Fix comment.
[gcc.git] / gcc / config / h8300 / h8300.h
1 /* Definitions of target machine for GNU compiler.
2 Hitachi H8/300 version generating coff
3 Copyright (C) 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
4 Contributed by Steve Chamberlain (sac@cygnus.com),
5 Jim Wilson (wilson@cygnus.com), and Doug Evans (dje@cygnus.com).
6
7 This file is part of GNU CC.
8
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* Which cpu to compile for.
25 We use int for CPU_TYPE to avoid lots of casts. */
26 #if 0 /* defined in insn-attr.h, here for documentation */
27 enum attr_cpu { CPU_H8300, CPU_H8300H };
28 #endif
29 extern int cpu_type;
30
31 /* Various globals defined in h8300.c. */
32
33 extern char *h8_push_op,*h8_pop_op,*h8_mov_op;
34 extern char **h8_reg_names;
35
36 /* Names to predefine in the preprocessor for this target machine. */
37
38 #define CPP_PREDEFINES \
39 "-D__LONG_MAX__=2147483647L -D__LONG_LONG_MAX__=2147483647L"
40
41 #define CPP_SPEC \
42 "%{!mh:-D__H8300__} %{mh:-D__H8300H__} \
43 %{!mh:-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int} \
44 %{mh:-D__SIZE_TYPE__=unsigned\\ long -D__PTRDIFF_TYPE__=long} \
45 %{!mh:-Acpu(h8300) -Amachine(h8300)} %{mh:-Acpu(h8300h) -Amachine(h8300h)} \
46 %{!mint32:-D__INT_MAX__=32767} %{mint32:-D__INT_MAX__=2147483647}"
47
48 #define LINK_SPEC "%{mh:-m h8300h}"
49
50 #define LIB_SPEC "%{mrelax:-relax} %{g:-lg} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
51
52 /* Print subsidiary information on the compiler version in use. */
53
54 #define TARGET_VERSION fprintf (stderr, " (Hitachi H8/300)");
55
56 /* Run-time compilation parameters selecting different hardware subsets. */
57
58 extern int target_flags;
59
60 /* Macros used in the machine description to test the flags. */
61
62 /* Make int's 32 bits. */
63 #define TARGET_INT32 (target_flags & 8)
64
65 /* Dump recorded insn lengths into the output file. This helps debug the
66 md file. */
67 #define TARGET_ADDRESSES (target_flags & 64)
68
69 /* Pass the first few arguments in registers. */
70 #define TARGET_QUICKCALL (target_flags & 128)
71
72 /* Pretend byte accesses are slow. */
73 #define TARGET_SLOWBYTE (target_flags & 256)
74
75 /* Dump each assembler insn's rtl into the output file.
76 This is for debugging the compiler only. */
77 #define TARGET_RTL_DUMP (target_flags & 2048)
78
79 /* Select between the h8/300 and h8/300h cpus. */
80 #define TARGET_H8300 (! TARGET_H8300H)
81 #define TARGET_H8300H (target_flags & 4096)
82
83 /* Align structures on the h8/300h the same way as the h8/300. Specifically,
84 32 bit and larger values in structures are aligned on 16 bit boundaries.
85 This is all the hardware requires, but the default is 32 bits for the 300h.
86 ??? Now watch someone add hardware floating point requiring 32 bit
87 alignment. */
88 #define TARGET_ALIGN_STRUCT_300 (target_flags & 8192)
89
90 /* Macro to define tables used to set the flags.
91 This is a list in braces of pairs in braces,
92 each pair being { "NAME", VALUE }
93 where VALUE is the bits to set or minus the bits to clear.
94 An empty string NAME is used to identify the default VALUE. */
95
96 #define TARGET_SWITCHES \
97 { {"int32",8}, \
98 {"addresses",64 }, \
99 {"quickcall",128}, \
100 {"no-quickcall",-128}, \
101 {"slowbyte",256}, \
102 {"relax",1024}, \
103 {"rtl-dump",2048}, \
104 {"h",4096}, \
105 {"no-h",-4096}, \
106 {"align-struct-300",8192}, \
107 { "", TARGET_DEFAULT}}
108
109 /* Do things that must be done once at start up. */
110
111 #define OVERRIDE_OPTIONS \
112 do { \
113 h8300_init_once (); \
114 } while (0)
115
116 /* Default target_flags if no switches specified. */
117
118 #ifndef TARGET_DEFAULT
119 #define TARGET_DEFAULT (128) /* quickcall */
120 #endif
121
122 /* Show we can debug even without a frame pointer. */
123 /* #define CAN_DEBUG_WITHOUT_FP */
124
125 /* Define this if addresses of constant functions
126 shouldn't be put through pseudo regs where they can be cse'd.
127 Desirable on machines where ordinary constants are expensive
128 but a CALL with constant address is cheap. */
129 #define NO_FUNCTION_CSE
130 \f
131 /* Target machine storage layout */
132
133 /* Define to use software floating point emulator for REAL_ARITHMETIC and
134 decimal <-> binary conversion. */
135 #define REAL_ARITHMETIC
136
137 /* Define this if most significant bit is lowest numbered
138 in instructions that operate on numbered bit-fields.
139 This is not true on the H8/300. */
140 #define BITS_BIG_ENDIAN 0
141
142 /* Define this if most significant byte of a word is the lowest numbered. */
143 /* That is true on the H8/300. */
144 #define BYTES_BIG_ENDIAN 1
145
146 /* Define this if most significant word of a multiword number is lowest
147 numbered.
148 This is true on an H8/300 (actually we can make it up, but we choose to
149 be consistent. */
150 #define WORDS_BIG_ENDIAN 1
151
152 /* Number of bits in an addressable storage unit */
153 #define BITS_PER_UNIT 8
154
155 /* Width in bits of a "word", which is the contents of a machine register.
156 Note that this is not necessarily the width of data type `int';
157 if using 16-bit ints on a 68000, this would still be 32.
158 But on a machine with 16-bit registers, this would be 16. */
159 #define BITS_PER_WORD (TARGET_H8300H ? 32 : 16)
160 #define MAX_BITS_PER_WORD 32
161
162 /* Width of a word, in units (bytes). */
163 #define UNITS_PER_WORD (TARGET_H8300H ? 4 : 2)
164 #define MIN_UNITS_PER_WORD 2
165
166 /* Width in bits of a pointer.
