i386-protos.h (x86_64_sign_extended_value): Fix prototype.
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GNU compiler for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
37 /* Define the specific costs for a given cpu */
38
39 struct processor_costs {
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
44 const int mult_init; /* cost of starting a multiply */
45 const int mult_bit; /* cost of multiply per each bit set */
46 const int divide; /* cost of a divide/mod */
47 int movsx; /* The cost of movsx operation. */
48 int movzx; /* The cost of movzx operation. */
49 const int large_insn; /* insns larger than this cost more */
50 const int move_ratio; /* The threshold of number of scalar
51 memory-to-memory move insns. */
52 const int movzbl_load; /* cost of loading using movzbl */
53 const int int_load[3]; /* cost of loading integer registers
54 in QImode, HImode and SImode relative
55 to reg-reg move (2). */
56 const int int_store[3]; /* cost of storing integer register
57 in QImode, HImode and SImode */
58 const int fp_move; /* cost of reg,reg fld/fst */
59 const int fp_load[3]; /* cost of loading FP register
60 in SFmode, DFmode and XFmode */
61 const int fp_store[3]; /* cost of storing FP register
62 in SFmode, DFmode and XFmode */
63 const int mmx_move; /* cost of moving MMX register. */
64 const int mmx_load[2]; /* cost of loading MMX register
65 in SImode and DImode */
66 const int mmx_store[2]; /* cost of storing MMX register
67 in SImode and DImode */
68 const int sse_move; /* cost of moving SSE register. */
69 const int sse_load[3]; /* cost of loading SSE register
70 in SImode, DImode and TImode*/
71 const int sse_store[3]; /* cost of storing SSE register
72 in SImode, DImode and TImode*/
73 const int mmxsse_to_integer; /* cost of moving mmxsse register to
74 integer and vice versa. */
75 const int prefetch_block; /* bytes moved to cache for prefetch. */
76 const int simultaneous_prefetches; /* number of parallel prefetch
77 operations. */
78 const int fadd; /* cost of FADD and FSUB instructions. */
79 const int fmul; /* cost of FMUL instruction. */
80 const int fdiv; /* cost of FDIV instruction. */
81 const int fabs; /* cost of FABS instruction. */
82 const int fchs; /* cost of FCHS instruction. */
83 const int fsqrt; /* cost of FSQRT instruction. */
84 };
85
86 extern const struct processor_costs *ix86_cost;
87
88 /* Run-time compilation parameters selecting different hardware subsets. */
89
90 extern int target_flags;
91
92 /* Macros used in the machine description to test the flags. */
93
94 /* configure can arrange to make this 2, to force a 486. */
95
96 #ifndef TARGET_CPU_DEFAULT
97 #define TARGET_CPU_DEFAULT 0
98 #endif
99
100 /* Masks for the -m switches */
101 #define MASK_80387 0x00000001 /* Hardware floating point */
102 #define MASK_RTD 0x00000002 /* Use ret that pops args */
103 #define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
104 #define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
105 #define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
106 #define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
107 #define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
108 #define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
109 #define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
110 #define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
111 #define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
112 #define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
113 #define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
114 #define MASK_MMX 0x00002000 /* Support MMX regs/builtins */
115 #define MASK_SSE 0x00004000 /* Support SSE regs/builtins */
116 #define MASK_SSE2 0x00008000 /* Support SSE2 regs/builtins */
117 #define MASK_3DNOW 0x00010000 /* Support 3Dnow builtins */
118 #define MASK_3DNOW_A 0x00020000 /* Support Athlon 3Dnow builtins */
119 #define MASK_128BIT_LONG_DOUBLE 0x00040000 /* long double size is 128bit */
120 #define MASK_64BIT 0x00080000 /* Produce 64bit code */
121
122 /* Unused: 0x03f0000 */
123
124 /* ... overlap with subtarget options starts by 0x04000000. */
125 #define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
126
127 /* Use the floating point instructions */
128 #define TARGET_80387 (target_flags & MASK_80387)
129
130 /* Compile using ret insn that pops args.
131 This will not work unless you use prototypes at least
132 for all functions that can take varying numbers of args. */
133 #define TARGET_RTD (target_flags & MASK_RTD)
134
135 /* Align doubles to a two word boundary. This breaks compatibility with
136 the published ABI's for structures containing doubles, but produces
137 faster code on the pentium. */
138 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
139
140 /* Use push instructions to save outgoing args. */
141 #define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
142
143 /* Accumulate stack adjustments to prologue/epilogue. */
144 #define TARGET_ACCUMULATE_OUTGOING_ARGS \
145 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
146
147 /* Put uninitialized locals into bss, not data.
148 Meaningful only on svr3. */
149 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
150
151 /* Use IEEE floating point comparisons. These handle correctly the cases
152 where the result of a comparison is unordered. Normally SIGFPE is
153 generated in such cases, in which case this isn't needed. */
154 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
155
156 /* Functions that return a floating point value may return that value
157 in the 387 FPU or in 386 integer registers. If set, this flag causes
158 the 387 to be used, which is compatible with most calling conventions. */
159 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
160
161 /* Long double is 128bit instead of 96bit, even when only 80bits are used.
162 This mode wastes cache, but avoid misaligned data accesses and simplifies
163 address calculations. */
164 #define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
165
166 /* Disable generation of FP sin, cos and sqrt operations for 387.
167 This is because FreeBSD lacks these in the math-emulator-code */
168 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
169
170 /* Don't create frame pointers for leaf functions */
171 #define TARGET_OMIT_LEAF_FRAME_POINTER \
172 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
173
174 /* Debug GO_IF_LEGITIMATE_ADDRESS */
175 #define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
176
177 /* Debug FUNCTION_ARG macros */
178 #define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
179
180 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
181 compile-time constant. */
182 #ifdef IN_LIBGCC2
183 #ifdef __x86_64__
184 #define TARGET_64BIT 1
185 #else
186 #define TARGET_64BIT 0
187 #endif
188 #else
189 #ifdef TARGET_BI_ARCH
190 #define TARGET_64BIT (target_flags & MASK_64BIT)
191 #else
192 #if TARGET_64BIT_DEFAULT
193 #define TARGET_64BIT 1
194 #else
195 #define TARGET_64BIT 0
196 #endif
197 #endif
198 #endif
199
200 #define TARGET_386 (ix86_cpu == PROCESSOR_I386)
201 #define TARGET_486 (ix86_cpu == PROCESSOR_I486)
202 #define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
203 #define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
204 #define TARGET_K6 (ix86_cpu == PROCESSOR_K6)
205 #define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON)
206 #define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4)
207
208 #define CPUMASK (1 << ix86_cpu)
209 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
210 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
211 extern const int x86_branch_hints, x86_unroll_strlen;
212 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
213 extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
214 extern const int x86_use_cltd, x86_read_modify_write;
215 extern const int x86_read_modify, x86_split_long_moves;
216 extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
217 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
218 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
219 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
220 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
221 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
222 extern const int x86_epilogue_using_move, x86_decompose_lea;
223 extern const int x86_arch_always_fancy_math_387, x86_shift1;
224 extern int x86_prefetch_sse;
225
226 #define TARGET_USE_LEAVE (x86_use_leave & CPUMASK)
227 #define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK)
228 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK)
229 #define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK)
230 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK)
231 /* For sane SSE instruction set generation we need fcomi instruction. It is
232 safe to enable all CMOVE instructions. */
233 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
234 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK)
235 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & CPUMASK)
236 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK)
237 #define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT)
238 #define TARGET_MOVX (x86_movx & CPUMASK)
239 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK)
240 #define TARGET_USE_LOOP (x86_use_loop & CPUMASK)
241 #define TARGET_USE_FIOP (x86_use_fiop & CPUMASK)
242 #define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK)
243 #define TARGET_USE_CLTD (x86_use_cltd & CPUMASK)
244 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK)
245 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK)
246 #define TARGET_READ_MODIFY (x86_read_modify & CPUMASK)
247 #define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK)
248 #define TARGET_FAST_PREFIX (x86_fast_prefix & CPUMASK)
249 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK)
250 #define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK)
251 #define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK)
252 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK)
253 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK)
254 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK)
255 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK)
256 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK)
257 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK)
258 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK)
259 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK)
260 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK)
261 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & CPUMASK)
262 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & CPUMASK)
263 #define TARGET_DECOMPOSE_LEA (x86_decompose_lea & CPUMASK)
264 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
265 #define TARGET_SHIFT1 (x86_shift1 & CPUMASK)
266
267 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
268
269 #define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
270 #define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
271
272 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
273
274 #define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0)
275 #define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
276 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
277 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
278 && (ix86_fpmath & FPMATH_387))
279 #define TARGET_MMX ((target_flags & MASK_MMX) != 0)
280 #define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
281 #define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
282
283 #define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
284
285 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
286 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
287
288 /* WARNING: Do not mark empty strings for translation, as calling
289 gettext on an empty string does NOT return an empty
290 string. */
291
292
293 #define TARGET_SWITCHES \
294 { { "80387", MASK_80387, N_("Use hardware fp") }, \
295 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
296 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
297 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
298 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
299 { "386", 0, "" /*Deprecated.*/}, \
300 { "486", 0, "" /*Deprecated.*/}, \
301 { "pentium", 0, "" /*Deprecated.*/}, \
302 { "pentiumpro", 0, "" /*Deprecated.*/}, \
303 { "intel-syntax", 0, "" /*Deprecated.*/}, \
304 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
305 { "rtd", MASK_RTD, \
306 N_("Alternate calling convention") }, \
307 { "no-rtd", -MASK_RTD, \
308 N_("Use normal calling convention") }, \
309 { "align-double", MASK_ALIGN_DOUBLE, \
310 N_("Align some doubles on dword boundary") }, \
311 { "no-align-double", -MASK_ALIGN_DOUBLE, \
312 N_("Align doubles on word boundary") }, \
313 { "svr3-shlib", MASK_SVR3_SHLIB, \
314 N_("Uninitialized locals in .bss") }, \
315 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
316 N_("Uninitialized locals in .data") }, \
317 { "ieee-fp", MASK_IEEE_FP, \
318 N_("Use IEEE math for fp comparisons") }, \
319 { "no-ieee-fp", -MASK_IEEE_FP, \
320 N_("Do not use IEEE math for fp comparisons") }, \
321 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
322 N_("Return values of functions in FPU registers") }, \
323 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
324 N_("Do not return values of functions in FPU registers")}, \
325 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
326 N_("Do not generate sin, cos, sqrt for FPU") }, \
327 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
328 N_("Generate sin, cos, sqrt for FPU")}, \
329 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
330 N_("Omit the frame pointer in leaf functions") }, \
331 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
332 { "stack-arg-probe", MASK_STACK_PROBE, \
333 N_("Enable stack probing") }, \
334 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
335 { "windows", 0, 0 /* undocumented */ }, \
336 { "dll", 0, 0 /* undocumented */ }, \
337 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
338 N_("Align destination of the string operations") }, \
339 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
340 N_("Do not align destination of the string operations") }, \
341 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
342 N_("Inline all known string operations") }, \
343 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
344 N_("Do not inline all known string operations") }, \
345 { "push-args", -MASK_NO_PUSH_ARGS, \
346 N_("Use push instructions to save outgoing arguments") }, \
347 { "no-push-args", MASK_NO_PUSH_ARGS, \
348 N_("Do not use push instructions to save outgoing arguments") }, \
349 { "accumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS, \
350 N_("Use push instructions to save outgoing arguments") }, \
351 { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS, \
352 N_("Do not use push instructions to save outgoing arguments") }, \
353 { "mmx", MASK_MMX, \
354 N_("Support MMX built-in functions") }, \
355 { "no-mmx", -MASK_MMX, \
356 N_("Do not support MMX built-in functions") }, \
357 { "3dnow", MASK_3DNOW, \
358 N_("Support 3DNow! built-in functions") }, \
359 { "no-3dnow", -MASK_3DNOW, \
360 N_("Do not support 3DNow! built-in functions") }, \
361 { "sse", MASK_SSE, \
362 N_("Support MMX and SSE built-in functions and code generation") }, \
363 { "no-sse", -MASK_SSE, \
364 N_("Do not support MMX and SSE built-in functions and code generation") },\
365 { "sse2", MASK_SSE2, \
366 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
367 { "no-sse2", -MASK_SSE2, \
368 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
369 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
370 N_("sizeof(long double) is 16") }, \
371 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
372 N_("sizeof(long double) is 12") }, \
373 { "64", MASK_64BIT, \
374 N_("Generate 64bit x86-64 code") }, \
375 { "32", -MASK_64BIT, \
376 N_("Generate 32bit i386 code") }, \
377 { "red-zone", -MASK_NO_RED_ZONE, \
378 N_("Use red-zone in the x86-64 code") }, \
379 { "no-red-zone", MASK_NO_RED_ZONE, \
380 N_("Do not use red-zone in the x86-64 code") }, \
381 SUBTARGET_SWITCHES \
382 { "", TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT, 0 }}
383
384 #ifndef TARGET_64BIT_DEFAULT
385 #define TARGET_64BIT_DEFAULT 0
386 #endif
387
388 /* Once GDB has been enhanced to deal with functions without frame
389 pointers, we can change this to allow for elimination of
390 the frame pointer in leaf functions. */
391 #define TARGET_DEFAULT 0
392
393 /* This is not really a target flag, but is done this way so that
394 it's analogous to similar code for Mach-O on PowerPC. darwin.h
395 redefines this to 1. */
396 #define TARGET_MACHO 0
397
398 /* This macro is similar to `TARGET_SWITCHES' but defines names of
399 command options that have values. Its definition is an
400 initializer with a subgrouping for each command option.
401
402 Each subgrouping contains a string constant, that defines the
403 fixed part of the option name, and the address of a variable. The
404 variable, type `char *', is set to the variable part of the given
405 option if the fixed part matches. The actual option name is made
406 by appending `-m' to the specified name. */
407 #define TARGET_OPTIONS \
408 { { "cpu=", &ix86_cpu_string, \
409 N_("Schedule code for given CPU")}, \
410 { "fpmath=", &ix86_fpmath_string, \
411 N_("Generate floating point mathematics using given instruction set")},\
412 { "arch=", &ix86_arch_string, \
413 N_("Generate code for given CPU")}, \
414 { "regparm=", &ix86_regparm_string, \
415 N_("Number of registers used to pass integer arguments") }, \
416 { "align-loops=", &ix86_align_loops_string, \
417 N_("Loop code aligned to this power of 2") }, \
418 { "align-jumps=", &ix86_align_jumps_string, \
419 N_("Jump targets are aligned to this power of 2") }, \
420 { "align-functions=", &ix86_align_funcs_string, \
421 N_("Function starts are aligned to this power of 2") }, \
422 { "preferred-stack-boundary=", \
423 &ix86_preferred_stack_boundary_string, \
424 N_("Attempt to keep stack aligned to this power of 2") }, \
425 { "branch-cost=", &ix86_branch_cost_string, \
426 N_("Branches are this expensive (1-5, arbitrary units)") }, \
427 { "cmodel=", &ix86_cmodel_string, \
428 N_("Use given x86-64 code model") }, \
429 { "debug-arg", &ix86_debug_arg_string, \
430 "" /* Undocumented. */ }, \
431 { "debug-addr", &ix86_debug_addr_string, \
432 "" /* Undocumented. */ }, \
433 { "asm=", &ix86_asm_string, \
434 N_("Use given assembler dialect") }, \
435 { "tls-dialect=", &ix86_tls_dialect_string, \
436 N_("Use given thread-local storage dialect") }, \
437 SUBTARGET_OPTIONS \
438 }
439
440 /* Sometimes certain combinations of command options do not make
441 sense on a particular target machine. You can define a macro
442 `OVERRIDE_OPTIONS' to take account of this. This macro, if
443 defined, is executed once just after all the command options have
444 been parsed.
