(STATIC_CHAIN_REGNUM): Use r3.
[gcc.git] / gcc / config / h8300 / h8300.h
1 /* Definitions of target machine for GNU compiler.
2 Hitachi H8/300 version generating coff
3 Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
4 Contributed by Steve Chamberlain (sac@cygnus.com),
5 Jim Wilson (wilson@cygnus.com), and Doug Evans (dje@cygnus.com).
6
7 This file is part of GNU CC.
8
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* Which cpu to compile for.
25 We use int for CPU_TYPE to avoid lots of casts. */
26 #if 0 /* defined in insn-attr.h, here for documentation */
27 enum attr_cpu { CPU_H8300, CPU_H8300H };
28 #endif
29 extern int cpu_type;
30
31 /* Various globals defined in h8300.c. */
32
33 extern char *h8_push_op,*h8_pop_op,*h8_mov_op;
34 extern char **h8_reg_names;
35
36 /* Names to predefine in the preprocessor for this target machine. */
37
38 #define CPP_PREDEFINES \
39 "-D__LONG_MAX__=2147483647L -D__LONG_LONG_MAX__=2147483647L -D_DOUBLE_IS_32BITS"
40
41 #define CPP_SPEC \
42 "%{!mh:-D__H8300__} %{mh:-D__H8300H__} \
43 %{!mh:-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int} \
44 %{mh:-D__SIZE_TYPE__=unsigned\\ long -D__PTRDIFF_TYPE__=long} \
45 %{!mh:-Acpu(h8300) -Amachine(h8300)} %{mh:-Acpu(h8300h) -Amachine(h8300h)} \
46 %{!mint32:-D__INT_MAX__=32767} %{mint32:-D__INT_MAX__=2147483647}"
47
48 #define LINK_SPEC "%{mh:-m h8300h}"
49
50 #define LIB_SPEC "%{mrelax:-relax} %{g:-lg} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
51
52 /* Print subsidiary information on the compiler version in use. */
53
54 #define TARGET_VERSION fprintf (stderr, " (Hitachi H8/300)");
55
56 /* Run-time compilation parameters selecting different hardware subsets. */
57
58 extern int target_flags;
59
60 /* Macros used in the machine description to test the flags. */
61
62 /* Make int's 32 bits. */
63 #define TARGET_INT32 (target_flags & 8)
64
65 /* Dump recorded insn lengths into the output file. This helps debug the
66 md file. */
67 #define TARGET_ADDRESSES (target_flags & 64)
68
69 /* Pass the first few arguments in registers. */
70 #define TARGET_QUICKCALL (target_flags & 128)
71
72 /* Pretend byte accesses are slow. */
73 #define TARGET_SLOWBYTE (target_flags & 256)
74
75 /* Dump each assembler insn's rtl into the output file.
76 This is for debugging the compiler only. */
77 #define TARGET_RTL_DUMP (target_flags & 2048)
78
79 /* Select between the h8/300 and h8/300h cpus. */
80 #define TARGET_H8300 (! TARGET_H8300H)
81 #define TARGET_H8300H (target_flags & 4096)
82
83 /* Macro to define tables used to set the flags.
84 This is a list in braces of pairs in braces,
85 each pair being { "NAME", VALUE }
86 where VALUE is the bits to set or minus the bits to clear.
87 An empty string NAME is used to identify the default VALUE. */
88
89 #define TARGET_SWITCHES \
90 { {"int32",8}, \
91 {"addresses",64 }, \
92 {"quickcall",128}, \
93 {"no-quickcall",-128}, \
94 {"slowbyte",256}, \
95 {"relax",1024}, \
96 {"rtl-dump",2048}, \
97 {"h",4096}, \
98 {"no-h",-4096}, \
99 {"exp",8192}, \
100 { "", TARGET_DEFAULT}}
101
102 /* Merge the meaning of -mdouble64 and -fshort-double.
103 ??? Unfortunately, there's no way to detect -fno-short-double
104 (our default is the opposite of theirs).
105 Also do other things that must be done once at start up. */
106
107 #define OVERRIDE_OPTIONS \
108 { \
109 /*extern int flag_short_double; \
110 flag_short_double = TARGET_DOUBLE32;*/ \
111 h8300_init_once (); \
112 }
113
114 /* Default target_flags if no switches specified. */
115
116 #ifndef TARGET_DEFAULT
117 #define TARGET_DEFAULT (128) /* quickcall */
118 #endif
119
120 /* Show we can debug even without a frame pointer. */
121 /* #define CAN_DEBUG_WITHOUT_FP */
122
123 /* Define this if addresses of constant functions
124 shouldn't be put through pseudo regs where they can be cse'd.
125 Desirable on machines where ordinary constants are expensive
126 but a CALL with constant address is cheap. */
127 #define NO_FUNCTION_CSE
128 \f
129 /* Target machine storage layout */
130
131 /* Define to use software floating point emulator for REAL_ARITHMETIC and
132 decimal <-> binary conversion. */
133 #define REAL_ARITHMETIC
134
135 /* Define this if most significant bit is lowest numbered
136 in instructions that operate on numbered bit-fields.
137 This is not true on the H8/300. */
138 #define BITS_BIG_ENDIAN 0
139
140 /* Define this if most significant byte of a word is the lowest numbered. */
141 /* That is true on the H8/300. */
142 #define BYTES_BIG_ENDIAN 1
143
144 /* Define this if most significant word of a multiword number is lowest
145 numbered.
146 This is true on an H8/300 (actually we can make it up, but we choose to
147 be consistent. */
148 #define WORDS_BIG_ENDIAN 1
149
150 /* Number of bits in an addressable storage unit */
151 #define BITS_PER_UNIT 8
152
153 /* Width in bits of a "word", which is the contents of a machine register.
154 Note that this is not necessarily the width of data type `int';
155 if using 16-bit ints on a 68000, this would still be 32.
156 But on a machine with 16-bit registers, this would be 16. */
157 #define BITS_PER_WORD (TARGET_H8300H ? 32 : 16)
158 #define MAX_BITS_PER_WORD 32
159
160 /* Width of a word, in units (bytes). */
161 #define UNITS_PER_WORD (TARGET_H8300H ? 4 : 2)
162 #define MIN_UNITS_PER_WORD 2
163
164 /* Width in bits of a pointer.