167 See also the macro `Pmode' defined below. */
168 #define POINTER_SIZE (TARGET_H8300H ? 32 : 16)
169
170 #define SHORT_TYPE_SIZE 16
171 #define INT_TYPE_SIZE (TARGET_INT32 ? 32 : 16)
172 #define LONG_TYPE_SIZE 32
173 #define LONG_LONG_TYPE_SIZE 32
174 #define FLOAT_TYPE_SIZE 32
175 #define DOUBLE_TYPE_SIZE 32
176 #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
177
178 #define MAX_FIXED_MODE_SIZE 32
179
180 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
181 #define PARM_BOUNDARY (TARGET_H8300H ? 32 : 16)
182
183 /* Allocation boundary (in *bits*) for the code of a function. */
184 #define FUNCTION_BOUNDARY 16
185
186 /* Alignment of field after `int : 0' in a structure. */
187 /* One can argue this should be 32 for -mint32, but since 32 bit ints only
188 need 16 bit alignment, this is left as is so that -mint32 doesn't change
189 structure layouts. */
190 #define EMPTY_FIELD_BOUNDARY 16
191
192 /* A bitfield declared as `int' forces `int' alignment for the struct. */
193 #define PCC_BITFIELD_TYPE_MATTERS 0
194
195 /* No data type wants to be aligned rounder than this.
196 32 bit values are aligned as such on the 300h for speed. */
197 #define BIGGEST_ALIGNMENT (TARGET_H8300H ? 32 : 16)
198
199 /* No structure field wants to be aligned rounder than this. */
200 #define BIGGEST_FIELD_ALIGNMENT \
201 ((TARGET_H8300H && ! TARGET_ALIGN_STRUCT_300) ? 32 : 16)
202
203 /* The stack goes in 16/32 bit lumps. */
204 #define STACK_BOUNDARY (TARGET_H8300 ? 16 : 32)
205
206 /* Define this if move instructions will actually fail to work
207 when given unaligned data. */
208 /* On the H8/300, longs can be aligned on halfword boundaries, but not
209 byte boundaries. */
210 #define STRICT_ALIGNMENT 1
211 \f
212 /* Standard register usage. */
213
214 /* Number of actual hardware registers.
215 The hardware registers are assigned numbers for the compiler
216 from 0 to just below FIRST_PSEUDO_REGISTER.
217
218 All registers that the compiler knows about must be given numbers,
219 even those that are not normally considered general registers.
220
221 Reg 8 does not correspond to any hardware register, but instead
222 appears in the RTL as an argument pointer prior to reload, and is
223 eliminated during reloading in favor of either the stack or frame
224 pointer. */
225
226 #define FIRST_PSEUDO_REGISTER 9
227
228 /* 1 for registers that have pervasive standard uses
229 and are not available for the register allocator. */
230
231 #define FIXED_REGISTERS \
232 { 0, 0, 0, 0, 0, 0, 0, 1, 1}
233
234 /* 1 for registers not available across function calls.
235 These must include the FIXED_REGISTERS and also any
236 registers that can be used without being saved.
237 The latter must include the registers where values are returned
238 and the register where structure-value addresses are passed.
239 Aside from that, you can include as many other registers as you
240 like.
241
242 h8 destroys r0,r1,r2,r3. */
243
244 #define CALL_USED_REGISTERS \
245 { 1, 1, 1, 1, 0, 0, 0, 1, 1 }
246
247 #define REG_ALLOC_ORDER \
248 { 2, 3, 0, 1, 4, 5, 6, 7, 8}
249
250 /* Return number of consecutive hard regs needed starting at reg REGNO
251 to hold something of mode MODE.
252
253 This is ordinarily the length in words of a value of mode MODE
254 but can be less for certain modes in special long registers. */
255
256 #define HARD_REGNO_NREGS(REGNO, MODE) \
257 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
258
259 /* Value is 1 if hard register REGNO can hold a value of machine-mode
260 MODE.
261
262 H8/300: If an even reg, then anything goes. Otherwise the mode must be QI
263 or HI.
264 H8/300H: Anything goes. */
265
266 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
267 (TARGET_H8300 ? (((REGNO)&1)==0) || (MODE==HImode) || (MODE==QImode) \
268 : 1)
269
270 /* Value is 1 if it is a good idea to tie two pseudo registers
271 when one has mode MODE1 and one has mode MODE2.
272 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
273 for any hard reg, then this must be 0 for correct output. */
274 #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
275
276 /* Specify the registers used for certain standard purposes.
277 The values of these macros are register numbers. */
278
279 /* H8/300 pc is not overloaded on a register. */
280
281 /*#define PC_REGNUM 15*/
282
283 /* Register to use for pushing function arguments. */
284 #define STACK_POINTER_REGNUM 7
285
286 /* Base register for access to local variables of the function. */
287 #define FRAME_POINTER_REGNUM 6
288
289 /* Value should be nonzero if functions must have frame pointers.
290 Zero means the frame pointer need not be set up (and parms
291 may be accessed via the stack pointer) in functions that seem suitable.
292 This is computed in `reload', in reload1.c. */
293 #define FRAME_POINTER_REQUIRED 0
294
295 /* Base register for access to arguments of the function. */
296 #define ARG_POINTER_REGNUM 8
297
298 /* Register in which static-chain is passed to a function. */
299 #define STATIC_CHAIN_REGNUM 3
300 \f
301 /* Define the classes of registers for register constraints in the
302 machine description. Also define ranges of constants.
303
304 One of the classes must always be named ALL_REGS and include all hard regs.
305 If there is more than one class, another class must be named NO_REGS
306 and contain no registers.
307
308 The name GENERAL_REGS must be the name of a class (or an alias for
309 another name such as ALL_REGS). This is the class of registers
310 that is allowed by "g" or "r" in a register constraint.
311 Also, registers outside this class are allocated only when
312 instructions express preferences for them.
313
314 The classes must be numbered in nondecreasing order; that is,
315 a larger-numbered class must never be contained completely
316 in a smaller-numbered class.
317
318 For any two classes, it is very desirable that there be another
319 class that represents their union. */
320
321 /* The h8 has only one kind of register, but we mustn't do byte by
322 byte operations on the sp, so we keep it as a different class */
323
324 enum reg_class { NO_REGS, LONG_REGS, GENERAL_REGS, SP_REG, SP_AND_G_REG, ALL_REGS, LIM_REG_CLASSES };
325
326 #define N_REG_CLASSES (int) LIM_REG_CLASSES
327
328 /* Give names of register classes as strings for dump file. */
329
330 #define REG_CLASS_NAMES \
331 {"NO_REGS", "LONG_REGS", "GENERAL_REGS", "SP_REG", "SP_AND_G_REG", "ALL_REGS", "LIM_REGS" }
332
333 /* Define which registers fit in which classes.
