i386.c (override_options): Don't accept -mtls-dialect=sun any longer.
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
21
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
25 <http://www.gnu.org/licenses/>. */
26
27 /* The purpose of this file is to define the characteristics of the i386,
28 independent of assembler syntax or operating system.
29
30 Three other files build on this one to describe a specific assembler syntax:
31 bsd386.h, att386.h, and sun386.h.
32
33 The actual tm.h file for a particular system should include
34 this file, and then the file for the appropriate assembler syntax.
35
36 Many macros that specify assembler syntax are omitted entirely from
37 this file because they really belong in the files for particular
38 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
39 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
40 that start with ASM_ or end in ASM_OP. */
41
42 /* Redefines for option macros. */
43
44 #define TARGET_64BIT OPTION_ISA_64BIT
45 #define TARGET_MMX OPTION_ISA_MMX
46 #define TARGET_3DNOW OPTION_ISA_3DNOW
47 #define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
48 #define TARGET_SSE OPTION_ISA_SSE
49 #define TARGET_SSE2 OPTION_ISA_SSE2
50 #define TARGET_SSE3 OPTION_ISA_SSE3
51 #define TARGET_SSSE3 OPTION_ISA_SSSE3
52 #define TARGET_SSE4_1 OPTION_ISA_SSE4_1
53 #define TARGET_SSE4_2 OPTION_ISA_SSE4_2
54 #define TARGET_AVX OPTION_ISA_AVX
55 #define TARGET_FMA OPTION_ISA_FMA
56 #define TARGET_SSE4A OPTION_ISA_SSE4A
57 #define TARGET_FMA4 OPTION_ISA_FMA4
58 #define TARGET_XOP OPTION_ISA_XOP
59 #define TARGET_LWP OPTION_ISA_LWP
60 #define TARGET_ROUND OPTION_ISA_ROUND
61 #define TARGET_ABM OPTION_ISA_ABM
62 #define TARGET_POPCNT OPTION_ISA_POPCNT
63 #define TARGET_SAHF OPTION_ISA_SAHF
64 #define TARGET_MOVBE OPTION_ISA_MOVBE
65 #define TARGET_CRC32 OPTION_ISA_CRC32
66 #define TARGET_AES OPTION_ISA_AES
67 #define TARGET_PCLMUL OPTION_ISA_PCLMUL
68 #define TARGET_CMPXCHG16B OPTION_ISA_CX16
69
70
71 /* SSE4.1 defines round instructions */
72 #define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
73 #define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
74
75 #include "config/vxworks-dummy.h"
76
77 /* Algorithm to expand string function with. */
78 enum stringop_alg
79 {
80 no_stringop,
81 libcall,
82 rep_prefix_1_byte,
83 rep_prefix_4_byte,
84 rep_prefix_8_byte,
85 loop_1_byte,
86 loop,
87 unrolled_loop
88 };
89
90 #define NAX_STRINGOP_ALGS 4
91
92 /* Specify what algorithm to use for stringops on known size.
93 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
94 known at compile time or estimated via feedback, the SIZE array
95 is walked in order until MAX is greater then the estimate (or -1
96 means infinity). Corresponding ALG is used then.
97 For example initializer:
98 {{256, loop}, {-1, rep_prefix_4_byte}}
99 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
100 be used otherwise. */
101 struct stringop_algs
102 {
103 const enum stringop_alg unknown_size;
104 const struct stringop_strategy {
105 const int max;
106 const enum stringop_alg alg;
107 } size [NAX_STRINGOP_ALGS];
108 };
109
110 /* Define the specific costs for a given cpu */
111
112 struct processor_costs {
113 const int add; /* cost of an add instruction */
114 const int lea; /* cost of a lea instruction */
115 const int shift_var; /* variable shift costs */
116 const int shift_const; /* constant shift costs */
117 const int mult_init[5]; /* cost of starting a multiply
118 in QImode, HImode, SImode, DImode, TImode*/
119 const int mult_bit; /* cost of multiply per each bit set */
120 const int divide[5]; /* cost of a divide/mod
121 in QImode, HImode, SImode, DImode, TImode*/
122 int movsx; /* The cost of movsx operation. */
123 int movzx; /* The cost of movzx operation. */
124 const int large_insn; /* insns larger than this cost more */
125 const int move_ratio; /* The threshold of number of scalar
126 memory-to-memory move insns. */
127 const int movzbl_load; /* cost of loading using movzbl */
128 const int int_load[3]; /* cost of loading integer registers
129 in QImode, HImode and SImode relative
130 to reg-reg move (2). */
131 const int int_store[3]; /* cost of storing integer register
132 in QImode, HImode and SImode */
133 const int fp_move; /* cost of reg,reg fld/fst */
134 const int fp_load[3]; /* cost of loading FP register
135 in SFmode, DFmode and XFmode */
136 const int fp_store[3]; /* cost of storing FP register
137 in SFmode, DFmode and XFmode */
138 const int mmx_move; /* cost of moving MMX register. */
139 const int mmx_load[2]; /* cost of loading MMX register
140 in SImode and DImode */
141 const int mmx_store[2]; /* cost of storing MMX register
142 in SImode and DImode */
143 const int sse_move; /* cost of moving SSE register. */
144 const int sse_load[3]; /* cost of loading SSE register
145 in SImode, DImode and TImode*/
146 const int sse_store[3]; /* cost of storing SSE register
147 in SImode, DImode and TImode*/
148 const int mmxsse_to_integer; /* cost of moving mmxsse register to
149 integer and vice versa. */
150 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
151 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
152 const int prefetch_block; /* bytes moved to cache for prefetch. */
153 const int simultaneous_prefetches; /* number of parallel prefetch
154 operations. */
155 const int branch_cost; /* Default value for BRANCH_COST. */
156 const int fadd; /* cost of FADD and FSUB instructions. */
157 const int fmul; /* cost of FMUL instruction. */
158 const int fdiv; /* cost of FDIV instruction. */
159 const int fabs; /* cost of FABS instruction. */
160 const int fchs; /* cost of FCHS instruction. */
161 const int fsqrt; /* cost of FSQRT instruction. */
162 /* Specify what algorithm
163 to use for stringops on unknown size. */
164 struct stringop_algs memcpy[2], memset[2];
165 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
166 load and store. */
167 const int scalar_load_cost; /* Cost of scalar load. */
168 const int scalar_store_cost; /* Cost of scalar store. */
169 const int vec_stmt_cost; /* Cost of any vector operation, excluding
170 load, store, vector-to-scalar and
171 scalar-to-vector operation. */
172 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
173 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
174 const int vec_align_load_cost; /* Cost of aligned vector load. */
175 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
176 const int vec_store_cost; /* Cost of vector store. */
177 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
178 cost model. */
179 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
180 vectorizer cost model. */
181 };
182
183 extern const struct processor_costs *ix86_cost;
184 extern const struct processor_costs ix86_size_cost;
185
186 #define ix86_cur_cost() \
187 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
188
189 /* Macros used in the machine description to test the flags. */
190
191 /* configure can arrange to make this 2, to force a 486. */
192
193 #ifndef TARGET_CPU_DEFAULT
194 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
195 #endif
196
197 #ifndef TARGET_FPMATH_DEFAULT
198 #define TARGET_FPMATH_DEFAULT \
199 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
200 #endif
201
202 #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
203
204 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
205 compile-time constant. */
206 #ifdef IN_LIBGCC2
207 #undef TARGET_64BIT
208 #ifdef __x86_64__
209 #define TARGET_64BIT 1
210 #else
211 #define TARGET_64BIT 0
212 #endif
213 #else
214 #ifndef TARGET_BI_ARCH
215 #undef TARGET_64BIT
216 #if TARGET_64BIT_DEFAULT
217 #define TARGET_64BIT 1
218 #else
219 #define TARGET_64BIT 0
220 #endif
221 #endif
222 #endif
223
224 #define HAS_LONG_COND_BRANCH 1
225 #define HAS_LONG_UNCOND_BRANCH 1
226
227 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
228 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
229 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
230 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
231 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
232 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
233 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
234 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
235 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
236 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
237 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
238 #define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
239 #define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
240 #define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
241 #define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
242 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
243 #define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
244
245 /* Feature tests against the various tunings. */
246 enum ix86_tune_indices {
247 X86_TUNE_USE_LEAVE,
248 X86_TUNE_PUSH_MEMORY,
249 X86_TUNE_ZERO_EXTEND_WITH_AND,
250 X86_TUNE_UNROLL_STRLEN,
251 X86_TUNE_DEEP_BRANCH_PREDICTION,
252 X86_TUNE_BRANCH_PREDICTION_HINTS,
253 X86_TUNE_DOUBLE_WITH_ADD,
254 X86_TUNE_USE_SAHF,
255 X86_TUNE_MOVX,
256 X86_TUNE_PARTIAL_REG_STALL,
257 X86_TUNE_PARTIAL_FLAG_REG_STALL,
258 X86_TUNE_USE_HIMODE_FIOP,
259 X86_TUNE_USE_SIMODE_FIOP,
260 X86_TUNE_USE_MOV0,
261 X86_TUNE_USE_CLTD,
262 X86_TUNE_USE_XCHGB,
263 X86_TUNE_SPLIT_LONG_MOVES,
264 X86_TUNE_READ_MODIFY_WRITE,
265 X86_TUNE_READ_MODIFY,
266 X86_TUNE_PROMOTE_QIMODE,
267 X86_TUNE_FAST_PREFIX,
268 X86_TUNE_SINGLE_STRINGOP,
269 X86_TUNE_QIMODE_MATH,
270 X86_TUNE_HIMODE_MATH,
271 X86_TUNE_PROMOTE_QI_REGS,
272 X86_TUNE_PROMOTE_HI_REGS,
273 X86_TUNE_ADD_ESP_4,
274 X86_TUNE_ADD_ESP_8,
275 X86_TUNE_SUB_ESP_4,
276 X86_TUNE_SUB_ESP_8,
277 X86_TUNE_INTEGER_DFMODE_MOVES,
278 X86_TUNE_PARTIAL_REG_DEPENDENCY,
279 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
280 X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL,
281 X86_TUNE_SSE_SPLIT_REGS,
282 X86_TUNE_SSE_TYPELESS_STORES,
283 X86_TUNE_SSE_LOAD0_BY_PXOR,
284 X86_TUNE_MEMORY_MISMATCH_STALL,
285 X86_TUNE_PROLOGUE_USING_MOVE,
286 X86_TUNE_EPILOGUE_USING_MOVE,
287 X86_TUNE_SHIFT1,
288 X86_TUNE_USE_FFREEP,
289 X86_TUNE_INTER_UNIT_MOVES,
290 X86_TUNE_INTER_UNIT_CONVERSIONS,
291 X86_TUNE_FOUR_JUMP_LIMIT,
292 X86_TUNE_SCHEDULE,
293 X86_TUNE_USE_BT,
294 X86_TUNE_USE_INCDEC,
295 X86_TUNE_PAD_RETURNS,
296 X86_TUNE_EXT_80387_CONSTANTS,
297 X86_TUNE_SHORTEN_X87_SSE,
298 X86_TUNE_AVOID_VECTOR_DECODE,
299 X86_TUNE_PROMOTE_HIMODE_IMUL,
300 X86_TUNE_SLOW_IMUL_IMM32_MEM,
301 X86_TUNE_SLOW_IMUL_IMM8,
302 X86_TUNE_MOVE_M1_VIA_OR,
303 X86_TUNE_NOT_UNPAIRABLE,
304 X86_TUNE_NOT_VECTORMODE,
305 X86_TUNE_USE_VECTOR_FP_CONVERTS,
306 X86_TUNE_USE_VECTOR_CONVERTS,
307 X86_TUNE_FUSE_CMP_AND_BRANCH,
308 X86_TUNE_OPT_AGU,
309
310 X86_TUNE_LAST
311 };
312
313 extern unsigned char ix86_tune_features[X86_TUNE_LAST];
314
315 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
316 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
317 #define TARGET_ZERO_EXTEND_WITH_AND \
318 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
319 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
320 #define TARGET_DEEP_BRANCH_PREDICTION \
321 ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
322 #define TARGET_BRANCH_PREDICTION_HINTS \