445
446 Don't use this macro to turn on various extra optimizations for
447 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
448
449 #define OVERRIDE_OPTIONS override_options ()
450
451 /* These are meant to be redefined in the host dependent files */
452 #define SUBTARGET_SWITCHES
453 #define SUBTARGET_OPTIONS
454
455 /* Define this to change the optimizations performed by default. */
456 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
457 optimization_options ((LEVEL), (SIZE))
458
459 /* Specs for the compiler proper */
460
461 #ifndef CC1_CPU_SPEC
462 #define CC1_CPU_SPEC "\
463 %{!mcpu*: \
464 %{m386:-mcpu=i386 \
465 %n`-m386' is deprecated. Use `-march=i386' or `-mcpu=i386' instead.\n} \
466 %{m486:-mcpu=i486 \
467 %n`-m486' is deprecated. Use `-march=i486' or `-mcpu=i486' instead.\n} \
468 %{mpentium:-mcpu=pentium \
469 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mcpu=pentium' instead.\n} \
470 %{mpentiumpro:-mcpu=pentiumpro \
471 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mcpu=pentiumpro' instead.\n}} \
472 %{mintel-syntax:-masm=intel \
473 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
474 %{mno-intel-syntax:-masm=att \
475 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
476 #endif
477 \f
478 /* Target CPU builtins. */
479 #define TARGET_CPU_CPP_BUILTINS() \
480 do \
481 { \
482 size_t arch_len = strlen (ix86_arch_string); \
483 size_t cpu_len = strlen (ix86_cpu_string); \
484 int last_arch_char = ix86_arch_string[arch_len - 1]; \
485 int last_cpu_char = ix86_cpu_string[cpu_len - 1]; \
486 \
487 if (TARGET_64BIT) \
488 { \
489 builtin_assert ("cpu=x86_64"); \
490 builtin_assert ("machine=x86_64"); \
491 builtin_define ("__x86_64"); \
492 builtin_define ("__x86_64__"); \
493 } \
494 else \
495 { \
496 builtin_assert ("cpu=i386"); \
497 builtin_assert ("machine=i386"); \
498 builtin_define_std ("i386"); \
499 } \
500 \
501 /* Built-ins based on -mcpu= (or -march= if no \
502 CPU given). */ \
503 if (TARGET_386) \
504 builtin_define ("__tune_i386__"); \
505 else if (TARGET_486) \
506 builtin_define ("__tune_i486__"); \
507 else if (TARGET_PENTIUM) \
508 { \
509 builtin_define ("__tune_i586__"); \
510 builtin_define ("__tune_pentium__"); \
511 if (last_cpu_char == 'x') \
512 builtin_define ("__tune_pentium_mmx__"); \
513 } \
514 else if (TARGET_PENTIUMPRO) \
515 { \
516 builtin_define ("__tune_i686__"); \
517 builtin_define ("__tune_pentiumpro__"); \
518 } \
519 else if (TARGET_K6) \
520 { \
521 builtin_define ("__tune_k6__"); \
522 if (last_cpu_char == '2') \
523 builtin_define ("__tune_k6_2__"); \
524 else if (last_cpu_char == '3') \
525 builtin_define ("__tune_k6_3__"); \
526 } \
527 else if (TARGET_ATHLON) \
528 { \
529 builtin_define ("__tune_athlon__"); \
530 /* Only plain "athlon" lacks SSE. */ \
531 if (last_cpu_char != 'n') \
532 builtin_define ("__tune_athlon_sse__"); \
533 } \
534 else if (TARGET_PENTIUM4) \
535 builtin_define ("__tune_pentium4__"); \
536 \
537 if (TARGET_MMX) \
538 builtin_define ("__MMX__"); \
539 if (TARGET_3DNOW) \
540 builtin_define ("__3dNOW__"); \
541 if (TARGET_3DNOW_A) \
542 builtin_define ("__3dNOW_A__"); \
543 if (TARGET_SSE) \
544 builtin_define ("__SSE__"); \
545 if (TARGET_SSE2) \
546 builtin_define ("__SSE2__"); \
547 if (TARGET_SSE_MATH && TARGET_SSE) \
548 builtin_define ("__SSE_MATH__"); \
549 if (TARGET_SSE_MATH && TARGET_SSE2) \
550 builtin_define ("__SSE2_MATH__"); \
551 \
552 /* Built-ins based on -march=. */ \
553 if (ix86_arch == PROCESSOR_I486) \
554 { \
555 builtin_define ("__i486"); \
556 builtin_define ("__i486__"); \
557 } \
558 else if (ix86_arch == PROCESSOR_PENTIUM) \
559 { \
560 builtin_define ("__i586"); \
561 builtin_define ("__i586__"); \
562 builtin_define ("__pentium"); \
563 builtin_define ("__pentium__"); \
564 if (last_arch_char == 'x') \
565 builtin_define ("__pentium_mmx__"); \
566 } \
567 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
568 { \
569 builtin_define ("__i686"); \
570 builtin_define ("__i686__"); \
571 builtin_define ("__pentiumpro"); \
572 builtin_define ("__pentiumpro__"); \
573 } \
574 else if (ix86_arch == PROCESSOR_K6) \
575 { \
576 \
577 builtin_define ("__k6"); \
578 builtin_define ("__k6__"); \
579 if (last_arch_char == '2') \
580 builtin_define ("__k6_2__"); \
581 else if (last_arch_char == '3') \
582 builtin_define ("__k6_3__"); \
583 } \
584 else if (ix86_arch == PROCESSOR_ATHLON) \
585 { \
586 builtin_define ("__athlon"); \
587 builtin_define ("__athlon__"); \
588 /* Only plain "athlon" lacks SSE. */ \
589 if (last_arch_char != 'n') \
590 builtin_define ("__athlon_sse__"); \
591 } \
592 else if (ix86_arch == PROCESSOR_PENTIUM4) \
593 { \
594 builtin_define ("__pentium4"); \
595 builtin_define ("__pentium4__"); \
596 } \
597 } \
598 while (0)
599
600 #define TARGET_CPU_DEFAULT_i386 0
601 #define TARGET_CPU_DEFAULT_i486 1
602 #define TARGET_CPU_DEFAULT_pentium 2
603 #define TARGET_CPU_DEFAULT_pentium_mmx 3
604 #define TARGET_CPU_DEFAULT_pentiumpro 4
605 #define TARGET_CPU_DEFAULT_pentium2 5
606 #define TARGET_CPU_DEFAULT_pentium3 6
607 #define TARGET_CPU_DEFAULT_pentium4 7
608 #define TARGET_CPU_DEFAULT_k6 8
609 #define TARGET_CPU_DEFAULT_k6_2 9
610 #define TARGET_CPU_DEFAULT_k6_3 10
611 #define TARGET_CPU_DEFAULT_athlon 11
612 #define TARGET_CPU_DEFAULT_athlon_sse 12
613
614 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
615 "pentiumpro", "pentium2", "pentium3", \
616 "pentium4", "k6", "k6-2", "k6-3",\
617 "athlon", "athlon-4"}
618
619 #ifndef CC1_SPEC
620 #define CC1_SPEC "%(cc1_cpu) "
621 #endif
622
623 /* This macro defines names of additional specifications to put in the
624 specs that can be used in various specifications like CC1_SPEC. Its
625 definition is an initializer with a subgrouping for each command option.
626
627 Each subgrouping contains a string constant, that defines the
628 specification name, and a string constant that used by the GNU CC driver
629 program.
630
631 Do not define this macro if it does not need to do anything. */
632
633 #ifndef SUBTARGET_EXTRA_SPECS
634 #define SUBTARGET_EXTRA_SPECS
635 #endif
636
637 #define EXTRA_SPECS \
638 { "cc1_cpu", CC1_CPU_SPEC }, \
639 SUBTARGET_EXTRA_SPECS
640 \f
641 /* target machine storage layout */
642
643 /* Define for XFmode or TFmode extended real floating point support.
644 The XFmode is specified by i386 ABI, while TFmode may be faster
645 due to alignment and simplifications in the address calculations. */
646 #define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
647 #define MAX_LONG_DOUBLE_TYPE_SIZE 128
648 #ifdef __x86_64__
649 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
650 #else
651 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
652 #endif
653
654 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
655 FPU, assume that the fpcw is set to extended precision; when using
656 only SSE, rounding is correct; when using both SSE and the FPU,
657 the rounding precision is indeterminate, since either may be chosen
658 apparently at random. */
659 #define TARGET_FLT_EVAL_METHOD \
660 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 1 : 2)
661
662 #define SHORT_TYPE_SIZE 16
663 #define INT_TYPE_SIZE 32
664 #define FLOAT_TYPE_SIZE 32
665 #define LONG_TYPE_SIZE BITS_PER_WORD
666 #define MAX_WCHAR_TYPE_SIZE 32
667 #define DOUBLE_TYPE_SIZE 64
668 #define LONG_LONG_TYPE_SIZE 64
669
670 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
671 #define MAX_BITS_PER_WORD 64
672 #define MAX_LONG_TYPE_SIZE 64
673 #else
674 #define MAX_BITS_PER_WORD 32
675 #define MAX_LONG_TYPE_SIZE 32
676 #endif
677
678 /* Define this if most significant byte of a word is the lowest numbered. */
679 /* That is true on the 80386. */
680
681 #define BITS_BIG_ENDIAN 0
682
683 /* Define this if most significant byte of a word is the lowest numbered. */
684 /* That is not true on the 80386. */
685 #define BYTES_BIG_ENDIAN 0
686
687 /* Define this if most significant word of a multiword number is the lowest
688 numbered. */
689 /* Not true for 80386 */
690 #define WORDS_BIG_ENDIAN 0
691
692 /* Width of a word, in units (bytes). */
693 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
694 #ifdef IN_LIBGCC2
695 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
696 #else
697 #define MIN_UNITS_PER_WORD 4
698 #endif
699
700 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
701 #define PARM_BOUNDARY BITS_PER_WORD
702
703 /* Boundary (in *bits*) on which stack pointer should be aligned. */
704 #define STACK_BOUNDARY BITS_PER_WORD
705
706 /* Boundary (in *bits*) on which the stack pointer preferrs to be
707 aligned; the compiler cannot rely on having this alignment. */
708 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
709
710 /* As of July 2001, many runtimes to not align the stack properly when
711 entering main. This causes expand_main_function to forcably align
712 the stack, which results in aligned frames for functions called from
713 main, though it does nothing for the alignment of main itself. */
714 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
715 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
716
717 /* Minimum allocation boundary for the code of a function. */
718 #define FUNCTION_BOUNDARY 8
719
720 /* C++ stores the virtual bit in the lowest bit of function pointers. */
721 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
722
723 /* Alignment of field after `int : 0' in a structure. */
724
725 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
726
727 /* Minimum size in bits of the largest boundary to which any
728 and all fundamental data types supported by the hardware
729 might need to be aligned. No data type wants to be aligned
730 rounder than this.
731
732 Pentium+ preferrs DFmode values to be aligned to 64 bit boundary
733 and Pentium Pro XFmode values at 128 bit boundaries. */
734
735 #define BIGGEST_ALIGNMENT 128
736
737 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
738 #define ALIGN_MODE_128(MODE) \
739 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
740
741 /* The published ABIs say that doubles should be aligned on word
742 boundaries, so lower the aligment for structure fields unless
743 -malign-double is set. */
744
745 /* ??? Blah -- this macro is used directly by libobjc. Since it
746 supports no vector modes, cut out the complexity and fall back
747 on BIGGEST_FIELD_ALIGNMENT. */
748 #ifdef IN_TARGET_LIBS
749 #ifdef __x86_64__
750 #define BIGGEST_FIELD_ALIGNMENT 128
751 #else
752 #define BIGGEST_FIELD_ALIGNMENT 32
753 #endif
754 #else
755 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
756 x86_field_alignment (FIELD, COMPUTED)
757 #endif
758
759 /* If defined, a C expression to compute the alignment given to a
760 constant that is being placed in memory. EXP is the constant
761 and ALIGN is the alignment that the object would ordinarily have.
762 The value of this macro is used instead of that alignment to align
763 the object.
764
765 If this macro is not defined, then ALIGN is used.
766
767 The typical use of this macro is to increase alignment for string
768 constants to be word aligned so that `strcpy' calls that copy
769 constants can be done inline. */
770
771 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
772
773 /* If defined, a C expression to compute the alignment for a static
774 variable. TYPE is the data type, and ALIGN is the alignment that
775 the object would ordinarily have. The value of this macro is used
776 instead of that alignment to align the object.
777
778 If this macro is not defined, then ALIGN is used.
779
780 One use of this macro is to increase alignment of medium-size
781 data to make it all fit in fewer cache lines. Another is to
782 cause character arrays to be word-aligned so that `strcpy' calls
783 that copy constants to character arrays can be done inline. */
784
785 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
786
787 /* If defined, a C expression to compute the alignment for a local
788 variable. TYPE is the data type, and ALIGN is the alignment that
789 the object would ordinarily have. The value of this macro is used
790 instead of that alignment to align the object.
791
792 If this macro is not defined, then ALIGN is used.
793
794 One use of this macro is to increase alignment of medium-size
795 data to make it all fit in fewer cache lines. */
796
797 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
798
799 /* If defined, a C expression that gives the alignment boundary, in
800 bits, of an argument with the specified mode and type. If it is
801 not defined, `PARM_BOUNDARY' is used for all arguments. */
802
803 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
804 ix86_function_arg_boundary ((MODE), (TYPE))
805
806 /* Set this nonzero if move instructions will actually fail to work
807 when given unaligned data. */
808 #define STRICT_ALIGNMENT 0
809
810 /* If bit field type is int, don't let it cross an int,
811 and give entire struct the alignment of an int. */
812 /* Required on the 386 since it doesn't have bit-field insns. */
813 #define PCC_BITFIELD_TYPE_MATTERS 1
814 \f
815 /* Standard register usage. */
816
817 /* This processor has special stack-like registers. See reg-stack.c
818 for details. */
819
820 #define STACK_REGS
821 #define IS_STACK_MODE(MODE) \
822 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode \
823 || (MODE) == TFmode)
824
825 /* Number of actual hardware registers.
826 The hardware registers are assigned numbers for the compiler
827 from 0 to just below FIRST_PSEUDO_REGISTER.
828 All registers that the compiler knows about must be given numbers,
829 even those that are not normally considered general registers.
830
831 In the 80386 we give the 8 general purpose registers the numbers 0-7.
832 We number the floating point registers 8-15.
833 Note that registers 0-7 can be accessed as a short or int,
834 while only 0-3 may be used with byte `mov' instructions.
835
836 Reg 16 does not correspond to any hardware register, but instead
837 appears in the RTL as an argument pointer prior to reload, and is
838 eliminated during reloading in favor of either the stack or frame
839 pointer. */
840
841 #define FIRST_PSEUDO_REGISTER 53
842
843 /* Number of hardware registers that go into the DWARF-2 unwind info.
844 If not defined, equals FIRST_PSEUDO_REGISTER. */
845
846 #define DWARF_FRAME_REGISTERS 17
847
848 /* 1 for registers that have pervasive standard uses
849 and are not available for the register allocator.
850 On the 80386, the stack pointer is such, as is the arg pointer.
851
852 The value is an mask - bit 1 is set for fixed registers
853 for 32bit target, while 2 is set for fixed registers for 64bit.
854 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
855 */
856 #define FIXED_REGISTERS \
857 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
858 { 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
859 /*arg,flags,fpsr,dir,frame*/ \
860 3, 3, 3, 3, 3, \
861 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
862 0, 0, 0, 0, 0, 0, 0, 0, \
863 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
864 0, 0, 0, 0, 0, 0, 0, 0, \
865 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
866 1, 1, 1, 1, 1, 1, 1, 1, \
867 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
868 1, 1, 1, 1, 1, 1, 1, 1}
869
870
871 /* 1 for registers not available across function calls.
872 These must include the FIXED_REGISTERS and also any
873 registers that can be used without being saved.
