f7f13d20cdcb91c48fb17b201fedd55cb597fd53
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
21
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
25 <http://www.gnu.org/licenses/>. */
26
27 /* The purpose of this file is to define the characteristics of the i386,
28 independent of assembler syntax or operating system.
29
30 Three other files build on this one to describe a specific assembler syntax:
31 bsd386.h, att386.h, and sun386.h.
32
33 The actual tm.h file for a particular system should include
34 this file, and then the file for the appropriate assembler syntax.
35
36 Many macros that specify assembler syntax are omitted entirely from
37 this file because they really belong in the files for particular
38 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
39 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
40 that start with ASM_ or end in ASM_OP. */
41
42 /* Redefines for option macros. */
43
44 #define TARGET_64BIT OPTION_ISA_64BIT
45 #define TARGET_MMX OPTION_ISA_MMX
46 #define TARGET_3DNOW OPTION_ISA_3DNOW
47 #define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
48 #define TARGET_SSE OPTION_ISA_SSE
49 #define TARGET_SSE2 OPTION_ISA_SSE2
50 #define TARGET_SSE3 OPTION_ISA_SSE3
51 #define TARGET_SSSE3 OPTION_ISA_SSSE3
52 #define TARGET_SSE4_1 OPTION_ISA_SSE4_1
53 #define TARGET_SSE4_2 OPTION_ISA_SSE4_2
54 #define TARGET_AVX OPTION_ISA_AVX
55 #define TARGET_AVX2 OPTION_ISA_AVX2
56 #define TARGET_FMA OPTION_ISA_FMA
57 #define TARGET_SSE4A OPTION_ISA_SSE4A
58 #define TARGET_FMA4 OPTION_ISA_FMA4
59 #define TARGET_XOP OPTION_ISA_XOP
60 #define TARGET_LWP OPTION_ISA_LWP
61 #define TARGET_ROUND OPTION_ISA_ROUND
62 #define TARGET_ABM OPTION_ISA_ABM
63 #define TARGET_BMI OPTION_ISA_BMI
64 #define TARGET_BMI2 OPTION_ISA_BMI2
65 #define TARGET_LZCNT OPTION_ISA_LZCNT
66 #define TARGET_TBM OPTION_ISA_TBM
67 #define TARGET_POPCNT OPTION_ISA_POPCNT
68 #define TARGET_SAHF OPTION_ISA_SAHF
69 #define TARGET_MOVBE OPTION_ISA_MOVBE
70 #define TARGET_CRC32 OPTION_ISA_CRC32
71 #define TARGET_AES OPTION_ISA_AES
72 #define TARGET_PCLMUL OPTION_ISA_PCLMUL
73 #define TARGET_CMPXCHG16B OPTION_ISA_CX16
74 #define TARGET_FSGSBASE OPTION_ISA_FSGSBASE
75 #define TARGET_RDRND OPTION_ISA_RDRND
76 #define TARGET_F16C OPTION_ISA_F16C
77 #define TARGET_RTM OPTION_ISA_RTM
78 #define TARGET_HLE OPTION_ISA_HLE
79
80 #define TARGET_LP64 OPTION_ABI_64
81 #define TARGET_X32 OPTION_ABI_X32
82
83 /* SSE4.1 defines round instructions */
84 #define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
85 #define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
86
87 #include "config/vxworks-dummy.h"
88
89 #include "config/i386/i386-opts.h"
90
91 #define MAX_STRINGOP_ALGS 4
92
93 /* Specify what algorithm to use for stringops on known size.
94 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
95 known at compile time or estimated via feedback, the SIZE array
96 is walked in order until MAX is greater then the estimate (or -1
97 means infinity). Corresponding ALG is used then.
98 For example initializer:
99 {{256, loop}, {-1, rep_prefix_4_byte}}
100 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
101 be used otherwise. */
102 struct stringop_algs
103 {
104 const enum stringop_alg unknown_size;
105 const struct stringop_strategy {
106 const int max;
107 const enum stringop_alg alg;
108 } size [MAX_STRINGOP_ALGS];
109 };
110
111 /* Define the specific costs for a given cpu */
112
113 struct processor_costs {
114 const int add; /* cost of an add instruction */
115 const int lea; /* cost of a lea instruction */
116 const int shift_var; /* variable shift costs */
117 const int shift_const; /* constant shift costs */
118 const int mult_init[5]; /* cost of starting a multiply
119 in QImode, HImode, SImode, DImode, TImode*/
120 const int mult_bit; /* cost of multiply per each bit set */
121 const int divide[5]; /* cost of a divide/mod
122 in QImode, HImode, SImode, DImode, TImode*/
123 int movsx; /* The cost of movsx operation. */
124 int movzx; /* The cost of movzx operation. */
125 const int large_insn; /* insns larger than this cost more */
126 const int move_ratio; /* The threshold of number of scalar
127 memory-to-memory move insns. */
128 const int movzbl_load; /* cost of loading using movzbl */
129 const int int_load[3]; /* cost of loading integer registers
130 in QImode, HImode and SImode relative
131 to reg-reg move (2). */
132 const int int_store[3]; /* cost of storing integer register
133 in QImode, HImode and SImode */
134 const int fp_move; /* cost of reg,reg fld/fst */
135 const int fp_load[3]; /* cost of loading FP register
136 in SFmode, DFmode and XFmode */
137 const int fp_store[3]; /* cost of storing FP register
138 in SFmode, DFmode and XFmode */
139 const int mmx_move; /* cost of moving MMX register. */
140 const int mmx_load[2]; /* cost of loading MMX register
141 in SImode and DImode */
142 const int mmx_store[2]; /* cost of storing MMX register
143 in SImode and DImode */
144 const int sse_move; /* cost of moving SSE register. */
145 const int sse_load[3]; /* cost of loading SSE register
146 in SImode, DImode and TImode*/
147 const int sse_store[3]; /* cost of storing SSE register
148 in SImode, DImode and TImode*/
149 const int mmxsse_to_integer; /* cost of moving mmxsse register to
150 integer and vice versa. */
151 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
152 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
153 const int prefetch_block; /* bytes moved to cache for prefetch. */
154 const int simultaneous_prefetches; /* number of parallel prefetch
155 operations. */
156 const int branch_cost; /* Default value for BRANCH_COST. */
157 const int fadd; /* cost of FADD and FSUB instructions. */
158 const int fmul; /* cost of FMUL instruction. */
159 const int fdiv; /* cost of FDIV instruction. */
160 const int fabs; /* cost of FABS instruction. */
161 const int fchs; /* cost of FCHS instruction. */
162 const int fsqrt; /* cost of FSQRT instruction. */
163 /* Specify what algorithm
164 to use for stringops on unknown size. */
165 struct stringop_algs memcpy[2], memset[2];
166 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
167 load and store. */
168 const int scalar_load_cost; /* Cost of scalar load. */
169 const int scalar_store_cost; /* Cost of scalar store. */
170 const int vec_stmt_cost; /* Cost of any vector operation, excluding
171 load, store, vector-to-scalar and
172 scalar-to-vector operation. */
173 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
174 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
175 const int vec_align_load_cost; /* Cost of aligned vector load. */
176 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
177 const int vec_store_cost; /* Cost of vector store. */
178 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
179 cost model. */
180 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
181 vectorizer cost model. */
182 };
183
184 extern const struct processor_costs *ix86_cost;
185 extern const struct processor_costs ix86_size_cost;
186
187 #define ix86_cur_cost() \
188 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
189
190 /* Macros used in the machine description to test the flags. */
191
192 /* configure can arrange to make this 2, to force a 486. */
193
194 #ifndef TARGET_CPU_DEFAULT
195 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
196 #endif
197
198 #ifndef TARGET_FPMATH_DEFAULT
199 #define TARGET_FPMATH_DEFAULT \
200 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
201 #endif
202
203 #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
204
205 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
206 compile-time constant. */
207 #ifdef IN_LIBGCC2
208 #undef TARGET_64BIT
209 #ifdef __x86_64__
210 #define TARGET_64BIT 1
211 #else
212 #define TARGET_64BIT 0
213 #endif
214 #else
215 #ifndef TARGET_BI_ARCH
216 #undef TARGET_64BIT
217 #if TARGET_64BIT_DEFAULT
218 #define TARGET_64BIT 1
219 #else
220 #define TARGET_64BIT 0
221 #endif
222 #endif
223 #endif
224
225 #define HAS_LONG_COND_BRANCH 1
226 #define HAS_LONG_UNCOND_BRANCH 1
227
228 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
229 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
230 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
231 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
232 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
233 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
234 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
235 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
236 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
237 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
238 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
239 #define TARGET_CORE2_32 (ix86_tune == PROCESSOR_CORE2_32)
240 #define TARGET_CORE2_64 (ix86_tune == PROCESSOR_CORE2_64)
241 #define TARGET_CORE2 (TARGET_CORE2_32 || TARGET_CORE2_64)
242 #define TARGET_COREI7_32 (ix86_tune == PROCESSOR_COREI7_32)
243 #define TARGET_COREI7_64 (ix86_tune == PROCESSOR_COREI7_64)
244 #define TARGET_COREI7 (TARGET_COREI7_32 || TARGET_COREI7_64)
245 #define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
246 #define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
247 #define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
248 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
249 #define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
250 #define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
251 #define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
252 #define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
253
254 /* Feature tests against the various tunings. */
255 enum ix86_tune_indices {
256 X86_TUNE_USE_LEAVE,
257 X86_TUNE_PUSH_MEMORY,
258 X86_TUNE_ZERO_EXTEND_WITH_AND,
259 X86_TUNE_UNROLL_STRLEN,
260 X86_TUNE_BRANCH_PREDICTION_HINTS,
261 X86_TUNE_DOUBLE_WITH_ADD,
262 X86_TUNE_USE_SAHF,
263 X86_TUNE_MOVX,
264 X86_TUNE_PARTIAL_REG_STALL,
265 X86_TUNE_PARTIAL_FLAG_REG_STALL,
266 X86_TUNE_LCP_STALL,
267 X86_TUNE_USE_HIMODE_FIOP,
268 X86_TUNE_USE_SIMODE_FIOP,
269 X86_TUNE_USE_MOV0,
270 X86_TUNE_USE_CLTD,
271 X86_TUNE_USE_XCHGB,
272 X86_TUNE_SPLIT_LONG_MOVES,
273 X86_TUNE_READ_MODIFY_WRITE,
274 X86_TUNE_READ_MODIFY,
275 X86_TUNE_PROMOTE_QIMODE,
276 X86_TUNE_FAST_PREFIX,
277 X86_TUNE_SINGLE_STRINGOP,
278 X86_TUNE_QIMODE_MATH,
279 X86_TUNE_HIMODE_MATH,
280 X86_TUNE_PROMOTE_QI_REGS,
281 X86_TUNE_PROMOTE_HI_REGS,
282 X86_TUNE_SINGLE_POP,
283 X86_TUNE_DOUBLE_POP,
284 X86_TUNE_SINGLE_PUSH,
285 X86_TUNE_DOUBLE_PUSH,
286 X86_TUNE_INTEGER_DFMODE_MOVES,
287 X86_TUNE_PARTIAL_REG_DEPENDENCY,
288 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
289 X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL,