323 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
324 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
325 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
326 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
327 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
328 #define TARGET_PARTIAL_FLAG_REG_STALL \
329 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
330 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
331 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
332 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
333 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
334 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
335 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
336 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
337 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
338 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
339 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
340 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
341 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
342 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
343 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
344 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
345 #define TARGET_ADD_ESP_4 ix86_tune_features[X86_TUNE_ADD_ESP_4]
346 #define TARGET_ADD_ESP_8 ix86_tune_features[X86_TUNE_ADD_ESP_8]
347 #define TARGET_SUB_ESP_4 ix86_tune_features[X86_TUNE_SUB_ESP_4]
348 #define TARGET_SUB_ESP_8 ix86_tune_features[X86_TUNE_SUB_ESP_8]
349 #define TARGET_INTEGER_DFMODE_MOVES \
350 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
351 #define TARGET_PARTIAL_REG_DEPENDENCY \
352 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
353 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
354 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
355 #define TARGET_SSE_UNALIGNED_MOVE_OPTIMAL \
356 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL]
357 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
358 #define TARGET_SSE_TYPELESS_STORES \
359 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
360 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
361 #define TARGET_MEMORY_MISMATCH_STALL \
362 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
363 #define TARGET_PROLOGUE_USING_MOVE \
364 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
365 #define TARGET_EPILOGUE_USING_MOVE \
366 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
367 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
368 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
369 #define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
370 #define TARGET_INTER_UNIT_CONVERSIONS\
371 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
372 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
373 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
374 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
375 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
376 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
377 #define TARGET_EXT_80387_CONSTANTS \
378 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
379 #define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
380 #define TARGET_AVOID_VECTOR_DECODE \
381 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
382 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
383 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
384 #define TARGET_SLOW_IMUL_IMM32_MEM \
385 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
386 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
387 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
388 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
389 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
390 #define TARGET_USE_VECTOR_FP_CONVERTS \
391 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
392 #define TARGET_USE_VECTOR_CONVERTS \
393 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
394 #define TARGET_FUSE_CMP_AND_BRANCH \
395 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
396 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
397
398 /* Feature tests against the various architecture variations. */
399 enum ix86_arch_indices {
400 X86_ARCH_CMOVE, /* || TARGET_SSE */
401 X86_ARCH_CMPXCHG,
402 X86_ARCH_CMPXCHG8B,
403 X86_ARCH_XADD,
404 X86_ARCH_BSWAP,
405
406 X86_ARCH_LAST
407 };
408
409 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
410
411 #define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
412 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
413 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
414 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
415 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
416
417 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
418
419 extern int x86_prefetch_sse;
420
421 #define TARGET_PREFETCH_SSE x86_prefetch_sse
422
423 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
424
425 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
426 #define TARGET_MIX_SSE_I387 \
427 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
428
429 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
430 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
431 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
432 #define TARGET_SUN_TLS 0
433
434 extern int ix86_isa_flags;
435
436 #ifndef TARGET_64BIT_DEFAULT
437 #define TARGET_64BIT_DEFAULT 0
438 #endif
439 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
440 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
441 #endif
442
443 /* Fence to use after loop using storent. */
444
445 extern tree x86_mfence;
446 #define FENCE_FOLLOWING_MOVNT x86_mfence
447
448 /* Once GDB has been enhanced to deal with functions without frame
449 pointers, we can change this to allow for elimination of
450 the frame pointer in leaf functions. */
451 #define TARGET_DEFAULT 0
452
453 /* Extra bits to force. */
454 #define TARGET_SUBTARGET_DEFAULT 0
455 #define TARGET_SUBTARGET_ISA_DEFAULT 0
456
457 /* Extra bits to force on w/ 32-bit mode. */
458 #define TARGET_SUBTARGET32_DEFAULT 0
459 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
460
461 /* Extra bits to force on w/ 64-bit mode. */
462 #define TARGET_SUBTARGET64_DEFAULT 0
463 #define TARGET_SUBTARGET64_ISA_DEFAULT 0
464
465 /* This is not really a target flag, but is done this way so that
466 it's analogous to similar code for Mach-O on PowerPC. darwin.h
467 redefines this to 1. */
468 #define TARGET_MACHO 0
469
470 /* Likewise, for the Windows 64-bit ABI. */
471 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
472
473 /* Available call abi. */
474 enum calling_abi
475 {
476 SYSV_ABI = 0,
477 MS_ABI = 1
478 };
479
480 /* The abi used by target. */
481 extern enum calling_abi ix86_abi;
482
483 /* The default abi used by target. */
484 #define DEFAULT_ABI SYSV_ABI
485
486 /* Subtargets may reset this to 1 in order to enable 96-bit long double
487 with the rounding mode forced to 53 bits. */
488 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
489
490 /* Sometimes certain combinations of command options do not make
491 sense on a particular target machine. You can define a macro
492 `OVERRIDE_OPTIONS' to take account of this. This macro, if
493 defined, is executed once just after all the command options have
494 been parsed.
495
496 Don't use this macro to turn on various extra optimizations for
497 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
498
499 #define OVERRIDE_OPTIONS override_options (true)
500
501 /* Define this to change the optimizations performed by default. */
502 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
503 optimization_options ((LEVEL), (SIZE))
504
505 /* -march=native handling only makes sense with compiler running on
506 an x86 or x86_64 chip. If changing this condition, also change
507 the condition in driver-i386.c. */
508 #if defined(__i386__) || defined(__x86_64__)
509 /* In driver-i386.c. */
510 extern const char *host_detect_local_cpu (int argc, const char **argv);
511 #define EXTRA_SPEC_FUNCTIONS \
512 { "local_cpu_detect", host_detect_local_cpu },
513 #define HAVE_LOCAL_CPU_DETECT
514 #endif
515
516 #if TARGET_64BIT_DEFAULT
517 #define OPT_ARCH64 "!m32"
518 #define OPT_ARCH32 "m32"
519 #else
520 #define OPT_ARCH64 "m64"
521 #define OPT_ARCH32 "!m64"
522 #endif
523
524 /* Support for configure-time defaults of some command line options.
525 The order here is important so that -march doesn't squash the
526 tune or cpu values. */
527 #define OPTION_DEFAULT_SPECS \
528 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
529 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
530 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
531 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
532 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
533 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
534 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
535 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
536 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
537
538 /* Specs for the compiler proper */
539
540 #ifndef CC1_CPU_SPEC
541 #define CC1_CPU_SPEC_1 "\
542 %{mcpu=*:-mtune=%* \
543 %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n} \
544 %<mcpu=* \
545 %{mintel-syntax:-masm=intel \
546 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
547 %{msse5:-mavx \
548 %n'-msse5' was removed.\n} \
549 %{mno-intel-syntax:-masm=att \
550 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
551
552 #ifndef HAVE_LOCAL_CPU_DETECT
553 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
554 #else
555 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
556 "%{march=native:%<march=native %:local_cpu_detect(arch) \
557 %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
558 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
559 #endif
560 #endif
561 \f
562 /* Target CPU builtins. */
563 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
564
565 /* Target Pragmas. */
566 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
567
568 enum target_cpu_default
569 {
570 TARGET_CPU_DEFAULT_generic = 0,
571
572 TARGET_CPU_DEFAULT_i386,
573 TARGET_CPU_DEFAULT_i486,
574 TARGET_CPU_DEFAULT_pentium,
575 TARGET_CPU_DEFAULT_pentium_mmx,
576 TARGET_CPU_DEFAULT_pentiumpro,
577 TARGET_CPU_DEFAULT_pentium2,
578 TARGET_CPU_DEFAULT_pentium3,
579 TARGET_CPU_DEFAULT_pentium4,
580 TARGET_CPU_DEFAULT_pentium_m,
581 TARGET_CPU_DEFAULT_prescott,
582 TARGET_CPU_DEFAULT_nocona,
583 TARGET_CPU_DEFAULT_core2,
584 TARGET_CPU_DEFAULT_atom,
585
586 TARGET_CPU_DEFAULT_geode,
587 TARGET_CPU_DEFAULT_k6,
588 TARGET_CPU_DEFAULT_k6_2,
589 TARGET_CPU_DEFAULT_k6_3,
590 TARGET_CPU_DEFAULT_athlon,
591 TARGET_CPU_DEFAULT_athlon_sse,
592 TARGET_CPU_DEFAULT_k8,
593 TARGET_CPU_DEFAULT_amdfam10,
594
595 TARGET_CPU_DEFAULT_max
596 };
597
598 #ifndef CC1_SPEC
599 #define CC1_SPEC "%(cc1_cpu) "
600 #endif
601
602 /* This macro defines names of additional specifications to put in the
603 specs that can be used in various specifications like CC1_SPEC. Its
604 definition is an initializer with a subgrouping for each command option.
605
606 Each subgrouping contains a string constant, that defines the
607 specification name, and a string constant that used by the GCC driver
608 program.