165 See also the macro `Pmode' defined below. */
166 #define POINTER_SIZE (TARGET_H8300H ? 32 : 16)
167
168 #define SHORT_TYPE_SIZE 16
169 #define INT_TYPE_SIZE (TARGET_INT32 ? 32 : 16)
170 #define LONG_TYPE_SIZE 32
171 #define LONG_LONG_TYPE_SIZE 32
172 #define FLOAT_TYPE_SIZE 32
173 #define DOUBLE_TYPE_SIZE 32
174 #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
175
176 #define MAX_FIXED_MODE_SIZE 32
177
178 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
179 #define PARM_BOUNDARY (TARGET_H8300H ? 32 : 16)
180
181 /* Allocation boundary (in *bits*) for the code of a function. */
182 #define FUNCTION_BOUNDARY 16
183
184 /* Alignment of field after `int : 0' in a structure. */
185 #define EMPTY_FIELD_BOUNDARY 16
186
187 /* A bitfield declared as `int' forces `int' alignment for the struct. */
188 #define PCC_BITFIELD_TYPE_MATTERS 0
189
190 /* No data type wants to be aligned rounder than this. */
191 #define BIGGEST_ALIGNMENT (TARGET_H8300H ? 32 : 16)
192
193 /* No structure field wants to be aligned rounder than this. */
194 #define BIGGEST_FIELD_ALIGNMENT (TARGET_H8300H ? 32 : 16)
195
196 /* The stack goes in 16/32 bit lumps. */
197 #define STACK_BOUNDARY (TARGET_H8300 ? 16 : 32)
198
199 /* Define this if move instructions will actually fail to work
200 when given unaligned data. */
201 /* On the H8/300, longs can be aligned on halfword boundaries, but not
202 byte boundaries. */
203 #define STRICT_ALIGNMENT 1
204 \f
205 /* Standard register usage. */
206
207 /* Number of actual hardware registers.
208 The hardware registers are assigned numbers for the compiler
209 from 0 to just below FIRST_PSEUDO_REGISTER.
210
211 All registers that the compiler knows about must be given numbers,
212 even those that are not normally considered general registers.
213
214 Reg 8 does not correspond to any hardware register, but instead
215 appears in the RTL as an argument pointer prior to reload, and is
216 eliminated during reloading in favor of either the stack or frame
217 pointer. */
218
219 #define FIRST_PSEUDO_REGISTER 9
220
221 /* 1 for registers that have pervasive standard uses
222 and are not available for the register allocator. */
223
224 #define FIXED_REGISTERS \
225 { 0, 0, 0, 0, 0, 0, 0, 1, 1}
226
227 /* 1 for registers not available across function calls.
228 These must include the FIXED_REGISTERS and also any
229 registers that can be used without being saved.
230 The latter must include the registers where values are returned
231 and the register where structure-value addresses are passed.
232 Aside from that, you can include as many other registers as you
233 like.
234
235 h8 destroys r0,r1,r2,r3. */
236
237 #define CALL_USED_REGISTERS \
238 { 1, 1, 1, 1, 0, 0, 0, 1, 1 }
239
240 #define REG_ALLOC_ORDER \
241 { 2, 3, 0, 1, 4, 5, 6, 7, 8}
242
243 /* Return number of consecutive hard regs needed starting at reg REGNO
244 to hold something of mode MODE.
245
246 This is ordinarily the length in words of a value of mode MODE
247 but can be less for certain modes in special long registers. */
248
249 #define HARD_REGNO_NREGS(REGNO, MODE) \
250 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
251
252 /* Value is 1 if hard register REGNO can hold a value of machine-mode
253 MODE.
254
255 H8/300: If an even reg, then anything goes. Otherwise the mode must be QI
256 or HI.
257 H8/300H: Anything goes. */
258
259 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
260 (TARGET_H8300 ? (((REGNO)&1)==0) || (MODE==HImode) || (MODE==QImode) \
261 : 1)
262
263 /* Value is 1 if it is a good idea to tie two pseudo registers
264 when one has mode MODE1 and one has mode MODE2.
265 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
266 for any hard reg, then this must be 0 for correct output. */
267 #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
268
269 /* Specify the registers used for certain standard purposes.
270 The values of these macros are register numbers. */
271
272 /* H8/300 pc is not overloaded on a register. */
273
274 /*#define PC_REGNUM 15*/
275
276 /* Register to use for pushing function arguments. */
277 #define STACK_POINTER_REGNUM 7
278
279 /* Base register for access to local variables of the function. */
280 #define FRAME_POINTER_REGNUM 6
281
282 /* Value should be nonzero if functions must have frame pointers.
283 Zero means the frame pointer need not be set up (and parms
284 may be accessed via the stack pointer) in functions that seem suitable.
285 This is computed in `reload', in reload1.c. */
286 #define FRAME_POINTER_REQUIRED 0
287
288 /* Base register for access to arguments of the function. */
289 #define ARG_POINTER_REGNUM 8
290
291 /* Register in which static-chain is passed to a function. */
292 #define STATIC_CHAIN_REGNUM 3
293 \f
294 /* Define the classes of registers for register constraints in the
295 machine description. Also define ranges of constants.
296
297 One of the classes must always be named ALL_REGS and include all hard regs.
298 If there is more than one class, another class must be named NO_REGS
299 and contain no registers.
300
301 The name GENERAL_REGS must be the name of a class (or an alias for
302 another name such as ALL_REGS). This is the class of registers
303 that is allowed by "g" or "r" in a register constraint.
304 Also, registers outside this class are allocated only when
305 instructions express preferences for them.
306
307 The classes must be numbered in nondecreasing order; that is,
308 a larger-numbered class must never be contained completely
309 in a smaller-numbered class.
310
311 For any two classes, it is very desirable that there be another
312 class that represents their union. */
313
314 /* The h8 has only one kind of register, but we mustn't do byte by
315 byte operations on the sp, so we keep it as a different class */
316
317 enum reg_class { NO_REGS, LONG_REGS, GENERAL_REGS, SP_REG, SP_AND_G_REG, ALL_REGS, LIM_REG_CLASSES };
318
319 #define N_REG_CLASSES (int) LIM_REG_CLASSES
320
321 /* Give names of register classes as strings for dump file. */
322
323 #define REG_CLASS_NAMES \
324 {"NO_REGS", "LONG_REGS", "GENERAL_REGS", "SP_REG", "SP_AND_G_REG", "ALL_REGS", "LIM_REGS" }
325
326 /* Define which registers fit in which classes.