334 This is an initializer for a vector of HARD_REG_SET
335 of length N_REG_CLASSES. */
336
337 #define REG_CLASS_CONTENTS \
338 { 0, /* No regs */ \
339 0x07f, /* LONG_REGS */ \
340 0x07f, /* GENERAL_REGS */ \
341 0x080, /* SP_REG */ \
342 0x0ff, /* SP_AND_G_REG */ \
343 0x1ff, /* ALL_REGS */ \
344 }
345
346 /* The same information, inverted:
347 Return the class number of the smallest class containing
348 reg number REGNO. This could be a conditional expression
349 or could index an array. */
350
351 #define REGNO_REG_CLASS(REGNO) \
352 ((REGNO) < 7 ? LONG_REGS : \
353 (REGNO) == 7 ? SP_REG : \
354 GENERAL_REGS)
355
356 /* The class value for index registers, and the one for base regs. */
357
358 #define INDEX_REG_CLASS NO_REGS
359 #define BASE_REG_CLASS GENERAL_REGS
360
361 /* Get reg_class from a letter such as appears in the machine description. */
362
363 #define REG_CLASS_FROM_LETTER(C) \
364 ((C) == 'a' ? (SP_REG) : (C) == 'l' ? (LONG_REGS) : (NO_REGS))
365
366 /* The letters I, J, K, L, M, N, O, P in a register constraint string
367 can be used to stand for particular ranges of immediate operands.
368 This macro defines what the ranges are.
369 C is the letter, and VALUE is a constant value.
370 Return 1 if VALUE is in the range specified by C. */
371
372 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
373 #define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) < 256)
374 #define CONST_OK_FOR_K(VALUE) (((VALUE) == 1) || (VALUE) == 2)
375 #define CONST_OK_FOR_L(VALUE) (((VALUE) == -1) || (VALUE) == -2)
376 #define CONST_OK_FOR_M(VALUE) (((VALUE) == 3) || (VALUE) == 4)
377 #define CONST_OK_FOR_N(VALUE) (((VALUE) == -3) || (VALUE) == -4)
378 #define CONST_OK_FOR_O(VALUE) (ok_for_bclr (VALUE))
379 #define CONST_OK_FOR_P(VALUE) (small_power_of_two (VALUE))
380
381 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
382 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
383 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
384 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
385 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
386 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
387 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
388 (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
389 (C) == 'P' ? CONST_OK_FOR_P(VALUE) : \
390 0)
391
392 /* Similar, but for floating constants, and defining letters G and H.
393 Here VALUE is the CONST_DOUBLE rtx itself.
394
395 `G' is a floating-point zero. */
396
397 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
398 ((C) == 'G' ? (VALUE) == CONST0_RTX (DFmode) \
399 : 0)
400
401 /* Given an rtx X being reloaded into a reg required to be
402 in class CLASS, return the class of reg to actually use.
403 In general this is just CLASS; but on some machines
404 in some cases it is preferable to use a more restrictive class. */
405
406 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
407
408 /* Return the maximum number of consecutive registers
409 needed to represent mode MODE in a register of class CLASS. */
410
411 /* On the H8, this is the size of MODE in words. */
412
413 #define CLASS_MAX_NREGS(CLASS, MODE) \
414 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
415
416 /* Any SI register to register move may need to be reloaded,
417 so define REGISTER_MOVE_COST to be > 2 so that reload never
418 shortcuts. */
419
420 #define REGISTER_MOVE_COST(CLASS1, CLASS2) 3
421 \f
422 /* Stack layout; function entry, exit and calling. */
423
424 /* Define this if pushing a word on the stack
425 makes the stack pointer a smaller address. */
426
427 #define STACK_GROWS_DOWNWARD
428
429 /* Define this if the nominal address of the stack frame
430 is at the high-address end of the local variables;
431 that is, each additional local variable allocated
432 goes at a more negative offset in the frame. */
433
434 #define FRAME_GROWS_DOWNWARD
435
436 /* Offset within stack frame to start allocating local variables at.
437 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
438 first local allocated. Otherwise, it is the offset to the BEGINNING
439 of the first local allocated. */
440
441 #define STARTING_FRAME_OFFSET 0
442
443 /* If we generate an insn to push BYTES bytes,
444 this says how many the stack pointer really advances by.
445
446 On the H8/300, @-sp really pushes a byte if you ask it to - but that's
447 dangerous, so we claim that it always pushes a word, then we catch
448 the mov.b rx,@-sp and turn it into a mov.w rx,@-sp on output.
449
450 On the H8/300h, we simplify TARGET_QUICKCALL by setting this to 4 and doing
451 a similar thing. */
452
453 #define PUSH_ROUNDING(BYTES) \
454 (((BYTES) + PARM_BOUNDARY/8 - 1) & -PARM_BOUNDARY/8)
455
456 /* Offset of first parameter from the argument pointer register value. */
457 /* Is equal to the size of the saved fp + pc, even if an fp isn't
458 saved since the value is used before we know. */
459
460 #define FIRST_PARM_OFFSET(FNDECL) 0
461
462 /* Value is the number of bytes of arguments automatically
463 popped when returning from a subroutine call.
464 FUNDECL is the declaration node of the function (as a tree),
465 FUNTYPE is the data type of the function (as a tree),
466 or for a library call it is an identifier node for the subroutine name.
467 SIZE is the number of bytes of arguments passed on the stack.
468
469 On the H8 the return does not pop anything. */
470
471 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
472
473 /* Definitions for register eliminations.
474
475 This is an array of structures. Each structure initializes one pair
476 of eliminable registers. The "from" register number is given first,
477 followed by "to". Eliminations of the same "from" register are listed
478 in order of preference.
479
480 We have two registers that can be eliminated on the h8300. First, the
481 frame pointer register can often be eliminated in favor of the stack
482 pointer register. Secondly, the argument pointer register can always be
483 eliminated; it is replaced with either the stack or frame pointer. */
484
485 #define ELIMINABLE_REGS \
486 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
487 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
488 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
489
490 /* Given FROM and TO register numbers, say whether this elimination is allowed.