609
610 Do not define this macro if it does not need to do anything. */
611
612 #ifndef SUBTARGET_EXTRA_SPECS
613 #define SUBTARGET_EXTRA_SPECS
614 #endif
615
616 #define EXTRA_SPECS \
617 { "cc1_cpu", CC1_CPU_SPEC }, \
618 SUBTARGET_EXTRA_SPECS
619 \f
620
621 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
622 FPU, assume that the fpcw is set to extended precision; when using
623 only SSE, rounding is correct; when using both SSE and the FPU,
624 the rounding precision is indeterminate, since either may be chosen
625 apparently at random. */
626 #define TARGET_FLT_EVAL_METHOD \
627 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
628
629 /* Whether to allow x87 floating-point arithmetic on MODE (one of
630 SFmode, DFmode and XFmode) in the current excess precision
631 configuration. */
632 #define X87_ENABLE_ARITH(MODE) \
633 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
634
635 /* Likewise, whether to allow direct conversions from integer mode
636 IMODE (HImode, SImode or DImode) to MODE. */
637 #define X87_ENABLE_FLOAT(MODE, IMODE) \
638 (flag_excess_precision == EXCESS_PRECISION_FAST \
639 || (MODE) == XFmode \
640 || ((MODE) == DFmode && (IMODE) == SImode) \
641 || (IMODE) == HImode)
642
643 /* target machine storage layout */
644
645 #define SHORT_TYPE_SIZE 16
646 #define INT_TYPE_SIZE 32
647 #define FLOAT_TYPE_SIZE 32
648 #define LONG_TYPE_SIZE BITS_PER_WORD
649 #define DOUBLE_TYPE_SIZE 64
650 #define LONG_LONG_TYPE_SIZE 64
651 #define LONG_DOUBLE_TYPE_SIZE 80
652
653 #define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
654
655 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
656 #define MAX_BITS_PER_WORD 64
657 #else
658 #define MAX_BITS_PER_WORD 32
659 #endif
660
661 /* Define this if most significant byte of a word is the lowest numbered. */
662 /* That is true on the 80386. */
663
664 #define BITS_BIG_ENDIAN 0
665
666 /* Define this if most significant byte of a word is the lowest numbered. */
667 /* That is not true on the 80386. */
668 #define BYTES_BIG_ENDIAN 0
669
670 /* Define this if most significant word of a multiword number is the lowest
671 numbered. */
672 /* Not true for 80386 */
673 #define WORDS_BIG_ENDIAN 0
674
675 /* Width of a word, in units (bytes). */
676 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
677 #ifdef IN_LIBGCC2
678 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
679 #else
680 #define MIN_UNITS_PER_WORD 4
681 #endif
682
683 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
684 #define PARM_BOUNDARY BITS_PER_WORD
685
686 /* Boundary (in *bits*) on which stack pointer should be aligned. */
687 #define STACK_BOUNDARY \
688 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
689
690 /* Stack boundary of the main function guaranteed by OS. */
691 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
692
693 /* Minimum stack boundary. */
694 #define MIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
695
696 /* Boundary (in *bits*) on which the stack pointer prefers to be
697 aligned; the compiler cannot rely on having this alignment. */
698 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
699
700 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
701 both 32bit and 64bit, to support codes that need 128 bit stack
702 alignment for SSE instructions, but can't realign the stack. */
703 #define PREFERRED_STACK_BOUNDARY_DEFAULT 128
704
705 /* 1 if -mstackrealign should be turned on by default. It will
706 generate an alternate prologue and epilogue that realigns the
707 runtime stack if nessary. This supports mixing codes that keep a
708 4-byte aligned stack, as specified by i386 psABI, with codes that
709 need a 16-byte aligned stack, as required by SSE instructions. */
710 #define STACK_REALIGN_DEFAULT 0
711
712 /* Boundary (in *bits*) on which the incoming stack is aligned. */
713 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
714
715 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
716 mandatory for the 64-bit ABI, and may or may not be true for other
717 operating systems. */
718 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
719
720 /* Minimum allocation boundary for the code of a function. */
721 #define FUNCTION_BOUNDARY 8
722
723 /* C++ stores the virtual bit in the lowest bit of function pointers. */
724 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
725
726 /* Alignment of field after `int : 0' in a structure. */
727
728 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
729
730 /* Minimum size in bits of the largest boundary to which any
731 and all fundamental data types supported by the hardware
732 might need to be aligned. No data type wants to be aligned
733 rounder than this.
734
735 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
736 and Pentium Pro XFmode values at 128 bit boundaries. */
737
738 #define BIGGEST_ALIGNMENT (TARGET_AVX ? 256: 128)
739
740 /* Maximum stack alignment. */
741 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
742
743 /* Alignment value for attribute ((aligned)). It is a constant since
744 it is the part of the ABI. We shouldn't change it with -mavx. */
745 #define ATTRIBUTE_ALIGNED_VALUE 128
746
747 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
748 #define ALIGN_MODE_128(MODE) \
749 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
750
751 /* The published ABIs say that doubles should be aligned on word
752 boundaries, so lower the alignment for structure fields unless
753 -malign-double is set. */
754
755 /* ??? Blah -- this macro is used directly by libobjc. Since it
756 supports no vector modes, cut out the complexity and fall back
757 on BIGGEST_FIELD_ALIGNMENT. */
758 #ifdef IN_TARGET_LIBS
759 #ifdef __x86_64__
760 #define BIGGEST_FIELD_ALIGNMENT 128
761 #else
762 #define BIGGEST_FIELD_ALIGNMENT 32
763 #endif
764 #else
765 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
766 x86_field_alignment (FIELD, COMPUTED)
767 #endif
768
769 /* If defined, a C expression to compute the alignment given to a
770 constant that is being placed in memory. EXP is the constant
771 and ALIGN is the alignment that the object would ordinarily have.
772 The value of this macro is used instead of that alignment to align
773 the object.
774
775 If this macro is not defined, then ALIGN is used.
776
777 The typical use of this macro is to increase alignment for string
778 constants to be word aligned so that `strcpy' calls that copy
779 constants can be done inline. */
780
781 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
782
783 /* If defined, a C expression to compute the alignment for a static
784 variable. TYPE is the data type, and ALIGN is the alignment that
785 the object would ordinarily have. The value of this macro is used
786 instead of that alignment to align the object.
787
788 If this macro is not defined, then ALIGN is used.
789
790 One use of this macro is to increase alignment of medium-size
791 data to make it all fit in fewer cache lines. Another is to
792 cause character arrays to be word-aligned so that `strcpy' calls
793 that copy constants to character arrays can be done inline. */
794
795 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
796
797 /* If defined, a C expression to compute the alignment for a local
798 variable. TYPE is the data type, and ALIGN is the alignment that
799 the object would ordinarily have. The value of this macro is used
800 instead of that alignment to align the object.
801
802 If this macro is not defined, then ALIGN is used.
803
804 One use of this macro is to increase alignment of medium-size
805 data to make it all fit in fewer cache lines. */
806
807 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
808 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
809
810 /* If defined, a C expression to compute the alignment for stack slot.
811 TYPE is the data type, MODE is the widest mode available, and ALIGN
812 is the alignment that the slot would ordinarily have. The value of
813 this macro is used instead of that alignment to align the slot.
814
815 If this macro is not defined, then ALIGN is used when TYPE is NULL,
816 Otherwise, LOCAL_ALIGNMENT will be used.
817
818 One use of this macro is to set alignment of stack slot to the
819 maximum alignment of all possible modes which the slot may have. */
820
821 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
822 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
823
824 /* If defined, a C expression to compute the alignment for a local
825 variable DECL.
826
827 If this macro is not defined, then
828 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
829
830 One use of this macro is to increase alignment of medium-size
831 data to make it all fit in fewer cache lines. */
832
833 #define LOCAL_DECL_ALIGNMENT(DECL) \
834 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
835
836 /* If defined, a C expression to compute the minimum required alignment
837 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
838 MODE, assuming normal alignment ALIGN.
839
840 If this macro is not defined, then (ALIGN) will be used. */
841
842 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
843 ix86_minimum_alignment (EXP, MODE, ALIGN)
844
845
846 /* If defined, a C expression that gives the alignment boundary, in
847 bits, of an argument with the specified mode and type. If it is
848 not defined, `PARM_BOUNDARY' is used for all arguments. */
849
850 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
851 ix86_function_arg_boundary ((MODE), (TYPE))
852
853 /* Set this nonzero if move instructions will actually fail to work
854 when given unaligned data. */
855 #define STRICT_ALIGNMENT 0
856
857 /* If bit field type is int, don't let it cross an int,
858 and give entire struct the alignment of an int. */
859 /* Required on the 386 since it doesn't have bit-field insns. */
860 #define PCC_BITFIELD_TYPE_MATTERS 1
861 \f
862 /* Standard register usage. */
863
864 /* This processor has special stack-like registers. See reg-stack.c
865 for details. */
866
867 #define STACK_REGS
868
869 #define IS_STACK_MODE(MODE) \
870 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
871 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
872 || (MODE) == XFmode)
873
874 /* Cover class containing the stack registers. */
875 #define STACK_REG_COVER_CLASS FLOAT_REGS
876
877 /* Number of actual hardware registers.
878 The hardware registers are assigned numbers for the compiler
879 from 0 to just below FIRST_PSEUDO_REGISTER.
880 All registers that the compiler knows about must be given numbers,
881 even those that are not normally considered general registers.
882
883 In the 80386 we give the 8 general purpose registers the numbers 0-7.
884 We number the floating point registers 8-15.
885 Note that registers 0-7 can be accessed as a short or int,
886 while only 0-3 may be used with byte `mov' instructions.
887
888 Reg 16 does not correspond to any hardware register, but instead
889 appears in the RTL as an argument pointer prior to reload, and is
890 eliminated during reloading in favor of either the stack or frame
891 pointer. */
892
893 #define FIRST_PSEUDO_REGISTER 53
894
895 /* Number of hardware registers that go into the DWARF-2 unwind info.
896 If not defined, equals FIRST_PSEUDO_REGISTER. */
897
898 #define DWARF_FRAME_REGISTERS 17
899
900 /* 1 for registers that have pervasive standard uses
901 and are not available for the register allocator.
902 On the 80386, the stack pointer is such, as is the arg pointer.
903
904 The value is zero if the register is not fixed on either 32 or
905 64 bit targets, one if the register if fixed on both 32 and 64
906 bit targets, two if it is only fixed on 32bit targets and three
907 if its only fixed on 64bit targets.
908 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
909 */
910 #define FIXED_REGISTERS \
911 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
912 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
913 /*arg,flags,fpsr,fpcr,frame*/ \
914 1, 1, 1, 1, 1, \
915 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
916 0, 0, 0, 0, 0, 0, 0, 0, \
917 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
918 0, 0, 0, 0, 0, 0, 0, 0, \
919 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
920 2, 2, 2, 2, 2, 2, 2, 2, \
921 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
922 2, 2, 2, 2, 2, 2, 2, 2 }
923
924
925 /* 1 for registers not available across function calls.
926 These must include the FIXED_REGISTERS and also any
927 registers that can be used without being saved.
928 The latter must include the registers where values are returned
929 and the register where structure-value addresses are passed.
