calls.c (expand_call): Remove current_call_is_indirect nonsense.
[gcc.git] / gcc / config / h8300 / h8300.h
1 /* Definitions of target machine for GNU compiler.
2 Hitachi H8/300 version generating coff
3 Copyright (C) 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
4 Contributed by Steve Chamberlain (sac@cygnus.com),
5 Jim Wilson (wilson@cygnus.com), and Doug Evans (dje@cygnus.com).
6
7 This file is part of GNU CC.
8
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* Which cpu to compile for.
25 We use int for CPU_TYPE to avoid lots of casts. */
26 #if 0 /* defined in insn-attr.h, here for documentation */
27 enum attr_cpu { CPU_H8300, CPU_H8300H };
28 #endif
29 extern int cpu_type;
30
31 /* Various globals defined in h8300.c. */
32
33 extern char *h8_push_op,*h8_pop_op,*h8_mov_op;
34 extern char **h8_reg_names;
35
36 /* Names to predefine in the preprocessor for this target machine. */
37
38 #define CPP_PREDEFINES \
39 "-D__LONG_MAX__=2147483647L -D__LONG_LONG_MAX__=2147483647L"
40
41 #define CPP_SPEC \
42 "%{!mh:-D__H8300__} %{mh:-D__H8300H__} \
43 %{!mh:-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int} \
44 %{mh:-D__SIZE_TYPE__=unsigned\\ long -D__PTRDIFF_TYPE__=long} \
45 %{!mh:-Acpu(h8300) -Amachine(h8300)} %{mh:-Acpu(h8300h) -Amachine(h8300h)} \
46 %{!mint32:-D__INT_MAX__=32767} %{mint32:-D__INT_MAX__=2147483647}"
47
48 #define LINK_SPEC "%{mh:-m h8300h}"
49
50 #define LIB_SPEC "%{mrelax:-relax} %{g:-lg} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
51
52 /* Print subsidiary information on the compiler version in use. */
53
54 #define TARGET_VERSION fprintf (stderr, " (Hitachi H8/300)");
55
56 /* Run-time compilation parameters selecting different hardware subsets. */
57
58 extern int target_flags;
59
60 /* Macros used in the machine description to test the flags. */
61
62 /* Make int's 32 bits. */
63 #define TARGET_INT32 (target_flags & 8)
64
65 /* Dump recorded insn lengths into the output file. This helps debug the
66 md file. */
67 #define TARGET_ADDRESSES (target_flags & 64)
68
69 /* Pass the first few arguments in registers. */
70 #define TARGET_QUICKCALL (target_flags & 128)
71
72 /* Pretend byte accesses are slow. */
73 #define TARGET_SLOWBYTE (target_flags & 256)
74
75 /* Dump each assembler insn's rtl into the output file.
76 This is for debugging the compiler only. */
77 #define TARGET_RTL_DUMP (target_flags & 2048)
78
79 /* Select between the h8/300 and h8/300h cpus. */
80 #define TARGET_H8300 (! TARGET_H8300H)
81 #define TARGET_H8300H (target_flags & 4096)
82
83 /* Align all values on the h8/300h the same way as the h8/300. Specifically,
84 32 bit and larger values are aligned on 16 bit boundaries.
85 This is all the hardware requires, but the default is 32 bits for the 300h.
86 ??? Now watch someone add hardware floating point requiring 32 bit
87 alignment. */
88 #define TARGET_ALIGN_300 (target_flags & 8192)
89
90 /* Macro to define tables used to set the flags.
91 This is a list in braces of pairs in braces,
92 each pair being { "NAME", VALUE }
93 where VALUE is the bits to set or minus the bits to clear.
94 An empty string NAME is used to identify the default VALUE. */
95
96 #define TARGET_SWITCHES \
97 { {"int32",8}, \
98 {"addresses",64 }, \
99 {"quickcall",128}, \
100 {"no-quickcall",-128}, \
101 {"slowbyte",256}, \
102 {"relax",1024}, \
103 {"rtl-dump",2048}, \
104 {"h",4096}, \
105 {"no-h",-4096}, \
106 {"align-300",8192}, \
107 { "", TARGET_DEFAULT}}
108
109 /* Do things that must be done once at start up. */
110
111 #define OVERRIDE_OPTIONS \
112 do { \
113 h8300_init_once (); \
114 } while (0)
115
116 /* Default target_flags if no switches specified. */
117
118 #ifndef TARGET_DEFAULT
119 #define TARGET_DEFAULT (128) /* quickcall */
120 #endif
121
122 /* Show we can debug even without a frame pointer. */
123 /* #define CAN_DEBUG_WITHOUT_FP */
124
125 /* Define this if addresses of constant functions
126 shouldn't be put through pseudo regs where they can be cse'd.
127 Desirable on machines where ordinary constants are expensive
128 but a CALL with constant address is cheap. */
129 #define NO_FUNCTION_CSE
130 \f
131 /* Target machine storage layout */
132
133 /* Define to use software floating point emulator for REAL_ARITHMETIC and
134 decimal <-> binary conversion. */
135 #define REAL_ARITHMETIC
136
137 /* Define this if most significant bit is lowest numbered
138 in instructions that operate on numbered bit-fields.
139 This is not true on the H8/300. */
140 #define BITS_BIG_ENDIAN 0
141
142 /* Define this if most significant byte of a word is the lowest numbered. */
143 /* That is true on the H8/300. */
144 #define BYTES_BIG_ENDIAN 1
145
146 /* Define this if most significant word of a multiword number is lowest
147 numbered.
148 This is true on an H8/300 (actually we can make it up, but we choose to
149 be consistent. */
150 #define WORDS_BIG_ENDIAN 1
151
152 /* Number of bits in an addressable storage unit */
153 #define BITS_PER_UNIT 8
154
155 /* Width in bits of a "word", which is the contents of a machine register.
156 Note that this is not necessarily the width of data type `int';
157 if using 16-bit ints on a 68000, this would still be 32.
158 But on a machine with 16-bit registers, this would be 16. */
159 #define BITS_PER_WORD (TARGET_H8300H ? 32 : 16)
160 #define MAX_BITS_PER_WORD 32
161
162 /* Width of a word, in units (bytes). */
163 #define UNITS_PER_WORD (TARGET_H8300H ? 4 : 2)
164 #define MIN_UNITS_PER_WORD 2
165
166 /* Width in bits of a pointer.
