bfin.c: Include "optabs.h".
[gcc.git] / gcc / config / bfin / bfin.h
1 /* Definitions for the Blackfin port.
2 Copyright (C) 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Analog Devices.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 2, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #ifndef _BFIN_CONFIG
23 #define _BFIN_CONFIG
24
25 #define OBJECT_FORMAT_ELF
26
27 #define BRT 1
28 #define BRF 0
29
30 /* Print subsidiary information on the compiler version in use. */
31 #define TARGET_VERSION fprintf (stderr, " (BlackFin bfin)")
32
33 /* Run-time compilation parameters selecting different hardware subsets. */
34
35 extern int target_flags;
36
37 /* Predefinition in the preprocessor for this target machine */
38 #ifndef TARGET_CPU_CPP_BUILTINS
39 #define TARGET_CPU_CPP_BUILTINS() \
40 do \
41 { \
42 builtin_define ("bfin"); \
43 builtin_define ("BFIN"); \
44 builtin_define ("__ADSPBLACKFIN__"); \
45 if (TARGET_ID_SHARED_LIBRARY) \
46 builtin_define ("__ID_SHARED_LIB__"); \
47 } \
48 while (0)
49 #endif
50
51 /* Generate DSP instructions, like DSP halfword loads */
52 #define TARGET_DSP (1)
53
54 #define TARGET_DEFAULT (MASK_SPECLD_ANOMALY | MASK_CSYNC_ANOMALY)
55
56 /* Maximum number of library ids we permit */
57 #define MAX_LIBRARY_ID 255
58
59 extern const char *bfin_library_id_string;
60
61 /* Sometimes certain combinations of command options do not make
62 sense on a particular target machine. You can define a macro
63 `OVERRIDE_OPTIONS' to take account of this. This macro, if
64 defined, is executed once just after all the command options have
65 been parsed.
66
67 Don't use this macro to turn on various extra optimizations for
68 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
69
70 #define OVERRIDE_OPTIONS override_options ()
71
72 #define FUNCTION_MODE SImode
73 #define Pmode SImode
74
75 /* store-condition-codes instructions store 0 for false
76 This is the value stored for true. */
77 #define STORE_FLAG_VALUE 1
78
79 /* Define this if pushing a word on the stack
80 makes the stack pointer a smaller address. */
81 #define STACK_GROWS_DOWNWARD
82
83 #define STACK_PUSH_CODE PRE_DEC
84
85 /* Define this to nonzero if the nominal address of the stack frame
86 is at the high-address end of the local variables;
87 that is, each additional local variable allocated
88 goes at a more negative offset in the frame. */
89 #define FRAME_GROWS_DOWNWARD 1
90
91 /* We define a dummy ARGP register; the parameters start at offset 0 from
92 it. */
93 #define FIRST_PARM_OFFSET(DECL) 0
94
95 /* Offset within stack frame to start allocating local variables at.
96 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
97 first local allocated. Otherwise, it is the offset to the BEGINNING
98 of the first local allocated. */
99 #define STARTING_FRAME_OFFSET 0
100
101 /* Register to use for pushing function arguments. */
102 #define STACK_POINTER_REGNUM REG_P6
103
104 /* Base register for access to local variables of the function. */
105 #define FRAME_POINTER_REGNUM REG_P7
106
107 /* A dummy register that will be eliminated to either FP or SP. */
108 #define ARG_POINTER_REGNUM REG_ARGP
109
110 /* `PIC_OFFSET_TABLE_REGNUM'
111 The register number of the register used to address a table of
112 static data addresses in memory. In some cases this register is
113 defined by a processor's "application binary interface" (ABI).
114 When this macro is defined, RTL is generated for this register
115 once, as with the stack pointer and frame pointer registers. If
116 this macro is not defined, it is up to the machine-dependent files
117 to allocate such a register (if necessary). */
118 #define PIC_OFFSET_TABLE_REGNUM (REG_P5)
119
120 /* A static chain register for nested functions. We need to use a
121 call-clobbered register for this. */
122 #define STATIC_CHAIN_REGNUM REG_P2
123
124 /* Define this if functions should assume that stack space has been
125 allocated for arguments even when their values are passed in
126 registers.
127
128 The value of this macro is the size, in bytes, of the area reserved for
129 arguments passed in registers.
130
131 This space can either be allocated by the caller or be a part of the
132 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
133 says which. */
134 #define FIXED_STACK_AREA 12
135 #define REG_PARM_STACK_SPACE(FNDECL) FIXED_STACK_AREA
136
137 /* Define this if the above stack space is to be considered part of the
138 * space allocated by the caller. */
139 #define OUTGOING_REG_PARM_STACK_SPACE
140
141 /* Define this if the maximum size of all the outgoing args is to be
142 accumulated and pushed during the prologue. The amount can be
143 found in the variable current_function_outgoing_args_size. */
144 #define ACCUMULATE_OUTGOING_ARGS 1
145
146 /* Value should be nonzero if functions must have frame pointers.
147 Zero means the frame pointer need not be set up (and parms
148 may be accessed via the stack pointer) in functions that seem suitable.
149 This is computed in `reload', in reload1.c.
150 */
151 #define FRAME_POINTER_REQUIRED (bfin_frame_pointer_required ())
152
153 #define PARM_BOUNDRY 32
154
155 #define STACK_BOUNDRY 32
156
157 /*#define DATA_ALIGNMENT(TYPE, BASIC-ALIGN) for arrays.. */
158
159 /* Make strings word-aligned so strcpy from constants will be faster. */
160 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
161 (TREE_CODE (EXP) == STRING_CST \
162 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
163
164 #define TRAMPOLINE_SIZE 18
165 #define TRAMPOLINE_TEMPLATE(FILE) \
166 fprintf(FILE, "\t.dd\t0x0000e109\n"); /* p1.l = fn low */ \
167 fprintf(FILE, "\t.dd\t0x0000e149\n"); /* p1.h = fn high */; \
168 fprintf(FILE, "\t.dd\t0x0000e10a\n"); /* p2.l = sc low */; \
169 fprintf(FILE, "\t.dd\t0x0000e14a\n"); /* p2.h = sc high */; \
170 fprintf(FILE, "\t.dw\t0x0051\n"); /* jump (p1)*/
171
172 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
173 initialize_trampoline (TRAMP, FNADDR, CXT)
174 \f
175 /* Definitions for register eliminations.