327 This is an initializer for a vector of HARD_REG_SET
328 of length N_REG_CLASSES. */
329
330 #define REG_CLASS_CONTENTS \
331 { 0, /* No regs */ \
332 0x07f, /* LONG_REGS */ \
333 0x07f, /* GENERAL_REGS */ \
334 0x080, /* SP_REG */ \
335 0x0ff, /* SP_AND_G_REG */ \
336 0x1ff, /* ALL_REGS */ \
337 }
338
339 /* The same information, inverted:
340 Return the class number of the smallest class containing
341 reg number REGNO. This could be a conditional expression
342 or could index an array. */
343
344 #define REGNO_REG_CLASS(REGNO) \
345 ((REGNO) < 7 ? LONG_REGS : \
346 (REGNO) == 7 ? SP_REG : \
347 GENERAL_REGS)
348
349 /* The class value for index registers, and the one for base regs. */
350
351 #define INDEX_REG_CLASS NO_REGS
352 #define BASE_REG_CLASS GENERAL_REGS
353
354 /* Get reg_class from a letter such as appears in the machine description. */
355
356 #define REG_CLASS_FROM_LETTER(C) \
357 ((C) == 'a' ? (SP_REG) : (C) == 'l' ? (LONG_REGS) : (NO_REGS))
358
359 /* The letters I, J, K, L, M, N, O, P in a register constraint string
360 can be used to stand for particular ranges of immediate operands.
361 This macro defines what the ranges are.
362 C is the letter, and VALUE is a constant value.
363 Return 1 if VALUE is in the range specified by C. */
364
365 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
366 #define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) < 256)
367 #define CONST_OK_FOR_K(VALUE) (((VALUE) == 1) || (VALUE) == 2)
368 #define CONST_OK_FOR_L(VALUE) (((VALUE) == -1) || (VALUE) == -2)
369 #define CONST_OK_FOR_M(VALUE) (((VALUE) == 3) || (VALUE) == 4)
370 #define CONST_OK_FOR_N(VALUE) (((VALUE) == -3) || (VALUE) == -4)
371 #define CONST_OK_FOR_O(VALUE) (ok_for_bclr (VALUE))
372 #define CONST_OK_FOR_P(VALUE) (small_power_of_two (VALUE))
373
374 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
375 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
376 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
377 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
378 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
379 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
380 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
381 (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
382 (C) == 'P' ? CONST_OK_FOR_P(VALUE) : \
383 0)
384
385 /* Similar, but for floating constants, and defining letters G and H.
386 Here VALUE is the CONST_DOUBLE rtx itself.
387
388 `G' is a floating-point zero. */
389
390 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
391 ((C) == 'G' ? (VALUE) == CONST0_RTX (DFmode) \
392 : 0)
393
394 /* Given an rtx X being reloaded into a reg required to be
395 in class CLASS, return the class of reg to actually use.
396 In general this is just CLASS; but on some machines
397 in some cases it is preferable to use a more restrictive class. */
398
399 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
400
401 /* Return the maximum number of consecutive registers
402 needed to represent mode MODE in a register of class CLASS. */
403
404 /* On the H8, this is the size of MODE in words. */
405
406 #define CLASS_MAX_NREGS(CLASS, MODE) \
407 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
408
409 /* Any SI register to register move may need to be reloaded,
410 so define REGISTER_MOVE_COST to be > 2 so that reload never
411 shortcuts. */
412
413 #define REGISTER_MOVE_COST(CLASS1, CLASS2) 3
414 \f
415 /* Stack layout; function entry, exit and calling. */
416
417 /* Define this if pushing a word on the stack
418 makes the stack pointer a smaller address. */
419
420 #define STACK_GROWS_DOWNWARD
421
422 /* Define this if the nominal address of the stack frame
423 is at the high-address end of the local variables;
424 that is, each additional local variable allocated
425 goes at a more negative offset in the frame. */
426
427 #define FRAME_GROWS_DOWNWARD
428
429 /* Offset within stack frame to start allocating local variables at.
430 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
431 first local allocated. Otherwise, it is the offset to the BEGINNING
432 of the first local allocated. */
433
434 #define STARTING_FRAME_OFFSET 0
435
436 /* If we generate an insn to push BYTES bytes,
437 this says how many the stack pointer really advances by.
438
439 On the H8/300, @-sp really pushes a byte if you ask it to - but that's
440 dangerous, so we claim that it always pushes a word, then we catch
441 the mov.b rx,@-sp and turn it into a mov.w rx,@-sp on output.
442
443 On the H8/300h, we simplify TARGET_QUICKCALL by setting this to 4 and doing
444 a similar thing. */
445
446 #define PUSH_ROUNDING(BYTES) \
447 (((BYTES) + PARM_BOUNDARY/8 - 1) & -PARM_BOUNDARY/8)
448
449 /* Offset of first parameter from the argument pointer register value. */
450 /* Is equal to the size of the saved fp + pc, even if an fp isn't
451 saved since the value is used before we know. */
452
453 #define FIRST_PARM_OFFSET(FNDECL) 0
454
455 /* Value is the number of bytes of arguments automatically
456 popped when returning from a subroutine call.
457 FUNDECL is the declaration node of the function (as a tree),
458 FUNTYPE is the data type of the function (as a tree),
459 or for a library call it is an identifier node for the subroutine name.
460 SIZE is the number of bytes of arguments passed on the stack.
461
462 On the H8 the return does not pop anything. */
463
464 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
465
466 /* Definitions for register eliminations.
467
468 This is an array of structures. Each structure initializes one pair
469 of eliminable registers. The "from" register number is given first,
470 followed by "to". Eliminations of the same "from" register are listed
471 in order of preference.
472
473 We have two registers that can be eliminated on the h8300. First, the
474 frame pointer register can often be eliminated in favor of the stack
475 pointer register. Secondly, the argument pointer register can always be
476 eliminated; it is replaced with either the stack or frame pointer. */
477
478 #define ELIMINABLE_REGS \
479 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
480 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
481 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
482
483 /* Given FROM and TO register numbers, say whether this elimination is allowed.
484 Frame pointer elimination is automatically handled.
485
486 For the h8300, if frame pointer elimination is being done, we would like to
487 convert ap into sp, not fp.