167 See also the macro `Pmode' defined below. */
168 #define POINTER_SIZE (TARGET_H8300H ? 32 : 16)
169
170 #define SHORT_TYPE_SIZE 16
171 #define INT_TYPE_SIZE (TARGET_INT32 ? 32 : 16)
172 #define LONG_TYPE_SIZE 32
173 #define LONG_LONG_TYPE_SIZE 32
174 #define FLOAT_TYPE_SIZE 32
175 #define DOUBLE_TYPE_SIZE 32
176 #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
177
178 #define MAX_FIXED_MODE_SIZE 32
179
180 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
181 #define PARM_BOUNDARY (TARGET_H8300H ? 32 : 16)
182
183 /* Allocation boundary (in *bits*) for the code of a function. */
184 #define FUNCTION_BOUNDARY 16
185
186 /* Alignment of field after `int : 0' in a structure. */
187 /* One can argue this should be 32 for -mint32, but since 32 bit ints only
188 need 16 bit alignment, this is left as is so that -mint32 doesn't change
189 structure layouts. */
190 #define EMPTY_FIELD_BOUNDARY 16
191
192 /* A bitfield declared as `int' forces `int' alignment for the struct. */
193 #define PCC_BITFIELD_TYPE_MATTERS 0
194
195 /* No data type wants to be aligned rounder than this.
196 32 bit values are aligned as such on the 300h for speed. */
197 #define BIGGEST_ALIGNMENT \
198 ((TARGET_H8300H && ! TARGET_ALIGN_300) ? 32 : 16)
199
200 /* No structure field wants to be aligned rounder than this. */
201 #define BIGGEST_FIELD_ALIGNMENT \
202 ((TARGET_H8300H && ! TARGET_ALIGN_300) ? 32 : 16)
203
204 /* The stack goes in 16/32 bit lumps. */
205 #define STACK_BOUNDARY (TARGET_H8300 ? 16 : 32)
206
207 /* Define this if move instructions will actually fail to work
208 when given unaligned data. */
209 /* On the H8/300, longs can be aligned on halfword boundaries, but not
210 byte boundaries. */
211 #define STRICT_ALIGNMENT 1
212 \f
213 /* Standard register usage. */
214
215 /* Number of actual hardware registers.
216 The hardware registers are assigned numbers for the compiler
217 from 0 to just below FIRST_PSEUDO_REGISTER.
218
219 All registers that the compiler knows about must be given numbers,
220 even those that are not normally considered general registers.
221
222 Reg 8 does not correspond to any hardware register, but instead
223 appears in the RTL as an argument pointer prior to reload, and is
224 eliminated during reloading in favor of either the stack or frame
225 pointer. */
226
227 #define FIRST_PSEUDO_REGISTER 9
228
229 /* 1 for registers that have pervasive standard uses
230 and are not available for the register allocator. */
231
232 #define FIXED_REGISTERS \
233 { 0, 0, 0, 0, 0, 0, 0, 1, 1}
234
235 /* 1 for registers not available across function calls.
236 These must include the FIXED_REGISTERS and also any
237 registers that can be used without being saved.
238 The latter must include the registers where values are returned
239 and the register where structure-value addresses are passed.
240 Aside from that, you can include as many other registers as you
241 like.
242
243 h8 destroys r0,r1,r2,r3. */
244
245 #define CALL_USED_REGISTERS \
246 { 1, 1, 1, 1, 0, 0, 0, 1, 1 }
247
248 #define REG_ALLOC_ORDER \
249 { 2, 3, 0, 1, 4, 5, 6, 7, 8}
250
251 /* Return number of consecutive hard regs needed starting at reg REGNO
252 to hold something of mode MODE.
253
254 This is ordinarily the length in words of a value of mode MODE
255 but can be less for certain modes in special long registers. */
256
257 #define HARD_REGNO_NREGS(REGNO, MODE) \
258 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
259
260 /* Value is 1 if hard register REGNO can hold a value of machine-mode
261 MODE.
262
263 H8/300: If an even reg, then anything goes. Otherwise the mode must be QI
264 or HI.
265 H8/300H: Anything goes. */
266
267 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
268 (TARGET_H8300 ? (((REGNO)&1)==0) || (MODE==HImode) || (MODE==QImode) \
269 : 1)
270
271 /* Value is 1 if it is a good idea to tie two pseudo registers
272 when one has mode MODE1 and one has mode MODE2.
273 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
274 for any hard reg, then this must be 0 for correct output. */
275 #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
276
277 /* Specify the registers used for certain standard purposes.
278 The values of these macros are register numbers. */
279
280 /* H8/300 pc is not overloaded on a register. */
281
282 /*#define PC_REGNUM 15*/
283
284 /* Register to use for pushing function arguments. */
285 #define STACK_POINTER_REGNUM 7
286
287 /* Base register for access to local variables of the function. */
288 #define FRAME_POINTER_REGNUM 6
289
290 /* Value should be nonzero if functions must have frame pointers.
291 Zero means the frame pointer need not be set up (and parms
292 may be accessed via the stack pointer) in functions that seem suitable.
293 This is computed in `reload', in reload1.c. */
294 #define FRAME_POINTER_REQUIRED 0
295
296 /* Base register for access to arguments of the function. */
297 #define ARG_POINTER_REGNUM 8
298
299 /* Register in which static-chain is passed to a function. */
300 #define STATIC_CHAIN_REGNUM 3
301 \f
302 /* Define the classes of registers for register constraints in the
303 machine description. Also define ranges of constants.
304
305 One of the classes must always be named ALL_REGS and include all hard regs.
306 If there is more than one class, another class must be named NO_REGS
307 and contain no registers.
308
309 The name GENERAL_REGS must be the name of a class (or an alias for
310 another name such as ALL_REGS). This is the class of registers
311 that is allowed by "g" or "r" in a register constraint.
312 Also, registers outside this class are allocated only when
313 instructions express preferences for them.
314
315 The classes must be numbered in nondecreasing order; that is,
316 a larger-numbered class must never be contained completely
317 in a smaller-numbered class.
318
319 For any two classes, it is very desirable that there be another
320 class that represents their union. */
321
322 /* The h8 has only one kind of register, but we mustn't do byte by
323 byte operations on the sp, so we keep it as a different class */
324
325 enum reg_class {
326 NO_REGS, LONG_REGS, GENERAL_REGS, SP_REG, SP_AND_G_REGS,
327 ALL_REGS, LIM_REG_CLASSES
328 };
329
330 #define N_REG_CLASSES (int) LIM_REG_CLASSES
331
332 /* Give names of register classes as strings for dump file. */
333
334 #define REG_CLASS_NAMES \
335 { "NO_REGS", "LONG_REGS", "GENERAL_REGS", "SP_REG", "SP_AND_G_REGS", \
336 "ALL_REGS", "LIM_REGS" }
337
338 /* Define which registers fit in which classes.
