h8300.c (h8300_eightbit_data_p): Renamed from h8300_tiny_data_p.
[gcc.git] / gcc / config / h8300 / h8300.h
1 /* Definitions of target machine for GNU compiler.
2 Hitachi H8/300 version generating coff
3 Copyright (C) 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
4 Contributed by Steve Chamberlain (sac@cygnus.com),
5 Jim Wilson (wilson@cygnus.com), and Doug Evans (dje@cygnus.com).
6
7 This file is part of GNU CC.
8
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* Which cpu to compile for.
25 We use int for CPU_TYPE to avoid lots of casts. */
26 #if 0 /* defined in insn-attr.h, here for documentation */
27 enum attr_cpu { CPU_H8300, CPU_H8300H };
28 #endif
29 extern int cpu_type;
30
31 /* Various globals defined in h8300.c. */
32
33 extern char *h8_push_op,*h8_pop_op,*h8_mov_op;
34 extern char **h8_reg_names;
35
36 /* Names to predefine in the preprocessor for this target machine. */
37
38 #define CPP_PREDEFINES \
39 "-D__LONG_MAX__=2147483647L -D__LONG_LONG_MAX__=2147483647L"
40
41 #define CPP_SPEC \
42 "%{!mh:-D__H8300__} %{mh:-D__H8300H__} \
43 %{!mh:-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int} \
44 %{mh:-D__SIZE_TYPE__=unsigned\\ long -D__PTRDIFF_TYPE__=long} \
45 %{!mh:-Acpu(h8300) -Amachine(h8300)} %{mh:-Acpu(h8300h) -Amachine(h8300h)} \
46 %{!mint32:-D__INT_MAX__=32767} %{mint32:-D__INT_MAX__=2147483647}"
47
48 #define LINK_SPEC "%{mh:-m h8300h}"
49
50 #define LIB_SPEC "%{mrelax:-relax} %{g:-lg} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
51
52 /* Print subsidiary information on the compiler version in use. */
53
54 #define TARGET_VERSION fprintf (stderr, " (Hitachi H8/300)");
55
56 /* Run-time compilation parameters selecting different hardware subsets. */
57
58 extern int target_flags;
59
60 /* Macros used in the machine description to test the flags. */
61
62 /* Make int's 32 bits. */
63 #define TARGET_INT32 (target_flags & 8)
64
65 /* Dump recorded insn lengths into the output file. This helps debug the
66 md file. */
67 #define TARGET_ADDRESSES (target_flags & 64)
68
69 /* Pass the first few arguments in registers. */
70 #define TARGET_QUICKCALL (target_flags & 128)
71
72 /* Pretend byte accesses are slow. */
73 #define TARGET_SLOWBYTE (target_flags & 256)
74
75 /* Dump each assembler insn's rtl into the output file.
76 This is for debugging the compiler only. */
77 #define TARGET_RTL_DUMP (target_flags & 2048)
78
79 /* Select between the h8/300 and h8/300h cpus. */
80 #define TARGET_H8300 (! TARGET_H8300H)
81 #define TARGET_H8300H (target_flags & 4096)
82
83 /* Align all values on the h8/300h the same way as the h8/300. Specifically,
84 32 bit and larger values are aligned on 16 bit boundaries.
85 This is all the hardware requires, but the default is 32 bits for the 300h.
86 ??? Now watch someone add hardware floating point requiring 32 bit
87 alignment. */
88 #define TARGET_ALIGN_300 (target_flags & 8192)
89
90 /* Macro to define tables used to set the flags.
91 This is a list in braces of pairs in braces,
92 each pair being { "NAME", VALUE }
93 where VALUE is the bits to set or minus the bits to clear.
94 An empty string NAME is used to identify the default VALUE. */
95
96 #define TARGET_SWITCHES \
97 { {"int32",8}, \
98 {"addresses",64 }, \
99 {"quickcall",128}, \
100 {"no-quickcall",-128}, \
101 {"slowbyte",256}, \
102 {"relax",1024}, \
103 {"rtl-dump",2048}, \
104 {"h",4096}, \
105 {"no-h",-4096}, \
106 {"align-300",8192}, \
107 { "", TARGET_DEFAULT}}
108
109 /* Do things that must be done once at start up. */
110
111 #define OVERRIDE_OPTIONS \
112 do { \
113 h8300_init_once (); \
114 } while (0)
115
116 /* Default target_flags if no switches specified. */
117
118 #ifndef TARGET_DEFAULT
119 #define TARGET_DEFAULT (128) /* quickcall */
120 #endif
121
122 /* Show we can debug even without a frame pointer. */
123 /* #define CAN_DEBUG_WITHOUT_FP */
124
125 /* Define this if addresses of constant functions
126 shouldn't be put through pseudo regs where they can be cse'd.
127 Desirable on machines where ordinary constants are expensive
128 but a CALL with constant address is cheap.
129
130 Calls through a register are cheaper than calls to named
131 functions; however, the register pressure this causes makes
132 CSEing of function addresses generally a lose. */
133 #define NO_FUNCTION_CSE
134 \f
135 /* Target machine storage layout */
136
137 /* Define to use software floating point emulator for REAL_ARITHMETIC and
138 decimal <-> binary conversion. */
139 #define REAL_ARITHMETIC
140
141 /* Define this if most significant bit is lowest numbered
142 in instructions that operate on numbered bit-fields.
143 This is not true on the H8/300. */
144 #define BITS_BIG_ENDIAN 0
145
146 /* Define this if most significant byte of a word is the lowest numbered. */
147 /* That is true on the H8/300. */
148 #define BYTES_BIG_ENDIAN 1
149
150 /* Define this if most significant word of a multiword number is lowest
151 numbered.
152 This is true on an H8/300 (actually we can make it up, but we choose to
153 be consistent. */
154 #define WORDS_BIG_ENDIAN 1
155
156 /* Number of bits in an addressable storage unit */
157 #define BITS_PER_UNIT 8
158
159 /* Width in bits of a "word", which is the contents of a machine register.
160 Note that this is not necessarily the width of data type `int';
161 if using 16-bit ints on a 68000, this would still be 32.
162 But on a machine with 16-bit registers, this would be 16. */
163 #define BITS_PER_WORD (TARGET_H8300H ? 32 : 16)
164 #define MAX_BITS_PER_WORD 32
165
166 /* Width of a word, in units (bytes). */
167 #define UNITS_PER_WORD (TARGET_H8300H ? 4 : 2)
168 #define MIN_UNITS_PER_WORD 2
169
170 /* Width in bits of a pointer.
