i386.md (ashldi3, [...]): Change predicates to shiftdi_operand; use ix86_expand_binar...
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GNU compiler for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
37 /* Stubs for half-pic support if not OSF/1 reference platform. */
38
39 #ifndef HALF_PIC_P
40 #define HALF_PIC_P() 0
41 #define HALF_PIC_NUMBER_PTRS 0
42 #define HALF_PIC_NUMBER_REFS 0
43 #define HALF_PIC_ENCODE(DECL)
44 #define HALF_PIC_DECLARE(NAME)
45 #define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
46 #define HALF_PIC_ADDRESS_P(X) 0
47 #define HALF_PIC_PTR(X) X
48 #define HALF_PIC_FINISH(STREAM)
49 #endif
50
51 /* Define the specific costs for a given cpu */
52
53 struct processor_costs {
54 int add; /* cost of an add instruction */
55 int lea; /* cost of a lea instruction */
56 int shift_var; /* variable shift costs */
57 int shift_const; /* constant shift costs */
58 int mult_init; /* cost of starting a multiply */
59 int mult_bit; /* cost of multiply per each bit set */
60 int divide; /* cost of a divide/mod */
61 int large_insn; /* insns larger than this cost more */
62 int move_ratio; /* The threshold of number of scalar
63 memory-to-memory move insns. */
64 int movzbl_load; /* cost of loading using movzbl */
65 int int_load[3]; /* cost of loading integer registers
66 in QImode, HImode and SImode relative
67 to reg-reg move (2). */
68 int int_store[3]; /* cost of storing integer register
69 in QImode, HImode and SImode */
70 int fp_move; /* cost of reg,reg fld/fst */
71 int fp_load[3]; /* cost of loading FP register
72 in SFmode, DFmode and XFmode */
73 int fp_store[3]; /* cost of storing FP register
74 in SFmode, DFmode and XFmode */
75 int mmx_move; /* cost of moving MMX register. */
76 int mmx_load[2]; /* cost of loading MMX register
77 in SImode and DImode */
78 int mmx_store[2]; /* cost of storing MMX register
79 in SImode and DImode */
80 int sse_move; /* cost of moving SSE register. */
81 int sse_load[3]; /* cost of loading SSE register
82 in SImode, DImode and TImode*/
83 int sse_store[3]; /* cost of storing SSE register
84 in SImode, DImode and TImode*/
85 int mmxsse_to_integer; /* cost of moving mmxsse register to
86 integer and vice versa. */
87 };
88
89 extern struct processor_costs *ix86_cost;
90
91 /* Run-time compilation parameters selecting different hardware subsets. */
92
93 extern int target_flags;
94
95 /* Macros used in the machine description to test the flags. */
96
97 /* configure can arrange to make this 2, to force a 486. */
98
99 #ifndef TARGET_CPU_DEFAULT
100 #define TARGET_CPU_DEFAULT 0
101 #endif
102
103 /* Masks for the -m switches */
104 #define MASK_80387 0x00000001 /* Hardware floating point */
105 #define MASK_RTD 0x00000002 /* Use ret that pops args */
106 #define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
107 #define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
108 #define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
109 #define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
110 #define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
111 #define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
112 #define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
113 #define MASK_NO_ALIGN_STROPS 0x00001000 /* Enable aligning of string ops. */
114 #define MASK_INLINE_ALL_STROPS 0x00002000 /* Inline stringops in all cases */
115 #define MASK_NO_PUSH_ARGS 0x00004000 /* Use push instructions */
116 #define MASK_ACCUMULATE_OUTGOING_ARGS 0x00008000/* Accumulate outgoing args */
117 #define MASK_MMX 0x00010000 /* Support MMX regs/builtins */
118 #define MASK_SSE 0x00020000 /* Support SSE regs/builtins */
119 #define MASK_SSE2 0x00040000 /* Support SSE2 regs/builtins */
120 #define MASK_128BIT_LONG_DOUBLE 0x00080000 /* long double size is 128bit */
121 #define MASK_MIX_SSE_I387 0x00100000 /* Mix SSE and i387 instructions */
122 #define MASK_64BIT 0x00200000 /* Produce 64bit code */
123
124 /* Temporary codegen switches */
125 #define MASK_INTEL_SYNTAX 0x00000200
126 #define MASK_DEBUG_ARG 0x00000400 /* function_arg */
127 #define MASK_DEBUG_ADDR 0x00000800 /* GO_IF_LEGITIMATE_ADDRESS */
128
129 /* Use the floating point instructions */
130 #define TARGET_80387 (target_flags & MASK_80387)
131
132 /* Compile using ret insn that pops args.
133 This will not work unless you use prototypes at least
134 for all functions that can take varying numbers of args. */
135 #define TARGET_RTD (target_flags & MASK_RTD)
136
137 /* Align doubles to a two word boundary. This breaks compatibility with
138 the published ABI's for structures containing doubles, but produces
139 faster code on the pentium. */
140 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
141
142 /* Use push instructions to save outgoing args. */
143 #define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
144
145 /* Accumulate stack adjustments to prologue/epilogue. */
146 #define TARGET_ACCUMULATE_OUTGOING_ARGS \
147 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
148
149 /* Put uninitialized locals into bss, not data.
150 Meaningful only on svr3. */
151 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
152
153 /* Use IEEE floating point comparisons. These handle correctly the cases
154 where the result of a comparison is unordered. Normally SIGFPE is
155 generated in such cases, in which case this isn't needed. */
156 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
157
158 /* Functions that return a floating point value may return that value
159 in the 387 FPU or in 386 integer registers. If set, this flag causes
160 the 387 to be used, which is compatible with most calling conventions. */
161 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
162
163 /* Long double is 128bit instead of 96bit, even when only 80bits are used.
164 This mode wastes cache, but avoid missaligned data accesses and simplifies
165 address calculations. */
166 #define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
167
168 /* Disable generation of FP sin, cos and sqrt operations for 387.
169 This is because FreeBSD lacks these in the math-emulator-code */
170 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
171
172 /* Don't create frame pointers for leaf functions */
173 #define TARGET_OMIT_LEAF_FRAME_POINTER \
174 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
175
176 /* Debug GO_IF_LEGITIMATE_ADDRESS */
177 #define TARGET_DEBUG_ADDR (target_flags & MASK_DEBUG_ADDR)
178
179 /* Debug FUNCTION_ARG macros */
180 #define TARGET_DEBUG_ARG (target_flags & MASK_DEBUG_ARG)
181
182 /* 64bit Sledgehammer mode */
183 #define TARGET_64BIT (target_flags & MASK_64BIT)
184
185 #define TARGET_386 (ix86_cpu == PROCESSOR_I386)
186 #define TARGET_486 (ix86_cpu == PROCESSOR_I486)
187 #define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
188 #define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
189 #define TARGET_K6 (ix86_cpu == PROCESSOR_K6)
190 #define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON)
191 #define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4)
192
193 #define CPUMASK (1 << ix86_cpu)
194 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
195 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
196 extern const int x86_unroll_strlen;
197 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
198 extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
199 extern const int x86_use_cltd, x86_read_modify_write;
200 extern const int x86_read_modify, x86_split_long_moves;
201 extern const int x86_promote_QImode, x86_single_stringop;
202 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
203 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
204 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
205 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
206
207 #define TARGET_USE_LEAVE (x86_use_leave & CPUMASK)
208 #define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK)
209 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK)
210 #define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK)
211 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK)
212 /* For sane SSE instruction set generation we need fcomi instruction. It is
213 safe to enable all CMOVE instructions. */
214 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
215 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK)
216 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK)
217 #define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT)
218 #define TARGET_MOVX (x86_movx & CPUMASK)
219 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK)
220 #define TARGET_USE_LOOP (x86_use_loop & CPUMASK)
221 #define TARGET_USE_FIOP (x86_use_fiop & CPUMASK)
222 #define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK)
223 #define TARGET_USE_CLTD (x86_use_cltd & CPUMASK)
224 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK)
225 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK)
226 #define TARGET_READ_MODIFY (x86_read_modify & CPUMASK)
227 #define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK)
228 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK)
229 #define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK)
230 #define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK)
231 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK)
232 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK)
233 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK)
234 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK)
235 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK)
236 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK)
237 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK)
238 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK)
239 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK)
240
241 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
242
243 #define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
244 #define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
245
246 #define ASSEMBLER_DIALECT ((target_flags & MASK_INTEL_SYNTAX) != 0)
247
248 #define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0)
249 #define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
250 #define TARGET_MIX_SSE_I387 ((target_flags & MASK_MIX_SSE_I387) != 0)
251 #define TARGET_MMX ((target_flags & MASK_MMX) != 0)
252
253 #define TARGET_SWITCHES \
254 { { "80387", MASK_80387, N_("Use hardware fp") }, \
255 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
256 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
257 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
258 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
259 { "386", 0, N_("Same as -mcpu=i386") }, \
260 { "486", 0, N_("Same as -mcpu=i486") }, \
261 { "pentium", 0, N_("Same as -mcpu=pentium") }, \
262 { "pentiumpro", 0, N_("Same as -mcpu=pentiumpro") }, \
263 { "rtd", MASK_RTD, \
264 N_("Alternate calling convention") }, \
265 { "no-rtd", -MASK_RTD, \
266 N_("Use normal calling convention") }, \
267 { "align-double", MASK_ALIGN_DOUBLE, \
268 N_("Align some doubles on dword boundary") }, \
269 { "no-align-double", -MASK_ALIGN_DOUBLE, \
270 N_("Align doubles on word boundary") }, \
271 { "svr3-shlib", MASK_SVR3_SHLIB, \
272 N_("Uninitialized locals in .bss") }, \
273 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
274 N_("Uninitialized locals in .data") }, \
275 { "ieee-fp", MASK_IEEE_FP, \
276 N_("Use IEEE math for fp comparisons") }, \
277 { "no-ieee-fp", -MASK_IEEE_FP, \
278 N_("Do not use IEEE math for fp comparisons") }, \
279 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
280 N_("Return values of functions in FPU registers") }, \
281 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
282 N_("Do not return values of functions in FPU registers")}, \
283 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
284 N_("Do not generate sin, cos, sqrt for FPU") }, \
285 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
286 N_("Generate sin, cos, sqrt for FPU")}, \
287 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
288 N_("Omit the frame pointer in leaf functions") }, \
289 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
290 { "debug-addr", MASK_DEBUG_ADDR, 0 /* undocumented */ }, \
291 { "no-debug-addr", -MASK_DEBUG_ADDR, 0 /* undocumented */ }, \
292 { "debug-arg", MASK_DEBUG_ARG, 0 /* undocumented */ }, \
293 { "no-debug-arg", -MASK_DEBUG_ARG, 0 /* undocumented */ }, \
294 { "stack-arg-probe", MASK_STACK_PROBE, \
295 N_("Enable stack probing") }, \
296 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
297 { "windows", 0, 0 /* undocumented */ }, \
298 { "dll", 0, 0 /* undocumented */ }, \
299 { "intel-syntax", MASK_INTEL_SYNTAX, \
300 N_("Emit Intel syntax assembler opcodes") }, \
301 { "no-intel-syntax", -MASK_INTEL_SYNTAX, "" }, \
302 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
303 N_("Align destination of the string operations") }, \
304 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
305 N_("Do not align destination of the string operations") }, \
306 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
307 N_("Inline all known string operations") }, \
308 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
309 N_("Do not inline all known string operations") }, \
310 { "push-args", -MASK_NO_PUSH_ARGS, \
311 N_("Use push instructions to save outgoing arguments") }, \
312 { "no-push-args", MASK_NO_PUSH_ARGS, \
313 N_("Do not use push instructions to save outgoing arguments") }, \
314 { "accumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS, \
315 N_("Use push instructions to save outgoing arguments") }, \
316 { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS, \
317 N_("Do not use push instructions to save outgoing arguments") }, \
318 { "mmx", MASK_MMX, N_("Support MMX builtins") }, \
319 { "no-mmx", -MASK_MMX, \
320 N_("Do not support MMX builtins") }, \
321 { "sse", MASK_SSE, \
322 N_("Support MMX and SSE builtins and code generation") }, \
323 { "no-sse", -MASK_SSE, \
324 N_("Do not support MMX and SSE builtins and code generation") }, \
325 { "sse2", MASK_SSE2, \
326 N_("Support MMX, SSE and SSE2 builtins and code generation") }, \
327 { "no-sse2", -MASK_SSE2, \
328 N_("Do not support MMX, SSE and SSE2 builtins and code generation") }, \
329 { "mix-sse-i387", MASK_MIX_SSE_I387, \
330 N_("Use both SSE and i387 instruction sets for floating point arithmetics") },\
331 { "nomix-sse-i387", -MASK_MIX_SSE_I387, \
332 N_("Use both SSE and i387 instruction sets for floating point arithmetics") },\
333 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
334 N_("sizeof(long double) is 16.") }, \
335 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
336 N_("sizeof(long double) is 12.") }, \
337 { "64", MASK_64BIT, \
338 N_("Generate 64bit x86-64 code") }, \
339 { "32", -MASK_64BIT, \
340 N_("Generate 32bit i386 code") }, \
341 SUBTARGET_SWITCHES \
342 { "", TARGET_DEFAULT, 0 }}
343
344 #ifdef TARGET_64BIT_DEFAULT
345 #define TARGET_DEFAULT (MASK_64BIT | TARGET_SUBTARGET_DEFAULT)
346 #else
347 #define TARGET_DEFAULT TARGET_SUBTARGET_DEFAULT
348 #endif
349
350 /* Which processor to schedule for. The cpu attribute defines a list that
351 mirrors this list, so changes to i386.md must be made at the same time. */
352
353 enum processor_type
354 {
355 PROCESSOR_I386, /* 80386 */
356 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
357 PROCESSOR_PENTIUM,
358 PROCESSOR_PENTIUMPRO,
359 PROCESSOR_K6,
360 PROCESSOR_ATHLON,
361 PROCESSOR_PENTIUM4,
362 PROCESSOR_max
363 };
364
365 extern enum processor_type ix86_cpu;
366
367 extern int ix86_arch;
368
369 /* This macro is similar to `TARGET_SWITCHES' but defines names of
370 command options that have values. Its definition is an
371 initializer with a subgrouping for each command option.
372
373 Each subgrouping contains a string constant, that defines the
374 fixed part of the option name, and the address of a variable. The
375 variable, type `char *', is set to the variable part of the given
376 option if the fixed part matches. The actual option name is made
377 by appending `-m' to the specified name. */
378 #define TARGET_OPTIONS \
379 { { "cpu=", &ix86_cpu_string, \
380 N_("Schedule code for given CPU")}, \
381 { "arch=", &ix86_arch_string, \
382 N_("Generate code for given CPU")}, \
383 { "regparm=", &ix86_regparm_string, \
384 N_("Number of registers used to pass integer arguments") }, \
385 { "align-loops=", &ix86_align_loops_string, \
386 N_("Loop code aligned to this power of 2") }, \
387 { "align-jumps=", &ix86_align_jumps_string, \
388 N_("Jump targets are aligned to this power of 2") }, \
389 { "align-functions=", &ix86_align_funcs_string, \
390 N_("Function starts are aligned to this power of 2") }, \
391 { "preferred-stack-boundary=", \
392 &ix86_preferred_stack_boundary_string, \
393 N_("Attempt to keep stack aligned to this power of 2") }, \
394 { "branch-cost=", &ix86_branch_cost_string, \
395 N_("Branches are this expensive (1-5, arbitrary units)") }, \
396 { "cmodel=", &ix86_cmodel_string, \
397 N_("Use given x86-64 code model") }, \
398 SUBTARGET_OPTIONS \
399 }
400
401 /* Sometimes certain combinations of command options do not make
402 sense on a particular target machine. You can define a macro
403 `OVERRIDE_OPTIONS' to take account of this. This macro, if
404 defined, is executed once just after all the command options have
405 been parsed.
