47d7035d46674a34eb785e08f2e86270567d61eb
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
37 /* Define the specific costs for a given cpu */
38
39 struct processor_costs {
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
44 const int mult_init[5]; /* cost of starting a multiply
45 in QImode, HImode, SImode, DImode, TImode*/
46 const int mult_bit; /* cost of multiply per each bit set */
47 const int divide[5]; /* cost of a divide/mod
48 in QImode, HImode, SImode, DImode, TImode*/
49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
53 memory-to-memory move insns. */
54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
58 const int int_store[3]; /* cost of storing integer register
59 in QImode, HImode and SImode */
60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
62 in SFmode, DFmode and XFmode */
63 const int fp_store[3]; /* cost of storing FP register
64 in SFmode, DFmode and XFmode */
65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
67 in SImode and DImode */
68 const int mmx_store[2]; /* cost of storing MMX register
69 in SImode and DImode */
70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
72 in SImode, DImode and TImode*/
73 const int sse_store[3]; /* cost of storing SSE register
74 in SImode, DImode and TImode*/
75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
76 integer and vice versa. */
77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
80 const int branch_cost; /* Default value for BRANCH_COST. */
81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
87 };
88
89 extern const struct processor_costs *ix86_cost;
90
91 /* Run-time compilation parameters selecting different hardware subsets. */
92
93 extern int target_flags;
94
95 /* Macros used in the machine description to test the flags. */
96
97 /* configure can arrange to make this 2, to force a 486. */
98
99 #ifndef TARGET_CPU_DEFAULT
100 #ifdef TARGET_64BIT_DEFAULT
101 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_k8
102 #else
103 #define TARGET_CPU_DEFAULT 0
104 #endif
105 #endif
106
107 /* Masks for the -m switches */
108 #define MASK_80387 0x00000001 /* Hardware floating point */
109 #define MASK_RTD 0x00000002 /* Use ret that pops args */
110 #define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
111 #define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
112 #define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
113 #define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
114 #define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
115 #define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
116 #define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
117 #define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
118 #define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
119 #define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
120 #define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
121 #define MASK_MMX 0x00002000 /* Support MMX regs/builtins */
122 #define MASK_SSE 0x00004000 /* Support SSE regs/builtins */
123 #define MASK_SSE2 0x00008000 /* Support SSE2 regs/builtins */
124 #define MASK_SSE3 0x00010000 /* Support SSE3 regs/builtins */
125 #define MASK_3DNOW 0x00020000 /* Support 3Dnow builtins */
126 #define MASK_3DNOW_A 0x00040000 /* Support Athlon 3Dnow builtins */
127 #define MASK_128BIT_LONG_DOUBLE 0x00080000 /* long double size is 128bit */
128 #define MASK_64BIT 0x00100000 /* Produce 64bit code */
129 #define MASK_MS_BITFIELD_LAYOUT 0x00200000 /* Use native (MS) bitfield layout */
130 #define MASK_TLS_DIRECT_SEG_REFS 0x00400000 /* Avoid adding %gs:0 */
131
132 /* Unused: 0x03e0000 */
133
134 /* ... overlap with subtarget options starts by 0x04000000. */
135 #define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
136
137 /* Use the floating point instructions */
138 #define TARGET_80387 (target_flags & MASK_80387)
139
140 /* Compile using ret insn that pops args.
141 This will not work unless you use prototypes at least
142 for all functions that can take varying numbers of args. */
143 #define TARGET_RTD (target_flags & MASK_RTD)
144
145 /* Align doubles to a two word boundary. This breaks compatibility with
146 the published ABI's for structures containing doubles, but produces
147 faster code on the pentium. */
148 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
149
150 /* Use push instructions to save outgoing args. */
151 #define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
152
153 /* Accumulate stack adjustments to prologue/epilogue. */
154 #define TARGET_ACCUMULATE_OUTGOING_ARGS \
155 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
156
157 /* Put uninitialized locals into bss, not data.
158 Meaningful only on svr3. */
159 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
160
161 /* Use IEEE floating point comparisons. These handle correctly the cases
162 where the result of a comparison is unordered. Normally SIGFPE is
163 generated in such cases, in which case this isn't needed. */
164 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
165
166 /* Functions that return a floating point value may return that value
167 in the 387 FPU or in 386 integer registers. If set, this flag causes
168 the 387 to be used, which is compatible with most calling conventions. */
169 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
170
171 /* Long double is 128bit instead of 96bit, even when only 80bits are used.
172 This mode wastes cache, but avoid misaligned data accesses and simplifies
173 address calculations. */
174 #define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
175
176 /* Disable generation of FP sin, cos and sqrt operations for 387.
177 This is because FreeBSD lacks these in the math-emulator-code */
178 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
179
180 /* Generate 387 floating point intrinsics for the current target. */
181 #define TARGET_USE_FANCY_MATH_387 (! TARGET_NO_FANCY_MATH_387)
182
183 /* Don't create frame pointers for leaf functions */
184 #define TARGET_OMIT_LEAF_FRAME_POINTER \
185 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
186
187 /* Debug GO_IF_LEGITIMATE_ADDRESS */
188 #define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
189
190 /* Debug FUNCTION_ARG macros */
191 #define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
192
193 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
194 compile-time constant. */
195 #ifdef IN_LIBGCC2
196 #ifdef __x86_64__
197 #define TARGET_64BIT 1
198 #else
199 #define TARGET_64BIT 0
200 #endif
201 #else
202 #ifdef TARGET_BI_ARCH
203 #define TARGET_64BIT (target_flags & MASK_64BIT)
204 #else
205 #if TARGET_64BIT_DEFAULT
206 #define TARGET_64BIT 1
207 #else
208 #define TARGET_64BIT 0
209 #endif
210 #endif
211 #endif
212
213 #define HAS_LONG_COND_BRANCH 1
214 #define HAS_LONG_UNCOND_BRANCH 1
215
216 /* Avoid adding %gs:0 in TLS references; use %gs:address directly. */
217 #define TARGET_TLS_DIRECT_SEG_REFS (target_flags & MASK_TLS_DIRECT_SEG_REFS)
218
219 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
220 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
221 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
222 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
223 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
224 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
225 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
226 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
227 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
228 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
229
230 #define TUNEMASK (1 << ix86_tune)
231 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
232 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
233 extern const int x86_branch_hints, x86_unroll_strlen;
234 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
235 extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
236 extern const int x86_use_cltd, x86_read_modify_write;
237 extern const int x86_read_modify, x86_split_long_moves;
238 extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
239 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
240 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
241 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
242 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
243 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
244 extern const int x86_epilogue_using_move, x86_decompose_lea;
245 extern const int x86_arch_always_fancy_math_387, x86_shift1;
246 extern const int x86_sse_partial_reg_dependency, x86_sse_split_regs;
247 extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
248 extern const int x86_use_ffreep;
249 extern const int x86_inter_unit_moves, x86_schedule;
250 extern const int x86_use_bt;
251 extern int x86_prefetch_sse;
252
253 #define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
254 #define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
255 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
256 #define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
257 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
258 /* For sane SSE instruction set generation we need fcomi instruction. It is
259 safe to enable all CMOVE instructions. */
260 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
261 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
262 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
263 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
264 #define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
265 #define TARGET_MOVX (x86_movx & TUNEMASK)
266 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
267 #define TARGET_USE_LOOP (x86_use_loop & TUNEMASK)
268 #define TARGET_USE_FIOP (x86_use_fiop & TUNEMASK)
269 #define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
270 #define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
271 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
272 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
273 #define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
274 #define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
275 #define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
276 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
277 #define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
278 #define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
279 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
280 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
281 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
282 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
283 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
284 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
285 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
286 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
287 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
288 (x86_sse_partial_reg_dependency & TUNEMASK)
289 #define TARGET_SSE_SPLIT_REGS (x86_sse_split_regs & TUNEMASK)
290 #define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
291 #define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
292 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
293 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
294 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
295 #define TARGET_DECOMPOSE_LEA (x86_decompose_lea & TUNEMASK)
296 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
297 #define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
298 #define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
299 #define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
300 #define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
301 #define TARGET_FOUR_JUMP_LIMIT (x86_four_jump_limit & TUNEMASK)
302 #define TARGET_SCHEDULE (x86_schedule & TUNEMASK)
303 #define TARGET_USE_BT (x86_use_bt & TUNEMASK)
304
305 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
306
307 #define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
308 #define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
309
310 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
311
312 #define TARGET_SSE ((target_flags & MASK_SSE) != 0)
313 #define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
314 #define TARGET_SSE3 ((target_flags & MASK_SSE3) != 0)
315 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
316 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
317 && (ix86_fpmath & FPMATH_387))
318 #define TARGET_MMX ((target_flags & MASK_MMX) != 0)
319 #define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
320 #define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
321
322 #define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
323
324 #define TARGET_USE_MS_BITFIELD_LAYOUT (target_flags & MASK_MS_BITFIELD_LAYOUT)
325
326 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
327 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
328
329 /* WARNING: Do not mark empty strings for translation, as calling
330 gettext on an empty string does NOT return an empty
331 string. */
332
333
334 #define TARGET_SWITCHES \
335 { { "80387", MASK_80387, N_("Use hardware fp") }, \
336 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
337 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
338 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
339 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
340 { "386", 0, "" /*Deprecated.*/}, \
341 { "486", 0, "" /*Deprecated.*/}, \
342 { "pentium", 0, "" /*Deprecated.*/}, \
343 { "pentiumpro", 0, "" /*Deprecated.*/}, \
344 { "intel-syntax", 0, "" /*Deprecated.*/}, \
345 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
346 { "rtd", MASK_RTD, \
347 N_("Alternate calling convention") }, \
348 { "no-rtd", -MASK_RTD, \
349 N_("Use normal calling convention") }, \
350 { "align-double", MASK_ALIGN_DOUBLE, \
351 N_("Align some doubles on dword boundary") }, \
352 { "no-align-double", -MASK_ALIGN_DOUBLE, \
353 N_("Align doubles on word boundary") }, \
354 { "svr3-shlib", MASK_SVR3_SHLIB, \
355 N_("Uninitialized locals in .bss") }, \
356 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
357 N_("Uninitialized locals in .data") }, \
358 { "ieee-fp", MASK_IEEE_FP, \
359 N_("Use IEEE math for fp comparisons") }, \
360 { "no-ieee-fp", -MASK_IEEE_FP, \
361 N_("Do not use IEEE math for fp comparisons") }, \
362 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
363 N_("Return values of functions in FPU registers") }, \
364 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
365 N_("Do not return values of functions in FPU registers")}, \
366 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
367 N_("Do not generate sin, cos, sqrt for FPU") }, \
368 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
369 N_("Generate sin, cos, sqrt for FPU")}, \
370 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
371 N_("Omit the frame pointer in leaf functions") }, \
372 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
373 { "stack-arg-probe", MASK_STACK_PROBE, \
374 N_("Enable stack probing") }, \
375 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
376 { "windows", 0, 0 /* undocumented */ }, \
377 { "dll", 0, 0 /* undocumented */ }, \
378 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
379 N_("Align destination of the string operations") }, \
380 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
381 N_("Do not align destination of the string operations") }, \
382 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
383 N_("Inline all known string operations") }, \
384 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
385 N_("Do not inline all known string operations") }, \
386 { "push-args", -MASK_NO_PUSH_ARGS, \
387 N_("Use push instructions to save outgoing arguments") }, \
388 { "no-push-args", MASK_NO_PUSH_ARGS, \
389 N_("Do not use push instructions to save outgoing arguments") }, \
390 { "accumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS, \
391 N_("Use push instructions to save outgoing arguments") }, \
392 { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS, \
393 N_("Do not use push instructions to save outgoing arguments") }, \
394 { "mmx", MASK_MMX, \
395 N_("Support MMX built-in functions") }, \
396 { "no-mmx", -(MASK_MMX|MASK_3DNOW|MASK_3DNOW_A), \
397 N_("Do not support MMX built-in functions") }, \
398 { "3dnow", MASK_3DNOW, \
399 N_("Support 3DNow! built-in functions") }, \
400 { "no-3dnow", -(MASK_3DNOW|MASK_3DNOW_A), \
401 N_("Do not support 3DNow! built-in functions") }, \
402 { "sse", MASK_SSE, \
403 N_("Support MMX and SSE built-in functions and code generation") }, \
404 { "no-sse", -(MASK_SSE|MASK_SSE2|MASK_SSE3), \
405 N_("Do not support MMX and SSE built-in functions and code generation") },\
406 { "sse2", MASK_SSE2, \
407 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
408 { "no-sse2", -(MASK_SSE2|MASK_SSE3), \
409 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
410 { "sse3", MASK_SSE3, \
411 N_("Support MMX, SSE, SSE2 and SSE3 built-in functions and code generation") },\
412 { "no-sse3", -MASK_SSE3, \
413 N_("Do not support MMX, SSE, SSE2 and SSE3 built-in functions and code generation") },\
414 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
415 N_("sizeof(long double) is 16") }, \
416 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
417 N_("sizeof(long double) is 12") }, \
418 { "64", MASK_64BIT, \
419 N_("Generate 64bit x86-64 code") }, \
420 { "32", -MASK_64BIT, \
421 N_("Generate 32bit i386 code") }, \
422 { "ms-bitfields", MASK_MS_BITFIELD_LAYOUT, \
423 N_("Use native (MS) bitfield layout") }, \
424 { "no-ms-bitfields", -MASK_MS_BITFIELD_LAYOUT, \
425 N_("Use gcc default bitfield layout") }, \
426 { "red-zone", -MASK_NO_RED_ZONE, \
427 N_("Use red-zone in the x86-64 code") }, \
428 { "no-red-zone", MASK_NO_RED_ZONE, \
429 N_("Do not use red-zone in the x86-64 code") }, \
430 { "tls-direct-seg-refs", MASK_TLS_DIRECT_SEG_REFS, \
431 N_("Use direct references against %gs when accessing tls data") }, \
432 { "no-tls-direct-seg-refs", -MASK_TLS_DIRECT_SEG_REFS, \
433 N_("Do not use direct references against %gs when accessing tls data") }, \
434 SUBTARGET_SWITCHES \
435 { "", \
436 TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT \
437 | TARGET_TLS_DIRECT_SEG_REFS_DEFAULT, 0 }}
438
439 #ifndef TARGET_64BIT_DEFAULT
440 #define TARGET_64BIT_DEFAULT 0
441 #endif
442 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
443 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
444 #endif
445
446 /* Once GDB has been enhanced to deal with functions without frame
447 pointers, we can change this to allow for elimination of
448 the frame pointer in leaf functions. */
449 #define TARGET_DEFAULT 0
450
451 /* This is not really a target flag, but is done this way so that
452 it's analogous to similar code for Mach-O on PowerPC. darwin.h
453 redefines this to 1. */
454 #define TARGET_MACHO 0
455
456 /* Subtargets may reset this to 1 in order to enable 96-bit long double
457 with the rounding mode forced to 53 bits. */
458 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
459
460 /* This macro is similar to `TARGET_SWITCHES' but defines names of
461 command options that have values. Its definition is an
462 initializer with a subgrouping for each command option.
