gnu.h (HURD_TARGET_OS_CPP_BUILTINS): New.
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
37 /* Define the specific costs for a given cpu */
38
39 struct processor_costs {
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
44 const int mult_init[5]; /* cost of starting a multiply
45 in QImode, HImode, SImode, DImode, TImode*/
46 const int mult_bit; /* cost of multiply per each bit set */
47 const int divide[5]; /* cost of a divide/mod
48 in QImode, HImode, SImode, DImode, TImode*/
49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
53 memory-to-memory move insns. */
54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
58 const int int_store[3]; /* cost of storing integer register
59 in QImode, HImode and SImode */
60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
62 in SFmode, DFmode and XFmode */
63 const int fp_store[3]; /* cost of storing FP register
64 in SFmode, DFmode and XFmode */
65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
67 in SImode and DImode */
68 const int mmx_store[2]; /* cost of storing MMX register
69 in SImode and DImode */
70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
72 in SImode, DImode and TImode*/
73 const int sse_store[3]; /* cost of storing SSE register
74 in SImode, DImode and TImode*/
75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
76 integer and vice versa. */
77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
80 const int branch_cost; /* Default value for BRANCH_COST. */
81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
87 };
88
89 extern const struct processor_costs *ix86_cost;
90
91 /* Run-time compilation parameters selecting different hardware subsets. */
92
93 extern int target_flags;
94
95 /* Macros used in the machine description to test the flags. */
96
97 /* configure can arrange to make this 2, to force a 486. */
98
99 #ifndef TARGET_CPU_DEFAULT
100 #ifdef TARGET_64BIT_DEFAULT
101 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_k8
102 #else
103 #define TARGET_CPU_DEFAULT 0
104 #endif
105 #endif
106
107 /* Masks for the -m switches */
108 #define MASK_80387 0x00000001 /* Hardware floating point */
109 #define MASK_RTD 0x00000002 /* Use ret that pops args */
110 #define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
111 #define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
112 #define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
113 #define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
114 #define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
115 #define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
116 #define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
117 #define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
118 #define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
119 #define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
120 #define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
121 #define MASK_MMX 0x00002000 /* Support MMX regs/builtins */
122 #define MASK_SSE 0x00004000 /* Support SSE regs/builtins */
123 #define MASK_SSE2 0x00008000 /* Support SSE2 regs/builtins */
124 #define MASK_PNI 0x00010000 /* Support PNI regs/builtins */
125 #define MASK_3DNOW 0x00020000 /* Support 3Dnow builtins */
126 #define MASK_3DNOW_A 0x00040000 /* Support Athlon 3Dnow builtins */
127 #define MASK_128BIT_LONG_DOUBLE 0x00080000 /* long double size is 128bit */
128 #define MASK_64BIT 0x00100000 /* Produce 64bit code */
129 #define MASK_MS_BITFIELD_LAYOUT 0x00200000 /* Use native (MS) bitfield layout */
130 #define MASK_TLS_DIRECT_SEG_REFS 0x00400000 /* Avoid adding %gs:0 */
131
132 /* Unused: 0x03e0000 */
133
134 /* ... overlap with subtarget options starts by 0x04000000. */
135 #define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
136
137 /* Use the floating point instructions */
138 #define TARGET_80387 (target_flags & MASK_80387)
139
140 /* Compile using ret insn that pops args.
141 This will not work unless you use prototypes at least
142 for all functions that can take varying numbers of args. */
143 #define TARGET_RTD (target_flags & MASK_RTD)
144
145 /* Align doubles to a two word boundary. This breaks compatibility with
146 the published ABI's for structures containing doubles, but produces
147 faster code on the pentium. */
148 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
149
150 /* Use push instructions to save outgoing args. */
151 #define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
152
153 /* Accumulate stack adjustments to prologue/epilogue. */
154 #define TARGET_ACCUMULATE_OUTGOING_ARGS \
155 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
156
157 /* Put uninitialized locals into bss, not data.
158 Meaningful only on svr3. */
159 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
160
161 /* Use IEEE floating point comparisons. These handle correctly the cases
162 where the result of a comparison is unordered. Normally SIGFPE is
163 generated in such cases, in which case this isn't needed. */
164 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
165
166 /* Functions that return a floating point value may return that value
167 in the 387 FPU or in 386 integer registers. If set, this flag causes
168 the 387 to be used, which is compatible with most calling conventions. */
169 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
170
171 /* Long double is 128bit instead of 96bit, even when only 80bits are used.
172 This mode wastes cache, but avoid misaligned data accesses and simplifies
173 address calculations. */
174 #define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
175
176 /* Disable generation of FP sin, cos and sqrt operations for 387.
177 This is because FreeBSD lacks these in the math-emulator-code */
178 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
179
180 /* Don't create frame pointers for leaf functions */
181 #define TARGET_OMIT_LEAF_FRAME_POINTER \
182 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
183
184 /* Debug GO_IF_LEGITIMATE_ADDRESS */
185 #define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
186
187 /* Debug FUNCTION_ARG macros */
188 #define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
189
190 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
191 compile-time constant. */
192 #ifdef IN_LIBGCC2
193 #ifdef __x86_64__
194 #define TARGET_64BIT 1
195 #else
196 #define TARGET_64BIT 0
197 #endif
198 #else
199 #ifdef TARGET_BI_ARCH
200 #define TARGET_64BIT (target_flags & MASK_64BIT)
201 #else
202 #if TARGET_64BIT_DEFAULT
203 #define TARGET_64BIT 1
204 #else
205 #define TARGET_64BIT 0
206 #endif
207 #endif
208 #endif
209
210 /* Avoid adding %gs:0 in TLS references; use %gs:address directly. */
211 #define TARGET_TLS_DIRECT_SEG_REFS (target_flags & MASK_TLS_DIRECT_SEG_REFS)
212
213 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
214 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
215 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
216 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
217 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
218 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
219 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
220 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
221 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
222
223 #define TUNEMASK (1 << ix86_tune)
224 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
225 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
226 extern const int x86_branch_hints, x86_unroll_strlen;
227 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
228 extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
229 extern const int x86_use_cltd, x86_read_modify_write;
230 extern const int x86_read_modify, x86_split_long_moves;
231 extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
232 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
233 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
234 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
235 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
236 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
237 extern const int x86_epilogue_using_move, x86_decompose_lea;
238 extern const int x86_arch_always_fancy_math_387, x86_shift1;
239 extern const int x86_sse_partial_reg_dependency, x86_sse_partial_regs;
240 extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
241 extern const int x86_use_ffreep, x86_sse_partial_regs_for_cvtsd2ss;
242 extern const int x86_inter_unit_moves;
243 extern int x86_prefetch_sse;
244
245 #define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
246 #define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
247 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
248 #define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
249 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
250 /* For sane SSE instruction set generation we need fcomi instruction. It is
251 safe to enable all CMOVE instructions. */
252 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
253 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
254 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
255 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
256 #define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
257 #define TARGET_MOVX (x86_movx & TUNEMASK)
258 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
