[multiple changes]
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
21
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
25 <http://www.gnu.org/licenses/>. */
26
27 /* The purpose of this file is to define the characteristics of the i386,
28 independent of assembler syntax or operating system.
29
30 Three other files build on this one to describe a specific assembler syntax:
31 bsd386.h, att386.h, and sun386.h.
32
33 The actual tm.h file for a particular system should include
34 this file, and then the file for the appropriate assembler syntax.
35
36 Many macros that specify assembler syntax are omitted entirely from
37 this file because they really belong in the files for particular
38 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
39 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
40 that start with ASM_ or end in ASM_OP. */
41
42 /* Redefines for option macros. */
43
44 #define TARGET_64BIT TARGET_ISA_64BIT
45 #define TARGET_MMX TARGET_ISA_MMX
46 #define TARGET_3DNOW TARGET_ISA_3DNOW
47 #define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
48 #define TARGET_SSE TARGET_ISA_SSE
49 #define TARGET_SSE2 TARGET_ISA_SSE2
50 #define TARGET_SSE3 TARGET_ISA_SSE3
51 #define TARGET_SSSE3 TARGET_ISA_SSSE3
52 #define TARGET_SSE4_1 TARGET_ISA_SSE4_1
53 #define TARGET_SSE4_2 TARGET_ISA_SSE4_2
54 #define TARGET_AVX TARGET_ISA_AVX
55 #define TARGET_AVX2 TARGET_ISA_AVX2
56 #define TARGET_FMA TARGET_ISA_FMA
57 #define TARGET_SSE4A TARGET_ISA_SSE4A
58 #define TARGET_FMA4 TARGET_ISA_FMA4
59 #define TARGET_XOP TARGET_ISA_XOP
60 #define TARGET_LWP TARGET_ISA_LWP
61 #define TARGET_ROUND TARGET_ISA_ROUND
62 #define TARGET_ABM TARGET_ISA_ABM
63 #define TARGET_BMI TARGET_ISA_BMI
64 #define TARGET_BMI2 TARGET_ISA_BMI2
65 #define TARGET_LZCNT TARGET_ISA_LZCNT
66 #define TARGET_TBM TARGET_ISA_TBM
67 #define TARGET_POPCNT TARGET_ISA_POPCNT
68 #define TARGET_SAHF TARGET_ISA_SAHF
69 #define TARGET_MOVBE TARGET_ISA_MOVBE
70 #define TARGET_CRC32 TARGET_ISA_CRC32
71 #define TARGET_AES TARGET_ISA_AES
72 #define TARGET_PCLMUL TARGET_ISA_PCLMUL
73 #define TARGET_CMPXCHG16B TARGET_ISA_CX16
74 #define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
75 #define TARGET_RDRND TARGET_ISA_RDRND
76 #define TARGET_F16C TARGET_ISA_F16C
77 #define TARGET_RTM TARGET_ISA_RTM
78 #define TARGET_HLE TARGET_ISA_HLE
79 #define TARGET_RDSEED TARGET_ISA_RDSEED
80 #define TARGET_PRFCHW TARGET_ISA_PRFCHW
81 #define TARGET_ADX TARGET_ISA_ADX
82 #define TARGET_FXSR TARGET_ISA_FXSR
83 #define TARGET_XSAVE TARGET_ISA_XSAVE
84 #define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
85
86 #define TARGET_LP64 TARGET_ABI_64
87 #define TARGET_X32 TARGET_ABI_X32
88
89 /* SSE4.1 defines round instructions */
90 #define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
91 #define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
92
93 #include "config/vxworks-dummy.h"
94
95 #include "config/i386/i386-opts.h"
96
97 #define MAX_STRINGOP_ALGS 4
98
99 /* Specify what algorithm to use for stringops on known size.
100 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
101 known at compile time or estimated via feedback, the SIZE array
102 is walked in order until MAX is greater then the estimate (or -1
103 means infinity). Corresponding ALG is used then.
104 For example initializer:
105 {{256, loop}, {-1, rep_prefix_4_byte}}
106 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
107 be used otherwise. */
108 struct stringop_algs
109 {
110 const enum stringop_alg unknown_size;
111 const struct stringop_strategy {
112 const int max;
113 const enum stringop_alg alg;
114 } size [MAX_STRINGOP_ALGS];
115 };
116
117 /* Define the specific costs for a given cpu */
118
119 struct processor_costs {
120 const int add; /* cost of an add instruction */
121 const int lea; /* cost of a lea instruction */
122 const int shift_var; /* variable shift costs */
123 const int shift_const; /* constant shift costs */
124 const int mult_init[5]; /* cost of starting a multiply
125 in QImode, HImode, SImode, DImode, TImode*/
126 const int mult_bit; /* cost of multiply per each bit set */
127 const int divide[5]; /* cost of a divide/mod
128 in QImode, HImode, SImode, DImode, TImode*/
129 int movsx; /* The cost of movsx operation. */
130 int movzx; /* The cost of movzx operation. */
131 const int large_insn; /* insns larger than this cost more */
132 const int move_ratio; /* The threshold of number of scalar
133 memory-to-memory move insns. */
134 const int movzbl_load; /* cost of loading using movzbl */
135 const int int_load[3]; /* cost of loading integer registers
136 in QImode, HImode and SImode relative
137 to reg-reg move (2). */
138 const int int_store[3]; /* cost of storing integer register
139 in QImode, HImode and SImode */
140 const int fp_move; /* cost of reg,reg fld/fst */
141 const int fp_load[3]; /* cost of loading FP register
142 in SFmode, DFmode and XFmode */
143 const int fp_store[3]; /* cost of storing FP register
144 in SFmode, DFmode and XFmode */
145 const int mmx_move; /* cost of moving MMX register. */
146 const int mmx_load[2]; /* cost of loading MMX register
147 in SImode and DImode */
148 const int mmx_store[2]; /* cost of storing MMX register
149 in SImode and DImode */
150 const int sse_move; /* cost of moving SSE register. */
151 const int sse_load[3]; /* cost of loading SSE register
152 in SImode, DImode and TImode*/
153 const int sse_store[3]; /* cost of storing SSE register
154 in SImode, DImode and TImode*/
155 const int mmxsse_to_integer; /* cost of moving mmxsse register to
156 integer and vice versa. */
157 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
158 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
159 const int prefetch_block; /* bytes moved to cache for prefetch. */
160 const int simultaneous_prefetches; /* number of parallel prefetch
161 operations. */
162 const int branch_cost; /* Default value for BRANCH_COST. */
163 const int fadd; /* cost of FADD and FSUB instructions. */
164 const int fmul; /* cost of FMUL instruction. */
165 const int fdiv; /* cost of FDIV instruction. */
166 const int fabs; /* cost of FABS instruction. */
167 const int fchs; /* cost of FCHS instruction. */
168 const int fsqrt; /* cost of FSQRT instruction. */
169 /* Specify what algorithm
170 to use for stringops on unknown size. */
171 struct stringop_algs memcpy[2], memset[2];
172 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
173 load and store. */
174 const int scalar_load_cost; /* Cost of scalar load. */
175 const int scalar_store_cost; /* Cost of scalar store. */
176 const int vec_stmt_cost; /* Cost of any vector operation, excluding
177 load, store, vector-to-scalar and
178 scalar-to-vector operation. */
179 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
180 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
181 const int vec_align_load_cost; /* Cost of aligned vector load. */
182 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
183 const int vec_store_cost; /* Cost of vector store. */
184 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
185 cost model. */
186 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
187 vectorizer cost model. */
188 };
189
190 extern const struct processor_costs *ix86_cost;
191 extern const struct processor_costs ix86_size_cost;
192
193 #define ix86_cur_cost() \
194 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
195
196 /* Macros used in the machine description to test the flags. */
197
198 /* configure can arrange to make this 2, to force a 486. */
199
200 #ifndef TARGET_CPU_DEFAULT
201 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
202 #endif
203
204 #ifndef TARGET_FPMATH_DEFAULT
205 #define TARGET_FPMATH_DEFAULT \
206 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
207 #endif
208
209 #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
210
211 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
212 compile-time constant. */
213 #ifdef IN_LIBGCC2
214 #undef TARGET_64BIT
215 #ifdef __x86_64__
216 #define TARGET_64BIT 1
217 #else
218 #define TARGET_64BIT 0
219 #endif
220 #else
221 #ifndef TARGET_BI_ARCH
222 #undef TARGET_64BIT
223 #if TARGET_64BIT_DEFAULT
224 #define TARGET_64BIT 1
225 #else
226 #define TARGET_64BIT 0
227 #endif
228 #endif
229 #endif
230
231 #define HAS_LONG_COND_BRANCH 1
232 #define HAS_LONG_UNCOND_BRANCH 1
233
234 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
235 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
236 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
237 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
238 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
239 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
240 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
241 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
242 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
243 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
244 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
245 #define TARGET_CORE2_32 (ix86_tune == PROCESSOR_CORE2_32)
246 #define TARGET_CORE2_64 (ix86_tune == PROCESSOR_CORE2_64)
247 #define TARGET_CORE2 (TARGET_CORE2_32 || TARGET_CORE2_64)
248 #define TARGET_COREI7_32 (ix86_tune == PROCESSOR_COREI7_32)
249 #define TARGET_COREI7_64 (ix86_tune == PROCESSOR_COREI7_64)
250 #define TARGET_COREI7 (TARGET_COREI7_32 || TARGET_COREI7_64)
251 #define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
252 #define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
253 #define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
254 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
255 #define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
256 #define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
257 #define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
258 #define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
259 #define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
260 #define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
261
262 /* Feature tests against the various tunings. */
263 enum ix86_tune_indices {
264 X86_TUNE_USE_LEAVE,
265 X86_TUNE_PUSH_MEMORY,
266 X86_TUNE_ZERO_EXTEND_WITH_AND,
267 X86_TUNE_UNROLL_STRLEN,
268 X86_TUNE_BRANCH_PREDICTION_HINTS,
269 X86_TUNE_DOUBLE_WITH_ADD,
270 X86_TUNE_USE_SAHF,
271 X86_TUNE_MOVX,
272 X86_TUNE_PARTIAL_REG_STALL,
273 X86_TUNE_PARTIAL_FLAG_REG_STALL,
274 X86_TUNE_LCP_STALL,
275 X86_TUNE_USE_HIMODE_FIOP,
276 X86_TUNE_USE_SIMODE_FIOP,
277 X86_TUNE_USE_MOV0,
278 X86_TUNE_USE_CLTD,
279 X86_TUNE_USE_XCHGB,
280 X86_TUNE_SPLIT_LONG_MOVES,
281 X86_TUNE_READ_MODIFY_WRITE,
282 X86_TUNE_READ_MODIFY,
283 X86_TUNE_PROMOTE_QIMODE,
284 X86_TUNE_FAST_PREFIX,
285 X86_TUNE_SINGLE_STRINGOP,
286 X86_TUNE_QIMODE_MATH,
287 X86_TUNE_HIMODE_MATH,
288 X86_TUNE_PROMOTE_QI_REGS,
289 X86_TUNE_PROMOTE_HI_REGS,
290 X86_TUNE_SINGLE_POP,
291 X86_TUNE_DOUBLE_POP,
292 X86_TUNE_SINGLE_PUSH,
293 X86_TUNE_DOUBLE_PUSH,