176
177 This is an array of structures. Each structure initializes one pair
178 of eliminable registers. The "from" register number is given first,
179 followed by "to". Eliminations of the same "from" register are listed
180 in order of preference.
181
182 There are two registers that can always be eliminated on the i386.
183 The frame pointer and the arg pointer can be replaced by either the
184 hard frame pointer or to the stack pointer, depending upon the
185 circumstances. The hard frame pointer is not used before reload and
186 so it is not eligible for elimination. */
187
188 #define ELIMINABLE_REGS \
189 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
190 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
191 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} \
192
193 /* Given FROM and TO register numbers, say whether this elimination is
194 allowed. Frame pointer elimination is automatically handled.
195
196 All other eliminations are valid. */
197
198 #define CAN_ELIMINATE(FROM, TO) \
199 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
200
201 /* Define the offset between two registers, one to be eliminated, and the other
202 its replacement, at the start of a routine. */
203
204 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
205 ((OFFSET) = bfin_initial_elimination_offset ((FROM), (TO)))
206 \f
207 /* This processor has
208 8 data register for doing arithmetic
209 8 pointer register for doing addressing, including
210 1 stack pointer P6
211 1 frame pointer P7
212 4 sets of indexing registers (I0-3, B0-3, L0-3, M0-3)
213 1 condition code flag register CC
214 5 return address registers RETS/I/X/N/E
215 1 arithmetic status register (ASTAT). */
216
217 #define FIRST_PSEUDO_REGISTER 44
218
219 #define PREG_P(X) (REG_P (X) && P_REGNO_P (REGNO (X)))
220 #define IREG_P(X) (REG_P (X) && I_REGNO_P (REGNO (X)))
221 #define ADDRESS_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_M3)
222 #define D_REGNO_P(X) ((X) <= REG_R7)
223 #define P_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_P7)
224 #define I_REGNO_P(X) \
225 ((X) == REG_I0 || (X) == REG_I1 || (X) == REG_I2 || (X) == REG_I3)
226
227 #define REGISTER_NAMES { \
228 "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7", \
229 "P0", "P1", "P2", "P3", "P4", "P5", "SP", "FP", \
230 "I0", "I1", "I2", "I3", "B0", "B1", "B2", "B3", \
231 "L0", "L1", "L2", "L3", "M0", "M1", "M2", "M3", \
232 "A0", "A1", \
233 "CC", \
234 "RETS", "RETI", "RETX", "RETN", "RETE", "ASTAT", "SEQSTAT", "USP", \
235 "ARGP" \
236 }
237
238 #define SHORT_REGISTER_NAMES { \
239 "R0.L", "R1.L", "R2.L", "R3.L", "R4.L", "R5.L", "R6.L", "R7.L", \
240 "P0.L", "P1.L", "P2.L", "P3.L", "P4.L", "P5.L", "SP.L", "FP.L", \
241 "I0.L", "I1.L", "I2.L", "I3.L", "B0.L", "B1.L", "B2.L", "B3.L", \
242 "L0.L", "L1.L", "L2.L", "L3.L", "M0.L", "M1.L", "M2.L", "M3.L", }
243
244 #define HIGH_REGISTER_NAMES { \
245 "R0.H", "R1.H", "R2.H", "R3.H", "R4.H", "R5.H", "R6.H", "R7.H", \
246 "P0.H", "P1.H", "P2.H", "P3.H", "P4.H", "P5.H", "SP.H", "FP.H", \
247 "I0.H", "I1.H", "I2.H", "I3.H", "B0.H", "B1.H", "B2.H", "B3.H", \
248 "L0.H", "L1.H", "L2.H", "L3.H", "M0.H", "M1.H", "M2.H", "M3.H", }
249
250 #define DREGS_PAIR_NAMES { \
251 "R1:0.p", 0, "R3:2.p", 0, "R5:4.p", 0, "R7:6.p", 0, }
252
253 #define BYTE_REGISTER_NAMES { \
254 "R0.B", "R1.B", "R2.B", "R3.B", "R4.B", "R5.B", "R6.B", "R7.B", }
255
256
257 /* 1 for registers that have pervasive standard uses
258 and are not available for the register allocator. */
259
260 #define FIXED_REGISTERS \
261 /*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
262 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, \
263 /*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
264 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, \
265 /*a0 a1 cc rets/i/x/n/e astat seqstat usp argp */ \
266 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
267 }
268
269 /* 1 for registers not available across function calls.
270 These must include the FIXED_REGISTERS and also any
271 registers that can be used without being saved.
272 The latter must include the registers where values are returned
273 and the register where structure-value addresses are passed.
274 Aside from that, you can include as many other registers as you like. */
275
276 #define CALL_USED_REGISTERS \
277 /*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
278 { 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, \
279 /*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
280 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
281 /*a0 a1 cc rets/i/x/n/e astat seqstat usp argp */ \
282 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
283 }
284
285 /* Order in which to allocate registers. Each register must be
286 listed once, even those in FIXED_REGISTERS. List frame pointer
287 late and fixed registers last. Note that, in general, we prefer
288 registers listed in CALL_USED_REGISTERS, keeping the others
289 available for storage of persistent values. */
290
291 #define REG_ALLOC_ORDER \
292 { REG_R0, REG_R1, REG_R2, REG_R3, REG_R7, REG_R6, REG_R5, REG_R4, \
293 REG_P2, REG_P1, REG_P0, REG_P5, REG_P4, REG_P3, REG_P6, REG_P7, \
294 REG_A0, REG_A1, \
295 REG_I0, REG_I1, REG_I2, REG_I3, REG_B0, REG_B1, REG_B2, REG_B3, \
296 REG_L0, REG_L1, REG_L2, REG_L3, REG_M0, REG_M1, REG_M2, REG_M3, \
297 REG_RETS, REG_RETI, REG_RETX, REG_RETN, REG_RETE, \
298 REG_ASTAT, REG_SEQSTAT, REG_USP, \
299 REG_CC, REG_ARGP \
300 }
301
302 /* Macro to conditionally modify fixed_regs/call_used_regs. */
303 #define CONDITIONAL_REGISTER_USAGE \
304 { \
305 conditional_register_usage(); \
306 if (flag_pic) \
307 { \
308 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
309 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
310 } \
311 }
312
313 /* Define the classes of registers for register constraints in the
314 machine description. Also define ranges of constants.
