h8300.h (BIGGEST_FIELD_ALIGNMENT): Replace uses of TARGET_ALIGN_STRUCT_300 with TARGE...
[gcc.git] / gcc / config / h8300 / h8300.h
1 /* Definitions of target machine for GNU compiler.
2 Hitachi H8/300 version generating coff
3 Copyright (C) 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
4 Contributed by Steve Chamberlain (sac@cygnus.com),
5 Jim Wilson (wilson@cygnus.com), and Doug Evans (dje@cygnus.com).
6
7 This file is part of GNU CC.
8
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* Which cpu to compile for.
25 We use int for CPU_TYPE to avoid lots of casts. */
26 #if 0 /* defined in insn-attr.h, here for documentation */
27 enum attr_cpu { CPU_H8300, CPU_H8300H };
28 #endif
29 extern int cpu_type;
30
31 /* Various globals defined in h8300.c. */
32
33 extern char *h8_push_op,*h8_pop_op,*h8_mov_op;
34 extern char **h8_reg_names;
35
36 /* Names to predefine in the preprocessor for this target machine. */
37
38 #define CPP_PREDEFINES \
39 "-D__LONG_MAX__=2147483647L -D__LONG_LONG_MAX__=2147483647L"
40
41 #define CPP_SPEC \
42 "%{!mh:-D__H8300__} %{mh:-D__H8300H__} \
43 %{!mh:-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int} \
44 %{mh:-D__SIZE_TYPE__=unsigned\\ long -D__PTRDIFF_TYPE__=long} \
45 %{!mh:-Acpu(h8300) -Amachine(h8300)} %{mh:-Acpu(h8300h) -Amachine(h8300h)} \
46 %{!mint32:-D__INT_MAX__=32767} %{mint32:-D__INT_MAX__=2147483647}"
47
48 #define LINK_SPEC "%{mh:-m h8300h}"
49
50 #define LIB_SPEC "%{mrelax:-relax} %{g:-lg} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
51
52 /* Print subsidiary information on the compiler version in use. */
53
54 #define TARGET_VERSION fprintf (stderr, " (Hitachi H8/300)");
55
56 /* Run-time compilation parameters selecting different hardware subsets. */
57
58 extern int target_flags;
59
60 /* Macros used in the machine description to test the flags. */
61
62 /* Make int's 32 bits. */
63 #define TARGET_INT32 (target_flags & 8)
64
65 /* Dump recorded insn lengths into the output file. This helps debug the
66 md file. */
67 #define TARGET_ADDRESSES (target_flags & 64)
68
69 /* Pass the first few arguments in registers. */
70 #define TARGET_QUICKCALL (target_flags & 128)
71
72 /* Pretend byte accesses are slow. */
73 #define TARGET_SLOWBYTE (target_flags & 256)
74
75 /* Dump each assembler insn's rtl into the output file.
76 This is for debugging the compiler only. */
77 #define TARGET_RTL_DUMP (target_flags & 2048)
78
79 /* Select between the h8/300 and h8/300h cpus. */
80 #define TARGET_H8300 (! TARGET_H8300H)
81 #define TARGET_H8300H (target_flags & 4096)
82
83 /* Align all values on the h8/300h the same way as the h8/300. Specifically,
84 32 bit and larger values are aligned on 16 bit boundaries.
85 This is all the hardware requires, but the default is 32 bits for the 300h.
86 ??? Now watch someone add hardware floating point requiring 32 bit
87 alignment. */
88 #define TARGET_ALIGN_300 (target_flags & 8192)
89
90 /* Macro to define tables used to set the flags.
91 This is a list in braces of pairs in braces,
92 each pair being { "NAME", VALUE }
93 where VALUE is the bits to set or minus the bits to clear.
94 An empty string NAME is used to identify the default VALUE. */
95
96 #define TARGET_SWITCHES \
97 { {"int32",8}, \
98 {"addresses",64 }, \
99 {"quickcall",128}, \
100 {"no-quickcall",-128}, \
101 {"slowbyte",256}, \
102 {"relax",1024}, \
103 {"rtl-dump",2048}, \
104 {"h",4096}, \
105 {"no-h",-4096}, \
106 {"align-300",8192}, \
107 { "", TARGET_DEFAULT}}
108
109 /* Do things that must be done once at start up. */
110
111 #define OVERRIDE_OPTIONS \
112 do { \
113 h8300_init_once (); \
114 } while (0)
115
116 /* Default target_flags if no switches specified. */
117
118 #ifndef TARGET_DEFAULT
119 #define TARGET_DEFAULT (128) /* quickcall */
120 #endif
121
122 /* Show we can debug even without a frame pointer. */
123 /* #define CAN_DEBUG_WITHOUT_FP */
124
125 /* Define this if addresses of constant functions
126 shouldn't be put through pseudo regs where they can be cse'd.
127 Desirable on machines where ordinary constants are expensive
128 but a CALL with constant address is cheap. */
129 #define NO_FUNCTION_CSE
130 \f
131 /* Target machine storage layout */
132
133 /* Define to use software floating point emulator for REAL_ARITHMETIC and
134 decimal <-> binary conversion. */
135 #define REAL_ARITHMETIC
136
137 /* Define this if most significant bit is lowest numbered
138 in instructions that operate on numbered bit-fields.
139 This is not true on the H8/300. */
140 #define BITS_BIG_ENDIAN 0
141
142 /* Define this if most significant byte of a word is the lowest numbered. */
143 /* That is true on the H8/300. */
144 #define BYTES_BIG_ENDIAN 1
145
146 /* Define this if most significant word of a multiword number is lowest
147 numbered.
148 This is true on an H8/300 (actually we can make it up, but we choose to
149 be consistent. */
150 #define WORDS_BIG_ENDIAN 1
151
152 /* Number of bits in an addressable storage unit */
153 #define BITS_PER_UNIT 8
154
155 /* Width in bits of a "word", which is the contents of a machine register.
156 Note that this is not necessarily the width of data type `int';
157 if using 16-bit ints on a 68000, this would still be 32.
158 But on a machine with 16-bit registers, this would be 16. */
159 #define BITS_PER_WORD (TARGET_H8300H ? 32 : 16)
160 #define MAX_BITS_PER_WORD 32
161
162 /* Width of a word, in units (bytes). */
163 #define UNITS_PER_WORD (TARGET_H8300H ? 4 : 2)
164 #define MIN_UNITS_PER_WORD 2
165
166 /* Width in bits of a pointer.