488
489 All other eliminations are valid. */
490
491 #define CAN_ELIMINATE(FROM, TO) \
492 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
493 ? ! frame_pointer_needed \
494 : 1)
495
496 /* Define the offset between two registers, one to be eliminated, and the other
497 its replacement, at the start of a routine. */
498
499 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
500 OFFSET = initial_offset (FROM, TO)
501
502 /* Define how to find the value returned by a function.
503 VALTYPE is the data type of the value (as a tree).
504 If the precise function being called is known, FUNC is its FUNCTION_DECL;
505 otherwise, FUNC is 0.
506
507 On the H8 the return value is in R0/R1. */
508
509 #define FUNCTION_VALUE(VALTYPE, FUNC) \
510 gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
511
512 /* Define how to find the value returned by a library function
513 assuming the value has mode MODE. */
514
515 /* On the h8 the return value is in R0/R1 */
516
517 #define LIBCALL_VALUE(MODE) \
518 gen_rtx (REG, MODE, 0)
519
520 /* 1 if N is a possible register number for a function value.
521 On the H8, R0 is the only register thus used. */
522
523 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
524
525 /* Define this if PCC uses the nonreentrant convention for returning
526 structure and union values. */
527
528 /*#define PCC_STATIC_STRUCT_RETURN*/
529
530 /* 1 if N is a possible register number for function argument passing.
531 On the H8, no registers are used in this way. */
532 /* ??? What about TARGET_QUICKCALL? */
533
534 #define FUNCTION_ARG_REGNO_P(N) 0
535
536 /* Register in which address to store a structure value
537 is passed to a function. */
538
539 #define STRUCT_VALUE 0
540
541 /* Return true if X should be returned in memory. */
542 /* ??? This will return small structs in regs. */
543 #define RETURN_IN_MEMORY(X) (GET_MODE_SIZE (TYPE_MODE (X)) > 4)
544
545 /* When defined, the compiler allows registers explicitly used in the
546 rtl to be used as spill registers but prevents the compiler from
547 extending the lifetime of these registers. */
548
549 #define SMALL_REGISTER_CLASSES
550 \f
551 /* Define a data type for recording info about an argument list
552 during the scan of that argument list. This data type should
553 hold all necessary information about the function itself
554 and about the args processed so far, enough to enable macros
555 such as FUNCTION_ARG to determine where the next arg should go.
556
557 On the H8/300, this is a two item struct, the first is the number of bytes
558 scanned so far and the second is the rtx of the called library
559 function if any. */
560
561 #define CUMULATIVE_ARGS struct cum_arg
562 struct cum_arg { int nbytes; struct rtx_def * libcall; };
563
564 /* Initialize a variable CUM of type CUMULATIVE_ARGS
565 for a call to a function whose data type is FNTYPE.
566 For a library call, FNTYPE is 0.
567
568 On the H8/300, the offset starts at 0. */
569
570 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
571 ((CUM).nbytes = 0, (CUM).libcall = LIBNAME)
572
573 /* Update the data in CUM to advance over an argument
574 of mode MODE and data type TYPE.
575 (TYPE is null for libcalls where that information may not be available.) */
576
577 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
578 ((CUM).nbytes += ((MODE) != BLKmode \
579 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
580 : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
581
582 /* Define where to put the arguments to a function.
583 Value is zero to push the argument on the stack,
584 or a hard register in which to store the argument.
585
586 MODE is the argument's machine mode.
587 TYPE is the data type of the argument (as a tree).
588 This is null for libcalls where that information may
589 not be available.
590 CUM is a variable of type CUMULATIVE_ARGS which gives info about
591 the preceding args and about the function being called.
592 NAMED is nonzero if this argument is a named parameter
593 (otherwise it is an extra parameter matching an ellipsis). */
594
595 /* On the H8/300 all normal args are pushed, unless -mquickcall in which
596 case the first 3 arguments are passed in registers.
597 See function `function_arg'. */
598
599 struct rtx_def *function_arg();
600 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
601 function_arg (&CUM, MODE, TYPE, NAMED)
602
603 /* Perform any needed actions needed for a function that is receiving a
604 variable number of arguments. */
605
606 extern int current_function_anonymous_args;
607 #define SETUP_INCOMING_VARARGS(ASF, MODE, TYPE, PAS, ST) \
608 current_function_anonymous_args = 1;
609
610 /* Generate assembly output for the start of a function. */
611
612 #define FUNCTION_PROLOGUE(FILE, SIZE) \
613 function_prologue (FILE, SIZE)
614
615 /* Output assembler code to FILE to increment profiler label # LABELNO
616 for profiling a function entry. */
617
618 #define FUNCTION_PROFILER(FILE, LABELNO) \
619 fprintf (FILE, "\t%s\t#LP%d,%s\n\tjsr @mcount\n", \
620 h8_mov_op, (LABELNO), h8_reg_names[0]);
621
622 /* Output assembler code to FILE to initialize this source file's
623 basic block profiling info, if that has not already been done. */
624 /* ??? @LPBX0 is moved into r0 twice. */
625
626 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
627 fprintf (FILE, "\t%s\t%s\n\t%s\t@LPBX0,%s\n\tbne LPI%d\n\t%s\t@LPBX0,%s\n\t%s\t%s\n\tjsr\t@__bb_init_func\nLPI%d:\t%s\t%s\n", \
628 h8_push_op, h8_reg_names[0], \
629 h8_mov_op, h8_reg_names[0], \
630 (LABELNO), \
631 h8_mov_op, h8_reg_names[0], \
632 h8_push_op, h8_reg_names[0], \
633 (LABELNO), \
634 h8_pop_op, h8_reg_names[0]);
635
636 /* Output assembler code to FILE to increment the entry-count for
637 the BLOCKNO'th basic block in this source file. This is a real pain in the
638 sphincter on a VAX, since we do not want to change any of the bits in the
639 processor status word. The way it is done here, it is pushed onto the stack
640 before any flags have changed, and then the stack is fixed up to account for
641 the fact that the instruction to restore the flags only reads a word.
642 It may seem a bit clumsy, but at least it works. */
643 /* ??? This one needs work. */
644
645 #define BLOCK_PROFILER(FILE, BLOCKNO) \
646 fprintf (FILE, "\tmovpsl -(sp)\n\tmovw (sp),2(sp)\n\taddl2 $2,sp\n\taddl2 $1,LPBX2+%d\n\tbicpsw $255\n\tbispsw (sp)+\n", \
647 4 * BLOCKNO)
648
649 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
650 the stack pointer does not matter. The value is tested only in
651 functions that have frame pointers.