171 See also the macro `Pmode' defined below. */
172 #define POINTER_SIZE (TARGET_H8300H ? 32 : 16)
173
174 #define SHORT_TYPE_SIZE 16
175 #define INT_TYPE_SIZE (TARGET_INT32 ? 32 : 16)
176 #define LONG_TYPE_SIZE 32
177 #define LONG_LONG_TYPE_SIZE 32
178 #define FLOAT_TYPE_SIZE 32
179 #define DOUBLE_TYPE_SIZE 32
180 #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
181
182 #define MAX_FIXED_MODE_SIZE 32
183
184 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
185 #define PARM_BOUNDARY (TARGET_H8300H ? 32 : 16)
186
187 /* Allocation boundary (in *bits*) for the code of a function. */
188 #define FUNCTION_BOUNDARY 16
189
190 /* Alignment of field after `int : 0' in a structure. */
191 /* One can argue this should be 32 for -mint32, but since 32 bit ints only
192 need 16 bit alignment, this is left as is so that -mint32 doesn't change
193 structure layouts. */
194 #define EMPTY_FIELD_BOUNDARY 16
195
196 /* A bitfield declared as `int' forces `int' alignment for the struct. */
197 #define PCC_BITFIELD_TYPE_MATTERS 0
198
199 /* No data type wants to be aligned rounder than this.
200 32 bit values are aligned as such on the 300h for speed. */
201 #define BIGGEST_ALIGNMENT \
202 ((TARGET_H8300H && ! TARGET_ALIGN_300) ? 32 : 16)
203
204 /* No structure field wants to be aligned rounder than this. */
205 #define BIGGEST_FIELD_ALIGNMENT \
206 ((TARGET_H8300H && ! TARGET_ALIGN_300) ? 32 : 16)
207
208 /* The stack goes in 16/32 bit lumps. */
209 #define STACK_BOUNDARY (TARGET_H8300 ? 16 : 32)
210
211 /* Define this if move instructions will actually fail to work
212 when given unaligned data. */
213 /* On the H8/300, longs can be aligned on halfword boundaries, but not
214 byte boundaries. */
215 #define STRICT_ALIGNMENT 1
216 \f
217 /* Standard register usage. */
218
219 /* Number of actual hardware registers.
220 The hardware registers are assigned numbers for the compiler
221 from 0 to just below FIRST_PSEUDO_REGISTER.
222
223 All registers that the compiler knows about must be given numbers,
224 even those that are not normally considered general registers.
225
226 Reg 8 does not correspond to any hardware register, but instead
227 appears in the RTL as an argument pointer prior to reload, and is
228 eliminated during reloading in favor of either the stack or frame
229 pointer. */
230
231 #define FIRST_PSEUDO_REGISTER 9
232
233 /* 1 for registers that have pervasive standard uses
234 and are not available for the register allocator. */
235
236 #define FIXED_REGISTERS \
237 { 0, 0, 0, 0, 0, 0, 0, 1, 1}
238
239 /* 1 for registers not available across function calls.
240 These must include the FIXED_REGISTERS and also any
241 registers that can be used without being saved.
242 The latter must include the registers where values are returned
243 and the register where structure-value addresses are passed.
244 Aside from that, you can include as many other registers as you
245 like.
246
247 h8 destroys r0,r1,r2,r3. */
248
249 #define CALL_USED_REGISTERS \
250 { 1, 1, 1, 1, 0, 0, 0, 1, 1 }
251
252 #define REG_ALLOC_ORDER \
253 { 2, 3, 0, 1, 4, 5, 6, 7, 8}
254
255 /* Return number of consecutive hard regs needed starting at reg REGNO
256 to hold something of mode MODE.
257
258 This is ordinarily the length in words of a value of mode MODE
259 but can be less for certain modes in special long registers. */
260
261 #define HARD_REGNO_NREGS(REGNO, MODE) \
262 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
263
264 /* Value is 1 if hard register REGNO can hold a value of machine-mode
265 MODE.
266
267 H8/300: If an even reg, then anything goes. Otherwise the mode must be QI
268 or HI.
269 H8/300H: Anything goes. */
270
271 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
272 (TARGET_H8300 ? (((REGNO)&1)==0) || (MODE==HImode) || (MODE==QImode) \
273 : 1)
274
275 /* Value is 1 if it is a good idea to tie two pseudo registers
276 when one has mode MODE1 and one has mode MODE2.
277 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
278 for any hard reg, then this must be 0 for correct output. */
279 #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
280
281 /* Specify the registers used for certain standard purposes.
282 The values of these macros are register numbers. */
283
284 /* H8/300 pc is not overloaded on a register. */
285
286 /*#define PC_REGNUM 15*/
287
288 /* Register to use for pushing function arguments. */
289 #define STACK_POINTER_REGNUM 7
290
291 /* Base register for access to local variables of the function. */
292 #define FRAME_POINTER_REGNUM 6
293
294 /* Value should be nonzero if functions must have frame pointers.
295 Zero means the frame pointer need not be set up (and parms
296 may be accessed via the stack pointer) in functions that seem suitable.
297 This is computed in `reload', in reload1.c. */
298 #define FRAME_POINTER_REQUIRED 0
299
300 /* Base register for access to arguments of the function. */
301 #define ARG_POINTER_REGNUM 8
302
303 /* Register in which static-chain is passed to a function. */
304 #define STATIC_CHAIN_REGNUM 3
305 \f
306 /* Define the classes of registers for register constraints in the
307 machine description. Also define ranges of constants.
308
309 One of the classes must always be named ALL_REGS and include all hard regs.
310 If there is more than one class, another class must be named NO_REGS
311 and contain no registers.
312
313 The name GENERAL_REGS must be the name of a class (or an alias for
314 another name such as ALL_REGS). This is the class of registers
315 that is allowed by "g" or "r" in a register constraint.
316 Also, registers outside this class are allocated only when
317 instructions express preferences for them.
318
319 The classes must be numbered in nondecreasing order; that is,
320 a larger-numbered class must never be contained completely
321 in a smaller-numbered class.
322
323 For any two classes, it is very desirable that there be another
324 class that represents their union. */
325
326 enum reg_class {
327 NO_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
328 };
329
330 #define N_REG_CLASSES (int) LIM_REG_CLASSES
331
332 /* Give names of register classes as strings for dump file. */
333
334 #define REG_CLASS_NAMES \
335 { "NO_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
336
337 /* Define which registers fit in which classes.
338 This is an initializer for a vector of HARD_REG_SET
339 of length N_REG_CLASSES. */
340
341 #define REG_CLASS_CONTENTS \
342 { 0, /* No regs */ \
343 0x0ff, /* GENERAL_REGS */ \
344 0x1ff, /* ALL_REGS */ \
345 }
346
347 /* The same information, inverted:
348 Return the class number of the smallest class containing
349 reg number REGNO. This could be a conditional expression
350 or could index an array.
