calls.c (expand_call): Remove current_call_is_indirect nonsense.
[gcc.git] / gcc / config / convex / convex.h
1 /* Definitions of target machine for GNU compiler. Convex version.
2 Copyright (C) 1988, 1994, 1995, 1996 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* Standard GCC variables that we reference. */
23
24 extern int target_flags;
25
26 /* Convex machine-specific flags
27 -mc1 target instruction set, libraries, scheduling
28 -mc2
29 -mc32
30 -mc34
31 -mc38
32 -margcount use standard calling sequence, with arg count word
33 -mno-argcount don't push arg count, depend on symbol table
34 -margcount-nop place arg count in a nop instruction (faster than push)
35 -mvolatile-cache use data cache for volatile mem refs (default)
36 -mvolatile-nocache bypass data cache for volatile mem refs
37 -mlong32 cc- and libc-compatible 32-bit longs
38 -mlong64 64-bit longs
39 */
40
41 /* Macro to define tables used to set -mXXX flags.
42 This is a list in braces of pairs in braces,
43 each pair being { "NAME", VALUE }
44 where VALUE is the bits to set or minus the bits to clear.
45 An empty string NAME is used to identify the default VALUE. */
46
47 #ifndef TARGET_DEFAULT
48 #error Use one of convex1.h, convex2.h, etc.
49 #endif
50
51 #define TARGET_SWITCHES \
52 { { "c1", 001 }, \
53 { "c2", 002 }, \
54 { "c32", 004 }, \
55 { "c34", 010 }, \
56 { "c38", 020 }, \
57 { "argcount", 0100 }, \
58 { "argcount-nop", 0200 }, \
59 { "no-argcount", -0300 }, \
60 { "volatile-cache", -0400 }, \
61 { "no-volatile-cache", 0400 }, \
62 { "volatile-nocache", 0400 }, \
63 { "long64", 01000 }, \
64 { "long32", -01000 }, \
65 { "", TARGET_DEFAULT }}
66
67 /* Macros used in the machine description to test the flags. */
68
69 #define TARGET_C1 (target_cpu == 0)
70 #define TARGET_C2 (target_cpu == 1)
71 #define TARGET_C34 (target_cpu == 2)
72 #define TARGET_C38 (target_cpu == 3)
73 #define TARGET_ARGCOUNT (target_flags & 0100)
74 #define TARGET_ARGCOUNT_NOP (target_flags & 0200)
75 #define TARGET_LONG64 (target_flags & 01000)
76 #define TARGET_VOLATILE_NOCACHE (target_flags & 0400)
77
78 #define OVERRIDE_OPTIONS \
79 { \
80 extern int dollars_in_ident; \
81 init_convex (); \
82 /* To compile system header files, allow $ in identifiers even if -ansi */ \
83 dollars_in_ident = 1; \
84 if ((target_flags & 077) != (TARGET_DEFAULT & 077)) \
85 target_flags &= ~TARGET_DEFAULT; \
86 if (target_flags & 001) \
87 target_cpu = 0; \
88 else if (target_flags & 006) \
89 target_cpu = 1; \
90 else if (target_flags & 010) \
91 target_cpu = 2; \
92 else if (target_flags & 020) \
93 target_cpu = 3; \
94 }
95
96 /* Names to predefine in the preprocessor for this target machine. */
97
98 #define CPP_PREDEFINES "-Dconvex -Dunix -Asystem(unix) -Acpu(convex) -Amachine(convex)"
99
100 /* Print subsidiary information on the compiler version in use. */
101
102 #define TARGET_VERSION fprintf (stderr, " (convex)");
103
104 /* Target-dependent specs.
105 Some libraries come in c1 and c2+ versions; use the appropriate ones.
106 Make a target-dependent __convex_cxx__ define to relay the target cpu
107 to the program being compiled. */
108
109 #if TARGET_DEFAULT & 1
110
111 /* C1 default */
112
113 #if _IEEE_FLOAT_
114
115 #define CPP_SPEC \
116 "%{!mc2:%{!mc32:%{!mc34:%{!mc38:-D__convex_c1__}}}} \
117 %{mc2:-D__convex_c2__} \
118 %{mc32:-D__convex_c32__} \
119 %{mc34:-D__convex_c34__} \
120 %{mc38:-D__convex_c38__} \
121 %{fno-builtin:-D__NO_INLINE} \
122 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
123 -D_IEEE_FLOAT_ \
124 %{.S:-P} \
125 %{!traditional:-D__stdc__} \
126 %{!traditional:-D_LONGLONG} \
127 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
128 %{!ansi:-D_POSIX_SOURCE} \
129 %{!ansi:-D_CONVEX_SOURCE}"
130
131 #else
132
133 #define CPP_SPEC \
134 "%{!mc2:%{!mc32:%{!mc34:%{!mc38:-D__convex_c1__}}}} \
135 %{mc2:-D__convex_c2__} \
136 %{mc32:-D__convex_c32__} \
137 %{mc34:-D__convex_c34__} \
138 %{mc38:-D__convex_c38__} \
139 %{fno-builtin:-D__NO_INLINE} \
140 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
141 -D_CONVEX_FLOAT_ \
142 %{.S:-P} \
143 %{!traditional:-D__stdc__} \
144 %{!traditional:-D_LONGLONG} \
145 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
146 %{!ansi:-D_POSIX_SOURCE} \
147 %{!ansi:-D_CONVEX_SOURCE}"
148
149 #endif
150
151 #define LIB_SPEC \
152 "%{!mc2:%{!mc32:%{!mc34:%{!mc38:-lC1%{traditional:_old}%{p:_p}%{pg:_p}}}}} \
153 %{mc2:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
154 %{mc32:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
155 %{mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
156 %{mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
157 -lc%{traditional:_old}%{p:_p}%{pg:_p}"
158
159 #endif
160
161 #if TARGET_DEFAULT & 2
162
163 /* C2 default */
164
165 #if _IEEE_FLOAT_
166
167 #define CPP_SPEC \
168 "%{mc1:-D__convex_c1__} \
169 %{!mc1:%{!mc32:%{!mc34:%{!mc38:-D__convex_c2__}}}} \
170 %{mc32:-D__convex_c32__} \
171 %{mc34:-D__convex_c34__} \
172 %{mc38:-D__convex_c38__} \
173 %{fno-builtin:-D__NO_INLINE} \
174 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
175 -D_IEEE_FLOAT_ \
176 %{.S:-P} \
177 %{!traditional:-D__stdc__} \
178 %{!traditional:-D_LONGLONG} \
179 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
180 %{!ansi:-D_POSIX_SOURCE} \
181 %{!ansi:-D_CONVEX_SOURCE}"
182
183 #else
184
185 #define CPP_SPEC \
186 "%{mc1:-D__convex_c1__} \
187 %{!mc1:%{!mc32:%{!mc34:%{!mc38:-D__convex_c2__}}}} \
188 %{mc32:-D__convex_c32__} \
189 %{mc34:-D__convex_c34__} \
190 %{mc38:-D__convex_c38__} \
191 %{fno-builtin:-D__NO_INLINE} \
192 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
193 -D_CONVEX_FLOAT_ \
194 %{.S:-P} \
195 %{!traditional:-D__stdc__} \
196 %{!traditional:-D_LONGLONG} \
197 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
198 %{!ansi:-D_POSIX_SOURCE} \
199 %{!ansi:-D_CONVEX_SOURCE}"
200
201 #endif
202
203 #define LIB_SPEC \
204 "%{mc1:-lC1%{traditional:_old}%{p:_p}%{pg:_p}} \
205 %{!mc1:%{!mc32:%{!mc34:%{!mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}}}}} \
206 %{mc32:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
