm_abi;
391
392 #ifndef ARM_DEFAULT_ABI
393 #define ARM_DEFAULT_ABI ARM_ABI_APCS
394 #endif
395
396 /* Which thread pointer access sequence to use. */
397 enum arm_tp_type {
398 TP_AUTO,
399 TP_SOFT,
400 TP_CP15
401 };
402
403 extern enum arm_tp_type target_thread_pointer;
404
405 /* Nonzero if this chip supports the ARM Architecture 3M extensions. */
406 extern int arm_arch3m;
407
408 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */
409 extern int arm_arch4;
410
411 /* Nonzero if this chip supports the ARM Architecture 4T extensions. */
412 extern int arm_arch4t;
413
414 /* Nonzero if this chip supports the ARM Architecture 5 extensions. */
415 extern int arm_arch5;
416
417 /* Nonzero if this chip supports the ARM Architecture 5E extensions. */
418 extern int arm_arch5e;
419
420 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */
421 extern int arm_arch6;
422
423 /* Nonzero if this chip supports the ARM Architecture 6k extensions. */
424 extern int arm_arch6k;
425
426 /* Nonzero if this chip supports the ARM Architecture 7 extensions. */
427 extern int arm_arch7;
428
429 /* Nonzero if instructions not present in the 'M' profile can be used. */
430 extern int arm_arch_notm;
431
432 /* Nonzero if instructions present in ARMv7E-M can be used. */
433 extern int arm_arch7em;
434
435 /* Nonzero if this chip can benefit from load scheduling. */
436 extern int arm_ld_sched;
437
438 /* Nonzero if generating Thumb code, either Thumb-1 or Thumb-2. */
439 extern int thumb_code;
440
441 /* Nonzero if generating Thumb-1 code. */
442 extern int thumb1_code;
443
444 /* Nonzero if this chip is a StrongARM. */
445 extern int arm_tune_strongarm;
446
447 /* Nonzero if this chip is a Cirrus variant. */
448 extern int arm_arch_cirrus;
449
450 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */
451 extern int arm_arch_iwmmxt;
452
453 /* Nonzero if this chip is an XScale. */
454 extern int arm_arch_xscale;
455
456 /* Nonzero if tuning for XScale. */
457 extern int arm_tune_xscale;
458
459 /* Nonzero if tuning for stores via the write buffer. */
460 extern int arm_tune_wbuf;
461
462 /* Nonzero if tuning for Cortex-A9. */
463 extern int arm_tune_cortex_a9;
464
465 /* Nonzero if we should define __THUMB_INTERWORK__ in the
466 preprocessor.
467 XXX This is a bit of a hack, it's intended to help work around
468 problems in GLD which doesn't understand that armv5t code is
469 interworking clean. */
470 extern int arm_cpp_interwork;
471
472 /* Nonzero if chip supports Thumb 2. */
473 extern int arm_arch_thumb2;
474
475 /* Nonzero if chip supports integer division instruction. */
476 extern int arm_arch_hwdiv;
477
478 #ifndef TARGET_DEFAULT
479 #define TARGET_DEFAULT (MASK_APCS_FRAME)
480 #endif
481
482 /* Nonzero if PIC code requires explicit qualifiers to generate
483 PLT and GOT relocs rather than the assembler doing so implicitly.
484 Subtargets can override these if required. */
485 #ifndef NEED_GOT_RELOC
486 #define NEED_GOT_RELOC 0
487 #endif
488 #ifndef NEED_PLT_RELOC
489 #define NEED_PLT_RELOC 0
490 #endif
491
492 /* Nonzero if we need to refer to the GOT with a PC-relative
493 offset. In other words, generate
494
495 .word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
496
497 rather than
498
499 .word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
500
501 The default is true, which matches NetBSD. Subtargets can
502 override this if required. */
503 #ifndef GOT_PCREL
504 #define GOT_PCREL 1
505 #endif
506 \f
507 /* Target machine storage Layout. */
508
509
510 /* Define this macro if it is advisable to hold scalars in registers
511 in a wider mode than that declared by the program. In such cases,
512 the value is constrained to be within the bounds of the declared
513 type, but kept valid in the wider mode. The signedness of the
514 extension may differ from that of the type. */
515
516 /* It is far faster to zero extend chars than to sign extend them */
517
518 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
519 if (GET_MODE_CLASS (MODE) == MODE_INT \
520 && GET_MODE_SIZE (MODE) < 4) \
521 { \
522 if (MODE == QImode) \
523 UNSIGNEDP = 1; \
524 else if (MODE == HImode) \
525 UNSIGNEDP = 1; \
526 (MODE) = SImode; \
527 }
528
529 /* Define this if most significant bit is lowest numbered
530 in instructions that operate on numbered bit-fields. */
531 #define BITS_BIG_ENDIAN 0
532
533 /* Define this if most significant byte of a word is the lowest numbered.
534 Most ARM processors are run in little endian mode, so that is the default.
535 If you want to have it run-time selectable, change the definition in a
536 cover file to be TARGET_BIG_ENDIAN. */
537 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
538
539 /* Define this if most significant word of a multiword number is the lowest
540 numbered.
541 This is always false, even when in big-endian mode. */
542 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN && ! TARGET_LITTLE_WORDS)
543
544 /* Define this if most significant word of doubles is the lowest numbered.
545 The rules are different based on whether or not we use FPA-format,
546 VFP-format or some other floating point co-processor's format doubles. */
547 #define FLOAT_WORDS_BIG_ENDIAN (arm_float_words_big_endian ())
548
549 #define UNITS_PER_WORD 4
550
551 /* True if natural alignment is used for doubleword types. */
552 #define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED
553
554 #define DOUBLEWORD_ALIGNMENT 64
555
556 #define PARM_BOUNDARY 32
557
558 #define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
559
560 #define PREFERRED_STACK_BOUNDARY \
561 (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
562
563 #define FUNCTION_BOUNDARY ((TARGET_THUMB && optimize_size) ? 16 : 32)
564
565 /* The lowest bit is used to indicate Thumb-mode functions, so the
566 vbit must go into the delta field of pointers to member
567 functions. */
568 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
569
570 #define EMPTY_FIELD_BOUNDARY 32
571
572 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
573
574 /* XXX Blah -- this macro is used directly by libobjc. Since it
575 supports no vector modes, cut out the complexity and fall back
576 on BIGGEST_FIELD_ALIGNMENT. */
577 #ifdef IN_TARGET_LIBS
578 #define BIGGEST_FIELD_ALIGNMENT 64
579 #endif
580
581 /* Make strings word-aligned so strcpy from constants will be faster. */
582 #define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
583
584 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
585 ((TREE_CODE (EXP) == STRING_CST \
586 && !optimize_size \
587 && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR) \
588 ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
589
590 /* Align definitions of arrays, unions and structures so that
591 initializations and copies can be made more efficient. This is not
592 ABI-changing, so it only affects places where we can see the
593 definition. Increasing the alignment tends to introduce padding,
594 so don't do this when optimizing for size/conserving stack space. */
595 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \
596 (((COND) && ((ALIGN) < BITS_PER_WORD) \
597 && (TREE_CODE (EXP) == ARRAY_TYPE \
598 || TREE_CODE (EXP) == UNION_TYPE \
599 || TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
600
601 /* Align global data. */
602 #define DATA_ALIGNMENT(EXP, ALIGN) \
603 ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
604
605 /* Similarly, make sure that objects on the stack are sensibly aligned. */
606 #define LOCAL_ALIGNMENT(EXP, ALIGN) \
607 ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
608
609 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
610 value set in previous versions of this toolchain was 8, which produces more
611 compact structures. The command line option -mstructure_size_boundary=<n>
612 can be used to change this value. For compatibility with the ARM SDK
613 however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
614 0020D) page 2-20 says "Structures are aligned on word boundaries".
615 The AAPCS specifies a value of 8. */
616 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
617 extern int arm_structure_size_boundary;
618
619 /* This is the value used to initialize arm_structure_size_boundary. If a
620 particular arm target wants to change the default value it should change
621 the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h
622 for an example of this. */
623 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
624 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
625 #endif
626
627 /* Nonzero if move instructions will actually fail to work
628 when given unaligned data. */
629 #define STRICT_ALIGNMENT 1
630
631 /* wchar_t is unsigned under the AAPCS. */
632 #ifndef WCHAR_TYPE
633 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
634
635 #define WCHAR_TYPE_SIZE BITS_PER_WORD
636 #endif
637
638 #ifndef SIZE_TYPE
639 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
640 #endif
641
642 #ifndef PTRDIFF_TYPE
643 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
644 #endif
645
646 /* AAPCS requires that structure alignment is affected by bitfields. */
647 #ifndef PCC_BITFIELD_TYPE_MATTERS
648 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
649 #endif
650
651 \f
652 /* Standard register usage. */
653
654 /* Register allocation in ARM Procedure Call Standard (as used on RISCiX):
655 (S - saved over call).