463
464 Each subgrouping contains a string constant, that defines the
465 fixed part of the option name, and the address of a variable. The
466 variable, type `char *', is set to the variable part of the given
467 option if the fixed part matches. The actual option name is made
468 by appending `-m' to the specified name. */
469 #define TARGET_OPTIONS \
470 { { "tune=", &ix86_tune_string, \
471 N_("Schedule code for given CPU"), 0}, \
472 { "fpmath=", &ix86_fpmath_string, \
473 N_("Generate floating point mathematics using given instruction set"), 0},\
474 { "arch=", &ix86_arch_string, \
475 N_("Generate code for given CPU"), 0}, \
476 { "regparm=", &ix86_regparm_string, \
477 N_("Number of registers used to pass integer arguments"), 0},\
478 { "align-loops=", &ix86_align_loops_string, \
479 N_("Loop code aligned to this power of 2"), 0}, \
480 { "align-jumps=", &ix86_align_jumps_string, \
481 N_("Jump targets are aligned to this power of 2"), 0}, \
482 { "align-functions=", &ix86_align_funcs_string, \
483 N_("Function starts are aligned to this power of 2"), 0}, \
484 { "preferred-stack-boundary=", \
485 &ix86_preferred_stack_boundary_string, \
486 N_("Attempt to keep stack aligned to this power of 2"), 0}, \
487 { "branch-cost=", &ix86_branch_cost_string, \
488 N_("Branches are this expensive (1-5, arbitrary units)"), 0},\
489 { "cmodel=", &ix86_cmodel_string, \
490 N_("Use given x86-64 code model"), 0}, \
491 { "debug-arg", &ix86_debug_arg_string, \
492 "" /* Undocumented. */, 0}, \
493 { "debug-addr", &ix86_debug_addr_string, \
494 "" /* Undocumented. */, 0}, \
495 { "asm=", &ix86_asm_string, \
496 N_("Use given assembler dialect"), 0}, \
497 { "tls-dialect=", &ix86_tls_dialect_string, \
498 N_("Use given thread-local storage dialect"), 0}, \
499 SUBTARGET_OPTIONS \
500 }
501
502 /* Sometimes certain combinations of command options do not make
503 sense on a particular target machine. You can define a macro
504 `OVERRIDE_OPTIONS' to take account of this. This macro, if
505 defined, is executed once just after all the command options have
506 been parsed.
507
508 Don't use this macro to turn on various extra optimizations for
509 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
510
511 #define OVERRIDE_OPTIONS override_options ()
512
513 /* These are meant to be redefined in the host dependent files */
514 #define SUBTARGET_SWITCHES
515 #define SUBTARGET_OPTIONS
516
517 /* Define this to change the optimizations performed by default. */
518 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
519 optimization_options ((LEVEL), (SIZE))
520
521 /* Support for configure-time defaults of some command line options. */
522 #define OPTION_DEFAULT_SPECS \
523 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
524 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
525 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }
526
527 /* Specs for the compiler proper */
528
529 #ifndef CC1_CPU_SPEC
530 #define CC1_CPU_SPEC "\
531 %{!mtune*: \
532 %{m386:mtune=i386 \
533 %n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
534 %{m486:-mtune=i486 \
535 %n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
536 %{mpentium:-mtune=pentium \
537 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
538 %{mpentiumpro:-mtune=pentiumpro \
539 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
540 %{mcpu=*:-mtune=%* \
541 %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
542 %<mcpu=* \
543 %{mintel-syntax:-masm=intel \
544 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
545 %{mno-intel-syntax:-masm=att \
546 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
547 #endif
548 \f
549 /* Target CPU builtins. */
550 #define TARGET_CPU_CPP_BUILTINS() \
551 do \
552 { \
553 size_t arch_len = strlen (ix86_arch_string); \
554 size_t tune_len = strlen (ix86_tune_string); \
555 int last_arch_char = ix86_arch_string[arch_len - 1]; \
556 int last_tune_char = ix86_tune_string[tune_len - 1]; \
557 \
558 if (TARGET_64BIT) \
559 { \
560 builtin_assert ("cpu=x86_64"); \
561 builtin_assert ("machine=x86_64"); \
562 builtin_define ("__amd64"); \
563 builtin_define ("__amd64__"); \
564 builtin_define ("__x86_64"); \
565 builtin_define ("__x86_64__"); \
566 } \
567 else \
568 { \
569 builtin_assert ("cpu=i386"); \
570 builtin_assert ("machine=i386"); \
571 builtin_define_std ("i386"); \
572 } \
573 \
574 /* Built-ins based on -mtune= (or -march= if no \
575 -mtune= given). */ \
576 if (TARGET_386) \
577 builtin_define ("__tune_i386__"); \
578 else if (TARGET_486) \
579 builtin_define ("__tune_i486__"); \
580 else if (TARGET_PENTIUM) \
581 { \
582 builtin_define ("__tune_i586__"); \
583 builtin_define ("__tune_pentium__"); \
584 if (last_tune_char == 'x') \
585 builtin_define ("__tune_pentium_mmx__"); \
586 } \
587 else if (TARGET_PENTIUMPRO) \
588 { \
589 builtin_define ("__tune_i686__"); \
590 builtin_define ("__tune_pentiumpro__"); \
591 switch (last_tune_char) \
592 { \
593 case '3': \
594 builtin_define ("__tune_pentium3__"); \
595 /* FALLTHRU */ \
596 case '2': \
597 builtin_define ("__tune_pentium2__"); \
598 break; \
599 } \
600 } \
601 else if (TARGET_K6) \
602 { \
603 builtin_define ("__tune_k6__"); \
604 if (last_tune_char == '2') \
605 builtin_define ("__tune_k6_2__"); \
606 else if (last_tune_char == '3') \
607 builtin_define ("__tune_k6_3__"); \
608 } \
609 else if (TARGET_ATHLON) \
610 { \
611 builtin_define ("__tune_athlon__"); \
612 /* Only plain "athlon" lacks SSE. */ \
613 if (last_tune_char != 'n') \
614 builtin_define ("__tune_athlon_sse__"); \
615 } \
616 else if (TARGET_K8) \
617 builtin_define ("__tune_k8__"); \
618 else if (TARGET_PENTIUM4) \
619 builtin_define ("__tune_pentium4__"); \
620 else if (TARGET_NOCONA) \
621 builtin_define ("__tune_nocona__"); \
622 \
623 if (TARGET_MMX) \
624 builtin_define ("__MMX__"); \
625 if (TARGET_3DNOW) \
626 builtin_define ("__3dNOW__"); \
627 if (TARGET_3DNOW_A) \
628 builtin_define ("__3dNOW_A__"); \
629 if (TARGET_SSE) \
630 builtin_define ("__SSE__"); \
631 if (TARGET_SSE2) \
632 builtin_define ("__SSE2__"); \
633 if (TARGET_SSE3) \
634 builtin_define ("__SSE3__"); \
635 if (TARGET_SSE_MATH && TARGET_SSE) \
636 builtin_define ("__SSE_MATH__"); \
637 if (TARGET_SSE_MATH && TARGET_SSE2) \
638 builtin_define ("__SSE2_MATH__"); \
639 \
640 /* Built-ins based on -march=. */ \
641 if (ix86_arch == PROCESSOR_I486) \
642 { \
643 builtin_define ("__i486"); \
644 builtin_define ("__i486__"); \
645 } \
646 else if (ix86_arch == PROCESSOR_PENTIUM) \
647 { \
648 builtin_define ("__i586"); \
649 builtin_define ("__i586__"); \
650 builtin_define ("__pentium"); \
651 builtin_define ("__pentium__"); \
652 if (last_arch_char == 'x') \
653 builtin_define ("__pentium_mmx__"); \
654 } \
655 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
656 { \
657 builtin_define ("__i686"); \
658 builtin_define ("__i686__"); \
659 builtin_define ("__pentiumpro"); \
660 builtin_define ("__pentiumpro__"); \
661 } \
662 else if (ix86_arch == PROCESSOR_K6) \
663 { \
664 \
665 builtin_define ("__k6"); \
666 builtin_define ("__k6__"); \
667 if (last_arch_char == '2') \
668 builtin_define ("__k6_2__"); \
669 else if (last_arch_char == '3') \
670 builtin_define ("__k6_3__"); \
671 } \
672 else if (ix86_arch == PROCESSOR_ATHLON) \
673 { \
674 builtin_define ("__athlon"); \
675 builtin_define ("__athlon__"); \
676 /* Only plain "athlon" lacks SSE. */ \
677 if (last_arch_char != 'n') \
678 builtin_define ("__athlon_sse__"); \
679 } \
680 else if (ix86_arch == PROCESSOR_K8) \
681 { \
682 builtin_define ("__k8"); \
683 builtin_define ("__k8__"); \
684 } \
685 else if (ix86_arch == PROCESSOR_PENTIUM4) \
686 { \
687 builtin_define ("__pentium4"); \
688 builtin_define ("__pentium4__"); \
689 } \
690 else if (ix86_arch == PROCESSOR_NOCONA) \
691 { \
692 builtin_define ("__nocona"); \
693 builtin_define ("__nocona__"); \
694 } \
695 } \
696 while (0)
697
698 #define TARGET_CPU_DEFAULT_i386 0
699 #define TARGET_CPU_DEFAULT_i486 1
700 #define TARGET_CPU_DEFAULT_pentium 2
701 #define TARGET_CPU_DEFAULT_pentium_mmx 3
702 #define TARGET_CPU_DEFAULT_pentiumpro 4
703 #define TARGET_CPU_DEFAULT_pentium2 5
704 #define TARGET_CPU_DEFAULT_pentium3 6
705 #define TARGET_CPU_DEFAULT_pentium4 7
706 #define TARGET_CPU_DEFAULT_k6 8
707 #define TARGET_CPU_DEFAULT_k6_2 9
708 #define TARGET_CPU_DEFAULT_k6_3 10
709 #define TARGET_CPU_DEFAULT_athlon 11
710 #define TARGET_CPU_DEFAULT_athlon_sse 12
711 #define TARGET_CPU_DEFAULT_k8 13
712 #define TARGET_CPU_DEFAULT_pentium_m 14
713 #define TARGET_CPU_DEFAULT_prescott 15
714 #define TARGET_CPU_DEFAULT_nocona 16
715
716 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
717 "pentiumpro", "pentium2", "pentium3", \
718 "pentium4", "k6", "k6-2", "k6-3",\
719 "athlon", "athlon-4", "k8", \
720 "pentium-m", "prescott", "nocona"}
721
722 #ifndef CC1_SPEC
723 #define CC1_SPEC "%(cc1_cpu) "
724 #endif
725
726 /* This macro defines names of additional specifications to put in the
727 specs that can be used in various specifications like CC1_SPEC. Its
728 definition is an initializer with a subgrouping for each command option.
729
730 Each subgrouping contains a string constant, that defines the
731 specification name, and a string constant that used by the GCC driver
732 program.