874 The latter must include the registers where values are returned
875 and the register where structure-value addresses are passed.
876 Aside from that, you can include as many other registers as you like.
877
878 The value is an mask - bit 1 is set for call used
879 for 32bit target, while 2 is set for call used for 64bit.
880 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
881 */
882 #define CALL_USED_REGISTERS \
883 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
884 { 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
885 /*arg,flags,fpsr,dir,frame*/ \
886 3, 3, 3, 3, 3, \
887 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
888 3, 3, 3, 3, 3, 3, 3, 3, \
889 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
890 3, 3, 3, 3, 3, 3, 3, 3, \
891 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
892 3, 3, 3, 3, 1, 1, 1, 1, \
893 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
894 3, 3, 3, 3, 3, 3, 3, 3} \
895
896 /* Order in which to allocate registers. Each register must be
897 listed once, even those in FIXED_REGISTERS. List frame pointer
898 late and fixed registers last. Note that, in general, we prefer
899 registers listed in CALL_USED_REGISTERS, keeping the others
900 available for storage of persistent values.
901
902 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
903 so this is just empty initializer for array. */
904
905 #define REG_ALLOC_ORDER \
906 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
907 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
908 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
909 48, 49, 50, 51, 52 }
910
911 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
912 to be rearranged based on a particular function. When using sse math,
913 we want to allocase SSE before x87 registers and vice vera. */
914
915 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
916
917
918 /* Macro to conditionally modify fixed_regs/call_used_regs. */
919 #define CONDITIONAL_REGISTER_USAGE \
920 do { \
921 int i; \
922 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
923 { \
924 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
925 call_used_regs[i] = (call_used_regs[i] \
926 & (TARGET_64BIT ? 2 : 1)) != 0; \
927 } \
928 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
929 { \
930 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
931 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
932 } \
933 if (! TARGET_MMX) \
934 { \
935 int i; \
936 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
937 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
938 fixed_regs[i] = call_used_regs[i] = 1; \
939 } \
940 if (! TARGET_SSE) \
941 { \
942 int i; \
943 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
944 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
945 fixed_regs[i] = call_used_regs[i] = 1; \
946 } \
947 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
948 { \
949 int i; \
950 HARD_REG_SET x; \
951 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
952 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
953 if (TEST_HARD_REG_BIT (x, i)) \
954 fixed_regs[i] = call_used_regs[i] = 1; \
955 } \
956 } while (0)
957
958 /* Return number of consecutive hard regs needed starting at reg REGNO
959 to hold something of mode MODE.
960 This is ordinarily the length in words of a value of mode MODE
961 but can be less for certain modes in special long registers.
962
963 Actually there are no two word move instructions for consecutive
964 registers. And only registers 0-3 may have mov byte instructions
965 applied to them.
966 */
967
968 #define HARD_REGNO_NREGS(REGNO, MODE) \
969 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
970 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
971 : ((MODE) == TFmode \
972 ? (TARGET_64BIT ? 2 : 3) \
973 : (MODE) == TCmode \
974 ? (TARGET_64BIT ? 4 : 6) \
975 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
976
977 #define VALID_SSE2_REG_MODE(MODE) \
978 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
979 || (MODE) == V2DImode)
980
981 #define VALID_SSE_REG_MODE(MODE) \
982 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
983 || (MODE) == SFmode \
984 /* Always accept SSE2 modes so that xmmintrin.h compiles. */ \
985 || VALID_SSE2_REG_MODE (MODE) \
986 || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
987
988 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
989 ((MODE) == V2SFmode || (MODE) == SFmode)
990
991 #define VALID_MMX_REG_MODE(MODE) \
992 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
993 || (MODE) == V2SImode || (MODE) == SImode)
994
995 #define VECTOR_MODE_SUPPORTED_P(MODE) \
996 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
997 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
998 : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
999
1000 #define VALID_FP_MODE_P(MODE) \
1001 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
1002 || (!TARGET_64BIT && (MODE) == XFmode) \
1003 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode \
1004 || (!TARGET_64BIT && (MODE) == XCmode))
1005
1006 #define VALID_INT_MODE_P(MODE) \
1007 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1008 || (MODE) == DImode \
1009 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1010 || (MODE) == CDImode \
1011 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode)))
1012
1013 /* Return true for modes passed in SSE registers. */
1014 #define SSE_REG_MODE_P(MODE) \
1015 ((MODE) == TImode || (MODE) == V16QImode \
1016 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1017 || (MODE) == V4SFmode || (MODE) == V4SImode)
1018
1019 /* Return true for modes passed in MMX registers. */
1020 #define MMX_REG_MODE_P(MODE) \
1021 ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode \
1022 || (MODE) == V2SFmode)
1023
1024 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1025
1026 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1027 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1028
1029 /* Value is 1 if it is a good idea to tie two pseudo registers
1030 when one has mode MODE1 and one has mode MODE2.
1031 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1032 for any hard reg, then this must be 0 for correct output. */
1033
1034 #define MODES_TIEABLE_P(MODE1, MODE2) \
1035 ((MODE1) == (MODE2) \
1036 || (((MODE1) == HImode || (MODE1) == SImode \
1037 || ((MODE1) == QImode \
1038 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1039 || ((MODE1) == DImode && TARGET_64BIT)) \
1040 && ((MODE2) == HImode || (MODE2) == SImode \
1041 || ((MODE1) == QImode \
1042 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1043 || ((MODE2) == DImode && TARGET_64BIT))))
1044
1045
1046 /* Specify the modes required to caller save a given hard regno.
1047 We do this on i386 to prevent flags from being saved at all.
1048
1049 Kill any attempts to combine saving of modes. */
1050
1051 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1052 (CC_REGNO_P (REGNO) ? VOIDmode \
1053 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1054 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS)) \
1055 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1056 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
1057 : (MODE))
1058 /* Specify the registers used for certain standard purposes.
1059 The values of these macros are register numbers. */
1060
1061 /* on the 386 the pc register is %eip, and is not usable as a general
1062 register. The ordinary mov instructions won't work */
1063 /* #define PC_REGNUM */
1064
1065 /* Register to use for pushing function arguments. */
1066 #define STACK_POINTER_REGNUM 7
1067
1068 /* Base register for access to local variables of the function. */
1069 #define HARD_FRAME_POINTER_REGNUM 6
1070
1071 /* Base register for access to local variables of the function. */
1072 #define FRAME_POINTER_REGNUM 20
1073
1074 /* First floating point reg */
1075 #define FIRST_FLOAT_REG 8
1076
1077 /* First & last stack-like regs */
1078 #define FIRST_STACK_REG FIRST_FLOAT_REG
1079 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1080
1081 #define FLAGS_REG 17
1082 #define FPSR_REG 18
1083 #define DIRFLAG_REG 19
1084
1085 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1086 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1087
1088 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1089 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1090
1091 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1092 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1093
1094 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1095 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1096
1097 /* Value should be nonzero if functions must have frame pointers.
1098 Zero means the frame pointer need not be set up (and parms
1099 may be accessed via the stack pointer) in functions that seem suitable.
1100 This is computed in `reload', in reload1.c. */
1101 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1102
1103 /* Override this in other tm.h files to cope with various OS losage
1104 requiring a frame pointer. */
1105 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1106 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1107 #endif
1108
1109 /* Make sure we can access arbitrary call frames. */
1110 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1111
1112 /* Base register for access to arguments of the function. */
1113 #define ARG_POINTER_REGNUM 16
1114
1115 /* Register in which static-chain is passed to a function.
1116 We do use ECX as static chain register for 32 bit ABI. On the
1117 64bit ABI, ECX is an argument register, so we use R10 instead. */
1118 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1119
1120 /* Register to hold the addressing base for position independent
1121 code access to data items. We don't use PIC pointer for 64bit
1122 mode. Define the regnum to dummy value to prevent gcc from
1123 pessimizing code dealing with EBX.
1124
1125 To avoid clobbering a call-saved register unnecessarily, we renumber
1126 the pic register when possible. The change is visible after the
1127 prologue has been emitted. */
1128
1129 #define REAL_PIC_OFFSET_TABLE_REGNUM 3
1130
1131 #define PIC_OFFSET_TABLE_REGNUM \
1132 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM \
1133 : reload_completed ? REGNO (pic_offset_table_rtx) \
1134 : REAL_PIC_OFFSET_TABLE_REGNUM)
1135
1136 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1137
1138 /* Register in which address to store a structure value
1139 arrives in the function. On the 386, the prologue
1140 copies this from the stack to register %eax. */
1141 #define STRUCT_VALUE_INCOMING 0
1142
1143 /* Place in which caller passes the structure value address.
1144 0 means push the value on the stack like an argument. */
1145 #define STRUCT_VALUE 0
1146
1147 /* A C expression which can inhibit the returning of certain function
1148 values in registers, based on the type of value. A nonzero value
1149 says to return the function value in memory, just as large
1150 structures are always returned. Here TYPE will be a C expression
1151 of type `tree', representing the data type of the value.
1152
1153 Note that values of mode `BLKmode' must be explicitly handled by
1154 this macro. Also, the option `-fpcc-struct-return' takes effect
1155 regardless of this macro. On most systems, it is possible to
1156 leave the macro undefined; this causes a default definition to be
1157 used, whose value is the constant 1 for `BLKmode' values, and 0
1158 otherwise.
1159
1160 Do not use this macro to indicate that structures and unions
1161 should always be returned in memory. You should instead use
1162 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1163
1164 #define RETURN_IN_MEMORY(TYPE) \
1165 ix86_return_in_memory (TYPE)
1166
1167 \f
1168 /* Define the classes of registers for register constraints in the
1169 machine description. Also define ranges of constants.
1170
1171 One of the classes must always be named ALL_REGS and include all hard regs.
1172 If there is more than one class, another class must be named NO_REGS
1173 and contain no registers.
1174
1175 The name GENERAL_REGS must be the name of a class (or an alias for
1176 another name such as ALL_REGS). This is the class of registers
1177 that is allowed by "g" or "r" in a register constraint.
1178 Also, registers outside this class are allocated only when
1179 instructions express preferences for them.
1180
1181 The classes must be numbered in nondecreasing order; that is,
1182 a larger-numbered class must never be contained completely
1183 in a smaller-numbered class.
1184
1185 For any two classes, it is very desirable that there be another
1186 class that represents their union.
1187
1188 It might seem that class BREG is unnecessary, since no useful 386
1189 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1190 and the "b" register constraint is useful in asms for syscalls.
1191
1192 The flags and fpsr registers are in no class. */
1193
1194 enum reg_class
1195 {
1196 NO_REGS,
1197 AREG, DREG, CREG, BREG, SIREG, DIREG,
1198 AD_REGS, /* %eax/%edx for DImode */
1199 Q_REGS, /* %eax %ebx %ecx %edx */
1200 NON_Q_REGS, /* %esi %edi %ebp %esp */
1201 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1202 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1203 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1204 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1205 FLOAT_REGS,
1206 SSE_REGS,
1207 MMX_REGS,
1208 FP_TOP_SSE_REGS,
1209 FP_SECOND_SSE_REGS,
1210 FLOAT_SSE_REGS,
1211 FLOAT_INT_REGS,
1212 INT_SSE_REGS,
1213 FLOAT_INT_SSE_REGS,
1214 ALL_REGS, LIM_REG_CLASSES
1215 };
1216
1217 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1218
1219 #define INTEGER_CLASS_P(CLASS) \
1220 reg_class_subset_p ((CLASS), GENERAL_REGS)
1221 #define FLOAT_CLASS_P(CLASS) \
1222 reg_class_subset_p ((CLASS), FLOAT_REGS)
1223 #define SSE_CLASS_P(CLASS) \
1224 reg_class_subset_p ((CLASS), SSE_REGS)
1225 #define MMX_CLASS_P(CLASS) \
1226 reg_class_subset_p ((CLASS), MMX_REGS)
1227 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1228 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1229 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1230 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1231 #define MAYBE_SSE_CLASS_P(CLASS) \
1232 reg_classes_intersect_p (SSE_REGS, (CLASS))
1233 #define MAYBE_MMX_CLASS_P(CLASS) \
1234 reg_classes_intersect_p (MMX_REGS, (CLASS))
1235
1236 #define Q_CLASS_P(CLASS) \
1237 reg_class_subset_p ((CLASS), Q_REGS)
1238
1239 /* Give names of register classes as strings for dump file. */
1240
1241 #define REG_CLASS_NAMES \
1242 { "NO_REGS", \
1243 "AREG", "DREG", "CREG", "BREG", \
1244 "SIREG", "DIREG", \
1245 "AD_REGS", \
1246 "Q_REGS", "NON_Q_REGS", \
1247 "INDEX_REGS", \
1248 "LEGACY_REGS", \
1249 "GENERAL_REGS", \
1250 "FP_TOP_REG", "FP_SECOND_REG", \
1251 "FLOAT_REGS", \
1252 "SSE_REGS", \
1253 "MMX_REGS", \
1254 "FP_TOP_SSE_REGS", \
1255 "FP_SECOND_SSE_REGS", \
1256 "FLOAT_SSE_REGS", \
1257 "FLOAT_INT_REGS", \
1258 "INT_SSE_REGS", \
1259 "FLOAT_INT_SSE_REGS", \
1260 "ALL_REGS" }
1261
1262 /* Define which registers fit in which classes.
1263 This is an initializer for a vector of HARD_REG_SET
1264 of length N_REG_CLASSES. */
1265
1266 #define REG_CLASS_CONTENTS \
1267 { { 0x00, 0x0 }, \
1268 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1269 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1270 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1271 { 0x03, 0x0 }, /* AD_REGS */ \
1272 { 0x0f, 0x0 }, /* Q_REGS */ \
1273 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1274 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1275 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1276 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1277 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1278 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1279 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1280 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1281 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1282 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1283 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1284 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1285 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1286 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1287 { 0xffffffff,0x1fffff } \
1288 }
1289
1290 /* The same information, inverted:
1291 Return the class number of the smallest class containing
1292 reg number REGNO. This could be a conditional expression
1293 or could index an array. */
1294
1295 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1296
1297 /* When defined, the compiler allows registers explicitly used in the
1298 rtl to be used as spill registers but prevents the compiler from
1299 extending the lifetime of these registers. */
1300
1301 #define SMALL_REGISTER_CLASSES 1
1302
1303 #define QI_REG_P(X) \
1304 (REG_P (X) && REGNO (X) < 4)
1305
1306 #define GENERAL_REGNO_P(N) \
1307 ((N) < 8 || REX_INT_REGNO_P (N))
1308
1309 #define GENERAL_REG_P(X) \
1310 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1311
1312 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1313
1314 #define NON_QI_REG_P(X) \
1315 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1316
1317 #define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1318 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1319
1320 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1321 #define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1322 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1323 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1324
1325 #define SSE_REGNO_P(N) \
1326 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1327 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1328
1329 #define SSE_REGNO(N) \
1330 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1331 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1332
1333 #define SSE_FLOAT_MODE_P(MODE) \
1334 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1335
1336 #define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1337 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1338
1339 #define STACK_REG_P(XOP) \
1340 (REG_P (XOP) && \
1341 REGNO (XOP) >= FIRST_STACK_REG && \
1342 REGNO (XOP) <= LAST_STACK_REG)
1343
1344 #define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1345
1346 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1347
1348 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1349 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1350
1351 /* Indicate whether hard register numbered REG_NO should be converted
1352 to SSA form. */
1353 #define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
1354 ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
1355
1356 /* The class value for index registers, and the one for base regs. */
1357
1358 #define INDEX_REG_CLASS INDEX_REGS
1359 #define BASE_REG_CLASS GENERAL_REGS
1360
1361 /* Get reg_class from a letter such as appears in the machine description. */
1362
1363 #define REG_CLASS_FROM_LETTER(C) \
1364 ((C) == 'r' ? GENERAL_REGS : \
1365 (C) == 'R' ? LEGACY_REGS : \
1366 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1367 (C) == 'Q' ? Q_REGS : \
1368 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1369 ? FLOAT_REGS \
1370 : NO_REGS) : \
1371 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1372 ? FP_TOP_REG \
1373 : NO_REGS) : \
1374 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1375 ? FP_SECOND_REG \
1376 : NO_REGS) : \
1377 (C) == 'a' ? AREG : \
1378 (C) == 'b' ? BREG : \
1379 (C) == 'c' ? CREG : \
1380 (C) == 'd' ? DREG : \
1381 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1382 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1383 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
1384 (C) == 'A' ? AD_REGS : \
1385 (C) == 'D' ? DIREG : \
1386 (C) == 'S' ? SIREG : NO_REGS)
1387
1388 /* The letters I, J, K, L and M in a register constraint string
1389 can be used to stand for particular ranges of immediate operands.