491 Frame pointer elimination is automatically handled.
492
493 For the h8300, if frame pointer elimination is being done, we would like to
494 convert ap into sp, not fp.
495
496 All other eliminations are valid. */
497
498 #define CAN_ELIMINATE(FROM, TO) \
499 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
500 ? ! frame_pointer_needed \
501 : 1)
502
503 /* Define the offset between two registers, one to be eliminated, and the other
504 its replacement, at the start of a routine. */
505
506 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
507 OFFSET = initial_offset (FROM, TO)
508
509 /* Define how to find the value returned by a function.
510 VALTYPE is the data type of the value (as a tree).
511 If the precise function being called is known, FUNC is its FUNCTION_DECL;
512 otherwise, FUNC is 0.
513
514 On the H8 the return value is in R0/R1. */
515
516 #define FUNCTION_VALUE(VALTYPE, FUNC) \
517 gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
518
519 /* Define how to find the value returned by a library function
520 assuming the value has mode MODE. */
521
522 /* On the h8 the return value is in R0/R1 */
523
524 #define LIBCALL_VALUE(MODE) \
525 gen_rtx (REG, MODE, 0)
526
527 /* 1 if N is a possible register number for a function value.
528 On the H8, R0 is the only register thus used. */
529
530 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
531
532 /* Define this if PCC uses the nonreentrant convention for returning
533 structure and union values. */
534
535 /*#define PCC_STATIC_STRUCT_RETURN*/
536
537 /* 1 if N is a possible register number for function argument passing.
538 On the H8, no registers are used in this way. */
539 /* ??? What about TARGET_QUICKCALL? */
540
541 #define FUNCTION_ARG_REGNO_P(N) 0
542
543 /* Register in which address to store a structure value
544 is passed to a function. */
545
546 #define STRUCT_VALUE 0
547
548 /* Return true if X should be returned in memory. */
549 /* ??? This will return small structs in regs. */
550 #define RETURN_IN_MEMORY(X) (GET_MODE_SIZE (TYPE_MODE (X)) > 4)
551
552 /* When defined, the compiler allows registers explicitly used in the
553 rtl to be used as spill registers but prevents the compiler from
554 extending the lifetime of these registers. */
555
556 #define SMALL_REGISTER_CLASSES
557 \f
558 /* Define a data type for recording info about an argument list
559 during the scan of that argument list. This data type should
560 hold all necessary information about the function itself
561 and about the args processed so far, enough to enable macros
562 such as FUNCTION_ARG to determine where the next arg should go.
563
564 On the H8/300, this is a two item struct, the first is the number of bytes
565 scanned so far and the second is the rtx of the called library
566 function if any. */
567
568 #define CUMULATIVE_ARGS struct cum_arg
569 struct cum_arg { int nbytes; struct rtx_def * libcall; };
570
571 /* Initialize a variable CUM of type CUMULATIVE_ARGS
572 for a call to a function whose data type is FNTYPE.
573 For a library call, FNTYPE is 0.
574
575 On the H8/300, the offset starts at 0. */
576
577 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
578 ((CUM).nbytes = 0, (CUM).libcall = LIBNAME)
579
580 /* Update the data in CUM to advance over an argument
581 of mode MODE and data type TYPE.
582 (TYPE is null for libcalls where that information may not be available.) */
583
584 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
585 ((CUM).nbytes += ((MODE) != BLKmode \
586 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
587 : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
588
589 /* Define where to put the arguments to a function.
590 Value is zero to push the argument on the stack,
591 or a hard register in which to store the argument.
592
593 MODE is the argument's machine mode.
594 TYPE is the data type of the argument (as a tree).
595 This is null for libcalls where that information may
596 not be available.
597 CUM is a variable of type CUMULATIVE_ARGS which gives info about
598 the preceding args and about the function being called.
599 NAMED is nonzero if this argument is a named parameter
600 (otherwise it is an extra parameter matching an ellipsis). */
601
602 /* On the H8/300 all normal args are pushed, unless -mquickcall in which
603 case the first 3 arguments are passed in registers.
604 See function `function_arg'. */
605
606 struct rtx_def *function_arg();
607 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
608 function_arg (&CUM, MODE, TYPE, NAMED)
609
610 /* Perform any needed actions needed for a function that is receiving a
611 variable number of arguments. */
612
613 extern int current_function_anonymous_args;
614 #define SETUP_INCOMING_VARARGS(ASF, MODE, TYPE, PAS, ST) \
615 current_function_anonymous_args = 1;
616
617 /* Generate assembly output for the start of a function. */
618
619 #define FUNCTION_PROLOGUE(FILE, SIZE) \
620 function_prologue (FILE, SIZE)
621
622 /* Output assembler code to FILE to increment profiler label # LABELNO
623 for profiling a function entry. */
624
625 #define FUNCTION_PROFILER(FILE, LABELNO) \
626 fprintf (FILE, "\t%s\t#LP%d,%s\n\tjsr @mcount\n", \
627 h8_mov_op, (LABELNO), h8_reg_names[0]);
628
629 /* Output assembler code to FILE to initialize this source file's
630 basic block profiling info, if that has not already been done. */
631 /* ??? @LPBX0 is moved into r0 twice. */
632
633 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
634 fprintf (FILE, "\t%s\t%s\n\t%s\t@LPBX0,%s\n\tbne LPI%d\n\t%s\t@LPBX0,%s\n\t%s\t%s\n\tjsr\t@__bb_init_func\nLPI%d:\t%s\t%s\n", \
635 h8_push_op, h8_reg_names[0], \
636 h8_mov_op, h8_reg_names[0], \
637 (LABELNO), \
638 h8_mov_op, h8_reg_names[0], \
639 h8_push_op, h8_reg_names[0], \
640 (LABELNO), \
641 h8_pop_op, h8_reg_names[0]);
642
643 /* Output assembler code to FILE to increment the entry-count for
644 the BLOCKNO'th basic block in this source file. This is a real pain in the
645 sphincter on a VAX, since we do not want to change any of the bits in the
646 processor status word. The way it is done here, it is pushed onto the stack
647 before any flags have changed, and then the stack is fixed up to account for
648 the fact that the instruction to restore the flags only reads a word.
649 It may seem a bit clumsy, but at least it works. */
650 /* ??? This one needs work. */
651
652 #define BLOCK_PROFILER(FILE, BLOCKNO) \
653 fprintf (FILE, "\tmovpsl -(sp)\n\tmovw (sp),2(sp)\n\taddl2 $2,sp\n\taddl2 $1,LPBX2+%d\n\tbicpsw $255\n\tbispsw (sp)+\n", \
654 4 * BLOCKNO)
655
656 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
657 the stack pointer does not matter. The value is tested only in
658 functions that have frame pointers.
