config.gcc: Don't mention MAX_LONG_TYPE_SIZE.
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
37 /* Define the specific costs for a given cpu */
38
39 struct processor_costs {
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
44 const int mult_init[5]; /* cost of starting a multiply
45 in QImode, HImode, SImode, DImode, TImode*/
46 const int mult_bit; /* cost of multiply per each bit set */
47 const int divide[5]; /* cost of a divide/mod
48 in QImode, HImode, SImode, DImode, TImode*/
49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
53 memory-to-memory move insns. */
54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
58 const int int_store[3]; /* cost of storing integer register
59 in QImode, HImode and SImode */
60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
62 in SFmode, DFmode and XFmode */
63 const int fp_store[3]; /* cost of storing FP register
64 in SFmode, DFmode and XFmode */
65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
67 in SImode and DImode */
68 const int mmx_store[2]; /* cost of storing MMX register
69 in SImode and DImode */
70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
72 in SImode, DImode and TImode*/
73 const int sse_store[3]; /* cost of storing SSE register
74 in SImode, DImode and TImode*/
75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
76 integer and vice versa. */
77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
80 const int branch_cost; /* Default value for BRANCH_COST. */
81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
87 };
88
89 extern const struct processor_costs *ix86_cost;
90
91 /* Run-time compilation parameters selecting different hardware subsets. */
92
93 extern int target_flags;
94
95 /* Macros used in the machine description to test the flags. */
96
97 /* configure can arrange to make this 2, to force a 486. */
98
99 #ifndef TARGET_CPU_DEFAULT
100 #ifdef TARGET_64BIT_DEFAULT
101 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_k8
102 #else
103 #define TARGET_CPU_DEFAULT 0
104 #endif
105 #endif
106
107 /* Masks for the -m switches */
108 #define MASK_80387 0x00000001 /* Hardware floating point */
109 #define MASK_RTD 0x00000002 /* Use ret that pops args */
110 #define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
111 #define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
112 #define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
113 #define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
114 #define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
115 #define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
116 #define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
117 #define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
118 #define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
119 #define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
120 #define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
121 #define MASK_MMX 0x00002000 /* Support MMX regs/builtins */
122 #define MASK_SSE 0x00004000 /* Support SSE regs/builtins */
123 #define MASK_SSE2 0x00008000 /* Support SSE2 regs/builtins */
124 #define MASK_PNI 0x00010000 /* Support PNI regs/builtins */
125 #define MASK_3DNOW 0x00020000 /* Support 3Dnow builtins */
126 #define MASK_3DNOW_A 0x00040000 /* Support Athlon 3Dnow builtins */
127 #define MASK_128BIT_LONG_DOUBLE 0x00080000 /* long double size is 128bit */
128 #define MASK_64BIT 0x00100000 /* Produce 64bit code */
129 #define MASK_MS_BITFIELD_LAYOUT 0x00200000 /* Use native (MS) bitfield layout */
130 #define MASK_TLS_DIRECT_SEG_REFS 0x00400000 /* Avoid adding %gs:0 */
131
132 /* Unused: 0x03e0000 */
133
134 /* ... overlap with subtarget options starts by 0x04000000. */
135 #define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
136
137 /* Use the floating point instructions */
138 #define TARGET_80387 (target_flags & MASK_80387)
139
140 /* Compile using ret insn that pops args.
141 This will not work unless you use prototypes at least
142 for all functions that can take varying numbers of args. */
143 #define TARGET_RTD (target_flags & MASK_RTD)
144
145 /* Align doubles to a two word boundary. This breaks compatibility with
146 the published ABI's for structures containing doubles, but produces
147 faster code on the pentium. */
148 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
149
150 /* Use push instructions to save outgoing args. */
151 #define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
152
153 /* Accumulate stack adjustments to prologue/epilogue. */
154 #define TARGET_ACCUMULATE_OUTGOING_ARGS \
155 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
156
157 /* Put uninitialized locals into bss, not data.
158 Meaningful only on svr3. */
159 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
160
161 /* Use IEEE floating point comparisons. These handle correctly the cases
162 where the result of a comparison is unordered. Normally SIGFPE is
163 generated in such cases, in which case this isn't needed. */
164 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
165
166 /* Functions that return a floating point value may return that value
167 in the 387 FPU or in 386 integer registers. If set, this flag causes
168 the 387 to be used, which is compatible with most calling conventions. */
169 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
170
171 /* Long double is 128bit instead of 96bit, even when only 80bits are used.
172 This mode wastes cache, but avoid misaligned data accesses and simplifies
173 address calculations. */
174 #define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
175
176 /* Disable generation of FP sin, cos and sqrt operations for 387.
177 This is because FreeBSD lacks these in the math-emulator-code */
178 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
179
180 /* Don't create frame pointers for leaf functions */
181 #define TARGET_OMIT_LEAF_FRAME_POINTER \
182 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
183
184 /* Debug GO_IF_LEGITIMATE_ADDRESS */
185 #define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
186
187 /* Debug FUNCTION_ARG macros */
188 #define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
189
190 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
191 compile-time constant. */
192 #ifdef IN_LIBGCC2
193 #ifdef __x86_64__
194 #define TARGET_64BIT 1
195 #else
196 #define TARGET_64BIT 0
197 #endif
198 #else
199 #ifdef TARGET_BI_ARCH
200 #define TARGET_64BIT (target_flags & MASK_64BIT)
201 #else
202 #if TARGET_64BIT_DEFAULT
203 #define TARGET_64BIT 1
204 #else
205 #define TARGET_64BIT 0
206 #endif
207 #endif
208 #endif
209
210 /* Avoid adding %gs:0 in TLS references; use %gs:address directly. */
211 #define TARGET_TLS_DIRECT_SEG_REFS (target_flags & MASK_TLS_DIRECT_SEG_REFS)
212
213 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
214 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
215 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
216 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
217 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
218 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
219 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
220 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
221 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
222
223 #define TUNEMASK (1 << ix86_tune)
224 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
225 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
226 extern const int x86_branch_hints, x86_unroll_strlen;
227 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
228 extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
229 extern const int x86_use_cltd, x86_read_modify_write;
230 extern const int x86_read_modify, x86_split_long_moves;
231 extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
232 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
233 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
234 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
235 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
236 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
237 extern const int x86_epilogue_using_move, x86_decompose_lea;
238 extern const int x86_arch_always_fancy_math_387, x86_shift1;
239 extern const int x86_sse_partial_reg_dependency, x86_sse_partial_regs;
240 extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
241 extern const int x86_use_ffreep, x86_sse_partial_regs_for_cvtsd2ss;
242 extern const int x86_inter_unit_moves;
243 extern int x86_prefetch_sse;
244
245 #define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
246 #define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
247 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
248 #define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
249 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
250 /* For sane SSE instruction set generation we need fcomi instruction. It is
251 safe to enable all CMOVE instructions. */
252 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
253 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
254 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
255 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
256 #define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
257 #define TARGET_MOVX (x86_movx & TUNEMASK)
258 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
259 #define TARGET_USE_LOOP (x86_use_loop & TUNEMASK)
260 #define TARGET_USE_FIOP (x86_use_fiop & TUNEMASK)
261 #define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
262 #define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
263 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
264 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
265 #define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
266 #define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
267 #define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
268 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
269 #define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
270 #define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
271 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
272 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
273 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
274 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
275 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
276 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
277 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
278 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
279 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
280 (x86_sse_partial_reg_dependency & TUNEMASK)
281 #define TARGET_SSE_PARTIAL_REGS (x86_sse_partial_regs & TUNEMASK)
282 #define TARGET_SSE_PARTIAL_REGS_FOR_CVTSD2SS \
283 (x86_sse_partial_regs_for_cvtsd2ss & TUNEMASK)
284 #define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
285 #define TARGET_SSE_TYPELESS_LOAD0 (x86_sse_typeless_load0 & TUNEMASK)
286 #define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
287 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
288 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
289 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
290 #define TARGET_DECOMPOSE_LEA (x86_decompose_lea & TUNEMASK)
291 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
292 #define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
293 #define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
294 #define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
295 #define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
296
297 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
298
299 #define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
300 #define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
301
302 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
303
304 #define TARGET_SSE ((target_flags & MASK_SSE) != 0)
305 #define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
306 #define TARGET_PNI ((target_flags & MASK_PNI) != 0)
307 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
308 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
309 && (ix86_fpmath & FPMATH_387))
310 #define TARGET_MMX ((target_flags & MASK_MMX) != 0)
311 #define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
312 #define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
313
314 #define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
315
316 #define TARGET_USE_MS_BITFIELD_LAYOUT (target_flags & MASK_MS_BITFIELD_LAYOUT)
317
318 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
319 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
320
321 /* WARNING: Do not mark empty strings for translation, as calling
322 gettext on an empty string does NOT return an empty
323 string. */
324
325
326 #define TARGET_SWITCHES \
327 { { "80387", MASK_80387, N_("Use hardware fp") }, \
328 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
329 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
330 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
331 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
332 { "386", 0, "" /*Deprecated.*/}, \
333 { "486", 0, "" /*Deprecated.*/}, \
334 { "pentium", 0, "" /*Deprecated.*/}, \
335 { "pentiumpro", 0, "" /*Deprecated.*/}, \
336 { "intel-syntax", 0, "" /*Deprecated.*/}, \
337 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
338 { "rtd", MASK_RTD, \
339 N_("Alternate calling convention") }, \
340 { "no-rtd", -MASK_RTD, \
341 N_("Use normal calling convention") }, \
342 { "align-double", MASK_ALIGN_DOUBLE, \
343 N_("Align some doubles on dword boundary") }, \
344 { "no-align-double", -MASK_ALIGN_DOUBLE, \
345 N_("Align doubles on word boundary") }, \
346 { "svr3-shlib", MASK_SVR3_SHLIB, \
347 N_("Uninitialized locals in .bss") }, \
348 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
349 N_("Uninitialized locals in .data") }, \
350 { "ieee-fp", MASK_IEEE_FP, \
351 N_("Use IEEE math for fp comparisons") }, \
352 { "no-ieee-fp", -MASK_IEEE_FP, \
353 N_("Do not use IEEE math for fp comparisons") }, \
354 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
355 N_("Return values of functions in FPU registers") }, \
356 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
357 N_("Do not return values of functions in FPU registers")}, \
358 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
359 N_("Do not generate sin, cos, sqrt for FPU") }, \
360 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
361 N_("Generate sin, cos, sqrt for FPU")}, \
362 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
363 N_("Omit the frame pointer in leaf functions") }, \
364 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
365 { "stack-arg-probe", MASK_STACK_PROBE, \
366 N_("Enable stack probing") }, \
367 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
368 { "windows", 0, 0 /* undocumented */ }, \
369 { "dll", 0, 0 /* undocumented */ }, \
370 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
371 N_("Align destination of the string operations") }, \
372 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
373 N_("Do not align destination of the string operations") }, \
374 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
375 N_("Inline all known string operations") }, \
376 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
377 N_("Do not inline all known string operations") }, \
378 { "push-args", -MASK_NO_PUSH_ARGS, \
379 N_("Use push instructions to save outgoing arguments") }, \
380 { "no-push-args", MASK_NO_PUSH_ARGS, \
381 N_("Do not use push instructions to save outgoing arguments") }, \
382 { "accumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS, \
383 N_("Use push instructions to save outgoing arguments") }, \
384 { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS, \
385 N_("Do not use push instructions to save outgoing arguments") }, \
386 { "mmx", MASK_MMX, \
387 N_("Support MMX built-in functions") }, \
388 { "no-mmx", -MASK_MMX, \
389 N_("Do not support MMX built-in functions") }, \
390 { "3dnow", MASK_3DNOW, \
391 N_("Support 3DNow! built-in functions") }, \
392 { "no-3dnow", -MASK_3DNOW, \
393 N_("Do not support 3DNow! built-in functions") }, \
394 { "sse", MASK_SSE, \
395 N_("Support MMX and SSE built-in functions and code generation") }, \
396 { "no-sse", -MASK_SSE, \
397 N_("Do not support MMX and SSE built-in functions and code generation") },\
398 { "sse2", MASK_SSE2, \
399 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
400 { "no-sse2", -MASK_SSE2, \
401 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
402 { "pni", MASK_PNI, \
403 N_("Support MMX, SSE, SSE2 and PNI built-in functions and code generation") },\
404 { "no-pni", -MASK_PNI, \
405 N_("Do not support MMX, SSE, SSE2 and PNI built-in functions and code generation") },\
406 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
407 N_("sizeof(long double) is 16") }, \
408 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
409 N_("sizeof(long double) is 12") }, \
410 { "64", MASK_64BIT, \
411 N_("Generate 64bit x86-64 code") }, \
412 { "32", -MASK_64BIT, \
413 N_("Generate 32bit i386 code") }, \
414 { "ms-bitfields", MASK_MS_BITFIELD_LAYOUT, \
415 N_("Use native (MS) bitfield layout") }, \
416 { "no-ms-bitfields", -MASK_MS_BITFIELD_LAYOUT, \
417 N_("Use gcc default bitfield layout") }, \
418 { "red-zone", -MASK_NO_RED_ZONE, \
419 N_("Use red-zone in the x86-64 code") }, \
420 { "no-red-zone", MASK_NO_RED_ZONE, \
421 N_("Do not use red-zone in the x86-64 code") }, \
422 { "tls-direct-seg-refs", MASK_TLS_DIRECT_SEG_REFS, \
423 N_("Use direct references against %gs when accessing tls data") }, \
424 { "no-tls-direct-seg-refs", -MASK_TLS_DIRECT_SEG_REFS, \
425 N_("Do not use direct references against %gs when accessing tls data") }, \
426 SUBTARGET_SWITCHES \
427 { "", \
428 TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT \
429 | TARGET_TLS_DIRECT_SEG_REFS_DEFAULT, 0 }}
430
431 #ifndef TARGET_64BIT_DEFAULT
432 #define TARGET_64BIT_DEFAULT 0
433 #endif
434 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
435 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
436 #endif
437
438 /* Once GDB has been enhanced to deal with functions without frame
439 pointers, we can change this to allow for elimination of
440 the frame pointer in leaf functions. */
441 #define TARGET_DEFAULT 0
442
443 /* This is not really a target flag, but is done this way so that
444 it's analogous to similar code for Mach-O on PowerPC. darwin.h
445 redefines this to 1. */
446 #define TARGET_MACHO 0
447
448 /* This macro is similar to `TARGET_SWITCHES' but defines names of
449 command options that have values. Its definition is an
450 initializer with a subgrouping for each command option.
