h8300.h (CONSTANT_ADDRESS_P): Don't accept CONST or HIGH on the H8/300H.
[gcc.git] / gcc / config / h8300 / h8300.h
1 /* Definitions of target machine for GNU compiler.
2 Hitachi H8/300 version generating coff
3 Copyright (C) 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
4 Contributed by Steve Chamberlain (sac@cygnus.com),
5 Jim Wilson (wilson@cygnus.com), and Doug Evans (dje@cygnus.com).
6
7 This file is part of GNU CC.
8
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* Which cpu to compile for.
25 We use int for CPU_TYPE to avoid lots of casts. */
26 #if 0 /* defined in insn-attr.h, here for documentation */
27 enum attr_cpu { CPU_H8300, CPU_H8300H };
28 #endif
29 extern int cpu_type;
30
31 /* Various globals defined in h8300.c. */
32
33 extern char *h8_push_op,*h8_pop_op,*h8_mov_op;
34 extern char **h8_reg_names;
35
36 /* Names to predefine in the preprocessor for this target machine. */
37
38 #define CPP_PREDEFINES \
39 "-D__LONG_MAX__=2147483647L -D__LONG_LONG_MAX__=2147483647L"
40
41 #define CPP_SPEC \
42 "%{!mh:-D__H8300__} %{mh:-D__H8300H__} \
43 %{!mh:-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int} \
44 %{mh:-D__SIZE_TYPE__=unsigned\\ long -D__PTRDIFF_TYPE__=long} \
45 %{!mh:-Acpu(h8300) -Amachine(h8300)} %{mh:-Acpu(h8300h) -Amachine(h8300h)} \
46 %{!mint32:-D__INT_MAX__=32767} %{mint32:-D__INT_MAX__=2147483647}"
47
48 #define LINK_SPEC "%{mh:-m h8300h}"
49
50 #define LIB_SPEC "%{mrelax:-relax} %{g:-lg} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
51
52 /* Print subsidiary information on the compiler version in use. */
53
54 #define TARGET_VERSION fprintf (stderr, " (Hitachi H8/300)");
55
56 /* Run-time compilation parameters selecting different hardware subsets. */
57
58 extern int target_flags;
59
60 /* Macros used in the machine description to test the flags. */
61
62 /* Make int's 32 bits. */
63 #define TARGET_INT32 (target_flags & 8)
64
65 /* Dump recorded insn lengths into the output file. This helps debug the
66 md file. */
67 #define TARGET_ADDRESSES (target_flags & 64)
68
69 /* Pass the first few arguments in registers. */
70 #define TARGET_QUICKCALL (target_flags & 128)
71
72 /* Pretend byte accesses are slow. */
73 #define TARGET_SLOWBYTE (target_flags & 256)
74
75 /* Dump each assembler insn's rtl into the output file.
76 This is for debugging the compiler only. */
77 #define TARGET_RTL_DUMP (target_flags & 2048)
78
79 /* Select between the h8/300 and h8/300h cpus. */
80 #define TARGET_H8300 (! TARGET_H8300H)
81 #define TARGET_H8300H (target_flags & 4096)
82
83 /* Align all values on the h8/300h the same way as the h8/300. Specifically,
84 32 bit and larger values are aligned on 16 bit boundaries.
85 This is all the hardware requires, but the default is 32 bits for the 300h.
86 ??? Now watch someone add hardware floating point requiring 32 bit
87 alignment. */
88 #define TARGET_ALIGN_300 (target_flags & 8192)
89
90 /* Macro to define tables used to set the flags.
91 This is a list in braces of pairs in braces,
92 each pair being { "NAME", VALUE }
93 where VALUE is the bits to set or minus the bits to clear.
94 An empty string NAME is used to identify the default VALUE. */
95
96 #define TARGET_SWITCHES \
97 { {"int32",8}, \
98 {"addresses",64 }, \
99 {"quickcall",128}, \
100 {"no-quickcall",-128}, \
101 {"slowbyte",256}, \
102 {"relax",1024}, \
103 {"rtl-dump",2048}, \
104 {"h",4096}, \
105 {"no-h",-4096}, \
106 {"align-300",8192}, \
107 { "", TARGET_DEFAULT}}
108
109 /* Do things that must be done once at start up. */
110
111 #define OVERRIDE_OPTIONS \
112 do { \
113 h8300_init_once (); \
114 } while (0)
115
116 /* Default target_flags if no switches specified. */
117
118 #ifndef TARGET_DEFAULT
119 #define TARGET_DEFAULT (128) /* quickcall */
120 #endif
121
122 /* Show we can debug even without a frame pointer. */
123 /* #define CAN_DEBUG_WITHOUT_FP */
124
125 /* Define this if addresses of constant functions
126 shouldn't be put through pseudo regs where they can be cse'd.
127 Desirable on machines where ordinary constants are expensive
128 but a CALL with constant address is cheap.
129
130 Calls through a register are cheaper than calls to named
131 functions; however, the register pressure this causes makes
132 CSEing of function addresses generally a lose. */
133 #define NO_FUNCTION_CSE
134 \f
135 /* Target machine storage layout */
136
137 /* Define to use software floating point emulator for REAL_ARITHMETIC and
138 decimal <-> binary conversion. */
139 #define REAL_ARITHMETIC
140
141 /* Define this if most significant bit is lowest numbered
142 in instructions that operate on numbered bit-fields.
143 This is not true on the H8/300. */
144 #define BITS_BIG_ENDIAN 0
145
146 /* Define this if most significant byte of a word is the lowest numbered. */
147 /* That is true on the H8/300. */
148 #define BYTES_BIG_ENDIAN 1
149
150 /* Define this if most significant word of a multiword number is lowest
151 numbered.
152 This is true on an H8/300 (actually we can make it up, but we choose to
153 be consistent). */
154 #define WORDS_BIG_ENDIAN 1
155
156 /* Number of bits in an addressable storage unit */
157 #define BITS_PER_UNIT 8
158
159 /* Width in bits of a "word", which is the contents of a machine register.
160 Note that this is not necessarily the width of data type `int';
161 if using 16-bit ints on a 68000, this would still be 32.
162 But on a machine with 16-bit registers, this would be 16. */
163 #define BITS_PER_WORD (TARGET_H8300H ? 32 : 16)
164 #define MAX_BITS_PER_WORD 32
165
166 /* Width of a word, in units (bytes). */
167 #define UNITS_PER_WORD (TARGET_H8300H ? 4 : 2)
168 #define MIN_UNITS_PER_WORD 2
169
170 /* Width in bits of a pointer.
