2596f8129539c6ea0674460afc9409d383e39b4b
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 Under Section 7 of GPL version 3, you are granted additional
17 permissions described in the GCC Runtime Library Exception, version
18 3.1, as published by the Free Software Foundation.
19
20 You should have received a copy of the GNU General Public License and
21 a copy of the GCC Runtime Library Exception along with this program;
22 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 <http://www.gnu.org/licenses/>. */
24
25 /* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
40 /* Redefines for option macros. */
41
42 #define TARGET_64BIT TARGET_ISA_64BIT
43 #define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
44 #define TARGET_MMX TARGET_ISA_MMX
45 #define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
46 #define TARGET_3DNOW TARGET_ISA_3DNOW
47 #define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
48 #define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
49 #define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
50 #define TARGET_SSE TARGET_ISA_SSE
51 #define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
52 #define TARGET_SSE2 TARGET_ISA_SSE2
53 #define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
54 #define TARGET_SSE3 TARGET_ISA_SSE3
55 #define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
56 #define TARGET_SSSE3 TARGET_ISA_SSSE3
57 #define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
58 #define TARGET_SSE4_1 TARGET_ISA_SSE4_1
59 #define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
60 #define TARGET_SSE4_2 TARGET_ISA_SSE4_2
61 #define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
62 #define TARGET_AVX TARGET_ISA_AVX
63 #define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
64 #define TARGET_AVX2 TARGET_ISA_AVX2
65 #define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
66 #define TARGET_AVX512F TARGET_ISA_AVX512F
67 #define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68 #define TARGET_AVX512PF TARGET_ISA_AVX512PF
69 #define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70 #define TARGET_AVX512ER TARGET_ISA_AVX512ER
71 #define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72 #define TARGET_AVX512CD TARGET_ISA_AVX512CD
73 #define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
74 #define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75 #define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
76 #define TARGET_AVX512BW TARGET_ISA_AVX512BW
77 #define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
78 #define TARGET_AVX512VL TARGET_ISA_AVX512VL
79 #define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
80 #define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81 #define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
82 #define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83 #define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
84 #define TARGET_FMA TARGET_ISA_FMA
85 #define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
86 #define TARGET_SSE4A TARGET_ISA_SSE4A
87 #define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
88 #define TARGET_FMA4 TARGET_ISA_FMA4
89 #define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90 #define TARGET_XOP TARGET_ISA_XOP
91 #define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
92 #define TARGET_LWP TARGET_ISA_LWP
93 #define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
94 #define TARGET_ROUND TARGET_ISA_ROUND
95 #define TARGET_ABM TARGET_ISA_ABM
96 #define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
97 #define TARGET_BMI TARGET_ISA_BMI
98 #define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
99 #define TARGET_BMI2 TARGET_ISA_BMI2
100 #define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
101 #define TARGET_LZCNT TARGET_ISA_LZCNT
102 #define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
103 #define TARGET_TBM TARGET_ISA_TBM
104 #define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
105 #define TARGET_POPCNT TARGET_ISA_POPCNT
106 #define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
107 #define TARGET_SAHF TARGET_ISA_SAHF
108 #define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
109 #define TARGET_MOVBE TARGET_ISA_MOVBE
110 #define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
111 #define TARGET_CRC32 TARGET_ISA_CRC32
112 #define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
113 #define TARGET_AES TARGET_ISA_AES
114 #define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
115 #define TARGET_SHA TARGET_ISA_SHA
116 #define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
117 #define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
118 #define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
119 #define TARGET_XSAVEC TARGET_ISA_XSAVEC
120 #define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
121 #define TARGET_XSAVES TARGET_ISA_XSAVES
122 #define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
123 #define TARGET_PCLMUL TARGET_ISA_PCLMUL
124 #define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
125 #define TARGET_CMPXCHG16B TARGET_ISA_CX16
126 #define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
127 #define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
128 #define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
129 #define TARGET_RDRND TARGET_ISA_RDRND
130 #define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
131 #define TARGET_F16C TARGET_ISA_F16C
132 #define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
133 #define TARGET_RTM TARGET_ISA_RTM
134 #define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
135 #define TARGET_HLE TARGET_ISA_HLE
136 #define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
137 #define TARGET_RDSEED TARGET_ISA_RDSEED
138 #define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
139 #define TARGET_PRFCHW TARGET_ISA_PRFCHW
140 #define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
141 #define TARGET_ADX TARGET_ISA_ADX
142 #define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
143 #define TARGET_FXSR TARGET_ISA_FXSR
144 #define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
145 #define TARGET_XSAVE TARGET_ISA_XSAVE
146 #define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
147 #define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
148 #define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
149 #define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
150 #define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
151 #define TARGET_MPX TARGET_ISA_MPX
152 #define TARGET_MPX_P(x) TARGET_ISA_MPX_P(x)
153
154 #define TARGET_LP64 TARGET_ABI_64
155 #define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
156 #define TARGET_X32 TARGET_ABI_X32
157 #define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
158 #define TARGET_16BIT TARGET_CODE16
159 #define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
160
161 /* SSE4.1 defines round instructions */
162 #define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
163 #define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
164
165 #include "config/vxworks-dummy.h"
166
167 #include "config/i386/i386-opts.h"
168
169 #define MAX_STRINGOP_ALGS 4
170
171 /* Specify what algorithm to use for stringops on known size.
172 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
173 known at compile time or estimated via feedback, the SIZE array
174 is walked in order until MAX is greater then the estimate (or -1
175 means infinity). Corresponding ALG is used then.
176 When NOALIGN is true the code guaranting the alignment of the memory
177 block is skipped.
178
179 For example initializer:
180 {{256, loop}, {-1, rep_prefix_4_byte}}
181 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
182 be used otherwise. */
183 struct stringop_algs
184 {
185 const enum stringop_alg unknown_size;
186 const struct stringop_strategy {
187 const int max;
188 const enum stringop_alg alg;
189 int noalign;
190 } size [MAX_STRINGOP_ALGS];
191 };
192
193 /* Define the specific costs for a given cpu */
194
195 struct processor_costs {
196 const int add; /* cost of an add instruction */
197 const int lea; /* cost of a lea instruction */
198 const int shift_var; /* variable shift costs */
199 const int shift_const; /* constant shift costs */
200 const int mult_init[5]; /* cost of starting a multiply
201 in QImode, HImode, SImode, DImode, TImode*/
202 const int mult_bit; /* cost of multiply per each bit set */
203 const int divide[5]; /* cost of a divide/mod
204 in QImode, HImode, SImode, DImode, TImode*/
205 int movsx; /* The cost of movsx operation. */
206 int movzx; /* The cost of movzx operation. */
207 const int large_insn; /* insns larger than this cost more */
208 const int move_ratio; /* The threshold of number of scalar
209 memory-to-memory move insns. */
210 const int movzbl_load; /* cost of loading using movzbl */
211 const int int_load[3]; /* cost of loading integer registers
212 in QImode, HImode and SImode relative
213 to reg-reg move (2). */
214 const int int_store[3]; /* cost of storing integer register
215 in QImode, HImode and SImode */
216 const int fp_move; /* cost of reg,reg fld/fst */
217 const int fp_load[3]; /* cost of loading FP register
218 in SFmode, DFmode and XFmode */
219 const int fp_store[3]; /* cost of storing FP register
220 in SFmode, DFmode and XFmode */
221 const int mmx_move; /* cost of moving MMX register. */
222 const int mmx_load[2]; /* cost of loading MMX register
223 in SImode and DImode */
224 const int mmx_store[2]; /* cost of storing MMX register
225 in SImode and DImode */
226 const int sse_move; /* cost of moving SSE register. */
227 const int sse_load[3]; /* cost of loading SSE register
228 in SImode, DImode and TImode*/
229 const int sse_store[3]; /* cost of storing SSE register
230 in SImode, DImode and TImode*/
231 const int mmxsse_to_integer; /* cost of moving mmxsse register to
232 integer and vice versa. */
233 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
234 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
235 const int prefetch_block; /* bytes moved to cache for prefetch. */
236 const int simultaneous_prefetches; /* number of parallel prefetch
237 operations. */
238 const int branch_cost; /* Default value for BRANCH_COST. */
239 const int fadd; /* cost of FADD and FSUB instructions. */
240 const int fmul; /* cost of FMUL instruction. */
241 const int fdiv; /* cost of FDIV instruction. */
242 const int fabs; /* cost of FABS instruction. */
243 const int fchs; /* cost of FCHS instruction. */
244 const int fsqrt; /* cost of FSQRT instruction. */
245 /* Specify what algorithm
246 to use for stringops on unknown size. */
247 struct stringop_algs *memcpy, *memset;
248 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
249 load and store. */
250 const int scalar_load_cost; /* Cost of scalar load. */
251 const int scalar_store_cost; /* Cost of scalar store. */
252 const int vec_stmt_cost; /* Cost of any vector operation, excluding
253 load, store, vector-to-scalar and
254 scalar-to-vector operation. */
255 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
256 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
257 const int vec_align_load_cost; /* Cost of aligned vector load. */
258 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
259 const int vec_store_cost; /* Cost of vector store. */
260 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
261 cost model. */
262 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
263 vectorizer cost model. */
264 };
265
266 extern const struct processor_costs *ix86_cost;
267 extern const struct processor_costs ix86_size_cost;
268
269 #define ix86_cur_cost() \
270 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
271
272 /* Macros used in the machine description to test the flags. */
273
274 /* configure can arrange to change it. */
275
276 #ifndef TARGET_CPU_DEFAULT
277 #define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
278 #endif
279
280 #ifndef TARGET_FPMATH_DEFAULT
281 #define TARGET_FPMATH_DEFAULT \
282 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
283 #endif
284
285 #ifndef TARGET_FPMATH_DEFAULT_P
286 #define TARGET_FPMATH_DEFAULT_P(x) \
287 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
288 #endif
289
290 #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
291 #define TARGET_FLOAT_RETURNS_IN_80387_P(x) TARGET_FLOAT_RETURNS_P(x)
292
293 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
294 compile-time constant. */
295 #ifdef IN_LIBGCC2
296 #undef TARGET_64BIT
297 #ifdef __x86_64__
298 #define TARGET_64BIT 1
299 #else
300 #define TARGET_64BIT 0
301 #endif
302 #else
303 #ifndef TARGET_BI_ARCH
304 #undef TARGET_64BIT
305 #undef TARGET_64BIT_P
306 #if TARGET_64BIT_DEFAULT
307 #define TARGET_64BIT 1
308 #define TARGET_64BIT_P(x) 1
309 #else
310 #define TARGET_64BIT 0
311 #define TARGET_64BIT_P(x) 0
312 #endif
313 #endif
314 #endif
315
316 #define HAS_LONG_COND_BRANCH 1
317 #define HAS_LONG_UNCOND_BRANCH 1
318
319 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
320 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
321 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
322 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
323 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
324 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
325 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
326 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
327 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
328 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
329 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
330 #define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
331 #define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
332 #define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
333 #define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
334 #define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