167 See also the macro `Pmode' defined below. */
168 #define POINTER_SIZE (TARGET_H8300H ? 32 : 16)
169
170 #define SHORT_TYPE_SIZE 16
171 #define INT_TYPE_SIZE (TARGET_INT32 ? 32 : 16)
172 #define LONG_TYPE_SIZE 32
173 #define LONG_LONG_TYPE_SIZE 32
174 #define FLOAT_TYPE_SIZE 32
175 #define DOUBLE_TYPE_SIZE 32
176 #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
177
178 #define MAX_FIXED_MODE_SIZE 32
179
180 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
181 #define PARM_BOUNDARY (TARGET_H8300H ? 32 : 16)
182
183 /* Allocation boundary (in *bits*) for the code of a function. */
184 #define FUNCTION_BOUNDARY 16
185
186 /* Alignment of field after `int : 0' in a structure. */
187 /* One can argue this should be 32 for -mint32, but since 32 bit ints only
188 need 16 bit alignment, this is left as is so that -mint32 doesn't change
189 structure layouts. */
190 #define EMPTY_FIELD_BOUNDARY 16
191
192 /* A bitfield declared as `int' forces `int' alignment for the struct. */
193 #define PCC_BITFIELD_TYPE_MATTERS 0
194
195 /* No data type wants to be aligned rounder than this.
196 32 bit values are aligned as such on the 300h for speed. */
197 #define BIGGEST_ALIGNMENT \
198 ((TARGET_H8300H && ! TARGET_ALIGN_300) ? 32 : 16)
199
200 /* No structure field wants to be aligned rounder than this. */
201 #define BIGGEST_FIELD_ALIGNMENT \
202 ((TARGET_H8300H && ! TARGET_ALIGN_300) ? 32 : 16)
203
204 /* The stack goes in 16/32 bit lumps. */
205 #define STACK_BOUNDARY (TARGET_H8300 ? 16 : 32)
206
207 /* Define this if move instructions will actually fail to work
208 when given unaligned data. */
209 /* On the H8/300, longs can be aligned on halfword boundaries, but not
210 byte boundaries. */
211 #define STRICT_ALIGNMENT 1
212 \f
213 /* Standard register usage. */
214
215 /* Number of actual hardware registers.
216 The hardware registers are assigned numbers for the compiler
217 from 0 to just below FIRST_PSEUDO_REGISTER.
218
219 All registers that the compiler knows about must be given numbers,
220 even those that are not normally considered general registers.
221
222 Reg 8 does not correspond to any hardware register, but instead
223 appears in the RTL as an argument pointer prior to reload, and is
224 eliminated during reloading in favor of either the stack or frame
225 pointer. */
226
227 #define FIRST_PSEUDO_REGISTER 9
228
229 /* 1 for registers that have pervasive standard uses
230 and are not available for the register allocator. */
231
232 #define FIXED_REGISTERS \
233 { 0, 0, 0, 0, 0, 0, 0, 1, 1}
234
235 /* 1 for registers not available across function calls.
236 These must include the FIXED_REGISTERS and also any
237 registers that can be used without being saved.
238 The latter must include the registers where values are returned
239 and the register where structure-value addresses are passed.
240 Aside from that, you can include as many other registers as you
241 like.
242
243 h8 destroys r0,r1,r2,r3. */
244
245 #define CALL_USED_REGISTERS \
246 { 1, 1, 1, 1, 0, 0, 0, 1, 1 }
247
248 #define REG_ALLOC_ORDER \
249 { 2, 3, 0, 1, 4, 5, 6, 7, 8}
250
251 /* Return number of consecutive hard regs needed starting at reg REGNO
252 to hold something of mode MODE.
253
254 This is ordinarily the length in words of a value of mode MODE
255 but can be less for certain modes in special long registers. */
256
257 #define HARD_REGNO_NREGS(REGNO, MODE) \
258 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
259
260 /* Value is 1 if hard register REGNO can hold a value of machine-mode
261 MODE.
262
263 H8/300: If an even reg, then anything goes. Otherwise the mode must be QI
264 or HI.
265 H8/300H: Anything goes. */
266
267 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
268 (TARGET_H8300 ? (((REGNO)&1)==0) || (MODE==HImode) || (MODE==QImode) \
269 : 1)
270
271 /* Value is 1 if it is a good idea to tie two pseudo registers
272 when one has mode MODE1 and one has mode MODE2.
273 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
274 for any hard reg, then this must be 0 for correct output. */
275 #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
276
277 /* Specify the registers used for certain standard purposes.
278 The values of these macros are register numbers. */
279
280 /* H8/300 pc is not overloaded on a register. */
281
282 /*#define PC_REGNUM 15*/
283
284 /* Register to use for pushing function arguments. */
285 #define STACK_POINTER_REGNUM 7
286
287 /* Base register for access to local variables of the function. */
288 #define FRAME_POINTER_REGNUM 6
289
290 /* Value should be nonzero if functions must have frame pointers.
291 Zero means the frame pointer need not be set up (and parms
292 may be accessed via the stack pointer) in functions that seem suitable.
293 This is computed in `reload', in reload1.c. */
294 #define FRAME_POINTER_REQUIRED 0
295
296 /* Base register for access to arguments of the function. */
297 #define ARG_POINTER_REGNUM 8
298
299 /* Register in which static-chain is passed to a function. */
300 #define STATIC_CHAIN_REGNUM 3
301 \f
302 /* Define the classes of registers for register constraints in the
303 machine description. Also define ranges of constants.
304
305 One of the classes must always be named ALL_REGS and include all hard regs.
306 If there is more than one class, another class must be named NO_REGS
307 and contain no registers.
308
309 The name GENERAL_REGS must be the name of a class (or an alias for
310 another name such as ALL_REGS). This is the class of registers
311 that is allowed by "g" or "r" in a register constraint.
312 Also, registers outside this class are allocated only when
313 instructions express preferences for them.
314
315 The classes must be numbered in nondecreasing order; that is,
316 a larger-numbered class must never be contained completely
317 in a smaller-numbered class.
318
319 For any two classes, it is very desirable that there be another
320 class that represents their union. */
321
322 /* The h8 has only one kind of register, but we mustn't do byte by
323 byte operations on the sp, so we keep it as a different class */
324
325 enum reg_class { NO_REGS, LONG_REGS, GENERAL_REGS, SP_REG, SP_AND_G_REG, ALL_REGS, LIM_REG_CLASSES };
326
327 #define N_REG_CLASSES (int) LIM_REG_CLASSES
328
329 /* Give names of register classes as strings for dump file. */
330
331 #define REG_CLASS_NAMES \
332 {"NO_REGS", "LONG_REGS", "GENERAL_REGS", "SP_REG", "SP_AND_G_REG", "ALL_REGS", "LIM_REGS" }
333
334 /* Define which registers fit in which classes.