315
316 One of the classes must always be named ALL_REGS and include all hard regs.
317 If there is more than one class, another class must be named NO_REGS
318 and contain no registers.
319
320 The name GENERAL_REGS must be the name of a class (or an alias for
321 another name such as ALL_REGS). This is the class of registers
322 that is allowed by "g" or "r" in a register constraint.
323 Also, registers outside this class are allocated only when
324 instructions express preferences for them.
325
326 The classes must be numbered in nondecreasing order; that is,
327 a larger-numbered class must never be contained completely
328 in a smaller-numbered class.
329
330 For any two classes, it is very desirable that there be another
331 class that represents their union. */
332
333
334 enum reg_class
335 {
336 NO_REGS,
337 IREGS,
338 BREGS,
339 LREGS,
340 MREGS,
341 CIRCREGS, /* Circular buffering registers, Ix, Bx, Lx together form. See Automatic Circular Buffering. */
342 DAGREGS,
343 EVEN_AREGS,
344 ODD_AREGS,
345 AREGS,
346 CCREGS,
347 EVEN_DREGS,
348 ODD_DREGS,
349 DREGS,
350 PREGS_CLOBBERED,
351 PREGS,
352 IPREGS,
353 DPREGS,
354 MOST_REGS,
355 PROLOGUE_REGS,
356 NON_A_CC_REGS,
357 ALL_REGS, LIM_REG_CLASSES
358 };
359
360 #define N_REG_CLASSES ((int)LIM_REG_CLASSES)
361
362 #define GENERAL_REGS DPREGS
363
364 /* Give names of register classes as strings for dump file. */
365
366 #define REG_CLASS_NAMES \
367 { "NO_REGS", \
368 "IREGS", \
369 "BREGS", \
370 "LREGS", \
371 "MREGS", \
372 "CIRCREGS", \
373 "DAGREGS", \
374 "EVEN_AREGS", \
375 "ODD_AREGS", \
376 "AREGS", \
377 "CCREGS", \
378 "EVEN_DREGS", \
379 "ODD_DREGS", \
380 "DREGS", \
381 "PREGS_CLOBBERED", \
382 "PREGS", \
383 "IPREGS", \
384 "DPREGS", \
385 "MOST_REGS", \
386 "PROLOGUE_REGS", \
387 "NON_A_CC_REGS", \
388 "ALL_REGS" }
389
390 /* An initializer containing the contents of the register classes, as integers
391 which are bit masks. The Nth integer specifies the contents of class N.
392 The way the integer MASK is interpreted is that register R is in the class
393 if `MASK & (1 << R)' is 1.
394
395 When the machine has more than 32 registers, an integer does not suffice.
396 Then the integers are replaced by sub-initializers, braced groupings
397 containing several integers. Each sub-initializer must be suitable as an
398 initializer for the type `HARD_REG_SET' which is defined in
399 `hard-reg-set.h'. */
400
401 /* NOTE: DSP registers, IREGS - AREGS, are not GENERAL_REGS. We use
402 MOST_REGS as the union of DPREGS and DAGREGS. */
403
404 #define REG_CLASS_CONTENTS \
405 /* 31 - 0 63-32 */ \
406 { { 0x00000000, 0 }, /* NO_REGS */ \
407 { 0x000f0000, 0 }, /* IREGS */ \
408 { 0x00f00000, 0 }, /* BREGS */ \
409 { 0x0f000000, 0 }, /* LREGS */ \
410 { 0xf0000000, 0 }, /* MREGS */ \
411 { 0x0fff0000, 0 }, /* CIRCREGS */ \
412 { 0xffff0000, 0 }, /* DAGREGS */ \
413 { 0x00000000, 0x1 }, /* EVEN_AREGS */ \
414 { 0x00000000, 0x2 }, /* ODD_AREGS */ \
415 { 0x00000000, 0x3 }, /* AREGS */ \
416 { 0x00000000, 0x4 }, /* CCREGS */ \
417 { 0x00000055, 0 }, /* EVEN_DREGS */ \
418 { 0x000000aa, 0 }, /* ODD_DREGS */ \
419 { 0x000000ff, 0 }, /* DREGS */ \
420 { 0x00004700, 0x800 }, /* PREGS_CLOBBERED */ \
421 { 0x0000ff00, 0x800 }, /* PREGS */ \
422 { 0x000fff00, 0x800 }, /* IPREGS */ \
423 { 0x0000ffff, 0x800 }, /* DPREGS */ \
424 { 0xffffffff, 0x800 }, /* MOST_REGS */\
425 { 0x00000000, 0x7f8 }, /* PROLOGUE_REGS */\
426 { 0xffffffff, 0xff8 }, /* NON_A_CC_REGS */\
427 { 0xffffffff, 0xfff }} /* ALL_REGS */
428
429 #define IREG_POSSIBLE_P(OUTER) \
430 ((OUTER) == POST_INC || (OUTER) == PRE_INC \
431 || (OUTER) == POST_DEC || (OUTER) == PRE_DEC \
432 || (OUTER) == MEM || (OUTER) == ADDRESS)
433
434 #define MODE_CODE_BASE_REG_CLASS(MODE, OUTER, INDEX) \
435 ((MODE) == HImode && IREG_POSSIBLE_P (OUTER) ? IPREGS : PREGS)
436
437 #define INDEX_REG_CLASS PREGS
438
439 #define REGNO_OK_FOR_BASE_STRICT_P(X, MODE, OUTER, INDEX) \
440 (P_REGNO_P (X) || (X) == REG_ARGP \
441 || (IREG_POSSIBLE_P (OUTER) && (MODE) == HImode \
442 && I_REGNO_P (X)))
443
444 #define REGNO_OK_FOR_BASE_NONSTRICT_P(X, MODE, OUTER, INDEX) \
445 ((X) >= FIRST_PSEUDO_REGISTER \
446 || REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX))
447
448 #ifdef REG_OK_STRICT
449 #define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
450 REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX)
451 #else
452 #define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