335 #define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
336 #define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
337 #define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
338 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
339 #define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
340 #define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
341 #define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
342 #define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
343 #define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
344 #define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
345
346 /* Feature tests against the various tunings. */
347 enum ix86_tune_indices {
348 #undef DEF_TUNE
349 #define DEF_TUNE(tune, name, selector) tune,
350 #include "x86-tune.def"
351 #undef DEF_TUNE
352 X86_TUNE_LAST
353 };
354
355 extern unsigned char ix86_tune_features[X86_TUNE_LAST];
356
357 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
358 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
359 #define TARGET_ZERO_EXTEND_WITH_AND \
360 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
361 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
362 #define TARGET_BRANCH_PREDICTION_HINTS \
363 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
364 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
365 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
366 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
367 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
368 #define TARGET_PARTIAL_FLAG_REG_STALL \
369 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
370 #define TARGET_LCP_STALL \
371 ix86_tune_features[X86_TUNE_LCP_STALL]
372 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
373 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
374 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
375 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
376 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
377 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
378 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
379 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
380 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
381 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
382 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
383 #define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
384 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
385 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
386 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
387 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
388 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
389 #define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
390 #define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
391 #define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
392 #define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
393 #define TARGET_INTEGER_DFMODE_MOVES \
394 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
395 #define TARGET_PARTIAL_REG_DEPENDENCY \
396 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
397 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
398 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
399 #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
400 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
401 #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
402 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
403 #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
404 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
405 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
406 #define TARGET_SSE_TYPELESS_STORES \
407 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
408 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
409 #define TARGET_MEMORY_MISMATCH_STALL \
410 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
411 #define TARGET_PROLOGUE_USING_MOVE \
412 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
413 #define TARGET_EPILOGUE_USING_MOVE \
414 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
415 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
416 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
417 #define TARGET_INTER_UNIT_MOVES_TO_VEC \
418 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
419 #define TARGET_INTER_UNIT_MOVES_FROM_VEC \
420 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
421 #define TARGET_INTER_UNIT_CONVERSIONS \
422 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
423 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
424 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
425 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
426 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
427 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
428 #define TARGET_PAD_SHORT_FUNCTION \
429 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
430 #define TARGET_EXT_80387_CONSTANTS \
431 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
432 #define TARGET_AVOID_VECTOR_DECODE \
433 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
434 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
435 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
436 #define TARGET_SLOW_IMUL_IMM32_MEM \
437 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
438 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
439 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
440 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
441 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
442 #define TARGET_USE_VECTOR_FP_CONVERTS \
443 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
444 #define TARGET_USE_VECTOR_CONVERTS \
445 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
446 #define TARGET_SLOW_PSHUFB \
447 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
448 #define TARGET_VECTOR_PARALLEL_EXECUTION \
449 ix86_tune_features[X86_TUNE_VECTOR_PARALLEL_EXECUTION]
450 #define TARGET_FUSE_CMP_AND_BRANCH_32 \
451 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
452 #define TARGET_FUSE_CMP_AND_BRANCH_64 \
453 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
454 #define TARGET_FUSE_CMP_AND_BRANCH \
455 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
456 : TARGET_FUSE_CMP_AND_BRANCH_32)
457 #define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
458 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
459 #define TARGET_FUSE_ALU_AND_BRANCH \
460 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
461 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
462 #define TARGET_AVOID_LEA_FOR_ADDR \
463 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
464 #define TARGET_VECTORIZE_DOUBLE \
465 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
466 #define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
467 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
468 #define TARGET_AVX128_OPTIMAL \
469 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
470 #define TARGET_REASSOC_INT_TO_PARALLEL \
471 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
472 #define TARGET_REASSOC_FP_TO_PARALLEL \
473 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
474 #define TARGET_GENERAL_REGS_SSE_SPILL \
475 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
476 #define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
477 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
478 #define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
479 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
480 #define TARGET_ADJUST_UNROLL \
481 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
482 #define TARGET_AVOID_FALSE_DEP_FOR_BMI \
483 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
484
485 /* Feature tests against the various architecture variations. */
486 enum ix86_arch_indices {
487 X86_ARCH_CMOV,
488 X86_ARCH_CMPXCHG,
489 X86_ARCH_CMPXCHG8B,
490 X86_ARCH_XADD,
491 X86_ARCH_BSWAP,
492
493 X86_ARCH_LAST
494 };
495
496 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
497
498 #define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
499 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
500 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
501 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
502 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
503
504 /* For sane SSE instruction set generation we need fcomi instruction.
505 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
506 expands to a sequence that includes conditional move. */
507 #define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
508
509 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
510
511 extern unsigned char x86_prefetch_sse;
512 #define TARGET_PREFETCH_SSE x86_prefetch_sse
513
514 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
515
516 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
517 #define TARGET_MIX_SSE_I387 \
518 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
519
520 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
521 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
522 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
523 #define TARGET_SUN_TLS 0
524
525 #ifndef TARGET_64BIT_DEFAULT
526 #define TARGET_64BIT_DEFAULT 0
527 #endif
528 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
529 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
530 #endif
531
532 #define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
533 #define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
534
535 /* Fence to use after loop using storent. */
536
537 extern tree x86_mfence;
538 #define FENCE_FOLLOWING_MOVNT x86_mfence
539
540 /* Once GDB has been enhanced to deal with functions without frame
541 pointers, we can change this to allow for elimination of
542 the frame pointer in leaf functions. */
543 #define TARGET_DEFAULT 0
544
545 /* Extra bits to force. */
546 #define TARGET_SUBTARGET_DEFAULT 0
547 #define TARGET_SUBTARGET_ISA_DEFAULT 0
548
549 /* Extra bits to force on w/ 32-bit mode. */
550 #define TARGET_SUBTARGET32_DEFAULT 0
551 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
552
553 /* Extra bits to force on w/ 64-bit mode. */
554 #define TARGET_SUBTARGET64_DEFAULT 0
555 #define TARGET_SUBTARGET64_ISA_DEFAULT 0
556
557 /* Replace MACH-O, ifdefs by in-line tests, where possible.
558 (a) Macros defined in config/i386/darwin.h */
559 #define TARGET_MACHO 0
560 #define TARGET_MACHO_BRANCH_ISLANDS 0
561 #define MACHOPIC_ATT_STUB 0
562 /* (b) Macros defined in config/darwin.h */
563 #define MACHO_DYNAMIC_NO_PIC_P 0
564 #define MACHOPIC_INDIRECT 0
565 #define MACHOPIC_PURE 0
566
567 /* For the RDOS */
568 #define TARGET_RDOS 0
569
570 /* For the Windows 64-bit ABI. */
571 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
572
573 /* For the Windows 32-bit ABI. */
574 #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
575
576 /* This is re-defined by cygming.h. */
577 #define TARGET_SEH 0
578
579 /* This is re-defined by cygming.h. */
580 #define TARGET_PECOFF 0
581
582 /* The default abi used by target. */
583 #define DEFAULT_ABI SYSV_ABI
584
585 /* The default TLS segment register used by target. */
586 #define DEFAULT_TLS_SEG_REG (TARGET_64BIT ? SEG_FS : SEG_GS)
587
588 /* Subtargets may reset this to 1 in order to enable 96-bit long double
589 with the rounding mode forced to 53 bits. */
590 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
591
592 /* -march=native handling only makes sense with compiler running on
593 an x86 or x86_64 chip. If changing this condition, also change
594 the condition in driver-i386.c. */
595 #if defined(__i386__) || defined(__x86_64__)
596 /* In driver-i386.c. */
597 extern const char *host_detect_local_cpu (int argc, const char **argv);
598 #define EXTRA_SPEC_FUNCTIONS \
599 { "local_cpu_detect", host_detect_local_cpu },
600 #define HAVE_LOCAL_CPU_DETECT
601 #endif
602
603 #if TARGET_64BIT_DEFAULT
604 #define OPT_ARCH64 "!m32"
605 #define OPT_ARCH32 "m32"
606 #else
607 #define OPT_ARCH64 "m64|mx32"
608 #define OPT_ARCH32 "m64|mx32:;"
609 #endif
610
611 /* Support for configure-time defaults of some command line options.
612 The order here is important so that -march doesn't squash the
613 tune or cpu values. */
614 #define OPTION_DEFAULT_SPECS \
615 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
616 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
617 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
618 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
619 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
620 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
621 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
622 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
623 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
624
625 /* Specs for the compiler proper */
626
627 #ifndef CC1_CPU_SPEC
628 #define CC1_CPU_SPEC_1 ""
629
630 #ifndef HAVE_LOCAL_CPU_DETECT
631 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
632 #else
633 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
634 "%{march=native:%>march=native %:local_cpu_detect(arch) \
635 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
636 %{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
637 #endif
638 #endif
639 \f
640 /* Target CPU builtins. */
641 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
642
643 /* Target Pragmas. */
644 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
645
646 #ifndef CC1_SPEC
647 #define CC1_SPEC "%(cc1_cpu) "
648 #endif
649
650 /* This macro defines names of additional specifications to put in the
651 specs that can be used in various specifications like CC1_SPEC. Its
652 definition is an initializer with a subgrouping for each command option.
653
654 Each subgrouping contains a string constant, that defines the
655 specification name, and a string constant that used by the GCC driver
656 program.