451
452 Each subgrouping contains a string constant, that defines the
453 fixed part of the option name, and the address of a variable. The
454 variable, type `char *', is set to the variable part of the given
455 option if the fixed part matches. The actual option name is made
456 by appending `-m' to the specified name. */
457 #define TARGET_OPTIONS \
458 { { "tune=", &ix86_tune_string, \
459 N_("Schedule code for given CPU"), 0}, \
460 { "fpmath=", &ix86_fpmath_string, \
461 N_("Generate floating point mathematics using given instruction set"), 0},\
462 { "arch=", &ix86_arch_string, \
463 N_("Generate code for given CPU"), 0}, \
464 { "regparm=", &ix86_regparm_string, \
465 N_("Number of registers used to pass integer arguments"), 0},\
466 { "align-loops=", &ix86_align_loops_string, \
467 N_("Loop code aligned to this power of 2"), 0}, \
468 { "align-jumps=", &ix86_align_jumps_string, \
469 N_("Jump targets are aligned to this power of 2"), 0}, \
470 { "align-functions=", &ix86_align_funcs_string, \
471 N_("Function starts are aligned to this power of 2"), 0}, \
472 { "preferred-stack-boundary=", \
473 &ix86_preferred_stack_boundary_string, \
474 N_("Attempt to keep stack aligned to this power of 2"), 0}, \
475 { "branch-cost=", &ix86_branch_cost_string, \
476 N_("Branches are this expensive (1-5, arbitrary units)"), 0},\
477 { "cmodel=", &ix86_cmodel_string, \
478 N_("Use given x86-64 code model"), 0}, \
479 { "debug-arg", &ix86_debug_arg_string, \
480 "" /* Undocumented. */, 0}, \
481 { "debug-addr", &ix86_debug_addr_string, \
482 "" /* Undocumented. */, 0}, \
483 { "asm=", &ix86_asm_string, \
484 N_("Use given assembler dialect"), 0}, \
485 { "tls-dialect=", &ix86_tls_dialect_string, \
486 N_("Use given thread-local storage dialect"), 0}, \
487 SUBTARGET_OPTIONS \
488 }
489
490 /* Sometimes certain combinations of command options do not make
491 sense on a particular target machine. You can define a macro
492 `OVERRIDE_OPTIONS' to take account of this. This macro, if
493 defined, is executed once just after all the command options have
494 been parsed.
495
496 Don't use this macro to turn on various extra optimizations for
497 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
498
499 #define OVERRIDE_OPTIONS override_options ()
500
501 /* These are meant to be redefined in the host dependent files */
502 #define SUBTARGET_SWITCHES
503 #define SUBTARGET_OPTIONS
504
505 /* Define this to change the optimizations performed by default. */
506 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
507 optimization_options ((LEVEL), (SIZE))
508
509 /* Support for configure-time defaults of some command line options. */
510 #define OPTION_DEFAULT_SPECS \
511 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
512 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
513 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }
514
515 /* Specs for the compiler proper */
516
517 #ifndef CC1_CPU_SPEC
518 #define CC1_CPU_SPEC "\
519 %{!mtune*: \
520 %{m386:mtune=i386 \
521 %n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
522 %{m486:-mtune=i486 \
523 %n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
524 %{mpentium:-mtune=pentium \
525 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
526 %{mpentiumpro:-mtune=pentiumpro \
527 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
528 %{mcpu=*:-mtune=%* \
529 %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
530 %<mcpu=* \
531 %{mintel-syntax:-masm=intel \
532 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
533 %{mno-intel-syntax:-masm=att \
534 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
535 #endif
536 \f
537 /* Target CPU builtins. */
538 #define TARGET_CPU_CPP_BUILTINS() \
539 do \
540 { \
541 size_t arch_len = strlen (ix86_arch_string); \
542 size_t tune_len = strlen (ix86_tune_string); \
543 int last_arch_char = ix86_arch_string[arch_len - 1]; \
544 int last_tune_char = ix86_tune_string[tune_len - 1]; \
545 \
546 if (TARGET_64BIT) \
547 { \
548 builtin_assert ("cpu=x86_64"); \
549 builtin_assert ("machine=x86_64"); \
550 builtin_define ("__amd64"); \
551 builtin_define ("__amd64__"); \
552 builtin_define ("__x86_64"); \
553 builtin_define ("__x86_64__"); \
554 } \
555 else \
556 { \
557 builtin_assert ("cpu=i386"); \
558 builtin_assert ("machine=i386"); \
559 builtin_define_std ("i386"); \
560 } \
561 \
562 /* Built-ins based on -mtune= (or -march= if no \
563 -mtune= given). */ \
564 if (TARGET_386) \
565 builtin_define ("__tune_i386__"); \
566 else if (TARGET_486) \
567 builtin_define ("__tune_i486__"); \
568 else if (TARGET_PENTIUM) \
569 { \
570 builtin_define ("__tune_i586__"); \
571 builtin_define ("__tune_pentium__"); \
572 if (last_tune_char == 'x') \
573 builtin_define ("__tune_pentium_mmx__"); \
574 } \
575 else if (TARGET_PENTIUMPRO) \
576 { \
577 builtin_define ("__tune_i686__"); \
578 builtin_define ("__tune_pentiumpro__"); \
579 switch (last_tune_char) \
580 { \
581 case '3': \
582 builtin_define ("__tune_pentium3__"); \
583 /* FALLTHRU */ \
584 case '2': \
585 builtin_define ("__tune_pentium2__"); \
586 break; \
587 } \
588 } \
589 else if (TARGET_K6) \
590 { \
591 builtin_define ("__tune_k6__"); \
592 if (last_tune_char == '2') \
593 builtin_define ("__tune_k6_2__"); \
594 else if (last_tune_char == '3') \
595 builtin_define ("__tune_k6_3__"); \
596 } \
597 else if (TARGET_ATHLON) \
598 { \
599 builtin_define ("__tune_athlon__"); \
600 /* Only plain "athlon" lacks SSE. */ \
601 if (last_tune_char != 'n') \
602 builtin_define ("__tune_athlon_sse__"); \
603 } \
604 else if (TARGET_K8) \
605 builtin_define ("__tune_k8__"); \
606 else if (TARGET_PENTIUM4) \
607 builtin_define ("__tune_pentium4__"); \
608 \
609 if (TARGET_MMX) \
610 builtin_define ("__MMX__"); \
611 if (TARGET_3DNOW) \
612 builtin_define ("__3dNOW__"); \
613 if (TARGET_3DNOW_A) \
614 builtin_define ("__3dNOW_A__"); \
615 if (TARGET_SSE) \
616 builtin_define ("__SSE__"); \
617 if (TARGET_SSE2) \
618 builtin_define ("__SSE2__"); \
619 if (TARGET_PNI) \
620 builtin_define ("__PNI__"); \
621 if (TARGET_SSE_MATH && TARGET_SSE) \
622 builtin_define ("__SSE_MATH__"); \
623 if (TARGET_SSE_MATH && TARGET_SSE2) \
624 builtin_define ("__SSE2_MATH__"); \
625 \
626 /* Built-ins based on -march=. */ \
627 if (ix86_arch == PROCESSOR_I486) \
628 { \
629 builtin_define ("__i486"); \
630 builtin_define ("__i486__"); \
631 } \
632 else if (ix86_arch == PROCESSOR_PENTIUM) \
633 { \
634 builtin_define ("__i586"); \
635 builtin_define ("__i586__"); \
636 builtin_define ("__pentium"); \
637 builtin_define ("__pentium__"); \
638 if (last_arch_char == 'x') \
639 builtin_define ("__pentium_mmx__"); \
640 } \
641 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
642 { \
643 builtin_define ("__i686"); \
644 builtin_define ("__i686__"); \
645 builtin_define ("__pentiumpro"); \
646 builtin_define ("__pentiumpro__"); \
647 } \
648 else if (ix86_arch == PROCESSOR_K6) \
649 { \
650 \
651 builtin_define ("__k6"); \
652 builtin_define ("__k6__"); \
653 if (last_arch_char == '2') \
654 builtin_define ("__k6_2__"); \
655 else if (last_arch_char == '3') \
656 builtin_define ("__k6_3__"); \
657 } \
658 else if (ix86_arch == PROCESSOR_ATHLON) \
659 { \
660 builtin_define ("__athlon"); \
661 builtin_define ("__athlon__"); \
662 /* Only plain "athlon" lacks SSE. */ \
663 if (last_arch_char != 'n') \
664 builtin_define ("__athlon_sse__"); \
665 } \
666 else if (ix86_arch == PROCESSOR_K8) \
667 { \
668 builtin_define ("__k8"); \
669 builtin_define ("__k8__"); \
670 } \
671 else if (ix86_arch == PROCESSOR_PENTIUM4) \
672 { \
673 builtin_define ("__pentium4"); \
674 builtin_define ("__pentium4__"); \
675 } \
676 } \
677 while (0)
678
679 #define TARGET_CPU_DEFAULT_i386 0
680 #define TARGET_CPU_DEFAULT_i486 1
681 #define TARGET_CPU_DEFAULT_pentium 2
682 #define TARGET_CPU_DEFAULT_pentium_mmx 3
683 #define TARGET_CPU_DEFAULT_pentiumpro 4
684 #define TARGET_CPU_DEFAULT_pentium2 5
685 #define TARGET_CPU_DEFAULT_pentium3 6
686 #define TARGET_CPU_DEFAULT_pentium4 7
687 #define TARGET_CPU_DEFAULT_k6 8
688 #define TARGET_CPU_DEFAULT_k6_2 9
689 #define TARGET_CPU_DEFAULT_k6_3 10
690 #define TARGET_CPU_DEFAULT_athlon 11
691 #define TARGET_CPU_DEFAULT_athlon_sse 12
692 #define TARGET_CPU_DEFAULT_k8 13
693
694 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
695 "pentiumpro", "pentium2", "pentium3", \
696 "pentium4", "k6", "k6-2", "k6-3",\
697 "athlon", "athlon-4", "k8"}
698
699 #ifndef CC1_SPEC
700 #define CC1_SPEC "%(cc1_cpu) "
701 #endif
702
703 /* This macro defines names of additional specifications to put in the
704 specs that can be used in various specifications like CC1_SPEC. Its
705 definition is an initializer with a subgrouping for each command option.
706
707 Each subgrouping contains a string constant, that defines the
708 specification name, and a string constant that used by the GCC driver
709 program.
710
711 Do not define this macro if it does not need to do anything. */
712
713 #ifndef SUBTARGET_EXTRA_SPECS
714 #define SUBTARGET_EXTRA_SPECS
715 #endif
716
717 #define EXTRA_SPECS \
718 { "cc1_cpu", CC1_CPU_SPEC }, \
719 SUBTARGET_EXTRA_SPECS
720 \f
721 /* target machine storage layout */
722
723 #define LONG_DOUBLE_TYPE_SIZE 96
724
725 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
726 FPU, assume that the fpcw is set to extended precision; when using
727 only SSE, rounding is correct; when using both SSE and the FPU,
728 the rounding precision is indeterminate, since either may be chosen
729 apparently at random. */
730 #define TARGET_FLT_EVAL_METHOD \
731 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
732
733 #define SHORT_TYPE_SIZE 16
734 #define INT_TYPE_SIZE 32
735 #define FLOAT_TYPE_SIZE 32
736 #define LONG_TYPE_SIZE BITS_PER_WORD
737 #define DOUBLE_TYPE_SIZE 64
738 #define LONG_LONG_TYPE_SIZE 64
739
740 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
741 #define MAX_BITS_PER_WORD 64
742 #else
743 #define MAX_BITS_PER_WORD 32
744 #endif
745
746 /* Define this if most significant byte of a word is the lowest numbered. */
747 /* That is true on the 80386. */
748
749 #define BITS_BIG_ENDIAN 0
750
751 /* Define this if most significant byte of a word is the lowest numbered. */
752 /* That is not true on the 80386. */
753 #define BYTES_BIG_ENDIAN 0
754
755 /* Define this if most significant word of a multiword number is the lowest
756 numbered. */
757 /* Not true for 80386 */
758 #define WORDS_BIG_ENDIAN 0
759
760 /* Width of a word, in units (bytes). */
761 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
762 #ifdef IN_LIBGCC2
763 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
764 #else
765 #define MIN_UNITS_PER_WORD 4
766 #endif
767
768 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
769 #define PARM_BOUNDARY BITS_PER_WORD
770
771 /* Boundary (in *bits*) on which stack pointer should be aligned. */
772 #define STACK_BOUNDARY BITS_PER_WORD
773
774 /* Boundary (in *bits*) on which the stack pointer prefers to be
775 aligned; the compiler cannot rely on having this alignment. */
776 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
777
778 /* As of July 2001, many runtimes to not align the stack properly when
779 entering main. This causes expand_main_function to forcibly align
780 the stack, which results in aligned frames for functions called from
781 main, though it does nothing for the alignment of main itself. */
782 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
783 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
784
785 /* Minimum allocation boundary for the code of a function. */
786 #define FUNCTION_BOUNDARY 8
787
788 /* C++ stores the virtual bit in the lowest bit of function pointers. */
789 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
790
791 /* Alignment of field after `int : 0' in a structure. */
792
793 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
794
795 /* Minimum size in bits of the largest boundary to which any
796 and all fundamental data types supported by the hardware
797 might need to be aligned. No data type wants to be aligned
798 rounder than this.
799
800 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
801 and Pentium Pro XFmode values at 128 bit boundaries. */
802
803 #define BIGGEST_ALIGNMENT 128
804
805 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
806 #define ALIGN_MODE_128(MODE) \
807 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
808
809 /* The published ABIs say that doubles should be aligned on word
810 boundaries, so lower the alignment for structure fields unless
811 -malign-double is set. */
812
813 /* ??? Blah -- this macro is used directly by libobjc. Since it
814 supports no vector modes, cut out the complexity and fall back
815 on BIGGEST_FIELD_ALIGNMENT. */
816 #ifdef IN_TARGET_LIBS
817 #ifdef __x86_64__
818 #define BIGGEST_FIELD_ALIGNMENT 128
819 #else
820 #define BIGGEST_FIELD_ALIGNMENT 32
821 #endif
822 #else
823 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
824 x86_field_alignment (FIELD, COMPUTED)
825 #endif
826
827 /* If defined, a C expression to compute the alignment given to a
828 constant that is being placed in memory. EXP is the constant
829 and ALIGN is the alignment that the object would ordinarily have.