733
734 Do not define this macro if it does not need to do anything. */
735
736 #ifndef SUBTARGET_EXTRA_SPECS
737 #define SUBTARGET_EXTRA_SPECS
738 #endif
739
740 #define EXTRA_SPECS \
741 { "cc1_cpu", CC1_CPU_SPEC }, \
742 SUBTARGET_EXTRA_SPECS
743 \f
744 /* target machine storage layout */
745
746 #define LONG_DOUBLE_TYPE_SIZE 80
747
748 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
749 FPU, assume that the fpcw is set to extended precision; when using
750 only SSE, rounding is correct; when using both SSE and the FPU,
751 the rounding precision is indeterminate, since either may be chosen
752 apparently at random. */
753 #define TARGET_FLT_EVAL_METHOD \
754 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
755
756 #define SHORT_TYPE_SIZE 16
757 #define INT_TYPE_SIZE 32
758 #define FLOAT_TYPE_SIZE 32
759 #define LONG_TYPE_SIZE BITS_PER_WORD
760 #define DOUBLE_TYPE_SIZE 64
761 #define LONG_LONG_TYPE_SIZE 64
762
763 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
764 #define MAX_BITS_PER_WORD 64
765 #else
766 #define MAX_BITS_PER_WORD 32
767 #endif
768
769 /* Define this if most significant byte of a word is the lowest numbered. */
770 /* That is true on the 80386. */
771
772 #define BITS_BIG_ENDIAN 0
773
774 /* Define this if most significant byte of a word is the lowest numbered. */
775 /* That is not true on the 80386. */
776 #define BYTES_BIG_ENDIAN 0
777
778 /* Define this if most significant word of a multiword number is the lowest
779 numbered. */
780 /* Not true for 80386 */
781 #define WORDS_BIG_ENDIAN 0
782
783 /* Width of a word, in units (bytes). */
784 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
785 #ifdef IN_LIBGCC2
786 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
787 #else
788 #define MIN_UNITS_PER_WORD 4
789 #endif
790
791 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
792 #define PARM_BOUNDARY BITS_PER_WORD
793
794 /* Boundary (in *bits*) on which stack pointer should be aligned. */
795 #define STACK_BOUNDARY BITS_PER_WORD
796
797 /* Boundary (in *bits*) on which the stack pointer prefers to be
798 aligned; the compiler cannot rely on having this alignment. */
799 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
800
801 /* As of July 2001, many runtimes to not align the stack properly when
802 entering main. This causes expand_main_function to forcibly align
803 the stack, which results in aligned frames for functions called from
804 main, though it does nothing for the alignment of main itself. */
805 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
806 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
807
808 /* Minimum allocation boundary for the code of a function. */
809 #define FUNCTION_BOUNDARY 8
810
811 /* C++ stores the virtual bit in the lowest bit of function pointers. */
812 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
813
814 /* Alignment of field after `int : 0' in a structure. */
815
816 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
817
818 /* Minimum size in bits of the largest boundary to which any
819 and all fundamental data types supported by the hardware
820 might need to be aligned. No data type wants to be aligned
821 rounder than this.
822
823 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
824 and Pentium Pro XFmode values at 128 bit boundaries. */
825
826 #define BIGGEST_ALIGNMENT 128
827
828 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
829 #define ALIGN_MODE_128(MODE) \
830 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
831
832 /* The published ABIs say that doubles should be aligned on word
833 boundaries, so lower the alignment for structure fields unless
834 -malign-double is set. */
835
836 /* ??? Blah -- this macro is used directly by libobjc. Since it
837 supports no vector modes, cut out the complexity and fall back
838 on BIGGEST_FIELD_ALIGNMENT. */
839 #ifdef IN_TARGET_LIBS
840 #ifdef __x86_64__
841 #define BIGGEST_FIELD_ALIGNMENT 128
842 #else
843 #define BIGGEST_FIELD_ALIGNMENT 32
844 #endif
845 #else
846 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
847 x86_field_alignment (FIELD, COMPUTED)
848 #endif
849
850 /* If defined, a C expression to compute the alignment given to a
851 constant that is being placed in memory. EXP is the constant
852 and ALIGN is the alignment that the object would ordinarily have.
853 The value of this macro is used instead of that alignment to align
854 the object.
855
856 If this macro is not defined, then ALIGN is used.
857
858 The typical use of this macro is to increase alignment for string
859 constants to be word aligned so that `strcpy' calls that copy
860 constants can be done inline. */
861
862 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
863
864 /* If defined, a C expression to compute the alignment for a static
865 variable. TYPE is the data type, and ALIGN is the alignment that
866 the object would ordinarily have. The value of this macro is used
867 instead of that alignment to align the object.
868
869 If this macro is not defined, then ALIGN is used.
870
871 One use of this macro is to increase alignment of medium-size
872 data to make it all fit in fewer cache lines. Another is to
873 cause character arrays to be word-aligned so that `strcpy' calls
874 that copy constants to character arrays can be done inline. */
875
876 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
877
878 /* If defined, a C expression to compute the alignment for a local
879 variable. TYPE is the data type, and ALIGN is the alignment that
880 the object would ordinarily have. The value of this macro is used
881 instead of that alignment to align the object.
882
883 If this macro is not defined, then ALIGN is used.
884
885 One use of this macro is to increase alignment of medium-size
886 data to make it all fit in fewer cache lines. */
887
888 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
889
890 /* If defined, a C expression that gives the alignment boundary, in
891 bits, of an argument with the specified mode and type. If it is
892 not defined, `PARM_BOUNDARY' is used for all arguments. */
893
894 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
895 ix86_function_arg_boundary ((MODE), (TYPE))
896
897 /* Set this nonzero if move instructions will actually fail to work
898 when given unaligned data. */
899 #define STRICT_ALIGNMENT 0
900
901 /* If bit field type is int, don't let it cross an int,
902 and give entire struct the alignment of an int. */
903 /* Required on the 386 since it doesn't have bit-field insns. */
904 #define PCC_BITFIELD_TYPE_MATTERS 1
905 \f
906 /* Standard register usage. */
907
908 /* This processor has special stack-like registers. See reg-stack.c
909 for details. */
910
911 #define STACK_REGS
912 #define IS_STACK_MODE(MODE) \
913 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode) \
914
915 /* Number of actual hardware registers.
916 The hardware registers are assigned numbers for the compiler
917 from 0 to just below FIRST_PSEUDO_REGISTER.
918 All registers that the compiler knows about must be given numbers,
919 even those that are not normally considered general registers.
920
921 In the 80386 we give the 8 general purpose registers the numbers 0-7.
922 We number the floating point registers 8-15.
923 Note that registers 0-7 can be accessed as a short or int,
924 while only 0-3 may be used with byte `mov' instructions.
925
926 Reg 16 does not correspond to any hardware register, but instead
927 appears in the RTL as an argument pointer prior to reload, and is
928 eliminated during reloading in favor of either the stack or frame
929 pointer. */
930
931 #define FIRST_PSEUDO_REGISTER 53
932
933 /* Number of hardware registers that go into the DWARF-2 unwind info.
934 If not defined, equals FIRST_PSEUDO_REGISTER. */
935
936 #define DWARF_FRAME_REGISTERS 17
937
938 /* 1 for registers that have pervasive standard uses
939 and are not available for the register allocator.
940 On the 80386, the stack pointer is such, as is the arg pointer.
941
942 The value is zero if the register is not fixed on either 32 or
943 64 bit targets, one if the register if fixed on both 32 and 64
944 bit targets, two if it is only fixed on 32bit targets and three
945 if its only fixed on 64bit targets.
946 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
947 */
948 #define FIXED_REGISTERS \
949 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
950 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
951 /*arg,flags,fpsr,dir,frame*/ \
952 1, 1, 1, 1, 1, \
953 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
954 0, 0, 0, 0, 0, 0, 0, 0, \
955 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
956 0, 0, 0, 0, 0, 0, 0, 0, \
957 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
958 2, 2, 2, 2, 2, 2, 2, 2, \
959 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
960 2, 2, 2, 2, 2, 2, 2, 2}
961
962
963 /* 1 for registers not available across function calls.
964 These must include the FIXED_REGISTERS and also any
965 registers that can be used without being saved.
966 The latter must include the registers where values are returned
967 and the register where structure-value addresses are passed.
968 Aside from that, you can include as many other registers as you like.
969
970 The value is zero if the register is not fixed on either 32 or
971 64 bit targets, one if the register if fixed on both 32 and 64
972 bit targets, two if it is only fixed on 32bit targets and three
973 if its only fixed on 64bit targets.
974 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
975 */
976 #define CALL_USED_REGISTERS \
977 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
978 { 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
979 /*arg,flags,fpsr,dir,frame*/ \
980 1, 1, 1, 1, 1, \
981 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
982 1, 1, 1, 1, 1, 1, 1, 1, \
983 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
984 1, 1, 1, 1, 1, 1, 1, 1, \
985 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
986 1, 1, 1, 1, 2, 2, 2, 2, \
987 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
988 1, 1, 1, 1, 1, 1, 1, 1} \
989
990 /* Order in which to allocate registers. Each register must be
991 listed once, even those in FIXED_REGISTERS. List frame pointer
992 late and fixed registers last. Note that, in general, we prefer
993 registers listed in CALL_USED_REGISTERS, keeping the others
994 available for storage of persistent values.
995
996 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
997 so this is just empty initializer for array. */
998
999 #define REG_ALLOC_ORDER \
1000 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1001 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1002 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1003 48, 49, 50, 51, 52 }
1004
1005 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
1006 to be rearranged based on a particular function. When using sse math,
1007 we want to allocate SSE before x87 registers and vice vera. */
1008
1009 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
1010
1011
1012 /* Macro to conditionally modify fixed_regs/call_used_regs. */
1013 #define CONDITIONAL_REGISTER_USAGE \
1014 do { \
1015 int i; \
1016 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1017 { \
1018 if (fixed_regs[i] > 1) \
1019 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
1020 if (call_used_regs[i] > 1) \
1021 call_used_regs[i] = (call_used_regs[i] \
1022 == (TARGET_64BIT ? 3 : 2)); \
1023 } \
1024 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
1025 { \
1026 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1027 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1028 } \
1029 if (! TARGET_MMX) \
1030 { \
1031 int i; \
1032 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1033 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
1034 fixed_regs[i] = call_used_regs[i] = 1; \
1035 } \
1036 if (! TARGET_SSE) \
1037 { \
1038 int i; \
1039 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1040 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
1041 fixed_regs[i] = call_used_regs[i] = 1; \
1042 } \
1043 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
1044 { \
1045 int i; \
1046 HARD_REG_SET x; \
1047 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
1048 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1049 if (TEST_HARD_REG_BIT (x, i)) \
1050 fixed_regs[i] = call_used_regs[i] = 1; \
1051 } \
1052 } while (0)
1053
1054 /* Return number of consecutive hard regs needed starting at reg REGNO
1055 to hold something of mode MODE.
1056 This is ordinarily the length in words of a value of mode MODE
1057 but can be less for certain modes in special long registers.
1058
1059 Actually there are no two word move instructions for consecutive
1060 registers. And only registers 0-3 may have mov byte instructions
1061 applied to them.
1062 */
1063
1064 #define HARD_REGNO_NREGS(REGNO, MODE) \
1065 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1066 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1067 : ((MODE) == XFmode \
1068 ? (TARGET_64BIT ? 2 : 3) \
1069 : (MODE) == XCmode \
1070 ? (TARGET_64BIT ? 4 : 6) \
1071 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1072
1073 #define VALID_SSE2_REG_MODE(MODE) \
1074 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1075 || (MODE) == V2DImode || (MODE) == DFmode)
1076
1077 #define VALID_SSE_REG_MODE(MODE) \
1078 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1079 || (MODE) == SFmode || (MODE) == TFmode)
1080
1081 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1082 ((MODE) == V2SFmode || (MODE) == SFmode)
1083
1084 #define VALID_MMX_REG_MODE(MODE) \
1085 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
1086 || (MODE) == V2SImode || (MODE) == SImode)
1087
1088 /* ??? No autovectorization into MMX or 3DNOW until we can reliably
1089 place emms and femms instructions. */
1090 #define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : 0)
1091
1092 #define VALID_FP_MODE_P(MODE) \
1093 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1094 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1095
1096 #define VALID_INT_MODE_P(MODE) \
1097 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1098 || (MODE) == DImode \
1099 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1100 || (MODE) == CDImode \
1101 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1102 || (MODE) == TFmode || (MODE) == TCmode)))
1103
1104 /* Return true for modes passed in SSE registers. */
1105 #define SSE_REG_MODE_P(MODE) \
1106 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
1107 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1108 || (MODE) == V4SFmode || (MODE) == V4SImode)
1109
1110 /* Return true for modes passed in MMX registers. */
1111 #define MMX_REG_MODE_P(MODE) \
1112 ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode \
1113 || (MODE) == V2SFmode)
1114
1115 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1116
1117 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1118 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1119
1120 /* Value is 1 if it is a good idea to tie two pseudo registers
1121 when one has mode MODE1 and one has mode MODE2.
1122 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1123 for any hard reg, then this must be 0 for correct output. */
1124
1125 #define MODES_TIEABLE_P(MODE1, MODE2) \
1126 ((MODE1) == (MODE2) \
1127 || (((MODE1) == HImode || (MODE1) == SImode \
1128 || ((MODE1) == QImode \
1129 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1130 || ((MODE1) == DImode && TARGET_64BIT)) \
1131 && ((MODE2) == HImode || (MODE2) == SImode \
1132 || ((MODE2) == QImode \
1133 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1134 || ((MODE2) == DImode && TARGET_64BIT))))
1135
1136 /* It is possible to write patterns to move flags; but until someone
1137 does it, */
1138 #define AVOID_CCMODE_COPIES
1139
1140 /* Specify the modes required to caller save a given hard regno.
1141 We do this on i386 to prevent flags from being saved at all.
1142
1143 Kill any attempts to combine saving of modes. */
1144
1145 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1146 (CC_REGNO_P (REGNO) ? VOIDmode \
1147 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1148 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
1149 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1150 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
1151 : (MODE))
1152 /* Specify the registers used for certain standard purposes.
1153 The values of these macros are register numbers. */
1154
1155 /* on the 386 the pc register is %eip, and is not usable as a general
1156 register. The ordinary mov instructions won't work */
1157 /* #define PC_REGNUM */
1158
1159 /* Register to use for pushing function arguments. */
1160 #define STACK_POINTER_REGNUM 7
1161
1162 /* Base register for access to local variables of the function. */
1163 #define HARD_FRAME_POINTER_REGNUM 6
1164
1165 /* Base register for access to local variables of the function. */
1166 #define FRAME_POINTER_REGNUM 20
1167
1168 /* First floating point reg */
1169 #define FIRST_FLOAT_REG 8
1170
1171 /* First & last stack-like regs */
1172 #define FIRST_STACK_REG FIRST_FLOAT_REG
1173 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1174
1175 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1176 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1177
1178 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1179 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1180
1181 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1182 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1183
1184 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1185 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1186
1187 /* Value should be nonzero if functions must have frame pointers.
1188 Zero means the frame pointer need not be set up (and parms
1189 may be accessed via the stack pointer) in functions that seem suitable.