335 This is an initializer for a vector of HARD_REG_SET
336 of length N_REG_CLASSES. */
337
338 #define REG_CLASS_CONTENTS \
339 { 0, /* No regs */ \
340 0x07f, /* LONG_REGS */ \
341 0x07f, /* GENERAL_REGS */ \
342 0x080, /* SP_REG */ \
343 0x0ff, /* SP_AND_G_REG */ \
344 0x1ff, /* ALL_REGS */ \
345 }
346
347 /* The same information, inverted:
348 Return the class number of the smallest class containing
349 reg number REGNO. This could be a conditional expression
350 or could index an array. */
351
352 #define REGNO_REG_CLASS(REGNO) \
353 ((REGNO) < 7 ? LONG_REGS : \
354 (REGNO) == 7 ? SP_REG : \
355 GENERAL_REGS)
356
357 /* The class value for index registers, and the one for base regs. */
358
359 #define INDEX_REG_CLASS NO_REGS
360 #define BASE_REG_CLASS GENERAL_REGS
361
362 /* Get reg_class from a letter such as appears in the machine description. */
363
364 #define REG_CLASS_FROM_LETTER(C) \
365 ((C) == 'a' ? (SP_REG) : (C) == 'l' ? (LONG_REGS) : (NO_REGS))
366
367 /* The letters I, J, K, L, M, N, O, P in a register constraint string
368 can be used to stand for particular ranges of immediate operands.
369 This macro defines what the ranges are.
370 C is the letter, and VALUE is a constant value.
371 Return 1 if VALUE is in the range specified by C. */
372
373 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
374 #define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) < 256)
375 #define CONST_OK_FOR_K(VALUE) (((VALUE) == 1) || (VALUE) == 2)
376 #define CONST_OK_FOR_L(VALUE) (((VALUE) == -1) || (VALUE) == -2)
377 #define CONST_OK_FOR_M(VALUE) (((VALUE) == 3) || (VALUE) == 4)
378 #define CONST_OK_FOR_N(VALUE) (((VALUE) == -3) || (VALUE) == -4)
379 #define CONST_OK_FOR_O(VALUE) (ok_for_bclr (VALUE))
380 #define CONST_OK_FOR_P(VALUE) (small_power_of_two (VALUE))
381
382 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
383 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
384 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
385 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
386 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
387 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
388 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
389 (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
390 (C) == 'P' ? CONST_OK_FOR_P(VALUE) : \
391 0)
392
393 /* Similar, but for floating constants, and defining letters G and H.
394 Here VALUE is the CONST_DOUBLE rtx itself.
395
396 `G' is a floating-point zero. */
397
398 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
399 ((C) == 'G' ? (VALUE) == CONST0_RTX (DFmode) \
400 : 0)
401
402 /* Given an rtx X being reloaded into a reg required to be
403 in class CLASS, return the class of reg to actually use.
404 In general this is just CLASS; but on some machines
405 in some cases it is preferable to use a more restrictive class. */
406
407 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
408
409 /* Return the maximum number of consecutive registers
410 needed to represent mode MODE in a register of class CLASS. */
411
412 /* On the H8, this is the size of MODE in words. */
413
414 #define CLASS_MAX_NREGS(CLASS, MODE) \
415 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
416
417 /* Any SI register to register move may need to be reloaded,
418 so define REGISTER_MOVE_COST to be > 2 so that reload never
419 shortcuts. */
420
421 #define REGISTER_MOVE_COST(CLASS1, CLASS2) 3
422 \f
423 /* Stack layout; function entry, exit and calling. */
424
425 /* Define this if pushing a word on the stack
426 makes the stack pointer a smaller address. */
427
428 #define STACK_GROWS_DOWNWARD
429
430 /* Define this if the nominal address of the stack frame
431 is at the high-address end of the local variables;
432 that is, each additional local variable allocated
433 goes at a more negative offset in the frame. */
434
435 #define FRAME_GROWS_DOWNWARD
436
437 /* Offset within stack frame to start allocating local variables at.
438 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
439 first local allocated. Otherwise, it is the offset to the BEGINNING
440 of the first local allocated. */
441
442 #define STARTING_FRAME_OFFSET 0
443
444 /* If we generate an insn to push BYTES bytes,
445 this says how many the stack pointer really advances by.
446
447 On the H8/300, @-sp really pushes a byte if you ask it to - but that's
448 dangerous, so we claim that it always pushes a word, then we catch
449 the mov.b rx,@-sp and turn it into a mov.w rx,@-sp on output.
450
451 On the H8/300h, we simplify TARGET_QUICKCALL by setting this to 4 and doing
452 a similar thing. */
453
454 #define PUSH_ROUNDING(BYTES) \
455 (((BYTES) + PARM_BOUNDARY/8 - 1) & -PARM_BOUNDARY/8)
456
457 /* Offset of first parameter from the argument pointer register value. */
458 /* Is equal to the size of the saved fp + pc, even if an fp isn't
459 saved since the value is used before we know. */
460
461 #define FIRST_PARM_OFFSET(FNDECL) 0
462
463 /* Value is the number of bytes of arguments automatically
464 popped when returning from a subroutine call.
465 FUNDECL is the declaration node of the function (as a tree),
466 FUNTYPE is the data type of the function (as a tree),
467 or for a library call it is an identifier node for the subroutine name.
468 SIZE is the number of bytes of arguments passed on the stack.
469
470 On the H8 the return does not pop anything. */
471
472 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
473
474 /* Definitions for register eliminations.
475
476 This is an array of structures. Each structure initializes one pair
477 of eliminable registers. The "from" register number is given first,
478 followed by "to". Eliminations of the same "from" register are listed
479 in order of preference.
480
481 We have two registers that can be eliminated on the h8300. First, the
482 frame pointer register can often be eliminated in favor of the stack
483 pointer register. Secondly, the argument pointer register can always be
484 eliminated; it is replaced with either the stack or frame pointer. */
485
486 #define ELIMINABLE_REGS \
487 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
488 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
489 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
490
491 /* Given FROM and TO register numbers, say whether this elimination is allowed.
492 Frame pointer elimination is automatically handled.
493
494 For the h8300, if frame pointer elimination is being done, we would like to
495 convert ap into sp, not fp.