656
657 r0 * argument word/integer result
658 r1-r3 argument word
659
660 r4-r8 S register variable
661 r9 S (rfp) register variable (real frame pointer)
662
663 r10 F S (sl) stack limit (used by -mapcs-stack-check)
664 r11 F S (fp) argument pointer
665 r12 (ip) temp workspace
666 r13 F S (sp) lower end of current stack frame
667 r14 (lr) link address/workspace
668 r15 F (pc) program counter
669
670 f0 floating point result
671 f1-f3 floating point scratch
672
673 f4-f7 S floating point variable
674
675 cc This is NOT a real register, but is used internally
676 to represent things that use or set the condition
677 codes.
678 sfp This isn't either. It is used during rtl generation
679 since the offset between the frame pointer and the
680 auto's isn't known until after register allocation.
681 afp Nor this, we only need this because of non-local
682 goto. Without it fp appears to be used and the
683 elimination code won't get rid of sfp. It tracks
684 fp exactly at all times.
685
686 *: See TARGET_CONDITIONAL_REGISTER_USAGE */
687
688 /*
689 mvf0 Cirrus floating point result
690 mvf1-mvf3 Cirrus floating point scratch
691 mvf4-mvf15 S Cirrus floating point variable. */
692
693 /* s0-s15 VFP scratch (aka d0-d7).
694 s16-s31 S VFP variable (aka d8-d15).
695 vfpcc Not a real register. Represents the VFP condition
696 code flags. */
697
698 /* The stack backtrace structure is as follows:
699 fp points to here: | save code pointer | [fp]
700 | return link value | [fp, #-4]
701 | return sp value | [fp, #-8]
702 | return fp value | [fp, #-12]
703 [| saved r10 value |]
704 [| saved r9 value |]
705 [| saved r8 value |]
706 [| saved r7 value |]
707 [| saved r6 value |]
708 [| saved r5 value |]
709 [| saved r4 value |]
710 [| saved r3 value |]
711 [| saved r2 value |]
712 [| saved r1 value |]
713 [| saved r0 value |]
714 [| saved f7 value |] three words
715 [| saved f6 value |] three words
716 [| saved f5 value |] three words
717 [| saved f4 value |] three words
718 r0-r3 are not normally saved in a C function. */
719
720 /* 1 for registers that have pervasive standard uses
721 and are not available for the register allocator. */
722 #define FIXED_REGISTERS \
723 { \
724 0,0,0,0,0,0,0,0, \
725 0,0,0,0,0,1,0,1, \
726 0,0,0,0,0,0,0,0, \
727 1,1,1, \
728 1,1,1,1,1,1,1,1, \
729 1,1,1,1,1,1,1,1, \
730 1,1,1,1,1,1,1,1, \
731 1,1,1,1,1,1,1,1, \
732 1,1,1,1, \
733 1,1,1,1,1,1,1,1, \
734 1,1,1,1,1,1,1,1, \
735 1,1,1,1,1,1,1,1, \
736 1,1,1,1,1,1,1,1, \
737 1,1,1,1,1,1,1,1, \
738 1,1,1,1,1,1,1,1, \
739 1,1,1,1,1,1,1,1, \
740 1,1,1,1,1,1,1,1, \
741 1 \
742 }
743
744 /* 1 for registers not available across function calls.
745 These must include the FIXED_REGISTERS and also any
746 registers that can be used without being saved.
747 The latter must include the registers where values are returned
748 and the register where structure-value addresses are passed.
749 Aside from that, you can include as many other registers as you like.
750 The CC is not preserved over function calls on the ARM 6, so it is
751 easier to assume this for all. SFP is preserved, since FP is. */
752 #define CALL_USED_REGISTERS \
753 { \
754 1,1,1,1,0,0,0,0, \
755 0,0,0,0,1,1,1,1, \
756 1,1,1,1,0,0,0,0, \
757 1,1,1, \
758 1,1,1,1,1,1,1,1, \
759 1,1,1,1,1,1,1,1, \
760 1,1,1,1,1,1,1,1, \
761 1,1,1,1,1,1,1,1, \
762 1,1,1,1, \
763 1,1,1,1,1,1,1,1, \
764 1,1,1,1,1,1,1,1, \
765 1,1,1,1,1,1,1,1, \
766 1,1,1,1,1,1,1,1, \
767 1,1,1,1,1,1,1,1, \
768 1,1,1,1,1,1,1,1, \
769 1,1,1,1,1,1,1,1, \
770 1,1,1,1,1,1,1,1, \
771 1 \
772 }
773
774 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
775 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
776 #endif
777
778 /* These are a couple of extensions to the formats accepted
779 by asm_fprintf:
780 %@ prints out ASM_COMMENT_START
781 %r prints out REGISTER_PREFIX reg_names[arg] */
782 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
783 case '@': \
784 fputs (ASM_COMMENT_START, FILE); \
785 break; \
786 \
787 case 'r': \
788 fputs (REGISTER_PREFIX, FILE); \
789 fputs (reg_names [va_arg (ARGS, int)], FILE); \
790 break;
791
792 /* Round X up to the nearest word. */
793 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
794
795 /* Convert fron bytes to ints. */
796 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
797
798 /* The number of (integer) registers required to hold a quantity of type MODE.
799 Also used for VFP registers. */
800 #define ARM_NUM_REGS(MODE) \
801 ARM_NUM_INTS (GET_MODE_SIZE (MODE))
802
803 /* The number of (integer) registers required to hold a quantity of TYPE MODE. */
804 #define ARM_NUM_REGS2(MODE, TYPE) \
805 ARM_NUM_INTS ((MODE) == BLKmode ? \
806 int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
807
808 /* The number of (integer) argument register available. */
809 #define NUM_ARG_REGS 4
810
811 /* And similarly for the VFP. */
812 #define NUM_VFP_ARG_REGS 16
813
814 /* Return the register number of the N'th (integer) argument. */
815 #define ARG_REGISTER(N) (N - 1)
816
817 /* Specify the registers used for certain standard purposes.
818 The values of these macros are register numbers. */
819
820 /* The number of the last argument register. */
821 #define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
822
823 /* The numbers of the Thumb register ranges. */
824 #define FIRST_LO_REGNUM 0
825 #define LAST_LO_REGNUM 7
826 #define FIRST_HI_REGNUM 8
827 #define LAST_HI_REGNUM 11
828
829 /* Overridden by config/arm/bpabi.h. */
830 #ifndef ARM_UNWIND_INFO
831 #define ARM_UNWIND_INFO 0
832 #endif
833
834 /* Use r0 and r1 to pass exception handling information. */
835 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
836
837 /* The register that holds the return address in exception handlers. */
838 #define ARM_EH_STACKADJ_REGNUM 2
839 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
840
841 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
842 as an invisible last argument (possible since varargs don't exist in
843 Pascal), so the following is not true. */
844 #define STATIC_CHAIN_REGNUM 12
845
846 /* Define this to be where the real frame pointer is if it is not possible to
847 work out the offset between the frame pointer and the automatic variables
848 until after register allocation has taken place. FRAME_POINTER_REGNUM
849 should point to a special register that we will make sure is eliminated.
850
851 For the Thumb we have another problem. The TPCS defines the frame pointer
852 as r11, and GCC believes that it is always possible to use the frame pointer
853 as base register for addressing purposes. (See comments in
854 find_reloads_address()). But - the Thumb does not allow high registers,
855 including r11, to be used as base address registers. Hence our problem.
856
857 The solution used here, and in the old thumb port is to use r7 instead of
858 r11 as the hard frame pointer and to have special code to generate
859 backtrace structures on the stack (if required to do so via a command line
860 option) using r11. This is the only 'user visible' use of r11 as a frame
861 pointer. */
862 #define ARM_HARD_FRAME_POINTER_REGNUM 11
863 #define THUMB_HARD_FRAME_POINTER_REGNUM 7
864
865 #define HARD_FRAME_POINTER_REGNUM \
866 (TARGET_ARM \
867 ? ARM_HARD_FRAME_POINTER_REGNUM \
868 : THUMB_HARD_FRAME_POINTER_REGNUM)
869
870 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
871 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
872
873 #define FP_REGNUM HARD_FRAME_POINTER_REGNUM
874
875 /* Register to use for pushing function arguments. */
876 #define STACK_POINTER_REGNUM SP_REGNUM
877
878 /* ARM floating pointer registers. */
879 #define FIRST_FPA_REGNUM 16
880 #define LAST_FPA_REGNUM 23
881 #define IS_FPA_REGNUM(REGNUM) \
882 (((REGNUM) >= FIRST_FPA_REGNUM) && ((REGNUM) <= LAST_FPA_REGNUM))
883
884 #define FIRST_IWMMXT_GR_REGNUM 43
885 #define LAST_IWMMXT_GR_REGNUM 46
886 #define FIRST_IWMMXT_REGNUM 47
887 #define LAST_IWMMXT_REGNUM 62
888 #define IS_IWMMXT_REGNUM(REGNUM) \
889 (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
890 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
891 (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
892
893 /* Base register for access to local variables of the function. */
894 #define FRAME_POINTER_REGNUM 25
895
896 /* Base register for access to arguments of the function. */
897 #define ARG_POINTER_REGNUM 26
898
899 #define FIRST_CIRRUS_FP_REGNUM 27
900 #define LAST_CIRRUS_FP_REGNUM 42
901 #define IS_CIRRUS_REGNUM(REGNUM) \
902 (((REGNUM) >= FIRST_CIRRUS_FP_REGNUM) && ((REGNUM) <= LAST_CIRRUS_FP_REGNUM))
903
904 #define FIRST_VFP_REGNUM 63
905 #define D7_VFP_REGNUM 78 /* Registers 77 and 78 == VFP reg D7. */
906 #define LAST_VFP_REGNUM \
907 (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
908
909 #define IS_VFP_REGNUM(REGNUM) \
910 (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
911
912 /* VFP registers are split into two types: those defined by VFP versions < 3
913 have D registers overlaid on consecutive pairs of S registers. VFP version 3
914 defines 16 new D registers (d16-d31) which, for simplicity and correctness
915 in various parts of the backend, we implement as "fake" single-precision
916 registers (which would be S32-S63, but cannot be used in that way). The
917 following macros define these ranges of registers. */
918 #define LAST_LO_VFP_REGNUM 94
919 #define FIRST_HI_VFP_REGNUM 95
920 #define LAST_HI_VFP_REGNUM 126
921
922 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
923 ((REGNUM) <= LAST_LO_VFP_REGNUM)
924
925 /* DFmode values are only valid in even register pairs. */
926 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
927 ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
928
929 /* Neon Quad values must start at a multiple of four registers. */
930 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
931 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
932
933 /* Neon structures of vectors must be in even register pairs and there
934 must be enough registers available. Because of various patterns
935 requiring quad registers, we require them to start at a multiple of
936 four. */
937 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
938 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
939 && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
940
941 /* The number of hard registers is 16 ARM + 8 FPA + 1 CC + 1 SFP + 1 AFP. */
942 /* + 16 Cirrus registers take us up to 43. */
943 /* Intel Wireless MMX Technology registers add 16 + 4 more. */
944 /* VFP (VFP3) adds 32 (64) + 1 more. */
945 #define FIRST_PSEUDO_REGISTER 128
946
947 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
948
949 /* Value should be nonzero if functions must have frame pointers.