1190 This is computed in `reload', in reload1.c. */
1191 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1192
1193 /* Override this in other tm.h files to cope with various OS losage
1194 requiring a frame pointer. */
1195 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1196 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1197 #endif
1198
1199 /* Make sure we can access arbitrary call frames. */
1200 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1201
1202 /* Base register for access to arguments of the function. */
1203 #define ARG_POINTER_REGNUM 16
1204
1205 /* Register in which static-chain is passed to a function.
1206 We do use ECX as static chain register for 32 bit ABI. On the
1207 64bit ABI, ECX is an argument register, so we use R10 instead. */
1208 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1209
1210 /* Register to hold the addressing base for position independent
1211 code access to data items. We don't use PIC pointer for 64bit
1212 mode. Define the regnum to dummy value to prevent gcc from
1213 pessimizing code dealing with EBX.
1214
1215 To avoid clobbering a call-saved register unnecessarily, we renumber
1216 the pic register when possible. The change is visible after the
1217 prologue has been emitted. */
1218
1219 #define REAL_PIC_OFFSET_TABLE_REGNUM 3
1220
1221 #define PIC_OFFSET_TABLE_REGNUM \
1222 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM \
1223 : reload_completed ? REGNO (pic_offset_table_rtx) \
1224 : REAL_PIC_OFFSET_TABLE_REGNUM)
1225
1226 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1227
1228 /* A C expression which can inhibit the returning of certain function
1229 values in registers, based on the type of value. A nonzero value
1230 says to return the function value in memory, just as large
1231 structures are always returned. Here TYPE will be a C expression
1232 of type `tree', representing the data type of the value.
1233
1234 Note that values of mode `BLKmode' must be explicitly handled by
1235 this macro. Also, the option `-fpcc-struct-return' takes effect
1236 regardless of this macro. On most systems, it is possible to
1237 leave the macro undefined; this causes a default definition to be
1238 used, whose value is the constant 1 for `BLKmode' values, and 0
1239 otherwise.
1240
1241 Do not use this macro to indicate that structures and unions
1242 should always be returned in memory. You should instead use
1243 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1244
1245 #define RETURN_IN_MEMORY(TYPE) \
1246 ix86_return_in_memory (TYPE)
1247
1248 /* This is overridden by <cygwin.h>. */
1249 #define MS_AGGREGATE_RETURN 0
1250
1251 /* This is overridden by <netware.h>. */
1252 #define KEEP_AGGREGATE_RETURN_POINTER 0
1253 \f
1254 /* Define the classes of registers for register constraints in the
1255 machine description. Also define ranges of constants.
1256
1257 One of the classes must always be named ALL_REGS and include all hard regs.
1258 If there is more than one class, another class must be named NO_REGS
1259 and contain no registers.
1260
1261 The name GENERAL_REGS must be the name of a class (or an alias for
1262 another name such as ALL_REGS). This is the class of registers
1263 that is allowed by "g" or "r" in a register constraint.
1264 Also, registers outside this class are allocated only when
1265 instructions express preferences for them.
1266
1267 The classes must be numbered in nondecreasing order; that is,
1268 a larger-numbered class must never be contained completely
1269 in a smaller-numbered class.
1270
1271 For any two classes, it is very desirable that there be another
1272 class that represents their union.
1273
1274 It might seem that class BREG is unnecessary, since no useful 386
1275 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1276 and the "b" register constraint is useful in asms for syscalls.
1277
1278 The flags and fpsr registers are in no class. */
1279
1280 enum reg_class
1281 {
1282 NO_REGS,
1283 AREG, DREG, CREG, BREG, SIREG, DIREG,
1284 AD_REGS, /* %eax/%edx for DImode */
1285 Q_REGS, /* %eax %ebx %ecx %edx */
1286 NON_Q_REGS, /* %esi %edi %ebp %esp */
1287 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1288 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1289 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1290 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1291 FLOAT_REGS,
1292 SSE_REGS,
1293 MMX_REGS,
1294 FP_TOP_SSE_REGS,
1295 FP_SECOND_SSE_REGS,
1296 FLOAT_SSE_REGS,
1297 FLOAT_INT_REGS,
1298 INT_SSE_REGS,
1299 FLOAT_INT_SSE_REGS,
1300 ALL_REGS, LIM_REG_CLASSES
1301 };
1302
1303 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1304
1305 #define INTEGER_CLASS_P(CLASS) \
1306 reg_class_subset_p ((CLASS), GENERAL_REGS)
1307 #define FLOAT_CLASS_P(CLASS) \
1308 reg_class_subset_p ((CLASS), FLOAT_REGS)
1309 #define SSE_CLASS_P(CLASS) \
1310 reg_class_subset_p ((CLASS), SSE_REGS)
1311 #define MMX_CLASS_P(CLASS) \
1312 reg_class_subset_p ((CLASS), MMX_REGS)
1313 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1314 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1315 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1316 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1317 #define MAYBE_SSE_CLASS_P(CLASS) \
1318 reg_classes_intersect_p (SSE_REGS, (CLASS))
1319 #define MAYBE_MMX_CLASS_P(CLASS) \
1320 reg_classes_intersect_p (MMX_REGS, (CLASS))
1321
1322 #define Q_CLASS_P(CLASS) \
1323 reg_class_subset_p ((CLASS), Q_REGS)
1324
1325 /* Give names of register classes as strings for dump file. */
1326
1327 #define REG_CLASS_NAMES \
1328 { "NO_REGS", \
1329 "AREG", "DREG", "CREG", "BREG", \
1330 "SIREG", "DIREG", \
1331 "AD_REGS", \
1332 "Q_REGS", "NON_Q_REGS", \
1333 "INDEX_REGS", \
1334 "LEGACY_REGS", \
1335 "GENERAL_REGS", \
1336 "FP_TOP_REG", "FP_SECOND_REG", \
1337 "FLOAT_REGS", \
1338 "SSE_REGS", \
1339 "MMX_REGS", \
1340 "FP_TOP_SSE_REGS", \
1341 "FP_SECOND_SSE_REGS", \
1342 "FLOAT_SSE_REGS", \
1343 "FLOAT_INT_REGS", \
1344 "INT_SSE_REGS", \
1345 "FLOAT_INT_SSE_REGS", \
1346 "ALL_REGS" }
1347
1348 /* Define which registers fit in which classes.
1349 This is an initializer for a vector of HARD_REG_SET
1350 of length N_REG_CLASSES. */
1351
1352 #define REG_CLASS_CONTENTS \
1353 { { 0x00, 0x0 }, \
1354 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1355 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1356 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1357 { 0x03, 0x0 }, /* AD_REGS */ \
1358 { 0x0f, 0x0 }, /* Q_REGS */ \
1359 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1360 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1361 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1362 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1363 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1364 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1365 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1366 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1367 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1368 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1369 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1370 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1371 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1372 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1373 { 0xffffffff,0x1fffff } \
1374 }
1375
1376 /* The same information, inverted:
1377 Return the class number of the smallest class containing
1378 reg number REGNO. This could be a conditional expression
1379 or could index an array. */
1380
1381 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1382
1383 /* When defined, the compiler allows registers explicitly used in the
1384 rtl to be used as spill registers but prevents the compiler from
1385 extending the lifetime of these registers. */
1386
1387 #define SMALL_REGISTER_CLASSES 1
1388
1389 #define QI_REG_P(X) \
1390 (REG_P (X) && REGNO (X) < 4)
1391
1392 #define GENERAL_REGNO_P(N) \
1393 ((N) < 8 || REX_INT_REGNO_P (N))
1394
1395 #define GENERAL_REG_P(X) \
1396 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1397
1398 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1399
1400 #define NON_QI_REG_P(X) \
1401 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1402
1403 #define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1404 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1405
1406 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1407 #define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1408 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1409 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1410
1411 #define SSE_REGNO_P(N) \
1412 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1413 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1414
1415 #define REX_SSE_REGNO_P(N) \
1416 ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1417
1418 #define SSE_REGNO(N) \
1419 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1420 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1421
1422 #define SSE_FLOAT_MODE_P(MODE) \
1423 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1424
1425 #define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1426 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1427
1428 #define STACK_REG_P(XOP) \
1429 (REG_P (XOP) && \
1430 REGNO (XOP) >= FIRST_STACK_REG && \
1431 REGNO (XOP) <= LAST_STACK_REG)
1432
1433 #define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1434
1435 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1436
1437 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1438 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1439
1440 /* The class value for index registers, and the one for base regs. */
1441
1442 #define INDEX_REG_CLASS INDEX_REGS
1443 #define BASE_REG_CLASS GENERAL_REGS
1444
1445 /* Unused letters:
1446 B TU W
1447 h jk vw z
1448 */
1449
1450 /* Get reg_class from a letter such as appears in the machine description. */
1451
1452 #define REG_CLASS_FROM_LETTER(C) \
1453 ((C) == 'r' ? GENERAL_REGS : \
1454 (C) == 'R' ? LEGACY_REGS : \
1455 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1456 (C) == 'Q' ? Q_REGS : \
1457 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1458 ? FLOAT_REGS \
1459 : NO_REGS) : \
1460 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1461 ? FP_TOP_REG \
1462 : NO_REGS) : \
1463 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1464 ? FP_SECOND_REG \
1465 : NO_REGS) : \
1466 (C) == 'a' ? AREG : \
1467 (C) == 'b' ? BREG : \
1468 (C) == 'c' ? CREG : \
1469 (C) == 'd' ? DREG : \
1470 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1471 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1472 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
1473 (C) == 'A' ? AD_REGS : \
1474 (C) == 'D' ? DIREG : \
1475 (C) == 'S' ? SIREG : \
1476 (C) == 'l' ? INDEX_REGS : \
1477 NO_REGS)
1478
1479 /* The letters I, J, K, L and M in a register constraint string
1480 can be used to stand for particular ranges of immediate operands.
1481 This macro defines what the ranges are.
1482 C is the letter, and VALUE is a constant value.
1483 Return 1 if VALUE is in the range specified by C.
1484
1485 I is for non-DImode shifts.
1486 J is for DImode shifts.
1487 K is for signed imm8 operands.
1488 L is for andsi as zero-extending move.
1489 M is for shifts that can be executed by the "lea" opcode.
1490 N is for immediate operands for out/in instructions (0-255)
1491 */
1492
1493 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1494 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1495 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1496 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1497 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1498 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1499 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
1500 : 0)
1501
1502 /* Similar, but for floating constants, and defining letters G and H.
1503 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1504 TARGET_387 isn't set, because the stack register converter may need to
1505 load 0.0 into the function value register. */
1506
1507 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1508 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1509 : 0)
1510
1511 /* A C expression that defines the optional machine-dependent
1512 constraint letters that can be used to segregate specific types of
1513 operands, usually memory references, for the target machine. Any
1514 letter that is not elsewhere defined and not matched by
1515 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1516 be defined.
1517
1518 If it is required for a particular target machine, it should
1519 return 1 if VALUE corresponds to the operand type represented by
1520 the constraint letter C. If C is not defined as an extra
1521 constraint, the value returned should be 0 regardless of VALUE. */
1522
1523 #define EXTRA_CONSTRAINT(VALUE, D) \
1524 ((D) == 'e' ? x86_64_immediate_operand (VALUE, VOIDmode) \
1525 : (D) == 'Z' ? x86_64_zext_immediate_operand (VALUE, VOIDmode) \
1526 : (D) == 'C' ? standard_sse_constant_p (VALUE) \
1527 : 0)
1528
1529 /* Place additional restrictions on the register class to use when it
1530 is necessary to be able to hold a value of mode MODE in a reload
1531 register for which class CLASS would ordinarily be used. */
1532
1533 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1534 ((MODE) == QImode && !TARGET_64BIT \
1535 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1536 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1537 ? Q_REGS : (CLASS))
1538
1539 /* Given an rtx X being reloaded into a reg required to be
1540 in class CLASS, return the class of reg to actually use.
1541 In general this is just CLASS; but on some machines
1542 in some cases it is preferable to use a more restrictive class.
1543 On the 80386 series, we prevent floating constants from being
1544 reloaded into floating registers (since no move-insn can do that)
1545 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1546
1547 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1548 QImode must go into class Q_REGS.
1549 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1550 movdf to do mem-to-mem moves through integer regs. */
1551
1552 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1553 ix86_preferred_reload_class ((X), (CLASS))
1554
1555 /* If we are copying between general and FP registers, we need a memory
1556 location. The same is true for SSE and MMX registers. */
1557 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1558 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1559
1560 /* QImode spills from non-QI registers need a scratch. This does not
1561 happen often -- the only example so far requires an uninitialized
1562 pseudo. */
1563
1564 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
1565 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1566 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
1567 ? Q_REGS : NO_REGS)
1568
1569 /* Return the maximum number of consecutive registers
1570 needed to represent mode MODE in a register of class CLASS. */
1571 /* On the 80386, this is the size of MODE in words,
1572 except in the FP regs, where a single reg is always enough. */
1573 #define CLASS_MAX_NREGS(CLASS, MODE) \
1574 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1575 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1576 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1577 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1578
1579 /* A C expression whose value is nonzero if pseudos that have been
1580 assigned to registers of class CLASS would likely be spilled
1581 because registers of CLASS are needed for spill registers.