453 REGNO_OK_FOR_BASE_NONSTRICT_P (X, MODE, OUTER, INDEX)
454 #endif
455
456 #define REGNO_OK_FOR_INDEX_P(X) 0
457
458 /* Get reg_class from a letter such as appears in the machine description. */
459
460 #define REG_CLASS_FROM_LETTER(LETTER) \
461 ((LETTER) == 'a' ? PREGS : \
462 (LETTER) == 'd' ? DREGS : \
463 (LETTER) == 'z' ? PREGS_CLOBBERED : \
464 (LETTER) == 'D' ? EVEN_DREGS : \
465 (LETTER) == 'W' ? ODD_DREGS : \
466 (LETTER) == 'e' ? AREGS : \
467 (LETTER) == 'A' ? EVEN_AREGS : \
468 (LETTER) == 'B' ? ODD_AREGS : \
469 (LETTER) == 'b' ? IREGS : \
470 (LETTER) == 'B' ? BREGS : \
471 (LETTER) == 'f' ? MREGS : \
472 (LETTER) == 'c' ? CIRCREGS : \
473 (LETTER) == 'C' ? CCREGS : \
474 (LETTER) == 'x' ? MOST_REGS : \
475 (LETTER) == 'y' ? PROLOGUE_REGS : \
476 (LETTER) == 'w' ? NON_A_CC_REGS : \
477 NO_REGS)
478
479 /* The same information, inverted:
480 Return the class number of the smallest class containing
481 reg number REGNO. This could be a conditional expression
482 or could index an array. */
483
484 #define REGNO_REG_CLASS(REGNO) \
485 ((REGNO) < REG_P0 ? DREGS \
486 : (REGNO) < REG_I0 ? PREGS \
487 : (REGNO) == REG_ARGP ? PREGS \
488 : (REGNO) >= REG_I0 && (REGNO) <= REG_I3 ? IREGS \
489 : (REGNO) >= REG_L0 && (REGNO) <= REG_L3 ? LREGS \
490 : (REGNO) >= REG_B0 && (REGNO) <= REG_B3 ? BREGS \
491 : (REGNO) >= REG_M0 && (REGNO) <= REG_M3 ? MREGS \
492 : (REGNO) == REG_A0 || (REGNO) == REG_A1 ? AREGS \
493 : (REGNO) == REG_CC ? CCREGS \
494 : (REGNO) >= REG_RETS ? PROLOGUE_REGS \
495 : NO_REGS)
496
497 /* When defined, the compiler allows registers explicitly used in the
498 rtl to be used as spill registers but prevents the compiler from
499 extending the lifetime of these registers. */
500 #define SMALL_REGISTER_CLASSES 1
501
502 #define CLASS_LIKELY_SPILLED_P(CLASS) \
503 ((CLASS) == PREGS_CLOBBERED \
504 || (CLASS) == PROLOGUE_REGS \
505 || (CLASS) == CCREGS)
506
507 /* Do not allow to store a value in REG_CC for any mode */
508 /* Do not allow to store value in pregs if mode is not SI*/
509 #define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok((REGNO), (MODE))
510
511 /* Return the maximum number of consecutive registers
512 needed to represent mode MODE in a register of class CLASS. */
513 #define CLASS_MAX_NREGS(CLASS, MODE) \
514 ((MODE) == V2PDImode && (CLASS) == AREGS ? 2 \
515 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
516
517 #define HARD_REGNO_NREGS(REGNO, MODE) \
518 ((MODE) == PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 1 \
519 : (MODE) == V2PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 2 \
520 : CLASS_MAX_NREGS (GENERAL_REGS, MODE))
521
522 /* A C expression that is nonzero if hard register TO can be
523 considered for use as a rename register for FROM register */
524 #define HARD_REGNO_RENAME_OK(FROM, TO) bfin_hard_regno_rename_ok (FROM, TO)
525
526 /* A C expression that is nonzero if it is desirable to choose
527 register allocation so as to avoid move instructions between a
528 value of mode MODE1 and a value of mode MODE2.
529
530 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
531 MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
532 MODE2)' must be zero. */
533 #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
534
535 /* `PREFERRED_RELOAD_CLASS (X, CLASS)'
536 A C expression that places additional restrictions on the register
537 class to use when it is necessary to copy value X into a register
538 in class CLASS. The value is a register class; perhaps CLASS, or
539 perhaps another, smaller class. */
540 #define PREFERRED_RELOAD_CLASS(X, CLASS) (CLASS)
541
542 /* Function Calling Conventions. */
543
544 /* The type of the current function; normal functions are of type
545 SUBROUTINE. */
546 typedef enum {
547 SUBROUTINE, INTERRUPT_HANDLER, EXCPT_HANDLER, NMI_HANDLER
548 } e_funkind;
549
550 #define FUNCTION_ARG_REGISTERS { REG_R0, REG_R1, REG_R2, -1 }
551
552 /* Flags for the call/call_value rtl operations set up by function_arg */
553 #define CALL_NORMAL 0x00000000 /* no special processing */
554 #define CALL_LONG 0x00000001 /* always call indirect */
555 #define CALL_SHORT 0x00000002 /* always call by symbol */
556
557 typedef struct {
558 int words; /* # words passed so far */
559 int nregs; /* # registers available for passing */
560 int *arg_regs; /* array of register -1 terminated */
561 int call_cookie; /* Do special things for this call */
562 } CUMULATIVE_ARGS;
563
564 /* Define where to put the arguments to a function.