351
352 ??? What about the ARG_POINTER_REGISTER? */
353
354 #define REGNO_REG_CLASS(REGNO) GENERAL_REGS
355
356 /* The class value for index registers, and the one for base regs. */
357
358 #define INDEX_REG_CLASS NO_REGS
359 #define BASE_REG_CLASS GENERAL_REGS
360
361 /* Get reg_class from a letter such as appears in the machine description. */
362
363 #define REG_CLASS_FROM_LETTER(C) (NO_REGS)
364
365 /* The letters I, J, K, L, M, N, O, P in a register constraint string
366 can be used to stand for particular ranges of immediate operands.
367 This macro defines what the ranges are.
368 C is the letter, and VALUE is a constant value.
369 Return 1 if VALUE is in the range specified by C. */
370
371 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
372 #define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) < 256)
373 #define CONST_OK_FOR_K(VALUE) (((VALUE) == 1) || (VALUE) == 2)
374 #define CONST_OK_FOR_L(VALUE) (((VALUE) == -1) || (VALUE) == -2)
375 #define CONST_OK_FOR_M(VALUE) (((VALUE) == 3) || (VALUE) == 4)
376 #define CONST_OK_FOR_N(VALUE) (((VALUE) == -3) || (VALUE) == -4)
377 #define CONST_OK_FOR_O(VALUE) (ok_for_bclr (VALUE))
378 #define CONST_OK_FOR_P(VALUE) (small_power_of_two (VALUE))
379
380 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
381 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
382 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
383 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
384 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
385 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
386 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
387 (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
388 (C) == 'P' ? CONST_OK_FOR_P(VALUE) : \
389 0)
390
391 /* Similar, but for floating constants, and defining letters G and H.
392 Here VALUE is the CONST_DOUBLE rtx itself.
393
394 `G' is a floating-point zero. */
395
396 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
397 ((C) == 'G' ? (VALUE) == CONST0_RTX (DFmode) \
398 : 0)
399
400 /* Given an rtx X being reloaded into a reg required to be
401 in class CLASS, return the class of reg to actually use.
402 In general this is just CLASS; but on some machines
403 in some cases it is preferable to use a more restrictive class. */
404
405 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
406
407 /* Return the maximum number of consecutive registers
408 needed to represent mode MODE in a register of class CLASS. */
409
410 /* On the H8, this is the size of MODE in words. */
411
412 #define CLASS_MAX_NREGS(CLASS, MODE) \
413 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
414
415 /* Any SI register to register move may need to be reloaded,
416 so define REGISTER_MOVE_COST to be > 2 so that reload never
417 shortcuts. */
418
419 #define REGISTER_MOVE_COST(CLASS1, CLASS2) 3
420 \f
421 /* Stack layout; function entry, exit and calling. */
422
423 /* Define this if pushing a word on the stack
424 makes the stack pointer a smaller address. */
425
426 #define STACK_GROWS_DOWNWARD
427
428 /* Define this if the nominal address of the stack frame
429 is at the high-address end of the local variables;
430 that is, each additional local variable allocated
431 goes at a more negative offset in the frame. */
432
433 #define FRAME_GROWS_DOWNWARD
434
435 /* Offset within stack frame to start allocating local variables at.
436 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
437 first local allocated. Otherwise, it is the offset to the BEGINNING
438 of the first local allocated. */
439
440 #define STARTING_FRAME_OFFSET 0
441
442 /* If we generate an insn to push BYTES bytes,
443 this says how many the stack pointer really advances by.
444
445 On the H8/300, @-sp really pushes a byte if you ask it to - but that's
446 dangerous, so we claim that it always pushes a word, then we catch
447 the mov.b rx,@-sp and turn it into a mov.w rx,@-sp on output.
448
449 On the H8/300h, we simplify TARGET_QUICKCALL by setting this to 4 and doing
450 a similar thing. */
451
452 #define PUSH_ROUNDING(BYTES) \
453 (((BYTES) + PARM_BOUNDARY/8 - 1) & -PARM_BOUNDARY/8)
454
455 /* Offset of first parameter from the argument pointer register value. */
456 /* Is equal to the size of the saved fp + pc, even if an fp isn't
457 saved since the value is used before we know. */
458
459 #define FIRST_PARM_OFFSET(FNDECL) 0
460
461 /* Value is the number of bytes of arguments automatically
462 popped when returning from a subroutine call.
463 FUNDECL is the declaration node of the function (as a tree),
464 FUNTYPE is the data type of the function (as a tree),
465 or for a library call it is an identifier node for the subroutine name.
466 SIZE is the number of bytes of arguments passed on the stack.
467
468 On the H8 the return does not pop anything. */
469
470 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
471
472 /* Definitions for register eliminations.
473
474 This is an array of structures. Each structure initializes one pair
475 of eliminable registers. The "from" register number is given first,
476 followed by "to". Eliminations of the same "from" register are listed
477 in order of preference.
478
479 We have two registers that can be eliminated on the h8300. First, the
480 frame pointer register can often be eliminated in favor of the stack
481 pointer register. Secondly, the argument pointer register can always be
482 eliminated; it is replaced with either the stack or frame pointer. */
483
484 #define ELIMINABLE_REGS \
485 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
486 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
487 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
488
489 /* Given FROM and TO register numbers, say whether this elimination is allowed.
490 Frame pointer elimination is automatically handled.
491
492 For the h8300, if frame pointer elimination is being done, we would like to
493 convert ap into sp, not fp.
494
495 All other eliminations are valid. */
496
497 #define CAN_ELIMINATE(FROM, TO) \
498 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
499 ? ! frame_pointer_needed \
500 : 1)
501
502 /* Define the offset between two registers, one to be eliminated, and the other
503 its replacement, at the start of a routine. */
504
505 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
506 OFFSET = initial_offset (FROM, TO)
507
508 /* Define how to find the value returned by a function.
509 VALTYPE is the data type of the value (as a tree).
510 If the precise function being called is known, FUNC is its FUNCTION_DECL;
511 otherwise, FUNC is 0.
512
513 On the H8 the return value is in R0/R1. */
514
515 #define FUNCTION_VALUE(VALTYPE, FUNC) \
516 gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
517
518 /* Define how to find the value returned by a library function
519 assuming the value has mode MODE. */
520
521 /* On the h8 the return value is in R0/R1 */
522
523 #define LIBCALL_VALUE(MODE) \
524 gen_rtx (REG, MODE, 0)
525
526 /* 1 if N is a possible register number for a function value.
527 On the H8, R0 is the only register thus used. */
528
529 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
530
531 /* Define this if PCC uses the nonreentrant convention for returning
532 structure and union values. */
533
534 /*#define PCC_STATIC_STRUCT_RETURN*/
535
536 /* 1 if N is a possible register number for function argument passing.