950 Zero means the frame pointer need not be set up (and parms may be accessed
951 via the stack pointer) in functions that seem suitable.
952 If we have to have a frame pointer we might as well make use of it.
953 APCS says that the frame pointer does not need to be pushed in leaf
954 functions, or simple tail call functions. */
955
956 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
957 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
958 #endif
959
960 /* Return number of consecutive hard regs needed starting at reg REGNO
961 to hold something of mode MODE.
962 This is ordinarily the length in words of a value of mode MODE
963 but can be less for certain modes in special long registers.
964
965 On the ARM regs are UNITS_PER_WORD bits wide; FPA regs can hold any FP
966 mode. */
967 #define HARD_REGNO_NREGS(REGNO, MODE) \
968 ((TARGET_32BIT \
969 && REGNO >= FIRST_FPA_REGNUM \
970 && REGNO != FRAME_POINTER_REGNUM \
971 && REGNO != ARG_POINTER_REGNUM) \
972 && !IS_VFP_REGNUM (REGNO) \
973 ? 1 : ARM_NUM_REGS (MODE))
974
975 /* Return true if REGNO is suitable for holding a quantity of type MODE. */
976 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
977 arm_hard_regno_mode_ok ((REGNO), (MODE))
978
979 /* Value is 1 if it is a good idea to tie two pseudo registers
980 when one has mode MODE1 and one has mode MODE2.
981 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
982 for any hard reg, then this must be 0 for correct output. */
983 #define MODES_TIEABLE_P(MODE1, MODE2) \
984 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
985
986 #define VALID_IWMMXT_REG_MODE(MODE) \
987 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
988
989 /* Modes valid for Neon D registers. */
990 #define VALID_NEON_DREG_MODE(MODE) \
991 ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
992 || (MODE) == V2SFmode || (MODE) == DImode)
993
994 /* Modes valid for Neon Q registers. */
995 #define VALID_NEON_QREG_MODE(MODE) \
996 ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
997 || (MODE) == V4SFmode || (MODE) == V2DImode)
998
999 /* Structure modes valid for Neon registers. */
1000 #define VALID_NEON_STRUCT_MODE(MODE) \
1001 ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1002 || (MODE) == CImode || (MODE) == XImode)
1003
1004 /* The register numbers in sequence, for passing to arm_gen_load_multiple. */
1005 extern int arm_regs_in_sequence[];
1006
1007 /* The order in which register should be allocated. It is good to use ip
1008 since no saving is required (though calls clobber it) and it never contains
1009 function parameters. It is quite good to use lr since other calls may
1010 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
1011 least likely to contain a function parameter; in addition results are
1012 returned in r0.
1013 For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1014 then D8-D15. The reason for doing this is to attempt to reduce register
1015 pressure when both single- and double-precision registers are used in a
1016 function. */
1017
1018 #define REG_ALLOC_ORDER \
1019 { \
1020 3, 2, 1, 0, 12, 14, 4, 5, \
1021 6, 7, 8, 10, 9, 11, 13, 15, \
1022 16, 17, 18, 19, 20, 21, 22, 23, \
1023 27, 28, 29, 30, 31, 32, 33, 34, \
1024 35, 36, 37, 38, 39, 40, 41, 42, \
1025 43, 44, 45, 46, 47, 48, 49, 50, \
1026 51, 52, 53, 54, 55, 56, 57, 58, \
1027 59, 60, 61, 62, \
1028 24, 25, 26, \
1029 95, 96, 97, 98, 99, 100, 101, 102, \
1030 103, 104, 105, 106, 107, 108, 109, 110, \
1031 111, 112, 113, 114, 115, 116, 117, 118, \
1032 119, 120, 121, 122, 123, 124, 125, 126, \
1033 78, 77, 76, 75, 74, 73, 72, 71, \
1034 70, 69, 68, 67, 66, 65, 64, 63, \
1035 79, 80, 81, 82, 83, 84, 85, 86, \
1036 87, 88, 89, 90, 91, 92, 93, 94, \
1037 127 \
1038 }
1039
1040 /* Use different register alloc ordering for Thumb. */
1041 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1042
1043 /* Tell IRA to use the order we define rather than messing it up with its
1044 own cost calculations. */
1045 #define HONOR_REG_ALLOC_ORDER
1046
1047 /* Interrupt functions can only use registers that have already been
1048 saved by the prologue, even if they would normally be
1049 call-clobbered. */
1050 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1051 (! IS_INTERRUPT (cfun->machine->func_type) || \
1052 df_regs_ever_live_p (DST))
1053 \f
1054 /* Register and constant classes. */
1055
1056 /* Register classes: used to be simple, just all ARM regs or all FPA regs
1057 Now that the Thumb is involved it has become more complicated. */
1058 enum reg_class
1059 {
1060 NO_REGS,
1061 FPA_REGS,
1062 CIRRUS_REGS,
1063 VFP_D0_D7_REGS,
1064 VFP_LO_REGS,
1065 VFP_HI_REGS,
1066 VFP_REGS,
1067 IWMMXT_GR_REGS,
1068 IWMMXT_REGS,
1069 LO_REGS,
1070 STACK_REG,
1071 BASE_REGS,
1072 HI_REGS,
1073 CC_REG,
1074 VFPCC_REG,
1075 GENERAL_REGS,
1076 CORE_REGS,
1077 ALL_REGS,
1078 LIM_REG_CLASSES
1079 };
1080
1081 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1082
1083 /* Give names of register classes as strings for dump file. */
1084 #define REG_CLASS_NAMES \
1085 { \
1086 "NO_REGS", \
1087 "FPA_REGS", \
1088 "CIRRUS_REGS", \
1089 "VFP_D0_D7_REGS", \
1090 "VFP_LO_REGS", \
1091 "VFP_HI_REGS", \
1092 "VFP_REGS", \
1093 "IWMMXT_GR_REGS", \
1094 "IWMMXT_REGS", \
1095 "LO_REGS", \
1096 "STACK_REG", \
1097 "BASE_REGS", \
1098 "HI_REGS", \
1099 "CC_REG", \
1100 "VFPCC_REG", \
1101 "GENERAL_REGS", \
1102 "CORE_REGS", \
1103 "ALL_REGS", \
1104 }
1105
1106 /* Define which registers fit in which classes.