830 The value of this macro is used instead of that alignment to align
831 the object.
832
833 If this macro is not defined, then ALIGN is used.
834
835 The typical use of this macro is to increase alignment for string
836 constants to be word aligned so that `strcpy' calls that copy
837 constants can be done inline. */
838
839 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
840
841 /* If defined, a C expression to compute the alignment for a static
842 variable. TYPE is the data type, and ALIGN is the alignment that
843 the object would ordinarily have. The value of this macro is used
844 instead of that alignment to align the object.
845
846 If this macro is not defined, then ALIGN is used.
847
848 One use of this macro is to increase alignment of medium-size
849 data to make it all fit in fewer cache lines. Another is to
850 cause character arrays to be word-aligned so that `strcpy' calls
851 that copy constants to character arrays can be done inline. */
852
853 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
854
855 /* If defined, a C expression to compute the alignment for a local
856 variable. TYPE is the data type, and ALIGN is the alignment that
857 the object would ordinarily have. The value of this macro is used
858 instead of that alignment to align the object.
859
860 If this macro is not defined, then ALIGN is used.
861
862 One use of this macro is to increase alignment of medium-size
863 data to make it all fit in fewer cache lines. */
864
865 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
866
867 /* If defined, a C expression that gives the alignment boundary, in
868 bits, of an argument with the specified mode and type. If it is
869 not defined, `PARM_BOUNDARY' is used for all arguments. */
870
871 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
872 ix86_function_arg_boundary ((MODE), (TYPE))
873
874 /* Set this nonzero if move instructions will actually fail to work
875 when given unaligned data. */
876 #define STRICT_ALIGNMENT 0
877
878 /* If bit field type is int, don't let it cross an int,
879 and give entire struct the alignment of an int. */
880 /* Required on the 386 since it doesn't have bit-field insns. */
881 #define PCC_BITFIELD_TYPE_MATTERS 1
882 \f
883 /* Standard register usage. */
884
885 /* This processor has special stack-like registers. See reg-stack.c
886 for details. */
887
888 #define STACK_REGS
889 #define IS_STACK_MODE(MODE) \
890 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode) \
891
892 /* Number of actual hardware registers.
893 The hardware registers are assigned numbers for the compiler
894 from 0 to just below FIRST_PSEUDO_REGISTER.
895 All registers that the compiler knows about must be given numbers,
896 even those that are not normally considered general registers.
897
898 In the 80386 we give the 8 general purpose registers the numbers 0-7.
899 We number the floating point registers 8-15.
900 Note that registers 0-7 can be accessed as a short or int,
901 while only 0-3 may be used with byte `mov' instructions.
902
903 Reg 16 does not correspond to any hardware register, but instead
904 appears in the RTL as an argument pointer prior to reload, and is
905 eliminated during reloading in favor of either the stack or frame
906 pointer. */
907
908 #define FIRST_PSEUDO_REGISTER 53
909
910 /* Number of hardware registers that go into the DWARF-2 unwind info.
911 If not defined, equals FIRST_PSEUDO_REGISTER. */
912
913 #define DWARF_FRAME_REGISTERS 17
914
915 /* 1 for registers that have pervasive standard uses
916 and are not available for the register allocator.
917 On the 80386, the stack pointer is such, as is the arg pointer.
918
919 The value is a mask - bit 1 is set for fixed registers
920 for 32bit target, while 2 is set for fixed registers for 64bit.
921 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
922 */
923 #define FIXED_REGISTERS \
924 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
925 { 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
926 /*arg,flags,fpsr,dir,frame*/ \
927 3, 3, 3, 3, 3, \
928 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
929 0, 0, 0, 0, 0, 0, 0, 0, \
930 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
931 0, 0, 0, 0, 0, 0, 0, 0, \
932 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
933 1, 1, 1, 1, 1, 1, 1, 1, \
934 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
935 1, 1, 1, 1, 1, 1, 1, 1}
936
937
938 /* 1 for registers not available across function calls.
939 These must include the FIXED_REGISTERS and also any
940 registers that can be used without being saved.
941 The latter must include the registers where values are returned
942 and the register where structure-value addresses are passed.
943 Aside from that, you can include as many other registers as you like.
944
945 The value is a mask - bit 1 is set for call used
946 for 32bit target, while 2 is set for call used for 64bit.
947 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
948 */
949 #define CALL_USED_REGISTERS \
950 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
951 { 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
952 /*arg,flags,fpsr,dir,frame*/ \
953 3, 3, 3, 3, 3, \
954 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
955 3, 3, 3, 3, 3, 3, 3, 3, \
956 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
957 3, 3, 3, 3, 3, 3, 3, 3, \
958 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
959 3, 3, 3, 3, 1, 1, 1, 1, \
960 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
961 3, 3, 3, 3, 3, 3, 3, 3} \
962
963 /* Order in which to allocate registers. Each register must be
964 listed once, even those in FIXED_REGISTERS. List frame pointer
965 late and fixed registers last. Note that, in general, we prefer
966 registers listed in CALL_USED_REGISTERS, keeping the others
967 available for storage of persistent values.
968
969 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
970 so this is just empty initializer for array. */
971
972 #define REG_ALLOC_ORDER \
973 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
974 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
975 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
976 48, 49, 50, 51, 52 }
977
978 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
979 to be rearranged based on a particular function. When using sse math,
980 we want to allocate SSE before x87 registers and vice vera. */
981
982 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
983
984
985 /* Macro to conditionally modify fixed_regs/call_used_regs. */
986 #define CONDITIONAL_REGISTER_USAGE \
987 do { \
988 int i; \
989 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
990 { \
991 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
992 call_used_regs[i] = (call_used_regs[i] \
993 & (TARGET_64BIT ? 2 : 1)) != 0; \
994 } \
995 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
996 { \
997 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
998 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
999 } \
1000 if (! TARGET_MMX) \
1001 { \
1002 int i; \
1003 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1004 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
1005 fixed_regs[i] = call_used_regs[i] = 1; \
1006 } \
1007 if (! TARGET_SSE) \
1008 { \
1009 int i; \
1010 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1011 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
1012 fixed_regs[i] = call_used_regs[i] = 1; \
1013 } \
1014 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
1015 { \
1016 int i; \
1017 HARD_REG_SET x; \
1018 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
1019 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1020 if (TEST_HARD_REG_BIT (x, i)) \
1021 fixed_regs[i] = call_used_regs[i] = 1; \
1022 } \
1023 } while (0)
1024
1025 /* Return number of consecutive hard regs needed starting at reg REGNO
1026 to hold something of mode MODE.
1027 This is ordinarily the length in words of a value of mode MODE
1028 but can be less for certain modes in special long registers.
1029
1030 Actually there are no two word move instructions for consecutive
1031 registers. And only registers 0-3 may have mov byte instructions
1032 applied to them.
1033 */
1034
1035 #define HARD_REGNO_NREGS(REGNO, MODE) \
1036 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1037 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1038 : ((MODE) == XFmode \
1039 ? (TARGET_64BIT ? 2 : 3) \
1040 : (MODE) == XCmode \
1041 ? (TARGET_64BIT ? 4 : 6) \
1042 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1043
1044 #define VALID_SSE2_REG_MODE(MODE) \
1045 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1046 || (MODE) == V2DImode)
1047
1048 #define VALID_SSE_REG_MODE(MODE) \
1049 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1050 || (MODE) == SFmode || (MODE) == TFmode \
1051 /* Always accept SSE2 modes so that xmmintrin.h compiles. */ \
1052 || VALID_SSE2_REG_MODE (MODE) \
1053 || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
1054
1055 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1056 ((MODE) == V2SFmode || (MODE) == SFmode)
1057
1058 #define VALID_MMX_REG_MODE(MODE) \
1059 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
1060 || (MODE) == V2SImode || (MODE) == SImode)
1061
1062 #define VECTOR_MODE_SUPPORTED_P(MODE) \
1063 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
1064 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
1065 : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
1066
1067 #define VALID_FP_MODE_P(MODE) \
1068 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1069 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1070
1071 #define VALID_INT_MODE_P(MODE) \
1072 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1073 || (MODE) == DImode \
1074 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1075 || (MODE) == CDImode \
1076 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1077 || (MODE) == TFmode || (MODE) == TCmode)))
1078
1079 /* Return true for modes passed in SSE registers. */
1080 #define SSE_REG_MODE_P(MODE) \
1081 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
1082 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1083 || (MODE) == V4SFmode || (MODE) == V4SImode)
1084
1085 /* Return true for modes passed in MMX registers. */
1086 #define MMX_REG_MODE_P(MODE) \
1087 ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode \
1088 || (MODE) == V2SFmode)
1089
1090 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1091
1092 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1093 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1094
1095 /* Value is 1 if it is a good idea to tie two pseudo registers
1096 when one has mode MODE1 and one has mode MODE2.
1097 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1098 for any hard reg, then this must be 0 for correct output. */
1099
1100 #define MODES_TIEABLE_P(MODE1, MODE2) \
1101 ((MODE1) == (MODE2) \
1102 || (((MODE1) == HImode || (MODE1) == SImode \
1103 || ((MODE1) == QImode \
1104 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1105 || ((MODE1) == DImode && TARGET_64BIT)) \
1106 && ((MODE2) == HImode || (MODE2) == SImode \
1107 || ((MODE2) == QImode \
1108 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1109 || ((MODE2) == DImode && TARGET_64BIT))))
1110
1111 /* It is possible to write patterns to move flags; but until someone
1112 does it, */
1113 #define AVOID_CCMODE_COPIES
1114
1115 /* Specify the modes required to caller save a given hard regno.
1116 We do this on i386 to prevent flags from being saved at all.
1117
1118 Kill any attempts to combine saving of modes. */
1119
1120 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1121 (CC_REGNO_P (REGNO) ? VOIDmode \
1122 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1123 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
1124 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1125 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
1126 : (MODE))
1127 /* Specify the registers used for certain standard purposes.
1128 The values of these macros are register numbers. */
1129
1130 /* on the 386 the pc register is %eip, and is not usable as a general
1131 register. The ordinary mov instructions won't work */
1132 /* #define PC_REGNUM */
1133
1134 /* Register to use for pushing function arguments. */
1135 #define STACK_POINTER_REGNUM 7
1136
1137 /* Base register for access to local variables of the function. */
1138 #define HARD_FRAME_POINTER_REGNUM 6
1139
1140 /* Base register for access to local variables of the function. */
1141 #define FRAME_POINTER_REGNUM 20
1142
1143 /* First floating point reg */
1144 #define FIRST_FLOAT_REG 8
1145
1146 /* First & last stack-like regs */
1147 #define FIRST_STACK_REG FIRST_FLOAT_REG
1148 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1149
1150 #define FLAGS_REG 17
1151 #define FPSR_REG 18
1152 #define DIRFLAG_REG 19
1153
1154 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1155 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1156
1157 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1158 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1159
1160 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1161 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1162
1163 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1164 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1165
1166 /* Value should be nonzero if functions must have frame pointers.
1167 Zero means the frame pointer need not be set up (and parms
1168 may be accessed via the stack pointer) in functions that seem suitable.
1169 This is computed in `reload', in reload1.c. */
1170 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1171
1172 /* Override this in other tm.h files to cope with various OS losage
1173 requiring a frame pointer. */
1174 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1175 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1176 #endif
1177
1178 /* Make sure we can access arbitrary call frames. */
1179 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1180
1181 /* Base register for access to arguments of the function. */
1182 #define ARG_POINTER_REGNUM 16
1183
1184 /* Register in which static-chain is passed to a function.
1185 We do use ECX as static chain register for 32 bit ABI. On the
1186 64bit ABI, ECX is an argument register, so we use R10 instead. */
1187 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1188
1189 /* Register to hold the addressing base for position independent
1190 code access to data items. We don't use PIC pointer for 64bit
1191 mode. Define the regnum to dummy value to prevent gcc from
1192 pessimizing code dealing with EBX.
1193
1194 To avoid clobbering a call-saved register unnecessarily, we renumber
1195 the pic register when possible. The change is visible after the
1196 prologue has been emitted. */
1197
1198 #define REAL_PIC_OFFSET_TABLE_REGNUM 3
1199
1200 #define PIC_OFFSET_TABLE_REGNUM \
1201 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM \
1202 : reload_completed ? REGNO (pic_offset_table_rtx) \
1203 : REAL_PIC_OFFSET_TABLE_REGNUM)
1204
1205 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1206
1207 /* A C expression which can inhibit the returning of certain function
1208 values in registers, based on the type of value. A nonzero value
1209 says to return the function value in memory, just as large
1210 structures are always returned. Here TYPE will be a C expression
1211 of type `tree', representing the data type of the value.
1212
1213 Note that values of mode `BLKmode' must be explicitly handled by
1214 this macro. Also, the option `-fpcc-struct-return' takes effect
1215 regardless of this macro. On most systems, it is possible to
1216 leave the macro undefined; this causes a default definition to be
1217 used, whose value is the constant 1 for `BLKmode' values, and 0
1218 otherwise.
1219
1220 Do not use this macro to indicate that structures and unions
1221 should always be returned in memory. You should instead use
1222 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1223
1224 #define RETURN_IN_MEMORY(TYPE) \
1225 ix86_return_in_memory (TYPE)
1226
1227 /* This is overridden by <cygwin.h>. */
1228 #define MS_AGGREGATE_RETURN 0
1229
1230 \f
1231 /* Define the classes of registers for register constraints in the
1232 machine description. Also define ranges of constants.
1233
1234 One of the classes must always be named ALL_REGS and include all hard regs.
1235 If there is more than one class, another class must be named NO_REGS
1236 and contain no registers.
1237
1238 The name GENERAL_REGS must be the name of a class (or an alias for
1239 another name such as ALL_REGS). This is the class of registers
1240 that is allowed by "g" or "r" in a register constraint.
1241 Also, registers outside this class are allocated only when
1242 instructions express preferences for them.
