c5c1d5886caeb960e08fdadcf0f1421aa3bb8ce5
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 Under Section 7 of GPL version 3, you are granted additional
17 permissions described in the GCC Runtime Library Exception, version
18 3.1, as published by the Free Software Foundation.
19
20 You should have received a copy of the GNU General Public License and
21 a copy of the GCC Runtime Library Exception along with this program;
22 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 <http://www.gnu.org/licenses/>. */
24
25 /* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
40 /* Redefines for option macros. */
41
42 #define TARGET_64BIT TARGET_ISA_64BIT
43 #define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
44 #define TARGET_MMX TARGET_ISA_MMX
45 #define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
46 #define TARGET_3DNOW TARGET_ISA_3DNOW
47 #define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
48 #define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
49 #define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
50 #define TARGET_SSE TARGET_ISA_SSE
51 #define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
52 #define TARGET_SSE2 TARGET_ISA_SSE2
53 #define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
54 #define TARGET_SSE3 TARGET_ISA_SSE3
55 #define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
56 #define TARGET_SSSE3 TARGET_ISA_SSSE3
57 #define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
58 #define TARGET_SSE4_1 TARGET_ISA_SSE4_1
59 #define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
60 #define TARGET_SSE4_2 TARGET_ISA_SSE4_2
61 #define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
62 #define TARGET_AVX TARGET_ISA_AVX
63 #define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
64 #define TARGET_AVX2 TARGET_ISA_AVX2
65 #define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
66 #define TARGET_AVX512F TARGET_ISA_AVX512F
67 #define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68 #define TARGET_AVX512PF TARGET_ISA_AVX512PF
69 #define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70 #define TARGET_AVX512ER TARGET_ISA_AVX512ER
71 #define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72 #define TARGET_AVX512CD TARGET_ISA_AVX512CD
73 #define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
74 #define TARGET_FMA TARGET_ISA_FMA
75 #define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
76 #define TARGET_SSE4A TARGET_ISA_SSE4A
77 #define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
78 #define TARGET_FMA4 TARGET_ISA_FMA4
79 #define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
80 #define TARGET_XOP TARGET_ISA_XOP
81 #define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
82 #define TARGET_LWP TARGET_ISA_LWP
83 #define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
84 #define TARGET_ROUND TARGET_ISA_ROUND
85 #define TARGET_ABM TARGET_ISA_ABM
86 #define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
87 #define TARGET_BMI TARGET_ISA_BMI
88 #define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
89 #define TARGET_BMI2 TARGET_ISA_BMI2
90 #define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
91 #define TARGET_LZCNT TARGET_ISA_LZCNT
92 #define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
93 #define TARGET_TBM TARGET_ISA_TBM
94 #define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
95 #define TARGET_POPCNT TARGET_ISA_POPCNT
96 #define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
97 #define TARGET_SAHF TARGET_ISA_SAHF
98 #define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
99 #define TARGET_MOVBE TARGET_ISA_MOVBE
100 #define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
101 #define TARGET_CRC32 TARGET_ISA_CRC32
102 #define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
103 #define TARGET_AES TARGET_ISA_AES
104 #define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
105 #define TARGET_SHA TARGET_ISA_SHA
106 #define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
107 #define TARGET_PCLMUL TARGET_ISA_PCLMUL
108 #define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
109 #define TARGET_CMPXCHG16B TARGET_ISA_CX16
110 #define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
111 #define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
112 #define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
113 #define TARGET_RDRND TARGET_ISA_RDRND
114 #define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
115 #define TARGET_F16C TARGET_ISA_F16C
116 #define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
117 #define TARGET_RTM TARGET_ISA_RTM
118 #define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
119 #define TARGET_HLE TARGET_ISA_HLE
120 #define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
121 #define TARGET_RDSEED TARGET_ISA_RDSEED
122 #define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
123 #define TARGET_PRFCHW TARGET_ISA_PRFCHW
124 #define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
125 #define TARGET_ADX TARGET_ISA_ADX
126 #define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
127 #define TARGET_FXSR TARGET_ISA_FXSR
128 #define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
129 #define TARGET_XSAVE TARGET_ISA_XSAVE
130 #define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
131 #define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
132 #define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
133 #define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
134 #define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
135
136 #define TARGET_LP64 TARGET_ABI_64
137 #define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
138 #define TARGET_X32 TARGET_ABI_X32
139 #define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
140 #define TARGET_16BIT TARGET_CODE16
141 #define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
142
143 /* SSE4.1 defines round instructions */
144 #define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
145 #define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
146
147 #include "config/vxworks-dummy.h"
148
149 #include "config/i386/i386-opts.h"
150
151 #define MAX_STRINGOP_ALGS 4
152
153 /* Specify what algorithm to use for stringops on known size.
154 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
155 known at compile time or estimated via feedback, the SIZE array
156 is walked in order until MAX is greater then the estimate (or -1
157 means infinity). Corresponding ALG is used then.
158 When NOALIGN is true the code guaranting the alignment of the memory
159 block is skipped.
160
161 For example initializer:
162 {{256, loop}, {-1, rep_prefix_4_byte}}
163 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
164 be used otherwise. */
165 struct stringop_algs
166 {
167 const enum stringop_alg unknown_size;
168 const struct stringop_strategy {
169 const int max;
170 const enum stringop_alg alg;
171 int noalign;
172 } size [MAX_STRINGOP_ALGS];
173 };
174
175 /* Define the specific costs for a given cpu */
176
177 struct processor_costs {
178 const int add; /* cost of an add instruction */
179 const int lea; /* cost of a lea instruction */
180 const int shift_var; /* variable shift costs */
181 const int shift_const; /* constant shift costs */
182 const int mult_init[5]; /* cost of starting a multiply
183 in QImode, HImode, SImode, DImode, TImode*/
184 const int mult_bit; /* cost of multiply per each bit set */
185 const int divide[5]; /* cost of a divide/mod
186 in QImode, HImode, SImode, DImode, TImode*/
187 int movsx; /* The cost of movsx operation. */
188 int movzx; /* The cost of movzx operation. */
189 const int large_insn; /* insns larger than this cost more */
190 const int move_ratio; /* The threshold of number of scalar
191 memory-to-memory move insns. */
192 const int movzbl_load; /* cost of loading using movzbl */
193 const int int_load[3]; /* cost of loading integer registers
194 in QImode, HImode and SImode relative
195 to reg-reg move (2). */
196 const int int_store[3]; /* cost of storing integer register
197 in QImode, HImode and SImode */
198 const int fp_move; /* cost of reg,reg fld/fst */
199 const int fp_load[3]; /* cost of loading FP register
200 in SFmode, DFmode and XFmode */
201 const int fp_store[3]; /* cost of storing FP register
202 in SFmode, DFmode and XFmode */
203 const int mmx_move; /* cost of moving MMX register. */
204 const int mmx_load[2]; /* cost of loading MMX register
205 in SImode and DImode */
206 const int mmx_store[2]; /* cost of storing MMX register
207 in SImode and DImode */
208 const int sse_move; /* cost of moving SSE register. */
209 const int sse_load[3]; /* cost of loading SSE register
210 in SImode, DImode and TImode*/
211 const int sse_store[3]; /* cost of storing SSE register
212 in SImode, DImode and TImode*/
213 const int mmxsse_to_integer; /* cost of moving mmxsse register to
214 integer and vice versa. */
215 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
216 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
217 const int prefetch_block; /* bytes moved to cache for prefetch. */
218 const int simultaneous_prefetches; /* number of parallel prefetch
219 operations. */
220 const int branch_cost; /* Default value for BRANCH_COST. */
221 const int fadd; /* cost of FADD and FSUB instructions. */
222 const int fmul; /* cost of FMUL instruction. */
223 const int fdiv; /* cost of FDIV instruction. */
224 const int fabs; /* cost of FABS instruction. */
225 const int fchs; /* cost of FCHS instruction. */
226 const int fsqrt; /* cost of FSQRT instruction. */
227 /* Specify what algorithm
228 to use for stringops on unknown size. */
229 struct stringop_algs *memcpy, *memset;
230 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
231 load and store. */
232 const int scalar_load_cost; /* Cost of scalar load. */
233 const int scalar_store_cost; /* Cost of scalar store. */
234 const int vec_stmt_cost; /* Cost of any vector operation, excluding
235 load, store, vector-to-scalar and
236 scalar-to-vector operation. */
237 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
238 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
239 const int vec_align_load_cost; /* Cost of aligned vector load. */
240 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
241 const int vec_store_cost; /* Cost of vector store. */
242 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
243 cost model. */
244 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
245 vectorizer cost model. */
246 };
247
248 extern const struct processor_costs *ix86_cost;
249 extern const struct processor_costs ix86_size_cost;
250
251 #define ix86_cur_cost() \
252 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
253
254 /* Macros used in the machine description to test the flags. */
255
256 /* configure can arrange to change it. */
257
258 #ifndef TARGET_CPU_DEFAULT
259 #define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
260 #endif
261
262 #ifndef TARGET_FPMATH_DEFAULT
263 #define TARGET_FPMATH_DEFAULT \
264 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
265 #endif
266
267 #ifndef TARGET_FPMATH_DEFAULT_P
268 #define TARGET_FPMATH_DEFAULT_P(x) \
269 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
270 #endif
271
272 #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
273 #define TARGET_FLOAT_RETURNS_IN_80387_P(x) TARGET_FLOAT_RETURNS_P(x)
274
275 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
276 compile-time constant. */
277 #ifdef IN_LIBGCC2
278 #undef TARGET_64BIT
279 #ifdef __x86_64__
280 #define TARGET_64BIT 1
281 #else
282 #define TARGET_64BIT 0
283 #endif
284 #else
285 #ifndef TARGET_BI_ARCH
286 #undef TARGET_64BIT
287 #if TARGET_64BIT_DEFAULT
288 #define TARGET_64BIT 1
289 #else
290 #define TARGET_64BIT 0
291 #endif
292 #endif
293 #endif
294
295 #define HAS_LONG_COND_BRANCH 1
296 #define HAS_LONG_UNCOND_BRANCH 1
297
298 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
299 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
300 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
301 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
302 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
303 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
304 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
305 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
306 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
307 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
308 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
309 #define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
310 #define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
311 #define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
312 #define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
313 #define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
314 #define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
315 #define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
316 #define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
317 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
318 #define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
319 #define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