1390 This macro defines what the ranges are.
1391 C is the letter, and VALUE is a constant value.
1392 Return 1 if VALUE is in the range specified by C.
1393
1394 I is for non-DImode shifts.
1395 J is for DImode shifts.
1396 K is for signed imm8 operands.
1397 L is for andsi as zero-extending move.
1398 M is for shifts that can be executed by the "lea" opcode.
1399 N is for immedaite operands for out/in instructions (0-255)
1400 */
1401
1402 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1403 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1404 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1405 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1406 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1407 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1408 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
1409 : 0)
1410
1411 /* Similar, but for floating constants, and defining letters G and H.
1412 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1413 TARGET_387 isn't set, because the stack register converter may need to
1414 load 0.0 into the function value register. */
1415
1416 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1417 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1418 : 0)
1419
1420 /* A C expression that defines the optional machine-dependent
1421 constraint letters that can be used to segregate specific types of
1422 operands, usually memory references, for the target machine. Any
1423 letter that is not elsewhere defined and not matched by
1424 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1425 be defined.
1426
1427 If it is required for a particular target machine, it should
1428 return 1 if VALUE corresponds to the operand type represented by
1429 the constraint letter C. If C is not defined as an extra
1430 constraint, the value returned should be 0 regardless of VALUE. */
1431
1432 #define EXTRA_CONSTRAINT(VALUE, D) \
1433 ((D) == 'e' ? x86_64_sign_extended_value (VALUE) \
1434 : (D) == 'Z' ? x86_64_zero_extended_value (VALUE) \
1435 : (D) == 'C' ? standard_sse_constant_p (VALUE) \
1436 : 0)
1437
1438 /* Place additional restrictions on the register class to use when it
1439 is necessary to be able to hold a value of mode MODE in a reload
1440 register for which class CLASS would ordinarily be used. */
1441
1442 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1443 ((MODE) == QImode && !TARGET_64BIT \
1444 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1445 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1446 ? Q_REGS : (CLASS))
1447
1448 /* Given an rtx X being reloaded into a reg required to be
1449 in class CLASS, return the class of reg to actually use.
1450 In general this is just CLASS; but on some machines
1451 in some cases it is preferable to use a more restrictive class.
1452 On the 80386 series, we prevent floating constants from being
1453 reloaded into floating registers (since no move-insn can do that)
1454 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1455
1456 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1457 QImode must go into class Q_REGS.
1458 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1459 movdf to do mem-to-mem moves through integer regs. */
1460
1461 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1462 ix86_preferred_reload_class ((X), (CLASS))
1463
1464 /* If we are copying between general and FP registers, we need a memory
1465 location. The same is true for SSE and MMX registers. */
1466 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1467 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1468
1469 /* QImode spills from non-QI registers need a scratch. This does not
1470 happen often -- the only example so far requires an uninitialized
1471 pseudo. */
1472
1473 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
1474 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1475 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
1476 ? Q_REGS : NO_REGS)
1477
1478 /* Return the maximum number of consecutive registers
1479 needed to represent mode MODE in a register of class CLASS. */
1480 /* On the 80386, this is the size of MODE in words,
1481 except in the FP regs, where a single reg is always enough.
1482 The TFmodes are really just 80bit values, so we use only 3 registers
1483 to hold them, instead of 4, as the size would suggest.
1484 */
1485 #define CLASS_MAX_NREGS(CLASS, MODE) \
1486 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1487 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1488 : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE)) \
1489 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1490
1491 /* A C expression whose value is nonzero if pseudos that have been
1492 assigned to registers of class CLASS would likely be spilled
1493 because registers of CLASS are needed for spill registers.
1494
1495 The default value of this macro returns 1 if CLASS has exactly one
1496 register and zero otherwise. On most machines, this default
1497 should be used. Only define this macro to some other expression
1498 if pseudo allocated by `local-alloc.c' end up in memory because
1499 their hard registers were needed for spill registers. If this
1500 macro returns nonzero for those classes, those pseudos will only
1501 be allocated by `global.c', which knows how to reallocate the
1502 pseudo to another register. If there would not be another
1503 register available for reallocation, you should not change the
1504 definition of this macro since the only effect of such a
1505 definition would be to slow down register allocation. */
1506
1507 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1508 (((CLASS) == AREG) \
1509 || ((CLASS) == DREG) \
1510 || ((CLASS) == CREG) \
1511 || ((CLASS) == BREG) \
1512 || ((CLASS) == AD_REGS) \
1513 || ((CLASS) == SIREG) \
1514 || ((CLASS) == DIREG))
1515
1516 /* A C statement that adds to CLOBBERS any hard regs the port wishes
1517 to automatically clobber for all asms.
1518
1519 We do this in the new i386 backend to maintain source compatibility
1520 with the old cc0-based compiler. */
1521
1522 #define MD_ASM_CLOBBERS(CLOBBERS) \
1523 do { \
1524 (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \
1525 (CLOBBERS)); \
1526 (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \
1527 (CLOBBERS)); \
1528 (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \
1529 (CLOBBERS)); \
1530 } while (0)
1531 \f
1532 /* Stack layout; function entry, exit and calling. */
1533
1534 /* Define this if pushing a word on the stack
1535 makes the stack pointer a smaller address. */
1536 #define STACK_GROWS_DOWNWARD
1537
1538 /* Define this if the nominal address of the stack frame
1539 is at the high-address end of the local variables;
1540 that is, each additional local variable allocated
1541 goes at a more negative offset in the frame. */
1542 #define FRAME_GROWS_DOWNWARD
1543
1544 /* Offset within stack frame to start allocating local variables at.
1545 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1546 first local allocated. Otherwise, it is the offset to the BEGINNING
1547 of the first local allocated. */
1548 #define STARTING_FRAME_OFFSET 0
1549
1550 /* If we generate an insn to push BYTES bytes,
1551 this says how many the stack pointer really advances by.
1552 On 386 pushw decrements by exactly 2 no matter what the position was.
1553 On the 386 there is no pushb; we use pushw instead, and this
1554 has the effect of rounding up to 2.
1555
1556 For 64bit ABI we round up to 8 bytes.
1557 */
1558
1559 #define PUSH_ROUNDING(BYTES) \
1560 (TARGET_64BIT \
1561 ? (((BYTES) + 7) & (-8)) \
1562 : (((BYTES) + 1) & (-2)))
1563
1564 /* If defined, the maximum amount of space required for outgoing arguments will
1565 be computed and placed into the variable
1566 `current_function_outgoing_args_size'. No space will be pushed onto the
1567 stack for each call; instead, the function prologue should increase the stack
1568 frame size by this amount. */
1569
1570 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1571
1572 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1573 instructions to pass outgoing arguments. */
1574
1575 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1576
1577 /* We want the stack and args grow in opposite directions, even if
1578 PUSH_ARGS is 0. */
1579 #define PUSH_ARGS_REVERSED 1
1580
1581 /* Offset of first parameter from the argument pointer register value. */
1582 #define FIRST_PARM_OFFSET(FNDECL) 0
1583
1584 /* Define this macro if functions should assume that stack space has been
1585 allocated for arguments even when their values are passed in registers.
1586
1587 The value of this macro is the size, in bytes, of the area reserved for
1588 arguments passed in registers for the function represented by FNDECL.
1589
1590 This space can be allocated by the caller, or be a part of the
1591 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1592 which. */
1593 #define REG_PARM_STACK_SPACE(FNDECL) 0
1594
1595 /* Define as a C expression that evaluates to nonzero if we do not know how
1596 to pass TYPE solely in registers. The file expr.h defines a
1597 definition that is usually appropriate, refer to expr.h for additional
1598 documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1599 computed in the stack and then loaded into a register. */
1600 #define MUST_PASS_IN_STACK(MODE, TYPE) \
1601 ((TYPE) != 0 \
1602 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1603 || TREE_ADDRESSABLE (TYPE) \
1604 || ((MODE) == TImode) \
1605 || ((MODE) == BLKmode \
1606 && ! ((TYPE) != 0 \
1607 && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
1608 && 0 == (int_size_in_bytes (TYPE) \
1609 % (PARM_BOUNDARY / BITS_PER_UNIT))) \
1610 && (FUNCTION_ARG_PADDING (MODE, TYPE) \
1611 == (BYTES_BIG_ENDIAN ? upward : downward)))))
1612
1613 /* Value is the number of bytes of arguments automatically
1614 popped when returning from a subroutine call.
1615 FUNDECL is the declaration node of the function (as a tree),
1616 FUNTYPE is the data type of the function (as a tree),
1617 or for a library call it is an identifier node for the subroutine name.
1618 SIZE is the number of bytes of arguments passed on the stack.
1619
1620 On the 80386, the RTD insn may be used to pop them if the number
1621 of args is fixed, but if the number is variable then the caller
1622 must pop them all. RTD can't be used for library calls now
1623 because the library is compiled with the Unix compiler.
1624 Use of RTD is a selectable option, since it is incompatible with
1625 standard Unix calling sequences. If the option is not selected,
1626 the caller must always pop the args.
1627
1628 The attribute stdcall is equivalent to RTD on a per module basis. */
1629
1630 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1631 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1632
1633 /* Define how to find the value returned by a function.
1634 VALTYPE is the data type of the value (as a tree).
1635 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1636 otherwise, FUNC is 0. */
1637 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1638 ix86_function_value (VALTYPE)
1639
1640 #define FUNCTION_VALUE_REGNO_P(N) \
1641 ix86_function_value_regno_p (N)
1642
1643 /* Define how to find the value returned by a library function
1644 assuming the value has mode MODE. */
1645
1646 #define LIBCALL_VALUE(MODE) \
1647 ix86_libcall_value (MODE)
1648
1649 /* Define the size of the result block used for communication between
1650 untyped_call and untyped_return. The block contains a DImode value
1651 followed by the block used by fnsave and frstor. */
1652
1653 #define APPLY_RESULT_SIZE (8+108)
1654
1655 /* 1 if N is a possible register number for function argument passing. */
1656 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1657
1658 /* Define a data type for recording info about an argument list
1659 during the scan of that argument list. This data type should
1660 hold all necessary information about the function itself
1661 and about the args processed so far, enough to enable macros
1662 such as FUNCTION_ARG to determine where the next arg should go. */
1663
1664 typedef struct ix86_args {
1665 int words; /* # words passed so far */
1666 int nregs; /* # registers available for passing */
1667 int regno; /* next available register number */
1668 int sse_words; /* # sse words passed so far */
1669 int sse_nregs; /* # sse registers available for passing */
1670 int sse_regno; /* next available sse register number */
1671 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1672 } CUMULATIVE_ARGS;
1673
1674 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1675 for a call to a function whose data type is FNTYPE.
1676 For a library call, FNTYPE is 0. */
1677
1678 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1679 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME))
1680
1681 /* Update the data in CUM to advance over an argument
1682 of mode MODE and data type TYPE.
1683 (TYPE is null for libcalls where that information may not be available.) */
1684
1685 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1686 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1687
1688 /* Define where to put the arguments to a function.
1689 Value is zero to push the argument on the stack,
1690 or a hard register in which to store the argument.
1691
1692 MODE is the argument's machine mode.
1693 TYPE is the data type of the argument (as a tree).
1694 This is null for libcalls where that information may
1695 not be available.
1696 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1697 the preceding args and about the function being called.
1698 NAMED is nonzero if this argument is a named parameter
1699 (otherwise it is an extra parameter matching an ellipsis). */
1700
1701 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1702 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1703
1704 /* For an arg passed partly in registers and partly in memory,
1705 this is the number of registers used.
1706 For args passed entirely in registers or entirely in memory, zero. */
1707
1708 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1709
1710 /* If PIC, we cannot make sibling calls to global functions
1711 because the PLT requires %ebx live.
1712 If we are returning floats on the register stack, we cannot make
1713 sibling calls to functions that return floats. (The stack adjust
1714 instruction will wind up after the sibcall jump, and not be executed.) */
1715 #define FUNCTION_OK_FOR_SIBCALL(DECL) \
1716 ((DECL) \
1717 && (! flag_pic || ! TREE_PUBLIC (DECL)) \
1718 && (! TARGET_FLOAT_RETURNS_IN_80387 \
1719 || ! FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (DECL)))) \
1720 || FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (cfun->decl))))))
1721
1722 /* Perform any needed actions needed for a function that is receiving a
1723 variable number of arguments.
1724
1725 CUM is as above.
1726
1727 MODE and TYPE are the mode and type of the current parameter.
1728
1729 PRETEND_SIZE is a variable that should be set to the amount of stack
1730 that must be pushed by the prolog to pretend that our caller pushed
1731 it.
1732
1733 Normally, this macro will push all remaining incoming registers on the
1734 stack and set PRETEND_SIZE to the length of the registers pushed. */
1735
1736 #define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1737 ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1738 (NO_RTL))
1739
1740 /* Define the `__builtin_va_list' type for the ABI. */
1741 #define BUILD_VA_LIST_TYPE(VALIST) \
1742 ((VALIST) = ix86_build_va_list ())
1743
1744 /* Implement `va_start' for varargs and stdarg. */
1745 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1746 ix86_va_start (VALIST, NEXTARG)
1747
1748 /* Implement `va_arg'. */
1749 #define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1750 ix86_va_arg ((VALIST), (TYPE))
1751
1752 /* This macro is invoked at the end of compilation. It is used here to
1753 output code for -fpic that will load the return address into %ebx. */
1754
1755 #undef ASM_FILE_END
1756 #define ASM_FILE_END(FILE) ix86_asm_file_end (FILE)
1757
1758 /* Output assembler code to FILE to increment profiler label # LABELNO
1759 for profiling a function entry. */
1760
1761 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1762
1763 #define MCOUNT_NAME "_mcount"
1764
1765 #define PROFILE_COUNT_REGISTER "edx"
1766
1767 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1768 the stack pointer does not matter. The value is tested only in
1769 functions that have frame pointers.
1770 No definition is equivalent to always zero. */
1771 /* Note on the 386 it might be more efficient not to define this since
1772 we have to restore it ourselves from the frame pointer, in order to
1773 use pop */
1774
1775 #define EXIT_IGNORE_STACK 1
1776
1777 /* Output assembler code for a block containing the constant parts
1778 of a trampoline, leaving space for the variable parts. */
1779
1780 /* On the 386, the trampoline contains two instructions:
1781 mov #STATIC,ecx
1782 jmp FUNCTION
1783 The trampoline is generated entirely at runtime. The operand of JMP
1784 is the address of FUNCTION relative to the instruction following the
1785 JMP (which is 5 bytes long). */
1786
1787 /* Length in units of the trampoline for entering a nested function. */
1788
1789 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1790
1791 /* Emit RTL insns to initialize the variable parts of a trampoline.
1792 FNADDR is an RTX for the address of the function's pure code.
1793 CXT is an RTX for the static chain value for the function. */
1794
1795 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1796 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1797 \f
1798 /* Definitions for register eliminations.
1799
1800 This is an array of structures. Each structure initializes one pair
1801 of eliminable registers. The "from" register number is given first,
1802 followed by "to". Eliminations of the same "from" register are listed
1803 in order of preference.