1243
1244 The classes must be numbered in nondecreasing order; that is,
1245 a larger-numbered class must never be contained completely
1246 in a smaller-numbered class.
1247
1248 For any two classes, it is very desirable that there be another
1249 class that represents their union.
1250
1251 It might seem that class BREG is unnecessary, since no useful 386
1252 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1253 and the "b" register constraint is useful in asms for syscalls.
1254
1255 The flags and fpsr registers are in no class. */
1256
1257 enum reg_class
1258 {
1259 NO_REGS,
1260 AREG, DREG, CREG, BREG, SIREG, DIREG,
1261 AD_REGS, /* %eax/%edx for DImode */
1262 Q_REGS, /* %eax %ebx %ecx %edx */
1263 NON_Q_REGS, /* %esi %edi %ebp %esp */
1264 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1265 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1266 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1267 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1268 FLOAT_REGS,
1269 SSE_REGS,
1270 MMX_REGS,
1271 FP_TOP_SSE_REGS,
1272 FP_SECOND_SSE_REGS,
1273 FLOAT_SSE_REGS,
1274 FLOAT_INT_REGS,
1275 INT_SSE_REGS,
1276 FLOAT_INT_SSE_REGS,
1277 ALL_REGS, LIM_REG_CLASSES
1278 };
1279
1280 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1281
1282 #define INTEGER_CLASS_P(CLASS) \
1283 reg_class_subset_p ((CLASS), GENERAL_REGS)
1284 #define FLOAT_CLASS_P(CLASS) \
1285 reg_class_subset_p ((CLASS), FLOAT_REGS)
1286 #define SSE_CLASS_P(CLASS) \
1287 reg_class_subset_p ((CLASS), SSE_REGS)
1288 #define MMX_CLASS_P(CLASS) \
1289 reg_class_subset_p ((CLASS), MMX_REGS)
1290 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1291 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1292 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1293 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1294 #define MAYBE_SSE_CLASS_P(CLASS) \
1295 reg_classes_intersect_p (SSE_REGS, (CLASS))
1296 #define MAYBE_MMX_CLASS_P(CLASS) \
1297 reg_classes_intersect_p (MMX_REGS, (CLASS))
1298
1299 #define Q_CLASS_P(CLASS) \
1300 reg_class_subset_p ((CLASS), Q_REGS)
1301
1302 /* Give names of register classes as strings for dump file. */
1303
1304 #define REG_CLASS_NAMES \
1305 { "NO_REGS", \
1306 "AREG", "DREG", "CREG", "BREG", \
1307 "SIREG", "DIREG", \
1308 "AD_REGS", \
1309 "Q_REGS", "NON_Q_REGS", \
1310 "INDEX_REGS", \
1311 "LEGACY_REGS", \
1312 "GENERAL_REGS", \
1313 "FP_TOP_REG", "FP_SECOND_REG", \
1314 "FLOAT_REGS", \
1315 "SSE_REGS", \
1316 "MMX_REGS", \
1317 "FP_TOP_SSE_REGS", \
1318 "FP_SECOND_SSE_REGS", \
1319 "FLOAT_SSE_REGS", \
1320 "FLOAT_INT_REGS", \
1321 "INT_SSE_REGS", \
1322 "FLOAT_INT_SSE_REGS", \
1323 "ALL_REGS" }
1324
1325 /* Define which registers fit in which classes.
1326 This is an initializer for a vector of HARD_REG_SET
1327 of length N_REG_CLASSES. */
1328
1329 #define REG_CLASS_CONTENTS \
1330 { { 0x00, 0x0 }, \
1331 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1332 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1333 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1334 { 0x03, 0x0 }, /* AD_REGS */ \
1335 { 0x0f, 0x0 }, /* Q_REGS */ \
1336 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1337 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1338 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1339 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1340 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1341 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1342 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1343 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1344 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1345 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1346 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1347 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1348 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1349 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1350 { 0xffffffff,0x1fffff } \
1351 }
1352
1353 /* The same information, inverted:
1354 Return the class number of the smallest class containing
1355 reg number REGNO. This could be a conditional expression
1356 or could index an array. */
1357
1358 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1359
1360 /* When defined, the compiler allows registers explicitly used in the
1361 rtl to be used as spill registers but prevents the compiler from
1362 extending the lifetime of these registers. */
1363
1364 #define SMALL_REGISTER_CLASSES 1
1365
1366 #define QI_REG_P(X) \
1367 (REG_P (X) && REGNO (X) < 4)
1368
1369 #define GENERAL_REGNO_P(N) \
1370 ((N) < 8 || REX_INT_REGNO_P (N))
1371
1372 #define GENERAL_REG_P(X) \
1373 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1374
1375 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1376
1377 #define NON_QI_REG_P(X) \
1378 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1379
1380 #define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1381 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1382
1383 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1384 #define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1385 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1386 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1387
1388 #define SSE_REGNO_P(N) \
1389 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1390 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1391
1392 #define REX_SSE_REGNO_P(N) \
1393 ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1394
1395 #define SSE_REGNO(N) \
1396 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1397 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1398
1399 #define SSE_FLOAT_MODE_P(MODE) \
1400 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1401
1402 #define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1403 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1404
1405 #define STACK_REG_P(XOP) \
1406 (REG_P (XOP) && \
1407 REGNO (XOP) >= FIRST_STACK_REG && \
1408 REGNO (XOP) <= LAST_STACK_REG)
1409
1410 #define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1411
1412 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1413
1414 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1415 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1416
1417 /* The class value for index registers, and the one for base regs. */
1418
1419 #define INDEX_REG_CLASS INDEX_REGS
1420 #define BASE_REG_CLASS GENERAL_REGS
1421
1422 /* Get reg_class from a letter such as appears in the machine description. */
1423
1424 #define REG_CLASS_FROM_LETTER(C) \
1425 ((C) == 'r' ? GENERAL_REGS : \
1426 (C) == 'R' ? LEGACY_REGS : \
1427 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1428 (C) == 'Q' ? Q_REGS : \
1429 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1430 ? FLOAT_REGS \
1431 : NO_REGS) : \
1432 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1433 ? FP_TOP_REG \
1434 : NO_REGS) : \
1435 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1436 ? FP_SECOND_REG \
1437 : NO_REGS) : \
1438 (C) == 'a' ? AREG : \
1439 (C) == 'b' ? BREG : \
1440 (C) == 'c' ? CREG : \
1441 (C) == 'd' ? DREG : \
1442 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1443 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1444 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
1445 (C) == 'A' ? AD_REGS : \
1446 (C) == 'D' ? DIREG : \
1447 (C) == 'S' ? SIREG : NO_REGS)
1448
1449 /* The letters I, J, K, L and M in a register constraint string
1450 can be used to stand for particular ranges of immediate operands.
1451 This macro defines what the ranges are.
1452 C is the letter, and VALUE is a constant value.
1453 Return 1 if VALUE is in the range specified by C.
1454
1455 I is for non-DImode shifts.
1456 J is for DImode shifts.
1457 K is for signed imm8 operands.
1458 L is for andsi as zero-extending move.
1459 M is for shifts that can be executed by the "lea" opcode.
1460 N is for immediate operands for out/in instructions (0-255)
1461 */
1462
1463 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1464 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1465 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1466 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1467 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1468 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1469 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
1470 : 0)
1471
1472 /* Similar, but for floating constants, and defining letters G and H.
1473 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1474 TARGET_387 isn't set, because the stack register converter may need to
1475 load 0.0 into the function value register. */
1476
1477 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1478 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1479 : 0)
1480
1481 /* A C expression that defines the optional machine-dependent
1482 constraint letters that can be used to segregate specific types of
1483 operands, usually memory references, for the target machine. Any
1484 letter that is not elsewhere defined and not matched by
1485 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1486 be defined.
1487
1488 If it is required for a particular target machine, it should
1489 return 1 if VALUE corresponds to the operand type represented by
1490 the constraint letter C. If C is not defined as an extra
1491 constraint, the value returned should be 0 regardless of VALUE. */
1492
1493 #define EXTRA_CONSTRAINT(VALUE, D) \
1494 ((D) == 'e' ? x86_64_sign_extended_value (VALUE) \
1495 : (D) == 'Z' ? x86_64_zero_extended_value (VALUE) \
1496 : (D) == 'C' ? standard_sse_constant_p (VALUE) \
1497 : 0)
1498
1499 /* Place additional restrictions on the register class to use when it
1500 is necessary to be able to hold a value of mode MODE in a reload
1501 register for which class CLASS would ordinarily be used. */
1502
1503 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1504 ((MODE) == QImode && !TARGET_64BIT \
1505 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1506 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1507 ? Q_REGS : (CLASS))
1508
1509 /* Given an rtx X being reloaded into a reg required to be
1510 in class CLASS, return the class of reg to actually use.
1511 In general this is just CLASS; but on some machines
1512 in some cases it is preferable to use a more restrictive class.
1513 On the 80386 series, we prevent floating constants from being
1514 reloaded into floating registers (since no move-insn can do that)
1515 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1516
1517 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1518 QImode must go into class Q_REGS.
1519 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1520 movdf to do mem-to-mem moves through integer regs. */
1521
1522 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1523 ix86_preferred_reload_class ((X), (CLASS))
1524
1525 /* If we are copying between general and FP registers, we need a memory
1526 location. The same is true for SSE and MMX registers. */
1527 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1528 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1529
1530 /* QImode spills from non-QI registers need a scratch. This does not
1531 happen often -- the only example so far requires an uninitialized
1532 pseudo. */
1533
1534 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
1535 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1536 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
1537 ? Q_REGS : NO_REGS)
1538
1539 /* Return the maximum number of consecutive registers
1540 needed to represent mode MODE in a register of class CLASS. */
1541 /* On the 80386, this is the size of MODE in words,
1542 except in the FP regs, where a single reg is always enough. */
1543 #define CLASS_MAX_NREGS(CLASS, MODE) \
1544 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1545 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1546 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1547 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1548
1549 /* A C expression whose value is nonzero if pseudos that have been
1550 assigned to registers of class CLASS would likely be spilled
1551 because registers of CLASS are needed for spill registers.
1552
1553 The default value of this macro returns 1 if CLASS has exactly one
1554 register and zero otherwise. On most machines, this default
1555 should be used. Only define this macro to some other expression
1556 if pseudo allocated by `local-alloc.c' end up in memory because
1557 their hard registers were needed for spill registers. If this
1558 macro returns nonzero for those classes, those pseudos will only
1559 be allocated by `global.c', which knows how to reallocate the
1560 pseudo to another register. If there would not be another
1561 register available for reallocation, you should not change the
1562 definition of this macro since the only effect of such a
1563 definition would be to slow down register allocation. */
1564
1565 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1566 (((CLASS) == AREG) \
1567 || ((CLASS) == DREG) \
1568 || ((CLASS) == CREG) \
1569 || ((CLASS) == BREG) \
1570 || ((CLASS) == AD_REGS) \
1571 || ((CLASS) == SIREG) \
1572 || ((CLASS) == DIREG) \
1573 || ((CLASS) == FP_TOP_REG) \
1574 || ((CLASS) == FP_SECOND_REG))
1575
1576 /* Return a class of registers that cannot change FROM mode to TO mode.
1577
1578 x87 registers can't do subreg as all values are reformated to extended
1579 precision. XMM registers does not support with nonzero offsets equal
1580 to 4, 8 and 12 otherwise valid for integer registers. Since we can't
1581 determine these, prohibit all nonparadoxical subregs changing size. */
1582
1583 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1584 (GET_MODE_SIZE (TO) < GET_MODE_SIZE (FROM) \
1585 ? reg_classes_intersect_p (FLOAT_SSE_REGS, (CLASS)) \
1586 || MAYBE_MMX_CLASS_P (CLASS) \
1587 : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1588 ? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)
1589
1590 /* A C statement that adds to CLOBBERS any hard regs the port wishes
1591 to automatically clobber for all asms.
1592
1593 We do this in the new i386 backend to maintain source compatibility
1594 with the old cc0-based compiler. */
1595
1596 #define MD_ASM_CLOBBERS(CLOBBERS) \
1597 do { \
1598 (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \
1599 (CLOBBERS)); \
1600 (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \
1601 (CLOBBERS)); \
1602 (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \
1603 (CLOBBERS)); \
1604 } while (0)
1605 \f
1606 /* Stack layout; function entry, exit and calling. */
1607
1608 /* Define this if pushing a word on the stack
1609 makes the stack pointer a smaller address. */
1610 #define STACK_GROWS_DOWNWARD
1611
1612 /* Define this if the nominal address of the stack frame
1613 is at the high-address end of the local variables;
1614 that is, each additional local variable allocated
1615 goes at a more negative offset in the frame. */
1616 #define FRAME_GROWS_DOWNWARD
1617
1618 /* Offset within stack frame to start allocating local variables at.
1619 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1620 first local allocated. Otherwise, it is the offset to the BEGINNING
1621 of the first local allocated. */
1622 #define STARTING_FRAME_OFFSET 0
1623
1624 /* If we generate an insn to push BYTES bytes,
1625 this says how many the stack pointer really advances by.
1626 On 386 pushw decrements by exactly 2 no matter what the position was.
1627 On the 386 there is no pushb; we use pushw instead, and this
1628 has the effect of rounding up to 2.
1629
1630 For 64bit ABI we round up to 8 bytes.
1631 */
1632
1633 #define PUSH_ROUNDING(BYTES) \
1634 (TARGET_64BIT \
1635 ? (((BYTES) + 7) & (-8)) \
1636 : (((BYTES) + 1) & (-2)))
1637
1638 /* If defined, the maximum amount of space required for outgoing arguments will
1639 be computed and placed into the variable
1640 `current_function_outgoing_args_size'. No space will be pushed onto the
1641 stack for each call; instead, the function prologue should increase the stack
1642 frame size by this amount. */
1643
1644 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1645
1646 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1647 instructions to pass outgoing arguments. */
1648
1649 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1650
1651 /* We want the stack and args grow in opposite directions, even if
1652 PUSH_ARGS is 0. */
1653 #define PUSH_ARGS_REVERSED 1
1654
1655 /* Offset of first parameter from the argument pointer register value. */
1656 #define FIRST_PARM_OFFSET(FNDECL) 0
1657
1658 /* Define this macro if functions should assume that stack space has been
1659 allocated for arguments even when their values are passed in registers.
