winnt.c (i386_pe_seh_end_prologue): Move code to ...
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
21
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
25 <http://www.gnu.org/licenses/>. */
26
27 /* The purpose of this file is to define the characteristics of the i386,
28 independent of assembler syntax or operating system.
29
30 Three other files build on this one to describe a specific assembler syntax:
31 bsd386.h, att386.h, and sun386.h.
32
33 The actual tm.h file for a particular system should include
34 this file, and then the file for the appropriate assembler syntax.
35
36 Many macros that specify assembler syntax are omitted entirely from
37 this file because they really belong in the files for particular
38 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
39 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
40 that start with ASM_ or end in ASM_OP. */
41
42 /* Redefines for option macros. */
43
44 #define TARGET_64BIT OPTION_ISA_64BIT
45 #define TARGET_MMX OPTION_ISA_MMX
46 #define TARGET_3DNOW OPTION_ISA_3DNOW
47 #define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
48 #define TARGET_SSE OPTION_ISA_SSE
49 #define TARGET_SSE2 OPTION_ISA_SSE2
50 #define TARGET_SSE3 OPTION_ISA_SSE3
51 #define TARGET_SSSE3 OPTION_ISA_SSSE3
52 #define TARGET_SSE4_1 OPTION_ISA_SSE4_1
53 #define TARGET_SSE4_2 OPTION_ISA_SSE4_2
54 #define TARGET_AVX OPTION_ISA_AVX
55 #define TARGET_AVX2 OPTION_ISA_AVX2
56 #define TARGET_FMA OPTION_ISA_FMA
57 #define TARGET_SSE4A OPTION_ISA_SSE4A
58 #define TARGET_FMA4 OPTION_ISA_FMA4
59 #define TARGET_XOP OPTION_ISA_XOP
60 #define TARGET_LWP OPTION_ISA_LWP
61 #define TARGET_ROUND OPTION_ISA_ROUND
62 #define TARGET_ABM OPTION_ISA_ABM
63 #define TARGET_BMI OPTION_ISA_BMI
64 #define TARGET_BMI2 OPTION_ISA_BMI2
65 #define TARGET_LZCNT OPTION_ISA_LZCNT
66 #define TARGET_TBM OPTION_ISA_TBM
67 #define TARGET_POPCNT OPTION_ISA_POPCNT
68 #define TARGET_SAHF OPTION_ISA_SAHF
69 #define TARGET_MOVBE OPTION_ISA_MOVBE
70 #define TARGET_CRC32 OPTION_ISA_CRC32
71 #define TARGET_AES OPTION_ISA_AES
72 #define TARGET_PCLMUL OPTION_ISA_PCLMUL
73 #define TARGET_CMPXCHG16B OPTION_ISA_CX16
74 #define TARGET_FSGSBASE OPTION_ISA_FSGSBASE
75 #define TARGET_RDRND OPTION_ISA_RDRND
76 #define TARGET_F16C OPTION_ISA_F16C
77 #define TARGET_RTM OPTION_ISA_RTM
78 #define TARGET_HLE OPTION_ISA_HLE
79
80 #define TARGET_LP64 OPTION_ABI_64
81 #define TARGET_X32 OPTION_ABI_X32
82
83 /* SSE4.1 defines round instructions */
84 #define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
85 #define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
86
87 #include "config/vxworks-dummy.h"
88
89 #include "config/i386/i386-opts.h"
90
91 #define MAX_STRINGOP_ALGS 4
92
93 /* Specify what algorithm to use for stringops on known size.
94 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
95 known at compile time or estimated via feedback, the SIZE array
96 is walked in order until MAX is greater then the estimate (or -1
97 means infinity). Corresponding ALG is used then.
98 For example initializer:
99 {{256, loop}, {-1, rep_prefix_4_byte}}
100 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
101 be used otherwise. */
102 struct stringop_algs
103 {
104 const enum stringop_alg unknown_size;
105 const struct stringop_strategy {
106 const int max;
107 const enum stringop_alg alg;
108 } size [MAX_STRINGOP_ALGS];
109 };
110
111 /* Define the specific costs for a given cpu */
112
113 struct processor_costs {
114 const int add; /* cost of an add instruction */
115 const int lea; /* cost of a lea instruction */
116 const int shift_var; /* variable shift costs */
117 const int shift_const; /* constant shift costs */
118 const int mult_init[5]; /* cost of starting a multiply
119 in QImode, HImode, SImode, DImode, TImode*/
120 const int mult_bit; /* cost of multiply per each bit set */
121 const int divide[5]; /* cost of a divide/mod
122 in QImode, HImode, SImode, DImode, TImode*/
123 int movsx; /* The cost of movsx operation. */
124 int movzx; /* The cost of movzx operation. */
125 const int large_insn; /* insns larger than this cost more */
126 const int move_ratio; /* The threshold of number of scalar
127 memory-to-memory move insns. */
128 const int movzbl_load; /* cost of loading using movzbl */
129 const int int_load[3]; /* cost of loading integer registers
130 in QImode, HImode and SImode relative
131 to reg-reg move (2). */
132 const int int_store[3]; /* cost of storing integer register
133 in QImode, HImode and SImode */
134 const int fp_move; /* cost of reg,reg fld/fst */
135 const int fp_load[3]; /* cost of loading FP register
136 in SFmode, DFmode and XFmode */
137 const int fp_store[3]; /* cost of storing FP register
138 in SFmode, DFmode and XFmode */
139 const int mmx_move; /* cost of moving MMX register. */
140 const int mmx_load[2]; /* cost of loading MMX register
141 in SImode and DImode */
142 const int mmx_store[2]; /* cost of storing MMX register
143 in SImode and DImode */
144 const int sse_move; /* cost of moving SSE register. */
145 const int sse_load[3]; /* cost of loading SSE register
146 in SImode, DImode and TImode*/
147 const int sse_store[3]; /* cost of storing SSE register
148 in SImode, DImode and TImode*/
149 const int mmxsse_to_integer; /* cost of moving mmxsse register to
150 integer and vice versa. */
151 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
152 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
153 const int prefetch_block; /* bytes moved to cache for prefetch. */
154 const int simultaneous_prefetches; /* number of parallel prefetch
155 operations. */
156 const int branch_cost; /* Default value for BRANCH_COST. */
157 const int fadd; /* cost of FADD and FSUB instructions. */
158 const int fmul; /* cost of FMUL instruction. */
159 const int fdiv; /* cost of FDIV instruction. */
160 const int fabs; /* cost of FABS instruction. */
161 const int fchs; /* cost of FCHS instruction. */
162 const int fsqrt; /* cost of FSQRT instruction. */
163 /* Specify what algorithm
164 to use for stringops on unknown size. */
165 struct stringop_algs memcpy[2], memset[2];
166 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
167 load and store. */
168 const int scalar_load_cost; /* Cost of scalar load. */
169 const int scalar_store_cost; /* Cost of scalar store. */
170 const int vec_stmt_cost; /* Cost of any vector operation, excluding
171 load, store, vector-to-scalar and
172 scalar-to-vector operation. */
173 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
174 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
175 const int vec_align_load_cost; /* Cost of aligned vector load. */
176 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
177 const int vec_store_cost; /* Cost of vector store. */
178 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
179 cost model. */
180 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
181 vectorizer cost model. */
182 };
183
184 extern const struct processor_costs *ix86_cost;
185 extern const struct processor_costs ix86_size_cost;
186
187 #define ix86_cur_cost() \
188 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
189
190 /* Macros used in the machine description to test the flags. */
191
192 /* configure can arrange to make this 2, to force a 486. */
193
194 #ifndef TARGET_CPU_DEFAULT
195 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
196 #endif
197
198 #ifndef TARGET_FPMATH_DEFAULT
199 #define TARGET_FPMATH_DEFAULT \
200 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
201 #endif
202
203 #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
204
205 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
206 compile-time constant. */
207 #ifdef IN_LIBGCC2
208 #undef TARGET_64BIT
209 #ifdef __x86_64__
210 #define TARGET_64BIT 1
211 #else
212 #define TARGET_64BIT 0
213 #endif
214 #else
215 #ifndef TARGET_BI_ARCH
216 #undef TARGET_64BIT
217 #if TARGET_64BIT_DEFAULT
218 #define TARGET_64BIT 1
219 #else
220 #define TARGET_64BIT 0
221 #endif
222 #endif
223 #endif
224
225 #define HAS_LONG_COND_BRANCH 1
226 #define HAS_LONG_UNCOND_BRANCH 1
227
228 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
229 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
230 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
231 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
232 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
233 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
234 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
235 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
236 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
237 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
238 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
239 #define TARGET_CORE2_32 (ix86_tune == PROCESSOR_CORE2_32)
240 #define TARGET_CORE2_64 (ix86_tune == PROCESSOR_CORE2_64)
241 #define TARGET_CORE2 (TARGET_CORE2_32 || TARGET_CORE2_64)
242 #define TARGET_COREI7_32 (ix86_tune == PROCESSOR_COREI7_32)
243 #define TARGET_COREI7_64 (ix86_tune == PROCESSOR_COREI7_64)
244 #define TARGET_COREI7 (TARGET_COREI7_32 || TARGET_COREI7_64)
245 #define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
246 #define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
247 #define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
248 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
249 #define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
250 #define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
251 #define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
252 #define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
253
254 /* Feature tests against the various tunings. */
255 enum ix86_tune_indices {
256 X86_TUNE_USE_LEAVE,
257 X86_TUNE_PUSH_MEMORY,
258 X86_TUNE_ZERO_EXTEND_WITH_AND,
259 X86_TUNE_UNROLL_STRLEN,
260 X86_TUNE_BRANCH_PREDICTION_HINTS,
261 X86_TUNE_DOUBLE_WITH_ADD,
262 X86_TUNE_USE_SAHF,
263 X86_TUNE_MOVX,
264 X86_TUNE_PARTIAL_REG_STALL,
265 X86_TUNE_PARTIAL_FLAG_REG_STALL,
266 X86_TUNE_LCP_STALL,
267 X86_TUNE_USE_HIMODE_FIOP,
268 X86_TUNE_USE_SIMODE_FIOP,
269 X86_TUNE_USE_MOV0,
270 X86_TUNE_USE_CLTD,
271 X86_TUNE_USE_XCHGB,
272 X86_TUNE_SPLIT_LONG_MOVES,
273 X86_TUNE_READ_MODIFY_WRITE,
274 X86_TUNE_READ_MODIFY,
275 X86_TUNE_PROMOTE_QIMODE,
276 X86_TUNE_FAST_PREFIX,
277 X86_TUNE_SINGLE_STRINGOP,
278 X86_TUNE_QIMODE_MATH,
279 X86_TUNE_HIMODE_MATH,
280 X86_TUNE_PROMOTE_QI_REGS,
281 X86_TUNE_PROMOTE_HI_REGS,
282 X86_TUNE_SINGLE_POP,
283 X86_TUNE_DOUBLE_POP,
284 X86_TUNE_SINGLE_PUSH,
285 X86_TUNE_DOUBLE_PUSH,
286 X86_TUNE_INTEGER_DFMODE_MOVES,
287 X86_TUNE_PARTIAL_REG_DEPENDENCY,
288 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