659 No definition is equivalent to always zero. */
660
661 #define EXIT_IGNORE_STACK 0
662
663 /* This macro generates the assembly code for function exit,
664 on machines that need it. If FUNCTION_EPILOGUE is not defined
665 then individual return instructions are generated for each
666 return statement. Args are same as for FUNCTION_PROLOGUE. */
667
668 #define FUNCTION_EPILOGUE(FILE, SIZE) \
669 function_epilogue (FILE, SIZE)
670
671 /* Output assembler code for a block containing the constant parts
672 of a trampoline, leaving space for the variable parts.
673
674 H8/300
675 vvvv context
676 1 0000 7900xxxx mov.w #0x1234,r3
677 2 0004 5A00xxxx jmp @0x1234
678 ^^^^ function
679
680 H8/300H
681 vvvvvvvv context
682 2 0000 7A00xxxxxxxx mov.l #0x12345678,er3
683 3 0006 5Axxxxxx jmp @0x123456
684 ^^^^^^ function
685 */
686
687 #define TRAMPOLINE_TEMPLATE(FILE) \
688 do { \
689 if (TARGET_H8300) \
690 { \
691 fprintf (FILE, "\tmov.w #0x1234,r3\n"); \
692 fprintf (FILE, "\tjmp @0x1234\n"); \
693 } \
694 else \
695 { \
696 fprintf (FILE, "\tmov.l #0x12345678,er3\n"); \
697 fprintf (FILE, "\tjmp @0x123456\n"); \
698 } \
699 } while (0)
700
701 /* Length in units of the trampoline for entering a nested function. */
702
703 #define TRAMPOLINE_SIZE (TARGET_H8300 ? 8 : 12)
704
705 /* Emit RTL insns to initialize the variable parts of a trampoline.
706 FNADDR is an RTX for the address of the function's pure code.
707 CXT is an RTX for the static chain value for the function. */
708
709 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
710 { \
711 enum machine_mode mode = TARGET_H8300H ? SImode : HImode; \
712 emit_move_insn (gen_rtx (MEM, mode, plus_constant ((TRAMP), 2)), CXT); \
713 emit_move_insn (gen_rtx (MEM, mode, plus_constant ((TRAMP), 6)), FNADDR); \
714 if (TARGET_H8300H) \
715 emit_move_insn (gen_rtx (MEM, QImode, plus_constant ((TRAMP), 6)), GEN_INT (0x5A)); \
716 }
717 \f
718 /* Addressing modes, and classification of registers for them. */
719
720 #define HAVE_POST_INCREMENT
721 /*#define HAVE_POST_DECREMENT */
722
723 #define HAVE_PRE_DECREMENT
724 /*#define HAVE_PRE_INCREMENT */
725
726 /* Macros to check register numbers against specific register classes. */
727
728 /* These assume that REGNO is a hard or pseudo reg number.
729 They give nonzero only if REGNO is a hard reg of the suitable class
730 or a pseudo reg currently allocated to a suitable hard reg.
731 Since they use reg_renumber, they are safe only once reg_renumber
732 has been allocated, which happens in local-alloc.c. */
733
734 #define REGNO_OK_FOR_INDEX_P(regno) 0
735
736 #define REGNO_OK_FOR_BASE_P(regno) \
737 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
738 \f
739 /* Maximum number of registers that can appear in a valid memory address. */
740
741 #define MAX_REGS_PER_ADDRESS 1
742
743 /* 1 if X is an rtx for a constant that is a valid address. */
744
745 #define CONSTANT_ADDRESS_P(X) \
746 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
747 || (GET_CODE (X) == CONST_INT \
748 /* We handle signed and unsigned offsets here. */ \
749 && INTVAL (X) > (TARGET_H8300 ? -0x10000 : -0x1000000) \
750 && INTVAL (X) < (TARGET_H8300 ? 0x10000 : 0x1000000)) \
751 || GET_CODE (X) == CONST \
752 || GET_CODE (X) == HIGH)
753
754 /* Nonzero if the constant value X is a legitimate general operand.
755 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
756
757 #define LEGITIMATE_CONSTANT_P(X) (GET_CODE (X) != CONST_DOUBLE)
758
759 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
760 and check its validity for a certain class.
761 We have two alternate definitions for each of them.
762 The usual definition accepts all pseudo regs; the other rejects
763 them unless they have been allocated suitable hard regs.
764 The symbol REG_OK_STRICT causes the latter definition to be used.
765
766 Most source files want to accept pseudo regs in the hope that
767 they will get allocated to the class that the insn wants them to be in.
768 Source files for reload pass need to be strict.
769 After reload, it makes no difference, since pseudo regs have
770 been eliminated by then. */
771
772 #ifndef REG_OK_STRICT
773
774 /* Nonzero if X is a hard reg that can be used as an index
775 or if it is a pseudo reg. */
776 #define REG_OK_FOR_INDEX_P(X) 0
777 /* Nonzero if X is a hard reg that can be used as a base reg
778 or if it is a pseudo reg. */
779 #define REG_OK_FOR_BASE_P(X) 1
780 #define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
781 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
782 #define STRICT 0
783
784 #else
785
786 /* Nonzero if X is a hard reg that can be used as an index. */
787 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
788 /* Nonzero if X is a hard reg that can be used as a base reg. */
789 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
790 #define STRICT 1
791
792 #endif
793
794 /* Extra constraints - 'U' if for an operand valid for a bset
795 destination; i.e. a register or register indirect target. */
796 #define OK_FOR_U(OP) \
797 ((GET_CODE (OP) == REG && REG_OK_FOR_BASE_P (OP)) \
798 || (GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
799 && REG_OK_FOR_BASE_P (XEXP (OP, 0))))
800
801 #define EXTRA_CONSTRAINT(OP, C) \
802 ((C) == 'U' ? OK_FOR_U (OP) : 0)
803 \f
804 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
805 that is a valid memory address for an instruction.
806 The MODE argument is the machine mode for the MEM expression
807 that wants to use this address.
808
809 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
810 except for CONSTANT_ADDRESS_P which is actually
811 machine-independent.