290 X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL,
291 X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL,
292 X86_TUNE_SSE_SPLIT_REGS,
293 X86_TUNE_SSE_TYPELESS_STORES,
294 X86_TUNE_SSE_LOAD0_BY_PXOR,
295 X86_TUNE_MEMORY_MISMATCH_STALL,
296 X86_TUNE_PROLOGUE_USING_MOVE,
297 X86_TUNE_EPILOGUE_USING_MOVE,
298 X86_TUNE_SHIFT1,
299 X86_TUNE_USE_FFREEP,
300 X86_TUNE_INTER_UNIT_MOVES,
301 X86_TUNE_INTER_UNIT_CONVERSIONS,
302 X86_TUNE_FOUR_JUMP_LIMIT,
303 X86_TUNE_SCHEDULE,
304 X86_TUNE_USE_BT,
305 X86_TUNE_USE_INCDEC,
306 X86_TUNE_PAD_RETURNS,
307 X86_TUNE_PAD_SHORT_FUNCTION,
308 X86_TUNE_EXT_80387_CONSTANTS,
309 X86_TUNE_SHORTEN_X87_SSE,
310 X86_TUNE_AVOID_VECTOR_DECODE,
311 X86_TUNE_PROMOTE_HIMODE_IMUL,
312 X86_TUNE_SLOW_IMUL_IMM32_MEM,
313 X86_TUNE_SLOW_IMUL_IMM8,
314 X86_TUNE_MOVE_M1_VIA_OR,
315 X86_TUNE_NOT_UNPAIRABLE,
316 X86_TUNE_NOT_VECTORMODE,
317 X86_TUNE_USE_VECTOR_FP_CONVERTS,
318 X86_TUNE_USE_VECTOR_CONVERTS,
319 X86_TUNE_FUSE_CMP_AND_BRANCH,
320 X86_TUNE_OPT_AGU,
321 X86_TUNE_VECTORIZE_DOUBLE,
322 X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL,
323 X86_TUNE_AVX128_OPTIMAL,
324 X86_TUNE_REASSOC_INT_TO_PARALLEL,
325 X86_TUNE_REASSOC_FP_TO_PARALLEL,
326
327 X86_TUNE_LAST
328 };
329
330 extern unsigned char ix86_tune_features[X86_TUNE_LAST];
331
332 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
333 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
334 #define TARGET_ZERO_EXTEND_WITH_AND \
335 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
336 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
337 #define TARGET_BRANCH_PREDICTION_HINTS \
338 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
339 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
340 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
341 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
342 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
343 #define TARGET_PARTIAL_FLAG_REG_STALL \
344 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
345 #define TARGET_LCP_STALL \
346 ix86_tune_features[X86_TUNE_LCP_STALL]
347 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
348 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
349 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
350 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
351 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
352 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
353 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
354 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
355 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
356 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
357 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
358 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
359 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
360 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
361 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
362 #define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
363 #define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
364 #define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
365 #define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
366 #define TARGET_INTEGER_DFMODE_MOVES \
367 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
368 #define TARGET_PARTIAL_REG_DEPENDENCY \
369 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
370 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
371 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
372 #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
373 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
374 #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
375 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
376 #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
377 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
378 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
379 #define TARGET_SSE_TYPELESS_STORES \
380 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
381 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
382 #define TARGET_MEMORY_MISMATCH_STALL \
383 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
384 #define TARGET_PROLOGUE_USING_MOVE \
385 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
386 #define TARGET_EPILOGUE_USING_MOVE \
387 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
388 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
389 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
390 #define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
391 #define TARGET_INTER_UNIT_CONVERSIONS\
392 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
393 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
394 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
395 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
396 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
397 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
398 #define TARGET_PAD_SHORT_FUNCTION \
399 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
400 #define TARGET_EXT_80387_CONSTANTS \
401 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
402 #define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
403 #define TARGET_AVOID_VECTOR_DECODE \
404 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
405 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
406 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
407 #define TARGET_SLOW_IMUL_IMM32_MEM \
408 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
409 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
410 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
411 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
412 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
413 #define TARGET_USE_VECTOR_FP_CONVERTS \
414 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
415 #define TARGET_USE_VECTOR_CONVERTS \
416 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
417 #define TARGET_FUSE_CMP_AND_BRANCH \
418 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
419 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
420 #define TARGET_VECTORIZE_DOUBLE \
421 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
422 #define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
423 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
424 #define TARGET_AVX128_OPTIMAL \
425 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
426 #define TARGET_REASSOC_INT_TO_PARALLEL \
427 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
428 #define TARGET_REASSOC_FP_TO_PARALLEL \
429 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
430
431 /* Feature tests against the various architecture variations. */
432 enum ix86_arch_indices {
433 X86_ARCH_CMOV,
434 X86_ARCH_CMPXCHG,
435 X86_ARCH_CMPXCHG8B,
436 X86_ARCH_XADD,
437 X86_ARCH_BSWAP,
438
439 X86_ARCH_LAST
440 };
441
442 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
443
444 #define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
445 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
446 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
447 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
448 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
449
450 /* For sane SSE instruction set generation we need fcomi instruction.
451 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
452 expands to a sequence that includes conditional move. */
453 #define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
454
455 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
456
457 extern int x86_prefetch_sse;
458
459 #define TARGET_PREFETCH_SSE x86_prefetch_sse
460
461 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
462
463 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
464 #define TARGET_MIX_SSE_I387 \
465 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
466
467 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
468 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
469 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
470 #define TARGET_SUN_TLS 0
471
472 #ifndef TARGET_64BIT_DEFAULT
473 #define TARGET_64BIT_DEFAULT 0
474 #endif
475 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
476 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
477 #endif
478
479 /* Fence to use after loop using storent. */
480
481 extern tree x86_mfence;
482 #define FENCE_FOLLOWING_MOVNT x86_mfence
483
484 /* Once GDB has been enhanced to deal with functions without frame
485 pointers, we can change this to allow for elimination of
486 the frame pointer in leaf functions. */
487 #define TARGET_DEFAULT 0
488
489 /* Extra bits to force. */
490 #define TARGET_SUBTARGET_DEFAULT 0
491 #define TARGET_SUBTARGET_ISA_DEFAULT 0
492
493 /* Extra bits to force on w/ 32-bit mode. */
494 #define TARGET_SUBTARGET32_DEFAULT 0
495 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
496
497 /* Extra bits to force on w/ 64-bit mode. */
498 #define TARGET_SUBTARGET64_DEFAULT 0
499 #define TARGET_SUBTARGET64_ISA_DEFAULT 0
500
501 /* Replace MACH-O, ifdefs by in-line tests, where possible.
502 (a) Macros defined in config/i386/darwin.h */
503 #define TARGET_MACHO 0
504 #define TARGET_MACHO_BRANCH_ISLANDS 0
505 #define MACHOPIC_ATT_STUB 0
506 /* (b) Macros defined in config/darwin.h */
507 #define MACHO_DYNAMIC_NO_PIC_P 0
508 #define MACHOPIC_INDIRECT 0
509 #define MACHOPIC_PURE 0
510
511 /* For the Windows 64-bit ABI. */
512 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
513
514 /* For the Windows 32-bit ABI. */
515 #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
516
517 /* This is re-defined by cygming.h. */
518 #define TARGET_SEH 0
519
520 /* The default abi used by target. */
521 #define DEFAULT_ABI SYSV_ABI
522
523 /* Subtargets may reset this to 1 in order to enable 96-bit long double
524 with the rounding mode forced to 53 bits. */
525 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
526
527 /* -march=native handling only makes sense with compiler running on
528 an x86 or x86_64 chip. If changing this condition, also change
529 the condition in driver-i386.c. */
530 #if defined(__i386__) || defined(__x86_64__)
531 /* In driver-i386.c. */
532 extern const char *host_detect_local_cpu (int argc, const char **argv);
533 #define EXTRA_SPEC_FUNCTIONS \
534 { "local_cpu_detect", host_detect_local_cpu },
535 #define HAVE_LOCAL_CPU_DETECT
536 #endif
537
538 #if TARGET_64BIT_DEFAULT
539 #define OPT_ARCH64 "!m32"
540 #define OPT_ARCH32 "m32"
541 #else
542 #define OPT_ARCH64 "m64|mx32"
543 #define OPT_ARCH32 "m64|mx32:;"
544 #endif
545
546 /* Support for configure-time defaults of some command line options.