320 #define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
321 #define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
322 #define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
323 #define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
324
325 /* Feature tests against the various tunings. */
326 enum ix86_tune_indices {
327 #undef DEF_TUNE
328 #define DEF_TUNE(tune, name, selector) tune,
329 #include "x86-tune.def"
330 #undef DEF_TUNE
331 X86_TUNE_LAST
332 };
333
334 extern unsigned char ix86_tune_features[X86_TUNE_LAST];
335
336 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
337 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
338 #define TARGET_ZERO_EXTEND_WITH_AND \
339 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
340 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
341 #define TARGET_BRANCH_PREDICTION_HINTS \
342 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
343 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
344 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
345 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
346 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
347 #define TARGET_PARTIAL_FLAG_REG_STALL \
348 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
349 #define TARGET_LCP_STALL \
350 ix86_tune_features[X86_TUNE_LCP_STALL]
351 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
352 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
353 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
354 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
355 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
356 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
357 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
358 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
359 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
360 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
361 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
362 #define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
363 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
364 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
365 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
366 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
367 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
368 #define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
369 #define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
370 #define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
371 #define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
372 #define TARGET_INTEGER_DFMODE_MOVES \
373 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
374 #define TARGET_PARTIAL_REG_DEPENDENCY \
375 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
376 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
377 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
378 #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
379 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
380 #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
381 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
382 #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
383 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
384 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
385 #define TARGET_SSE_TYPELESS_STORES \
386 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
387 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
388 #define TARGET_MEMORY_MISMATCH_STALL \
389 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
390 #define TARGET_PROLOGUE_USING_MOVE \
391 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
392 #define TARGET_EPILOGUE_USING_MOVE \
393 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
394 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
395 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
396 #define TARGET_INTER_UNIT_MOVES_TO_VEC \
397 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
398 #define TARGET_INTER_UNIT_MOVES_FROM_VEC \
399 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
400 #define TARGET_INTER_UNIT_CONVERSIONS \
401 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
402 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
403 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
404 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
405 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
406 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
407 #define TARGET_PAD_SHORT_FUNCTION \
408 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
409 #define TARGET_EXT_80387_CONSTANTS \
410 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
411 #define TARGET_AVOID_VECTOR_DECODE \
412 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
413 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
414 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
415 #define TARGET_SLOW_IMUL_IMM32_MEM \
416 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
417 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
418 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
419 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
420 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
421 #define TARGET_USE_VECTOR_FP_CONVERTS \
422 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
423 #define TARGET_USE_VECTOR_CONVERTS \
424 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
425 #define TARGET_FUSE_CMP_AND_BRANCH_32 \
426 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
427 #define TARGET_FUSE_CMP_AND_BRANCH_64 \
428 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
429 #define TARGET_FUSE_CMP_AND_BRANCH \
430 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
431 : TARGET_FUSE_CMP_AND_BRANCH_32)
432 #define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
433 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
434 #define TARGET_FUSE_ALU_AND_BRANCH \
435 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
436 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
437 #define TARGET_AVOID_LEA_FOR_ADDR \
438 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
439 #define TARGET_VECTORIZE_DOUBLE \
440 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
441 #define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
442 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
443 #define TARGET_AVX128_OPTIMAL \
444 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
445 #define TARGET_REASSOC_INT_TO_PARALLEL \
446 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
447 #define TARGET_REASSOC_FP_TO_PARALLEL \
448 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
449 #define TARGET_GENERAL_REGS_SSE_SPILL \
450 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
451 #define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
452 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
453 #define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
454 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
455 #define TARGET_ADJUST_UNROLL \
456 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
457
458 /* Feature tests against the various architecture variations. */
459 enum ix86_arch_indices {
460 X86_ARCH_CMOV,
461 X86_ARCH_CMPXCHG,
462 X86_ARCH_CMPXCHG8B,
463 X86_ARCH_XADD,
464 X86_ARCH_BSWAP,
465
466 X86_ARCH_LAST
467 };
468
469 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
470
471 #define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
472 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
473 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
474 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
475 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
476
477 /* For sane SSE instruction set generation we need fcomi instruction.
478 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
479 expands to a sequence that includes conditional move. */
480 #define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
481
482 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
483
484 extern unsigned char x86_prefetch_sse;
485 #define TARGET_PREFETCH_SSE x86_prefetch_sse
486
487 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
488
489 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
490 #define TARGET_MIX_SSE_I387 \
491 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
492
493 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
494 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
495 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
496 #define TARGET_SUN_TLS 0
497
498 #ifndef TARGET_64BIT_DEFAULT
499 #define TARGET_64BIT_DEFAULT 0
500 #endif
501 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
502 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
503 #endif
504
505 #define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
506 #define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
507
508 /* Fence to use after loop using storent. */
509
510 extern tree x86_mfence;
511 #define FENCE_FOLLOWING_MOVNT x86_mfence
512
513 /* Once GDB has been enhanced to deal with functions without frame
514 pointers, we can change this to allow for elimination of
515 the frame pointer in leaf functions. */
516 #define TARGET_DEFAULT 0
517
518 /* Extra bits to force. */
519 #define TARGET_SUBTARGET_DEFAULT 0
520 #define TARGET_SUBTARGET_ISA_DEFAULT 0
521
522 /* Extra bits to force on w/ 32-bit mode. */
523 #define TARGET_SUBTARGET32_DEFAULT 0
524 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
525
526 /* Extra bits to force on w/ 64-bit mode. */
527 #define TARGET_SUBTARGET64_DEFAULT 0
528 #define TARGET_SUBTARGET64_ISA_DEFAULT 0
529
530 /* Replace MACH-O, ifdefs by in-line tests, where possible.
531 (a) Macros defined in config/i386/darwin.h */
532 #define TARGET_MACHO 0
533 #define TARGET_MACHO_BRANCH_ISLANDS 0
534 #define MACHOPIC_ATT_STUB 0
535 /* (b) Macros defined in config/darwin.h */
536 #define MACHO_DYNAMIC_NO_PIC_P 0
537 #define MACHOPIC_INDIRECT 0
538 #define MACHOPIC_PURE 0
539
540 /* For the RDOS */
541 #define TARGET_RDOS 0
542
543 /* For the Windows 64-bit ABI. */
544 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
545
546 /* For the Windows 32-bit ABI. */
547 #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
548
549 /* This is re-defined by cygming.h. */
550 #define TARGET_SEH 0
551
552 /* This is re-defined by cygming.h. */
553 #define TARGET_PECOFF 0
554
555 /* The default abi used by target. */
556 #define DEFAULT_ABI SYSV_ABI
557
558 /* The default TLS segment register used by target. */
559 #define DEFAULT_TLS_SEG_REG (TARGET_64BIT ? SEG_FS : SEG_GS)
560
561 /* Subtargets may reset this to 1 in order to enable 96-bit long double
562 with the rounding mode forced to 53 bits. */
563 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
564
565 /* -march=native handling only makes sense with compiler running on
566 an x86 or x86_64 chip. If changing this condition, also change
567 the condition in driver-i386.c. */
568 #if defined(__i386__) || defined(__x86_64__)
569 /* In driver-i386.c. */
570 extern const char *host_detect_local_cpu (int argc, const char **argv);
571 #define EXTRA_SPEC_FUNCTIONS \
572 { "local_cpu_detect", host_detect_local_cpu },
573 #define HAVE_LOCAL_CPU_DETECT
574 #endif
575
576 #if TARGET_64BIT_DEFAULT
577 #define OPT_ARCH64 "!m32"
578 #define OPT_ARCH32 "m32"
579 #else
580 #define OPT_ARCH64 "m64|mx32"
581 #define OPT_ARCH32 "m64|mx32:;"
582 #endif
583
584 /* Support for configure-time defaults of some command line options.
585 The order here is important so that -march doesn't squash the
586 tune or cpu values. */
587 #define OPTION_DEFAULT_SPECS \
588 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
589 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
590 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
591 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
592 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
593 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
594 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
595 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
596 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
597
598 /* Specs for the compiler proper */
599
600 #ifndef CC1_CPU_SPEC
601 #define CC1_CPU_SPEC_1 ""
602
603 #ifndef HAVE_LOCAL_CPU_DETECT
604 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
605 #else
606 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
607 "%{march=native:%>march=native %:local_cpu_detect(arch) \
608 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
609 %{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
610 #endif
611 #endif
612 \f
613 /* Target CPU builtins. */
614 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
615
616 /* Target Pragmas. */
617 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
618
619 #ifndef CC1_SPEC
620 #define CC1_SPEC "%(cc1_cpu) "
621 #endif
622
623 /* This macro defines names of additional specifications to put in the
624 specs that can be used in various specifications like CC1_SPEC. Its
625 definition is an initializer with a subgrouping for each command option.
626
627 Each subgrouping contains a string constant, that defines the
628 specification name, and a string constant that used by the GCC driver
629 program.