930 Aside from that, you can include as many other registers as you like.
931
932 The value is zero if the register is not call used on either 32 or
933 64 bit targets, one if the register if call used on both 32 and 64
934 bit targets, two if it is only call used on 32bit targets and three
935 if its only call used on 64bit targets.
936 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
937 */
938 #define CALL_USED_REGISTERS \
939 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
940 { 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
941 /*arg,flags,fpsr,fpcr,frame*/ \
942 1, 1, 1, 1, 1, \
943 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
944 1, 1, 1, 1, 1, 1, 1, 1, \
945 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
946 1, 1, 1, 1, 1, 1, 1, 1, \
947 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
948 1, 1, 1, 1, 2, 2, 2, 2, \
949 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
950 1, 1, 1, 1, 1, 1, 1, 1 }
951
952 /* Order in which to allocate registers. Each register must be
953 listed once, even those in FIXED_REGISTERS. List frame pointer
954 late and fixed registers last. Note that, in general, we prefer
955 registers listed in CALL_USED_REGISTERS, keeping the others
956 available for storage of persistent values.
957
958 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
959 so this is just empty initializer for array. */
960
961 #define REG_ALLOC_ORDER \
962 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
963 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
964 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
965 48, 49, 50, 51, 52 }
966
967 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
968 to be rearranged based on a particular function. When using sse math,
969 we want to allocate SSE before x87 registers and vice versa. */
970
971 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
972
973
974 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
975
976 /* Macro to conditionally modify fixed_regs/call_used_regs. */
977 #define CONDITIONAL_REGISTER_USAGE ix86_conditional_register_usage ()
978
979 /* Return number of consecutive hard regs needed starting at reg REGNO
980 to hold something of mode MODE.
981 This is ordinarily the length in words of a value of mode MODE
982 but can be less for certain modes in special long registers.
983
984 Actually there are no two word move instructions for consecutive
985 registers. And only registers 0-3 may have mov byte instructions
986 applied to them.
987 */
988
989 #define HARD_REGNO_NREGS(REGNO, MODE) \
990 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
991 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
992 : ((MODE) == XFmode \
993 ? (TARGET_64BIT ? 2 : 3) \
994 : (MODE) == XCmode \
995 ? (TARGET_64BIT ? 4 : 6) \
996 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
997
998 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
999 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1000 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1001 ? 0 \
1002 : ((MODE) == XFmode || (MODE) == XCmode)) \
1003 : 0)
1004
1005 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1006
1007 #define VALID_AVX256_REG_MODE(MODE) \
1008 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1009 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
1010
1011 #define VALID_SSE2_REG_MODE(MODE) \
1012 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1013 || (MODE) == V2DImode || (MODE) == DFmode)
1014
1015 #define VALID_SSE_REG_MODE(MODE) \
1016 ((MODE) == V1TImode || (MODE) == TImode \
1017 || (MODE) == V4SFmode || (MODE) == V4SImode \
1018 || (MODE) == SFmode || (MODE) == TFmode)
1019
1020 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1021 ((MODE) == V2SFmode || (MODE) == SFmode)
1022
1023 #define VALID_MMX_REG_MODE(MODE) \
1024 ((MODE == V1DImode) || (MODE) == DImode \
1025 || (MODE) == V2SImode || (MODE) == SImode \
1026 || (MODE) == V4HImode || (MODE) == V8QImode)
1027
1028 /* ??? No autovectorization into MMX or 3DNOW until we can reliably
1029 place emms and femms instructions.
1030 FIXME: AVX has 32byte floating point vector operations and 16byte
1031 integer vector operations. But vectorizer doesn't support
1032 different sizes for integer and floating point vectors. We limit
1033 vector size to 16byte. */
1034 #define UNITS_PER_SIMD_WORD(MODE) \
1035 (TARGET_AVX ? (((MODE) == DFmode || (MODE) == SFmode) ? 16 : 16) \
1036 : (TARGET_SSE ? 16 : UNITS_PER_WORD))
1037
1038 #define VALID_DFP_MODE_P(MODE) \
1039 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1040
1041 #define VALID_FP_MODE_P(MODE) \
1042 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1043 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1044
1045 #define VALID_INT_MODE_P(MODE) \
1046 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1047 || (MODE) == DImode \
1048 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1049 || (MODE) == CDImode \
1050 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1051 || (MODE) == TFmode || (MODE) == TCmode)))
1052
1053 /* Return true for modes passed in SSE registers. */
1054 #define SSE_REG_MODE_P(MODE) \
1055 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1056 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1057 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1058 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1059 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
1060
1061 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1062
1063 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1064 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1065
1066 /* Value is 1 if it is a good idea to tie two pseudo registers
1067 when one has mode MODE1 and one has mode MODE2.
1068 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1069 for any hard reg, then this must be 0 for correct output. */
1070
1071 #define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
1072
1073 /* It is possible to write patterns to move flags; but until someone
1074 does it, */
1075 #define AVOID_CCMODE_COPIES
1076
1077 /* Specify the modes required to caller save a given hard regno.
1078 We do this on i386 to prevent flags from being saved at all.
1079
1080 Kill any attempts to combine saving of modes. */
1081
1082 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1083 (CC_REGNO_P (REGNO) ? VOIDmode \
1084 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1085 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1086 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1087 : (MODE) == QImode && (REGNO) > BX_REG && !TARGET_64BIT ? SImode \
1088 : (MODE))
1089
1090 /* Specify the registers used for certain standard purposes.
1091 The values of these macros are register numbers. */
1092
1093 /* on the 386 the pc register is %eip, and is not usable as a general
1094 register. The ordinary mov instructions won't work */
1095 /* #define PC_REGNUM */
1096
1097 /* Register to use for pushing function arguments. */
1098 #define STACK_POINTER_REGNUM 7
1099
1100 /* Base register for access to local variables of the function. */
1101 #define HARD_FRAME_POINTER_REGNUM 6
1102
1103 /* Base register for access to local variables of the function. */
1104 #define FRAME_POINTER_REGNUM 20
1105
1106 /* First floating point reg */
1107 #define FIRST_FLOAT_REG 8
1108
1109 /* First & last stack-like regs */
1110 #define FIRST_STACK_REG FIRST_FLOAT_REG
1111 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1112
1113 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1114 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1115
1116 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1117 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1118
1119 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1120 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1121
1122 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1123 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1124
1125 /* Override this in other tm.h files to cope with various OS lossage
1126 requiring a frame pointer. */
1127 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1128 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1129 #endif
1130
1131 /* Make sure we can access arbitrary call frames. */
1132 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1133
1134 /* Base register for access to arguments of the function. */
1135 #define ARG_POINTER_REGNUM 16
1136
1137 /* Register to hold the addressing base for position independent
1138 code access to data items. We don't use PIC pointer for 64bit
1139 mode. Define the regnum to dummy value to prevent gcc from
1140 pessimizing code dealing with EBX.
1141
1142 To avoid clobbering a call-saved register unnecessarily, we renumber
1143 the pic register when possible. The change is visible after the
1144 prologue has been emitted. */
1145
1146 #define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
1147
1148 #define PIC_OFFSET_TABLE_REGNUM \
1149 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1150 || !flag_pic ? INVALID_REGNUM \
1151 : reload_completed ? REGNO (pic_offset_table_rtx) \
1152 : REAL_PIC_OFFSET_TABLE_REGNUM)
1153
1154 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1155
1156 /* This is overridden by <cygwin.h>. */
1157 #define MS_AGGREGATE_RETURN 0
1158
1159 /* This is overridden by <netware.h>. */
1160 #define KEEP_AGGREGATE_RETURN_POINTER 0
1161 \f
1162 /* Define the classes of registers for register constraints in the
1163 machine description. Also define ranges of constants.
1164
1165 One of the classes must always be named ALL_REGS and include all hard regs.
1166 If there is more than one class, another class must be named NO_REGS
1167 and contain no registers.
1168
1169 The name GENERAL_REGS must be the name of a class (or an alias for
1170 another name such as ALL_REGS). This is the class of registers
1171 that is allowed by "g" or "r" in a register constraint.
1172 Also, registers outside this class are allocated only when
1173 instructions express preferences for them.
1174
1175 The classes must be numbered in nondecreasing order; that is,
1176 a larger-numbered class must never be contained completely
1177 in a smaller-numbered class.
1178
1179 For any two classes, it is very desirable that there be another
1180 class that represents their union.
1181
1182 It might seem that class BREG is unnecessary, since no useful 386
1183 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1184 and the "b" register constraint is useful in asms for syscalls.