547 The order here is important so that -march doesn't squash the
548 tune or cpu values. */
549 #define OPTION_DEFAULT_SPECS \
550 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
551 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
552 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
553 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
554 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
555 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
556 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
557 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
558 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
559
560 /* Specs for the compiler proper */
561
562 #ifndef CC1_CPU_SPEC
563 #define CC1_CPU_SPEC_1 ""
564
565 #ifndef HAVE_LOCAL_CPU_DETECT
566 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
567 #else
568 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
569 "%{march=native:%>march=native %:local_cpu_detect(arch) \
570 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
571 %{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
572 #endif
573 #endif
574 \f
575 /* Target CPU builtins. */
576 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
577
578 /* Target Pragmas. */
579 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
580
581 enum target_cpu_default
582 {
583 TARGET_CPU_DEFAULT_generic = 0,
584
585 TARGET_CPU_DEFAULT_i386,
586 TARGET_CPU_DEFAULT_i486,
587 TARGET_CPU_DEFAULT_pentium,
588 TARGET_CPU_DEFAULT_pentium_mmx,
589 TARGET_CPU_DEFAULT_pentiumpro,
590 TARGET_CPU_DEFAULT_pentium2,
591 TARGET_CPU_DEFAULT_pentium3,
592 TARGET_CPU_DEFAULT_pentium4,
593 TARGET_CPU_DEFAULT_pentium_m,
594 TARGET_CPU_DEFAULT_prescott,
595 TARGET_CPU_DEFAULT_nocona,
596 TARGET_CPU_DEFAULT_core2,
597 TARGET_CPU_DEFAULT_corei7,
598 TARGET_CPU_DEFAULT_atom,
599
600 TARGET_CPU_DEFAULT_geode,
601 TARGET_CPU_DEFAULT_k6,
602 TARGET_CPU_DEFAULT_k6_2,
603 TARGET_CPU_DEFAULT_k6_3,
604 TARGET_CPU_DEFAULT_athlon,
605 TARGET_CPU_DEFAULT_athlon_sse,
606 TARGET_CPU_DEFAULT_k8,
607 TARGET_CPU_DEFAULT_amdfam10,
608 TARGET_CPU_DEFAULT_bdver1,
609 TARGET_CPU_DEFAULT_bdver2,
610 TARGET_CPU_DEFAULT_btver1,
611
612 TARGET_CPU_DEFAULT_max
613 };
614
615 #ifndef CC1_SPEC
616 #define CC1_SPEC "%(cc1_cpu) "
617 #endif
618
619 /* This macro defines names of additional specifications to put in the
620 specs that can be used in various specifications like CC1_SPEC. Its
621 definition is an initializer with a subgrouping for each command option.
622
623 Each subgrouping contains a string constant, that defines the
624 specification name, and a string constant that used by the GCC driver
625 program.
626
627 Do not define this macro if it does not need to do anything. */
628
629 #ifndef SUBTARGET_EXTRA_SPECS
630 #define SUBTARGET_EXTRA_SPECS
631 #endif
632
633 #define EXTRA_SPECS \
634 { "cc1_cpu", CC1_CPU_SPEC }, \
635 SUBTARGET_EXTRA_SPECS
636 \f
637
638 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
639 FPU, assume that the fpcw is set to extended precision; when using
640 only SSE, rounding is correct; when using both SSE and the FPU,
641 the rounding precision is indeterminate, since either may be chosen
642 apparently at random. */
643 #define TARGET_FLT_EVAL_METHOD \
644 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
645
646 /* Whether to allow x87 floating-point arithmetic on MODE (one of
647 SFmode, DFmode and XFmode) in the current excess precision
648 configuration. */
649 #define X87_ENABLE_ARITH(MODE) \
650 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
651
652 /* Likewise, whether to allow direct conversions from integer mode
653 IMODE (HImode, SImode or DImode) to MODE. */
654 #define X87_ENABLE_FLOAT(MODE, IMODE) \
655 (flag_excess_precision == EXCESS_PRECISION_FAST \
656 || (MODE) == XFmode \
657 || ((MODE) == DFmode && (IMODE) == SImode) \
658 || (IMODE) == HImode)
659
660 /* target machine storage layout */
661
662 #define SHORT_TYPE_SIZE 16
663 #define INT_TYPE_SIZE 32
664 #define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
665 #define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
666 #define LONG_LONG_TYPE_SIZE 64
667 #define FLOAT_TYPE_SIZE 32
668 #define DOUBLE_TYPE_SIZE 64
669 #define LONG_DOUBLE_TYPE_SIZE 80
670
671 #define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
672
673 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
674 #define MAX_BITS_PER_WORD 64
675 #else
676 #define MAX_BITS_PER_WORD 32
677 #endif
678
679 /* Define this if most significant byte of a word is the lowest numbered. */
680 /* That is true on the 80386. */
681
682 #define BITS_BIG_ENDIAN 0
683
684 /* Define this if most significant byte of a word is the lowest numbered. */
685 /* That is not true on the 80386. */
686 #define BYTES_BIG_ENDIAN 0
687
688 /* Define this if most significant word of a multiword number is the lowest
689 numbered. */
690 /* Not true for 80386 */
691 #define WORDS_BIG_ENDIAN 0
692
693 /* Width of a word, in units (bytes). */
694 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
695
696 #ifndef IN_LIBGCC2
697 #define MIN_UNITS_PER_WORD 4
698 #endif
699
700 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
701 #define PARM_BOUNDARY BITS_PER_WORD
702
703 /* Boundary (in *bits*) on which stack pointer should be aligned. */
704 #define STACK_BOUNDARY \
705 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
706
707 /* Stack boundary of the main function guaranteed by OS. */
708 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
709
710 /* Minimum stack boundary. */
711 #define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
712
713 /* Boundary (in *bits*) on which the stack pointer prefers to be
714 aligned; the compiler cannot rely on having this alignment. */
715 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
716
717 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
718 both 32bit and 64bit, to support codes that need 128 bit stack
719 alignment for SSE instructions, but can't realign the stack. */
720 #define PREFERRED_STACK_BOUNDARY_DEFAULT 128
721
722 /* 1 if -mstackrealign should be turned on by default. It will
723 generate an alternate prologue and epilogue that realigns the
724 runtime stack if nessary. This supports mixing codes that keep a
725 4-byte aligned stack, as specified by i386 psABI, with codes that
726 need a 16-byte aligned stack, as required by SSE instructions. */
727 #define STACK_REALIGN_DEFAULT 0
728
729 /* Boundary (in *bits*) on which the incoming stack is aligned. */
730 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
731
732 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
733 mandatory for the 64-bit ABI, and may or may not be true for other
734 operating systems. */
735 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
736
737 /* Minimum allocation boundary for the code of a function. */
738 #define FUNCTION_BOUNDARY 8
739
740 /* C++ stores the virtual bit in the lowest bit of function pointers. */
741 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
742
743 /* Minimum size in bits of the largest boundary to which any
744 and all fundamental data types supported by the hardware
745 might need to be aligned. No data type wants to be aligned
746 rounder than this.
747
748 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
749 and Pentium Pro XFmode values at 128 bit boundaries. */
750
751 #define BIGGEST_ALIGNMENT (TARGET_AVX ? 256 : 128)
752
753 /* Maximum stack alignment. */
754 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
755
756 /* Alignment value for attribute ((aligned)). It is a constant since
757 it is the part of the ABI. We shouldn't change it with -mavx. */
758 #define ATTRIBUTE_ALIGNED_VALUE 128
759
760 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
761 #define ALIGN_MODE_128(MODE) \
762 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
763
764 /* The published ABIs say that doubles should be aligned on word
765 boundaries, so lower the alignment for structure fields unless
766 -malign-double is set. */
767
768 /* ??? Blah -- this macro is used directly by libobjc. Since it
769 supports no vector modes, cut out the complexity and fall back
770 on BIGGEST_FIELD_ALIGNMENT. */
771 #ifdef IN_TARGET_LIBS
772 #ifdef __x86_64__
773 #define BIGGEST_FIELD_ALIGNMENT 128
774 #else
775 #define BIGGEST_FIELD_ALIGNMENT 32
776 #endif
777 #else
778 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
779 x86_field_alignment (FIELD, COMPUTED)
780 #endif
781
782 /* If defined, a C expression to compute the alignment given to a
783 constant that is being placed in memory. EXP is the constant
784 and ALIGN is the alignment that the object would ordinarily have.
785 The value of this macro is used instead of that alignment to align
786 the object.
787
788 If this macro is not defined, then ALIGN is used.
789
790 The typical use of this macro is to increase alignment for string
791 constants to be word aligned so that `strcpy' calls that copy
792 constants can be done inline. */
793
794 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
795
796 /* If defined, a C expression to compute the alignment for a static
797 variable. TYPE is the data type, and ALIGN is the alignment that
798 the object would ordinarily have. The value of this macro is used
799 instead of that alignment to align the object.
800
801 If this macro is not defined, then ALIGN is used.
802
803 One use of this macro is to increase alignment of medium-size
804 data to make it all fit in fewer cache lines. Another is to
805 cause character arrays to be word-aligned so that `strcpy' calls
806 that copy constants to character arrays can be done inline. */
807
808 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
809
810 /* If defined, a C expression to compute the alignment for a local
811 variable. TYPE is the data type, and ALIGN is the alignment that
812 the object would ordinarily have. The value of this macro is used
813 instead of that alignment to align the object.
814
815 If this macro is not defined, then ALIGN is used.
816
817 One use of this macro is to increase alignment of medium-size
818 data to make it all fit in fewer cache lines. */
819
820 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
821 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
822
823 /* If defined, a C expression to compute the alignment for stack slot.
824 TYPE is the data type, MODE is the widest mode available, and ALIGN
825 is the alignment that the slot would ordinarily have. The value of
826 this macro is used instead of that alignment to align the slot.
827
828 If this macro is not defined, then ALIGN is used when TYPE is NULL,
829 Otherwise, LOCAL_ALIGNMENT will be used.
830
831 One use of this macro is to set alignment of stack slot to the
832 maximum alignment of all possible modes which the slot may have. */
833
834 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
835 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
836
837 /* If defined, a C expression to compute the alignment for a local
838 variable DECL.