406
407 Don't use this macro to turn on various extra optimizations for
408 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
409
410 #define OVERRIDE_OPTIONS override_options ()
411
412 /* These are meant to be redefined in the host dependent files */
413 #define SUBTARGET_SWITCHES
414 #define SUBTARGET_OPTIONS
415
416 /* Define this to change the optimizations performed by default. */
417 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
418
419 /* Specs for the compiler proper */
420
421 #ifndef CC1_CPU_SPEC
422 #define CC1_CPU_SPEC "\
423 %{!mcpu*: \
424 %{m386:-mcpu=i386 \
425 %n`-mpentium' is deprecated. Use `-march' or `-mcpu' instead.\n} \
426 %{m486:-mcpu=i486 \
427 %n`-mpentium' is deprecated. Use `-march' or `-mcpu' instead.\n} \
428 %{mpentium:-mcpu=pentium \
429 %n`-mpentium' is deprecated. Use `-march' or `-mcpu' instead.\n} \
430 %{mpentiumpro:-mcpu=pentiumpro \
431 %n`-mpentiumpro' is deprecated. Use `-march' or `-mcpu' instead.\n}}"
432 #endif
433 \f
434 #ifndef CPP_CPU_DEFAULT_SPEC
435 #if TARGET_CPU_DEFAULT == 1
436 #define CPP_CPU_DEFAULT_SPEC "-D__tune_i486__"
437 #endif
438 #if TARGET_CPU_DEFAULT == 2
439 #define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__"
440 #endif
441 #if TARGET_CPU_DEFAULT == 3
442 #define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__"
443 #endif
444 #if TARGET_CPU_DEFAULT == 4
445 #define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__"
446 #endif
447 #if TARGET_CPU_DEFAULT == 5
448 #define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__"
449 #endif
450 #if TARGET_CPU_DEFAULT == 6
451 #define CPP_CPU_DEFAULT_SPEC "-D__tune_pentium4__"
452 #endif
453 #ifndef CPP_CPU_DEFAULT_SPEC
454 #define CPP_CPU_DEFAULT_SPEC "-D__tune_i386__"
455 #endif
456 #endif /* CPP_CPU_DEFAULT_SPEC */
457
458 #ifndef CPP_CPU_SPEC
459 #define CPP_CPU_SPEC "\
460 -Acpu=i386 -Amachine=i386 \
461 %{!ansi:%{!std=c*:%{!std=i*:-Di386}}} -D__i386 -D__i386__ \
462 %{march=i386:%{!mcpu*:-D__tune_i386__ }}\
463 %{march=i486:-D__i486 -D__i486__ %{!mcpu*:-D__tune_i486__ }}\
464 %{march=pentium|march=i586:-D__i586 -D__i586__ -D__pentium -D__pentium__ \
465 %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ }}\
466 %{march=pentiumpro|march=i686:-D__i686 -D__i686__ \
467 -D__pentiumpro -D__pentiumpro__ \
468 %{!mcpu*:-D__tune_i686__ -D__tune_pentiumpro__ }}\
469 %{march=k6:-D__k6 -D__k6__ %{!mcpu*:-D__tune_k6__ }}\
470 %{march=athlon:-D__athlon -D__athlon__ %{!mcpu*:-D__tune_athlon__ }}\
471 %{mpentium4=pentium4:-D__pentium4 -D__pentium4__ %{!mcpu*:-D__tune_pentium4__ }}\
472 %{m386|mcpu=i386:-D__tune_i386__ }\
473 %{m486|mcpu=i486:-D__tune_i486__ }\
474 %{mpentium|mcpu=pentium|mcpu=i586:-D__tune_i586__ -D__tune_pentium__ }\
475 %{mpentiumpro|mcpu=pentiumpro|mcpu=i686:-D__tune_i686__ -D__tune_pentiumpro__ }\
476 %{mcpu=k6:-D__tune_k6__ }\
477 %{mcpu=athlon:-D__tune_athlon__ }\
478 %{mcpu=pentium4:-D__tune_pentium4__ }\
479 %{!march*:%{!mcpu*:%{!m386:%{!m486:%{!mpentium*:%(cpp_cpu_default)}}}}}"
480 #endif
481
482 #ifndef CC1_SPEC
483 #define CC1_SPEC "%(cc1_cpu) "
484 #endif
485
486 /* This macro defines names of additional specifications to put in the
487 specs that can be used in various specifications like CC1_SPEC. Its
488 definition is an initializer with a subgrouping for each command option.
489
490 Each subgrouping contains a string constant, that defines the
491 specification name, and a string constant that used by the GNU CC driver
492 program.
493
494 Do not define this macro if it does not need to do anything. */
495
496 #ifndef SUBTARGET_EXTRA_SPECS
497 #define SUBTARGET_EXTRA_SPECS
498 #endif
499
500 #define EXTRA_SPECS \
501 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
502 { "cpp_cpu", CPP_CPU_SPEC }, \
503 { "cc1_cpu", CC1_CPU_SPEC }, \
504 SUBTARGET_EXTRA_SPECS
505 \f
506 /* target machine storage layout */
507
508 /* Define for XFmode or TFmode extended real floating point support.
509 This will automatically cause REAL_ARITHMETIC to be defined.
510
511 The XFmode is specified by i386 ABI, while TFmode may be faster
512 due to alignment and simplifications in the address calculations.
513 */
514 #define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
515 #define MAX_LONG_DOUBLE_TYPE_SIZE 128
516 #ifdef __x86_64__
517 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
518 #else
519 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
520 #endif
521 /* Tell real.c that this is the 80-bit Intel extended float format
522 packaged in a 128-bit or 96bit entity. */
523 #define INTEL_EXTENDED_IEEE_FORMAT
524
525
526 #define SHORT_TYPE_SIZE 16
527 #define INT_TYPE_SIZE 32
528 #define FLOAT_TYPE_SIZE 32
529 #define LONG_TYPE_SIZE BITS_PER_WORD
530 #define MAX_WCHAR_TYPE_SIZE 32
531 #define MAX_LONG_TYPE_SIZE 64
532 #define DOUBLE_TYPE_SIZE 64
533 #define LONG_LONG_TYPE_SIZE 64
534
535 /* Define if you don't want extended real, but do want to use the
536 software floating point emulator for REAL_ARITHMETIC and
537 decimal <-> binary conversion. */
538 /* #define REAL_ARITHMETIC */
539
540 /* Define this if most significant byte of a word is the lowest numbered. */
541 /* That is true on the 80386. */
542
543 #define BITS_BIG_ENDIAN 0
544
545 /* Define this if most significant byte of a word is the lowest numbered. */
546 /* That is not true on the 80386. */
547 #define BYTES_BIG_ENDIAN 0
548
549 /* Define this if most significant word of a multiword number is the lowest
550 numbered. */
551 /* Not true for 80386 */
552 #define WORDS_BIG_ENDIAN 0
553
554 /* number of bits in an addressable storage unit */
555 #define BITS_PER_UNIT 8
556
557 /* Width in bits of a "word", which is the contents of a machine register.
558 Note that this is not necessarily the width of data type `int';
559 if using 16-bit ints on a 80386, this would still be 32.
560 But on a machine with 16-bit registers, this would be 16. */
561 #define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
562 #define MAX_BITS_PER_WORD 64
563
564 /* Width of a word, in units (bytes). */
565 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
566 #define MIN_UNITS_PER_WORD 4
567
568 /* Width in bits of a pointer.
569 See also the macro `Pmode' defined below. */
570 #define POINTER_SIZE BITS_PER_WORD
571
572 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
573 #define PARM_BOUNDARY BITS_PER_WORD
574
575 /* Boundary (in *bits*) on which stack pointer should be aligned. */
576 #define STACK_BOUNDARY BITS_PER_WORD
577
578 /* Boundary (in *bits*) on which the stack pointer preferrs to be
579 aligned; the compiler cannot rely on having this alignment. */
580 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
581
582 /* Allocation boundary for the code of a function. */
583 #define FUNCTION_BOUNDARY \
584 (1 << ((ix86_align_funcs >= 0 ? ix86_align_funcs : -ix86_align_funcs) + 3))
585
586 /* Alignment of field after `int : 0' in a structure. */
587
588 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
589
590 /* Minimum size in bits of the largest boundary to which any
591 and all fundamental data types supported by the hardware
592 might need to be aligned. No data type wants to be aligned
593 rounder than this.
594
595 Pentium+ preferrs DFmode values to be alignmed to 64 bit boundary
596 and Pentium Pro XFmode values at 128 bit boundaries. */
597
598 #define BIGGEST_ALIGNMENT 128
599
600 /* Decide whether a variable of mode MODE must be 128 bit aligned. */
601 #define ALIGN_MODE_128(MODE) \
602 ((MODE) == XFmode || (MODE) == TFmode || ((MODE) == TImode) \
603 || (MODE) == V4SFmode || (MODE) == V4SImode)
604
605 /* The published ABIs say that doubles should be aligned on word
606 boundaries, so lower the aligment for structure fields unless
607 -malign-double is set. */
608 /* BIGGEST_FIELD_ALIGNMENT is also used in libobjc, where it must be
609 constant. Use the smaller value in that context. */
610 #ifndef IN_TARGET_LIBS
611 #define BIGGEST_FIELD_ALIGNMENT (TARGET_64BIT ? 128 : (TARGET_ALIGN_DOUBLE ? 64 : 32))
612 #else
613 #define BIGGEST_FIELD_ALIGNMENT 32
614 #endif
615
616 /* If defined, a C expression to compute the alignment given to a
617 constant that is being placed in memory. EXP is the constant
618 and ALIGN is the alignment that the object would ordinarily have.
619 The value of this macro is used instead of that alignment to align
620 the object.
621
622 If this macro is not defined, then ALIGN is used.
623
624 The typical use of this macro is to increase alignment for string
625 constants to be word aligned so that `strcpy' calls that copy
626 constants can be done inline. */
627
628 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment (EXP, ALIGN)
629
630 /* If defined, a C expression to compute the alignment for a static
631 variable. TYPE is the data type, and ALIGN is the alignment that
632 the object would ordinarily have. The value of this macro is used
633 instead of that alignment to align the object.
634
635 If this macro is not defined, then ALIGN is used.
636
637 One use of this macro is to increase alignment of medium-size
638 data to make it all fit in fewer cache lines. Another is to
639 cause character arrays to be word-aligned so that `strcpy' calls
640 that copy constants to character arrays can be done inline. */
641
642 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment (TYPE, ALIGN)
643
644 /* If defined, a C expression to compute the alignment for a local
645 variable. TYPE is the data type, and ALIGN is the alignment that
646 the object would ordinarily have. The value of this macro is used
647 instead of that alignment to align the object.
648
649 If this macro is not defined, then ALIGN is used.
650
651 One use of this macro is to increase alignment of medium-size
652 data to make it all fit in fewer cache lines. */
653
654 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment (TYPE, ALIGN)
655
656 /* Set this non-zero if move instructions will actually fail to work
657 when given unaligned data. */
658 #define STRICT_ALIGNMENT 0
659
660 /* If bit field type is int, don't let it cross an int,
661 and give entire struct the alignment of an int. */
662 /* Required on the 386 since it doesn't have bitfield insns. */
663 #define PCC_BITFIELD_TYPE_MATTERS 1
664
665 /* Align loop starts for optimal branching. */
666 #define LOOP_ALIGN(LABEL) \
667 (ix86_align_loops < 0 ? -ix86_align_loops : ix86_align_loops)
668 #define LOOP_ALIGN_MAX_SKIP \
669 (ix86_align_loops < -3 ? (1<<(-ix86_align_loops-1))-1 : 0)
670
671 /* This is how to align an instruction for optimal branching. */
672 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) \
673 (ix86_align_jumps < 0 ? -ix86_align_jumps : ix86_align_jumps)
674 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP \
675 (ix86_align_jumps < -3 ? (1<<(-ix86_align_jumps-1))-1 : 0)
676 \f
677 /* Standard register usage. */
678
679 /* This processor has special stack-like registers. See reg-stack.c
680 for details. */
681
682 #define STACK_REGS
683 #define IS_STACK_MODE(mode) (mode==DFmode || mode==SFmode \
684 || mode==XFmode || mode==TFmode)
685
686 /* Number of actual hardware registers.
687 The hardware registers are assigned numbers for the compiler
688 from 0 to just below FIRST_PSEUDO_REGISTER.
689 All registers that the compiler knows about must be given numbers,
690 even those that are not normally considered general registers.
691
692 In the 80386 we give the 8 general purpose registers the numbers 0-7.
693 We number the floating point registers 8-15.
694 Note that registers 0-7 can be accessed as a short or int,
695 while only 0-3 may be used with byte `mov' instructions.
696
697 Reg 16 does not correspond to any hardware register, but instead
698 appears in the RTL as an argument pointer prior to reload, and is
699 eliminated during reloading in favor of either the stack or frame
700 pointer. */
701
702 #define FIRST_PSEUDO_REGISTER 53
703
704 /* Number of hardware registers that go into the DWARF-2 unwind info.
705 If not defined, equals FIRST_PSEUDO_REGISTER. */
706
707 #define DWARF_FRAME_REGISTERS 17
708
709 /* 1 for registers that have pervasive standard uses
710 and are not available for the register allocator.
711 On the 80386, the stack pointer is such, as is the arg pointer.
712
713 The value is an mask - bit 1 is set for fixed registers
714 for 32bit target, while 2 is set for fixed registers for 64bit.
715 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
716 */
717 #define FIXED_REGISTERS \
718 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
719 { 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
720 /*arg,flags,fpsr,dir,frame*/ \
721 3, 3, 3, 3, 3, \
722 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
723 0, 0, 0, 0, 0, 0, 0, 0, \
724 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
725 0, 0, 0, 0, 0, 0, 0, 0, \
726 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
727 1, 1, 1, 1, 1, 1, 1, 1, \
728 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
729 1, 1, 1, 1, 1, 1, 1, 1}
730
731
732 /* 1 for registers not available across function calls.
733 These must include the FIXED_REGISTERS and also any
734 registers that can be used without being saved.
735 The latter must include the registers where values are returned
736 and the register where structure-value addresses are passed.
737 Aside from that, you can include as many other registers as you like.
738
739 The value is an mask - bit 1 is set for call used
740 for 32bit target, while 2 is set for call used for 64bit.
741 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
742 */
743 #define CALL_USED_REGISTERS \
744 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
745 { 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
746 /*arg,flags,fpsr,dir,frame*/ \
747 3, 3, 3, 3, 3, \
748 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
749 3, 3, 3, 3, 3, 3, 3, 3, \
750 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
751 3, 3, 3, 3, 3, 3, 3, 3, \
752 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
753 3, 3, 3, 3, 1, 1, 1, 1, \
754 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
755 3, 3, 3, 3, 3, 3, 3, 3} \
756
757 /* Order in which to allocate registers. Each register must be
758 listed once, even those in FIXED_REGISTERS. List frame pointer
759 late and fixed registers last. Note that, in general, we prefer
760 registers listed in CALL_USED_REGISTERS, keeping the others
761 available for storage of persistent values.
762
763 Three different versions of REG_ALLOC_ORDER have been tried:
764
765 If the order is edx, ecx, eax, ... it produces a slightly faster compiler,
766 but slower code on simple functions returning values in eax.