1804
1805 There are two registers that can always be eliminated on the i386.
1806 The frame pointer and the arg pointer can be replaced by either the
1807 hard frame pointer or to the stack pointer, depending upon the
1808 circumstances. The hard frame pointer is not used before reload and
1809 so it is not eligible for elimination. */
1810
1811 #define ELIMINABLE_REGS \
1812 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1813 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1814 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1815 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1816
1817 /* Given FROM and TO register numbers, say whether this elimination is
1818 allowed. Frame pointer elimination is automatically handled.
1819
1820 All other eliminations are valid. */
1821
1822 #define CAN_ELIMINATE(FROM, TO) \
1823 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1824
1825 /* Define the offset between two registers, one to be eliminated, and the other
1826 its replacement, at the start of a routine. */
1827
1828 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1829 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1830 \f
1831 /* Addressing modes, and classification of registers for them. */
1832
1833 /* #define HAVE_POST_INCREMENT 0 */
1834 /* #define HAVE_POST_DECREMENT 0 */
1835
1836 /* #define HAVE_PRE_DECREMENT 0 */
1837 /* #define HAVE_PRE_INCREMENT 0 */
1838
1839 /* Macros to check register numbers against specific register classes. */
1840
1841 /* These assume that REGNO is a hard or pseudo reg number.
1842 They give nonzero only if REGNO is a hard reg of the suitable class
1843 or a pseudo reg currently allocated to a suitable hard reg.
1844 Since they use reg_renumber, they are safe only once reg_renumber
1845 has been allocated, which happens in local-alloc.c. */
1846
1847 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1848 ((REGNO) < STACK_POINTER_REGNUM \
1849 || (REGNO >= FIRST_REX_INT_REG \
1850 && (REGNO) <= LAST_REX_INT_REG) \
1851 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1852 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1853 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1854
1855 #define REGNO_OK_FOR_BASE_P(REGNO) \
1856 ((REGNO) <= STACK_POINTER_REGNUM \
1857 || (REGNO) == ARG_POINTER_REGNUM \
1858 || (REGNO) == FRAME_POINTER_REGNUM \
1859 || (REGNO >= FIRST_REX_INT_REG \
1860 && (REGNO) <= LAST_REX_INT_REG) \
1861 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1862 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1863 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1864
1865 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1866 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1867 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1868 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1869
1870 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1871 and check its validity for a certain class.
1872 We have two alternate definitions for each of them.
1873 The usual definition accepts all pseudo regs; the other rejects
1874 them unless they have been allocated suitable hard regs.
1875 The symbol REG_OK_STRICT causes the latter definition to be used.
1876
1877 Most source files want to accept pseudo regs in the hope that
1878 they will get allocated to the class that the insn wants them to be in.
1879 Source files for reload pass need to be strict.
1880 After reload, it makes no difference, since pseudo regs have
1881 been eliminated by then. */
1882
1883
1884 /* Non strict versions, pseudos are ok */
1885 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1886 (REGNO (X) < STACK_POINTER_REGNUM \
1887 || (REGNO (X) >= FIRST_REX_INT_REG \
1888 && REGNO (X) <= LAST_REX_INT_REG) \
1889 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1890
1891 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1892 (REGNO (X) <= STACK_POINTER_REGNUM \
1893 || REGNO (X) == ARG_POINTER_REGNUM \
1894 || REGNO (X) == FRAME_POINTER_REGNUM \
1895 || (REGNO (X) >= FIRST_REX_INT_REG \
1896 && REGNO (X) <= LAST_REX_INT_REG) \
1897 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1898
1899 /* Strict versions, hard registers only */
1900 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1901 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1902
1903 #ifndef REG_OK_STRICT
1904 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1905 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1906
1907 #else
1908 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1909 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1910 #endif
1911
1912 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1913 that is a valid memory address for an instruction.
1914 The MODE argument is the machine mode for the MEM expression
1915 that wants to use this address.
1916
1917 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1918 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1919
1920 See legitimize_pic_address in i386.c for details as to what
1921 constitutes a legitimate address when -fpic is used. */
1922
1923 #define MAX_REGS_PER_ADDRESS 2
1924
1925 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1926
1927 /* Nonzero if the constant value X is a legitimate general operand.
1928 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1929
1930 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1931
1932 #ifdef REG_OK_STRICT
1933 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1934 do { \
1935 if (legitimate_address_p ((MODE), (X), 1)) \
1936 goto ADDR; \
1937 } while (0)
1938
1939 #else
1940 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1941 do { \
1942 if (legitimate_address_p ((MODE), (X), 0)) \
1943 goto ADDR; \
1944 } while (0)
1945
1946 #endif
1947
1948 /* If defined, a C expression to determine the base term of address X.
1949 This macro is used in only one place: `find_base_term' in alias.c.
1950
1951 It is always safe for this macro to not be defined. It exists so
1952 that alias analysis can understand machine-dependent addresses.
1953
1954 The typical use of this macro is to handle addresses containing
1955 a label_ref or symbol_ref within an UNSPEC. */
1956
1957 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1958
1959 /* Try machine-dependent ways of modifying an illegitimate address
1960 to be legitimate. If we find one, return the new, valid address.
1961 This macro is used in only one place: `memory_address' in explow.c.
1962
1963 OLDX is the address as it was before break_out_memory_refs was called.
1964 In some cases it is useful to look at this to decide what needs to be done.
1965
1966 MODE and WIN are passed so that this macro can use
1967 GO_IF_LEGITIMATE_ADDRESS.
1968
1969 It is always safe for this macro to do nothing. It exists to recognize
1970 opportunities to optimize the output.
1971
1972 For the 80386, we handle X+REG by loading X into a register R and
1973 using R+REG. R will go in a general reg and indexing will be used.
1974 However, if REG is a broken-out memory address or multiplication,
1975 nothing needs to be done because REG can certainly go in a general reg.
1976
1977 When -fpic is used, special handling is needed for symbolic references.
1978 See comments by legitimize_pic_address in i386.c for details. */
1979
1980 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1981 do { \
1982 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1983 if (memory_address_p ((MODE), (X))) \
1984 goto WIN; \
1985 } while (0)
1986
1987 #define REWRITE_ADDRESS(X) rewrite_address (X)
1988
1989 /* Nonzero if the constant value X is a legitimate general operand
1990 when generating PIC code. It is given that flag_pic is on and
1991 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1992
1993 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1994
1995 #define SYMBOLIC_CONST(X) \
1996 (GET_CODE (X) == SYMBOL_REF \
1997 || GET_CODE (X) == LABEL_REF \
1998 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1999
2000 /* Go to LABEL if ADDR (a legitimate address expression)
2001 has an effect that depends on the machine mode it is used for.
2002 On the 80386, only postdecrement and postincrement address depend thus
2003 (the amount of decrement or increment being the length of the operand). */
2004 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2005 do { \
2006 if (GET_CODE (ADDR) == POST_INC \
2007 || GET_CODE (ADDR) == POST_DEC) \
2008 goto LABEL; \
2009 } while (0)
2010 \f
2011 /* Codes for all the SSE/MMX builtins. */
2012 enum ix86_builtins
2013 {
2014 IX86_BUILTIN_ADDPS,
2015 IX86_BUILTIN_ADDSS,
2016 IX86_BUILTIN_DIVPS,
2017 IX86_BUILTIN_DIVSS,
2018 IX86_BUILTIN_MULPS,
2019 IX86_BUILTIN_MULSS,
2020 IX86_BUILTIN_SUBPS,
2021 IX86_BUILTIN_SUBSS,
2022
2023 IX86_BUILTIN_CMPEQPS,
2024 IX86_BUILTIN_CMPLTPS,
2025 IX86_BUILTIN_CMPLEPS,
2026 IX86_BUILTIN_CMPGTPS,
2027 IX86_BUILTIN_CMPGEPS,
2028 IX86_BUILTIN_CMPNEQPS,
2029 IX86_BUILTIN_CMPNLTPS,
2030 IX86_BUILTIN_CMPNLEPS,
2031 IX86_BUILTIN_CMPNGTPS,
2032 IX86_BUILTIN_CMPNGEPS,
2033 IX86_BUILTIN_CMPORDPS,
2034 IX86_BUILTIN_CMPUNORDPS,
2035 IX86_BUILTIN_CMPNEPS,
2036 IX86_BUILTIN_CMPEQSS,
2037 IX86_BUILTIN_CMPLTSS,
2038 IX86_BUILTIN_CMPLESS,
2039 IX86_BUILTIN_CMPNEQSS,
2040 IX86_BUILTIN_CMPNLTSS,
2041 IX86_BUILTIN_CMPNLESS,
2042 IX86_BUILTIN_CMPORDSS,
2043 IX86_BUILTIN_CMPUNORDSS,
2044 IX86_BUILTIN_CMPNESS,
2045
2046 IX86_BUILTIN_COMIEQSS,
2047 IX86_BUILTIN_COMILTSS,
2048 IX86_BUILTIN_COMILESS,
2049 IX86_BUILTIN_COMIGTSS,
2050 IX86_BUILTIN_COMIGESS,
2051 IX86_BUILTIN_COMINEQSS,
2052 IX86_BUILTIN_UCOMIEQSS,
2053 IX86_BUILTIN_UCOMILTSS,
2054 IX86_BUILTIN_UCOMILESS,
2055 IX86_BUILTIN_UCOMIGTSS,
2056 IX86_BUILTIN_UCOMIGESS,
2057 IX86_BUILTIN_UCOMINEQSS,
2058
2059 IX86_BUILTIN_CVTPI2PS,
2060 IX86_BUILTIN_CVTPS2PI,
2061 IX86_BUILTIN_CVTSI2SS,
2062 IX86_BUILTIN_CVTSS2SI,
2063 IX86_BUILTIN_CVTTPS2PI,
2064 IX86_BUILTIN_CVTTSS2SI,
2065
2066 IX86_BUILTIN_MAXPS,
2067 IX86_BUILTIN_MAXSS,
2068 IX86_BUILTIN_MINPS,
2069 IX86_BUILTIN_MINSS,
2070
2071 IX86_BUILTIN_LOADAPS,
2072 IX86_BUILTIN_LOADUPS,
2073 IX86_BUILTIN_STOREAPS,
2074 IX86_BUILTIN_STOREUPS,
2075 IX86_BUILTIN_LOADSS,
2076 IX86_BUILTIN_STORESS,
2077 IX86_BUILTIN_MOVSS,
2078
2079 IX86_BUILTIN_MOVHLPS,
2080 IX86_BUILTIN_MOVLHPS,
2081 IX86_BUILTIN_LOADHPS,
2082 IX86_BUILTIN_LOADLPS,
2083 IX86_BUILTIN_STOREHPS,
2084 IX86_BUILTIN_STORELPS,
2085
2086 IX86_BUILTIN_MASKMOVQ,
2087 IX86_BUILTIN_MOVMSKPS,
2088 IX86_BUILTIN_PMOVMSKB,
2089
2090 IX86_BUILTIN_MOVNTPS,
2091 IX86_BUILTIN_MOVNTQ,
2092
2093 IX86_BUILTIN_LOADDQA,
2094 IX86_BUILTIN_LOADDQU,
2095 IX86_BUILTIN_STOREDQA,
2096 IX86_BUILTIN_STOREDQU,
2097 IX86_BUILTIN_MOVQ,
2098 IX86_BUILTIN_LOADD,
2099 IX86_BUILTIN_STORED,
2100
2101 IX86_BUILTIN_CLRTI,
2102
2103 IX86_BUILTIN_PACKSSWB,
2104 IX86_BUILTIN_PACKSSDW,
2105 IX86_BUILTIN_PACKUSWB,
2106
2107 IX86_BUILTIN_PADDB,
2108 IX86_BUILTIN_PADDW,
2109 IX86_BUILTIN_PADDD,
2110 IX86_BUILTIN_PADDSB,
2111 IX86_BUILTIN_PADDSW,
2112 IX86_BUILTIN_PADDUSB,
2113 IX86_BUILTIN_PADDUSW,
2114 IX86_BUILTIN_PSUBB,
2115 IX86_BUILTIN_PSUBW,
2116 IX86_BUILTIN_PSUBD,
2117 IX86_BUILTIN_PSUBSB,
2118 IX86_BUILTIN_PSUBSW,
2119 IX86_BUILTIN_PSUBUSB,
2120 IX86_BUILTIN_PSUBUSW,
2121
2122 IX86_BUILTIN_PAND,
2123 IX86_BUILTIN_PANDN,
2124 IX86_BUILTIN_POR,
2125 IX86_BUILTIN_PXOR,
2126
2127 IX86_BUILTIN_PAVGB,
2128 IX86_BUILTIN_PAVGW,
2129
2130 IX86_BUILTIN_PCMPEQB,
2131 IX86_BUILTIN_PCMPEQW,
2132 IX86_BUILTIN_PCMPEQD,
2133 IX86_BUILTIN_PCMPGTB,
2134 IX86_BUILTIN_PCMPGTW,
2135 IX86_BUILTIN_PCMPGTD,
2136
2137 IX86_BUILTIN_PEXTRW,
2138 IX86_BUILTIN_PINSRW,
2139
2140 IX86_BUILTIN_PMADDWD,
2141
2142 IX86_BUILTIN_PMAXSW,
2143 IX86_BUILTIN_PMAXUB,
2144 IX86_BUILTIN_PMINSW,
2145 IX86_BUILTIN_PMINUB,
2146
2147 IX86_BUILTIN_PMULHUW,
2148 IX86_BUILTIN_PMULHW,
2149 IX86_BUILTIN_PMULLW,
2150
2151 IX86_BUILTIN_PSADBW,
2152 IX86_BUILTIN_PSHUFW,
2153
2154 IX86_BUILTIN_PSLLW,