630
631 Do not define this macro if it does not need to do anything. */
632
633 #ifndef SUBTARGET_EXTRA_SPECS
634 #define SUBTARGET_EXTRA_SPECS
635 #endif
636
637 #define EXTRA_SPECS \
638 { "cc1_cpu", CC1_CPU_SPEC }, \
639 SUBTARGET_EXTRA_SPECS
640 \f
641
642 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
643 FPU, assume that the fpcw is set to extended precision; when using
644 only SSE, rounding is correct; when using both SSE and the FPU,
645 the rounding precision is indeterminate, since either may be chosen
646 apparently at random. */
647 #define TARGET_FLT_EVAL_METHOD \
648 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
649
650 /* Whether to allow x87 floating-point arithmetic on MODE (one of
651 SFmode, DFmode and XFmode) in the current excess precision
652 configuration. */
653 #define X87_ENABLE_ARITH(MODE) \
654 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
655
656 /* Likewise, whether to allow direct conversions from integer mode
657 IMODE (HImode, SImode or DImode) to MODE. */
658 #define X87_ENABLE_FLOAT(MODE, IMODE) \
659 (flag_excess_precision == EXCESS_PRECISION_FAST \
660 || (MODE) == XFmode \
661 || ((MODE) == DFmode && (IMODE) == SImode) \
662 || (IMODE) == HImode)
663
664 /* target machine storage layout */
665
666 #define SHORT_TYPE_SIZE 16
667 #define INT_TYPE_SIZE 32
668 #define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
669 #define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
670 #define LONG_LONG_TYPE_SIZE 64
671 #define FLOAT_TYPE_SIZE 32
672 #define DOUBLE_TYPE_SIZE 64
673 #define LONG_DOUBLE_TYPE_SIZE \
674 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
675
676 /* Define this to set long double type size to use in libgcc2.c, which can
677 not depend on target_flags. */
678 #ifdef __LONG_DOUBLE_64__
679 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
680 #elif defined (__LONG_DOUBLE_128__)
681 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
682 #else
683 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 80
684 #endif
685
686 #define WIDEST_HARDWARE_FP_SIZE 80
687
688 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
689 #define MAX_BITS_PER_WORD 64
690 #else
691 #define MAX_BITS_PER_WORD 32
692 #endif
693
694 /* Define this if most significant byte of a word is the lowest numbered. */
695 /* That is true on the 80386. */
696
697 #define BITS_BIG_ENDIAN 0
698
699 /* Define this if most significant byte of a word is the lowest numbered. */
700 /* That is not true on the 80386. */
701 #define BYTES_BIG_ENDIAN 0
702
703 /* Define this if most significant word of a multiword number is the lowest
704 numbered. */
705 /* Not true for 80386 */
706 #define WORDS_BIG_ENDIAN 0
707
708 /* Width of a word, in units (bytes). */
709 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
710
711 #ifndef IN_LIBGCC2
712 #define MIN_UNITS_PER_WORD 4
713 #endif
714
715 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
716 #define PARM_BOUNDARY BITS_PER_WORD
717
718 /* Boundary (in *bits*) on which stack pointer should be aligned. */
719 #define STACK_BOUNDARY \
720 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
721
722 /* Stack boundary of the main function guaranteed by OS. */
723 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
724
725 /* Minimum stack boundary. */
726 #define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
727
728 /* Boundary (in *bits*) on which the stack pointer prefers to be
729 aligned; the compiler cannot rely on having this alignment. */
730 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
731
732 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
733 both 32bit and 64bit, to support codes that need 128 bit stack
734 alignment for SSE instructions, but can't realign the stack. */
735 #define PREFERRED_STACK_BOUNDARY_DEFAULT 128
736
737 /* 1 if -mstackrealign should be turned on by default. It will
738 generate an alternate prologue and epilogue that realigns the
739 runtime stack if nessary. This supports mixing codes that keep a
740 4-byte aligned stack, as specified by i386 psABI, with codes that
741 need a 16-byte aligned stack, as required by SSE instructions. */
742 #define STACK_REALIGN_DEFAULT 0
743
744 /* Boundary (in *bits*) on which the incoming stack is aligned. */
745 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
746
747 /* According to Windows x64 software convention, the maximum stack allocatable
748 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
749 instructions allowed to adjust the stack pointer in the epilog, forcing the
750 use of frame pointer for frames larger than 2 GB. This theorical limit
751 is reduced by 256, an over-estimated upper bound for the stack use by the
752 prologue.
753 We define only one threshold for both the prolog and the epilog. When the
754 frame size is larger than this threshold, we allocate the area to save SSE
755 regs, then save them, and then allocate the remaining. There is no SEH
756 unwind info for this later allocation. */
757 #define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
758
759 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
760 mandatory for the 64-bit ABI, and may or may not be true for other
761 operating systems. */
762 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
763
764 /* Minimum allocation boundary for the code of a function. */
765 #define FUNCTION_BOUNDARY 8
766
767 /* C++ stores the virtual bit in the lowest bit of function pointers. */
768 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
769
770 /* Minimum size in bits of the largest boundary to which any
771 and all fundamental data types supported by the hardware
772 might need to be aligned. No data type wants to be aligned
773 rounder than this.
774
775 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
776 and Pentium Pro XFmode values at 128 bit boundaries. */
777
778 #define BIGGEST_ALIGNMENT \
779 (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128))
780
781 /* Maximum stack alignment. */
782 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
783
784 /* Alignment value for attribute ((aligned)). It is a constant since
785 it is the part of the ABI. We shouldn't change it with -mavx. */
786 #define ATTRIBUTE_ALIGNED_VALUE 128
787
788 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
789 #define ALIGN_MODE_128(MODE) \
790 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
791
792 /* The published ABIs say that doubles should be aligned on word
793 boundaries, so lower the alignment for structure fields unless
794 -malign-double is set. */
795
796 /* ??? Blah -- this macro is used directly by libobjc. Since it
797 supports no vector modes, cut out the complexity and fall back
798 on BIGGEST_FIELD_ALIGNMENT. */
799 #ifdef IN_TARGET_LIBS
800 #ifdef __x86_64__
801 #define BIGGEST_FIELD_ALIGNMENT 128
802 #else
803 #define BIGGEST_FIELD_ALIGNMENT 32
804 #endif
805 #else
806 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
807 x86_field_alignment (FIELD, COMPUTED)
808 #endif
809
810 /* If defined, a C expression to compute the alignment given to a
811 constant that is being placed in memory. EXP is the constant
812 and ALIGN is the alignment that the object would ordinarily have.
813 The value of this macro is used instead of that alignment to align
814 the object.
815
816 If this macro is not defined, then ALIGN is used.
817
818 The typical use of this macro is to increase alignment for string
819 constants to be word aligned so that `strcpy' calls that copy
820 constants can be done inline. */
821
822 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
823
824 /* If defined, a C expression to compute the alignment for a static
825 variable. TYPE is the data type, and ALIGN is the alignment that
826 the object would ordinarily have. The value of this macro is used
827 instead of that alignment to align the object.
828
829 If this macro is not defined, then ALIGN is used.
830
831 One use of this macro is to increase alignment of medium-size
832 data to make it all fit in fewer cache lines. Another is to
833 cause character arrays to be word-aligned so that `strcpy' calls
834 that copy constants to character arrays can be done inline. */
835
836 #define DATA_ALIGNMENT(TYPE, ALIGN) \
837 ix86_data_alignment ((TYPE), (ALIGN), true)
838
839 /* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
840 some alignment increase, instead of optimization only purposes. E.g.
841 AMD x86-64 psABI says that variables with array type larger than 15 bytes
842 must be aligned to 16 byte boundaries.
843
844 If this macro is not defined, then ALIGN is used. */
845
846 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
847 ix86_data_alignment ((TYPE), (ALIGN), false)
848
849 /* If defined, a C expression to compute the alignment for a local
850 variable. TYPE is the data type, and ALIGN is the alignment that
851 the object would ordinarily have. The value of this macro is used
852 instead of that alignment to align the object.
853
854 If this macro is not defined, then ALIGN is used.
855
856 One use of this macro is to increase alignment of medium-size
857 data to make it all fit in fewer cache lines. */
858
859 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
860 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
861
862 /* If defined, a C expression to compute the alignment for stack slot.
863 TYPE is the data type, MODE is the widest mode available, and ALIGN
864 is the alignment that the slot would ordinarily have. The value of
865 this macro is used instead of that alignment to align the slot.
866
867 If this macro is not defined, then ALIGN is used when TYPE is NULL,
868 Otherwise, LOCAL_ALIGNMENT will be used.
869
870 One use of this macro is to set alignment of stack slot to the
871 maximum alignment of all possible modes which the slot may have. */
872
873 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
874 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
875
876 /* If defined, a C expression to compute the alignment for a local
877 variable DECL.
878
879 If this macro is not defined, then
880 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
881
882 One use of this macro is to increase alignment of medium-size
883 data to make it all fit in fewer cache lines. */
884
885 #define LOCAL_DECL_ALIGNMENT(DECL) \
886 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
887
888 /* If defined, a C expression to compute the minimum required alignment
889 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
890 MODE, assuming normal alignment ALIGN.
891
892 If this macro is not defined, then (ALIGN) will be used. */
893
894 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
895 ix86_minimum_alignment (EXP, MODE, ALIGN)
896
897
898 /* Set this nonzero if move instructions will actually fail to work
899 when given unaligned data. */
900 #define STRICT_ALIGNMENT 0
901
902 /* If bit field type is int, don't let it cross an int,
903 and give entire struct the alignment of an int. */
904 /* Required on the 386 since it doesn't have bit-field insns. */
905 #define PCC_BITFIELD_TYPE_MATTERS 1
906 \f
907 /* Standard register usage. */
908
909 /* This processor has special stack-like registers. See reg-stack.c
910 for details. */
911
912 #define STACK_REGS
913
914 #define IS_STACK_MODE(MODE) \
915 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
916 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
917 || (MODE) == XFmode)
918
919 /* Number of actual hardware registers.
920 The hardware registers are assigned numbers for the compiler
921 from 0 to just below FIRST_PSEUDO_REGISTER.
922 All registers that the compiler knows about must be given numbers,
923 even those that are not normally considered general registers.
924
925 In the 80386 we give the 8 general purpose registers the numbers 0-7.
926 We number the floating point registers 8-15.
927 Note that registers 0-7 can be accessed as a short or int,
928 while only 0-3 may be used with byte `mov' instructions.
929
930 Reg 16 does not correspond to any hardware register, but instead
931 appears in the RTL as an argument pointer prior to reload, and is
932 eliminated during reloading in favor of either the stack or frame
933 pointer. */
934
935 #define FIRST_PSEUDO_REGISTER 77
936
937 /* Number of hardware registers that go into the DWARF-2 unwind info.
938 If not defined, equals FIRST_PSEUDO_REGISTER. */
939
940 #define DWARF_FRAME_REGISTERS 17
941
942 /* 1 for registers that have pervasive standard uses
943 and are not available for the register allocator.
944 On the 80386, the stack pointer is such, as is the arg pointer.
945
946 REX registers are disabled for 32bit targets in
947 TARGET_CONDITIONAL_REGISTER_USAGE. */
948
949 #define FIXED_REGISTERS \
950 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
951 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
952 /*arg,flags,fpsr,fpcr,frame*/ \
953 1, 1, 1, 1, 1, \
954 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
955 0, 0, 0, 0, 0, 0, 0, 0, \
956 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
957 0, 0, 0, 0, 0, 0, 0, 0, \
958 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
959 0, 0, 0, 0, 0, 0, 0, 0, \
960 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
961 0, 0, 0, 0, 0, 0, 0, 0, \
962 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
963 0, 0, 0, 0, 0, 0, 0, 0, \
964 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
965 0, 0, 0, 0, 0, 0, 0, 0, \
966 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
967 0, 0, 0, 0, 0, 0, 0, 0 }
968
969 /* 1 for registers not available across function calls.
970 These must include the FIXED_REGISTERS and also any
971 registers that can be used without being saved.
972 The latter must include the registers where values are returned
973 and the register where structure-value addresses are passed.