207 %{mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
208 %{mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
209 -lc%{traditional:_old}%{p:_p}%{pg:_p}"
210
211 #endif
212
213 #if TARGET_DEFAULT & 4
214
215 /* C32 default */
216
217 #if _IEEE_FLOAT_
218
219 #define CPP_SPEC \
220 "%{mc1:-D__convex_c1__} \
221 %{mc2:-D__convex_c2__} \
222 %{!mc1:%{!mc2:%{!mc34:%{!mc38:-D__convex_c32__}}}} \
223 %{mc34:-D__convex_c34__} \
224 %{mc38:-D__convex_c38__} \
225 %{fno-builtin:-D__NO_INLINE} \
226 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
227 -D_IEEE_FLOAT_ \
228 %{.S:-P} \
229 %{!traditional:-D__stdc__} \
230 %{!traditional:-D_LONGLONG} \
231 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
232 %{!ansi:-D_POSIX_SOURCE} \
233 %{!ansi:-D_CONVEX_SOURCE}"
234
235 #else
236
237 #define CPP_SPEC \
238 "%{mc1:-D__convex_c1__} \
239 %{mc2:-D__convex_c2__} \
240 %{!mc1:%{!mc2:%{!mc34:%{!mc38:-D__convex_c32__}}}} \
241 %{mc34:-D__convex_c34__} \
242 %{mc38:-D__convex_c38__} \
243 %{fno-builtin:-D__NO_INLINE} \
244 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
245 -D_CONVEX_FLOAT_ \
246 %{.S:-P} \
247 %{!traditional:-D__stdc__} \
248 %{!traditional:-D_LONGLONG} \
249 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
250 %{!ansi:-D_POSIX_SOURCE} \
251 %{!ansi:-D_CONVEX_SOURCE}"
252
253 #endif
254
255 #define LIB_SPEC \
256 "%{mc1:-lC1%{traditional:_old}%{p:_p}%{pg:_p}} \
257 %{mc2:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
258 %{!mc1:%{!mc2:%{!mc34:%{!mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}}}}} \
259 %{mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
260 %{mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
261 -lc%{traditional:_old}%{p:_p}%{pg:_p}"
262
263 #endif
264
265 #if TARGET_DEFAULT & 010
266
267 /* C34 default */
268
269 #if _IEEE_FLOAT_
270
271 #define CPP_SPEC \
272 "%{mc1:-D__convex_c1__} \
273 %{mc2:-D__convex_c2__} \
274 %{mc32:-D__convex_c32__} \
275 %{!mc1:%{!mc2:%{!mc32:%{!mc38:-D__convex_c34__}}}} \
276 %{mc38:-D__convex_c38__} \
277 %{fno-builtin:-D__NO_INLINE} \
278 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
279 -D_IEEE_FLOAT_ \
280 %{.S:-P} \
281 %{!traditional:-D__stdc__} \
282 %{!traditional:-D_LONGLONG} \
283 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
284 %{!ansi:-D_POSIX_SOURCE} \
285 %{!ansi:-D_CONVEX_SOURCE}"
286
287 #else
288
289 #define CPP_SPEC \
290 "%{mc1:-D__convex_c1__} \
291 %{mc2:-D__convex_c2__} \
292 %{mc32:-D__convex_c32__} \
293 %{!mc1:%{!mc2:%{!mc32:%{!mc38:-D__convex_c34__}}}} \
294 %{mc38:-D__convex_c38__} \
295 %{fno-builtin:-D__NO_INLINE} \
296 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
297 -D_CONVEX_FLOAT_ \
298 %{.S:-P} \
299 %{!traditional:-D__stdc__} \
300 %{!traditional:-D_LONGLONG} \
301 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
302 %{!ansi:-D_POSIX_SOURCE} \
303 %{!ansi:-D_CONVEX_SOURCE}"
304
305 #endif
306
307 #define LIB_SPEC \
308 "%{mc1:-lC1%{traditional:_old}%{p:_p}%{pg:_p}} \
309 %{mc2:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
310 %{mc32:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
311 %{!mc1:%{!mc2:%{!mc32:%{!mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}}}}} \
312 %{mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
313 -lc%{traditional:_old}%{p:_p}%{pg:_p}"
314
315 #endif
316
317 #if TARGET_DEFAULT & 020
318
319 /* C38 default */
320
321 #if _IEEE_FLOAT_
322
323 #define CPP_SPEC \
324 "%{mc1:-D__convex_c1__} \
325 %{mc2:-D__convex_c2__} \
326 %{mc32:-D__convex_c32__} \
327 %{mc34:-D__convex_c34__} \
328 %{fno-builtin:-D__NO_INLINE} \
329 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
330 -D_IEEE_FLOAT_ \
331 %{!mc1:%{!mc2:%{!mc32:%{!mc34:-D__convex_c38__}}}} \
332 %{.S:-P} \
333 %{!traditional:-D__stdc__} \
334 %{!traditional:-D_LONGLONG} \
335 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
336 %{!ansi:-D_POSIX_SOURCE} \
337 %{!ansi:-D_CONVEX_SOURCE}"
338
339 #else
340
341 #define CPP_SPEC \
342 "%{mc1:-D__convex_c1__} \
343 %{mc2:-D__convex_c2__} \
344 %{mc32:-D__convex_c32__} \
345 %{mc34:-D__convex_c34__} \
346 %{fno-builtin:-D__NO_INLINE} \
347 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
348 -D_CONVEX_FLOAT_ \
349 %{!mc1:%{!mc2:%{!mc32:%{!mc34:-D__convex_c38__}}}} \
350 %{.S:-P} \
351 %{!traditional:-D__stdc__} \
352 %{!traditional:-D_LONGLONG} \
353 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
354 %{!ansi:-D_POSIX_SOURCE} \
355 %{!ansi:-D_CONVEX_SOURCE}"
356
357 #endif
358
359 #define LIB_SPEC \
360 "%{mc1:-lC1%{traditional:_old}%{p:_p}%{pg:_p}} \
361 %{mc2:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
362 %{mc32:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
363 %{mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
364 %{!mc1:%{!mc2:%{!mc32:%{!mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}}}}} \
365 -lc%{traditional:_old}%{p:_p}%{pg:_p}"
366
367 #endif
368
369 #if _IEEE_FLOAT_
370
371 /* ieee default */
372
373 #define ASM_SPEC "-fi"
374
375 #define LINK_SPEC \
376 "-E%{traditional:no}posix \
377 -X \
378 %{F} %{M*} %{y*} \
379 -fi \
380 -A__iob=___ap$iob \
381 -A_use_libc_sema=___ap$use_libc_sema \
382 %{traditional:-A___gcc_cleanup=__cleanup} \
383 %{!traditional:-A___gcc_cleanup=___ap$do_registered_functions} \
384 -L/usr/lib"
385
386 #define STARTFILE_SPEC \
387 "%{!pg:%{!p:/usr/lib/crt/crt0.o}} \
388 %{!pg:%{p:/usr/lib/crt/mcrt0.o}} \
389 %{pg:/usr/lib/crt/gcrt0.o} \
390 /usr/lib/crt/fpmode_i.o"
391
392 #else
393
394 /* native default */
395
396 #define ASM_SPEC "-fn"
397
398 #define LINK_SPEC \
399 "-E%{traditional:no}posix \
400 -X \
401 %{F} %{M*} %{y*} \
402 -fn \
403 -A__iob=___ap$iob \
404 -A_use_libc_sema=___ap$use_libc_sema \
405 %{traditional:-A___gcc_cleanup=__cleanup} \
406 %{!traditional:-A___gcc_cleanup=___ap$do_registered_functions} \
407 -L/usr/lib"
408
409 #define STARTFILE_SPEC \
410 "%{!pg:%{!p:/usr/lib/crt/crt0.o}} \
411 %{!pg:%{p:/usr/lib/crt/mcrt0.o}} \
412 %{pg:/usr/lib/crt/gcrt0.o}"
413
414 #endif
415
416 /* Use /path/libgcc.a instead of -lgcc, makes bootstrap work more smoothly. */
417