339 This is an initializer for a vector of HARD_REG_SET
340 of length N_REG_CLASSES. */
341
342 #define REG_CLASS_CONTENTS \
343 { 0, /* No regs */ \
344 0x07f, /* LONG_REGS */ \
345 0x07f, /* GENERAL_REGS */ \
346 0x080, /* SP_REG */ \
347 0x0ff, /* SP_AND_G_REGS */ \
348 0x1ff, /* ALL_REGS */ \
349 }
350
351 /* The same information, inverted:
352 Return the class number of the smallest class containing
353 reg number REGNO. This could be a conditional expression
354 or could index an array. */
355
356 #define REGNO_REG_CLASS(REGNO) \
357 ((REGNO) < 7 ? LONG_REGS : \
358 (REGNO) == 7 ? SP_REG : \
359 GENERAL_REGS)
360
361 /* The class value for index registers, and the one for base regs. */
362
363 #define INDEX_REG_CLASS NO_REGS
364 #define BASE_REG_CLASS GENERAL_REGS
365
366 /* Get reg_class from a letter such as appears in the machine description. */
367
368 #define REG_CLASS_FROM_LETTER(C) \
369 ((C) == 'a' ? (SP_REG) : (C) == 'l' ? (LONG_REGS) : (NO_REGS))
370
371 /* The letters I, J, K, L, M, N, O, P in a register constraint string
372 can be used to stand for particular ranges of immediate operands.
373 This macro defines what the ranges are.
374 C is the letter, and VALUE is a constant value.
375 Return 1 if VALUE is in the range specified by C. */
376
377 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
378 #define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) < 256)
379 #define CONST_OK_FOR_K(VALUE) (((VALUE) == 1) || (VALUE) == 2)
380 #define CONST_OK_FOR_L(VALUE) (((VALUE) == -1) || (VALUE) == -2)
381 #define CONST_OK_FOR_M(VALUE) (((VALUE) == 3) || (VALUE) == 4)
382 #define CONST_OK_FOR_N(VALUE) (((VALUE) == -3) || (VALUE) == -4)
383 #define CONST_OK_FOR_O(VALUE) (ok_for_bclr (VALUE))
384 #define CONST_OK_FOR_P(VALUE) (small_power_of_two (VALUE))
385
386 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
387 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
388 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
389 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
390 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
391 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
392 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
393 (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
394 (C) == 'P' ? CONST_OK_FOR_P(VALUE) : \
395 0)
396
397 /* Similar, but for floating constants, and defining letters G and H.
398 Here VALUE is the CONST_DOUBLE rtx itself.
399
400 `G' is a floating-point zero. */
401
402 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
403 ((C) == 'G' ? (VALUE) == CONST0_RTX (DFmode) \
404 : 0)
405
406 /* Given an rtx X being reloaded into a reg required to be
407 in class CLASS, return the class of reg to actually use.
408 In general this is just CLASS; but on some machines
409 in some cases it is preferable to use a more restrictive class. */
410
411 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
412
413 /* Return the maximum number of consecutive registers
414 needed to represent mode MODE in a register of class CLASS. */
415
416 /* On the H8, this is the size of MODE in words. */
417
418 #define CLASS_MAX_NREGS(CLASS, MODE) \
419 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
420
421 /* Any SI register to register move may need to be reloaded,
422 so define REGISTER_MOVE_COST to be > 2 so that reload never
423 shortcuts. */
424
425 #define REGISTER_MOVE_COST(CLASS1, CLASS2) 3
426 \f
427 /* Stack layout; function entry, exit and calling. */
428
429 /* Define this if pushing a word on the stack
430 makes the stack pointer a smaller address. */
431
432 #define STACK_GROWS_DOWNWARD
433
434 /* Define this if the nominal address of the stack frame
435 is at the high-address end of the local variables;
436 that is, each additional local variable allocated
437 goes at a more negative offset in the frame. */
438
439 #define FRAME_GROWS_DOWNWARD
440
441 /* Offset within stack frame to start allocating local variables at.
442 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
443 first local allocated. Otherwise, it is the offset to the BEGINNING
444 of the first local allocated. */
445
446 #define STARTING_FRAME_OFFSET 0
447
448 /* If we generate an insn to push BYTES bytes,
449 this says how many the stack pointer really advances by.
450
451 On the H8/300, @-sp really pushes a byte if you ask it to - but that's
452 dangerous, so we claim that it always pushes a word, then we catch
453 the mov.b rx,@-sp and turn it into a mov.w rx,@-sp on output.
454
455 On the H8/300h, we simplify TARGET_QUICKCALL by setting this to 4 and doing
456 a similar thing. */
457
458 #define PUSH_ROUNDING(BYTES) \
459 (((BYTES) + PARM_BOUNDARY/8 - 1) & -PARM_BOUNDARY/8)
460
461 /* Offset of first parameter from the argument pointer register value. */
462 /* Is equal to the size of the saved fp + pc, even if an fp isn't
463 saved since the value is used before we know. */
464
465 #define FIRST_PARM_OFFSET(FNDECL) 0
466
467 /* Value is the number of bytes of arguments automatically
468 popped when returning from a subroutine call.
469 FUNDECL is the declaration node of the function (as a tree),
470 FUNTYPE is the data type of the function (as a tree),
471 or for a library call it is an identifier node for the subroutine name.
472 SIZE is the number of bytes of arguments passed on the stack.
473
474 On the H8 the return does not pop anything. */
475
476 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
477
478 /* Definitions for register eliminations.
479
480 This is an array of structures. Each structure initializes one pair
481 of eliminable registers. The "from" register number is given first,
482 followed by "to". Eliminations of the same "from" register are listed
483 in order of preference.
484
485 We have two registers that can be eliminated on the h8300. First, the
486 frame pointer register can often be eliminated in favor of the stack
487 pointer register. Secondly, the argument pointer register can always be
488 eliminated; it is replaced with either the stack or frame pointer. */
489
490 #define ELIMINABLE_REGS \
491 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
492 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
493 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
494
495 /* Given FROM and TO register numbers, say whether this elimination is allowed.
496 Frame pointer elimination is automatically handled.
497
498 For the h8300, if frame pointer elimination is being done, we would like to
499 convert ap into sp, not fp.