537 On the H8, no registers are used in this way. */
538
539 #define FUNCTION_ARG_REGNO_P(N) (TARGET_QUICKCALL ? N < 3 : 0)
540
541 /* Register in which address to store a structure value
542 is passed to a function. */
543
544 #define STRUCT_VALUE 0
545
546 /* Return true if X should be returned in memory. */
547 #define RETURN_IN_MEMORY(X) \
548 (TYPE_MODE (X) == BLKmode || GET_MODE_SIZE (TYPE_MODE (X)) > 4)
549
550 /* When defined, the compiler allows registers explicitly used in the
551 rtl to be used as spill registers but prevents the compiler from
552 extending the lifetime of these registers. */
553
554 #define SMALL_REGISTER_CLASSES
555 \f
556 /* Define a data type for recording info about an argument list
557 during the scan of that argument list. This data type should
558 hold all necessary information about the function itself
559 and about the args processed so far, enough to enable macros
560 such as FUNCTION_ARG to determine where the next arg should go.
561
562 On the H8/300, this is a two item struct, the first is the number of bytes
563 scanned so far and the second is the rtx of the called library
564 function if any. */
565
566 #define CUMULATIVE_ARGS struct cum_arg
567 struct cum_arg { int nbytes; struct rtx_def * libcall; };
568
569 /* Initialize a variable CUM of type CUMULATIVE_ARGS
570 for a call to a function whose data type is FNTYPE.
571 For a library call, FNTYPE is 0.
572
573 On the H8/300, the offset starts at 0. */
574
575 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
576 ((CUM).nbytes = 0, (CUM).libcall = LIBNAME)
577
578 /* Update the data in CUM to advance over an argument
579 of mode MODE and data type TYPE.
580 (TYPE is null for libcalls where that information may not be available.) */
581
582 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
583 ((CUM).nbytes += ((MODE) != BLKmode \
584 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
585 : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
586
587 /* Define where to put the arguments to a function.
588 Value is zero to push the argument on the stack,
589 or a hard register in which to store the argument.
590
591 MODE is the argument's machine mode.
592 TYPE is the data type of the argument (as a tree).
593 This is null for libcalls where that information may
594 not be available.
595 CUM is a variable of type CUMULATIVE_ARGS which gives info about
596 the preceding args and about the function being called.
597 NAMED is nonzero if this argument is a named parameter
598 (otherwise it is an extra parameter matching an ellipsis). */
599
600 /* On the H8/300 all normal args are pushed, unless -mquickcall in which
601 case the first 3 arguments are passed in registers.
602 See function `function_arg'. */
603
604 struct rtx_def *function_arg();
605 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
606 function_arg (&CUM, MODE, TYPE, NAMED)
607
608 /* Generate assembly output for the start of a function. */
609
610 #define FUNCTION_PROLOGUE(FILE, SIZE) \
611 function_prologue (FILE, SIZE)
612
613 /* Output assembler code to FILE to increment profiler label # LABELNO
614 for profiling a function entry. */
615
616 #define FUNCTION_PROFILER(FILE, LABELNO) \
617 fprintf (FILE, "\t%s\t#LP%d,%s\n\tjsr @mcount\n", \
618 h8_mov_op, (LABELNO), h8_reg_names[0]);
619
620 /* Output assembler code to FILE to initialize this source file's
621 basic block profiling info, if that has not already been done. */
622 /* ??? @LPBX0 is moved into r0 twice. */
623
624 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
625 fprintf (FILE, "\t%s\t%s\n\t%s\t@LPBX0,%s\n\tbne LPI%d\n\t%s\t@LPBX0,%s\n\t%s\t%s\n\tjsr\t@__bb_init_func\nLPI%d:\t%s\t%s\n", \
626 h8_push_op, h8_reg_names[0], \
627 h8_mov_op, h8_reg_names[0], \
628 (LABELNO), \
629 h8_mov_op, h8_reg_names[0], \
630 h8_push_op, h8_reg_names[0], \
631 (LABELNO), \
632 h8_pop_op, h8_reg_names[0]);
633
634 /* Output assembler code to FILE to increment the entry-count for
635 the BLOCKNO'th basic block in this source file. This is a real pain in the
636 sphincter on a VAX, since we do not want to change any of the bits in the
637 processor status word. The way it is done here, it is pushed onto the stack
638 before any flags have changed, and then the stack is fixed up to account for
639 the fact that the instruction to restore the flags only reads a word.
640 It may seem a bit clumsy, but at least it works. */
641 /* ??? This one needs work. */
642
643 #define BLOCK_PROFILER(FILE, BLOCKNO) \
644 fprintf (FILE, "\tmovpsl -(sp)\n\tmovw (sp),2(sp)\n\taddl2 $2,sp\n\taddl2 $1,LPBX2+%d\n\tbicpsw $255\n\tbispsw (sp)+\n", \
645 4 * BLOCKNO)
646
647 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
648 the stack pointer does not matter. The value is tested only in
649 functions that have frame pointers.
650 No definition is equivalent to always zero. */
651
652 #define EXIT_IGNORE_STACK 0
653
654 /* This macro generates the assembly code for function exit,
655 on machines that need it. If FUNCTION_EPILOGUE is not defined
656 then individual return instructions are generated for each
657 return statement. Args are same as for FUNCTION_PROLOGUE. */
658
659 #define FUNCTION_EPILOGUE(FILE, SIZE) \
660 function_epilogue (FILE, SIZE)
661
662 /* Output assembler code for a block containing the constant parts
663 of a trampoline, leaving space for the variable parts.
664
665 H8/300
666 vvvv context
667 1 0000 7900xxxx mov.w #0x1234,r3
668 2 0004 5A00xxxx jmp @0x1234
669 ^^^^ function
670
671 H8/300H
672 vvvvvvvv context
673 2 0000 7A00xxxxxxxx mov.l #0x12345678,er3
674 3 0006 5Axxxxxx jmp @0x123456
675 ^^^^^^ function
676 */
677
678 #define TRAMPOLINE_TEMPLATE(FILE) \
679 do { \
680 if (TARGET_H8300) \
681 { \
682 fprintf (FILE, "\tmov.w #0x1234,r3\n"); \
683 fprintf (FILE, "\tjmp @0x1234\n"); \
684 } \
685 else \
686 { \
687 fprintf (FILE, "\tmov.l #0x12345678,er3\n"); \
688 fprintf (FILE, "\tjmp @0x123456\n"); \
689 } \
690 } while (0)
691
692 /* Length in units of the trampoline for entering a nested function. */
693
694 #define TRAMPOLINE_SIZE (TARGET_H8300 ? 8 : 12)
695
696 /* Emit RTL insns to initialize the variable parts of a trampoline.