565 Value is zero to push the argument on the stack,
566 or a hard register in which to store the argument.
567
568 MODE is the argument's machine mode.
569 TYPE is the data type of the argument (as a tree).
570 This is null for libcalls where that information may
571 not be available.
572 CUM is a variable of type CUMULATIVE_ARGS which gives info about
573 the preceding args and about the function being called.
574 NAMED is nonzero if this argument is a named parameter
575 (otherwise it is an extra parameter matching an ellipsis). */
576
577 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
578 (function_arg (&CUM, MODE, TYPE, NAMED))
579
580 #define FUNCTION_ARG_REGNO_P(REGNO) function_arg_regno_p (REGNO)
581
582
583 /* Initialize a variable CUM of type CUMULATIVE_ARGS
584 for a call to a function whose data type is FNTYPE.
585 For a library call, FNTYPE is 0. */
586 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, N_NAMED_ARGS) \
587 (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
588
589 /* Update the data in CUM to advance over an argument
590 of mode MODE and data type TYPE.
591 (TYPE is null for libcalls where that information may not be available.) */
592 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
593 (function_arg_advance (&CUM, MODE, TYPE, NAMED))
594
595 #define RETURN_POPS_ARGS(FDECL, FUNTYPE, STKSIZE) 0
596
597 /* Define how to find the value returned by a function.
598 VALTYPE is the data type of the value (as a tree).
599 If the precise function being called is known, FUNC is its FUNCTION_DECL;
600 otherwise, FUNC is 0.
601 */
602
603 #define VALUE_REGNO(MODE) (REG_R0)
604
605 #define FUNCTION_VALUE(VALTYPE, FUNC) \
606 gen_rtx_REG (TYPE_MODE (VALTYPE), \
607 VALUE_REGNO(TYPE_MODE(VALTYPE)))
608
609 /* Define how to find the value returned by a library function
610 assuming the value has mode MODE. */
611
612 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, VALUE_REGNO(MODE))
613
614 #define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_R0)
615
616 #define DEFAULT_PCC_STRUCT_RETURN 0
617 #define RETURN_IN_MEMORY(TYPE) bfin_return_in_memory(TYPE)
618
619 /* Before the prologue, the return address is in the RETS register. */
620 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, REG_RETS)
621
622 #define RETURN_ADDR_RTX(COUNT, FRAME) bfin_return_addr_rtx (COUNT)
623
624 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (REG_RETS)
625
626 /* Call instructions don't modify the stack pointer on the Blackfin. */
627 #define INCOMING_FRAME_SP_OFFSET 0
628
629 /* Describe how we implement __builtin_eh_return. */
630 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
631 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, REG_P2)
632 #define EH_RETURN_HANDLER_RTX \
633 gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx, UNITS_PER_WORD))
634
635 /* Addressing Modes */
636
637 /* Recognize any constant value that is a valid address. */
638 #define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X))
639
640 /* Nonzero if the constant value X is a legitimate general operand.
641 symbol_ref are not legitimate and will be put into constant pool.
642 See force_const_mem().
643 If -mno-pool, all constants are legitimate.
644 */
645 #define LEGITIMATE_CONSTANT_P(x) 1
646
647 /* A number, the maximum number of registers that can appear in a
648 valid memory address. Note that it is up to you to specify a
649 value equal to the maximum number that `GO_IF_LEGITIMATE_ADDRESS'
650 would ever accept. */
651 #define MAX_REGS_PER_ADDRESS 1
652
653 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
654 that is a valid memory address for an instruction.
655 The MODE argument is the machine mode for the MEM expression
656 that wants to use this address.
657
658 Blackfin addressing modes are as follows:
659
660 [preg]
661 [preg + imm16]
662
663 B [ Preg + uimm15 ]
664 W [ Preg + uimm16m2 ]
665 [ Preg + uimm17m4 ]
666
667 [preg++]
668 [preg--]
669 [--sp]
670 */
671
672 #define LEGITIMATE_MODE_FOR_AUTOINC_P(MODE) \
673 (GET_MODE_SIZE (MODE) <= 4 || (MODE) == PDImode)
674
675 #ifdef REG_OK_STRICT
676 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
677 do { \
678 if (bfin_legitimate_address_p (MODE, X, 1)) \
679 goto WIN; \
680 } while (0);
681 #else
682 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
683 do { \
684 if (bfin_legitimate_address_p (MODE, X, 0)) \
685 goto WIN; \
686 } while (0);
687 #endif
688
689 /* Try machine-dependent ways of modifying an illegitimate address
690 to be legitimate. If we find one, return the new, valid address.
691 This macro is used in only one place: `memory_address' in explow.c.
692
693 OLDX is the address as it was before break_out_memory_refs was called.
694 In some cases it is useful to look at this to decide what needs to be done.
695
696 MODE and WIN are passed so that this macro can use
697 GO_IF_LEGITIMATE_ADDRESS.
698
699 It is always safe for this macro to do nothing. It exists to recognize
700 opportunities to optimize the output.