171 See also the macro `Pmode' defined below. */
172 #define POINTER_SIZE (TARGET_H8300H ? 32 : 16)
173
174 #define SHORT_TYPE_SIZE 16
175 #define INT_TYPE_SIZE (TARGET_INT32 ? 32 : 16)
176 #define LONG_TYPE_SIZE 32
177 #define LONG_LONG_TYPE_SIZE 32
178 #define FLOAT_TYPE_SIZE 32
179 #define DOUBLE_TYPE_SIZE 32
180 #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
181
182 #define MAX_FIXED_MODE_SIZE 32
183
184 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
185 #define PARM_BOUNDARY (TARGET_H8300H ? 32 : 16)
186
187 /* Allocation boundary (in *bits*) for the code of a function. */
188 #define FUNCTION_BOUNDARY 16
189
190 /* Alignment of field after `int : 0' in a structure. */
191 /* One can argue this should be 32 for -mint32, but since 32 bit ints only
192 need 16 bit alignment, this is left as is so that -mint32 doesn't change
193 structure layouts. */
194 #define EMPTY_FIELD_BOUNDARY 16
195
196 /* A bitfield declared as `int' forces `int' alignment for the struct. */
197 #define PCC_BITFIELD_TYPE_MATTERS 0
198
199 /* No data type wants to be aligned rounder than this.
200 32 bit values are aligned as such on the 300h for speed. */
201 #define BIGGEST_ALIGNMENT \
202 ((TARGET_H8300H && ! TARGET_ALIGN_300) ? 32 : 16)
203
204 /* No structure field wants to be aligned rounder than this. */
205 #define BIGGEST_FIELD_ALIGNMENT \
206 ((TARGET_H8300H && ! TARGET_ALIGN_300) ? 32 : 16)
207
208 /* The stack goes in 16/32 bit lumps. */
209 #define STACK_BOUNDARY (TARGET_H8300 ? 16 : 32)
210
211 /* Define this if move instructions will actually fail to work
212 when given unaligned data. */
213 /* On the H8/300, longs can be aligned on halfword boundaries, but not
214 byte boundaries. */
215 #define STRICT_ALIGNMENT 1
216 \f
217 /* Standard register usage. */
218
219 /* Number of actual hardware registers.
220 The hardware registers are assigned numbers for the compiler
221 from 0 to just below FIRST_PSEUDO_REGISTER.
222
223 All registers that the compiler knows about must be given numbers,
224 even those that are not normally considered general registers.
225
226 Reg 8 does not correspond to any hardware register, but instead
227 appears in the RTL as an argument pointer prior to reload, and is
228 eliminated during reloading in favor of either the stack or frame
229 pointer. */
230
231 #define FIRST_PSEUDO_REGISTER 9
232
233 /* 1 for registers that have pervasive standard uses
234 and are not available for the register allocator. */
235
236 #define FIXED_REGISTERS \
237 { 0, 0, 0, 0, 0, 0, 0, 1, 1}
238
239 /* 1 for registers not available across function calls.
240 These must include the FIXED_REGISTERS and also any
241 registers that can be used without being saved.
242 The latter must include the registers where values are returned
243 and the register where structure-value addresses are passed.
244 Aside from that, you can include as many other registers as you
245 like.
246
247 h8 destroys r0,r1,r2,r3. */
248
249 #define CALL_USED_REGISTERS \
250 { 1, 1, 1, 1, 0, 0, 0, 1, 1 }
251
252 #define REG_ALLOC_ORDER \
253 { 2, 3, 0, 1, 4, 5, 6, 7, 8}
254
255 /* Return number of consecutive hard regs needed starting at reg REGNO
256 to hold something of mode MODE.
257
258 This is ordinarily the length in words of a value of mode MODE
259 but can be less for certain modes in special long registers. */
260
261 #define HARD_REGNO_NREGS(REGNO, MODE) \
262 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
263
264 /* Value is 1 if hard register REGNO can hold a value of machine-mode
265 MODE.
266
267 H8/300: If an even reg, then anything goes. Otherwise the mode must be QI
268 or HI.
269 H8/300H: Anything goes. */
270
271 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
272 (TARGET_H8300 ? (((REGNO)&1)==0) || (MODE==HImode) || (MODE==QImode) \
273 : 1)
274
275 /* Value is 1 if it is a good idea to tie two pseudo registers
276 when one has mode MODE1 and one has mode MODE2.
277 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
278 for any hard reg, then this must be 0 for correct output. */
279 #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
280
281 /* Specify the registers used for certain standard purposes.
282 The values of these macros are register numbers. */
283
284 /* H8/300 pc is not overloaded on a register. */
285
286 /*#define PC_REGNUM 15*/
287
288 /* Register to use for pushing function arguments. */
289 #define STACK_POINTER_REGNUM 7
290
291 /* Base register for access to local variables of the function. */
292 #define FRAME_POINTER_REGNUM 6
293
294 /* Value should be nonzero if functions must have frame pointers.
295 Zero means the frame pointer need not be set up (and parms
296 may be accessed via the stack pointer) in functions that seem suitable.
297 This is computed in `reload', in reload1.c. */
298 #define FRAME_POINTER_REQUIRED 0
299
300 /* Base register for access to arguments of the function. */
301 #define ARG_POINTER_REGNUM 8
302
303 /* Register in which static-chain is passed to a function. */
304 #define STATIC_CHAIN_REGNUM 3
305 \f
306 /* Define the classes of registers for register constraints in the
307 machine description. Also define ranges of constants.
308
309 One of the classes must always be named ALL_REGS and include all hard regs.
310 If there is more than one class, another class must be named NO_REGS
311 and contain no registers.
312
313 The name GENERAL_REGS must be the name of a class (or an alias for
314 another name such as ALL_REGS). This is the class of registers
315 that is allowed by "g" or "r" in a register constraint.
316 Also, registers outside this class are allocated only when
317 instructions express preferences for them.
318
319 The classes must be numbered in nondecreasing order; that is,
320 a larger-numbered class must never be contained completely
321 in a smaller-numbered class.
322
323 For any two classes, it is very desirable that there be another
324 class that represents their union. */
325
326 enum reg_class {
327 NO_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
328 };
329
330 #define N_REG_CLASSES (int) LIM_REG_CLASSES
331
332 /* Give names of register classes as strings for dump file. */
333
334 #define REG_CLASS_NAMES \
335 { "NO_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
336
337 /* Define which registers fit in which classes.
338 This is an initializer for a vector of HARD_REG_SET
339 of length N_REG_CLASSES. */
340
341 #define REG_CLASS_CONTENTS \
342 { 0, /* No regs */ \
343 0x0ff, /* GENERAL_REGS */ \
344 0x1ff, /* ALL_REGS */ \
345 }
346
347 /* The same information, inverted:
348 Return the class number of the smallest class containing
349 reg number REGNO. This could be a conditional expression
350 or could index an array.
351
352 ??? What about the ARG_POINTER_REGISTER? */
353
354 #define REGNO_REG_CLASS(REGNO) GENERAL_REGS
355
356 /* The class value for index registers, and the one for base regs. */
357
358 #define INDEX_REG_CLASS NO_REGS
359 #define BASE_REG_CLASS GENERAL_REGS
360
361 /* Get reg_class from a letter such as appears in the machine description. */
362
363 #define REG_CLASS_FROM_LETTER(C) (NO_REGS)
364
365 /* The letters I, J, K, L, M, N, O, P in a register constraint string
366 can be used to stand for particular ranges of immediate operands.