652 No definition is equivalent to always zero. */
653
654 #define EXIT_IGNORE_STACK 0
655
656 /* This macro generates the assembly code for function exit,
657 on machines that need it. If FUNCTION_EPILOGUE is not defined
658 then individual return instructions are generated for each
659 return statement. Args are same as for FUNCTION_PROLOGUE. */
660
661 #define FUNCTION_EPILOGUE(FILE, SIZE) \
662 function_epilogue (FILE, SIZE)
663
664 /* Output assembler code for a block containing the constant parts
665 of a trampoline, leaving space for the variable parts.
666
667 H8/300
668 vvvv context
669 1 0000 7900xxxx mov.w #0x1234,r3
670 2 0004 5A00xxxx jmp @0x1234
671 ^^^^ function
672
673 H8/300H
674 vvvvvvvv context
675 2 0000 7A00xxxxxxxx mov.l #0x12345678,er3
676 3 0006 5Axxxxxx jmp @0x123456
677 ^^^^^^ function
678 */
679
680 #define TRAMPOLINE_TEMPLATE(FILE) \
681 do { \
682 if (TARGET_H8300) \
683 { \
684 fprintf (FILE, "\tmov.w #0x1234,r3\n"); \
685 fprintf (FILE, "\tjmp @0x1234\n"); \
686 } \
687 else \
688 { \
689 fprintf (FILE, "\tmov.l #0x12345678,er3\n"); \
690 fprintf (FILE, "\tjmp @0x123456\n"); \
691 } \
692 } while (0)
693
694 /* Length in units of the trampoline for entering a nested function. */
695
696 #define TRAMPOLINE_SIZE (TARGET_H8300 ? 8 : 12)
697
698 /* Emit RTL insns to initialize the variable parts of a trampoline.
699 FNADDR is an RTX for the address of the function's pure code.
700 CXT is an RTX for the static chain value for the function. */
701
702 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
703 { \
704 enum machine_mode mode = TARGET_H8300H ? SImode : HImode; \
705 emit_move_insn (gen_rtx (MEM, mode, plus_constant ((TRAMP), 2)), CXT); \
706 emit_move_insn (gen_rtx (MEM, mode, plus_constant ((TRAMP), 6)), FNADDR); \
707 if (TARGET_H8300H) \
708 emit_move_insn (gen_rtx (MEM, QImode, plus_constant ((TRAMP), 6)), GEN_INT (0x5A)); \
709 }
710 \f
711 /* Addressing modes, and classification of registers for them. */
712
713 #define HAVE_POST_INCREMENT
714 /*#define HAVE_POST_DECREMENT */
715
716 #define HAVE_PRE_DECREMENT
717 /*#define HAVE_PRE_INCREMENT */
718
719 /* Macros to check register numbers against specific register classes. */
720
721 /* These assume that REGNO is a hard or pseudo reg number.
722 They give nonzero only if REGNO is a hard reg of the suitable class
723 or a pseudo reg currently allocated to a suitable hard reg.
724 Since they use reg_renumber, they are safe only once reg_renumber
725 has been allocated, which happens in local-alloc.c. */
726
727 #define REGNO_OK_FOR_INDEX_P(regno) 0
728
729 #define REGNO_OK_FOR_BASE_P(regno) \
730 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
731 \f
732 /* Maximum number of registers that can appear in a valid memory address. */
733
734 #define MAX_REGS_PER_ADDRESS 1
735
736 /* 1 if X is an rtx for a constant that is a valid address. */
737
738 #define CONSTANT_ADDRESS_P(X) \
739 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
740 || (GET_CODE (X) == CONST_INT \
741 /* We handle signed and unsigned offsets here. */ \
742 && INTVAL (X) > (TARGET_H8300 ? -0x10000 : -0x1000000) \
743 && INTVAL (X) < (TARGET_H8300 ? 0x10000 : 0x1000000)) \
744 || GET_CODE (X) == CONST \
745 || GET_CODE (X) == HIGH)
746
747 /* Nonzero if the constant value X is a legitimate general operand.
748 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
749
750 #define LEGITIMATE_CONSTANT_P(X) (GET_CODE (X) != CONST_DOUBLE)
751
752 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
753 and check its validity for a certain class.
754 We have two alternate definitions for each of them.
755 The usual definition accepts all pseudo regs; the other rejects
756 them unless they have been allocated suitable hard regs.
757 The symbol REG_OK_STRICT causes the latter definition to be used.
758
759 Most source files want to accept pseudo regs in the hope that
760 they will get allocated to the class that the insn wants them to be in.
761 Source files for reload pass need to be strict.
762 After reload, it makes no difference, since pseudo regs have
763 been eliminated by then. */
764
765 #ifndef REG_OK_STRICT
766
767 /* Nonzero if X is a hard reg that can be used as an index
768 or if it is a pseudo reg. */
769 #define REG_OK_FOR_INDEX_P(X) 0
770 /* Nonzero if X is a hard reg that can be used as a base reg
771 or if it is a pseudo reg. */
772 #define REG_OK_FOR_BASE_P(X) 1
773 #define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
774 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
775 #define STRICT 0
776
777 #else
778
779 /* Nonzero if X is a hard reg that can be used as an index. */
780 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
781 /* Nonzero if X is a hard reg that can be used as a base reg. */
782 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
783 #define STRICT 1
784
785 #endif
786
787 /* Extra constraints - 'U' if for an operand valid for a bset
788 destination; i.e. a register or register indirect target. */
789 #define OK_FOR_U(OP) \
790 ((GET_CODE (OP) == REG && REG_OK_FOR_BASE_P (OP)) \
791 || (GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
792 && REG_OK_FOR_BASE_P (XEXP (OP, 0))))
793
794 #define EXTRA_CONSTRAINT(OP, C) \
795 ((C) == 'U' ? OK_FOR_U (OP) : 0)
796 \f
797 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
798 that is a valid memory address for an instruction.
799 The MODE argument is the machine mode for the MEM expression
800 that wants to use this address.
801
802 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
803 except for CONSTANT_ADDRESS_P which is actually
804 machine-independent.