657
658 Do not define this macro if it does not need to do anything. */
659
660 #ifndef SUBTARGET_EXTRA_SPECS
661 #define SUBTARGET_EXTRA_SPECS
662 #endif
663
664 #define EXTRA_SPECS \
665 { "cc1_cpu", CC1_CPU_SPEC }, \
666 SUBTARGET_EXTRA_SPECS
667 \f
668
669 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
670 FPU, assume that the fpcw is set to extended precision; when using
671 only SSE, rounding is correct; when using both SSE and the FPU,
672 the rounding precision is indeterminate, since either may be chosen
673 apparently at random. */
674 #define TARGET_FLT_EVAL_METHOD \
675 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
676
677 /* Whether to allow x87 floating-point arithmetic on MODE (one of
678 SFmode, DFmode and XFmode) in the current excess precision
679 configuration. */
680 #define X87_ENABLE_ARITH(MODE) \
681 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
682
683 /* Likewise, whether to allow direct conversions from integer mode
684 IMODE (HImode, SImode or DImode) to MODE. */
685 #define X87_ENABLE_FLOAT(MODE, IMODE) \
686 (flag_excess_precision == EXCESS_PRECISION_FAST \
687 || (MODE) == XFmode \
688 || ((MODE) == DFmode && (IMODE) == SImode) \
689 || (IMODE) == HImode)
690
691 /* target machine storage layout */
692
693 #define SHORT_TYPE_SIZE 16
694 #define INT_TYPE_SIZE 32
695 #define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
696 #define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
697 #define LONG_LONG_TYPE_SIZE 64
698 #define FLOAT_TYPE_SIZE 32
699 #define DOUBLE_TYPE_SIZE 64
700 #define LONG_DOUBLE_TYPE_SIZE \
701 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
702
703 #define WIDEST_HARDWARE_FP_SIZE 80
704
705 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
706 #define MAX_BITS_PER_WORD 64
707 #else
708 #define MAX_BITS_PER_WORD 32
709 #endif
710
711 /* Define this if most significant byte of a word is the lowest numbered. */
712 /* That is true on the 80386. */
713
714 #define BITS_BIG_ENDIAN 0
715
716 /* Define this if most significant byte of a word is the lowest numbered. */
717 /* That is not true on the 80386. */
718 #define BYTES_BIG_ENDIAN 0
719
720 /* Define this if most significant word of a multiword number is the lowest
721 numbered. */
722 /* Not true for 80386 */
723 #define WORDS_BIG_ENDIAN 0
724
725 /* Width of a word, in units (bytes). */
726 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
727
728 #ifndef IN_LIBGCC2
729 #define MIN_UNITS_PER_WORD 4
730 #endif
731
732 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
733 #define PARM_BOUNDARY BITS_PER_WORD
734
735 /* Boundary (in *bits*) on which stack pointer should be aligned. */
736 #define STACK_BOUNDARY \
737 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
738
739 /* Stack boundary of the main function guaranteed by OS. */
740 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
741
742 /* Minimum stack boundary. */
743 #define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
744
745 /* Boundary (in *bits*) on which the stack pointer prefers to be
746 aligned; the compiler cannot rely on having this alignment. */
747 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
748
749 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
750 both 32bit and 64bit, to support codes that need 128 bit stack
751 alignment for SSE instructions, but can't realign the stack. */
752 #define PREFERRED_STACK_BOUNDARY_DEFAULT 128
753
754 /* 1 if -mstackrealign should be turned on by default. It will
755 generate an alternate prologue and epilogue that realigns the
756 runtime stack if nessary. This supports mixing codes that keep a
757 4-byte aligned stack, as specified by i386 psABI, with codes that
758 need a 16-byte aligned stack, as required by SSE instructions. */
759 #define STACK_REALIGN_DEFAULT 0
760
761 /* Boundary (in *bits*) on which the incoming stack is aligned. */
762 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
763
764 /* According to Windows x64 software convention, the maximum stack allocatable
765 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
766 instructions allowed to adjust the stack pointer in the epilog, forcing the
767 use of frame pointer for frames larger than 2 GB. This theorical limit
768 is reduced by 256, an over-estimated upper bound for the stack use by the
769 prologue.
770 We define only one threshold for both the prolog and the epilog. When the
771 frame size is larger than this threshold, we allocate the area to save SSE
772 regs, then save them, and then allocate the remaining. There is no SEH
773 unwind info for this later allocation. */
774 #define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
775
776 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
777 mandatory for the 64-bit ABI, and may or may not be true for other
778 operating systems. */
779 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
780
781 /* Minimum allocation boundary for the code of a function. */
782 #define FUNCTION_BOUNDARY 8
783
784 /* C++ stores the virtual bit in the lowest bit of function pointers. */
785 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
786
787 /* Minimum size in bits of the largest boundary to which any
788 and all fundamental data types supported by the hardware
789 might need to be aligned. No data type wants to be aligned
790 rounder than this.
791
792 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
793 and Pentium Pro XFmode values at 128 bit boundaries. */
794
795 #define BIGGEST_ALIGNMENT \
796 (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128))
797
798 /* Maximum stack alignment. */
799 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
800
801 /* Alignment value for attribute ((aligned)). It is a constant since
802 it is the part of the ABI. We shouldn't change it with -mavx. */
803 #define ATTRIBUTE_ALIGNED_VALUE 128
804
805 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
806 #define ALIGN_MODE_128(MODE) \
807 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
808
809 /* The published ABIs say that doubles should be aligned on word
810 boundaries, so lower the alignment for structure fields unless
811 -malign-double is set. */
812
813 /* ??? Blah -- this macro is used directly by libobjc. Since it
814 supports no vector modes, cut out the complexity and fall back
815 on BIGGEST_FIELD_ALIGNMENT. */
816 #ifdef IN_TARGET_LIBS
817 #ifdef __x86_64__
818 #define BIGGEST_FIELD_ALIGNMENT 128
819 #else
820 #define BIGGEST_FIELD_ALIGNMENT 32
821 #endif
822 #else
823 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
824 x86_field_alignment (FIELD, COMPUTED)
825 #endif
826
827 /* If defined, a C expression to compute the alignment given to a
828 constant that is being placed in memory. EXP is the constant
829 and ALIGN is the alignment that the object would ordinarily have.
830 The value of this macro is used instead of that alignment to align
831 the object.
832
833 If this macro is not defined, then ALIGN is used.
834
835 The typical use of this macro is to increase alignment for string
836 constants to be word aligned so that `strcpy' calls that copy
837 constants can be done inline. */
838
839 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
840
841 /* If defined, a C expression to compute the alignment for a static
842 variable. TYPE is the data type, and ALIGN is the alignment that
843 the object would ordinarily have. The value of this macro is used
844 instead of that alignment to align the object.
845
846 If this macro is not defined, then ALIGN is used.
847
848 One use of this macro is to increase alignment of medium-size
849 data to make it all fit in fewer cache lines. Another is to
850 cause character arrays to be word-aligned so that `strcpy' calls
851 that copy constants to character arrays can be done inline. */
852
853 #define DATA_ALIGNMENT(TYPE, ALIGN) \
854 ix86_data_alignment ((TYPE), (ALIGN), true)
855
856 /* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
857 some alignment increase, instead of optimization only purposes. E.g.
858 AMD x86-64 psABI says that variables with array type larger than 15 bytes
859 must be aligned to 16 byte boundaries.
860
861 If this macro is not defined, then ALIGN is used. */
862
863 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
864 ix86_data_alignment ((TYPE), (ALIGN), false)
865
866 /* If defined, a C expression to compute the alignment for a local
867 variable. TYPE is the data type, and ALIGN is the alignment that
868 the object would ordinarily have. The value of this macro is used
869 instead of that alignment to align the object.
870
871 If this macro is not defined, then ALIGN is used.
872
873 One use of this macro is to increase alignment of medium-size
874 data to make it all fit in fewer cache lines. */
875
876 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
877 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
878
879 /* If defined, a C expression to compute the alignment for stack slot.
880 TYPE is the data type, MODE is the widest mode available, and ALIGN
881 is the alignment that the slot would ordinarily have. The value of
882 this macro is used instead of that alignment to align the slot.
883
884 If this macro is not defined, then ALIGN is used when TYPE is NULL,
885 Otherwise, LOCAL_ALIGNMENT will be used.
886
887 One use of this macro is to set alignment of stack slot to the
888 maximum alignment of all possible modes which the slot may have. */
889
890 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
891 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
892
893 /* If defined, a C expression to compute the alignment for a local
894 variable DECL.
895
896 If this macro is not defined, then
897 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
898
899 One use of this macro is to increase alignment of medium-size
900 data to make it all fit in fewer cache lines. */
901
902 #define LOCAL_DECL_ALIGNMENT(DECL) \
903 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
904
905 /* If defined, a C expression to compute the minimum required alignment
906 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
907 MODE, assuming normal alignment ALIGN.
908
909 If this macro is not defined, then (ALIGN) will be used. */
910
911 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
912 ix86_minimum_alignment (EXP, MODE, ALIGN)
913
914
915 /* Set this nonzero if move instructions will actually fail to work
916 when given unaligned data. */
917 #define STRICT_ALIGNMENT 0
918
919 /* If bit field type is int, don't let it cross an int,
920 and give entire struct the alignment of an int. */
921 /* Required on the 386 since it doesn't have bit-field insns. */
922 #define PCC_BITFIELD_TYPE_MATTERS 1
923 \f
924 /* Standard register usage. */
925
926 /* This processor has special stack-like registers. See reg-stack.c
927 for details. */
928
929 #define STACK_REGS
930
931 #define IS_STACK_MODE(MODE) \
932 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
933 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
934 || (MODE) == XFmode)
935
936 /* Number of actual hardware registers.
937 The hardware registers are assigned numbers for the compiler
938 from 0 to just below FIRST_PSEUDO_REGISTER.
939 All registers that the compiler knows about must be given numbers,
940 even those that are not normally considered general registers.
941
942 In the 80386 we give the 8 general purpose registers the numbers 0-7.
943 We number the floating point registers 8-15.
944 Note that registers 0-7 can be accessed as a short or int,
945 while only 0-3 may be used with byte `mov' instructions.
946
947 Reg 16 does not correspond to any hardware register, but instead
948 appears in the RTL as an argument pointer prior to reload, and is
949 eliminated during reloading in favor of either the stack or frame
950 pointer. */
951
952 #define FIRST_PSEUDO_REGISTER 81
953
954 /* Number of hardware registers that go into the DWARF-2 unwind info.
955 If not defined, equals FIRST_PSEUDO_REGISTER. */
956
957 #define DWARF_FRAME_REGISTERS 17
958
959 /* 1 for registers that have pervasive standard uses
960 and are not available for the register allocator.
961 On the 80386, the stack pointer is such, as is the arg pointer.
962
963 REX registers are disabled for 32bit targets in
964 TARGET_CONDITIONAL_REGISTER_USAGE. */
965
966 #define FIXED_REGISTERS \
967 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
968 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
969 /*arg,flags,fpsr,fpcr,frame*/ \
970 1, 1, 1, 1, 1, \
971 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
972 0, 0, 0, 0, 0, 0, 0, 0, \
973 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
974 0, 0, 0, 0, 0, 0, 0, 0, \
975 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
976 0, 0, 0, 0, 0, 0, 0, 0, \
977 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
978 0, 0, 0, 0, 0, 0, 0, 0, \
979 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
980 0, 0, 0, 0, 0, 0, 0, 0, \
981 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
982 0, 0, 0, 0, 0, 0, 0, 0, \
983 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
984 0, 0, 0, 0, 0, 0, 0, 0, \
985 /* b0, b1, b2, b3*/ \
986 0, 0, 0, 0 }
987
988 /* 1 for registers not available across function calls.
989 These must include the FIXED_REGISTERS and also any
990 registers that can be used without being saved.