294 X86_TUNE_INTEGER_DFMODE_MOVES,
295 X86_TUNE_PARTIAL_REG_DEPENDENCY,
296 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
297 X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL,
298 X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL,
299 X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL,
300 X86_TUNE_SSE_SPLIT_REGS,
301 X86_TUNE_SSE_TYPELESS_STORES,
302 X86_TUNE_SSE_LOAD0_BY_PXOR,
303 X86_TUNE_MEMORY_MISMATCH_STALL,
304 X86_TUNE_PROLOGUE_USING_MOVE,
305 X86_TUNE_EPILOGUE_USING_MOVE,
306 X86_TUNE_SHIFT1,
307 X86_TUNE_USE_FFREEP,
308 X86_TUNE_INTER_UNIT_MOVES,
309 X86_TUNE_INTER_UNIT_CONVERSIONS,
310 X86_TUNE_FOUR_JUMP_LIMIT,
311 X86_TUNE_SCHEDULE,
312 X86_TUNE_USE_BT,
313 X86_TUNE_USE_INCDEC,
314 X86_TUNE_PAD_RETURNS,
315 X86_TUNE_PAD_SHORT_FUNCTION,
316 X86_TUNE_EXT_80387_CONSTANTS,
317 X86_TUNE_AVOID_VECTOR_DECODE,
318 X86_TUNE_PROMOTE_HIMODE_IMUL,
319 X86_TUNE_SLOW_IMUL_IMM32_MEM,
320 X86_TUNE_SLOW_IMUL_IMM8,
321 X86_TUNE_MOVE_M1_VIA_OR,
322 X86_TUNE_NOT_UNPAIRABLE,
323 X86_TUNE_NOT_VECTORMODE,
324 X86_TUNE_USE_VECTOR_FP_CONVERTS,
325 X86_TUNE_USE_VECTOR_CONVERTS,
326 X86_TUNE_FUSE_CMP_AND_BRANCH,
327 X86_TUNE_OPT_AGU,
328 X86_TUNE_VECTORIZE_DOUBLE,
329 X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL,
330 X86_TUNE_AVX128_OPTIMAL,
331 X86_TUNE_REASSOC_INT_TO_PARALLEL,
332 X86_TUNE_REASSOC_FP_TO_PARALLEL,
333 X86_TUNE_GENERAL_REGS_SSE_SPILL,
334
335 X86_TUNE_LAST
336 };
337
338 extern unsigned char ix86_tune_features[X86_TUNE_LAST];
339
340 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
341 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
342 #define TARGET_ZERO_EXTEND_WITH_AND \
343 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
344 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
345 #define TARGET_BRANCH_PREDICTION_HINTS \
346 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
347 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
348 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
349 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
350 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
351 #define TARGET_PARTIAL_FLAG_REG_STALL \
352 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
353 #define TARGET_LCP_STALL \
354 ix86_tune_features[X86_TUNE_LCP_STALL]
355 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
356 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
357 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
358 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
359 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
360 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
361 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
362 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
363 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
364 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
365 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
366 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
367 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
368 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
369 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
370 #define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
371 #define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
372 #define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
373 #define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
374 #define TARGET_INTEGER_DFMODE_MOVES \
375 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
376 #define TARGET_PARTIAL_REG_DEPENDENCY \
377 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
378 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
379 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
380 #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
381 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
382 #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
383 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
384 #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
385 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
386 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
387 #define TARGET_SSE_TYPELESS_STORES \
388 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
389 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
390 #define TARGET_MEMORY_MISMATCH_STALL \
391 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
392 #define TARGET_PROLOGUE_USING_MOVE \
393 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
394 #define TARGET_EPILOGUE_USING_MOVE \
395 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
396 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
397 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
398 #define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
399 #define TARGET_INTER_UNIT_CONVERSIONS\
400 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
401 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
402 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
403 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
404 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
405 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
406 #define TARGET_PAD_SHORT_FUNCTION \
407 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
408 #define TARGET_EXT_80387_CONSTANTS \
409 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
410 #define TARGET_AVOID_VECTOR_DECODE \
411 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
412 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
413 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
414 #define TARGET_SLOW_IMUL_IMM32_MEM \
415 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
416 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
417 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
418 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
419 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
420 #define TARGET_USE_VECTOR_FP_CONVERTS \
421 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
422 #define TARGET_USE_VECTOR_CONVERTS \
423 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
424 #define TARGET_FUSE_CMP_AND_BRANCH \
425 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
426 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
427 #define TARGET_VECTORIZE_DOUBLE \
428 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
429 #define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
430 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
431 #define TARGET_AVX128_OPTIMAL \
432 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
433 #define TARGET_REASSOC_INT_TO_PARALLEL \
434 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
435 #define TARGET_REASSOC_FP_TO_PARALLEL \
436 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
437 #define TARGET_GENERAL_REGS_SSE_SPILL \
438 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
439
440 /* Feature tests against the various architecture variations. */
441 enum ix86_arch_indices {
442 X86_ARCH_CMOV,
443 X86_ARCH_CMPXCHG,
444 X86_ARCH_CMPXCHG8B,
445 X86_ARCH_XADD,
446 X86_ARCH_BSWAP,
447
448 X86_ARCH_LAST
449 };
450
451 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
452
453 #define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
454 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
455 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
456 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
457 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
458
459 /* For sane SSE instruction set generation we need fcomi instruction.
460 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
461 expands to a sequence that includes conditional move. */
462 #define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
463
464 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
465
466 extern unsigned char x86_prefetch_sse;
467 #define TARGET_PREFETCH_SSE x86_prefetch_sse
468
469 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
470
471 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
472 #define TARGET_MIX_SSE_I387 \
473 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
474
475 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
476 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
477 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
478 #define TARGET_SUN_TLS 0
479
480 #ifndef TARGET_64BIT_DEFAULT
481 #define TARGET_64BIT_DEFAULT 0
482 #endif
483 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
484 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
485 #endif
486
487 /* Fence to use after loop using storent. */
488
489 extern tree x86_mfence;
490 #define FENCE_FOLLOWING_MOVNT x86_mfence
491
492 /* Once GDB has been enhanced to deal with functions without frame
493 pointers, we can change this to allow for elimination of
494 the frame pointer in leaf functions. */
495 #define TARGET_DEFAULT 0
496
497 /* Extra bits to force. */
498 #define TARGET_SUBTARGET_DEFAULT 0
499 #define TARGET_SUBTARGET_ISA_DEFAULT 0
500
501 /* Extra bits to force on w/ 32-bit mode. */
502 #define TARGET_SUBTARGET32_DEFAULT 0
503 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
504
505 /* Extra bits to force on w/ 64-bit mode. */
506 #define TARGET_SUBTARGET64_DEFAULT 0
507 #define TARGET_SUBTARGET64_ISA_DEFAULT 0
508
509 /* Replace MACH-O, ifdefs by in-line tests, where possible.
510 (a) Macros defined in config/i386/darwin.h */
511 #define TARGET_MACHO 0
512 #define TARGET_MACHO_BRANCH_ISLANDS 0
513 #define MACHOPIC_ATT_STUB 0
514 /* (b) Macros defined in config/darwin.h */
515 #define MACHO_DYNAMIC_NO_PIC_P 0
516 #define MACHOPIC_INDIRECT 0
517 #define MACHOPIC_PURE 0
518
519 /* For the Windows 64-bit ABI. */
520 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
521
522 /* For the Windows 32-bit ABI. */
523 #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
524
525 /* This is re-defined by cygming.h. */
526 #define TARGET_SEH 0
527
528 /* The default abi used by target. */
529 #define DEFAULT_ABI SYSV_ABI
530
531 /* Subtargets may reset this to 1 in order to enable 96-bit long double
532 with the rounding mode forced to 53 bits. */
533 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
534
535 /* -march=native handling only makes sense with compiler running on
536 an x86 or x86_64 chip. If changing this condition, also change
537 the condition in driver-i386.c. */
538 #if defined(__i386__) || defined(__x86_64__)
539 /* In driver-i386.c. */
540 extern const char *host_detect_local_cpu (int argc, const char **argv);
541 #define EXTRA_SPEC_FUNCTIONS \
542 { "local_cpu_detect", host_detect_local_cpu },
543 #define HAVE_LOCAL_CPU_DETECT
544 #endif
545
546 #if TARGET_64BIT_DEFAULT
547 #define OPT_ARCH64 "!m32"
548 #define OPT_ARCH32 "m32"
549 #else
550 #define OPT_ARCH64 "m64|mx32"
551 #define OPT_ARCH32 "m64|mx32:;"
552 #endif
553
554 /* Support for configure-time defaults of some command line options.