812
813 On the H8/300, a legitimate address has the form
814 REG, REG+CONSTANT_ADDRESS or CONSTANT_ADDRESS. */
815
816 /* Accept either REG or SUBREG where a register is valid. */
817
818 #define RTX_OK_FOR_BASE_P(X) \
819 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
820 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
821 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
822
823 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
824 if (RTX_OK_FOR_BASE_P (X)) goto ADDR; \
825 if (CONSTANT_ADDRESS_P (X)) goto ADDR; \
826 if (GET_CODE (X) == PLUS \
827 && CONSTANT_ADDRESS_P (XEXP (X, 1)) \
828 && RTX_OK_FOR_BASE_P (XEXP (X, 0))) goto ADDR;
829 \f
830 /* Try machine-dependent ways of modifying an illegitimate address
831 to be legitimate. If we find one, return the new, valid address.
832 This macro is used in only one place: `memory_address' in explow.c.
833
834 OLDX is the address as it was before break_out_memory_refs was called.
835 In some cases it is useful to look at this to decide what needs to be done.
836
837 MODE and WIN are passed so that this macro can use
838 GO_IF_LEGITIMATE_ADDRESS.
839
840 It is always safe for this macro to do nothing. It exists to recognize
841 opportunities to optimize the output.
842
843 For the H8/300, don't do anything. */
844
845 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
846
847 /* Go to LABEL if ADDR (a legitimate address expression)
848 has an effect that depends on the machine mode it is used for.
849
850 On the H8/300, the predecrement and postincrement address depend thus
851 (the amount of decrement or increment being the length of the operand)
852 and all indexed address depend thus (because the index scale factor
853 is the length of the operand). */
854
855 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
856 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL;
857 \f
858 /* Specify the machine mode that this machine uses
859 for the index in the tablejump instruction. */
860 #define CASE_VECTOR_MODE Pmode
861
862 /* Define this if the case instruction expects the table
863 to contain offsets from the address of the table.
864 Do not define this if the table should contain absolute addresses. */
865 /*#define CASE_VECTOR_PC_RELATIVE*/
866
867 /* Define this if the case instruction drops through after the table
868 when the index is out of range. Don't define it if the case insn
869 jumps to the default label instead. */
870 #define CASE_DROPS_THROUGH
871
872 /* Specify the tree operation to be used to convert reals to integers. */
873 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
874
875 /* This is the kind of divide that is easiest to do in the general case. */
876 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
877
878 /* Define this as 1 if `char' should by default be signed; else as 0.
879
880 On the H8/300, sign extension is expensive, so we'll say that chars
881 are unsigned. */
882 #define DEFAULT_SIGNED_CHAR 0
883
884 /* This flag, if defined, says the same insns that convert to a signed fixnum
885 also convert validly to an unsigned one. */
886 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
887
888 /* Max number of bytes we can move from memory to memory
889 in one reasonably fast instruction. */
890 #define MOVE_MAX (TARGET_H8300H ? 4 : 2)
891 #define MAX_MOVE_MAX 4
892
893 /* Define this if zero-extension is slow (more than one real instruction). */
894 /* #define SLOW_ZERO_EXTEND */
895
896 /* Nonzero if access to memory by bytes is slow and undesirable. */
897 #define SLOW_BYTE_ACCESS TARGET_SLOWBYTE
898
899 /* Define if shifts truncate the shift count
900 which implies one can omit a sign-extension or zero-extension
901 of a shift count. */
902 /* #define SHIFT_COUNT_TRUNCATED */
903
904 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
905 is done just by pretending it is already truncated. */
906 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
907
908 /* Specify the machine mode that pointers have.
909 After generation of rtl, the compiler makes no further distinction
910 between pointers and any other objects of this machine mode. */
911 #define Pmode (TARGET_H8300H ? SImode : HImode)
912
913 /* ANSI C types.
914 We use longs for the 300h because ints can be 16 or 32.
915 GCC requires SIZE_TYPE to be the same size as pointers. */
916 #define NO_BUILTIN_SIZE_TYPE
917 #define NO_BUILTIN_PTRDIFF_TYPE
918 #define SIZE_TYPE (TARGET_H8300 ? "unsigned int" : "long unsigned int")
919 #define PTRDIFF_TYPE (TARGET_H8300 ? "int" : "long int")
920
921 #define WCHAR_TYPE "short unsigned int"
922 #define WCHAR_TYPE_SIZE 16
923 #define MAX_WCHAR_TYPE_SIZE 16
924
925 /* A function address in a call instruction
926 is a byte address (for indexing purposes)
927 so give the MEM rtx a byte's mode. */
928 #define FUNCTION_MODE QImode
929
930 /* Compute the cost of computing a constant rtl expression RTX
931 whose rtx-code is CODE. The body of this macro is a portion
932 of a switch statement. If the code is computed here,
933 return it with a return statement. Otherwise, break from the switch. */
934
935 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
936 default: { int _zxy= const_costs(RTX, CODE); \
937 if(_zxy) return _zxy; break;}
938
939 #define BRANCH_COST 0
940
941 /* We say that MOD and DIV are so cheap because otherwise we'll
942 generate some really horrible code for division of a power of two. */
943
944 /* Provide the costs of a rtl expression. This is in the body of a
945 switch on CODE. */
946 /* ??? Shifts need to have a *much* higher cost than this. */
947
948 #define RTX_COSTS(RTX,CODE,OUTER_CODE) \
949 case MOD: \
950 case DIV: \
951 return 60; \
952 case MULT: \
953 return 20; \
954 case ASHIFT: \
955 case ASHIFTRT: \
956 case LSHIFTRT: \
957 case ROTATE: \
958 case ROTATERT: \
959 if (GET_MODE (RTX) == HImode) return 2; \
960 return 8;
961
962 /* Tell final.c how to eliminate redundant test instructions. */
963
964 /* Here we define machine-dependent flags and fields in cc_status
965 (see `conditions.h'). No extra ones are needed for the vax. */
966
967 /* Store in cc_status the expressions
968 that the condition codes will describe
969 after execution of an instruction whose pattern is EXP.