991 The latter must include the registers where values are returned
992 and the register where structure-value addresses are passed.
993 Aside from that, you can include as many other registers as you like.
994
995 Value is set to 1 if the register is call used unconditionally.
996 Bit one is set if the register is call used on TARGET_32BIT ABI.
997 Bit two is set if the register is call used on TARGET_64BIT ABI.
998 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
999
1000 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1001
1002 #define CALL_USED_REGISTERS \
1003 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
1004 { 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1005 /*arg,flags,fpsr,fpcr,frame*/ \
1006 1, 1, 1, 1, 1, \
1007 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
1008 1, 1, 1, 1, 1, 1, 6, 6, \
1009 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
1010 1, 1, 1, 1, 1, 1, 1, 1, \
1011 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
1012 1, 1, 1, 1, 2, 2, 2, 2, \
1013 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
1014 6, 6, 6, 6, 6, 6, 6, 6, \
1015 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1016 6, 6, 6, 6, 6, 6, 6, 6, \
1017 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
1018 6, 6, 6, 6, 6, 6, 6, 6, \
1019 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
1020 1, 1, 1, 1, 1, 1, 1, 1, \
1021 /* b0, b1, b2, b3*/ \
1022 1, 1, 1, 1 }
1023
1024 /* Order in which to allocate registers. Each register must be
1025 listed once, even those in FIXED_REGISTERS. List frame pointer
1026 late and fixed registers last. Note that, in general, we prefer
1027 registers listed in CALL_USED_REGISTERS, keeping the others
1028 available for storage of persistent values.
1029
1030 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
1031 so this is just empty initializer for array. */
1032
1033 #define REG_ALLOC_ORDER \
1034 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1035 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1036 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1037 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
1038 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, \
1039 78, 79, 80 }
1040
1041 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
1042 to be rearranged based on a particular function. When using sse math,
1043 we want to allocate SSE before x87 registers and vice versa. */
1044
1045 #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
1046
1047
1048 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1049
1050 /* Return number of consecutive hard regs needed starting at reg REGNO
1051 to hold something of mode MODE.
1052 This is ordinarily the length in words of a value of mode MODE
1053 but can be less for certain modes in special long registers.
1054
1055 Actually there are no two word move instructions for consecutive
1056 registers. And only registers 0-3 may have mov byte instructions
1057 applied to them. */
1058
1059 #define HARD_REGNO_NREGS(REGNO, MODE) \
1060 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1061 || MASK_REGNO_P (REGNO) || BND_REGNO_P (REGNO) \
1062 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1063 : ((MODE) == XFmode \
1064 ? (TARGET_64BIT ? 2 : 3) \
1065 : (MODE) == XCmode \
1066 ? (TARGET_64BIT ? 4 : 6) \
1067 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1068
1069 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1070 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1071 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1072 ? 0 \
1073 : ((MODE) == XFmode || (MODE) == XCmode)) \
1074 : 0)
1075
1076 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1077
1078 #define VALID_AVX256_REG_MODE(MODE) \
1079 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1080 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1081 || (MODE) == V4DFmode)
1082
1083 #define VALID_AVX256_REG_OR_OI_MODE(MODE) \
1084 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1085
1086 #define VALID_AVX512F_SCALAR_MODE(MODE) \
1087 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1088 || (MODE) == SFmode)
1089
1090 #define VALID_AVX512F_REG_MODE(MODE) \
1091 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
1092 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1093 || (MODE) == V4TImode)
1094
1095 #define VALID_AVX512VL_128_REG_MODE(MODE) \
1096 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
1097 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode)
1098
1099 #define VALID_SSE2_REG_MODE(MODE) \
1100 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1101 || (MODE) == V2DImode || (MODE) == DFmode)
1102
1103 #define VALID_SSE_REG_MODE(MODE) \
1104 ((MODE) == V1TImode || (MODE) == TImode \
1105 || (MODE) == V4SFmode || (MODE) == V4SImode \
1106 || (MODE) == SFmode || (MODE) == TFmode)
1107
1108 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1109 ((MODE) == V2SFmode || (MODE) == SFmode)
1110
1111 #define VALID_MMX_REG_MODE(MODE) \
1112 ((MODE == V1DImode) || (MODE) == DImode \
1113 || (MODE) == V2SImode || (MODE) == SImode \
1114 || (MODE) == V4HImode || (MODE) == V8QImode)
1115
1116 #define VALID_BND_REG_MODE(MODE) \
1117 (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode)
1118
1119 #define VALID_DFP_MODE_P(MODE) \
1120 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1121
1122 #define VALID_FP_MODE_P(MODE) \
1123 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1124 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1125
1126 #define VALID_INT_MODE_P(MODE) \
1127 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1128 || (MODE) == DImode \
1129 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1130 || (MODE) == CDImode \
1131 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1132 || (MODE) == TFmode || (MODE) == TCmode)))
1133
1134 /* Return true for modes passed in SSE registers. */
1135 #define SSE_REG_MODE_P(MODE) \
1136 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1137 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1138 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1139 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1140 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
1141 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1142 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1143 || (MODE) == V16SFmode)
1144
1145 #define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1146
1147 #define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1148
1149 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1150
1151 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1152 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1153
1154 /* Value is 1 if it is a good idea to tie two pseudo registers
1155 when one has mode MODE1 and one has mode MODE2.
1156 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1157 for any hard reg, then this must be 0 for correct output. */
1158
1159 #define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
1160
1161 /* It is possible to write patterns to move flags; but until someone
1162 does it, */
1163 #define AVOID_CCMODE_COPIES
1164
1165 /* Specify the modes required to caller save a given hard regno.
1166 We do this on i386 to prevent flags from being saved at all.
1167
1168 Kill any attempts to combine saving of modes. */
1169
1170 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1171 (CC_REGNO_P (REGNO) ? VOIDmode \
1172 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1173 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1174 : (MODE) == HImode && !(TARGET_PARTIAL_REG_STALL \
1175 || MASK_REGNO_P (REGNO)) ? SImode \
1176 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO) \
1177 || MASK_REGNO_P (REGNO)) ? SImode \
1178 : (MODE))
1179
1180 /* The only ABI that saves SSE registers across calls is Win64 (thus no
1181 need to check the current ABI here), and with AVX enabled Win64 only
1182 guarantees that the low 16 bytes are saved. */
1183 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1184 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1185
1186 /* Specify the registers used for certain standard purposes.
1187 The values of these macros are register numbers. */
1188
1189 /* on the 386 the pc register is %eip, and is not usable as a general
1190 register. The ordinary mov instructions won't work */
1191 /* #define PC_REGNUM */
1192
1193 /* Register to use for pushing function arguments. */
1194 #define STACK_POINTER_REGNUM 7
1195
1196 /* Base register for access to local variables of the function. */
1197 #define HARD_FRAME_POINTER_REGNUM 6
1198
1199 /* Base register for access to local variables of the function. */
1200 #define FRAME_POINTER_REGNUM 20
1201
1202 /* First floating point reg */
1203 #define FIRST_FLOAT_REG 8
1204
1205 /* First & last stack-like regs */
1206 #define FIRST_STACK_REG FIRST_FLOAT_REG
1207 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1208
1209 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1210 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1211
1212 #define FIRST_MMX_REG (LAST_SSE_REG + 1) /*29*/
1213 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1214
1215 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1) /*37*/
1216 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1217
1218 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1) /*45*/
1219 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1220
1221 #define FIRST_EXT_REX_SSE_REG (LAST_REX_SSE_REG + 1) /*53*/
1222 #define LAST_EXT_REX_SSE_REG (FIRST_EXT_REX_SSE_REG + 15) /*68*/
1223
1224 #define FIRST_MASK_REG (LAST_EXT_REX_SSE_REG + 1) /*69*/
1225 #define LAST_MASK_REG (FIRST_MASK_REG + 7) /*76*/
1226
1227 #define FIRST_BND_REG (LAST_MASK_REG + 1) /*77*/
1228 #define LAST_BND_REG (FIRST_BND_REG + 3) /*80*/
1229
1230 /* Override this in other tm.h files to cope with various OS lossage
1231 requiring a frame pointer. */
1232 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1233 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1234 #endif
1235
1236 /* Make sure we can access arbitrary call frames. */
1237 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1238
1239 /* Base register for access to arguments of the function. */
1240 #define ARG_POINTER_REGNUM 16
1241
1242 /* Register to hold the addressing base for position independent
1243 code access to data items. We don't use PIC pointer for 64bit
1244 mode. Define the regnum to dummy value to prevent gcc from
1245 pessimizing code dealing with EBX.
1246
1247 To avoid clobbering a call-saved register unnecessarily, we renumber
1248 the pic register when possible. The change is visible after the
1249 prologue has been emitted. */
1250
1251 #define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
1252
1253 #define PIC_OFFSET_TABLE_REGNUM \
1254 ((TARGET_64BIT && (ix86_cmodel == CM_SMALL_PIC \
1255 || TARGET_PECOFF)) \
1256 || !flag_pic \
1257 ? INVALID_REGNUM \
1258 : pic_offset_table_rtx \
1259 ? INVALID_REGNUM \
1260 : REAL_PIC_OFFSET_TABLE_REGNUM)
1261
1262 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1263
1264 /* This is overridden by <cygwin.h>. */
1265 #define MS_AGGREGATE_RETURN 0
1266
1267 #define KEEP_AGGREGATE_RETURN_POINTER 0
1268 \f
1269 /* Define the classes of registers for register constraints in the
1270 machine description. Also define ranges of constants.
1271
1272 One of the classes must always be named ALL_REGS and include all hard regs.
1273 If there is more than one class, another class must be named NO_REGS
1274 and contain no registers.
1275
1276 The name GENERAL_REGS must be the name of a class (or an alias for
1277 another name such as ALL_REGS). This is the class of registers
1278 that is allowed by "g" or "r" in a register constraint.
1279 Also, registers outside this class are allocated only when
1280 instructions express preferences for them.
1281
1282 The classes must be numbered in nondecreasing order; that is,
1283 a larger-numbered class must never be contained completely
1284 in a smaller-numbered class.
1285
1286 For any two classes, it is very desirable that there be another
1287 class that represents their union.
1288
1289 It might seem that class BREG is unnecessary, since no useful 386
1290 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1291 and the "b" register constraint is useful in asms for syscalls.