555 The order here is important so that -march doesn't squash the
556 tune or cpu values. */
557 #define OPTION_DEFAULT_SPECS \
558 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
559 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
560 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
561 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
562 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
563 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
564 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
565 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
566 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
567
568 /* Specs for the compiler proper */
569
570 #ifndef CC1_CPU_SPEC
571 #define CC1_CPU_SPEC_1 ""
572
573 #ifndef HAVE_LOCAL_CPU_DETECT
574 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
575 #else
576 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
577 "%{march=native:%>march=native %:local_cpu_detect(arch) \
578 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
579 %{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
580 #endif
581 #endif
582 \f
583 /* Target CPU builtins. */
584 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
585
586 /* Target Pragmas. */
587 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
588
589 enum target_cpu_default
590 {
591 TARGET_CPU_DEFAULT_generic = 0,
592
593 TARGET_CPU_DEFAULT_i386,
594 TARGET_CPU_DEFAULT_i486,
595 TARGET_CPU_DEFAULT_pentium,
596 TARGET_CPU_DEFAULT_pentium_mmx,
597 TARGET_CPU_DEFAULT_pentiumpro,
598 TARGET_CPU_DEFAULT_pentium2,
599 TARGET_CPU_DEFAULT_pentium3,
600 TARGET_CPU_DEFAULT_pentium4,
601 TARGET_CPU_DEFAULT_pentium_m,
602 TARGET_CPU_DEFAULT_prescott,
603 TARGET_CPU_DEFAULT_nocona,
604 TARGET_CPU_DEFAULT_core2,
605 TARGET_CPU_DEFAULT_corei7,
606 TARGET_CPU_DEFAULT_atom,
607
608 TARGET_CPU_DEFAULT_geode,
609 TARGET_CPU_DEFAULT_k6,
610 TARGET_CPU_DEFAULT_k6_2,
611 TARGET_CPU_DEFAULT_k6_3,
612 TARGET_CPU_DEFAULT_athlon,
613 TARGET_CPU_DEFAULT_athlon_sse,
614 TARGET_CPU_DEFAULT_k8,
615 TARGET_CPU_DEFAULT_amdfam10,
616 TARGET_CPU_DEFAULT_bdver1,
617 TARGET_CPU_DEFAULT_bdver2,
618 TARGET_CPU_DEFAULT_bdver3,
619 TARGET_CPU_DEFAULT_btver1,
620 TARGET_CPU_DEFAULT_btver2,
621
622 TARGET_CPU_DEFAULT_max
623 };
624
625 #ifndef CC1_SPEC
626 #define CC1_SPEC "%(cc1_cpu) "
627 #endif
628
629 /* This macro defines names of additional specifications to put in the
630 specs that can be used in various specifications like CC1_SPEC. Its
631 definition is an initializer with a subgrouping for each command option.
632
633 Each subgrouping contains a string constant, that defines the
634 specification name, and a string constant that used by the GCC driver
635 program.
636
637 Do not define this macro if it does not need to do anything. */
638
639 #ifndef SUBTARGET_EXTRA_SPECS
640 #define SUBTARGET_EXTRA_SPECS
641 #endif
642
643 #define EXTRA_SPECS \
644 { "cc1_cpu", CC1_CPU_SPEC }, \
645 SUBTARGET_EXTRA_SPECS
646 \f
647
648 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
649 FPU, assume that the fpcw is set to extended precision; when using
650 only SSE, rounding is correct; when using both SSE and the FPU,
651 the rounding precision is indeterminate, since either may be chosen
652 apparently at random. */
653 #define TARGET_FLT_EVAL_METHOD \
654 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
655
656 /* Whether to allow x87 floating-point arithmetic on MODE (one of
657 SFmode, DFmode and XFmode) in the current excess precision
658 configuration. */
659 #define X87_ENABLE_ARITH(MODE) \
660 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
661
662 /* Likewise, whether to allow direct conversions from integer mode
663 IMODE (HImode, SImode or DImode) to MODE. */
664 #define X87_ENABLE_FLOAT(MODE, IMODE) \
665 (flag_excess_precision == EXCESS_PRECISION_FAST \
666 || (MODE) == XFmode \
667 || ((MODE) == DFmode && (IMODE) == SImode) \
668 || (IMODE) == HImode)
669
670 /* target machine storage layout */
671
672 #define SHORT_TYPE_SIZE 16
673 #define INT_TYPE_SIZE 32
674 #define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
675 #define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
676 #define LONG_LONG_TYPE_SIZE 64
677 #define FLOAT_TYPE_SIZE 32
678 #define DOUBLE_TYPE_SIZE 64
679 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_64 ? 64 : 80)
680
681 /* Define this to set long double type size to use in libgcc2.c, which can
682 not depend on target_flags. */
683 #ifdef __LONG_DOUBLE_64__
684 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
685 #else
686 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 80
687 #endif
688
689 #define WIDEST_HARDWARE_FP_SIZE 80
690
691 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
692 #define MAX_BITS_PER_WORD 64
693 #else
694 #define MAX_BITS_PER_WORD 32
695 #endif
696
697 /* Define this if most significant byte of a word is the lowest numbered. */
698 /* That is true on the 80386. */
699
700 #define BITS_BIG_ENDIAN 0
701
702 /* Define this if most significant byte of a word is the lowest numbered. */
703 /* That is not true on the 80386. */
704 #define BYTES_BIG_ENDIAN 0
705
706 /* Define this if most significant word of a multiword number is the lowest
707 numbered. */
708 /* Not true for 80386 */
709 #define WORDS_BIG_ENDIAN 0
710
711 /* Width of a word, in units (bytes). */
712 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
713
714 #ifndef IN_LIBGCC2
715 #define MIN_UNITS_PER_WORD 4
716 #endif
717
718 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
719 #define PARM_BOUNDARY BITS_PER_WORD
720
721 /* Boundary (in *bits*) on which stack pointer should be aligned. */
722 #define STACK_BOUNDARY \
723 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
724
725 /* Stack boundary of the main function guaranteed by OS. */
726 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
727
728 /* Minimum stack boundary. */
729 #define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
730
731 /* Boundary (in *bits*) on which the stack pointer prefers to be
732 aligned; the compiler cannot rely on having this alignment. */
733 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
734
735 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
736 both 32bit and 64bit, to support codes that need 128 bit stack
737 alignment for SSE instructions, but can't realign the stack. */
738 #define PREFERRED_STACK_BOUNDARY_DEFAULT 128
739
740 /* 1 if -mstackrealign should be turned on by default. It will
741 generate an alternate prologue and epilogue that realigns the
742 runtime stack if nessary. This supports mixing codes that keep a
743 4-byte aligned stack, as specified by i386 psABI, with codes that
744 need a 16-byte aligned stack, as required by SSE instructions. */
745 #define STACK_REALIGN_DEFAULT 0
746
747 /* Boundary (in *bits*) on which the incoming stack is aligned. */
748 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
749
750 /* According to Windows x64 software convention, the maximum stack allocatable
751 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
752 instructions allowed to adjust the stack pointer in the epilog, forcing the
753 use of frame pointer for frames larger than 2 GB. This theorical limit
754 is reduced by 256, an over-estimated upper bound for the stack use by the
755 prologue.
756 We define only one threshold for both the prolog and the epilog. When the
757 frame size is larger than this threshold, we allocate the area to save SSE
758 regs, then save them, and then allocate the remaining. There is no SEH
759 unwind info for this later allocation. */
760 #define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
761
762 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
763 mandatory for the 64-bit ABI, and may or may not be true for other
764 operating systems. */
765 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
766
767 /* Minimum allocation boundary for the code of a function. */
768 #define FUNCTION_BOUNDARY 8
769
770 /* C++ stores the virtual bit in the lowest bit of function pointers. */
771 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
772
773 /* Minimum size in bits of the largest boundary to which any
774 and all fundamental data types supported by the hardware
775 might need to be aligned. No data type wants to be aligned
776 rounder than this.
777
778 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
779 and Pentium Pro XFmode values at 128 bit boundaries. */
780
781 #define BIGGEST_ALIGNMENT (TARGET_AVX ? 256 : 128)
782
783 /* Maximum stack alignment. */
784 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
785
786 /* Alignment value for attribute ((aligned)). It is a constant since
787 it is the part of the ABI. We shouldn't change it with -mavx. */
788 #define ATTRIBUTE_ALIGNED_VALUE 128
789
790 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
791 #define ALIGN_MODE_128(MODE) \
792 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
793
794 /* The published ABIs say that doubles should be aligned on word
795 boundaries, so lower the alignment for structure fields unless
796 -malign-double is set. */
797
798 /* ??? Blah -- this macro is used directly by libobjc. Since it
799 supports no vector modes, cut out the complexity and fall back
800 on BIGGEST_FIELD_ALIGNMENT. */
801 #ifdef IN_TARGET_LIBS
802 #ifdef __x86_64__
803 #define BIGGEST_FIELD_ALIGNMENT 128
804 #else
805 #define BIGGEST_FIELD_ALIGNMENT 32
806 #endif
807 #else
808 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
809 x86_field_alignment (FIELD, COMPUTED)
810 #endif
811
812 /* If defined, a C expression to compute the alignment given to a
813 constant that is being placed in memory. EXP is the constant
814 and ALIGN is the alignment that the object would ordinarily have.
815 The value of this macro is used instead of that alignment to align
816 the object.
817
818 If this macro is not defined, then ALIGN is used.
819
820 The typical use of this macro is to increase alignment for string
821 constants to be word aligned so that `strcpy' calls that copy
822 constants can be done inline. */
823
824 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
825
826 /* If defined, a C expression to compute the alignment for a static
827 variable. TYPE is the data type, and ALIGN is the alignment that
828 the object would ordinarily have. The value of this macro is used
829 instead of that alignment to align the object.
830
831 If this macro is not defined, then ALIGN is used.
832
833 One use of this macro is to increase alignment of medium-size
834 data to make it all fit in fewer cache lines. Another is to
835 cause character arrays to be word-aligned so that `strcpy' calls
836 that copy constants to character arrays can be done inline. */
837
838 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
839
840 /* If defined, a C expression to compute the alignment for a local
841 variable. TYPE is the data type, and ALIGN is the alignment that
842 the object would ordinarily have. The value of this macro is used
843 instead of that alignment to align the object.
844
845 If this macro is not defined, then ALIGN is used.
846
847 One use of this macro is to increase alignment of medium-size
848 data to make it all fit in fewer cache lines. */
849
850 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
851 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
852
853 /* If defined, a C expression to compute the alignment for stack slot.
854 TYPE is the data type, MODE is the widest mode available, and ALIGN
855 is the alignment that the slot would ordinarily have. The value of
856 this macro is used instead of that alignment to align the slot.
857
858 If this macro is not defined, then ALIGN is used when TYPE is NULL,
859 Otherwise, LOCAL_ALIGNMENT will be used.
860
861 One use of this macro is to set alignment of stack slot to the
862 maximum alignment of all possible modes which the slot may have. */
863
864 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
865 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
866
867 /* If defined, a C expression to compute the alignment for a local
868 variable DECL.