970 Do not alter them if the instruction would not alter the cc's. */
971
972 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
973 #define CC_DONE_CBIT 0400
974
975 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
976 { \
977 if (cc_status.flags & CC_NO_OVERFLOW) \
978 return NO_OV; \
979 return NORMAL; \
980 }
981 \f
982 /* Control the assembler format that we output. */
983
984 #define ASM_IDENTIFY_GCC /* nothing */
985
986 /* Output at beginning/end of assembler file. */
987
988 #define ASM_FILE_START(FILE) asm_file_start(FILE)
989
990 #define ASM_FILE_END(FILE) asm_file_end(FILE)
991
992 /* Output to assembler file text saying following lines
993 may contain character constants, extra white space, comments, etc. */
994
995 #define ASM_APP_ON "; #APP\n"
996
997 /* Output to assembler file text saying following lines
998 no longer contain unusual constructs. */
999
1000 #define ASM_APP_OFF "; #NO_APP\n"
1001
1002 #define FILE_ASM_OP "\t.file\n"
1003 #define IDENT_ASM_OP "\t.ident\n"
1004
1005 /* The assembler op to get a word, 2 bytes for the H8/300, 4 for H8/300H. */
1006 #define ASM_WORD_OP (TARGET_H8300 ? ".word" : ".long")
1007
1008 /* Output before read-only data. */
1009
1010 #define TEXT_SECTION_ASM_OP "\t.section .text"
1011 #define DATA_SECTION_ASM_OP "\t.section .data"
1012 #define BSS_SECTION_ASM_OP "\t.section .bss"
1013 #define INIT_SECTION_ASM_OP "\t.section .init"
1014 #define CTORS_SECTION_ASM_OP "\t.section .ctors"
1015 #define DTORS_SECTION_ASM_OP "\t.section .dtors"
1016
1017 #define EXTRA_SECTIONS in_ctors, in_dtors
1018
1019 #define EXTRA_SECTION_FUNCTIONS \
1020 \
1021 void \
1022 ctors_section() \
1023 { \
1024 if (in_section != in_ctors) \
1025 { \
1026 fprintf (asm_out_file, "%s\n", CTORS_SECTION_ASM_OP); \
1027 in_section = in_ctors; \
1028 } \
1029 } \
1030 \
1031 void \
1032 dtors_section() \
1033 { \
1034 if (in_section != in_dtors) \
1035 { \
1036 fprintf (asm_out_file, "%s\n", DTORS_SECTION_ASM_OP); \
1037 in_section = in_dtors; \
1038 } \
1039 } \
1040
1041 #define ASM_OUTPUT_CONSTRUCTOR(FILE,NAME) \
1042 do { ctors_section(); \
1043 fprintf(FILE, "\t%s\t_%s\n", ASM_WORD_OP, NAME); } while (0)
1044
1045 #define ASM_OUTPUT_DESTRUCTOR(FILE,NAME) \
1046 do { dtors_section(); \
1047 fprintf(FILE, "\t%s\t_%s\n", ASM_WORD_OP, NAME); } while (0)
1048
1049 #undef DO_GLOBAL_CTORS_BODY
1050 #define DO_GLOBAL_CTORS_BODY \
1051 { \
1052 typedef (*pfunc)(); \
1053 extern pfunc __ctors[]; \
1054 extern pfunc __ctors_end[]; \
1055 pfunc *p; \
1056 for (p = __ctors_end; p > __ctors; ) \
1057 { \
1058 (*--p)(); \
1059 } \
1060 }
1061
1062 #undef DO_GLOBAL_DTORS_BODY
1063 #define DO_GLOBAL_DTORS_BODY \
1064 { \
1065 typedef (*pfunc)(); \
1066 extern pfunc __dtors[]; \
1067 extern pfunc __dtors_end[]; \
1068 pfunc *p; \
1069 for (p = __dtors; p < __dtors_end; p++) \
1070 { \
1071 (*p)(); \
1072 } \
1073 }
1074
1075 /* How to refer to registers in assembler output.
1076 This sequence is indexed by compiler's hard-register-number (see above). */
1077
1078 #define REGISTER_NAMES \
1079 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "sp", "ap"}
1080
1081 #define ADDITIONAL_REGISTER_NAMES { { "r7", 7 } }
1082
1083 /* How to renumber registers for dbx and gdb.
1084 H8/300 needs no change in the numeration. */
1085
1086 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1087
1088 #define SDB_DEBUGGING_INFO
1089 #define SDB_DELIM "\n"
1090
1091 /* Support -gstabs. */
1092
1093 #include "dbxcoff.h"
1094
1095 /* A C statement to output something to the assembler file to switch to section
1096 NAME for object DECL which is either a FUNCTION_DECL, a VAR_DECL or
1097 NULL_TREE. Some target formats do not support arbitrary sections. Do not
1098 define this macro in such cases. */
1099
1100 #define ASM_OUTPUT_SECTION_NAME(FILE, DECL, NAME) \
1101 fprintf (FILE, "\t.section %s\n", NAME)
1102
1103 /* This is how to output the definition of a user-level label named NAME,
1104 such as the label on a static function or variable NAME. */
1105
1106 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1107 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1108
1109 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME)
1110
1111 /* This is how to output a command to make the user-level label named NAME
1112 defined for reference from other files. */
1113
1114 #define ASM_GLOBALIZE_LABEL(FILE, NAME) \
1115 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1116
1117 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
1118 ASM_OUTPUT_LABEL(FILE, NAME)
1119
1120 /* This is how to output a reference to a user-level label named NAME.
1121 `assemble_name' uses this. */
1122
1123 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1124 fprintf (FILE, "_%s", NAME)
1125
1126 /* This is how to output an internal numbered label where
1127 PREFIX is the class of label and NUM is the number within the class. */
1128
1129 #define ASM_OUTPUT_INTERNAL_LABEL(FILE, PREFIX, NUM) \
1130 fprintf (FILE, ".%s%d:\n", PREFIX, NUM)
1131
1132 /* This is how to store into the string LABEL
1133 the symbol_ref name of an internal numbered label where
1134 PREFIX is the class of label and NUM is the number within the class.
1135 This is suitable for output with `assemble_name'. */
1136
1137 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1138 sprintf (LABEL, "*.%s%d", PREFIX, NUM)
1139
1140 /* This is how to output an assembler line defining a `double' constant.