1292
1293 The flags, fpsr and fpcr registers are in no class. */
1294
1295 enum reg_class
1296 {
1297 NO_REGS,
1298 AREG, DREG, CREG, BREG, SIREG, DIREG,
1299 AD_REGS, /* %eax/%edx for DImode */
1300 Q_REGS, /* %eax %ebx %ecx %edx */
1301 NON_Q_REGS, /* %esi %edi %ebp %esp */
1302 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1303 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1304 CLOBBERED_REGS, /* call-clobbered integer registers */
1305 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1306 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1307 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1308 FLOAT_REGS,
1309 SSE_FIRST_REG,
1310 SSE_REGS,
1311 EVEX_SSE_REGS,
1312 BND_REGS,
1313 ALL_SSE_REGS,
1314 MMX_REGS,
1315 FP_TOP_SSE_REGS,
1316 FP_SECOND_SSE_REGS,
1317 FLOAT_SSE_REGS,
1318 FLOAT_INT_REGS,
1319 INT_SSE_REGS,
1320 FLOAT_INT_SSE_REGS,
1321 MASK_EVEX_REGS,
1322 MASK_REGS,
1323 ALL_REGS, LIM_REG_CLASSES
1324 };
1325
1326 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1327
1328 #define INTEGER_CLASS_P(CLASS) \
1329 reg_class_subset_p ((CLASS), GENERAL_REGS)
1330 #define FLOAT_CLASS_P(CLASS) \
1331 reg_class_subset_p ((CLASS), FLOAT_REGS)
1332 #define SSE_CLASS_P(CLASS) \
1333 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
1334 #define MMX_CLASS_P(CLASS) \
1335 ((CLASS) == MMX_REGS)
1336 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1337 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1338 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1339 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1340 #define MAYBE_SSE_CLASS_P(CLASS) \
1341 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
1342 #define MAYBE_MMX_CLASS_P(CLASS) \
1343 reg_classes_intersect_p ((CLASS), MMX_REGS)
1344 #define MAYBE_MASK_CLASS_P(CLASS) \
1345 reg_classes_intersect_p ((CLASS), MASK_REGS)
1346
1347 #define Q_CLASS_P(CLASS) \
1348 reg_class_subset_p ((CLASS), Q_REGS)
1349
1350 #define MAYBE_NON_Q_CLASS_P(CLASS) \
1351 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1352
1353 /* Give names of register classes as strings for dump file. */
1354
1355 #define REG_CLASS_NAMES \
1356 { "NO_REGS", \
1357 "AREG", "DREG", "CREG", "BREG", \
1358 "SIREG", "DIREG", \
1359 "AD_REGS", \
1360 "Q_REGS", "NON_Q_REGS", \
1361 "INDEX_REGS", \
1362 "LEGACY_REGS", \
1363 "CLOBBERED_REGS", \
1364 "GENERAL_REGS", \
1365 "FP_TOP_REG", "FP_SECOND_REG", \
1366 "FLOAT_REGS", \
1367 "SSE_FIRST_REG", \
1368 "SSE_REGS", \
1369 "EVEX_SSE_REGS", \
1370 "BND_REGS", \
1371 "ALL_SSE_REGS", \
1372 "MMX_REGS", \
1373 "FP_TOP_SSE_REGS", \
1374 "FP_SECOND_SSE_REGS", \
1375 "FLOAT_SSE_REGS", \
1376 "FLOAT_INT_REGS", \
1377 "INT_SSE_REGS", \
1378 "FLOAT_INT_SSE_REGS", \
1379 "MASK_EVEX_REGS", \
1380 "MASK_REGS", \
1381 "ALL_REGS" }
1382
1383 /* Define which registers fit in which classes. This is an initializer
1384 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1385
1386 Note that CLOBBERED_REGS are calculated by
1387 TARGET_CONDITIONAL_REGISTER_USAGE. */
1388
1389 #define REG_CLASS_CONTENTS \
1390 { { 0x00, 0x0, 0x0 }, \
1391 { 0x01, 0x0, 0x0 }, /* AREG */ \
1392 { 0x02, 0x0, 0x0 }, /* DREG */ \
1393 { 0x04, 0x0, 0x0 }, /* CREG */ \
1394 { 0x08, 0x0, 0x0 }, /* BREG */ \
1395 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1396 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1397 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1398 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1399 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
1400 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1401 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1402 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1403 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1404 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1405 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1406 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1407 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1408 { 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1409 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1410 { 0x0, 0x0,0x1e000 }, /* BND_REGS */ \
1411 { 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1412 { 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1413 { 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1414 { 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1415 { 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1416 { 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1417 { 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1418 { 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
1419 { 0x0, 0x0, 0x1fc0 }, /* MASK_EVEX_REGS */ \
1420 { 0x0, 0x0, 0x1fe0 }, /* MASK_REGS */ \
1421 { 0xffffffff,0xffffffff, 0x1fff } \
1422 }
1423
1424 /* The same information, inverted:
1425 Return the class number of the smallest class containing
1426 reg number REGNO. This could be a conditional expression
1427 or could index an array. */
1428
1429 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1430
1431 /* When this hook returns true for MODE, the compiler allows
1432 registers explicitly used in the rtl to be used as spill registers
1433 but prevents the compiler from extending the lifetime of these
1434 registers. */
1435 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1436
1437 #define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1438 #define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
1439
1440 #define GENERAL_REG_P(X) \
1441 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1442 #define GENERAL_REGNO_P(N) \
1443 (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
1444
1445 #define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1446 #define ANY_QI_REGNO_P(N) \
1447 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
1448
1449 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1450 #define REX_INT_REGNO_P(N) \
1451 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1452
1453 #define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1454 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1455
1456 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1457 #define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
1458
1459 #define X87_FLOAT_MODE_P(MODE) \
1460 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1461
1462 #define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
1463 #define SSE_REGNO_P(N) \
1464 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1465 || REX_SSE_REGNO_P (N) \
1466 || EXT_REX_SSE_REGNO_P (N))
1467
1468 #define REX_SSE_REGNO_P(N) \
1469 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1470
1471 #define EXT_REX_SSE_REGNO_P(N) \
1472 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1473
1474 #define SSE_REGNO(N) \
1475 ((N) < 8 ? FIRST_SSE_REG + (N) \
1476 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1477 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1478
1479 #define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
1480 #define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1481 #define ANY_MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
1482
1483 #define SSE_FLOAT_MODE_P(MODE) \
1484 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1485
1486 #define FMA4_VEC_FLOAT_MODE_P(MODE) \
1487 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1488 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1489
1490 #define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
1491 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1492
1493 #define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
1494
1495 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1496 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1497
1498 #define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG)
1499 #define ANY_BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X)))
1500
1501 /* The class value for index registers, and the one for base regs. */
1502
1503 #define INDEX_REG_CLASS INDEX_REGS
1504 #define BASE_REG_CLASS GENERAL_REGS
1505
1506 /* Place additional restrictions on the register class to use when it
1507 is necessary to be able to hold a value of mode MODE in a reload
1508 register for which class CLASS would ordinarily be used.
1509
1510 We avoid classes containing registers from multiple units due to
1511 the limitation in ix86_secondary_memory_needed. We limit these
1512 classes to their "natural mode" single unit register class, depending
1513 on the unit availability.
1514
1515 Please note that reg_class_subset_p is not commutative, so these
1516 conditions mean "... if (CLASS) includes ALL registers from the
1517 register set." */
1518
1519 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1520 (((MODE) == QImode && !TARGET_64BIT \
1521 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1522 : (((MODE) == SImode || (MODE) == DImode) \
1523 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1524 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1525 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1526 : (X87_FLOAT_MODE_P (MODE) \
1527 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1528 : (CLASS))
1529
1530 /* If we are copying between general and FP registers, we need a memory
1531 location. The same is true for SSE and MMX registers. */
1532 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1533 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1534
1535 /* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1536 There is no need to emit full 64 bit move on 64 bit targets
1537 for integral modes that can be moved using 32 bit move. */
1538 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1539 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1540 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1541 : MODE)
1542
1543 /* Return a class of registers that cannot change FROM mode to TO mode. */
1544
1545 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1546 ix86_cannot_change_mode_class (FROM, TO, CLASS)
1547 \f
1548 /* Stack layout; function entry, exit and calling. */
1549
1550 /* Define this if pushing a word on the stack
1551 makes the stack pointer a smaller address. */
1552 #define STACK_GROWS_DOWNWARD
1553
1554 /* Define this to nonzero if the nominal address of the stack frame
1555 is at the high-address end of the local variables;
1556 that is, each additional local variable allocated
1557 goes at a more negative offset in the frame. */
1558 #define FRAME_GROWS_DOWNWARD 1
1559
1560 /* Offset within stack frame to start allocating local variables at.
1561 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1562 first local allocated. Otherwise, it is the offset to the BEGINNING
1563 of the first local allocated. */
1564 #define STARTING_FRAME_OFFSET 0
1565
1566 /* If we generate an insn to push BYTES bytes, this says how many the stack
1567 pointer really advances by. On 386, we have pushw instruction that
1568 decrements by exactly 2 no matter what the position was, there is no pushb.
1569
1570 But as CIE data alignment factor on this arch is -4 for 32bit targets
1571 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1572 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
1573
1574 #define PUSH_ROUNDING(BYTES) \
1575 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1576
1577 /* If defined, the maximum amount of space required for outgoing arguments
1578 will be computed and placed into the variable `crtl->outgoing_args_size'.
1579 No space will be pushed onto the stack for each call; instead, the
1580 function prologue should increase the stack frame size by this amount.
1581
1582 In 32bit mode enabling argument accumulation results in about 5% code size
1583 growth becuase move instructions are less compact than push. In 64bit
1584 mode the difference is less drastic but visible.
1585
1586 FIXME: Unlike earlier implementations, the size of unwind info seems to
1587 actually grow with accumulation. Is that because accumulated args
1588 unwind info became unnecesarily bloated?
1589
1590 With the 64-bit MS ABI, we can generate correct code with or without
1591 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1592 generated without accumulated args is terrible.
1593
1594 If stack probes are required, the space used for large function
1595 arguments on the stack must also be probed, so enable
1596 -maccumulate-outgoing-args so this happens in the prologue. */
1597
1598 #define ACCUMULATE_OUTGOING_ARGS \
1599 ((TARGET_ACCUMULATE_OUTGOING_ARGS && optimize_function_for_speed_p (cfun)) \
1600 || TARGET_STACK_PROBE || TARGET_64BIT_MS_ABI)
1601
1602 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1603 instructions to pass outgoing arguments. */
1604
1605 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1606
1607 /* We want the stack and args grow in opposite directions, even if
1608 PUSH_ARGS is 0. */
1609 #define PUSH_ARGS_REVERSED 1
1610
1611 /* Offset of first parameter from the argument pointer register value. */
1612 #define FIRST_PARM_OFFSET(FNDECL) 0
1613
1614 /* Define this macro if functions should assume that stack space has been
1615 allocated for arguments even when their values are passed in registers.
1616
1617 The value of this macro is the size, in bytes, of the area reserved for
1618 arguments passed in registers for the function represented by FNDECL.