869
870 If this macro is not defined, then
871 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
872
873 One use of this macro is to increase alignment of medium-size
874 data to make it all fit in fewer cache lines. */
875
876 #define LOCAL_DECL_ALIGNMENT(DECL) \
877 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
878
879 /* If defined, a C expression to compute the minimum required alignment
880 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
881 MODE, assuming normal alignment ALIGN.
882
883 If this macro is not defined, then (ALIGN) will be used. */
884
885 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
886 ix86_minimum_alignment (EXP, MODE, ALIGN)
887
888
889 /* Set this nonzero if move instructions will actually fail to work
890 when given unaligned data. */
891 #define STRICT_ALIGNMENT 0
892
893 /* If bit field type is int, don't let it cross an int,
894 and give entire struct the alignment of an int. */
895 /* Required on the 386 since it doesn't have bit-field insns. */
896 #define PCC_BITFIELD_TYPE_MATTERS 1
897 \f
898 /* Standard register usage. */
899
900 /* This processor has special stack-like registers. See reg-stack.c
901 for details. */
902
903 #define STACK_REGS
904
905 #define IS_STACK_MODE(MODE) \
906 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
907 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
908 || (MODE) == XFmode)
909
910 /* Number of actual hardware registers.
911 The hardware registers are assigned numbers for the compiler
912 from 0 to just below FIRST_PSEUDO_REGISTER.
913 All registers that the compiler knows about must be given numbers,
914 even those that are not normally considered general registers.
915
916 In the 80386 we give the 8 general purpose registers the numbers 0-7.
917 We number the floating point registers 8-15.
918 Note that registers 0-7 can be accessed as a short or int,
919 while only 0-3 may be used with byte `mov' instructions.
920
921 Reg 16 does not correspond to any hardware register, but instead
922 appears in the RTL as an argument pointer prior to reload, and is
923 eliminated during reloading in favor of either the stack or frame
924 pointer. */
925
926 #define FIRST_PSEUDO_REGISTER 53
927
928 /* Number of hardware registers that go into the DWARF-2 unwind info.
929 If not defined, equals FIRST_PSEUDO_REGISTER. */
930
931 #define DWARF_FRAME_REGISTERS 17
932
933 /* 1 for registers that have pervasive standard uses
934 and are not available for the register allocator.
935 On the 80386, the stack pointer is such, as is the arg pointer.
936
937 REX registers are disabled for 32bit targets in
938 TARGET_CONDITIONAL_REGISTER_USAGE. */
939
940 #define FIXED_REGISTERS \
941 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
942 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
943 /*arg,flags,fpsr,fpcr,frame*/ \
944 1, 1, 1, 1, 1, \
945 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
946 0, 0, 0, 0, 0, 0, 0, 0, \
947 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
948 0, 0, 0, 0, 0, 0, 0, 0, \
949 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
950 0, 0, 0, 0, 0, 0, 0, 0, \
951 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
952 0, 0, 0, 0, 0, 0, 0, 0 }
953
954 /* 1 for registers not available across function calls.
955 These must include the FIXED_REGISTERS and also any
956 registers that can be used without being saved.
957 The latter must include the registers where values are returned
958 and the register where structure-value addresses are passed.
959 Aside from that, you can include as many other registers as you like.
960
961 Value is set to 1 if the register is call used unconditionally.
962 Bit one is set if the register is call used on TARGET_32BIT ABI.
963 Bit two is set if the register is call used on TARGET_64BIT ABI.
964 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
965
966 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
967
968 #define CALL_USED_REGISTERS \
969 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
970 { 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
971 /*arg,flags,fpsr,fpcr,frame*/ \
972 1, 1, 1, 1, 1, \
973 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
974 1, 1, 1, 1, 1, 1, 6, 6, \
975 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
976 1, 1, 1, 1, 1, 1, 1, 1, \
977 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
978 1, 1, 1, 1, 2, 2, 2, 2, \
979 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
980 6, 6, 6, 6, 6, 6, 6, 6 }
981
982 /* Order in which to allocate registers. Each register must be
983 listed once, even those in FIXED_REGISTERS. List frame pointer
984 late and fixed registers last. Note that, in general, we prefer
985 registers listed in CALL_USED_REGISTERS, keeping the others
986 available for storage of persistent values.
987
988 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
989 so this is just empty initializer for array. */
990
991 #define REG_ALLOC_ORDER \
992 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
993 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
994 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
995 48, 49, 50, 51, 52 }
996
997 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
998 to be rearranged based on a particular function. When using sse math,
999 we want to allocate SSE before x87 registers and vice versa. */
1000
1001 #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
1002
1003
1004 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1005
1006 /* Return number of consecutive hard regs needed starting at reg REGNO
1007 to hold something of mode MODE.
1008 This is ordinarily the length in words of a value of mode MODE
1009 but can be less for certain modes in special long registers.
1010
1011 Actually there are no two word move instructions for consecutive
1012 registers. And only registers 0-3 may have mov byte instructions
1013 applied to them. */
1014
1015 #define HARD_REGNO_NREGS(REGNO, MODE) \
1016 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1017 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1018 : ((MODE) == XFmode \
1019 ? (TARGET_64BIT ? 2 : 3) \
1020 : (MODE) == XCmode \
1021 ? (TARGET_64BIT ? 4 : 6) \
1022 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1023
1024 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1025 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1026 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1027 ? 0 \
1028 : ((MODE) == XFmode || (MODE) == XCmode)) \
1029 : 0)
1030
1031 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1032
1033 #define VALID_AVX256_REG_MODE(MODE) \
1034 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1035 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1036 || (MODE) == V4DFmode)
1037
1038 #define VALID_AVX256_REG_OR_OI_MODE(MODE) \
1039 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1040
1041 #define VALID_SSE2_REG_MODE(MODE) \
1042 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1043 || (MODE) == V2DImode || (MODE) == DFmode)
1044
1045 #define VALID_SSE_REG_MODE(MODE) \
1046 ((MODE) == V1TImode || (MODE) == TImode \
1047 || (MODE) == V4SFmode || (MODE) == V4SImode \
1048 || (MODE) == SFmode || (MODE) == TFmode)
1049
1050 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1051 ((MODE) == V2SFmode || (MODE) == SFmode)
1052
1053 #define VALID_MMX_REG_MODE(MODE) \
1054 ((MODE == V1DImode) || (MODE) == DImode \
1055 || (MODE) == V2SImode || (MODE) == SImode \
1056 || (MODE) == V4HImode || (MODE) == V8QImode)
1057
1058 #define VALID_DFP_MODE_P(MODE) \
1059 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1060
1061 #define VALID_FP_MODE_P(MODE) \
1062 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1063 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1064
1065 #define VALID_INT_MODE_P(MODE) \
1066 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1067 || (MODE) == DImode \
1068 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1069 || (MODE) == CDImode \
1070 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1071 || (MODE) == TFmode || (MODE) == TCmode)))
1072
1073 /* Return true for modes passed in SSE registers. */
1074 #define SSE_REG_MODE_P(MODE) \
1075 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1076 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1077 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1078 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1079 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
1080 || (MODE) == V2TImode)
1081
1082 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1083
1084 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1085 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1086
1087 /* Value is 1 if it is a good idea to tie two pseudo registers
1088 when one has mode MODE1 and one has mode MODE2.
1089 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1090 for any hard reg, then this must be 0 for correct output. */
1091
1092 #define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
1093
1094 /* It is possible to write patterns to move flags; but until someone
1095 does it, */
1096 #define AVOID_CCMODE_COPIES
1097
1098 /* Specify the modes required to caller save a given hard regno.
1099 We do this on i386 to prevent flags from being saved at all.
1100
1101 Kill any attempts to combine saving of modes. */
1102
1103 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1104 (CC_REGNO_P (REGNO) ? VOIDmode \
1105 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1106 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1107 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1108 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO)) ? SImode \
1109 : (MODE))
1110
1111 /* The only ABI that saves SSE registers across calls is Win64 (thus no
1112 need to check the current ABI here), and with AVX enabled Win64 only
1113 guarantees that the low 16 bytes are saved. */
1114 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1115 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1116
1117 /* Specify the registers used for certain standard purposes.
1118 The values of these macros are register numbers. */
1119
1120 /* on the 386 the pc register is %eip, and is not usable as a general
1121 register. The ordinary mov instructions won't work */
1122 /* #define PC_REGNUM */
1123
1124 /* Register to use for pushing function arguments. */
1125 #define STACK_POINTER_REGNUM 7
1126
1127 /* Base register for access to local variables of the function. */
1128 #define HARD_FRAME_POINTER_REGNUM 6
1129
1130 /* Base register for access to local variables of the function. */
1131 #define FRAME_POINTER_REGNUM 20
1132
1133 /* First floating point reg */
1134 #define FIRST_FLOAT_REG 8
1135
1136 /* First & last stack-like regs */
1137 #define FIRST_STACK_REG FIRST_FLOAT_REG
1138 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1139
1140 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1141 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1142
1143 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1144 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1145
1146 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1147 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1148
1149 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1150 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1151
1152 /* Override this in other tm.h files to cope with various OS lossage
1153 requiring a frame pointer. */
1154 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1155 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1156 #endif
1157
1158 /* Make sure we can access arbitrary call frames. */
1159 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1160
1161 /* Base register for access to arguments of the function. */
1162 #define ARG_POINTER_REGNUM 16
1163
1164 /* Register to hold the addressing base for position independent
1165 code access to data items. We don't use PIC pointer for 64bit
1166 mode. Define the regnum to dummy value to prevent gcc from
1167 pessimizing code dealing with EBX.
1168
1169 To avoid clobbering a call-saved register unnecessarily, we renumber
1170 the pic register when possible. The change is visible after the
1171 prologue has been emitted. */
1172
1173 #define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
1174
1175 #define PIC_OFFSET_TABLE_REGNUM \
1176 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1177 || !flag_pic ? INVALID_REGNUM \
1178 : reload_completed ? REGNO (pic_offset_table_rtx) \
1179 : REAL_PIC_OFFSET_TABLE_REGNUM)
1180
1181 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1182
1183 /* This is overridden by <cygwin.h>. */
1184 #define MS_AGGREGATE_RETURN 0
1185
1186 #define KEEP_AGGREGATE_RETURN_POINTER 0
1187 \f
1188 /* Define the classes of registers for register constraints in the
1189 machine description. Also define ranges of constants.
1190
1191 One of the classes must always be named ALL_REGS and include all hard regs.
1192 If there is more than one class, another class must be named NO_REGS
1193 and contain no registers.