839
840 If this macro is not defined, then
841 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
842
843 One use of this macro is to increase alignment of medium-size
844 data to make it all fit in fewer cache lines. */
845
846 #define LOCAL_DECL_ALIGNMENT(DECL) \
847 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
848
849 /* If defined, a C expression to compute the minimum required alignment
850 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
851 MODE, assuming normal alignment ALIGN.
852
853 If this macro is not defined, then (ALIGN) will be used. */
854
855 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
856 ix86_minimum_alignment (EXP, MODE, ALIGN)
857
858
859 /* Set this nonzero if move instructions will actually fail to work
860 when given unaligned data. */
861 #define STRICT_ALIGNMENT 0
862
863 /* If bit field type is int, don't let it cross an int,
864 and give entire struct the alignment of an int. */
865 /* Required on the 386 since it doesn't have bit-field insns. */
866 #define PCC_BITFIELD_TYPE_MATTERS 1
867 \f
868 /* Standard register usage. */
869
870 /* This processor has special stack-like registers. See reg-stack.c
871 for details. */
872
873 #define STACK_REGS
874
875 #define IS_STACK_MODE(MODE) \
876 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
877 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
878 || (MODE) == XFmode)
879
880 /* Number of actual hardware registers.
881 The hardware registers are assigned numbers for the compiler
882 from 0 to just below FIRST_PSEUDO_REGISTER.
883 All registers that the compiler knows about must be given numbers,
884 even those that are not normally considered general registers.
885
886 In the 80386 we give the 8 general purpose registers the numbers 0-7.
887 We number the floating point registers 8-15.
888 Note that registers 0-7 can be accessed as a short or int,
889 while only 0-3 may be used with byte `mov' instructions.
890
891 Reg 16 does not correspond to any hardware register, but instead
892 appears in the RTL as an argument pointer prior to reload, and is
893 eliminated during reloading in favor of either the stack or frame
894 pointer. */
895
896 #define FIRST_PSEUDO_REGISTER 53
897
898 /* Number of hardware registers that go into the DWARF-2 unwind info.
899 If not defined, equals FIRST_PSEUDO_REGISTER. */
900
901 #define DWARF_FRAME_REGISTERS 17
902
903 /* 1 for registers that have pervasive standard uses
904 and are not available for the register allocator.
905 On the 80386, the stack pointer is such, as is the arg pointer.
906
907 The value is zero if the register is not fixed on either 32 or
908 64 bit targets, one if the register if fixed on both 32 and 64
909 bit targets, two if it is only fixed on 32bit targets and three
910 if its only fixed on 64bit targets.
911 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.
912 */
913 #define FIXED_REGISTERS \
914 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
915 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
916 /*arg,flags,fpsr,fpcr,frame*/ \
917 1, 1, 1, 1, 1, \
918 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
919 0, 0, 0, 0, 0, 0, 0, 0, \
920 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
921 0, 0, 0, 0, 0, 0, 0, 0, \
922 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
923 2, 2, 2, 2, 2, 2, 2, 2, \
924 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
925 2, 2, 2, 2, 2, 2, 2, 2 }
926
927
928 /* 1 for registers not available across function calls.
929 These must include the FIXED_REGISTERS and also any
930 registers that can be used without being saved.
931 The latter must include the registers where values are returned
932 and the register where structure-value addresses are passed.
933 Aside from that, you can include as many other registers as you like.
934
935 The value is zero if the register is not call used on either 32 or
936 64 bit targets, one if the register if call used on both 32 and 64
937 bit targets, two if it is only call used on 32bit targets and three
938 if its only call used on 64bit targets.
939 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.
940 */
941 #define CALL_USED_REGISTERS \
942 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
943 { 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
944 /*arg,flags,fpsr,fpcr,frame*/ \
945 1, 1, 1, 1, 1, \
946 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
947 1, 1, 1, 1, 1, 1, 1, 1, \
948 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
949 1, 1, 1, 1, 1, 1, 1, 1, \
950 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
951 1, 1, 1, 1, 2, 2, 2, 2, \
952 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
953 1, 1, 1, 1, 1, 1, 1, 1 }
954
955 /* Order in which to allocate registers. Each register must be
956 listed once, even those in FIXED_REGISTERS. List frame pointer
957 late and fixed registers last. Note that, in general, we prefer
958 registers listed in CALL_USED_REGISTERS, keeping the others
959 available for storage of persistent values.
960
961 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
962 so this is just empty initializer for array. */
963
964 #define REG_ALLOC_ORDER \
965 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
966 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
967 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
968 48, 49, 50, 51, 52 }
969
970 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
971 to be rearranged based on a particular function. When using sse math,
972 we want to allocate SSE before x87 registers and vice versa. */
973
974 #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
975
976
977 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
978
979 /* Return number of consecutive hard regs needed starting at reg REGNO
980 to hold something of mode MODE.
981 This is ordinarily the length in words of a value of mode MODE
982 but can be less for certain modes in special long registers.
983
984 Actually there are no two word move instructions for consecutive
985 registers. And only registers 0-3 may have mov byte instructions
986 applied to them. */
987
988 #define HARD_REGNO_NREGS(REGNO, MODE) \
989 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
990 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
991 : ((MODE) == XFmode \
992 ? (TARGET_64BIT ? 2 : 3) \
993 : (MODE) == XCmode \
994 ? (TARGET_64BIT ? 4 : 6) \
995 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
996
997 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
998 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
999 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1000 ? 0 \
1001 : ((MODE) == XFmode || (MODE) == XCmode)) \
1002 : 0)
1003
1004 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1005
1006 #define VALID_AVX256_REG_MODE(MODE) \
1007 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1008 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1009 || (MODE) == V4DFmode)
1010
1011 #define VALID_SSE2_REG_MODE(MODE) \
1012 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1013 || (MODE) == V2DImode || (MODE) == DFmode)
1014
1015 #define VALID_SSE_REG_MODE(MODE) \
1016 ((MODE) == V1TImode || (MODE) == TImode \
1017 || (MODE) == V4SFmode || (MODE) == V4SImode \
1018 || (MODE) == SFmode || (MODE) == TFmode)
1019
1020 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1021 ((MODE) == V2SFmode || (MODE) == SFmode)
1022
1023 #define VALID_MMX_REG_MODE(MODE) \
1024 ((MODE == V1DImode) || (MODE) == DImode \
1025 || (MODE) == V2SImode || (MODE) == SImode \
1026 || (MODE) == V4HImode || (MODE) == V8QImode)
1027
1028 #define VALID_DFP_MODE_P(MODE) \
1029 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1030
1031 #define VALID_FP_MODE_P(MODE) \
1032 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1033 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1034
1035 #define VALID_INT_MODE_P(MODE) \
1036 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1037 || (MODE) == DImode \
1038 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1039 || (MODE) == CDImode \
1040 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1041 || (MODE) == TFmode || (MODE) == TCmode)))
1042
1043 /* Return true for modes passed in SSE registers. */
1044 #define SSE_REG_MODE_P(MODE) \
1045 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1046 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1047 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1048 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1049 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
1050 || (MODE) == V2TImode)
1051
1052 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1053
1054 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1055 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1056
1057 /* Value is 1 if it is a good idea to tie two pseudo registers
1058 when one has mode MODE1 and one has mode MODE2.
1059 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1060 for any hard reg, then this must be 0 for correct output. */
1061
1062 #define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
1063
1064 /* It is possible to write patterns to move flags; but until someone
1065 does it, */
1066 #define AVOID_CCMODE_COPIES
1067
1068 /* Specify the modes required to caller save a given hard regno.
1069 We do this on i386 to prevent flags from being saved at all.
1070
1071 Kill any attempts to combine saving of modes. */
1072
1073 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1074 (CC_REGNO_P (REGNO) ? VOIDmode \
1075 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1076 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1077 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1078 : (MODE) == QImode && (REGNO) > BX_REG && !TARGET_64BIT ? SImode \
1079 : (MODE))
1080
1081 /* The only ABI that saves SSE registers across calls is Win64 (thus no
1082 need to check the current ABI here), and with AVX enabled Win64 only
1083 guarantees that the low 16 bytes are saved. */
1084 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1085 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1086
1087 /* Specify the registers used for certain standard purposes.
1088 The values of these macros are register numbers. */
1089
1090 /* on the 386 the pc register is %eip, and is not usable as a general
1091 register. The ordinary mov instructions won't work */
1092 /* #define PC_REGNUM */
1093
1094 /* Register to use for pushing function arguments. */
1095 #define STACK_POINTER_REGNUM 7
1096
1097 /* Base register for access to local variables of the function. */
1098 #define HARD_FRAME_POINTER_REGNUM 6
1099
1100 /* Base register for access to local variables of the function. */
1101 #define FRAME_POINTER_REGNUM 20
1102
1103 /* First floating point reg */
1104 #define FIRST_FLOAT_REG 8
1105
1106 /* First & last stack-like regs */
1107 #define FIRST_STACK_REG FIRST_FLOAT_REG
1108 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1109
1110 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1111 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1112
1113 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1114 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1115
1116 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1117 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1118
1119 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1120 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1121
1122 /* Override this in other tm.h files to cope with various OS lossage
1123 requiring a frame pointer. */
1124 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1125 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1126 #endif
1127
1128 /* Make sure we can access arbitrary call frames. */
1129 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1130
1131 /* Base register for access to arguments of the function. */
1132 #define ARG_POINTER_REGNUM 16
1133
1134 /* Register to hold the addressing base for position independent
1135 code access to data items. We don't use PIC pointer for 64bit
1136 mode. Define the regnum to dummy value to prevent gcc from
1137 pessimizing code dealing with EBX.
1138
1139 To avoid clobbering a call-saved register unnecessarily, we renumber
1140 the pic register when possible. The change is visible after the
1141 prologue has been emitted. */
1142
1143 #define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
1144
1145 #define PIC_OFFSET_TABLE_REGNUM \
1146 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1147 || !flag_pic ? INVALID_REGNUM \
1148 : reload_completed ? REGNO (pic_offset_table_rtx) \
1149 : REAL_PIC_OFFSET_TABLE_REGNUM)
1150
1151 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1152
1153 /* This is overridden by <cygwin.h>. */
1154 #define MS_AGGREGATE_RETURN 0
1155
1156 #define KEEP_AGGREGATE_RETURN_POINTER 0
1157 \f
1158 /* Define the classes of registers for register constraints in the
1159 machine description. Also define ranges of constants.
1160
1161 One of the classes must always be named ALL_REGS and include all hard regs.
1162 If there is more than one class, another class must be named NO_REGS
1163 and contain no registers.