259 #define TARGET_USE_LOOP (x86_use_loop & TUNEMASK)
260 #define TARGET_USE_FIOP (x86_use_fiop & TUNEMASK)
261 #define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
262 #define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
263 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
264 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
265 #define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
266 #define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
267 #define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
268 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
269 #define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
270 #define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
271 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
272 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
273 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
274 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
275 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
276 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
277 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
278 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
279 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
280 (x86_sse_partial_reg_dependency & TUNEMASK)
281 #define TARGET_SSE_PARTIAL_REGS (x86_sse_partial_regs & TUNEMASK)
282 #define TARGET_SSE_PARTIAL_REGS_FOR_CVTSD2SS \
283 (x86_sse_partial_regs_for_cvtsd2ss & TUNEMASK)
284 #define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
285 #define TARGET_SSE_TYPELESS_LOAD0 (x86_sse_typeless_load0 & TUNEMASK)
286 #define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
287 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
288 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
289 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
290 #define TARGET_DECOMPOSE_LEA (x86_decompose_lea & TUNEMASK)
291 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
292 #define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
293 #define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
294 #define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
295 #define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
296
297 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
298
299 #define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
300 #define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
301
302 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
303
304 #define TARGET_SSE ((target_flags & MASK_SSE) != 0)
305 #define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
306 #define TARGET_PNI ((target_flags & MASK_PNI) != 0)
307 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
308 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
309 && (ix86_fpmath & FPMATH_387))
310 #define TARGET_MMX ((target_flags & MASK_MMX) != 0)
311 #define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
312 #define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
313
314 #define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
315
316 #define TARGET_USE_MS_BITFIELD_LAYOUT (target_flags & MASK_MS_BITFIELD_LAYOUT)
317
318 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
319 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
320
321 /* WARNING: Do not mark empty strings for translation, as calling
322 gettext on an empty string does NOT return an empty
323 string. */
324
325
326 #define TARGET_SWITCHES \
327 { { "80387", MASK_80387, N_("Use hardware fp") }, \
328 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
329 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
330 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
331 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
332 { "386", 0, "" /*Deprecated.*/}, \
333 { "486", 0, "" /*Deprecated.*/}, \
334 { "pentium", 0, "" /*Deprecated.*/}, \
335 { "pentiumpro", 0, "" /*Deprecated.*/}, \
336 { "intel-syntax", 0, "" /*Deprecated.*/}, \
337 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
338 { "rtd", MASK_RTD, \
339 N_("Alternate calling convention") }, \
340 { "no-rtd", -MASK_RTD, \
341 N_("Use normal calling convention") }, \
342 { "align-double", MASK_ALIGN_DOUBLE, \
343 N_("Align some doubles on dword boundary") }, \
344 { "no-align-double", -MASK_ALIGN_DOUBLE, \
345 N_("Align doubles on word boundary") }, \
346 { "svr3-shlib", MASK_SVR3_SHLIB, \
347 N_("Uninitialized locals in .bss") }, \
348 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
349 N_("Uninitialized locals in .data") }, \
350 { "ieee-fp", MASK_IEEE_FP, \
351 N_("Use IEEE math for fp comparisons") }, \
352 { "no-ieee-fp", -MASK_IEEE_FP, \
353 N_("Do not use IEEE math for fp comparisons") }, \
354 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
355 N_("Return values of functions in FPU registers") }, \
356 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
357 N_("Do not return values of functions in FPU registers")}, \
358 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
359 N_("Do not generate sin, cos, sqrt for FPU") }, \
360 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
361 N_("Generate sin, cos, sqrt for FPU")}, \
362 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
363 N_("Omit the frame pointer in leaf functions") }, \
364 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
365 { "stack-arg-probe", MASK_STACK_PROBE, \
366 N_("Enable stack probing") }, \
367 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
368 { "windows", 0, 0 /* undocumented */ }, \
369 { "dll", 0, 0 /* undocumented */ }, \
370 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
371 N_("Align destination of the string operations") }, \
372 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
373 N_("Do not align destination of the string operations") }, \
374 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
375 N_("Inline all known string operations") }, \
376 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
377 N_("Do not inline all known string operations") }, \
378 { "push-args", -MASK_NO_PUSH_ARGS, \
379 N_("Use push instructions to save outgoing arguments") }, \
380 { "no-push-args", MASK_NO_PUSH_ARGS, \
381 N_("Do not use push instructions to save outgoing arguments") }, \
382 { "accumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS, \
383 N_("Use push instructions to save outgoing arguments") }, \
384 { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS, \
385 N_("Do not use push instructions to save outgoing arguments") }, \
386 { "mmx", MASK_MMX, \
387 N_("Support MMX built-in functions") }, \
388 { "no-mmx", -MASK_MMX, \
389 N_("Do not support MMX built-in functions") }, \
390 { "3dnow", MASK_3DNOW, \
391 N_("Support 3DNow! built-in functions") }, \
392 { "no-3dnow", -MASK_3DNOW, \
393 N_("Do not support 3DNow! built-in functions") }, \
394 { "sse", MASK_SSE, \
395 N_("Support MMX and SSE built-in functions and code generation") }, \
396 { "no-sse", -MASK_SSE, \
397 N_("Do not support MMX and SSE built-in functions and code generation") },\
398 { "sse2", MASK_SSE2, \
399 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
400 { "no-sse2", -MASK_SSE2, \
401 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
402 { "pni", MASK_PNI, \
403 N_("Support MMX, SSE, SSE2 and PNI built-in functions and code generation") },\
404 { "no-pni", -MASK_PNI, \
405 N_("Do not support MMX, SSE, SSE2 and PNI built-in functions and code generation") },\
406 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
407 N_("sizeof(long double) is 16") }, \
408 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
409 N_("sizeof(long double) is 12") }, \
410 { "64", MASK_64BIT, \
411 N_("Generate 64bit x86-64 code") }, \
412 { "32", -MASK_64BIT, \
413 N_("Generate 32bit i386 code") }, \
414 { "ms-bitfields", MASK_MS_BITFIELD_LAYOUT, \
415 N_("Use native (MS) bitfield layout") }, \
416 { "no-ms-bitfields", -MASK_MS_BITFIELD_LAYOUT, \
417 N_("Use gcc default bitfield layout") }, \
418 { "red-zone", -MASK_NO_RED_ZONE, \
419 N_("Use red-zone in the x86-64 code") }, \
420 { "no-red-zone", MASK_NO_RED_ZONE, \
421 N_("Do not use red-zone in the x86-64 code") }, \
422 { "tls-direct-seg-refs", MASK_TLS_DIRECT_SEG_REFS, \
423 N_("Use direct references against %gs when accessing tls data") }, \
424 { "no-tls-direct-seg-refs", -MASK_TLS_DIRECT_SEG_REFS, \
425 N_("Do not use direct references against %gs when accessing tls data") }, \
426 SUBTARGET_SWITCHES \
427 { "", \
428 TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT \
429 | TARGET_TLS_DIRECT_SEG_REFS_DEFAULT, 0 }}
430
431 #ifndef TARGET_64BIT_DEFAULT
432 #define TARGET_64BIT_DEFAULT 0
433 #endif
434 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
435 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
436 #endif
437
438 /* Once GDB has been enhanced to deal with functions without frame
439 pointers, we can change this to allow for elimination of
440 the frame pointer in leaf functions. */
441 #define TARGET_DEFAULT 0
442
443 /* This is not really a target flag, but is done this way so that
444 it's analogous to similar code for Mach-O on PowerPC. darwin.h
445 redefines this to 1. */
446 #define TARGET_MACHO 0
447
448 /* This macro is similar to `TARGET_SWITCHES' but defines names of
449 command options that have values. Its definition is an
450 initializer with a subgrouping for each command option.