701 */
702 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
703 do { \
704 rtx _q = legitimize_address(X, OLDX, MODE); \
705 if (_q) { X = _q; goto WIN; } \
706 } while (0)
707
708 #define HAVE_POST_INCREMENT 1
709 #define HAVE_POST_DECREMENT 1
710 #define HAVE_PRE_DECREMENT 1
711
712 /* `LEGITIMATE_PIC_OPERAND_P (X)'
713 A C expression that is nonzero if X is a legitimate immediate
714 operand on the target machine when generating position independent
715 code. You can assume that X satisfies `CONSTANT_P', so you need
716 not check this. You can also assume FLAG_PIC is true, so you need
717 not check it either. You need not define this macro if all
718 constants (including `SYMBOL_REF') can be immediate operands when
719 generating position independent code. */
720 #define LEGITIMATE_PIC_OPERAND_P(X) ! SYMBOLIC_CONST (X)
721
722 #define SYMBOLIC_CONST(X) \
723 (GET_CODE (X) == SYMBOL_REF \
724 || GET_CODE (X) == LABEL_REF \
725 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
726
727 /*
728 A C statement or compound statement with a conditional `goto
729 LABEL;' executed if memory address X (an RTX) can have different
730 meanings depending on the machine mode of the memory reference it
731 is used for or if the address is valid for some modes but not
732 others.
733
734 Autoincrement and autodecrement addresses typically have
735 mode-dependent effects because the amount of the increment or
736 decrement is the size of the operand being addressed. Some
737 machines have other mode-dependent addresses. Many RISC machines
738 have no mode-dependent addresses.
739
740 You may assume that ADDR is a valid address for the machine.
741 */
742 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
743 do { \
744 if (GET_CODE (ADDR) == POST_INC \
745 || GET_CODE (ADDR) == POST_DEC \
746 || GET_CODE (ADDR) == PRE_DEC) \
747 goto LABEL; \
748 } while (0)
749
750 #define NOTICE_UPDATE_CC(EXPR, INSN) 0
751
752 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
753 is done just by pretending it is already truncated. */
754 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
755
756 /* Max number of bytes we can move from memory to memory
757 in one reasonably fast instruction. */
758 #define MOVE_MAX UNITS_PER_WORD
759
760
761 /* STORAGE LAYOUT: target machine storage layout
762 Define this macro as a C expression which is nonzero if accessing
763 less than a word of memory (i.e. a `char' or a `short') is no
764 faster than accessing a word of memory, i.e., if such access
765 require more than one instruction or if there is no difference in
766 cost between byte and (aligned) word loads.
767
768 When this macro is not defined, the compiler will access a field by
769 finding the smallest containing object; when it is defined, a
770 fullword load will be used if alignment permits. Unless bytes
771 accesses are faster than word accesses, using word accesses is
772 preferable since it may eliminate subsequent memory access if
773 subsequent accesses occur to other fields in the same word of the
774 structure, but to different bytes. */
775 #define SLOW_BYTE_ACCESS 0
776 #define SLOW_SHORT_ACCESS 0
777
778 /* Define this if most significant bit is lowest numbered
779 in instructions that operate on numbered bit-fields. */
780 #define BITS_BIG_ENDIAN 0
781
782 /* Define this if most significant byte of a word is the lowest numbered.
783 We can't access bytes but if we could we would in the Big Endian order. */
784 #define BYTES_BIG_ENDIAN 0
785
786 /* Define this if most significant word of a multiword number is numbered. */
787 #define WORDS_BIG_ENDIAN 0
788
789 /* number of bits in an addressable storage unit */
790 #define BITS_PER_UNIT 8
791
792 /* Width in bits of a "word", which is the contents of a machine register.
793 Note that this is not necessarily the width of data type `int';
794 if using 16-bit ints on a 68000, this would still be 32.
795 But on a machine with 16-bit registers, this would be 16. */
796 #define BITS_PER_WORD 32
797
798 /* Width of a word, in units (bytes). */
799 #define UNITS_PER_WORD 4
800
801 /* Width in bits of a pointer.
802 See also the macro `Pmode1' defined below. */
803 #define POINTER_SIZE 32
804
805 /* Allocation boundary (in *bits*) for storing pointers in memory. */
806 #define POINTER_BOUNDARY 32
807
808 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
809 #define PARM_BOUNDARY 32
810
811 /* Boundary (in *bits*) on which stack pointer should be aligned. */
812 #define STACK_BOUNDARY 32
813
814 /* Allocation boundary (in *bits*) for the code of a function. */
815 #define FUNCTION_BOUNDARY 32
816
817 /* Alignment of field after `int : 0' in a structure. */
818 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
819
820 /* No data type wants to be aligned rounder than this. */
821 #define BIGGEST_ALIGNMENT 32
822
823 /* Define this if move instructions will actually fail to work
824 when given unaligned data. */
825 #define STRICT_ALIGNMENT 1
826
827 /* (shell-command "rm c-decl.o stor-layout.o")
828 * never define PCC_BITFIELD_TYPE_MATTERS
829 * really cause some alignment problem
830 */
831
832 #define UNITS_PER_FLOAT ((FLOAT_TYPE_SIZE + BITS_PER_UNIT - 1) / \
833 BITS_PER_UNIT)
834
835 #define UNITS_PER_DOUBLE ((DOUBLE_TYPE_SIZE + BITS_PER_UNIT - 1) / \
836 BITS_PER_UNIT)
837
838
839 /* what is the 'type' of size_t */
840 #define SIZE_TYPE "long unsigned int"
841
842 /* Define this as 1 if `char' should by default be signed; else as 0. */
843 #define DEFAULT_SIGNED_CHAR 1
844 #define FLOAT_TYPE_SIZE BITS_PER_WORD
845 #define SHORT_TYPE_SIZE 16
846 #define CHAR_TYPE_SIZE 8
847 #define INT_TYPE_SIZE 32
848 #define LONG_TYPE_SIZE 32
849 #define LONG_LONG_TYPE_SIZE 64
850
851 /* Note: Fix this to depend on target switch. -- lev */
852
853 /* Note: Try to implement double and force long double. -- tonyko
854 * #define __DOUBLES_ARE_FLOATS__
855 * #define DOUBLE_TYPE_SIZE FLOAT_TYPE_SIZE
856 * #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
857 * #define DOUBLES_ARE_FLOATS 1
858 */
859
860 #define DOUBLE_TYPE_SIZE 64
861 #define LONG_DOUBLE_TYPE_SIZE 64
862
863 /* `PROMOTE_MODE (M, UNSIGNEDP, TYPE)'
864 A macro to update M and UNSIGNEDP when an object whose type is
865 TYPE and which has the specified mode and signedness is to be
866 stored in a register. This macro is only called when TYPE is a
867 scalar type.