697 FNADDR is an RTX for the address of the function's pure code.
698 CXT is an RTX for the static chain value for the function. */
699
700 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
701 { \
702 enum machine_mode mode = TARGET_H8300H ? SImode : HImode; \
703 emit_move_insn (gen_rtx (MEM, mode, plus_constant ((TRAMP), 2)), CXT); \
704 emit_move_insn (gen_rtx (MEM, mode, plus_constant ((TRAMP), 6)), FNADDR); \
705 if (TARGET_H8300H) \
706 emit_move_insn (gen_rtx (MEM, QImode, plus_constant ((TRAMP), 6)), GEN_INT (0x5A)); \
707 }
708 \f
709 /* Addressing modes, and classification of registers for them. */
710
711 #define HAVE_POST_INCREMENT
712 /*#define HAVE_POST_DECREMENT */
713
714 #define HAVE_PRE_DECREMENT
715 /*#define HAVE_PRE_INCREMENT */
716
717 /* Macros to check register numbers against specific register classes. */
718
719 /* These assume that REGNO is a hard or pseudo reg number.
720 They give nonzero only if REGNO is a hard reg of the suitable class
721 or a pseudo reg currently allocated to a suitable hard reg.
722 Since they use reg_renumber, they are safe only once reg_renumber
723 has been allocated, which happens in local-alloc.c. */
724
725 #define REGNO_OK_FOR_INDEX_P(regno) 0
726
727 #define REGNO_OK_FOR_BASE_P(regno) \
728 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
729 \f
730 /* Maximum number of registers that can appear in a valid memory address. */
731
732 #define MAX_REGS_PER_ADDRESS 1
733
734 /* 1 if X is an rtx for a constant that is a valid address. */
735
736 #define CONSTANT_ADDRESS_P(X) \
737 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
738 || (GET_CODE (X) == CONST_INT \
739 /* We handle signed and unsigned offsets here. */ \
740 && INTVAL (X) > (TARGET_H8300 ? -0x10000 : -0x1000000) \
741 && INTVAL (X) < (TARGET_H8300 ? 0x10000 : 0x1000000)) \
742 || GET_CODE (X) == CONST \
743 || GET_CODE (X) == HIGH)
744
745 /* Nonzero if the constant value X is a legitimate general operand.
746 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
747
748 #define LEGITIMATE_CONSTANT_P(X) (GET_CODE (X) != CONST_DOUBLE)
749
750 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
751 and check its validity for a certain class.
752 We have two alternate definitions for each of them.
753 The usual definition accepts all pseudo regs; the other rejects
754 them unless they have been allocated suitable hard regs.
755 The symbol REG_OK_STRICT causes the latter definition to be used.
756
757 Most source files want to accept pseudo regs in the hope that
758 they will get allocated to the class that the insn wants them to be in.
759 Source files for reload pass need to be strict.
760 After reload, it makes no difference, since pseudo regs have
761 been eliminated by then. */
762
763 #ifndef REG_OK_STRICT
764
765 /* Nonzero if X is a hard reg that can be used as an index
766 or if it is a pseudo reg. */
767 #define REG_OK_FOR_INDEX_P(X) 0
768 /* Nonzero if X is a hard reg that can be used as a base reg
769 or if it is a pseudo reg. */
770 #define REG_OK_FOR_BASE_P(X) 1
771 #define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
772 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
773 #define STRICT 0
774
775 #else
776
777 /* Nonzero if X is a hard reg that can be used as an index. */
778 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
779 /* Nonzero if X is a hard reg that can be used as a base reg. */
780 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
781 #define STRICT 1
782
783 #endif
784
785 /* Extra constraints - 'U' if for an operand valid for a bset
786 destination; i.e. a register, register indirect, or the
787 eightbit memory region (a SYMBOL_REF with the SYMBOL_REF_FLAG
788 set. */
789 #define OK_FOR_U(OP) \
790 ((GET_CODE (OP) == REG && REG_OK_FOR_BASE_P (OP)) \
791 || (GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
792 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
793 || (GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == SYMBOL_REF \
794 && SYMBOL_REF_FLAG (XEXP (OP, 0))))
795
796 #define EXTRA_CONSTRAINT(OP, C) \
797 ((C) == 'U' ? OK_FOR_U (OP) : 0)
798 \f
799 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
800 that is a valid memory address for an instruction.
801 The MODE argument is the machine mode for the MEM expression
802 that wants to use this address.
803
804 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
805 except for CONSTANT_ADDRESS_P which is actually
806 machine-independent.
807
808 On the H8/300, a legitimate address has the form
809 REG, REG+CONSTANT_ADDRESS or CONSTANT_ADDRESS. */
810
811 /* Accept either REG or SUBREG where a register is valid. */
812
813 #define RTX_OK_FOR_BASE_P(X) \
814 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
815 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
816 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
817
818 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
819 if (RTX_OK_FOR_BASE_P (X)) goto ADDR; \
820 if (CONSTANT_ADDRESS_P (X)) goto ADDR; \
821 if (GET_CODE (X) == PLUS \
822 && CONSTANT_ADDRESS_P (XEXP (X, 1)) \
823 && RTX_OK_FOR_BASE_P (XEXP (X, 0))) goto ADDR;
824 \f
825 /* Try machine-dependent ways of modifying an illegitimate address
826 to be legitimate. If we find one, return the new, valid address.
827 This macro is used in only one place: `memory_address' in explow.c.
828
829 OLDX is the address as it was before break_out_memory_refs was called.
830 In some cases it is useful to look at this to decide what needs to be done.
831
832 MODE and WIN are passed so that this macro can use
833 GO_IF_LEGITIMATE_ADDRESS.
834
835 It is always safe for this macro to do nothing. It exists to recognize
836 opportunities to optimize the output.
837
838 For the H8/300, don't do anything. */
839
840 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
841
842 /* Go to LABEL if ADDR (a legitimate address expression)
843 has an effect that depends on the machine mode it is used for.
844
845 On the H8/300, the predecrement and postincrement address depend thus
846 (the amount of decrement or increment being the length of the operand)
847 and all indexed address depend thus (because the index scale factor
848 is the length of the operand). */
849
850 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
851 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL;
852 \f
853 /* Specify the machine mode that this machine uses
854 for the index in the tablejump instruction. */
855 #define CASE_VECTOR_MODE Pmode
856
857 /* Define this if the case instruction expects the table
858 to contain offsets from the address of the table.