451
452 Each subgrouping contains a string constant, that defines the
453 fixed part of the option name, and the address of a variable. The
454 variable, type `char *', is set to the variable part of the given
455 option if the fixed part matches. The actual option name is made
456 by appending `-m' to the specified name. */
457 #define TARGET_OPTIONS \
458 { { "tune=", &ix86_tune_string, \
459 N_("Schedule code for given CPU"), 0}, \
460 { "fpmath=", &ix86_fpmath_string, \
461 N_("Generate floating point mathematics using given instruction set"), 0},\
462 { "arch=", &ix86_arch_string, \
463 N_("Generate code for given CPU"), 0}, \
464 { "regparm=", &ix86_regparm_string, \
465 N_("Number of registers used to pass integer arguments"), 0},\
466 { "align-loops=", &ix86_align_loops_string, \
467 N_("Loop code aligned to this power of 2"), 0}, \
468 { "align-jumps=", &ix86_align_jumps_string, \
469 N_("Jump targets are aligned to this power of 2"), 0}, \
470 { "align-functions=", &ix86_align_funcs_string, \
471 N_("Function starts are aligned to this power of 2"), 0}, \
472 { "preferred-stack-boundary=", \
473 &ix86_preferred_stack_boundary_string, \
474 N_("Attempt to keep stack aligned to this power of 2"), 0}, \
475 { "branch-cost=", &ix86_branch_cost_string, \
476 N_("Branches are this expensive (1-5, arbitrary units)"), 0},\
477 { "cmodel=", &ix86_cmodel_string, \
478 N_("Use given x86-64 code model"), 0}, \
479 { "debug-arg", &ix86_debug_arg_string, \
480 "" /* Undocumented. */, 0}, \
481 { "debug-addr", &ix86_debug_addr_string, \
482 "" /* Undocumented. */, 0}, \
483 { "asm=", &ix86_asm_string, \
484 N_("Use given assembler dialect"), 0}, \
485 { "tls-dialect=", &ix86_tls_dialect_string, \
486 N_("Use given thread-local storage dialect"), 0}, \
487 SUBTARGET_OPTIONS \
488 }
489
490 /* Sometimes certain combinations of command options do not make
491 sense on a particular target machine. You can define a macro
492 `OVERRIDE_OPTIONS' to take account of this. This macro, if
493 defined, is executed once just after all the command options have
494 been parsed.
495
496 Don't use this macro to turn on various extra optimizations for
497 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
498
499 #define OVERRIDE_OPTIONS override_options ()
500
501 /* These are meant to be redefined in the host dependent files */
502 #define SUBTARGET_SWITCHES
503 #define SUBTARGET_OPTIONS
504
505 /* Define this to change the optimizations performed by default. */
506 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
507 optimization_options ((LEVEL), (SIZE))
508
509 /* Support for configure-time defaults of some command line options. */
510 #define OPTION_DEFAULT_SPECS \
511 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
512 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
513 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }
514
515 /* Specs for the compiler proper */
516
517 #ifndef CC1_CPU_SPEC
518 #define CC1_CPU_SPEC "\
519 %{!mtune*: \
520 %{m386:mtune=i386 \
521 %n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
522 %{m486:-mtune=i486 \
523 %n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
524 %{mpentium:-mtune=pentium \
525 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
526 %{mpentiumpro:-mtune=pentiumpro \
527 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
528 %{mcpu=*:-mtune=%* \
529 %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
530 %<mcpu=* \
531 %{mintel-syntax:-masm=intel \
532 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
533 %{mno-intel-syntax:-masm=att \
534 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
535 #endif
536 \f
537 /* Target CPU builtins. */
538 #define TARGET_CPU_CPP_BUILTINS() \
539 do \
540 { \
541 size_t arch_len = strlen (ix86_arch_string); \
542 size_t tune_len = strlen (ix86_tune_string); \
543 int last_arch_char = ix86_arch_string[arch_len - 1]; \
544 int last_tune_char = ix86_tune_string[tune_len - 1]; \
545 \
546 if (TARGET_64BIT) \
547 { \
548 builtin_assert ("cpu=x86_64"); \
549 builtin_assert ("machine=x86_64"); \
550 builtin_define ("__amd64"); \
551 builtin_define ("__amd64__"); \
552 builtin_define ("__x86_64"); \
553 builtin_define ("__x86_64__"); \
554 builtin_define ("__amd64"); \
555 builtin_define ("__amd64__"); \
556 } \
557 else \
558 { \
559 builtin_assert ("cpu=i386"); \
560 builtin_assert ("machine=i386"); \
561 builtin_define_std ("i386"); \
562 } \
563 \
564 /* Built-ins based on -mtune= (or -march= if no \
565 -mtune= given). */ \
566 if (TARGET_386) \
567 builtin_define ("__tune_i386__"); \
568 else if (TARGET_486) \
569 builtin_define ("__tune_i486__"); \
570 else if (TARGET_PENTIUM) \
571 { \
572 builtin_define ("__tune_i586__"); \
573 builtin_define ("__tune_pentium__"); \
574 if (last_tune_char == 'x') \
575 builtin_define ("__tune_pentium_mmx__"); \
576 } \
577 else if (TARGET_PENTIUMPRO) \
578 { \
579 builtin_define ("__tune_i686__"); \
580 builtin_define ("__tune_pentiumpro__"); \
581 switch (last_tune_char) \
582 { \
583 case '3': \
584 builtin_define ("__tune_pentium3__"); \
585 /* FALLTHRU */ \
586 case '2': \
587 builtin_define ("__tune_pentium2__"); \
588 break; \
589 } \
590 } \
591 else if (TARGET_K6) \
592 { \
593 builtin_define ("__tune_k6__"); \
594 if (last_tune_char == '2') \
595 builtin_define ("__tune_k6_2__"); \
596 else if (last_tune_char == '3') \
597 builtin_define ("__tune_k6_3__"); \
598 } \
599 else if (TARGET_ATHLON) \
600 { \
601 builtin_define ("__tune_athlon__"); \
602 /* Only plain "athlon" lacks SSE. */ \
603 if (last_tune_char != 'n') \
604 builtin_define ("__tune_athlon_sse__"); \
605 } \
606 else if (TARGET_K8) \
607 builtin_define ("__tune_k8__"); \
608 else if (TARGET_PENTIUM4) \
609 builtin_define ("__tune_pentium4__"); \
610 \
611 if (TARGET_MMX) \
612 builtin_define ("__MMX__"); \
613 if (TARGET_3DNOW) \
614 builtin_define ("__3dNOW__"); \
615 if (TARGET_3DNOW_A) \
616 builtin_define ("__3dNOW_A__"); \
617 if (TARGET_SSE) \
618 builtin_define ("__SSE__"); \
619 if (TARGET_SSE2) \
620 builtin_define ("__SSE2__"); \
621 if (TARGET_PNI) \
622 builtin_define ("__PNI__"); \
623 if (TARGET_SSE_MATH && TARGET_SSE) \
624 builtin_define ("__SSE_MATH__"); \
625 if (TARGET_SSE_MATH && TARGET_SSE2) \
626 builtin_define ("__SSE2_MATH__"); \
627 \
628 /* Built-ins based on -march=. */ \
629 if (ix86_arch == PROCESSOR_I486) \
630 { \
631 builtin_define ("__i486"); \
632 builtin_define ("__i486__"); \
633 } \
634 else if (ix86_arch == PROCESSOR_PENTIUM) \
635 { \
636 builtin_define ("__i586"); \
637 builtin_define ("__i586__"); \
638 builtin_define ("__pentium"); \
639 builtin_define ("__pentium__"); \
640 if (last_arch_char == 'x') \
641 builtin_define ("__pentium_mmx__"); \
642 } \
643 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
644 { \
645 builtin_define ("__i686"); \
646 builtin_define ("__i686__"); \
647 builtin_define ("__pentiumpro"); \
648 builtin_define ("__pentiumpro__"); \
649 } \
650 else if (ix86_arch == PROCESSOR_K6) \
651 { \
652 \