1582
1583 The default value of this macro returns 1 if CLASS has exactly one
1584 register and zero otherwise. On most machines, this default
1585 should be used. Only define this macro to some other expression
1586 if pseudo allocated by `local-alloc.c' end up in memory because
1587 their hard registers were needed for spill registers. If this
1588 macro returns nonzero for those classes, those pseudos will only
1589 be allocated by `global.c', which knows how to reallocate the
1590 pseudo to another register. If there would not be another
1591 register available for reallocation, you should not change the
1592 definition of this macro since the only effect of such a
1593 definition would be to slow down register allocation. */
1594
1595 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1596 (((CLASS) == AREG) \
1597 || ((CLASS) == DREG) \
1598 || ((CLASS) == CREG) \
1599 || ((CLASS) == BREG) \
1600 || ((CLASS) == AD_REGS) \
1601 || ((CLASS) == SIREG) \
1602 || ((CLASS) == DIREG) \
1603 || ((CLASS) == FP_TOP_REG) \
1604 || ((CLASS) == FP_SECOND_REG))
1605
1606 /* Return a class of registers that cannot change FROM mode to TO mode.
1607
1608 x87 registers can't do subreg as all values are reformated to extended
1609 precision. XMM registers does not support with nonzero offsets equal
1610 to 4, 8 and 12 otherwise valid for integer registers. Since we can't
1611 determine these, prohibit all nonparadoxical subregs changing size. */
1612
1613 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1614 (GET_MODE_SIZE (TO) < GET_MODE_SIZE (FROM) \
1615 ? reg_classes_intersect_p (FLOAT_SSE_REGS, (CLASS)) \
1616 || MAYBE_MMX_CLASS_P (CLASS) \
1617 : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1618 ? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)
1619 \f
1620 /* Stack layout; function entry, exit and calling. */
1621
1622 /* Define this if pushing a word on the stack
1623 makes the stack pointer a smaller address. */
1624 #define STACK_GROWS_DOWNWARD
1625
1626 /* Define this if the nominal address of the stack frame
1627 is at the high-address end of the local variables;
1628 that is, each additional local variable allocated
1629 goes at a more negative offset in the frame. */
1630 #define FRAME_GROWS_DOWNWARD
1631
1632 /* Offset within stack frame to start allocating local variables at.
1633 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1634 first local allocated. Otherwise, it is the offset to the BEGINNING
1635 of the first local allocated. */
1636 #define STARTING_FRAME_OFFSET 0
1637
1638 /* If we generate an insn to push BYTES bytes,
1639 this says how many the stack pointer really advances by.
1640 On 386 pushw decrements by exactly 2 no matter what the position was.
1641 On the 386 there is no pushb; we use pushw instead, and this
1642 has the effect of rounding up to 2.
1643
1644 For 64bit ABI we round up to 8 bytes.
1645 */
1646
1647 #define PUSH_ROUNDING(BYTES) \
1648 (TARGET_64BIT \
1649 ? (((BYTES) + 7) & (-8)) \
1650 : (((BYTES) + 1) & (-2)))
1651
1652 /* If defined, the maximum amount of space required for outgoing arguments will
1653 be computed and placed into the variable
1654 `current_function_outgoing_args_size'. No space will be pushed onto the
1655 stack for each call; instead, the function prologue should increase the stack
1656 frame size by this amount. */
1657
1658 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1659
1660 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1661 instructions to pass outgoing arguments. */
1662
1663 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1664
1665 /* We want the stack and args grow in opposite directions, even if
1666 PUSH_ARGS is 0. */
1667 #define PUSH_ARGS_REVERSED 1
1668
1669 /* Offset of first parameter from the argument pointer register value. */
1670 #define FIRST_PARM_OFFSET(FNDECL) 0
1671
1672 /* Define this macro if functions should assume that stack space has been
1673 allocated for arguments even when their values are passed in registers.
1674
1675 The value of this macro is the size, in bytes, of the area reserved for
1676 arguments passed in registers for the function represented by FNDECL.
1677
1678 This space can be allocated by the caller, or be a part of the
1679 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1680 which. */
1681 #define REG_PARM_STACK_SPACE(FNDECL) 0
1682
1683 /* Value is the number of bytes of arguments automatically
1684 popped when returning from a subroutine call.
1685 FUNDECL is the declaration node of the function (as a tree),
1686 FUNTYPE is the data type of the function (as a tree),
1687 or for a library call it is an identifier node for the subroutine name.
1688 SIZE is the number of bytes of arguments passed on the stack.
1689
1690 On the 80386, the RTD insn may be used to pop them if the number
1691 of args is fixed, but if the number is variable then the caller
1692 must pop them all. RTD can't be used for library calls now
1693 because the library is compiled with the Unix compiler.
1694 Use of RTD is a selectable option, since it is incompatible with
1695 standard Unix calling sequences. If the option is not selected,
1696 the caller must always pop the args.
1697
1698 The attribute stdcall is equivalent to RTD on a per module basis. */
1699
1700 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1701 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1702
1703 /* Define how to find the value returned by a function.
1704 VALTYPE is the data type of the value (as a tree).
1705 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1706 otherwise, FUNC is 0. */
1707 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1708 ix86_function_value (VALTYPE)
1709
1710 #define FUNCTION_VALUE_REGNO_P(N) \
1711 ix86_function_value_regno_p (N)
1712
1713 /* Define how to find the value returned by a library function
1714 assuming the value has mode MODE. */
1715
1716 #define LIBCALL_VALUE(MODE) \
1717 ix86_libcall_value (MODE)
1718
1719 /* Define the size of the result block used for communication between
1720 untyped_call and untyped_return. The block contains a DImode value
1721 followed by the block used by fnsave and frstor. */
1722
1723 #define APPLY_RESULT_SIZE (8+108)
1724
1725 /* 1 if N is a possible register number for function argument passing. */
1726 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1727
1728 /* Define a data type for recording info about an argument list
1729 during the scan of that argument list. This data type should
1730 hold all necessary information about the function itself
1731 and about the args processed so far, enough to enable macros
1732 such as FUNCTION_ARG to determine where the next arg should go. */
1733
1734 typedef struct ix86_args {
1735 int words; /* # words passed so far */
1736 int nregs; /* # registers available for passing */
1737 int regno; /* next available register number */
1738 int fastcall; /* fastcall calling convention is used */
1739 int sse_words; /* # sse words passed so far */
1740 int sse_nregs; /* # sse registers available for passing */
1741 int warn_sse; /* True when we want to warn about SSE ABI. */
1742 int warn_mmx; /* True when we want to warn about MMX ABI. */
1743 int sse_regno; /* next available sse register number */
1744 int mmx_words; /* # mmx words passed so far */
1745 int mmx_nregs; /* # mmx registers available for passing */
1746 int mmx_regno; /* next available mmx register number */
1747 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1748 } CUMULATIVE_ARGS;
1749
1750 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1751 for a call to a function whose data type is FNTYPE.
1752 For a library call, FNTYPE is 0. */
1753
1754 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1755 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1756
1757 /* Update the data in CUM to advance over an argument
1758 of mode MODE and data type TYPE.
1759 (TYPE is null for libcalls where that information may not be available.) */
1760
1761 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1762 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1763
1764 /* Define where to put the arguments to a function.
1765 Value is zero to push the argument on the stack,
1766 or a hard register in which to store the argument.
1767
1768 MODE is the argument's machine mode.
1769 TYPE is the data type of the argument (as a tree).
1770 This is null for libcalls where that information may
1771 not be available.
1772 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1773 the preceding args and about the function being called.
1774 NAMED is nonzero if this argument is a named parameter
1775 (otherwise it is an extra parameter matching an ellipsis). */
1776
1777 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1778 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1779
1780 /* Implement `va_start' for varargs and stdarg. */
1781 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1782 ix86_va_start (VALIST, NEXTARG)
1783
1784 #define TARGET_ASM_FILE_END ix86_file_end
1785 #define NEED_INDICATE_EXEC_STACK 0
1786
1787 /* Output assembler code to FILE to increment profiler label # LABELNO
1788 for profiling a function entry. */
1789
1790 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1791
1792 #define MCOUNT_NAME "_mcount"
1793
1794 #define PROFILE_COUNT_REGISTER "edx"
1795
1796 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1797 the stack pointer does not matter. The value is tested only in
1798 functions that have frame pointers.
1799 No definition is equivalent to always zero. */
1800 /* Note on the 386 it might be more efficient not to define this since
1801 we have to restore it ourselves from the frame pointer, in order to
1802 use pop */
1803
1804 #define EXIT_IGNORE_STACK 1
1805
1806 /* Output assembler code for a block containing the constant parts
1807 of a trampoline, leaving space for the variable parts. */
1808
1809 /* On the 386, the trampoline contains two instructions:
1810 mov #STATIC,ecx
1811 jmp FUNCTION
1812 The trampoline is generated entirely at runtime. The operand of JMP
1813 is the address of FUNCTION relative to the instruction following the
1814 JMP (which is 5 bytes long). */
1815
1816 /* Length in units of the trampoline for entering a nested function. */
1817
1818 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1819
1820 /* Emit RTL insns to initialize the variable parts of a trampoline.
1821 FNADDR is an RTX for the address of the function's pure code.
1822 CXT is an RTX for the static chain value for the function. */
1823
1824 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1825 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1826 \f
1827 /* Definitions for register eliminations.
1828
1829 This is an array of structures. Each structure initializes one pair
1830 of eliminable registers. The "from" register number is given first,
1831 followed by "to". Eliminations of the same "from" register are listed
1832 in order of preference.
1833
1834 There are two registers that can always be eliminated on the i386.
1835 The frame pointer and the arg pointer can be replaced by either the
1836 hard frame pointer or to the stack pointer, depending upon the
1837 circumstances. The hard frame pointer is not used before reload and
1838 so it is not eligible for elimination. */
1839
1840 #define ELIMINABLE_REGS \
1841 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1842 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1843 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1844 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1845
1846 /* Given FROM and TO register numbers, say whether this elimination is
1847 allowed. Frame pointer elimination is automatically handled.
1848
1849 All other eliminations are valid. */
1850
1851 #define CAN_ELIMINATE(FROM, TO) \
1852 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1853
1854 /* Define the offset between two registers, one to be eliminated, and the other
1855 its replacement, at the start of a routine. */
1856
1857 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1858 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1859 \f
1860 /* Addressing modes, and classification of registers for them. */
1861
1862 /* Macros to check register numbers against specific register classes. */
1863
1864 /* These assume that REGNO is a hard or pseudo reg number.
1865 They give nonzero only if REGNO is a hard reg of the suitable class
1866 or a pseudo reg currently allocated to a suitable hard reg.
1867 Since they use reg_renumber, they are safe only once reg_renumber
1868 has been allocated, which happens in local-alloc.c. */
1869
1870 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1871 ((REGNO) < STACK_POINTER_REGNUM \
1872 || (REGNO >= FIRST_REX_INT_REG \
1873 && (REGNO) <= LAST_REX_INT_REG) \
1874 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1875 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1876 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1877
1878 #define REGNO_OK_FOR_BASE_P(REGNO) \
1879 ((REGNO) <= STACK_POINTER_REGNUM \
1880 || (REGNO) == ARG_POINTER_REGNUM \
1881 || (REGNO) == FRAME_POINTER_REGNUM \
1882 || (REGNO >= FIRST_REX_INT_REG \
1883 && (REGNO) <= LAST_REX_INT_REG) \
1884 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1885 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1886 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1887
1888 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1889 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1890 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1891 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1892
1893 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1894 and check its validity for a certain class.
1895 We have two alternate definitions for each of them.
1896 The usual definition accepts all pseudo regs; the other rejects
1897 them unless they have been allocated suitable hard regs.
1898 The symbol REG_OK_STRICT causes the latter definition to be used.
1899
1900 Most source files want to accept pseudo regs in the hope that
1901 they will get allocated to the class that the insn wants them to be in.
1902 Source files for reload pass need to be strict.
1903 After reload, it makes no difference, since pseudo regs have
1904 been eliminated by then. */
1905
1906
1907 /* Non strict versions, pseudos are ok. */
1908 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1909 (REGNO (X) < STACK_POINTER_REGNUM \
1910 || (REGNO (X) >= FIRST_REX_INT_REG \
1911 && REGNO (X) <= LAST_REX_INT_REG) \
1912 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1913
1914 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1915 (REGNO (X) <= STACK_POINTER_REGNUM \
1916 || REGNO (X) == ARG_POINTER_REGNUM \
1917 || REGNO (X) == FRAME_POINTER_REGNUM \
1918 || (REGNO (X) >= FIRST_REX_INT_REG \
1919 && REGNO (X) <= LAST_REX_INT_REG) \
1920 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1921
1922 /* Strict versions, hard registers only */
1923 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1924 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1925
1926 #ifndef REG_OK_STRICT
1927 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1928 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1929
1930 #else
1931 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1932 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1933 #endif
1934
1935 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1936 that is a valid memory address for an instruction.
1937 The MODE argument is the machine mode for the MEM expression
1938 that wants to use this address.
1939
1940 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1941 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1942
1943 See legitimize_pic_address in i386.c for details as to what
1944 constitutes a legitimate address when -fpic is used. */
1945
1946 #define MAX_REGS_PER_ADDRESS 2
1947
1948 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1949
1950 /* Nonzero if the constant value X is a legitimate general operand.
1951 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1952
1953 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1954
1955 #ifdef REG_OK_STRICT
1956 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1957 do { \
1958 if (legitimate_address_p ((MODE), (X), 1)) \
1959 goto ADDR; \
1960 } while (0)
1961
1962 #else
1963 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1964 do { \
1965 if (legitimate_address_p ((MODE), (X), 0)) \
1966 goto ADDR; \
1967 } while (0)
1968
1969 #endif
1970
1971 /* If defined, a C expression to determine the base term of address X.
1972 This macro is used in only one place: `find_base_term' in alias.c.
1973
1974 It is always safe for this macro to not be defined. It exists so
1975 that alias analysis can understand machine-dependent addresses.
1976
1977 The typical use of this macro is to handle addresses containing
1978 a label_ref or symbol_ref within an UNSPEC. */
1979
1980 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1981
1982 /* Try machine-dependent ways of modifying an illegitimate address
1983 to be legitimate. If we find one, return the new, valid address.