974 Aside from that, you can include as many other registers as you like.
975
976 Value is set to 1 if the register is call used unconditionally.
977 Bit one is set if the register is call used on TARGET_32BIT ABI.
978 Bit two is set if the register is call used on TARGET_64BIT ABI.
979 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
980
981 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
982
983 #define CALL_USED_REGISTERS \
984 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
985 { 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
986 /*arg,flags,fpsr,fpcr,frame*/ \
987 1, 1, 1, 1, 1, \
988 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
989 1, 1, 1, 1, 1, 1, 6, 6, \
990 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
991 1, 1, 1, 1, 1, 1, 1, 1, \
992 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
993 1, 1, 1, 1, 2, 2, 2, 2, \
994 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
995 6, 6, 6, 6, 6, 6, 6, 6, \
996 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
997 6, 6, 6, 6, 6, 6, 6, 6, \
998 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
999 6, 6, 6, 6, 6, 6, 6, 6, \
1000 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
1001 1, 1, 1, 1, 1, 1, 1, 1 }
1002
1003 /* Order in which to allocate registers. Each register must be
1004 listed once, even those in FIXED_REGISTERS. List frame pointer
1005 late and fixed registers last. Note that, in general, we prefer
1006 registers listed in CALL_USED_REGISTERS, keeping the others
1007 available for storage of persistent values.
1008
1009 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
1010 so this is just empty initializer for array. */
1011
1012 #define REG_ALLOC_ORDER \
1013 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1014 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1015 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1016 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
1017 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76 }
1018
1019 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
1020 to be rearranged based on a particular function. When using sse math,
1021 we want to allocate SSE before x87 registers and vice versa. */
1022
1023 #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
1024
1025
1026 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1027
1028 /* Return number of consecutive hard regs needed starting at reg REGNO
1029 to hold something of mode MODE.
1030 This is ordinarily the length in words of a value of mode MODE
1031 but can be less for certain modes in special long registers.
1032
1033 Actually there are no two word move instructions for consecutive
1034 registers. And only registers 0-3 may have mov byte instructions
1035 applied to them. */
1036
1037 #define HARD_REGNO_NREGS(REGNO, MODE) \
1038 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1039 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1040 : ((MODE) == XFmode \
1041 ? (TARGET_64BIT ? 2 : 3) \
1042 : (MODE) == XCmode \
1043 ? (TARGET_64BIT ? 4 : 6) \
1044 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1045
1046 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1047 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1048 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1049 ? 0 \
1050 : ((MODE) == XFmode || (MODE) == XCmode)) \
1051 : 0)
1052
1053 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1054
1055 #define VALID_AVX256_REG_MODE(MODE) \
1056 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1057 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1058 || (MODE) == V4DFmode)
1059
1060 #define VALID_AVX256_REG_OR_OI_MODE(MODE) \
1061 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1062
1063 #define VALID_AVX512F_SCALAR_MODE(MODE) \
1064 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1065 || (MODE) == SFmode)
1066
1067 #define VALID_AVX512F_REG_MODE(MODE) \
1068 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
1069 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode)
1070
1071 #define VALID_SSE2_REG_MODE(MODE) \
1072 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1073 || (MODE) == V2DImode || (MODE) == DFmode)
1074
1075 #define VALID_SSE_REG_MODE(MODE) \
1076 ((MODE) == V1TImode || (MODE) == TImode \
1077 || (MODE) == V4SFmode || (MODE) == V4SImode \
1078 || (MODE) == SFmode || (MODE) == TFmode)
1079
1080 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1081 ((MODE) == V2SFmode || (MODE) == SFmode)
1082
1083 #define VALID_MMX_REG_MODE(MODE) \
1084 ((MODE == V1DImode) || (MODE) == DImode \
1085 || (MODE) == V2SImode || (MODE) == SImode \
1086 || (MODE) == V4HImode || (MODE) == V8QImode)
1087
1088 #define VALID_DFP_MODE_P(MODE) \
1089 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1090
1091 #define VALID_FP_MODE_P(MODE) \
1092 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1093 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1094
1095 #define VALID_INT_MODE_P(MODE) \
1096 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1097 || (MODE) == DImode \
1098 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1099 || (MODE) == CDImode \
1100 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1101 || (MODE) == TFmode || (MODE) == TCmode)))
1102
1103 /* Return true for modes passed in SSE registers. */
1104 #define SSE_REG_MODE_P(MODE) \
1105 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1106 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1107 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1108 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1109 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
1110 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1111 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1112 || (MODE) == V16SFmode)
1113
1114 #define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1115
1116 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1117
1118 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1119 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1120
1121 /* Value is 1 if it is a good idea to tie two pseudo registers
1122 when one has mode MODE1 and one has mode MODE2.
1123 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1124 for any hard reg, then this must be 0 for correct output. */
1125
1126 #define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
1127
1128 /* It is possible to write patterns to move flags; but until someone
1129 does it, */
1130 #define AVOID_CCMODE_COPIES
1131
1132 /* Specify the modes required to caller save a given hard regno.
1133 We do this on i386 to prevent flags from being saved at all.
1134
1135 Kill any attempts to combine saving of modes. */
1136
1137 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1138 (CC_REGNO_P (REGNO) ? VOIDmode \
1139 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1140 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1141 : (MODE) == HImode && !(TARGET_PARTIAL_REG_STALL \
1142 || MASK_REGNO_P (REGNO)) ? SImode \
1143 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO) \
1144 || MASK_REGNO_P (REGNO)) ? SImode \
1145 : (MODE))
1146
1147 /* The only ABI that saves SSE registers across calls is Win64 (thus no
1148 need to check the current ABI here), and with AVX enabled Win64 only
1149 guarantees that the low 16 bytes are saved. */
1150 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1151 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1152
1153 /* Specify the registers used for certain standard purposes.
1154 The values of these macros are register numbers. */
1155
1156 /* on the 386 the pc register is %eip, and is not usable as a general
1157 register. The ordinary mov instructions won't work */
1158 /* #define PC_REGNUM */
1159
1160 /* Register to use for pushing function arguments. */
1161 #define STACK_POINTER_REGNUM 7
1162
1163 /* Base register for access to local variables of the function. */
1164 #define HARD_FRAME_POINTER_REGNUM 6
1165
1166 /* Base register for access to local variables of the function. */
1167 #define FRAME_POINTER_REGNUM 20
1168
1169 /* First floating point reg */
1170 #define FIRST_FLOAT_REG 8
1171
1172 /* First & last stack-like regs */
1173 #define FIRST_STACK_REG FIRST_FLOAT_REG
1174 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1175
1176 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1177 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1178
1179 #define FIRST_MMX_REG (LAST_SSE_REG + 1) /*29*/
1180 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1181
1182 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1) /*37*/
1183 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1184
1185 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1) /*45*/
1186 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1187
1188 #define FIRST_EXT_REX_SSE_REG (LAST_REX_SSE_REG + 1) /*53*/
1189 #define LAST_EXT_REX_SSE_REG (FIRST_EXT_REX_SSE_REG + 15) /*68*/
1190
1191 #define FIRST_MASK_REG (LAST_EXT_REX_SSE_REG + 1) /*69*/
1192 #define LAST_MASK_REG (FIRST_MASK_REG + 7) /*76*/
1193
1194 /* Override this in other tm.h files to cope with various OS lossage
1195 requiring a frame pointer. */
1196 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1197 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1198 #endif
1199
1200 /* Make sure we can access arbitrary call frames. */
1201 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1202
1203 /* Base register for access to arguments of the function. */
1204 #define ARG_POINTER_REGNUM 16
1205
1206 /* Register to hold the addressing base for position independent
1207 code access to data items. We don't use PIC pointer for 64bit
1208 mode. Define the regnum to dummy value to prevent gcc from
1209 pessimizing code dealing with EBX.
1210
1211 To avoid clobbering a call-saved register unnecessarily, we renumber
1212 the pic register when possible. The change is visible after the
1213 prologue has been emitted. */
1214
1215 #define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
1216
1217 #define PIC_OFFSET_TABLE_REGNUM \
1218 ((TARGET_64BIT && (ix86_cmodel == CM_SMALL_PIC \
1219 || TARGET_PECOFF)) \
1220 || !flag_pic ? INVALID_REGNUM \
1221 : reload_completed ? REGNO (pic_offset_table_rtx) \
1222 : REAL_PIC_OFFSET_TABLE_REGNUM)
1223
1224 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1225
1226 /* This is overridden by <cygwin.h>. */
1227 #define MS_AGGREGATE_RETURN 0
1228
1229 #define KEEP_AGGREGATE_RETURN_POINTER 0
1230 \f
1231 /* Define the classes of registers for register constraints in the
1232 machine description. Also define ranges of constants.
1233
1234 One of the classes must always be named ALL_REGS and include all hard regs.
1235 If there is more than one class, another class must be named NO_REGS
1236 and contain no registers.
1237
1238 The name GENERAL_REGS must be the name of a class (or an alias for
1239 another name such as ALL_REGS). This is the class of registers
1240 that is allowed by "g" or "r" in a register constraint.
1241 Also, registers outside this class are allocated only when
1242 instructions express preferences for them.
1243
1244 The classes must be numbered in nondecreasing order; that is,
1245 a larger-numbered class must never be contained completely
1246 in a smaller-numbered class.
1247
1248 For any two classes, it is very desirable that there be another
1249 class that represents their union.
1250
1251 It might seem that class BREG is unnecessary, since no useful 386
1252 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1253 and the "b" register constraint is useful in asms for syscalls.