1619
1620 This space can be allocated by the caller, or be a part of the
1621 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1622 which. */
1623 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1624
1625 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1626 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1627
1628 /* Define how to find the value returned by a library function
1629 assuming the value has mode MODE. */
1630
1631 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1632
1633 /* Define the size of the result block used for communication between
1634 untyped_call and untyped_return. The block contains a DImode value
1635 followed by the block used by fnsave and frstor. */
1636
1637 #define APPLY_RESULT_SIZE (8+108)
1638
1639 /* 1 if N is a possible register number for function argument passing. */
1640 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1641
1642 /* Define a data type for recording info about an argument list
1643 during the scan of that argument list. This data type should
1644 hold all necessary information about the function itself
1645 and about the args processed so far, enough to enable macros
1646 such as FUNCTION_ARG to determine where the next arg should go. */
1647
1648 typedef struct ix86_args {
1649 int words; /* # words passed so far */
1650 int nregs; /* # registers available for passing */
1651 int regno; /* next available register number */
1652 int fastcall; /* fastcall or thiscall calling convention
1653 is used */
1654 int sse_words; /* # sse words passed so far */
1655 int sse_nregs; /* # sse registers available for passing */
1656 int warn_avx512f; /* True when we want to warn
1657 about AVX512F ABI. */
1658 int warn_avx; /* True when we want to warn about AVX ABI. */
1659 int warn_sse; /* True when we want to warn about SSE ABI. */
1660 int warn_mmx; /* True when we want to warn about MMX ABI. */
1661 int sse_regno; /* next available sse register number */
1662 int mmx_words; /* # mmx words passed so far */
1663 int mmx_nregs; /* # mmx registers available for passing */
1664 int mmx_regno; /* next available mmx register number */
1665 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1666 int caller; /* true if it is caller. */
1667 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1668 SFmode/DFmode arguments should be passed
1669 in SSE registers. Otherwise 0. */
1670 int bnd_regno; /* next available bnd register number */
1671 int bnds_in_bt; /* number of bounds expected in BT. */
1672 int force_bnd_pass; /* number of bounds expected for stdarg arg. */
1673 int stdarg; /* Set to 1 if function is stdarg. */
1674 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1675 MS_ABI for ms abi. */
1676 } CUMULATIVE_ARGS;
1677
1678 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1679 for a call to a function whose data type is FNTYPE.
1680 For a library call, FNTYPE is 0. */
1681
1682 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1683 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1684 (N_NAMED_ARGS) != -1)
1685
1686 /* Output assembler code to FILE to increment profiler label # LABELNO
1687 for profiling a function entry. */
1688
1689 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1690
1691 #define MCOUNT_NAME "_mcount"
1692
1693 #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1694
1695 #define PROFILE_COUNT_REGISTER "edx"
1696
1697 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1698 the stack pointer does not matter. The value is tested only in
1699 functions that have frame pointers.
1700 No definition is equivalent to always zero. */
1701 /* Note on the 386 it might be more efficient not to define this since
1702 we have to restore it ourselves from the frame pointer, in order to
1703 use pop */
1704
1705 #define EXIT_IGNORE_STACK 1
1706
1707 /* Output assembler code for a block containing the constant parts
1708 of a trampoline, leaving space for the variable parts. */
1709
1710 /* On the 386, the trampoline contains two instructions:
1711 mov #STATIC,ecx
1712 jmp FUNCTION
1713 The trampoline is generated entirely at runtime. The operand of JMP
1714 is the address of FUNCTION relative to the instruction following the
1715 JMP (which is 5 bytes long). */
1716
1717 /* Length in units of the trampoline for entering a nested function. */
1718
1719 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
1720 \f
1721 /* Definitions for register eliminations.
1722
1723 This is an array of structures. Each structure initializes one pair
1724 of eliminable registers. The "from" register number is given first,
1725 followed by "to". Eliminations of the same "from" register are listed
1726 in order of preference.
1727
1728 There are two registers that can always be eliminated on the i386.
1729 The frame pointer and the arg pointer can be replaced by either the
1730 hard frame pointer or to the stack pointer, depending upon the
1731 circumstances. The hard frame pointer is not used before reload and
1732 so it is not eligible for elimination. */
1733
1734 #define ELIMINABLE_REGS \
1735 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1736 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1737 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1738 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1739
1740 /* Define the offset between two registers, one to be eliminated, and the other
1741 its replacement, at the start of a routine. */
1742
1743 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1744 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1745 \f
1746 /* Addressing modes, and classification of registers for them. */
1747
1748 /* Macros to check register numbers against specific register classes. */
1749
1750 /* These assume that REGNO is a hard or pseudo reg number.
1751 They give nonzero only if REGNO is a hard reg of the suitable class
1752 or a pseudo reg currently allocated to a suitable hard reg.
1753 Since they use reg_renumber, they are safe only once reg_renumber
1754 has been allocated, which happens in reginfo.c during register
1755 allocation. */
1756
1757 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1758 ((REGNO) < STACK_POINTER_REGNUM \
1759 || REX_INT_REGNO_P (REGNO) \
1760 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1761 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1762
1763 #define REGNO_OK_FOR_BASE_P(REGNO) \
1764 (GENERAL_REGNO_P (REGNO) \
1765 || (REGNO) == ARG_POINTER_REGNUM \
1766 || (REGNO) == FRAME_POINTER_REGNUM \
1767 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1768
1769 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1770 and check its validity for a certain class.
1771 We have two alternate definitions for each of them.
1772 The usual definition accepts all pseudo regs; the other rejects
1773 them unless they have been allocated suitable hard regs.
1774 The symbol REG_OK_STRICT causes the latter definition to be used.
1775
1776 Most source files want to accept pseudo regs in the hope that
1777 they will get allocated to the class that the insn wants them to be in.
1778 Source files for reload pass need to be strict.
1779 After reload, it makes no difference, since pseudo regs have
1780 been eliminated by then. */
1781
1782
1783 /* Non strict versions, pseudos are ok. */
1784 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1785 (REGNO (X) < STACK_POINTER_REGNUM \
1786 || REX_INT_REGNO_P (REGNO (X)) \
1787 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1788
1789 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1790 (GENERAL_REGNO_P (REGNO (X)) \
1791 || REGNO (X) == ARG_POINTER_REGNUM \
1792 || REGNO (X) == FRAME_POINTER_REGNUM \
1793 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1794
1795 /* Strict versions, hard registers only */
1796 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1797 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1798
1799 #ifndef REG_OK_STRICT
1800 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1801 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1802
1803 #else
1804 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1805 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1806 #endif
1807
1808 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1809 that is a valid memory address for an instruction.
1810 The MODE argument is the machine mode for the MEM expression
1811 that wants to use this address.
1812
1813 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1814 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1815
1816 See legitimize_pic_address in i386.c for details as to what
1817 constitutes a legitimate address when -fpic is used. */
1818
1819 #define MAX_REGS_PER_ADDRESS 2
1820
1821 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1822
1823 /* Try a machine-dependent way of reloading an illegitimate address
1824 operand. If we find one, push the reload and jump to WIN. This
1825 macro is used in only one place: `find_reloads_address' in reload.c. */
1826
1827 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1828 do { \
1829 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1830 (int)(TYPE), (INDL))) \
1831 goto WIN; \
1832 } while (0)
1833
1834 /* If defined, a C expression to determine the base term of address X.
1835 This macro is used in only one place: `find_base_term' in alias.c.
1836
1837 It is always safe for this macro to not be defined. It exists so
1838 that alias analysis can understand machine-dependent addresses.
1839
1840 The typical use of this macro is to handle addresses containing
1841 a label_ref or symbol_ref within an UNSPEC. */
1842
1843 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1844
1845 /* Nonzero if the constant value X is a legitimate general operand
1846 when generating PIC code. It is given that flag_pic is on and
1847 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1848
1849 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1850
1851 #define SYMBOLIC_CONST(X) \
1852 (GET_CODE (X) == SYMBOL_REF \
1853 || GET_CODE (X) == LABEL_REF \
1854 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1855 \f
1856 /* Max number of args passed in registers. If this is more than 3, we will
1857 have problems with ebx (register #4), since it is a caller save register and
1858 is also used as the pic register in ELF. So for now, don't allow more than
1859 3 registers to be passed in registers. */
1860
1861 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1862 #define X86_64_REGPARM_MAX 6
1863 #define X86_64_MS_REGPARM_MAX 4
1864
1865 #define X86_32_REGPARM_MAX 3
1866
1867 #define REGPARM_MAX \
1868 (TARGET_64BIT \
1869 ? (TARGET_64BIT_MS_ABI \
1870 ? X86_64_MS_REGPARM_MAX \
1871 : X86_64_REGPARM_MAX) \
1872 : X86_32_REGPARM_MAX)
1873
1874 #define X86_64_SSE_REGPARM_MAX 8
1875 #define X86_64_MS_SSE_REGPARM_MAX 4
1876
1877 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1878
1879 #define SSE_REGPARM_MAX \
1880 (TARGET_64BIT \
1881 ? (TARGET_64BIT_MS_ABI \
1882 ? X86_64_MS_SSE_REGPARM_MAX \
1883 : X86_64_SSE_REGPARM_MAX) \
1884 : X86_32_SSE_REGPARM_MAX)
1885
1886 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1887 \f
1888 /* Specify the machine mode that this machine uses
1889 for the index in the tablejump instruction. */
1890 #define CASE_VECTOR_MODE \
1891 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1892
1893 /* Define this as 1 if `char' should by default be signed; else as 0. */
1894 #define DEFAULT_SIGNED_CHAR 1
1895
1896 /* Max number of bytes we can move from memory to memory
1897 in one reasonably fast instruction. */
1898 #define MOVE_MAX 16
1899
1900 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1901 move efficiently, as opposed to MOVE_MAX which is the maximum
1902 number of bytes we can move with a single instruction. */
1903 #define MOVE_MAX_PIECES UNITS_PER_WORD
1904
1905 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1906 move-instruction pairs, we will do a movmem or libcall instead.
1907 Increasing the value will always make code faster, but eventually
1908 incurs high cost in increased code size.
1909
1910 If you don't define this, a reasonable default is used. */
1911
1912 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1913
1914 /* If a clear memory operation would take CLEAR_RATIO or more simple
1915 move-instruction sequences, we will do a clrmem or libcall instead. */
1916
1917 #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
1918
1919 /* Define if shifts truncate the shift count which implies one can
1920 omit a sign-extension or zero-extension of a shift count.
1921
1922 On i386, shifts do truncate the count. But bit test instructions
1923 take the modulo of the bit offset operand. */
1924
1925 /* #define SHIFT_COUNT_TRUNCATED */
1926
1927 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1928 is done just by pretending it is already truncated. */
1929 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1930
1931 /* A macro to update M and UNSIGNEDP when an object whose type is
1932 TYPE and which has the specified mode and signedness is to be
1933 stored in a register. This macro is only called when TYPE is a
1934 scalar type.