1984 This macro is used in only one place: `memory_address' in explow.c.
1985
1986 OLDX is the address as it was before break_out_memory_refs was called.
1987 In some cases it is useful to look at this to decide what needs to be done.
1988
1989 MODE and WIN are passed so that this macro can use
1990 GO_IF_LEGITIMATE_ADDRESS.
1991
1992 It is always safe for this macro to do nothing. It exists to recognize
1993 opportunities to optimize the output.
1994
1995 For the 80386, we handle X+REG by loading X into a register R and
1996 using R+REG. R will go in a general reg and indexing will be used.
1997 However, if REG is a broken-out memory address or multiplication,
1998 nothing needs to be done because REG can certainly go in a general reg.
1999
2000 When -fpic is used, special handling is needed for symbolic references.
2001 See comments by legitimize_pic_address in i386.c for details. */
2002
2003 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
2004 do { \
2005 (X) = legitimize_address ((X), (OLDX), (MODE)); \
2006 if (memory_address_p ((MODE), (X))) \
2007 goto WIN; \
2008 } while (0)
2009
2010 #define REWRITE_ADDRESS(X) rewrite_address (X)
2011
2012 /* Nonzero if the constant value X is a legitimate general operand
2013 when generating PIC code. It is given that flag_pic is on and
2014 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
2015
2016 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
2017
2018 #define SYMBOLIC_CONST(X) \
2019 (GET_CODE (X) == SYMBOL_REF \
2020 || GET_CODE (X) == LABEL_REF \
2021 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2022
2023 /* Go to LABEL if ADDR (a legitimate address expression)
2024 has an effect that depends on the machine mode it is used for.
2025 On the 80386, only postdecrement and postincrement address depend thus
2026 (the amount of decrement or increment being the length of the operand). */
2027 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2028 do { \
2029 if (GET_CODE (ADDR) == POST_INC \
2030 || GET_CODE (ADDR) == POST_DEC) \
2031 goto LABEL; \
2032 } while (0)
2033 \f
2034 /* Codes for all the SSE/MMX builtins. */
2035 enum ix86_builtins
2036 {
2037 IX86_BUILTIN_ADDPS,
2038 IX86_BUILTIN_ADDSS,
2039 IX86_BUILTIN_DIVPS,
2040 IX86_BUILTIN_DIVSS,
2041 IX86_BUILTIN_MULPS,
2042 IX86_BUILTIN_MULSS,
2043 IX86_BUILTIN_SUBPS,
2044 IX86_BUILTIN_SUBSS,
2045
2046 IX86_BUILTIN_CMPEQPS,
2047 IX86_BUILTIN_CMPLTPS,
2048 IX86_BUILTIN_CMPLEPS,
2049 IX86_BUILTIN_CMPGTPS,
2050 IX86_BUILTIN_CMPGEPS,
2051 IX86_BUILTIN_CMPNEQPS,
2052 IX86_BUILTIN_CMPNLTPS,
2053 IX86_BUILTIN_CMPNLEPS,
2054 IX86_BUILTIN_CMPNGTPS,
2055 IX86_BUILTIN_CMPNGEPS,
2056 IX86_BUILTIN_CMPORDPS,
2057 IX86_BUILTIN_CMPUNORDPS,
2058 IX86_BUILTIN_CMPNEPS,
2059 IX86_BUILTIN_CMPEQSS,
2060 IX86_BUILTIN_CMPLTSS,
2061 IX86_BUILTIN_CMPLESS,
2062 IX86_BUILTIN_CMPNEQSS,
2063 IX86_BUILTIN_CMPNLTSS,
2064 IX86_BUILTIN_CMPNLESS,
2065 IX86_BUILTIN_CMPORDSS,
2066 IX86_BUILTIN_CMPUNORDSS,
2067 IX86_BUILTIN_CMPNESS,
2068
2069 IX86_BUILTIN_COMIEQSS,
2070 IX86_BUILTIN_COMILTSS,
2071 IX86_BUILTIN_COMILESS,
2072 IX86_BUILTIN_COMIGTSS,
2073 IX86_BUILTIN_COMIGESS,
2074 IX86_BUILTIN_COMINEQSS,
2075 IX86_BUILTIN_UCOMIEQSS,
2076 IX86_BUILTIN_UCOMILTSS,
2077 IX86_BUILTIN_UCOMILESS,
2078 IX86_BUILTIN_UCOMIGTSS,
2079 IX86_BUILTIN_UCOMIGESS,
2080 IX86_BUILTIN_UCOMINEQSS,
2081
2082 IX86_BUILTIN_CVTPI2PS,
2083 IX86_BUILTIN_CVTPS2PI,
2084 IX86_BUILTIN_CVTSI2SS,
2085 IX86_BUILTIN_CVTSI642SS,
2086 IX86_BUILTIN_CVTSS2SI,
2087 IX86_BUILTIN_CVTSS2SI64,
2088 IX86_BUILTIN_CVTTPS2PI,
2089 IX86_BUILTIN_CVTTSS2SI,
2090 IX86_BUILTIN_CVTTSS2SI64,
2091
2092 IX86_BUILTIN_MAXPS,
2093 IX86_BUILTIN_MAXSS,
2094 IX86_BUILTIN_MINPS,
2095 IX86_BUILTIN_MINSS,
2096
2097 IX86_BUILTIN_LOADAPS,
2098 IX86_BUILTIN_LOADUPS,
2099 IX86_BUILTIN_STOREAPS,
2100 IX86_BUILTIN_STOREUPS,
2101 IX86_BUILTIN_LOADSS,
2102 IX86_BUILTIN_STORESS,
2103 IX86_BUILTIN_MOVSS,
2104
2105 IX86_BUILTIN_MOVHLPS,
2106 IX86_BUILTIN_MOVLHPS,
2107 IX86_BUILTIN_LOADHPS,
2108 IX86_BUILTIN_LOADLPS,
2109 IX86_BUILTIN_STOREHPS,
2110 IX86_BUILTIN_STORELPS,
2111
2112 IX86_BUILTIN_MASKMOVQ,
2113 IX86_BUILTIN_MOVMSKPS,
2114 IX86_BUILTIN_PMOVMSKB,
2115
2116 IX86_BUILTIN_MOVNTPS,
2117 IX86_BUILTIN_MOVNTQ,
2118
2119 IX86_BUILTIN_LOADDQA,
2120 IX86_BUILTIN_LOADDQU,
2121 IX86_BUILTIN_STOREDQA,
2122 IX86_BUILTIN_STOREDQU,
2123 IX86_BUILTIN_MOVQ,
2124 IX86_BUILTIN_LOADD,
2125 IX86_BUILTIN_STORED,
2126
2127 IX86_BUILTIN_CLRTI,
2128
2129 IX86_BUILTIN_PACKSSWB,
2130 IX86_BUILTIN_PACKSSDW,
2131 IX86_BUILTIN_PACKUSWB,
2132
2133 IX86_BUILTIN_PADDB,
2134 IX86_BUILTIN_PADDW,
2135 IX86_BUILTIN_PADDD,
2136 IX86_BUILTIN_PADDQ,
2137 IX86_BUILTIN_PADDSB,
2138 IX86_BUILTIN_PADDSW,
2139 IX86_BUILTIN_PADDUSB,
2140 IX86_BUILTIN_PADDUSW,
2141 IX86_BUILTIN_PSUBB,
2142 IX86_BUILTIN_PSUBW,
2143 IX86_BUILTIN_PSUBD,
2144 IX86_BUILTIN_PSUBQ,
2145 IX86_BUILTIN_PSUBSB,
2146 IX86_BUILTIN_PSUBSW,
2147 IX86_BUILTIN_PSUBUSB,
2148 IX86_BUILTIN_PSUBUSW,
2149
2150 IX86_BUILTIN_PAND,
2151 IX86_BUILTIN_PANDN,
2152 IX86_BUILTIN_POR,
2153 IX86_BUILTIN_PXOR,
2154
2155 IX86_BUILTIN_PAVGB,
2156 IX86_BUILTIN_PAVGW,
2157
2158 IX86_BUILTIN_PCMPEQB,
2159 IX86_BUILTIN_PCMPEQW,
2160 IX86_BUILTIN_PCMPEQD,
2161 IX86_BUILTIN_PCMPGTB,
2162 IX86_BUILTIN_PCMPGTW,
2163 IX86_BUILTIN_PCMPGTD,
2164
2165 IX86_BUILTIN_PEXTRW,
2166 IX86_BUILTIN_PINSRW,
2167
2168 IX86_BUILTIN_PMADDWD,
2169
2170 IX86_BUILTIN_PMAXSW,
2171 IX86_BUILTIN_PMAXUB,
2172 IX86_BUILTIN_PMINSW,
2173 IX86_BUILTIN_PMINUB,
2174
2175 IX86_BUILTIN_PMULHUW,
2176 IX86_BUILTIN_PMULHW,
2177 IX86_BUILTIN_PMULLW,
2178
2179 IX86_BUILTIN_PSADBW,
2180 IX86_BUILTIN_PSHUFW,
2181
2182 IX86_BUILTIN_PSLLW,
2183 IX86_BUILTIN_PSLLD,
2184 IX86_BUILTIN_PSLLQ,
2185 IX86_BUILTIN_PSRAW,
2186 IX86_BUILTIN_PSRAD,
2187 IX86_BUILTIN_PSRLW,
2188 IX86_BUILTIN_PSRLD,
2189 IX86_BUILTIN_PSRLQ,
2190 IX86_BUILTIN_PSLLWI,
2191 IX86_BUILTIN_PSLLDI,
2192 IX86_BUILTIN_PSLLQI,
2193 IX86_BUILTIN_PSRAWI,
2194 IX86_BUILTIN_PSRADI,
2195 IX86_BUILTIN_PSRLWI,
2196 IX86_BUILTIN_PSRLDI,
2197 IX86_BUILTIN_PSRLQI,
2198
2199 IX86_BUILTIN_PUNPCKHBW,
2200 IX86_BUILTIN_PUNPCKHWD,
2201 IX86_BUILTIN_PUNPCKHDQ,
2202 IX86_BUILTIN_PUNPCKLBW,
2203 IX86_BUILTIN_PUNPCKLWD,
2204 IX86_BUILTIN_PUNPCKLDQ,
2205
2206 IX86_BUILTIN_SHUFPS,
2207
2208 IX86_BUILTIN_RCPPS,
2209 IX86_BUILTIN_RCPSS,
2210 IX86_BUILTIN_RSQRTPS,
2211 IX86_BUILTIN_RSQRTSS,
2212 IX86_BUILTIN_SQRTPS,
2213 IX86_BUILTIN_SQRTSS,
2214
2215 IX86_BUILTIN_UNPCKHPS,
2216 IX86_BUILTIN_UNPCKLPS,
2217
2218 IX86_BUILTIN_ANDPS,
2219 IX86_BUILTIN_ANDNPS,
2220 IX86_BUILTIN_ORPS,
2221 IX86_BUILTIN_XORPS,
2222
2223 IX86_BUILTIN_EMMS,
2224 IX86_BUILTIN_LDMXCSR,
2225 IX86_BUILTIN_STMXCSR,
2226 IX86_BUILTIN_SFENCE,
2227
2228 /* 3DNow! Original */
2229 IX86_BUILTIN_FEMMS,
2230 IX86_BUILTIN_PAVGUSB,
2231 IX86_BUILTIN_PF2ID,
2232 IX86_BUILTIN_PFACC,
2233 IX86_BUILTIN_PFADD,
2234 IX86_BUILTIN_PFCMPEQ,
2235 IX86_BUILTIN_PFCMPGE,
2236 IX86_BUILTIN_PFCMPGT,
2237 IX86_BUILTIN_PFMAX,
2238 IX86_BUILTIN_PFMIN,
2239 IX86_BUILTIN_PFMUL,
2240 IX86_BUILTIN_PFRCP,
2241 IX86_BUILTIN_PFRCPIT1,
2242 IX86_BUILTIN_PFRCPIT2,
2243 IX86_BUILTIN_PFRSQIT1,
2244 IX86_BUILTIN_PFRSQRT,
2245 IX86_BUILTIN_PFSUB,
2246 IX86_BUILTIN_PFSUBR,
2247 IX86_BUILTIN_PI2FD,
2248 IX86_BUILTIN_PMULHRW,
2249
2250 /* 3DNow! Athlon Extensions */
2251 IX86_BUILTIN_PF2IW,
2252 IX86_BUILTIN_PFNACC,
2253 IX86_BUILTIN_PFPNACC,
2254 IX86_BUILTIN_PI2FW,
2255 IX86_BUILTIN_PSWAPDSI,
2256 IX86_BUILTIN_PSWAPDSF,
2257
2258 IX86_BUILTIN_SSE_ZERO,
2259 IX86_BUILTIN_MMX_ZERO,
2260
2261 /* SSE2 */
2262 IX86_BUILTIN_ADDPD,
2263 IX86_BUILTIN_ADDSD,
2264 IX86_BUILTIN_DIVPD,
2265 IX86_BUILTIN_DIVSD,
2266 IX86_BUILTIN_MULPD,
2267 IX86_BUILTIN_MULSD,
2268 IX86_BUILTIN_SUBPD,
2269 IX86_BUILTIN_SUBSD,
2270
2271 IX86_BUILTIN_CMPEQPD,
2272 IX86_BUILTIN_CMPLTPD,
2273 IX86_BUILTIN_CMPLEPD,
2274 IX86_BUILTIN_CMPGTPD,
2275 IX86_BUILTIN_CMPGEPD,
2276 IX86_BUILTIN_CMPNEQPD,
2277 IX86_BUILTIN_CMPNLTPD,
2278 IX86_BUILTIN_CMPNLEPD,
2279 IX86_BUILTIN_CMPNGTPD,
2280 IX86_BUILTIN_CMPNGEPD,
2281 IX86_BUILTIN_CMPORDPD,
2282 IX86_BUILTIN_CMPUNORDPD,
2283 IX86_BUILTIN_CMPNEPD,
2284 IX86_BUILTIN_CMPEQSD,
2285 IX86_BUILTIN_CMPLTSD,
2286 IX86_BUILTIN_CMPLESD,
2287 IX86_BUILTIN_CMPNEQSD,
2288 IX86_BUILTIN_CMPNLTSD,
2289 IX86_BUILTIN_CMPNLESD,
2290 IX86_BUILTIN_CMPORDSD,
2291 IX86_BUILTIN_CMPUNORDSD,
2292 IX86_BUILTIN_CMPNESD,
2293
2294 IX86_BUILTIN_COMIEQSD,
2295 IX86_BUILTIN_COMILTSD,
2296 IX86_BUILTIN_COMILESD,
2297 IX86_BUILTIN_COMIGTSD,
2298 IX86_BUILTIN_COMIGESD,
2299 IX86_BUILTIN_COMINEQSD,
2300 IX86_BUILTIN_UCOMIEQSD,
2301 IX86_BUILTIN_UCOMILTSD,
2302 IX86_BUILTIN_UCOMILESD,
2303 IX86_BUILTIN_UCOMIGTSD,
2304 IX86_BUILTIN_UCOMIGESD,
2305 IX86_BUILTIN_UCOMINEQSD,
2306
2307 IX86_BUILTIN_MAXPD,
2308 IX86_BUILTIN_MAXSD,