653 builtin_define ("__k6"); \
654 builtin_define ("__k6__"); \
655 if (last_arch_char == '2') \
656 builtin_define ("__k6_2__"); \
657 else if (last_arch_char == '3') \
658 builtin_define ("__k6_3__"); \
659 } \
660 else if (ix86_arch == PROCESSOR_ATHLON) \
661 { \
662 builtin_define ("__athlon"); \
663 builtin_define ("__athlon__"); \
664 /* Only plain "athlon" lacks SSE. */ \
665 if (last_arch_char != 'n') \
666 builtin_define ("__athlon_sse__"); \
667 } \
668 else if (ix86_arch == PROCESSOR_K8) \
669 { \
670 builtin_define ("__k8"); \
671 builtin_define ("__k8__"); \
672 } \
673 else if (ix86_arch == PROCESSOR_PENTIUM4) \
674 { \
675 builtin_define ("__pentium4"); \
676 builtin_define ("__pentium4__"); \
677 } \
678 } \
679 while (0)
680
681 #define TARGET_CPU_DEFAULT_i386 0
682 #define TARGET_CPU_DEFAULT_i486 1
683 #define TARGET_CPU_DEFAULT_pentium 2
684 #define TARGET_CPU_DEFAULT_pentium_mmx 3
685 #define TARGET_CPU_DEFAULT_pentiumpro 4
686 #define TARGET_CPU_DEFAULT_pentium2 5
687 #define TARGET_CPU_DEFAULT_pentium3 6
688 #define TARGET_CPU_DEFAULT_pentium4 7
689 #define TARGET_CPU_DEFAULT_k6 8
690 #define TARGET_CPU_DEFAULT_k6_2 9
691 #define TARGET_CPU_DEFAULT_k6_3 10
692 #define TARGET_CPU_DEFAULT_athlon 11
693 #define TARGET_CPU_DEFAULT_athlon_sse 12
694 #define TARGET_CPU_DEFAULT_k8 13
695
696 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
697 "pentiumpro", "pentium2", "pentium3", \
698 "pentium4", "k6", "k6-2", "k6-3",\
699 "athlon", "athlon-4", "k8"}
700
701 #ifndef CC1_SPEC
702 #define CC1_SPEC "%(cc1_cpu) "
703 #endif
704
705 /* This macro defines names of additional specifications to put in the
706 specs that can be used in various specifications like CC1_SPEC. Its
707 definition is an initializer with a subgrouping for each command option.
708
709 Each subgrouping contains a string constant, that defines the
710 specification name, and a string constant that used by the GCC driver
711 program.
712
713 Do not define this macro if it does not need to do anything. */
714
715 #ifndef SUBTARGET_EXTRA_SPECS
716 #define SUBTARGET_EXTRA_SPECS
717 #endif
718
719 #define EXTRA_SPECS \
720 { "cc1_cpu", CC1_CPU_SPEC }, \
721 SUBTARGET_EXTRA_SPECS
722 \f
723 /* target machine storage layout */
724
725 #define LONG_DOUBLE_TYPE_SIZE 96
726
727 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
728 FPU, assume that the fpcw is set to extended precision; when using
729 only SSE, rounding is correct; when using both SSE and the FPU,
730 the rounding precision is indeterminate, since either may be chosen
731 apparently at random. */
732 #define TARGET_FLT_EVAL_METHOD \
733 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
734
735 #define SHORT_TYPE_SIZE 16
736 #define INT_TYPE_SIZE 32
737 #define FLOAT_TYPE_SIZE 32
738 #define LONG_TYPE_SIZE BITS_PER_WORD
739 #define MAX_WCHAR_TYPE_SIZE 32
740 #define DOUBLE_TYPE_SIZE 64
741 #define LONG_LONG_TYPE_SIZE 64
742
743 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
744 #define MAX_BITS_PER_WORD 64
745 #define MAX_LONG_TYPE_SIZE 64
746 #else
747 #define MAX_BITS_PER_WORD 32
748 #define MAX_LONG_TYPE_SIZE 32
749 #endif
750
751 /* Define this if most significant byte of a word is the lowest numbered. */
752 /* That is true on the 80386. */
753
754 #define BITS_BIG_ENDIAN 0
755
756 /* Define this if most significant byte of a word is the lowest numbered. */
757 /* That is not true on the 80386. */
758 #define BYTES_BIG_ENDIAN 0
759
760 /* Define this if most significant word of a multiword number is the lowest
761 numbered. */
762 /* Not true for 80386 */
763 #define WORDS_BIG_ENDIAN 0
764
765 /* Width of a word, in units (bytes). */
766 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
767 #ifdef IN_LIBGCC2
768 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
769 #else
770 #define MIN_UNITS_PER_WORD 4
771 #endif
772
773 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
774 #define PARM_BOUNDARY BITS_PER_WORD
775
776 /* Boundary (in *bits*) on which stack pointer should be aligned. */
777 #define STACK_BOUNDARY BITS_PER_WORD
778
779 /* Boundary (in *bits*) on which the stack pointer prefers to be
780 aligned; the compiler cannot rely on having this alignment. */
781 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
782
783 /* As of July 2001, many runtimes to not align the stack properly when
784 entering main. This causes expand_main_function to forcibly align
785 the stack, which results in aligned frames for functions called from
786 main, though it does nothing for the alignment of main itself. */
787 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
788 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
789
790 /* Minimum allocation boundary for the code of a function. */
791 #define FUNCTION_BOUNDARY 8
792
793 /* C++ stores the virtual bit in the lowest bit of function pointers. */
794 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
795
796 /* Alignment of field after `int : 0' in a structure. */
797
798 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
799
800 /* Minimum size in bits of the largest boundary to which any
801 and all fundamental data types supported by the hardware
802 might need to be aligned. No data type wants to be aligned
803 rounder than this.
804
805 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
806 and Pentium Pro XFmode values at 128 bit boundaries. */
807
808 #define BIGGEST_ALIGNMENT 128
809
810 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
811 #define ALIGN_MODE_128(MODE) \
812 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
813
814 /* The published ABIs say that doubles should be aligned on word
815 boundaries, so lower the alignment for structure fields unless
816 -malign-double is set. */
817
818 /* ??? Blah -- this macro is used directly by libobjc. Since it
819 supports no vector modes, cut out the complexity and fall back
820 on BIGGEST_FIELD_ALIGNMENT. */
821 #ifdef IN_TARGET_LIBS
822 #ifdef __x86_64__
823 #define BIGGEST_FIELD_ALIGNMENT 128
824 #else
825 #define BIGGEST_FIELD_ALIGNMENT 32
826 #endif
827 #else
828 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
829 x86_field_alignment (FIELD, COMPUTED)
830 #endif
831
832 /* If defined, a C expression to compute the alignment given to a
833 constant that is being placed in memory. EXP is the constant
834 and ALIGN is the alignment that the object would ordinarily have.
835 The value of this macro is used instead of that alignment to align
836 the object.
837
838 If this macro is not defined, then ALIGN is used.
839
840 The typical use of this macro is to increase alignment for string
841 constants to be word aligned so that `strcpy' calls that copy
842 constants can be done inline. */
843
844 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
845
846 /* If defined, a C expression to compute the alignment for a static
847 variable. TYPE is the data type, and ALIGN is the alignment that
848 the object would ordinarily have. The value of this macro is used
849 instead of that alignment to align the object.