367 This macro defines what the ranges are.
368 C is the letter, and VALUE is a constant value.
369 Return 1 if VALUE is in the range specified by C. */
370
371 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
372 #define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) < 256)
373 #define CONST_OK_FOR_K(VALUE) (((VALUE) == 1) || (VALUE) == 2)
374 #define CONST_OK_FOR_L(VALUE) (((VALUE) == -1) || (VALUE) == -2)
375 #define CONST_OK_FOR_M(VALUE) (((VALUE) == 3) || (VALUE) == 4)
376 #define CONST_OK_FOR_N(VALUE) (((VALUE) == -3) || (VALUE) == -4)
377 #define CONST_OK_FOR_O(VALUE) (ok_for_bclr (VALUE))
378 #define CONST_OK_FOR_P(VALUE) (small_power_of_two (VALUE))
379
380 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
381 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
382 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
383 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
384 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
385 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
386 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
387 (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
388 (C) == 'P' ? CONST_OK_FOR_P(VALUE) : \
389 0)
390
391 /* Similar, but for floating constants, and defining letters G and H.
392 Here VALUE is the CONST_DOUBLE rtx itself.
393
394 `G' is a floating-point zero. */
395
396 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
397 ((C) == 'G' ? (VALUE) == CONST0_RTX (DFmode) \
398 : 0)
399
400 /* Given an rtx X being reloaded into a reg required to be
401 in class CLASS, return the class of reg to actually use.
402 In general this is just CLASS; but on some machines
403 in some cases it is preferable to use a more restrictive class. */
404
405 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
406
407 /* Return the maximum number of consecutive registers
408 needed to represent mode MODE in a register of class CLASS. */
409
410 /* On the H8, this is the size of MODE in words. */
411
412 #define CLASS_MAX_NREGS(CLASS, MODE) \
413 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
414
415 /* Any SI register to register move may need to be reloaded,
416 so define REGISTER_MOVE_COST to be > 2 so that reload never
417 shortcuts. */
418
419 #define REGISTER_MOVE_COST(CLASS1, CLASS2) 3
420 \f
421 /* Stack layout; function entry, exit and calling. */
422
423 /* Define this if pushing a word on the stack
424 makes the stack pointer a smaller address. */
425
426 #define STACK_GROWS_DOWNWARD
427
428 /* Define this if the nominal address of the stack frame
429 is at the high-address end of the local variables;
430 that is, each additional local variable allocated
431 goes at a more negative offset in the frame. */
432
433 #define FRAME_GROWS_DOWNWARD
434
435 /* Offset within stack frame to start allocating local variables at.
436 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
437 first local allocated. Otherwise, it is the offset to the BEGINNING
438 of the first local allocated. */
439
440 #define STARTING_FRAME_OFFSET 0
441
442 /* If we generate an insn to push BYTES bytes,
443 this says how many the stack pointer really advances by.
444
445 On the H8/300, @-sp really pushes a byte if you ask it to - but that's
446 dangerous, so we claim that it always pushes a word, then we catch
447 the mov.b rx,@-sp and turn it into a mov.w rx,@-sp on output.
448
449 On the H8/300h, we simplify TARGET_QUICKCALL by setting this to 4 and doing
450 a similar thing. */
451
452 #define PUSH_ROUNDING(BYTES) \
453 (((BYTES) + PARM_BOUNDARY/8 - 1) & -PARM_BOUNDARY/8)
454
455 /* Offset of first parameter from the argument pointer register value. */
456 /* Is equal to the size of the saved fp + pc, even if an fp isn't
457 saved since the value is used before we know. */
458
459 #define FIRST_PARM_OFFSET(FNDECL) 0
460
461 /* Value is the number of bytes of arguments automatically
462 popped when returning from a subroutine call.
463 FUNDECL is the declaration node of the function (as a tree),
464 FUNTYPE is the data type of the function (as a tree),
465 or for a library call it is an identifier node for the subroutine name.
466 SIZE is the number of bytes of arguments passed on the stack.
467
468 On the H8 the return does not pop anything. */
469
470 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
471
472 /* Definitions for register eliminations.
473
474 This is an array of structures. Each structure initializes one pair
475 of eliminable registers. The "from" register number is given first,
476 followed by "to". Eliminations of the same "from" register are listed
477 in order of preference.
478
479 We have two registers that can be eliminated on the h8300. First, the
480 frame pointer register can often be eliminated in favor of the stack
481 pointer register. Secondly, the argument pointer register can always be
482 eliminated; it is replaced with either the stack or frame pointer. */
483
484 #define ELIMINABLE_REGS \
485 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
486 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
487 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
488
489 /* Given FROM and TO register numbers, say whether this elimination is allowed.
490 Frame pointer elimination is automatically handled.
491
492 For the h8300, if frame pointer elimination is being done, we would like to
493 convert ap into sp, not fp.
494
495 All other eliminations are valid. */
496
497 #define CAN_ELIMINATE(FROM, TO) \
498 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
499 ? ! frame_pointer_needed \
500 : 1)
501
502 /* Define the offset between two registers, one to be eliminated, and the other
503 its replacement, at the start of a routine. */
504
505 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
506 OFFSET = initial_offset (FROM, TO)
507
508 /* Define how to find the value returned by a function.
509 VALTYPE is the data type of the value (as a tree).
510 If the precise function being called is known, FUNC is its FUNCTION_DECL;
511 otherwise, FUNC is 0.
512
513 On the H8 the return value is in R0/R1. */
514
515 #define FUNCTION_VALUE(VALTYPE, FUNC) \
516 gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
517
518 /* Define how to find the value returned by a library function
519 assuming the value has mode MODE. */
520
521 /* On the h8 the return value is in R0/R1 */
522
523 #define LIBCALL_VALUE(MODE) \
524 gen_rtx (REG, MODE, 0)
525
526 /* 1 if N is a possible register number for a function value.
527 On the H8, R0 is the only register thus used. */
528
529 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
530
531 /* Define this if PCC uses the nonreentrant convention for returning
532 structure and union values. */
533
534 /*#define PCC_STATIC_STRUCT_RETURN*/
535
536 /* 1 if N is a possible register number for function argument passing.
537 On the H8, no registers are used in this way. */
538
539 #define FUNCTION_ARG_REGNO_P(N) (TARGET_QUICKCALL ? N < 3 : 0)
540
541 /* Register in which address to store a structure value
542 is passed to a function. */
543
544 #define STRUCT_VALUE 0
545
546 /* Return true if X should be returned in memory. */
547 #define RETURN_IN_MEMORY(X) \
548 (TYPE_MODE (X) == BLKmode || GET_MODE_SIZE (TYPE_MODE (X)) > 4)
549
550 /* When defined, the compiler allows registers explicitly used in the
551 rtl to be used as spill registers but prevents the compiler from
552 extending the lifetime of these registers. */
553
554 #define SMALL_REGISTER_CLASSES
555 \f
556 /* Define a data type for recording info about an argument list
557 during the scan of that argument list. This data type should
558 hold all necessary information about the function itself
559 and about the args processed so far, enough to enable macros
560 such as FUNCTION_ARG to determine where the next arg should go.