1660
1661 The value of this macro is the size, in bytes, of the area reserved for
1662 arguments passed in registers for the function represented by FNDECL.
1663
1664 This space can be allocated by the caller, or be a part of the
1665 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1666 which. */
1667 #define REG_PARM_STACK_SPACE(FNDECL) 0
1668
1669 /* Define as a C expression that evaluates to nonzero if we do not know how
1670 to pass TYPE solely in registers. The file expr.h defines a
1671 definition that is usually appropriate, refer to expr.h for additional
1672 documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1673 computed in the stack and then loaded into a register. */
1674 #define MUST_PASS_IN_STACK(MODE, TYPE) ix86_must_pass_in_stack ((MODE), (TYPE))
1675
1676 /* Value is the number of bytes of arguments automatically
1677 popped when returning from a subroutine call.
1678 FUNDECL is the declaration node of the function (as a tree),
1679 FUNTYPE is the data type of the function (as a tree),
1680 or for a library call it is an identifier node for the subroutine name.
1681 SIZE is the number of bytes of arguments passed on the stack.
1682
1683 On the 80386, the RTD insn may be used to pop them if the number
1684 of args is fixed, but if the number is variable then the caller
1685 must pop them all. RTD can't be used for library calls now
1686 because the library is compiled with the Unix compiler.
1687 Use of RTD is a selectable option, since it is incompatible with
1688 standard Unix calling sequences. If the option is not selected,
1689 the caller must always pop the args.
1690
1691 The attribute stdcall is equivalent to RTD on a per module basis. */
1692
1693 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1694 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1695
1696 /* Define how to find the value returned by a function.
1697 VALTYPE is the data type of the value (as a tree).
1698 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1699 otherwise, FUNC is 0. */
1700 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1701 ix86_function_value (VALTYPE)
1702
1703 #define FUNCTION_VALUE_REGNO_P(N) \
1704 ix86_function_value_regno_p (N)
1705
1706 /* Define how to find the value returned by a library function
1707 assuming the value has mode MODE. */
1708
1709 #define LIBCALL_VALUE(MODE) \
1710 ix86_libcall_value (MODE)
1711
1712 /* Define the size of the result block used for communication between
1713 untyped_call and untyped_return. The block contains a DImode value
1714 followed by the block used by fnsave and frstor. */
1715
1716 #define APPLY_RESULT_SIZE (8+108)
1717
1718 /* 1 if N is a possible register number for function argument passing. */
1719 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1720
1721 /* Define a data type for recording info about an argument list
1722 during the scan of that argument list. This data type should
1723 hold all necessary information about the function itself
1724 and about the args processed so far, enough to enable macros
1725 such as FUNCTION_ARG to determine where the next arg should go. */
1726
1727 typedef struct ix86_args {
1728 int words; /* # words passed so far */
1729 int nregs; /* # registers available for passing */
1730 int regno; /* next available register number */
1731 int fastcall; /* fastcall calling convention is used */
1732 int sse_words; /* # sse words passed so far */
1733 int sse_nregs; /* # sse registers available for passing */
1734 int warn_sse; /* True when we want to warn about SSE ABI. */
1735 int warn_mmx; /* True when we want to warn about MMX ABI. */
1736 int sse_regno; /* next available sse register number */
1737 int mmx_words; /* # mmx words passed so far */
1738 int mmx_nregs; /* # mmx registers available for passing */
1739 int mmx_regno; /* next available mmx register number */
1740 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1741 } CUMULATIVE_ARGS;
1742
1743 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1744 for a call to a function whose data type is FNTYPE.
1745 For a library call, FNTYPE is 0. */
1746
1747 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1748 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1749
1750 /* Update the data in CUM to advance over an argument
1751 of mode MODE and data type TYPE.
1752 (TYPE is null for libcalls where that information may not be available.) */
1753
1754 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1755 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1756
1757 /* Define where to put the arguments to a function.
1758 Value is zero to push the argument on the stack,
1759 or a hard register in which to store the argument.
1760
1761 MODE is the argument's machine mode.
1762 TYPE is the data type of the argument (as a tree).
1763 This is null for libcalls where that information may
1764 not be available.
1765 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1766 the preceding args and about the function being called.
1767 NAMED is nonzero if this argument is a named parameter
1768 (otherwise it is an extra parameter matching an ellipsis). */
1769
1770 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1771 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1772
1773 /* For an arg passed partly in registers and partly in memory,
1774 this is the number of registers used.
1775 For args passed entirely in registers or entirely in memory, zero. */
1776
1777 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1778
1779 /* A C expression that indicates when an argument must be passed by
1780 reference. If nonzero for an argument, a copy of that argument is
1781 made in memory and a pointer to the argument is passed instead of
1782 the argument itself. The pointer is passed in whatever way is
1783 appropriate for passing a pointer to that type. */
1784
1785 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1786 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1787
1788 /* Implement `va_start' for varargs and stdarg. */
1789 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1790 ix86_va_start (VALIST, NEXTARG)
1791
1792 /* Implement `va_arg'. */
1793 #define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1794 ix86_va_arg ((VALIST), (TYPE))
1795
1796 #define TARGET_ASM_FILE_END ix86_file_end
1797 #define NEED_INDICATE_EXEC_STACK 0
1798
1799 /* Output assembler code to FILE to increment profiler label # LABELNO
1800 for profiling a function entry. */
1801
1802 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1803
1804 #define MCOUNT_NAME "_mcount"
1805
1806 #define PROFILE_COUNT_REGISTER "edx"
1807
1808 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1809 the stack pointer does not matter. The value is tested only in
1810 functions that have frame pointers.
1811 No definition is equivalent to always zero. */
1812 /* Note on the 386 it might be more efficient not to define this since
1813 we have to restore it ourselves from the frame pointer, in order to
1814 use pop */
1815
1816 #define EXIT_IGNORE_STACK 1
1817
1818 /* Output assembler code for a block containing the constant parts
1819 of a trampoline, leaving space for the variable parts. */
1820
1821 /* On the 386, the trampoline contains two instructions:
1822 mov #STATIC,ecx
1823 jmp FUNCTION
1824 The trampoline is generated entirely at runtime. The operand of JMP
1825 is the address of FUNCTION relative to the instruction following the
1826 JMP (which is 5 bytes long). */
1827
1828 /* Length in units of the trampoline for entering a nested function. */
1829
1830 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1831
1832 /* Emit RTL insns to initialize the variable parts of a trampoline.
1833 FNADDR is an RTX for the address of the function's pure code.
1834 CXT is an RTX for the static chain value for the function. */
1835
1836 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1837 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1838 \f
1839 /* Definitions for register eliminations.
1840
1841 This is an array of structures. Each structure initializes one pair
1842 of eliminable registers. The "from" register number is given first,
1843 followed by "to". Eliminations of the same "from" register are listed
1844 in order of preference.
1845
1846 There are two registers that can always be eliminated on the i386.
1847 The frame pointer and the arg pointer can be replaced by either the
1848 hard frame pointer or to the stack pointer, depending upon the
1849 circumstances. The hard frame pointer is not used before reload and
1850 so it is not eligible for elimination. */
1851
1852 #define ELIMINABLE_REGS \
1853 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1854 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1855 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1856 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1857
1858 /* Given FROM and TO register numbers, say whether this elimination is
1859 allowed. Frame pointer elimination is automatically handled.
1860
1861 All other eliminations are valid. */
1862
1863 #define CAN_ELIMINATE(FROM, TO) \
1864 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1865
1866 /* Define the offset between two registers, one to be eliminated, and the other
1867 its replacement, at the start of a routine. */
1868
1869 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1870 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1871 \f
1872 /* Addressing modes, and classification of registers for them. */
1873
1874 /* Macros to check register numbers against specific register classes. */
1875
1876 /* These assume that REGNO is a hard or pseudo reg number.
1877 They give nonzero only if REGNO is a hard reg of the suitable class
1878 or a pseudo reg currently allocated to a suitable hard reg.
1879 Since they use reg_renumber, they are safe only once reg_renumber
1880 has been allocated, which happens in local-alloc.c. */
1881
1882 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1883 ((REGNO) < STACK_POINTER_REGNUM \
1884 || (REGNO >= FIRST_REX_INT_REG \
1885 && (REGNO) <= LAST_REX_INT_REG) \
1886 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1887 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1888 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1889
1890 #define REGNO_OK_FOR_BASE_P(REGNO) \
1891 ((REGNO) <= STACK_POINTER_REGNUM \
1892 || (REGNO) == ARG_POINTER_REGNUM \
1893 || (REGNO) == FRAME_POINTER_REGNUM \
1894 || (REGNO >= FIRST_REX_INT_REG \
1895 && (REGNO) <= LAST_REX_INT_REG) \
1896 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1897 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1898 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1899
1900 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1901 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1902 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1903 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1904
1905 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1906 and check its validity for a certain class.
1907 We have two alternate definitions for each of them.
1908 The usual definition accepts all pseudo regs; the other rejects
1909 them unless they have been allocated suitable hard regs.
1910 The symbol REG_OK_STRICT causes the latter definition to be used.
1911
1912 Most source files want to accept pseudo regs in the hope that
1913 they will get allocated to the class that the insn wants them to be in.
1914 Source files for reload pass need to be strict.
1915 After reload, it makes no difference, since pseudo regs have
1916 been eliminated by then. */
1917
1918
1919 /* Non strict versions, pseudos are ok. */
1920 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1921 (REGNO (X) < STACK_POINTER_REGNUM \
1922 || (REGNO (X) >= FIRST_REX_INT_REG \
1923 && REGNO (X) <= LAST_REX_INT_REG) \
1924 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1925
1926 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1927 (REGNO (X) <= STACK_POINTER_REGNUM \
1928 || REGNO (X) == ARG_POINTER_REGNUM \
1929 || REGNO (X) == FRAME_POINTER_REGNUM \
1930 || (REGNO (X) >= FIRST_REX_INT_REG \
1931 && REGNO (X) <= LAST_REX_INT_REG) \
1932 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1933
1934 /* Strict versions, hard registers only */
1935 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1936 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1937
1938 #ifndef REG_OK_STRICT
1939 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1940 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1941
1942 #else
1943 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1944 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1945 #endif
1946
1947 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1948 that is a valid memory address for an instruction.
1949 The MODE argument is the machine mode for the MEM expression
1950 that wants to use this address.
1951
1952 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1953 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1954
1955 See legitimize_pic_address in i386.c for details as to what
1956 constitutes a legitimate address when -fpic is used. */
1957
1958 #define MAX_REGS_PER_ADDRESS 2
1959
1960 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1961
1962 /* Nonzero if the constant value X is a legitimate general operand.
1963 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1964
1965 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1966
1967 #ifdef REG_OK_STRICT
1968 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1969 do { \
1970 if (legitimate_address_p ((MODE), (X), 1)) \
1971 goto ADDR; \
1972 } while (0)
1973
1974 #else
1975 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1976 do { \
1977 if (legitimate_address_p ((MODE), (X), 0)) \
1978 goto ADDR; \
1979 } while (0)
1980
1981 #endif
1982
1983 /* If defined, a C expression to determine the base term of address X.
1984 This macro is used in only one place: `find_base_term' in alias.c.
1985
1986 It is always safe for this macro to not be defined. It exists so
1987 that alias analysis can understand machine-dependent addresses.
1988
1989 The typical use of this macro is to handle addresses containing
1990 a label_ref or symbol_ref within an UNSPEC. */
1991
1992 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1993
1994 /* Try machine-dependent ways of modifying an illegitimate address
1995 to be legitimate. If we find one, return the new, valid address.
1996 This macro is used in only one place: `memory_address' in explow.c.
1997
1998 OLDX is the address as it was before break_out_memory_refs was called.
1999 In some cases it is useful to look at this to decide what needs to be done.
2000
2001 MODE and WIN are passed so that this macro can use
2002 GO_IF_LEGITIMATE_ADDRESS.
2003
2004 It is always safe for this macro to do nothing. It exists to recognize
2005 opportunities to optimize the output.
2006
2007 For the 80386, we handle X+REG by loading X into a register R and
2008 using R+REG. R will go in a general reg and indexing will be used.
2009 However, if REG is a broken-out memory address or multiplication,
2010 nothing needs to be done because REG can certainly go in a general reg.
2011
2012 When -fpic is used, special handling is needed for symbolic references.
2013 See comments by legitimize_pic_address in i386.c for details. */
2014
2015 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
2016 do { \
2017 (X) = legitimize_address ((X), (OLDX), (MODE)); \
2018 if (memory_address_p ((MODE), (X))) \
2019 goto WIN; \
2020 } while (0)
2021
2022 #define REWRITE_ADDRESS(X) rewrite_address (X)
2023
2024 /* Nonzero if the constant value X is a legitimate general operand
2025 when generating PIC code. It is given that flag_pic is on and
2026 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
2027
2028 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
2029
2030 #define SYMBOLIC_CONST(X) \
2031 (GET_CODE (X) == SYMBOL_REF \
2032 || GET_CODE (X) == LABEL_REF \
2033 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2034
2035 /* Go to LABEL if ADDR (a legitimate address expression)
2036 has an effect that depends on the machine mode it is used for.