2309 IX86_BUILTIN_MINPD,
2310 IX86_BUILTIN_MINSD,
2311
2312 IX86_BUILTIN_ANDPD,
2313 IX86_BUILTIN_ANDNPD,
2314 IX86_BUILTIN_ORPD,
2315 IX86_BUILTIN_XORPD,
2316
2317 IX86_BUILTIN_SQRTPD,
2318 IX86_BUILTIN_SQRTSD,
2319
2320 IX86_BUILTIN_UNPCKHPD,
2321 IX86_BUILTIN_UNPCKLPD,
2322
2323 IX86_BUILTIN_SHUFPD,
2324
2325 IX86_BUILTIN_LOADAPD,
2326 IX86_BUILTIN_LOADUPD,
2327 IX86_BUILTIN_STOREAPD,
2328 IX86_BUILTIN_STOREUPD,
2329 IX86_BUILTIN_LOADSD,
2330 IX86_BUILTIN_STORESD,
2331 IX86_BUILTIN_MOVSD,
2332
2333 IX86_BUILTIN_LOADHPD,
2334 IX86_BUILTIN_LOADLPD,
2335 IX86_BUILTIN_STOREHPD,
2336 IX86_BUILTIN_STORELPD,
2337
2338 IX86_BUILTIN_CVTDQ2PD,
2339 IX86_BUILTIN_CVTDQ2PS,
2340
2341 IX86_BUILTIN_CVTPD2DQ,
2342 IX86_BUILTIN_CVTPD2PI,
2343 IX86_BUILTIN_CVTPD2PS,
2344 IX86_BUILTIN_CVTTPD2DQ,
2345 IX86_BUILTIN_CVTTPD2PI,
2346
2347 IX86_BUILTIN_CVTPI2PD,
2348 IX86_BUILTIN_CVTSI2SD,
2349 IX86_BUILTIN_CVTSI642SD,
2350
2351 IX86_BUILTIN_CVTSD2SI,
2352 IX86_BUILTIN_CVTSD2SI64,
2353 IX86_BUILTIN_CVTSD2SS,
2354 IX86_BUILTIN_CVTSS2SD,
2355 IX86_BUILTIN_CVTTSD2SI,
2356 IX86_BUILTIN_CVTTSD2SI64,
2357
2358 IX86_BUILTIN_CVTPS2DQ,
2359 IX86_BUILTIN_CVTPS2PD,
2360 IX86_BUILTIN_CVTTPS2DQ,
2361
2362 IX86_BUILTIN_MOVNTI,
2363 IX86_BUILTIN_MOVNTPD,
2364 IX86_BUILTIN_MOVNTDQ,
2365
2366 IX86_BUILTIN_SETPD1,
2367 IX86_BUILTIN_SETPD,
2368 IX86_BUILTIN_CLRPD,
2369 IX86_BUILTIN_SETRPD,
2370 IX86_BUILTIN_LOADPD1,
2371 IX86_BUILTIN_LOADRPD,
2372 IX86_BUILTIN_STOREPD1,
2373 IX86_BUILTIN_STORERPD,
2374
2375 /* SSE2 MMX */
2376 IX86_BUILTIN_MASKMOVDQU,
2377 IX86_BUILTIN_MOVMSKPD,
2378 IX86_BUILTIN_PMOVMSKB128,
2379 IX86_BUILTIN_MOVQ2DQ,
2380 IX86_BUILTIN_MOVDQ2Q,
2381
2382 IX86_BUILTIN_PACKSSWB128,
2383 IX86_BUILTIN_PACKSSDW128,
2384 IX86_BUILTIN_PACKUSWB128,
2385
2386 IX86_BUILTIN_PADDB128,
2387 IX86_BUILTIN_PADDW128,
2388 IX86_BUILTIN_PADDD128,
2389 IX86_BUILTIN_PADDQ128,
2390 IX86_BUILTIN_PADDSB128,
2391 IX86_BUILTIN_PADDSW128,
2392 IX86_BUILTIN_PADDUSB128,
2393 IX86_BUILTIN_PADDUSW128,
2394 IX86_BUILTIN_PSUBB128,
2395 IX86_BUILTIN_PSUBW128,
2396 IX86_BUILTIN_PSUBD128,
2397 IX86_BUILTIN_PSUBQ128,
2398 IX86_BUILTIN_PSUBSB128,
2399 IX86_BUILTIN_PSUBSW128,
2400 IX86_BUILTIN_PSUBUSB128,
2401 IX86_BUILTIN_PSUBUSW128,
2402
2403 IX86_BUILTIN_PAND128,
2404 IX86_BUILTIN_PANDN128,
2405 IX86_BUILTIN_POR128,
2406 IX86_BUILTIN_PXOR128,
2407
2408 IX86_BUILTIN_PAVGB128,
2409 IX86_BUILTIN_PAVGW128,
2410
2411 IX86_BUILTIN_PCMPEQB128,
2412 IX86_BUILTIN_PCMPEQW128,
2413 IX86_BUILTIN_PCMPEQD128,
2414 IX86_BUILTIN_PCMPGTB128,
2415 IX86_BUILTIN_PCMPGTW128,
2416 IX86_BUILTIN_PCMPGTD128,
2417
2418 IX86_BUILTIN_PEXTRW128,
2419 IX86_BUILTIN_PINSRW128,
2420
2421 IX86_BUILTIN_PMADDWD128,
2422
2423 IX86_BUILTIN_PMAXSW128,
2424 IX86_BUILTIN_PMAXUB128,
2425 IX86_BUILTIN_PMINSW128,
2426 IX86_BUILTIN_PMINUB128,
2427
2428 IX86_BUILTIN_PMULUDQ,
2429 IX86_BUILTIN_PMULUDQ128,
2430 IX86_BUILTIN_PMULHUW128,
2431 IX86_BUILTIN_PMULHW128,
2432 IX86_BUILTIN_PMULLW128,
2433
2434 IX86_BUILTIN_PSADBW128,
2435 IX86_BUILTIN_PSHUFHW,
2436 IX86_BUILTIN_PSHUFLW,
2437 IX86_BUILTIN_PSHUFD,
2438
2439 IX86_BUILTIN_PSLLW128,
2440 IX86_BUILTIN_PSLLD128,
2441 IX86_BUILTIN_PSLLQ128,
2442 IX86_BUILTIN_PSRAW128,
2443 IX86_BUILTIN_PSRAD128,
2444 IX86_BUILTIN_PSRLW128,
2445 IX86_BUILTIN_PSRLD128,
2446 IX86_BUILTIN_PSRLQ128,
2447 IX86_BUILTIN_PSLLDQI128,
2448 IX86_BUILTIN_PSLLWI128,
2449 IX86_BUILTIN_PSLLDI128,
2450 IX86_BUILTIN_PSLLQI128,
2451 IX86_BUILTIN_PSRAWI128,
2452 IX86_BUILTIN_PSRADI128,
2453 IX86_BUILTIN_PSRLDQI128,
2454 IX86_BUILTIN_PSRLWI128,
2455 IX86_BUILTIN_PSRLDI128,
2456 IX86_BUILTIN_PSRLQI128,
2457
2458 IX86_BUILTIN_PUNPCKHBW128,
2459 IX86_BUILTIN_PUNPCKHWD128,
2460 IX86_BUILTIN_PUNPCKHDQ128,
2461 IX86_BUILTIN_PUNPCKHQDQ128,
2462 IX86_BUILTIN_PUNPCKLBW128,
2463 IX86_BUILTIN_PUNPCKLWD128,
2464 IX86_BUILTIN_PUNPCKLDQ128,
2465 IX86_BUILTIN_PUNPCKLQDQ128,
2466
2467 IX86_BUILTIN_CLFLUSH,
2468 IX86_BUILTIN_MFENCE,
2469 IX86_BUILTIN_LFENCE,
2470
2471 /* Prescott New Instructions. */
2472 IX86_BUILTIN_ADDSUBPS,
2473 IX86_BUILTIN_HADDPS,
2474 IX86_BUILTIN_HSUBPS,
2475 IX86_BUILTIN_MOVSHDUP,
2476 IX86_BUILTIN_MOVSLDUP,
2477 IX86_BUILTIN_ADDSUBPD,
2478 IX86_BUILTIN_HADDPD,
2479 IX86_BUILTIN_HSUBPD,
2480 IX86_BUILTIN_LOADDDUP,
2481 IX86_BUILTIN_MOVDDUP,
2482 IX86_BUILTIN_LDDQU,
2483
2484 IX86_BUILTIN_MONITOR,
2485 IX86_BUILTIN_MWAIT,
2486
2487 IX86_BUILTIN_MAX
2488 };
2489 \f
2490 /* Max number of args passed in registers. If this is more than 3, we will
2491 have problems with ebx (register #4), since it is a caller save register and
2492 is also used as the pic register in ELF. So for now, don't allow more than
2493 3 registers to be passed in registers. */
2494
2495 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2496
2497 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
2498
2499 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
2500
2501 \f
2502 /* Specify the machine mode that this machine uses
2503 for the index in the tablejump instruction. */
2504 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2505
2506 /* Define this as 1 if `char' should by default be signed; else as 0. */
2507 #define DEFAULT_SIGNED_CHAR 1
2508
2509 /* Number of bytes moved into a data cache for a single prefetch operation. */
2510 #define PREFETCH_BLOCK ix86_cost->prefetch_block
2511
2512 /* Number of prefetch operations that can be done in parallel. */
2513 #define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2514
2515 /* Max number of bytes we can move from memory to memory
2516 in one reasonably fast instruction. */
2517 #define MOVE_MAX 16
2518
2519 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
2520 move efficiently, as opposed to MOVE_MAX which is the maximum
2521 number of bytes we can move with a single instruction. */
2522 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2523
2524 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2525 move-instruction pairs, we will do a movmem or libcall instead.
2526 Increasing the value will always make code faster, but eventually
2527 incurs high cost in increased code size.
2528
2529 If you don't define this, a reasonable default is used. */
2530
2531 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2532
2533 /* If a clear memory operation would take CLEAR_RATIO or more simple
2534 move-instruction sequences, we will do a clrmem or libcall instead. */
2535
2536 #define CLEAR_RATIO (optimize_size ? 2 \
2537 : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
2538
2539 /* Define if shifts truncate the shift count
2540 which implies one can omit a sign-extension or zero-extension
2541 of a shift count. */
2542 /* On i386, shifts do truncate the count. But bit opcodes don't. */
2543
2544 /* #define SHIFT_COUNT_TRUNCATED */
2545
2546 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2547 is done just by pretending it is already truncated. */
2548 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2549
2550 /* A macro to update M and UNSIGNEDP when an object whose type is
2551 TYPE and which has the specified mode and signedness is to be
2552 stored in a register. This macro is only called when TYPE is a
2553 scalar type.
2554
2555 On i386 it is sometimes useful to promote HImode and QImode
2556 quantities to SImode. The choice depends on target type. */
2557
2558 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2559 do { \
2560 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2561 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
2562 (MODE) = SImode; \
2563 } while (0)
2564
2565 /* Specify the machine mode that pointers have.
2566 After generation of rtl, the compiler makes no further distinction
2567 between pointers and any other objects of this machine mode. */
2568 #define Pmode (TARGET_64BIT ? DImode : SImode)
2569
2570 /* A function address in a call instruction
2571 is a byte address (for indexing purposes)
2572 so give the MEM rtx a byte's mode. */
2573 #define FUNCTION_MODE QImode
2574 \f
2575 /* A C expression for the cost of moving data from a register in class FROM to
2576 one in class TO. The classes are expressed using the enumeration values
2577 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2578 interpreted relative to that.
2579
2580 It is not required that the cost always equal 2 when FROM is the same as TO;
2581 on some machines it is expensive to move between registers if they are not
2582 general registers. */
2583
2584 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2585 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2586
2587 /* A C expression for the cost of moving data of mode M between a
2588 register and memory. A value of 2 is the default; this cost is
2589 relative to those in `REGISTER_MOVE_COST'.