1185
1186 The flags, fpsr and fpcr registers are in no class. */
1187
1188 enum reg_class
1189 {
1190 NO_REGS,
1191 AREG, DREG, CREG, BREG, SIREG, DIREG,
1192 AD_REGS, /* %eax/%edx for DImode */
1193 CLOBBERED_REGS, /* call-clobbered integers */
1194 Q_REGS, /* %eax %ebx %ecx %edx */
1195 NON_Q_REGS, /* %esi %edi %ebp %esp */
1196 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1197 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1198 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1199 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1200 FLOAT_REGS,
1201 SSE_FIRST_REG,
1202 SSE_REGS,
1203 MMX_REGS,
1204 FP_TOP_SSE_REGS,
1205 FP_SECOND_SSE_REGS,
1206 FLOAT_SSE_REGS,
1207 FLOAT_INT_REGS,
1208 INT_SSE_REGS,
1209 FLOAT_INT_SSE_REGS,
1210 ALL_REGS, LIM_REG_CLASSES
1211 };
1212
1213 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1214
1215 #define INTEGER_CLASS_P(CLASS) \
1216 reg_class_subset_p ((CLASS), GENERAL_REGS)
1217 #define FLOAT_CLASS_P(CLASS) \
1218 reg_class_subset_p ((CLASS), FLOAT_REGS)
1219 #define SSE_CLASS_P(CLASS) \
1220 reg_class_subset_p ((CLASS), SSE_REGS)
1221 #define MMX_CLASS_P(CLASS) \
1222 ((CLASS) == MMX_REGS)
1223 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1224 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1225 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1226 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1227 #define MAYBE_SSE_CLASS_P(CLASS) \
1228 reg_classes_intersect_p (SSE_REGS, (CLASS))
1229 #define MAYBE_MMX_CLASS_P(CLASS) \
1230 reg_classes_intersect_p (MMX_REGS, (CLASS))
1231
1232 #define Q_CLASS_P(CLASS) \
1233 reg_class_subset_p ((CLASS), Q_REGS)
1234
1235 /* Give names of register classes as strings for dump file. */
1236
1237 #define REG_CLASS_NAMES \
1238 { "NO_REGS", \
1239 "AREG", "DREG", "CREG", "BREG", \
1240 "SIREG", "DIREG", \
1241 "AD_REGS", \
1242 "CLOBBERED_REGS", \
1243 "Q_REGS", "NON_Q_REGS", \
1244 "INDEX_REGS", \
1245 "LEGACY_REGS", \
1246 "GENERAL_REGS", \
1247 "FP_TOP_REG", "FP_SECOND_REG", \
1248 "FLOAT_REGS", \
1249 "SSE_FIRST_REG", \
1250 "SSE_REGS", \
1251 "MMX_REGS", \
1252 "FP_TOP_SSE_REGS", \
1253 "FP_SECOND_SSE_REGS", \
1254 "FLOAT_SSE_REGS", \
1255 "FLOAT_INT_REGS", \
1256 "INT_SSE_REGS", \
1257 "FLOAT_INT_SSE_REGS", \
1258 "ALL_REGS" }
1259
1260 /* Define which registers fit in which classes. This is an initializer
1261 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1262
1263 Note that the default setting of CLOBBERED_REGS is for 32-bit; this
1264 is adjusted by CONDITIONAL_REGISTER_USAGE for the 64-bit ABI in effect. */
1265
1266 #define REG_CLASS_CONTENTS \
1267 { { 0x00, 0x0 }, \
1268 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1269 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1270 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1271 { 0x03, 0x0 }, /* AD_REGS */ \
1272 { 0x07, 0x0 }, /* CLOBBERED_REGS */ \
1273 { 0x0f, 0x0 }, /* Q_REGS */ \
1274 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1275 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1276 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1277 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1278 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1279 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1280 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
1281 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1282 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1283 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1284 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1285 { 0x1fe0ff00,0x3fe000 }, /* FLOAT_SSE_REGS */ \
1286 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1287 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1288 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1289 { 0xffffffff,0x1fffff } \
1290 }
1291
1292 /* The same information, inverted:
1293 Return the class number of the smallest class containing
1294 reg number REGNO. This could be a conditional expression
1295 or could index an array. */
1296
1297 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1298
1299 /* When defined, the compiler allows registers explicitly used in the
1300 rtl to be used as spill registers but prevents the compiler from
1301 extending the lifetime of these registers. */
1302
1303 #define SMALL_REGISTER_CLASSES 1
1304
1305 #define QI_REG_P(X) (REG_P (X) && REGNO (X) <= BX_REG)
1306
1307 #define GENERAL_REGNO_P(N) \
1308 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
1309
1310 #define GENERAL_REG_P(X) \
1311 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1312
1313 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1314
1315 #define REX_INT_REGNO_P(N) \
1316 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1317 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1318
1319 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1320 #define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1321 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1322 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1323
1324 #define X87_FLOAT_MODE_P(MODE) \
1325 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1326
1327 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1328 #define SSE_REGNO_P(N) \
1329 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1330 || REX_SSE_REGNO_P (N))
1331
1332 #define REX_SSE_REGNO_P(N) \
1333 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1334
1335 #define SSE_REGNO(N) \
1336 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1337
1338 #define SSE_FLOAT_MODE_P(MODE) \
1339 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1340
1341 #define SSE_VEC_FLOAT_MODE_P(MODE) \
1342 ((TARGET_SSE && (MODE) == V4SFmode) || (TARGET_SSE2 && (MODE) == V2DFmode))
1343
1344 #define AVX_FLOAT_MODE_P(MODE) \
1345 (TARGET_AVX && ((MODE) == SFmode || (MODE) == DFmode))
1346
1347 #define AVX128_VEC_FLOAT_MODE_P(MODE) \
1348 (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode))
1349
1350 #define AVX256_VEC_FLOAT_MODE_P(MODE) \
1351 (TARGET_AVX && ((MODE) == V8SFmode || (MODE) == V4DFmode))
1352
1353 #define AVX_VEC_FLOAT_MODE_P(MODE) \
1354 (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1355 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1356
1357 #define FMA4_VEC_FLOAT_MODE_P(MODE) \
1358 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1359 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1360
1361 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1362 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1363
1364 #define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
1365 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1366
1367 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1368
1369 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1370 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1371
1372 /* The class value for index registers, and the one for base regs. */
1373
1374 #define INDEX_REG_CLASS INDEX_REGS
1375 #define BASE_REG_CLASS GENERAL_REGS
1376
1377 /* Place additional restrictions on the register class to use when it
1378 is necessary to be able to hold a value of mode MODE in a reload
1379 register for which class CLASS would ordinarily be used. */
1380
1381 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1382 ((MODE) == QImode && !TARGET_64BIT \
1383 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1384 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1385 ? Q_REGS : (CLASS))
1386
1387 /* Given an rtx X being reloaded into a reg required to be
1388 in class CLASS, return the class of reg to actually use.
1389 In general this is just CLASS; but on some machines
1390 in some cases it is preferable to use a more restrictive class.
1391 On the 80386 series, we prevent floating constants from being
1392 reloaded into floating registers (since no move-insn can do that)
1393 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1394
1395 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1396 QImode must go into class Q_REGS.
1397 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1398 movdf to do mem-to-mem moves through integer regs. */
1399
1400 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1401 ix86_preferred_reload_class ((X), (CLASS))
1402
1403 /* Discourage putting floating-point values in SSE registers unless
1404 SSE math is being used, and likewise for the 387 registers. */
1405
1406 #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1407 ix86_preferred_output_reload_class ((X), (CLASS))
1408
1409 /* If we are copying between general and FP registers, we need a memory
1410 location. The same is true for SSE and MMX registers. */
1411 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1412 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1413
1414 /* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1415 There is no need to emit full 64 bit move on 64 bit targets
1416 for integral modes that can be moved using 32 bit move. */
1417 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1418 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1419 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1420 : MODE)
1421
1422 /* Return the maximum number of consecutive registers
1423 needed to represent mode MODE in a register of class CLASS. */
1424 /* On the 80386, this is the size of MODE in words,
1425 except in the FP regs, where a single reg is always enough. */
1426 #define CLASS_MAX_NREGS(CLASS, MODE) \
1427 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1428 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1429 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1430 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1431
1432 /* A C expression whose value is nonzero if pseudos that have been
1433 assigned to registers of class CLASS would likely be spilled
1434 because registers of CLASS are needed for spill registers.
1435
1436 The default value of this macro returns 1 if CLASS has exactly one
1437 register and zero otherwise. On most machines, this default
1438 should be used. Only define this macro to some other expression
1439 if pseudo allocated by `local-alloc.c' end up in memory because
1440 their hard registers were needed for spill registers. If this
1441 macro returns nonzero for those classes, those pseudos will only
1442 be allocated by `global.c', which knows how to reallocate the
1443 pseudo to another register. If there would not be another
1444 register available for reallocation, you should not change the
1445 definition of this macro since the only effect of such a
1446 definition would be to slow down register allocation. */
1447
1448 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1449 (((CLASS) == AREG) \
1450 || ((CLASS) == DREG) \
1451 || ((CLASS) == CREG) \
1452 || ((CLASS) == BREG) \
1453 || ((CLASS) == AD_REGS) \
1454 || ((CLASS) == SIREG) \
1455 || ((CLASS) == DIREG) \
1456 || ((CLASS) == SSE_FIRST_REG) \
1457 || ((CLASS) == FP_TOP_REG) \
1458 || ((CLASS) == FP_SECOND_REG))
1459
1460 /* Return a class of registers that cannot change FROM mode to TO mode. */
1461
1462 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1463 ix86_cannot_change_mode_class (FROM, TO, CLASS)
1464 \f
1465 /* Stack layout; function entry, exit and calling. */
1466
1467 /* Define this if pushing a word on the stack
1468 makes the stack pointer a smaller address. */
1469 #define STACK_GROWS_DOWNWARD
1470
1471 /* Define this to nonzero if the nominal address of the stack frame
1472 is at the high-address end of the local variables;
1473 that is, each additional local variable allocated
1474 goes at a more negative offset in the frame. */
1475 #define FRAME_GROWS_DOWNWARD 1
1476
1477 /* Offset within stack frame to start allocating local variables at.
1478 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1479 first local allocated. Otherwise, it is the offset to the BEGINNING
1480 of the first local allocated. */
1481 #define STARTING_FRAME_OFFSET 0
1482
1483 /* If we generate an insn to push BYTES bytes,
1484 this says how many the stack pointer really advances by.
1485 On 386, we have pushw instruction that decrements by exactly 2 no
1486 matter what the position was, there is no pushb.
1487 But as CIE data alignment factor on this arch is -4, we need to make
1488 sure all stack pointer adjustments are in multiple of 4.
1489
1490 For 64bit ABI we round up to 8 bytes.
1491 */
1492
1493 #define PUSH_ROUNDING(BYTES) \
1494 (TARGET_64BIT \
1495 ? (((BYTES) + 7) & (-8)) \
1496 : (((BYTES) + 3) & (-4)))
1497
1498 /* If defined, the maximum amount of space required for outgoing arguments will
1499 be computed and placed into the variable
1500 `crtl->outgoing_args_size'. No space will be pushed onto the
1501 stack for each call; instead, the function prologue should increase the stack
1502 frame size by this amount.
1503
1504 MS ABI seem to require 16 byte alignment everywhere except for function
1505 prologue and apilogue. This is not possible without
1506 ACCUMULATE_OUTGOING_ARGS. */
1507
1508 #define ACCUMULATE_OUTGOING_ARGS \
1509 (TARGET_ACCUMULATE_OUTGOING_ARGS || ix86_cfun_abi () == MS_ABI)
1510
1511 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1512 instructions to pass outgoing arguments. */
1513
1514 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1515
1516 /* We want the stack and args grow in opposite directions, even if
1517 PUSH_ARGS is 0. */
1518 #define PUSH_ARGS_REVERSED 1
1519
1520 /* Offset of first parameter from the argument pointer register value. */
1521 #define FIRST_PARM_OFFSET(FNDECL) 0
1522
1523 /* Define this macro if functions should assume that stack space has been
1524 allocated for arguments even when their values are passed in registers.
1525
1526 The value of this macro is the size, in bytes, of the area reserved for
1527 arguments passed in registers for the function represented by FNDECL.
1528
1529 This space can be allocated by the caller, or be a part of the
1530 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1531 which. */
1532 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1533
1534 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1535 (ix86_function_type_abi (FNTYPE) == MS_ABI)
1536
1537 /* Value is the number of bytes of arguments automatically
1538 popped when returning from a subroutine call.
1539 FUNDECL is the declaration node of the function (as a tree),
1540 FUNTYPE is the data type of the function (as a tree),
1541 or for a library call it is an identifier node for the subroutine name.
1542 SIZE is the number of bytes of arguments passed on the stack.
1543
1544 On the 80386, the RTD insn may be used to pop them if the number
1545 of args is fixed, but if the number is variable then the caller
1546 must pop them all. RTD can't be used for library calls now
1547 because the library is compiled with the Unix compiler.