289 X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL,
290 X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL,
291 X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL,
292 X86_TUNE_SSE_SPLIT_REGS,
293 X86_TUNE_SSE_TYPELESS_STORES,
294 X86_TUNE_SSE_LOAD0_BY_PXOR,
295 X86_TUNE_MEMORY_MISMATCH_STALL,
296 X86_TUNE_PROLOGUE_USING_MOVE,
297 X86_TUNE_EPILOGUE_USING_MOVE,
298 X86_TUNE_SHIFT1,
299 X86_TUNE_USE_FFREEP,
300 X86_TUNE_INTER_UNIT_MOVES,
301 X86_TUNE_INTER_UNIT_CONVERSIONS,
302 X86_TUNE_FOUR_JUMP_LIMIT,
303 X86_TUNE_SCHEDULE,
304 X86_TUNE_USE_BT,
305 X86_TUNE_USE_INCDEC,
306 X86_TUNE_PAD_RETURNS,
307 X86_TUNE_PAD_SHORT_FUNCTION,
308 X86_TUNE_EXT_80387_CONSTANTS,
309 X86_TUNE_SHORTEN_X87_SSE,
310 X86_TUNE_AVOID_VECTOR_DECODE,
311 X86_TUNE_PROMOTE_HIMODE_IMUL,
312 X86_TUNE_SLOW_IMUL_IMM32_MEM,
313 X86_TUNE_SLOW_IMUL_IMM8,
314 X86_TUNE_MOVE_M1_VIA_OR,
315 X86_TUNE_NOT_UNPAIRABLE,
316 X86_TUNE_NOT_VECTORMODE,
317 X86_TUNE_USE_VECTOR_FP_CONVERTS,
318 X86_TUNE_USE_VECTOR_CONVERTS,
319 X86_TUNE_FUSE_CMP_AND_BRANCH,
320 X86_TUNE_OPT_AGU,
321 X86_TUNE_VECTORIZE_DOUBLE,
322 X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL,
323 X86_TUNE_AVX128_OPTIMAL,
324 X86_TUNE_REASSOC_INT_TO_PARALLEL,
325 X86_TUNE_REASSOC_FP_TO_PARALLEL,
326
327 X86_TUNE_LAST
328 };
329
330 extern unsigned char ix86_tune_features[X86_TUNE_LAST];
331
332 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
333 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
334 #define TARGET_ZERO_EXTEND_WITH_AND \
335 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
336 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
337 #define TARGET_BRANCH_PREDICTION_HINTS \
338 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
339 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
340 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
341 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
342 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
343 #define TARGET_PARTIAL_FLAG_REG_STALL \
344 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
345 #define TARGET_LCP_STALL \
346 ix86_tune_features[X86_TUNE_LCP_STALL]
347 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
348 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
349 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
350 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
351 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
352 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
353 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
354 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
355 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
356 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
357 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
358 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
359 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
360 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
361 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
362 #define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
363 #define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
364 #define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
365 #define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
366 #define TARGET_INTEGER_DFMODE_MOVES \
367 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
368 #define TARGET_PARTIAL_REG_DEPENDENCY \
369 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
370 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
371 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
372 #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
373 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
374 #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
375 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
376 #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
377 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
378 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
379 #define TARGET_SSE_TYPELESS_STORES \
380 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
381 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
382 #define TARGET_MEMORY_MISMATCH_STALL \
383 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
384 #define TARGET_PROLOGUE_USING_MOVE \
385 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
386 #define TARGET_EPILOGUE_USING_MOVE \
387 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
388 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
389 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
390 #define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
391 #define TARGET_INTER_UNIT_CONVERSIONS\
392 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
393 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
394 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
395 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
396 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
397 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
398 #define TARGET_PAD_SHORT_FUNCTION \
399 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
400 #define TARGET_EXT_80387_CONSTANTS \
401 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
402 #define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
403 #define TARGET_AVOID_VECTOR_DECODE \
404 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
405 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
406 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
407 #define TARGET_SLOW_IMUL_IMM32_MEM \
408 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
409 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
410 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
411 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
412 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
413 #define TARGET_USE_VECTOR_FP_CONVERTS \
414 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
415 #define TARGET_USE_VECTOR_CONVERTS \
416 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
417 #define TARGET_FUSE_CMP_AND_BRANCH \
418 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
419 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
420 #define TARGET_VECTORIZE_DOUBLE \
421 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
422 #define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
423 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
424 #define TARGET_AVX128_OPTIMAL \
425 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
426 #define TARGET_REASSOC_INT_TO_PARALLEL \
427 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
428 #define TARGET_REASSOC_FP_TO_PARALLEL \
429 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
430
431 /* Feature tests against the various architecture variations. */
432 enum ix86_arch_indices {
433 X86_ARCH_CMOV,
434 X86_ARCH_CMPXCHG,
435 X86_ARCH_CMPXCHG8B,
436 X86_ARCH_XADD,
437 X86_ARCH_BSWAP,
438
439 X86_ARCH_LAST
440 };
441
442 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
443
444 #define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
445 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
446 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
447 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
448 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
449
450 /* For sane SSE instruction set generation we need fcomi instruction.
451 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
452 expands to a sequence that includes conditional move. */
453 #define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
454
455 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
456
457 extern int x86_prefetch_sse;
458
459 #define TARGET_PREFETCH_SSE x86_prefetch_sse
460
461 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
462
463 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
464 #define TARGET_MIX_SSE_I387 \
465 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
466
467 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
468 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
469 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
470 #define TARGET_SUN_TLS 0
471
472 #ifndef TARGET_64BIT_DEFAULT
473 #define TARGET_64BIT_DEFAULT 0
474 #endif
475 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
476 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
477 #endif
478
479 /* Fence to use after loop using storent. */
480
481 extern tree x86_mfence;
482 #define FENCE_FOLLOWING_MOVNT x86_mfence
483
484 /* Once GDB has been enhanced to deal with functions without frame
485 pointers, we can change this to allow for elimination of
486 the frame pointer in leaf functions. */
487 #define TARGET_DEFAULT 0
488
489 /* Extra bits to force. */
490 #define TARGET_SUBTARGET_DEFAULT 0
491 #define TARGET_SUBTARGET_ISA_DEFAULT 0
492
493 /* Extra bits to force on w/ 32-bit mode. */
494 #define TARGET_SUBTARGET32_DEFAULT 0
495 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
496
497 /* Extra bits to force on w/ 64-bit mode. */
498 #define TARGET_SUBTARGET64_DEFAULT 0
499 #define TARGET_SUBTARGET64_ISA_DEFAULT 0
500
501 /* Replace MACH-O, ifdefs by in-line tests, where possible.
502 (a) Macros defined in config/i386/darwin.h */
503 #define TARGET_MACHO 0
504 #define TARGET_MACHO_BRANCH_ISLANDS 0
505 #define MACHOPIC_ATT_STUB 0
506 /* (b) Macros defined in config/darwin.h */
507 #define MACHO_DYNAMIC_NO_PIC_P 0
508 #define MACHOPIC_INDIRECT 0
509 #define MACHOPIC_PURE 0
510
511 /* For the Windows 64-bit ABI. */
512 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
513
514 /* For the Windows 32-bit ABI. */
515 #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
516
517 /* This is re-defined by cygming.h. */
518 #define TARGET_SEH 0
519
520 /* The default abi used by target. */
521 #define DEFAULT_ABI SYSV_ABI
522
523 /* Subtargets may reset this to 1 in order to enable 96-bit long double
524 with the rounding mode forced to 53 bits. */
525 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
526
527 /* -march=native handling only makes sense with compiler running on
528 an x86 or x86_64 chip. If changing this condition, also change
529 the condition in driver-i386.c. */
530 #if defined(__i386__) || defined(__x86_64__)
531 /* In driver-i386.c. */
532 extern const char *host_detect_local_cpu (int argc, const char **argv);
533 #define EXTRA_SPEC_FUNCTIONS \
534 { "local_cpu_detect", host_detect_local_cpu },
535 #define HAVE_LOCAL_CPU_DETECT
536 #endif
537
538 #if TARGET_64BIT_DEFAULT
539 #define OPT_ARCH64 "!m32"
540 #define OPT_ARCH32 "m32"
541 #else
542 #define OPT_ARCH64 "m64|mx32"
543 #define OPT_ARCH32 "m64|mx32:;"
544 #endif
545
546 /* Support for configure-time defaults of some command line options.