1164
1165 The name GENERAL_REGS must be the name of a class (or an alias for
1166 another name such as ALL_REGS). This is the class of registers
1167 that is allowed by "g" or "r" in a register constraint.
1168 Also, registers outside this class are allocated only when
1169 instructions express preferences for them.
1170
1171 The classes must be numbered in nondecreasing order; that is,
1172 a larger-numbered class must never be contained completely
1173 in a smaller-numbered class.
1174
1175 For any two classes, it is very desirable that there be another
1176 class that represents their union.
1177
1178 It might seem that class BREG is unnecessary, since no useful 386
1179 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1180 and the "b" register constraint is useful in asms for syscalls.
1181
1182 The flags, fpsr and fpcr registers are in no class. */
1183
1184 enum reg_class
1185 {
1186 NO_REGS,
1187 AREG, DREG, CREG, BREG, SIREG, DIREG,
1188 AD_REGS, /* %eax/%edx for DImode */
1189 CLOBBERED_REGS, /* call-clobbered integers */
1190 Q_REGS, /* %eax %ebx %ecx %edx */
1191 NON_Q_REGS, /* %esi %edi %ebp %esp */
1192 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1193 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1194 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1195 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1196 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1197 FLOAT_REGS,
1198 SSE_FIRST_REG,
1199 SSE_REGS,
1200 MMX_REGS,
1201 FP_TOP_SSE_REGS,
1202 FP_SECOND_SSE_REGS,
1203 FLOAT_SSE_REGS,
1204 FLOAT_INT_REGS,
1205 INT_SSE_REGS,
1206 FLOAT_INT_SSE_REGS,
1207 ALL_REGS, LIM_REG_CLASSES
1208 };
1209
1210 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1211
1212 #define INTEGER_CLASS_P(CLASS) \
1213 reg_class_subset_p ((CLASS), GENERAL_REGS)
1214 #define FLOAT_CLASS_P(CLASS) \
1215 reg_class_subset_p ((CLASS), FLOAT_REGS)
1216 #define SSE_CLASS_P(CLASS) \
1217 reg_class_subset_p ((CLASS), SSE_REGS)
1218 #define MMX_CLASS_P(CLASS) \
1219 ((CLASS) == MMX_REGS)
1220 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1221 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1222 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1223 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1224 #define MAYBE_SSE_CLASS_P(CLASS) \
1225 reg_classes_intersect_p (SSE_REGS, (CLASS))
1226 #define MAYBE_MMX_CLASS_P(CLASS) \
1227 reg_classes_intersect_p (MMX_REGS, (CLASS))
1228
1229 #define Q_CLASS_P(CLASS) \
1230 reg_class_subset_p ((CLASS), Q_REGS)
1231
1232 /* Give names of register classes as strings for dump file. */
1233
1234 #define REG_CLASS_NAMES \
1235 { "NO_REGS", \
1236 "AREG", "DREG", "CREG", "BREG", \
1237 "SIREG", "DIREG", \
1238 "AD_REGS", \
1239 "CLOBBERED_REGS", \
1240 "Q_REGS", "NON_Q_REGS", \
1241 "INDEX_REGS", \
1242 "LEGACY_REGS", \
1243 "GENERAL_REGS", \
1244 "FP_TOP_REG", "FP_SECOND_REG", \
1245 "FLOAT_REGS", \
1246 "SSE_FIRST_REG", \
1247 "SSE_REGS", \
1248 "MMX_REGS", \
1249 "FP_TOP_SSE_REGS", \
1250 "FP_SECOND_SSE_REGS", \
1251 "FLOAT_SSE_REGS", \
1252 "FLOAT_INT_REGS", \
1253 "INT_SSE_REGS", \
1254 "FLOAT_INT_SSE_REGS", \
1255 "ALL_REGS" }
1256
1257 /* Define which registers fit in which classes. This is an initializer
1258 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1259
1260 Note that the default setting of CLOBBERED_REGS is for 32-bit; this
1261 is adjusted by TARGET_CONDITIONAL_REGISTER_USAGE for the 64-bit ABI
1262 in effect. */
1263
1264 #define REG_CLASS_CONTENTS \
1265 { { 0x00, 0x0 }, \
1266 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1267 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1268 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1269 { 0x03, 0x0 }, /* AD_REGS */ \
1270 { 0x07, 0x0 }, /* CLOBBERED_REGS */ \
1271 { 0x0f, 0x0 }, /* Q_REGS */ \
1272 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1273 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1274 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1275 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1276 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1277 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1278 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
1279 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1280 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1281 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1282 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1283 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1284 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1285 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1286 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1287 { 0xffffffff,0x1fffff } \
1288 }
1289
1290 /* The same information, inverted:
1291 Return the class number of the smallest class containing
1292 reg number REGNO. This could be a conditional expression
1293 or could index an array. */
1294
1295 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1296
1297 /* When this hook returns true for MODE, the compiler allows
1298 registers explicitly used in the rtl to be used as spill registers
1299 but prevents the compiler from extending the lifetime of these
1300 registers. */
1301 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1302
1303 #define QI_REG_P(X) (REG_P (X) && REGNO (X) <= BX_REG)
1304
1305 #define GENERAL_REGNO_P(N) \
1306 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
1307
1308 #define GENERAL_REG_P(X) \
1309 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1310
1311 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1312
1313 #define REX_INT_REGNO_P(N) \
1314 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1315 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1316
1317 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1318 #define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1319 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1320 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1321
1322 #define X87_FLOAT_MODE_P(MODE) \
1323 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1324
1325 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1326 #define SSE_REGNO_P(N) \
1327 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1328 || REX_SSE_REGNO_P (N))
1329
1330 #define REX_SSE_REGNO_P(N) \
1331 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1332
1333 #define SSE_REGNO(N) \
1334 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1335
1336 #define SSE_FLOAT_MODE_P(MODE) \
1337 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1338
1339 #define FMA4_VEC_FLOAT_MODE_P(MODE) \
1340 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1341 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1342
1343 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1344 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1345
1346 #define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
1347 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1348
1349 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1350
1351 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1352 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1353
1354 /* The class value for index registers, and the one for base regs. */
1355
1356 #define INDEX_REG_CLASS INDEX_REGS
1357 #define BASE_REG_CLASS GENERAL_REGS
1358
1359 /* Place additional restrictions on the register class to use when it
1360 is necessary to be able to hold a value of mode MODE in a reload
1361 register for which class CLASS would ordinarily be used. */
1362
1363 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1364 ((MODE) == QImode && !TARGET_64BIT \
1365 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1366 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1367 ? Q_REGS : (CLASS))
1368
1369 /* If we are copying between general and FP registers, we need a memory
1370 location. The same is true for SSE and MMX registers. */
1371 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1372 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1373
1374 /* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1375 There is no need to emit full 64 bit move on 64 bit targets
1376 for integral modes that can be moved using 32 bit move. */
1377 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1378 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1379 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1380 : MODE)
1381
1382 /* Return a class of registers that cannot change FROM mode to TO mode. */
1383
1384 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1385 ix86_cannot_change_mode_class (FROM, TO, CLASS)
1386 \f
1387 /* Stack layout; function entry, exit and calling. */
1388
1389 /* Define this if pushing a word on the stack
1390 makes the stack pointer a smaller address. */
1391 #define STACK_GROWS_DOWNWARD
1392
1393 /* Define this to nonzero if the nominal address of the stack frame
1394 is at the high-address end of the local variables;
1395 that is, each additional local variable allocated
1396 goes at a more negative offset in the frame. */
1397 #define FRAME_GROWS_DOWNWARD 1
1398
1399 /* Offset within stack frame to start allocating local variables at.
1400 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1401 first local allocated. Otherwise, it is the offset to the BEGINNING
1402 of the first local allocated. */
1403 #define STARTING_FRAME_OFFSET 0
1404
1405 /* If we generate an insn to push BYTES bytes, this says how many the stack
1406 pointer really advances by. On 386, we have pushw instruction that
1407 decrements by exactly 2 no matter what the position was, there is no pushb.
1408
1409 But as CIE data alignment factor on this arch is -4 for 32bit targets
1410 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1411 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
1412
1413 #define PUSH_ROUNDING(BYTES) \
1414 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1415
1416 /* If defined, the maximum amount of space required for outgoing arguments
1417 will be computed and placed into the variable `crtl->outgoing_args_size'.
1418 No space will be pushed onto the stack for each call; instead, the
1419 function prologue should increase the stack frame size by this amount.
1420
1421 64-bit MS ABI seem to require 16 byte alignment everywhere except for
1422 function prologue and apilogue. This is not possible without
1423 ACCUMULATE_OUTGOING_ARGS. */
1424
1425 #define ACCUMULATE_OUTGOING_ARGS \
1426 (TARGET_ACCUMULATE_OUTGOING_ARGS || TARGET_64BIT_MS_ABI)
1427
1428 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1429 instructions to pass outgoing arguments. */
1430
1431 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1432
1433 /* We want the stack and args grow in opposite directions, even if
1434 PUSH_ARGS is 0. */
1435 #define PUSH_ARGS_REVERSED 1
1436
1437 /* Offset of first parameter from the argument pointer register value. */
1438 #define FIRST_PARM_OFFSET(FNDECL) 0
1439
1440 /* Define this macro if functions should assume that stack space has been
1441 allocated for arguments even when their values are passed in registers.
1442
1443 The value of this macro is the size, in bytes, of the area reserved for
1444 arguments passed in registers for the function represented by FNDECL.