500
501 All other eliminations are valid. */
502
503 #define CAN_ELIMINATE(FROM, TO) \
504 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
505 ? ! frame_pointer_needed \
506 : 1)
507
508 /* Define the offset between two registers, one to be eliminated, and the other
509 its replacement, at the start of a routine. */
510
511 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
512 OFFSET = initial_offset (FROM, TO)
513
514 /* Define how to find the value returned by a function.
515 VALTYPE is the data type of the value (as a tree).
516 If the precise function being called is known, FUNC is its FUNCTION_DECL;
517 otherwise, FUNC is 0.
518
519 On the H8 the return value is in R0/R1. */
520
521 #define FUNCTION_VALUE(VALTYPE, FUNC) \
522 gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
523
524 /* Define how to find the value returned by a library function
525 assuming the value has mode MODE. */
526
527 /* On the h8 the return value is in R0/R1 */
528
529 #define LIBCALL_VALUE(MODE) \
530 gen_rtx (REG, MODE, 0)
531
532 /* 1 if N is a possible register number for a function value.
533 On the H8, R0 is the only register thus used. */
534
535 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
536
537 /* Define this if PCC uses the nonreentrant convention for returning
538 structure and union values. */
539
540 /*#define PCC_STATIC_STRUCT_RETURN*/
541
542 /* 1 if N is a possible register number for function argument passing.
543 On the H8, no registers are used in this way. */
544 /* ??? What about TARGET_QUICKCALL? */
545
546 #define FUNCTION_ARG_REGNO_P(N) 0
547
548 /* Register in which address to store a structure value
549 is passed to a function. */
550
551 #define STRUCT_VALUE 0
552
553 /* Return true if X should be returned in memory. */
554 /* ??? This will return small structs in regs. */
555 #define RETURN_IN_MEMORY(X) (GET_MODE_SIZE (TYPE_MODE (X)) > 4)
556
557 /* When defined, the compiler allows registers explicitly used in the
558 rtl to be used as spill registers but prevents the compiler from
559 extending the lifetime of these registers. */
560
561 #define SMALL_REGISTER_CLASSES
562 \f
563 /* Define a data type for recording info about an argument list
564 during the scan of that argument list. This data type should
565 hold all necessary information about the function itself
566 and about the args processed so far, enough to enable macros
567 such as FUNCTION_ARG to determine where the next arg should go.
568
569 On the H8/300, this is a two item struct, the first is the number of bytes
570 scanned so far and the second is the rtx of the called library
571 function if any. */
572
573 #define CUMULATIVE_ARGS struct cum_arg
574 struct cum_arg { int nbytes; struct rtx_def * libcall; };
575
576 /* Initialize a variable CUM of type CUMULATIVE_ARGS
577 for a call to a function whose data type is FNTYPE.
578 For a library call, FNTYPE is 0.
579
580 On the H8/300, the offset starts at 0. */
581
582 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
583 ((CUM).nbytes = 0, (CUM).libcall = LIBNAME)
584
585 /* Update the data in CUM to advance over an argument
586 of mode MODE and data type TYPE.
587 (TYPE is null for libcalls where that information may not be available.) */
588
589 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
590 ((CUM).nbytes += ((MODE) != BLKmode \
591 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
592 : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
593
594 /* Define where to put the arguments to a function.
595 Value is zero to push the argument on the stack,
596 or a hard register in which to store the argument.
597
598 MODE is the argument's machine mode.
599 TYPE is the data type of the argument (as a tree).
600 This is null for libcalls where that information may
601 not be available.
602 CUM is a variable of type CUMULATIVE_ARGS which gives info about
603 the preceding args and about the function being called.
604 NAMED is nonzero if this argument is a named parameter
605 (otherwise it is an extra parameter matching an ellipsis). */
606
607 /* On the H8/300 all normal args are pushed, unless -mquickcall in which
608 case the first 3 arguments are passed in registers.
609 See function `function_arg'. */
610
611 struct rtx_def *function_arg();
612 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
613 function_arg (&CUM, MODE, TYPE, NAMED)
614
615 /* Perform any needed actions needed for a function that is receiving a
616 variable number of arguments. */
617
618 extern int current_function_anonymous_args;
619 #define SETUP_INCOMING_VARARGS(ASF, MODE, TYPE, PAS, ST) \
620 current_function_anonymous_args = 1;
621
622 /* Generate assembly output for the start of a function. */
623
624 #define FUNCTION_PROLOGUE(FILE, SIZE) \
625 function_prologue (FILE, SIZE)
626
627 /* Output assembler code to FILE to increment profiler label # LABELNO
628 for profiling a function entry. */
629
630 #define FUNCTION_PROFILER(FILE, LABELNO) \
631 fprintf (FILE, "\t%s\t#LP%d,%s\n\tjsr @mcount\n", \
632 h8_mov_op, (LABELNO), h8_reg_names[0]);
633
634 /* Output assembler code to FILE to initialize this source file's
635 basic block profiling info, if that has not already been done. */
636 /* ??? @LPBX0 is moved into r0 twice. */
637
638 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
639 fprintf (FILE, "\t%s\t%s\n\t%s\t@LPBX0,%s\n\tbne LPI%d\n\t%s\t@LPBX0,%s\n\t%s\t%s\n\tjsr\t@__bb_init_func\nLPI%d:\t%s\t%s\n", \
640 h8_push_op, h8_reg_names[0], \
641 h8_mov_op, h8_reg_names[0], \
642 (LABELNO), \
643 h8_mov_op, h8_reg_names[0], \
644 h8_push_op, h8_reg_names[0], \
645 (LABELNO), \
646 h8_pop_op, h8_reg_names[0]);
647
648 /* Output assembler code to FILE to increment the entry-count for
649 the BLOCKNO'th basic block in this source file. This is a real pain in the
650 sphincter on a VAX, since we do not want to change any of the bits in the
651 processor status word. The way it is done here, it is pushed onto the stack
652 before any flags have changed, and then the stack is fixed up to account for
653 the fact that the instruction to restore the flags only reads a word.
654 It may seem a bit clumsy, but at least it works. */
655 /* ??? This one needs work. */
656
657 #define BLOCK_PROFILER(FILE, BLOCKNO) \
658 fprintf (FILE, "\tmovpsl -(sp)\n\tmovw (sp),2(sp)\n\taddl2 $2,sp\n\taddl2 $1,LPBX2+%d\n\tbicpsw $255\n\tbispsw (sp)+\n", \
659 4 * BLOCKNO)
660
661 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
662 the stack pointer does not matter. The value is tested only in
663 functions that have frame pointers.