561
562 On the H8/300, this is a two item struct, the first is the number of bytes
563 scanned so far and the second is the rtx of the called library
564 function if any. */
565
566 #define CUMULATIVE_ARGS struct cum_arg
567 struct cum_arg { int nbytes; struct rtx_def * libcall; };
568
569 /* Initialize a variable CUM of type CUMULATIVE_ARGS
570 for a call to a function whose data type is FNTYPE.
571 For a library call, FNTYPE is 0.
572
573 On the H8/300, the offset starts at 0. */
574
575 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
576 ((CUM).nbytes = 0, (CUM).libcall = LIBNAME)
577
578 /* Update the data in CUM to advance over an argument
579 of mode MODE and data type TYPE.
580 (TYPE is null for libcalls where that information may not be available.) */
581
582 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
583 ((CUM).nbytes += ((MODE) != BLKmode \
584 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
585 : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
586
587 /* Define where to put the arguments to a function.
588 Value is zero to push the argument on the stack,
589 or a hard register in which to store the argument.
590
591 MODE is the argument's machine mode.
592 TYPE is the data type of the argument (as a tree).
593 This is null for libcalls where that information may
594 not be available.
595 CUM is a variable of type CUMULATIVE_ARGS which gives info about
596 the preceding args and about the function being called.
597 NAMED is nonzero if this argument is a named parameter
598 (otherwise it is an extra parameter matching an ellipsis). */
599
600 /* On the H8/300 all normal args are pushed, unless -mquickcall in which
601 case the first 3 arguments are passed in registers.
602 See function `function_arg'. */
603
604 struct rtx_def *function_arg();
605 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
606 function_arg (&CUM, MODE, TYPE, NAMED)
607
608 /* Generate assembly output for the start of a function. */
609
610 #define FUNCTION_PROLOGUE(FILE, SIZE) \
611 function_prologue (FILE, SIZE)
612
613 /* Output assembler code to FILE to increment profiler label # LABELNO
614 for profiling a function entry. */
615
616 #define FUNCTION_PROFILER(FILE, LABELNO) \
617 fprintf (FILE, "\t%s\t#LP%d,%s\n\tjsr @mcount\n", \
618 h8_mov_op, (LABELNO), h8_reg_names[0]);
619
620 /* Output assembler code to FILE to initialize this source file's
621 basic block profiling info, if that has not already been done. */
622 /* ??? @LPBX0 is moved into r0 twice. */
623
624 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
625 fprintf (FILE, "\t%s\t%s\n\t%s\t@LPBX0,%s\n\tbne LPI%d\n\t%s\t@LPBX0,%s\n\t%s\t%s\n\tjsr\t@__bb_init_func\nLPI%d:\t%s\t%s\n", \
626 h8_push_op, h8_reg_names[0], \
627 h8_mov_op, h8_reg_names[0], \
628 (LABELNO), \
629 h8_mov_op, h8_reg_names[0], \
630 h8_push_op, h8_reg_names[0], \
631 (LABELNO), \
632 h8_pop_op, h8_reg_names[0]);
633
634 /* Output assembler code to FILE to increment the entry-count for
635 the BLOCKNO'th basic block in this source file. This is a real pain in the
636 sphincter on a VAX, since we do not want to change any of the bits in the
637 processor status word. The way it is done here, it is pushed onto the stack
638 before any flags have changed, and then the stack is fixed up to account for
639 the fact that the instruction to restore the flags only reads a word.
640 It may seem a bit clumsy, but at least it works. */
641 /* ??? This one needs work. */
642
643 #define BLOCK_PROFILER(FILE, BLOCKNO) \
644 fprintf (FILE, "\tmovpsl -(sp)\n\tmovw (sp),2(sp)\n\taddl2 $2,sp\n\taddl2 $1,LPBX2+%d\n\tbicpsw $255\n\tbispsw (sp)+\n", \
645 4 * BLOCKNO)
646
647 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
648 the stack pointer does not matter. The value is tested only in
649 functions that have frame pointers.
650 No definition is equivalent to always zero. */
651
652 #define EXIT_IGNORE_STACK 0
653
654 /* This macro generates the assembly code for function exit,
655 on machines that need it. If FUNCTION_EPILOGUE is not defined
656 then individual return instructions are generated for each
657 return statement. Args are same as for FUNCTION_PROLOGUE. */
658
659 #define FUNCTION_EPILOGUE(FILE, SIZE) \
660 function_epilogue (FILE, SIZE)
661
662 /* Output assembler code for a block containing the constant parts
663 of a trampoline, leaving space for the variable parts.
664
665 H8/300
666 vvvv context
667 1 0000 7900xxxx mov.w #0x1234,r3
668 2 0004 5A00xxxx jmp @0x1234
669 ^^^^ function
670
671 H8/300H
672 vvvvvvvv context
673 2 0000 7A00xxxxxxxx mov.l #0x12345678,er3
674 3 0006 5Axxxxxx jmp @0x123456
675 ^^^^^^ function
676 */
677
678 #define TRAMPOLINE_TEMPLATE(FILE) \
679 do { \
680 if (TARGET_H8300) \
681 { \
682 fprintf (FILE, "\tmov.w #0x1234,r3\n"); \
683 fprintf (FILE, "\tjmp @0x1234\n"); \
684 } \
685 else \
686 { \
687 fprintf (FILE, "\tmov.l #0x12345678,er3\n"); \
688 fprintf (FILE, "\tjmp @0x123456\n"); \
689 } \
690 } while (0)
691
692 /* Length in units of the trampoline for entering a nested function. */
693
694 #define TRAMPOLINE_SIZE (TARGET_H8300 ? 8 : 12)
695
696 /* Emit RTL insns to initialize the variable parts of a trampoline.
697 FNADDR is an RTX for the address of the function's pure code.
698 CXT is an RTX for the static chain value for the function. */
699
700 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
701 { \
702 enum machine_mode mode = TARGET_H8300H ? SImode : HImode; \
703 emit_move_insn (gen_rtx (MEM, mode, plus_constant ((TRAMP), 2)), CXT); \
704 emit_move_insn (gen_rtx (MEM, mode, plus_constant ((TRAMP), 6)), FNADDR); \
705 if (TARGET_H8300H) \
706 emit_move_insn (gen_rtx (MEM, QImode, plus_constant ((TRAMP), 6)), GEN_INT (0x5A)); \
707 }
708 \f
709 /* Addressing modes, and classification of registers for them. */
710
711 #define HAVE_POST_INCREMENT
712 /*#define HAVE_POST_DECREMENT */
713
714 #define HAVE_PRE_DECREMENT
715 /*#define HAVE_PRE_INCREMENT */
716
717 /* Macros to check register numbers against specific register classes. */
718
719 /* These assume that REGNO is a hard or pseudo reg number.