496
497 All other eliminations are valid. */
498
499 #define CAN_ELIMINATE(FROM, TO) \
500 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
501 ? ! frame_pointer_needed \
502 : 1)
503
504 /* Define the offset between two registers, one to be eliminated, and the other
505 its replacement, at the start of a routine. */
506
507 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
508 OFFSET = initial_offset (FROM, TO)
509
510 /* Define how to find the value returned by a function.
511 VALTYPE is the data type of the value (as a tree).
512 If the precise function being called is known, FUNC is its FUNCTION_DECL;
513 otherwise, FUNC is 0.
514
515 On the H8 the return value is in R0/R1. */
516
517 #define FUNCTION_VALUE(VALTYPE, FUNC) \
518 gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
519
520 /* Define how to find the value returned by a library function
521 assuming the value has mode MODE. */
522
523 /* On the h8 the return value is in R0/R1 */
524
525 #define LIBCALL_VALUE(MODE) \
526 gen_rtx (REG, MODE, 0)
527
528 /* 1 if N is a possible register number for a function value.
529 On the H8, R0 is the only register thus used. */
530
531 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
532
533 /* Define this if PCC uses the nonreentrant convention for returning
534 structure and union values. */
535
536 /*#define PCC_STATIC_STRUCT_RETURN*/
537
538 /* 1 if N is a possible register number for function argument passing.
539 On the H8, no registers are used in this way. */
540 /* ??? What about TARGET_QUICKCALL? */
541
542 #define FUNCTION_ARG_REGNO_P(N) 0
543
544 /* Register in which address to store a structure value
545 is passed to a function. */
546
547 #define STRUCT_VALUE 0
548
549 /* Return true if X should be returned in memory. */
550 /* ??? This will return small structs in regs. */
551 #define RETURN_IN_MEMORY(X) (GET_MODE_SIZE (TYPE_MODE (X)) > 4)
552
553 /* When defined, the compiler allows registers explicitly used in the
554 rtl to be used as spill registers but prevents the compiler from
555 extending the lifetime of these registers. */
556
557 #define SMALL_REGISTER_CLASSES
558 \f
559 /* Define a data type for recording info about an argument list
560 during the scan of that argument list. This data type should
561 hold all necessary information about the function itself
562 and about the args processed so far, enough to enable macros
563 such as FUNCTION_ARG to determine where the next arg should go.
564
565 On the H8/300, this is a two item struct, the first is the number of bytes
566 scanned so far and the second is the rtx of the called library
567 function if any. */
568
569 #define CUMULATIVE_ARGS struct cum_arg
570 struct cum_arg { int nbytes; struct rtx_def * libcall; };
571
572 /* Initialize a variable CUM of type CUMULATIVE_ARGS
573 for a call to a function whose data type is FNTYPE.
574 For a library call, FNTYPE is 0.
575
576 On the H8/300, the offset starts at 0. */
577
578 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
579 ((CUM).nbytes = 0, (CUM).libcall = LIBNAME)
580
581 /* Update the data in CUM to advance over an argument
582 of mode MODE and data type TYPE.
583 (TYPE is null for libcalls where that information may not be available.) */
584
585 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
586 ((CUM).nbytes += ((MODE) != BLKmode \
587 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
588 : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
589
590 /* Define where to put the arguments to a function.
591 Value is zero to push the argument on the stack,
592 or a hard register in which to store the argument.
593
594 MODE is the argument's machine mode.
595 TYPE is the data type of the argument (as a tree).
596 This is null for libcalls where that information may
597 not be available.
598 CUM is a variable of type CUMULATIVE_ARGS which gives info about
599 the preceding args and about the function being called.
600 NAMED is nonzero if this argument is a named parameter
601 (otherwise it is an extra parameter matching an ellipsis). */
602
603 /* On the H8/300 all normal args are pushed, unless -mquickcall in which
604 case the first 3 arguments are passed in registers.
605 See function `function_arg'. */
606
607 struct rtx_def *function_arg();
608 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
609 function_arg (&CUM, MODE, TYPE, NAMED)
610
611 /* Perform any needed actions needed for a function that is receiving a
612 variable number of arguments. */
613
614 extern int current_function_anonymous_args;
615 #define SETUP_INCOMING_VARARGS(ASF, MODE, TYPE, PAS, ST) \
616 current_function_anonymous_args = 1;
617
618 /* Generate assembly output for the start of a function. */
619
620 #define FUNCTION_PROLOGUE(FILE, SIZE) \
621 function_prologue (FILE, SIZE)
622
623 /* Output assembler code to FILE to increment profiler label # LABELNO
624 for profiling a function entry. */
625
626 #define FUNCTION_PROFILER(FILE, LABELNO) \
627 fprintf (FILE, "\t%s\t#LP%d,%s\n\tjsr @mcount\n", \
628 h8_mov_op, (LABELNO), h8_reg_names[0]);
629
630 /* Output assembler code to FILE to initialize this source file's
631 basic block profiling info, if that has not already been done. */
632 /* ??? @LPBX0 is moved into r0 twice. */
633
634 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
635 fprintf (FILE, "\t%s\t%s\n\t%s\t@LPBX0,%s\n\tbne LPI%d\n\t%s\t@LPBX0,%s\n\t%s\t%s\n\tjsr\t@__bb_init_func\nLPI%d:\t%s\t%s\n", \
636 h8_push_op, h8_reg_names[0], \
637 h8_mov_op, h8_reg_names[0], \
638 (LABELNO), \
639 h8_mov_op, h8_reg_names[0], \
640 h8_push_op, h8_reg_names[0], \
641 (LABELNO), \
642 h8_pop_op, h8_reg_names[0]);
643
644 /* Output assembler code to FILE to increment the entry-count for
645 the BLOCKNO'th basic block in this source file. This is a real pain in the
646 sphincter on a VAX, since we do not want to change any of the bits in the
647 processor status word. The way it is done here, it is pushed onto the stack
648 before any flags have changed, and then the stack is fixed up to account for
649 the fact that the instruction to restore the flags only reads a word.
650 It may seem a bit clumsy, but at least it works. */
651 /* ??? This one needs work. */
652
653 #define BLOCK_PROFILER(FILE, BLOCKNO) \
654 fprintf (FILE, "\tmovpsl -(sp)\n\tmovw (sp),2(sp)\n\taddl2 $2,sp\n\taddl2 $1,LPBX2+%d\n\tbicpsw $255\n\tbispsw (sp)+\n", \
655 4 * BLOCKNO)
656
657 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
658 the stack pointer does not matter. The value is tested only in
659 functions that have frame pointers.