767
768 If the order is eax, ecx, edx, ... it causes reload to abort when compiling
769 perl 4.036 due to not being able to create a DImode register (to hold a 2
770 word union).
771
772 If the order is eax, edx, ecx, ... it produces better code for simple
773 functions, and a slightly slower compiler. Users complained about the code
774 generated by allocating edx first, so restore the 'natural' order of things. */
775
776 #define REG_ALLOC_ORDER \
777 /*ax,dx,cx,*/ \
778 { 0, 1, 2, \
779 /* bx,si,di,bp,sp,*/ \
780 3, 4, 5, 6, 7, \
781 /*r8,r9,r10,r11,*/ \
782 37,38, 39, 40, \
783 /*r12,r15,r14,r13*/ \
784 41, 44, 43, 42, \
785 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
786 21, 22, 23, 24, 25, 26, 27, 28, \
787 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
788 45, 46, 47, 48, 49, 50, 51, 52, \
789 /*st,st1,st2,st3,st4,st5,st6,st7*/ \
790 8, 9, 10, 11, 12, 13, 14, 15, \
791 /*,arg,cc,fpsr,dir,frame*/ \
792 16,17, 18, 19, 20, \
793 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
794 29, 30, 31, 32, 33, 34, 35, 36 }
795
796 /* Macro to conditionally modify fixed_regs/call_used_regs. */
797 #define CONDITIONAL_REGISTER_USAGE \
798 { \
799 int i; \
800 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
801 { \
802 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
803 call_used_regs[i] = (call_used_regs[i] \
804 & (TARGET_64BIT ? 2 : 1)) != 0; \
805 } \
806 if (flag_pic) \
807 { \
808 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
809 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
810 } \
811 if (! TARGET_MMX) \
812 { \
813 int i; \
814 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
815 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
816 fixed_regs[i] = call_used_regs[i] = 1; \
817 } \
818 if (! TARGET_SSE) \
819 { \
820 int i; \
821 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
822 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
823 fixed_regs[i] = call_used_regs[i] = 1; \
824 } \
825 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
826 { \
827 int i; \
828 HARD_REG_SET x; \
829 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
830 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
831 if (TEST_HARD_REG_BIT (x, i)) \
832 fixed_regs[i] = call_used_regs[i] = 1; \
833 } \
834 }
835
836 /* Return number of consecutive hard regs needed starting at reg REGNO
837 to hold something of mode MODE.
838 This is ordinarily the length in words of a value of mode MODE
839 but can be less for certain modes in special long registers.
840
841 Actually there are no two word move instructions for consecutive
842 registers. And only registers 0-3 may have mov byte instructions
843 applied to them.
844 */
845
846 #define HARD_REGNO_NREGS(REGNO, MODE) \
847 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) ? 1 \
848 : (MODE == TFmode \
849 ? 3 \
850 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
851
852 #define VALID_SSE_REG_MODE(MODE) \
853 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
854 || (MODE) == SFmode || (TARGET_SSE2 && (MODE) == DFmode))
855
856 #define VALID_MMX_REG_MODE(MODE) \
857 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
858 || (MODE) == V2SImode || (MODE) == SImode)
859
860 #define VECTOR_MODE_SUPPORTED_P(MODE) \
861 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
862 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 : 0)
863
864 #define VALID_FP_MODE_P(mode) \
865 ((mode) == SFmode || (mode) == DFmode || (mode) == TFmode \
866 || (!TARGET_64BIT && (mode) == XFmode) \
867 || (mode) == SCmode || (mode) == DCmode || (mode) == TCmode\
868 || (!TARGET_64BIT && (mode) == XCmode))
869
870 #define VALID_INT_MODE_P(mode) \
871 ((mode) == QImode || (mode) == HImode || (mode) == SImode \
872 || (mode) == DImode \
873 || (mode) == CQImode || (mode) == CHImode || (mode) == CSImode \
874 || (mode) == CDImode)
875
876 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
877
878 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
879 ix86_hard_regno_mode_ok (REGNO, MODE)
880
881 /* Value is 1 if it is a good idea to tie two pseudo registers
882 when one has mode MODE1 and one has mode MODE2.
883 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
884 for any hard reg, then this must be 0 for correct output. */
885
886 #define MODES_TIEABLE_P(MODE1, MODE2) \
887 ((MODE1) == (MODE2) \
888 || (((MODE1) == HImode || (MODE1) == SImode \
889 || ((MODE1) == QImode \
890 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
891 || ((MODE1) == DImode && TARGET_64BIT)) \
892 && ((MODE2) == HImode || (MODE2) == SImode \
893 || ((MODE1) == QImode \
894 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
895 || ((MODE2) == DImode && TARGET_64BIT))))
896
897
898 /* Specify the modes required to caller save a given hard regno.
899 We do this on i386 to prevent flags from being saved at all.
900
901 Kill any attempts to combine saving of modes. */
902
903 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
904 (CC_REGNO_P (REGNO) ? VOIDmode \
905 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
906 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS)) \
907 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
908 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
909 : (MODE))
910 /* Specify the registers used for certain standard purposes.
911 The values of these macros are register numbers. */
912
913 /* on the 386 the pc register is %eip, and is not usable as a general
914 register. The ordinary mov instructions won't work */
915 /* #define PC_REGNUM */
916
917 /* Register to use for pushing function arguments. */
918 #define STACK_POINTER_REGNUM 7
919
920 /* Base register for access to local variables of the function. */
921 #define HARD_FRAME_POINTER_REGNUM 6
922
923 /* Base register for access to local variables of the function. */
924 #define FRAME_POINTER_REGNUM 20
925
926 /* First floating point reg */
927 #define FIRST_FLOAT_REG 8
928
929 /* First & last stack-like regs */
930 #define FIRST_STACK_REG FIRST_FLOAT_REG
931 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
932
933 #define FLAGS_REG 17
934 #define FPSR_REG 18
935 #define DIRFLAG_REG 19
936
937 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
938 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
939
940 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
941 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
942
943 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
944 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
945
946 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
947 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
948
949 /* Value should be nonzero if functions must have frame pointers.
950 Zero means the frame pointer need not be set up (and parms
951 may be accessed via the stack pointer) in functions that seem suitable.
952 This is computed in `reload', in reload1.c. */
953 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
954
955 /* Override this in other tm.h files to cope with various OS losage
956 requiring a frame pointer. */
957 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
958 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
959 #endif
960
961 /* Make sure we can access arbitrary call frames. */
962 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
963
964 /* Base register for access to arguments of the function. */
965 #define ARG_POINTER_REGNUM 16
966
967 /* Register in which static-chain is passed to a function.
968 We do use ECX as static chain register for 32 bit ABI. On the
969 64bit ABI, ECX is an argument register, so we use R10 instead. */
970 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
971
972 /* Register to hold the addressing base for position independent
973 code access to data items.
974 We don't use PIC pointer for 64bit mode. Define the regnum to
975 dummy value to prevent gcc from pesimizing code dealing with EBX.
976 */
977 #define PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? INVALID_REGNUM : 3)
978
979 /* Register in which address to store a structure value
980 arrives in the function. On the 386, the prologue
981 copies this from the stack to register %eax. */
982 #define STRUCT_VALUE_INCOMING 0
983
984 /* Place in which caller passes the structure value address.
985 0 means push the value on the stack like an argument. */
986 #define STRUCT_VALUE 0
987
988 /* A C expression which can inhibit the returning of certain function
989 values in registers, based on the type of value. A nonzero value
990 says to return the function value in memory, just as large
991 structures are always returned. Here TYPE will be a C expression
992 of type `tree', representing the data type of the value.
993
994 Note that values of mode `BLKmode' must be explicitly handled by
995 this macro. Also, the option `-fpcc-struct-return' takes effect
996 regardless of this macro. On most systems, it is possible to
997 leave the macro undefined; this causes a default definition to be
998 used, whose value is the constant 1 for `BLKmode' values, and 0
999 otherwise.
1000
1001 Do not use this macro to indicate that structures and unions
1002 should always be returned in memory. You should instead use
1003 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1004
1005 #define RETURN_IN_MEMORY(TYPE) \
1006 ((TYPE_MODE (TYPE) == BLKmode) \
1007 || (VECTOR_MODE_P (TYPE_MODE (TYPE)) && int_size_in_bytes (TYPE) == 8)\
1008 || (int_size_in_bytes (TYPE) > 12 && TYPE_MODE (TYPE) != TImode \
1009 && TYPE_MODE (TYPE) != TFmode && ! VECTOR_MODE_P (TYPE_MODE (TYPE))))
1010
1011 \f
1012 /* Define the classes of registers for register constraints in the
1013 machine description. Also define ranges of constants.
1014
1015 One of the classes must always be named ALL_REGS and include all hard regs.
1016 If there is more than one class, another class must be named NO_REGS
1017 and contain no registers.
1018
1019 The name GENERAL_REGS must be the name of a class (or an alias for
1020 another name such as ALL_REGS). This is the class of registers
1021 that is allowed by "g" or "r" in a register constraint.
1022 Also, registers outside this class are allocated only when
1023 instructions express preferences for them.
1024
1025 The classes must be numbered in nondecreasing order; that is,
1026 a larger-numbered class must never be contained completely
1027 in a smaller-numbered class.
1028
1029 For any two classes, it is very desirable that there be another
1030 class that represents their union.
1031
1032 It might seem that class BREG is unnecessary, since no useful 386
1033 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1034 and the "b" register constraint is useful in asms for syscalls.
1035
1036 The flags and fpsr registers are in no class. */
1037
1038 enum reg_class
1039 {
1040 NO_REGS,
1041 AREG, DREG, CREG, BREG, SIREG, DIREG,
1042 AD_REGS, /* %eax/%edx for DImode */
1043 Q_REGS, /* %eax %ebx %ecx %edx */
1044 NON_Q_REGS, /* %esi %edi %ebp %esp */
1045 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1046 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1047 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1048 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1049 FLOAT_REGS,
1050 SSE_REGS,
1051 MMX_REGS,
1052 FP_TOP_SSE_REGS,
1053 FP_SECOND_SSE_REGS,
1054 FLOAT_SSE_REGS,
1055 FLOAT_INT_REGS,
1056 INT_SSE_REGS,
1057 FLOAT_INT_SSE_REGS,
1058 ALL_REGS, LIM_REG_CLASSES
1059 };
1060
1061 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1062
1063 #define FLOAT_CLASS_P(CLASS) (reg_class_subset_p (CLASS, FLOAT_REGS))
1064 #define SSE_CLASS_P(CLASS) (reg_class_subset_p (CLASS, SSE_REGS))
1065 #define MMX_CLASS_P(CLASS) (reg_class_subset_p (CLASS, MMX_REGS))
1066 #define MAYBE_FLOAT_CLASS_P(CLASS) (reg_classes_intersect_p (CLASS, FLOAT_REGS))
1067 #define MAYBE_SSE_CLASS_P(CLASS) (reg_classes_intersect_p (SSE_REGS, CLASS))
1068 #define MAYBE_MMX_CLASS_P(CLASS) (reg_classes_intersect_p (MMX_REGS, CLASS))
1069
1070 #define Q_CLASS_P(CLASS) (reg_class_subset_p (CLASS, Q_REGS))
1071
1072 /* Give names of register classes as strings for dump file. */
1073
1074 #define REG_CLASS_NAMES \
1075 { "NO_REGS", \
1076 "AREG", "DREG", "CREG", "BREG", \
1077 "SIREG", "DIREG", \
1078 "AD_REGS", \
1079 "Q_REGS", "NON_Q_REGS", \
1080 "INDEX_REGS", \
1081 "LEGACY_REGS", \
1082 "GENERAL_REGS", \
1083 "FP_TOP_REG", "FP_SECOND_REG", \
1084 "FLOAT_REGS", \
1085 "SSE_REGS", \
1086 "MMX_REGS", \
1087 "FP_TOP_SSE_REGS", \
1088 "FP_SECOND_SSE_REGS", \
1089 "FLOAT_SSE_REGS", \
1090 "FLOAT_INT_REGS", \
1091 "INT_SSE_REGS", \
1092 "FLOAT_INT_SSE_REGS", \
1093 "ALL_REGS" }
1094
1095 /* Define which registers fit in which classes.
1096 This is an initializer for a vector of HARD_REG_SET
1097 of length N_REG_CLASSES. */
1098
1099 #define REG_CLASS_CONTENTS \
1100 { { 0x00, 0x0 }, \
1101 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1102 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1103 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1104 { 0x03, 0x0 }, /* AD_REGS */ \
1105 { 0x0f, 0x0 }, /* Q_REGS */ \
1106 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1107 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1108 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1109 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1110 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1111 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1112 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1113 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1114 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1115 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1116 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1117 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1118 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1119 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1120 { 0xffffffff,0x1fffff } \
1121 }
1122
1123 /* The same information, inverted:
1124 Return the class number of the smallest class containing
1125 reg number REGNO. This could be a conditional expression
1126 or could index an array. */
1127
1128 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1129
1130 /* When defined, the compiler allows registers explicitly used in the
1131 rtl to be used as spill registers but prevents the compiler from
1132 extending the lifetime of these registers. */
1133
1134 #define SMALL_REGISTER_CLASSES 1
1135
1136 #define QI_REG_P(X) \
1137 (REG_P (X) && REGNO (X) < 4)
1138
1139 #define GENERAL_REGNO_P(n) \
1140 ((n) < 8 || REX_INT_REGNO_P (n))
1141
1142 #define GENERAL_REG_P(X) \
1143 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1144
1145 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1146
1147 #define NON_QI_REG_P(X) \
1148 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1149
1150 #define REX_INT_REGNO_P(n) ((n) >= FIRST_REX_INT_REG && (n) <= LAST_REX_INT_REG)
1151 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1152
1153 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1154 #define FP_REGNO_P(n) ((n) >= FIRST_STACK_REG && (n) <= LAST_STACK_REG)
1155 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1156 #define ANY_FP_REGNO_P(n) (FP_REGNO_P (n) || SSE_REGNO_P (n))
1157
1158 #define SSE_REGNO_P(n) \
1159 (((n) >= FIRST_SSE_REG && (n) <= LAST_SSE_REG) \
1160 || ((n) >= FIRST_REX_SSE_REG && (n) <= LAST_REX_SSE_REG))
1161
1162 #define SSE_REGNO(n) \
1163 ((n) < 8 ? FIRST_SSE_REG + (n) : FIRST_REX_SSE_REG + (n) - 8)
1164 #define SSE_REG_P(n) (REG_P (n) && SSE_REGNO_P (REGNO (n)))
1165
1166 #define SSE_FLOAT_MODE_P(m) \
1167 ((TARGET_SSE && (m) == SFmode) || (TARGET_SSE2 && (m) == DFmode))
1168
1169 #define MMX_REGNO_P(n) ((n) >= FIRST_MMX_REG && (n) <= LAST_MMX_REG)
1170 #define MMX_REG_P(xop) (REG_P (xop) && MMX_REGNO_P (REGNO (xop)))
1171
1172 #define STACK_REG_P(xop) (REG_P (xop) && \
1173 REGNO (xop) >= FIRST_STACK_REG && \
1174 REGNO (xop) <= LAST_STACK_REG)
1175
1176 #define NON_STACK_REG_P(xop) (REG_P (xop) && ! STACK_REG_P (xop))
1177
1178 #define STACK_TOP_P(xop) (REG_P (xop) && REGNO (xop) == FIRST_STACK_REG)
1179
1180 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1181 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1182
1183 /* Indicate whether hard register numbered REG_NO should be converted
1184 to SSA form. */
1185 #define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
1186 (REG_NO == FLAGS_REG || REG_NO == ARG_POINTER_REGNUM)
1187
1188 /* The class value for index registers, and the one for base regs. */
1189
1190 #define INDEX_REG_CLASS INDEX_REGS
1191 #define BASE_REG_CLASS GENERAL_REGS
1192
1193 /* Get reg_class from a letter such as appears in the machine description. */
1194
1195 #define REG_CLASS_FROM_LETTER(C) \
1196 ((C) == 'r' ? GENERAL_REGS : \
1197 (C) == 'R' ? LEGACY_REGS : \
1198 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1199 (C) == 'Q' ? Q_REGS : \
1200 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1201 ? FLOAT_REGS \
1202 : NO_REGS) : \
1203 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1204 ? FP_TOP_REG \
1205 : NO_REGS) : \
1206 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1207 ? FP_SECOND_REG \
1208 : NO_REGS) : \
1209 (C) == 'a' ? AREG : \
1210 (C) == 'b' ? BREG : \
1211 (C) == 'c' ? CREG : \
1212 (C) == 'd' ? DREG : \
1213 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1214 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1215 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
1216 (C) == 'A' ? AD_REGS : \
1217 (C) == 'D' ? DIREG : \
1218 (C) == 'S' ? SIREG : NO_REGS)
1219
1220 /* The letters I, J, K, L and M in a register constraint string
1221 can be used to stand for particular ranges of immediate operands.