1194
1195 The name GENERAL_REGS must be the name of a class (or an alias for
1196 another name such as ALL_REGS). This is the class of registers
1197 that is allowed by "g" or "r" in a register constraint.
1198 Also, registers outside this class are allocated only when
1199 instructions express preferences for them.
1200
1201 The classes must be numbered in nondecreasing order; that is,
1202 a larger-numbered class must never be contained completely
1203 in a smaller-numbered class.
1204
1205 For any two classes, it is very desirable that there be another
1206 class that represents their union.
1207
1208 It might seem that class BREG is unnecessary, since no useful 386
1209 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1210 and the "b" register constraint is useful in asms for syscalls.
1211
1212 The flags, fpsr and fpcr registers are in no class. */
1213
1214 enum reg_class
1215 {
1216 NO_REGS,
1217 AREG, DREG, CREG, BREG, SIREG, DIREG,
1218 AD_REGS, /* %eax/%edx for DImode */
1219 Q_REGS, /* %eax %ebx %ecx %edx */
1220 NON_Q_REGS, /* %esi %edi %ebp %esp */
1221 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1222 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1223 CLOBBERED_REGS, /* call-clobbered integer registers */
1224 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1225 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1226 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1227 FLOAT_REGS,
1228 SSE_FIRST_REG,
1229 SSE_REGS,
1230 MMX_REGS,
1231 FP_TOP_SSE_REGS,
1232 FP_SECOND_SSE_REGS,
1233 FLOAT_SSE_REGS,
1234 FLOAT_INT_REGS,
1235 INT_SSE_REGS,
1236 FLOAT_INT_SSE_REGS,
1237 ALL_REGS, LIM_REG_CLASSES
1238 };
1239
1240 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1241
1242 #define INTEGER_CLASS_P(CLASS) \
1243 reg_class_subset_p ((CLASS), GENERAL_REGS)
1244 #define FLOAT_CLASS_P(CLASS) \
1245 reg_class_subset_p ((CLASS), FLOAT_REGS)
1246 #define SSE_CLASS_P(CLASS) \
1247 reg_class_subset_p ((CLASS), SSE_REGS)
1248 #define MMX_CLASS_P(CLASS) \
1249 ((CLASS) == MMX_REGS)
1250 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1251 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1252 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1253 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1254 #define MAYBE_SSE_CLASS_P(CLASS) \
1255 reg_classes_intersect_p (SSE_REGS, (CLASS))
1256 #define MAYBE_MMX_CLASS_P(CLASS) \
1257 reg_classes_intersect_p (MMX_REGS, (CLASS))
1258
1259 #define Q_CLASS_P(CLASS) \
1260 reg_class_subset_p ((CLASS), Q_REGS)
1261
1262 /* Give names of register classes as strings for dump file. */
1263
1264 #define REG_CLASS_NAMES \
1265 { "NO_REGS", \
1266 "AREG", "DREG", "CREG", "BREG", \
1267 "SIREG", "DIREG", \
1268 "AD_REGS", \
1269 "Q_REGS", "NON_Q_REGS", \
1270 "INDEX_REGS", \
1271 "LEGACY_REGS", \
1272 "CLOBBERED_REGS", \
1273 "GENERAL_REGS", \
1274 "FP_TOP_REG", "FP_SECOND_REG", \
1275 "FLOAT_REGS", \
1276 "SSE_FIRST_REG", \
1277 "SSE_REGS", \
1278 "MMX_REGS", \
1279 "FP_TOP_SSE_REGS", \
1280 "FP_SECOND_SSE_REGS", \
1281 "FLOAT_SSE_REGS", \
1282 "FLOAT_INT_REGS", \
1283 "INT_SSE_REGS", \
1284 "FLOAT_INT_SSE_REGS", \
1285 "ALL_REGS" }
1286
1287 /* Define which registers fit in which classes. This is an initializer
1288 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1289
1290 Note that CLOBBERED_REGS are calculated by
1291 TARGET_CONDITIONAL_REGISTER_USAGE. */
1292
1293 #define REG_CLASS_CONTENTS \
1294 { { 0x00, 0x0 }, \
1295 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1296 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1297 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1298 { 0x03, 0x0 }, /* AD_REGS */ \
1299 { 0x0f, 0x0 }, /* Q_REGS */ \
1300 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1301 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1302 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1303 { 0x00, 0x0 }, /* CLOBBERED_REGS */ \
1304 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1305 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1306 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1307 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
1308 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1309 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1310 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1311 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1312 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1313 { 0x11ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1314 { 0x1ff100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1315 { 0x1ff1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1316 { 0xffffffff,0x1fffff } \
1317 }
1318
1319 /* The same information, inverted:
1320 Return the class number of the smallest class containing
1321 reg number REGNO. This could be a conditional expression
1322 or could index an array. */
1323
1324 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1325
1326 /* When this hook returns true for MODE, the compiler allows
1327 registers explicitly used in the rtl to be used as spill registers
1328 but prevents the compiler from extending the lifetime of these
1329 registers. */
1330 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1331
1332 #define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1333 #define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
1334
1335 #define GENERAL_REG_P(X) \
1336 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1337 #define GENERAL_REGNO_P(N) \
1338 (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
1339
1340 #define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1341 #define ANY_QI_REGNO_P(N) \
1342 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
1343
1344 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1345 #define REX_INT_REGNO_P(N) \
1346 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1347
1348 #define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1349 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1350
1351 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1352 #define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
1353
1354 #define X87_FLOAT_MODE_P(MODE) \
1355 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1356
1357 #define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
1358 #define SSE_REGNO_P(N) \
1359 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1360 || REX_SSE_REGNO_P (N))
1361
1362 #define REX_SSE_REGNO_P(N) \
1363 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1364
1365 #define SSE_REGNO(N) \
1366 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1367
1368 #define SSE_FLOAT_MODE_P(MODE) \
1369 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1370
1371 #define FMA4_VEC_FLOAT_MODE_P(MODE) \
1372 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1373 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1374
1375 #define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
1376 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1377
1378 #define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
1379
1380 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1381 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1382
1383 /* The class value for index registers, and the one for base regs. */
1384
1385 #define INDEX_REG_CLASS INDEX_REGS
1386 #define BASE_REG_CLASS GENERAL_REGS
1387
1388 /* Place additional restrictions on the register class to use when it
1389 is necessary to be able to hold a value of mode MODE in a reload
1390 register for which class CLASS would ordinarily be used.
1391
1392 We avoid classes containing registers from multiple units due to
1393 the limitation in ix86_secondary_memory_needed. We limit these
1394 classes to their "natural mode" single unit register class, depending
1395 on the unit availability.
1396
1397 Please note that reg_class_subset_p is not commutative, so these
1398 conditions mean "... if (CLASS) includes ALL registers from the
1399 register set." */
1400
1401 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1402 (((MODE) == QImode && !TARGET_64BIT \
1403 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1404 : (((MODE) == SImode || (MODE) == DImode) \
1405 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1406 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1407 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1408 : (X87_FLOAT_MODE_P (MODE) \
1409 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1410 : (CLASS))
1411
1412 /* If we are copying between general and FP registers, we need a memory
1413 location. The same is true for SSE and MMX registers. */
1414 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1415 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1416
1417 /* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1418 There is no need to emit full 64 bit move on 64 bit targets
1419 for integral modes that can be moved using 32 bit move. */
1420 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1421 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1422 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1423 : MODE)
1424
1425 /* Return a class of registers that cannot change FROM mode to TO mode. */
1426
1427 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1428 ix86_cannot_change_mode_class (FROM, TO, CLASS)
1429 \f
1430 /* Stack layout; function entry, exit and calling. */
1431
1432 /* Define this if pushing a word on the stack
1433 makes the stack pointer a smaller address. */
1434 #define STACK_GROWS_DOWNWARD
1435
1436 /* Define this to nonzero if the nominal address of the stack frame
1437 is at the high-address end of the local variables;
1438 that is, each additional local variable allocated
1439 goes at a more negative offset in the frame. */
1440 #define FRAME_GROWS_DOWNWARD 1
1441
1442 /* Offset within stack frame to start allocating local variables at.
1443 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1444 first local allocated. Otherwise, it is the offset to the BEGINNING
1445 of the first local allocated. */
1446 #define STARTING_FRAME_OFFSET 0
1447
1448 /* If we generate an insn to push BYTES bytes, this says how many the stack
1449 pointer really advances by. On 386, we have pushw instruction that
1450 decrements by exactly 2 no matter what the position was, there is no pushb.
1451
1452 But as CIE data alignment factor on this arch is -4 for 32bit targets
1453 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1454 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
1455
1456 #define PUSH_ROUNDING(BYTES) \
1457 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1458
1459 /* If defined, the maximum amount of space required for outgoing arguments
1460 will be computed and placed into the variable `crtl->outgoing_args_size'.
1461 No space will be pushed onto the stack for each call; instead, the
1462 function prologue should increase the stack frame size by this amount.
1463
1464 64-bit MS ABI seem to require 16 byte alignment everywhere except for
1465 function prologue and apilogue. This is not possible without
1466 ACCUMULATE_OUTGOING_ARGS. */
1467
1468 #define ACCUMULATE_OUTGOING_ARGS \
1469 (TARGET_ACCUMULATE_OUTGOING_ARGS || TARGET_64BIT_MS_ABI)
1470
1471 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1472 instructions to pass outgoing arguments. */
1473
1474 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1475
1476 /* We want the stack and args grow in opposite directions, even if
1477 PUSH_ARGS is 0. */
1478 #define PUSH_ARGS_REVERSED 1
1479
1480 /* Offset of first parameter from the argument pointer register value. */
1481 #define FIRST_PARM_OFFSET(FNDECL) 0
1482
1483 /* Define this macro if functions should assume that stack space has been
1484 allocated for arguments even when their values are passed in registers.
1485
1486 The value of this macro is the size, in bytes, of the area reserved for
1487 arguments passed in registers for the function represented by FNDECL.