660 No definition is equivalent to always zero. */
661
662 #define EXIT_IGNORE_STACK 0
663
664 /* This macro generates the assembly code for function exit,
665 on machines that need it. If FUNCTION_EPILOGUE is not defined
666 then individual return instructions are generated for each
667 return statement. Args are same as for FUNCTION_PROLOGUE. */
668
669 #define FUNCTION_EPILOGUE(FILE, SIZE) \
670 function_epilogue (FILE, SIZE)
671
672 /* Output assembler code for a block containing the constant parts
673 of a trampoline, leaving space for the variable parts.
674
675 H8/300
676 vvvv context
677 1 0000 7900xxxx mov.w #0x1234,r3
678 2 0004 5A00xxxx jmp @0x1234
679 ^^^^ function
680
681 H8/300H
682 vvvvvvvv context
683 2 0000 7A00xxxxxxxx mov.l #0x12345678,er3
684 3 0006 5Axxxxxx jmp @0x123456
685 ^^^^^^ function
686 */
687
688 #define TRAMPOLINE_TEMPLATE(FILE) \
689 do { \
690 if (TARGET_H8300) \
691 { \
692 fprintf (FILE, "\tmov.w #0x1234,r3\n"); \
693 fprintf (FILE, "\tjmp @0x1234\n"); \
694 } \
695 else \
696 { \
697 fprintf (FILE, "\tmov.l #0x12345678,er3\n"); \
698 fprintf (FILE, "\tjmp @0x123456\n"); \
699 } \
700 } while (0)
701
702 /* Length in units of the trampoline for entering a nested function. */
703
704 #define TRAMPOLINE_SIZE (TARGET_H8300 ? 8 : 12)
705
706 /* Emit RTL insns to initialize the variable parts of a trampoline.
707 FNADDR is an RTX for the address of the function's pure code.
708 CXT is an RTX for the static chain value for the function. */
709
710 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
711 { \
712 enum machine_mode mode = TARGET_H8300H ? SImode : HImode; \
713 emit_move_insn (gen_rtx (MEM, mode, plus_constant ((TRAMP), 2)), CXT); \
714 emit_move_insn (gen_rtx (MEM, mode, plus_constant ((TRAMP), 6)), FNADDR); \
715 if (TARGET_H8300H) \
716 emit_move_insn (gen_rtx (MEM, QImode, plus_constant ((TRAMP), 6)), GEN_INT (0x5A)); \
717 }
718 \f
719 /* Addressing modes, and classification of registers for them. */
720
721 #define HAVE_POST_INCREMENT
722 /*#define HAVE_POST_DECREMENT */
723
724 #define HAVE_PRE_DECREMENT
725 /*#define HAVE_PRE_INCREMENT */
726
727 /* Macros to check register numbers against specific register classes. */
728
729 /* These assume that REGNO is a hard or pseudo reg number.
730 They give nonzero only if REGNO is a hard reg of the suitable class
731 or a pseudo reg currently allocated to a suitable hard reg.
732 Since they use reg_renumber, they are safe only once reg_renumber
733 has been allocated, which happens in local-alloc.c. */
734
735 #define REGNO_OK_FOR_INDEX_P(regno) 0
736
737 #define REGNO_OK_FOR_BASE_P(regno) \
738 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
739 \f
740 /* Maximum number of registers that can appear in a valid memory address. */
741
742 #define MAX_REGS_PER_ADDRESS 1
743
744 /* 1 if X is an rtx for a constant that is a valid address. */
745
746 #define CONSTANT_ADDRESS_P(X) \
747 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
748 || (GET_CODE (X) == CONST_INT \
749 /* We handle signed and unsigned offsets here. */ \
750 && INTVAL (X) > (TARGET_H8300 ? -0x10000 : -0x1000000) \
751 && INTVAL (X) < (TARGET_H8300 ? 0x10000 : 0x1000000)) \
752 || GET_CODE (X) == CONST \
753 || GET_CODE (X) == HIGH)
754
755 /* Nonzero if the constant value X is a legitimate general operand.
756 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
757
758 #define LEGITIMATE_CONSTANT_P(X) (GET_CODE (X) != CONST_DOUBLE)
759
760 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
761 and check its validity for a certain class.
762 We have two alternate definitions for each of them.
763 The usual definition accepts all pseudo regs; the other rejects
764 them unless they have been allocated suitable hard regs.
765 The symbol REG_OK_STRICT causes the latter definition to be used.
766
767 Most source files want to accept pseudo regs in the hope that
768 they will get allocated to the class that the insn wants them to be in.
769 Source files for reload pass need to be strict.
770 After reload, it makes no difference, since pseudo regs have
771 been eliminated by then. */
772
773 #ifndef REG_OK_STRICT
774
775 /* Nonzero if X is a hard reg that can be used as an index
776 or if it is a pseudo reg. */
777 #define REG_OK_FOR_INDEX_P(X) 0
778 /* Nonzero if X is a hard reg that can be used as a base reg
779 or if it is a pseudo reg. */
780 #define REG_OK_FOR_BASE_P(X) 1
781 #define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
782 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
783 #define STRICT 0
784
785 #else
786
787 /* Nonzero if X is a hard reg that can be used as an index. */
788 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
789 /* Nonzero if X is a hard reg that can be used as a base reg. */
790 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
791 #define STRICT 1
792
793 #endif
794
795 /* Extra constraints - 'U' if for an operand valid for a bset
796 destination; i.e. a register or register indirect target. */
797 #define OK_FOR_U(OP) \
798 ((GET_CODE (OP) == REG && REG_OK_FOR_BASE_P (OP)) \
799 || (GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
800 && REG_OK_FOR_BASE_P (XEXP (OP, 0))))
801
802 #define EXTRA_CONSTRAINT(OP, C) \
803 ((C) == 'U' ? OK_FOR_U (OP) : 0)
804 \f
805 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
806 that is a valid memory address for an instruction.
807 The MODE argument is the machine mode for the MEM expression
808 that wants to use this address.
809
810 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
811 except for CONSTANT_ADDRESS_P which is actually
812 machine-independent.