1254
1255 The flags, fpsr and fpcr registers are in no class. */
1256
1257 enum reg_class
1258 {
1259 NO_REGS,
1260 AREG, DREG, CREG, BREG, SIREG, DIREG,
1261 AD_REGS, /* %eax/%edx for DImode */
1262 Q_REGS, /* %eax %ebx %ecx %edx */
1263 NON_Q_REGS, /* %esi %edi %ebp %esp */
1264 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1265 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1266 CLOBBERED_REGS, /* call-clobbered integer registers */
1267 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1268 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1269 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1270 FLOAT_REGS,
1271 SSE_FIRST_REG,
1272 SSE_REGS,
1273 EVEX_SSE_REGS,
1274 ALL_SSE_REGS,
1275 MMX_REGS,
1276 FP_TOP_SSE_REGS,
1277 FP_SECOND_SSE_REGS,
1278 FLOAT_SSE_REGS,
1279 FLOAT_INT_REGS,
1280 INT_SSE_REGS,
1281 FLOAT_INT_SSE_REGS,
1282 MASK_EVEX_REGS,
1283 MASK_REGS,
1284 ALL_REGS, LIM_REG_CLASSES
1285 };
1286
1287 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1288
1289 #define INTEGER_CLASS_P(CLASS) \
1290 reg_class_subset_p ((CLASS), GENERAL_REGS)
1291 #define FLOAT_CLASS_P(CLASS) \
1292 reg_class_subset_p ((CLASS), FLOAT_REGS)
1293 #define SSE_CLASS_P(CLASS) \
1294 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
1295 #define MMX_CLASS_P(CLASS) \
1296 ((CLASS) == MMX_REGS)
1297 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1298 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1299 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1300 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1301 #define MAYBE_SSE_CLASS_P(CLASS) \
1302 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
1303 #define MAYBE_MMX_CLASS_P(CLASS) \
1304 reg_classes_intersect_p ((CLASS), MMX_REGS)
1305 #define MAYBE_MASK_CLASS_P(CLASS) \
1306 reg_classes_intersect_p ((CLASS), MASK_REGS)
1307
1308 #define Q_CLASS_P(CLASS) \
1309 reg_class_subset_p ((CLASS), Q_REGS)
1310
1311 #define MAYBE_NON_Q_CLASS_P(CLASS) \
1312 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1313
1314 /* Give names of register classes as strings for dump file. */
1315
1316 #define REG_CLASS_NAMES \
1317 { "NO_REGS", \
1318 "AREG", "DREG", "CREG", "BREG", \
1319 "SIREG", "DIREG", \
1320 "AD_REGS", \
1321 "Q_REGS", "NON_Q_REGS", \
1322 "INDEX_REGS", \
1323 "LEGACY_REGS", \
1324 "CLOBBERED_REGS", \
1325 "GENERAL_REGS", \
1326 "FP_TOP_REG", "FP_SECOND_REG", \
1327 "FLOAT_REGS", \
1328 "SSE_FIRST_REG", \
1329 "SSE_REGS", \
1330 "EVEX_SSE_REGS", \
1331 "ALL_SSE_REGS", \
1332 "MMX_REGS", \
1333 "FP_TOP_SSE_REGS", \
1334 "FP_SECOND_SSE_REGS", \
1335 "FLOAT_SSE_REGS", \
1336 "FLOAT_INT_REGS", \
1337 "INT_SSE_REGS", \
1338 "FLOAT_INT_SSE_REGS", \
1339 "MASK_EVEX_REGS", \
1340 "MASK_REGS", \
1341 "ALL_REGS" }
1342
1343 /* Define which registers fit in which classes. This is an initializer
1344 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1345
1346 Note that CLOBBERED_REGS are calculated by
1347 TARGET_CONDITIONAL_REGISTER_USAGE. */
1348
1349 #define REG_CLASS_CONTENTS \
1350 { { 0x00, 0x0, 0x0 }, \
1351 { 0x01, 0x0, 0x0 }, /* AREG */ \
1352 { 0x02, 0x0, 0x0 }, /* DREG */ \
1353 { 0x04, 0x0, 0x0 }, /* CREG */ \
1354 { 0x08, 0x0, 0x0 }, /* BREG */ \
1355 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1356 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1357 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1358 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1359 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
1360 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1361 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1362 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1363 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1364 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1365 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1366 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1367 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1368 { 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1369 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1370 { 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1371 { 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1372 { 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1373 { 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1374 { 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1375 { 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1376 { 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1377 { 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
1378 { 0x0, 0x0,0x1fc0 }, /* MASK_EVEX_REGS */ \
1379 { 0x0, 0x0,0x1fe0 }, /* MASK_REGS */ \
1380 { 0xffffffff,0xffffffff,0x1fff } \
1381 }
1382
1383 /* The same information, inverted:
1384 Return the class number of the smallest class containing
1385 reg number REGNO. This could be a conditional expression
1386 or could index an array. */
1387
1388 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1389
1390 /* When this hook returns true for MODE, the compiler allows
1391 registers explicitly used in the rtl to be used as spill registers
1392 but prevents the compiler from extending the lifetime of these
1393 registers. */
1394 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1395
1396 #define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1397 #define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
1398
1399 #define GENERAL_REG_P(X) \
1400 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1401 #define GENERAL_REGNO_P(N) \
1402 (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
1403
1404 #define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1405 #define ANY_QI_REGNO_P(N) \
1406 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
1407
1408 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1409 #define REX_INT_REGNO_P(N) \
1410 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1411
1412 #define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1413 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1414
1415 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1416 #define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
1417
1418 #define X87_FLOAT_MODE_P(MODE) \
1419 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1420
1421 #define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
1422 #define SSE_REGNO_P(N) \
1423 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1424 || REX_SSE_REGNO_P (N) \
1425 || EXT_REX_SSE_REGNO_P (N))
1426
1427 #define REX_SSE_REGNO_P(N) \
1428 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1429
1430 #define EXT_REX_SSE_REGNO_P(N) \
1431 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1432
1433 #define SSE_REGNO(N) \
1434 ((N) < 8 ? FIRST_SSE_REG + (N) \
1435 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1436 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1437
1438 #define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1439 #define ANY_MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
1440
1441 #define SSE_FLOAT_MODE_P(MODE) \
1442 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1443
1444 #define FMA4_VEC_FLOAT_MODE_P(MODE) \
1445 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1446 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1447
1448 #define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
1449 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1450
1451 #define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
1452
1453 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1454 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1455
1456 /* The class value for index registers, and the one for base regs. */
1457
1458 #define INDEX_REG_CLASS INDEX_REGS
1459 #define BASE_REG_CLASS GENERAL_REGS
1460
1461 /* Place additional restrictions on the register class to use when it
1462 is necessary to be able to hold a value of mode MODE in a reload
1463 register for which class CLASS would ordinarily be used.
1464
1465 We avoid classes containing registers from multiple units due to
1466 the limitation in ix86_secondary_memory_needed. We limit these
1467 classes to their "natural mode" single unit register class, depending
1468 on the unit availability.
1469
1470 Please note that reg_class_subset_p is not commutative, so these
1471 conditions mean "... if (CLASS) includes ALL registers from the
1472 register set." */
1473
1474 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1475 (((MODE) == QImode && !TARGET_64BIT \
1476 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1477 : (((MODE) == SImode || (MODE) == DImode) \
1478 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1479 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1480 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1481 : (X87_FLOAT_MODE_P (MODE) \
1482 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1483 : (CLASS))
1484
1485 /* If we are copying between general and FP registers, we need a memory
1486 location. The same is true for SSE and MMX registers. */
1487 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1488 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1489
1490 /* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1491 There is no need to emit full 64 bit move on 64 bit targets
1492 for integral modes that can be moved using 32 bit move. */
1493 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1494 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1495 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1496 : MODE)
1497
1498 /* Return a class of registers that cannot change FROM mode to TO mode. */
1499
1500 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1501 ix86_cannot_change_mode_class (FROM, TO, CLASS)
1502 \f
1503 /* Stack layout; function entry, exit and calling. */
1504
1505 /* Define this if pushing a word on the stack
1506 makes the stack pointer a smaller address. */
1507 #define STACK_GROWS_DOWNWARD
1508
1509 /* Define this to nonzero if the nominal address of the stack frame
1510 is at the high-address end of the local variables;
1511 that is, each additional local variable allocated
1512 goes at a more negative offset in the frame. */
1513 #define FRAME_GROWS_DOWNWARD 1
1514
1515 /* Offset within stack frame to start allocating local variables at.
1516 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1517 first local allocated. Otherwise, it is the offset to the BEGINNING
1518 of the first local allocated. */
1519 #define STARTING_FRAME_OFFSET 0
1520
1521 /* If we generate an insn to push BYTES bytes, this says how many the stack
1522 pointer really advances by. On 386, we have pushw instruction that
1523 decrements by exactly 2 no matter what the position was, there is no pushb.
1524
1525 But as CIE data alignment factor on this arch is -4 for 32bit targets
1526 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1527 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
1528
1529 #define PUSH_ROUNDING(BYTES) \
1530 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1531
1532 /* If defined, the maximum amount of space required for outgoing arguments
1533 will be computed and placed into the variable `crtl->outgoing_args_size'.
1534 No space will be pushed onto the stack for each call; instead, the
1535 function prologue should increase the stack frame size by this amount.
1536
1537 In 32bit mode enabling argument accumulation results in about 5% code size
1538 growth becuase move instructions are less compact than push. In 64bit
1539 mode the difference is less drastic but visible.
1540
1541 FIXME: Unlike earlier implementations, the size of unwind info seems to
1542 actually grow with accumulation. Is that because accumulated args
1543 unwind info became unnecesarily bloated?
1544
1545 With the 64-bit MS ABI, we can generate correct code with or without
1546 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1547 generated without accumulated args is terrible.
1548
1549 If stack probes are required, the space used for large function
1550 arguments on the stack must also be probed, so enable
1551 -maccumulate-outgoing-args so this happens in the prologue. */
1552
1553 #define ACCUMULATE_OUTGOING_ARGS \
1554 ((TARGET_ACCUMULATE_OUTGOING_ARGS && optimize_function_for_speed_p (cfun)) \
1555 || TARGET_STACK_PROBE || TARGET_64BIT_MS_ABI)
1556
1557 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1558 instructions to pass outgoing arguments. */
1559
1560 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1561
1562 /* We want the stack and args grow in opposite directions, even if
1563 PUSH_ARGS is 0. */
1564 #define PUSH_ARGS_REVERSED 1
1565
1566 /* Offset of first parameter from the argument pointer register value. */
1567 #define FIRST_PARM_OFFSET(FNDECL) 0
1568
1569 /* Define this macro if functions should assume that stack space has been
1570 allocated for arguments even when their values are passed in registers.
1571
1572 The value of this macro is the size, in bytes, of the area reserved for
1573 arguments passed in registers for the function represented by FNDECL.
1574
1575 This space can be allocated by the caller, or be a part of the
1576 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1577 which. */
1578 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1579
1580 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1581 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1582
1583 /* Define how to find the value returned by a library function
1584 assuming the value has mode MODE. */
1585
1586 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1587
1588 /* Define the size of the result block used for communication between
1589 untyped_call and untyped_return. The block contains a DImode value
1590 followed by the block used by fnsave and frstor. */
1591
1592 #define APPLY_RESULT_SIZE (8+108)
1593
1594 /* 1 if N is a possible register number for function argument passing. */
1595 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1596
1597 /* Define a data type for recording info about an argument list
1598 during the scan of that argument list. This data type should
1599 hold all necessary information about the function itself
1600 and about the args processed so far, enough to enable macros
1601 such as FUNCTION_ARG to determine where the next arg should go. */
1602
1603 typedef struct ix86_args {
1604 int words; /* # words passed so far */
1605 int nregs; /* # registers available for passing */
1606 int regno; /* next available register number */
1607 int fastcall; /* fastcall or thiscall calling convention
1608 is used */
1609 int sse_words; /* # sse words passed so far */
1610 int sse_nregs; /* # sse registers available for passing */
1611 int warn_avx512f; /* True when we want to warn
1612 about AVX512F ABI. */
1613 int warn_avx; /* True when we want to warn about AVX ABI. */
1614 int warn_sse; /* True when we want to warn about SSE ABI. */
1615 int warn_mmx; /* True when we want to warn about MMX ABI. */
1616 int sse_regno; /* next available sse register number */
1617 int mmx_words; /* # mmx words passed so far */
1618 int mmx_nregs; /* # mmx registers available for passing */
1619 int mmx_regno; /* next available mmx register number */
1620 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1621 int caller; /* true if it is caller. */
1622 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1623 SFmode/DFmode arguments should be passed
1624 in SSE registers. Otherwise 0. */
1625 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1626 MS_ABI for ms abi. */
1627 } CUMULATIVE_ARGS;
1628
1629 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1630 for a call to a function whose data type is FNTYPE.