664 No definition is equivalent to always zero. */
665
666 #define EXIT_IGNORE_STACK 0
667
668 /* This macro generates the assembly code for function exit,
669 on machines that need it. If FUNCTION_EPILOGUE is not defined
670 then individual return instructions are generated for each
671 return statement. Args are same as for FUNCTION_PROLOGUE. */
672
673 #define FUNCTION_EPILOGUE(FILE, SIZE) \
674 function_epilogue (FILE, SIZE)
675
676 /* Output assembler code for a block containing the constant parts
677 of a trampoline, leaving space for the variable parts.
678
679 H8/300
680 vvvv context
681 1 0000 7900xxxx mov.w #0x1234,r3
682 2 0004 5A00xxxx jmp @0x1234
683 ^^^^ function
684
685 H8/300H
686 vvvvvvvv context
687 2 0000 7A00xxxxxxxx mov.l #0x12345678,er3
688 3 0006 5Axxxxxx jmp @0x123456
689 ^^^^^^ function
690 */
691
692 #define TRAMPOLINE_TEMPLATE(FILE) \
693 do { \
694 if (TARGET_H8300) \
695 { \
696 fprintf (FILE, "\tmov.w #0x1234,r3\n"); \
697 fprintf (FILE, "\tjmp @0x1234\n"); \
698 } \
699 else \
700 { \
701 fprintf (FILE, "\tmov.l #0x12345678,er3\n"); \
702 fprintf (FILE, "\tjmp @0x123456\n"); \
703 } \
704 } while (0)
705
706 /* Length in units of the trampoline for entering a nested function. */
707
708 #define TRAMPOLINE_SIZE (TARGET_H8300 ? 8 : 12)
709
710 /* Emit RTL insns to initialize the variable parts of a trampoline.
711 FNADDR is an RTX for the address of the function's pure code.
712 CXT is an RTX for the static chain value for the function. */
713
714 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
715 { \
716 enum machine_mode mode = TARGET_H8300H ? SImode : HImode; \
717 emit_move_insn (gen_rtx (MEM, mode, plus_constant ((TRAMP), 2)), CXT); \
718 emit_move_insn (gen_rtx (MEM, mode, plus_constant ((TRAMP), 6)), FNADDR); \
719 if (TARGET_H8300H) \
720 emit_move_insn (gen_rtx (MEM, QImode, plus_constant ((TRAMP), 6)), GEN_INT (0x5A)); \
721 }
722 \f
723 /* Addressing modes, and classification of registers for them. */
724
725 #define HAVE_POST_INCREMENT
726 /*#define HAVE_POST_DECREMENT */
727
728 #define HAVE_PRE_DECREMENT
729 /*#define HAVE_PRE_INCREMENT */
730
731 /* Macros to check register numbers against specific register classes. */
732
733 /* These assume that REGNO is a hard or pseudo reg number.
734 They give nonzero only if REGNO is a hard reg of the suitable class
735 or a pseudo reg currently allocated to a suitable hard reg.
736 Since they use reg_renumber, they are safe only once reg_renumber
737 has been allocated, which happens in local-alloc.c. */
738
739 #define REGNO_OK_FOR_INDEX_P(regno) 0
740
741 #define REGNO_OK_FOR_BASE_P(regno) \
742 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
743 \f
744 /* Maximum number of registers that can appear in a valid memory address. */
745
746 #define MAX_REGS_PER_ADDRESS 1
747
748 /* 1 if X is an rtx for a constant that is a valid address. */
749
750 #define CONSTANT_ADDRESS_P(X) \
751 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
752 || (GET_CODE (X) == CONST_INT \
753 /* We handle signed and unsigned offsets here. */ \
754 && INTVAL (X) > (TARGET_H8300 ? -0x10000 : -0x1000000) \
755 && INTVAL (X) < (TARGET_H8300 ? 0x10000 : 0x1000000)) \
756 || GET_CODE (X) == CONST \
757 || GET_CODE (X) == HIGH)
758
759 /* Nonzero if the constant value X is a legitimate general operand.
760 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
761
762 #define LEGITIMATE_CONSTANT_P(X) (GET_CODE (X) != CONST_DOUBLE)
763
764 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
765 and check its validity for a certain class.
766 We have two alternate definitions for each of them.
767 The usual definition accepts all pseudo regs; the other rejects
768 them unless they have been allocated suitable hard regs.
769 The symbol REG_OK_STRICT causes the latter definition to be used.
770
771 Most source files want to accept pseudo regs in the hope that
772 they will get allocated to the class that the insn wants them to be in.
773 Source files for reload pass need to be strict.
774 After reload, it makes no difference, since pseudo regs have
775 been eliminated by then. */
776
777 #ifndef REG_OK_STRICT
778
779 /* Nonzero if X is a hard reg that can be used as an index
780 or if it is a pseudo reg. */
781 #define REG_OK_FOR_INDEX_P(X) 0
782 /* Nonzero if X is a hard reg that can be used as a base reg
783 or if it is a pseudo reg. */
784 #define REG_OK_FOR_BASE_P(X) 1
785 #define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
786 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
787 #define STRICT 0
788
789 #else
790
791 /* Nonzero if X is a hard reg that can be used as an index. */
792 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
793 /* Nonzero if X is a hard reg that can be used as a base reg. */
794 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
795 #define STRICT 1
796
797 #endif
798
799 /* Extra constraints - 'U' if for an operand valid for a bset
800 destination; i.e. a register or register indirect target. */
801 #define OK_FOR_U(OP) \
802 ((GET_CODE (OP) == REG && REG_OK_FOR_BASE_P (OP)) \
803 || (GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
804 && REG_OK_FOR_BASE_P (XEXP (OP, 0))))
805
806 #define EXTRA_CONSTRAINT(OP, C) \
807 ((C) == 'U' ? OK_FOR_U (OP) : 0)
808 \f
809 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
810 that is a valid memory address for an instruction.
811 The MODE argument is the machine mode for the MEM expression
812 that wants to use this address.
813
814 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
815 except for CONSTANT_ADDRESS_P which is actually
816 machine-independent.
817
818 On the H8/300, a legitimate address has the form
819 REG, REG+CONSTANT_ADDRESS or CONSTANT_ADDRESS. */
820
821 /* Accept either REG or SUBREG where a register is valid. */
822
823 #define RTX_OK_FOR_BASE_P(X) \
824 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
825 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
826 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
827
828 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
829 if (RTX_OK_FOR_BASE_P (X)) goto ADDR; \
830 if (CONSTANT_ADDRESS_P (X)) goto ADDR; \
831 if (GET_CODE (X) == PLUS \
832 && CONSTANT_ADDRESS_P (XEXP (X, 1)) \
833 && RTX_OK_FOR_BASE_P (XEXP (X, 0))) goto ADDR;
834 \f
835 /* Try machine-dependent ways of modifying an illegitimate address
836 to be legitimate. If we find one, return the new, valid address.