805
806 On the H8/300, a legitimate address has the form
807 REG, REG+CONSTANT_ADDRESS or CONSTANT_ADDRESS. */
808
809 /* Accept either REG or SUBREG where a register is valid. */
810
811 #define RTX_OK_FOR_BASE_P(X) \
812 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
813 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
814 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
815
816 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
817 if (RTX_OK_FOR_BASE_P (X)) goto ADDR; \
818 if (CONSTANT_ADDRESS_P (X)) goto ADDR; \
819 if (GET_CODE (X) == PLUS \
820 && CONSTANT_ADDRESS_P (XEXP (X, 1)) \
821 && RTX_OK_FOR_BASE_P (XEXP (X, 0))) goto ADDR;
822 \f
823 /* Try machine-dependent ways of modifying an illegitimate address
824 to be legitimate. If we find one, return the new, valid address.
825 This macro is used in only one place: `memory_address' in explow.c.
826
827 OLDX is the address as it was before break_out_memory_refs was called.
828 In some cases it is useful to look at this to decide what needs to be done.
829
830 MODE and WIN are passed so that this macro can use
831 GO_IF_LEGITIMATE_ADDRESS.
832
833 It is always safe for this macro to do nothing. It exists to recognize
834 opportunities to optimize the output.
835
836 For the H8/300, don't do anything. */
837
838 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
839
840 /* Go to LABEL if ADDR (a legitimate address expression)
841 has an effect that depends on the machine mode it is used for.
842
843 On the H8/300, the predecrement and postincrement address depend thus
844 (the amount of decrement or increment being the length of the operand)
845 and all indexed address depend thus (because the index scale factor
846 is the length of the operand). */
847
848 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
849 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL;
850 \f
851 /* Specify the machine mode that this machine uses
852 for the index in the tablejump instruction. */
853 #define CASE_VECTOR_MODE Pmode
854
855 /* Define this if the case instruction expects the table
856 to contain offsets from the address of the table.
857 Do not define this if the table should contain absolute addresses. */
858 /*#define CASE_VECTOR_PC_RELATIVE*/
859
860 /* Define this if the case instruction drops through after the table
861 when the index is out of range. Don't define it if the case insn
862 jumps to the default label instead. */
863 #define CASE_DROPS_THROUGH
864
865 /* Specify the tree operation to be used to convert reals to integers. */
866 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
867
868 /* This is the kind of divide that is easiest to do in the general case. */
869 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
870
871 /* Define this as 1 if `char' should by default be signed; else as 0.
872
873 On the H8/300, sign extension is expensive, so we'll say that chars
874 are unsigned. */
875 #define DEFAULT_SIGNED_CHAR 0
876
877 /* This flag, if defined, says the same insns that convert to a signed fixnum
878 also convert validly to an unsigned one. */
879 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
880
881 /* Max number of bytes we can move from memory to memory
882 in one reasonably fast instruction. */
883 #define MOVE_MAX (TARGET_H8300H ? 4 : 2)
884 #define MAX_MOVE_MAX 4
885
886 /* Define this if zero-extension is slow (more than one real instruction). */
887 /* #define SLOW_ZERO_EXTEND */
888
889 /* Nonzero if access to memory by bytes is slow and undesirable. */
890 #define SLOW_BYTE_ACCESS TARGET_SLOWBYTE
891
892 /* Define if shifts truncate the shift count
893 which implies one can omit a sign-extension or zero-extension
894 of a shift count. */
895 /* #define SHIFT_COUNT_TRUNCATED */
896
897 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
898 is done just by pretending it is already truncated. */
899 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
900
901 /* Specify the machine mode that pointers have.
902 After generation of rtl, the compiler makes no further distinction
903 between pointers and any other objects of this machine mode. */
904 #define Pmode (TARGET_H8300H ? SImode : HImode)
905
906 /* ANSI C types.
907 We use longs for the 300h because ints can be 16 or 32.
908 GCC requires SIZE_TYPE to be the same size as pointers. */
909 #define NO_BUILTIN_SIZE_TYPE
910 #define NO_BUILTIN_PTRDIFF_TYPE
911 #define SIZE_TYPE (TARGET_H8300 ? "unsigned int" : "long unsigned int")
912 #define PTRDIFF_TYPE (TARGET_H8300 ? "int" : "long int")
913
914 #define WCHAR_TYPE "short unsigned int"
915 #define WCHAR_TYPE_SIZE 16
916 #define MAX_WCHAR_TYPE_SIZE 16
917
918 /* A function address in a call instruction
919 is a byte address (for indexing purposes)
920 so give the MEM rtx a byte's mode. */
921 #define FUNCTION_MODE QImode
922
923 /* Compute the cost of computing a constant rtl expression RTX
924 whose rtx-code is CODE. The body of this macro is a portion
925 of a switch statement. If the code is computed here,
926 return it with a return statement. Otherwise, break from the switch. */
927
928 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
929 default: { int _zxy= const_costs(RTX, CODE); \
930 if(_zxy) return _zxy; break;}
931
932 #define BRANCH_COST 0
933
934 /* We say that MOD and DIV are so cheap because otherwise we'll
935 generate some really horrible code for division of a power of two. */
936
937 /* Provide the costs of a rtl expression. This is in the body of a
938 switch on CODE. */
939 /* ??? Shifts need to have a *much* higher cost than this. */
940
941 #define RTX_COSTS(RTX,CODE,OUTER_CODE) \
942 case MOD: \
943 case DIV: \
944 return 60; \
945 case MULT: \
946 return 20; \
947 case ASHIFT: \
948 case ASHIFTRT: \
949 case LSHIFTRT: \
950 case ROTATE: \
951 case ROTATERT: \
952 if (GET_MODE (RTX) == HImode) return 2; \
953 return 8;
954
955 /* Tell final.c how to eliminate redundant test instructions. */
956
957 /* Here we define machine-dependent flags and fields in cc_status
958 (see `conditions.h'). No extra ones are needed for the vax. */
959
960 /* Store in cc_status the expressions
961 that the condition codes will describe
962 after execution of an instruction whose pattern is EXP.