418 #define LINK_LIBGCC_SPECIAL_1
419
420 /* Allow $ in identifiers. */
421
422 #define DOLLARS_IN_IDENTIFIERS 2
423
424 /* Since IEEE support was added to gcc, most things seem to like it
425 better if we disable exceptions and check afterward for infinity. */
426
427 #if __convex__
428 #if _IEEE_FLOAT_
429 #define REAL_VALUE_ISNAN(x) 0
430 #define REAL_VALUE_ISINF(x) ((*(short *) &(x) & 0x7ff0) == 0x7ff0)
431 #else
432 #define REAL_VALUE_ISNAN(x) 0
433 #define REAL_VALUE_ISINF(x) ((*(short *) &(x) & 0xfff0) == 0x8000)
434 #endif
435 #endif
436 \f
437 /* Target machine storage layout */
438
439 /* Define this if most significant bit is lowest numbered
440 in instructions that operate on numbered bit-fields. */
441 #define BITS_BIG_ENDIAN 1
442
443 /* Define this if most significant byte of a word is the lowest numbered. */
444 #define BYTES_BIG_ENDIAN 1
445
446 /* Define this if most significant word of a multiword number is numbered. */
447 #define WORDS_BIG_ENDIAN 1
448
449 /* Number of bits in an addressable storage unit */
450 #define BITS_PER_UNIT 8
451
452 /* Width in bits of a "word", which is the contents of a machine register.
453 Note that this is not necessarily the width of data type `int';
454 if using 16-bit ints on a 68000, this would still be 32.
455 But on a machine with 16-bit registers, this would be 16. */
456 #define BITS_PER_WORD 64
457
458 /* Width of a word, in units (bytes). */
459 #define UNITS_PER_WORD 8
460
461 /* Width in bits of a pointer.
462 See also the macro `Pmode' defined below. */
463 #define POINTER_SIZE 32
464
465 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
466 #define PARM_BOUNDARY 32
467
468 /* Boundary (in *bits*) on which stack pointer should be aligned. */
469 #define STACK_BOUNDARY 64
470
471 /* Allocation boundary (in *bits*) for the code of a function. */
472 #define FUNCTION_BOUNDARY 16
473
474 /* Alignment of field after `int : 0' in a structure. */
475 #define EMPTY_FIELD_BOUNDARY 32
476
477 /* Every structure's size must be a multiple of this. */
478 #define STRUCTURE_SIZE_BOUNDARY 8
479
480 /* A bitfield declared as `int' forces `int' alignment for the struct. */
481 #define PCC_BITFIELD_TYPE_MATTERS 1
482
483 /* No data type wants to be aligned rounder than this. */
484 /* beware of doubles in structs -- 64 is incompatible with cc */
485 #define BIGGEST_ALIGNMENT 32
486
487 /* Set this nonzero if move instructions will actually fail to work
488 when given unaligned data. */
489 #define STRICT_ALIGNMENT 0
490
491 /* Define sizes of basic C types to conform to ordinary usage -- these
492 types depend on BITS_PER_WORD otherwise. */
493 #define CHAR_TYPE_SIZE 8
494 #define SHORT_TYPE_SIZE 16
495 #define INT_TYPE_SIZE 32
496 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
497 #define LONG_LONG_TYPE_SIZE 64
498 #define FLOAT_TYPE_SIZE 32
499 #define DOUBLE_TYPE_SIZE 64
500 #define LONG_DOUBLE_TYPE_SIZE 64
501 /* This prevents cexp.c from depending on LONG_TYPE_SIZE. */
502 #define MAX_LONG_TYPE_SIZE 64
503
504 /* Declare the standard types used by builtins to match convex stddef.h --
505 with int rather than long. */
506
507 #define SIZE_TYPE "unsigned int"
508 #define PTRDIFF_TYPE "int"
509 \f
510 /* Standard register usage. */
511
512 /* Number of actual hardware registers.
513 The hardware registers are assigned numbers for the compiler
514 from 0 to just below FIRST_PSEUDO_REGISTER.
515 All registers that the compiler knows about must be given numbers,
516 even those that are not normally considered general registers. */
517 #define FIRST_PSEUDO_REGISTER 16
518
519 /* 1 for registers that have pervasive standard uses
520 and are not available for the register allocator.
521 For Convex, these are AP, FP, and SP. */
522 #define FIXED_REGISTERS \
523 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1 }
524
525 /* 1 for registers not available across function calls.
526 These must include the FIXED_REGISTERS and also any
527 registers that can be used without being saved.
528 The latter must include the registers where values are returned
529 and the register where structure-value addresses are passed.
530 Aside from that, you can include as many other registers as you like. */
531 #define CALL_USED_REGISTERS \
532 { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
533
534 /* List the order in which to allocate registers. Each register must be
535 listed once, even those in FIXED_REGISTERS.
536 For Convex, put S0 (the return register) last. */
537 #define REG_ALLOC_ORDER \
538 { 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 0, 8, 14, 15 }
539
540 /* Return number of consecutive hard regs needed starting at reg REGNO
541 to hold something of mode MODE.
542 This is ordinarily the length in words of a value of mode MODE
543 but can be less for certain modes in special long registers. */
544 #define HARD_REGNO_NREGS(REGNO, MODE) \
545 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
546
547 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
548 On Convex, S registers can hold any type, A registers any nonfloat. */
549 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
550 (S_REGNO_P (REGNO) \
551 || (GET_MODE_SIZE (MODE) <= 4 && (MODE) != SFmode))
552
553 /* Value is 1 if it is a good idea to tie two pseudo registers
554 when one has mode MODE1 and one has mode MODE2.
555 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
556 for any hard reg, then this must be 0 for correct output. */
557 #define MODES_TIEABLE_P(MODE1, MODE2) \
558 ((GET_MODE_SIZE (MODE1) <= 4 && (MODE1) != SFmode) \
559 == (GET_MODE_SIZE (MODE2) <= 4 && (MODE2) != SFmode))
560
561 /* Specify the registers used for certain standard purposes.
562 The values of these macros are register numbers. */
563
564 #define S0_REGNUM 0
565 #define A0_REGNUM 8
566
567 /* Register to use for pushing function arguments. */
568 #define STACK_POINTER_REGNUM A0_REGNUM
569
570 /* Base register for access to local variables of the function. */
571 #define FRAME_POINTER_REGNUM (A0_REGNUM + 7)
572
573 /* Value should be nonzero if functions must have frame pointers.