837 This macro is used in only one place: `memory_address' in explow.c.
838
839 OLDX is the address as it was before break_out_memory_refs was called.
840 In some cases it is useful to look at this to decide what needs to be done.
841
842 MODE and WIN are passed so that this macro can use
843 GO_IF_LEGITIMATE_ADDRESS.
844
845 It is always safe for this macro to do nothing. It exists to recognize
846 opportunities to optimize the output.
847
848 For the H8/300, don't do anything. */
849
850 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
851
852 /* Go to LABEL if ADDR (a legitimate address expression)
853 has an effect that depends on the machine mode it is used for.
854
855 On the H8/300, the predecrement and postincrement address depend thus
856 (the amount of decrement or increment being the length of the operand)
857 and all indexed address depend thus (because the index scale factor
858 is the length of the operand). */
859
860 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
861 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL;
862 \f
863 /* Specify the machine mode that this machine uses
864 for the index in the tablejump instruction. */
865 #define CASE_VECTOR_MODE Pmode
866
867 /* Define this if the case instruction expects the table
868 to contain offsets from the address of the table.
869 Do not define this if the table should contain absolute addresses. */
870 /*#define CASE_VECTOR_PC_RELATIVE*/
871
872 /* Define this if the case instruction drops through after the table
873 when the index is out of range. Don't define it if the case insn
874 jumps to the default label instead. */
875 #define CASE_DROPS_THROUGH
876
877 /* Specify the tree operation to be used to convert reals to integers. */
878 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
879
880 /* This is the kind of divide that is easiest to do in the general case. */
881 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
882
883 /* Define this as 1 if `char' should by default be signed; else as 0.
884
885 On the H8/300, sign extension is expensive, so we'll say that chars
886 are unsigned. */
887 #define DEFAULT_SIGNED_CHAR 0
888
889 /* This flag, if defined, says the same insns that convert to a signed fixnum
890 also convert validly to an unsigned one. */
891 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
892
893 /* Max number of bytes we can move from memory to memory
894 in one reasonably fast instruction. */
895 #define MOVE_MAX (TARGET_H8300H ? 4 : 2)
896 #define MAX_MOVE_MAX 4
897
898 /* Define this if zero-extension is slow (more than one real instruction). */
899 /* #define SLOW_ZERO_EXTEND */
900
901 /* Nonzero if access to memory by bytes is slow and undesirable. */
902 #define SLOW_BYTE_ACCESS TARGET_SLOWBYTE
903
904 /* Define if shifts truncate the shift count
905 which implies one can omit a sign-extension or zero-extension
906 of a shift count. */
907 /* #define SHIFT_COUNT_TRUNCATED */
908
909 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
910 is done just by pretending it is already truncated. */
911 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
912
913 /* Specify the machine mode that pointers have.
914 After generation of rtl, the compiler makes no further distinction
915 between pointers and any other objects of this machine mode. */
916 #define Pmode (TARGET_H8300H ? SImode : HImode)
917
918 /* ANSI C types.
919 We use longs for the 300h because ints can be 16 or 32.
920 GCC requires SIZE_TYPE to be the same size as pointers. */
921 #define NO_BUILTIN_SIZE_TYPE
922 #define NO_BUILTIN_PTRDIFF_TYPE
923 #define SIZE_TYPE (TARGET_H8300 ? "unsigned int" : "long unsigned int")
924 #define PTRDIFF_TYPE (TARGET_H8300 ? "int" : "long int")
925
926 #define WCHAR_TYPE "short unsigned int"
927 #define WCHAR_TYPE_SIZE 16
928 #define MAX_WCHAR_TYPE_SIZE 16
929
930 /* A function address in a call instruction
931 is a byte address (for indexing purposes)
932 so give the MEM rtx a byte's mode. */
933 #define FUNCTION_MODE QImode
934
935 /* Compute the cost of computing a constant rtl expression RTX
936 whose rtx-code is CODE. The body of this macro is a portion
937 of a switch statement. If the code is computed here,
938 return it with a return statement. Otherwise, break from the switch. */
939
940 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
941 default: { int _zxy= const_costs(RTX, CODE); \
942 if(_zxy) return _zxy; break;}
943
944 #define BRANCH_COST 0
945
946 /* We say that MOD and DIV are so cheap because otherwise we'll
947 generate some really horrible code for division of a power of two. */
948
949 /* Provide the costs of a rtl expression. This is in the body of a
950 switch on CODE. */
951 /* ??? Shifts need to have a *much* higher cost than this. */
952
953 #define RTX_COSTS(RTX,CODE,OUTER_CODE) \
954 case MOD: \
955 case DIV: \
956 return 60; \
957 case MULT: \
958 return 20; \
959 case ASHIFT: \
960 case ASHIFTRT: \
961 case LSHIFTRT: \
962 case ROTATE: \
963 case ROTATERT: \
964 if (GET_MODE (RTX) == HImode) return 2; \
965 return 8;
966
967 /* Tell final.c how to eliminate redundant test instructions. */
968
969 /* Here we define machine-dependent flags and fields in cc_status
970 (see `conditions.h'). No extra ones are needed for the vax. */
971
972 /* Store in cc_status the expressions
973 that the condition codes will describe
974 after execution of an instruction whose pattern is EXP.