1548 Use of RTD is a selectable option, since it is incompatible with
1549 standard Unix calling sequences. If the option is not selected,
1550 the caller must always pop the args.
1551
1552 The attribute stdcall is equivalent to RTD on a per module basis. */
1553
1554 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1555 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1556
1557 #define FUNCTION_VALUE_REGNO_P(N) ix86_function_value_regno_p (N)
1558
1559 /* Define how to find the value returned by a library function
1560 assuming the value has mode MODE. */
1561
1562 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1563
1564 /* Define the size of the result block used for communication between
1565 untyped_call and untyped_return. The block contains a DImode value
1566 followed by the block used by fnsave and frstor. */
1567
1568 #define APPLY_RESULT_SIZE (8+108)
1569
1570 /* 1 if N is a possible register number for function argument passing. */
1571 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1572
1573 /* Define a data type for recording info about an argument list
1574 during the scan of that argument list. This data type should
1575 hold all necessary information about the function itself
1576 and about the args processed so far, enough to enable macros
1577 such as FUNCTION_ARG to determine where the next arg should go. */
1578
1579 typedef struct ix86_args {
1580 int words; /* # words passed so far */
1581 int nregs; /* # registers available for passing */
1582 int regno; /* next available register number */
1583 int fastcall; /* fastcall calling convention is used */
1584 int sse_words; /* # sse words passed so far */
1585 int sse_nregs; /* # sse registers available for passing */
1586 int warn_avx; /* True when we want to warn about AVX ABI. */
1587 int warn_sse; /* True when we want to warn about SSE ABI. */
1588 int warn_mmx; /* True when we want to warn about MMX ABI. */
1589 int sse_regno; /* next available sse register number */
1590 int mmx_words; /* # mmx words passed so far */
1591 int mmx_nregs; /* # mmx registers available for passing */
1592 int mmx_regno; /* next available mmx register number */
1593 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1594 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1595 be passed in SSE registers. Otherwise 0. */
1596 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1597 MS_ABI for ms abi. */
1598 } CUMULATIVE_ARGS;
1599
1600 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1601 for a call to a function whose data type is FNTYPE.
1602 For a library call, FNTYPE is 0. */
1603
1604 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1605 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1606
1607 /* Update the data in CUM to advance over an argument
1608 of mode MODE and data type TYPE.
1609 (TYPE is null for libcalls where that information may not be available.) */
1610
1611 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1612 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1613
1614 /* Define where to put the arguments to a function.
1615 Value is zero to push the argument on the stack,
1616 or a hard register in which to store the argument.
1617
1618 MODE is the argument's machine mode.
1619 TYPE is the data type of the argument (as a tree).
1620 This is null for libcalls where that information may
1621 not be available.
1622 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1623 the preceding args and about the function being called.
1624 NAMED is nonzero if this argument is a named parameter
1625 (otherwise it is an extra parameter matching an ellipsis). */
1626
1627 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1628 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1629
1630 #define TARGET_ASM_FILE_END ix86_file_end
1631 #define NEED_INDICATE_EXEC_STACK 0
1632
1633 /* Output assembler code to FILE to increment profiler label # LABELNO
1634 for profiling a function entry. */
1635
1636 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1637
1638 #define MCOUNT_NAME "_mcount"
1639
1640 #define PROFILE_COUNT_REGISTER "edx"
1641
1642 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1643 the stack pointer does not matter. The value is tested only in
1644 functions that have frame pointers.
1645 No definition is equivalent to always zero. */
1646 /* Note on the 386 it might be more efficient not to define this since
1647 we have to restore it ourselves from the frame pointer, in order to
1648 use pop */
1649
1650 #define EXIT_IGNORE_STACK 1
1651
1652 /* Output assembler code for a block containing the constant parts
1653 of a trampoline, leaving space for the variable parts. */
1654
1655 /* On the 386, the trampoline contains two instructions:
1656 mov #STATIC,ecx
1657 jmp FUNCTION
1658 The trampoline is generated entirely at runtime. The operand of JMP
1659 is the address of FUNCTION relative to the instruction following the
1660 JMP (which is 5 bytes long). */
1661
1662 /* Length in units of the trampoline for entering a nested function. */
1663
1664 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
1665 \f
1666 /* Definitions for register eliminations.
1667
1668 This is an array of structures. Each structure initializes one pair
1669 of eliminable registers. The "from" register number is given first,
1670 followed by "to". Eliminations of the same "from" register are listed
1671 in order of preference.
1672
1673 There are two registers that can always be eliminated on the i386.
1674 The frame pointer and the arg pointer can be replaced by either the
1675 hard frame pointer or to the stack pointer, depending upon the
1676 circumstances. The hard frame pointer is not used before reload and
1677 so it is not eligible for elimination. */
1678
1679 #define ELIMINABLE_REGS \
1680 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1681 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1682 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1683 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1684
1685 /* Define the offset between two registers, one to be eliminated, and the other
1686 its replacement, at the start of a routine. */
1687
1688 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1689 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1690 \f
1691 /* Addressing modes, and classification of registers for them. */
1692
1693 /* Macros to check register numbers against specific register classes. */
1694
1695 /* These assume that REGNO is a hard or pseudo reg number.
1696 They give nonzero only if REGNO is a hard reg of the suitable class
1697 or a pseudo reg currently allocated to a suitable hard reg.
1698 Since they use reg_renumber, they are safe only once reg_renumber
1699 has been allocated, which happens in local-alloc.c. */
1700
1701 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1702 ((REGNO) < STACK_POINTER_REGNUM \
1703 || REX_INT_REGNO_P (REGNO) \
1704 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1705 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1706
1707 #define REGNO_OK_FOR_BASE_P(REGNO) \
1708 (GENERAL_REGNO_P (REGNO) \
1709 || (REGNO) == ARG_POINTER_REGNUM \
1710 || (REGNO) == FRAME_POINTER_REGNUM \
1711 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1712
1713 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1714 and check its validity for a certain class.
1715 We have two alternate definitions for each of them.
1716 The usual definition accepts all pseudo regs; the other rejects
1717 them unless they have been allocated suitable hard regs.
1718 The symbol REG_OK_STRICT causes the latter definition to be used.
1719
1720 Most source files want to accept pseudo regs in the hope that
1721 they will get allocated to the class that the insn wants them to be in.
1722 Source files for reload pass need to be strict.
1723 After reload, it makes no difference, since pseudo regs have
1724 been eliminated by then. */
1725
1726
1727 /* Non strict versions, pseudos are ok. */
1728 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1729 (REGNO (X) < STACK_POINTER_REGNUM \
1730 || REX_INT_REGNO_P (REGNO (X)) \
1731 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1732
1733 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1734 (GENERAL_REGNO_P (REGNO (X)) \
1735 || REGNO (X) == ARG_POINTER_REGNUM \
1736 || REGNO (X) == FRAME_POINTER_REGNUM \
1737 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1738
1739 /* Strict versions, hard registers only */
1740 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1741 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1742
1743 #ifndef REG_OK_STRICT
1744 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1745 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1746
1747 #else
1748 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1749 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1750 #endif
1751
1752 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1753 that is a valid memory address for an instruction.
1754 The MODE argument is the machine mode for the MEM expression
1755 that wants to use this address.
1756
1757 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1758 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1759
1760 See legitimize_pic_address in i386.c for details as to what
1761 constitutes a legitimate address when -fpic is used. */
1762
1763 #define MAX_REGS_PER_ADDRESS 2
1764
1765 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1766
1767 /* Nonzero if the constant value X is a legitimate general operand.
1768 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1769
1770 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1771
1772 /* If defined, a C expression to determine the base term of address X.
1773 This macro is used in only one place: `find_base_term' in alias.c.
1774
1775 It is always safe for this macro to not be defined. It exists so
1776 that alias analysis can understand machine-dependent addresses.
1777
1778 The typical use of this macro is to handle addresses containing
1779 a label_ref or symbol_ref within an UNSPEC. */
1780
1781 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1782
1783 /* Nonzero if the constant value X is a legitimate general operand
1784 when generating PIC code. It is given that flag_pic is on and
1785 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1786
1787 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1788
1789 #define SYMBOLIC_CONST(X) \
1790 (GET_CODE (X) == SYMBOL_REF \
1791 || GET_CODE (X) == LABEL_REF \
1792 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1793 \f
1794 /* Max number of args passed in registers. If this is more than 3, we will
1795 have problems with ebx (register #4), since it is a caller save register and
1796 is also used as the pic register in ELF. So for now, don't allow more than
1797 3 registers to be passed in registers. */
1798
1799 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1800 #define X86_64_REGPARM_MAX 6
1801 #define X86_64_MS_REGPARM_MAX 4
1802
1803 #define X86_32_REGPARM_MAX 3
1804
1805 #define REGPARM_MAX \
1806 (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X86_64_MS_REGPARM_MAX \
1807 : X86_64_REGPARM_MAX) \
1808 : X86_32_REGPARM_MAX)
1809
1810 #define X86_64_SSE_REGPARM_MAX 8
1811 #define X86_64_MS_SSE_REGPARM_MAX 4
1812
1813 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1814
1815 #define SSE_REGPARM_MAX \
1816 (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X86_64_MS_SSE_REGPARM_MAX \
1817 : X86_64_SSE_REGPARM_MAX) \
1818 : X86_32_SSE_REGPARM_MAX)
1819
1820 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1821
1822 \f
1823 /* Specify the machine mode that this machine uses
1824 for the index in the tablejump instruction. */
1825 #define CASE_VECTOR_MODE \
1826 (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1827
1828 /* Define this as 1 if `char' should by default be signed; else as 0. */
1829 #define DEFAULT_SIGNED_CHAR 1
1830
1831 /* Max number of bytes we can move from memory to memory
1832 in one reasonably fast instruction. */
1833 #define MOVE_MAX 16
1834
1835 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1836 move efficiently, as opposed to MOVE_MAX which is the maximum
1837 number of bytes we can move with a single instruction. */
1838 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
1839
1840 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1841 move-instruction pairs, we will do a movmem or libcall instead.
1842 Increasing the value will always make code faster, but eventually
1843 incurs high cost in increased code size.
1844
1845 If you don't define this, a reasonable default is used. */
1846
1847 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1848
1849 /* If a clear memory operation would take CLEAR_RATIO or more simple
1850 move-instruction sequences, we will do a clrmem or libcall instead. */
1851
1852 #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
1853
1854 /* Define if shifts truncate the shift count
1855 which implies one can omit a sign-extension or zero-extension
1856 of a shift count. */
1857 /* On i386, shifts do truncate the count. But bit opcodes don't. */
1858
1859 /* #define SHIFT_COUNT_TRUNCATED */
1860
1861 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1862 is done just by pretending it is already truncated. */
1863 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1864
1865 /* A macro to update M and UNSIGNEDP when an object whose type is
1866 TYPE and which has the specified mode and signedness is to be
1867 stored in a register. This macro is only called when TYPE is a
1868 scalar type.