574 Zero means the frame pointer need not be set up (and parms
575 may be accessed via the stack pointer) in functions that seem suitable.
576 This is computed in `reload', in reload1.c. */
577 #define FRAME_POINTER_REQUIRED 1
578
579 /* Base register for access to arguments of the function. */
580 #define ARG_POINTER_REGNUM (A0_REGNUM + 6)
581
582 /* Register in which static-chain is passed to a function.
583 Use S0, not an A reg, because this rare use would otherwise prevent
584 an A reg from being available to global-alloc across calls. */
585 #define STATIC_CHAIN_REGNUM S0_REGNUM
586
587 /* Register in which address to store a structure value
588 is passed to a function. */
589 #define STRUCT_VALUE_REGNUM (A0_REGNUM + 1)
590 \f
591 /* Define the classes of registers for register constraints in the
592 machine description. Also define ranges of constants.
593
594 One of the classes must always be named ALL_REGS and include all hard regs.
595 If there is more than one class, another class must be named NO_REGS
596 and contain no registers.
597
598 The name GENERAL_REGS must be the name of a class (or an alias for
599 another name such as ALL_REGS). This is the class of registers
600 that is allowed by "g" or "r" in a register constraint.
601 Also, registers outside this class are allocated only when
602 instructions express preferences for them.
603
604 The classes must be numbered in nondecreasing order; that is,
605 a larger-numbered class must never be contained completely
606 in a smaller-numbered class.
607
608 For any two classes, it is very desirable that there be another
609 class that represents their union. */
610
611 /* Convex has classes A (address) and S (scalar).
612 A is further divided into SP_REGS (stack pointer) and INDEX_REGS.
613 SI_REGS is S_REGS + INDEX_REGS -- all the regs except SP. */
614
615 enum reg_class {
616 NO_REGS, S_REGS, INDEX_REGS, SP_REGS, A_REGS, SI_REGS,
617 ALL_REGS, LIM_REG_CLASSES
618 };
619
620 #define N_REG_CLASSES (int) LIM_REG_CLASSES
621
622 /* Since GENERAL_REGS is the same class as ALL_REGS,
623 don't give it a different class number; just make it an alias. */
624
625 #define GENERAL_REGS ALL_REGS
626
627 /* Give names of register classes as strings for dump file. */
628
629 #define REG_CLASS_NAMES \
630 {"NO_REGS", "S_REGS", "INDEX_REGS", "SP_REGS", "A_REGS", "SI_REGS", \
631 "ALL_REGS" }
632
633 /* Define which registers fit in which classes.
634 This is an initializer for a vector of HARD_REG_SET
635 of length N_REG_CLASSES. */
636
637 #define REG_CLASS_CONTENTS \
638 { 0, 0x00ff, 0xfe00, 0x0100, 0xff00, 0xfeff, 0xffff }
639
640 /* The same information, inverted:
641 Return the class number of the smallest class containing
642 reg number REGNO. This could be a conditional expression
643 or could index an array. */
644
645 #define REGNO_REG_CLASS(REGNO) (regno_reg_class[REGNO])
646
647 #define S_REGNO_P(REGNO) (((REGNO) - S0_REGNUM) < (unsigned) 8)
648 #define A_REGNO_P(REGNO) (((REGNO) - A0_REGNUM) < (unsigned) 8)
649
650 #define S_REG_P(X) (REG_P (X) && S_REGNO_P (REGNO (X)))
651 #define A_REG_P(X) (REG_P (X) && A_REGNO_P (REGNO (X)))
652
653 /* The class value for index registers, and the one for base regs. */
654
655 #define INDEX_REG_CLASS INDEX_REGS
656 #define BASE_REG_CLASS INDEX_REGS
657
658 /* Get reg_class from a letter such as appears in the machine description. */
659 /* a => A_REGS
660 d => S_REGS ('s' is taken)
661 A => INDEX_REGS (i.e., A_REGS except sp) */
662
663 #define REG_CLASS_FROM_LETTER(C) \
664 reg_class_from_letter[(unsigned char) (C)]
665
666 /* The letters I, J, K, L and M in a register constraint string
667 can be used to stand for particular ranges of immediate operands.
668 This macro defines what the ranges are.
669 C is the letter, and VALUE is a constant value.
670 Return 1 if VALUE is in the range specified by C. */
671 /* 'I' is used to pass any CONST_INT and reject any CONST_DOUBLE.
672 CONST_DOUBLE integers are handled by G and H constraint chars. */
673
674 #define CONST_OK_FOR_LETTER_P(VALUE, C) 1
675
676 /* Similar, but for floating constants, and defining letters G and H.
677 Here VALUE is the CONST_DOUBLE rtx itself. */
678 /* Convex uses G, H:
679 value usable in ld.d (low word 0) or ld.l (high word all sign) */
680
681 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
682 (((C) == 'G' && LD_D_P (VALUE)) || \
683 ((C) == 'H' && LD_L_P (VALUE)) || \
684 0)
685
686 #define LD_D_P(X) (const_double_low_int (X) == 0)
687
688 #define LD_L_P(X) (const_double_low_int (X) >= 0 \
689 ? const_double_high_int (X) == 0 \
690 : const_double_high_int (X) == -1)
691
692 /* Optional extra constraints for this machine.
693 For Convex, 'Q' means that OP is a volatile MEM.
694 For volatile scalars, we use instructions that bypass the data cache. */
695
696 #define EXTRA_CONSTRAINT(OP, C) \
697 ((C) == 'Q' ? (GET_CODE (OP) == MEM && MEM_VOLATILE_P (OP) \
698 && ! TARGET_C1 && TARGET_VOLATILE_NOCACHE) \
699 : 0)
700
701 /* Given an rtx X being reloaded into a reg required to be
702 in class CLASS, return the class of reg to actually use.
703 In general this is just CLASS; but on some machines
704 in some cases it is preferable to use a more restrictive class. */
705
706 /* Put 2-word constants that can't be immediate operands into memory. */
707
708 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
709 ((GET_CODE (X) != CONST_DOUBLE \
710 || GET_MODE (X) == SFmode \
711 || LD_L_P (X) || LD_D_P (X)) ? (CLASS) : NO_REGS)
712
713 /* Return the maximum number of consecutive registers
714 needed to represent mode MODE in a register of class CLASS. */
715 #define CLASS_MAX_NREGS(CLASS, MODE) ((GET_MODE_SIZE (MODE) + 7) / 8)
716 \f
717 /* Stack layout; function entry, exit and calling. */
718
719 /* Define this if pushing a word on the stack
720 makes the stack pointer a smaller address. */
721 #define STACK_GROWS_DOWNWARD
722
723 /* Define this if the nominal address of the stack frame
724 is at the high-address end of the local variables;
725 that is, each additional local variable allocated
726 goes at a more negative offset in the frame. */
727 #define FRAME_GROWS_DOWNWARD
728
729 /* Define this if should default to -fcaller-saves. */
730 #define DEFAULT_CALLER_SAVES
731
732 /* Offset within stack frame to start allocating local variables at.
733 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
734 first local allocated. Otherwise, it is the offset to the BEGINNING
735 of the first local allocated. */
736 #define STARTING_FRAME_OFFSET 0
737
738 /* If we generate an insn to push BYTES bytes,
739 this says how many the stack pointer really advances by. */
740 #define PUSH_ROUNDING(BYTES) (((BYTES) + 3) & ~3)
741
742 /* Offset of first parameter from the argument pointer register value. */
743 #define FIRST_PARM_OFFSET(FNDECL) 0
744
745 /* Value is the number of bytes of arguments automatically
746 popped when returning from a subroutine call.