547 The order here is important so that -march doesn't squash the
548 tune or cpu values. */
549 #define OPTION_DEFAULT_SPECS \
550 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
551 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
552 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
553 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
554 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
555 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
556 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
557 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
558 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
559
560 /* Specs for the compiler proper */
561
562 #ifndef CC1_CPU_SPEC
563 #define CC1_CPU_SPEC_1 ""
564
565 #ifndef HAVE_LOCAL_CPU_DETECT
566 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
567 #else
568 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
569 "%{march=native:%>march=native %:local_cpu_detect(arch) \
570 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
571 %{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
572 #endif
573 #endif
574 \f
575 /* Target CPU builtins. */
576 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
577
578 /* Target Pragmas. */
579 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
580
581 enum target_cpu_default
582 {
583 TARGET_CPU_DEFAULT_generic = 0,
584
585 TARGET_CPU_DEFAULT_i386,
586 TARGET_CPU_DEFAULT_i486,
587 TARGET_CPU_DEFAULT_pentium,
588 TARGET_CPU_DEFAULT_pentium_mmx,
589 TARGET_CPU_DEFAULT_pentiumpro,
590 TARGET_CPU_DEFAULT_pentium2,
591 TARGET_CPU_DEFAULT_pentium3,
592 TARGET_CPU_DEFAULT_pentium4,
593 TARGET_CPU_DEFAULT_pentium_m,
594 TARGET_CPU_DEFAULT_prescott,
595 TARGET_CPU_DEFAULT_nocona,
596 TARGET_CPU_DEFAULT_core2,
597 TARGET_CPU_DEFAULT_corei7,
598 TARGET_CPU_DEFAULT_atom,
599
600 TARGET_CPU_DEFAULT_geode,
601 TARGET_CPU_DEFAULT_k6,
602 TARGET_CPU_DEFAULT_k6_2,
603 TARGET_CPU_DEFAULT_k6_3,
604 TARGET_CPU_DEFAULT_athlon,
605 TARGET_CPU_DEFAULT_athlon_sse,
606 TARGET_CPU_DEFAULT_k8,
607 TARGET_CPU_DEFAULT_amdfam10,
608 TARGET_CPU_DEFAULT_bdver1,
609 TARGET_CPU_DEFAULT_bdver2,
610 TARGET_CPU_DEFAULT_btver1,
611
612 TARGET_CPU_DEFAULT_max
613 };
614
615 #ifndef CC1_SPEC
616 #define CC1_SPEC "%(cc1_cpu) "
617 #endif
618
619 /* This macro defines names of additional specifications to put in the
620 specs that can be used in various specifications like CC1_SPEC. Its
621 definition is an initializer with a subgrouping for each command option.
622
623 Each subgrouping contains a string constant, that defines the
624 specification name, and a string constant that used by the GCC driver
625 program.
626
627 Do not define this macro if it does not need to do anything. */
628
629 #ifndef SUBTARGET_EXTRA_SPECS
630 #define SUBTARGET_EXTRA_SPECS
631 #endif
632
633 #define EXTRA_SPECS \
634 { "cc1_cpu", CC1_CPU_SPEC }, \
635 SUBTARGET_EXTRA_SPECS
636 \f
637
638 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
639 FPU, assume that the fpcw is set to extended precision; when using
640 only SSE, rounding is correct; when using both SSE and the FPU,
641 the rounding precision is indeterminate, since either may be chosen
642 apparently at random. */
643 #define TARGET_FLT_EVAL_METHOD \
644 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
645
646 /* Whether to allow x87 floating-point arithmetic on MODE (one of
647 SFmode, DFmode and XFmode) in the current excess precision
648 configuration. */
649 #define X87_ENABLE_ARITH(MODE) \
650 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
651
652 /* Likewise, whether to allow direct conversions from integer mode
653 IMODE (HImode, SImode or DImode) to MODE. */
654 #define X87_ENABLE_FLOAT(MODE, IMODE) \
655 (flag_excess_precision == EXCESS_PRECISION_FAST \
656 || (MODE) == XFmode \
657 || ((MODE) == DFmode && (IMODE) == SImode) \
658 || (IMODE) == HImode)
659
660 /* target machine storage layout */
661
662 #define SHORT_TYPE_SIZE 16
663 #define INT_TYPE_SIZE 32
664 #define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
665 #define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
666 #define LONG_LONG_TYPE_SIZE 64
667 #define FLOAT_TYPE_SIZE 32
668 #define DOUBLE_TYPE_SIZE 64
669 #define LONG_DOUBLE_TYPE_SIZE 80
670
671 #define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
672
673 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
674 #define MAX_BITS_PER_WORD 64
675 #else
676 #define MAX_BITS_PER_WORD 32
677 #endif
678
679 /* Define this if most significant byte of a word is the lowest numbered. */
680 /* That is true on the 80386. */
681
682 #define BITS_BIG_ENDIAN 0
683
684 /* Define this if most significant byte of a word is the lowest numbered. */
685 /* That is not true on the 80386. */
686 #define BYTES_BIG_ENDIAN 0
687
688 /* Define this if most significant word of a multiword number is the lowest
689 numbered. */
690 /* Not true for 80386 */
691 #define WORDS_BIG_ENDIAN 0
692
693 /* Width of a word, in units (bytes). */
694 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
695
696 #ifndef IN_LIBGCC2
697 #define MIN_UNITS_PER_WORD 4
698 #endif
699
700 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
701 #define PARM_BOUNDARY BITS_PER_WORD
702
703 /* Boundary (in *bits*) on which stack pointer should be aligned. */
704 #define STACK_BOUNDARY \
705 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
706
707 /* Stack boundary of the main function guaranteed by OS. */
708 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
709
710 /* Minimum stack boundary. */
711 #define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
712
713 /* Boundary (in *bits*) on which the stack pointer prefers to be
714 aligned; the compiler cannot rely on having this alignment. */
715 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
716
717 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
718 both 32bit and 64bit, to support codes that need 128 bit stack
719 alignment for SSE instructions, but can't realign the stack. */
720 #define PREFERRED_STACK_BOUNDARY_DEFAULT 128
721
722 /* 1 if -mstackrealign should be turned on by default. It will
723 generate an alternate prologue and epilogue that realigns the
724 runtime stack if nessary. This supports mixing codes that keep a
725 4-byte aligned stack, as specified by i386 psABI, with codes that
726 need a 16-byte aligned stack, as required by SSE instructions. */
727 #define STACK_REALIGN_DEFAULT 0
728
729 /* Boundary (in *bits*) on which the incoming stack is aligned. */
730 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
731
732 /* According to Windows x64 software convention, the maximum stack allocatable
733 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
734 instructions allowed to adjust the stack pointer in the epilog, forcing the
735 use of frame pointer for frames larger than 2 GB. This theorical limit
736 is reduced by 256, an over-estimated upper bound for the stack use by the
737 prologue.
738 We define only one threshold for both the prolog and the epilog. When the
739 frame size is larger than this threshold, we allocate the are to save SSE
740 regs, then save them, and then allocate the remaining. There is no SEH
741 unwind info for this later allocation. */
742 #define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
743
744 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
745 mandatory for the 64-bit ABI, and may or may not be true for other
746 operating systems. */
747 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
748
749 /* Minimum allocation boundary for the code of a function. */
750 #define FUNCTION_BOUNDARY 8
751
752 /* C++ stores the virtual bit in the lowest bit of function pointers. */
753 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
754
755 /* Minimum size in bits of the largest boundary to which any
756 and all fundamental data types supported by the hardware
757 might need to be aligned. No data type wants to be aligned
758 rounder than this.
759
760 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
761 and Pentium Pro XFmode values at 128 bit boundaries. */
762
763 #define BIGGEST_ALIGNMENT (TARGET_AVX ? 256 : 128)
764
765 /* Maximum stack alignment. */
766 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
767
768 /* Alignment value for attribute ((aligned)). It is a constant since
769 it is the part of the ABI. We shouldn't change it with -mavx. */
770 #define ATTRIBUTE_ALIGNED_VALUE 128
771
772 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
773 #define ALIGN_MODE_128(MODE) \
774 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
775
776 /* The published ABIs say that doubles should be aligned on word
777 boundaries, so lower the alignment for structure fields unless
778 -malign-double is set. */
779
780 /* ??? Blah -- this macro is used directly by libobjc. Since it
781 supports no vector modes, cut out the complexity and fall back
782 on BIGGEST_FIELD_ALIGNMENT. */
783 #ifdef IN_TARGET_LIBS
784 #ifdef __x86_64__
785 #define BIGGEST_FIELD_ALIGNMENT 128
786 #else
787 #define BIGGEST_FIELD_ALIGNMENT 32
788 #endif
789 #else
790 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
791 x86_field_alignment (FIELD, COMPUTED)
792 #endif
793
794 /* If defined, a C expression to compute the alignment given to a
795 constant that is being placed in memory. EXP is the constant
796 and ALIGN is the alignment that the object would ordinarily have.
797 The value of this macro is used instead of that alignment to align
798 the object.
799
800 If this macro is not defined, then ALIGN is used.
801
802 The typical use of this macro is to increase alignment for string
803 constants to be word aligned so that `strcpy' calls that copy
804 constants can be done inline. */
805
806 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
807
808 /* If defined, a C expression to compute the alignment for a static
809 variable. TYPE is the data type, and ALIGN is the alignment that
810 the object would ordinarily have. The value of this macro is used
811 instead of that alignment to align the object.
812
813 If this macro is not defined, then ALIGN is used.
814
815 One use of this macro is to increase alignment of medium-size
816 data to make it all fit in fewer cache lines. Another is to
817 cause character arrays to be word-aligned so that `strcpy' calls
818 that copy constants to character arrays can be done inline. */
819
820 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
821
822 /* If defined, a C expression to compute the alignment for a local
823 variable. TYPE is the data type, and ALIGN is the alignment that
824 the object would ordinarily have. The value of this macro is used
825 instead of that alignment to align the object.
826
827 If this macro is not defined, then ALIGN is used.
828
829 One use of this macro is to increase alignment of medium-size
830 data to make it all fit in fewer cache lines. */
831
832 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
833 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
834
835 /* If defined, a C expression to compute the alignment for stack slot.
836 TYPE is the data type, MODE is the widest mode available, and ALIGN
837 is the alignment that the slot would ordinarily have. The value of
838 this macro is used instead of that alignment to align the slot.
839
840 If this macro is not defined, then ALIGN is used when TYPE is NULL,
841 Otherwise, LOCAL_ALIGNMENT will be used.
842
843 One use of this macro is to set alignment of stack slot to the
844 maximum alignment of all possible modes which the slot may have. */
845
846 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
847 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
848
849 /* If defined, a C expression to compute the alignment for a local
850 variable DECL.