2590
2591 If moving between registers and memory is more expensive than
2592 between two registers, you should define this macro to express the
2593 relative cost. */
2594
2595 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2596 ix86_memory_move_cost ((MODE), (CLASS), (IN))
2597
2598 /* A C expression for the cost of a branch instruction. A value of 1
2599 is the default; other values are interpreted relative to that. */
2600
2601 #define BRANCH_COST ix86_branch_cost
2602
2603 /* Define this macro as a C expression which is nonzero if accessing
2604 less than a word of memory (i.e. a `char' or a `short') is no
2605 faster than accessing a word of memory, i.e., if such access
2606 require more than one instruction or if there is no difference in
2607 cost between byte and (aligned) word loads.
2608
2609 When this macro is not defined, the compiler will access a field by
2610 finding the smallest containing object; when it is defined, a
2611 fullword load will be used if alignment permits. Unless bytes
2612 accesses are faster than word accesses, using word accesses is
2613 preferable since it may eliminate subsequent memory access if
2614 subsequent accesses occur to other fields in the same word of the
2615 structure, but to different bytes. */
2616
2617 #define SLOW_BYTE_ACCESS 0
2618
2619 /* Nonzero if access to memory by shorts is slow and undesirable. */
2620 #define SLOW_SHORT_ACCESS 0
2621
2622 /* Define this macro to be the value 1 if unaligned accesses have a
2623 cost many times greater than aligned accesses, for example if they
2624 are emulated in a trap handler.
2625
2626 When this macro is nonzero, the compiler will act as if
2627 `STRICT_ALIGNMENT' were nonzero when generating code for block
2628 moves. This can cause significantly more instructions to be
2629 produced. Therefore, do not set this macro nonzero if unaligned
2630 accesses only add a cycle or two to the time for a memory access.
2631
2632 If the value of this macro is always zero, it need not be defined. */
2633
2634 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2635
2636 /* Define this macro if it is as good or better to call a constant
2637 function address than to call an address kept in a register.
2638
2639 Desirable on the 386 because a CALL with a constant address is
2640 faster than one with a register address. */
2641
2642 #define NO_FUNCTION_CSE
2643 \f
2644 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2645 return the mode to be used for the comparison.
2646
2647 For floating-point equality comparisons, CCFPEQmode should be used.
2648 VOIDmode should be used in all other cases.
2649
2650 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2651 possible, to allow for more combinations. */
2652
2653 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2654
2655 /* Return nonzero if MODE implies a floating point inequality can be
2656 reversed. */
2657
2658 #define REVERSIBLE_CC_MODE(MODE) 1
2659
2660 /* A C expression whose value is reversed condition code of the CODE for
2661 comparison done in CC_MODE mode. */
2662 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
2663
2664 \f
2665 /* Control the assembler format that we output, to the extent
2666 this does not vary between assemblers. */
2667
2668 /* How to refer to registers in assembler output.
2669 This sequence is indexed by compiler's hard-register-number (see above). */
2670
2671 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2672 For non floating point regs, the following are the HImode names.
2673
2674 For float regs, the stack top is sometimes referred to as "%st(0)"
2675 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
2676
2677 #define HI_REGISTER_NAMES \
2678 {"ax","dx","cx","bx","si","di","bp","sp", \
2679 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
2680 "argp", "flags", "fpsr", "dirflag", "frame", \
2681 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2682 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2683 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2684 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2685
2686 #define REGISTER_NAMES HI_REGISTER_NAMES
2687
2688 /* Table of additional register names to use in user input. */
2689
2690 #define ADDITIONAL_REGISTER_NAMES \
2691 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2692 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2693 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2694 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2695 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2696 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2697 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
2698 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2699
2700 /* Note we are omitting these since currently I don't know how
2701 to get gcc to use these, since they want the same but different
2702 number as al, and ax.
2703 */
2704
2705 #define QI_REGISTER_NAMES \
2706 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2707
2708 /* These parallel the array above, and can be used to access bits 8:15
2709 of regs 0 through 3. */
2710
2711 #define QI_HIGH_REGISTER_NAMES \
2712 {"ah", "dh", "ch", "bh", }
2713
2714 /* How to renumber registers for dbx and gdb. */
2715
2716 #define DBX_REGISTER_NUMBER(N) \
2717 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2718
2719 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2720 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2721 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2722
2723 /* Before the prologue, RA is at 0(%esp). */
2724 #define INCOMING_RETURN_ADDR_RTX \
2725 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2726
2727 /* After the prologue, RA is at -4(AP) in the current frame. */
2728 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2729 ((COUNT) == 0 \
2730 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2731 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2732
2733 /* PC is dbx register 8; let's use that column for RA. */
2734 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2735
2736 /* Before the prologue, the top of the frame is at 4(%esp). */
2737 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2738
2739 /* Describe how we implement __builtin_eh_return. */
2740 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2741 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2742
2743
2744 /* Select a format to encode pointers in exception handling data. CODE
2745 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2746 true if the symbol may be affected by dynamic relocations.
2747
2748 ??? All x86 object file formats are capable of representing this.
2749 After all, the relocation needed is the same as for the call insn.
2750 Whether or not a particular assembler allows us to enter such, I
2751 guess we'll have to see. */
2752 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2753 (flag_pic \
2754 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2755 : DW_EH_PE_absptr)
2756
2757 /* This is how to output an insn to push a register on the stack.
2758 It need not be very fast code. */
2759
2760 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2761 do { \
2762 if (TARGET_64BIT) \
2763 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2764 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2765 else \
2766 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2767 } while (0)
2768
2769 /* This is how to output an insn to pop a register from the stack.
2770 It need not be very fast code. */
2771
2772 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2773 do { \
2774 if (TARGET_64BIT) \
2775 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2776 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2777 else \
2778 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2779 } while (0)
2780
2781 /* This is how to output an element of a case-vector that is absolute. */
2782
2783 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2784 ix86_output_addr_vec_elt ((FILE), (VALUE))
2785
2786 /* This is how to output an element of a case-vector that is relative. */
2787
2788 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2789 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2790
2791 /* Under some conditions we need jump tables in the text section, because
2792 the assembler cannot handle label differences between sections. */
2793
2794 #define JUMP_TABLES_IN_TEXT_SECTION \
2795 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2796
2797 /* Emit a dtp-relative reference to a TLS variable. */
2798
2799 #ifdef HAVE_AS_TLS
2800 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
2801 i386_output_dwarf_dtprel (FILE, SIZE, X)
2802 #endif
2803
2804 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2805 and switch back. For x86 we do this only to save a few bytes that
2806 would otherwise be unused in the text section. */
2807 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2808 asm (SECTION_OP "\n\t" \
2809 "call " USER_LABEL_PREFIX #FUNC "\n" \
2810 TEXT_SECTION_ASM_OP);
2811 \f
2812 /* Print operand X (an rtx) in assembler syntax to file FILE.
2813 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2814 Effect of various CODE letters is described in i386.c near
2815 print_operand function. */
2816
2817 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2818 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2819
2820 #define PRINT_OPERAND(FILE, X, CODE) \
2821 print_operand ((FILE), (X), (CODE))
2822
2823 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2824 print_operand_address ((FILE), (ADDR))
2825
2826 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2827 do { \
2828 if (! output_addr_const_extra (FILE, (X))) \
2829 goto FAIL; \
2830 } while (0);
2831
2832 /* a letter which is not needed by the normal asm syntax, which
2833 we can use for operand syntax in the extended asm */
2834
2835 #define ASM_OPERAND_LETTER '#'
2836 #define RET return ""
2837 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2838 \f
2839 /* Which processor to schedule for. The cpu attribute defines a list that
2840 mirrors this list, so changes to i386.md must be made at the same time. */
2841
2842 enum processor_type
2843 {
2844 PROCESSOR_I386, /* 80386 */
2845 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2846 PROCESSOR_PENTIUM,
2847 PROCESSOR_PENTIUMPRO,
2848 PROCESSOR_K6,
2849 PROCESSOR_ATHLON,
2850 PROCESSOR_PENTIUM4,
2851 PROCESSOR_K8,
2852 PROCESSOR_NOCONA,
2853 PROCESSOR_max
2854 };
2855
2856 extern enum processor_type ix86_tune;
2857 extern const char *ix86_tune_string;
2858
2859 extern enum processor_type ix86_arch;
2860 extern const char *ix86_arch_string;
2861
2862 enum fpmath_unit
2863 {
2864 FPMATH_387 = 1,
2865 FPMATH_SSE = 2
2866 };
2867
2868 extern enum fpmath_unit ix86_fpmath;
2869 extern const char *ix86_fpmath_string;
2870
2871 enum tls_dialect
2872 {
2873 TLS_DIALECT_GNU,
2874 TLS_DIALECT_SUN
2875 };
2876
2877 extern enum tls_dialect ix86_tls_dialect;
2878 extern const char *ix86_tls_dialect_string;
2879
2880 enum cmodel {
2881 CM_32, /* The traditional 32-bit ABI. */
2882 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2883 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2884 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2885 CM_LARGE, /* No assumptions. */
2886 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
2887 };
2888
2889 extern enum cmodel ix86_cmodel;
2890 extern const char *ix86_cmodel_string;
2891
2892 /* Size of the RED_ZONE area. */
2893 #define RED_ZONE_SIZE 128
2894 /* Reserved area of the red zone for temporaries. */
2895 #define RED_ZONE_RESERVE 8
2896
2897 enum asm_dialect {
2898 ASM_ATT,
2899 ASM_INTEL
2900 };
2901
2902 extern const char *ix86_asm_string;
2903 extern enum asm_dialect ix86_asm_dialect;
2904
2905 extern int ix86_regparm;
2906 extern const char *ix86_regparm_string;
2907
2908 extern unsigned int ix86_preferred_stack_boundary;
2909 extern const char *ix86_preferred_stack_boundary_string;
2910
2911 extern int ix86_branch_cost;
2912 extern const char *ix86_branch_cost_string;
2913
2914 extern const char *ix86_debug_arg_string;
2915 extern const char *ix86_debug_addr_string;
2916
2917 /* Obsoleted by -f options. Remove before 3.2 ships. */
2918 extern const char *ix86_align_loops_string;
2919 extern const char *ix86_align_jumps_string;
2920 extern const char *ix86_align_funcs_string;
2921
2922 /* Smallest class containing REGNO. */
2923 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2924
2925 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2926 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
2927 \f
2928 /* To properly truncate FP values into integers, we need to set i387 control
2929 word. We can't emit proper mode switching code before reload, as spills
2930 generated by reload may truncate values incorrectly, but we still can avoid
2931 redundant computation of new control word by the mode switching pass.
2932 The fldcw instructions are still emitted redundantly, but this is probably
2933 not going to be noticeable problem, as most CPUs do have fast path for
2934 the sequence.
2935
2936 The machinery is to emit simple truncation instructions and split them
2937 before reload to instructions having USEs of two memory locations that
2938 are filled by this code to old and new control word.
2939
2940 Post-reload pass may be later used to eliminate the redundant fildcw if
2941 needed. */
2942
2943
2944 /* Define this macro if the port needs extra instructions inserted
2945 for mode switching in an optimizing compilation. */
2946
2947 #define OPTIMIZE_MODE_SWITCHING(ENTITY) ix86_optimize_mode_switching
2948
2949 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2950 initializer for an array of integers. Each initializer element N
2951 refers to an entity that needs mode switching, and specifies the
2952 number of different modes that might need to be set for this
2953 entity. The position of the initializer in the initializer -
2954 starting counting at zero - determines the integer that is used to
2955 refer to the mode-switched entity in question. */
2956
2957 #define NUM_MODES_FOR_MODE_SWITCHING { I387_CW_ANY }
2958
2959 /* ENTITY is an integer specifying a mode-switched entity. If
2960 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2961 return an integer value not larger than the corresponding element
2962 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2963 must be switched into prior to the execution of INSN.
2964
2965 The mode UNINITIALIZED is used to force re-load of possibly previously
2966 stored control word after function call. The mode ANY specify that
2967 function has no requirements on the control word and make no changes
2968 in the bits we are interested in. */
2969
2970 #define MODE_NEEDED(ENTITY, I) \
2971 (GET_CODE (I) == CALL_INSN \
2972 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
2973 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
2974 ? I387_CW_UNINITIALIZED \
2975 : recog_memoized (I) < 0 \
2976 ? I387_CW_ANY \
2977 : get_attr_i387_cw (I))
2978
2979 /* This macro specifies the order in which modes for ENTITY are
2980 processed. 0 is the highest priority. */
2981
2982 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2983
2984 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2985 is the set of hard registers live at the point where the insn(s)
2986 are to be inserted. */
2987
2988 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
2989 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
2990 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
2991 assign_386_stack_local (HImode, 2), \
2992 MODE), 0 \
2993 : 0)
2994 \f
2995 /* Avoid renaming of stack registers, as doing so in combination with
2996 scheduling just increases amount of live registers at time and in
2997 the turn amount of fxch instructions needed.
2998
2999 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
3000
3001 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3002 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3003
3004 \f
3005 #define DLL_IMPORT_EXPORT_PREFIX '#'
3006
3007 #define FASTCALL_PREFIX '@'
3008 \f
3009 struct machine_function GTY(())
3010 {
3011 struct stack_local_entry *stack_locals;
3012 const char *some_ld_name;
3013 int save_varrargs_registers;
3014 int accesses_prev_frame;
3015 int optimize_mode_switching;
3016 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
3017 determine the style used. */
3018 int use_fast_prologue_epilogue;
3019 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
3020 for. */
3021 int use_fast_prologue_epilogue_nregs;
3022 };
3023
3024 #define ix86_stack_locals (cfun->machine->stack_locals)
3025 #define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
3026 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
3027
3028 /* Control behavior of x86_file_start. */
3029 #define X86_FILE_START_VERSION_DIRECTIVE false
3030 #define X86_FILE_START_FLTUSED false
3031
3032 /*
3033 Local variables:
3034 version-control: t
3035 End:
3036 */