747 FUNDECL is the declaration node of the function (as a tree),
748 FUNTYPE is the data type of the function (as a tree),
749 or for a library call it is an identifier node for the subroutine name.
750 SIZE is the number of bytes of arguments passed on the stack. */
751
752 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) (SIZE)
753
754 /* Define how to find the value returned by a function.
755 VALTYPE is the data type of the value (as a tree).
756 If the precise function being called is known, FUNC is its FUNCTION_DECL;
757 otherwise, FUNC is 0. */
758
759 #define FUNCTION_VALUE(VALTYPE, FUNC) \
760 gen_rtx (REG, TYPE_MODE (VALTYPE), S0_REGNUM)
761
762 /* Define how to find the value returned by a library function
763 assuming the value has mode MODE. */
764
765 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, S0_REGNUM)
766
767 /* Define this if PCC uses the nonreentrant convention for returning
768 structure and union values. */
769
770 #define PCC_STATIC_STRUCT_RETURN
771
772 /* 1 if N is a possible register number for a function value.
773 On the Convex, S0 is the only register thus used. */
774
775 #define FUNCTION_VALUE_REGNO_P(N) ((N) == S0_REGNUM)
776
777 /* 1 if N is a possible register number for function argument passing. */
778
779 #define FUNCTION_ARG_REGNO_P(N) 0
780 \f
781 /* Define a data type for recording info about an argument list
782 during the scan of that argument list. This data type should
783 hold all necessary information about the function itself
784 and about the args processed so far, enough to enable macros
785 such as FUNCTION_ARG to determine where the next arg should go. */
786 /* On convex, simply count the arguments in case TARGET_ARGCOUNT is set. */
787
788 #define CUMULATIVE_ARGS int
789
790 /* Initialize a variable CUM of type CUMULATIVE_ARGS
791 for a call to a function whose data type is FNTYPE.
792 For a library call, FNTYPE is 0. */
793
794 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
795 ((CUM) = 0)
796
797 /* Update the data in CUM to advance over an argument
798 of mode MODE and data type TYPE.
799 (TYPE is null for libcalls where that information may not be available.) */
800
801 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
802 ((CUM) += 1)
803
804 /* Define where to put the arguments to a function.
805 Value is zero to push the argument on the stack,
806 or a hard register in which to store the argument.
807
808 MODE is the argument's machine mode.
809 TYPE is the data type of the argument (as a tree).
810 This is null for libcalls where that information may
811 not be available.
812 CUM is a variable of type CUMULATIVE_ARGS which gives info about
813 the preceding args and about the function being called.
814 NAMED is nonzero if this argument is a named parameter
815 (otherwise it is an extra parameter matching an ellipsis).
816
817 Convex: all args go on the stack. But return the arg count
818 as the "next arg register" to be passed to gen_call. */
819
820 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
821 ((MODE) == VOIDmode ? gen_rtx (CONST_INT, VOIDmode, (CUM)) : 0)
822
823 /* This macro generates the assembly code for function entry.
824 FILE is a stdio stream to output the code to.
825 SIZE is an int: how many units of temporary storage to allocate.
826 Refer to the array `regs_ever_live' to determine which registers
827 to save; `regs_ever_live[I]' is nonzero if register number I
828 is ever used in the function. This macro is responsible for
829 knowing which registers should not be saved even if used. */
830
831 #define FUNCTION_PROLOGUE(FILE, SIZE) \
832 { \
833 int size = ((SIZE) + 7) & -8; \
834 if (size != 0) \
835 fprintf (FILE, "\tsub.w #%d,sp\n", size); \
836 }
837
838 /* This macro generates the assembly code for function exit,
839 on machines that need it. If FUNCTION_EPILOGUE is not defined
840 then individual return instructions are generated for each
841 return statement. Args are same as for FUNCTION_PROLOGUE. */
842
843 #define FUNCTION_EPILOGUE(FILE, SIZE) \
844 { \
845 /* Follow function with a zero to stop c34 icache prefetching. */ \
846 fprintf (FILE, "\tds.h 0\n"); \
847 }
848
849 /* Output assembler code for a block containing the constant parts
850 of a trampoline, leaving space for the variable parts. */
851
852 /* On convex, the code for a trampoline is
853 ld.w #<link>,s0
854 jmp <func> */
855
856 #define TRAMPOLINE_TEMPLATE(FILE) \
857 { \
858 fprintf (FILE, "\tld.w #69696969,s0\n"); \
859 fprintf (FILE, "\tjmp 52525252\n"); \
860 }
861
862 /* Length in units of the trampoline for entering a nested function. */
863
864 #define TRAMPOLINE_SIZE 12
865
866 /* Emit RTL insns to initialize the variable parts of a trampoline.
867 FNADDR is an RTX for the address of the function's pure code.
868 CXT is an RTX for the static chain value for the function. */
869
870 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
871 { \
872 emit_move_insn (gen_rtx (MEM, Pmode, plus_constant (TRAMP, 2)), CXT); \
873 emit_move_insn (gen_rtx (MEM, Pmode, plus_constant (TRAMP, 8)), FNADDR); \
874 emit_call_insn (gen_call_pop (gen_rtx (MEM, QImode, \
875 gen_rtx (SYMBOL_REF, Pmode, \
876 "__enable_execute_stack")), \
877 const0_rtx, const0_rtx, const0_rtx)); \
878 }
879
880 /* Output assembler code to FILE to increment profiler label # LABELNO
881 for profiling a function entry. */
882
883 #define FUNCTION_PROFILER(FILE, LABELNO) \
884 fprintf (FILE, "\tldea LP%d,a1\n\tcallq mcount\n", (LABELNO));
885
886 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
887 the stack pointer does not matter. The value is tested only in
888 functions that have frame pointers.
889 No definition is equivalent to always zero. */
890
891 #define EXIT_IGNORE_STACK 1
892
893 /* Store in the variable DEPTH the initial difference between the
894 frame pointer reg contents and the stack pointer reg contents,
895 as of the start of the function body. This depends on the layout
896 of the fixed parts of the stack frame and on how registers are saved. */
897 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
898 { (DEPTH) = (get_frame_size () + 7) & -8; }
899 \f
900 /* Addressing modes, and classification of registers for them. */
901
902 /* #define HAVE_POST_INCREMENT */
903 /* #define HAVE_POST_DECREMENT */
904
905 /* #define HAVE_PRE_DECREMENT */
906 /* #define HAVE_PRE_INCREMENT */
907
908 /* Macros to check register numbers against specific register classes. */
909
910 /* These assume that REGNO is a hard or pseudo reg number.
911 They give nonzero only if REGNO is a hard reg of the suitable class
912 or a pseudo reg currently allocated to a suitable hard reg.
913 Since they use reg_renumber, they are safe only once reg_renumber
914 has been allocated, which happens in local-alloc.c. */
915
916 #define REGNO_OK_FOR_INDEX_P(regno) \
917 ((regno) <= LAST_VIRTUAL_REGISTER \
918 ? regno_ok_for_index_p[regno] \
919 : regno_ok_for_index_p[reg_renumber[regno]])
920
921 #define REGNO_OK_FOR_BASE_P(regno) REGNO_OK_FOR_INDEX_P (regno)
922 \f
923 /* Maximum number of registers that can appear in a valid memory address. */
924
925 #define MAX_REGS_PER_ADDRESS 1
926
927 /* 1 if X is an rtx for a constant that is a valid address. */
928
929 #define CONSTANT_ADDRESS_P(X) \
930 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
931 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
932 || GET_CODE (X) == HIGH)
933
934 /* Nonzero if the constant value X is a legitimate general operand.