2037 On the 80386, only postdecrement and postincrement address depend thus
2038 (the amount of decrement or increment being the length of the operand). */
2039 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2040 do { \
2041 if (GET_CODE (ADDR) == POST_INC \
2042 || GET_CODE (ADDR) == POST_DEC) \
2043 goto LABEL; \
2044 } while (0)
2045 \f
2046 /* Codes for all the SSE/MMX builtins. */
2047 enum ix86_builtins
2048 {
2049 IX86_BUILTIN_ADDPS,
2050 IX86_BUILTIN_ADDSS,
2051 IX86_BUILTIN_DIVPS,
2052 IX86_BUILTIN_DIVSS,
2053 IX86_BUILTIN_MULPS,
2054 IX86_BUILTIN_MULSS,
2055 IX86_BUILTIN_SUBPS,
2056 IX86_BUILTIN_SUBSS,
2057
2058 IX86_BUILTIN_CMPEQPS,
2059 IX86_BUILTIN_CMPLTPS,
2060 IX86_BUILTIN_CMPLEPS,
2061 IX86_BUILTIN_CMPGTPS,
2062 IX86_BUILTIN_CMPGEPS,
2063 IX86_BUILTIN_CMPNEQPS,
2064 IX86_BUILTIN_CMPNLTPS,
2065 IX86_BUILTIN_CMPNLEPS,
2066 IX86_BUILTIN_CMPNGTPS,
2067 IX86_BUILTIN_CMPNGEPS,
2068 IX86_BUILTIN_CMPORDPS,
2069 IX86_BUILTIN_CMPUNORDPS,
2070 IX86_BUILTIN_CMPNEPS,
2071 IX86_BUILTIN_CMPEQSS,
2072 IX86_BUILTIN_CMPLTSS,
2073 IX86_BUILTIN_CMPLESS,
2074 IX86_BUILTIN_CMPNEQSS,
2075 IX86_BUILTIN_CMPNLTSS,
2076 IX86_BUILTIN_CMPNLESS,
2077 IX86_BUILTIN_CMPORDSS,
2078 IX86_BUILTIN_CMPUNORDSS,
2079 IX86_BUILTIN_CMPNESS,
2080
2081 IX86_BUILTIN_COMIEQSS,
2082 IX86_BUILTIN_COMILTSS,
2083 IX86_BUILTIN_COMILESS,
2084 IX86_BUILTIN_COMIGTSS,
2085 IX86_BUILTIN_COMIGESS,
2086 IX86_BUILTIN_COMINEQSS,
2087 IX86_BUILTIN_UCOMIEQSS,
2088 IX86_BUILTIN_UCOMILTSS,
2089 IX86_BUILTIN_UCOMILESS,
2090 IX86_BUILTIN_UCOMIGTSS,
2091 IX86_BUILTIN_UCOMIGESS,
2092 IX86_BUILTIN_UCOMINEQSS,
2093
2094 IX86_BUILTIN_CVTPI2PS,
2095 IX86_BUILTIN_CVTPS2PI,
2096 IX86_BUILTIN_CVTSI2SS,
2097 IX86_BUILTIN_CVTSI642SS,
2098 IX86_BUILTIN_CVTSS2SI,
2099 IX86_BUILTIN_CVTSS2SI64,
2100 IX86_BUILTIN_CVTTPS2PI,
2101 IX86_BUILTIN_CVTTSS2SI,
2102 IX86_BUILTIN_CVTTSS2SI64,
2103
2104 IX86_BUILTIN_MAXPS,
2105 IX86_BUILTIN_MAXSS,
2106 IX86_BUILTIN_MINPS,
2107 IX86_BUILTIN_MINSS,
2108
2109 IX86_BUILTIN_LOADAPS,
2110 IX86_BUILTIN_LOADUPS,
2111 IX86_BUILTIN_STOREAPS,
2112 IX86_BUILTIN_STOREUPS,
2113 IX86_BUILTIN_LOADSS,
2114 IX86_BUILTIN_STORESS,
2115 IX86_BUILTIN_MOVSS,
2116
2117 IX86_BUILTIN_MOVHLPS,
2118 IX86_BUILTIN_MOVLHPS,
2119 IX86_BUILTIN_LOADHPS,
2120 IX86_BUILTIN_LOADLPS,
2121 IX86_BUILTIN_STOREHPS,
2122 IX86_BUILTIN_STORELPS,
2123
2124 IX86_BUILTIN_MASKMOVQ,
2125 IX86_BUILTIN_MOVMSKPS,
2126 IX86_BUILTIN_PMOVMSKB,
2127
2128 IX86_BUILTIN_MOVNTPS,
2129 IX86_BUILTIN_MOVNTQ,
2130
2131 IX86_BUILTIN_LOADDQA,
2132 IX86_BUILTIN_LOADDQU,
2133 IX86_BUILTIN_STOREDQA,
2134 IX86_BUILTIN_STOREDQU,
2135 IX86_BUILTIN_MOVQ,
2136 IX86_BUILTIN_LOADD,
2137 IX86_BUILTIN_STORED,
2138
2139 IX86_BUILTIN_CLRTI,
2140
2141 IX86_BUILTIN_PACKSSWB,
2142 IX86_BUILTIN_PACKSSDW,
2143 IX86_BUILTIN_PACKUSWB,
2144
2145 IX86_BUILTIN_PADDB,
2146 IX86_BUILTIN_PADDW,
2147 IX86_BUILTIN_PADDD,
2148 IX86_BUILTIN_PADDQ,
2149 IX86_BUILTIN_PADDSB,
2150 IX86_BUILTIN_PADDSW,
2151 IX86_BUILTIN_PADDUSB,
2152 IX86_BUILTIN_PADDUSW,
2153 IX86_BUILTIN_PSUBB,
2154 IX86_BUILTIN_PSUBW,
2155 IX86_BUILTIN_PSUBD,
2156 IX86_BUILTIN_PSUBQ,
2157 IX86_BUILTIN_PSUBSB,
2158 IX86_BUILTIN_PSUBSW,
2159 IX86_BUILTIN_PSUBUSB,
2160 IX86_BUILTIN_PSUBUSW,
2161
2162 IX86_BUILTIN_PAND,
2163 IX86_BUILTIN_PANDN,
2164 IX86_BUILTIN_POR,
2165 IX86_BUILTIN_PXOR,
2166
2167 IX86_BUILTIN_PAVGB,
2168 IX86_BUILTIN_PAVGW,
2169
2170 IX86_BUILTIN_PCMPEQB,
2171 IX86_BUILTIN_PCMPEQW,
2172 IX86_BUILTIN_PCMPEQD,
2173 IX86_BUILTIN_PCMPGTB,
2174 IX86_BUILTIN_PCMPGTW,
2175 IX86_BUILTIN_PCMPGTD,
2176
2177 IX86_BUILTIN_PEXTRW,
2178 IX86_BUILTIN_PINSRW,
2179
2180 IX86_BUILTIN_PMADDWD,
2181
2182 IX86_BUILTIN_PMAXSW,
2183 IX86_BUILTIN_PMAXUB,
2184 IX86_BUILTIN_PMINSW,
2185 IX86_BUILTIN_PMINUB,
2186
2187 IX86_BUILTIN_PMULHUW,
2188 IX86_BUILTIN_PMULHW,
2189 IX86_BUILTIN_PMULLW,
2190
2191 IX86_BUILTIN_PSADBW,
2192 IX86_BUILTIN_PSHUFW,
2193
2194 IX86_BUILTIN_PSLLW,
2195 IX86_BUILTIN_PSLLD,
2196 IX86_BUILTIN_PSLLQ,
2197 IX86_BUILTIN_PSRAW,
2198 IX86_BUILTIN_PSRAD,
2199 IX86_BUILTIN_PSRLW,
2200 IX86_BUILTIN_PSRLD,
2201 IX86_BUILTIN_PSRLQ,
2202 IX86_BUILTIN_PSLLWI,
2203 IX86_BUILTIN_PSLLDI,
2204 IX86_BUILTIN_PSLLQI,
2205 IX86_BUILTIN_PSRAWI,
2206 IX86_BUILTIN_PSRADI,
2207 IX86_BUILTIN_PSRLWI,
2208 IX86_BUILTIN_PSRLDI,
2209 IX86_BUILTIN_PSRLQI,
2210
2211 IX86_BUILTIN_PUNPCKHBW,
2212 IX86_BUILTIN_PUNPCKHWD,
2213 IX86_BUILTIN_PUNPCKHDQ,
2214 IX86_BUILTIN_PUNPCKLBW,
2215 IX86_BUILTIN_PUNPCKLWD,
2216 IX86_BUILTIN_PUNPCKLDQ,
2217
2218 IX86_BUILTIN_SHUFPS,
2219
2220 IX86_BUILTIN_RCPPS,
2221 IX86_BUILTIN_RCPSS,
2222 IX86_BUILTIN_RSQRTPS,
2223 IX86_BUILTIN_RSQRTSS,
2224 IX86_BUILTIN_SQRTPS,
2225 IX86_BUILTIN_SQRTSS,
2226
2227 IX86_BUILTIN_UNPCKHPS,
2228 IX86_BUILTIN_UNPCKLPS,
2229
2230 IX86_BUILTIN_ANDPS,
2231 IX86_BUILTIN_ANDNPS,
2232 IX86_BUILTIN_ORPS,
2233 IX86_BUILTIN_XORPS,
2234
2235 IX86_BUILTIN_EMMS,
2236 IX86_BUILTIN_LDMXCSR,
2237 IX86_BUILTIN_STMXCSR,
2238 IX86_BUILTIN_SFENCE,
2239
2240 /* 3DNow! Original */
2241 IX86_BUILTIN_FEMMS,
2242 IX86_BUILTIN_PAVGUSB,
2243 IX86_BUILTIN_PF2ID,
2244 IX86_BUILTIN_PFACC,
2245 IX86_BUILTIN_PFADD,
2246 IX86_BUILTIN_PFCMPEQ,
2247 IX86_BUILTIN_PFCMPGE,
2248 IX86_BUILTIN_PFCMPGT,
2249 IX86_BUILTIN_PFMAX,
2250 IX86_BUILTIN_PFMIN,
2251 IX86_BUILTIN_PFMUL,
2252 IX86_BUILTIN_PFRCP,
2253 IX86_BUILTIN_PFRCPIT1,
2254 IX86_BUILTIN_PFRCPIT2,
2255 IX86_BUILTIN_PFRSQIT1,
2256 IX86_BUILTIN_PFRSQRT,
2257 IX86_BUILTIN_PFSUB,
2258 IX86_BUILTIN_PFSUBR,
2259 IX86_BUILTIN_PI2FD,
2260 IX86_BUILTIN_PMULHRW,
2261
2262 /* 3DNow! Athlon Extensions */
2263 IX86_BUILTIN_PF2IW,
2264 IX86_BUILTIN_PFNACC,
2265 IX86_BUILTIN_PFPNACC,
2266 IX86_BUILTIN_PI2FW,
2267 IX86_BUILTIN_PSWAPDSI,
2268 IX86_BUILTIN_PSWAPDSF,
2269
2270 IX86_BUILTIN_SSE_ZERO,
2271 IX86_BUILTIN_MMX_ZERO,
2272
2273 /* SSE2 */
2274 IX86_BUILTIN_ADDPD,
2275 IX86_BUILTIN_ADDSD,
2276 IX86_BUILTIN_DIVPD,
2277 IX86_BUILTIN_DIVSD,
2278 IX86_BUILTIN_MULPD,
2279 IX86_BUILTIN_MULSD,
2280 IX86_BUILTIN_SUBPD,
2281 IX86_BUILTIN_SUBSD,
2282
2283 IX86_BUILTIN_CMPEQPD,
2284 IX86_BUILTIN_CMPLTPD,
2285 IX86_BUILTIN_CMPLEPD,
2286 IX86_BUILTIN_CMPGTPD,
2287 IX86_BUILTIN_CMPGEPD,
2288 IX86_BUILTIN_CMPNEQPD,
2289 IX86_BUILTIN_CMPNLTPD,
2290 IX86_BUILTIN_CMPNLEPD,
2291 IX86_BUILTIN_CMPNGTPD,
2292 IX86_BUILTIN_CMPNGEPD,
2293 IX86_BUILTIN_CMPORDPD,
2294 IX86_BUILTIN_CMPUNORDPD,
2295 IX86_BUILTIN_CMPNEPD,
2296 IX86_BUILTIN_CMPEQSD,
2297 IX86_BUILTIN_CMPLTSD,
2298 IX86_BUILTIN_CMPLESD,
2299 IX86_BUILTIN_CMPNEQSD,
2300 IX86_BUILTIN_CMPNLTSD,
2301 IX86_BUILTIN_CMPNLESD,
2302 IX86_BUILTIN_CMPORDSD,
2303 IX86_BUILTIN_CMPUNORDSD,
2304 IX86_BUILTIN_CMPNESD,
2305
2306 IX86_BUILTIN_COMIEQSD,
2307 IX86_BUILTIN_COMILTSD,
2308 IX86_BUILTIN_COMILESD,
2309 IX86_BUILTIN_COMIGTSD,
2310 IX86_BUILTIN_COMIGESD,
2311 IX86_BUILTIN_COMINEQSD,
2312 IX86_BUILTIN_UCOMIEQSD,
2313 IX86_BUILTIN_UCOMILTSD,
2314 IX86_BUILTIN_UCOMILESD,
2315 IX86_BUILTIN_UCOMIGTSD,
2316 IX86_BUILTIN_UCOMIGESD,
2317 IX86_BUILTIN_UCOMINEQSD,
2318
2319 IX86_BUILTIN_MAXPD,
2320 IX86_BUILTIN_MAXSD,
2321 IX86_BUILTIN_MINPD,
2322 IX86_BUILTIN_MINSD,
2323
2324 IX86_BUILTIN_ANDPD,
2325 IX86_BUILTIN_ANDNPD,
2326 IX86_BUILTIN_ORPD,
2327 IX86_BUILTIN_XORPD,
2328
2329 IX86_BUILTIN_SQRTPD,
2330 IX86_BUILTIN_SQRTSD,
2331
2332 IX86_BUILTIN_UNPCKHPD,
2333 IX86_BUILTIN_UNPCKLPD,
2334
2335 IX86_BUILTIN_SHUFPD,
2336
2337 IX86_BUILTIN_LOADAPD,
2338 IX86_BUILTIN_LOADUPD,
2339 IX86_BUILTIN_STOREAPD,
2340 IX86_BUILTIN_STOREUPD,
2341 IX86_BUILTIN_LOADSD,
2342 IX86_BUILTIN_STORESD,
2343 IX86_BUILTIN_MOVSD,
2344
2345 IX86_BUILTIN_LOADHPD,
2346 IX86_BUILTIN_LOADLPD,
2347 IX86_BUILTIN_STOREHPD,
2348 IX86_BUILTIN_STORELPD,
2349
2350 IX86_BUILTIN_CVTDQ2PD,
2351 IX86_BUILTIN_CVTDQ2PS,
2352
2353 IX86_BUILTIN_CVTPD2DQ,
2354 IX86_BUILTIN_CVTPD2PI,
2355 IX86_BUILTIN_CVTPD2PS,
2356 IX86_BUILTIN_CVTTPD2DQ,
2357 IX86_BUILTIN_CVTTPD2PI,
2358
2359 IX86_BUILTIN_CVTPI2PD,
2360 IX86_BUILTIN_CVTSI2SD,
2361 IX86_BUILTIN_CVTSI642SD,
2362
2363 IX86_BUILTIN_CVTSD2SI,
2364 IX86_BUILTIN_CVTSD2SI64,
2365 IX86_BUILTIN_CVTSD2SS,
2366 IX86_BUILTIN_CVTSS2SD,
2367 IX86_BUILTIN_CVTTSD2SI,
2368 IX86_BUILTIN_CVTTSD2SI64,
2369
2370 IX86_BUILTIN_CVTPS2DQ,
2371 IX86_BUILTIN_CVTPS2PD,
2372 IX86_BUILTIN_CVTTPS2DQ,
2373
2374 IX86_BUILTIN_MOVNTI,
2375 IX86_BUILTIN_MOVNTPD,
2376 IX86_BUILTIN_MOVNTDQ,
2377
2378 IX86_BUILTIN_SETPD1,
2379 IX86_BUILTIN_SETPD,
2380 IX86_BUILTIN_CLRPD,
2381 IX86_BUILTIN_SETRPD,
2382 IX86_BUILTIN_LOADPD1,
2383 IX86_BUILTIN_LOADRPD,
2384 IX86_BUILTIN_STOREPD1,
2385 IX86_BUILTIN_STORERPD,
2386
2387 /* SSE2 MMX */
2388 IX86_BUILTIN_MASKMOVDQU,
2389 IX86_BUILTIN_MOVMSKPD,
2390 IX86_BUILTIN_PMOVMSKB128,
2391 IX86_BUILTIN_MOVQ2DQ,
2392 IX86_BUILTIN_MOVDQ2Q,
2393
2394 IX86_BUILTIN_PACKSSWB128,
2395 IX86_BUILTIN_PACKSSDW128,
2396 IX86_BUILTIN_PACKUSWB128,
2397
2398 IX86_BUILTIN_PADDB128,
2399 IX86_BUILTIN_PADDW128,
2400 IX86_BUILTIN_PADDD128,
2401 IX86_BUILTIN_PADDQ128,
2402 IX86_BUILTIN_PADDSB128,
2403 IX86_BUILTIN_PADDSW128,
2404 IX86_BUILTIN_PADDUSB128,
2405 IX86_BUILTIN_PADDUSW128,
2406 IX86_BUILTIN_PSUBB128,
2407 IX86_BUILTIN_PSUBW128,
2408 IX86_BUILTIN_PSUBD128,
2409 IX86_BUILTIN_PSUBQ128,
2410 IX86_BUILTIN_PSUBSB128,
2411 IX86_BUILTIN_PSUBSW128,
2412 IX86_BUILTIN_PSUBUSB128,
2413 IX86_BUILTIN_PSUBUSW128,
2414
2415 IX86_BUILTIN_PAND128,
2416 IX86_BUILTIN_PANDN128,
2417 IX86_BUILTIN_POR128,
2418 IX86_BUILTIN_PXOR128,
2419
2420 IX86_BUILTIN_PAVGB128,
2421 IX86_BUILTIN_PAVGW128,
2422
2423 IX86_BUILTIN_PCMPEQB128,
2424 IX86_BUILTIN_PCMPEQW128,
2425 IX86_BUILTIN_PCMPEQD128,
2426 IX86_BUILTIN_PCMPGTB128,
2427 IX86_BUILTIN_PCMPGTW128,
2428 IX86_BUILTIN_PCMPGTD128,
2429
2430 IX86_BUILTIN_PEXTRW128,
2431 IX86_BUILTIN_PINSRW128,
2432
2433 IX86_BUILTIN_PMADDWD128,
2434
2435 IX86_BUILTIN_PMAXSW128,
2436 IX86_BUILTIN_PMAXUB128,
2437 IX86_BUILTIN_PMINSW128,
2438 IX86_BUILTIN_PMINUB128,
2439
2440 IX86_BUILTIN_PMULUDQ,
2441 IX86_BUILTIN_PMULUDQ128,
2442 IX86_BUILTIN_PMULHUW128,
2443 IX86_BUILTIN_PMULHW128,
2444 IX86_BUILTIN_PMULLW128,
2445
2446 IX86_BUILTIN_PSADBW128,
2447 IX86_BUILTIN_PSHUFHW,
2448 IX86_BUILTIN_PSHUFLW,
2449 IX86_BUILTIN_PSHUFD,
2450
2451 IX86_BUILTIN_PSLLW128,
2452 IX86_BUILTIN_PSLLD128,
2453 IX86_BUILTIN_PSLLQ128,
2454 IX86_BUILTIN_PSRAW128,
2455 IX86_BUILTIN_PSRAD128,
2456 IX86_BUILTIN_PSRLW128,
2457 IX86_BUILTIN_PSRLD128,
2458 IX86_BUILTIN_PSRLQ128,
2459 IX86_BUILTIN_PSLLDQI128,
2460 IX86_BUILTIN_PSLLWI128,
2461 IX86_BUILTIN_PSLLDI128,
2462 IX86_BUILTIN_PSLLQI128,
2463 IX86_BUILTIN_PSRAWI128,
2464 IX86_BUILTIN_PSRADI128,
2465 IX86_BUILTIN_PSRLDQI128,