1631 For a library call, FNTYPE is 0. */
1632
1633 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1634 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1635 (N_NAMED_ARGS) != -1)
1636
1637 /* Output assembler code to FILE to increment profiler label # LABELNO
1638 for profiling a function entry. */
1639
1640 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1641
1642 #define MCOUNT_NAME "_mcount"
1643
1644 #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1645
1646 #define PROFILE_COUNT_REGISTER "edx"
1647
1648 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1649 the stack pointer does not matter. The value is tested only in
1650 functions that have frame pointers.
1651 No definition is equivalent to always zero. */
1652 /* Note on the 386 it might be more efficient not to define this since
1653 we have to restore it ourselves from the frame pointer, in order to
1654 use pop */
1655
1656 #define EXIT_IGNORE_STACK 1
1657
1658 /* Output assembler code for a block containing the constant parts
1659 of a trampoline, leaving space for the variable parts. */
1660
1661 /* On the 386, the trampoline contains two instructions:
1662 mov #STATIC,ecx
1663 jmp FUNCTION
1664 The trampoline is generated entirely at runtime. The operand of JMP
1665 is the address of FUNCTION relative to the instruction following the
1666 JMP (which is 5 bytes long). */
1667
1668 /* Length in units of the trampoline for entering a nested function. */
1669
1670 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
1671 \f
1672 /* Definitions for register eliminations.
1673
1674 This is an array of structures. Each structure initializes one pair
1675 of eliminable registers. The "from" register number is given first,
1676 followed by "to". Eliminations of the same "from" register are listed
1677 in order of preference.
1678
1679 There are two registers that can always be eliminated on the i386.
1680 The frame pointer and the arg pointer can be replaced by either the
1681 hard frame pointer or to the stack pointer, depending upon the
1682 circumstances. The hard frame pointer is not used before reload and
1683 so it is not eligible for elimination. */
1684
1685 #define ELIMINABLE_REGS \
1686 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1687 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1688 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1689 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1690
1691 /* Define the offset between two registers, one to be eliminated, and the other
1692 its replacement, at the start of a routine. */
1693
1694 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1695 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1696 \f
1697 /* Addressing modes, and classification of registers for them. */
1698
1699 /* Macros to check register numbers against specific register classes. */
1700
1701 /* These assume that REGNO is a hard or pseudo reg number.
1702 They give nonzero only if REGNO is a hard reg of the suitable class
1703 or a pseudo reg currently allocated to a suitable hard reg.
1704 Since they use reg_renumber, they are safe only once reg_renumber
1705 has been allocated, which happens in reginfo.c during register
1706 allocation. */
1707
1708 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1709 ((REGNO) < STACK_POINTER_REGNUM \
1710 || REX_INT_REGNO_P (REGNO) \
1711 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1712 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1713
1714 #define REGNO_OK_FOR_BASE_P(REGNO) \
1715 (GENERAL_REGNO_P (REGNO) \
1716 || (REGNO) == ARG_POINTER_REGNUM \
1717 || (REGNO) == FRAME_POINTER_REGNUM \
1718 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1719
1720 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1721 and check its validity for a certain class.
1722 We have two alternate definitions for each of them.
1723 The usual definition accepts all pseudo regs; the other rejects
1724 them unless they have been allocated suitable hard regs.
1725 The symbol REG_OK_STRICT causes the latter definition to be used.
1726
1727 Most source files want to accept pseudo regs in the hope that
1728 they will get allocated to the class that the insn wants them to be in.
1729 Source files for reload pass need to be strict.
1730 After reload, it makes no difference, since pseudo regs have
1731 been eliminated by then. */
1732
1733
1734 /* Non strict versions, pseudos are ok. */
1735 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1736 (REGNO (X) < STACK_POINTER_REGNUM \
1737 || REX_INT_REGNO_P (REGNO (X)) \
1738 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1739
1740 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1741 (GENERAL_REGNO_P (REGNO (X)) \
1742 || REGNO (X) == ARG_POINTER_REGNUM \
1743 || REGNO (X) == FRAME_POINTER_REGNUM \
1744 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1745
1746 /* Strict versions, hard registers only */
1747 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1748 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1749
1750 #ifndef REG_OK_STRICT
1751 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1752 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1753
1754 #else
1755 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1756 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1757 #endif
1758
1759 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1760 that is a valid memory address for an instruction.
1761 The MODE argument is the machine mode for the MEM expression
1762 that wants to use this address.
1763
1764 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1765 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1766
1767 See legitimize_pic_address in i386.c for details as to what
1768 constitutes a legitimate address when -fpic is used. */
1769
1770 #define MAX_REGS_PER_ADDRESS 2
1771
1772 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1773
1774 /* Try a machine-dependent way of reloading an illegitimate address
1775 operand. If we find one, push the reload and jump to WIN. This
1776 macro is used in only one place: `find_reloads_address' in reload.c. */
1777
1778 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1779 do { \
1780 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1781 (int)(TYPE), (INDL))) \
1782 goto WIN; \
1783 } while (0)
1784
1785 /* If defined, a C expression to determine the base term of address X.
1786 This macro is used in only one place: `find_base_term' in alias.c.
1787
1788 It is always safe for this macro to not be defined. It exists so
1789 that alias analysis can understand machine-dependent addresses.
1790
1791 The typical use of this macro is to handle addresses containing
1792 a label_ref or symbol_ref within an UNSPEC. */
1793
1794 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1795
1796 /* Nonzero if the constant value X is a legitimate general operand
1797 when generating PIC code. It is given that flag_pic is on and
1798 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1799
1800 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1801
1802 #define SYMBOLIC_CONST(X) \
1803 (GET_CODE (X) == SYMBOL_REF \
1804 || GET_CODE (X) == LABEL_REF \
1805 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1806 \f
1807 /* Max number of args passed in registers. If this is more than 3, we will
1808 have problems with ebx (register #4), since it is a caller save register and
1809 is also used as the pic register in ELF. So for now, don't allow more than
1810 3 registers to be passed in registers. */
1811
1812 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1813 #define X86_64_REGPARM_MAX 6
1814 #define X86_64_MS_REGPARM_MAX 4
1815
1816 #define X86_32_REGPARM_MAX 3
1817
1818 #define REGPARM_MAX \
1819 (TARGET_64BIT \
1820 ? (TARGET_64BIT_MS_ABI \
1821 ? X86_64_MS_REGPARM_MAX \
1822 : X86_64_REGPARM_MAX) \
1823 : X86_32_REGPARM_MAX)
1824
1825 #define X86_64_SSE_REGPARM_MAX 8
1826 #define X86_64_MS_SSE_REGPARM_MAX 4
1827
1828 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1829
1830 #define SSE_REGPARM_MAX \
1831 (TARGET_64BIT \
1832 ? (TARGET_64BIT_MS_ABI \
1833 ? X86_64_MS_SSE_REGPARM_MAX \
1834 : X86_64_SSE_REGPARM_MAX) \
1835 : X86_32_SSE_REGPARM_MAX)
1836
1837 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1838 \f
1839 /* Specify the machine mode that this machine uses
1840 for the index in the tablejump instruction. */
1841 #define CASE_VECTOR_MODE \
1842 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1843
1844 /* Define this as 1 if `char' should by default be signed; else as 0. */
1845 #define DEFAULT_SIGNED_CHAR 1
1846
1847 /* Max number of bytes we can move from memory to memory
1848 in one reasonably fast instruction. */
1849 #define MOVE_MAX 16
1850
1851 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1852 move efficiently, as opposed to MOVE_MAX which is the maximum
1853 number of bytes we can move with a single instruction. */
1854 #define MOVE_MAX_PIECES UNITS_PER_WORD
1855
1856 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1857 move-instruction pairs, we will do a movmem or libcall instead.
1858 Increasing the value will always make code faster, but eventually
1859 incurs high cost in increased code size.
1860
1861 If you don't define this, a reasonable default is used. */
1862
1863 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1864
1865 /* If a clear memory operation would take CLEAR_RATIO or more simple
1866 move-instruction sequences, we will do a clrmem or libcall instead. */
1867
1868 #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
1869
1870 /* Define if shifts truncate the shift count which implies one can
1871 omit a sign-extension or zero-extension of a shift count.
1872
1873 On i386, shifts do truncate the count. But bit test instructions
1874 take the modulo of the bit offset operand. */
1875
1876 /* #define SHIFT_COUNT_TRUNCATED */
1877
1878 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1879 is done just by pretending it is already truncated. */
1880 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1881
1882 /* A macro to update M and UNSIGNEDP when an object whose type is
1883 TYPE and which has the specified mode and signedness is to be
1884 stored in a register. This macro is only called when TYPE is a
1885 scalar type.
1886
1887 On i386 it is sometimes useful to promote HImode and QImode
1888 quantities to SImode. The choice depends on target type. */
1889
1890 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1891 do { \
1892 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1893 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1894 (MODE) = SImode; \
1895 } while (0)
1896
1897 /* Specify the machine mode that pointers have.
1898 After generation of rtl, the compiler makes no further distinction
1899 between pointers and any other objects of this machine mode. */
1900 #define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
1901
1902 /* A C expression whose value is zero if pointers that need to be extended
1903 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1904 greater then zero if they are zero-extended and less then zero if the
1905 ptr_extend instruction should be used. */
1906
1907 #define POINTERS_EXTEND_UNSIGNED 1
1908
1909 /* A function address in a call instruction
1910 is a byte address (for indexing purposes)
1911 so give the MEM rtx a byte's mode. */
1912 #define FUNCTION_MODE QImode
1913 \f
1914
1915 /* A C expression for the cost of a branch instruction. A value of 1
1916 is the default; other values are interpreted relative to that. */
1917
1918 #define BRANCH_COST(speed_p, predictable_p) \
1919 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1920
1921 /* An integer expression for the size in bits of the largest integer machine
1922 mode that should actually be used. We allow pairs of registers. */
1923 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1924
1925 /* Define this macro as a C expression which is nonzero if accessing
1926 less than a word of memory (i.e. a `char' or a `short') is no
1927 faster than accessing a word of memory, i.e., if such access
1928 require more than one instruction or if there is no difference in
1929 cost between byte and (aligned) word loads.