851
852 If this macro is not defined, then
853 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
854
855 One use of this macro is to increase alignment of medium-size
856 data to make it all fit in fewer cache lines. */
857
858 #define LOCAL_DECL_ALIGNMENT(DECL) \
859 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
860
861 /* If defined, a C expression to compute the minimum required alignment
862 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
863 MODE, assuming normal alignment ALIGN.
864
865 If this macro is not defined, then (ALIGN) will be used. */
866
867 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
868 ix86_minimum_alignment (EXP, MODE, ALIGN)
869
870
871 /* Set this nonzero if move instructions will actually fail to work
872 when given unaligned data. */
873 #define STRICT_ALIGNMENT 0
874
875 /* If bit field type is int, don't let it cross an int,
876 and give entire struct the alignment of an int. */
877 /* Required on the 386 since it doesn't have bit-field insns. */
878 #define PCC_BITFIELD_TYPE_MATTERS 1
879 \f
880 /* Standard register usage. */
881
882 /* This processor has special stack-like registers. See reg-stack.c
883 for details. */
884
885 #define STACK_REGS
886
887 #define IS_STACK_MODE(MODE) \
888 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
889 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
890 || (MODE) == XFmode)
891
892 /* Number of actual hardware registers.
893 The hardware registers are assigned numbers for the compiler
894 from 0 to just below FIRST_PSEUDO_REGISTER.
895 All registers that the compiler knows about must be given numbers,
896 even those that are not normally considered general registers.
897
898 In the 80386 we give the 8 general purpose registers the numbers 0-7.
899 We number the floating point registers 8-15.
900 Note that registers 0-7 can be accessed as a short or int,
901 while only 0-3 may be used with byte `mov' instructions.
902
903 Reg 16 does not correspond to any hardware register, but instead
904 appears in the RTL as an argument pointer prior to reload, and is
905 eliminated during reloading in favor of either the stack or frame
906 pointer. */
907
908 #define FIRST_PSEUDO_REGISTER 53
909
910 /* Number of hardware registers that go into the DWARF-2 unwind info.
911 If not defined, equals FIRST_PSEUDO_REGISTER. */
912
913 #define DWARF_FRAME_REGISTERS 17
914
915 /* 1 for registers that have pervasive standard uses
916 and are not available for the register allocator.
917 On the 80386, the stack pointer is such, as is the arg pointer.
918
919 The value is zero if the register is not fixed on either 32 or
920 64 bit targets, one if the register if fixed on both 32 and 64
921 bit targets, two if it is only fixed on 32bit targets and three
922 if its only fixed on 64bit targets.
923 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.
924 */
925 #define FIXED_REGISTERS \
926 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
927 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
928 /*arg,flags,fpsr,fpcr,frame*/ \
929 1, 1, 1, 1, 1, \
930 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
931 0, 0, 0, 0, 0, 0, 0, 0, \
932 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
933 0, 0, 0, 0, 0, 0, 0, 0, \
934 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
935 2, 2, 2, 2, 2, 2, 2, 2, \
936 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
937 2, 2, 2, 2, 2, 2, 2, 2 }
938
939
940 /* 1 for registers not available across function calls.
941 These must include the FIXED_REGISTERS and also any
942 registers that can be used without being saved.
943 The latter must include the registers where values are returned
944 and the register where structure-value addresses are passed.
945 Aside from that, you can include as many other registers as you like.
946
947 The value is zero if the register is not call used on either 32 or
948 64 bit targets, one if the register if call used on both 32 and 64
949 bit targets, two if it is only call used on 32bit targets and three
950 if its only call used on 64bit targets.
951 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.
952 */
953 #define CALL_USED_REGISTERS \
954 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
955 { 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
956 /*arg,flags,fpsr,fpcr,frame*/ \
957 1, 1, 1, 1, 1, \
958 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
959 1, 1, 1, 1, 1, 1, 1, 1, \
960 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
961 1, 1, 1, 1, 1, 1, 1, 1, \
962 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
963 1, 1, 1, 1, 2, 2, 2, 2, \
964 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
965 1, 1, 1, 1, 1, 1, 1, 1 }
966
967 /* Order in which to allocate registers. Each register must be
968 listed once, even those in FIXED_REGISTERS. List frame pointer
969 late and fixed registers last. Note that, in general, we prefer
970 registers listed in CALL_USED_REGISTERS, keeping the others
971 available for storage of persistent values.
972
973 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
974 so this is just empty initializer for array. */
975
976 #define REG_ALLOC_ORDER \
977 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
978 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
979 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
980 48, 49, 50, 51, 52 }
981
982 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
983 to be rearranged based on a particular function. When using sse math,
984 we want to allocate SSE before x87 registers and vice versa. */
985
986 #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
987
988
989 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
990
991 /* Return number of consecutive hard regs needed starting at reg REGNO
992 to hold something of mode MODE.
993 This is ordinarily the length in words of a value of mode MODE
994 but can be less for certain modes in special long registers.
995
996 Actually there are no two word move instructions for consecutive
997 registers. And only registers 0-3 may have mov byte instructions
998 applied to them. */
999
1000 #define HARD_REGNO_NREGS(REGNO, MODE) \
1001 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1002 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1003 : ((MODE) == XFmode \
1004 ? (TARGET_64BIT ? 2 : 3) \
1005 : (MODE) == XCmode \
1006 ? (TARGET_64BIT ? 4 : 6) \
1007 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1008
1009 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1010 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1011 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1012 ? 0 \
1013 : ((MODE) == XFmode || (MODE) == XCmode)) \
1014 : 0)
1015
1016 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1017
1018 #define VALID_AVX256_REG_MODE(MODE) \
1019 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1020 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1021 || (MODE) == V4DFmode)
1022
1023 #define VALID_SSE2_REG_MODE(MODE) \
1024 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1025 || (MODE) == V2DImode || (MODE) == DFmode)
1026
1027 #define VALID_SSE_REG_MODE(MODE) \
1028 ((MODE) == V1TImode || (MODE) == TImode \
1029 || (MODE) == V4SFmode || (MODE) == V4SImode \
1030 || (MODE) == SFmode || (MODE) == TFmode)
1031
1032 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1033 ((MODE) == V2SFmode || (MODE) == SFmode)
1034
1035 #define VALID_MMX_REG_MODE(MODE) \
1036 ((MODE == V1DImode) || (MODE) == DImode \
1037 || (MODE) == V2SImode || (MODE) == SImode \
1038 || (MODE) == V4HImode || (MODE) == V8QImode)
1039
1040 #define VALID_DFP_MODE_P(MODE) \
1041 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1042
1043 #define VALID_FP_MODE_P(MODE) \
1044 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1045 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1046
1047 #define VALID_INT_MODE_P(MODE) \
1048 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1049 || (MODE) == DImode \
1050 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1051 || (MODE) == CDImode \
1052 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1053 || (MODE) == TFmode || (MODE) == TCmode)))
1054
1055 /* Return true for modes passed in SSE registers. */
1056 #define SSE_REG_MODE_P(MODE) \
1057 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1058 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1059 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1060 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1061 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
1062 || (MODE) == V2TImode)
1063
1064 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1065
1066 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1067 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1068
1069 /* Value is 1 if it is a good idea to tie two pseudo registers
1070 when one has mode MODE1 and one has mode MODE2.
1071 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1072 for any hard reg, then this must be 0 for correct output. */
1073
1074 #define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
1075
1076 /* It is possible to write patterns to move flags; but until someone
1077 does it, */
1078 #define AVOID_CCMODE_COPIES
1079
1080 /* Specify the modes required to caller save a given hard regno.
1081 We do this on i386 to prevent flags from being saved at all.
1082
1083 Kill any attempts to combine saving of modes. */
1084
1085 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1086 (CC_REGNO_P (REGNO) ? VOIDmode \
1087 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1088 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1089 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1090 : (MODE) == QImode && (REGNO) > BX_REG && !TARGET_64BIT ? SImode \
1091 : (MODE))
1092
1093 /* The only ABI that saves SSE registers across calls is Win64 (thus no
1094 need to check the current ABI here), and with AVX enabled Win64 only
1095 guarantees that the low 16 bytes are saved. */
1096 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1097 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1098
1099 /* Specify the registers used for certain standard purposes.
1100 The values of these macros are register numbers. */
1101
1102 /* on the 386 the pc register is %eip, and is not usable as a general
1103 register. The ordinary mov instructions won't work */
1104 /* #define PC_REGNUM */
1105
1106 /* Register to use for pushing function arguments. */
1107 #define STACK_POINTER_REGNUM 7
1108
1109 /* Base register for access to local variables of the function. */
1110 #define HARD_FRAME_POINTER_REGNUM 6
1111
1112 /* Base register for access to local variables of the function. */
1113 #define FRAME_POINTER_REGNUM 20
1114
1115 /* First floating point reg */
1116 #define FIRST_FLOAT_REG 8
1117
1118 /* First & last stack-like regs */
1119 #define FIRST_STACK_REG FIRST_FLOAT_REG
1120 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1121
1122 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1123 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1124
1125 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1126 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1127
1128 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1129 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1130
1131 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1132 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1133
1134 /* Override this in other tm.h files to cope with various OS lossage
1135 requiring a frame pointer. */
1136 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1137 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1138 #endif
1139
1140 /* Make sure we can access arbitrary call frames. */
1141 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1142
1143 /* Base register for access to arguments of the function. */
1144 #define ARG_POINTER_REGNUM 16
1145
1146 /* Register to hold the addressing base for position independent
1147 code access to data items. We don't use PIC pointer for 64bit
1148 mode. Define the regnum to dummy value to prevent gcc from
1149 pessimizing code dealing with EBX.
1150
1151 To avoid clobbering a call-saved register unnecessarily, we renumber
1152 the pic register when possible. The change is visible after the
1153 prologue has been emitted. */
1154
1155 #define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
1156
1157 #define PIC_OFFSET_TABLE_REGNUM \
1158 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1159 || !flag_pic ? INVALID_REGNUM \
1160 : reload_completed ? REGNO (pic_offset_table_rtx) \
1161 : REAL_PIC_OFFSET_TABLE_REGNUM)
1162
1163 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1164
1165 /* This is overridden by <cygwin.h>. */
1166 #define MS_AGGREGATE_RETURN 0
1167
1168 #define KEEP_AGGREGATE_RETURN_POINTER 0
1169 \f
1170 /* Define the classes of registers for register constraints in the
1171 machine description. Also define ranges of constants.