2155 IX86_BUILTIN_PSLLD,
2156 IX86_BUILTIN_PSLLQ,
2157 IX86_BUILTIN_PSRAW,
2158 IX86_BUILTIN_PSRAD,
2159 IX86_BUILTIN_PSRLW,
2160 IX86_BUILTIN_PSRLD,
2161 IX86_BUILTIN_PSRLQ,
2162 IX86_BUILTIN_PSLLWI,
2163 IX86_BUILTIN_PSLLDI,
2164 IX86_BUILTIN_PSLLQI,
2165 IX86_BUILTIN_PSRAWI,
2166 IX86_BUILTIN_PSRADI,
2167 IX86_BUILTIN_PSRLWI,
2168 IX86_BUILTIN_PSRLDI,
2169 IX86_BUILTIN_PSRLQI,
2170
2171 IX86_BUILTIN_PUNPCKHBW,
2172 IX86_BUILTIN_PUNPCKHWD,
2173 IX86_BUILTIN_PUNPCKHDQ,
2174 IX86_BUILTIN_PUNPCKLBW,
2175 IX86_BUILTIN_PUNPCKLWD,
2176 IX86_BUILTIN_PUNPCKLDQ,
2177
2178 IX86_BUILTIN_SHUFPS,
2179
2180 IX86_BUILTIN_RCPPS,
2181 IX86_BUILTIN_RCPSS,
2182 IX86_BUILTIN_RSQRTPS,
2183 IX86_BUILTIN_RSQRTSS,
2184 IX86_BUILTIN_SQRTPS,
2185 IX86_BUILTIN_SQRTSS,
2186
2187 IX86_BUILTIN_UNPCKHPS,
2188 IX86_BUILTIN_UNPCKLPS,
2189
2190 IX86_BUILTIN_ANDPS,
2191 IX86_BUILTIN_ANDNPS,
2192 IX86_BUILTIN_ORPS,
2193 IX86_BUILTIN_XORPS,
2194
2195 IX86_BUILTIN_EMMS,
2196 IX86_BUILTIN_LDMXCSR,
2197 IX86_BUILTIN_STMXCSR,
2198 IX86_BUILTIN_SFENCE,
2199
2200 /* 3DNow! Original */
2201 IX86_BUILTIN_FEMMS,
2202 IX86_BUILTIN_PAVGUSB,
2203 IX86_BUILTIN_PF2ID,
2204 IX86_BUILTIN_PFACC,
2205 IX86_BUILTIN_PFADD,
2206 IX86_BUILTIN_PFCMPEQ,
2207 IX86_BUILTIN_PFCMPGE,
2208 IX86_BUILTIN_PFCMPGT,
2209 IX86_BUILTIN_PFMAX,
2210 IX86_BUILTIN_PFMIN,
2211 IX86_BUILTIN_PFMUL,
2212 IX86_BUILTIN_PFRCP,
2213 IX86_BUILTIN_PFRCPIT1,
2214 IX86_BUILTIN_PFRCPIT2,
2215 IX86_BUILTIN_PFRSQIT1,
2216 IX86_BUILTIN_PFRSQRT,
2217 IX86_BUILTIN_PFSUB,
2218 IX86_BUILTIN_PFSUBR,
2219 IX86_BUILTIN_PI2FD,
2220 IX86_BUILTIN_PMULHRW,
2221
2222 /* 3DNow! Athlon Extensions */
2223 IX86_BUILTIN_PF2IW,
2224 IX86_BUILTIN_PFNACC,
2225 IX86_BUILTIN_PFPNACC,
2226 IX86_BUILTIN_PI2FW,
2227 IX86_BUILTIN_PSWAPDSI,
2228 IX86_BUILTIN_PSWAPDSF,
2229
2230 IX86_BUILTIN_SSE_ZERO,
2231 IX86_BUILTIN_MMX_ZERO,
2232
2233 /* SSE2 */
2234 IX86_BUILTIN_ADDPD,
2235 IX86_BUILTIN_ADDSD,
2236 IX86_BUILTIN_DIVPD,
2237 IX86_BUILTIN_DIVSD,
2238 IX86_BUILTIN_MULPD,
2239 IX86_BUILTIN_MULSD,
2240 IX86_BUILTIN_SUBPD,
2241 IX86_BUILTIN_SUBSD,
2242
2243 IX86_BUILTIN_CMPEQPD,
2244 IX86_BUILTIN_CMPLTPD,
2245 IX86_BUILTIN_CMPLEPD,
2246 IX86_BUILTIN_CMPGTPD,
2247 IX86_BUILTIN_CMPGEPD,
2248 IX86_BUILTIN_CMPNEQPD,
2249 IX86_BUILTIN_CMPNLTPD,
2250 IX86_BUILTIN_CMPNLEPD,
2251 IX86_BUILTIN_CMPNGTPD,
2252 IX86_BUILTIN_CMPNGEPD,
2253 IX86_BUILTIN_CMPORDPD,
2254 IX86_BUILTIN_CMPUNORDPD,
2255 IX86_BUILTIN_CMPNEPD,
2256 IX86_BUILTIN_CMPEQSD,
2257 IX86_BUILTIN_CMPLTSD,
2258 IX86_BUILTIN_CMPLESD,
2259 IX86_BUILTIN_CMPNEQSD,
2260 IX86_BUILTIN_CMPNLTSD,
2261 IX86_BUILTIN_CMPNLESD,
2262 IX86_BUILTIN_CMPORDSD,
2263 IX86_BUILTIN_CMPUNORDSD,
2264 IX86_BUILTIN_CMPNESD,
2265
2266 IX86_BUILTIN_COMIEQSD,
2267 IX86_BUILTIN_COMILTSD,
2268 IX86_BUILTIN_COMILESD,
2269 IX86_BUILTIN_COMIGTSD,
2270 IX86_BUILTIN_COMIGESD,
2271 IX86_BUILTIN_COMINEQSD,
2272 IX86_BUILTIN_UCOMIEQSD,
2273 IX86_BUILTIN_UCOMILTSD,
2274 IX86_BUILTIN_UCOMILESD,
2275 IX86_BUILTIN_UCOMIGTSD,
2276 IX86_BUILTIN_UCOMIGESD,
2277 IX86_BUILTIN_UCOMINEQSD,
2278
2279 IX86_BUILTIN_MAXPD,
2280 IX86_BUILTIN_MAXSD,
2281 IX86_BUILTIN_MINPD,
2282 IX86_BUILTIN_MINSD,
2283
2284 IX86_BUILTIN_ANDPD,
2285 IX86_BUILTIN_ANDNPD,
2286 IX86_BUILTIN_ORPD,
2287 IX86_BUILTIN_XORPD,
2288
2289 IX86_BUILTIN_SQRTPD,
2290 IX86_BUILTIN_SQRTSD,
2291
2292 IX86_BUILTIN_UNPCKHPD,
2293 IX86_BUILTIN_UNPCKLPD,
2294
2295 IX86_BUILTIN_SHUFPD,
2296
2297 IX86_BUILTIN_LOADAPD,
2298 IX86_BUILTIN_LOADUPD,
2299 IX86_BUILTIN_STOREAPD,
2300 IX86_BUILTIN_STOREUPD,
2301 IX86_BUILTIN_LOADSD,
2302 IX86_BUILTIN_STORESD,
2303 IX86_BUILTIN_MOVSD,
2304
2305 IX86_BUILTIN_LOADHPD,
2306 IX86_BUILTIN_LOADLPD,
2307 IX86_BUILTIN_STOREHPD,
2308 IX86_BUILTIN_STORELPD,
2309
2310 IX86_BUILTIN_CVTDQ2PD,
2311 IX86_BUILTIN_CVTDQ2PS,
2312
2313 IX86_BUILTIN_CVTPD2DQ,
2314 IX86_BUILTIN_CVTPD2PI,
2315 IX86_BUILTIN_CVTPD2PS,
2316 IX86_BUILTIN_CVTTPD2DQ,
2317 IX86_BUILTIN_CVTTPD2PI,
2318
2319 IX86_BUILTIN_CVTPI2PD,
2320 IX86_BUILTIN_CVTSI2SD,
2321
2322 IX86_BUILTIN_CVTSD2SI,
2323 IX86_BUILTIN_CVTSD2SS,
2324 IX86_BUILTIN_CVTSS2SD,
2325 IX86_BUILTIN_CVTTSD2SI,
2326
2327 IX86_BUILTIN_CVTPS2DQ,
2328 IX86_BUILTIN_CVTPS2PD,
2329 IX86_BUILTIN_CVTTPS2DQ,
2330
2331 IX86_BUILTIN_MOVNTI,
2332 IX86_BUILTIN_MOVNTPD,
2333 IX86_BUILTIN_MOVNTDQ,
2334
2335 IX86_BUILTIN_SETPD1,
2336 IX86_BUILTIN_SETPD,
2337 IX86_BUILTIN_CLRPD,
2338 IX86_BUILTIN_SETRPD,
2339 IX86_BUILTIN_LOADPD1,
2340 IX86_BUILTIN_LOADRPD,
2341 IX86_BUILTIN_STOREPD1,
2342 IX86_BUILTIN_STORERPD,
2343
2344 /* SSE2 MMX */
2345 IX86_BUILTIN_MASKMOVDQU,
2346 IX86_BUILTIN_MOVMSKPD,
2347 IX86_BUILTIN_PMOVMSKB128,
2348 IX86_BUILTIN_MOVQ2DQ,
2349 IX86_BUILTIN_MOVDQ2Q,
2350
2351 IX86_BUILTIN_PACKSSWB128,
2352 IX86_BUILTIN_PACKSSDW128,
2353 IX86_BUILTIN_PACKUSWB128,
2354
2355 IX86_BUILTIN_PADDB128,
2356 IX86_BUILTIN_PADDW128,
2357 IX86_BUILTIN_PADDD128,
2358 IX86_BUILTIN_PADDQ128,
2359 IX86_BUILTIN_PADDSB128,
2360 IX86_BUILTIN_PADDSW128,
2361 IX86_BUILTIN_PADDUSB128,
2362 IX86_BUILTIN_PADDUSW128,
2363 IX86_BUILTIN_PSUBB128,
2364 IX86_BUILTIN_PSUBW128,
2365 IX86_BUILTIN_PSUBD128,
2366 IX86_BUILTIN_PSUBQ128,
2367 IX86_BUILTIN_PSUBSB128,
2368 IX86_BUILTIN_PSUBSW128,
2369 IX86_BUILTIN_PSUBUSB128,
2370 IX86_BUILTIN_PSUBUSW128,
2371
2372 IX86_BUILTIN_PAND128,
2373 IX86_BUILTIN_PANDN128,
2374 IX86_BUILTIN_POR128,
2375 IX86_BUILTIN_PXOR128,
2376
2377 IX86_BUILTIN_PAVGB128,
2378 IX86_BUILTIN_PAVGW128,
2379
2380 IX86_BUILTIN_PCMPEQB128,
2381 IX86_BUILTIN_PCMPEQW128,
2382 IX86_BUILTIN_PCMPEQD128,
2383 IX86_BUILTIN_PCMPGTB128,
2384 IX86_BUILTIN_PCMPGTW128,
2385 IX86_BUILTIN_PCMPGTD128,
2386
2387 IX86_BUILTIN_PEXTRW128,
2388 IX86_BUILTIN_PINSRW128,
2389
2390 IX86_BUILTIN_PMADDWD128,
2391
2392 IX86_BUILTIN_PMAXSW128,
2393 IX86_BUILTIN_PMAXUB128,
2394 IX86_BUILTIN_PMINSW128,
2395 IX86_BUILTIN_PMINUB128,
2396
2397 IX86_BUILTIN_PMULUDQ,
2398 IX86_BUILTIN_PMULUDQ128,
2399 IX86_BUILTIN_PMULHUW128,
2400 IX86_BUILTIN_PMULHW128,
2401 IX86_BUILTIN_PMULLW128,
2402
2403 IX86_BUILTIN_PSADBW128,
2404 IX86_BUILTIN_PSHUFHW,
2405 IX86_BUILTIN_PSHUFLW,
2406 IX86_BUILTIN_PSHUFD,
2407
2408 IX86_BUILTIN_PSLLW128,
2409 IX86_BUILTIN_PSLLD128,
2410 IX86_BUILTIN_PSLLQ128,
2411 IX86_BUILTIN_PSRAW128,
2412 IX86_BUILTIN_PSRAD128,
2413 IX86_BUILTIN_PSRLW128,
2414 IX86_BUILTIN_PSRLD128,
2415 IX86_BUILTIN_PSRLQ128,
2416 IX86_BUILTIN_PSLLDQI128,
2417 IX86_BUILTIN_PSLLWI128,
2418 IX86_BUILTIN_PSLLDI128,
2419 IX86_BUILTIN_PSLLQI128,
2420 IX86_BUILTIN_PSRAWI128,
2421 IX86_BUILTIN_PSRADI128,
2422 IX86_BUILTIN_PSRLDQI128,
2423 IX86_BUILTIN_PSRLWI128,
2424 IX86_BUILTIN_PSRLDI128,
2425 IX86_BUILTIN_PSRLQI128,
2426
2427 IX86_BUILTIN_PUNPCKHBW128,
2428 IX86_BUILTIN_PUNPCKHWD128,
2429 IX86_BUILTIN_PUNPCKHDQ128,
2430 IX86_BUILTIN_PUNPCKHQDQ128,
2431 IX86_BUILTIN_PUNPCKLBW128,
2432 IX86_BUILTIN_PUNPCKLWD128,
2433 IX86_BUILTIN_PUNPCKLDQ128,
2434 IX86_BUILTIN_PUNPCKLQDQ128,
2435
2436 IX86_BUILTIN_CLFLUSH,
2437 IX86_BUILTIN_MFENCE,
2438 IX86_BUILTIN_LFENCE,
2439
2440 IX86_BUILTIN_MAX
2441 };
2442 \f
2443 #define TARGET_ENCODE_SECTION_INFO ix86_encode_section_info
2444 #define TARGET_STRIP_NAME_ENCODING ix86_strip_name_encoding
2445
2446 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2447 do { \
2448 const char *xname = (NAME); \
2449 if (xname[0] == '%') \
2450 xname += 2; \
2451 if (xname[0] == '*') \
2452 xname += 1; \
2453 else \
2454 fputs (user_label_prefix, FILE); \
2455 fputs (xname, FILE); \
2456 } while (0)
2457 \f
2458 /* Max number of args passed in registers. If this is more than 3, we will
2459 have problems with ebx (register #4), since it is a caller save register and
2460 is also used as the pic register in ELF. So for now, don't allow more than
2461 3 registers to be passed in registers. */
2462
2463 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2464
2465 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
2466
2467 \f
2468 /* Specify the machine mode that this machine uses
2469 for the index in the tablejump instruction. */
2470 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2471
2472 /* Define as C expression which evaluates to nonzero if the tablejump
2473 instruction expects the table to contain offsets from the address of the
2474 table.
2475 Do not define this if the table should contain absolute addresses. */
2476 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2477
2478 /* Define this as 1 if `char' should by default be signed; else as 0. */
2479 #define DEFAULT_SIGNED_CHAR 1
2480
2481 /* Number of bytes moved into a data cache for a single prefetch operation. */
2482 #define PREFETCH_BLOCK ix86_cost->prefetch_block
2483
2484 /* Number of prefetch operations that can be done in parallel. */
2485 #define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2486
2487 /* Max number of bytes we can move from memory to memory
2488 in one reasonably fast instruction. */
2489 #define MOVE_MAX 16
2490
2491 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
2492 move efficiently, as opposed to MOVE_MAX which is the maximum
2493 number of bytes we can move with a single instruction. */
2494 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2495
2496 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2497 move-instruction pairs, we will do a movstr or libcall instead.
2498 Increasing the value will always make code faster, but eventually
2499 incurs high cost in increased code size.
2500
2501 If you don't define this, a reasonable default is used. */
2502
2503 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2504
2505 /* Define if shifts truncate the shift count
2506 which implies one can omit a sign-extension or zero-extension
2507 of a shift count. */
2508 /* On i386, shifts do truncate the count. But bit opcodes don't. */
2509
2510 /* #define SHIFT_COUNT_TRUNCATED */
2511
2512 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2513 is done just by pretending it is already truncated. */
2514 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2515
2516 /* We assume that the store-condition-codes instructions store 0 for false
2517 and some other value for true. This is the value stored for true. */
2518
2519 #define STORE_FLAG_VALUE 1
2520
2521 /* When a prototype says `char' or `short', really pass an `int'.
2522 (The 386 can't easily push less than an int.) */
2523
2524 #define PROMOTE_PROTOTYPES 1
2525
2526 /* A macro to update M and UNSIGNEDP when an object whose type is
2527 TYPE and which has the specified mode and signedness is to be
2528 stored in a register. This macro is only called when TYPE is a
2529 scalar type.
2530
2531 On i386 it is sometimes useful to promote HImode and QImode
2532 quantities to SImode. The choice depends on target type. */
2533
2534 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2535 do { \
2536 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2537 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
2538 (MODE) = SImode; \
2539 } while (0)
2540
2541 /* Specify the machine mode that pointers have.
2542 After generation of rtl, the compiler makes no further distinction
2543 between pointers and any other objects of this machine mode. */
2544 #define Pmode (TARGET_64BIT ? DImode : SImode)
2545
2546 /* A function address in a call instruction
2547 is a byte address (for indexing purposes)
2548 so give the MEM rtx a byte's mode. */
2549 #define FUNCTION_MODE QImode
2550 \f
2551 /* A part of a C `switch' statement that describes the relative costs
2552 of constant RTL expressions. It must contain `case' labels for
2553 expression codes `const_int', `const', `symbol_ref', `label_ref'
2554 and `const_double'. Each case must ultimately reach a `return'
2555 statement to return the relative cost of the use of that kind of
2556 constant value in an expression. The cost may depend on the
2557 precise value of the constant, which is available for examination
2558 in X, and the rtx code of the expression in which it is contained,
2559 found in OUTER_CODE.