850
851 If this macro is not defined, then ALIGN is used.
852
853 One use of this macro is to increase alignment of medium-size
854 data to make it all fit in fewer cache lines. Another is to
855 cause character arrays to be word-aligned so that `strcpy' calls
856 that copy constants to character arrays can be done inline. */
857
858 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
859
860 /* If defined, a C expression to compute the alignment for a local
861 variable. TYPE is the data type, and ALIGN is the alignment that
862 the object would ordinarily have. The value of this macro is used
863 instead of that alignment to align the object.
864
865 If this macro is not defined, then ALIGN is used.
866
867 One use of this macro is to increase alignment of medium-size
868 data to make it all fit in fewer cache lines. */
869
870 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
871
872 /* If defined, a C expression that gives the alignment boundary, in
873 bits, of an argument with the specified mode and type. If it is
874 not defined, `PARM_BOUNDARY' is used for all arguments. */
875
876 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
877 ix86_function_arg_boundary ((MODE), (TYPE))
878
879 /* Set this nonzero if move instructions will actually fail to work
880 when given unaligned data. */
881 #define STRICT_ALIGNMENT 0
882
883 /* If bit field type is int, don't let it cross an int,
884 and give entire struct the alignment of an int. */
885 /* Required on the 386 since it doesn't have bit-field insns. */
886 #define PCC_BITFIELD_TYPE_MATTERS 1
887 \f
888 /* Standard register usage. */
889
890 /* This processor has special stack-like registers. See reg-stack.c
891 for details. */
892
893 #define STACK_REGS
894 #define IS_STACK_MODE(MODE) \
895 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode) \
896
897 /* Number of actual hardware registers.
898 The hardware registers are assigned numbers for the compiler
899 from 0 to just below FIRST_PSEUDO_REGISTER.
900 All registers that the compiler knows about must be given numbers,
901 even those that are not normally considered general registers.
902
903 In the 80386 we give the 8 general purpose registers the numbers 0-7.
904 We number the floating point registers 8-15.
905 Note that registers 0-7 can be accessed as a short or int,
906 while only 0-3 may be used with byte `mov' instructions.
907
908 Reg 16 does not correspond to any hardware register, but instead
909 appears in the RTL as an argument pointer prior to reload, and is
910 eliminated during reloading in favor of either the stack or frame
911 pointer. */
912
913 #define FIRST_PSEUDO_REGISTER 53
914
915 /* Number of hardware registers that go into the DWARF-2 unwind info.
916 If not defined, equals FIRST_PSEUDO_REGISTER. */
917
918 #define DWARF_FRAME_REGISTERS 17
919
920 /* 1 for registers that have pervasive standard uses
921 and are not available for the register allocator.
922 On the 80386, the stack pointer is such, as is the arg pointer.
923
924 The value is a mask - bit 1 is set for fixed registers
925 for 32bit target, while 2 is set for fixed registers for 64bit.
926 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
927 */
928 #define FIXED_REGISTERS \
929 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
930 { 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
931 /*arg,flags,fpsr,dir,frame*/ \
932 3, 3, 3, 3, 3, \
933 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
934 0, 0, 0, 0, 0, 0, 0, 0, \
935 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
936 0, 0, 0, 0, 0, 0, 0, 0, \
937 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
938 1, 1, 1, 1, 1, 1, 1, 1, \
939 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
940 1, 1, 1, 1, 1, 1, 1, 1}
941
942
943 /* 1 for registers not available across function calls.
944 These must include the FIXED_REGISTERS and also any
945 registers that can be used without being saved.
946 The latter must include the registers where values are returned
947 and the register where structure-value addresses are passed.
948 Aside from that, you can include as many other registers as you like.
949
950 The value is a mask - bit 1 is set for call used
951 for 32bit target, while 2 is set for call used for 64bit.
952 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
953 */
954 #define CALL_USED_REGISTERS \
955 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
956 { 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
957 /*arg,flags,fpsr,dir,frame*/ \
958 3, 3, 3, 3, 3, \
959 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
960 3, 3, 3, 3, 3, 3, 3, 3, \
961 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
962 3, 3, 3, 3, 3, 3, 3, 3, \
963 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
964 3, 3, 3, 3, 1, 1, 1, 1, \
965 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
966 3, 3, 3, 3, 3, 3, 3, 3} \
967
968 /* Order in which to allocate registers. Each register must be
969 listed once, even those in FIXED_REGISTERS. List frame pointer
970 late and fixed registers last. Note that, in general, we prefer
971 registers listed in CALL_USED_REGISTERS, keeping the others
972 available for storage of persistent values.
973
974 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
975 so this is just empty initializer for array. */
976
977 #define REG_ALLOC_ORDER \
978 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
979 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
980 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
981 48, 49, 50, 51, 52 }
982
983 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
984 to be rearranged based on a particular function. When using sse math,
985 we want to allocate SSE before x87 registers and vice vera. */
986
987 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
988
989
990 /* Macro to conditionally modify fixed_regs/call_used_regs. */
991 #define CONDITIONAL_REGISTER_USAGE \
992 do { \
993 int i; \
994 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
995 { \
996 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
997 call_used_regs[i] = (call_used_regs[i] \
998 & (TARGET_64BIT ? 2 : 1)) != 0; \
999 } \
1000 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
1001 { \
1002 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1003 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1004 } \
1005 if (! TARGET_MMX) \
1006 { \
1007 int i; \
1008 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1009 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
1010 fixed_regs[i] = call_used_regs[i] = 1; \
1011 } \
1012 if (! TARGET_SSE) \
1013 { \
1014 int i; \
1015 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1016 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
1017 fixed_regs[i] = call_used_regs[i] = 1; \
1018 } \
1019 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
1020 { \
1021 int i; \
1022 HARD_REG_SET x; \
1023 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
1024 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1025 if (TEST_HARD_REG_BIT (x, i)) \
1026 fixed_regs[i] = call_used_regs[i] = 1; \
1027 } \
1028 } while (0)
1029
1030 /* Return number of consecutive hard regs needed starting at reg REGNO
1031 to hold something of mode MODE.
1032 This is ordinarily the length in words of a value of mode MODE
1033 but can be less for certain modes in special long registers.
1034
1035 Actually there are no two word move instructions for consecutive
1036 registers. And only registers 0-3 may have mov byte instructions
1037 applied to them.
1038 */
1039
1040 #define HARD_REGNO_NREGS(REGNO, MODE) \
1041 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1042 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1043 : ((MODE) == XFmode \
1044 ? (TARGET_64BIT ? 2 : 3) \
1045 : (MODE) == XCmode \
1046 ? (TARGET_64BIT ? 4 : 6) \
1047 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1048
1049 #define VALID_SSE2_REG_MODE(MODE) \
1050 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1051 || (MODE) == V2DImode)
1052
1053 #define VALID_SSE_REG_MODE(MODE) \
1054 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1055 || (MODE) == SFmode || (MODE) == TFmode \
1056 /* Always accept SSE2 modes so that xmmintrin.h compiles. */ \
1057 || VALID_SSE2_REG_MODE (MODE) \
1058 || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
1059
1060 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1061 ((MODE) == V2SFmode || (MODE) == SFmode)
1062
1063 #define VALID_MMX_REG_MODE(MODE) \
1064 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
1065 || (MODE) == V2SImode || (MODE) == SImode)
1066
1067 #define VECTOR_MODE_SUPPORTED_P(MODE) \
1068 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
1069 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
1070 : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
1071
1072 #define VALID_FP_MODE_P(MODE) \
1073 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1074 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1075
1076 #define VALID_INT_MODE_P(MODE) \
1077 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1078 || (MODE) == DImode \
1079 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1080 || (MODE) == CDImode \
1081 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1082 || (MODE) == TFmode || (MODE) == TCmode)))
1083
1084 /* Return true for modes passed in SSE registers. */
1085 #define SSE_REG_MODE_P(MODE) \
1086 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
1087 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1088 || (MODE) == V4SFmode || (MODE) == V4SImode)
1089
1090 /* Return true for modes passed in MMX registers. */
1091 #define MMX_REG_MODE_P(MODE) \
1092 ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode \
1093 || (MODE) == V2SFmode)
1094
1095 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1096
1097 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1098 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1099
1100 /* Value is 1 if it is a good idea to tie two pseudo registers
1101 when one has mode MODE1 and one has mode MODE2.