975 Do not alter them if the instruction would not alter the cc's. */
976
977 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
978
979 /* The mov,and,or,xor insns always set V to 0. */
980 #define CC_OVERFLOW_0 0400
981 /* The add insns don't set overflow in a usable way. */
982 #define CC_OVERFLOW_UNUSABLE 01000
983 /* The mov,and,or,xor insns don't set carry. That's ok though as the
984 Z bit is all we need when doing unsigned comparisons on the result of
985 these insns (since they're always with 0). However, conditions.h has
986 CC_NO_OVERFLOW defined for this purpose. Rename it to something more
987 understandable. */
988 #define CC_NO_CARRY CC_NO_OVERFLOW
989 /* ??? Use CC_Z_IN_NOT_C for bld insns? */
990 \f
991 /* Control the assembler format that we output. */
992
993 #define ASM_IDENTIFY_GCC /* nothing */
994
995 /* Output at beginning/end of assembler file. */
996
997 #define ASM_FILE_START(FILE) asm_file_start(FILE)
998
999 #define ASM_FILE_END(FILE) asm_file_end(FILE)
1000
1001 /* Output to assembler file text saying following lines
1002 may contain character constants, extra white space, comments, etc. */
1003
1004 #define ASM_APP_ON "; #APP\n"
1005
1006 /* Output to assembler file text saying following lines
1007 no longer contain unusual constructs. */
1008
1009 #define ASM_APP_OFF "; #NO_APP\n"
1010
1011 #define FILE_ASM_OP "\t.file\n"
1012 #define IDENT_ASM_OP "\t.ident\n"
1013
1014 /* The assembler op to get a word, 2 bytes for the H8/300, 4 for H8/300H. */
1015 #define ASM_WORD_OP (TARGET_H8300 ? ".word" : ".long")
1016
1017 /* Output before read-only data. */
1018
1019 #define TEXT_SECTION_ASM_OP "\t.section .text"
1020 #define DATA_SECTION_ASM_OP "\t.section .data"
1021 #define BSS_SECTION_ASM_OP "\t.section .bss"
1022 #define INIT_SECTION_ASM_OP "\t.section .init"
1023 #define CTORS_SECTION_ASM_OP "\t.section .ctors"
1024 #define DTORS_SECTION_ASM_OP "\t.section .dtors"
1025
1026 #define EXTRA_SECTIONS in_ctors, in_dtors
1027
1028 #define EXTRA_SECTION_FUNCTIONS \
1029 \
1030 void \
1031 ctors_section() \
1032 { \
1033 if (in_section != in_ctors) \
1034 { \
1035 fprintf (asm_out_file, "%s\n", CTORS_SECTION_ASM_OP); \
1036 in_section = in_ctors; \
1037 } \
1038 } \
1039 \
1040 void \
1041 dtors_section() \
1042 { \
1043 if (in_section != in_dtors) \
1044 { \
1045 fprintf (asm_out_file, "%s\n", DTORS_SECTION_ASM_OP); \
1046 in_section = in_dtors; \
1047 } \
1048 } \
1049
1050 #define ASM_OUTPUT_CONSTRUCTOR(FILE,NAME) \
1051 do { ctors_section(); \
1052 fprintf(FILE, "\t%s\t_%s\n", ASM_WORD_OP, NAME); } while (0)
1053
1054 #define ASM_OUTPUT_DESTRUCTOR(FILE,NAME) \
1055 do { dtors_section(); \
1056 fprintf(FILE, "\t%s\t_%s\n", ASM_WORD_OP, NAME); } while (0)
1057
1058 #undef DO_GLOBAL_CTORS_BODY
1059 #define DO_GLOBAL_CTORS_BODY \
1060 { \
1061 typedef (*pfunc)(); \
1062 extern pfunc __ctors[]; \
1063 extern pfunc __ctors_end[]; \
1064 pfunc *p; \
1065 for (p = __ctors_end; p > __ctors; ) \
1066 { \
1067 (*--p)(); \
1068 } \
1069 }
1070
1071 #undef DO_GLOBAL_DTORS_BODY
1072 #define DO_GLOBAL_DTORS_BODY \
1073 { \
1074 typedef (*pfunc)(); \
1075 extern pfunc __dtors[]; \
1076 extern pfunc __dtors_end[]; \
1077 pfunc *p; \
1078 for (p = __dtors; p < __dtors_end; p++) \
1079 { \
1080 (*p)(); \
1081 } \
1082 }
1083
1084 /* How to refer to registers in assembler output.
1085 This sequence is indexed by compiler's hard-register-number (see above). */
1086
1087 #define REGISTER_NAMES \
1088 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "sp", "ap"}
1089
1090 #define ADDITIONAL_REGISTER_NAMES { { "r7", 7 } }
1091
1092 /* How to renumber registers for dbx and gdb.
1093 H8/300 needs no change in the numeration. */
1094
1095 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1096
1097 #define SDB_DEBUGGING_INFO
1098 #define SDB_DELIM "\n"
1099
1100 /* Support -gstabs. */
1101
1102 #include "dbxcoff.h"
1103
1104 /* A C statement to output something to the assembler file to switch to section
1105 NAME for object DECL which is either a FUNCTION_DECL, a VAR_DECL or
1106 NULL_TREE. Some target formats do not support arbitrary sections. Do not
1107 define this macro in such cases. */
1108
1109 #define ASM_OUTPUT_SECTION_NAME(FILE, DECL, NAME) \
1110 fprintf (FILE, "\t.section %s\n", NAME)
1111
1112 /* This is how to output the definition of a user-level label named NAME,
1113 such as the label on a static function or variable NAME. */
1114
1115 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1116 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1117
1118 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME)
1119
1120 /* This is how to output a command to make the user-level label named NAME
1121 defined for reference from other files. */
1122
1123 #define ASM_GLOBALIZE_LABEL(FILE, NAME) \
1124 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1125
1126 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
1127 ASM_OUTPUT_LABEL(FILE, NAME)
1128
1129 /* This is how to output a reference to a user-level label named NAME.
1130 `assemble_name' uses this. */
1131
1132 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1133 fprintf (FILE, "_%s", NAME)
1134
1135 /* This is how to output an internal numbered label where
1136 PREFIX is the class of label and NUM is the number within the class. */
1137
1138 #define ASM_OUTPUT_INTERNAL_LABEL(FILE, PREFIX, NUM) \
1139 fprintf (FILE, ".%s%d:\n", PREFIX, NUM)
1140
1141 /* This is how to store into the string LABEL
1142 the symbol_ref name of an internal numbered label where
1143 PREFIX is the class of label and NUM is the number within the class.
1144 This is suitable for output with `assemble_name'. */
1145
1146 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1147 sprintf (LABEL, "*.%s%d", PREFIX, NUM)
1148
1149 /* This is how to output an assembler line defining a `double' constant.
1150 It is .dfloat or .gfloat, depending. */
1151
1152 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
1153 do { char dstr[30]; \
1154 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
1155 fprintf (FILE, "\t.double %s\n", dstr); \
1156 } while (0)
1157
1158
1159 /* This is how to output an assembler line defining a `float' constant. */
1160 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
1161 do { char dstr[30]; \
1162 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
1163 fprintf (FILE, "\t.float %s\n", dstr); \
1164 } while (0)
1165
1166 /* This is how to output an assembler line defining an `int' constant. */
1167
1168 #define ASM_OUTPUT_INT(FILE, VALUE) \
1169 ( fprintf (FILE, "\t.long "), \
1170 output_addr_const (FILE, (VALUE)), \
1171 fprintf (FILE, "\n"))
1172
1173 /* Likewise for `char' and `short' constants. */
1174
1175 #define ASM_OUTPUT_SHORT(FILE, VALUE) \
1176 ( fprintf (FILE, "\t.word "), \
1177 output_addr_const (FILE, (VALUE)), \
1178 fprintf (FILE, "\n"))
1179
1180 #define ASM_OUTPUT_CHAR(FILE, VALUE) \
1181 ( fprintf (FILE, "\t.byte "), \
1182 output_addr_const (FILE, (VALUE)), \
1183 fprintf (FILE, "\n"))
1184
1185 /* This is how to output an assembler line for a numeric constant byte. */
1186 #define ASM_OUTPUT_BYTE(FILE, VALUE) \
1187 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1188
1189 /* This is how to output an insn to push a register on the stack.