720 They give nonzero only if REGNO is a hard reg of the suitable class
721 or a pseudo reg currently allocated to a suitable hard reg.
722 Since they use reg_renumber, they are safe only once reg_renumber
723 has been allocated, which happens in local-alloc.c. */
724
725 #define REGNO_OK_FOR_INDEX_P(regno) 0
726
727 #define REGNO_OK_FOR_BASE_P(regno) \
728 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
729 \f
730 /* Maximum number of registers that can appear in a valid memory address. */
731
732 #define MAX_REGS_PER_ADDRESS 1
733
734 /* 1 if X is an rtx for a constant that is a valid address. */
735
736 #define CONSTANT_ADDRESS_P(X) \
737 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
738 || (GET_CODE (X) == CONST_INT \
739 /* We handle signed and unsigned offsets here. */ \
740 && INTVAL (X) > (TARGET_H8300 ? -0x10000 : -0x1000000) \
741 && INTVAL (X) < (TARGET_H8300 ? 0x10000 : 0x1000000)) \
742 || ((GET_CODE (X) == HIGH || GET_CODE (X) == CONST \
743 && TARGET_H8300)))
744
745 /* Nonzero if the constant value X is a legitimate general operand.
746 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
747
748 #define LEGITIMATE_CONSTANT_P(X) (GET_CODE (X) != CONST_DOUBLE)
749
750 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
751 and check its validity for a certain class.
752 We have two alternate definitions for each of them.
753 The usual definition accepts all pseudo regs; the other rejects
754 them unless they have been allocated suitable hard regs.
755 The symbol REG_OK_STRICT causes the latter definition to be used.
756
757 Most source files want to accept pseudo regs in the hope that
758 they will get allocated to the class that the insn wants them to be in.
759 Source files for reload pass need to be strict.
760 After reload, it makes no difference, since pseudo regs have
761 been eliminated by then. */
762
763 #ifndef REG_OK_STRICT
764
765 /* Nonzero if X is a hard reg that can be used as an index
766 or if it is a pseudo reg. */
767 #define REG_OK_FOR_INDEX_P(X) 0
768 /* Nonzero if X is a hard reg that can be used as a base reg
769 or if it is a pseudo reg. */
770 #define REG_OK_FOR_BASE_P(X) 1
771 #define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
772 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
773 #define STRICT 0
774
775 #else
776
777 /* Nonzero if X is a hard reg that can be used as an index. */
778 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
779 /* Nonzero if X is a hard reg that can be used as a base reg. */
780 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
781 #define STRICT 1
782
783 #endif
784
785 /* Extra constraints - 'U' if for an operand valid for a bset
786 destination; i.e. a register, register indirect, or the
787 eightbit memory region (a SYMBOL_REF with an SYMBOL_REF_FLAG set). */
788 #define OK_FOR_U(OP) \
789 ((GET_CODE (OP) == REG && REG_OK_FOR_BASE_P (OP)) \
790 || (GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
791 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
792 || (GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == SYMBOL_REF \
793 && SYMBOL_REF_FLAG (XEXP (OP, 0))) \
794 || (GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == CONST \
795 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == PLUS \
796 && GET_CODE (XEXP (XEXP (XEXP (OP, 0), 0), 0)) == SYMBOL_REF \
797 && SYMBOL_REF_FLAG (XEXP (XEXP (OP, 0), 0)) \
798 && GET_CODE (XEXP (XEXP (XEXP (OP, 0), 0), 1)) == CONST_INT))
799
800 #define EXTRA_CONSTRAINT(OP, C) \
801 ((C) == 'U' ? OK_FOR_U (OP) : 0)
802 \f
803 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
804 that is a valid memory address for an instruction.
805 The MODE argument is the machine mode for the MEM expression
806 that wants to use this address.
807
808 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
809 except for CONSTANT_ADDRESS_P which is actually
810 machine-independent.
811
812 On the H8/300, a legitimate address has the form
813 REG, REG+CONSTANT_ADDRESS or CONSTANT_ADDRESS. */
814
815 /* Accept either REG or SUBREG where a register is valid. */
816
817 #define RTX_OK_FOR_BASE_P(X) \
818 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
819 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
820 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
821
822 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
823 if (RTX_OK_FOR_BASE_P (X)) goto ADDR; \
824 if (CONSTANT_ADDRESS_P (X)) goto ADDR; \
825 if (GET_CODE (X) == PLUS \
826 && CONSTANT_ADDRESS_P (XEXP (X, 1)) \
827 && RTX_OK_FOR_BASE_P (XEXP (X, 0))) goto ADDR;
828 \f
829 /* Try machine-dependent ways of modifying an illegitimate address
830 to be legitimate. If we find one, return the new, valid address.
831 This macro is used in only one place: `memory_address' in explow.c.
832
833 OLDX is the address as it was before break_out_memory_refs was called.
834 In some cases it is useful to look at this to decide what needs to be done.
835
836 MODE and WIN are passed so that this macro can use
837 GO_IF_LEGITIMATE_ADDRESS.
838
839 It is always safe for this macro to do nothing. It exists to recognize
840 opportunities to optimize the output.
841
842 For the H8/300, don't do anything. */
843
844 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
845
846 /* Go to LABEL if ADDR (a legitimate address expression)
847 has an effect that depends on the machine mode it is used for.
848
849 On the H8/300, the predecrement and postincrement address depend thus
850 (the amount of decrement or increment being the length of the operand)
851 and all indexed address depend thus (because the index scale factor
852 is the length of the operand). */
853
854 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
855 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL;
856 \f
857 /* Specify the machine mode that this machine uses
858 for the index in the tablejump instruction. */
859 #define CASE_VECTOR_MODE Pmode
860
861 /* Define this if the case instruction expects the table
862 to contain offsets from the address of the table.
863 Do not define this if the table should contain absolute addresses. */
864 /*#define CASE_VECTOR_PC_RELATIVE*/
865
866 /* Define this if the case instruction drops through after the table
867 when the index is out of range. Don't define it if the case insn
868 jumps to the default label instead. */
869 #define CASE_DROPS_THROUGH
870
871 /* Specify the tree operation to be used to convert reals to integers. */
872 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
873
874 /* This is the kind of divide that is easiest to do in the general case. */
875 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
876
877 /* Define this as 1 if `char' should by default be signed; else as 0.