1222 This macro defines what the ranges are.
1223 C is the letter, and VALUE is a constant value.
1224 Return 1 if VALUE is in the range specified by C.
1225
1226 I is for non-DImode shifts.
1227 J is for DImode shifts.
1228 K is for signed imm8 operands.
1229 L is for andsi as zero-extending move.
1230 M is for shifts that can be executed by the "lea" opcode.
1231 N is for immedaite operands for out/in instructions (0-255)
1232 */
1233
1234 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1235 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1236 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1237 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1238 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1239 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1240 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
1241 : 0)
1242
1243 /* Similar, but for floating constants, and defining letters G and H.
1244 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1245 TARGET_387 isn't set, because the stack register converter may need to
1246 load 0.0 into the function value register. */
1247
1248 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1249 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1250 : ((C) == 'H' ? standard_sse_constant_p (VALUE) : 0))
1251
1252 /* A C expression that defines the optional machine-dependent
1253 constraint letters that can be used to segregate specific types of
1254 operands, usually memory references, for the target machine. Any
1255 letter that is not elsewhere defined and not matched by
1256 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1257 be defined.
1258
1259 If it is required for a particular target machine, it should
1260 return 1 if VALUE corresponds to the operand type represented by
1261 the constraint letter C. If C is not defined as an extra
1262 constraint, the value returned should be 0 regardless of VALUE. */
1263
1264 #define EXTRA_CONSTRAINT(VALUE, C) \
1265 ((C) == 'e' ? x86_64_sign_extended_value (VALUE) \
1266 : (C) == 'Z' ? x86_64_zero_extended_value (VALUE) \
1267 : 0)
1268
1269 /* Place additional restrictions on the register class to use when it
1270 is necessary to be able to hold a value of mode MODE in a reload
1271 register for which class CLASS would ordinarily be used. */
1272
1273 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1274 ((MODE) == QImode && !TARGET_64BIT \
1275 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS) \
1276 ? Q_REGS : (CLASS))
1277
1278 /* Given an rtx X being reloaded into a reg required to be
1279 in class CLASS, return the class of reg to actually use.
1280 In general this is just CLASS; but on some machines
1281 in some cases it is preferable to use a more restrictive class.
1282 On the 80386 series, we prevent floating constants from being
1283 reloaded into floating registers (since no move-insn can do that)
1284 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1285
1286 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1287 QImode must go into class Q_REGS.
1288 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1289 movdf to do mem-to-mem moves through integer regs. */
1290
1291 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1292 ix86_preferred_reload_class (X, CLASS)
1293
1294 /* If we are copying between general and FP registers, we need a memory
1295 location. The same is true for SSE and MMX registers. */
1296 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1297 ix86_secondary_memory_needed (CLASS1, CLASS2, MODE, 1)
1298
1299 /* QImode spills from non-QI registers need a scratch. This does not
1300 happen often -- the only example so far requires an uninitialized
1301 pseudo. */
1302
1303 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
1304 ((CLASS) == GENERAL_REGS && !TARGET_64BIT && (MODE) == QImode \
1305 ? Q_REGS : NO_REGS)
1306
1307 /* Return the maximum number of consecutive registers
1308 needed to represent mode MODE in a register of class CLASS. */
1309 /* On the 80386, this is the size of MODE in words,
1310 except in the FP regs, where a single reg is always enough. */
1311 #define CLASS_MAX_NREGS(CLASS, MODE) \
1312 (FLOAT_CLASS_P (CLASS) || SSE_CLASS_P (CLASS) || MMX_CLASS_P (CLASS) \
1313 ? 1 \
1314 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1315
1316 /* A C expression whose value is nonzero if pseudos that have been
1317 assigned to registers of class CLASS would likely be spilled
1318 because registers of CLASS are needed for spill registers.
1319
1320 The default value of this macro returns 1 if CLASS has exactly one
1321 register and zero otherwise. On most machines, this default
1322 should be used. Only define this macro to some other expression
1323 if pseudo allocated by `local-alloc.c' end up in memory because
1324 their hard registers were needed for spill registers. If this
1325 macro returns nonzero for those classes, those pseudos will only
1326 be allocated by `global.c', which knows how to reallocate the
1327 pseudo to another register. If there would not be another
1328 register available for reallocation, you should not change the
1329 definition of this macro since the only effect of such a
1330 definition would be to slow down register allocation. */
1331
1332 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1333 (((CLASS) == AREG) \
1334 || ((CLASS) == DREG) \
1335 || ((CLASS) == CREG) \
1336 || ((CLASS) == BREG) \
1337 || ((CLASS) == AD_REGS) \
1338 || ((CLASS) == SIREG) \
1339 || ((CLASS) == DIREG))
1340
1341 /* A C statement that adds to CLOBBERS any hard regs the port wishes
1342 to automatically clobber for all asms.
1343
1344 We do this in the new i386 backend to maintain source compatibility
1345 with the old cc0-based compiler. */
1346
1347 #define MD_ASM_CLOBBERS(CLOBBERS) \
1348 do { \
1349 (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), (CLOBBERS));\
1350 (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), (CLOBBERS)); \
1351 (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), (CLOBBERS)); \
1352 } while (0)
1353 \f
1354 /* Stack layout; function entry, exit and calling. */
1355
1356 /* Define this if pushing a word on the stack
1357 makes the stack pointer a smaller address. */
1358 #define STACK_GROWS_DOWNWARD
1359
1360 /* Define this if the nominal address of the stack frame
1361 is at the high-address end of the local variables;
1362 that is, each additional local variable allocated
1363 goes at a more negative offset in the frame. */
1364 #define FRAME_GROWS_DOWNWARD
1365
1366 /* Offset within stack frame to start allocating local variables at.
1367 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1368 first local allocated. Otherwise, it is the offset to the BEGINNING
1369 of the first local allocated. */
1370 #define STARTING_FRAME_OFFSET 0
1371
1372 /* If we generate an insn to push BYTES bytes,
1373 this says how many the stack pointer really advances by.
1374 On 386 pushw decrements by exactly 2 no matter what the position was.
1375 On the 386 there is no pushb; we use pushw instead, and this
1376 has the effect of rounding up to 2.
1377
1378 For 64bit ABI we round up to 8 bytes.
1379 */
1380
1381 #define PUSH_ROUNDING(BYTES) \
1382 (TARGET_64BIT \
1383 ? (((BYTES) + 7) & (-8)) \
1384 : (((BYTES) + 1) & (-2)))
1385
1386 /* If defined, the maximum amount of space required for outgoing arguments will
1387 be computed and placed into the variable
1388 `current_function_outgoing_args_size'. No space will be pushed onto the
1389 stack for each call; instead, the function prologue should increase the stack
1390 frame size by this amount. */
1391
1392 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1393
1394 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1395 instructions to pass outgoing arguments. */
1396
1397 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1398
1399 /* Offset of first parameter from the argument pointer register value. */
1400 #define FIRST_PARM_OFFSET(FNDECL) 0
1401
1402 /* Define this macro if functions should assume that stack space has been
1403 allocated for arguments even when their values are passed in registers.
1404
1405 The value of this macro is the size, in bytes, of the area reserved for
1406 arguments passed in registers for the function represented by FNDECL.
1407
1408 This space can be allocated by the caller, or be a part of the
1409 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1410 which. */
1411 #define REG_PARM_STACK_SPACE(FNDECL) 0
1412
1413 /* Define as a C expression that evaluates to nonzero if we do not know how
1414 to pass TYPE solely in registers. The file expr.h defines a
1415 definition that is usually appropriate, refer to expr.h for additional
1416 documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1417 computed in the stack and then loaded into a register. */
1418 #define MUST_PASS_IN_STACK(MODE,TYPE) \
1419 ((TYPE) != 0 \
1420 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1421 || TREE_ADDRESSABLE (TYPE) \
1422 || ((MODE) == TImode) \
1423 || ((MODE) == BLKmode \
1424 && ! ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
1425 && 0 == (int_size_in_bytes (TYPE) \
1426 % (PARM_BOUNDARY / BITS_PER_UNIT))) \
1427 && (FUNCTION_ARG_PADDING (MODE, TYPE) \
1428 == (BYTES_BIG_ENDIAN ? upward : downward)))))
1429
1430 /* Value is the number of bytes of arguments automatically
1431 popped when returning from a subroutine call.
1432 FUNDECL is the declaration node of the function (as a tree),
1433 FUNTYPE is the data type of the function (as a tree),
1434 or for a library call it is an identifier node for the subroutine name.
1435 SIZE is the number of bytes of arguments passed on the stack.
1436
1437 On the 80386, the RTD insn may be used to pop them if the number
1438 of args is fixed, but if the number is variable then the caller
1439 must pop them all. RTD can't be used for library calls now
1440 because the library is compiled with the Unix compiler.
1441 Use of RTD is a selectable option, since it is incompatible with
1442 standard Unix calling sequences. If the option is not selected,
1443 the caller must always pop the args.
1444
1445 The attribute stdcall is equivalent to RTD on a per module basis. */
1446
1447 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
1448 (ix86_return_pops_args (FUNDECL, FUNTYPE, SIZE))
1449
1450 /* Define how to find the value returned by a function.
1451 VALTYPE is the data type of the value (as a tree).
1452 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1453 otherwise, FUNC is 0. */
1454 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1455 gen_rtx_REG (TYPE_MODE (VALTYPE), \
1456 VALUE_REGNO (TYPE_MODE (VALTYPE)))
1457
1458 /* Define how to find the value returned by a library function
1459 assuming the value has mode MODE. */
1460
1461 #define LIBCALL_VALUE(MODE) \
1462 gen_rtx_REG (MODE, VALUE_REGNO (MODE))
1463
1464 /* Define the size of the result block used for communication between
1465 untyped_call and untyped_return. The block contains a DImode value
1466 followed by the block used by fnsave and frstor. */
1467
1468 #define APPLY_RESULT_SIZE (8+108)
1469
1470 /* 1 if N is a possible register number for function argument passing. */
1471 #define FUNCTION_ARG_REGNO_P(N) ((N) < REGPARM_MAX)
1472
1473 /* Define a data type for recording info about an argument list
1474 during the scan of that argument list. This data type should
1475 hold all necessary information about the function itself
1476 and about the args processed so far, enough to enable macros
1477 such as FUNCTION_ARG to determine where the next arg should go. */
1478
1479 typedef struct ix86_args {
1480 int words; /* # words passed so far */
1481 int nregs; /* # registers available for passing */
1482 int regno; /* next available register number */
1483 int sse_words; /* # sse words passed so far */
1484 int sse_nregs; /* # sse registers available for passing */
1485 int sse_regno; /* next available sse register number */
1486 } CUMULATIVE_ARGS;
1487
1488 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1489 for a call to a function whose data type is FNTYPE.
1490 For a library call, FNTYPE is 0. */
1491
1492 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
1493 (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
1494
1495 /* Update the data in CUM to advance over an argument
1496 of mode MODE and data type TYPE.
1497 (TYPE is null for libcalls where that information may not be available.) */
1498
1499 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1500 (function_arg_advance (&CUM, MODE, TYPE, NAMED))
1501
1502 /* Define where to put the arguments to a function.
1503 Value is zero to push the argument on the stack,
1504 or a hard register in which to store the argument.
1505
1506 MODE is the argument's machine mode.
1507 TYPE is the data type of the argument (as a tree).
1508 This is null for libcalls where that information may
1509 not be available.
1510 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1511 the preceding args and about the function being called.
1512 NAMED is nonzero if this argument is a named parameter
1513 (otherwise it is an extra parameter matching an ellipsis). */
1514
1515 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1516 (function_arg (&CUM, MODE, TYPE, NAMED))
1517
1518 /* For an arg passed partly in registers and partly in memory,
1519 this is the number of registers used.
1520 For args passed entirely in registers or entirely in memory, zero. */
1521
1522 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1523
1524 /* If PIC, we cannot make sibling calls to global functions
1525 because the PLT requires %ebx live.
1526 If we are returning floats on the register stack, we cannot make
1527 sibling calls to functions that return floats. (The stack adjust
1528 instruction will wind up after the sibcall jump, and not be executed.) */
1529 #define FUNCTION_OK_FOR_SIBCALL(DECL) \
1530 (DECL \
1531 && (! flag_pic || ! TREE_PUBLIC (DECL)) \
1532 && (! TARGET_FLOAT_RETURNS_IN_80387 \
1533 || ! FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (DECL)))) \
1534 || FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (cfun->decl))))))
1535
1536 /* This macro is invoked at the end of compilation. It is used here to
1537 output code for -fpic that will load the return address into %ebx. */
1538
1539 #undef ASM_FILE_END
1540 #define ASM_FILE_END(FILE) ix86_asm_file_end (FILE)
1541
1542 /* Output assembler code to FILE to increment profiler label # LABELNO
1543 for profiling a function entry. */
1544
1545 #define FUNCTION_PROFILER(FILE, LABELNO) \
1546 { \
1547 if (flag_pic) \
1548 { \
1549 fprintf (FILE, "\tleal\t%sP%d@GOTOFF(%%ebx),%%edx\n", \
1550 LPREFIX, (LABELNO)); \
1551 fprintf (FILE, "\tcall\t*_mcount@GOT(%%ebx)\n"); \
1552 } \
1553 else \
1554 { \
1555 fprintf (FILE, "\tmovl\t$%sP%d,%%edx\n", LPREFIX, (LABELNO)); \
1556 fprintf (FILE, "\tcall\t_mcount\n"); \
1557 } \
1558 }
1559
1560
1561 /* There are three profiling modes for basic blocks available.
1562 The modes are selected at compile time by using the options
1563 -a or -ax of the gnu compiler.
1564 The variable `profile_block_flag' will be set according to the
1565 selected option.
1566
1567 profile_block_flag == 0, no option used:
1568
1569 No profiling done.
1570
1571 profile_block_flag == 1, -a option used.
1572
1573 Count frequency of execution of every basic block.
1574
1575 profile_block_flag == 2, -ax option used.
1576
1577 Generate code to allow several different profiling modes at run time.
1578 Available modes are:
1579 Produce a trace of all basic blocks.
1580 Count frequency of jump instructions executed.
1581 In every mode it is possible to start profiling upon entering
1582 certain functions and to disable profiling of some other functions.