1102 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1103 for any hard reg, then this must be 0 for correct output. */
1104
1105 #define MODES_TIEABLE_P(MODE1, MODE2) \
1106 ((MODE1) == (MODE2) \
1107 || (((MODE1) == HImode || (MODE1) == SImode \
1108 || ((MODE1) == QImode \
1109 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1110 || ((MODE1) == DImode && TARGET_64BIT)) \
1111 && ((MODE2) == HImode || (MODE2) == SImode \
1112 || ((MODE2) == QImode \
1113 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1114 || ((MODE2) == DImode && TARGET_64BIT))))
1115
1116 /* It is possible to write patterns to move flags; but until someone
1117 does it, */
1118 #define AVOID_CCMODE_COPIES
1119
1120 /* Specify the modes required to caller save a given hard regno.
1121 We do this on i386 to prevent flags from being saved at all.
1122
1123 Kill any attempts to combine saving of modes. */
1124
1125 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1126 (CC_REGNO_P (REGNO) ? VOIDmode \
1127 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1128 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
1129 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1130 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
1131 : (MODE))
1132 /* Specify the registers used for certain standard purposes.
1133 The values of these macros are register numbers. */
1134
1135 /* on the 386 the pc register is %eip, and is not usable as a general
1136 register. The ordinary mov instructions won't work */
1137 /* #define PC_REGNUM */
1138
1139 /* Register to use for pushing function arguments. */
1140 #define STACK_POINTER_REGNUM 7
1141
1142 /* Base register for access to local variables of the function. */
1143 #define HARD_FRAME_POINTER_REGNUM 6
1144
1145 /* Base register for access to local variables of the function. */
1146 #define FRAME_POINTER_REGNUM 20
1147
1148 /* First floating point reg */
1149 #define FIRST_FLOAT_REG 8
1150
1151 /* First & last stack-like regs */
1152 #define FIRST_STACK_REG FIRST_FLOAT_REG
1153 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1154
1155 #define FLAGS_REG 17
1156 #define FPSR_REG 18
1157 #define DIRFLAG_REG 19
1158
1159 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1160 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1161
1162 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1163 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1164
1165 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1166 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1167
1168 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1169 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1170
1171 /* Value should be nonzero if functions must have frame pointers.
1172 Zero means the frame pointer need not be set up (and parms
1173 may be accessed via the stack pointer) in functions that seem suitable.
1174 This is computed in `reload', in reload1.c. */
1175 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1176
1177 /* Override this in other tm.h files to cope with various OS losage
1178 requiring a frame pointer. */
1179 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1180 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1181 #endif
1182
1183 /* Make sure we can access arbitrary call frames. */
1184 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1185
1186 /* Base register for access to arguments of the function. */
1187 #define ARG_POINTER_REGNUM 16
1188
1189 /* Register in which static-chain is passed to a function.
1190 We do use ECX as static chain register for 32 bit ABI. On the
1191 64bit ABI, ECX is an argument register, so we use R10 instead. */
1192 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1193
1194 /* Register to hold the addressing base for position independent
1195 code access to data items. We don't use PIC pointer for 64bit
1196 mode. Define the regnum to dummy value to prevent gcc from
1197 pessimizing code dealing with EBX.
1198
1199 To avoid clobbering a call-saved register unnecessarily, we renumber
1200 the pic register when possible. The change is visible after the
1201 prologue has been emitted. */
1202
1203 #define REAL_PIC_OFFSET_TABLE_REGNUM 3
1204
1205 #define PIC_OFFSET_TABLE_REGNUM \
1206 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM \
1207 : reload_completed ? REGNO (pic_offset_table_rtx) \
1208 : REAL_PIC_OFFSET_TABLE_REGNUM)
1209
1210 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1211
1212 /* Register in which address to store a structure value
1213 arrives in the function. On the 386, the prologue
1214 copies this from the stack to register %eax. */
1215 #define STRUCT_VALUE_INCOMING 0
1216
1217 /* Place in which caller passes the structure value address.
1218 0 means push the value on the stack like an argument. */
1219 #define STRUCT_VALUE 0
1220
1221 /* A C expression which can inhibit the returning of certain function
1222 values in registers, based on the type of value. A nonzero value
1223 says to return the function value in memory, just as large
1224 structures are always returned. Here TYPE will be a C expression
1225 of type `tree', representing the data type of the value.
1226
1227 Note that values of mode `BLKmode' must be explicitly handled by
1228 this macro. Also, the option `-fpcc-struct-return' takes effect
1229 regardless of this macro. On most systems, it is possible to
1230 leave the macro undefined; this causes a default definition to be
1231 used, whose value is the constant 1 for `BLKmode' values, and 0
1232 otherwise.
1233
1234 Do not use this macro to indicate that structures and unions
1235 should always be returned in memory. You should instead use
1236 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1237
1238 #define RETURN_IN_MEMORY(TYPE) \
1239 ix86_return_in_memory (TYPE)
1240
1241 /* This is overridden by <cygwin.h>. */
1242 #define MS_AGGREGATE_RETURN 0
1243
1244 \f
1245 /* Define the classes of registers for register constraints in the
1246 machine description. Also define ranges of constants.
1247
1248 One of the classes must always be named ALL_REGS and include all hard regs.
1249 If there is more than one class, another class must be named NO_REGS
1250 and contain no registers.
1251
1252 The name GENERAL_REGS must be the name of a class (or an alias for
1253 another name such as ALL_REGS). This is the class of registers
1254 that is allowed by "g" or "r" in a register constraint.
1255 Also, registers outside this class are allocated only when
1256 instructions express preferences for them.
1257
1258 The classes must be numbered in nondecreasing order; that is,
1259 a larger-numbered class must never be contained completely
1260 in a smaller-numbered class.
1261
1262 For any two classes, it is very desirable that there be another
1263 class that represents their union.
1264
1265 It might seem that class BREG is unnecessary, since no useful 386
1266 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1267 and the "b" register constraint is useful in asms for syscalls.