2466 IX86_BUILTIN_PSRLWI128,
2467 IX86_BUILTIN_PSRLDI128,
2468 IX86_BUILTIN_PSRLQI128,
2469
2470 IX86_BUILTIN_PUNPCKHBW128,
2471 IX86_BUILTIN_PUNPCKHWD128,
2472 IX86_BUILTIN_PUNPCKHDQ128,
2473 IX86_BUILTIN_PUNPCKHQDQ128,
2474 IX86_BUILTIN_PUNPCKLBW128,
2475 IX86_BUILTIN_PUNPCKLWD128,
2476 IX86_BUILTIN_PUNPCKLDQ128,
2477 IX86_BUILTIN_PUNPCKLQDQ128,
2478
2479 IX86_BUILTIN_CLFLUSH,
2480 IX86_BUILTIN_MFENCE,
2481 IX86_BUILTIN_LFENCE,
2482
2483 /* Prescott New Instructions. */
2484 IX86_BUILTIN_ADDSUBPS,
2485 IX86_BUILTIN_HADDPS,
2486 IX86_BUILTIN_HSUBPS,
2487 IX86_BUILTIN_MOVSHDUP,
2488 IX86_BUILTIN_MOVSLDUP,
2489 IX86_BUILTIN_ADDSUBPD,
2490 IX86_BUILTIN_HADDPD,
2491 IX86_BUILTIN_HSUBPD,
2492 IX86_BUILTIN_LOADDDUP,
2493 IX86_BUILTIN_MOVDDUP,
2494 IX86_BUILTIN_LDDQU,
2495
2496 IX86_BUILTIN_MONITOR,
2497 IX86_BUILTIN_MWAIT,
2498
2499 IX86_BUILTIN_MAX
2500 };
2501 \f
2502 /* Max number of args passed in registers. If this is more than 3, we will
2503 have problems with ebx (register #4), since it is a caller save register and
2504 is also used as the pic register in ELF. So for now, don't allow more than
2505 3 registers to be passed in registers. */
2506
2507 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2508
2509 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
2510
2511 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
2512
2513 \f
2514 /* Specify the machine mode that this machine uses
2515 for the index in the tablejump instruction. */
2516 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2517
2518 /* Define as C expression which evaluates to nonzero if the tablejump
2519 instruction expects the table to contain offsets from the address of the
2520 table.
2521 Do not define this if the table should contain absolute addresses. */
2522 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2523
2524 /* Define this as 1 if `char' should by default be signed; else as 0. */
2525 #define DEFAULT_SIGNED_CHAR 1
2526
2527 /* Number of bytes moved into a data cache for a single prefetch operation. */
2528 #define PREFETCH_BLOCK ix86_cost->prefetch_block
2529
2530 /* Number of prefetch operations that can be done in parallel. */
2531 #define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2532
2533 /* Max number of bytes we can move from memory to memory
2534 in one reasonably fast instruction. */
2535 #define MOVE_MAX 16
2536
2537 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
2538 move efficiently, as opposed to MOVE_MAX which is the maximum
2539 number of bytes we can move with a single instruction. */
2540 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2541
2542 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2543 move-instruction pairs, we will do a movstr or libcall instead.
2544 Increasing the value will always make code faster, but eventually
2545 incurs high cost in increased code size.
2546
2547 If you don't define this, a reasonable default is used. */
2548
2549 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2550
2551 /* Define if shifts truncate the shift count
2552 which implies one can omit a sign-extension or zero-extension
2553 of a shift count. */
2554 /* On i386, shifts do truncate the count. But bit opcodes don't. */
2555
2556 /* #define SHIFT_COUNT_TRUNCATED */
2557
2558 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2559 is done just by pretending it is already truncated. */
2560 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2561
2562 /* A macro to update M and UNSIGNEDP when an object whose type is
2563 TYPE and which has the specified mode and signedness is to be
2564 stored in a register. This macro is only called when TYPE is a
2565 scalar type.
2566
2567 On i386 it is sometimes useful to promote HImode and QImode
2568 quantities to SImode. The choice depends on target type. */
2569
2570 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2571 do { \
2572 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2573 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
2574 (MODE) = SImode; \
2575 } while (0)
2576
2577 /* Specify the machine mode that pointers have.
2578 After generation of rtl, the compiler makes no further distinction
2579 between pointers and any other objects of this machine mode. */
2580 #define Pmode (TARGET_64BIT ? DImode : SImode)
2581
2582 /* A function address in a call instruction
2583 is a byte address (for indexing purposes)
2584 so give the MEM rtx a byte's mode. */
2585 #define FUNCTION_MODE QImode
2586 \f
2587 /* A C expression for the cost of moving data from a register in class FROM to
2588 one in class TO. The classes are expressed using the enumeration values
2589 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2590 interpreted relative to that.
2591
2592 It is not required that the cost always equal 2 when FROM is the same as TO;
2593 on some machines it is expensive to move between registers if they are not
2594 general registers. */
2595
2596 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2597 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2598
2599 /* A C expression for the cost of moving data of mode M between a
2600 register and memory. A value of 2 is the default; this cost is
2601 relative to those in `REGISTER_MOVE_COST'.
2602
2603 If moving between registers and memory is more expensive than
2604 between two registers, you should define this macro to express the
2605 relative cost. */
2606
2607 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2608 ix86_memory_move_cost ((MODE), (CLASS), (IN))
2609
2610 /* A C expression for the cost of a branch instruction. A value of 1
2611 is the default; other values are interpreted relative to that. */
2612
2613 #define BRANCH_COST ix86_branch_cost
2614
2615 /* Define this macro as a C expression which is nonzero if accessing
2616 less than a word of memory (i.e. a `char' or a `short') is no
2617 faster than accessing a word of memory, i.e., if such access
2618 require more than one instruction or if there is no difference in
2619 cost between byte and (aligned) word loads.
2620
2621 When this macro is not defined, the compiler will access a field by
2622 finding the smallest containing object; when it is defined, a
2623 fullword load will be used if alignment permits. Unless bytes
2624 accesses are faster than word accesses, using word accesses is
2625 preferable since it may eliminate subsequent memory access if
2626 subsequent accesses occur to other fields in the same word of the
2627 structure, but to different bytes. */
2628
2629 #define SLOW_BYTE_ACCESS 0
2630
2631 /* Nonzero if access to memory by shorts is slow and undesirable. */
2632 #define SLOW_SHORT_ACCESS 0
2633
2634 /* Define this macro to be the value 1 if unaligned accesses have a
2635 cost many times greater than aligned accesses, for example if they
2636 are emulated in a trap handler.
2637
2638 When this macro is nonzero, the compiler will act as if
2639 `STRICT_ALIGNMENT' were nonzero when generating code for block
2640 moves. This can cause significantly more instructions to be
2641 produced. Therefore, do not set this macro nonzero if unaligned
2642 accesses only add a cycle or two to the time for a memory access.
2643
2644 If the value of this macro is always zero, it need not be defined. */
2645
2646 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2647
2648 /* Define this macro if it is as good or better to call a constant
2649 function address than to call an address kept in a register.
2650
2651 Desirable on the 386 because a CALL with a constant address is
2652 faster than one with a register address. */
2653
2654 #define NO_FUNCTION_CSE
2655
2656 /* Define this macro if it is as good or better for a function to call
2657 itself with an explicit address than to call an address kept in a
2658 register. */
2659
2660 #define NO_RECURSIVE_FUNCTION_CSE
2661 \f
2662 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2663 return the mode to be used for the comparison.
2664
2665 For floating-point equality comparisons, CCFPEQmode should be used.
2666 VOIDmode should be used in all other cases.
2667
2668 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2669 possible, to allow for more combinations. */
2670
2671 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2672
2673 /* Return nonzero if MODE implies a floating point inequality can be
2674 reversed. */
2675
2676 #define REVERSIBLE_CC_MODE(MODE) 1
2677
2678 /* A C expression whose value is reversed condition code of the CODE for
2679 comparison done in CC_MODE mode. */
2680 #define REVERSE_CONDITION(CODE, MODE) \
2681 ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2682 : reverse_condition_maybe_unordered (CODE))
2683
2684 \f
2685 /* Control the assembler format that we output, to the extent
2686 this does not vary between assemblers. */
2687
2688 /* How to refer to registers in assembler output.
2689 This sequence is indexed by compiler's hard-register-number (see above). */
2690
2691 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2692 For non floating point regs, the following are the HImode names.
2693
2694 For float regs, the stack top is sometimes referred to as "%st(0)"
2695 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
2696
2697 #define HI_REGISTER_NAMES \
2698 {"ax","dx","cx","bx","si","di","bp","sp", \
2699 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
2700 "argp", "flags", "fpsr", "dirflag", "frame", \
2701 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2702 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2703 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2704 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2705
2706 #define REGISTER_NAMES HI_REGISTER_NAMES
2707
2708 /* Table of additional register names to use in user input. */
2709
2710 #define ADDITIONAL_REGISTER_NAMES \
2711 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2712 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2713 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2714 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2715 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2716 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2717 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
2718 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2719
2720 /* Note we are omitting these since currently I don't know how
2721 to get gcc to use these, since they want the same but different
2722 number as al, and ax.