1930
1931 When this macro is not defined, the compiler will access a field by
1932 finding the smallest containing object; when it is defined, a
1933 fullword load will be used if alignment permits. Unless bytes
1934 accesses are faster than word accesses, using word accesses is
1935 preferable since it may eliminate subsequent memory access if
1936 subsequent accesses occur to other fields in the same word of the
1937 structure, but to different bytes. */
1938
1939 #define SLOW_BYTE_ACCESS 0
1940
1941 /* Nonzero if access to memory by shorts is slow and undesirable. */
1942 #define SLOW_SHORT_ACCESS 0
1943
1944 /* Define this macro to be the value 1 if unaligned accesses have a
1945 cost many times greater than aligned accesses, for example if they
1946 are emulated in a trap handler.
1947
1948 When this macro is nonzero, the compiler will act as if
1949 `STRICT_ALIGNMENT' were nonzero when generating code for block
1950 moves. This can cause significantly more instructions to be
1951 produced. Therefore, do not set this macro nonzero if unaligned
1952 accesses only add a cycle or two to the time for a memory access.
1953
1954 If the value of this macro is always zero, it need not be defined. */
1955
1956 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1957
1958 /* Define this macro if it is as good or better to call a constant
1959 function address than to call an address kept in a register.
1960
1961 Desirable on the 386 because a CALL with a constant address is
1962 faster than one with a register address. */
1963
1964 #define NO_FUNCTION_CSE
1965 \f
1966 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1967 return the mode to be used for the comparison.
1968
1969 For floating-point equality comparisons, CCFPEQmode should be used.
1970 VOIDmode should be used in all other cases.
1971
1972 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1973 possible, to allow for more combinations. */
1974
1975 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1976
1977 /* Return nonzero if MODE implies a floating point inequality can be
1978 reversed. */
1979
1980 #define REVERSIBLE_CC_MODE(MODE) 1
1981
1982 /* A C expression whose value is reversed condition code of the CODE for
1983 comparison done in CC_MODE mode. */
1984 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1985
1986 \f
1987 /* Control the assembler format that we output, to the extent
1988 this does not vary between assemblers. */
1989
1990 /* How to refer to registers in assembler output.
1991 This sequence is indexed by compiler's hard-register-number (see above). */
1992
1993 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
1994 For non floating point regs, the following are the HImode names.
1995
1996 For float regs, the stack top is sometimes referred to as "%st(0)"
1997 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1998 "y" code. */
1999
2000 #define HI_REGISTER_NAMES \
2001 {"ax","dx","cx","bx","si","di","bp","sp", \
2002 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
2003 "argp", "flags", "fpsr", "fpcr", "frame", \
2004 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2005 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
2006 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2007 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2008 "xmm16", "xmm17", "xmm18", "xmm19", \
2009 "xmm20", "xmm21", "xmm22", "xmm23", \
2010 "xmm24", "xmm25", "xmm26", "xmm27", \
2011 "xmm28", "xmm29", "xmm30", "xmm31", \
2012 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }
2013
2014 #define REGISTER_NAMES HI_REGISTER_NAMES
2015
2016 /* Table of additional register names to use in user input. */
2017
2018 #define ADDITIONAL_REGISTER_NAMES \
2019 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2020 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2021 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2022 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2023 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2024 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2025 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2026 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2027 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2028 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2029 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2030 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2031 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2032 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2033 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2034 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2035 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2036 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2037 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2038 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2039 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2040 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
2041
2042 /* Note we are omitting these since currently I don't know how
2043 to get gcc to use these, since they want the same but different
2044 number as al, and ax.
2045 */
2046
2047 #define QI_REGISTER_NAMES \
2048 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2049
2050 /* These parallel the array above, and can be used to access bits 8:15
2051 of regs 0 through 3. */
2052
2053 #define QI_HIGH_REGISTER_NAMES \
2054 {"ah", "dh", "ch", "bh", }
2055
2056 /* How to renumber registers for dbx and gdb. */
2057
2058 #define DBX_REGISTER_NUMBER(N) \
2059 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2060
2061 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2062 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2063 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2064
2065 extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
2066
2067 /* Before the prologue, RA is at 0(%esp). */
2068 #define INCOMING_RETURN_ADDR_RTX \
2069 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2070
2071 /* After the prologue, RA is at -4(AP) in the current frame. */
2072 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2073 ((COUNT) == 0 \
2074 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2075 -UNITS_PER_WORD)) \
2076 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
2077
2078 /* PC is dbx register 8; let's use that column for RA. */
2079 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2080
2081 /* Before the prologue, the top of the frame is at 4(%esp). */
2082 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2083
2084 /* Describe how we implement __builtin_eh_return. */
2085 #define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2086 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
2087
2088
2089 /* Select a format to encode pointers in exception handling data. CODE
2090 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2091 true if the symbol may be affected by dynamic relocations.
2092
2093 ??? All x86 object file formats are capable of representing this.
2094 After all, the relocation needed is the same as for the call insn.
2095 Whether or not a particular assembler allows us to enter such, I
2096 guess we'll have to see. */
2097 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2098 asm_preferred_eh_data_format ((CODE), (GLOBAL))
2099
2100 /* This is how to output an insn to push a register on the stack.
2101 It need not be very fast code. */
2102
2103 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2104 do { \
2105 if (TARGET_64BIT) \
2106 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2107 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2108 else \
2109 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2110 } while (0)
2111
2112 /* This is how to output an insn to pop a register from the stack.
2113 It need not be very fast code. */
2114
2115 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2116 do { \
2117 if (TARGET_64BIT) \
2118 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2119 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2120 else \
2121 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2122 } while (0)
2123
2124 /* This is how to output an element of a case-vector that is absolute. */
2125
2126 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2127 ix86_output_addr_vec_elt ((FILE), (VALUE))
2128
2129 /* This is how to output an element of a case-vector that is relative. */
2130
2131 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2132 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2133
2134 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
2135
2136 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2137 { \
2138 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
2139 (PTR) += TARGET_AVX ? 1 : 2; \
2140 }
2141
2142 /* A C statement or statements which output an assembler instruction
2143 opcode to the stdio stream STREAM. The macro-operand PTR is a
2144 variable of type `char *' which points to the opcode name in
2145 its "internal" form--the form that is written in the machine
2146 description. */
2147
2148 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2149 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2150
2151 /* A C statement to output to the stdio stream FILE an assembler
2152 command to pad the location counter to a multiple of 1<<LOG
2153 bytes if it is within MAX_SKIP bytes. */
2154
2155 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2156 #undef ASM_OUTPUT_MAX_SKIP_PAD
2157 #define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2158 if ((LOG) != 0) \
2159 { \
2160 if ((MAX_SKIP) == 0) \
2161 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2162 else \
2163 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2164 }
2165 #endif
2166
2167 /* Write the extra assembler code needed to declare a function
2168 properly. */
2169
2170 #undef ASM_OUTPUT_FUNCTION_LABEL
2171 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2172 ix86_asm_output_function_label (FILE, NAME, DECL)
2173
2174 /* Under some conditions we need jump tables in the text section,
2175 because the assembler cannot handle label differences between
2176 sections. This is the case for x86_64 on Mach-O for example. */
2177
2178 #define JUMP_TABLES_IN_TEXT_SECTION \
2179 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2180 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2181
2182 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2183 and switch back. For x86 we do this only to save a few bytes that
2184 would otherwise be unused in the text section. */
2185 #define CRT_MKSTR2(VAL) #VAL
2186 #define CRT_MKSTR(x) CRT_MKSTR2(x)
2187
2188 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2189 asm (SECTION_OP "\n\t" \
2190 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
2191 TEXT_SECTION_ASM_OP);
2192
2193 /* Default threshold for putting data in large sections
2194 with x86-64 medium memory model */
2195 #define DEFAULT_LARGE_SECTION_THRESHOLD 65536
2196 \f
2197 /* Which processor to tune code generation for. These must be in sync
2198 with processor_target_table in i386.c. */
2199
2200 enum processor_type
2201 {
2202 PROCESSOR_GENERIC = 0,
2203 PROCESSOR_I386, /* 80386 */
2204 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2205 PROCESSOR_PENTIUM,
2206 PROCESSOR_PENTIUMPRO,
2207 PROCESSOR_PENTIUM4,
2208 PROCESSOR_NOCONA,
2209 PROCESSOR_CORE2,
2210 PROCESSOR_NEHALEM,
2211 PROCESSOR_SANDYBRIDGE,
2212 PROCESSOR_HASWELL,
2213 PROCESSOR_BONNELL,
2214 PROCESSOR_SILVERMONT,
2215 PROCESSOR_INTEL,
2216 PROCESSOR_GEODE,
2217 PROCESSOR_K6,
2218 PROCESSOR_ATHLON,
2219 PROCESSOR_K8,
2220 PROCESSOR_AMDFAM10,
2221 PROCESSOR_BDVER1,
2222 PROCESSOR_BDVER2,
2223 PROCESSOR_BDVER3,
2224 PROCESSOR_BDVER4,
2225 PROCESSOR_BTVER1,
2226 PROCESSOR_BTVER2,
2227 PROCESSOR_max
2228 };
2229
2230 extern enum processor_type ix86_tune;
2231 extern enum processor_type ix86_arch;
2232
2233 /* Size of the RED_ZONE area. */
2234 #define RED_ZONE_SIZE 128
2235 /* Reserved area of the red zone for temporaries. */
2236 #define RED_ZONE_RESERVE 8
2237
2238 extern unsigned int ix86_preferred_stack_boundary;
2239 extern unsigned int ix86_incoming_stack_boundary;
2240
2241 /* Smallest class containing REGNO. */
2242 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2243
2244 enum ix86_fpcmp_strategy {
2245 IX86_FPCMP_SAHF,
2246 IX86_FPCMP_COMI,
2247 IX86_FPCMP_ARITH
2248 };
2249 \f
2250 /* To properly truncate FP values into integers, we need to set i387 control
2251 word. We can't emit proper mode switching code before reload, as spills
2252 generated by reload may truncate values incorrectly, but we still can avoid
2253 redundant computation of new control word by the mode switching pass.
2254 The fldcw instructions are still emitted redundantly, but this is probably
2255 not going to be noticeable problem, as most CPUs do have fast path for
2256 the sequence.
2257
2258 The machinery is to emit simple truncation instructions and split them
2259 before reload to instructions having USEs of two memory locations that
2260 are filled by this code to old and new control word.