1107 This is an initializer for a vector of HARD_REG_SET
1108 of length N_REG_CLASSES. */
1109 #define REG_CLASS_CONTENTS \
1110 { \
1111 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1112 { 0x00FF0000, 0x00000000, 0x00000000, 0x00000000 }, /* FPA_REGS */ \
1113 { 0xF8000000, 0x000007FF, 0x00000000, 0x00000000 }, /* CIRRUS_REGS */ \
1114 { 0x00000000, 0x80000000, 0x00007FFF, 0x00000000 }, /* VFP_D0_D7_REGS */ \
1115 { 0x00000000, 0x80000000, 0x7FFFFFFF, 0x00000000 }, /* VFP_LO_REGS */ \
1116 { 0x00000000, 0x00000000, 0x80000000, 0x7FFFFFFF }, /* VFP_HI_REGS */ \
1117 { 0x00000000, 0x80000000, 0xFFFFFFFF, 0x7FFFFFFF }, /* VFP_REGS */ \
1118 { 0x00000000, 0x00007800, 0x00000000, 0x00000000 }, /* IWMMXT_GR_REGS */ \
1119 { 0x00000000, 0x7FFF8000, 0x00000000, 0x00000000 }, /* IWMMXT_REGS */ \
1120 { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */ \
1121 { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
1122 { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */ \
1123 { 0x0000DF00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */ \
1124 { 0x01000000, 0x00000000, 0x00000000, 0x00000000 }, /* CC_REG */ \
1125 { 0x00000000, 0x00000000, 0x00000000, 0x80000000 }, /* VFPCC_REG */ \
1126 { 0x0000DFFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1127 { 0x0000FFFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */ \
1128 { 0xFAFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF } /* ALL_REGS */ \
1129 }
1130
1131 /* Any of the VFP register classes. */
1132 #define IS_VFP_CLASS(X) \
1133 ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1134 || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1135
1136 /* The same information, inverted:
1137 Return the class number of the smallest class containing
1138 reg number REGNO. This could be a conditional expression
1139 or could index an array. */
1140 #define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
1141
1142 /* FPA registers can't do subreg as all values are reformatted to internal
1143 precision. In VFPv1, VFP registers could only be accessed in the mode
1144 they were set, so subregs would be invalid there too. However, we don't
1145 support VFPv1 at the moment, and the restriction was lifted in VFPv2. */
1146 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1147 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1148 ? reg_classes_intersect_p (FPA_REGS, (CLASS)) \
1149 : 0)
1150
1151 /* The class value for index registers, and the one for base regs. */
1152 #define INDEX_REG_CLASS (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1153 #define BASE_REG_CLASS (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1154
1155 /* For the Thumb the high registers cannot be used as base registers
1156 when addressing quantities in QI or HI mode; if we don't know the
1157 mode, then we must be conservative. */
1158 #define MODE_BASE_REG_CLASS(MODE) \
1159 (TARGET_ARM || (TARGET_THUMB2 && !optimize_size) ? CORE_REGS : \
1160 (((MODE) == SImode) ? BASE_REGS : LO_REGS))
1161
1162 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1163 instead of BASE_REGS. */
1164 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1165
1166 /* When this hook returns true for MODE, the compiler allows
1167 registers explicitly used in the rtl to be used as spill registers
1168 but prevents the compiler from extending the lifetime of these
1169 registers. */
1170 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1171 arm_small_register_classes_for_mode_p
1172
1173 /* Given an rtx X being reloaded into a reg required to be
1174 in class CLASS, return the class of reg to actually use.
1175 In general this is just CLASS, but for the Thumb core registers and
1176 immediate constants we prefer a LO_REGS class or a subset. */
1177 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1178 (TARGET_32BIT ? (CLASS) : \
1179 ((CLASS) == GENERAL_REGS || (CLASS) == HI_REGS \
1180 || (CLASS) == NO_REGS || (CLASS) == STACK_REG \
1181 ? LO_REGS : (CLASS)))
1182
1183 /* Must leave BASE_REGS reloads alone */
1184 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1185 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1186 ? ((true_regnum (X) == -1 ? LO_REGS \
1187 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1188 : NO_REGS)) \
1189 : NO_REGS)
1190
1191 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1192 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1193 ? ((true_regnum (X) == -1 ? LO_REGS \
1194 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1195 : NO_REGS)) \
1196 : NO_REGS)
1197
1198 /* Return the register class of a scratch register needed to copy IN into
1199 or out of a register in CLASS in MODE. If it can be done directly,
1200 NO_REGS is returned. */
1201 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1202 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1203 ((TARGET_VFP && TARGET_HARD_FLOAT \
1204 && IS_VFP_CLASS (CLASS)) \
1205 ? coproc_secondary_reload_class (MODE, X, FALSE) \
1206 : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \
1207 ? coproc_secondary_reload_class (MODE, X, TRUE) \
1208 : TARGET_32BIT \
1209 ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1210 ? GENERAL_REGS : NO_REGS) \
1211 : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1212
1213 /* If we need to load shorts byte-at-a-time, then we need a scratch. */
1214 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1215 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1216 ((TARGET_VFP && TARGET_HARD_FLOAT \
1217 && IS_VFP_CLASS (CLASS)) \
1218 ? coproc_secondary_reload_class (MODE, X, FALSE) : \
1219 (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \
1220 coproc_secondary_reload_class (MODE, X, TRUE) : \
1221 /* Cannot load constants into Cirrus registers. */ \
1222 (TARGET_MAVERICK && TARGET_HARD_FLOAT \
1223 && (CLASS) == CIRRUS_REGS \
1224 && (CONSTANT_P (X) || GET_CODE (X) == SYMBOL_REF)) \
1225 ? GENERAL_REGS : \
1226 (TARGET_32BIT ? \
1227 (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \
1228 && CONSTANT_P (X)) \
1229 ? GENERAL_REGS : \
1230 (((MODE) == HImode && ! arm_arch4 \
1231 && (GET_CODE (X) == MEM \
1232 || ((GET_CODE (X) == REG || GET_CODE (X) == SUBREG) \
1233 && true_regnum (X) == -1))) \
1234 ? GENERAL_REGS : NO_REGS) \
1235 : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1236
1237 /* Try a machine-dependent way of reloading an illegitimate address
1238 operand. If we find one, push the reload and jump to WIN. This
1239 macro is used in only one place: `find_reloads_address' in reload.c.
1240
1241 For the ARM, we wish to handle large displacements off a base
1242 register by splitting the addend across a MOV and the mem insn.
1243 This can cut the number of reloads needed. */
1244 #define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN) \
1245 do \
1246 { \
1247 if (arm_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND)) \
1248 goto WIN; \
1249 } \
1250 while (0)
1251
1252 /* XXX If an HImode FP+large_offset address is converted to an HImode
1253 SP+large_offset address, then reload won't know how to fix it. It sees
1254 only that SP isn't valid for HImode, and so reloads the SP into an index
1255 register, but the resulting address is still invalid because the offset
1256 is too big. We fix it here instead by reloading the entire address. */
1257 /* We could probably achieve better results by defining PROMOTE_MODE to help
1258 cope with the variances between the Thumb's signed and unsigned byte and
1259 halfword load instructions. */
1260 /* ??? This should be safe for thumb2, but we may be able to do better. */
1261 #define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_L, WIN) \
1262 do { \
1263 rtx new_x = thumb_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND_L); \
1264 if (new_x) \
1265 { \
1266 X = new_x; \
1267 goto WIN; \
1268 } \
1269 } while (0)
1270
1271 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) \
1272 if (TARGET_ARM) \
1273 ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \
1274 else \
1275 THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)
1276
1277 /* Return the maximum number of consecutive registers
1278 needed to represent mode MODE in a register of class CLASS.
1279 ARM regs are UNITS_PER_WORD bits while FPA regs can hold any FP mode */
1280 #define CLASS_MAX_NREGS(CLASS, MODE) \
1281 (((CLASS) == FPA_REGS || (CLASS) == CIRRUS_REGS) ? 1 : ARM_NUM_REGS (MODE))
1282
1283 /* If defined, gives a class of registers that cannot be used as the
1284 operand of a SUBREG that changes the mode of the object illegally. */
1285
1286 /* Moves between FPA_REGS and GENERAL_REGS are two memory insns.
1287 Moves between VFP_REGS and GENERAL_REGS are a single insn, but
1288 it is typically more expensive than a single memory access. We set
1289 the cost to less than two memory accesses so that floating
1290 point to integer conversion does not go through memory. */
1291 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
1292 (TARGET_32BIT ? \
1293 ((FROM) == FPA_REGS && (TO) != FPA_REGS ? 20 : \
1294 (FROM) != FPA_REGS && (TO) == FPA_REGS ? 20 : \
1295 IS_VFP_CLASS (FROM) && !IS_VFP_CLASS (TO) ? 15 : \
1296 !IS_VFP_CLASS (FROM) && IS_VFP_CLASS (TO) ? 15 : \
1297 (FROM) == IWMMXT_REGS && (TO) != IWMMXT_REGS ? 4 : \
1298 (FROM) != IWMMXT_REGS && (TO) == IWMMXT_REGS ? 4 : \
1299 (FROM) == IWMMXT_GR_REGS || (TO) == IWMMXT_GR_REGS ? 20 : \
1300 (FROM) == CIRRUS_REGS && (TO) != CIRRUS_REGS ? 20 : \
1301 (FROM) != CIRRUS_REGS && (TO) == CIRRUS_REGS ? 20 : \
1302 2) \
1303 : \
1304 ((FROM) == HI_REGS || (TO) == HI_REGS) ? 4 : 2)
1305 \f
1306 /* Stack layout; function entry, exit and calling. */
1307
1308 /* Define this if pushing a word on the stack
1309 makes the stack pointer a smaller address. */
1310 #define STACK_GROWS_DOWNWARD 1
1311
1312 /* Define this to nonzero if the nominal address of the stack frame
1313 is at the high-address end of the local variables;
1314 that is, each additional local variable allocated
1315 goes at a more negative offset in the frame. */
1316 #define FRAME_GROWS_DOWNWARD 1
1317
1318 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1319 When present, it is one word in size, and sits at the top of the frame,
1320 between the soft frame pointer and either r7 or r11.