1268
1269 The flags and fpsr registers are in no class. */
1270
1271 enum reg_class
1272 {
1273 NO_REGS,
1274 AREG, DREG, CREG, BREG, SIREG, DIREG,
1275 AD_REGS, /* %eax/%edx for DImode */
1276 Q_REGS, /* %eax %ebx %ecx %edx */
1277 NON_Q_REGS, /* %esi %edi %ebp %esp */
1278 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1279 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1280 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1281 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1282 FLOAT_REGS,
1283 SSE_REGS,
1284 MMX_REGS,
1285 FP_TOP_SSE_REGS,
1286 FP_SECOND_SSE_REGS,
1287 FLOAT_SSE_REGS,
1288 FLOAT_INT_REGS,
1289 INT_SSE_REGS,
1290 FLOAT_INT_SSE_REGS,
1291 ALL_REGS, LIM_REG_CLASSES
1292 };
1293
1294 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1295
1296 #define INTEGER_CLASS_P(CLASS) \
1297 reg_class_subset_p ((CLASS), GENERAL_REGS)
1298 #define FLOAT_CLASS_P(CLASS) \
1299 reg_class_subset_p ((CLASS), FLOAT_REGS)
1300 #define SSE_CLASS_P(CLASS) \
1301 reg_class_subset_p ((CLASS), SSE_REGS)
1302 #define MMX_CLASS_P(CLASS) \
1303 reg_class_subset_p ((CLASS), MMX_REGS)
1304 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1305 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1306 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1307 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1308 #define MAYBE_SSE_CLASS_P(CLASS) \
1309 reg_classes_intersect_p (SSE_REGS, (CLASS))
1310 #define MAYBE_MMX_CLASS_P(CLASS) \
1311 reg_classes_intersect_p (MMX_REGS, (CLASS))
1312
1313 #define Q_CLASS_P(CLASS) \
1314 reg_class_subset_p ((CLASS), Q_REGS)
1315
1316 /* Give names of register classes as strings for dump file. */
1317
1318 #define REG_CLASS_NAMES \
1319 { "NO_REGS", \
1320 "AREG", "DREG", "CREG", "BREG", \
1321 "SIREG", "DIREG", \
1322 "AD_REGS", \
1323 "Q_REGS", "NON_Q_REGS", \
1324 "INDEX_REGS", \
1325 "LEGACY_REGS", \
1326 "GENERAL_REGS", \
1327 "FP_TOP_REG", "FP_SECOND_REG", \
1328 "FLOAT_REGS", \
1329 "SSE_REGS", \
1330 "MMX_REGS", \
1331 "FP_TOP_SSE_REGS", \
1332 "FP_SECOND_SSE_REGS", \
1333 "FLOAT_SSE_REGS", \
1334 "FLOAT_INT_REGS", \
1335 "INT_SSE_REGS", \
1336 "FLOAT_INT_SSE_REGS", \
1337 "ALL_REGS" }
1338
1339 /* Define which registers fit in which classes.
1340 This is an initializer for a vector of HARD_REG_SET
1341 of length N_REG_CLASSES. */
1342
1343 #define REG_CLASS_CONTENTS \
1344 { { 0x00, 0x0 }, \
1345 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1346 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1347 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1348 { 0x03, 0x0 }, /* AD_REGS */ \
1349 { 0x0f, 0x0 }, /* Q_REGS */ \
1350 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1351 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1352 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1353 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1354 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1355 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1356 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1357 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1358 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1359 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1360 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1361 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1362 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1363 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1364 { 0xffffffff,0x1fffff } \
1365 }
1366
1367 /* The same information, inverted:
1368 Return the class number of the smallest class containing
1369 reg number REGNO. This could be a conditional expression
1370 or could index an array. */
1371
1372 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1373
1374 /* When defined, the compiler allows registers explicitly used in the
1375 rtl to be used as spill registers but prevents the compiler from
1376 extending the lifetime of these registers. */
1377
1378 #define SMALL_REGISTER_CLASSES 1
1379
1380 #define QI_REG_P(X) \
1381 (REG_P (X) && REGNO (X) < 4)
1382
1383 #define GENERAL_REGNO_P(N) \
1384 ((N) < 8 || REX_INT_REGNO_P (N))
1385
1386 #define GENERAL_REG_P(X) \
1387 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1388
1389 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1390
1391 #define NON_QI_REG_P(X) \
1392 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1393
1394 #define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1395 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1396
1397 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1398 #define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1399 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1400 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1401
1402 #define SSE_REGNO_P(N) \
1403 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1404 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1405
1406 #define REX_SSE_REGNO_P(N) \
1407 ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1408
1409 #define SSE_REGNO(N) \
1410 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1411 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1412
1413 #define SSE_FLOAT_MODE_P(MODE) \
1414 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1415
1416 #define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1417 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1418
1419 #define STACK_REG_P(XOP) \
1420 (REG_P (XOP) && \
1421 REGNO (XOP) >= FIRST_STACK_REG && \
1422 REGNO (XOP) <= LAST_STACK_REG)
1423
1424 #define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1425
1426 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1427
1428 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1429 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1430
1431 /* Indicate whether hard register numbered REG_NO should be converted
1432 to SSA form. */
1433 #define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
1434 ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
1435
1436 /* The class value for index registers, and the one for base regs. */
1437
1438 #define INDEX_REG_CLASS INDEX_REGS
1439 #define BASE_REG_CLASS GENERAL_REGS
1440
1441 /* Get reg_class from a letter such as appears in the machine description. */
1442
1443 #define REG_CLASS_FROM_LETTER(C) \
1444 ((C) == 'r' ? GENERAL_REGS : \
1445 (C) == 'R' ? LEGACY_REGS : \
1446 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1447 (C) == 'Q' ? Q_REGS : \
1448 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1449 ? FLOAT_REGS \
1450 : NO_REGS) : \
1451 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1452 ? FP_TOP_REG \
1453 : NO_REGS) : \
1454 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1455 ? FP_SECOND_REG \
1456 : NO_REGS) : \
1457 (C) == 'a' ? AREG : \
1458 (C) == 'b' ? BREG : \
1459 (C) == 'c' ? CREG : \
1460 (C) == 'd' ? DREG : \
1461 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1462 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1463 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
1464 (C) == 'A' ? AD_REGS : \
1465 (C) == 'D' ? DIREG : \
1466 (C) == 'S' ? SIREG : NO_REGS)
1467
1468 /* The letters I, J, K, L and M in a register constraint string
1469 can be used to stand for particular ranges of immediate operands.
1470 This macro defines what the ranges are.
1471 C is the letter, and VALUE is a constant value.
1472 Return 1 if VALUE is in the range specified by C.
1473
1474 I is for non-DImode shifts.
1475 J is for DImode shifts.
1476 K is for signed imm8 operands.
1477 L is for andsi as zero-extending move.
1478 M is for shifts that can be executed by the "lea" opcode.
1479 N is for immediate operands for out/in instructions (0-255)
1480 */
1481
1482 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1483 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1484 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1485 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1486 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1487 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1488 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
1489 : 0)
1490
1491 /* Similar, but for floating constants, and defining letters G and H.
1492 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1493 TARGET_387 isn't set, because the stack register converter may need to
1494 load 0.0 into the function value register. */
1495
1496 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1497 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1498 : 0)
1499
1500 /* A C expression that defines the optional machine-dependent
1501 constraint letters that can be used to segregate specific types of
1502 operands, usually memory references, for the target machine. Any
1503 letter that is not elsewhere defined and not matched by
1504 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1505 be defined.
1506
1507 If it is required for a particular target machine, it should
1508 return 1 if VALUE corresponds to the operand type represented by
1509 the constraint letter C. If C is not defined as an extra
1510 constraint, the value returned should be 0 regardless of VALUE. */
1511
1512 #define EXTRA_CONSTRAINT(VALUE, D) \
1513 ((D) == 'e' ? x86_64_sign_extended_value (VALUE) \
1514 : (D) == 'Z' ? x86_64_zero_extended_value (VALUE) \
1515 : (D) == 'C' ? standard_sse_constant_p (VALUE) \
1516 : 0)
1517
1518 /* Place additional restrictions on the register class to use when it
1519 is necessary to be able to hold a value of mode MODE in a reload
1520 register for which class CLASS would ordinarily be used. */
1521
1522 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1523 ((MODE) == QImode && !TARGET_64BIT \
1524 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1525 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1526 ? Q_REGS : (CLASS))
1527
1528 /* Given an rtx X being reloaded into a reg required to be
1529 in class CLASS, return the class of reg to actually use.