859 Do not define this if the table should contain absolute addresses. */
860 /*#define CASE_VECTOR_PC_RELATIVE*/
861
862 /* Define this if the case instruction drops through after the table
863 when the index is out of range. Don't define it if the case insn
864 jumps to the default label instead. */
865 #define CASE_DROPS_THROUGH
866
867 /* Specify the tree operation to be used to convert reals to integers. */
868 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
869
870 /* This is the kind of divide that is easiest to do in the general case. */
871 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
872
873 /* Define this as 1 if `char' should by default be signed; else as 0.
874
875 On the H8/300, sign extension is expensive, so we'll say that chars
876 are unsigned. */
877 #define DEFAULT_SIGNED_CHAR 0
878
879 /* This flag, if defined, says the same insns that convert to a signed fixnum
880 also convert validly to an unsigned one. */
881 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
882
883 /* Max number of bytes we can move from memory to memory
884 in one reasonably fast instruction. */
885 #define MOVE_MAX (TARGET_H8300H ? 4 : 2)
886 #define MAX_MOVE_MAX 4
887
888 /* Define this if zero-extension is slow (more than one real instruction). */
889 /* #define SLOW_ZERO_EXTEND */
890
891 /* Nonzero if access to memory by bytes is slow and undesirable. */
892 #define SLOW_BYTE_ACCESS TARGET_SLOWBYTE
893
894 /* Define if shifts truncate the shift count
895 which implies one can omit a sign-extension or zero-extension
896 of a shift count. */
897 /* #define SHIFT_COUNT_TRUNCATED */
898
899 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
900 is done just by pretending it is already truncated. */
901 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
902
903 /* Specify the machine mode that pointers have.
904 After generation of rtl, the compiler makes no further distinction
905 between pointers and any other objects of this machine mode. */
906 #define Pmode (TARGET_H8300H ? SImode : HImode)
907
908 /* ANSI C types.
909 We use longs for the 300h because ints can be 16 or 32.
910 GCC requires SIZE_TYPE to be the same size as pointers. */
911 #define NO_BUILTIN_SIZE_TYPE
912 #define NO_BUILTIN_PTRDIFF_TYPE
913 #define SIZE_TYPE (TARGET_H8300 ? "unsigned int" : "long unsigned int")
914 #define PTRDIFF_TYPE (TARGET_H8300 ? "int" : "long int")
915
916 #define WCHAR_TYPE "short unsigned int"
917 #define WCHAR_TYPE_SIZE 16
918 #define MAX_WCHAR_TYPE_SIZE 16
919
920 /* A function address in a call instruction
921 is a byte address (for indexing purposes)
922 so give the MEM rtx a byte's mode. */
923 #define FUNCTION_MODE QImode
924
925 /* A C expression whose value is nonzero if IDENTIFIER with arguments ARGS
926 is a valid machine specific attribute for DECL.
927 The attributes in ATTRIBUTES have previously been assigned to DECL. */
928 extern int h8300_valid_machine_decl_attribute ();
929 #define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, IDENTIFIER, ARGS) \
930 h8300_valid_machine_decl_attribute (DECL, ATTRIBUTES, IDENTIFIER, ARGS)
931
932 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
933 LENGTH += h8300_adjust_insn_length (INSN, LENGTH);
934
935 /* Compute the cost of computing a constant rtl expression RTX
936 whose rtx-code is CODE. The body of this macro is a portion
937 of a switch statement. If the code is computed here,
938 return it with a return statement. Otherwise, break from the switch. */
939
940 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
941 default: { int _zxy= const_costs(RTX, CODE); \
942 if(_zxy) return _zxy; break;}
943
944 #define BRANCH_COST 0
945
946 /* We say that MOD and DIV are so cheap because otherwise we'll
947 generate some really horrible code for division of a power of two. */
948
949 /* Provide the costs of a rtl expression. This is in the body of a
950 switch on CODE. */
951 /* ??? Shifts need to have a *much* higher cost than this. */
952
953 #define RTX_COSTS(RTX,CODE,OUTER_CODE) \
954 case MOD: \
955 case DIV: \
956 return 60; \
957 case MULT: \
958 return 20; \
959 case ASHIFT: \
960 case ASHIFTRT: \
961 case LSHIFTRT: \
962 case ROTATE: \
963 case ROTATERT: \
964 if (GET_MODE (RTX) == HImode) return 2; \
965 return 8;
966
967 /* Tell final.c how to eliminate redundant test instructions. */
968
969 /* Here we define machine-dependent flags and fields in cc_status
970 (see `conditions.h'). No extra ones are needed for the vax. */
971
972 /* Store in cc_status the expressions
973 that the condition codes will describe
974 after execution of an instruction whose pattern is EXP.
975 Do not alter them if the instruction would not alter the cc's. */
976
977 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
978
979 /* The mov,and,or,xor insns always set V to 0. */
980 #define CC_OVERFLOW_0 0400
981 /* The add insns don't set overflow in a usable way. */
982 #define CC_OVERFLOW_UNUSABLE 01000
983 /* The mov,and,or,xor insns don't set carry. That's ok though as the
984 Z bit is all we need when doing unsigned comparisons on the result of
985 these insns (since they're always with 0). However, conditions.h has
986 CC_NO_OVERFLOW defined for this purpose. Rename it to something more
987 understandable. */
988 #define CC_NO_CARRY CC_NO_OVERFLOW
989 /* ??? Use CC_Z_IN_NOT_C for bld insns? */
990 \f
991 /* Control the assembler format that we output. */
992
993 #define ASM_IDENTIFY_GCC /* nothing */
994
995 /* Output at beginning/end of assembler file. */
996
997 #define ASM_FILE_START(FILE) asm_file_start(FILE)
998
999 #define ASM_FILE_END(FILE) asm_file_end(FILE)
1000
1001 /* Output to assembler file text saying following lines
1002 may contain character constants, extra white space, comments, etc. */
1003
1004 #define ASM_APP_ON "; #APP\n"
1005
1006 /* Output to assembler file text saying following lines