1583
1584 The result of basic-block profiling will be written to a file `bb.out'.
1585 If the -ax option is used parameters for the profiling will be read
1586 from file `bb.in'.
1587
1588 */
1589
1590 /* The following macro shall output assembler code to FILE
1591 to initialize basic-block profiling. */
1592
1593 #undef FUNCTION_BLOCK_PROFILER
1594 #define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL) \
1595 ix86_output_function_block_profiler (FILE, BLOCK_OR_LABEL)
1596
1597 /* The following macro shall output assembler code to FILE
1598 to increment a counter associated with basic block number BLOCKNO. */
1599
1600 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1601 ix86_output_block_profiler (FILE, BLOCKNO)
1602
1603 /* The following macro shall output rtl for the epilogue
1604 to indicate a return from function during basic-block profiling.
1605
1606 If profiling_block_flag == 2:
1607
1608 Output assembler code to call function `__bb_trace_ret'.
1609
1610 Note that function `__bb_trace_ret' must not change the
1611 machine state, especially the flag register. To grant
1612 this, you must output code to save and restore registers
1613 either in this macro or in the macros MACHINE_STATE_SAVE
1614 and MACHINE_STATE_RESTORE. The last two macros will be
1615 used in the function `__bb_trace_ret', so you must make
1616 sure that the function prologue does not change any
1617 register prior to saving it with MACHINE_STATE_SAVE.
1618
1619 else if profiling_block_flag != 0:
1620
1621 The macro will not be used, so it need not distinguish
1622 these cases.
1623 */
1624
1625 #define FUNCTION_BLOCK_PROFILER_EXIT \
1626 emit_call_insn (gen_call (gen_rtx_MEM (QImode, \
1627 gen_rtx_SYMBOL_REF (VOIDmode, "__bb_trace_ret")), \
1628 const0_rtx))
1629
1630 /* The function `__bb_trace_func' is called in every basic block
1631 and is not allowed to change the machine state. Saving (restoring)
1632 the state can either be done in the BLOCK_PROFILER macro,
1633 before calling function (rsp. after returning from function)
1634 `__bb_trace_func', or it can be done inside the function by
1635 defining the macros:
1636
1637 MACHINE_STATE_SAVE(ID)
1638 MACHINE_STATE_RESTORE(ID)
1639
1640 In the latter case care must be taken, that the prologue code
1641 of function `__bb_trace_func' does not already change the
1642 state prior to saving it with MACHINE_STATE_SAVE.
1643
1644 The parameter `ID' is a string identifying a unique macro use.
1645
1646 On the i386 the initialization code at the begin of
1647 function `__bb_trace_func' contains a `sub' instruction
1648 therefore we handle save and restore of the flag register
1649 in the BLOCK_PROFILER macro.
1650
1651 Note that ebx, esi, and edi are callee-save, so we don't have to
1652 preserve them explicitly. */
1653
1654 #define MACHINE_STATE_SAVE(ID) \
1655 do { \
1656 register int eax_ __asm__("eax"); \
1657 register int ecx_ __asm__("ecx"); \
1658 register int edx_ __asm__("edx"); \
1659 __asm__ __volatile__ ("\
1660 push{l} %0\n\t\
1661 push{l} %1\n\t\
1662 push{l} %2" \
1663 : : "r"(eax_), "r"(ecx_), "r"(edx_)); \
1664 } while (0);
1665
1666 #define MACHINE_STATE_RESTORE(ID) \
1667 do { \
1668 register int eax_ __asm__("eax"); \
1669 register int ecx_ __asm__("ecx"); \
1670 register int edx_ __asm__("edx"); \
1671 __asm__ __volatile__ ("\
1672 pop{l} %2\n\t\
1673 pop{l} %1\n\t\
1674 pop{l} %0" \
1675 : "=r"(eax_), "=r"(ecx_), "=r"(edx_)); \
1676 } while (0);
1677
1678 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1679 the stack pointer does not matter. The value is tested only in
1680 functions that have frame pointers.
1681 No definition is equivalent to always zero. */
1682 /* Note on the 386 it might be more efficient not to define this since
1683 we have to restore it ourselves from the frame pointer, in order to
1684 use pop */
1685
1686 #define EXIT_IGNORE_STACK 1
1687
1688 /* Output assembler code for a block containing the constant parts
1689 of a trampoline, leaving space for the variable parts. */
1690
1691 /* On the 386, the trampoline contains two instructions:
1692 mov #STATIC,ecx
1693 jmp FUNCTION
1694 The trampoline is generated entirely at runtime. The operand of JMP
1695 is the address of FUNCTION relative to the instruction following the
1696 JMP (which is 5 bytes long). */
1697
1698 /* Length in units of the trampoline for entering a nested function. */
1699
1700 #define TRAMPOLINE_SIZE 10
1701
1702 /* Emit RTL insns to initialize the variable parts of a trampoline.
1703 FNADDR is an RTX for the address of the function's pure code.
1704 CXT is an RTX for the static chain value for the function. */
1705
1706 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1707 { \
1708 /* Compute offset from the end of the jmp to the target function. */ \
1709 rtx disp = expand_binop (SImode, sub_optab, FNADDR, \
1710 plus_constant (TRAMP, 10), \
1711 NULL_RTX, 1, OPTAB_DIRECT); \
1712 emit_move_insn (gen_rtx_MEM (QImode, TRAMP), GEN_INT (0xb9)); \
1713 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 1)), CXT); \
1714 emit_move_insn (gen_rtx_MEM (QImode, plus_constant (TRAMP, 5)), GEN_INT (0xe9));\
1715 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 6)), disp); \
1716 }
1717 \f
1718 /* Definitions for register eliminations.
1719
1720 This is an array of structures. Each structure initializes one pair
1721 of eliminable registers. The "from" register number is given first,
1722 followed by "to". Eliminations of the same "from" register are listed
1723 in order of preference.
1724
1725 There are two registers that can always be eliminated on the i386.
1726 The frame pointer and the arg pointer can be replaced by either the
1727 hard frame pointer or to the stack pointer, depending upon the
1728 circumstances. The hard frame pointer is not used before reload and
1729 so it is not eligible for elimination. */
1730
1731 #define ELIMINABLE_REGS \
1732 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1733 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1734 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1735 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1736
1737 /* Given FROM and TO register numbers, say whether this elimination is
1738 allowed. Frame pointer elimination is automatically handled.
1739
1740 All other eliminations are valid. */
1741
1742 #define CAN_ELIMINATE(FROM, TO) \
1743 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1744
1745 /* Define the offset between two registers, one to be eliminated, and the other
1746 its replacement, at the start of a routine. */
1747
1748 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1749 (OFFSET) = ix86_initial_elimination_offset (FROM, TO)
1750 \f
1751 /* Addressing modes, and classification of registers for them. */
1752
1753 /* #define HAVE_POST_INCREMENT 0 */
1754 /* #define HAVE_POST_DECREMENT 0 */
1755
1756 /* #define HAVE_PRE_DECREMENT 0 */
1757 /* #define HAVE_PRE_INCREMENT 0 */
1758
1759 /* Macros to check register numbers against specific register classes. */
1760
1761 /* These assume that REGNO is a hard or pseudo reg number.
1762 They give nonzero only if REGNO is a hard reg of the suitable class
1763 or a pseudo reg currently allocated to a suitable hard reg.
1764 Since they use reg_renumber, they are safe only once reg_renumber
1765 has been allocated, which happens in local-alloc.c. */
1766
1767 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1768 ((REGNO) < STACK_POINTER_REGNUM \
1769 || (REGNO >= FIRST_REX_INT_REG \
1770 && (REGNO) <= LAST_REX_INT_REG) \
1771 || ((unsigned) reg_renumber[REGNO] >= FIRST_REX_INT_REG \
1772 && (unsigned) reg_renumber[REGNO] <= LAST_REX_INT_REG) \
1773 || (unsigned) reg_renumber[REGNO] < STACK_POINTER_REGNUM)
1774
1775 #define REGNO_OK_FOR_BASE_P(REGNO) \
1776 ((REGNO) <= STACK_POINTER_REGNUM \
1777 || (REGNO) == ARG_POINTER_REGNUM \
1778 || (REGNO) == FRAME_POINTER_REGNUM \
1779 || (REGNO >= FIRST_REX_INT_REG \
1780 && (REGNO) <= LAST_REX_INT_REG) \
1781 || ((unsigned) reg_renumber[REGNO] >= FIRST_REX_INT_REG \
1782 && (unsigned) reg_renumber[REGNO] <= LAST_REX_INT_REG) \
1783 || (unsigned) reg_renumber[REGNO] <= STACK_POINTER_REGNUM)
1784
1785 #define REGNO_OK_FOR_SIREG_P(REGNO) ((REGNO) == 4 || reg_renumber[REGNO] == 4)
1786 #define REGNO_OK_FOR_DIREG_P(REGNO) ((REGNO) == 5 || reg_renumber[REGNO] == 5)
1787
1788 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1789 and check its validity for a certain class.
1790 We have two alternate definitions for each of them.
1791 The usual definition accepts all pseudo regs; the other rejects
1792 them unless they have been allocated suitable hard regs.
1793 The symbol REG_OK_STRICT causes the latter definition to be used.
1794
1795 Most source files want to accept pseudo regs in the hope that
1796 they will get allocated to the class that the insn wants them to be in.
1797 Source files for reload pass need to be strict.
1798 After reload, it makes no difference, since pseudo regs have
1799 been eliminated by then. */
1800
1801
1802 /* Non strict versions, pseudos are ok */
1803 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1804 (REGNO (X) < STACK_POINTER_REGNUM \
1805 || (REGNO (X) >= FIRST_REX_INT_REG \
1806 && REGNO (X) <= LAST_REX_INT_REG) \
1807 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1808
1809 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1810 (REGNO (X) <= STACK_POINTER_REGNUM \
1811 || REGNO (X) == ARG_POINTER_REGNUM \
1812 || REGNO (X) == FRAME_POINTER_REGNUM \
1813 || (REGNO (X) >= FIRST_REX_INT_REG \
1814 && REGNO (X) <= LAST_REX_INT_REG) \
1815 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1816
1817 /* Strict versions, hard registers only */
1818 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1819 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1820
1821 #ifndef REG_OK_STRICT
1822 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
1823 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
1824
1825 #else
1826 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
1827 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
1828 #endif
1829
1830 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1831 that is a valid memory address for an instruction.
1832 The MODE argument is the machine mode for the MEM expression
1833 that wants to use this address.
1834
1835 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1836 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1837
1838 See legitimize_pic_address in i386.c for details as to what
1839 constitutes a legitimate address when -fpic is used. */
1840
1841 #define MAX_REGS_PER_ADDRESS 2
1842
1843 #define CONSTANT_ADDRESS_P(X) \
1844 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1845 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1846 || GET_CODE (X) == CONST_DOUBLE)
1847
1848 /* Nonzero if the constant value X is a legitimate general operand.
1849 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1850
1851 #define LEGITIMATE_CONSTANT_P(X) 1
1852
1853 #ifdef REG_OK_STRICT
1854 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1855 { \
1856 if (legitimate_address_p (MODE, X, 1)) \
1857 goto ADDR; \
1858 }
1859
1860 #else
1861 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1862 { \
1863 if (legitimate_address_p (MODE, X, 0)) \
1864 goto ADDR; \
1865 }
1866
1867 #endif
1868
1869 /* If defined, a C expression to determine the base term of address X.
1870 This macro is used in only one place: `find_base_term' in alias.c.
1871
1872 It is always safe for this macro to not be defined. It exists so
1873 that alias analysis can understand machine-dependent addresses.
1874
1875 The typical use of this macro is to handle addresses containing
1876 a label_ref or symbol_ref within an UNSPEC. */
1877
1878 #define FIND_BASE_TERM(X) ix86_find_base_term (x)
1879
1880 /* Try machine-dependent ways of modifying an illegitimate address
1881 to be legitimate. If we find one, return the new, valid address.
1882 This macro is used in only one place: `memory_address' in explow.c.
1883
1884 OLDX is the address as it was before break_out_memory_refs was called.
1885 In some cases it is useful to look at this to decide what needs to be done.
1886
1887 MODE and WIN are passed so that this macro can use
1888 GO_IF_LEGITIMATE_ADDRESS.
1889
1890 It is always safe for this macro to do nothing. It exists to recognize
1891 opportunities to optimize the output.
1892
1893 For the 80386, we handle X+REG by loading X into a register R and
1894 using R+REG. R will go in a general reg and indexing will be used.
1895 However, if REG is a broken-out memory address or multiplication,
1896 nothing needs to be done because REG can certainly go in a general reg.
1897
1898 When -fpic is used, special handling is needed for symbolic references.
1899 See comments by legitimize_pic_address in i386.c for details. */
1900
1901 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1902 { \
1903 (X) = legitimize_address (X, OLDX, MODE); \
1904 if (memory_address_p (MODE, X)) \
1905 goto WIN; \
1906 }
1907
1908 #define REWRITE_ADDRESS(x) rewrite_address(x)
1909
1910 /* Nonzero if the constant value X is a legitimate general operand
1911 when generating PIC code. It is given that flag_pic is on and
1912 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1913
1914 #define LEGITIMATE_PIC_OPERAND_P(X) \
1915 (! SYMBOLIC_CONST (X) \
1916 || legitimate_pic_address_disp_p (X))
1917
1918 #define SYMBOLIC_CONST(X) \
1919 (GET_CODE (X) == SYMBOL_REF \
1920 || GET_CODE (X) == LABEL_REF \
1921 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1922
1923 /* Go to LABEL if ADDR (a legitimate address expression)
1924 has an effect that depends on the machine mode it is used for.