878
879 On the H8/300, sign extension is expensive, so we'll say that chars
880 are unsigned. */
881 #define DEFAULT_SIGNED_CHAR 0
882
883 /* This flag, if defined, says the same insns that convert to a signed fixnum
884 also convert validly to an unsigned one. */
885 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
886
887 /* Max number of bytes we can move from memory to memory
888 in one reasonably fast instruction. */
889 #define MOVE_MAX (TARGET_H8300H ? 4 : 2)
890 #define MAX_MOVE_MAX 4
891
892 /* Define this if zero-extension is slow (more than one real instruction). */
893 /* #define SLOW_ZERO_EXTEND */
894
895 /* Nonzero if access to memory by bytes is slow and undesirable. */
896 #define SLOW_BYTE_ACCESS TARGET_SLOWBYTE
897
898 /* Define if shifts truncate the shift count
899 which implies one can omit a sign-extension or zero-extension
900 of a shift count. */
901 /* #define SHIFT_COUNT_TRUNCATED */
902
903 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
904 is done just by pretending it is already truncated. */
905 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
906
907 /* Specify the machine mode that pointers have.
908 After generation of rtl, the compiler makes no further distinction
909 between pointers and any other objects of this machine mode. */
910 #define Pmode (TARGET_H8300H ? SImode : HImode)
911
912 /* ANSI C types.
913 We use longs for the 300h because ints can be 16 or 32.
914 GCC requires SIZE_TYPE to be the same size as pointers. */
915 #define NO_BUILTIN_SIZE_TYPE
916 #define NO_BUILTIN_PTRDIFF_TYPE
917 #define SIZE_TYPE (TARGET_H8300 ? "unsigned int" : "long unsigned int")
918 #define PTRDIFF_TYPE (TARGET_H8300 ? "int" : "long int")
919
920 #define WCHAR_TYPE "short unsigned int"
921 #define WCHAR_TYPE_SIZE 16
922 #define MAX_WCHAR_TYPE_SIZE 16
923
924 /* A function address in a call instruction
925 is a byte address (for indexing purposes)
926 so give the MEM rtx a byte's mode. */
927 #define FUNCTION_MODE QImode
928
929 /* A C expression whose value is nonzero if IDENTIFIER with arguments ARGS
930 is a valid machine specific attribute for DECL.
931 The attributes in ATTRIBUTES have previously been assigned to DECL. */
932 extern int h8300_valid_machine_decl_attribute ();
933 #define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, IDENTIFIER, ARGS) \
934 h8300_valid_machine_decl_attribute (DECL, ATTRIBUTES, IDENTIFIER, ARGS)
935
936 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
937 LENGTH += h8300_adjust_insn_length (INSN, LENGTH);
938
939 /* Compute the cost of computing a constant rtl expression RTX
940 whose rtx-code is CODE. The body of this macro is a portion
941 of a switch statement. If the code is computed here,
942 return it with a return statement. Otherwise, break from the switch. */
943
944 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
945 default: { int _zxy= const_costs(RTX, CODE); \
946 if(_zxy) return _zxy; break;}
947
948 #define BRANCH_COST 0
949
950 /* We say that MOD and DIV are so cheap because otherwise we'll
951 generate some really horrible code for division of a power of two. */
952
953 /* Provide the costs of a rtl expression. This is in the body of a
954 switch on CODE. */
955 /* ??? Shifts need to have a *much* higher cost than this. */
956
957 #define RTX_COSTS(RTX,CODE,OUTER_CODE) \
958 case MOD: \
959 case DIV: \
960 return 60; \
961 case MULT: \
962 return 20; \
963 case ASHIFT: \
964 case ASHIFTRT: \
965 case LSHIFTRT: \
966 case ROTATE: \
967 case ROTATERT: \
968 if (GET_MODE (RTX) == HImode) return 2; \
969 return 8;
970
971 /* Tell final.c how to eliminate redundant test instructions. */
972
973 /* Here we define machine-dependent flags and fields in cc_status
974 (see `conditions.h'). No extra ones are needed for the vax. */
975
976 /* Store in cc_status the expressions
977 that the condition codes will describe
978 after execution of an instruction whose pattern is EXP.
979 Do not alter them if the instruction would not alter the cc's. */
980
981 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
982
983 /* The mov,and,or,xor insns always set V to 0. */
984 #define CC_OVERFLOW_0 0400
985 /* The add insns don't set overflow in a usable way. */
986 #define CC_OVERFLOW_UNUSABLE 01000
987 /* The mov,and,or,xor insns don't set carry. That's ok though as the
988 Z bit is all we need when doing unsigned comparisons on the result of
989 these insns (since they're always with 0). However, conditions.h has
990 CC_NO_OVERFLOW defined for this purpose. Rename it to something more
991 understandable. */
992 #define CC_NO_CARRY CC_NO_OVERFLOW
993 /* ??? Use CC_Z_IN_NOT_C for bld insns? */
994 \f
995 /* Control the assembler format that we output. */
996
997 #define ASM_IDENTIFY_GCC /* nothing */
998
999 /* Output at beginning/end of assembler file. */
1000
1001 #define ASM_FILE_START(FILE) asm_file_start(FILE)
1002
1003 #define ASM_FILE_END(FILE) asm_file_end(FILE)
1004
1005 /* Output to assembler file text saying following lines
1006 may contain character constants, extra white space, comments, etc. */
1007
1008 #define ASM_APP_ON "; #APP\n"
1009
1010 /* Output to assembler file text saying following lines
1011 no longer contain unusual constructs. */
1012
1013 #define ASM_APP_OFF "; #NO_APP\n"
1014
1015 #define FILE_ASM_OP "\t.file\n"
1016 #define IDENT_ASM_OP "\t.ident\n"
1017
1018 /* The assembler op to get a word, 2 bytes for the H8/300, 4 for H8/300H. */
1019 #define ASM_WORD_OP (TARGET_H8300 ? ".word" : ".long")
1020
1021 /* We define a readonly data section solely to remove readonly data
1022 from the instruction stream. This can improve relaxing in two significant
1023 ways. First it's more likely that references to readonly data
1024 can be done with a 16bit absolute address since they'll be in low
1025 memory. Second, it's more likely that jsr instructions can be
1026 turned into bsr instructions since read-only data is not in the
1027 instruction stream. */
1028 #define READONLY_DATA_SECTION readonly_data
1029