963 Do not alter them if the instruction would not alter the cc's. */
964
965 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
966 #define CC_DONE_CBIT 0400
967
968 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
969 { \
970 if (cc_status.flags & CC_NO_OVERFLOW) \
971 return NO_OV; \
972 return NORMAL; \
973 }
974 \f
975 /* Control the assembler format that we output. */
976
977 #define ASM_IDENTIFY_GCC /* nothing */
978
979 /* Output at beginning/end of assembler file. */
980
981 #define ASM_FILE_START(FILE) asm_file_start(FILE)
982
983 #define ASM_FILE_END(FILE) asm_file_end(FILE)
984
985 /* Output to assembler file text saying following lines
986 may contain character constants, extra white space, comments, etc. */
987
988 #define ASM_APP_ON "; #APP\n"
989
990 /* Output to assembler file text saying following lines
991 no longer contain unusual constructs. */
992
993 #define ASM_APP_OFF "; #NO_APP\n"
994
995 #define FILE_ASM_OP "\t.file\n"
996 #define IDENT_ASM_OP "\t.ident\n"
997
998 /* The assembler op to get a word, 2 bytes for the H8/300, 4 for H8/300H. */
999 #define ASM_WORD_OP (TARGET_H8300 ? ".word" : ".long")
1000
1001 /* Output before read-only data. */
1002
1003 #define TEXT_SECTION_ASM_OP "\t.section .text"
1004 #define DATA_SECTION_ASM_OP "\t.section .data"
1005 #define BSS_SECTION_ASM_OP "\t.section .bss"
1006 #define INIT_SECTION_ASM_OP "\t.section .init"
1007 #define CTORS_SECTION_ASM_OP "\t.section .ctors"
1008 #define DTORS_SECTION_ASM_OP "\t.section .dtors"
1009
1010 #define EXTRA_SECTIONS in_ctors, in_dtors
1011
1012 #define EXTRA_SECTION_FUNCTIONS \
1013 \
1014 void \
1015 ctors_section() \
1016 { \
1017 if (in_section != in_ctors) \
1018 { \
1019 fprintf (asm_out_file, "%s\n", CTORS_SECTION_ASM_OP); \
1020 in_section = in_ctors; \
1021 } \
1022 } \
1023 \
1024 void \
1025 dtors_section() \
1026 { \
1027 if (in_section != in_dtors) \
1028 { \
1029 fprintf (asm_out_file, "%s\n", DTORS_SECTION_ASM_OP); \
1030 in_section = in_dtors; \
1031 } \
1032 } \
1033
1034 #define ASM_OUTPUT_CONSTRUCTOR(FILE,NAME) \
1035 do { ctors_section(); \
1036 fprintf(FILE, "\t%s\t_%s\n", ASM_WORD_OP, NAME); } while (0)
1037
1038 #define ASM_OUTPUT_DESTRUCTOR(FILE,NAME) \
1039 do { dtors_section(); \
1040 fprintf(FILE, "\t%s\t_%s\n", ASM_WORD_OP, NAME); } while (0)
1041
1042 #undef DO_GLOBAL_CTORS_BODY
1043 #define DO_GLOBAL_CTORS_BODY \
1044 { \
1045 typedef (*pfunc)(); \
1046 extern pfunc __ctors[]; \
1047 extern pfunc __ctors_end[]; \
1048 pfunc *p; \
1049 for (p = __ctors_end; p > __ctors; ) \
1050 { \
1051 (*--p)(); \
1052 } \
1053 }
1054
1055 #undef DO_GLOBAL_DTORS_BODY
1056 #define DO_GLOBAL_DTORS_BODY \
1057 { \
1058 typedef (*pfunc)(); \
1059 extern pfunc __dtors[]; \
1060 extern pfunc __dtors_end[]; \
1061 pfunc *p; \
1062 for (p = __dtors; p < __dtors_end; p++) \
1063 { \
1064 (*p)(); \
1065 } \
1066 }
1067
1068 /* How to refer to registers in assembler output.
1069 This sequence is indexed by compiler's hard-register-number (see above). */
1070
1071 #define REGISTER_NAMES \
1072 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "sp", "ap"}
1073
1074 #define ADDITIONAL_REGISTER_NAMES { { "r7", 7 } }
1075
1076 /* How to renumber registers for dbx and gdb.
1077 H8/300 needs no change in the numeration. */
1078
1079 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1080
1081 #define SDB_DEBUGGING_INFO
1082 #define SDB_DELIM "\n"
1083
1084 /* Output DBX (stabs) debugging information if doing -gstabs. */
1085
1086 #define DBX_DEBUGGING_INFO
1087
1088 /* Generate SDB debugging information by default. */
1089
1090 #define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
1091
1092 /* A C statement to output something to the assembler file to switch to section
1093 NAME for object DECL which is either a FUNCTION_DECL, a VAR_DECL or
1094 NULL_TREE. Some target formats do not support arbitrary sections. Do not
1095 define this macro in such cases. */
1096
1097 #define ASM_OUTPUT_SECTION_NAME(FILE, DECL, NAME) \
1098 fprintf (FILE, "\t.section %s\n", NAME)
1099
1100 /* This is how to output the definition of a user-level label named NAME,
1101 such as the label on a static function or variable NAME. */
1102
1103 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1104 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1105
1106 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME)
1107
1108 /* This is how to output a command to make the user-level label named NAME
1109 defined for reference from other files. */
1110
1111 #define ASM_GLOBALIZE_LABEL(FILE, NAME) \
1112 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1113
1114 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
1115 ASM_OUTPUT_LABEL(FILE, NAME)
1116
1117 /* This is how to output a reference to a user-level label named NAME.
1118 `assemble_name' uses this. */
1119
1120 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1121 fprintf (FILE, "_%s", NAME)
1122
1123 /* This is how to output an internal numbered label where
1124 PREFIX is the class of label and NUM is the number within the class. */
1125
1126 #define ASM_OUTPUT_INTERNAL_LABEL(FILE, PREFIX, NUM) \
1127 fprintf (FILE, ".%s%d:\n", PREFIX, NUM)
1128
1129 /* This is how to store into the string LABEL
1130 the symbol_ref name of an internal numbered label where
1131 PREFIX is the class of label and NUM is the number within the class.
1132 This is suitable for output with `assemble_name'. */
1133
1134 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1135 sprintf (LABEL, "*.%s%d", PREFIX, NUM)
1136
1137 /* This is how to output an assembler line defining a `double' constant.