1172
1173 One of the classes must always be named ALL_REGS and include all hard regs.
1174 If there is more than one class, another class must be named NO_REGS
1175 and contain no registers.
1176
1177 The name GENERAL_REGS must be the name of a class (or an alias for
1178 another name such as ALL_REGS). This is the class of registers
1179 that is allowed by "g" or "r" in a register constraint.
1180 Also, registers outside this class are allocated only when
1181 instructions express preferences for them.
1182
1183 The classes must be numbered in nondecreasing order; that is,
1184 a larger-numbered class must never be contained completely
1185 in a smaller-numbered class.
1186
1187 For any two classes, it is very desirable that there be another
1188 class that represents their union.
1189
1190 It might seem that class BREG is unnecessary, since no useful 386
1191 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1192 and the "b" register constraint is useful in asms for syscalls.
1193
1194 The flags, fpsr and fpcr registers are in no class. */
1195
1196 enum reg_class
1197 {
1198 NO_REGS,
1199 AREG, DREG, CREG, BREG, SIREG, DIREG,
1200 AD_REGS, /* %eax/%edx for DImode */
1201 CLOBBERED_REGS, /* call-clobbered integers */
1202 Q_REGS, /* %eax %ebx %ecx %edx */
1203 NON_Q_REGS, /* %esi %edi %ebp %esp */
1204 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1205 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1206 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1207 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1208 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1209 FLOAT_REGS,
1210 SSE_FIRST_REG,
1211 SSE_REGS,
1212 MMX_REGS,
1213 FP_TOP_SSE_REGS,
1214 FP_SECOND_SSE_REGS,
1215 FLOAT_SSE_REGS,
1216 FLOAT_INT_REGS,
1217 INT_SSE_REGS,
1218 FLOAT_INT_SSE_REGS,
1219 ALL_REGS, LIM_REG_CLASSES
1220 };
1221
1222 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1223
1224 #define INTEGER_CLASS_P(CLASS) \
1225 reg_class_subset_p ((CLASS), GENERAL_REGS)
1226 #define FLOAT_CLASS_P(CLASS) \
1227 reg_class_subset_p ((CLASS), FLOAT_REGS)
1228 #define SSE_CLASS_P(CLASS) \
1229 reg_class_subset_p ((CLASS), SSE_REGS)
1230 #define MMX_CLASS_P(CLASS) \
1231 ((CLASS) == MMX_REGS)
1232 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1233 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1234 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1235 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1236 #define MAYBE_SSE_CLASS_P(CLASS) \
1237 reg_classes_intersect_p (SSE_REGS, (CLASS))
1238 #define MAYBE_MMX_CLASS_P(CLASS) \
1239 reg_classes_intersect_p (MMX_REGS, (CLASS))
1240
1241 #define Q_CLASS_P(CLASS) \
1242 reg_class_subset_p ((CLASS), Q_REGS)
1243
1244 /* Give names of register classes as strings for dump file. */
1245
1246 #define REG_CLASS_NAMES \
1247 { "NO_REGS", \
1248 "AREG", "DREG", "CREG", "BREG", \
1249 "SIREG", "DIREG", \
1250 "AD_REGS", \
1251 "CLOBBERED_REGS", \
1252 "Q_REGS", "NON_Q_REGS", \
1253 "INDEX_REGS", \
1254 "LEGACY_REGS", \
1255 "GENERAL_REGS", \
1256 "FP_TOP_REG", "FP_SECOND_REG", \
1257 "FLOAT_REGS", \
1258 "SSE_FIRST_REG", \
1259 "SSE_REGS", \
1260 "MMX_REGS", \
1261 "FP_TOP_SSE_REGS", \
1262 "FP_SECOND_SSE_REGS", \
1263 "FLOAT_SSE_REGS", \
1264 "FLOAT_INT_REGS", \
1265 "INT_SSE_REGS", \
1266 "FLOAT_INT_SSE_REGS", \
1267 "ALL_REGS" }
1268
1269 /* Define which registers fit in which classes. This is an initializer
1270 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1271
1272 Note that the default setting of CLOBBERED_REGS is for 32-bit; this
1273 is adjusted by TARGET_CONDITIONAL_REGISTER_USAGE for the 64-bit ABI
1274 in effect. */
1275
1276 #define REG_CLASS_CONTENTS \
1277 { { 0x00, 0x0 }, \
1278 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1279 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1280 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1281 { 0x03, 0x0 }, /* AD_REGS */ \
1282 { 0x07, 0x0 }, /* CLOBBERED_REGS */ \
1283 { 0x0f, 0x0 }, /* Q_REGS */ \
1284 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1285 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1286 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1287 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1288 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1289 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1290 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
1291 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1292 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1293 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1294 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1295 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1296 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1297 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1298 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1299 { 0xffffffff,0x1fffff } \
1300 }
1301
1302 /* The same information, inverted:
1303 Return the class number of the smallest class containing
1304 reg number REGNO. This could be a conditional expression
1305 or could index an array. */
1306
1307 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1308
1309 /* When this hook returns true for MODE, the compiler allows
1310 registers explicitly used in the rtl to be used as spill registers
1311 but prevents the compiler from extending the lifetime of these
1312 registers. */
1313 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1314
1315 #define QI_REG_P(X) (REG_P (X) && REGNO (X) <= BX_REG)
1316
1317 #define GENERAL_REGNO_P(N) \
1318 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
1319
1320 #define GENERAL_REG_P(X) \
1321 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1322
1323 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1324
1325 #define REX_INT_REGNO_P(N) \
1326 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1327 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1328
1329 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1330 #define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1331 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1332 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1333
1334 #define X87_FLOAT_MODE_P(MODE) \
1335 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1336
1337 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1338 #define SSE_REGNO_P(N) \
1339 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1340 || REX_SSE_REGNO_P (N))
1341
1342 #define REX_SSE_REGNO_P(N) \
1343 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1344
1345 #define SSE_REGNO(N) \
1346 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1347
1348 #define SSE_FLOAT_MODE_P(MODE) \
1349 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1350
1351 #define FMA4_VEC_FLOAT_MODE_P(MODE) \
1352 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1353 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1354
1355 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1356 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1357
1358 #define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
1359 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1360
1361 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1362
1363 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1364 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1365
1366 /* The class value for index registers, and the one for base regs. */
1367
1368 #define INDEX_REG_CLASS INDEX_REGS
1369 #define BASE_REG_CLASS GENERAL_REGS
1370
1371 /* Place additional restrictions on the register class to use when it
1372 is necessary to be able to hold a value of mode MODE in a reload
1373 register for which class CLASS would ordinarily be used. */
1374
1375 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1376 ((MODE) == QImode && !TARGET_64BIT \
1377 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1378 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1379 ? Q_REGS : (CLASS))
1380
1381 /* If we are copying between general and FP registers, we need a memory
1382 location. The same is true for SSE and MMX registers. */
1383 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1384 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1385
1386 /* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1387 There is no need to emit full 64 bit move on 64 bit targets
1388 for integral modes that can be moved using 32 bit move. */
1389 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1390 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1391 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1392 : MODE)
1393
1394 /* Return a class of registers that cannot change FROM mode to TO mode. */
1395
1396 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1397 ix86_cannot_change_mode_class (FROM, TO, CLASS)
1398 \f
1399 /* Stack layout; function entry, exit and calling. */
1400
1401 /* Define this if pushing a word on the stack
1402 makes the stack pointer a smaller address. */
1403 #define STACK_GROWS_DOWNWARD
1404
1405 /* Define this to nonzero if the nominal address of the stack frame
1406 is at the high-address end of the local variables;
1407 that is, each additional local variable allocated
1408 goes at a more negative offset in the frame. */
1409 #define FRAME_GROWS_DOWNWARD 1
1410
1411 /* Offset within stack frame to start allocating local variables at.
1412 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1413 first local allocated. Otherwise, it is the offset to the BEGINNING
1414 of the first local allocated. */
1415 #define STARTING_FRAME_OFFSET 0
1416
1417 /* If we generate an insn to push BYTES bytes, this says how many the stack
1418 pointer really advances by. On 386, we have pushw instruction that
1419 decrements by exactly 2 no matter what the position was, there is no pushb.
1420
1421 But as CIE data alignment factor on this arch is -4 for 32bit targets
1422 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1423 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
1424
1425 #define PUSH_ROUNDING(BYTES) \
1426 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1427
1428 /* If defined, the maximum amount of space required for outgoing arguments
1429 will be computed and placed into the variable `crtl->outgoing_args_size'.
1430 No space will be pushed onto the stack for each call; instead, the
1431 function prologue should increase the stack frame size by this amount.
1432
1433 64-bit MS ABI seem to require 16 byte alignment everywhere except for
1434 function prologue and apilogue. This is not possible without
1435 ACCUMULATE_OUTGOING_ARGS. */
1436
1437 #define ACCUMULATE_OUTGOING_ARGS \
1438 (TARGET_ACCUMULATE_OUTGOING_ARGS || TARGET_64BIT_MS_ABI)
1439
1440 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1441 instructions to pass outgoing arguments. */
1442
1443 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1444
1445 /* We want the stack and args grow in opposite directions, even if
1446 PUSH_ARGS is 0. */
1447 #define PUSH_ARGS_REVERSED 1
1448
1449 /* Offset of first parameter from the argument pointer register value. */
1450 #define FIRST_PARM_OFFSET(FNDECL) 0
1451
1452 /* Define this macro if functions should assume that stack space has been
1453 allocated for arguments even when their values are passed in registers.
1454
1455 The value of this macro is the size, in bytes, of the area reserved for
1456 arguments passed in registers for the function represented by FNDECL.