1488
1489 This space can be allocated by the caller, or be a part of the
1490 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1491 which. */
1492 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1493
1494 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1495 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1496
1497 /* Define how to find the value returned by a library function
1498 assuming the value has mode MODE. */
1499
1500 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1501
1502 /* Define the size of the result block used for communication between
1503 untyped_call and untyped_return. The block contains a DImode value
1504 followed by the block used by fnsave and frstor. */
1505
1506 #define APPLY_RESULT_SIZE (8+108)
1507
1508 /* 1 if N is a possible register number for function argument passing. */
1509 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1510
1511 /* Define a data type for recording info about an argument list
1512 during the scan of that argument list. This data type should
1513 hold all necessary information about the function itself
1514 and about the args processed so far, enough to enable macros
1515 such as FUNCTION_ARG to determine where the next arg should go. */
1516
1517 typedef struct ix86_args {
1518 int words; /* # words passed so far */
1519 int nregs; /* # registers available for passing */
1520 int regno; /* next available register number */
1521 int fastcall; /* fastcall or thiscall calling convention
1522 is used */
1523 int sse_words; /* # sse words passed so far */
1524 int sse_nregs; /* # sse registers available for passing */
1525 int warn_avx; /* True when we want to warn about AVX ABI. */
1526 int warn_sse; /* True when we want to warn about SSE ABI. */
1527 int warn_mmx; /* True when we want to warn about MMX ABI. */
1528 int sse_regno; /* next available sse register number */
1529 int mmx_words; /* # mmx words passed so far */
1530 int mmx_nregs; /* # mmx registers available for passing */
1531 int mmx_regno; /* next available mmx register number */
1532 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1533 int caller; /* true if it is caller. */
1534 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1535 SFmode/DFmode arguments should be passed
1536 in SSE registers. Otherwise 0. */
1537 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1538 MS_ABI for ms abi. */
1539 } CUMULATIVE_ARGS;
1540
1541 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1542 for a call to a function whose data type is FNTYPE.
1543 For a library call, FNTYPE is 0. */
1544
1545 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1546 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1547 (N_NAMED_ARGS) != -1)
1548
1549 /* Output assembler code to FILE to increment profiler label # LABELNO
1550 for profiling a function entry. */
1551
1552 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1553
1554 #define MCOUNT_NAME "_mcount"
1555
1556 #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1557
1558 #define PROFILE_COUNT_REGISTER "edx"
1559
1560 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1561 the stack pointer does not matter. The value is tested only in
1562 functions that have frame pointers.
1563 No definition is equivalent to always zero. */
1564 /* Note on the 386 it might be more efficient not to define this since
1565 we have to restore it ourselves from the frame pointer, in order to
1566 use pop */
1567
1568 #define EXIT_IGNORE_STACK 1
1569
1570 /* Output assembler code for a block containing the constant parts
1571 of a trampoline, leaving space for the variable parts. */
1572
1573 /* On the 386, the trampoline contains two instructions:
1574 mov #STATIC,ecx
1575 jmp FUNCTION
1576 The trampoline is generated entirely at runtime. The operand of JMP
1577 is the address of FUNCTION relative to the instruction following the
1578 JMP (which is 5 bytes long). */
1579
1580 /* Length in units of the trampoline for entering a nested function. */
1581
1582 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
1583 \f
1584 /* Definitions for register eliminations.
1585
1586 This is an array of structures. Each structure initializes one pair
1587 of eliminable registers. The "from" register number is given first,
1588 followed by "to". Eliminations of the same "from" register are listed
1589 in order of preference.
1590
1591 There are two registers that can always be eliminated on the i386.
1592 The frame pointer and the arg pointer can be replaced by either the
1593 hard frame pointer or to the stack pointer, depending upon the
1594 circumstances. The hard frame pointer is not used before reload and
1595 so it is not eligible for elimination. */
1596
1597 #define ELIMINABLE_REGS \
1598 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1599 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1600 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1601 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1602
1603 /* Define the offset between two registers, one to be eliminated, and the other
1604 its replacement, at the start of a routine. */
1605
1606 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1607 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1608 \f
1609 /* Addressing modes, and classification of registers for them. */
1610
1611 /* Macros to check register numbers against specific register classes. */
1612
1613 /* These assume that REGNO is a hard or pseudo reg number.
1614 They give nonzero only if REGNO is a hard reg of the suitable class
1615 or a pseudo reg currently allocated to a suitable hard reg.
1616 Since they use reg_renumber, they are safe only once reg_renumber
1617 has been allocated, which happens in local-alloc.c. */
1618
1619 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1620 ((REGNO) < STACK_POINTER_REGNUM \
1621 || REX_INT_REGNO_P (REGNO) \
1622 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1623 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1624
1625 #define REGNO_OK_FOR_BASE_P(REGNO) \
1626 (GENERAL_REGNO_P (REGNO) \
1627 || (REGNO) == ARG_POINTER_REGNUM \
1628 || (REGNO) == FRAME_POINTER_REGNUM \
1629 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1630
1631 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1632 and check its validity for a certain class.
1633 We have two alternate definitions for each of them.
1634 The usual definition accepts all pseudo regs; the other rejects
1635 them unless they have been allocated suitable hard regs.
1636 The symbol REG_OK_STRICT causes the latter definition to be used.
1637
1638 Most source files want to accept pseudo regs in the hope that
1639 they will get allocated to the class that the insn wants them to be in.
1640 Source files for reload pass need to be strict.
1641 After reload, it makes no difference, since pseudo regs have
1642 been eliminated by then. */
1643
1644
1645 /* Non strict versions, pseudos are ok. */
1646 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1647 (REGNO (X) < STACK_POINTER_REGNUM \
1648 || REX_INT_REGNO_P (REGNO (X)) \
1649 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1650
1651 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1652 (GENERAL_REGNO_P (REGNO (X)) \
1653 || REGNO (X) == ARG_POINTER_REGNUM \
1654 || REGNO (X) == FRAME_POINTER_REGNUM \
1655 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1656
1657 /* Strict versions, hard registers only */
1658 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1659 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1660
1661 #ifndef REG_OK_STRICT
1662 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1663 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1664
1665 #else
1666 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1667 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1668 #endif
1669
1670 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1671 that is a valid memory address for an instruction.
1672 The MODE argument is the machine mode for the MEM expression
1673 that wants to use this address.
1674
1675 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1676 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1677
1678 See legitimize_pic_address in i386.c for details as to what
1679 constitutes a legitimate address when -fpic is used. */
1680
1681 #define MAX_REGS_PER_ADDRESS 2
1682
1683 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1684
1685 /* Try a machine-dependent way of reloading an illegitimate address
1686 operand. If we find one, push the reload and jump to WIN. This
1687 macro is used in only one place: `find_reloads_address' in reload.c. */
1688
1689 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1690 do { \
1691 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1692 (int)(TYPE), (INDL))) \
1693 goto WIN; \
1694 } while (0)
1695
1696 /* If defined, a C expression to determine the base term of address X.
1697 This macro is used in only one place: `find_base_term' in alias.c.
1698
1699 It is always safe for this macro to not be defined. It exists so
1700 that alias analysis can understand machine-dependent addresses.
1701
1702 The typical use of this macro is to handle addresses containing
1703 a label_ref or symbol_ref within an UNSPEC. */
1704
1705 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1706
1707 /* Nonzero if the constant value X is a legitimate general operand
1708 when generating PIC code. It is given that flag_pic is on and
1709 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1710
1711 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1712
1713 #define SYMBOLIC_CONST(X) \
1714 (GET_CODE (X) == SYMBOL_REF \
1715 || GET_CODE (X) == LABEL_REF \
1716 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1717 \f
1718 /* Max number of args passed in registers. If this is more than 3, we will
1719 have problems with ebx (register #4), since it is a caller save register and
1720 is also used as the pic register in ELF. So for now, don't allow more than
1721 3 registers to be passed in registers. */
1722
1723 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1724 #define X86_64_REGPARM_MAX 6
1725 #define X86_64_MS_REGPARM_MAX 4
1726
1727 #define X86_32_REGPARM_MAX 3
1728
1729 #define REGPARM_MAX \
1730 (TARGET_64BIT \
1731 ? (TARGET_64BIT_MS_ABI \
1732 ? X86_64_MS_REGPARM_MAX \
1733 : X86_64_REGPARM_MAX) \
1734 : X86_32_REGPARM_MAX)
1735
1736 #define X86_64_SSE_REGPARM_MAX 8
1737 #define X86_64_MS_SSE_REGPARM_MAX 4
1738
1739 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1740
1741 #define SSE_REGPARM_MAX \
1742 (TARGET_64BIT \
1743 ? (TARGET_64BIT_MS_ABI \
1744 ? X86_64_MS_SSE_REGPARM_MAX \
1745 : X86_64_SSE_REGPARM_MAX) \
1746 : X86_32_SSE_REGPARM_MAX)
1747
1748 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1749 \f
1750 /* Specify the machine mode that this machine uses
1751 for the index in the tablejump instruction. */
1752 #define CASE_VECTOR_MODE \
1753 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1754
1755 /* Define this as 1 if `char' should by default be signed; else as 0. */
1756 #define DEFAULT_SIGNED_CHAR 1
1757
1758 /* Max number of bytes we can move from memory to memory
1759 in one reasonably fast instruction. */
1760 #define MOVE_MAX 16
1761
1762 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1763 move efficiently, as opposed to MOVE_MAX which is the maximum
1764 number of bytes we can move with a single instruction. */
1765 #define MOVE_MAX_PIECES UNITS_PER_WORD
1766
1767 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1768 move-instruction pairs, we will do a movmem or libcall instead.
1769 Increasing the value will always make code faster, but eventually
1770 incurs high cost in increased code size.
1771
1772 If you don't define this, a reasonable default is used. */
1773
1774 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1775
1776 /* If a clear memory operation would take CLEAR_RATIO or more simple
1777 move-instruction sequences, we will do a clrmem or libcall instead. */
1778
1779 #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
1780
1781 /* Define if shifts truncate the shift count which implies one can
1782 omit a sign-extension or zero-extension of a shift count.
1783
1784 On i386, shifts do truncate the count. But bit test instructions
1785 take the modulo of the bit offset operand. */
1786
1787 /* #define SHIFT_COUNT_TRUNCATED */
1788
1789 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1790 is done just by pretending it is already truncated. */
1791 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1792
1793 /* A macro to update M and UNSIGNEDP when an object whose type is
1794 TYPE and which has the specified mode and signedness is to be
1795 stored in a register. This macro is only called when TYPE is a
1796 scalar type.
1797
1798 On i386 it is sometimes useful to promote HImode and QImode
1799 quantities to SImode. The choice depends on target type. */
1800
1801 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1802 do { \
1803 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1804 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1805 (MODE) = SImode; \
1806 } while (0)
1807
1808 /* Specify the machine mode that pointers have.