813
814 On the H8/300, a legitimate address has the form
815 REG, REG+CONSTANT_ADDRESS or CONSTANT_ADDRESS. */
816
817 /* Accept either REG or SUBREG where a register is valid. */
818
819 #define RTX_OK_FOR_BASE_P(X) \
820 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
821 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
822 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
823
824 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
825 if (RTX_OK_FOR_BASE_P (X)) goto ADDR; \
826 if (CONSTANT_ADDRESS_P (X)) goto ADDR; \
827 if (GET_CODE (X) == PLUS \
828 && CONSTANT_ADDRESS_P (XEXP (X, 1)) \
829 && RTX_OK_FOR_BASE_P (XEXP (X, 0))) goto ADDR;
830 \f
831 /* Try machine-dependent ways of modifying an illegitimate address
832 to be legitimate. If we find one, return the new, valid address.
833 This macro is used in only one place: `memory_address' in explow.c.
834
835 OLDX is the address as it was before break_out_memory_refs was called.
836 In some cases it is useful to look at this to decide what needs to be done.
837
838 MODE and WIN are passed so that this macro can use
839 GO_IF_LEGITIMATE_ADDRESS.
840
841 It is always safe for this macro to do nothing. It exists to recognize
842 opportunities to optimize the output.
843
844 For the H8/300, don't do anything. */
845
846 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
847
848 /* Go to LABEL if ADDR (a legitimate address expression)
849 has an effect that depends on the machine mode it is used for.
850
851 On the H8/300, the predecrement and postincrement address depend thus
852 (the amount of decrement or increment being the length of the operand)
853 and all indexed address depend thus (because the index scale factor
854 is the length of the operand). */
855
856 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
857 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL;
858 \f
859 /* Specify the machine mode that this machine uses
860 for the index in the tablejump instruction. */
861 #define CASE_VECTOR_MODE Pmode
862
863 /* Define this if the case instruction expects the table
864 to contain offsets from the address of the table.
865 Do not define this if the table should contain absolute addresses. */
866 /*#define CASE_VECTOR_PC_RELATIVE*/
867
868 /* Define this if the case instruction drops through after the table
869 when the index is out of range. Don't define it if the case insn
870 jumps to the default label instead. */
871 #define CASE_DROPS_THROUGH
872
873 /* Specify the tree operation to be used to convert reals to integers. */
874 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
875
876 /* This is the kind of divide that is easiest to do in the general case. */
877 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
878
879 /* Define this as 1 if `char' should by default be signed; else as 0.
880
881 On the H8/300, sign extension is expensive, so we'll say that chars
882 are unsigned. */
883 #define DEFAULT_SIGNED_CHAR 0
884
885 /* This flag, if defined, says the same insns that convert to a signed fixnum
886 also convert validly to an unsigned one. */
887 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
888
889 /* Max number of bytes we can move from memory to memory
890 in one reasonably fast instruction. */
891 #define MOVE_MAX (TARGET_H8300H ? 4 : 2)
892 #define MAX_MOVE_MAX 4
893
894 /* Define this if zero-extension is slow (more than one real instruction). */
895 /* #define SLOW_ZERO_EXTEND */
896
897 /* Nonzero if access to memory by bytes is slow and undesirable. */
898 #define SLOW_BYTE_ACCESS TARGET_SLOWBYTE
899
900 /* Define if shifts truncate the shift count
901 which implies one can omit a sign-extension or zero-extension
902 of a shift count. */
903 /* #define SHIFT_COUNT_TRUNCATED */
904
905 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
906 is done just by pretending it is already truncated. */
907 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
908
909 /* Specify the machine mode that pointers have.
910 After generation of rtl, the compiler makes no further distinction
911 between pointers and any other objects of this machine mode. */
912 #define Pmode (TARGET_H8300H ? SImode : HImode)
913
914 /* ANSI C types.
915 We use longs for the 300h because ints can be 16 or 32.
916 GCC requires SIZE_TYPE to be the same size as pointers. */
917 #define NO_BUILTIN_SIZE_TYPE
918 #define NO_BUILTIN_PTRDIFF_TYPE
919 #define SIZE_TYPE (TARGET_H8300 ? "unsigned int" : "long unsigned int")
920 #define PTRDIFF_TYPE (TARGET_H8300 ? "int" : "long int")
921
922 #define WCHAR_TYPE "short unsigned int"
923 #define WCHAR_TYPE_SIZE 16
924 #define MAX_WCHAR_TYPE_SIZE 16
925
926 /* A function address in a call instruction
927 is a byte address (for indexing purposes)
928 so give the MEM rtx a byte's mode. */
929 #define FUNCTION_MODE QImode
930
931 /* Compute the cost of computing a constant rtl expression RTX
932 whose rtx-code is CODE. The body of this macro is a portion
933 of a switch statement. If the code is computed here,
934 return it with a return statement. Otherwise, break from the switch. */
935
936 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
937 default: { int _zxy= const_costs(RTX, CODE); \
938 if(_zxy) return _zxy; break;}
939
940 #define BRANCH_COST 0
941
942 /* We say that MOD and DIV are so cheap because otherwise we'll
943 generate some really horrible code for division of a power of two. */
944
945 /* Provide the costs of a rtl expression. This is in the body of a
946 switch on CODE. */
947 /* ??? Shifts need to have a *much* higher cost than this. */
948
949 #define RTX_COSTS(RTX,CODE,OUTER_CODE) \
950 case MOD: \
951 case DIV: \
952 return 60; \
953 case MULT: \
954 return 20; \
955 case ASHIFT: \
956 case ASHIFTRT: \
957 case LSHIFTRT: \
958 case ROTATE: \
959 case ROTATERT: \
960 if (GET_MODE (RTX) == HImode) return 2; \
961 return 8;
962
963 /* Tell final.c how to eliminate redundant test instructions. */
964
965 /* Here we define machine-dependent flags and fields in cc_status
966 (see `conditions.h'). No extra ones are needed for the vax. */
967
968 /* Store in cc_status the expressions
969 that the condition codes will describe
970 after execution of an instruction whose pattern is EXP.