1141 It is .dfloat or .gfloat, depending. */
1142
1143 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
1144 do { char dstr[30]; \
1145 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
1146 fprintf (FILE, "\t.double %s\n", dstr); \
1147 } while (0)
1148
1149
1150 /* This is how to output an assembler line defining a `float' constant. */
1151 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
1152 do { char dstr[30]; \
1153 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
1154 fprintf (FILE, "\t.float %s\n", dstr); \
1155 } while (0)
1156
1157 /* This is how to output an assembler line defining an `int' constant. */
1158
1159 #define ASM_OUTPUT_INT(FILE, VALUE) \
1160 ( fprintf (FILE, "\t.long "), \
1161 output_addr_const (FILE, (VALUE)), \
1162 fprintf (FILE, "\n"))
1163
1164 /* Likewise for `char' and `short' constants. */
1165
1166 #define ASM_OUTPUT_SHORT(FILE, VALUE) \
1167 ( fprintf (FILE, "\t.word "), \
1168 output_addr_const (FILE, (VALUE)), \
1169 fprintf (FILE, "\n"))
1170
1171 #define ASM_OUTPUT_CHAR(FILE, VALUE) \
1172 ( fprintf (FILE, "\t.byte "), \
1173 output_addr_const (FILE, (VALUE)), \
1174 fprintf (FILE, "\n"))
1175
1176 /* This is how to output an assembler line for a numeric constant byte. */
1177 #define ASM_OUTPUT_BYTE(FILE, VALUE) \
1178 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1179
1180 /* This is how to output an insn to push a register on the stack.
1181 It need not be very fast code. */
1182
1183 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
1184 fprintf (FILE, "\t%s\t%s\n", h8_push_op, h8_reg_names[REGNO])
1185
1186 /* This is how to output an insn to pop a register from the stack.
1187 It need not be very fast code. */
1188
1189 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1190 fprintf (FILE, "\t%s\t%s\n", h8_pop_op, h8_reg_names[REGNO])
1191
1192 /* This is how to output an element of a case-vector that is absolute. */
1193
1194 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1195 asm_fprintf (FILE, "\t%s .L%d\n", ASM_WORD_OP, VALUE)
1196
1197 /* This is how to output an element of a case-vector that is relative. */
1198
1199 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1200 fprintf (FILE, "\t%s .L%d-.L%d\n", ASM_WORD_OP, VALUE, REL)
1201
1202 /* This is how to output an assembler line
1203 that says to advance the location counter
1204 to a multiple of 2**LOG bytes. */
1205
1206 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1207 if ((LOG) != 0) \
1208 fprintf (FILE, "\t.align %d\n", (LOG))
1209
1210 /* This is how to output an assembler line
1211 that says to advance the location counter by SIZE bytes. */
1212
1213 #define ASM_OUTPUT_IDENT(FILE, NAME) \
1214 fprintf(FILE, "%s\t \"%s\"\n", IDENT_ASM_OP, NAME)
1215
1216 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
1217 fprintf (FILE, "\t.space %d\n", (SIZE))
1218
1219 /* This says how to output an assembler line
1220 to define a global common symbol. */
1221
1222 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1223 ( fputs ("\t.comm ", (FILE)), \
1224 assemble_name ((FILE), (NAME)), \
1225 fprintf ((FILE), ",%d\n", (SIZE)))
1226
1227 /* This says how to output an assembler line
1228 to define a local common symbol. */
1229
1230 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1231 ( fputs ("\t.lcomm ", (FILE)), \
1232 assemble_name ((FILE), (NAME)), \
1233 fprintf ((FILE), ",%d\n", (SIZE)))
1234
1235 /* Store in OUTPUT a string (made with alloca) containing
1236 an assembler-name for a local static variable named NAME.
1237 LABELNO is an integer which is different for each call. */
1238
1239 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1240 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1241 sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
1242
1243 /* Define the parentheses used to group arithmetic operations
1244 in assembler code. */
1245
1246 #define ASM_OPEN_PAREN "("
1247 #define ASM_CLOSE_PAREN ")"
1248
1249 /* Define results of standard character escape sequences. */
1250 #define TARGET_BELL 007
1251 #define TARGET_BS 010
1252 #define TARGET_TAB 011
1253 #define TARGET_NEWLINE 012
1254 #define TARGET_VT 013
1255 #define TARGET_FF 014
1256 #define TARGET_CR 015
1257
1258 /* Print an instruction operand X on file FILE.
1259 look in h8300.c for details */
1260
1261 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1262 ((CODE) == '#')
1263
1264 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
1265
1266 /* Print a memory operand whose address is X, on file FILE.
1267 This uses a function in output-vax.c. */
1268
1269 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1270
1271 /* Define this macro if you want to implement any pragmas. If defined, it
1272 should be a C expression to be executed when #pragma is seen. The
1273 argument STREAM is the stdio input stream from which the source
1274 text can be read. CH is the first character after the #pragma. The
1275 result of the expression is the terminating character found
1276 (newline or EOF). */
1277 #define HANDLE_PRAGMA(FILE, CH) handle_pragma (FILE, CH)
1278
1279 #define FINAL_PRESCAN_INSN(insn, operand, nop) final_prescan_insn (insn, operand,nop)
1280
1281 /* Define this macro if GNU CC should generate calls to the System V
1282 (and ANSI C) library functions `memcpy' and `memset' rather than
1283 the BSD functions `bcopy' and `bzero'. */
1284
1285 #define TARGET_MEM_FUNCTIONS 1
1286
1287 #define MULHI3_LIBCALL "__mulhi3"
1288 #define DIVHI3_LIBCALL "__divhi3"
1289 #define UDIVHI3_LIBCALL "__udivhi3"
1290 #define MODHI3_LIBCALL "__modhi3"
1291 #define UMODHI3_LIBCALL "__umodhi3"
1292
1293 /* Perform target dependent optabs initialization. */
1294
1295 #define INIT_TARGET_OPTABS \
1296 do { \
1297 smul_optab->handlers[(int) HImode].libfunc \
1298 = gen_rtx (SYMBOL_REF, Pmode, MULHI3_LIBCALL); \
1299 sdiv_optab->handlers[(int) HImode].libfunc \
1300 = gen_rtx (SYMBOL_REF, Pmode, DIVHI3_LIBCALL); \
1301 udiv_optab->handlers[(int) HImode].libfunc \
1302 = gen_rtx (SYMBOL_REF, Pmode, UDIVHI3_LIBCALL); \
1303 smod_optab->handlers[(int) HImode].libfunc \
1304 = gen_rtx (SYMBOL_REF, Pmode, MODHI3_LIBCALL); \
1305 umod_optab->handlers[(int) HImode].libfunc \
1306 = gen_rtx (SYMBOL_REF, Pmode, UMODHI3_LIBCALL); \
1307 } while (0)
1308
1309 #define MOVE_RATIO 3
1310
1311 /* Declarations for functions used in insn-output.c. */
1312 char *emit_a_shift ();
1313
1314