1445
1446 This space can be allocated by the caller, or be a part of the
1447 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1448 which. */
1449 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1450
1451 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1452 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1453
1454 /* Define how to find the value returned by a library function
1455 assuming the value has mode MODE. */
1456
1457 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1458
1459 /* Define the size of the result block used for communication between
1460 untyped_call and untyped_return. The block contains a DImode value
1461 followed by the block used by fnsave and frstor. */
1462
1463 #define APPLY_RESULT_SIZE (8+108)
1464
1465 /* 1 if N is a possible register number for function argument passing. */
1466 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1467
1468 /* Define a data type for recording info about an argument list
1469 during the scan of that argument list. This data type should
1470 hold all necessary information about the function itself
1471 and about the args processed so far, enough to enable macros
1472 such as FUNCTION_ARG to determine where the next arg should go. */
1473
1474 typedef struct ix86_args {
1475 int words; /* # words passed so far */
1476 int nregs; /* # registers available for passing */
1477 int regno; /* next available register number */
1478 int fastcall; /* fastcall or thiscall calling convention
1479 is used */
1480 int sse_words; /* # sse words passed so far */
1481 int sse_nregs; /* # sse registers available for passing */
1482 int warn_avx; /* True when we want to warn about AVX ABI. */
1483 int warn_sse; /* True when we want to warn about SSE ABI. */
1484 int warn_mmx; /* True when we want to warn about MMX ABI. */
1485 int sse_regno; /* next available sse register number */
1486 int mmx_words; /* # mmx words passed so far */
1487 int mmx_nregs; /* # mmx registers available for passing */
1488 int mmx_regno; /* next available mmx register number */
1489 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1490 int caller; /* true if it is caller. */
1491 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1492 SFmode/DFmode arguments should be passed
1493 in SSE registers. Otherwise 0. */
1494 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1495 MS_ABI for ms abi. */
1496 } CUMULATIVE_ARGS;
1497
1498 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1499 for a call to a function whose data type is FNTYPE.
1500 For a library call, FNTYPE is 0. */
1501
1502 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1503 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1504 (N_NAMED_ARGS) != -1)
1505
1506 /* Output assembler code to FILE to increment profiler label # LABELNO
1507 for profiling a function entry. */
1508
1509 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1510
1511 #define MCOUNT_NAME "_mcount"
1512
1513 #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1514
1515 #define PROFILE_COUNT_REGISTER "edx"
1516
1517 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1518 the stack pointer does not matter. The value is tested only in
1519 functions that have frame pointers.
1520 No definition is equivalent to always zero. */
1521 /* Note on the 386 it might be more efficient not to define this since
1522 we have to restore it ourselves from the frame pointer, in order to
1523 use pop */
1524
1525 #define EXIT_IGNORE_STACK 1
1526
1527 /* Output assembler code for a block containing the constant parts
1528 of a trampoline, leaving space for the variable parts. */
1529
1530 /* On the 386, the trampoline contains two instructions:
1531 mov #STATIC,ecx
1532 jmp FUNCTION
1533 The trampoline is generated entirely at runtime. The operand of JMP
1534 is the address of FUNCTION relative to the instruction following the
1535 JMP (which is 5 bytes long). */
1536
1537 /* Length in units of the trampoline for entering a nested function. */
1538
1539 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
1540 \f
1541 /* Definitions for register eliminations.
1542
1543 This is an array of structures. Each structure initializes one pair
1544 of eliminable registers. The "from" register number is given first,
1545 followed by "to". Eliminations of the same "from" register are listed
1546 in order of preference.
1547
1548 There are two registers that can always be eliminated on the i386.
1549 The frame pointer and the arg pointer can be replaced by either the
1550 hard frame pointer or to the stack pointer, depending upon the
1551 circumstances. The hard frame pointer is not used before reload and
1552 so it is not eligible for elimination. */
1553
1554 #define ELIMINABLE_REGS \
1555 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1556 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1557 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1558 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1559
1560 /* Define the offset between two registers, one to be eliminated, and the other
1561 its replacement, at the start of a routine. */
1562
1563 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1564 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1565 \f
1566 /* Addressing modes, and classification of registers for them. */
1567
1568 /* Macros to check register numbers against specific register classes. */
1569
1570 /* These assume that REGNO is a hard or pseudo reg number.
1571 They give nonzero only if REGNO is a hard reg of the suitable class
1572 or a pseudo reg currently allocated to a suitable hard reg.
1573 Since they use reg_renumber, they are safe only once reg_renumber
1574 has been allocated, which happens in local-alloc.c. */
1575
1576 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1577 ((REGNO) < STACK_POINTER_REGNUM \
1578 || REX_INT_REGNO_P (REGNO) \
1579 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1580 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1581
1582 #define REGNO_OK_FOR_BASE_P(REGNO) \
1583 (GENERAL_REGNO_P (REGNO) \
1584 || (REGNO) == ARG_POINTER_REGNUM \
1585 || (REGNO) == FRAME_POINTER_REGNUM \
1586 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1587
1588 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1589 and check its validity for a certain class.
1590 We have two alternate definitions for each of them.
1591 The usual definition accepts all pseudo regs; the other rejects
1592 them unless they have been allocated suitable hard regs.
1593 The symbol REG_OK_STRICT causes the latter definition to be used.
1594
1595 Most source files want to accept pseudo regs in the hope that
1596 they will get allocated to the class that the insn wants them to be in.
1597 Source files for reload pass need to be strict.
1598 After reload, it makes no difference, since pseudo regs have
1599 been eliminated by then. */
1600
1601
1602 /* Non strict versions, pseudos are ok. */
1603 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1604 (REGNO (X) < STACK_POINTER_REGNUM \
1605 || REX_INT_REGNO_P (REGNO (X)) \
1606 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1607
1608 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1609 (GENERAL_REGNO_P (REGNO (X)) \
1610 || REGNO (X) == ARG_POINTER_REGNUM \
1611 || REGNO (X) == FRAME_POINTER_REGNUM \
1612 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1613
1614 /* Strict versions, hard registers only */
1615 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1616 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1617
1618 #ifndef REG_OK_STRICT
1619 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1620 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1621
1622 #else
1623 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1624 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1625 #endif
1626
1627 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1628 that is a valid memory address for an instruction.
1629 The MODE argument is the machine mode for the MEM expression
1630 that wants to use this address.
1631
1632 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1633 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1634
1635 See legitimize_pic_address in i386.c for details as to what
1636 constitutes a legitimate address when -fpic is used. */
1637
1638 #define MAX_REGS_PER_ADDRESS 2
1639
1640 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1641
1642 /* Try a machine-dependent way of reloading an illegitimate address
1643 operand. If we find one, push the reload and jump to WIN. This
1644 macro is used in only one place: `find_reloads_address' in reload.c. */
1645
1646 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1647 do { \
1648 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1649 (int)(TYPE), (INDL))) \
1650 goto WIN; \
1651 } while (0)
1652
1653 /* If defined, a C expression to determine the base term of address X.
1654 This macro is used in only one place: `find_base_term' in alias.c.
1655
1656 It is always safe for this macro to not be defined. It exists so
1657 that alias analysis can understand machine-dependent addresses.
1658
1659 The typical use of this macro is to handle addresses containing
1660 a label_ref or symbol_ref within an UNSPEC. */
1661
1662 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1663
1664 /* Nonzero if the constant value X is a legitimate general operand
1665 when generating PIC code. It is given that flag_pic is on and
1666 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1667
1668 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1669
1670 #define SYMBOLIC_CONST(X) \
1671 (GET_CODE (X) == SYMBOL_REF \
1672 || GET_CODE (X) == LABEL_REF \
1673 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1674 \f
1675 /* Max number of args passed in registers. If this is more than 3, we will
1676 have problems with ebx (register #4), since it is a caller save register and
1677 is also used as the pic register in ELF. So for now, don't allow more than
1678 3 registers to be passed in registers. */
1679
1680 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1681 #define X86_64_REGPARM_MAX 6
1682 #define X86_64_MS_REGPARM_MAX 4
1683
1684 #define X86_32_REGPARM_MAX 3
1685
1686 #define REGPARM_MAX \
1687 (TARGET_64BIT \
1688 ? (TARGET_64BIT_MS_ABI \
1689 ? X86_64_MS_REGPARM_MAX \
1690 : X86_64_REGPARM_MAX) \
1691 : X86_32_REGPARM_MAX)
1692
1693 #define X86_64_SSE_REGPARM_MAX 8
1694 #define X86_64_MS_SSE_REGPARM_MAX 4
1695
1696 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1697
1698 #define SSE_REGPARM_MAX \
1699 (TARGET_64BIT \
1700 ? (TARGET_64BIT_MS_ABI \
1701 ? X86_64_MS_SSE_REGPARM_MAX \
1702 : X86_64_SSE_REGPARM_MAX) \
1703 : X86_32_SSE_REGPARM_MAX)
1704
1705 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1706 \f
1707 /* Specify the machine mode that this machine uses
1708 for the index in the tablejump instruction. */
1709 #define CASE_VECTOR_MODE \
1710 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1711
1712 /* Define this as 1 if `char' should by default be signed; else as 0. */
1713 #define DEFAULT_SIGNED_CHAR 1
1714
1715 /* Max number of bytes we can move from memory to memory
1716 in one reasonably fast instruction. */
1717 #define MOVE_MAX 16
1718
1719 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1720 move efficiently, as opposed to MOVE_MAX which is the maximum
1721 number of bytes we can move with a single instruction. */
1722 #define MOVE_MAX_PIECES UNITS_PER_WORD
1723
1724 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1725 move-instruction pairs, we will do a movmem or libcall instead.
1726 Increasing the value will always make code faster, but eventually
1727 incurs high cost in increased code size.
1728
1729 If you don't define this, a reasonable default is used. */
1730
1731 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1732
1733 /* If a clear memory operation would take CLEAR_RATIO or more simple
1734 move-instruction sequences, we will do a clrmem or libcall instead. */
1735
1736 #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
1737
1738 /* Define if shifts truncate the shift count which implies one can
1739 omit a sign-extension or zero-extension of a shift count.
1740
1741 On i386, shifts do truncate the count. But bit test instructions
1742 take the modulo of the bit offset operand. */
1743
1744 /* #define SHIFT_COUNT_TRUNCATED */
1745
1746 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1747 is done just by pretending it is already truncated. */
1748 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1749
1750 /* A macro to update M and UNSIGNEDP when an object whose type is
1751 TYPE and which has the specified mode and signedness is to be
1752 stored in a register. This macro is only called when TYPE is a
1753 scalar type.
1754
1755 On i386 it is sometimes useful to promote HImode and QImode
1756 quantities to SImode. The choice depends on target type. */
1757
1758 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1759 do { \
1760 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1761 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1762 (MODE) = SImode; \
1763 } while (0)
1764
1765 /* Specify the machine mode that pointers have.