1457
1458 This space can be allocated by the caller, or be a part of the
1459 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1460 which. */
1461 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1462
1463 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1464 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1465
1466 /* Define how to find the value returned by a library function
1467 assuming the value has mode MODE. */
1468
1469 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1470
1471 /* Define the size of the result block used for communication between
1472 untyped_call and untyped_return. The block contains a DImode value
1473 followed by the block used by fnsave and frstor. */
1474
1475 #define APPLY_RESULT_SIZE (8+108)
1476
1477 /* 1 if N is a possible register number for function argument passing. */
1478 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1479
1480 /* Define a data type for recording info about an argument list
1481 during the scan of that argument list. This data type should
1482 hold all necessary information about the function itself
1483 and about the args processed so far, enough to enable macros
1484 such as FUNCTION_ARG to determine where the next arg should go. */
1485
1486 typedef struct ix86_args {
1487 int words; /* # words passed so far */
1488 int nregs; /* # registers available for passing */
1489 int regno; /* next available register number */
1490 int fastcall; /* fastcall or thiscall calling convention
1491 is used */
1492 int sse_words; /* # sse words passed so far */
1493 int sse_nregs; /* # sse registers available for passing */
1494 int warn_avx; /* True when we want to warn about AVX ABI. */
1495 int warn_sse; /* True when we want to warn about SSE ABI. */
1496 int warn_mmx; /* True when we want to warn about MMX ABI. */
1497 int sse_regno; /* next available sse register number */
1498 int mmx_words; /* # mmx words passed so far */
1499 int mmx_nregs; /* # mmx registers available for passing */
1500 int mmx_regno; /* next available mmx register number */
1501 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1502 int caller; /* true if it is caller. */
1503 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1504 SFmode/DFmode arguments should be passed
1505 in SSE registers. Otherwise 0. */
1506 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1507 MS_ABI for ms abi. */
1508 } CUMULATIVE_ARGS;
1509
1510 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1511 for a call to a function whose data type is FNTYPE.
1512 For a library call, FNTYPE is 0. */
1513
1514 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1515 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1516 (N_NAMED_ARGS) != -1)
1517
1518 /* Output assembler code to FILE to increment profiler label # LABELNO
1519 for profiling a function entry. */
1520
1521 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1522
1523 #define MCOUNT_NAME "_mcount"
1524
1525 #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1526
1527 #define PROFILE_COUNT_REGISTER "edx"
1528
1529 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1530 the stack pointer does not matter. The value is tested only in
1531 functions that have frame pointers.
1532 No definition is equivalent to always zero. */
1533 /* Note on the 386 it might be more efficient not to define this since
1534 we have to restore it ourselves from the frame pointer, in order to
1535 use pop */
1536
1537 #define EXIT_IGNORE_STACK 1
1538
1539 /* Output assembler code for a block containing the constant parts
1540 of a trampoline, leaving space for the variable parts. */
1541
1542 /* On the 386, the trampoline contains two instructions:
1543 mov #STATIC,ecx
1544 jmp FUNCTION
1545 The trampoline is generated entirely at runtime. The operand of JMP
1546 is the address of FUNCTION relative to the instruction following the
1547 JMP (which is 5 bytes long). */
1548
1549 /* Length in units of the trampoline for entering a nested function. */
1550
1551 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
1552 \f
1553 /* Definitions for register eliminations.
1554
1555 This is an array of structures. Each structure initializes one pair
1556 of eliminable registers. The "from" register number is given first,
1557 followed by "to". Eliminations of the same "from" register are listed
1558 in order of preference.
1559
1560 There are two registers that can always be eliminated on the i386.
1561 The frame pointer and the arg pointer can be replaced by either the
1562 hard frame pointer or to the stack pointer, depending upon the
1563 circumstances. The hard frame pointer is not used before reload and
1564 so it is not eligible for elimination. */
1565
1566 #define ELIMINABLE_REGS \
1567 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1568 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1569 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1570 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1571
1572 /* Define the offset between two registers, one to be eliminated, and the other
1573 its replacement, at the start of a routine. */
1574
1575 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1576 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1577 \f
1578 /* Addressing modes, and classification of registers for them. */
1579
1580 /* Macros to check register numbers against specific register classes. */
1581
1582 /* These assume that REGNO is a hard or pseudo reg number.
1583 They give nonzero only if REGNO is a hard reg of the suitable class
1584 or a pseudo reg currently allocated to a suitable hard reg.
1585 Since they use reg_renumber, they are safe only once reg_renumber
1586 has been allocated, which happens in local-alloc.c. */
1587
1588 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1589 ((REGNO) < STACK_POINTER_REGNUM \
1590 || REX_INT_REGNO_P (REGNO) \
1591 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1592 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1593
1594 #define REGNO_OK_FOR_BASE_P(REGNO) \
1595 (GENERAL_REGNO_P (REGNO) \
1596 || (REGNO) == ARG_POINTER_REGNUM \
1597 || (REGNO) == FRAME_POINTER_REGNUM \
1598 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1599
1600 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1601 and check its validity for a certain class.
1602 We have two alternate definitions for each of them.
1603 The usual definition accepts all pseudo regs; the other rejects
1604 them unless they have been allocated suitable hard regs.
1605 The symbol REG_OK_STRICT causes the latter definition to be used.
1606
1607 Most source files want to accept pseudo regs in the hope that
1608 they will get allocated to the class that the insn wants them to be in.
1609 Source files for reload pass need to be strict.
1610 After reload, it makes no difference, since pseudo regs have
1611 been eliminated by then. */
1612
1613
1614 /* Non strict versions, pseudos are ok. */
1615 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1616 (REGNO (X) < STACK_POINTER_REGNUM \
1617 || REX_INT_REGNO_P (REGNO (X)) \
1618 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1619
1620 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1621 (GENERAL_REGNO_P (REGNO (X)) \
1622 || REGNO (X) == ARG_POINTER_REGNUM \
1623 || REGNO (X) == FRAME_POINTER_REGNUM \
1624 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1625
1626 /* Strict versions, hard registers only */
1627 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1628 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1629
1630 #ifndef REG_OK_STRICT
1631 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1632 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1633
1634 #else
1635 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1636 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1637 #endif
1638
1639 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1640 that is a valid memory address for an instruction.
1641 The MODE argument is the machine mode for the MEM expression
1642 that wants to use this address.
1643
1644 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1645 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1646
1647 See legitimize_pic_address in i386.c for details as to what
1648 constitutes a legitimate address when -fpic is used. */
1649
1650 #define MAX_REGS_PER_ADDRESS 2
1651
1652 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1653
1654 /* Try a machine-dependent way of reloading an illegitimate address
1655 operand. If we find one, push the reload and jump to WIN. This
1656 macro is used in only one place: `find_reloads_address' in reload.c. */
1657
1658 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1659 do { \
1660 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1661 (int)(TYPE), (INDL))) \
1662 goto WIN; \
1663 } while (0)
1664
1665 /* If defined, a C expression to determine the base term of address X.
1666 This macro is used in only one place: `find_base_term' in alias.c.
1667
1668 It is always safe for this macro to not be defined. It exists so
1669 that alias analysis can understand machine-dependent addresses.
1670
1671 The typical use of this macro is to handle addresses containing
1672 a label_ref or symbol_ref within an UNSPEC. */
1673
1674 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1675
1676 /* Nonzero if the constant value X is a legitimate general operand
1677 when generating PIC code. It is given that flag_pic is on and
1678 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1679
1680 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1681
1682 #define SYMBOLIC_CONST(X) \
1683 (GET_CODE (X) == SYMBOL_REF \
1684 || GET_CODE (X) == LABEL_REF \
1685 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1686 \f
1687 /* Max number of args passed in registers. If this is more than 3, we will
1688 have problems with ebx (register #4), since it is a caller save register and
1689 is also used as the pic register in ELF. So for now, don't allow more than
1690 3 registers to be passed in registers. */
1691
1692 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1693 #define X86_64_REGPARM_MAX 6
1694 #define X86_64_MS_REGPARM_MAX 4
1695
1696 #define X86_32_REGPARM_MAX 3
1697
1698 #define REGPARM_MAX \
1699 (TARGET_64BIT \
1700 ? (TARGET_64BIT_MS_ABI \
1701 ? X86_64_MS_REGPARM_MAX \
1702 : X86_64_REGPARM_MAX) \
1703 : X86_32_REGPARM_MAX)
1704
1705 #define X86_64_SSE_REGPARM_MAX 8
1706 #define X86_64_MS_SSE_REGPARM_MAX 4
1707
1708 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1709
1710 #define SSE_REGPARM_MAX \
1711 (TARGET_64BIT \
1712 ? (TARGET_64BIT_MS_ABI \
1713 ? X86_64_MS_SSE_REGPARM_MAX \
1714 : X86_64_SSE_REGPARM_MAX) \
1715 : X86_32_SSE_REGPARM_MAX)
1716
1717 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1718 \f
1719 /* Specify the machine mode that this machine uses
1720 for the index in the tablejump instruction. */
1721 #define CASE_VECTOR_MODE \
1722 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1723
1724 /* Define this as 1 if `char' should by default be signed; else as 0. */
1725 #define DEFAULT_SIGNED_CHAR 1
1726
1727 /* Max number of bytes we can move from memory to memory
1728 in one reasonably fast instruction. */
1729 #define MOVE_MAX 16
1730
1731 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1732 move efficiently, as opposed to MOVE_MAX which is the maximum
1733 number of bytes we can move with a single instruction. */
1734 #define MOVE_MAX_PIECES UNITS_PER_WORD
1735
1736 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1737 move-instruction pairs, we will do a movmem or libcall instead.
1738 Increasing the value will always make code faster, but eventually
1739 incurs high cost in increased code size.
1740
1741 If you don't define this, a reasonable default is used. */
1742
1743 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1744
1745 /* If a clear memory operation would take CLEAR_RATIO or more simple
1746 move-instruction sequences, we will do a clrmem or libcall instead. */
1747
1748 #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
1749
1750 /* Define if shifts truncate the shift count which implies one can
1751 omit a sign-extension or zero-extension of a shift count.
1752
1753 On i386, shifts do truncate the count. But bit test instructions
1754 take the modulo of the bit offset operand. */
1755
1756 /* #define SHIFT_COUNT_TRUNCATED */
1757
1758 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1759 is done just by pretending it is already truncated. */
1760 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1761
1762 /* A macro to update M and UNSIGNEDP when an object whose type is
1763 TYPE and which has the specified mode and signedness is to be
1764 stored in a register. This macro is only called when TYPE is a
1765 scalar type.