1935
1936 On i386 it is sometimes useful to promote HImode and QImode
1937 quantities to SImode. The choice depends on target type. */
1938
1939 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1940 do { \
1941 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1942 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1943 (MODE) = SImode; \
1944 } while (0)
1945
1946 /* Specify the machine mode that pointers have.
1947 After generation of rtl, the compiler makes no further distinction
1948 between pointers and any other objects of this machine mode. */
1949 #define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
1950
1951 /* Specify the machine mode that bounds have. */
1952 #define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode)
1953
1954 /* A C expression whose value is zero if pointers that need to be extended
1955 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1956 greater then zero if they are zero-extended and less then zero if the
1957 ptr_extend instruction should be used. */
1958
1959 #define POINTERS_EXTEND_UNSIGNED 1
1960
1961 /* A function address in a call instruction
1962 is a byte address (for indexing purposes)
1963 so give the MEM rtx a byte's mode. */
1964 #define FUNCTION_MODE QImode
1965 \f
1966
1967 /* A C expression for the cost of a branch instruction. A value of 1
1968 is the default; other values are interpreted relative to that. */
1969
1970 #define BRANCH_COST(speed_p, predictable_p) \
1971 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1972
1973 /* An integer expression for the size in bits of the largest integer machine
1974 mode that should actually be used. We allow pairs of registers. */
1975 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1976
1977 /* Define this macro as a C expression which is nonzero if accessing
1978 less than a word of memory (i.e. a `char' or a `short') is no
1979 faster than accessing a word of memory, i.e., if such access
1980 require more than one instruction or if there is no difference in
1981 cost between byte and (aligned) word loads.
1982
1983 When this macro is not defined, the compiler will access a field by
1984 finding the smallest containing object; when it is defined, a
1985 fullword load will be used if alignment permits. Unless bytes
1986 accesses are faster than word accesses, using word accesses is
1987 preferable since it may eliminate subsequent memory access if
1988 subsequent accesses occur to other fields in the same word of the
1989 structure, but to different bytes. */
1990
1991 #define SLOW_BYTE_ACCESS 0
1992
1993 /* Nonzero if access to memory by shorts is slow and undesirable. */
1994 #define SLOW_SHORT_ACCESS 0
1995
1996 /* Define this macro to be the value 1 if unaligned accesses have a
1997 cost many times greater than aligned accesses, for example if they
1998 are emulated in a trap handler.
1999
2000 When this macro is nonzero, the compiler will act as if
2001 `STRICT_ALIGNMENT' were nonzero when generating code for block
2002 moves. This can cause significantly more instructions to be
2003 produced. Therefore, do not set this macro nonzero if unaligned
2004 accesses only add a cycle or two to the time for a memory access.
2005
2006 If the value of this macro is always zero, it need not be defined. */
2007
2008 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2009
2010 /* Define this macro if it is as good or better to call a constant
2011 function address than to call an address kept in a register.
2012
2013 Desirable on the 386 because a CALL with a constant address is
2014 faster than one with a register address. */
2015
2016 #define NO_FUNCTION_CSE
2017 \f
2018 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2019 return the mode to be used for the comparison.
2020
2021 For floating-point equality comparisons, CCFPEQmode should be used.
2022 VOIDmode should be used in all other cases.
2023
2024 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2025 possible, to allow for more combinations. */
2026
2027 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2028
2029 /* Return nonzero if MODE implies a floating point inequality can be
2030 reversed. */
2031
2032 #define REVERSIBLE_CC_MODE(MODE) 1
2033
2034 /* A C expression whose value is reversed condition code of the CODE for
2035 comparison done in CC_MODE mode. */
2036 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
2037
2038 \f
2039 /* Control the assembler format that we output, to the extent
2040 this does not vary between assemblers. */
2041
2042 /* How to refer to registers in assembler output.
2043 This sequence is indexed by compiler's hard-register-number (see above). */
2044
2045 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
2046 For non floating point regs, the following are the HImode names.
2047
2048 For float regs, the stack top is sometimes referred to as "%st(0)"
2049 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2050 "y" code. */
2051
2052 #define HI_REGISTER_NAMES \
2053 {"ax","dx","cx","bx","si","di","bp","sp", \
2054 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
2055 "argp", "flags", "fpsr", "fpcr", "frame", \
2056 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2057 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
2058 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2059 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2060 "xmm16", "xmm17", "xmm18", "xmm19", \
2061 "xmm20", "xmm21", "xmm22", "xmm23", \
2062 "xmm24", "xmm25", "xmm26", "xmm27", \
2063 "xmm28", "xmm29", "xmm30", "xmm31", \
2064 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7", \
2065 "bnd0", "bnd1", "bnd2", "bnd3" }
2066
2067 #define REGISTER_NAMES HI_REGISTER_NAMES
2068
2069 /* Table of additional register names to use in user input. */
2070
2071 #define ADDITIONAL_REGISTER_NAMES \
2072 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2073 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2074 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2075 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2076 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2077 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2078 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2079 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2080 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2081 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2082 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2083 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2084 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2085 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2086 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2087 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2088 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2089 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2090 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2091 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2092 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2093 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
2094
2095 /* Note we are omitting these since currently I don't know how
2096 to get gcc to use these, since they want the same but different
2097 number as al, and ax.
2098 */
2099
2100 #define QI_REGISTER_NAMES \
2101 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2102
2103 /* These parallel the array above, and can be used to access bits 8:15
2104 of regs 0 through 3. */
2105
2106 #define QI_HIGH_REGISTER_NAMES \
2107 {"ah", "dh", "ch", "bh", }
2108
2109 /* How to renumber registers for dbx and gdb. */
2110
2111 #define DBX_REGISTER_NUMBER(N) \
2112 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2113
2114 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2115 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2116 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2117
2118 extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
2119
2120 /* Before the prologue, RA is at 0(%esp). */
2121 #define INCOMING_RETURN_ADDR_RTX \
2122 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2123
2124 /* After the prologue, RA is at -4(AP) in the current frame. */
2125 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2126 ((COUNT) == 0 \
2127 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2128 -UNITS_PER_WORD)) \
2129 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
2130
2131 /* PC is dbx register 8; let's use that column for RA. */
2132 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2133
2134 /* Before the prologue, the top of the frame is at 4(%esp). */
2135 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2136
2137 /* Describe how we implement __builtin_eh_return. */
2138 #define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2139 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
2140
2141
2142 /* Select a format to encode pointers in exception handling data. CODE
2143 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2144 true if the symbol may be affected by dynamic relocations.
2145
2146 ??? All x86 object file formats are capable of representing this.
2147 After all, the relocation needed is the same as for the call insn.
2148 Whether or not a particular assembler allows us to enter such, I
2149 guess we'll have to see. */
2150 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2151 asm_preferred_eh_data_format ((CODE), (GLOBAL))
2152
2153 /* This is how to output an insn to push a register on the stack.
2154 It need not be very fast code. */
2155
2156 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2157 do { \
2158 if (TARGET_64BIT) \
2159 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2160 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2161 else \
2162 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2163 } while (0)
2164
2165 /* This is how to output an insn to pop a register from the stack.
2166 It need not be very fast code. */
2167
2168 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2169 do { \
2170 if (TARGET_64BIT) \
2171 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2172 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2173 else \
2174 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2175 } while (0)
2176
2177 /* This is how to output an element of a case-vector that is absolute. */
2178
2179 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2180 ix86_output_addr_vec_elt ((FILE), (VALUE))
2181
2182 /* This is how to output an element of a case-vector that is relative. */
2183
2184 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2185 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2186
2187 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
2188
2189 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2190 { \
2191 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
2192 (PTR) += TARGET_AVX ? 1 : 2; \
2193 }
2194
2195 /* A C statement or statements which output an assembler instruction
2196 opcode to the stdio stream STREAM. The macro-operand PTR is a
2197 variable of type `char *' which points to the opcode name in
2198 its "internal" form--the form that is written in the machine
2199 description. */
2200
2201 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2202 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2203
2204 /* A C statement to output to the stdio stream FILE an assembler
2205 command to pad the location counter to a multiple of 1<<LOG
2206 bytes if it is within MAX_SKIP bytes. */
2207
2208 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2209 #undef ASM_OUTPUT_MAX_SKIP_PAD
2210 #define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2211 if ((LOG) != 0) \
2212 { \
2213 if ((MAX_SKIP) == 0) \
2214 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2215 else \
2216 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2217 }
2218 #endif
2219
2220 /* Write the extra assembler code needed to declare a function
2221 properly. */
2222
2223 #undef ASM_OUTPUT_FUNCTION_LABEL
2224 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2225 ix86_asm_output_function_label (FILE, NAME, DECL)
2226
2227 /* Under some conditions we need jump tables in the text section,
2228 because the assembler cannot handle label differences between
2229 sections. This is the case for x86_64 on Mach-O for example. */
2230
2231 #define JUMP_TABLES_IN_TEXT_SECTION \
2232 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2233 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2234
2235 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2236 and switch back. For x86 we do this only to save a few bytes that
2237 would otherwise be unused in the text section. */
2238 #define CRT_MKSTR2(VAL) #VAL
2239 #define CRT_MKSTR(x) CRT_MKSTR2(x)
2240
2241 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2242 asm (SECTION_OP "\n\t" \
2243 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
2244 TEXT_SECTION_ASM_OP);
2245
2246 /* Default threshold for putting data in large sections
2247 with x86-64 medium memory model */
2248 #define DEFAULT_LARGE_SECTION_THRESHOLD 65536
2249 \f
2250 /* Which processor to tune code generation for. These must be in sync
2251 with processor_target_table in i386.c. */
2252
2253 enum processor_type
2254 {
2255 PROCESSOR_GENERIC = 0,
2256 PROCESSOR_I386, /* 80386 */
2257 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2258 PROCESSOR_PENTIUM,
2259 PROCESSOR_PENTIUMPRO,
2260 PROCESSOR_PENTIUM4,
2261 PROCESSOR_NOCONA,
2262 PROCESSOR_CORE2,
2263 PROCESSOR_NEHALEM,
2264 PROCESSOR_SANDYBRIDGE,
2265 PROCESSOR_HASWELL,
2266 PROCESSOR_BONNELL,
2267 PROCESSOR_SILVERMONT,
2268 PROCESSOR_INTEL,
2269 PROCESSOR_GEODE,
2270 PROCESSOR_K6,
2271 PROCESSOR_ATHLON,
2272 PROCESSOR_K8,
2273 PROCESSOR_AMDFAM10,
2274 PROCESSOR_BDVER1,
2275 PROCESSOR_BDVER2,
2276 PROCESSOR_BDVER3,
2277 PROCESSOR_BDVER4,
2278 PROCESSOR_BTVER1,
2279 PROCESSOR_BTVER2,
2280 PROCESSOR_max
2281 };
2282
2283 extern enum processor_type ix86_tune;
2284 extern enum processor_type ix86_arch;
2285
2286 /* Size of the RED_ZONE area. */
2287 #define RED_ZONE_SIZE 128
2288 /* Reserved area of the red zone for temporaries. */
2289 #define RED_ZONE_RESERVE 8
2290
2291 extern unsigned int ix86_preferred_stack_boundary;
2292 extern unsigned int ix86_incoming_stack_boundary;
2293
2294 /* Smallest class containing REGNO. */
2295 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2296
2297 enum ix86_fpcmp_strategy {
2298 IX86_FPCMP_SAHF,
2299 IX86_FPCMP_COMI,
2300 IX86_FPCMP_ARITH
2301 };
2302 \f
2303 /* To properly truncate FP values into integers, we need to set i387 control
2304 word. We can't emit proper mode switching code before reload, as spills
2305 generated by reload may truncate values incorrectly, but we still can avoid
2306 redundant computation of new control word by the mode switching pass.