1766 After generation of rtl, the compiler makes no further distinction
1767 between pointers and any other objects of this machine mode. */
1768 #define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
1769
1770 /* A C expression whose value is zero if pointers that need to be extended
1771 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1772 greater then zero if they are zero-extended and less then zero if the
1773 ptr_extend instruction should be used. */
1774
1775 #define POINTERS_EXTEND_UNSIGNED 1
1776
1777 /* A function address in a call instruction
1778 is a byte address (for indexing purposes)
1779 so give the MEM rtx a byte's mode. */
1780 #define FUNCTION_MODE QImode
1781 \f
1782
1783 /* A C expression for the cost of a branch instruction. A value of 1
1784 is the default; other values are interpreted relative to that. */
1785
1786 #define BRANCH_COST(speed_p, predictable_p) \
1787 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1788
1789 /* Define this macro as a C expression which is nonzero if accessing
1790 less than a word of memory (i.e. a `char' or a `short') is no
1791 faster than accessing a word of memory, i.e., if such access
1792 require more than one instruction or if there is no difference in
1793 cost between byte and (aligned) word loads.
1794
1795 When this macro is not defined, the compiler will access a field by
1796 finding the smallest containing object; when it is defined, a
1797 fullword load will be used if alignment permits. Unless bytes
1798 accesses are faster than word accesses, using word accesses is
1799 preferable since it may eliminate subsequent memory access if
1800 subsequent accesses occur to other fields in the same word of the
1801 structure, but to different bytes. */
1802
1803 #define SLOW_BYTE_ACCESS 0
1804
1805 /* Nonzero if access to memory by shorts is slow and undesirable. */
1806 #define SLOW_SHORT_ACCESS 0
1807
1808 /* Define this macro to be the value 1 if unaligned accesses have a
1809 cost many times greater than aligned accesses, for example if they
1810 are emulated in a trap handler.
1811
1812 When this macro is nonzero, the compiler will act as if
1813 `STRICT_ALIGNMENT' were nonzero when generating code for block
1814 moves. This can cause significantly more instructions to be
1815 produced. Therefore, do not set this macro nonzero if unaligned
1816 accesses only add a cycle or two to the time for a memory access.
1817
1818 If the value of this macro is always zero, it need not be defined. */
1819
1820 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1821
1822 /* Define this macro if it is as good or better to call a constant
1823 function address than to call an address kept in a register.
1824
1825 Desirable on the 386 because a CALL with a constant address is
1826 faster than one with a register address. */
1827
1828 #define NO_FUNCTION_CSE
1829 \f
1830 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1831 return the mode to be used for the comparison.
1832
1833 For floating-point equality comparisons, CCFPEQmode should be used.
1834 VOIDmode should be used in all other cases.
1835
1836 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1837 possible, to allow for more combinations. */
1838
1839 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1840
1841 /* Return nonzero if MODE implies a floating point inequality can be
1842 reversed. */
1843
1844 #define REVERSIBLE_CC_MODE(MODE) 1
1845
1846 /* A C expression whose value is reversed condition code of the CODE for
1847 comparison done in CC_MODE mode. */
1848 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1849
1850 \f
1851 /* Control the assembler format that we output, to the extent
1852 this does not vary between assemblers. */
1853
1854 /* How to refer to registers in assembler output.
1855 This sequence is indexed by compiler's hard-register-number (see above). */
1856
1857 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
1858 For non floating point regs, the following are the HImode names.
1859
1860 For float regs, the stack top is sometimes referred to as "%st(0)"
1861 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1862 "y" code. */
1863
1864 #define HI_REGISTER_NAMES \
1865 {"ax","dx","cx","bx","si","di","bp","sp", \
1866 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
1867 "argp", "flags", "fpsr", "fpcr", "frame", \
1868 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
1869 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
1870 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1871 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
1872
1873 #define REGISTER_NAMES HI_REGISTER_NAMES
1874
1875 /* Table of additional register names to use in user input. */
1876
1877 #define ADDITIONAL_REGISTER_NAMES \
1878 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1879 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
1880 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1881 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
1882 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
1883 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
1884
1885 /* Note we are omitting these since currently I don't know how
1886 to get gcc to use these, since they want the same but different
1887 number as al, and ax.
1888 */
1889
1890 #define QI_REGISTER_NAMES \
1891 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
1892
1893 /* These parallel the array above, and can be used to access bits 8:15
1894 of regs 0 through 3. */
1895
1896 #define QI_HIGH_REGISTER_NAMES \
1897 {"ah", "dh", "ch", "bh", }
1898
1899 /* How to renumber registers for dbx and gdb. */
1900
1901 #define DBX_REGISTER_NUMBER(N) \
1902 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
1903
1904 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1905 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1906 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
1907
1908 /* Before the prologue, RA is at 0(%esp). */
1909 #define INCOMING_RETURN_ADDR_RTX \
1910 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
1911
1912 /* After the prologue, RA is at -4(AP) in the current frame. */
1913 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1914 ((COUNT) == 0 \
1915 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
1916 -UNITS_PER_WORD)) \
1917 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
1918
1919 /* PC is dbx register 8; let's use that column for RA. */
1920 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
1921
1922 /* Before the prologue, the top of the frame is at 4(%esp). */
1923 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
1924
1925 /* Describe how we implement __builtin_eh_return. */
1926 #define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
1927 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1928
1929
1930 /* Select a format to encode pointers in exception handling data. CODE
1931 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1932 true if the symbol may be affected by dynamic relocations.
1933
1934 ??? All x86 object file formats are capable of representing this.
1935 After all, the relocation needed is the same as for the call insn.
1936 Whether or not a particular assembler allows us to enter such, I
1937 guess we'll have to see. */
1938 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
1939 asm_preferred_eh_data_format ((CODE), (GLOBAL))
1940
1941 /* This is how to output an insn to push a register on the stack.
1942 It need not be very fast code. */
1943
1944 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
1945 do { \
1946 if (TARGET_64BIT) \
1947 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
1948 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1949 else \
1950 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
1951 } while (0)
1952
1953 /* This is how to output an insn to pop a register from the stack.
1954 It need not be very fast code. */
1955
1956 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
1957 do { \
1958 if (TARGET_64BIT) \
1959 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
1960 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1961 else \
1962 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
1963 } while (0)
1964
1965 /* This is how to output an element of a case-vector that is absolute. */
1966
1967 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1968 ix86_output_addr_vec_elt ((FILE), (VALUE))
1969
1970 /* This is how to output an element of a case-vector that is relative. */
1971
1972 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1973 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
1974
1975 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
1976
1977 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
1978 { \
1979 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
1980 (PTR) += TARGET_AVX ? 1 : 2; \
1981 }
1982
1983 /* A C statement or statements which output an assembler instruction
1984 opcode to the stdio stream STREAM. The macro-operand PTR is a
1985 variable of type `char *' which points to the opcode name in
1986 its "internal" form--the form that is written in the machine
1987 description. */
1988
1989 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1990 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
1991
1992 /* A C statement to output to the stdio stream FILE an assembler
1993 command to pad the location counter to a multiple of 1<<LOG
1994 bytes if it is within MAX_SKIP bytes. */
1995
1996 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
1997 #undef ASM_OUTPUT_MAX_SKIP_PAD
1998 #define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
1999 if ((LOG) != 0) \
2000 { \
2001 if ((MAX_SKIP) == 0) \
2002 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2003 else \
2004 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2005 }
2006 #endif
2007
2008 /* Write the extra assembler code needed to declare a function
2009 properly. */
2010
2011 #undef ASM_OUTPUT_FUNCTION_LABEL
2012 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2013 ix86_asm_output_function_label (FILE, NAME, DECL)
2014
2015 /* Under some conditions we need jump tables in the text section,
2016 because the assembler cannot handle label differences between
2017 sections. This is the case for x86_64 on Mach-O for example. */
2018
2019 #define JUMP_TABLES_IN_TEXT_SECTION \
2020 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2021 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2022
2023 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2024 and switch back. For x86 we do this only to save a few bytes that
2025 would otherwise be unused in the text section. */
2026 #define CRT_MKSTR2(VAL) #VAL
2027 #define CRT_MKSTR(x) CRT_MKSTR2(x)
2028
2029 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2030 asm (SECTION_OP "\n\t" \
2031 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
2032 TEXT_SECTION_ASM_OP);
2033 \f
2034 /* Which processor to tune code generation for. */
2035
2036 enum processor_type
2037 {
2038 PROCESSOR_I386 = 0, /* 80386 */
2039 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2040 PROCESSOR_PENTIUM,
2041 PROCESSOR_PENTIUMPRO,
2042 PROCESSOR_GEODE,
2043 PROCESSOR_K6,
2044 PROCESSOR_ATHLON,
2045 PROCESSOR_PENTIUM4,
2046 PROCESSOR_K8,
2047 PROCESSOR_NOCONA,
2048 PROCESSOR_CORE2_32,
2049 PROCESSOR_CORE2_64,
2050 PROCESSOR_COREI7_32,
2051 PROCESSOR_COREI7_64,
2052 PROCESSOR_GENERIC32,
2053 PROCESSOR_GENERIC64,
2054 PROCESSOR_AMDFAM10,
2055 PROCESSOR_BDVER1,
2056 PROCESSOR_BDVER2,
2057 PROCESSOR_BTVER1,
2058 PROCESSOR_ATOM,
2059 PROCESSOR_max
2060 };
2061
2062 extern enum processor_type ix86_tune;
2063 extern enum processor_type ix86_arch;
2064
2065 /* Size of the RED_ZONE area. */
2066 #define RED_ZONE_SIZE 128
2067 /* Reserved area of the red zone for temporaries. */
2068 #define RED_ZONE_RESERVE 8
2069
2070 extern unsigned int ix86_preferred_stack_boundary;
2071 extern unsigned int ix86_incoming_stack_boundary;
2072
2073 /* Smallest class containing REGNO. */
2074 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2075
2076 enum ix86_fpcmp_strategy {
2077 IX86_FPCMP_SAHF,
2078 IX86_FPCMP_COMI,
2079 IX86_FPCMP_ARITH
2080 };
2081 \f
2082 /* To properly truncate FP values into integers, we need to set i387 control
2083 word. We can't emit proper mode switching code before reload, as spills
2084 generated by reload may truncate values incorrectly, but we still can avoid
2085 redundant computation of new control word by the mode switching pass.