1925 On the 80386, only postdecrement and postincrement address depend thus
1926 (the amount of decrement or increment being the length of the operand). */
1927 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1928 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL
1929 \f
1930 /* Codes for all the SSE/MMX builtins. */
1931 enum ix86_builtins
1932 {
1933 IX86_BUILTIN_ADDPS,
1934 IX86_BUILTIN_ADDSS,
1935 IX86_BUILTIN_DIVPS,
1936 IX86_BUILTIN_DIVSS,
1937 IX86_BUILTIN_MULPS,
1938 IX86_BUILTIN_MULSS,
1939 IX86_BUILTIN_SUBPS,
1940 IX86_BUILTIN_SUBSS,
1941
1942 IX86_BUILTIN_CMPEQPS,
1943 IX86_BUILTIN_CMPLTPS,
1944 IX86_BUILTIN_CMPLEPS,
1945 IX86_BUILTIN_CMPGTPS,
1946 IX86_BUILTIN_CMPGEPS,
1947 IX86_BUILTIN_CMPNEQPS,
1948 IX86_BUILTIN_CMPNLTPS,
1949 IX86_BUILTIN_CMPNLEPS,
1950 IX86_BUILTIN_CMPNGTPS,
1951 IX86_BUILTIN_CMPNGEPS,
1952 IX86_BUILTIN_CMPORDPS,
1953 IX86_BUILTIN_CMPUNORDPS,
1954 IX86_BUILTIN_CMPNEPS,
1955 IX86_BUILTIN_CMPEQSS,
1956 IX86_BUILTIN_CMPLTSS,
1957 IX86_BUILTIN_CMPLESS,
1958 IX86_BUILTIN_CMPGTSS,
1959 IX86_BUILTIN_CMPGESS,
1960 IX86_BUILTIN_CMPNEQSS,
1961 IX86_BUILTIN_CMPNLTSS,
1962 IX86_BUILTIN_CMPNLESS,
1963 IX86_BUILTIN_CMPNGTSS,
1964 IX86_BUILTIN_CMPNGESS,
1965 IX86_BUILTIN_CMPORDSS,
1966 IX86_BUILTIN_CMPUNORDSS,
1967 IX86_BUILTIN_CMPNESS,
1968
1969 IX86_BUILTIN_COMIEQSS,
1970 IX86_BUILTIN_COMILTSS,
1971 IX86_BUILTIN_COMILESS,
1972 IX86_BUILTIN_COMIGTSS,
1973 IX86_BUILTIN_COMIGESS,
1974 IX86_BUILTIN_COMINEQSS,
1975 IX86_BUILTIN_UCOMIEQSS,
1976 IX86_BUILTIN_UCOMILTSS,
1977 IX86_BUILTIN_UCOMILESS,
1978 IX86_BUILTIN_UCOMIGTSS,
1979 IX86_BUILTIN_UCOMIGESS,
1980 IX86_BUILTIN_UCOMINEQSS,
1981
1982 IX86_BUILTIN_CVTPI2PS,
1983 IX86_BUILTIN_CVTPS2PI,
1984 IX86_BUILTIN_CVTSI2SS,
1985 IX86_BUILTIN_CVTSS2SI,
1986 IX86_BUILTIN_CVTTPS2PI,
1987 IX86_BUILTIN_CVTTSS2SI,
1988 IX86_BUILTIN_M_FROM_INT,
1989 IX86_BUILTIN_M_TO_INT,
1990
1991 IX86_BUILTIN_MAXPS,
1992 IX86_BUILTIN_MAXSS,
1993 IX86_BUILTIN_MINPS,
1994 IX86_BUILTIN_MINSS,
1995
1996 IX86_BUILTIN_LOADAPS,
1997 IX86_BUILTIN_LOADUPS,
1998 IX86_BUILTIN_STOREAPS,
1999 IX86_BUILTIN_STOREUPS,
2000 IX86_BUILTIN_LOADSS,
2001 IX86_BUILTIN_STORESS,
2002 IX86_BUILTIN_MOVSS,
2003
2004 IX86_BUILTIN_MOVHLPS,
2005 IX86_BUILTIN_MOVLHPS,
2006 IX86_BUILTIN_LOADHPS,
2007 IX86_BUILTIN_LOADLPS,
2008 IX86_BUILTIN_STOREHPS,
2009 IX86_BUILTIN_STORELPS,
2010
2011 IX86_BUILTIN_MASKMOVQ,
2012 IX86_BUILTIN_MOVMSKPS,
2013 IX86_BUILTIN_PMOVMSKB,
2014
2015 IX86_BUILTIN_MOVNTPS,
2016 IX86_BUILTIN_MOVNTQ,
2017
2018 IX86_BUILTIN_PACKSSWB,
2019 IX86_BUILTIN_PACKSSDW,
2020 IX86_BUILTIN_PACKUSWB,
2021
2022 IX86_BUILTIN_PADDB,
2023 IX86_BUILTIN_PADDW,
2024 IX86_BUILTIN_PADDD,
2025 IX86_BUILTIN_PADDSB,
2026 IX86_BUILTIN_PADDSW,
2027 IX86_BUILTIN_PADDUSB,
2028 IX86_BUILTIN_PADDUSW,
2029 IX86_BUILTIN_PSUBB,
2030 IX86_BUILTIN_PSUBW,
2031 IX86_BUILTIN_PSUBD,
2032 IX86_BUILTIN_PSUBSB,
2033 IX86_BUILTIN_PSUBSW,
2034 IX86_BUILTIN_PSUBUSB,
2035 IX86_BUILTIN_PSUBUSW,
2036
2037 IX86_BUILTIN_PAND,
2038 IX86_BUILTIN_PANDN,
2039 IX86_BUILTIN_POR,
2040 IX86_BUILTIN_PXOR,
2041
2042 IX86_BUILTIN_PAVGB,
2043 IX86_BUILTIN_PAVGW,
2044
2045 IX86_BUILTIN_PCMPEQB,
2046 IX86_BUILTIN_PCMPEQW,
2047 IX86_BUILTIN_PCMPEQD,
2048 IX86_BUILTIN_PCMPGTB,
2049 IX86_BUILTIN_PCMPGTW,
2050 IX86_BUILTIN_PCMPGTD,
2051
2052 IX86_BUILTIN_PEXTRW,
2053 IX86_BUILTIN_PINSRW,
2054
2055 IX86_BUILTIN_PMADDWD,
2056
2057 IX86_BUILTIN_PMAXSW,
2058 IX86_BUILTIN_PMAXUB,
2059 IX86_BUILTIN_PMINSW,
2060 IX86_BUILTIN_PMINUB,
2061
2062 IX86_BUILTIN_PMULHUW,
2063 IX86_BUILTIN_PMULHW,
2064 IX86_BUILTIN_PMULLW,
2065
2066 IX86_BUILTIN_PSADBW,
2067 IX86_BUILTIN_PSHUFW,
2068
2069 IX86_BUILTIN_PSLLW,
2070 IX86_BUILTIN_PSLLD,
2071 IX86_BUILTIN_PSLLQ,
2072 IX86_BUILTIN_PSRAW,
2073 IX86_BUILTIN_PSRAD,
2074 IX86_BUILTIN_PSRLW,
2075 IX86_BUILTIN_PSRLD,
2076 IX86_BUILTIN_PSRLQ,
2077 IX86_BUILTIN_PSLLWI,
2078 IX86_BUILTIN_PSLLDI,
2079 IX86_BUILTIN_PSLLQI,
2080 IX86_BUILTIN_PSRAWI,
2081 IX86_BUILTIN_PSRADI,
2082 IX86_BUILTIN_PSRLWI,
2083 IX86_BUILTIN_PSRLDI,
2084 IX86_BUILTIN_PSRLQI,
2085
2086 IX86_BUILTIN_PUNPCKHBW,
2087 IX86_BUILTIN_PUNPCKHWD,
2088 IX86_BUILTIN_PUNPCKHDQ,
2089 IX86_BUILTIN_PUNPCKLBW,
2090 IX86_BUILTIN_PUNPCKLWD,
2091 IX86_BUILTIN_PUNPCKLDQ,
2092
2093 IX86_BUILTIN_SHUFPS,
2094
2095 IX86_BUILTIN_RCPPS,
2096 IX86_BUILTIN_RCPSS,
2097 IX86_BUILTIN_RSQRTPS,
2098 IX86_BUILTIN_RSQRTSS,
2099 IX86_BUILTIN_SQRTPS,
2100 IX86_BUILTIN_SQRTSS,
2101
2102 IX86_BUILTIN_UNPCKHPS,
2103 IX86_BUILTIN_UNPCKLPS,
2104
2105 IX86_BUILTIN_ANDPS,
2106 IX86_BUILTIN_ANDNPS,
2107 IX86_BUILTIN_ORPS,
2108 IX86_BUILTIN_XORPS,
2109
2110 IX86_BUILTIN_EMMS,
2111 IX86_BUILTIN_LDMXCSR,
2112 IX86_BUILTIN_STMXCSR,
2113 IX86_BUILTIN_SFENCE,
2114 IX86_BUILTIN_PREFETCH,
2115
2116 /* Composite builtins, expand to more than one insn. */
2117 IX86_BUILTIN_SETPS1,
2118 IX86_BUILTIN_SETPS,
2119 IX86_BUILTIN_CLRPS,
2120 IX86_BUILTIN_SETRPS,
2121 IX86_BUILTIN_LOADPS1,
2122 IX86_BUILTIN_LOADRPS,
2123 IX86_BUILTIN_STOREPS1,
2124 IX86_BUILTIN_STORERPS,
2125
2126 IX86_BUILTIN_MMX_ZERO,
2127
2128 IX86_BUILTIN_MAX
2129 };
2130
2131 /* Initialize the target-specific builtin functions. Only do something
2132 if TARGET_MMX is nonzero; we take care in ix86_init_builtins not to
2133 enable any SSE builtins if TARGET_SSE is zero. */
2134 #define MD_INIT_BUILTINS \
2135 do \
2136 { \
2137 if (TARGET_MMX) \
2138 ix86_init_builtins (); \
2139 } \
2140 while (0)
2141
2142 /* Expand a target-specific builtin function. */
2143 #define MD_EXPAND_BUILTIN(EXP, TARGET, SUBTARGET, MODE, IGNORE) \
2144 ix86_expand_builtin (EXP, TARGET, SUBTARGET, MODE, IGNORE)
2145 \f
2146 /* Define this macro if references to a symbol must be treated
2147 differently depending on something about the variable or
2148 function named by the symbol (such as what section it is in).
2149
2150 On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol
2151 so that we may access it directly in the GOT. */
2152
2153 #define ENCODE_SECTION_INFO(DECL) \
2154 do \
2155 { \
2156 if (flag_pic) \
2157 { \
2158 rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
2159 ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
2160 \
2161 if (GET_CODE (rtl) == MEM) \
2162 { \
2163 if (TARGET_DEBUG_ADDR \
2164 && TREE_CODE_CLASS (TREE_CODE (DECL)) == 'd') \
2165 { \
2166 fprintf (stderr, "Encode %s, public = %d\n", \
2167 IDENTIFIER_POINTER (DECL_NAME (DECL)), \
2168 TREE_PUBLIC (DECL)); \
2169 } \
2170 \
2171 SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
2172 = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
2173 || ! TREE_PUBLIC (DECL)); \
2174 } \
2175 } \
2176 } \
2177 while (0)
2178
2179 /* The `FINALIZE_PIC' macro serves as a hook to emit these special
2180 codes once the function is being compiled into assembly code, but
2181 not before. (It is not done before, because in the case of
2182 compiling an inline function, it would lead to multiple PIC
2183 prologues being included in functions which used inline functions
2184 and were compiled to assembly language.) */
2185
2186 #define FINALIZE_PIC \
2187 do \
2188 { \
2189 current_function_uses_pic_offset_table |= profile_flag | profile_block_flag; \
2190 } \
2191 while (0)
2192
2193 \f
2194 /* If defined, a C expression whose value is nonzero if IDENTIFIER
2195 with arguments ARGS is a valid machine specific attribute for DECL.
2196 The attributes in ATTRIBUTES have previously been assigned to DECL. */
2197
2198 #define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
2199 (ix86_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
2200
2201 /* If defined, a C expression whose value is nonzero if IDENTIFIER
2202 with arguments ARGS is a valid machine specific attribute for TYPE.
2203 The attributes in ATTRIBUTES have previously been assigned to TYPE. */
2204
2205 #define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
2206 (ix86_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
2207
2208 /* If defined, a C expression whose value is zero if the attributes on
2209 TYPE1 and TYPE2 are incompatible, one if they are compatible, and
2210 two if they are nearly compatible (which causes a warning to be
2211 generated). */
2212
2213 #define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
2214 (ix86_comp_type_attributes (TYPE1, TYPE2))
2215
2216 /* If defined, a C statement that assigns default attributes to newly
2217 defined TYPE. */
2218
2219 /* #define SET_DEFAULT_TYPE_ATTRIBUTES (TYPE) */
2220
2221 /* Max number of args passed in registers. If this is more than 3, we will
2222 have problems with ebx (register #4), since it is a caller save register and
2223 is also used as the pic register in ELF. So for now, don't allow more than
2224 3 registers to be passed in registers. */
2225
2226 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2227
2228 #define SSE_REGPARM_MAX (TARGET_64BIT ? 16 : 0)
2229
2230 \f
2231 /* Specify the machine mode that this machine uses
2232 for the index in the tablejump instruction. */
2233 #define CASE_VECTOR_MODE Pmode
2234
2235 /* Define as C expression which evaluates to nonzero if the tablejump
2236 instruction expects the table to contain offsets from the address of the
2237 table.
2238 Do not define this if the table should contain absolute addresses. */
2239 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2240
2241 /* Specify the tree operation to be used to convert reals to integers.
2242 This should be changed to take advantage of fist --wfs ??
2243 */
2244 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2245
2246 /* This is the kind of divide that is easiest to do in the general case. */
2247 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
2248
2249 /* Define this as 1 if `char' should by default be signed; else as 0. */
2250 #define DEFAULT_SIGNED_CHAR 1
2251
2252 /* Max number of bytes we can move from memory to memory
2253 in one reasonably fast instruction. */
2254 #define MOVE_MAX 16
2255
2256 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
2257 move efficiently, as opposed to MOVE_MAX which is the maximum
2258 number of bytes we can move with a single instruction. */
2259 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2260
2261 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2262 move-instruction pairs, we will do a movstr or libcall instead.
2263 Increasing the value will always make code faster, but eventually
2264 incurs high cost in increased code size.
2265
2266 If you don't define this, a reasonable default is used. */
2267
2268 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2269
2270 /* Define if shifts truncate the shift count
2271 which implies one can omit a sign-extension or zero-extension
2272 of a shift count. */
2273 /* On i386, shifts do truncate the count. But bit opcodes don't. */
2274
2275 /* #define SHIFT_COUNT_TRUNCATED */
2276
2277 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2278 is done just by pretending it is already truncated. */
2279 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2280
2281 /* We assume that the store-condition-codes instructions store 0 for false
2282 and some other value for true. This is the value stored for true. */
2283
2284 #define STORE_FLAG_VALUE 1
2285
2286 /* When a prototype says `char' or `short', really pass an `int'.
2287 (The 386 can't easily push less than an int.) */
2288
2289 #define PROMOTE_PROTOTYPES 1
2290
2291 /* A macro to update M and UNSIGNEDP when an object whose type is
2292 TYPE and which has the specified mode and signedness is to be
2293 stored in a register. This macro is only called when TYPE is a
2294 scalar type.
2295
2296 On i386 it is sometimes usefull to promote HImode and QImode
2297 quantities to SImode. The choice depends on target type. */
2298
2299 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2300 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2301 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
2302 (MODE) = SImode;
2303
2304 /* Specify the machine mode that pointers have.
2305 After generation of rtl, the compiler makes no further distinction
2306 between pointers and any other objects of this machine mode. */
2307 #define Pmode (TARGET_64BIT ? DImode : SImode)
2308
2309 /* A function address in a call instruction
2310 is a byte address (for indexing purposes)
2311 so give the MEM rtx a byte's mode. */
2312 #define FUNCTION_MODE QImode
2313 \f
2314 /* A part of a C `switch' statement that describes the relative costs
2315 of constant RTL expressions. It must contain `case' labels for
2316 expression codes `const_int', `const', `symbol_ref', `label_ref'
2317 and `const_double'. Each case must ultimately reach a `return'
2318 statement to return the relative cost of the use of that kind of
2319 constant value in an expression. The cost may depend on the
2320 precise value of the constant, which is available for examination
2321 in X, and the rtx code of the expression in which it is contained,
2322 found in OUTER_CODE.
2323
2324 CODE is the expression code--redundant, since it can be obtained
2325 with `GET_CODE (X)'. */
2326
2327 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
2328 case CONST_INT: \
2329 return (unsigned) INTVAL (RTX) < 256 ? 0 : 1; \
2330 case CONST: \
2331 case LABEL_REF: \
2332 case SYMBOL_REF: \
2333 return flag_pic && SYMBOLIC_CONST (RTX) ? 2 : 1; \
2334 \
2335 case CONST_DOUBLE: \
2336 { \
2337 int code; \
2338 if (GET_MODE (RTX) == VOIDmode) \
2339 return 2; \
2340 \
2341 code = standard_80387_constant_p (RTX); \
2342 return code == 1 ? 0 : \
2343 code == 2 ? 1 : \
2344 2; \
2345 }
2346
2347 /* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
2348 #define TOPLEVEL_COSTS_N_INSNS(N) \
2349 do { total = COSTS_N_INSNS (N); goto egress_rtx_costs; } while (0)
2350
2351 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
2352 This can be used, for example, to indicate how costly a multiply
2353 instruction is. In writing this macro, you can use the construct
2354 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
2355 instructions. OUTER_CODE is the code of the expression in which X
2356 is contained.