935 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
936
937 /* For convex, bounce 2-word constants that can't be immediate operands. */
938
939 #define LEGITIMATE_CONSTANT_P(X) \
940 (GET_CODE (X) != CONST_DOUBLE \
941 || GET_MODE (X) == SFmode \
942 || LD_L_P (X) || LD_D_P (X))
943
944 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
945 and check its validity for a certain class.
946 We have two alternate definitions for each of them.
947 The usual definition accepts all pseudo regs; the other rejects
948 them unless they have been allocated suitable hard regs.
949 The symbol REG_OK_STRICT causes the latter definition to be used.
950
951 Most source files want to accept pseudo regs in the hope that
952 they will get allocated to the class that the insn wants them to be in.
953 Source files for reload pass need to be strict.
954 After reload, it makes no difference, since pseudo regs have
955 been eliminated by then. */
956
957 #ifndef REG_OK_STRICT
958
959 /* Nonzero if X is a hard reg that can be used as an index
960 or if it is a pseudo reg. */
961 #define REG_OK_FOR_INDEX_P(X) \
962 (REGNO (X) > LAST_VIRTUAL_REGISTER || regno_ok_for_index_p[REGNO (X)])
963
964 /* Nonzero if X is a hard reg that can be used as a base reg
965 or if it is a pseudo reg. */
966 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_INDEX_P (X)
967
968 #else
969
970 /* Nonzero if X is a hard reg that can be used as an index. */
971 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
972
973 /* Nonzero if X is a hard reg that can be used as a base reg. */
974 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
975
976 #endif
977 \f
978 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
979 that is a valid memory address for an instruction.
980 The MODE argument is the machine mode for the MEM expression
981 that wants to use this address.
982
983 For Convex, valid addresses are
984 indirectable or (MEM indirectable)
985 where indirectable is
986 const, reg, (PLUS reg const)
987
988 We don't use indirection since with insn scheduling, load + indexing
989 is better. */
990
991 /* 1 if X is an address that we could indirect through. */
992 #define INDIRECTABLE_ADDRESS_P(X) \
993 (CONSTANT_ADDRESS_P (X) \
994 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
995 || (GET_CODE (X) == PLUS \
996 && GET_CODE (XEXP (X, 0)) == REG \
997 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
998 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
999 || (GET_CODE (X) == PLUS \
1000 && GET_CODE (XEXP (X, 1)) == REG \
1001 && REG_OK_FOR_BASE_P (XEXP (X, 1)) \
1002 && CONSTANT_ADDRESS_P (XEXP (X, 0))))
1003
1004 /* Go to ADDR if X is a valid address. */
1005 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1006 { register rtx xfoob = (X); \
1007 if (INDIRECTABLE_ADDRESS_P (xfoob)) \
1008 goto ADDR; \
1009 if (GET_CODE (xfoob) == PRE_DEC && XEXP (xfoob, 0) == stack_pointer_rtx) \
1010 goto ADDR; \
1011 }
1012 \f
1013 /* Try machine-dependent ways of modifying an illegitimate address
1014 to be legitimate. If we find one, return the new, valid address.
1015 This macro is used in only one place: `memory_address' in explow.c.
1016
1017 OLDX is the address as it was before break_out_memory_refs was called.
1018 In some cases it is useful to look at this to decide what needs to be done.
1019
1020 MODE and WIN are passed so that this macro can use
1021 GO_IF_LEGITIMATE_ADDRESS.
1022
1023 It is always safe for this macro to do nothing. It exists to recognize
1024 opportunities to optimize the output.
1025
1026 For Convex, nothing needs to be done. */
1027
1028 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
1029
1030 /* Go to LABEL if ADDR (a legitimate address expression)
1031 has an effect that depends on the machine mode it is used for. */
1032
1033 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
1034 \f
1035 /* Specify the machine mode that this machine uses
1036 for the index in the tablejump instruction. */
1037 #define CASE_VECTOR_MODE SImode
1038
1039 /* Define this if the case instruction expects the table
1040 to contain offsets from the address of the table.
1041 Do not define this if the table should contain absolute addresses. */
1042 /* #define CASE_VECTOR_PC_RELATIVE */
1043
1044 /* Define this if the case instruction drops through after the table
1045 when the index is out of range. Don't define it if the case insn
1046 jumps to the default label instead. */
1047 /* #define CASE_DROPS_THROUGH */
1048
1049 /* Specify the tree operation to be used to convert reals to integers. */
1050 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1051
1052 /* This is the kind of divide that is easiest to do in the general case. */
1053 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1054
1055 /* Define this as 1 if `char' should by default be signed; else as 0. */
1056 #define DEFAULT_SIGNED_CHAR 1
1057
1058 /* This flag, if defined, says the same insns that convert to a signed fixnum
1059 also convert validly to an unsigned one. */
1060 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1061
1062 /* Max number of bytes we can move from memory to memory
1063 in one reasonably fast instruction. */
1064 #define MOVE_MAX 8
1065
1066 /* Define this if zero-extension is slow (more than one real instruction). */
1067 /* #define SLOW_ZERO_EXTEND */
1068
1069 /* Nonzero if access to memory by bytes is slow and undesirable. */
1070 #define SLOW_BYTE_ACCESS (! TARGET_C2)
1071
1072 /* Define if shifts truncate the shift count
1073 which implies one can omit a sign-extension or zero-extension
1074 of a shift count. */
1075 /* #define SHIFT_COUNT_TRUNCATED */
1076
1077 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1078 is done just by pretending it is already truncated. */
1079 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1080
1081 /* On Convex, it is as good to call a constant function address as to
1082 call an address kept in a register. */
1083 #define NO_FUNCTION_CSE
1084
1085 /* When a prototype says `char' or `short', really pass an `int'. */
1086 #define PROMOTE_PROTOTYPES
1087
1088 /* Specify the machine mode that pointers have.
1089 After generation of rtl, the compiler makes no further distinction
1090 between pointers and any other objects of this machine mode. */
1091 #define Pmode SImode
1092
1093 /* A function address in a call instruction
1094 is a byte address (for indexing purposes)
1095 so give the MEM rtx a byte's mode. */
1096 #define FUNCTION_MODE QImode
1097
1098 /* Compute the cost of computing a constant rtl expression RTX
1099 whose rtx-code is CODE. The body of this macro is a portion
1100 of a switch statement. If the code is computed here,
1101 return it with a return statement. Otherwise, break from the switch. */
1102
1103 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1104 case CONST: \
1105 case LABEL_REF: \
1106 case SYMBOL_REF: \
1107 case CONST_INT: \
1108 case CONST_DOUBLE: \
1109 return 0;
1110
1111 /* Provide the costs of a rtl expression. This is in the body of a
1112 switch on CODE. */
1113
1114 #define RTX_COSTS(RTX,CODE,OUTER_CODE) \
1115 case PLUS: \
1116 if (regno_pointer_flag != 0 \
1117 && GET_CODE (XEXP (RTX, 0)) == REG \
1118 && REGNO_POINTER_FLAG (REGNO (XEXP (RTX, 0))) \
1119 && GET_CODE (XEXP (RTX, 1)) == CONST_INT) \
1120 return 0; \
1121 else break; \
1122 case MULT: \
1123 return 4 * (char) (0x03060403 >> target_cpu * 8); \
1124 case ASHIFT: \
1125 case LSHIFTRT: \
1126 case ASHIFTRT: \
1127 return 4 * (char) (0x03010403 >> target_cpu * 8); \
1128 case MEM: \
1129 return 5;
1130
1131 /* Compute the cost of an address. This is meant to approximate the size
1132 and/or execution delay of an insn using that address. If the cost is
1133 approximated by the RTL complexity, including CONST_COSTS above, as
1134 is usually the case for CISC machines, this macro should not be defined.