1766
1767 On i386 it is sometimes useful to promote HImode and QImode
1768 quantities to SImode. The choice depends on target type. */
1769
1770 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1771 do { \
1772 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1773 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1774 (MODE) = SImode; \
1775 } while (0)
1776
1777 /* Specify the machine mode that pointers have.
1778 After generation of rtl, the compiler makes no further distinction
1779 between pointers and any other objects of this machine mode. */
1780 #define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
1781
1782 /* A C expression whose value is zero if pointers that need to be extended
1783 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1784 greater then zero if they are zero-extended and less then zero if the
1785 ptr_extend instruction should be used. */
1786
1787 #define POINTERS_EXTEND_UNSIGNED 1
1788
1789 /* A function address in a call instruction
1790 is a byte address (for indexing purposes)
1791 so give the MEM rtx a byte's mode. */
1792 #define FUNCTION_MODE QImode
1793 \f
1794
1795 /* A C expression for the cost of a branch instruction. A value of 1
1796 is the default; other values are interpreted relative to that. */
1797
1798 #define BRANCH_COST(speed_p, predictable_p) \
1799 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1800
1801 /* Define this macro as a C expression which is nonzero if accessing
1802 less than a word of memory (i.e. a `char' or a `short') is no
1803 faster than accessing a word of memory, i.e., if such access
1804 require more than one instruction or if there is no difference in
1805 cost between byte and (aligned) word loads.
1806
1807 When this macro is not defined, the compiler will access a field by
1808 finding the smallest containing object; when it is defined, a
1809 fullword load will be used if alignment permits. Unless bytes
1810 accesses are faster than word accesses, using word accesses is
1811 preferable since it may eliminate subsequent memory access if
1812 subsequent accesses occur to other fields in the same word of the
1813 structure, but to different bytes. */
1814
1815 #define SLOW_BYTE_ACCESS 0
1816
1817 /* Nonzero if access to memory by shorts is slow and undesirable. */
1818 #define SLOW_SHORT_ACCESS 0
1819
1820 /* Define this macro to be the value 1 if unaligned accesses have a
1821 cost many times greater than aligned accesses, for example if they
1822 are emulated in a trap handler.
1823
1824 When this macro is nonzero, the compiler will act as if
1825 `STRICT_ALIGNMENT' were nonzero when generating code for block
1826 moves. This can cause significantly more instructions to be
1827 produced. Therefore, do not set this macro nonzero if unaligned
1828 accesses only add a cycle or two to the time for a memory access.
1829
1830 If the value of this macro is always zero, it need not be defined. */
1831
1832 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1833
1834 /* Define this macro if it is as good or better to call a constant
1835 function address than to call an address kept in a register.
1836
1837 Desirable on the 386 because a CALL with a constant address is
1838 faster than one with a register address. */
1839
1840 #define NO_FUNCTION_CSE
1841 \f
1842 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1843 return the mode to be used for the comparison.
1844
1845 For floating-point equality comparisons, CCFPEQmode should be used.
1846 VOIDmode should be used in all other cases.
1847
1848 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1849 possible, to allow for more combinations. */
1850
1851 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1852
1853 /* Return nonzero if MODE implies a floating point inequality can be
1854 reversed. */
1855
1856 #define REVERSIBLE_CC_MODE(MODE) 1
1857
1858 /* A C expression whose value is reversed condition code of the CODE for
1859 comparison done in CC_MODE mode. */
1860 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1861
1862 \f
1863 /* Control the assembler format that we output, to the extent
1864 this does not vary between assemblers. */
1865
1866 /* How to refer to registers in assembler output.
1867 This sequence is indexed by compiler's hard-register-number (see above). */
1868
1869 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
1870 For non floating point regs, the following are the HImode names.
1871
1872 For float regs, the stack top is sometimes referred to as "%st(0)"
1873 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1874 "y" code. */
1875
1876 #define HI_REGISTER_NAMES \
1877 {"ax","dx","cx","bx","si","di","bp","sp", \
1878 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
1879 "argp", "flags", "fpsr", "fpcr", "frame", \
1880 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
1881 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
1882 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1883 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
1884
1885 #define REGISTER_NAMES HI_REGISTER_NAMES
1886
1887 /* Table of additional register names to use in user input. */
1888
1889 #define ADDITIONAL_REGISTER_NAMES \
1890 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1891 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
1892 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1893 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
1894 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
1895 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
1896
1897 /* Note we are omitting these since currently I don't know how
1898 to get gcc to use these, since they want the same but different
1899 number as al, and ax.
1900 */
1901
1902 #define QI_REGISTER_NAMES \
1903 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
1904
1905 /* These parallel the array above, and can be used to access bits 8:15
1906 of regs 0 through 3. */
1907
1908 #define QI_HIGH_REGISTER_NAMES \
1909 {"ah", "dh", "ch", "bh", }
1910
1911 /* How to renumber registers for dbx and gdb. */
1912
1913 #define DBX_REGISTER_NUMBER(N) \
1914 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
1915
1916 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1917 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1918 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
1919
1920 /* Before the prologue, RA is at 0(%esp). */
1921 #define INCOMING_RETURN_ADDR_RTX \
1922 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
1923
1924 /* After the prologue, RA is at -4(AP) in the current frame. */
1925 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1926 ((COUNT) == 0 \
1927 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
1928 -UNITS_PER_WORD)) \
1929 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
1930
1931 /* PC is dbx register 8; let's use that column for RA. */
1932 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
1933
1934 /* Before the prologue, the top of the frame is at 4(%esp). */
1935 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
1936
1937 /* Describe how we implement __builtin_eh_return. */
1938 #define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
1939 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1940
1941
1942 /* Select a format to encode pointers in exception handling data. CODE
1943 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1944 true if the symbol may be affected by dynamic relocations.
1945
1946 ??? All x86 object file formats are capable of representing this.
1947 After all, the relocation needed is the same as for the call insn.
1948 Whether or not a particular assembler allows us to enter such, I
1949 guess we'll have to see. */
1950 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
1951 asm_preferred_eh_data_format ((CODE), (GLOBAL))
1952
1953 /* This is how to output an insn to push a register on the stack.
1954 It need not be very fast code. */
1955
1956 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
1957 do { \
1958 if (TARGET_64BIT) \
1959 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
1960 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1961 else \
1962 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
1963 } while (0)
1964
1965 /* This is how to output an insn to pop a register from the stack.
1966 It need not be very fast code. */
1967
1968 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
1969 do { \
1970 if (TARGET_64BIT) \
1971 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
1972 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1973 else \
1974 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
1975 } while (0)
1976
1977 /* This is how to output an element of a case-vector that is absolute. */
1978
1979 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1980 ix86_output_addr_vec_elt ((FILE), (VALUE))
1981
1982 /* This is how to output an element of a case-vector that is relative. */
1983
1984 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1985 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
1986
1987 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
1988
1989 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
1990 { \
1991 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
1992 (PTR) += TARGET_AVX ? 1 : 2; \
1993 }
1994
1995 /* A C statement or statements which output an assembler instruction
1996 opcode to the stdio stream STREAM. The macro-operand PTR is a
1997 variable of type `char *' which points to the opcode name in
1998 its "internal" form--the form that is written in the machine
1999 description. */
2000
2001 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2002 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2003
2004 /* A C statement to output to the stdio stream FILE an assembler
2005 command to pad the location counter to a multiple of 1<<LOG
2006 bytes if it is within MAX_SKIP bytes. */
2007
2008 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2009 #undef ASM_OUTPUT_MAX_SKIP_PAD
2010 #define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2011 if ((LOG) != 0) \
2012 { \
2013 if ((MAX_SKIP) == 0) \
2014 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2015 else \
2016 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2017 }
2018 #endif
2019
2020 /* Write the extra assembler code needed to declare a function
2021 properly. */
2022
2023 #undef ASM_OUTPUT_FUNCTION_LABEL
2024 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2025 ix86_asm_output_function_label (FILE, NAME, DECL)
2026
2027 /* Under some conditions we need jump tables in the text section,
2028 because the assembler cannot handle label differences between
2029 sections. This is the case for x86_64 on Mach-O for example. */
2030
2031 #define JUMP_TABLES_IN_TEXT_SECTION \
2032 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2033 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2034
2035 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2036 and switch back. For x86 we do this only to save a few bytes that
2037 would otherwise be unused in the text section. */
2038 #define CRT_MKSTR2(VAL) #VAL
2039 #define CRT_MKSTR(x) CRT_MKSTR2(x)
2040
2041 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2042 asm (SECTION_OP "\n\t" \
2043 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
2044 TEXT_SECTION_ASM_OP);
2045 \f
2046 /* Which processor to tune code generation for. */
2047
2048 enum processor_type
2049 {
2050 PROCESSOR_I386 = 0, /* 80386 */
2051 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2052 PROCESSOR_PENTIUM,
2053 PROCESSOR_PENTIUMPRO,
2054 PROCESSOR_GEODE,
2055 PROCESSOR_K6,
2056 PROCESSOR_ATHLON,
2057 PROCESSOR_PENTIUM4,
2058 PROCESSOR_K8,
2059 PROCESSOR_NOCONA,
2060 PROCESSOR_CORE2_32,
2061 PROCESSOR_CORE2_64,
2062 PROCESSOR_COREI7_32,
2063 PROCESSOR_COREI7_64,
2064 PROCESSOR_GENERIC32,
2065 PROCESSOR_GENERIC64,
2066 PROCESSOR_AMDFAM10,
2067 PROCESSOR_BDVER1,
2068 PROCESSOR_BDVER2,
2069 PROCESSOR_BTVER1,
2070 PROCESSOR_ATOM,
2071 PROCESSOR_max
2072 };
2073
2074 extern enum processor_type ix86_tune;
2075 extern enum processor_type ix86_arch;
2076
2077 /* Size of the RED_ZONE area. */
2078 #define RED_ZONE_SIZE 128
2079 /* Reserved area of the red zone for temporaries. */
2080 #define RED_ZONE_RESERVE 8
2081
2082 extern unsigned int ix86_preferred_stack_boundary;
2083 extern unsigned int ix86_incoming_stack_boundary;
2084
2085 /* Smallest class containing REGNO. */
2086 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2087
2088 enum ix86_fpcmp_strategy {
2089 IX86_FPCMP_SAHF,
2090 IX86_FPCMP_COMI,
2091 IX86_FPCMP_ARITH
2092 };
2093 \f
2094 /* To properly truncate FP values into integers, we need to set i387 control
2095 word. We can't emit proper mode switching code before reload, as spills
2096 generated by reload may truncate values incorrectly, but we still can avoid
2097 redundant computation of new control word by the mode switching pass.