1138 It is .dfloat or .gfloat, depending. */
1139
1140 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
1141 do { char dstr[30]; \
1142 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
1143 fprintf (FILE, "\t.double %s\n", dstr); \
1144 } while (0)
1145
1146
1147 /* This is how to output an assembler line defining a `float' constant. */
1148 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
1149 do { char dstr[30]; \
1150 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
1151 fprintf (FILE, "\t.float %s\n", dstr); \
1152 } while (0)
1153
1154 /* This is how to output an assembler line defining an `int' constant. */
1155
1156 #define ASM_OUTPUT_INT(FILE, VALUE) \
1157 ( fprintf (FILE, "\t.long "), \
1158 output_addr_const (FILE, (VALUE)), \
1159 fprintf (FILE, "\n"))
1160
1161 /* Likewise for `char' and `short' constants. */
1162
1163 #define ASM_OUTPUT_SHORT(FILE, VALUE) \
1164 ( fprintf (FILE, "\t.word "), \
1165 output_addr_const (FILE, (VALUE)), \
1166 fprintf (FILE, "\n"))
1167
1168 #define ASM_OUTPUT_CHAR(FILE, VALUE) \
1169 ( fprintf (FILE, "\t.byte "), \
1170 output_addr_const (FILE, (VALUE)), \
1171 fprintf (FILE, "\n"))
1172
1173 /* This is how to output an assembler line for a numeric constant byte. */
1174 #define ASM_OUTPUT_BYTE(FILE, VALUE) \
1175 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1176
1177 /* This is how to output an insn to push a register on the stack.
1178 It need not be very fast code. */
1179
1180 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
1181 fprintf (FILE, "\t%s\t%s\n", h8_push_op, h8_reg_names[REGNO])
1182
1183 /* This is how to output an insn to pop a register from the stack.
1184 It need not be very fast code. */
1185
1186 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1187 fprintf (FILE, "\t%s\t%s\n", h8_pop_op, h8_reg_names[REGNO])
1188
1189 /* This is how to output an element of a case-vector that is absolute. */
1190
1191 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1192 asm_fprintf (FILE, "\t%s .L%d\n", ASM_WORD_OP, VALUE)
1193
1194 /* This is how to output an element of a case-vector that is relative. */
1195
1196 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1197 fprintf (FILE, "\t%s .L%d-.L%d\n", ASM_WORD_OP, VALUE, REL)
1198
1199 /* This is how to output an assembler line
1200 that says to advance the location counter
1201 to a multiple of 2**LOG bytes. */
1202
1203 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1204 if ((LOG) != 0) \
1205 fprintf (FILE, "\t.align %d\n", (LOG))
1206
1207 /* This is how to output an assembler line
1208 that says to advance the location counter by SIZE bytes. */
1209
1210 #define ASM_OUTPUT_IDENT(FILE, NAME) \
1211 fprintf(FILE, "%s\t \"%s\"\n", IDENT_ASM_OP, NAME)
1212
1213 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
1214 fprintf (FILE, "\t.space %d\n", (SIZE))
1215
1216 /* This says how to output an assembler line
1217 to define a global common symbol. */
1218
1219 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1220 ( fputs ("\t.comm ", (FILE)), \
1221 assemble_name ((FILE), (NAME)), \
1222 fprintf ((FILE), ",%d\n", (SIZE)))
1223
1224 /* This says how to output an assembler line
1225 to define a local common symbol. */
1226
1227 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1228 ( fputs ("\t.lcomm ", (FILE)), \
1229 assemble_name ((FILE), (NAME)), \
1230 fprintf ((FILE), ",%d\n", (SIZE)))
1231
1232 /* Store in OUTPUT a string (made with alloca) containing
1233 an assembler-name for a local static variable named NAME.
1234 LABELNO is an integer which is different for each call. */
1235
1236 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1237 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1238 sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
1239
1240 /* Define the parentheses used to group arithmetic operations
1241 in assembler code. */
1242
1243 #define ASM_OPEN_PAREN "("
1244 #define ASM_CLOSE_PAREN ")"
1245
1246 /* Define results of standard character escape sequences. */
1247 #define TARGET_BELL 007
1248 #define TARGET_BS 010
1249 #define TARGET_TAB 011
1250 #define TARGET_NEWLINE 012
1251 #define TARGET_VT 013
1252 #define TARGET_FF 014
1253 #define TARGET_CR 015
1254
1255 /* Print an instruction operand X on file FILE.
1256 look in h8300.c for details */
1257
1258 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1259 ((CODE) == '#')
1260
1261 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
1262
1263 /* Print a memory operand whose address is X, on file FILE.
1264 This uses a function in output-vax.c. */
1265
1266 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1267
1268 #define HANDLE_PRAGMA(FILE) handle_pragma (FILE)
1269
1270 #define FINAL_PRESCAN_INSN(insn, operand, nop) final_prescan_insn (insn, operand,nop)
1271
1272 /* Define this macro if GNU CC should generate calls to the System V
1273 (and ANSI C) library functions `memcpy' and `memset' rather than
1274 the BSD functions `bcopy' and `bzero'. */
1275
1276 #define TARGET_MEM_FUNCTIONS 1
1277
1278 #define MULHI3_LIBCALL "__mulhi3"
1279 #define DIVHI3_LIBCALL "__divhi3"
1280 #define UDIVHI3_LIBCALL "__udivhi3"
1281 #define MODHI3_LIBCALL "__modhi3"
1282 #define UMODHI3_LIBCALL "__umodhi3"
1283
1284 /* Perform target dependent optabs initialization. */
1285
1286 #define INIT_TARGET_OPTABS \
1287 do { \
1288 smul_optab->handlers[(int) HImode].libfunc \
1289 = gen_rtx (SYMBOL_REF, Pmode, MULHI3_LIBCALL); \
1290 sdiv_optab->handlers[(int) HImode].libfunc \
1291 = gen_rtx (SYMBOL_REF, Pmode, DIVHI3_LIBCALL); \
1292 udiv_optab->handlers[(int) HImode].libfunc \
1293 = gen_rtx (SYMBOL_REF, Pmode, UDIVHI3_LIBCALL); \
1294 smod_optab->handlers[(int) HImode].libfunc \
1295 = gen_rtx (SYMBOL_REF, Pmode, MODHI3_LIBCALL); \
1296 umod_optab->handlers[(int) HImode].libfunc \
1297 = gen_rtx (SYMBOL_REF, Pmode, UMODHI3_LIBCALL); \
1298 } while (0)
1299
1300 #define MOVE_RATIO 3
1301
1302 /* Declarations for functions used in insn-output.c. */
1303 char *emit_a_shift ();
1304
1305