1135 For aggressively RISCy machines, only one insn format is allowed, so
1136 this macro should be a constant. The value of this macro only matters
1137 for valid addresses. */
1138
1139 #define ADDRESS_COST(RTX) 0
1140
1141 /* Specify the cost of a branch insn; roughly the number of extra insns that
1142 should be added to avoid a branch. */
1143
1144 #define BRANCH_COST 0
1145
1146 /* Adjust the cost of dependences. */
1147
1148 #define ADJUST_COST(INSN,LINK,DEP,COST) \
1149 { \
1150 /* Antidependencies don't block issue. */ \
1151 if (REG_NOTE_KIND (LINK) != 0) \
1152 (COST) = 0; \
1153 /* C38 situations where delay depends on context */ \
1154 else if (TARGET_C38 \
1155 && GET_CODE (PATTERN (INSN)) == SET \
1156 && GET_CODE (PATTERN (DEP)) == SET) \
1157 { \
1158 enum attr_type insn_type = get_attr_type (INSN); \
1159 enum attr_type dep_type = get_attr_type (DEP); \
1160 /* index register must be ready one cycle early */ \
1161 if (insn_type == TYPE_MLDW || insn_type == TYPE_MLDL \
1162 || (insn_type == TYPE_MST \
1163 && reg_mentioned_p (SET_DEST (PATTERN (DEP)), \
1164 SET_SRC (PATTERN (INSN))))) \
1165 (COST) += 1; \
1166 /* alu forwarding off alu takes two */ \
1167 if (dep_type == TYPE_ALU \
1168 && insn_type != TYPE_ALU \
1169 && ! (insn_type == TYPE_MST \
1170 && SET_DEST (PATTERN (DEP)) == SET_SRC (PATTERN (INSN)))) \
1171 (COST) += 1; \
1172 } \
1173 }
1174
1175 /* Convex uses Vax or IEEE floats.
1176 Follow the host format. */
1177 #define TARGET_FLOAT_FORMAT HOST_FLOAT_FORMAT
1178
1179 /* But must prevent real.c from constructing Vax dfloats */
1180 #define REAL_VALUE_ATOF(X,S) atof (X)
1181 extern double atof();
1182
1183 /* Check a `double' value for validity for a particular machine mode. */
1184 #define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
1185 overflow = check_float_value (MODE, &D, OVERFLOW)
1186 \f
1187 /* Tell final.c how to eliminate redundant test instructions. */
1188
1189 /* Here we define machine-dependent flags and fields in cc_status
1190 (see `conditions.h'). No extra ones are needed for convex. */
1191
1192 /* Store in cc_status the expressions
1193 that the condition codes will describe
1194 after execution of an instruction whose pattern is EXP.
1195 Do not alter them if the instruction would not alter the cc's. */
1196
1197 #define NOTICE_UPDATE_CC(EXP,INSN) {}
1198 \f
1199 /* Control the assembler format that we output. */
1200
1201 /* Output at beginning of assembler file. */
1202
1203 #if _IEEE_FLOAT_
1204 #define ASM_FILE_START(FILE) fprintf (FILE, ";NO_APP\n.fpmode ieee\n")
1205 #else
1206 #define ASM_FILE_START(FILE) fprintf (FILE, ";NO_APP\n.fpmode native\n")
1207 #endif
1208
1209 /* Output to assembler file text saying following lines
1210 may contain character constants, extra white space, comments, etc. */
1211
1212 #define ASM_APP_ON ";APP\n"
1213
1214 /* Output to assembler file text saying following lines
1215 no longer contain unusual constructs. */
1216
1217 #define ASM_APP_OFF ";NO_APP\n"
1218
1219 /* Alignment with Convex's assembler goes like this:
1220 .text can be .aligned up to a halfword.
1221 .data and .bss can be .aligned up to a longword.
1222 .lcomm is not supported, explicit declarations in .bss must be used instead.
1223 We get alignment for word and longword .text data by conventionally
1224 using .text 2 for word-aligned data and .text 3 for longword-aligned
1225 data. This requires that the data's size be a multiple of its alignment,
1226 which seems to be always true. */
1227
1228 /* Output before read-only data. */
1229
1230 #define TEXT_SECTION_ASM_OP (current_section_is_text = 1, ".text")
1231
1232 /* Output before writable data. */
1233
1234 #define DATA_SECTION_ASM_OP (current_section_is_text = 0, ".data")
1235
1236 /* Output before uninitialized data. */
1237
1238 #define BSS_SECTION_ASM_OP (current_section_is_text = 0, ".bss")
1239
1240 /* This is how to output an assembler line
1241 that says to advance the location counter
1242 to a multiple of 2**LOG bytes. */
1243
1244 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1245 if (current_section_is_text && (LOG) > 1) \
1246 fprintf (FILE, ".text %d\n", LOG); \
1247 else if (current_section_is_text) \
1248 fprintf (FILE, ".text\n.align %d\n", 1 << (LOG)); \
1249 else \
1250 fprintf (FILE, ".align %d\n", 1 << (LOG))
1251
1252 /* How to refer to registers in assembler output.
1253 This sequence is indexed by compiler's hard-register-number (see above). */
1254
1255 #define REGISTER_NAMES \
1256 { \
1257 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
1258 "sp", "a1", "a2", "a3", "a4", "a5", "ap", "fp", \
1259 }
1260
1261 /* This is BSD, so it wants DBX format. */
1262
1263 #define DBX_DEBUGGING_INFO
1264
1265 /* How to renumber registers for dbx and gdb. */
1266
1267 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1268
1269 /* Do not break .stabs pseudos into continuations. */
1270
1271 #define DBX_CONTIN_LENGTH 0
1272
1273 /* This is the char to use for continuation (in case we need to turn
1274 continuation back on). */
1275
1276 #define DBX_CONTIN_CHAR '?'