2560
2561 CODE is the expression code--redundant, since it can be obtained
2562 with `GET_CODE (X)'. */
2563
2564 #define CONST_COSTS(RTX, CODE, OUTER_CODE) \
2565 case CONST_INT: \
2566 case CONST: \
2567 case LABEL_REF: \
2568 case SYMBOL_REF: \
2569 if (TARGET_64BIT && !x86_64_sign_extended_value (RTX)) \
2570 return 3; \
2571 if (TARGET_64BIT && !x86_64_zero_extended_value (RTX)) \
2572 return 2; \
2573 return flag_pic && SYMBOLIC_CONST (RTX) ? 1 : 0; \
2574 \
2575 case CONST_DOUBLE: \
2576 if (GET_MODE (RTX) == VOIDmode) \
2577 return 0; \
2578 switch (standard_80387_constant_p (RTX)) \
2579 { \
2580 case 1: /* 0.0 */ \
2581 return 1; \
2582 case 2: /* 1.0 */ \
2583 return 2; \
2584 default: \
2585 /* Start with (MEM (SYMBOL_REF)), since that's where \
2586 it'll probably end up. Add a penalty for size. */ \
2587 return (COSTS_N_INSNS (1) + (flag_pic != 0) \
2588 + (GET_MODE (RTX) == SFmode ? 0 \
2589 : GET_MODE (RTX) == DFmode ? 1 : 2)); \
2590 }
2591
2592 /* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
2593 #define TOPLEVEL_COSTS_N_INSNS(N) \
2594 do { total = COSTS_N_INSNS (N); goto egress_rtx_costs; } while (0)
2595
2596 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
2597 This can be used, for example, to indicate how costly a multiply
2598 instruction is. In writing this macro, you can use the construct
2599 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
2600 instructions. OUTER_CODE is the code of the expression in which X
2601 is contained.
2602
2603 This macro is optional; do not define it if the default cost
2604 assumptions are adequate for the target machine. */
2605
2606 #define RTX_COSTS(X, CODE, OUTER_CODE) \
2607 case ZERO_EXTEND: \
2608 /* The zero extensions is often completely free on x86_64, so make \
2609 it as cheap as possible. */ \
2610 if (TARGET_64BIT && GET_MODE (X) == DImode \
2611 && GET_MODE (XEXP (X, 0)) == SImode) \
2612 { \
2613 total = 1; goto egress_rtx_costs; \
2614 } \
2615 else \
2616 TOPLEVEL_COSTS_N_INSNS (TARGET_ZERO_EXTEND_WITH_AND ? \
2617 ix86_cost->add : ix86_cost->movzx); \
2618 break; \
2619 case SIGN_EXTEND: \
2620 TOPLEVEL_COSTS_N_INSNS (ix86_cost->movsx); \
2621 break; \
2622 case ASHIFT: \
2623 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2624 && (GET_MODE (XEXP (X, 0)) != DImode || TARGET_64BIT)) \
2625 { \
2626 HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
2627 if (value == 1) \
2628 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
2629 if ((value == 2 || value == 3) \
2630 && !TARGET_DECOMPOSE_LEA \
2631 && ix86_cost->lea <= ix86_cost->shift_const) \
2632 TOPLEVEL_COSTS_N_INSNS (ix86_cost->lea); \
2633 } \
2634 /* fall through */ \
2635 \
2636 case ROTATE: \
2637 case ASHIFTRT: \
2638 case LSHIFTRT: \
2639 case ROTATERT: \
2640 if (!TARGET_64BIT && GET_MODE (XEXP (X, 0)) == DImode) \
2641 { \
2642 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2643 { \
2644 if (INTVAL (XEXP (X, 1)) > 32) \
2645 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const + 2); \
2646 else \
2647 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const * 2); \
2648 } \
2649 else \
2650 { \
2651 if (GET_CODE (XEXP (X, 1)) == AND) \
2652 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 2); \
2653 else \
2654 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2); \
2655 } \
2656 } \
2657 else \
2658 { \
2659 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2660 TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_const); \
2661 else \
2662 TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_var); \
2663 } \
2664 break; \
2665 \
2666 case MULT: \
2667 if (FLOAT_MODE_P (GET_MODE (X))) \
2668 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fmul); \
2669 else if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2670 { \
2671 unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
2672 int nbits = 0; \
2673 \
2674 while (value != 0) \
2675 { \
2676 nbits++; \
2677 value >>= 1; \
2678 } \
2679 \
2680 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
2681 + nbits * ix86_cost->mult_bit); \
2682 } \
2683 else /* This is arbitrary */ \
2684 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
2685 + 7 * ix86_cost->mult_bit); \
2686 \
2687 case DIV: \
2688 case UDIV: \
2689 case MOD: \
2690 case UMOD: \
2691 if (FLOAT_MODE_P (GET_MODE (X))) \
2692 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fdiv); \
2693 else \
2694 TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide); \
2695 break; \
2696 \
2697 case PLUS: \
2698 if (FLOAT_MODE_P (GET_MODE (X))) \
2699 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fadd); \
2700 else if (!TARGET_DECOMPOSE_LEA \
2701 && INTEGRAL_MODE_P (GET_MODE (X)) \
2702 && GET_MODE_BITSIZE (GET_MODE (X)) <= GET_MODE_BITSIZE (Pmode)) \
2703 { \
2704 if (GET_CODE (XEXP (X, 0)) == PLUS \
2705 && GET_CODE (XEXP (XEXP (X, 0), 0)) == MULT \
2706 && GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 1)) == CONST_INT \
2707 && CONSTANT_P (XEXP (X, 1))) \
2708 { \
2709 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 0), 0), 1));\
2710 if (val == 2 || val == 4 || val == 8) \
2711 { \
2712 return (COSTS_N_INSNS (ix86_cost->lea) \
2713 + rtx_cost (XEXP (XEXP (X, 0), 1), \
2714 (OUTER_CODE)) \
2715 + rtx_cost (XEXP (XEXP (XEXP (X, 0), 0), 0), \
2716 (OUTER_CODE)) \
2717 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
2718 } \
2719 } \
2720 else if (GET_CODE (XEXP (X, 0)) == MULT \
2721 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
2722 { \
2723 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
2724 if (val == 2 || val == 4 || val == 8) \
2725 { \
2726 return (COSTS_N_INSNS (ix86_cost->lea) \
2727 + rtx_cost (XEXP (XEXP (X, 0), 0), \
2728 (OUTER_CODE)) \
2729 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
2730 } \
2731 } \
2732 else if (GET_CODE (XEXP (X, 0)) == PLUS) \
2733 { \
2734 return (COSTS_N_INSNS (ix86_cost->lea) \
2735 + rtx_cost (XEXP (XEXP (X, 0), 0), (OUTER_CODE)) \
2736 + rtx_cost (XEXP (XEXP (X, 0), 1), (OUTER_CODE)) \
2737 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
2738 } \
2739 } \
2740 /* fall through */ \
2741 \
2742 case MINUS: \
2743 if (FLOAT_MODE_P (GET_MODE (X))) \
2744 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fadd); \
2745 /* fall through */ \
2746 \
2747 case AND: \
2748 case IOR: \
2749 case XOR: \
2750 if (!TARGET_64BIT && GET_MODE (X) == DImode) \
2751 return (COSTS_N_INSNS (ix86_cost->add) * 2 \
2752 + (rtx_cost (XEXP (X, 0), (OUTER_CODE)) \
2753 << (GET_MODE (XEXP (X, 0)) != DImode)) \
2754 + (rtx_cost (XEXP (X, 1), (OUTER_CODE)) \
2755 << (GET_MODE (XEXP (X, 1)) != DImode))); \
2756 /* fall through */ \
2757 \
2758 case NEG: \
2759 if (FLOAT_MODE_P (GET_MODE (X))) \
2760 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fchs); \
2761 /* fall through */ \
2762 \
2763 case NOT: \
2764 if (!TARGET_64BIT && GET_MODE (X) == DImode) \
2765 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2); \
2766 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
2767 \
2768 case FLOAT_EXTEND: \
2769 if (!TARGET_SSE_MATH \
2770 || !VALID_SSE_REG_MODE (GET_MODE (X))) \
2771 TOPLEVEL_COSTS_N_INSNS (0); \
2772 break; \
2773 \
2774 case ABS: \
2775 if (FLOAT_MODE_P (GET_MODE (X))) \
2776 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fabs); \
2777 break; \
2778 \
2779 case SQRT: \
2780 if (FLOAT_MODE_P (GET_MODE (X))) \
2781 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fsqrt); \
2782 break; \
2783 \
2784 egress_rtx_costs: \
2785 break;
2786
2787
2788 /* An expression giving the cost of an addressing mode that contains
2789 ADDRESS. If not defined, the cost is computed from the ADDRESS
2790 expression and the `CONST_COSTS' values.
2791
2792 For most CISC machines, the default cost is a good approximation
2793 of the true cost of the addressing mode. However, on RISC
2794 machines, all instructions normally have the same length and
2795 execution time. Hence all addresses will have equal costs.
2796
2797 In cases where more than one form of an address is known, the form
2798 with the lowest cost will be used. If multiple forms have the
2799 same, lowest, cost, the one that is the most complex will be used.
2800
2801 For example, suppose an address that is equal to the sum of a
2802 register and a constant is used twice in the same basic block.
2803 When this macro is not defined, the address will be computed in a
2804 register and memory references will be indirect through that
2805 register. On machines where the cost of the addressing mode
2806 containing the sum is no higher than that of a simple indirect
2807 reference, this will produce an additional instruction and
2808 possibly require an additional register. Proper specification of
2809 this macro eliminates this overhead for such machines.
2810
2811 Similar use of this macro is made in strength reduction of loops.
2812
2813 ADDRESS need not be valid as an address. In such a case, the cost
2814 is not relevant and can be any value; invalid addresses need not be
2815 assigned a different cost.
2816
2817 On machines where an address involving more than one register is as
2818 cheap as an address computation involving only one register,
2819 defining `ADDRESS_COST' to reflect this can cause two registers to
2820 be live over a region of code where only one would have been if
2821 `ADDRESS_COST' were not defined in that manner. This effect should
2822 be considered in the definition of this macro. Equivalent costs
2823 should probably only be given to addresses with different numbers
2824 of registers on machines with lots of registers.
2825
2826 This macro will normally either not be defined or be defined as a
2827 constant.
2828
2829 For i386, it is better to use a complex address than let gcc copy
2830 the address into a reg and make a new pseudo. But not if the address
2831 requires to two regs - that would mean more pseudos with longer
2832 lifetimes. */
2833
2834 #define ADDRESS_COST(RTX) \
2835 ix86_address_cost (RTX)
2836
2837 /* A C expression for the cost of moving data from a register in class FROM to
2838 one in class TO. The classes are expressed using the enumeration values
2839 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2840 interpreted relative to that.
2841
2842 It is not required that the cost always equal 2 when FROM is the same as TO;
2843 on some machines it is expensive to move between registers if they are not
2844 general registers. */
2845
2846 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2847 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2848
2849 /* A C expression for the cost of moving data of mode M between a
2850 register and memory. A value of 2 is the default; this cost is
2851 relative to those in `REGISTER_MOVE_COST'.
2852
2853 If moving between registers and memory is more expensive than
2854 between two registers, you should define this macro to express the
2855 relative cost. */
2856
2857 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2858 ix86_memory_move_cost ((MODE), (CLASS), (IN))
2859
2860 /* A C expression for the cost of a branch instruction. A value of 1
2861 is the default; other values are interpreted relative to that. */
2862
2863 #define BRANCH_COST ix86_branch_cost
2864
2865 /* Define this macro as a C expression which is nonzero if accessing
2866 less than a word of memory (i.e. a `char' or a `short') is no
2867 faster than accessing a word of memory, i.e., if such access
2868 require more than one instruction or if there is no difference in
2869 cost between byte and (aligned) word loads.
2870
2871 When this macro is not defined, the compiler will access a field by
2872 finding the smallest containing object; when it is defined, a
2873 fullword load will be used if alignment permits. Unless bytes
2874 accesses are faster than word accesses, using word accesses is
2875 preferable since it may eliminate subsequent memory access if
2876 subsequent accesses occur to other fields in the same word of the
2877 structure, but to different bytes. */
2878
2879 #define SLOW_BYTE_ACCESS 0
2880
2881 /* Nonzero if access to memory by shorts is slow and undesirable. */
2882 #define SLOW_SHORT_ACCESS 0
2883
2884 /* Define this macro to be the value 1 if unaligned accesses have a
2885 cost many times greater than aligned accesses, for example if they
2886 are emulated in a trap handler.
2887
2888 When this macro is nonzero, the compiler will act as if
2889 `STRICT_ALIGNMENT' were nonzero when generating code for block
2890 moves. This can cause significantly more instructions to be
2891 produced. Therefore, do not set this macro nonzero if unaligned
2892 accesses only add a cycle or two to the time for a memory access.
2893
2894 If the value of this macro is always zero, it need not be defined. */
2895
2896 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2897
2898 /* Define this macro to inhibit strength reduction of memory
2899 addresses. (On some machines, such strength reduction seems to do
2900 harm rather than good.) */
2901
2902 /* #define DONT_REDUCE_ADDR */
2903
2904 /* Define this macro if it is as good or better to call a constant
2905 function address than to call an address kept in a register.
2906
2907 Desirable on the 386 because a CALL with a constant address is
2908 faster than one with a register address. */
2909
2910 #define NO_FUNCTION_CSE
2911
2912 /* Define this macro if it is as good or better for a function to call
2913 itself with an explicit address than to call an address kept in a
2914 register. */
2915
2916 #define NO_RECURSIVE_FUNCTION_CSE
2917 \f
2918 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2919 return the mode to be used for the comparison.
2920
2921 For floating-point equality comparisons, CCFPEQmode should be used.
2922 VOIDmode should be used in all other cases.
2923
2924 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2925 possible, to allow for more combinations. */
2926
2927 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2928
2929 /* Return nonzero if MODE implies a floating point inequality can be
2930 reversed. */
2931
2932 #define REVERSIBLE_CC_MODE(MODE) 1
2933
2934 /* A C expression whose value is reversed condition code of the CODE for
2935 comparison done in CC_MODE mode. */
2936 #define REVERSE_CONDITION(CODE, MODE) \
2937 ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2938 : reverse_condition_maybe_unordered (CODE))
2939
2940 \f
2941 /* Control the assembler format that we output, to the extent
2942 this does not vary between assemblers. */
2943
2944 /* How to refer to registers in assembler output.
2945 This sequence is indexed by compiler's hard-register-number (see above). */
2946
2947 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2948 For non floating point regs, the following are the HImode names.
2949
2950 For float regs, the stack top is sometimes referred to as "%st(0)"
2951 instead of just "%st". PRINT_REG handles this with the "y" code. */
2952
2953 #undef HI_REGISTER_NAMES
2954 #define HI_REGISTER_NAMES \
2955 {"ax","dx","cx","bx","si","di","bp","sp", \
2956 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \
2957 "flags","fpsr", "dirflag", "frame", \
2958 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2959 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2960 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2961 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2962
2963 #define REGISTER_NAMES HI_REGISTER_NAMES
2964
2965 /* Table of additional register names to use in user input. */
2966
2967 #define ADDITIONAL_REGISTER_NAMES \
2968 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2969 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2970 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2971 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2972 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2973 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2974 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
2975 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2976
2977 /* Note we are omitting these since currently I don't know how
2978 to get gcc to use these, since they want the same but different
2979 number as al, and ax.