868
869 On most RISC machines, which only have operations that operate on
870 a full register, define this macro to set M to `word_mode' if M is
871 an integer mode narrower than `BITS_PER_WORD'. In most cases,
872 only integer modes should be widened because wider-precision
873 floating-point operations are usually more expensive than their
874 narrower counterparts.
875
876 For most machines, the macro definition does not change UNSIGNEDP.
877 However, some machines, have instructions that preferentially
878 handle either signed or unsigned quantities of certain modes. For
879 example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
880 instructions sign-extend the result to 64 bits. On such machines,
881 set UNSIGNEDP according to which kind of extension is more
882 efficient.
883
884 Do not define this macro if it would never modify M.*/
885
886 #define BFIN_PROMOTE_MODE_P(MODE) \
887 (!TARGET_DSP && GET_MODE_CLASS (MODE) == MODE_INT \
888 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)
889
890 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
891 if (BFIN_PROMOTE_MODE_P(MODE)) \
892 { \
893 if (MODE == QImode) \
894 UNSIGNEDP = 1; \
895 else if (MODE == HImode) \
896 UNSIGNEDP = 0; \
897 (MODE) = SImode; \
898 }
899
900 /* Describing Relative Costs of Operations */
901
902 /* Do not put function addr into constant pool */
903 #define NO_FUNCTION_CSE 1
904
905 /* A C expression for the cost of moving data from a register in class FROM to
906 one in class TO. The classes are expressed using the enumeration values
907 such as `GENERAL_REGS'. A value of 2 is the default; other values are
908 interpreted relative to that.
909
910 It is not required that the cost always equal 2 when FROM is the same as TO;
911 on some machines it is expensive to move between registers if they are not
912 general registers. */
913
914 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
915 bfin_register_move_cost ((MODE), (CLASS1), (CLASS2))
916
917 /* A C expression for the cost of moving data of mode M between a
918 register and memory. A value of 2 is the default; this cost is
919 relative to those in `REGISTER_MOVE_COST'.
920
921 If moving between registers and memory is more expensive than
922 between two registers, you should define this macro to express the
923 relative cost. */
924
925 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
926 bfin_memory_move_cost ((MODE), (CLASS), (IN))
927
928 /* Specify the machine mode that this machine uses
929 for the index in the tablejump instruction. */
930 #define CASE_VECTOR_MODE SImode
931
932 #define JUMP_TABLES_IN_TEXT_SECTION flag_pic
933
934 /* Define if operations between registers always perform the operation
935 on the full register even if a narrower mode is specified.
936 #define WORD_REGISTER_OPERATIONS
937 */
938
939 #define CONST_18UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 262140)
940 #define CONST_16BIT_IMM_P(VALUE) ((VALUE) >= -32768 && (VALUE) <= 32767)
941 #define CONST_16UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 65535)
942 #define CONST_7BIT_IMM_P(VALUE) ((VALUE) >= -64 && (VALUE) <= 63)
943 #define CONST_7NBIT_IMM_P(VALUE) ((VALUE) >= -64 && (VALUE) <= 0)
944 #define CONST_5UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 31)
945 #define CONST_4BIT_IMM_P(VALUE) ((VALUE) >= -8 && (VALUE) <= 7)
946 #define CONST_4UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 15)
947 #define CONST_3BIT_IMM_P(VALUE) ((VALUE) >= -4 && (VALUE) <= 3)
948 #define CONST_3UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 7)
949
950 #define CONSTRAINT_LEN(C, STR) \
951 ((C) == 'P' || (C) == 'M' || (C) == 'N' ? 2 \
952 : (C) == 'K' ? 3 \
953 : DEFAULT_CONSTRAINT_LEN ((C), (STR)))
954
955 #define CONST_OK_FOR_P(VALUE, STR) \
956 ((STR)[1] == '0' ? (VALUE) == 0 \
957 : (STR)[1] == '1' ? (VALUE) == 1 \
958 : (STR)[1] == '2' ? (VALUE) == 2 \
959 : (STR)[1] == '3' ? (VALUE) == 3 \
960 : (STR)[1] == '4' ? (VALUE) == 4 \
961 : 0)
962
963 #define CONST_OK_FOR_K(VALUE, STR) \
964 ((STR)[1] == 'u' \
965 ? ((STR)[2] == '3' ? CONST_3UBIT_IMM_P (VALUE) \
966 : (STR)[2] == '4' ? CONST_4UBIT_IMM_P (VALUE) \
967 : (STR)[2] == '5' ? CONST_5UBIT_IMM_P (VALUE) \
968 : (STR)[2] == 'h' ? CONST_16UBIT_IMM_P (VALUE) \
969 : 0) \
970 : (STR)[1] == 's' \
971 ? ((STR)[2] == '3' ? CONST_3BIT_IMM_P (VALUE) \
972 : (STR)[2] == '4' ? CONST_4BIT_IMM_P (VALUE) \
973 : (STR)[2] == '7' ? CONST_7BIT_IMM_P (VALUE) \
974 : (STR)[2] == 'h' ? CONST_16BIT_IMM_P (VALUE) \
975 : 0) \
976 : (STR)[1] == 'n' \
977 ? ((STR)[2] == '7' ? CONST_7NBIT_IMM_P (VALUE) \
978 : 0) \
979 : 0)
980
981 #define CONST_OK_FOR_M(VALUE, STR) \
982 ((STR)[1] == '1' ? (VALUE) == 255 \
983 : (STR)[1] == '2' ? (VALUE) == 65535 \
984 : 0)
985
986 /* The letters I, J, K, L and M in a register constraint string
987 can be used to stand for particular ranges of immediate operands.