2261
2262 Post-reload pass may be later used to eliminate the redundant fildcw if
2263 needed. */
2264
2265 enum ix86_entity
2266 {
2267 AVX_U128 = 0,
2268 I387_TRUNC,
2269 I387_FLOOR,
2270 I387_CEIL,
2271 I387_MASK_PM,
2272 MAX_386_ENTITIES
2273 };
2274
2275 enum ix86_stack_slot
2276 {
2277 SLOT_TEMP = 0,
2278 SLOT_CW_STORED,
2279 SLOT_CW_TRUNC,
2280 SLOT_CW_FLOOR,
2281 SLOT_CW_CEIL,
2282 SLOT_CW_MASK_PM,
2283 MAX_386_STACK_LOCALS
2284 };
2285
2286 enum avx_u128_state
2287 {
2288 AVX_U128_CLEAN,
2289 AVX_U128_DIRTY,
2290 AVX_U128_ANY
2291 };
2292
2293 /* Define this macro if the port needs extra instructions inserted
2294 for mode switching in an optimizing compilation. */
2295
2296 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2297 ix86_optimize_mode_switching[(ENTITY)]
2298
2299 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2300 initializer for an array of integers. Each initializer element N
2301 refers to an entity that needs mode switching, and specifies the
2302 number of different modes that might need to be set for this
2303 entity. The position of the initializer in the initializer -
2304 starting counting at zero - determines the integer that is used to
2305 refer to the mode-switched entity in question. */
2306
2307 #define NUM_MODES_FOR_MODE_SWITCHING \
2308 { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2309
2310 /* ENTITY is an integer specifying a mode-switched entity. If
2311 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2312 return an integer value not larger than the corresponding element
2313 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2314 must be switched into prior to the execution of INSN. */
2315
2316 #define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2317
2318 /* If this macro is defined, it is evaluated for every INSN during
2319 mode switching. It determines the mode that an insn results in (if
2320 different from the incoming mode). */
2321
2322 #define MODE_AFTER(ENTITY, MODE, I) ix86_mode_after ((ENTITY), (MODE), (I))
2323
2324 /* If this macro is defined, it is evaluated for every ENTITY that
2325 needs mode switching. It should evaluate to an integer, which is
2326 a mode that ENTITY is assumed to be switched to at function entry. */
2327
2328 #define MODE_ENTRY(ENTITY) ix86_mode_entry (ENTITY)
2329
2330 /* If this macro is defined, it is evaluated for every ENTITY that
2331 needs mode switching. It should evaluate to an integer, which is
2332 a mode that ENTITY is assumed to be switched to at function exit. */
2333
2334 #define MODE_EXIT(ENTITY) ix86_mode_exit (ENTITY)
2335
2336 /* This macro specifies the order in which modes for ENTITY are
2337 processed. 0 is the highest priority. */
2338
2339 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2340
2341 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2342 is the set of hard registers live at the point where the insn(s)
2343 are to be inserted. */
2344
2345 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
2346 ix86_emit_mode_set ((ENTITY), (MODE), (HARD_REGS_LIVE))
2347 \f
2348 /* Avoid renaming of stack registers, as doing so in combination with
2349 scheduling just increases amount of live registers at time and in
2350 the turn amount of fxch instructions needed.
2351
2352 ??? Maybe Pentium chips benefits from renaming, someone can try....
2353
2354 Don't rename evex to non-evex sse registers. */
2355
2356 #define HARD_REGNO_RENAME_OK(SRC, TARGET) (!STACK_REGNO_P (SRC) && \
2357 (EXT_REX_SSE_REGNO_P (SRC) == \
2358 EXT_REX_SSE_REGNO_P (TARGET)))
2359
2360 \f
2361 #define FASTCALL_PREFIX '@'
2362 \f
2363 /* Machine specific frame tracking during prologue/epilogue generation. */
2364
2365 #ifndef USED_FOR_TARGET
2366 struct GTY(()) machine_frame_state
2367 {
2368 /* This pair tracks the currently active CFA as reg+offset. When reg
2369 is drap_reg, we don't bother trying to record here the real CFA when
2370 it might really be a DW_CFA_def_cfa_expression. */
2371 rtx cfa_reg;
2372 HOST_WIDE_INT cfa_offset;
2373
2374 /* The current offset (canonically from the CFA) of ESP and EBP.
2375 When stack frame re-alignment is active, these may not be relative
2376 to the CFA. However, in all cases they are relative to the offsets
2377 of the saved registers stored in ix86_frame. */
2378 HOST_WIDE_INT sp_offset;
2379 HOST_WIDE_INT fp_offset;
2380
2381 /* The size of the red-zone that may be assumed for the purposes of
2382 eliding register restore notes in the epilogue. This may be zero
2383 if no red-zone is in effect, or may be reduced from the real
2384 red-zone value by a maximum runtime stack re-alignment value. */
2385 int red_zone_offset;
2386
2387 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2388 value within the frame. If false then the offset above should be
2389 ignored. Note that DRAP, if valid, *always* points to the CFA and
2390 thus has an offset of zero. */
2391 BOOL_BITFIELD sp_valid : 1;
2392 BOOL_BITFIELD fp_valid : 1;
2393 BOOL_BITFIELD drap_valid : 1;
2394
2395 /* Indicate whether the local stack frame has been re-aligned. When
2396 set, the SP/FP offsets above are relative to the aligned frame
2397 and not the CFA. */
2398 BOOL_BITFIELD realigned : 1;
2399 };
2400
2401 /* Private to winnt.c. */
2402 struct seh_frame_state;
2403
2404 struct GTY(()) machine_function {
2405 struct stack_local_entry *stack_locals;
2406 const char *some_ld_name;
2407 int varargs_gpr_size;
2408 int varargs_fpr_size;
2409 int optimize_mode_switching[MAX_386_ENTITIES];
2410
2411 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2412 has been computed for. */
2413 int use_fast_prologue_epilogue_nregs;
2414
2415 /* For -fsplit-stack support: A stack local which holds a pointer to
2416 the stack arguments for a function with a variable number of
2417 arguments. This is set at the start of the function and is used
2418 to initialize the overflow_arg_area field of the va_list
2419 structure. */
2420 rtx split_stack_varargs_pointer;
2421
2422 /* This value is used for amd64 targets and specifies the current abi
2423 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2424 ENUM_BITFIELD(calling_abi) call_abi : 8;
2425
2426 /* Nonzero if the function accesses a previous frame. */
2427 BOOL_BITFIELD accesses_prev_frame : 1;
2428
2429 /* Nonzero if the function requires a CLD in the prologue. */
2430 BOOL_BITFIELD needs_cld : 1;
2431
2432 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2433 expander to determine the style used. */
2434 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2435
2436 /* If true, the current function needs the default PIC register, not
2437 an alternate register (on x86) and must not use the red zone (on
2438 x86_64), even if it's a leaf function. We don't want the
2439 function to be regarded as non-leaf because TLS calls need not
2440 affect register allocation. This flag is set when a TLS call
2441 instruction is expanded within a function, and never reset, even
2442 if all such instructions are optimized away. Use the
2443 ix86_current_function_calls_tls_descriptor macro for a better
2444 approximation. */
2445 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2446
2447 /* If true, the current function has a STATIC_CHAIN is placed on the
2448 stack below the return address. */
2449 BOOL_BITFIELD static_chain_on_stack : 1;
2450
2451 /* If true, it is safe to not save/restore DRAP register. */
2452 BOOL_BITFIELD no_drap_save_restore : 1;
2453
2454 /* During prologue/epilogue generation, the current frame state.
2455 Otherwise, the frame state at the end of the prologue. */
2456 struct machine_frame_state fs;
2457
2458 /* During SEH output, this is non-null. */
2459 struct seh_frame_state * GTY((skip(""))) seh;
2460 };
2461 #endif
2462
2463 #define ix86_stack_locals (cfun->machine->stack_locals)
2464 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2465 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2466 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2467 #define ix86_current_function_needs_cld (cfun->machine->needs_cld)
2468 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2469 (cfun->machine->tls_descriptor_call_expanded_p)
2470 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2471 calls are optimized away, we try to detect cases in which it was
2472 optimized away. Since such instructions (use (reg REG_SP)), we can
2473 verify whether there's any such instruction live by testing that
2474 REG_SP is live. */
2475 #define ix86_current_function_calls_tls_descriptor \
2476 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2477 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2478
2479 /* Control behavior of x86_file_start. */
2480 #define X86_FILE_START_VERSION_DIRECTIVE false
2481 #define X86_FILE_START_FLTUSED false
2482
2483 /* Flag to mark data that is in the large address area. */
2484 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2485 #define SYMBOL_REF_FAR_ADDR_P(X) \
2486 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2487
2488 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2489 have defined always, to avoid ifdefing. */
2490 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2491 #define SYMBOL_REF_DLLIMPORT_P(X) \
2492 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2493
2494 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2495 #define SYMBOL_REF_DLLEXPORT_P(X) \
2496 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2497
2498 #define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2499 #define SYMBOL_REF_STUBVAR_P(X) \
2500 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2501
2502 extern void debug_ready_dispatch (void);
2503 extern void debug_dispatch_window (int);
2504
2505 /* The value at zero is only defined for the BMI instructions
2506 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2507 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2508 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2509 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2510 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT)
2511
2512
2513 /* Flags returned by ix86_get_callcvt (). */
2514 #define IX86_CALLCVT_CDECL 0x1
2515 #define IX86_CALLCVT_STDCALL 0x2
2516 #define IX86_CALLCVT_FASTCALL 0x4
2517 #define IX86_CALLCVT_THISCALL 0x8
2518 #define IX86_CALLCVT_REGPARM 0x10
2519 #define IX86_CALLCVT_SSEREGPARM 0x20
2520
2521 #define IX86_BASE_CALLCVT(FLAGS) \
2522 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2523 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2524
2525 #define RECIP_MASK_NONE 0x00
2526 #define RECIP_MASK_DIV 0x01
2527 #define RECIP_MASK_SQRT 0x02
2528 #define RECIP_MASK_VEC_DIV 0x04
2529 #define RECIP_MASK_VEC_SQRT 0x08
2530 #define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2531 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2532 #define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2533
2534 #define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2535 #define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2536 #define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2537 #define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2538
2539 #define IX86_HLE_ACQUIRE (1 << 16)
2540 #define IX86_HLE_RELEASE (1 << 17)
2541
2542 /* For switching between functions with different target attributes. */
2543 #define SWITCHABLE_TARGET 1
2544
2545 /*
2546 Local variables:
2547 version-control: t
2548 End:
2549 */