1321
1322 We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1323 and only then if some outgoing arguments are passed on the stack. It would
1324 be tempting to also check whether the stack arguments are passed by indirect
1325 calls, but there seems to be no reason in principle why a post-reload pass
1326 couldn't convert a direct call into an indirect one. */
1327 #define CALLER_INTERWORKING_SLOT_SIZE \
1328 (TARGET_CALLER_INTERWORKING \
1329 && crtl->outgoing_args_size != 0 \
1330 ? UNITS_PER_WORD : 0)
1331
1332 /* Offset within stack frame to start allocating local variables at.
1333 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1334 first local allocated. Otherwise, it is the offset to the BEGINNING
1335 of the first local allocated. */
1336 #define STARTING_FRAME_OFFSET 0
1337
1338 /* If we generate an insn to push BYTES bytes,
1339 this says how many the stack pointer really advances by. */
1340 /* The push insns do not do this rounding implicitly.
1341 So don't define this. */
1342 /* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */
1343
1344 /* Define this if the maximum size of all the outgoing args is to be
1345 accumulated and pushed during the prologue. The amount can be
1346 found in the variable crtl->outgoing_args_size. */
1347 #define ACCUMULATE_OUTGOING_ARGS 1
1348
1349 /* Offset of first parameter from the argument pointer register value. */
1350 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
1351
1352 /* Define how to find the value returned by a library function
1353 assuming the value has mode MODE. */
1354 #define LIBCALL_VALUE(MODE) \
1355 (TARGET_AAPCS_BASED ? aapcs_libcall_value (MODE) \
1356 : (TARGET_32BIT && TARGET_HARD_FLOAT_ABI && TARGET_FPA \
1357 && GET_MODE_CLASS (MODE) == MODE_FLOAT) \
1358 ? gen_rtx_REG (MODE, FIRST_FPA_REGNUM) \
1359 : TARGET_32BIT && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK \
1360 && GET_MODE_CLASS (MODE) == MODE_FLOAT \
1361 ? gen_rtx_REG (MODE, FIRST_CIRRUS_FP_REGNUM) \
1362 : TARGET_IWMMXT_ABI && arm_vector_mode_supported_p (MODE) \
1363 ? gen_rtx_REG (MODE, FIRST_IWMMXT_REGNUM) \
1364 : gen_rtx_REG (MODE, ARG_REGISTER (1)))
1365
1366 /* 1 if REGNO is a possible register number for a function value. */
1367 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1368 ((REGNO) == ARG_REGISTER (1) \
1369 || (TARGET_AAPCS_BASED && TARGET_32BIT \
1370 && TARGET_VFP && TARGET_HARD_FLOAT \
1371 && (REGNO) == FIRST_VFP_REGNUM) \
1372 || (TARGET_32BIT && ((REGNO) == FIRST_CIRRUS_FP_REGNUM) \
1373 && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK) \
1374 || ((REGNO) == FIRST_IWMMXT_REGNUM && TARGET_IWMMXT_ABI) \
1375 || (TARGET_32BIT && ((REGNO) == FIRST_FPA_REGNUM) \
1376 && TARGET_HARD_FLOAT_ABI && TARGET_FPA))
1377
1378 /* Amount of memory needed for an untyped call to save all possible return
1379 registers. */
1380 #define APPLY_RESULT_SIZE arm_apply_result_size()
1381
1382 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1383 values must be in memory. On the ARM, they need only do so if larger
1384 than a word, or if they contain elements offset from zero in the struct. */
1385 #define DEFAULT_PCC_STRUCT_RETURN 0
1386
1387 /* These bits describe the different types of function supported
1388 by the ARM backend. They are exclusive. i.e. a function cannot be both a
1389 normal function and an interworked function, for example. Knowing the
1390 type of a function is important for determining its prologue and
1391 epilogue sequences.
1392 Note value 7 is currently unassigned. Also note that the interrupt
1393 function types all have bit 2 set, so that they can be tested for easily.
1394 Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1395 machine_function structure is initialized (to zero) func_type will
1396 default to unknown. This will force the first use of arm_current_func_type
1397 to call arm_compute_func_type. */
1398 #define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
1399 #define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
1400 #define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
1401 #define ARM_FT_ISR 4 /* An interrupt service routine. */
1402 #define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
1403 #define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
1404
1405 #define ARM_FT_TYPE_MASK ((1 << 3) - 1)
1406
1407 /* In addition functions can have several type modifiers,
1408 outlined by these bit masks: */
1409 #define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
1410 #define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
1411 #define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
1412 #define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
1413 #define ARM_FT_STACKALIGN (1 << 6) /* Called with misaligned stack. */
1414
1415 /* Some macros to test these flags. */
1416 #define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
1417 #define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
1418 #define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
1419 #define IS_NAKED(t) (t & ARM_FT_NAKED)
1420 #define IS_NESTED(t) (t & ARM_FT_NESTED)
1421 #define IS_STACKALIGN(t) (t & ARM_FT_STACKALIGN)
1422
1423
1424 /* Structure used to hold the function stack frame layout. Offsets are
1425 relative to the stack pointer on function entry. Positive offsets are
1426 in the direction of stack growth.
1427 Only soft_frame is used in thumb mode. */
1428
1429 typedef struct GTY(()) arm_stack_offsets
1430 {
1431 int saved_args; /* ARG_POINTER_REGNUM. */
1432 int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */
1433 int saved_regs;
1434 int soft_frame; /* FRAME_POINTER_REGNUM. */
1435 int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */
1436 int outgoing_args; /* STACK_POINTER_REGNUM. */
1437 unsigned int saved_regs_mask;
1438 }
1439 arm_stack_offsets;
1440
1441 #ifndef GENERATOR_FILE
1442 /* A C structure for machine-specific, per-function data.
1443 This is added to the cfun structure. */
1444 typedef struct GTY(()) machine_function
1445 {
1446 /* Additional stack adjustment in __builtin_eh_throw. */
1447 rtx eh_epilogue_sp_ofs;
1448 /* Records if LR has to be saved for far jumps. */
1449 int far_jump_used;
1450 /* Records if ARG_POINTER was ever live. */
1451 int arg_pointer_live;
1452 /* Records if the save of LR has been eliminated. */
1453 int lr_save_eliminated;
1454 /* The size of the stack frame. Only valid after reload. */
1455 arm_stack_offsets stack_offsets;
1456 /* Records the type of the current function. */
1457 unsigned long func_type;
1458 /* Record if the function has a variable argument list. */
1459 int uses_anonymous_args;
1460 /* Records if sibcalls are blocked because an argument
1461 register is needed to preserve stack alignment. */
1462 int sibcall_blocked;
1463 /* The PIC register for this function. This might be a pseudo. */
1464 rtx pic_reg;
1465 /* Labels for per-function Thumb call-via stubs. One per potential calling
1466 register. We can never call via LR or PC. We can call via SP if a
1467 trampoline happens to be on the top of the stack. */
1468 rtx call_via[14];
1469 /* Set to 1 when a return insn is output, this means that the epilogue
1470 is not needed. */
1471 int return_used_this_function;
1472 /* When outputting Thumb-1 code, record the last insn that provides
1473 information about condition codes, and the comparison operands. */
1474 rtx thumb1_cc_insn;
1475 rtx thumb1_cc_op0;
1476 rtx thumb1_cc_op1;
1477 /* Also record the CC mode that is supported. */
1478 enum machine_mode thumb1_cc_mode;
1479 }
1480 machine_function;
1481 #endif
1482
1483 /* As in the machine_function, a global set of call-via labels, for code
1484 that is in text_section. */
1485 extern GTY(()) rtx thumb_call_via_label[14];
1486
1487 /* The number of potential ways of assigning to a co-processor. */
1488 #define ARM_NUM_COPROC_SLOTS 1
1489
1490 /* Enumeration of procedure calling standard variants. We don't really
1491 support all of these yet. */
1492 enum arm_pcs
1493 {
1494 ARM_PCS_AAPCS, /* Base standard AAPCS. */
1495 ARM_PCS_AAPCS_VFP, /* Use VFP registers for floating point values. */
1496 ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors. */
1497 /* This must be the last AAPCS variant. */
1498 ARM_PCS_AAPCS_LOCAL, /* Private call within this compilation unit. */
1499 ARM_PCS_ATPCS, /* ATPCS. */
1500 ARM_PCS_APCS, /* APCS (legacy Linux etc). */
1501 ARM_PCS_UNKNOWN
1502 };
1503
1504 /* Default procedure calling standard of current compilation unit. */
1505 extern enum arm_pcs arm_pcs_default;
1506
1507 /* A C type for declaring a variable that is used as the first argument of
1508 `FUNCTION_ARG' and other related values. */
1509 typedef struct
1510 {
1511 /* This is the number of registers of arguments scanned so far. */
1512 int nregs;
1513 /* This is the number of iWMMXt register arguments scanned so far. */
1514 int iwmmxt_nregs;
1515 int named_count;
1516 int nargs;
1517 /* Which procedure call variant to use for this call. */
1518 enum arm_pcs pcs_variant;
1519
1520 /* AAPCS related state tracking. */
1521 int aapcs_arg_processed; /* No need to lay out this argument again. */
1522 int aapcs_cprc_slot; /* Index of co-processor rules to handle
1523 this argument, or -1 if using core
1524 registers. */
1525 int aapcs_ncrn;
1526 int aapcs_next_ncrn;
1527 rtx aapcs_reg; /* Register assigned to this argument. */
1528 int aapcs_partial; /* How many bytes are passed in regs (if
1529 split between core regs and stack.