2086 The fldcw instructions are still emitted redundantly, but this is probably
2087 not going to be noticeable problem, as most CPUs do have fast path for
2088 the sequence.
2089
2090 The machinery is to emit simple truncation instructions and split them
2091 before reload to instructions having USEs of two memory locations that
2092 are filled by this code to old and new control word.
2093
2094 Post-reload pass may be later used to eliminate the redundant fildcw if
2095 needed. */
2096
2097 enum ix86_entity
2098 {
2099 I387_TRUNC = 0,
2100 I387_FLOOR,
2101 I387_CEIL,
2102 I387_MASK_PM,
2103 MAX_386_ENTITIES
2104 };
2105
2106 enum ix86_stack_slot
2107 {
2108 SLOT_VIRTUAL = 0,
2109 SLOT_TEMP,
2110 SLOT_CW_STORED,
2111 SLOT_CW_TRUNC,
2112 SLOT_CW_FLOOR,
2113 SLOT_CW_CEIL,
2114 SLOT_CW_MASK_PM,
2115 MAX_386_STACK_LOCALS
2116 };
2117
2118 /* Define this macro if the port needs extra instructions inserted
2119 for mode switching in an optimizing compilation. */
2120
2121 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2122 ix86_optimize_mode_switching[(ENTITY)]
2123
2124 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2125 initializer for an array of integers. Each initializer element N
2126 refers to an entity that needs mode switching, and specifies the
2127 number of different modes that might need to be set for this
2128 entity. The position of the initializer in the initializer -
2129 starting counting at zero - determines the integer that is used to
2130 refer to the mode-switched entity in question. */
2131
2132 #define NUM_MODES_FOR_MODE_SWITCHING \
2133 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2134
2135 /* ENTITY is an integer specifying a mode-switched entity. If
2136 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2137 return an integer value not larger than the corresponding element
2138 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2139 must be switched into prior to the execution of INSN. */
2140
2141 #define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2142
2143 /* This macro specifies the order in which modes for ENTITY are
2144 processed. 0 is the highest priority. */
2145
2146 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2147
2148 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2149 is the set of hard registers live at the point where the insn(s)
2150 are to be inserted. */
2151
2152 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
2153 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
2154 ? emit_i387_cw_initialization (MODE), 0 \
2155 : 0)
2156
2157 \f
2158 /* Avoid renaming of stack registers, as doing so in combination with
2159 scheduling just increases amount of live registers at time and in
2160 the turn amount of fxch instructions needed.
2161
2162 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
2163
2164 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2165 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
2166
2167 \f
2168 #define FASTCALL_PREFIX '@'
2169 \f
2170 /* Machine specific frame tracking during prologue/epilogue generation. */
2171
2172 #ifndef USED_FOR_TARGET
2173 struct GTY(()) machine_frame_state
2174 {
2175 /* This pair tracks the currently active CFA as reg+offset. When reg
2176 is drap_reg, we don't bother trying to record here the real CFA when
2177 it might really be a DW_CFA_def_cfa_expression. */
2178 rtx cfa_reg;
2179 HOST_WIDE_INT cfa_offset;
2180
2181 /* The current offset (canonically from the CFA) of ESP and EBP.
2182 When stack frame re-alignment is active, these may not be relative
2183 to the CFA. However, in all cases they are relative to the offsets
2184 of the saved registers stored in ix86_frame. */
2185 HOST_WIDE_INT sp_offset;
2186 HOST_WIDE_INT fp_offset;
2187
2188 /* The size of the red-zone that may be assumed for the purposes of
2189 eliding register restore notes in the epilogue. This may be zero
2190 if no red-zone is in effect, or may be reduced from the real
2191 red-zone value by a maximum runtime stack re-alignment value. */
2192 int red_zone_offset;
2193
2194 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2195 value within the frame. If false then the offset above should be
2196 ignored. Note that DRAP, if valid, *always* points to the CFA and
2197 thus has an offset of zero. */
2198 BOOL_BITFIELD sp_valid : 1;
2199 BOOL_BITFIELD fp_valid : 1;
2200 BOOL_BITFIELD drap_valid : 1;
2201
2202 /* Indicate whether the local stack frame has been re-aligned. When
2203 set, the SP/FP offsets above are relative to the aligned frame
2204 and not the CFA. */
2205 BOOL_BITFIELD realigned : 1;
2206 };
2207
2208 /* Private to winnt.c. */
2209 struct seh_frame_state;
2210
2211 struct GTY(()) machine_function {
2212 struct stack_local_entry *stack_locals;
2213 const char *some_ld_name;
2214 int varargs_gpr_size;
2215 int varargs_fpr_size;
2216 int optimize_mode_switching[MAX_386_ENTITIES];
2217
2218 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2219 has been computed for. */
2220 int use_fast_prologue_epilogue_nregs;
2221
2222 /* For -fsplit-stack support: A stack local which holds a pointer to
2223 the stack arguments for a function with a variable number of
2224 arguments. This is set at the start of the function and is used
2225 to initialize the overflow_arg_area field of the va_list
2226 structure. */
2227 rtx split_stack_varargs_pointer;
2228
2229 /* This value is used for amd64 targets and specifies the current abi
2230 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2231 ENUM_BITFIELD(calling_abi) call_abi : 8;
2232
2233 /* Nonzero if the function accesses a previous frame. */
2234 BOOL_BITFIELD accesses_prev_frame : 1;
2235
2236 /* Nonzero if the function requires a CLD in the prologue. */
2237 BOOL_BITFIELD needs_cld : 1;
2238
2239 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2240 expander to determine the style used. */
2241 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2242
2243 /* If true, the current function needs the default PIC register, not
2244 an alternate register (on x86) and must not use the red zone (on
2245 x86_64), even if it's a leaf function. We don't want the
2246 function to be regarded as non-leaf because TLS calls need not
2247 affect register allocation. This flag is set when a TLS call
2248 instruction is expanded within a function, and never reset, even
2249 if all such instructions are optimized away. Use the
2250 ix86_current_function_calls_tls_descriptor macro for a better
2251 approximation. */
2252 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2253
2254 /* If true, the current function has a STATIC_CHAIN is placed on the
2255 stack below the return address. */
2256 BOOL_BITFIELD static_chain_on_stack : 1;
2257
2258 /* Nonzero if caller passes 256bit AVX modes. */
2259 BOOL_BITFIELD caller_pass_avx256_p : 1;
2260
2261 /* Nonzero if caller returns 256bit AVX modes. */
2262 BOOL_BITFIELD caller_return_avx256_p : 1;
2263
2264 /* Nonzero if the current callee passes 256bit AVX modes. */
2265 BOOL_BITFIELD callee_pass_avx256_p : 1;
2266
2267 /* Nonzero if the current callee returns 256bit AVX modes. */
2268 BOOL_BITFIELD callee_return_avx256_p : 1;
2269
2270 /* Nonzero if rescan vzerouppers in the current function is needed. */
2271 BOOL_BITFIELD rescan_vzeroupper_p : 1;
2272
2273 /* During prologue/epilogue generation, the current frame state.
2274 Otherwise, the frame state at the end of the prologue. */
2275 struct machine_frame_state fs;
2276
2277 /* During SEH output, this is non-null. */
2278 struct seh_frame_state * GTY((skip(""))) seh;
2279 };
2280 #endif
2281
2282 #define ix86_stack_locals (cfun->machine->stack_locals)
2283 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2284 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2285 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2286 #define ix86_current_function_needs_cld (cfun->machine->needs_cld)
2287 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2288 (cfun->machine->tls_descriptor_call_expanded_p)
2289 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2290 calls are optimized away, we try to detect cases in which it was
2291 optimized away. Since such instructions (use (reg REG_SP)), we can
2292 verify whether there's any such instruction live by testing that
2293 REG_SP is live. */
2294 #define ix86_current_function_calls_tls_descriptor \
2295 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2296 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2297
2298 /* Control behavior of x86_file_start. */
2299 #define X86_FILE_START_VERSION_DIRECTIVE false
2300 #define X86_FILE_START_FLTUSED false
2301
2302 /* Flag to mark data that is in the large address area. */
2303 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2304 #define SYMBOL_REF_FAR_ADDR_P(X) \
2305 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2306
2307 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2308 have defined always, to avoid ifdefing. */
2309 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2310 #define SYMBOL_REF_DLLIMPORT_P(X) \
2311 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2312
2313 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2314 #define SYMBOL_REF_DLLEXPORT_P(X) \
2315 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2316
2317 extern void debug_ready_dispatch (void);
2318 extern void debug_dispatch_window (int);
2319
2320 /* The value at zero is only defined for the BMI instructions
2321 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2322 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2323 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2324 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2325 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT)
2326
2327
2328 /* Flags returned by ix86_get_callcvt (). */
2329 #define IX86_CALLCVT_CDECL 0x1
2330 #define IX86_CALLCVT_STDCALL 0x2
2331 #define IX86_CALLCVT_FASTCALL 0x4
2332 #define IX86_CALLCVT_THISCALL 0x8
2333 #define IX86_CALLCVT_REGPARM 0x10
2334 #define IX86_CALLCVT_SSEREGPARM 0x20
2335
2336 #define IX86_BASE_CALLCVT(FLAGS) \
2337 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2338 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2339
2340 #define RECIP_MASK_NONE 0x00
2341 #define RECIP_MASK_DIV 0x01
2342 #define RECIP_MASK_SQRT 0x02
2343 #define RECIP_MASK_VEC_DIV 0x04
2344 #define RECIP_MASK_VEC_SQRT 0x08
2345 #define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2346 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2347 #define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2348
2349 #define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2350 #define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2351 #define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2352 #define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2353
2354 #define IX86_HLE_ACQUIRE (1 << 16)
2355 #define IX86_HLE_RELEASE (1 << 17)
2356
2357 /*
2358 Local variables:
2359 version-control: t
2360 End:
2361 */