1277
1278 /* Don't use stab extensions until GDB v4 port is available for convex. */
1279
1280 #define DEFAULT_GDB_EXTENSIONS 0
1281 #define DBX_NO_XREFS
1282
1283 /* This is how to output the definition of a user-level label named NAME,
1284 such as the label on a static function or variable NAME. */
1285
1286 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1287 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1288
1289 /* This is how to output a command to make the user-level label named NAME
1290 defined for reference from other files. */
1291
1292 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1293 do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1294
1295 /* This is how to output a reference to a user-level label named NAME. */
1296
1297 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1298 fprintf (FILE, "_%s", NAME)
1299
1300 /* This is how to output an internal numbered label where
1301 PREFIX is the class of label and NUM is the number within the class. */
1302
1303 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1304 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1305
1306 /* Put case tables in .text 2, where they will be word-aligned */
1307
1308 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
1309 ASM_OUTPUT_ALIGN (FILE, 2); \
1310 ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM)
1311
1312 #define ASM_OUTPUT_CASE_END(FILE,NUM,TABLE) \
1313 ASM_OUTPUT_ALIGN (FILE, 1)
1314
1315 /* This is how to store into the string LABEL
1316 the symbol_ref name of an internal numbered label where
1317 PREFIX is the class of label and NUM is the number within the class.
1318 This is suitable for output with `assemble_name'. */
1319
1320 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1321 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1322
1323 /* This is how to output an assembler line defining a `double' constant. */
1324
1325 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1326 outfloat (FILE, VALUE, "%.17e", "\tds.d ", "\n")
1327
1328 /* This is how to output an assembler line defining a `float' constant. */
1329
1330 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1331 outfloat (FILE, VALUE, "%.9e", "\tds.s ", "\n")
1332
1333 /* This is how to output an assembler line defining an `int' constant. */
1334
1335 #define ASM_OUTPUT_INT(FILE,VALUE) \
1336 { \
1337 fprintf (FILE, "\tds.w "); \
1338 output_addr_const (FILE, simplify_for_convex (VALUE)); \
1339 fprintf (FILE, "\n"); \
1340 }
1341
1342 /* Likewise for a `long long int' constant. */
1343
1344 #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1345 { \
1346 if (GET_CODE (VALUE) == CONST_DOUBLE) \
1347 fprintf (FILE, "\tds.w %d,%d\n", \
1348 const_double_high_int (VALUE), const_double_low_int (VALUE)); \
1349 else if (GET_CODE (VALUE) == CONST_INT) \
1350 { \
1351 int val = INTVAL (VALUE); \
1352 fprintf (FILE, "\tds.w %d,%d\n", val < 0 ? -1 : 0, val); \
1353 } \
1354 else \
1355 abort (); \
1356 }
1357
1358 /* Likewise for `char' and `short' constants. */
1359
1360 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1361 ( fprintf (FILE, "\tds.h "), \
1362 output_addr_const (FILE, (VALUE)), \
1363 fprintf (FILE, "\n"))
1364
1365 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1366 ( fprintf (FILE, "\tds.b "), \
1367 output_addr_const (FILE, (VALUE)), \
1368 fprintf (FILE, "\n"))
1369
1370 /* This is how to output an assembler line for a numeric constant byte. */
1371
1372 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1373 fprintf (FILE, "\tds.b %#x\n", (VALUE))
1374
1375 /* This is how to output a string */
1376
1377 #define ASM_OUTPUT_ASCII(FILE,STR,SIZE) do { \
1378 int i; \
1379 fprintf ((FILE), "\tds.b \""); \
1380 for (i = 0; i < (SIZE); i++) { \
1381 register int c = (STR)[i] & 0377; \
1382 if (c >= ' ' && c < 0177 && c != '\\' && c != '"') \
1383 putc (c, (FILE)); \
1384 else \
1385 fprintf ((FILE), "\\%03o", c);} \
1386 fprintf ((FILE), "\"\n");} while (0)
1387
1388 /* This is how to output an insn to push a register on the stack.
1389 It need not be very fast code. */
1390
1391 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1392 fprintf (FILE, "\tpsh.%c %s\n", \
1393 S_REGNO_P (REGNO) ? 'l' : 'w', \
1394 reg_names[REGNO])
1395
1396 /* This is how to output an insn to pop a register from the stack.
1397 It need not be very fast code. */
1398
1399 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1400 fprintf (FILE, "\tpop.%c %s\n", \
1401 S_REGNO_P (REGNO) ? 'l' : 'w', \
1402 reg_names[REGNO])
1403
1404 /* This is how to output an element of a case-vector that is absolute. */
1405
1406 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1407 fprintf (FILE, "\tds.w L%d\n", VALUE)
1408
1409 /* This is how to output an element of a case-vector that is relative.
1410 (not used on Convex) */
1411
1412 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1413 fprintf (FILE, "\tds.w L%d-L%d\n", VALUE, REL)
1414
1415 /* This is how to output an assembler line
1416 that says to advance the location counter by SIZE bytes. */
1417
1418 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1419 fprintf (FILE, "\tds.b %u(0)\n", (SIZE))
1420
1421 /* This says how to output an assembler line
1422 to define a global common symbol. */
1423
1424 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1425 ( fputs (".comm ", (FILE)), \
1426 assemble_name ((FILE), (NAME)), \
1427 fprintf ((FILE), ",%u\n", (ROUNDED)))
1428
1429 /* This says how to output an assembler line
1430 to define a local common symbol. */
1431
1432 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1433 ( bss_section (), \
1434 assemble_name ((FILE), (NAME)), \
1435 fprintf ((FILE), ":\tbs.b %u\n", (ROUNDED)))
1436
1437 /* Store in OUTPUT a string (made with alloca) containing
1438 an assembler-name for a local static variable named NAME.
1439 LABELNO is an integer which is different for each call. */
1440
1441 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1442 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1443 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1444
1445 /* Output an arg count before function entries. */
1446
1447 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
1448 asm_declare_function_name (FILE, NAME, DECL)
1449
1450 /* Define the parentheses used to group arithmetic operations
1451 in assembler code. */
1452
1453 #define ASM_OPEN_PAREN "("
1454 #define ASM_CLOSE_PAREN ")"
1455
1456 /* Define results of standard character escape sequences. */
1457 #define TARGET_BELL 007
1458 #define TARGET_BS 010
1459 #define TARGET_TAB 011
1460 #define TARGET_NEWLINE 012
1461 #define TARGET_VT 013
1462 #define TARGET_FF 014
1463 #define TARGET_CR 015
1464
1465 /* Print an instruction operand X on file FILE.
1466 CODE is the code from the %-spec that requested printing this operand;
1467 if `%z3' was used to print operand 3, then CODE is 'z'. */
1468
1469 #define PRINT_OPERAND(FILE, X, CODE) \
1470 print_operand (FILE, X, CODE)
1471
1472 /* Print a memory operand whose address is X, on file FILE. */
1473
1474 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1475 print_operand_address (FILE, ADDR)
1476 \f
1477 /* Do not put out GNU stabs for constructors and destructors.
1478 ld bounces them. */
1479
1480 #define FASCIST_ASSEMBLER
1481
1482 /* __gcc_cleanup is loader-aliased to __ap$do_registered_functions if we
1483 are linking against standard libc, 0 if old (-traditional) libc. */
1484
1485 #define EXIT_BODY \
1486 { \
1487 extern void __gcc_cleanup (); \
1488 if (__gcc_cleanup != _cleanup) \
1489 __gcc_cleanup (); \
1490 _cleanup (); \
1491 }
1492 \f
1493 /* Header for convex.c.
1494 Here at the end so we can use types defined above. */
1495
1496 extern int target_cpu;
1497 extern int current_section_is_text;
1498 extern enum reg_class regno_reg_class[];
1499 extern enum reg_class reg_class_from_letter[];
1500 extern char regno_ok_for_index_p_base[];
1501 #define regno_ok_for_index_p (regno_ok_for_index_p_base + 1)
1502
1503 extern int const_double_low_int ();
1504 extern int const_double_high_int ();
1505 extern char *output_cmp ();
1506 extern char *output_condjump ();
1507 extern char *output_call ();
1508 extern void gen_ap_for_call ();
1509 extern int check_float_value ();
1510 extern void asm_declare_function_name ();