1530 Zero otherwise. */
1531 int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1532 int can_split; /* Argument can be split between core regs
1533 and the stack. */
1534 /* Private data for tracking VFP register allocation */
1535 unsigned aapcs_vfp_regs_free;
1536 unsigned aapcs_vfp_reg_alloc;
1537 int aapcs_vfp_rcount;
1538 MACHMODE aapcs_vfp_rmode;
1539 } CUMULATIVE_ARGS;
1540
1541 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1542 (arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
1543
1544 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1545 (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
1546
1547 /* For AAPCS, padding should never be below the argument. For other ABIs,
1548 * mimic the default. */
1549 #define PAD_VARARGS_DOWN \
1550 ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1551
1552 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1553 for a call to a function whose data type is FNTYPE.
1554 For a library call, FNTYPE is 0.
1555 On the ARM, the offset starts at 0. */
1556 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1557 arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1558
1559 /* 1 if N is a possible register number for function argument passing.
1560 On the ARM, r0-r3 are used to pass args. */
1561 #define FUNCTION_ARG_REGNO_P(REGNO) \
1562 (IN_RANGE ((REGNO), 0, 3) \
1563 || (TARGET_AAPCS_BASED && TARGET_VFP && TARGET_HARD_FLOAT \
1564 && IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15)) \
1565 || (TARGET_IWMMXT_ABI \
1566 && IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1567
1568 \f
1569 /* If your target environment doesn't prefix user functions with an
1570 underscore, you may wish to re-define this to prevent any conflicts. */
1571 #ifndef ARM_MCOUNT_NAME
1572 #define ARM_MCOUNT_NAME "*mcount"
1573 #endif
1574
1575 /* Call the function profiler with a given profile label. The Acorn
1576 compiler puts this BEFORE the prolog but gcc puts it afterwards.
1577 On the ARM the full profile code will look like:
1578 .data
1579 LP1
1580 .word 0
1581 .text
1582 mov ip, lr
1583 bl mcount
1584 .word LP1
1585
1586 profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1587 will output the .text section.
1588
1589 The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1590 ``prof'' doesn't seem to mind about this!
1591
1592 Note - this version of the code is designed to work in both ARM and
1593 Thumb modes. */
1594 #ifndef ARM_FUNCTION_PROFILER
1595 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
1596 { \
1597 char temp[20]; \
1598 rtx sym; \
1599 \
1600 asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
1601 IP_REGNUM, LR_REGNUM); \
1602 assemble_name (STREAM, ARM_MCOUNT_NAME); \
1603 fputc ('\n', STREAM); \
1604 ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
1605 sym = gen_rtx_SYMBOL_REF (Pmode, temp); \
1606 assemble_aligned_integer (UNITS_PER_WORD, sym); \
1607 }
1608 #endif
1609
1610 #ifdef THUMB_FUNCTION_PROFILER
1611 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1612 if (TARGET_ARM) \
1613 ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
1614 else \
1615 THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1616 #else
1617 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1618 ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1619 #endif
1620
1621 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1622 the stack pointer does not matter. The value is tested only in
1623 functions that have frame pointers.
1624 No definition is equivalent to always zero.
1625
1626 On the ARM, the function epilogue recovers the stack pointer from the
1627 frame. */
1628 #define EXIT_IGNORE_STACK 1
1629
1630 #define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNUM)
1631
1632 /* Determine if the epilogue should be output as RTL.
1633 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1634 #define USE_RETURN_INSN(ISCOND) \
1635 (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1636
1637 /* Definitions for register eliminations.
1638
1639 This is an array of structures. Each structure initializes one pair
1640 of eliminable registers. The "from" register number is given first,
1641 followed by "to". Eliminations of the same "from" register are listed
1642 in order of preference.
1643
1644 We have two registers that can be eliminated on the ARM. First, the
1645 arg pointer register can often be eliminated in favor of the stack
1646 pointer register. Secondly, the pseudo frame pointer register can always
1647 be eliminated; it is replaced with either the stack or the real frame
1648 pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1649 because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
1650
1651 #define ELIMINABLE_REGS \
1652 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1653 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
1654 { ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1655 { ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
1656 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1657 { FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1658 { FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
1659
1660 /* Define the offset between two registers, one to be eliminated, and the
1661 other its replacement, at the start of a routine. */
1662 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1663 if (TARGET_ARM) \
1664 (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
1665 else \
1666 (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1667
1668 /* Special case handling of the location of arguments passed on the stack. */
1669 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1670
1671 /* Initialize data used by insn expanders. This is called from insn_emit,
1672 once for every function before code is generated. */
1673 #define INIT_EXPANDERS arm_init_expanders ()
1674
1675 /* Length in units of the trampoline for entering a nested function. */
1676 #define TRAMPOLINE_SIZE (TARGET_32BIT ? 16 : 20)
1677
1678 /* Alignment required for a trampoline in bits. */
1679 #define TRAMPOLINE_ALIGNMENT 32
1680 \f
1681 /* Addressing modes, and classification of registers for them. */
1682 #define HAVE_POST_INCREMENT 1
1683 #define HAVE_PRE_INCREMENT TARGET_32BIT
1684 #define HAVE_POST_DECREMENT TARGET_32BIT
1685 #define HAVE_PRE_DECREMENT TARGET_32BIT
1686 #define HAVE_PRE_MODIFY_DISP TARGET_32BIT
1687 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1688 #define HAVE_PRE_MODIFY_REG TARGET_32BIT
1689 #define HAVE_POST_MODIFY_REG TARGET_32BIT
1690
1691 /* Macros to check register numbers against specific register classes. */
1692
1693 /* These assume that REGNO is a hard or pseudo reg number.
1694 They give nonzero only if REGNO is a hard reg of the suitable class
1695 or a pseudo reg currently allocated to a suitable hard reg.
1696 Since they use reg_renumber, they are safe only once reg_renumber
1697 has been allocated, which happens in local-alloc.c. */
1698 #define TEST_REGNO(R, TEST, VALUE) \
1699 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1700
1701 /* Don't allow the pc to be used. */
1702 #define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
1703 (TEST_REGNO (REGNO, <, PC_REGNUM) \
1704 || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
1705 || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1706
1707 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1708 (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
1709 || (GET_MODE_SIZE (MODE) >= 4 \
1710 && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1711
1712 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1713 (TARGET_THUMB1 \
1714 ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
1715 : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1716
1717 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1718 For Thumb, we can not use SP + reg, so reject SP. */
1719 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1720 REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1721
1722 /* For ARM code, we don't care about the mode, but for Thumb, the index
1723 must be suitable for use in a QImode load. */
1724 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1725 (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1726 && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1727
1728 /* Maximum number of registers that can appear in a valid memory address.
1729 Shifts in addresses can't be by a register. */
1730 #define MAX_REGS_PER_ADDRESS 2
1731
1732 /* Recognize any constant value that is a valid address. */
1733 /* XXX We can address any constant, eventually... */
1734 /* ??? Should the TARGET_ARM here also apply to thumb2? */
1735 #define CONSTANT_ADDRESS_P(X) \
1736 (GET_CODE (X) == SYMBOL_REF \
1737 && (CONSTANT_POOL_ADDRESS_P (X) \
1738 || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1739
1740 /* True if SYMBOL + OFFSET constants must refer to something within
1741 SYMBOL's section. */
1742 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1743
1744 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32. */
1745 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1746 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1747 #endif
1748
1749 /* Nonzero if the constant value X is a legitimate general operand.
1750 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1751
1752 On the ARM, allow any integer (invalid ones are removed later by insn
1753 patterns), nice doubles and symbol_refs which refer to the function's
1754 constant pool XXX.
1755
1756 When generating pic allow anything. */
1757 #define ARM_LEGITIMATE_CONSTANT_P(X) (flag_pic || ! label_mentioned_p (X))
1758
1759 #define THUMB_LEGITIMATE_CONSTANT_P(X) \
1760 ( GET_CODE (X) == CONST_INT \
1761 || GET_CODE (X) == CONST_DOUBLE \
1762 || CONSTANT_ADDRESS_P (X) \
1763 || flag_pic)
1764
1765 #define LEGITIMATE_CONSTANT_P(X) \
1766 (!arm_cannot_force_const_mem (X) \
1767 && (TARGET_32BIT ? ARM_LEGITIMATE_CONSTANT_P (X) \
1768 : THUMB_LEGITIMATE_CONSTANT_P (X)))
1769
1770 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1771 #define SUBTARGET_NAME_ENCODING_LENGTHS
1772 #endif
1773
1774 /* This is a C fragment for the inside of a switch statement.