1030 #define TEXT_SECTION_ASM_OP "\t.section .text"
1031 #define DATA_SECTION_ASM_OP "\t.section .data"
1032 #define BSS_SECTION_ASM_OP "\t.section .bss"
1033 #define INIT_SECTION_ASM_OP "\t.section .init"
1034 #define CTORS_SECTION_ASM_OP "\t.section .ctors"
1035 #define DTORS_SECTION_ASM_OP "\t.section .dtors"
1036 #define READONLY_DATA_SECTION_ASM_OP "\t.section .rodata"
1037
1038 #define EXTRA_SECTIONS in_ctors, in_dtors, in_readonly_data
1039
1040 #define EXTRA_SECTION_FUNCTIONS \
1041 \
1042 void \
1043 ctors_section() \
1044 { \
1045 if (in_section != in_ctors) \
1046 { \
1047 fprintf (asm_out_file, "%s\n", CTORS_SECTION_ASM_OP); \
1048 in_section = in_ctors; \
1049 } \
1050 } \
1051 \
1052 void \
1053 dtors_section() \
1054 { \
1055 if (in_section != in_dtors) \
1056 { \
1057 fprintf (asm_out_file, "%s\n", DTORS_SECTION_ASM_OP); \
1058 in_section = in_dtors; \
1059 } \
1060 } \
1061 \
1062 void \
1063 readonly_data() \
1064 { \
1065 if (in_section != in_readonly_data) \
1066 { \
1067 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP);\
1068 in_section = in_readonly_data; \
1069 } \
1070 }
1071
1072
1073
1074 #define ASM_OUTPUT_CONSTRUCTOR(FILE,NAME) \
1075 do { ctors_section(); \
1076 fprintf(FILE, "\t%s\t_%s\n", ASM_WORD_OP, NAME); } while (0)
1077
1078 #define ASM_OUTPUT_DESTRUCTOR(FILE,NAME) \
1079 do { dtors_section(); \
1080 fprintf(FILE, "\t%s\t_%s\n", ASM_WORD_OP, NAME); } while (0)
1081
1082 #undef DO_GLOBAL_CTORS_BODY
1083 #define DO_GLOBAL_CTORS_BODY \
1084 { \
1085 typedef (*pfunc)(); \
1086 extern pfunc __ctors[]; \
1087 extern pfunc __ctors_end[]; \
1088 pfunc *p; \
1089 for (p = __ctors_end; p > __ctors; ) \
1090 { \
1091 (*--p)(); \
1092 } \
1093 }
1094
1095 #undef DO_GLOBAL_DTORS_BODY
1096 #define DO_GLOBAL_DTORS_BODY \
1097 { \
1098 typedef (*pfunc)(); \
1099 extern pfunc __dtors[]; \
1100 extern pfunc __dtors_end[]; \
1101 pfunc *p; \
1102 for (p = __dtors; p < __dtors_end; p++) \
1103 { \
1104 (*p)(); \
1105 } \
1106 }
1107
1108 #define TINY_DATA_NAME_P(NAME) (*(NAME) == '*')
1109
1110 /* If we are referencing a function that is supposed to be called
1111 through the function vector, the SYMBOL_REF_FLAG in the rtl
1112 so the call patterns can generate the correct code. */
1113 #define ENCODE_SECTION_INFO(DECL) \
1114 if (TREE_CODE (DECL) == FUNCTION_DECL \
1115 && h8300_funcvec_function_p (DECL)) \
1116 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
1117 else if ((TREE_STATIC (DECL) || DECL_EXTERNAL (DECL)) \
1118 && TREE_CODE (DECL) == VAR_DECL \
1119 && h8300_eightbit_data_p (DECL)) \
1120 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
1121 else if ((TREE_STATIC (DECL) || DECL_EXTERNAL (DECL)) \
1122 && TREE_CODE (DECL) == VAR_DECL \
1123 && h8300_tiny_data_p (DECL)) \
1124 h8300_encode_label (DECL);
1125
1126 /* Store the user-specified part of SYMBOL_NAME in VAR.
1127 This is sort of inverse to ENCODE_SECTION_INFO. */
1128 #define STRIP_NAME_ENCODING(VAR,SYMBOL_NAME) \
1129 (VAR) = (SYMBOL_NAME) + ((SYMBOL_NAME)[0] == '*' || (SYMBOL_NAME)[0] == '@');
1130
1131 /* How to refer to registers in assembler output.
1132 This sequence is indexed by compiler's hard-register-number (see above). */
1133
1134 #define REGISTER_NAMES \
1135 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "sp", "ap"}
1136
1137 #define ADDITIONAL_REGISTER_NAMES { { "r7", 7 } }
1138
1139 /* How to renumber registers for dbx and gdb.
1140 H8/300 needs no change in the numeration. */
1141
1142 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1143
1144 #define SDB_DEBUGGING_INFO
1145 #define SDB_DELIM "\n"
1146
1147 /* Support -gstabs. */
1148
1149 #include "dbxcoff.h"
1150
1151 /* Override definition in dbxcoff.h. */
1152 /* Generate a blank trailing N_SO to mark the end of the .o file, since
1153 we can't depend upon the linker to mark .o file boundaries with
1154 embedded stabs. */
1155
1156 #undef DBX_OUTPUT_MAIN_SOURCE_FILE_END
1157 #define DBX_OUTPUT_MAIN_SOURCE_FILE_END(FILE, FILENAME) \
1158 fprintf (FILE, \
1159 "\t.text\n.stabs \"\",%d,0,0,.Letext\n.Letext:\n", N_SO)
1160
1161 /* A C statement to output something to the assembler file to switch to section
1162 NAME for object DECL which is either a FUNCTION_DECL, a VAR_DECL or
1163 NULL_TREE. Some target formats do not support arbitrary sections. Do not
1164 define this macro in such cases. */
1165
1166 #define ASM_OUTPUT_SECTION_NAME(FILE, DECL, NAME) \
1167 fprintf (FILE, "\t.section %s\n", NAME)
1168
1169 /* This is how to output the definition of a user-level label named NAME,
1170 such as the label on a static function or variable NAME. */
1171
1172 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1173 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1174
1175 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME)
1176
1177 /* This is how to output a command to make the user-level label named NAME
1178 defined for reference from other files. */
1179
1180 #define ASM_GLOBALIZE_LABEL(FILE, NAME) \
1181 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1182
1183 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
1184 ASM_OUTPUT_LABEL(FILE, NAME)
1185
1186 /* This is how to output a reference to a user-level label named NAME.
1187 `assemble_name' uses this. */
1188
1189 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1190 fprintf (FILE, "_%s", NAME)
1191
1192 /* This is how to output an internal numbered label where
1193 PREFIX is the class of label and NUM is the number within the class. */
1194
1195 #define ASM_OUTPUT_INTERNAL_LABEL(FILE, PREFIX, NUM) \
1196 fprintf (FILE, ".%s%d:\n", PREFIX, NUM)
1197
1198 /* This is how to store into the string LABEL
1199 the symbol_ref name of an internal numbered label where
1200 PREFIX is the class of label and NUM is the number within the class.
1201 This is suitable for output with `assemble_name'. */
1202
1203 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1204 sprintf (LABEL, "*.%s%d", PREFIX, NUM)
1205
1206 /* This is how to output an assembler line defining a `double' constant.