988 This macro defines what the ranges are.
989 C is the letter, and VALUE is a constant value.
990 Return 1 if VALUE is in the range specified by C.
991
992 bfin constant operands are as follows
993
994 J 2**N 5bit imm scaled
995 Ks7 -64 .. 63 signed 7bit imm
996 Ku5 0..31 unsigned 5bit imm
997 Ks4 -8 .. 7 signed 4bit imm
998 Ks3 -4 .. 3 signed 3bit imm
999 Ku3 0 .. 7 unsigned 3bit imm
1000 Pn 0, 1, 2 constants 0, 1 or 2, corresponding to n
1001 */
1002 #define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR) \
1003 ((C) == 'J' ? (log2constp (VALUE)) \
1004 : (C) == 'K' ? CONST_OK_FOR_K (VALUE, STR) \
1005 : (C) == 'L' ? log2constp (~(VALUE)) \
1006 : (C) == 'M' ? CONST_OK_FOR_M (VALUE, STR) \
1007 : (C) == 'P' ? CONST_OK_FOR_P (VALUE, STR) \
1008 : 0)
1009
1010 /*Constant Output Formats */
1011 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1012 ((C) == 'H' ? 1 : 0)
1013
1014 #define EXTRA_CONSTRAINT(VALUE, D) \
1015 ((D) == 'Q' ? GET_CODE (VALUE) == SYMBOL_REF : 0)
1016
1017 /* Switch into a generic section. */
1018 #define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section
1019
1020 #define PRINT_OPERAND(FILE, RTX, CODE) print_operand (FILE, RTX, CODE)
1021 #define PRINT_OPERAND_ADDRESS(FILE, RTX) print_address_operand (FILE, RTX)
1022
1023 typedef enum sections {
1024 CODE_DIR,
1025 DATA_DIR,
1026 LAST_SECT_NM
1027 } SECT_ENUM_T;
1028
1029 typedef enum directives {
1030 LONG_CONST_DIR,
1031 SHORT_CONST_DIR,
1032 BYTE_CONST_DIR,
1033 SPACE_DIR,
1034 INIT_DIR,
1035 LAST_DIR_NM
1036 } DIR_ENUM_T;
1037
1038 #define TEXT_SECTION_ASM_OP ".text;"
1039 #define DATA_SECTION_ASM_OP ".data;"
1040
1041 #define ASM_APP_ON ""
1042 #define ASM_APP_OFF ""
1043
1044 #define ASM_GLOBALIZE_LABEL1(FILE, NAME) \
1045 do { fputs (".global ", FILE); \
1046 assemble_name (FILE, NAME); \
1047 fputc (';',FILE); \
1048 fputc ('\n',FILE); \
1049 } while (0)
1050
1051 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1052 do { \
1053 fputs (".type ", FILE); \
1054 assemble_name (FILE, NAME); \
1055 fputs (", STT_FUNC", FILE); \
1056 fputc (';',FILE); \
1057 fputc ('\n',FILE); \
1058 ASM_OUTPUT_LABEL(FILE, NAME); \
1059 } while (0)
1060
1061 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1062 do { assemble_name (FILE, NAME); \
1063 fputs (":\n",FILE); \
1064 } while (0)
1065
1066 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1067 do { fprintf (FILE, "_%s", NAME); \
1068 } while (0)
1069
1070 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1071 do { char __buf[256]; \
1072 fprintf (FILE, "\t.dd\t"); \
1073 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1074 assemble_name (FILE, __buf); \
1075 fputc (';', FILE); \
1076 fputc ('\n', FILE); \
1077 } while (0)
1078
1079 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1080 MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)
1081
1082 #define MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1083 do { \
1084 char __buf[256]; \
1085 fprintf (FILE, "\t.dd\t"); \
1086 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1087 assemble_name (FILE, __buf); \
1088 fputs (" - ", FILE); \
1089 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", REL); \
1090 assemble_name (FILE, __buf); \
1091 fputc (';', FILE); \
1092 fputc ('\n', FILE); \
1093 } while (0)
1094
1095 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1096 do { \
1097 if ((LOG) != 0) \
1098 fprintf (FILE, "\t.align %d\n", 1 << (LOG)); \
1099 } while (0)
1100
1101 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1102 do { \
1103 asm_output_skip (FILE, SIZE); \
1104 } while (0)
1105
1106 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1107 do { \
1108 switch_to_section (data_section); \
1109 if ((SIZE) >= (unsigned int) 4 ) ASM_OUTPUT_ALIGN(FILE,2); \
1110 ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE); \
1111 ASM_OUTPUT_LABEL (FILE, NAME); \
1112 fprintf (FILE, "%s %ld;\n", ASM_SPACE, \
1113 (ROUNDED) > (unsigned int) 1 ? (ROUNDED) : 1); \
1114 } while (0)
1115
1116 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1117 do { \
1118 ASM_GLOBALIZE_LABEL1(FILE,NAME); \
1119 ASM_OUTPUT_LOCAL (FILE, NAME, SIZE, ROUNDED); } while(0)
1120
1121 #define ASM_COMMENT_START "//"
1122
1123 #define FUNCTION_PROFILER(FILE, LABELNO) \
1124 do {\
1125 fprintf (FILE, "\tP1.l =LP$%d; P1.h =LP$%d; call mcount;\n", \
1126 LABELNO, LABELNO);\
1127 } while(0)
1128
1129 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) fprintf (FILE, "[SP--] = %s;\n", reg_names[REGNO])
1130 #define ASM_OUTPUT_REG_POP(FILE, REGNO) fprintf (FILE, "%s = [SP++];\n", reg_names[REGNO])
1131
1132 extern struct rtx_def *bfin_compare_op0, *bfin_compare_op1;
1133 extern struct rtx_def *bfin_cc_rtx, *bfin_rets_rtx;
1134
1135 /* This works for GAS and some other assemblers. */
1136 #define SET_ASM_OP ".set "
1137
1138 /* DBX register number for a given compiler register number */
1139 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1140
1141 #define SIZE_ASM_OP "\t.size\t"
1142
1143 #endif /* _BFIN_CONFIG */