1869
1870 On i386 it is sometimes useful to promote HImode and QImode
1871 quantities to SImode. The choice depends on target type. */
1872
1873 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1874 do { \
1875 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1876 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1877 (MODE) = SImode; \
1878 } while (0)
1879
1880 /* Specify the machine mode that pointers have.
1881 After generation of rtl, the compiler makes no further distinction
1882 between pointers and any other objects of this machine mode. */
1883 #define Pmode (TARGET_64BIT ? DImode : SImode)
1884
1885 /* A function address in a call instruction
1886 is a byte address (for indexing purposes)
1887 so give the MEM rtx a byte's mode. */
1888 #define FUNCTION_MODE QImode
1889 \f
1890 /* A C expression for the cost of moving data from a register in class FROM to
1891 one in class TO. The classes are expressed using the enumeration values
1892 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1893 interpreted relative to that.
1894
1895 It is not required that the cost always equal 2 when FROM is the same as TO;
1896 on some machines it is expensive to move between registers if they are not
1897 general registers. */
1898
1899 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1900 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
1901
1902 /* A C expression for the cost of moving data of mode M between a
1903 register and memory. A value of 2 is the default; this cost is
1904 relative to those in `REGISTER_MOVE_COST'.
1905
1906 If moving between registers and memory is more expensive than
1907 between two registers, you should define this macro to express the
1908 relative cost. */
1909
1910 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
1911 ix86_memory_move_cost ((MODE), (CLASS), (IN))
1912
1913 /* A C expression for the cost of a branch instruction. A value of 1
1914 is the default; other values are interpreted relative to that. */
1915
1916 #define BRANCH_COST(speed_p, predictable_p) \
1917 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1918
1919 /* Define this macro as a C expression which is nonzero if accessing
1920 less than a word of memory (i.e. a `char' or a `short') is no
1921 faster than accessing a word of memory, i.e., if such access
1922 require more than one instruction or if there is no difference in
1923 cost between byte and (aligned) word loads.
1924
1925 When this macro is not defined, the compiler will access a field by
1926 finding the smallest containing object; when it is defined, a
1927 fullword load will be used if alignment permits. Unless bytes
1928 accesses are faster than word accesses, using word accesses is
1929 preferable since it may eliminate subsequent memory access if
1930 subsequent accesses occur to other fields in the same word of the
1931 structure, but to different bytes. */
1932
1933 #define SLOW_BYTE_ACCESS 0
1934
1935 /* Nonzero if access to memory by shorts is slow and undesirable. */
1936 #define SLOW_SHORT_ACCESS 0
1937
1938 /* Define this macro to be the value 1 if unaligned accesses have a
1939 cost many times greater than aligned accesses, for example if they
1940 are emulated in a trap handler.
1941
1942 When this macro is nonzero, the compiler will act as if
1943 `STRICT_ALIGNMENT' were nonzero when generating code for block
1944 moves. This can cause significantly more instructions to be
1945 produced. Therefore, do not set this macro nonzero if unaligned
1946 accesses only add a cycle or two to the time for a memory access.
1947
1948 If the value of this macro is always zero, it need not be defined. */
1949
1950 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1951
1952 /* Define this macro if it is as good or better to call a constant
1953 function address than to call an address kept in a register.
1954
1955 Desirable on the 386 because a CALL with a constant address is
1956 faster than one with a register address. */
1957
1958 #define NO_FUNCTION_CSE
1959 \f
1960 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1961 return the mode to be used for the comparison.
1962
1963 For floating-point equality comparisons, CCFPEQmode should be used.
1964 VOIDmode should be used in all other cases.
1965
1966 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1967 possible, to allow for more combinations. */
1968
1969 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1970
1971 /* Return nonzero if MODE implies a floating point inequality can be
1972 reversed. */
1973
1974 #define REVERSIBLE_CC_MODE(MODE) 1
1975
1976 /* A C expression whose value is reversed condition code of the CODE for
1977 comparison done in CC_MODE mode. */
1978 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1979
1980 \f
1981 /* Control the assembler format that we output, to the extent
1982 this does not vary between assemblers. */
1983
1984 /* How to refer to registers in assembler output.
1985 This sequence is indexed by compiler's hard-register-number (see above). */
1986
1987 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
1988 For non floating point regs, the following are the HImode names.
1989
1990 For float regs, the stack top is sometimes referred to as "%st(0)"
1991 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
1992
1993 #define HI_REGISTER_NAMES \
1994 {"ax","dx","cx","bx","si","di","bp","sp", \
1995 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
1996 "argp", "flags", "fpsr", "fpcr", "frame", \
1997 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
1998 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
1999 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2000 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2001
2002 #define REGISTER_NAMES HI_REGISTER_NAMES
2003
2004 /* Table of additional register names to use in user input. */
2005
2006 #define ADDITIONAL_REGISTER_NAMES \
2007 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2008 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2009 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2010 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2011 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2012 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
2013
2014 /* Note we are omitting these since currently I don't know how
2015 to get gcc to use these, since they want the same but different
2016 number as al, and ax.
2017 */
2018
2019 #define QI_REGISTER_NAMES \
2020 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2021
2022 /* These parallel the array above, and can be used to access bits 8:15
2023 of regs 0 through 3. */
2024
2025 #define QI_HIGH_REGISTER_NAMES \
2026 {"ah", "dh", "ch", "bh", }
2027
2028 /* How to renumber registers for dbx and gdb. */
2029
2030 #define DBX_REGISTER_NUMBER(N) \
2031 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2032
2033 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2034 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2035 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2036
2037 /* Before the prologue, RA is at 0(%esp). */
2038 #define INCOMING_RETURN_ADDR_RTX \
2039 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2040
2041 /* After the prologue, RA is at -4(AP) in the current frame. */
2042 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2043 ((COUNT) == 0 \
2044 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2045 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2046
2047 /* PC is dbx register 8; let's use that column for RA. */
2048 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2049
2050 /* Before the prologue, the top of the frame is at 4(%esp). */
2051 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2052
2053 /* Describe how we implement __builtin_eh_return. */
2054 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2055 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2056
2057
2058 /* Select a format to encode pointers in exception handling data. CODE
2059 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2060 true if the symbol may be affected by dynamic relocations.
2061
2062 ??? All x86 object file formats are capable of representing this.
2063 After all, the relocation needed is the same as for the call insn.
2064 Whether or not a particular assembler allows us to enter such, I
2065 guess we'll have to see. */
2066 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2067 asm_preferred_eh_data_format ((CODE), (GLOBAL))
2068
2069 /* This is how to output an insn to push a register on the stack.
2070 It need not be very fast code. */
2071
2072 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2073 do { \
2074 if (TARGET_64BIT) \
2075 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2076 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2077 else \
2078 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2079 } while (0)
2080
2081 /* This is how to output an insn to pop a register from the stack.
2082 It need not be very fast code. */
2083
2084 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2085 do { \
2086 if (TARGET_64BIT) \
2087 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2088 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2089 else \
2090 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2091 } while (0)
2092
2093 /* This is how to output an element of a case-vector that is absolute. */
2094
2095 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2096 ix86_output_addr_vec_elt ((FILE), (VALUE))
2097
2098 /* This is how to output an element of a case-vector that is relative. */
2099
2100 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2101 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2102
2103 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is
2104 true. */
2105
2106 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2107 { \
2108 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
2109 { \
2110 if (TARGET_AVX) \
2111 (PTR) += 1; \
2112 else \
2113 (PTR) += 2; \
2114 } \
2115 }
2116
2117 /* A C statement or statements which output an assembler instruction
2118 opcode to the stdio stream STREAM. The macro-operand PTR is a
2119 variable of type `char *' which points to the opcode name in
2120 its "internal" form--the form that is written in the machine
2121 description. */
2122
2123 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2124 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2125
2126 /* A C statement to output to the stdio stream FILE an assembler
2127 command to pad the location counter to a multiple of 1<<LOG
2128 bytes if it is within MAX_SKIP bytes. */
2129
2130 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2131 #undef ASM_OUTPUT_MAX_SKIP_PAD
2132 #define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2133 if ((LOG) != 0) \
2134 { \
2135 if ((MAX_SKIP) == 0) \
2136 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2137 else \
2138 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2139 }
2140 #endif
2141
2142 /* Under some conditions we need jump tables in the text section,
2143 because the assembler cannot handle label differences between
2144 sections. This is the case for x86_64 on Mach-O for example. */
2145
2146 #define JUMP_TABLES_IN_TEXT_SECTION \
2147 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2148 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2149
2150 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2151 and switch back. For x86 we do this only to save a few bytes that
2152 would otherwise be unused in the text section. */
2153 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2154 asm (SECTION_OP "\n\t" \
2155 "call " USER_LABEL_PREFIX #FUNC "\n" \
2156 TEXT_SECTION_ASM_OP);
2157 \f
2158 /* Print operand X (an rtx) in assembler syntax to file FILE.