2357
2358 This macro is optional; do not define it if the default cost
2359 assumptions are adequate for the target machine. */
2360
2361 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2362 case ASHIFT: \
2363 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2364 && GET_MODE (XEXP (X, 0)) == SImode) \
2365 { \
2366 HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
2367 if (value == 1) \
2368 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
2369 if (value == 2 || value == 3) \
2370 TOPLEVEL_COSTS_N_INSNS (ix86_cost->lea); \
2371 } \
2372 /* fall through */ \
2373 \
2374 case ROTATE: \
2375 case ASHIFTRT: \
2376 case LSHIFTRT: \
2377 case ROTATERT: \
2378 if (GET_MODE (XEXP (X, 0)) == DImode) \
2379 { \
2380 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2381 { \
2382 if (INTVAL (XEXP (X, 1)) > 32) \
2383 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const + 2); \
2384 else \
2385 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const * 2); \
2386 } \
2387 else \
2388 { \
2389 if (GET_CODE (XEXP (X, 1)) == AND) \
2390 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 2); \
2391 else \
2392 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2); \
2393 } \
2394 } \
2395 else \
2396 { \
2397 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2398 TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_const); \
2399 else \
2400 TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_var); \
2401 } \
2402 break; \
2403 \
2404 case MULT: \
2405 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2406 { \
2407 unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
2408 int nbits = 0; \
2409 \
2410 while (value != 0) \
2411 { \
2412 nbits++; \
2413 value >>= 1; \
2414 } \
2415 \
2416 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
2417 + nbits * ix86_cost->mult_bit); \
2418 } \
2419 else /* This is arbitrary */ \
2420 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
2421 + 7 * ix86_cost->mult_bit); \
2422 \
2423 case DIV: \
2424 case UDIV: \
2425 case MOD: \
2426 case UMOD: \
2427 TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide); \
2428 \
2429 case PLUS: \
2430 if (GET_CODE (XEXP (X, 0)) == PLUS \
2431 && GET_CODE (XEXP (XEXP (X, 0), 0)) == MULT \
2432 && GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 1)) == CONST_INT \
2433 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
2434 { \
2435 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 0), 0), 1)); \
2436 if (val == 2 || val == 4 || val == 8) \
2437 { \
2438 return (COSTS_N_INSNS (ix86_cost->lea) \
2439 + rtx_cost (XEXP (XEXP (X, 0), 1), OUTER_CODE) \
2440 + rtx_cost (XEXP (XEXP (XEXP (X, 0), 0), 0), OUTER_CODE) \
2441 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
2442 } \
2443 } \
2444 else if (GET_CODE (XEXP (X, 0)) == MULT \
2445 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
2446 { \
2447 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
2448 if (val == 2 || val == 4 || val == 8) \
2449 { \
2450 return (COSTS_N_INSNS (ix86_cost->lea) \
2451 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
2452 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
2453 } \
2454 } \
2455 else if (GET_CODE (XEXP (X, 0)) == PLUS) \
2456 { \
2457 return (COSTS_N_INSNS (ix86_cost->lea) \
2458 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
2459 + rtx_cost (XEXP (XEXP (X, 0), 1), OUTER_CODE) \
2460 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
2461 } \
2462 \
2463 /* fall through */ \
2464 case AND: \
2465 case IOR: \
2466 case XOR: \
2467 case MINUS: \
2468 if (GET_MODE (X) == DImode) \
2469 return (COSTS_N_INSNS (ix86_cost->add) * 2 \
2470 + (rtx_cost (XEXP (X, 0), OUTER_CODE) \
2471 << (GET_MODE (XEXP (X, 0)) != DImode)) \
2472 + (rtx_cost (XEXP (X, 1), OUTER_CODE) \
2473 << (GET_MODE (XEXP (X, 1)) != DImode))); \
2474 \
2475 /* fall through */ \
2476 case NEG: \
2477 case NOT: \
2478 if (GET_MODE (X) == DImode) \
2479 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2); \
2480 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
2481 \
2482 egress_rtx_costs: \
2483 break;
2484
2485
2486 /* An expression giving the cost of an addressing mode that contains
2487 ADDRESS. If not defined, the cost is computed from the ADDRESS
2488 expression and the `CONST_COSTS' values.
2489
2490 For most CISC machines, the default cost is a good approximation
2491 of the true cost of the addressing mode. However, on RISC
2492 machines, all instructions normally have the same length and
2493 execution time. Hence all addresses will have equal costs.
2494
2495 In cases where more than one form of an address is known, the form
2496 with the lowest cost will be used. If multiple forms have the
2497 same, lowest, cost, the one that is the most complex will be used.
2498
2499 For example, suppose an address that is equal to the sum of a
2500 register and a constant is used twice in the same basic block.
2501 When this macro is not defined, the address will be computed in a
2502 register and memory references will be indirect through that
2503 register. On machines where the cost of the addressing mode
2504 containing the sum is no higher than that of a simple indirect
2505 reference, this will produce an additional instruction and
2506 possibly require an additional register. Proper specification of
2507 this macro eliminates this overhead for such machines.
2508
2509 Similar use of this macro is made in strength reduction of loops.
2510
2511 ADDRESS need not be valid as an address. In such a case, the cost
2512 is not relevant and can be any value; invalid addresses need not be
2513 assigned a different cost.
2514
2515 On machines where an address involving more than one register is as
2516 cheap as an address computation involving only one register,
2517 defining `ADDRESS_COST' to reflect this can cause two registers to
2518 be live over a region of code where only one would have been if
2519 `ADDRESS_COST' were not defined in that manner. This effect should
2520 be considered in the definition of this macro. Equivalent costs
2521 should probably only be given to addresses with different numbers
2522 of registers on machines with lots of registers.
2523
2524 This macro will normally either not be defined or be defined as a
2525 constant.
2526
2527 For i386, it is better to use a complex address than let gcc copy
2528 the address into a reg and make a new pseudo. But not if the address
2529 requires to two regs - that would mean more pseudos with longer
2530 lifetimes. */
2531
2532 #define ADDRESS_COST(RTX) \
2533 ix86_address_cost (RTX)
2534
2535 /* A C expression for the cost of moving data from a register in class FROM to
2536 one in class TO. The classes are expressed using the enumeration values
2537 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2538 interpreted relative to that.
2539
2540 It is not required that the cost always equal 2 when FROM is the same as TO;
2541 on some machines it is expensive to move between registers if they are not
2542 general registers. */
2543
2544 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2545 ix86_register_move_cost (MODE, CLASS1, CLASS2)
2546
2547 /* A C expression for the cost of moving data of mode M between a
2548 register and memory. A value of 2 is the default; this cost is
2549 relative to those in `REGISTER_MOVE_COST'.
2550
2551 If moving between registers and memory is more expensive than
2552 between two registers, you should define this macro to express the
2553 relative cost. */
2554
2555 #define MEMORY_MOVE_COST(MODE,CLASS,IN) \
2556 ix86_memory_move_cost (MODE, CLASS, IN)
2557
2558 /* A C expression for the cost of a branch instruction. A value of 1
2559 is the default; other values are interpreted relative to that. */
2560
2561 #define BRANCH_COST ix86_branch_cost
2562
2563 /* Define this macro as a C expression which is nonzero if accessing
2564 less than a word of memory (i.e. a `char' or a `short') is no
2565 faster than accessing a word of memory, i.e., if such access
2566 require more than one instruction or if there is no difference in
2567 cost between byte and (aligned) word loads.
2568
2569 When this macro is not defined, the compiler will access a field by
2570 finding the smallest containing object; when it is defined, a
2571 fullword load will be used if alignment permits. Unless bytes
2572 accesses are faster than word accesses, using word accesses is
2573 preferable since it may eliminate subsequent memory access if
2574 subsequent accesses occur to other fields in the same word of the
2575 structure, but to different bytes. */
2576
2577 #define SLOW_BYTE_ACCESS 0
2578
2579 /* Nonzero if access to memory by shorts is slow and undesirable. */
2580 #define SLOW_SHORT_ACCESS 0
2581
2582 /* Define this macro if zero-extension (of a `char' or `short' to an
2583 `int') can be done faster if the destination is a register that is
2584 known to be zero.
2585
2586 If you define this macro, you must have instruction patterns that
2587 recognize RTL structures like this:
2588
2589 (set (strict_low_part (subreg:QI (reg:SI ...) 0)) ...)
2590
2591 and likewise for `HImode'. */
2592
2593 /* #define SLOW_ZERO_EXTEND */
2594
2595 /* Define this macro to be the value 1 if unaligned accesses have a
2596 cost many times greater than aligned accesses, for example if they
2597 are emulated in a trap handler.
2598
2599 When this macro is non-zero, the compiler will act as if
2600 `STRICT_ALIGNMENT' were non-zero when generating code for block
2601 moves. This can cause significantly more instructions to be
2602 produced. Therefore, do not set this macro non-zero if unaligned
2603 accesses only add a cycle or two to the time for a memory access.
2604
2605 If the value of this macro is always zero, it need not be defined. */
2606
2607 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2608
2609 /* Define this macro to inhibit strength reduction of memory
2610 addresses. (On some machines, such strength reduction seems to do
2611 harm rather than good.) */
2612
2613 /* #define DONT_REDUCE_ADDR */
2614
2615 /* Define this macro if it is as good or better to call a constant
2616 function address than to call an address kept in a register.
2617
2618 Desirable on the 386 because a CALL with a constant address is
2619 faster than one with a register address. */
2620
2621 #define NO_FUNCTION_CSE
2622
2623 /* Define this macro if it is as good or better for a function to call
2624 itself with an explicit address than to call an address kept in a
2625 register. */
2626
2627 #define NO_RECURSIVE_FUNCTION_CSE
2628
2629 /* A C statement (sans semicolon) to update the integer variable COST
2630 based on the relationship between INSN that is dependent on
2631 DEP_INSN through the dependence LINK. The default is to make no
2632 adjustment to COST. This can be used for example to specify to
2633 the scheduler that an output- or anti-dependence does not incur
2634 the same cost as a data-dependence. */
2635
2636 #define ADJUST_COST(insn,link,dep_insn,cost) \
2637 (cost) = ix86_adjust_cost(insn, link, dep_insn, cost)
2638
2639 #define ISSUE_RATE \
2640 ix86_issue_rate ()
2641
2642 #define MD_SCHED_INIT(DUMP, SCHED_VERBOSE, MAX_READY) \
2643 ix86_sched_init (DUMP, SCHED_VERBOSE)
2644
2645 #define MD_SCHED_REORDER(DUMP, SCHED_VERBOSE, READY, N_READY, CLOCK, CIM) \
2646 (CIM) = ix86_sched_reorder (DUMP, SCHED_VERBOSE, READY, N_READY, CLOCK)
2647
2648 #define MD_SCHED_VARIABLE_ISSUE(DUMP, SCHED_VERBOSE, INSN, CAN_ISSUE_MORE) \
2649 ((CAN_ISSUE_MORE) = \
2650 ix86_variable_issue (DUMP, SCHED_VERBOSE, INSN, CAN_ISSUE_MORE))
2651 \f
2652 /* Add any extra modes needed to represent the condition code.
2653
2654 For the i386, we need separate modes when floating-point
2655 equality comparisons are being done.
2656
2657 Add CCNO to indicate comparisons against zero that requires
2658 Overflow flag to be unset. Sign bit test is used instead and
2659 thus can be used to form "a&b>0" type of tests.
2660
2661 Add CCGC to indicate comparisons agains zero that allows
2662 unspecified garbage in the Carry flag. This mode is used
2663 by inc/dec instructions.
2664
2665 Add CCGOC to indicate comparisons agains zero that allows
2666 unspecified garbage in the Carry and Overflow flag. This
2667 mode is used to simulate comparisons of (a-b) and (a+b)
2668 against zero using sub/cmp/add operations.
2669
2670 Add CCZ to indicate that only the Zero flag is valid. */
2671
2672 #define EXTRA_CC_MODES \
2673 CC(CCGCmode, "CCGC") \
2674 CC(CCGOCmode, "CCGOC") \
2675 CC(CCNOmode, "CCNO") \
2676 CC(CCZmode, "CCZ") \
2677 CC(CCFPmode, "CCFP") \
2678 CC(CCFPUmode, "CCFPU")
2679
2680 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2681 return the mode to be used for the comparison.
2682
2683 For floating-point equality comparisons, CCFPEQmode should be used.
2684 VOIDmode should be used in all other cases.
2685
2686 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2687 possible, to allow for more combinations. */
2688
2689 #define SELECT_CC_MODE(OP,X,Y) ix86_cc_mode (OP, X, Y)
2690
2691 /* Return non-zero if MODE implies a floating point inequality can be
2692 reversed. */
2693
2694 #define REVERSIBLE_CC_MODE(MODE) 1
2695
2696 /* A C expression whose value is reversed condition code of the CODE for
2697 comparison done in CC_MODE mode. */
2698 #define REVERSE_CONDITION(CODE, MODE) \
2699 ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2700 : reverse_condition_maybe_unordered (CODE))
2701
2702 \f
2703 /* Control the assembler format that we output, to the extent
2704 this does not vary between assemblers. */
2705
2706 /* How to refer to registers in assembler output.
2707 This sequence is indexed by compiler's hard-register-number (see above). */
2708
2709 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2710 For non floating point regs, the following are the HImode names.
2711
2712 For float regs, the stack top is sometimes referred to as "%st(0)"
2713 instead of just "%st". PRINT_REG handles this with the "y" code. */
2714
2715 #define HI_REGISTER_NAMES \
2716 {"ax","dx","cx","bx","si","di","bp","sp", \
2717 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \
2718 "flags","fpsr", "dirflag", "frame" }
2719
2720 #undef HI_REGISTER_NAMES
2721 #define HI_REGISTER_NAMES \
2722 {"ax","dx","cx","bx","si","di","bp","sp", \
2723 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \
2724 "flags","fpsr", "dirflag", "frame", \
2725 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2726 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2727 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2728 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2729
2730 #define REGISTER_NAMES HI_REGISTER_NAMES
2731
2732 /* Table of additional register names to use in user input. */
2733
2734 #define ADDITIONAL_REGISTER_NAMES \
2735 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2736 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2737 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2738 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2739 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2740 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2741 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
2742 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2743
2744 /* Note we are omitting these since currently I don't know how
2745 to get gcc to use these, since they want the same but different
2746 number as al, and ax.