1775 Each case label should return the number of characters to
1776 be stripped from the start of a function's name, if that
1777 name starts with the indicated character. */
1778 #define ARM_NAME_ENCODING_LENGTHS \
1779 case '*': return 1; \
1780 SUBTARGET_NAME_ENCODING_LENGTHS
1781
1782 /* This is how to output a reference to a user-level label named NAME.
1783 `assemble_name' uses this. */
1784 #undef ASM_OUTPUT_LABELREF
1785 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1786 arm_asm_output_labelref (FILE, NAME)
1787
1788 /* Output IT instructions for conditionally executed Thumb-2 instructions. */
1789 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1790 if (TARGET_THUMB2) \
1791 thumb2_asm_output_opcode (STREAM);
1792
1793 /* The EABI specifies that constructors should go in .init_array.
1794 Other targets use .ctors for compatibility. */
1795 #ifndef ARM_EABI_CTORS_SECTION_OP
1796 #define ARM_EABI_CTORS_SECTION_OP \
1797 "\t.section\t.init_array,\"aw\",%init_array"
1798 #endif
1799 #ifndef ARM_EABI_DTORS_SECTION_OP
1800 #define ARM_EABI_DTORS_SECTION_OP \
1801 "\t.section\t.fini_array,\"aw\",%fini_array"
1802 #endif
1803 #define ARM_CTORS_SECTION_OP \
1804 "\t.section\t.ctors,\"aw\",%progbits"
1805 #define ARM_DTORS_SECTION_OP \
1806 "\t.section\t.dtors,\"aw\",%progbits"
1807
1808 /* Define CTORS_SECTION_ASM_OP. */
1809 #undef CTORS_SECTION_ASM_OP
1810 #undef DTORS_SECTION_ASM_OP
1811 #ifndef IN_LIBGCC2
1812 # define CTORS_SECTION_ASM_OP \
1813 (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1814 # define DTORS_SECTION_ASM_OP \
1815 (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1816 #else /* !defined (IN_LIBGCC2) */
1817 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1818 so we cannot use the definition above. */
1819 # ifdef __ARM_EABI__
1820 /* The .ctors section is not part of the EABI, so we do not define
1821 CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1822 from trying to use it. We do define it when doing normal
1823 compilation, as .init_array can be used instead of .ctors. */
1824 /* There is no need to emit begin or end markers when using
1825 init_array; the dynamic linker will compute the size of the
1826 array itself based on special symbols created by the static
1827 linker. However, we do need to arrange to set up
1828 exception-handling here. */
1829 # define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1830 # define CTOR_LIST_END /* empty */
1831 # define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1832 # define DTOR_LIST_END /* empty */
1833 # else /* !defined (__ARM_EABI__) */
1834 # define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1835 # define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1836 # endif /* !defined (__ARM_EABI__) */
1837 #endif /* !defined (IN_LIBCC2) */
1838
1839 /* True if the operating system can merge entities with vague linkage
1840 (e.g., symbols in COMDAT group) during dynamic linking. */
1841 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1842 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1843 #endif
1844
1845 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1846
1847 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1848 and check its validity for a certain class.
1849 We have two alternate definitions for each of them.
1850 The usual definition accepts all pseudo regs; the other rejects
1851 them unless they have been allocated suitable hard regs.
1852 The symbol REG_OK_STRICT causes the latter definition to be used.
1853 Thumb-2 has the same restrictions as arm. */
1854 #ifndef REG_OK_STRICT
1855
1856 #define ARM_REG_OK_FOR_BASE_P(X) \
1857 (REGNO (X) <= LAST_ARM_REGNUM \
1858 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1859 || REGNO (X) == FRAME_POINTER_REGNUM \
1860 || REGNO (X) == ARG_POINTER_REGNUM)
1861
1862 #define ARM_REG_OK_FOR_INDEX_P(X) \
1863 ((REGNO (X) <= LAST_ARM_REGNUM \
1864 && REGNO (X) != STACK_POINTER_REGNUM) \
1865 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1866 || REGNO (X) == FRAME_POINTER_REGNUM \
1867 || REGNO (X) == ARG_POINTER_REGNUM)
1868
1869 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1870 (REGNO (X) <= LAST_LO_REGNUM \
1871 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1872 || (GET_MODE_SIZE (MODE) >= 4 \
1873 && (REGNO (X) == STACK_POINTER_REGNUM \
1874 || (X) == hard_frame_pointer_rtx \
1875 || (X) == arg_pointer_rtx)))
1876
1877 #define REG_STRICT_P 0
1878
1879 #else /* REG_OK_STRICT */
1880
1881 #define ARM_REG_OK_FOR_BASE_P(X) \
1882 ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1883
1884 #define ARM_REG_OK_FOR_INDEX_P(X) \
1885 ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1886
1887 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1888 THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1889
1890 #define REG_STRICT_P 1
1891
1892 #endif /* REG_OK_STRICT */
1893
1894 /* Now define some helpers in terms of the above. */
1895
1896 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1897 (TARGET_THUMB1 \
1898 ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE) \
1899 : ARM_REG_OK_FOR_BASE_P (X))
1900
1901 /* For 16-bit Thumb, a valid index register is anything that can be used in
1902 a byte load instruction. */
1903 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
1904 THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
1905
1906 /* Nonzero if X is a hard reg that can be used as an index
1907 or if it is a pseudo reg. On the Thumb, the stack pointer
1908 is not suitable. */
1909 #define REG_OK_FOR_INDEX_P(X) \
1910 (TARGET_THUMB1 \
1911 ? THUMB1_REG_OK_FOR_INDEX_P (X) \
1912 : ARM_REG_OK_FOR_INDEX_P (X))
1913
1914 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1915 For Thumb, we can not use SP + reg, so reject SP. */
1916 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1917 REG_OK_FOR_INDEX_P (X)
1918 \f
1919 #define ARM_BASE_REGISTER_RTX_P(X) \
1920 (GET_CODE (X) == REG && ARM_REG_OK_FOR_BASE_P (X))
1921
1922 #define ARM_INDEX_REGISTER_RTX_P(X) \
1923 (GET_CODE (X) == REG && ARM_REG_OK_FOR_INDEX_P (X))
1924 \f
1925 /* Specify the machine mode that this machine uses
1926 for the index in the tablejump instruction. */
1927 #define CASE_VECTOR_MODE Pmode
1928
1929 #define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2 \
1930 || (TARGET_THUMB1 \
1931 && (optimize_size || flag_pic)))
1932
1933 #define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
1934 (TARGET_THUMB1 \
1935 ? (min >= 0 && max < 512 \
1936 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode) \
1937 : min >= -256 && max < 256 \
1938 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode) \
1939 : min >= 0 && max < 8192 \
1940 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode) \
1941 : min >= -4096 && max < 4096 \
1942 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode) \
1943 : SImode) \
1944 : ((min < 0 || max >= 0x2000 || !TARGET_THUMB2) ? SImode \
1945 : (max >= 0x200) ? HImode \
1946 : QImode))
1947
1948 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
1949 unsigned is probably best, but may break some code. */
1950 #ifndef DEFAULT_SIGNED_CHAR
1951 #define DEFAULT_SIGNED_CHAR 0
1952 #endif
1953
1954 /* Max number of bytes we can move from memory to memory
1955 in one reasonably fast instruction. */
1956 #define MOVE_MAX 4
1957
1958 #undef MOVE_RATIO
1959 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
1960
1961 /* Define if operations between registers always perform the operation
1962 on the full register even if a narrower mode is specified. */
1963 #define WORD_REGISTER_OPERATIONS
1964
1965 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1966 will either zero-extend or sign-extend. The value of this macro should
1967 be the code that says which one of the two operations is implicitly
1968 done, UNKNOWN if none. */
1969 #define LOAD_EXTEND_OP(MODE) \
1970 (TARGET_THUMB ? ZERO_EXTEND : \
1971 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
1972 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
1973
1974 /* Nonzero if access to memory by bytes is slow and undesirable. */
1975 #define SLOW_BYTE_ACCESS 0
1976
1977 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
1978
1979 /* Immediate shift counts are truncated by the output routines (or was it
1980 the assembler?). Shift counts in a register are truncated by ARM. Note
1981 that the native compiler puts too large (> 32) immediate shift counts
1982 into a register and shifts by the register, letting the ARM decide what
1983 to do instead of doing that itself. */
1984 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
1985 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
1986 On the arm, Y in a register is used modulo 256 for the shift. Only for
1987 rotates is modulo 32 used. */
1988 /* #define SHIFT_COUNT_TRUNCATED 1 */
1989
1990 /* All integers have the same format so truncation is easy. */
1991 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1992
1993 /* Calling from registers is a massive pain. */
1994 #define NO_FUNCTION_CSE 1
1995
1996 /* The machine modes of pointers and functions */
1997 #define Pmode SImode
1998 #define FUNCTION_MODE Pmode
1999
2000 #define ARM_FRAME_RTX(X) \
2001 ( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
2002 || (X) == arg_pointer_rtx)
2003
2004 /* Moves to and from memory are quite expensive */
2005 #define MEMORY_MOVE_COST(M, CLASS, IN) \
2006 (TARGET_32BIT ? 10 : \
2007 ((GET_MODE_SIZE (M) < 4 ? 8 : 2 * GET_MODE_SIZE (M)) \
2008 * (CLASS == LO_REGS ? 1 : 2)))
2009
2010 /* Try to generate sequences that don't involve branches, we can then use