1190 It need not be very fast code. */
1191
1192 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
1193 fprintf (FILE, "\t%s\t%s\n", h8_push_op, h8_reg_names[REGNO])
1194
1195 /* This is how to output an insn to pop a register from the stack.
1196 It need not be very fast code. */
1197
1198 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1199 fprintf (FILE, "\t%s\t%s\n", h8_pop_op, h8_reg_names[REGNO])
1200
1201 /* This is how to output an element of a case-vector that is absolute. */
1202
1203 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1204 asm_fprintf (FILE, "\t%s .L%d\n", ASM_WORD_OP, VALUE)
1205
1206 /* This is how to output an element of a case-vector that is relative. */
1207
1208 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1209 fprintf (FILE, "\t%s .L%d-.L%d\n", ASM_WORD_OP, VALUE, REL)
1210
1211 /* This is how to output an assembler line
1212 that says to advance the location counter
1213 to a multiple of 2**LOG bytes. */
1214
1215 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1216 if ((LOG) != 0) \
1217 fprintf (FILE, "\t.align %d\n", (LOG))
1218
1219 /* This is how to output an assembler line
1220 that says to advance the location counter by SIZE bytes. */
1221
1222 #define ASM_OUTPUT_IDENT(FILE, NAME) \
1223 fprintf(FILE, "%s\t \"%s\"\n", IDENT_ASM_OP, NAME)
1224
1225 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
1226 fprintf (FILE, "\t.space %d\n", (SIZE))
1227
1228 /* This says how to output an assembler line
1229 to define a global common symbol. */
1230
1231 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1232 ( fputs ("\t.comm ", (FILE)), \
1233 assemble_name ((FILE), (NAME)), \
1234 fprintf ((FILE), ",%d\n", (SIZE)))
1235
1236 /* This says how to output the assembler to define a global
1237 uninitialized but not common symbol.
1238 Try to use asm_output_bss to implement this macro. */
1239
1240 #define ASM_OUTPUT_BSS(FILE, NAME, SIZE, ROUNDED) \
1241 asm_output_bss ((FILE), (NAME), (SIZE), (ROUNDED))
1242
1243 /* This says how to output an assembler line
1244 to define a local common symbol. */
1245
1246 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1247 ( fputs ("\t.lcomm ", (FILE)), \
1248 assemble_name ((FILE), (NAME)), \
1249 fprintf ((FILE), ",%d\n", (SIZE)))
1250
1251 /* Store in OUTPUT a string (made with alloca) containing
1252 an assembler-name for a local static variable named NAME.
1253 LABELNO is an integer which is different for each call. */
1254
1255 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1256 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1257 sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
1258
1259 /* Define the parentheses used to group arithmetic operations
1260 in assembler code. */
1261
1262 #define ASM_OPEN_PAREN "("
1263 #define ASM_CLOSE_PAREN ")"
1264
1265 /* Define results of standard character escape sequences. */
1266 #define TARGET_BELL 007
1267 #define TARGET_BS 010
1268 #define TARGET_TAB 011
1269 #define TARGET_NEWLINE 012
1270 #define TARGET_VT 013
1271 #define TARGET_FF 014
1272 #define TARGET_CR 015
1273
1274 /* Print an instruction operand X on file FILE.
1275 look in h8300.c for details */
1276
1277 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1278 ((CODE) == '#')
1279
1280 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
1281
1282 /* Print a memory operand whose address is X, on file FILE.
1283 This uses a function in output-vax.c. */
1284
1285 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1286
1287 /* Define this macro if you want to implement any pragmas. If defined, it
1288 should be a C expression to be executed when #pragma is seen. The
1289 argument STREAM is the stdio input stream from which the source
1290 text can be read. CH is the first character after the #pragma. The
1291 result of the expression is the terminating character found
1292 (newline or EOF). */
1293 #define HANDLE_PRAGMA(FILE, CH) handle_pragma (FILE, CH)
1294
1295 #define FINAL_PRESCAN_INSN(insn, operand, nop) final_prescan_insn (insn, operand,nop)
1296
1297 /* Define this macro if GNU CC should generate calls to the System V
1298 (and ANSI C) library functions `memcpy' and `memset' rather than
1299 the BSD functions `bcopy' and `bzero'. */
1300
1301 #define TARGET_MEM_FUNCTIONS 1
1302
1303 #define MULHI3_LIBCALL "__mulhi3"
1304 #define DIVHI3_LIBCALL "__divhi3"
1305 #define UDIVHI3_LIBCALL "__udivhi3"
1306 #define MODHI3_LIBCALL "__modhi3"
1307 #define UMODHI3_LIBCALL "__umodhi3"
1308
1309 /* Perform target dependent optabs initialization. */
1310
1311 #define INIT_TARGET_OPTABS \
1312 do { \
1313 smul_optab->handlers[(int) HImode].libfunc \
1314 = gen_rtx (SYMBOL_REF, Pmode, MULHI3_LIBCALL); \
1315 sdiv_optab->handlers[(int) HImode].libfunc \
1316 = gen_rtx (SYMBOL_REF, Pmode, DIVHI3_LIBCALL); \
1317 udiv_optab->handlers[(int) HImode].libfunc \
1318 = gen_rtx (SYMBOL_REF, Pmode, UDIVHI3_LIBCALL); \
1319 smod_optab->handlers[(int) HImode].libfunc \
1320 = gen_rtx (SYMBOL_REF, Pmode, MODHI3_LIBCALL); \
1321 umod_optab->handlers[(int) HImode].libfunc \
1322 = gen_rtx (SYMBOL_REF, Pmode, UMODHI3_LIBCALL); \
1323 } while (0)
1324
1325 #define MOVE_RATIO 3
1326
1327 /* Declarations for functions used in insn-output.c. */
1328 char *emit_a_shift ();
1329
1330