2307 The fldcw instructions are still emitted redundantly, but this is probably
2308 not going to be noticeable problem, as most CPUs do have fast path for
2309 the sequence.
2310
2311 The machinery is to emit simple truncation instructions and split them
2312 before reload to instructions having USEs of two memory locations that
2313 are filled by this code to old and new control word.
2314
2315 Post-reload pass may be later used to eliminate the redundant fildcw if
2316 needed. */
2317
2318 enum ix86_entity
2319 {
2320 AVX_U128 = 0,
2321 I387_TRUNC,
2322 I387_FLOOR,
2323 I387_CEIL,
2324 I387_MASK_PM,
2325 MAX_386_ENTITIES
2326 };
2327
2328 enum ix86_stack_slot
2329 {
2330 SLOT_TEMP = 0,
2331 SLOT_CW_STORED,
2332 SLOT_CW_TRUNC,
2333 SLOT_CW_FLOOR,
2334 SLOT_CW_CEIL,
2335 SLOT_CW_MASK_PM,
2336 MAX_386_STACK_LOCALS
2337 };
2338
2339 enum avx_u128_state
2340 {
2341 AVX_U128_CLEAN,
2342 AVX_U128_DIRTY,
2343 AVX_U128_ANY
2344 };
2345
2346 /* Define this macro if the port needs extra instructions inserted
2347 for mode switching in an optimizing compilation. */
2348
2349 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2350 ix86_optimize_mode_switching[(ENTITY)]
2351
2352 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2353 initializer for an array of integers. Each initializer element N
2354 refers to an entity that needs mode switching, and specifies the
2355 number of different modes that might need to be set for this
2356 entity. The position of the initializer in the initializer -
2357 starting counting at zero - determines the integer that is used to
2358 refer to the mode-switched entity in question. */
2359
2360 #define NUM_MODES_FOR_MODE_SWITCHING \
2361 { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2362
2363 \f
2364 /* Avoid renaming of stack registers, as doing so in combination with
2365 scheduling just increases amount of live registers at time and in
2366 the turn amount of fxch instructions needed.
2367
2368 ??? Maybe Pentium chips benefits from renaming, someone can try....
2369
2370 Don't rename evex to non-evex sse registers. */
2371
2372 #define HARD_REGNO_RENAME_OK(SRC, TARGET) (!STACK_REGNO_P (SRC) && \
2373 (EXT_REX_SSE_REGNO_P (SRC) == \
2374 EXT_REX_SSE_REGNO_P (TARGET)))
2375
2376 \f
2377 #define FASTCALL_PREFIX '@'
2378 \f
2379 /* Machine specific frame tracking during prologue/epilogue generation. */
2380
2381 #ifndef USED_FOR_TARGET
2382 struct GTY(()) machine_frame_state
2383 {
2384 /* This pair tracks the currently active CFA as reg+offset. When reg
2385 is drap_reg, we don't bother trying to record here the real CFA when
2386 it might really be a DW_CFA_def_cfa_expression. */
2387 rtx cfa_reg;
2388 HOST_WIDE_INT cfa_offset;
2389
2390 /* The current offset (canonically from the CFA) of ESP and EBP.
2391 When stack frame re-alignment is active, these may not be relative
2392 to the CFA. However, in all cases they are relative to the offsets
2393 of the saved registers stored in ix86_frame. */
2394 HOST_WIDE_INT sp_offset;
2395 HOST_WIDE_INT fp_offset;
2396
2397 /* The size of the red-zone that may be assumed for the purposes of
2398 eliding register restore notes in the epilogue. This may be zero
2399 if no red-zone is in effect, or may be reduced from the real
2400 red-zone value by a maximum runtime stack re-alignment value. */
2401 int red_zone_offset;
2402
2403 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2404 value within the frame. If false then the offset above should be
2405 ignored. Note that DRAP, if valid, *always* points to the CFA and
2406 thus has an offset of zero. */
2407 BOOL_BITFIELD sp_valid : 1;
2408 BOOL_BITFIELD fp_valid : 1;
2409 BOOL_BITFIELD drap_valid : 1;
2410
2411 /* Indicate whether the local stack frame has been re-aligned. When
2412 set, the SP/FP offsets above are relative to the aligned frame
2413 and not the CFA. */
2414 BOOL_BITFIELD realigned : 1;
2415 };
2416
2417 /* Private to winnt.c. */
2418 struct seh_frame_state;
2419
2420 struct GTY(()) machine_function {
2421 struct stack_local_entry *stack_locals;
2422 const char *some_ld_name;
2423 int varargs_gpr_size;
2424 int varargs_fpr_size;
2425 int optimize_mode_switching[MAX_386_ENTITIES];
2426
2427 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2428 has been computed for. */
2429 int use_fast_prologue_epilogue_nregs;
2430
2431 /* For -fsplit-stack support: A stack local which holds a pointer to
2432 the stack arguments for a function with a variable number of
2433 arguments. This is set at the start of the function and is used
2434 to initialize the overflow_arg_area field of the va_list
2435 structure. */
2436 rtx split_stack_varargs_pointer;
2437
2438 /* This value is used for amd64 targets and specifies the current abi
2439 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2440 ENUM_BITFIELD(calling_abi) call_abi : 8;
2441
2442 /* Nonzero if the function accesses a previous frame. */
2443 BOOL_BITFIELD accesses_prev_frame : 1;
2444
2445 /* Nonzero if the function requires a CLD in the prologue. */
2446 BOOL_BITFIELD needs_cld : 1;
2447
2448 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2449 expander to determine the style used. */
2450 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2451
2452 /* If true, the current function needs the default PIC register, not
2453 an alternate register (on x86) and must not use the red zone (on
2454 x86_64), even if it's a leaf function. We don't want the
2455 function to be regarded as non-leaf because TLS calls need not
2456 affect register allocation. This flag is set when a TLS call
2457 instruction is expanded within a function, and never reset, even
2458 if all such instructions are optimized away. Use the
2459 ix86_current_function_calls_tls_descriptor macro for a better
2460 approximation. */
2461 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2462
2463 /* If true, the current function has a STATIC_CHAIN is placed on the
2464 stack below the return address. */
2465 BOOL_BITFIELD static_chain_on_stack : 1;
2466
2467 /* If true, it is safe to not save/restore DRAP register. */
2468 BOOL_BITFIELD no_drap_save_restore : 1;
2469
2470 /* During prologue/epilogue generation, the current frame state.
2471 Otherwise, the frame state at the end of the prologue. */
2472 struct machine_frame_state fs;
2473
2474 /* During SEH output, this is non-null. */
2475 struct seh_frame_state * GTY((skip(""))) seh;
2476 };
2477 #endif
2478
2479 #define ix86_stack_locals (cfun->machine->stack_locals)
2480 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2481 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2482 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2483 #define ix86_current_function_needs_cld (cfun->machine->needs_cld)
2484 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2485 (cfun->machine->tls_descriptor_call_expanded_p)
2486 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2487 calls are optimized away, we try to detect cases in which it was
2488 optimized away. Since such instructions (use (reg REG_SP)), we can
2489 verify whether there's any such instruction live by testing that
2490 REG_SP is live. */
2491 #define ix86_current_function_calls_tls_descriptor \
2492 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2493 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2494
2495 /* Control behavior of x86_file_start. */
2496 #define X86_FILE_START_VERSION_DIRECTIVE false
2497 #define X86_FILE_START_FLTUSED false
2498
2499 /* Flag to mark data that is in the large address area. */
2500 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2501 #define SYMBOL_REF_FAR_ADDR_P(X) \
2502 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2503
2504 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2505 have defined always, to avoid ifdefing. */
2506 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2507 #define SYMBOL_REF_DLLIMPORT_P(X) \
2508 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2509
2510 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2511 #define SYMBOL_REF_DLLEXPORT_P(X) \
2512 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2513
2514 #define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2515 #define SYMBOL_REF_STUBVAR_P(X) \
2516 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2517
2518 extern void debug_ready_dispatch (void);
2519 extern void debug_dispatch_window (int);
2520
2521 /* The value at zero is only defined for the BMI instructions
2522 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2523 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2524 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
2525 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2526 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
2527
2528
2529 /* Flags returned by ix86_get_callcvt (). */
2530 #define IX86_CALLCVT_CDECL 0x1
2531 #define IX86_CALLCVT_STDCALL 0x2
2532 #define IX86_CALLCVT_FASTCALL 0x4
2533 #define IX86_CALLCVT_THISCALL 0x8
2534 #define IX86_CALLCVT_REGPARM 0x10
2535 #define IX86_CALLCVT_SSEREGPARM 0x20
2536
2537 #define IX86_BASE_CALLCVT(FLAGS) \
2538 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2539 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2540
2541 #define RECIP_MASK_NONE 0x00
2542 #define RECIP_MASK_DIV 0x01
2543 #define RECIP_MASK_SQRT 0x02
2544 #define RECIP_MASK_VEC_DIV 0x04
2545 #define RECIP_MASK_VEC_SQRT 0x08
2546 #define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2547 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2548 #define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2549
2550 #define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2551 #define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2552 #define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2553 #define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2554
2555 #define IX86_HLE_ACQUIRE (1 << 16)
2556 #define IX86_HLE_RELEASE (1 << 17)
2557
2558 /* For switching between functions with different target attributes. */
2559 #define SWITCHABLE_TARGET 1
2560
2561 /*
2562 Local variables:
2563 version-control: t
2564 End:
2565 */