1809 After generation of rtl, the compiler makes no further distinction
1810 between pointers and any other objects of this machine mode. */
1811 #define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
1812
1813 /* A C expression whose value is zero if pointers that need to be extended
1814 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1815 greater then zero if they are zero-extended and less then zero if the
1816 ptr_extend instruction should be used. */
1817
1818 #define POINTERS_EXTEND_UNSIGNED 1
1819
1820 /* A function address in a call instruction
1821 is a byte address (for indexing purposes)
1822 so give the MEM rtx a byte's mode. */
1823 #define FUNCTION_MODE QImode
1824 \f
1825
1826 /* A C expression for the cost of a branch instruction. A value of 1
1827 is the default; other values are interpreted relative to that. */
1828
1829 #define BRANCH_COST(speed_p, predictable_p) \
1830 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1831
1832 /* An integer expression for the size in bits of the largest integer machine
1833 mode that should actually be used. We allow pairs of registers. */
1834 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1835
1836 /* Define this macro as a C expression which is nonzero if accessing
1837 less than a word of memory (i.e. a `char' or a `short') is no
1838 faster than accessing a word of memory, i.e., if such access
1839 require more than one instruction or if there is no difference in
1840 cost between byte and (aligned) word loads.
1841
1842 When this macro is not defined, the compiler will access a field by
1843 finding the smallest containing object; when it is defined, a
1844 fullword load will be used if alignment permits. Unless bytes
1845 accesses are faster than word accesses, using word accesses is
1846 preferable since it may eliminate subsequent memory access if
1847 subsequent accesses occur to other fields in the same word of the
1848 structure, but to different bytes. */
1849
1850 #define SLOW_BYTE_ACCESS 0
1851
1852 /* Nonzero if access to memory by shorts is slow and undesirable. */
1853 #define SLOW_SHORT_ACCESS 0
1854
1855 /* Define this macro to be the value 1 if unaligned accesses have a
1856 cost many times greater than aligned accesses, for example if they
1857 are emulated in a trap handler.
1858
1859 When this macro is nonzero, the compiler will act as if
1860 `STRICT_ALIGNMENT' were nonzero when generating code for block
1861 moves. This can cause significantly more instructions to be
1862 produced. Therefore, do not set this macro nonzero if unaligned
1863 accesses only add a cycle or two to the time for a memory access.
1864
1865 If the value of this macro is always zero, it need not be defined. */
1866
1867 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1868
1869 /* Define this macro if it is as good or better to call a constant
1870 function address than to call an address kept in a register.
1871
1872 Desirable on the 386 because a CALL with a constant address is
1873 faster than one with a register address. */
1874
1875 #define NO_FUNCTION_CSE
1876 \f
1877 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1878 return the mode to be used for the comparison.
1879
1880 For floating-point equality comparisons, CCFPEQmode should be used.
1881 VOIDmode should be used in all other cases.
1882
1883 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1884 possible, to allow for more combinations. */
1885
1886 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1887
1888 /* Return nonzero if MODE implies a floating point inequality can be
1889 reversed. */
1890
1891 #define REVERSIBLE_CC_MODE(MODE) 1
1892
1893 /* A C expression whose value is reversed condition code of the CODE for
1894 comparison done in CC_MODE mode. */
1895 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1896
1897 \f
1898 /* Control the assembler format that we output, to the extent
1899 this does not vary between assemblers. */
1900
1901 /* How to refer to registers in assembler output.
1902 This sequence is indexed by compiler's hard-register-number (see above). */
1903
1904 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
1905 For non floating point regs, the following are the HImode names.
1906
1907 For float regs, the stack top is sometimes referred to as "%st(0)"
1908 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1909 "y" code. */
1910
1911 #define HI_REGISTER_NAMES \
1912 {"ax","dx","cx","bx","si","di","bp","sp", \
1913 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
1914 "argp", "flags", "fpsr", "fpcr", "frame", \
1915 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
1916 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
1917 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1918 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
1919
1920 #define REGISTER_NAMES HI_REGISTER_NAMES
1921
1922 /* Table of additional register names to use in user input. */
1923
1924 #define ADDITIONAL_REGISTER_NAMES \
1925 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1926 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
1927 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1928 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
1929 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
1930 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
1931
1932 /* Note we are omitting these since currently I don't know how
1933 to get gcc to use these, since they want the same but different
1934 number as al, and ax.
1935 */
1936
1937 #define QI_REGISTER_NAMES \
1938 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
1939
1940 /* These parallel the array above, and can be used to access bits 8:15
1941 of regs 0 through 3. */
1942
1943 #define QI_HIGH_REGISTER_NAMES \
1944 {"ah", "dh", "ch", "bh", }
1945
1946 /* How to renumber registers for dbx and gdb. */
1947
1948 #define DBX_REGISTER_NUMBER(N) \
1949 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
1950
1951 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1952 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1953 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
1954
1955 /* Before the prologue, RA is at 0(%esp). */
1956 #define INCOMING_RETURN_ADDR_RTX \
1957 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
1958
1959 /* After the prologue, RA is at -4(AP) in the current frame. */
1960 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1961 ((COUNT) == 0 \
1962 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
1963 -UNITS_PER_WORD)) \
1964 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
1965
1966 /* PC is dbx register 8; let's use that column for RA. */
1967 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
1968
1969 /* Before the prologue, the top of the frame is at 4(%esp). */
1970 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
1971
1972 /* Describe how we implement __builtin_eh_return. */
1973 #define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
1974 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1975
1976
1977 /* Select a format to encode pointers in exception handling data. CODE
1978 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1979 true if the symbol may be affected by dynamic relocations.
1980
1981 ??? All x86 object file formats are capable of representing this.
1982 After all, the relocation needed is the same as for the call insn.
1983 Whether or not a particular assembler allows us to enter such, I
1984 guess we'll have to see. */
1985 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
1986 asm_preferred_eh_data_format ((CODE), (GLOBAL))
1987
1988 /* This is how to output an insn to push a register on the stack.
1989 It need not be very fast code. */
1990
1991 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
1992 do { \
1993 if (TARGET_64BIT) \
1994 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
1995 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1996 else \
1997 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
1998 } while (0)
1999
2000 /* This is how to output an insn to pop a register from the stack.
2001 It need not be very fast code. */
2002
2003 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2004 do { \
2005 if (TARGET_64BIT) \
2006 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2007 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2008 else \
2009 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2010 } while (0)
2011
2012 /* This is how to output an element of a case-vector that is absolute. */
2013
2014 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2015 ix86_output_addr_vec_elt ((FILE), (VALUE))
2016
2017 /* This is how to output an element of a case-vector that is relative. */
2018
2019 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2020 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2021
2022 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
2023
2024 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2025 { \
2026 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
2027 (PTR) += TARGET_AVX ? 1 : 2; \
2028 }
2029
2030 /* A C statement or statements which output an assembler instruction
2031 opcode to the stdio stream STREAM. The macro-operand PTR is a
2032 variable of type `char *' which points to the opcode name in
2033 its "internal" form--the form that is written in the machine
2034 description. */
2035
2036 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2037 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2038
2039 /* A C statement to output to the stdio stream FILE an assembler
2040 command to pad the location counter to a multiple of 1<<LOG
2041 bytes if it is within MAX_SKIP bytes. */
2042
2043 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2044 #undef ASM_OUTPUT_MAX_SKIP_PAD
2045 #define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2046 if ((LOG) != 0) \
2047 { \
2048 if ((MAX_SKIP) == 0) \
2049 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2050 else \
2051 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2052 }
2053 #endif
2054
2055 /* Write the extra assembler code needed to declare a function
2056 properly. */
2057
2058 #undef ASM_OUTPUT_FUNCTION_LABEL
2059 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2060 ix86_asm_output_function_label (FILE, NAME, DECL)
2061
2062 /* Under some conditions we need jump tables in the text section,
2063 because the assembler cannot handle label differences between
2064 sections. This is the case for x86_64 on Mach-O for example. */
2065
2066 #define JUMP_TABLES_IN_TEXT_SECTION \
2067 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2068 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2069
2070 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2071 and switch back. For x86 we do this only to save a few bytes that
2072 would otherwise be unused in the text section. */
2073 #define CRT_MKSTR2(VAL) #VAL
2074 #define CRT_MKSTR(x) CRT_MKSTR2(x)
2075
2076 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2077 asm (SECTION_OP "\n\t" \
2078 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
2079 TEXT_SECTION_ASM_OP);
2080 \f
2081 /* Which processor to tune code generation for. */
2082
2083 enum processor_type
2084 {
2085 PROCESSOR_I386 = 0, /* 80386 */
2086 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2087 PROCESSOR_PENTIUM,
2088 PROCESSOR_PENTIUMPRO,
2089 PROCESSOR_GEODE,
2090 PROCESSOR_K6,
2091 PROCESSOR_ATHLON,
2092 PROCESSOR_PENTIUM4,
2093 PROCESSOR_K8,
2094 PROCESSOR_NOCONA,
2095 PROCESSOR_CORE2_32,
2096 PROCESSOR_CORE2_64,
2097 PROCESSOR_COREI7_32,
2098 PROCESSOR_COREI7_64,
2099 PROCESSOR_GENERIC32,
2100 PROCESSOR_GENERIC64,
2101 PROCESSOR_AMDFAM10,
2102 PROCESSOR_BDVER1,
2103 PROCESSOR_BDVER2,
2104 PROCESSOR_BDVER3,
2105 PROCESSOR_BTVER1,
2106 PROCESSOR_BTVER2,
2107 PROCESSOR_ATOM,
2108 PROCESSOR_max
2109 };
2110
2111 extern enum processor_type ix86_tune;
2112 extern enum processor_type ix86_arch;
2113
2114 /* Size of the RED_ZONE area. */
2115 #define RED_ZONE_SIZE 128
2116 /* Reserved area of the red zone for temporaries. */
2117 #define RED_ZONE_RESERVE 8
2118
2119 extern unsigned int ix86_preferred_stack_boundary;
2120 extern unsigned int ix86_incoming_stack_boundary;
2121
2122 /* Smallest class containing REGNO. */
2123 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2124
2125 enum ix86_fpcmp_strategy {
2126 IX86_FPCMP_SAHF,
2127 IX86_FPCMP_COMI,
2128 IX86_FPCMP_ARITH
2129 };
2130 \f
2131 /* To properly truncate FP values into integers, we need to set i387 control
2132 word. We can't emit proper mode switching code before reload, as spills
2133 generated by reload may truncate values incorrectly, but we still can avoid
2134 redundant computation of new control word by the mode switching pass.