1007 no longer contain unusual constructs. */
1008
1009 #define ASM_APP_OFF "; #NO_APP\n"
1010
1011 #define FILE_ASM_OP "\t.file\n"
1012 #define IDENT_ASM_OP "\t.ident\n"
1013
1014 /* The assembler op to get a word, 2 bytes for the H8/300, 4 for H8/300H. */
1015 #define ASM_WORD_OP (TARGET_H8300 ? ".word" : ".long")
1016
1017 /* We define a readonly data section solely to remove readonly data
1018 from the instruction stream. This can improve relaxing in two significant
1019 ways. First it's more likely that references to readonly data
1020 can be done with a 16bit absolute address since they'll be in low
1021 memory. Second, it's more likely that jsr instructions can be
1022 turned into bsr instructions since read-only data is not in the
1023 instruction stream. */
1024 #define READONLY_DATA_SECTION readonly_data
1025
1026 #define TEXT_SECTION_ASM_OP "\t.section .text"
1027 #define DATA_SECTION_ASM_OP "\t.section .data"
1028 #define BSS_SECTION_ASM_OP "\t.section .bss"
1029 #define INIT_SECTION_ASM_OP "\t.section .init"
1030 #define CTORS_SECTION_ASM_OP "\t.section .ctors"
1031 #define DTORS_SECTION_ASM_OP "\t.section .dtors"
1032 #define READONLY_DATA_SECTION_ASM_OP "\t.section .rodata"
1033
1034 #define EXTRA_SECTIONS in_ctors, in_dtors, in_readonly_data
1035
1036 #define EXTRA_SECTION_FUNCTIONS \
1037 \
1038 void \
1039 ctors_section() \
1040 { \
1041 if (in_section != in_ctors) \
1042 { \
1043 fprintf (asm_out_file, "%s\n", CTORS_SECTION_ASM_OP); \
1044 in_section = in_ctors; \
1045 } \
1046 } \
1047 \
1048 void \
1049 dtors_section() \
1050 { \
1051 if (in_section != in_dtors) \
1052 { \
1053 fprintf (asm_out_file, "%s\n", DTORS_SECTION_ASM_OP); \
1054 in_section = in_dtors; \
1055 } \
1056 } \
1057 \
1058 void \
1059 readonly_data() \
1060 { \
1061 if (in_section != in_readonly_data) \
1062 { \
1063 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP);\
1064 in_section = in_readonly_data; \
1065 } \
1066 }
1067
1068
1069
1070 #define ASM_OUTPUT_CONSTRUCTOR(FILE,NAME) \
1071 do { ctors_section(); \
1072 fprintf(FILE, "\t%s\t_%s\n", ASM_WORD_OP, NAME); } while (0)
1073
1074 #define ASM_OUTPUT_DESTRUCTOR(FILE,NAME) \
1075 do { dtors_section(); \
1076 fprintf(FILE, "\t%s\t_%s\n", ASM_WORD_OP, NAME); } while (0)
1077
1078 #undef DO_GLOBAL_CTORS_BODY
1079 #define DO_GLOBAL_CTORS_BODY \
1080 { \
1081 typedef (*pfunc)(); \
1082 extern pfunc __ctors[]; \
1083 extern pfunc __ctors_end[]; \
1084 pfunc *p; \
1085 for (p = __ctors_end; p > __ctors; ) \
1086 { \
1087 (*--p)(); \
1088 } \
1089 }
1090
1091 #undef DO_GLOBAL_DTORS_BODY
1092 #define DO_GLOBAL_DTORS_BODY \
1093 { \
1094 typedef (*pfunc)(); \
1095 extern pfunc __dtors[]; \
1096 extern pfunc __dtors_end[]; \
1097 pfunc *p; \
1098 for (p = __dtors; p < __dtors_end; p++) \
1099 { \
1100 (*p)(); \
1101 } \
1102 }
1103
1104 /* If we are referencing a function that is supposed to be called
1105 through the function vector, the SYMBOL_REF_FLAG in the rtl
1106 so the call patterns can generate the correct code. */
1107 #define ENCODE_SECTION_INFO(DECL) \
1108 if ((TREE_CODE (DECL) == FUNCTION_DECL \
1109 && h8300_funcvec_function_p (DECL)) \
1110 || ((TREE_STATIC (DECL) || DECL_EXTERNAL (DECL)) \
1111 && TREE_CODE (DECL) == VAR_DECL \
1112 && h8300_eightbit_data_p (DECL))) \
1113 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1114
1115 /* How to refer to registers in assembler output.
1116 This sequence is indexed by compiler's hard-register-number (see above). */
1117
1118 #define REGISTER_NAMES \
1119 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "sp", "ap"}
1120
1121 #define ADDITIONAL_REGISTER_NAMES { { "r7", 7 } }
1122
1123 /* How to renumber registers for dbx and gdb.
1124 H8/300 needs no change in the numeration. */
1125
1126 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1127
1128 #define SDB_DEBUGGING_INFO
1129 #define SDB_DELIM "\n"
1130
1131 /* Support -gstabs. */
1132
1133 #include "dbxcoff.h"
1134
1135 /* A C statement to output something to the assembler file to switch to section
1136 NAME for object DECL which is either a FUNCTION_DECL, a VAR_DECL or
1137 NULL_TREE. Some target formats do not support arbitrary sections. Do not
1138 define this macro in such cases. */
1139
1140 #define ASM_OUTPUT_SECTION_NAME(FILE, DECL, NAME) \
1141 fprintf (FILE, "\t.section %s\n", NAME)
1142
1143 /* This is how to output the definition of a user-level label named NAME,
1144 such as the label on a static function or variable NAME. */
1145
1146 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1147 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1148
1149 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME)
1150
1151 /* This is how to output a command to make the user-level label named NAME
1152 defined for reference from other files. */
1153
1154 #define ASM_GLOBALIZE_LABEL(FILE, NAME) \
1155 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1156
1157 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
1158 ASM_OUTPUT_LABEL(FILE, NAME)
1159
1160 /* This is how to output a reference to a user-level label named NAME.
1161 `assemble_name' uses this. */
1162
1163 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1164 fprintf (FILE, "_%s", NAME)
1165
1166 /* This is how to output an internal numbered label where
1167 PREFIX is the class of label and NUM is the number within the class. */
1168
1169 #define ASM_OUTPUT_INTERNAL_LABEL(FILE, PREFIX, NUM) \
1170 fprintf (FILE, ".%s%d:\n", PREFIX, NUM)
1171
1172 /* This is how to store into the string LABEL
1173 the symbol_ref name of an internal numbered label where
1174 PREFIX is the class of label and NUM is the number within the class.
1175 This is suitable for output with `assemble_name'. */
1176
1177 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1178 sprintf (LABEL, "*.%s%d", PREFIX, NUM)
1179
1180 /* This is how to output an assembler line defining a `double' constant.