2747 */
2748
2749 #define QI_REGISTER_NAMES \
2750 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2751
2752 /* These parallel the array above, and can be used to access bits 8:15
2753 of regs 0 through 3. */
2754
2755 #define QI_HIGH_REGISTER_NAMES \
2756 {"ah", "dh", "ch", "bh", }
2757
2758 #define MMX_REGISTER_NAMES \
2759 {0,0,0,0,0,0,0,0,"mm0","mm1","mm2","mm3","mm4","mm5","mm6","mm7"}
2760
2761 /* How to renumber registers for dbx and gdb. */
2762
2763 #define DBX_REGISTER_NUMBER(n) \
2764 (TARGET_64BIT ? dbx64_register_map[n] : dbx_register_map[n])
2765
2766 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2767 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2768 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2769
2770 /* Before the prologue, RA is at 0(%esp). */
2771 #define INCOMING_RETURN_ADDR_RTX \
2772 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2773
2774 /* After the prologue, RA is at -4(AP) in the current frame. */
2775 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2776 ((COUNT) == 0 \
2777 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, TARGET_64BIT ? -8 : -4))\
2778 : gen_rtx_MEM (Pmode, plus_constant (FRAME, TARGET_64BIT ? 8 : 4)))
2779
2780 /* PC is dbx register 8; let's use that column for RA. */
2781 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2782
2783 /* Before the prologue, the top of the frame is at 4(%esp). */
2784 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2785
2786 /* This is how to output the definition of a user-level label named NAME,
2787 such as the label on a static function or variable NAME. */
2788
2789 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2790 (assemble_name (FILE, NAME), fputs (":\n", FILE))
2791
2792 /* This is how to output an assembler line defining a `double' constant. */
2793
2794 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2795 do { long l[2]; \
2796 REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l); \
2797 fprintf (FILE, "%s\t0x%lx,0x%lx\n", ASM_LONG, l[0], l[1]); \
2798 } while (0)
2799
2800 /* This is how to output a `long double' extended real constant. */
2801
2802 #undef ASM_OUTPUT_LONG_DOUBLE
2803 #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
2804 do { long l[4]; \
2805 REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \
2806 if (TARGET_128BIT_LONG_DOUBLE) \
2807 fprintf (FILE, "%s\t0x%lx,0x%lx,0x%lx,0x0\n", ASM_LONG, l[0], l[1], l[2]); \
2808 else \
2809 fprintf (FILE, "%s\t0x%lx,0x%lx,0x%lx\n", ASM_LONG, l[0], l[1], l[2]); \
2810 } while (0)
2811
2812 /* This is how to output an assembler line defining a `float' constant. */
2813
2814 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2815 do { long l; \
2816 REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
2817 fprintf ((FILE), "%s\t0x%lx\n", ASM_LONG, l); \
2818 } while (0)
2819
2820 /* Store in OUTPUT a string (made with alloca) containing
2821 an assembler-name for a local static variable named NAME.
2822 LABELNO is an integer which is different for each call. */
2823
2824 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2825 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2826 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2827
2828 /* This is how to output an assembler line defining an `int' constant. */
2829
2830 #define ASM_OUTPUT_INT(FILE,VALUE) \
2831 ( fprintf (FILE, "%s\t", ASM_LONG), \
2832 output_addr_const (FILE,(VALUE)), \
2833 putc('\n',FILE))
2834
2835 /* Likewise for `char' and `short' constants. */
2836 /* is this supposed to do align too?? */
2837
2838 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2839 ( fprintf (FILE, "%s\t", ASM_SHORT), \
2840 output_addr_const (FILE,(VALUE)), \
2841 putc('\n',FILE))
2842
2843 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
2844 ( fprintf (FILE, "%s", ASM_BYTE_OP), \
2845 output_addr_const (FILE, (VALUE)), \
2846 putc ('\n', FILE))
2847
2848 /* This is how to output an assembler line for a numeric constant byte. */
2849
2850 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
2851 asm_fprintf ((FILE), "%s0x%x\n", ASM_BYTE_OP, (VALUE))
2852
2853 /* This is how to output an insn to push a register on the stack.
2854 It need not be very fast code. */
2855
2856 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2857 asm_fprintf (FILE, "\tpush{l}\t%%e%s\n", reg_names[REGNO])
2858
2859 /* This is how to output an insn to pop a register from the stack.
2860 It need not be very fast code. */
2861
2862 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2863 asm_fprintf (FILE, "\tpop{l}\t%%e%s\n", reg_names[REGNO])
2864
2865 /* This is how to output an element of a case-vector that is absolute.
2866 */
2867
2868 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2869 fprintf (FILE, "%s %s%d\n", ASM_LONG, LPREFIX, VALUE)
2870
2871 /* This is how to output an element of a case-vector that is relative.
2872 We don't use these on the 386 yet, because the ATT assembler can't do
2873 forward reference the differences.
2874 */
2875
2876 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2877 fprintf (FILE, "\t%s\t%s%d-%s%d\n",ASM_LONG, LPREFIX, VALUE, LPREFIX, REL)
2878
2879 /* A C statement that outputs an address constant appropriate to
2880 for DWARF debugging. */
2881
2882 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE,X) \
2883 i386_dwarf_output_addr_const((FILE),(X))
2884
2885 /* Either simplify a location expression, or return the original. */
2886
2887 #define ASM_SIMPLIFY_DWARF_ADDR(X) \
2888 i386_simplify_dwarf_addr(X)
2889
2890 /* Define the parentheses used to group arithmetic operations
2891 in assembler code. */
2892
2893 #define ASM_OPEN_PAREN ""
2894 #define ASM_CLOSE_PAREN ""
2895
2896 /* Define results of standard character escape sequences. */
2897 #define TARGET_BELL 007
2898 #define TARGET_BS 010
2899 #define TARGET_TAB 011
2900 #define TARGET_NEWLINE 012
2901 #define TARGET_VT 013
2902 #define TARGET_FF 014
2903 #define TARGET_CR 015
2904 \f
2905 /* Print operand X (an rtx) in assembler syntax to file FILE.
2906 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2907 The CODE z takes the size of operand from the following digit, and
2908 outputs b,w,or l respectively.
2909
2910 On the 80386, we use several such letters:
2911 f -- float insn (print a CONST_DOUBLE as a float rather than in hex).
2912 L,W,B,Q,S,T -- print the opcode suffix for specified size of operand.
2913 R -- print the prefix for register names.
2914 z -- print the opcode suffix for the size of the current operand.
2915 * -- print a star (in certain assembler syntax)
2916 A -- print an absolute memory reference.
2917 P -- if PIC, print an @PLT suffix.
2918 X -- don't print any sort of PIC '@' suffix for a symbol.
2919 s -- ??? something to do with double shifts. not actually used, afaik.
2920 C -- print a conditional move suffix corresponding to the op code.
2921 c -- likewise, but reverse the condition.
2922 F,f -- likewise, but for floating-point. */
2923
2924 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2925 ((CODE) == '*')
2926
2927 /* Print the name of a register based on its machine mode and number.
2928 If CODE is 'w', pretend the mode is HImode.
2929 If CODE is 'b', pretend the mode is QImode.
2930 If CODE is 'k', pretend the mode is SImode.
2931 If CODE is 'd', pretend the mode is DImode.
2932 If CODE is 'h', pretend the reg is the `high' byte register.
2933 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
2934
2935 #define PRINT_REG(X, CODE, FILE) \
2936 print_reg (X, CODE, FILE)
2937
2938 #define PRINT_OPERAND(FILE, X, CODE) \
2939 print_operand (FILE, X, CODE)
2940
2941 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2942 print_operand_address (FILE, ADDR)
2943
2944 /* Print the name of a register for based on its machine mode and number.
2945 This macro is used to print debugging output.
2946 This macro is different from PRINT_REG in that it may be used in
2947 programs that are not linked with aux-output.o. */
2948
2949 #define DEBUG_PRINT_REG(X, CODE, FILE) \
2950 do { static const char * const hi_name[] = HI_REGISTER_NAMES; \
2951 static const char * const qi_name[] = QI_REGISTER_NAMES; \
2952 fprintf (FILE, "%d ", REGNO (X)); \
2953 if (REGNO (X) == FLAGS_REG) \
2954 { fputs ("flags", FILE); break; } \
2955 if (REGNO (X) == DIRFLAG_REG) \
2956 { fputs ("dirflag", FILE); break; } \
2957 if (REGNO (X) == FPSR_REG) \
2958 { fputs ("fpsr", FILE); break; } \
2959 if (REGNO (X) == ARG_POINTER_REGNUM) \
2960 { fputs ("argp", FILE); break; } \
2961 if (REGNO (X) == FRAME_POINTER_REGNUM) \
2962 { fputs ("frame", FILE); break; } \
2963 if (STACK_TOP_P (X)) \
2964 { fputs ("st(0)", FILE); break; } \
2965 if (FP_REG_P (X)) \
2966 { fputs (hi_name[REGNO(X)], FILE); break; } \
2967 if (REX_INT_REG_P (X)) \
2968 { \
2969 switch (GET_MODE_SIZE (GET_MODE (X))) \
2970 { \
2971 default: \
2972 case 8: \
2973 fprintf (FILE, "r%i", REGNO (X) \
2974 - FIRST_REX_INT_REG + 8); \
2975 break; \
2976 case 4: \
2977 fprintf (FILE, "r%id", REGNO (X) \
2978 - FIRST_REX_INT_REG + 8); \
2979 break; \
2980 case 2: \
2981 fprintf (FILE, "r%iw", REGNO (X) \
2982 - FIRST_REX_INT_REG + 8); \
2983 break; \
2984 case 1: \
2985 fprintf (FILE, "r%ib", REGNO (X) \
2986 - FIRST_REX_INT_REG + 8); \
2987 break; \
2988 } \
2989 break; \
2990 } \
2991 switch (GET_MODE_SIZE (GET_MODE (X))) \
2992 { \
2993 case 8: \
2994 fputs ("r", FILE); \
2995 fputs (hi_name[REGNO (X)], FILE); \
2996 break; \
2997 default: \
2998 fputs ("e", FILE); \
2999 case 2: \
3000 fputs (hi_name[REGNO (X)], FILE); \
3001 break; \
3002 case 1: \
3003 fputs (qi_name[REGNO (X)], FILE); \
3004 break; \
3005 } \
3006 } while (0)
3007
3008 /* Routines in libgcc that return floats must return them in an fp reg,
3009 just as other functions do which return such values.
3010 These macros make that happen. */
3011
3012 #define FLOAT_VALUE_TYPE float
3013 #define INTIFY(FLOATVAL) FLOATVAL
3014
3015 /* a letter which is not needed by the normal asm syntax, which
3016 we can use for operand syntax in the extended asm */
3017
3018 #define ASM_OPERAND_LETTER '#'
3019 #define RET return ""
3020 #define AT_SP(mode) (gen_rtx_MEM ((mode), stack_pointer_rtx))
3021 \f
3022 /* Define the codes that are matched by predicates in i386.c. */
3023
3024 #define PREDICATE_CODES \
3025 {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
3026 SYMBOL_REF, LABEL_REF, CONST}}, \
3027 {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
3028 SYMBOL_REF, LABEL_REF, CONST}}, \
3029 {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
3030 SYMBOL_REF, LABEL_REF, CONST}}, \
3031 {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
3032 SYMBOL_REF, LABEL_REF, CONST}}, \
3033 {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
3034 SYMBOL_REF, LABEL_REF, CONST}}, \
3035 {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
3036 SYMBOL_REF, LABEL_REF, CONST}}, \
3037 {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3038 SYMBOL_REF, LABEL_REF}}, \
3039 {"shiftdi_operand", {SUBREG, REG, MEM}}, \
3040 {"const_int_1_operand", {CONST_INT}}, \
3041 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
3042 {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3043 LABEL_REF, SUBREG, REG, MEM}}, \
3044 {"pic_symbolic_operand", {CONST}}, \
3045 {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
3046 {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
3047 {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
3048 {"const1_operand", {CONST_INT}}, \
3049 {"const248_operand", {CONST_INT}}, \
3050 {"incdec_operand", {CONST_INT}}, \
3051 {"mmx_reg_operand", {REG}}, \
3052 {"reg_no_sp_operand", {SUBREG, REG}}, \
3053 {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3054 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
3055 {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
3056 {"q_regs_operand", {SUBREG, REG}}, \
3057 {"non_q_regs_operand", {SUBREG, REG}}, \
3058 {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
3059 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
3060 GE, UNGE, LTGT, UNEQ}}, \
3061 {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
3062 ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
3063 }}, \
3064 {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
3065 GTU, UNORDERED, ORDERED, UNLE, UNLT, \
3066 UNGE, UNGT, LTGT, UNEQ }}, \
3067 {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
3068 {"ext_register_operand", {SUBREG, REG}}, \
3069 {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
3070 {"mult_operator", {MULT}}, \
3071 {"div_operator", {DIV}}, \
3072 {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
3073 UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
3074 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
3075 LSHIFTRT, ROTATERT}}, \
3076 {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
3077 {"memory_displacement_operand", {MEM}}, \
3078 {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3079 LABEL_REF, SUBREG, REG, MEM, AND}}, \
3080 {"long_memory_operand", {MEM}},
3081
3082 /* A list of predicates that do special things with modes, and so
3083 should not elicit warnings for VOIDmode match_operand. */
3084
3085 #define SPECIAL_MODE_PREDICATES \
3086 "ext_register_operand",
3087 \f
3088 /* CM_32 is used by 32bit ABI
3089 CM_SMALL is small model assuming that all code and data fits in the first
3090 31bits of address space.
3091 CM_KERNEL is model assuming that all code and data fits in the negative
3092 31bits of address space.
3093 CM_MEDIUM is model assuming that code fits in the first 31bits of address
3094 space. Size of data is unlimited.
3095 CM_LARGE is model making no assumptions about size of particular sections.
3096
3097 CM_SMALL_PIC is model for PIC libraries assuming that code+data+got/plt
3098 tables first in 31bits of address space.
3099 */
3100 enum cmodel {
3101 CM_32,
3102 CM_SMALL,
3103 CM_KERNEL,
3104 CM_MEDIUM,
3105 CM_LARGE,
3106 CM_SMALL_PIC
3107 };
3108
3109 /* Valud of -mcmodel specified by user. */
3110 extern const char *ix86_cmodel_string;
3111 extern enum cmodel ix86_cmodel;
3112 \f
3113 /* Variables in i386.c */
3114 extern const char *ix86_cpu_string; /* for -mcpu=<xxx> */
3115 extern const char *ix86_arch_string; /* for -march=<xxx> */
3116 extern const char *ix86_regparm_string; /* # registers to use to pass args */
3117 extern const char *ix86_align_loops_string; /* power of two alignment for loops */
3118 extern const char *ix86_align_jumps_string; /* power of two alignment for non-loop jumps */
3119 extern const char *ix86_align_funcs_string; /* power of two alignment for functions */
3120 extern const char *ix86_preferred_stack_boundary_string;/* power of two alignment for stack boundary */
3121 extern const char *ix86_branch_cost_string; /* values 1-5: see jump.c */
3122 extern int ix86_regparm; /* ix86_regparm_string as a number */
3123 extern int ix86_align_loops; /* power of two alignment for loops */
3124 extern int ix86_align_jumps; /* power of two alignment for non-loop jumps */
3125 extern int ix86_align_funcs; /* power of two alignment for functions */
3126 extern int ix86_preferred_stack_boundary; /* preferred stack boundary alignment in bits */
3127 extern int ix86_branch_cost; /* values 1-5: see jump.c */
3128 extern const char * const hi_reg_name[]; /* names for 16 bit regs */
3129 extern const char * const qi_reg_name[]; /* names for 8 bit regs (low) */
3130 extern const char * const qi_high_reg_name[]; /* names for 8 bit regs (high) */
3131 extern enum reg_class const regclass_map[]; /* smalled class containing REGNO */
3132 extern struct rtx_def *ix86_compare_op0; /* operand 0 for comparisons */
3133 extern struct rtx_def *ix86_compare_op1; /* operand 1 for comparisons */
3134 \f
3135 /*
3136 Local variables:
3137 version-control: t
3138 End:
3139 */