2135 The fldcw instructions are still emitted redundantly, but this is probably
2136 not going to be noticeable problem, as most CPUs do have fast path for
2137 the sequence.
2138
2139 The machinery is to emit simple truncation instructions and split them
2140 before reload to instructions having USEs of two memory locations that
2141 are filled by this code to old and new control word.
2142
2143 Post-reload pass may be later used to eliminate the redundant fildcw if
2144 needed. */
2145
2146 enum ix86_entity
2147 {
2148 AVX_U128 = 0,
2149 I387_TRUNC,
2150 I387_FLOOR,
2151 I387_CEIL,
2152 I387_MASK_PM,
2153 MAX_386_ENTITIES
2154 };
2155
2156 enum ix86_stack_slot
2157 {
2158 SLOT_TEMP = 0,
2159 SLOT_CW_STORED,
2160 SLOT_CW_TRUNC,
2161 SLOT_CW_FLOOR,
2162 SLOT_CW_CEIL,
2163 SLOT_CW_MASK_PM,
2164 MAX_386_STACK_LOCALS
2165 };
2166
2167 enum avx_u128_state
2168 {
2169 AVX_U128_CLEAN,
2170 AVX_U128_DIRTY,
2171 AVX_U128_ANY
2172 };
2173
2174 /* Define this macro if the port needs extra instructions inserted
2175 for mode switching in an optimizing compilation. */
2176
2177 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2178 ix86_optimize_mode_switching[(ENTITY)]
2179
2180 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2181 initializer for an array of integers. Each initializer element N
2182 refers to an entity that needs mode switching, and specifies the
2183 number of different modes that might need to be set for this
2184 entity. The position of the initializer in the initializer -
2185 starting counting at zero - determines the integer that is used to
2186 refer to the mode-switched entity in question. */
2187
2188 #define NUM_MODES_FOR_MODE_SWITCHING \
2189 { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2190
2191 /* ENTITY is an integer specifying a mode-switched entity. If
2192 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2193 return an integer value not larger than the corresponding element
2194 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2195 must be switched into prior to the execution of INSN. */
2196
2197 #define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2198
2199 /* If this macro is defined, it is evaluated for every INSN during
2200 mode switching. It determines the mode that an insn results in (if
2201 different from the incoming mode). */
2202
2203 #define MODE_AFTER(ENTITY, MODE, I) ix86_mode_after ((ENTITY), (MODE), (I))
2204
2205 /* If this macro is defined, it is evaluated for every ENTITY that
2206 needs mode switching. It should evaluate to an integer, which is
2207 a mode that ENTITY is assumed to be switched to at function entry. */
2208
2209 #define MODE_ENTRY(ENTITY) ix86_mode_entry (ENTITY)
2210
2211 /* If this macro is defined, it is evaluated for every ENTITY that
2212 needs mode switching. It should evaluate to an integer, which is
2213 a mode that ENTITY is assumed to be switched to at function exit. */
2214
2215 #define MODE_EXIT(ENTITY) ix86_mode_exit (ENTITY)
2216
2217 /* This macro specifies the order in which modes for ENTITY are
2218 processed. 0 is the highest priority. */
2219
2220 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2221
2222 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2223 is the set of hard registers live at the point where the insn(s)
2224 are to be inserted. */
2225
2226 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
2227 ix86_emit_mode_set ((ENTITY), (MODE), (HARD_REGS_LIVE))
2228 \f
2229 /* Avoid renaming of stack registers, as doing so in combination with
2230 scheduling just increases amount of live registers at time and in
2231 the turn amount of fxch instructions needed.
2232
2233 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
2234
2235 #define HARD_REGNO_RENAME_OK(SRC, TARGET) !STACK_REGNO_P (SRC)
2236
2237 \f
2238 #define FASTCALL_PREFIX '@'
2239 \f
2240 /* Machine specific frame tracking during prologue/epilogue generation. */
2241
2242 #ifndef USED_FOR_TARGET
2243 struct GTY(()) machine_frame_state
2244 {
2245 /* This pair tracks the currently active CFA as reg+offset. When reg
2246 is drap_reg, we don't bother trying to record here the real CFA when
2247 it might really be a DW_CFA_def_cfa_expression. */
2248 rtx cfa_reg;
2249 HOST_WIDE_INT cfa_offset;
2250
2251 /* The current offset (canonically from the CFA) of ESP and EBP.
2252 When stack frame re-alignment is active, these may not be relative
2253 to the CFA. However, in all cases they are relative to the offsets
2254 of the saved registers stored in ix86_frame. */
2255 HOST_WIDE_INT sp_offset;
2256 HOST_WIDE_INT fp_offset;
2257
2258 /* The size of the red-zone that may be assumed for the purposes of
2259 eliding register restore notes in the epilogue. This may be zero
2260 if no red-zone is in effect, or may be reduced from the real
2261 red-zone value by a maximum runtime stack re-alignment value. */
2262 int red_zone_offset;
2263
2264 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2265 value within the frame. If false then the offset above should be
2266 ignored. Note that DRAP, if valid, *always* points to the CFA and
2267 thus has an offset of zero. */
2268 BOOL_BITFIELD sp_valid : 1;
2269 BOOL_BITFIELD fp_valid : 1;
2270 BOOL_BITFIELD drap_valid : 1;
2271
2272 /* Indicate whether the local stack frame has been re-aligned. When
2273 set, the SP/FP offsets above are relative to the aligned frame
2274 and not the CFA. */
2275 BOOL_BITFIELD realigned : 1;
2276 };
2277
2278 /* Private to winnt.c. */
2279 struct seh_frame_state;
2280
2281 struct GTY(()) machine_function {
2282 struct stack_local_entry *stack_locals;
2283 const char *some_ld_name;
2284 int varargs_gpr_size;
2285 int varargs_fpr_size;
2286 int optimize_mode_switching[MAX_386_ENTITIES];
2287
2288 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2289 has been computed for. */
2290 int use_fast_prologue_epilogue_nregs;
2291
2292 /* For -fsplit-stack support: A stack local which holds a pointer to
2293 the stack arguments for a function with a variable number of
2294 arguments. This is set at the start of the function and is used
2295 to initialize the overflow_arg_area field of the va_list
2296 structure. */
2297 rtx split_stack_varargs_pointer;
2298
2299 /* This value is used for amd64 targets and specifies the current abi
2300 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2301 ENUM_BITFIELD(calling_abi) call_abi : 8;
2302
2303 /* Nonzero if the function accesses a previous frame. */
2304 BOOL_BITFIELD accesses_prev_frame : 1;
2305
2306 /* Nonzero if the function requires a CLD in the prologue. */
2307 BOOL_BITFIELD needs_cld : 1;
2308
2309 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2310 expander to determine the style used. */
2311 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2312
2313 /* If true, the current function needs the default PIC register, not
2314 an alternate register (on x86) and must not use the red zone (on
2315 x86_64), even if it's a leaf function. We don't want the
2316 function to be regarded as non-leaf because TLS calls need not
2317 affect register allocation. This flag is set when a TLS call
2318 instruction is expanded within a function, and never reset, even
2319 if all such instructions are optimized away. Use the
2320 ix86_current_function_calls_tls_descriptor macro for a better
2321 approximation. */
2322 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2323
2324 /* If true, the current function has a STATIC_CHAIN is placed on the
2325 stack below the return address. */
2326 BOOL_BITFIELD static_chain_on_stack : 1;
2327
2328 /* During prologue/epilogue generation, the current frame state.
2329 Otherwise, the frame state at the end of the prologue. */
2330 struct machine_frame_state fs;
2331
2332 /* During SEH output, this is non-null. */
2333 struct seh_frame_state * GTY((skip(""))) seh;
2334 };
2335 #endif
2336
2337 #define ix86_stack_locals (cfun->machine->stack_locals)
2338 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2339 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2340 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2341 #define ix86_current_function_needs_cld (cfun->machine->needs_cld)
2342 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2343 (cfun->machine->tls_descriptor_call_expanded_p)
2344 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2345 calls are optimized away, we try to detect cases in which it was
2346 optimized away. Since such instructions (use (reg REG_SP)), we can
2347 verify whether there's any such instruction live by testing that
2348 REG_SP is live. */
2349 #define ix86_current_function_calls_tls_descriptor \
2350 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2351 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2352
2353 /* Control behavior of x86_file_start. */
2354 #define X86_FILE_START_VERSION_DIRECTIVE false
2355 #define X86_FILE_START_FLTUSED false
2356
2357 /* Flag to mark data that is in the large address area. */
2358 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2359 #define SYMBOL_REF_FAR_ADDR_P(X) \
2360 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2361
2362 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2363 have defined always, to avoid ifdefing. */
2364 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2365 #define SYMBOL_REF_DLLIMPORT_P(X) \
2366 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2367
2368 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2369 #define SYMBOL_REF_DLLEXPORT_P(X) \
2370 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2371
2372 extern void debug_ready_dispatch (void);
2373 extern void debug_dispatch_window (int);
2374
2375 /* The value at zero is only defined for the BMI instructions
2376 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2377 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2378 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2379 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2380 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT)
2381
2382
2383 /* Flags returned by ix86_get_callcvt (). */
2384 #define IX86_CALLCVT_CDECL 0x1
2385 #define IX86_CALLCVT_STDCALL 0x2
2386 #define IX86_CALLCVT_FASTCALL 0x4
2387 #define IX86_CALLCVT_THISCALL 0x8
2388 #define IX86_CALLCVT_REGPARM 0x10
2389 #define IX86_CALLCVT_SSEREGPARM 0x20
2390
2391 #define IX86_BASE_CALLCVT(FLAGS) \
2392 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2393 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2394
2395 #define RECIP_MASK_NONE 0x00
2396 #define RECIP_MASK_DIV 0x01
2397 #define RECIP_MASK_SQRT 0x02
2398 #define RECIP_MASK_VEC_DIV 0x04
2399 #define RECIP_MASK_VEC_SQRT 0x08
2400 #define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2401 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2402 #define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2403
2404 #define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2405 #define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2406 #define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2407 #define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2408
2409 #define IX86_HLE_ACQUIRE (1 << 16)
2410 #define IX86_HLE_RELEASE (1 << 17)
2411
2412 /*
2413 Local variables:
2414 version-control: t
2415 End:
2416 */