2980 */
2981
2982 #define QI_REGISTER_NAMES \
2983 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2984
2985 /* These parallel the array above, and can be used to access bits 8:15
2986 of regs 0 through 3. */
2987
2988 #define QI_HIGH_REGISTER_NAMES \
2989 {"ah", "dh", "ch", "bh", }
2990
2991 /* How to renumber registers for dbx and gdb. */
2992
2993 #define DBX_REGISTER_NUMBER(N) \
2994 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2995
2996 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2997 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2998 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2999
3000 /* Before the prologue, RA is at 0(%esp). */
3001 #define INCOMING_RETURN_ADDR_RTX \
3002 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
3003
3004 /* After the prologue, RA is at -4(AP) in the current frame. */
3005 #define RETURN_ADDR_RTX(COUNT, FRAME) \
3006 ((COUNT) == 0 \
3007 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
3008 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
3009
3010 /* PC is dbx register 8; let's use that column for RA. */
3011 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
3012
3013 /* Before the prologue, the top of the frame is at 4(%esp). */
3014 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
3015
3016 /* Describe how we implement __builtin_eh_return. */
3017 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
3018 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
3019
3020
3021 /* Select a format to encode pointers in exception handling data. CODE
3022 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
3023 true if the symbol may be affected by dynamic relocations.
3024
3025 ??? All x86 object file formats are capable of representing this.
3026 After all, the relocation needed is the same as for the call insn.
3027 Whether or not a particular assembler allows us to enter such, I
3028 guess we'll have to see. */
3029 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
3030 (flag_pic \
3031 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
3032 : DW_EH_PE_absptr)
3033
3034 /* Store in OUTPUT a string (made with alloca) containing
3035 an assembler-name for a local static variable named NAME.
3036 LABELNO is an integer which is different for each call. */
3037
3038 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
3039 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
3040 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
3041
3042 /* This is how to output an insn to push a register on the stack.
3043 It need not be very fast code. */
3044
3045 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
3046 do { \
3047 if (TARGET_64BIT) \
3048 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
3049 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
3050 else \
3051 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
3052 } while (0)
3053
3054 /* This is how to output an insn to pop a register from the stack.
3055 It need not be very fast code. */
3056
3057 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
3058 do { \
3059 if (TARGET_64BIT) \
3060 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
3061 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
3062 else \
3063 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
3064 } while (0)
3065
3066 /* This is how to output an element of a case-vector that is absolute. */
3067
3068 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
3069 ix86_output_addr_vec_elt ((FILE), (VALUE))
3070
3071 /* This is how to output an element of a case-vector that is relative. */
3072
3073 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3074 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
3075
3076 /* Under some conditions we need jump tables in the text section, because
3077 the assembler cannot handle label differences between sections. */
3078
3079 #define JUMP_TABLES_IN_TEXT_SECTION \
3080 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
3081
3082 /* A C statement that outputs an address constant appropriate to
3083 for DWARF debugging. */
3084
3085 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
3086 i386_dwarf_output_addr_const ((FILE), (X))
3087
3088 /* Either simplify a location expression, or return the original. */
3089
3090 #define ASM_SIMPLIFY_DWARF_ADDR(X) \
3091 i386_simplify_dwarf_addr (X)
3092
3093 /* Emit a dtp-relative reference to a TLS variable. */
3094
3095 #ifdef HAVE_AS_TLS
3096 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
3097 i386_output_dwarf_dtprel (FILE, SIZE, X)
3098 #endif
3099
3100 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
3101 and switch back. For x86 we do this only to save a few bytes that
3102 would otherwise be unused in the text section. */
3103 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3104 asm (SECTION_OP "\n\t" \
3105 "call " USER_LABEL_PREFIX #FUNC "\n" \
3106 TEXT_SECTION_ASM_OP);
3107 \f
3108 /* Print operand X (an rtx) in assembler syntax to file FILE.
3109 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3110 Effect of various CODE letters is described in i386.c near
3111 print_operand function. */
3112
3113 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
3114 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
3115
3116 /* Print the name of a register based on its machine mode and number.
3117 If CODE is 'w', pretend the mode is HImode.
3118 If CODE is 'b', pretend the mode is QImode.
3119 If CODE is 'k', pretend the mode is SImode.
3120 If CODE is 'q', pretend the mode is DImode.
3121 If CODE is 'h', pretend the reg is the `high' byte register.
3122 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
3123
3124 #define PRINT_REG(X, CODE, FILE) \
3125 print_reg ((X), (CODE), (FILE))
3126
3127 #define PRINT_OPERAND(FILE, X, CODE) \
3128 print_operand ((FILE), (X), (CODE))
3129
3130 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
3131 print_operand_address ((FILE), (ADDR))
3132
3133 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
3134 do { \
3135 if (! output_addr_const_extra (FILE, (X))) \
3136 goto FAIL; \
3137 } while (0);
3138
3139 /* Print the name of a register for based on its machine mode and number.
3140 This macro is used to print debugging output.
3141 This macro is different from PRINT_REG in that it may be used in
3142 programs that are not linked with aux-output.o. */
3143
3144 #define DEBUG_PRINT_REG(X, CODE, FILE) \
3145 do { static const char * const hi_name[] = HI_REGISTER_NAMES; \
3146 static const char * const qi_name[] = QI_REGISTER_NAMES; \
3147 fprintf ((FILE), "%d ", REGNO (X)); \
3148 if (REGNO (X) == FLAGS_REG) \
3149 { fputs ("flags", (FILE)); break; } \
3150 if (REGNO (X) == DIRFLAG_REG) \
3151 { fputs ("dirflag", (FILE)); break; } \
3152 if (REGNO (X) == FPSR_REG) \
3153 { fputs ("fpsr", (FILE)); break; } \
3154 if (REGNO (X) == ARG_POINTER_REGNUM) \
3155 { fputs ("argp", (FILE)); break; } \
3156 if (REGNO (X) == FRAME_POINTER_REGNUM) \
3157 { fputs ("frame", (FILE)); break; } \
3158 if (STACK_TOP_P (X)) \
3159 { fputs ("st(0)", (FILE)); break; } \
3160 if (FP_REG_P (X)) \
3161 { fputs (hi_name[REGNO(X)], (FILE)); break; } \
3162 if (REX_INT_REG_P (X)) \
3163 { \
3164 switch (GET_MODE_SIZE (GET_MODE (X))) \
3165 { \
3166 default: \
3167 case 8: \
3168 fprintf ((FILE), "r%i", REGNO (X) \
3169 - FIRST_REX_INT_REG + 8); \
3170 break; \
3171 case 4: \
3172 fprintf ((FILE), "r%id", REGNO (X) \
3173 - FIRST_REX_INT_REG + 8); \
3174 break; \
3175 case 2: \
3176 fprintf ((FILE), "r%iw", REGNO (X) \
3177 - FIRST_REX_INT_REG + 8); \
3178 break; \
3179 case 1: \
3180 fprintf ((FILE), "r%ib", REGNO (X) \
3181 - FIRST_REX_INT_REG + 8); \
3182 break; \
3183 } \
3184 break; \
3185 } \
3186 switch (GET_MODE_SIZE (GET_MODE (X))) \
3187 { \
3188 case 8: \
3189 fputs ("r", (FILE)); \
3190 fputs (hi_name[REGNO (X)], (FILE)); \
3191 break; \
3192 default: \
3193 fputs ("e", (FILE)); \
3194 case 2: \
3195 fputs (hi_name[REGNO (X)], (FILE)); \
3196 break; \
3197 case 1: \
3198 fputs (qi_name[REGNO (X)], (FILE)); \
3199 break; \
3200 } \
3201 } while (0)
3202
3203 /* a letter which is not needed by the normal asm syntax, which
3204 we can use for operand syntax in the extended asm */
3205
3206 #define ASM_OPERAND_LETTER '#'
3207 #define RET return ""
3208 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
3209 \f
3210 /* Define the codes that are matched by predicates in i386.c. */
3211
3212 #define PREDICATE_CODES \
3213 {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
3214 SYMBOL_REF, LABEL_REF, CONST}}, \
3215 {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
3216 SYMBOL_REF, LABEL_REF, CONST}}, \
3217 {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
3218 SYMBOL_REF, LABEL_REF, CONST}}, \
3219 {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
3220 SYMBOL_REF, LABEL_REF, CONST}}, \
3221 {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
3222 SYMBOL_REF, LABEL_REF, CONST}}, \
3223 {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
3224 SYMBOL_REF, LABEL_REF, CONST}}, \
3225 {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3226 SYMBOL_REF, LABEL_REF}}, \
3227 {"shiftdi_operand", {SUBREG, REG, MEM}}, \
3228 {"const_int_1_operand", {CONST_INT}}, \
3229 {"const_int_1_31_operand", {CONST_INT}}, \
3230 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
3231 {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3232 LABEL_REF, SUBREG, REG, MEM}}, \
3233 {"pic_symbolic_operand", {CONST}}, \
3234 {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
3235 {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
3236 {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
3237 {"const1_operand", {CONST_INT}}, \
3238 {"const248_operand", {CONST_INT}}, \
3239 {"incdec_operand", {CONST_INT}}, \
3240 {"mmx_reg_operand", {REG}}, \
3241 {"reg_no_sp_operand", {SUBREG, REG}}, \
3242 {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3243 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
3244 {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
3245 {"index_register_operand", {SUBREG, REG}}, \
3246 {"q_regs_operand", {SUBREG, REG}}, \
3247 {"non_q_regs_operand", {SUBREG, REG}}, \
3248 {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
3249 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
3250 GE, UNGE, LTGT, UNEQ}}, \
3251 {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
3252 ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
3253 }}, \
3254 {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
3255 GTU, UNORDERED, ORDERED, UNLE, UNLT, \
3256 UNGE, UNGT, LTGT, UNEQ }}, \
3257 {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
3258 {"ext_register_operand", {SUBREG, REG}}, \
3259 {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
3260 {"mult_operator", {MULT}}, \
3261 {"div_operator", {DIV}}, \
3262 {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
3263 UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
3264 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
3265 LSHIFTRT, ROTATERT}}, \
3266 {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
3267 {"memory_displacement_operand", {MEM}}, \
3268 {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3269 LABEL_REF, SUBREG, REG, MEM, AND}}, \
3270 {"long_memory_operand", {MEM}}, \
3271 {"tls_symbolic_operand", {SYMBOL_REF}}, \
3272 {"global_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3273 {"local_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3274 {"initial_exec_symbolic_operand", {SYMBOL_REF}}, \
3275 {"local_exec_symbolic_operand", {SYMBOL_REF}}, \
3276 {"any_fp_register_operand", {REG}}, \
3277 {"register_and_not_any_fp_reg_operand", {REG}}, \
3278 {"fp_register_operand", {REG}}, \
3279 {"register_and_not_fp_reg_operand", {REG}}, \
3280
3281 /* A list of predicates that do special things with modes, and so
3282 should not elicit warnings for VOIDmode match_operand. */
3283
3284 #define SPECIAL_MODE_PREDICATES \
3285 "ext_register_operand",
3286 \f
3287 /* Which processor to schedule for. The cpu attribute defines a list that
3288 mirrors this list, so changes to i386.md must be made at the same time. */
3289
3290 enum processor_type
3291 {
3292 PROCESSOR_I386, /* 80386 */
3293 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
3294 PROCESSOR_PENTIUM,
3295 PROCESSOR_PENTIUMPRO,
3296 PROCESSOR_K6,
3297 PROCESSOR_ATHLON,
3298 PROCESSOR_PENTIUM4,
3299 PROCESSOR_max
3300 };
3301
3302 extern enum processor_type ix86_cpu;
3303 extern const char *ix86_cpu_string;
3304
3305 extern enum processor_type ix86_arch;
3306 extern const char *ix86_arch_string;
3307
3308 enum fpmath_unit
3309 {
3310 FPMATH_387 = 1,
3311 FPMATH_SSE = 2
3312 };
3313
3314 extern enum fpmath_unit ix86_fpmath;
3315 extern const char *ix86_fpmath_string;
3316
3317 enum tls_dialect
3318 {
3319 TLS_DIALECT_GNU,
3320 TLS_DIALECT_SUN
3321 };
3322
3323 extern enum tls_dialect ix86_tls_dialect;
3324 extern const char *ix86_tls_dialect_string;
3325
3326 enum cmodel {
3327 CM_32, /* The traditional 32-bit ABI. */
3328 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
3329 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
3330 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
3331 CM_LARGE, /* No assumptions. */
3332 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
3333 };
3334
3335 extern enum cmodel ix86_cmodel;
3336 extern const char *ix86_cmodel_string;
3337
3338 /* Size of the RED_ZONE area. */
3339 #define RED_ZONE_SIZE 128
3340 /* Reserved area of the red zone for temporaries. */
3341 #define RED_ZONE_RESERVE 8
3342
3343 enum asm_dialect {
3344 ASM_ATT,
3345 ASM_INTEL
3346 };
3347
3348 extern const char *ix86_asm_string;
3349 extern enum asm_dialect ix86_asm_dialect;
3350
3351 extern int ix86_regparm;
3352 extern const char *ix86_regparm_string;
3353
3354 extern int ix86_preferred_stack_boundary;
3355 extern const char *ix86_preferred_stack_boundary_string;
3356
3357 extern int ix86_branch_cost;
3358 extern const char *ix86_branch_cost_string;
3359
3360 extern const char *ix86_debug_arg_string;
3361 extern const char *ix86_debug_addr_string;
3362
3363 /* Obsoleted by -f options. Remove before 3.2 ships. */
3364 extern const char *ix86_align_loops_string;
3365 extern const char *ix86_align_jumps_string;
3366 extern const char *ix86_align_funcs_string;
3367
3368 /* Smallest class containing REGNO. */
3369 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3370
3371 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
3372 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
3373 \f
3374 /* To properly truncate FP values into integers, we need to set i387 control
3375 word. We can't emit proper mode switching code before reload, as spills
3376 generated by reload may truncate values incorrectly, but we still can avoid
3377 redundant computation of new control word by the mode switching pass.
3378 The fldcw instructions are still emitted redundantly, but this is probably
3379 not going to be noticeable problem, as most CPUs do have fast path for
3380 the sequence.
3381
3382 The machinery is to emit simple truncation instructions and split them
3383 before reload to instructions having USEs of two memory locations that
3384 are filled by this code to old and new control word.
3385
3386 Post-reload pass may be later used to eliminate the redundant fildcw if
3387 needed. */
3388
3389 enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3390
3391 /* Define this macro if the port needs extra instructions inserted
3392 for mode switching in an optimizing compilation. */
3393
3394 #define OPTIMIZE_MODE_SWITCHING(ENTITY) 1
3395
3396 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3397 initializer for an array of integers. Each initializer element N
3398 refers to an entity that needs mode switching, and specifies the
3399 number of different modes that might need to be set for this
3400 entity. The position of the initializer in the initializer -
3401 starting counting at zero - determines the integer that is used to
3402 refer to the mode-switched entity in question. */
3403
3404 #define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3405
3406 /* ENTITY is an integer specifying a mode-switched entity. If
3407 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3408 return an integer value not larger than the corresponding element
3409 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3410 must be switched into prior to the execution of INSN. */
3411
3412 #define MODE_NEEDED(ENTITY, I) \
3413 (GET_CODE (I) == CALL_INSN \
3414 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
3415 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
3416 ? FP_CW_UNINITIALIZED \
3417 : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
3418 ? FP_CW_ANY \
3419 : FP_CW_STORED)
3420
3421 /* This macro specifies the order in which modes for ENTITY are
3422 processed. 0 is the highest priority. */
3423
3424 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3425
3426 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
3427 is the set of hard registers live at the point where the insn(s)
3428 are to be inserted. */
3429
3430 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
3431 ((MODE) == FP_CW_STORED \
3432 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
3433 assign_386_stack_local (HImode, 2)), 0\
3434 : 0)
3435 \f
3436 /* Avoid renaming of stack registers, as doing so in combination with
3437 scheduling just increases amount of live registers at time and in
3438 the turn amount of fxch instructions needed.
3439
3440 ??? Maybe Pentium chips benefits from renaming, someone can try... */
3441
3442 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3443 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3444
3445 \f
3446 #define MACHINE_DEPENDENT_REORG(X) x86_machine_dependent_reorg(X)
3447 /*
3448 Local variables:
3449 version-control: t
3450 End:
3451 */