2723 */
2724
2725 #define QI_REGISTER_NAMES \
2726 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2727
2728 /* These parallel the array above, and can be used to access bits 8:15
2729 of regs 0 through 3. */
2730
2731 #define QI_HIGH_REGISTER_NAMES \
2732 {"ah", "dh", "ch", "bh", }
2733
2734 /* How to renumber registers for dbx and gdb. */
2735
2736 #define DBX_REGISTER_NUMBER(N) \
2737 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2738
2739 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2740 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2741 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2742
2743 /* Before the prologue, RA is at 0(%esp). */
2744 #define INCOMING_RETURN_ADDR_RTX \
2745 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2746
2747 /* After the prologue, RA is at -4(AP) in the current frame. */
2748 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2749 ((COUNT) == 0 \
2750 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2751 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2752
2753 /* PC is dbx register 8; let's use that column for RA. */
2754 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2755
2756 /* Before the prologue, the top of the frame is at 4(%esp). */
2757 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2758
2759 /* Describe how we implement __builtin_eh_return. */
2760 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2761 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2762
2763
2764 /* Select a format to encode pointers in exception handling data. CODE
2765 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2766 true if the symbol may be affected by dynamic relocations.
2767
2768 ??? All x86 object file formats are capable of representing this.
2769 After all, the relocation needed is the same as for the call insn.
2770 Whether or not a particular assembler allows us to enter such, I
2771 guess we'll have to see. */
2772 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2773 (flag_pic \
2774 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2775 : DW_EH_PE_absptr)
2776
2777 /* This is how to output an insn to push a register on the stack.
2778 It need not be very fast code. */
2779
2780 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2781 do { \
2782 if (TARGET_64BIT) \
2783 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2784 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2785 else \
2786 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2787 } while (0)
2788
2789 /* This is how to output an insn to pop a register from the stack.
2790 It need not be very fast code. */
2791
2792 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2793 do { \
2794 if (TARGET_64BIT) \
2795 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2796 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2797 else \
2798 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2799 } while (0)
2800
2801 /* This is how to output an element of a case-vector that is absolute. */
2802
2803 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2804 ix86_output_addr_vec_elt ((FILE), (VALUE))
2805
2806 /* This is how to output an element of a case-vector that is relative. */
2807
2808 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2809 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2810
2811 /* Under some conditions we need jump tables in the text section, because
2812 the assembler cannot handle label differences between sections. */
2813
2814 #define JUMP_TABLES_IN_TEXT_SECTION \
2815 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2816
2817 /* A C statement that outputs an address constant appropriate to
2818 for DWARF debugging. */
2819
2820 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
2821 i386_dwarf_output_addr_const ((FILE), (X))
2822
2823 /* Emit a dtp-relative reference to a TLS variable. */
2824
2825 #ifdef HAVE_AS_TLS
2826 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
2827 i386_output_dwarf_dtprel (FILE, SIZE, X)
2828 #endif
2829
2830 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2831 and switch back. For x86 we do this only to save a few bytes that
2832 would otherwise be unused in the text section. */
2833 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2834 asm (SECTION_OP "\n\t" \
2835 "call " USER_LABEL_PREFIX #FUNC "\n" \
2836 TEXT_SECTION_ASM_OP);
2837 \f
2838 /* Print operand X (an rtx) in assembler syntax to file FILE.
2839 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2840 Effect of various CODE letters is described in i386.c near
2841 print_operand function. */
2842
2843 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2844 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2845
2846 #define PRINT_OPERAND(FILE, X, CODE) \
2847 print_operand ((FILE), (X), (CODE))
2848
2849 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2850 print_operand_address ((FILE), (ADDR))
2851
2852 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2853 do { \
2854 if (! output_addr_const_extra (FILE, (X))) \
2855 goto FAIL; \
2856 } while (0);
2857
2858 /* a letter which is not needed by the normal asm syntax, which
2859 we can use for operand syntax in the extended asm */
2860
2861 #define ASM_OPERAND_LETTER '#'
2862 #define RET return ""
2863 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2864 \f
2865 /* Define the codes that are matched by predicates in i386.c. */
2866
2867 #define PREDICATE_CODES \
2868 {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
2869 SYMBOL_REF, LABEL_REF, CONST}}, \
2870 {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2871 SYMBOL_REF, LABEL_REF, CONST}}, \
2872 {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
2873 SYMBOL_REF, LABEL_REF, CONST}}, \
2874 {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2875 SYMBOL_REF, LABEL_REF, CONST}}, \
2876 {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
2877 SYMBOL_REF, LABEL_REF, CONST}}, \
2878 {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
2879 SYMBOL_REF, LABEL_REF, CONST}}, \
2880 {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
2881 SYMBOL_REF, LABEL_REF}}, \
2882 {"shiftdi_operand", {SUBREG, REG, MEM}}, \
2883 {"const_int_1_31_operand", {CONST_INT}}, \
2884 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2885 {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2886 LABEL_REF, SUBREG, REG, MEM}}, \
2887 {"pic_symbolic_operand", {CONST}}, \
2888 {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
2889 {"sibcall_insn_operand", {REG, SUBREG, SYMBOL_REF}}, \
2890 {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
2891 {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
2892 {"const1_operand", {CONST_INT}}, \
2893 {"const248_operand", {CONST_INT}}, \
2894 {"const_0_to_3_operand", {CONST_INT}}, \
2895 {"const_0_to_7_operand", {CONST_INT}}, \
2896 {"const_0_to_15_operand", {CONST_INT}}, \
2897 {"const_0_to_255_operand", {CONST_INT}}, \
2898 {"incdec_operand", {CONST_INT}}, \
2899 {"mmx_reg_operand", {REG}}, \
2900 {"reg_no_sp_operand", {SUBREG, REG}}, \
2901 {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
2902 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
2903 {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
2904 {"index_register_operand", {SUBREG, REG}}, \
2905 {"flags_reg_operand", {REG}}, \
2906 {"q_regs_operand", {SUBREG, REG}}, \
2907 {"non_q_regs_operand", {SUBREG, REG}}, \
2908 {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
2909 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
2910 GE, UNGE, LTGT, UNEQ}}, \
2911 {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
2912 ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
2913 }}, \
2914 {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
2915 GTU, UNORDERED, ORDERED, UNLE, UNLT, \
2916 UNGE, UNGT, LTGT, UNEQ }}, \
2917 {"ix86_carry_flag_operator", {LTU, LT, UNLT, GT, UNGT, LE, UNLE, \
2918 GE, UNGE, LTGT, UNEQ}}, \
2919 {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
2920 {"ext_register_operand", {SUBREG, REG}}, \
2921 {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
2922 {"mult_operator", {MULT}}, \
2923 {"div_operator", {DIV}}, \
2924 {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
2925 UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
2926 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
2927 LSHIFTRT, ROTATERT}}, \
2928 {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
2929 {"memory_displacement_operand", {MEM}}, \
2930 {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2931 LABEL_REF, SUBREG, REG, MEM, AND}}, \
2932 {"long_memory_operand", {MEM}}, \
2933 {"tls_symbolic_operand", {SYMBOL_REF}}, \
2934 {"global_dynamic_symbolic_operand", {SYMBOL_REF}}, \
2935 {"local_dynamic_symbolic_operand", {SYMBOL_REF}}, \
2936 {"initial_exec_symbolic_operand", {SYMBOL_REF}}, \
2937 {"local_exec_symbolic_operand", {SYMBOL_REF}}, \
2938 {"any_fp_register_operand", {REG}}, \
2939 {"register_and_not_any_fp_reg_operand", {REG}}, \
2940 {"fp_register_operand", {REG}}, \
2941 {"register_and_not_fp_reg_operand", {REG}}, \
2942 {"zero_extended_scalar_load_operand", {MEM}}, \
2943 {"vector_move_operand", {CONST_VECTOR, SUBREG, REG, MEM}}, \
2944 {"no_seg_address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2945 LABEL_REF, SUBREG, REG, MEM, PLUS, MULT}},
2946
2947 /* A list of predicates that do special things with modes, and so
2948 should not elicit warnings for VOIDmode match_operand. */
2949
2950 #define SPECIAL_MODE_PREDICATES \
2951 "ext_register_operand",
2952 \f
2953 /* Which processor to schedule for. The cpu attribute defines a list that
2954 mirrors this list, so changes to i386.md must be made at the same time. */
2955
2956 enum processor_type
2957 {
2958 PROCESSOR_I386, /* 80386 */
2959 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2960 PROCESSOR_PENTIUM,
2961 PROCESSOR_PENTIUMPRO,
2962 PROCESSOR_K6,
2963 PROCESSOR_ATHLON,
2964 PROCESSOR_PENTIUM4,
2965 PROCESSOR_K8,
2966 PROCESSOR_max
2967 };
2968
2969 extern enum processor_type ix86_tune;
2970 extern const char *ix86_tune_string;
2971
2972 extern enum processor_type ix86_arch;
2973 extern const char *ix86_arch_string;
2974
2975 enum fpmath_unit
2976 {
2977 FPMATH_387 = 1,
2978 FPMATH_SSE = 2
2979 };
2980
2981 extern enum fpmath_unit ix86_fpmath;
2982 extern const char *ix86_fpmath_string;
2983
2984 enum tls_dialect
2985 {
2986 TLS_DIALECT_GNU,
2987 TLS_DIALECT_SUN
2988 };
2989
2990 extern enum tls_dialect ix86_tls_dialect;
2991 extern const char *ix86_tls_dialect_string;
2992
2993 enum cmodel {
2994 CM_32, /* The traditional 32-bit ABI. */
2995 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2996 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2997 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2998 CM_LARGE, /* No assumptions. */
2999 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
3000 };
3001
3002 extern enum cmodel ix86_cmodel;
3003 extern const char *ix86_cmodel_string;
3004
3005 /* Size of the RED_ZONE area. */
3006 #define RED_ZONE_SIZE 128
3007 /* Reserved area of the red zone for temporaries. */
3008 #define RED_ZONE_RESERVE 8
3009
3010 enum asm_dialect {
3011 ASM_ATT,
3012 ASM_INTEL
3013 };
3014
3015 extern const char *ix86_asm_string;
3016 extern enum asm_dialect ix86_asm_dialect;
3017
3018 extern int ix86_regparm;
3019 extern const char *ix86_regparm_string;
3020
3021 extern int ix86_preferred_stack_boundary;
3022 extern const char *ix86_preferred_stack_boundary_string;
3023
3024 extern int ix86_branch_cost;
3025 extern const char *ix86_branch_cost_string;
3026
3027 extern const char *ix86_debug_arg_string;
3028 extern const char *ix86_debug_addr_string;
3029
3030 /* Obsoleted by -f options. Remove before 3.2 ships. */
3031 extern const char *ix86_align_loops_string;
3032 extern const char *ix86_align_jumps_string;
3033 extern const char *ix86_align_funcs_string;
3034
3035 /* Smallest class containing REGNO. */
3036 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3037
3038 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
3039 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
3040 \f
3041 /* To properly truncate FP values into integers, we need to set i387 control
3042 word. We can't emit proper mode switching code before reload, as spills
3043 generated by reload may truncate values incorrectly, but we still can avoid
3044 redundant computation of new control word by the mode switching pass.
3045 The fldcw instructions are still emitted redundantly, but this is probably
3046 not going to be noticeable problem, as most CPUs do have fast path for
3047 the sequence.
3048
3049 The machinery is to emit simple truncation instructions and split them
3050 before reload to instructions having USEs of two memory locations that
3051 are filled by this code to old and new control word.
3052
3053 Post-reload pass may be later used to eliminate the redundant fildcw if
3054 needed. */
3055
3056 enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3057
3058 /* Define this macro if the port needs extra instructions inserted
3059 for mode switching in an optimizing compilation. */
3060
3061 #define OPTIMIZE_MODE_SWITCHING(ENTITY) ix86_optimize_mode_switching
3062
3063 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3064 initializer for an array of integers. Each initializer element N
3065 refers to an entity that needs mode switching, and specifies the
3066 number of different modes that might need to be set for this
3067 entity. The position of the initializer in the initializer -
3068 starting counting at zero - determines the integer that is used to
3069 refer to the mode-switched entity in question. */
3070
3071 #define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3072
3073 /* ENTITY is an integer specifying a mode-switched entity. If
3074 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3075 return an integer value not larger than the corresponding element
3076 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3077 must be switched into prior to the execution of INSN. */
3078
3079 #define MODE_NEEDED(ENTITY, I) \
3080 (GET_CODE (I) == CALL_INSN \
3081 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
3082 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
3083 ? FP_CW_UNINITIALIZED \
3084 : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
3085 ? FP_CW_ANY \
3086 : FP_CW_STORED)
3087
3088 /* This macro specifies the order in which modes for ENTITY are
3089 processed. 0 is the highest priority. */
3090
3091 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3092
3093 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
3094 is the set of hard registers live at the point where the insn(s)
3095 are to be inserted. */
3096
3097 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
3098 ((MODE) == FP_CW_STORED \
3099 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
3100 assign_386_stack_local (HImode, 2)), 0\
3101 : 0)
3102 \f
3103 /* Avoid renaming of stack registers, as doing so in combination with
3104 scheduling just increases amount of live registers at time and in
3105 the turn amount of fxch instructions needed.
3106
3107 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
3108
3109 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3110 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3111
3112 \f
3113 #define DLL_IMPORT_EXPORT_PREFIX '#'
3114
3115 #define FASTCALL_PREFIX '@'
3116 \f
3117 struct machine_function GTY(())
3118 {
3119 struct stack_local_entry *stack_locals;
3120 const char *some_ld_name;
3121 int save_varrargs_registers;
3122 int accesses_prev_frame;
3123 int optimize_mode_switching;
3124 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
3125 determine the style used. */
3126 int use_fast_prologue_epilogue;
3127 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
3128 for. */
3129 int use_fast_prologue_epilogue_nregs;
3130 };
3131
3132 #define ix86_stack_locals (cfun->machine->stack_locals)
3133 #define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
3134 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
3135
3136 /* Control behavior of x86_file_start. */
3137 #define X86_FILE_START_VERSION_DIRECTIVE false
3138 #define X86_FILE_START_FLTUSED false
3139
3140 /*
3141 Local variables:
3142 version-control: t
3143 End:
3144 */