2159 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2160 Effect of various CODE letters is described in i386.c near
2161 print_operand function. */
2162
2163 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2164 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&' || (CODE) == ';')
2165
2166 #define PRINT_OPERAND(FILE, X, CODE) \
2167 print_operand ((FILE), (X), (CODE))
2168
2169 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2170 print_operand_address ((FILE), (ADDR))
2171
2172 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2173 do { \
2174 if (! output_addr_const_extra (FILE, (X))) \
2175 goto FAIL; \
2176 } while (0);
2177 \f
2178 /* Which processor to schedule for. The cpu attribute defines a list that
2179 mirrors this list, so changes to i386.md must be made at the same time. */
2180
2181 enum processor_type
2182 {
2183 PROCESSOR_I386 = 0, /* 80386 */
2184 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2185 PROCESSOR_PENTIUM,
2186 PROCESSOR_PENTIUMPRO,
2187 PROCESSOR_GEODE,
2188 PROCESSOR_K6,
2189 PROCESSOR_ATHLON,
2190 PROCESSOR_PENTIUM4,
2191 PROCESSOR_K8,
2192 PROCESSOR_NOCONA,
2193 PROCESSOR_CORE2,
2194 PROCESSOR_GENERIC32,
2195 PROCESSOR_GENERIC64,
2196 PROCESSOR_AMDFAM10,
2197 PROCESSOR_ATOM,
2198 PROCESSOR_max
2199 };
2200
2201 extern enum processor_type ix86_tune;
2202 extern enum processor_type ix86_arch;
2203
2204 enum fpmath_unit
2205 {
2206 FPMATH_387 = 1,
2207 FPMATH_SSE = 2
2208 };
2209
2210 extern enum fpmath_unit ix86_fpmath;
2211
2212 enum tls_dialect
2213 {
2214 TLS_DIALECT_GNU,
2215 TLS_DIALECT_GNU2,
2216 TLS_DIALECT_SUN
2217 };
2218
2219 extern enum tls_dialect ix86_tls_dialect;
2220
2221 enum cmodel {
2222 CM_32, /* The traditional 32-bit ABI. */
2223 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2224 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2225 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2226 CM_LARGE, /* No assumptions. */
2227 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
2228 CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region. */
2229 CM_LARGE_PIC /* No assumptions. */
2230 };
2231
2232 extern enum cmodel ix86_cmodel;
2233
2234 /* Size of the RED_ZONE area. */
2235 #define RED_ZONE_SIZE 128
2236 /* Reserved area of the red zone for temporaries. */
2237 #define RED_ZONE_RESERVE 8
2238
2239 enum asm_dialect {
2240 ASM_ATT,
2241 ASM_INTEL
2242 };
2243
2244 extern enum asm_dialect ix86_asm_dialect;
2245 extern unsigned int ix86_preferred_stack_boundary;
2246 extern unsigned int ix86_incoming_stack_boundary;
2247 extern int ix86_branch_cost, ix86_section_threshold;
2248
2249 /* Smallest class containing REGNO. */
2250 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2251
2252 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2253 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
2254
2255 enum ix86_fpcmp_strategy {
2256 IX86_FPCMP_SAHF,
2257 IX86_FPCMP_COMI,
2258 IX86_FPCMP_ARITH
2259 };
2260 \f
2261 /* To properly truncate FP values into integers, we need to set i387 control
2262 word. We can't emit proper mode switching code before reload, as spills
2263 generated by reload may truncate values incorrectly, but we still can avoid
2264 redundant computation of new control word by the mode switching pass.
2265 The fldcw instructions are still emitted redundantly, but this is probably
2266 not going to be noticeable problem, as most CPUs do have fast path for
2267 the sequence.
2268
2269 The machinery is to emit simple truncation instructions and split them
2270 before reload to instructions having USEs of two memory locations that
2271 are filled by this code to old and new control word.
2272
2273 Post-reload pass may be later used to eliminate the redundant fildcw if
2274 needed. */
2275
2276 enum ix86_entity
2277 {
2278 I387_TRUNC = 0,
2279 I387_FLOOR,
2280 I387_CEIL,
2281 I387_MASK_PM,
2282 MAX_386_ENTITIES
2283 };
2284
2285 enum ix86_stack_slot
2286 {
2287 SLOT_VIRTUAL = 0,
2288 SLOT_TEMP,
2289 SLOT_CW_STORED,
2290 SLOT_CW_TRUNC,
2291 SLOT_CW_FLOOR,
2292 SLOT_CW_CEIL,
2293 SLOT_CW_MASK_PM,
2294 MAX_386_STACK_LOCALS
2295 };
2296
2297 /* Define this macro if the port needs extra instructions inserted
2298 for mode switching in an optimizing compilation. */
2299
2300 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2301 ix86_optimize_mode_switching[(ENTITY)]
2302
2303 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2304 initializer for an array of integers. Each initializer element N
2305 refers to an entity that needs mode switching, and specifies the
2306 number of different modes that might need to be set for this
2307 entity. The position of the initializer in the initializer -
2308 starting counting at zero - determines the integer that is used to
2309 refer to the mode-switched entity in question. */
2310
2311 #define NUM_MODES_FOR_MODE_SWITCHING \
2312 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2313
2314 /* ENTITY is an integer specifying a mode-switched entity. If
2315 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2316 return an integer value not larger than the corresponding element
2317 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2318 must be switched into prior to the execution of INSN. */
2319
2320 #define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2321
2322 /* This macro specifies the order in which modes for ENTITY are
2323 processed. 0 is the highest priority. */
2324
2325 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2326
2327 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2328 is the set of hard registers live at the point where the insn(s)
2329 are to be inserted. */
2330
2331 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
2332 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
2333 ? emit_i387_cw_initialization (MODE), 0 \
2334 : 0)
2335
2336 \f
2337 /* Avoid renaming of stack registers, as doing so in combination with
2338 scheduling just increases amount of live registers at time and in
2339 the turn amount of fxch instructions needed.
2340
2341 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
2342
2343 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2344 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
2345
2346 \f
2347 #define FASTCALL_PREFIX '@'
2348 \f
2349 /* Machine specific CFA tracking during prologue/epilogue generation. */
2350
2351 #ifndef USED_FOR_TARGET
2352 struct GTY(()) machine_cfa_state
2353 {
2354 rtx reg;
2355 HOST_WIDE_INT offset;
2356 };
2357
2358 struct GTY(()) machine_function {
2359 struct stack_local_entry *stack_locals;
2360 const char *some_ld_name;
2361 int varargs_gpr_size;
2362 int varargs_fpr_size;
2363 int optimize_mode_switching[MAX_386_ENTITIES];
2364
2365 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2366 has been computed for. */
2367 int use_fast_prologue_epilogue_nregs;
2368
2369 /* The CFA state at the end of the prologue. */
2370 struct machine_cfa_state cfa;
2371
2372 /* This value is used for amd64 targets and specifies the current abi
2373 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2374 enum calling_abi call_abi;
2375
2376 /* Nonzero if the function accesses a previous frame. */
2377 BOOL_BITFIELD accesses_prev_frame : 1;
2378
2379 /* Nonzero if the function requires a CLD in the prologue. */
2380 BOOL_BITFIELD needs_cld : 1;
2381
2382 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2383 expander to determine the style used. */
2384 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2385
2386 /* If true, the current function needs the default PIC register, not
2387 an alternate register (on x86) and must not use the red zone (on
2388 x86_64), even if it's a leaf function. We don't want the
2389 function to be regarded as non-leaf because TLS calls need not
2390 affect register allocation. This flag is set when a TLS call
2391 instruction is expanded within a function, and never reset, even
2392 if all such instructions are optimized away. Use the
2393 ix86_current_function_calls_tls_descriptor macro for a better
2394 approximation. */
2395 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2396
2397 /* If true, the current function has a STATIC_CHAIN is placed on the
2398 stack below the return address. */
2399 BOOL_BITFIELD static_chain_on_stack : 1;
2400 };
2401 #endif
2402
2403 #define ix86_stack_locals (cfun->machine->stack_locals)
2404 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2405 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2406 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2407 #define ix86_current_function_needs_cld (cfun->machine->needs_cld)
2408 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2409 (cfun->machine->tls_descriptor_call_expanded_p)
2410 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2411 calls are optimized away, we try to detect cases in which it was
2412 optimized away. Since such instructions (use (reg REG_SP)), we can
2413 verify whether there's any such instruction live by testing that
2414 REG_SP is live. */
2415 #define ix86_current_function_calls_tls_descriptor \
2416 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2417 #define ix86_cfa_state (&cfun->machine->cfa)
2418 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2419
2420 /* Control behavior of x86_file_start. */
2421 #define X86_FILE_START_VERSION_DIRECTIVE false
2422 #define X86_FILE_START_FLTUSED false
2423
2424 /* Flag to mark data that is in the large address area. */
2425 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2426 #define SYMBOL_REF_FAR_ADDR_P(X) \
2427 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2428
2429 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2430 have defined always, to avoid ifdefing. */
2431 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2432 #define SYMBOL_REF_DLLIMPORT_P(X) \
2433 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2434
2435 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2436 #define SYMBOL_REF_DLLEXPORT_P(X) \
2437 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2438
2439 /* Model costs for vectorizer. */
2440
2441 /* Cost of conditional branch. */
2442 #undef TARG_COND_BRANCH_COST
2443 #define TARG_COND_BRANCH_COST ix86_cost->branch_cost
2444
2445 /* Enum through the target specific extra va_list types.
2446 Please, do not iterate the base va_list type name. */
2447 #define TARGET_ENUM_VA_LIST(IDX, PNAME, PTYPE) \
2448 (TARGET_64BIT ? ix86_enum_va_list (IDX, PNAME, PTYPE) : 0)
2449
2450 /* Cost of any scalar operation, excluding load and store. */
2451 #undef TARG_SCALAR_STMT_COST
2452 #define TARG_SCALAR_STMT_COST ix86_cost->scalar_stmt_cost
2453
2454 /* Cost of scalar load. */
2455 #undef TARG_SCALAR_LOAD_COST
2456 #define TARG_SCALAR_LOAD_COST ix86_cost->scalar_load_cost
2457
2458 /* Cost of scalar store. */
2459 #undef TARG_SCALAR_STORE_COST
2460 #define TARG_SCALAR_STORE_COST ix86_cost->scalar_store_cost
2461
2462 /* Cost of any vector operation, excluding load, store or vector to scalar
2463 operation. */
2464 #undef TARG_VEC_STMT_COST
2465 #define TARG_VEC_STMT_COST ix86_cost->vec_stmt_cost
2466
2467 /* Cost of vector to scalar operation. */
2468 #undef TARG_VEC_TO_SCALAR_COST
2469 #define TARG_VEC_TO_SCALAR_COST ix86_cost->vec_to_scalar_cost
2470
2471 /* Cost of scalar to vector operation. */
2472 #undef TARG_SCALAR_TO_VEC_COST
2473 #define TARG_SCALAR_TO_VEC_COST ix86_cost->scalar_to_vec_cost
2474
2475 /* Cost of aligned vector load. */
2476 #undef TARG_VEC_LOAD_COST
2477 #define TARG_VEC_LOAD_COST ix86_cost->vec_align_load_cost
2478
2479 /* Cost of misaligned vector load. */
2480 #undef TARG_VEC_UNALIGNED_LOAD_COST
2481 #define TARG_VEC_UNALIGNED_LOAD_COST ix86_cost->vec_unalign_load_cost
2482
2483 /* Cost of vector store. */
2484 #undef TARG_VEC_STORE_COST
2485 #define TARG_VEC_STORE_COST ix86_cost->vec_store_cost
2486
2487 /* Cost of conditional taken branch for vectorizer cost model. */
2488 #undef TARG_COND_TAKEN_BRANCH_COST
2489 #define TARG_COND_TAKEN_BRANCH_COST ix86_cost->cond_taken_branch_cost
2490
2491 /* Cost of conditional not taken branch for vectorizer cost model. */
2492 #undef TARG_COND_NOT_TAKEN_BRANCH_COST
2493 #define TARG_COND_NOT_TAKEN_BRANCH_COST ix86_cost->cond_not_taken_branch_cost
2494
2495 /*
2496 Local variables:
2497 version-control: t
2498 End:
2499 */