971 Do not alter them if the instruction would not alter the cc's. */
972
973 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
974 #define CC_DONE_CBIT 0400
975
976 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
977 { \
978 if (cc_status.flags & CC_NO_OVERFLOW) \
979 return NO_OV; \
980 return NORMAL; \
981 }
982 \f
983 /* Control the assembler format that we output. */
984
985 #define ASM_IDENTIFY_GCC /* nothing */
986
987 /* Output at beginning/end of assembler file. */
988
989 #define ASM_FILE_START(FILE) asm_file_start(FILE)
990
991 #define ASM_FILE_END(FILE) asm_file_end(FILE)
992
993 /* Output to assembler file text saying following lines
994 may contain character constants, extra white space, comments, etc. */
995
996 #define ASM_APP_ON "; #APP\n"
997
998 /* Output to assembler file text saying following lines
999 no longer contain unusual constructs. */
1000
1001 #define ASM_APP_OFF "; #NO_APP\n"
1002
1003 #define FILE_ASM_OP "\t.file\n"
1004 #define IDENT_ASM_OP "\t.ident\n"
1005
1006 /* The assembler op to get a word, 2 bytes for the H8/300, 4 for H8/300H. */
1007 #define ASM_WORD_OP (TARGET_H8300 ? ".word" : ".long")
1008
1009 /* Output before read-only data. */
1010
1011 #define TEXT_SECTION_ASM_OP "\t.section .text"
1012 #define DATA_SECTION_ASM_OP "\t.section .data"
1013 #define BSS_SECTION_ASM_OP "\t.section .bss"
1014 #define INIT_SECTION_ASM_OP "\t.section .init"
1015 #define CTORS_SECTION_ASM_OP "\t.section .ctors"
1016 #define DTORS_SECTION_ASM_OP "\t.section .dtors"
1017
1018 #define EXTRA_SECTIONS in_ctors, in_dtors
1019
1020 #define EXTRA_SECTION_FUNCTIONS \
1021 \
1022 void \
1023 ctors_section() \
1024 { \
1025 if (in_section != in_ctors) \
1026 { \
1027 fprintf (asm_out_file, "%s\n", CTORS_SECTION_ASM_OP); \
1028 in_section = in_ctors; \
1029 } \
1030 } \
1031 \
1032 void \
1033 dtors_section() \
1034 { \
1035 if (in_section != in_dtors) \
1036 { \
1037 fprintf (asm_out_file, "%s\n", DTORS_SECTION_ASM_OP); \
1038 in_section = in_dtors; \
1039 } \
1040 } \
1041
1042 #define ASM_OUTPUT_CONSTRUCTOR(FILE,NAME) \
1043 do { ctors_section(); \
1044 fprintf(FILE, "\t%s\t_%s\n", ASM_WORD_OP, NAME); } while (0)
1045
1046 #define ASM_OUTPUT_DESTRUCTOR(FILE,NAME) \
1047 do { dtors_section(); \
1048 fprintf(FILE, "\t%s\t_%s\n", ASM_WORD_OP, NAME); } while (0)
1049
1050 #undef DO_GLOBAL_CTORS_BODY
1051 #define DO_GLOBAL_CTORS_BODY \
1052 { \
1053 typedef (*pfunc)(); \
1054 extern pfunc __ctors[]; \
1055 extern pfunc __ctors_end[]; \
1056 pfunc *p; \
1057 for (p = __ctors_end; p > __ctors; ) \
1058 { \
1059 (*--p)(); \
1060 } \
1061 }
1062
1063 #undef DO_GLOBAL_DTORS_BODY
1064 #define DO_GLOBAL_DTORS_BODY \
1065 { \
1066 typedef (*pfunc)(); \
1067 extern pfunc __dtors[]; \
1068 extern pfunc __dtors_end[]; \
1069 pfunc *p; \
1070 for (p = __dtors; p < __dtors_end; p++) \
1071 { \
1072 (*p)(); \
1073 } \
1074 }
1075
1076 /* How to refer to registers in assembler output.
1077 This sequence is indexed by compiler's hard-register-number (see above). */
1078
1079 #define REGISTER_NAMES \
1080 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "sp", "ap"}
1081
1082 #define ADDITIONAL_REGISTER_NAMES { { "r7", 7 } }
1083
1084 /* How to renumber registers for dbx and gdb.
1085 H8/300 needs no change in the numeration. */
1086
1087 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1088
1089 #define SDB_DEBUGGING_INFO
1090 #define SDB_DELIM "\n"
1091
1092 /* Support -gstabs. */
1093
1094 #include "dbxcoff.h"
1095
1096 /* A C statement to output something to the assembler file to switch to section
1097 NAME for object DECL which is either a FUNCTION_DECL, a VAR_DECL or
1098 NULL_TREE. Some target formats do not support arbitrary sections. Do not
1099 define this macro in such cases. */
1100
1101 #define ASM_OUTPUT_SECTION_NAME(FILE, DECL, NAME) \
1102 fprintf (FILE, "\t.section %s\n", NAME)
1103
1104 /* This is how to output the definition of a user-level label named NAME,
1105 such as the label on a static function or variable NAME. */
1106
1107 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1108 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1109
1110 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME)
1111
1112 /* This is how to output a command to make the user-level label named NAME
1113 defined for reference from other files. */
1114
1115 #define ASM_GLOBALIZE_LABEL(FILE, NAME) \
1116 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1117
1118 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
1119 ASM_OUTPUT_LABEL(FILE, NAME)
1120
1121 /* This is how to output a reference to a user-level label named NAME.
1122 `assemble_name' uses this. */
1123
1124 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1125 fprintf (FILE, "_%s", NAME)
1126
1127 /* This is how to output an internal numbered label where
1128 PREFIX is the class of label and NUM is the number within the class. */
1129
1130 #define ASM_OUTPUT_INTERNAL_LABEL(FILE, PREFIX, NUM) \
1131 fprintf (FILE, ".%s%d:\n", PREFIX, NUM)
1132
1133 /* This is how to store into the string LABEL
1134 the symbol_ref name of an internal numbered label where
1135 PREFIX is the class of label and NUM is the number within the class.
1136 This is suitable for output with `assemble_name'. */
1137
1138 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1139 sprintf (LABEL, "*.%s%d", PREFIX, NUM)
1140
1141 /* This is how to output an assembler line defining a `double' constant.
1142 It is .dfloat or .gfloat, depending. */
1143
1144 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
1145 do { char dstr[30]; \
1146 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
1147 fprintf (FILE, "\t.double %s\n", dstr); \
1148 } while (0)
1149
1150
1151 /* This is how to output an assembler line defining a `float' constant. */
1152 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
1153 do { char dstr[30]; \
1154 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
1155 fprintf (FILE, "\t.float %s\n", dstr); \
1156 } while (0)
1157
1158 /* This is how to output an assembler line defining an `int' constant. */
1159
1160 #define ASM_OUTPUT_INT(FILE, VALUE) \
1161 ( fprintf (FILE, "\t.long "), \
1162 output_addr_const (FILE, (VALUE)), \
1163 fprintf (FILE, "\n"))
1164
1165 /* Likewise for `char' and `short' constants. */
1166
1167 #define ASM_OUTPUT_SHORT(FILE, VALUE) \
1168 ( fprintf (FILE, "\t.word "), \
1169 output_addr_const (FILE, (VALUE)), \
1170 fprintf (FILE, "\n"))
1171
1172 #define ASM_OUTPUT_CHAR(FILE, VALUE) \
1173 ( fprintf (FILE, "\t.byte "), \
1174 output_addr_const (FILE, (VALUE)), \
1175 fprintf (FILE, "\n"))
1176
1177 /* This is how to output an assembler line for a numeric constant byte. */
1178 #define ASM_OUTPUT_BYTE(FILE, VALUE) \
1179 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1180
1181 /* This is how to output an insn to push a register on the stack.