2098 The fldcw instructions are still emitted redundantly, but this is probably
2099 not going to be noticeable problem, as most CPUs do have fast path for
2100 the sequence.
2101
2102 The machinery is to emit simple truncation instructions and split them
2103 before reload to instructions having USEs of two memory locations that
2104 are filled by this code to old and new control word.
2105
2106 Post-reload pass may be later used to eliminate the redundant fildcw if
2107 needed. */
2108
2109 enum ix86_entity
2110 {
2111 I387_TRUNC = 0,
2112 I387_FLOOR,
2113 I387_CEIL,
2114 I387_MASK_PM,
2115 MAX_386_ENTITIES
2116 };
2117
2118 enum ix86_stack_slot
2119 {
2120 SLOT_VIRTUAL = 0,
2121 SLOT_TEMP,
2122 SLOT_CW_STORED,
2123 SLOT_CW_TRUNC,
2124 SLOT_CW_FLOOR,
2125 SLOT_CW_CEIL,
2126 SLOT_CW_MASK_PM,
2127 MAX_386_STACK_LOCALS
2128 };
2129
2130 /* Define this macro if the port needs extra instructions inserted
2131 for mode switching in an optimizing compilation. */
2132
2133 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2134 ix86_optimize_mode_switching[(ENTITY)]
2135
2136 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2137 initializer for an array of integers. Each initializer element N
2138 refers to an entity that needs mode switching, and specifies the
2139 number of different modes that might need to be set for this
2140 entity. The position of the initializer in the initializer -
2141 starting counting at zero - determines the integer that is used to
2142 refer to the mode-switched entity in question. */
2143
2144 #define NUM_MODES_FOR_MODE_SWITCHING \
2145 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2146
2147 /* ENTITY is an integer specifying a mode-switched entity. If
2148 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2149 return an integer value not larger than the corresponding element
2150 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2151 must be switched into prior to the execution of INSN. */
2152
2153 #define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2154
2155 /* This macro specifies the order in which modes for ENTITY are
2156 processed. 0 is the highest priority. */
2157
2158 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2159
2160 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2161 is the set of hard registers live at the point where the insn(s)
2162 are to be inserted. */
2163
2164 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
2165 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
2166 ? emit_i387_cw_initialization (MODE), 0 \
2167 : 0)
2168
2169 \f
2170 /* Avoid renaming of stack registers, as doing so in combination with
2171 scheduling just increases amount of live registers at time and in
2172 the turn amount of fxch instructions needed.
2173
2174 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
2175
2176 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2177 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
2178
2179 \f
2180 #define FASTCALL_PREFIX '@'
2181 \f
2182 /* Machine specific frame tracking during prologue/epilogue generation. */
2183
2184 #ifndef USED_FOR_TARGET
2185 struct GTY(()) machine_frame_state
2186 {
2187 /* This pair tracks the currently active CFA as reg+offset. When reg
2188 is drap_reg, we don't bother trying to record here the real CFA when
2189 it might really be a DW_CFA_def_cfa_expression. */
2190 rtx cfa_reg;
2191 HOST_WIDE_INT cfa_offset;
2192
2193 /* The current offset (canonically from the CFA) of ESP and EBP.
2194 When stack frame re-alignment is active, these may not be relative
2195 to the CFA. However, in all cases they are relative to the offsets
2196 of the saved registers stored in ix86_frame. */
2197 HOST_WIDE_INT sp_offset;
2198 HOST_WIDE_INT fp_offset;
2199
2200 /* The size of the red-zone that may be assumed for the purposes of
2201 eliding register restore notes in the epilogue. This may be zero
2202 if no red-zone is in effect, or may be reduced from the real
2203 red-zone value by a maximum runtime stack re-alignment value. */
2204 int red_zone_offset;
2205
2206 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2207 value within the frame. If false then the offset above should be
2208 ignored. Note that DRAP, if valid, *always* points to the CFA and
2209 thus has an offset of zero. */
2210 BOOL_BITFIELD sp_valid : 1;
2211 BOOL_BITFIELD fp_valid : 1;
2212 BOOL_BITFIELD drap_valid : 1;
2213
2214 /* Indicate whether the local stack frame has been re-aligned. When
2215 set, the SP/FP offsets above are relative to the aligned frame
2216 and not the CFA. */
2217 BOOL_BITFIELD realigned : 1;
2218 };
2219
2220 /* Private to winnt.c. */
2221 struct seh_frame_state;
2222
2223 struct GTY(()) machine_function {
2224 struct stack_local_entry *stack_locals;
2225 const char *some_ld_name;
2226 int varargs_gpr_size;
2227 int varargs_fpr_size;
2228 int optimize_mode_switching[MAX_386_ENTITIES];
2229
2230 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2231 has been computed for. */
2232 int use_fast_prologue_epilogue_nregs;
2233
2234 /* For -fsplit-stack support: A stack local which holds a pointer to
2235 the stack arguments for a function with a variable number of
2236 arguments. This is set at the start of the function and is used
2237 to initialize the overflow_arg_area field of the va_list
2238 structure. */
2239 rtx split_stack_varargs_pointer;
2240
2241 /* This value is used for amd64 targets and specifies the current abi
2242 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2243 ENUM_BITFIELD(calling_abi) call_abi : 8;
2244
2245 /* Nonzero if the function accesses a previous frame. */
2246 BOOL_BITFIELD accesses_prev_frame : 1;
2247
2248 /* Nonzero if the function requires a CLD in the prologue. */
2249 BOOL_BITFIELD needs_cld : 1;
2250
2251 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2252 expander to determine the style used. */
2253 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2254
2255 /* If true, the current function needs the default PIC register, not
2256 an alternate register (on x86) and must not use the red zone (on
2257 x86_64), even if it's a leaf function. We don't want the
2258 function to be regarded as non-leaf because TLS calls need not
2259 affect register allocation. This flag is set when a TLS call
2260 instruction is expanded within a function, and never reset, even
2261 if all such instructions are optimized away. Use the
2262 ix86_current_function_calls_tls_descriptor macro for a better
2263 approximation. */
2264 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2265
2266 /* If true, the current function has a STATIC_CHAIN is placed on the
2267 stack below the return address. */
2268 BOOL_BITFIELD static_chain_on_stack : 1;
2269
2270 /* Nonzero if caller passes 256bit AVX modes. */
2271 BOOL_BITFIELD caller_pass_avx256_p : 1;
2272
2273 /* Nonzero if caller returns 256bit AVX modes. */
2274 BOOL_BITFIELD caller_return_avx256_p : 1;
2275
2276 /* Nonzero if the current callee passes 256bit AVX modes. */
2277 BOOL_BITFIELD callee_pass_avx256_p : 1;
2278
2279 /* Nonzero if the current callee returns 256bit AVX modes. */
2280 BOOL_BITFIELD callee_return_avx256_p : 1;
2281
2282 /* Nonzero if rescan vzerouppers in the current function is needed. */
2283 BOOL_BITFIELD rescan_vzeroupper_p : 1;
2284
2285 /* During prologue/epilogue generation, the current frame state.
2286 Otherwise, the frame state at the end of the prologue. */
2287 struct machine_frame_state fs;
2288
2289 /* During SEH output, this is non-null. */
2290 struct seh_frame_state * GTY((skip(""))) seh;
2291 };
2292 #endif
2293
2294 #define ix86_stack_locals (cfun->machine->stack_locals)
2295 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2296 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2297 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2298 #define ix86_current_function_needs_cld (cfun->machine->needs_cld)
2299 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2300 (cfun->machine->tls_descriptor_call_expanded_p)
2301 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2302 calls are optimized away, we try to detect cases in which it was
2303 optimized away. Since such instructions (use (reg REG_SP)), we can
2304 verify whether there's any such instruction live by testing that
2305 REG_SP is live. */
2306 #define ix86_current_function_calls_tls_descriptor \
2307 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2308 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2309
2310 /* Control behavior of x86_file_start. */
2311 #define X86_FILE_START_VERSION_DIRECTIVE false
2312 #define X86_FILE_START_FLTUSED false
2313
2314 /* Flag to mark data that is in the large address area. */
2315 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2316 #define SYMBOL_REF_FAR_ADDR_P(X) \
2317 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2318
2319 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2320 have defined always, to avoid ifdefing. */
2321 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2322 #define SYMBOL_REF_DLLIMPORT_P(X) \
2323 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2324
2325 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2326 #define SYMBOL_REF_DLLEXPORT_P(X) \
2327 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2328
2329 extern void debug_ready_dispatch (void);
2330 extern void debug_dispatch_window (int);
2331
2332 /* The value at zero is only defined for the BMI instructions
2333 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2334 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2335 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2336 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2337 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT)
2338
2339
2340 /* Flags returned by ix86_get_callcvt (). */
2341 #define IX86_CALLCVT_CDECL 0x1
2342 #define IX86_CALLCVT_STDCALL 0x2
2343 #define IX86_CALLCVT_FASTCALL 0x4
2344 #define IX86_CALLCVT_THISCALL 0x8
2345 #define IX86_CALLCVT_REGPARM 0x10
2346 #define IX86_CALLCVT_SSEREGPARM 0x20
2347
2348 #define IX86_BASE_CALLCVT(FLAGS) \
2349 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2350 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2351
2352 #define RECIP_MASK_NONE 0x00
2353 #define RECIP_MASK_DIV 0x01
2354 #define RECIP_MASK_SQRT 0x02
2355 #define RECIP_MASK_VEC_DIV 0x04
2356 #define RECIP_MASK_VEC_SQRT 0x08
2357 #define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2358 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2359 #define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2360
2361 #define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2362 #define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2363 #define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2364 #define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2365
2366 #define IX86_HLE_ACQUIRE (1 << 16)
2367 #define IX86_HLE_RELEASE (1 << 17)
2368
2369 /*
2370 Local variables:
2371 version-control: t
2372 End:
2373 */