2011 conditional instructions */
2012 #define BRANCH_COST(speed_p, predictable_p) \
2013 (TARGET_32BIT ? (TARGET_THUMB2 && !speed_p ? 1 : 4) \
2014 : (optimize > 0 ? 2 : 0))
2015 \f
2016 /* Position Independent Code. */
2017 /* We decide which register to use based on the compilation options and
2018 the assembler in use; this is more general than the APCS restriction of
2019 using sb (r9) all the time. */
2020 extern unsigned arm_pic_register;
2021
2022 /* The register number of the register used to address a table of static
2023 data addresses in memory. */
2024 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
2025
2026 /* We can't directly access anything that contains a symbol,
2027 nor can we indirect via the constant pool. One exception is
2028 UNSPEC_TLS, which is always PIC. */
2029 #define LEGITIMATE_PIC_OPERAND_P(X) \
2030 (!(symbol_mentioned_p (X) \
2031 || label_mentioned_p (X) \
2032 || (GET_CODE (X) == SYMBOL_REF \
2033 && CONSTANT_POOL_ADDRESS_P (X) \
2034 && (symbol_mentioned_p (get_pool_constant (X)) \
2035 || label_mentioned_p (get_pool_constant (X))))) \
2036 || tls_mentioned_p (X))
2037
2038 /* We need to know when we are making a constant pool; this determines
2039 whether data needs to be in the GOT or can be referenced via a GOT
2040 offset. */
2041 extern int making_const_table;
2042 \f
2043 /* Handle pragmas for compatibility with Intel's compilers. */
2044 /* Also abuse this to register additional C specific EABI attributes. */
2045 #define REGISTER_TARGET_PRAGMAS() do { \
2046 c_register_pragma (0, "long_calls", arm_pr_long_calls); \
2047 c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \
2048 c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \
2049 arm_lang_object_attributes_init(); \
2050 } while (0)
2051
2052 /* Condition code information. */
2053 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2054 return the mode to be used for the comparison. */
2055
2056 #define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
2057
2058 #define REVERSIBLE_CC_MODE(MODE) 1
2059
2060 #define REVERSE_CONDITION(CODE,MODE) \
2061 (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2062 ? reverse_condition_maybe_unordered (code) \
2063 : reverse_condition (code))
2064
2065 #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
2066 (CODE) = arm_canonicalize_comparison (CODE, &(OP0), &(OP1))
2067
2068 /* The arm5 clz instruction returns 32. */
2069 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
2070 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
2071 \f
2072 #define CC_STATUS_INIT \
2073 do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2074
2075 #undef ASM_APP_OFF
2076 #define ASM_APP_OFF (TARGET_THUMB1 ? "\t.code\t16\n" : \
2077 TARGET_THUMB2 ? "\t.thumb\n" : "")
2078
2079 /* Output a push or a pop instruction (only used when profiling).
2080 We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1. We know
2081 that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2082 that r7 isn't used by the function profiler, so we can use it as a
2083 scratch reg. WARNING: This isn't safe in the general case! It may be
2084 sensitive to future changes in final.c:profile_function. */
2085 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
2086 do \
2087 { \
2088 if (TARGET_ARM) \
2089 asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n", \
2090 STACK_POINTER_REGNUM, REGNO); \
2091 else if (TARGET_THUMB1 \
2092 && (REGNO) == STATIC_CHAIN_REGNUM) \
2093 { \
2094 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2095 asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2096 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2097 } \
2098 else \
2099 asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \
2100 } while (0)
2101
2102
2103 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue. */
2104 #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
2105 do \
2106 { \
2107 if (TARGET_ARM) \
2108 asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n", \
2109 STACK_POINTER_REGNUM, REGNO); \
2110 else if (TARGET_THUMB1 \
2111 && (REGNO) == STATIC_CHAIN_REGNUM) \
2112 { \
2113 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2114 asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2115 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2116 } \
2117 else \
2118 asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \
2119 } while (0)
2120
2121 /* Jump table alignment is explicit in ASM_OUTPUT_CASE_LABEL. */
2122 #define ADDR_VEC_ALIGN(JUMPTABLE) 0
2123
2124 /* This is how to output a label which precedes a jumptable. Since
2125 Thumb instructions are 2 bytes, we may need explicit alignment here. */
2126 #undef ASM_OUTPUT_CASE_LABEL
2127 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, JUMPTABLE) \
2128 do \
2129 { \
2130 if (TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) \
2131 ASM_OUTPUT_ALIGN (FILE, 2); \
2132 (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); \
2133 } \
2134 while (0)
2135
2136 /* Make sure subsequent insns are aligned after a TBB. */
2137 #define ASM_OUTPUT_CASE_END(FILE, NUM, JUMPTABLE) \
2138 do \
2139 { \
2140 if (GET_MODE (PATTERN (JUMPTABLE)) == QImode) \
2141 ASM_OUTPUT_ALIGN (FILE, 1); \
2142 } \
2143 while (0)
2144
2145 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
2146 do \
2147 { \
2148 if (TARGET_THUMB) \
2149 { \
2150 if (is_called_in_ARM_mode (DECL) \
2151 || (TARGET_THUMB1 && !TARGET_THUMB1_ONLY \
2152 && cfun->is_thunk)) \
2153 fprintf (STREAM, "\t.code 32\n") ; \
2154 else if (TARGET_THUMB1) \
2155 fprintf (STREAM, "\t.code\t16\n\t.thumb_func\n") ; \
2156 else \
2157 fprintf (STREAM, "\t.thumb\n\t.thumb_func\n") ; \
2158 } \
2159 if (TARGET_POKE_FUNCTION_NAME) \
2160 arm_poke_function_name (STREAM, (const char *) NAME); \
2161 } \
2162 while (0)
2163
2164 /* For aliases of functions we use .thumb_set instead. */
2165 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
2166 do \
2167 { \
2168 const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2169 const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
2170 \
2171 if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
2172 { \
2173 fprintf (FILE, "\t.thumb_set "); \
2174 assemble_name (FILE, LABEL1); \
2175 fprintf (FILE, ","); \
2176 assemble_name (FILE, LABEL2); \
2177 fprintf (FILE, "\n"); \
2178 } \
2179 else \
2180 ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
2181 } \
2182 while (0)
2183
2184 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2185 /* To support -falign-* switches we need to use .p2align so
2186 that alignment directives in code sections will be padded
2187 with no-op instructions, rather than zeroes. */
2188 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \
2189 if ((LOG) != 0) \
2190 { \
2191 if ((MAX_SKIP) == 0) \
2192 fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \
2193 else \
2194 fprintf ((FILE), "\t.p2align %d,,%d\n", \
2195 (int) (LOG), (int) (MAX_SKIP)); \
2196 }
2197 #endif
2198 \f
2199 /* Add two bytes to the length of conditionally executed Thumb-2
2200 instructions for the IT instruction. */
2201 #define ADJUST_INSN_LENGTH(insn, length) \
2202 if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2203 length += 2;
2204
2205 /* Only perform branch elimination (by making instructions conditional) if
2206 we're optimizing. For Thumb-2 check if any IT instructions need
2207 outputting. */
2208 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2209 if (TARGET_ARM && optimize) \
2210 arm_final_prescan_insn (INSN); \
2211 else if (TARGET_THUMB2) \
2212 thumb2_final_prescan_insn (INSN); \
2213 else if (TARGET_THUMB1) \
2214 thumb1_final_prescan_insn (INSN)
2215
2216 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
2217 (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
2218 : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2219 ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2220 ? ((~ (unsigned HOST_WIDE_INT) 0) \
2221 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
2222 : 0))))
2223
2224 /* A C expression whose value is RTL representing the value of the return
2225 address for the frame COUNT steps up from the current frame. */
2226
2227 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2228 arm_return_addr (COUNT, FRAME)
2229
2230 /* Mask of the bits in the PC that contain the real return address
2231 when running in 26-bit mode. */
2232 #define RETURN_ADDR_MASK26 (0x03fffffc)
2233
2234 /* Pick up the return address upon entry to a procedure. Used for
2235 dwarf2 unwind information. This also enables the table driven
2236 mechanism. */
2237 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
2238 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
2239
2240 /* Used to mask out junk bits from the return address, such as
2241 processor state, interrupt status, condition codes and the like. */
2242 #define MASK_RETURN_ADDR \
2243 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
2244 in 26 bit mode, the condition codes must be masked out of the \
2245 return address. This does not apply to ARM6 and later processors \
2246 when running in 32 bit mode. */ \
2247 ((arm_arch4 || TARGET_THUMB) \
2248 ? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \
2249 : arm_gen_return_addr_mask ())
2250
2251 \f
2252 /* Do not emit .note.GNU-stack by default. */
2253 #ifndef NEED_INDICATE_EXEC_STACK
2254 #define NEED_INDICATE_EXEC_STACK 0
2255 #endif
2256
2257 /* The maximum number of parallel loads or stores we support in an ldm/stm
2258 instruction. */
2259 #define MAX_LDM_STM_OPS 4
2260
2261 #endif /* ! GCC_ARM_H */