1207 It is .dfloat or .gfloat, depending. */
1208
1209 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
1210 do { char dstr[30]; \
1211 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
1212 fprintf (FILE, "\t.double %s\n", dstr); \
1213 } while (0)
1214
1215
1216 /* This is how to output an assembler line defining a `float' constant. */
1217 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
1218 do { char dstr[30]; \
1219 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
1220 fprintf (FILE, "\t.float %s\n", dstr); \
1221 } while (0)
1222
1223 /* This is how to output an assembler line defining an `int' constant. */
1224
1225 #define ASM_OUTPUT_INT(FILE, VALUE) \
1226 ( fprintf (FILE, "\t.long "), \
1227 output_addr_const (FILE, (VALUE)), \
1228 fprintf (FILE, "\n"))
1229
1230 /* Likewise for `char' and `short' constants. */
1231
1232 #define ASM_OUTPUT_SHORT(FILE, VALUE) \
1233 ( fprintf (FILE, "\t.word "), \
1234 output_addr_const (FILE, (VALUE)), \
1235 fprintf (FILE, "\n"))
1236
1237 #define ASM_OUTPUT_CHAR(FILE, VALUE) \
1238 ( fprintf (FILE, "\t.byte "), \
1239 output_addr_const (FILE, (VALUE)), \
1240 fprintf (FILE, "\n"))
1241
1242 /* This is how to output an assembler line for a numeric constant byte. */
1243 #define ASM_OUTPUT_BYTE(FILE, VALUE) \
1244 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1245
1246 /* This is how to output an insn to push a register on the stack.
1247 It need not be very fast code. */
1248
1249 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
1250 fprintf (FILE, "\t%s\t%s\n", h8_push_op, h8_reg_names[REGNO])
1251
1252 /* This is how to output an insn to pop a register from the stack.
1253 It need not be very fast code. */
1254
1255 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1256 fprintf (FILE, "\t%s\t%s\n", h8_pop_op, h8_reg_names[REGNO])
1257
1258 /* This is how to output an element of a case-vector that is absolute. */
1259
1260 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1261 asm_fprintf (FILE, "\t%s .L%d\n", ASM_WORD_OP, VALUE)
1262
1263 /* This is how to output an element of a case-vector that is relative. */
1264
1265 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1266 fprintf (FILE, "\t%s .L%d-.L%d\n", ASM_WORD_OP, VALUE, REL)
1267
1268 /* This is how to output an assembler line
1269 that says to advance the location counter
1270 to a multiple of 2**LOG bytes. */
1271
1272 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1273 if ((LOG) != 0) \
1274 fprintf (FILE, "\t.align %d\n", (LOG))
1275
1276 /* This is how to output an assembler line
1277 that says to advance the location counter by SIZE bytes. */
1278
1279 #define ASM_OUTPUT_IDENT(FILE, NAME) \
1280 fprintf(FILE, "%s\t \"%s\"\n", IDENT_ASM_OP, NAME)
1281
1282 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
1283 fprintf (FILE, "\t.space %d\n", (SIZE))
1284
1285 /* This says how to output an assembler line
1286 to define a global common symbol. */
1287
1288 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1289 ( fputs ("\t.comm ", (FILE)), \
1290 assemble_name ((FILE), (NAME)), \
1291 fprintf ((FILE), ",%d\n", (SIZE)))
1292
1293 /* This says how to output the assembler to define a global
1294 uninitialized but not common symbol.
1295 Try to use asm_output_bss to implement this macro. */
1296
1297 #define ASM_OUTPUT_BSS(FILE, NAME, SIZE, ROUNDED) \
1298 asm_output_bss ((FILE), (NAME), (SIZE), (ROUNDED))
1299
1300 /* This says how to output an assembler line
1301 to define a local common symbol. */
1302
1303 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1304 ( fputs ("\t.lcomm ", (FILE)), \
1305 assemble_name ((FILE), (NAME)), \
1306 fprintf ((FILE), ",%d\n", (SIZE)))
1307
1308 /* Store in OUTPUT a string (made with alloca) containing
1309 an assembler-name for a local static variable named NAME.
1310 LABELNO is an integer which is different for each call. */
1311
1312 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1313 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1314 sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
1315
1316 /* Define the parentheses used to group arithmetic operations
1317 in assembler code. */
1318
1319 #define ASM_OPEN_PAREN "("
1320 #define ASM_CLOSE_PAREN ")"
1321
1322 /* Define results of standard character escape sequences. */
1323 #define TARGET_BELL 007
1324 #define TARGET_BS 010
1325 #define TARGET_TAB 011
1326 #define TARGET_NEWLINE 012
1327 #define TARGET_VT 013
1328 #define TARGET_FF 014
1329 #define TARGET_CR 015
1330
1331 /* Print an instruction operand X on file FILE.
1332 look in h8300.c for details */
1333
1334 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1335 ((CODE) == '#')
1336
1337 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
1338
1339 /* Print a memory operand whose address is X, on file FILE.
1340 This uses a function in output-vax.c. */
1341
1342 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1343
1344 /* Define this macro if you want to implement any pragmas. If defined, it
1345 should be a C expression to be executed when #pragma is seen. The
1346 argument STREAM is the stdio input stream from which the source
1347 text can be read. CH is the first character after the #pragma. The
1348 result of the expression is the terminating character found
1349 (newline or EOF). */
1350 #define HANDLE_PRAGMA(FILE, NODE) handle_pragma (FILE, NODE)
1351
1352 #define FINAL_PRESCAN_INSN(insn, operand, nop) final_prescan_insn (insn, operand,nop)
1353
1354 /* Define this macro if GNU CC should generate calls to the System V
1355 (and ANSI C) library functions `memcpy' and `memset' rather than
1356 the BSD functions `bcopy' and `bzero'. */
1357
1358 #define TARGET_MEM_FUNCTIONS 1
1359
1360 #define MULHI3_LIBCALL "__mulhi3"
1361 #define DIVHI3_LIBCALL "__divhi3"
1362 #define UDIVHI3_LIBCALL "__udivhi3"
1363 #define MODHI3_LIBCALL "__modhi3"
1364 #define UMODHI3_LIBCALL "__umodhi3"
1365
1366 /* Perform target dependent optabs initialization. */
1367
1368 #define INIT_TARGET_OPTABS \
1369 do { \
1370 smul_optab->handlers[(int) HImode].libfunc \
1371 = gen_rtx (SYMBOL_REF, Pmode, MULHI3_LIBCALL); \
1372 sdiv_optab->handlers[(int) HImode].libfunc \
1373 = gen_rtx (SYMBOL_REF, Pmode, DIVHI3_LIBCALL); \
1374 udiv_optab->handlers[(int) HImode].libfunc \
1375 = gen_rtx (SYMBOL_REF, Pmode, UDIVHI3_LIBCALL); \
1376 smod_optab->handlers[(int) HImode].libfunc \
1377 = gen_rtx (SYMBOL_REF, Pmode, MODHI3_LIBCALL); \
1378 umod_optab->handlers[(int) HImode].libfunc \
1379 = gen_rtx (SYMBOL_REF, Pmode, UMODHI3_LIBCALL); \
1380 } while (0)
1381
1382 #define MOVE_RATIO 3
1383
1384 /* Declarations for functions used in insn-output.c. */
1385 char *emit_a_shift ();
1386 int h8300_funcvec_function_p ();
1387 char *output_adds_subs ();
1388 char * output_simode_bld ();
1389