1181 It is .dfloat or .gfloat, depending. */
1182
1183 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
1184 do { char dstr[30]; \
1185 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
1186 fprintf (FILE, "\t.double %s\n", dstr); \
1187 } while (0)
1188
1189
1190 /* This is how to output an assembler line defining a `float' constant. */
1191 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
1192 do { char dstr[30]; \
1193 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
1194 fprintf (FILE, "\t.float %s\n", dstr); \
1195 } while (0)
1196
1197 /* This is how to output an assembler line defining an `int' constant. */
1198
1199 #define ASM_OUTPUT_INT(FILE, VALUE) \
1200 ( fprintf (FILE, "\t.long "), \
1201 output_addr_const (FILE, (VALUE)), \
1202 fprintf (FILE, "\n"))
1203
1204 /* Likewise for `char' and `short' constants. */
1205
1206 #define ASM_OUTPUT_SHORT(FILE, VALUE) \
1207 ( fprintf (FILE, "\t.word "), \
1208 output_addr_const (FILE, (VALUE)), \
1209 fprintf (FILE, "\n"))
1210
1211 #define ASM_OUTPUT_CHAR(FILE, VALUE) \
1212 ( fprintf (FILE, "\t.byte "), \
1213 output_addr_const (FILE, (VALUE)), \
1214 fprintf (FILE, "\n"))
1215
1216 /* This is how to output an assembler line for a numeric constant byte. */
1217 #define ASM_OUTPUT_BYTE(FILE, VALUE) \
1218 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1219
1220 /* This is how to output an insn to push a register on the stack.
1221 It need not be very fast code. */
1222
1223 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
1224 fprintf (FILE, "\t%s\t%s\n", h8_push_op, h8_reg_names[REGNO])
1225
1226 /* This is how to output an insn to pop a register from the stack.
1227 It need not be very fast code. */
1228
1229 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1230 fprintf (FILE, "\t%s\t%s\n", h8_pop_op, h8_reg_names[REGNO])
1231
1232 /* This is how to output an element of a case-vector that is absolute. */
1233
1234 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1235 asm_fprintf (FILE, "\t%s .L%d\n", ASM_WORD_OP, VALUE)
1236
1237 /* This is how to output an element of a case-vector that is relative. */
1238
1239 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1240 fprintf (FILE, "\t%s .L%d-.L%d\n", ASM_WORD_OP, VALUE, REL)
1241
1242 /* This is how to output an assembler line
1243 that says to advance the location counter
1244 to a multiple of 2**LOG bytes. */
1245
1246 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1247 if ((LOG) != 0) \
1248 fprintf (FILE, "\t.align %d\n", (LOG))
1249
1250 /* This is how to output an assembler line
1251 that says to advance the location counter by SIZE bytes. */
1252
1253 #define ASM_OUTPUT_IDENT(FILE, NAME) \
1254 fprintf(FILE, "%s\t \"%s\"\n", IDENT_ASM_OP, NAME)
1255
1256 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
1257 fprintf (FILE, "\t.space %d\n", (SIZE))
1258
1259 /* This says how to output an assembler line
1260 to define a global common symbol. */
1261
1262 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1263 ( fputs ("\t.comm ", (FILE)), \
1264 assemble_name ((FILE), (NAME)), \
1265 fprintf ((FILE), ",%d\n", (SIZE)))
1266
1267 /* This says how to output the assembler to define a global
1268 uninitialized but not common symbol.
1269 Try to use asm_output_bss to implement this macro. */
1270
1271 #define ASM_OUTPUT_BSS(FILE, NAME, SIZE, ROUNDED) \
1272 asm_output_bss ((FILE), (NAME), (SIZE), (ROUNDED))
1273
1274 /* This says how to output an assembler line
1275 to define a local common symbol. */
1276
1277 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1278 ( fputs ("\t.lcomm ", (FILE)), \
1279 assemble_name ((FILE), (NAME)), \
1280 fprintf ((FILE), ",%d\n", (SIZE)))
1281
1282 /* Store in OUTPUT a string (made with alloca) containing
1283 an assembler-name for a local static variable named NAME.
1284 LABELNO is an integer which is different for each call. */
1285
1286 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1287 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1288 sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
1289
1290 /* Define the parentheses used to group arithmetic operations
1291 in assembler code. */
1292
1293 #define ASM_OPEN_PAREN "("
1294 #define ASM_CLOSE_PAREN ")"
1295
1296 /* Define results of standard character escape sequences. */
1297 #define TARGET_BELL 007
1298 #define TARGET_BS 010
1299 #define TARGET_TAB 011
1300 #define TARGET_NEWLINE 012
1301 #define TARGET_VT 013
1302 #define TARGET_FF 014
1303 #define TARGET_CR 015
1304
1305 /* Print an instruction operand X on file FILE.
1306 look in h8300.c for details */
1307
1308 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1309 ((CODE) == '#')
1310
1311 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
1312
1313 /* Print a memory operand whose address is X, on file FILE.
1314 This uses a function in output-vax.c. */
1315
1316 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1317
1318 /* Define this macro if you want to implement any pragmas. If defined, it
1319 should be a C expression to be executed when #pragma is seen. The
1320 argument STREAM is the stdio input stream from which the source
1321 text can be read. CH is the first character after the #pragma. The
1322 result of the expression is the terminating character found
1323 (newline or EOF). */
1324 #define HANDLE_PRAGMA(FILE, NODE) handle_pragma (FILE, NODE)
1325
1326 #define FINAL_PRESCAN_INSN(insn, operand, nop) final_prescan_insn (insn, operand,nop)
1327
1328 /* Define this macro if GNU CC should generate calls to the System V
1329 (and ANSI C) library functions `memcpy' and `memset' rather than
1330 the BSD functions `bcopy' and `bzero'. */
1331
1332 #define TARGET_MEM_FUNCTIONS 1
1333
1334 #define MULHI3_LIBCALL "__mulhi3"
1335 #define DIVHI3_LIBCALL "__divhi3"
1336 #define UDIVHI3_LIBCALL "__udivhi3"
1337 #define MODHI3_LIBCALL "__modhi3"
1338 #define UMODHI3_LIBCALL "__umodhi3"
1339
1340 /* Perform target dependent optabs initialization. */
1341
1342 #define INIT_TARGET_OPTABS \
1343 do { \
1344 smul_optab->handlers[(int) HImode].libfunc \
1345 = gen_rtx (SYMBOL_REF, Pmode, MULHI3_LIBCALL); \
1346 sdiv_optab->handlers[(int) HImode].libfunc \
1347 = gen_rtx (SYMBOL_REF, Pmode, DIVHI3_LIBCALL); \
1348 udiv_optab->handlers[(int) HImode].libfunc \
1349 = gen_rtx (SYMBOL_REF, Pmode, UDIVHI3_LIBCALL); \
1350 smod_optab->handlers[(int) HImode].libfunc \
1351 = gen_rtx (SYMBOL_REF, Pmode, MODHI3_LIBCALL); \
1352 umod_optab->handlers[(int) HImode].libfunc \
1353 = gen_rtx (SYMBOL_REF, Pmode, UMODHI3_LIBCALL); \
1354 } while (0)
1355
1356 #define MOVE_RATIO 3
1357
1358 /* Declarations for functions used in insn-output.c. */
1359 char *emit_a_shift ();
1360 int h8300_funcvec_function_p ();
1361 char *output_adds_subs ();
1362 char * output_simode_bld ();
1363