1182 It need not be very fast code. */
1183
1184 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
1185 fprintf (FILE, "\t%s\t%s\n", h8_push_op, h8_reg_names[REGNO])
1186
1187 /* This is how to output an insn to pop a register from the stack.
1188 It need not be very fast code. */
1189
1190 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1191 fprintf (FILE, "\t%s\t%s\n", h8_pop_op, h8_reg_names[REGNO])
1192
1193 /* This is how to output an element of a case-vector that is absolute. */
1194
1195 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1196 asm_fprintf (FILE, "\t%s .L%d\n", ASM_WORD_OP, VALUE)
1197
1198 /* This is how to output an element of a case-vector that is relative. */
1199
1200 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1201 fprintf (FILE, "\t%s .L%d-.L%d\n", ASM_WORD_OP, VALUE, REL)
1202
1203 /* This is how to output an assembler line
1204 that says to advance the location counter
1205 to a multiple of 2**LOG bytes. */
1206
1207 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1208 if ((LOG) != 0) \
1209 fprintf (FILE, "\t.align %d\n", (LOG))
1210
1211 /* This is how to output an assembler line
1212 that says to advance the location counter by SIZE bytes. */
1213
1214 #define ASM_OUTPUT_IDENT(FILE, NAME) \
1215 fprintf(FILE, "%s\t \"%s\"\n", IDENT_ASM_OP, NAME)
1216
1217 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
1218 fprintf (FILE, "\t.space %d\n", (SIZE))
1219
1220 /* This says how to output an assembler line
1221 to define a global common symbol. */
1222
1223 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1224 ( fputs ("\t.comm ", (FILE)), \
1225 assemble_name ((FILE), (NAME)), \
1226 fprintf ((FILE), ",%d\n", (SIZE)))
1227
1228 /* This says how to output the assembler to define a global
1229 uninitialized but not common symbol.
1230 Try to use asm_output_bss to implement this macro. */
1231
1232 #define ASM_OUTPUT_BSS(FILE, NAME, SIZE, ROUNDED) \
1233 asm_output_bss ((FILE), (NAME), (SIZE), (ROUNDED))
1234
1235 /* This says how to output an assembler line
1236 to define a local common symbol. */
1237
1238 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1239 ( fputs ("\t.lcomm ", (FILE)), \
1240 assemble_name ((FILE), (NAME)), \
1241 fprintf ((FILE), ",%d\n", (SIZE)))
1242
1243 /* Store in OUTPUT a string (made with alloca) containing
1244 an assembler-name for a local static variable named NAME.
1245 LABELNO is an integer which is different for each call. */
1246
1247 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1248 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1249 sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
1250
1251 /* Define the parentheses used to group arithmetic operations
1252 in assembler code. */
1253
1254 #define ASM_OPEN_PAREN "("
1255 #define ASM_CLOSE_PAREN ")"
1256
1257 /* Define results of standard character escape sequences. */
1258 #define TARGET_BELL 007
1259 #define TARGET_BS 010
1260 #define TARGET_TAB 011
1261 #define TARGET_NEWLINE 012
1262 #define TARGET_VT 013
1263 #define TARGET_FF 014
1264 #define TARGET_CR 015
1265
1266 /* Print an instruction operand X on file FILE.
1267 look in h8300.c for details */
1268
1269 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1270 ((CODE) == '#')
1271
1272 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
1273
1274 /* Print a memory operand whose address is X, on file FILE.
1275 This uses a function in output-vax.c. */
1276
1277 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1278
1279 /* Define this macro if you want to implement any pragmas. If defined, it
1280 should be a C expression to be executed when #pragma is seen. The
1281 argument STREAM is the stdio input stream from which the source
1282 text can be read. CH is the first character after the #pragma. The
1283 result of the expression is the terminating character found
1284 (newline or EOF). */
1285 #define HANDLE_PRAGMA(FILE, CH) handle_pragma (FILE, CH)
1286
1287 #define FINAL_PRESCAN_INSN(insn, operand, nop) final_prescan_insn (insn, operand,nop)
1288
1289 /* Define this macro if GNU CC should generate calls to the System V
1290 (and ANSI C) library functions `memcpy' and `memset' rather than
1291 the BSD functions `bcopy' and `bzero'. */
1292
1293 #define TARGET_MEM_FUNCTIONS 1
1294
1295 #define MULHI3_LIBCALL "__mulhi3"
1296 #define DIVHI3_LIBCALL "__divhi3"
1297 #define UDIVHI3_LIBCALL "__udivhi3"
1298 #define MODHI3_LIBCALL "__modhi3"
1299 #define UMODHI3_LIBCALL "__umodhi3"
1300
1301 /* Perform target dependent optabs initialization. */
1302
1303 #define INIT_TARGET_OPTABS \
1304 do { \
1305 smul_optab->handlers[(int) HImode].libfunc \
1306 = gen_rtx (SYMBOL_REF, Pmode, MULHI3_LIBCALL); \
1307 sdiv_optab->handlers[(int) HImode].libfunc \
1308 = gen_rtx (SYMBOL_REF, Pmode, DIVHI3_LIBCALL); \
1309 udiv_optab->handlers[(int) HImode].libfunc \
1310 = gen_rtx (SYMBOL_REF, Pmode, UDIVHI3_LIBCALL); \
1311 smod_optab->handlers[(int) HImode].libfunc \
1312 = gen_rtx (SYMBOL_REF, Pmode, MODHI3_LIBCALL); \
1313 umod_optab->handlers[(int) HImode].libfunc \
1314 = gen_rtx (SYMBOL_REF, Pmode, UMODHI3_LIBCALL); \
1315 } while (0)
1316
1317 #define MOVE_RATIO 3
1318
1319 /* Declarations for functions used in insn-output.c. */
1320 char *emit_a_shift ();
1321
1322