1530 In general this is just CLASS; but on some machines
1531 in some cases it is preferable to use a more restrictive class.
1532 On the 80386 series, we prevent floating constants from being
1533 reloaded into floating registers (since no move-insn can do that)
1534 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1535
1536 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1537 QImode must go into class Q_REGS.
1538 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1539 movdf to do mem-to-mem moves through integer regs. */
1540
1541 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1542 ix86_preferred_reload_class ((X), (CLASS))
1543
1544 /* If we are copying between general and FP registers, we need a memory
1545 location. The same is true for SSE and MMX registers. */
1546 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1547 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1548
1549 /* QImode spills from non-QI registers need a scratch. This does not
1550 happen often -- the only example so far requires an uninitialized
1551 pseudo. */
1552
1553 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
1554 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1555 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
1556 ? Q_REGS : NO_REGS)
1557
1558 /* Return the maximum number of consecutive registers
1559 needed to represent mode MODE in a register of class CLASS. */
1560 /* On the 80386, this is the size of MODE in words,
1561 except in the FP regs, where a single reg is always enough. */
1562 #define CLASS_MAX_NREGS(CLASS, MODE) \
1563 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1564 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1565 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1566 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1567
1568 /* A C expression whose value is nonzero if pseudos that have been
1569 assigned to registers of class CLASS would likely be spilled
1570 because registers of CLASS are needed for spill registers.
1571
1572 The default value of this macro returns 1 if CLASS has exactly one
1573 register and zero otherwise. On most machines, this default
1574 should be used. Only define this macro to some other expression
1575 if pseudo allocated by `local-alloc.c' end up in memory because
1576 their hard registers were needed for spill registers. If this
1577 macro returns nonzero for those classes, those pseudos will only
1578 be allocated by `global.c', which knows how to reallocate the
1579 pseudo to another register. If there would not be another
1580 register available for reallocation, you should not change the
1581 definition of this macro since the only effect of such a
1582 definition would be to slow down register allocation. */
1583
1584 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1585 (((CLASS) == AREG) \
1586 || ((CLASS) == DREG) \
1587 || ((CLASS) == CREG) \
1588 || ((CLASS) == BREG) \
1589 || ((CLASS) == AD_REGS) \
1590 || ((CLASS) == SIREG) \
1591 || ((CLASS) == DIREG))
1592
1593 /* Return a class of registers that cannot change FROM mode to TO mode.
1594
1595 x87 registers can't do subreg as all values are reformated to extended
1596 precision. XMM registers does not support with nonzero offsets equal
1597 to 4, 8 and 12 otherwise valid for integer registers. Since we can't
1598 determine these, prohibit all nonparadoxical subregs changing size. */
1599
1600 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1601 (GET_MODE_SIZE (TO) < GET_MODE_SIZE (FROM) \
1602 ? reg_classes_intersect_p (FLOAT_SSE_REGS, (CLASS)) \
1603 || MAYBE_MMX_CLASS_P (CLASS) \
1604 : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1605 ? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)
1606
1607 /* A C statement that adds to CLOBBERS any hard regs the port wishes
1608 to automatically clobber for all asms.
1609
1610 We do this in the new i386 backend to maintain source compatibility
1611 with the old cc0-based compiler. */
1612
1613 #define MD_ASM_CLOBBERS(CLOBBERS) \
1614 do { \
1615 (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \
1616 (CLOBBERS)); \
1617 (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \
1618 (CLOBBERS)); \
1619 (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \
1620 (CLOBBERS)); \
1621 } while (0)
1622 \f
1623 /* Stack layout; function entry, exit and calling. */
1624
1625 /* Define this if pushing a word on the stack
1626 makes the stack pointer a smaller address. */
1627 #define STACK_GROWS_DOWNWARD
1628
1629 /* Define this if the nominal address of the stack frame
1630 is at the high-address end of the local variables;
1631 that is, each additional local variable allocated
1632 goes at a more negative offset in the frame. */
1633 #define FRAME_GROWS_DOWNWARD
1634
1635 /* Offset within stack frame to start allocating local variables at.
1636 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1637 first local allocated. Otherwise, it is the offset to the BEGINNING
1638 of the first local allocated. */
1639 #define STARTING_FRAME_OFFSET 0
1640
1641 /* If we generate an insn to push BYTES bytes,
1642 this says how many the stack pointer really advances by.
1643 On 386 pushw decrements by exactly 2 no matter what the position was.
1644 On the 386 there is no pushb; we use pushw instead, and this
1645 has the effect of rounding up to 2.
1646
1647 For 64bit ABI we round up to 8 bytes.
1648 */
1649
1650 #define PUSH_ROUNDING(BYTES) \
1651 (TARGET_64BIT \
1652 ? (((BYTES) + 7) & (-8)) \
1653 : (((BYTES) + 1) & (-2)))
1654
1655 /* If defined, the maximum amount of space required for outgoing arguments will
1656 be computed and placed into the variable
1657 `current_function_outgoing_args_size'. No space will be pushed onto the
1658 stack for each call; instead, the function prologue should increase the stack
1659 frame size by this amount. */
1660
1661 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1662
1663 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1664 instructions to pass outgoing arguments. */
1665
1666 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1667
1668 /* We want the stack and args grow in opposite directions, even if
1669 PUSH_ARGS is 0. */
1670 #define PUSH_ARGS_REVERSED 1
1671
1672 /* Offset of first parameter from the argument pointer register value. */
1673 #define FIRST_PARM_OFFSET(FNDECL) 0
1674
1675 /* Define this macro if functions should assume that stack space has been
1676 allocated for arguments even when their values are passed in registers.
1677
1678 The value of this macro is the size, in bytes, of the area reserved for
1679 arguments passed in registers for the function represented by FNDECL.
1680
1681 This space can be allocated by the caller, or be a part of the
1682 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1683 which. */
1684 #define REG_PARM_STACK_SPACE(FNDECL) 0
1685
1686 /* Define as a C expression that evaluates to nonzero if we do not know how
1687 to pass TYPE solely in registers. The file expr.h defines a
1688 definition that is usually appropriate, refer to expr.h for additional
1689 documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1690 computed in the stack and then loaded into a register. */
1691 #define MUST_PASS_IN_STACK(MODE, TYPE) ix86_must_pass_in_stack ((MODE), (TYPE))
1692
1693 /* Value is the number of bytes of arguments automatically
1694 popped when returning from a subroutine call.
1695 FUNDECL is the declaration node of the function (as a tree),
1696 FUNTYPE is the data type of the function (as a tree),
1697 or for a library call it is an identifier node for the subroutine name.
1698 SIZE is the number of bytes of arguments passed on the stack.
1699
1700 On the 80386, the RTD insn may be used to pop them if the number
1701 of args is fixed, but if the number is variable then the caller
1702 must pop them all. RTD can't be used for library calls now
1703 because the library is compiled with the Unix compiler.
1704 Use of RTD is a selectable option, since it is incompatible with
1705 standard Unix calling sequences. If the option is not selected,
1706 the caller must always pop the args.
1707
1708 The attribute stdcall is equivalent to RTD on a per module basis. */
1709
1710 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1711 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1712
1713 /* Define how to find the value returned by a function.
1714 VALTYPE is the data type of the value (as a tree).
1715 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1716 otherwise, FUNC is 0. */
1717 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1718 ix86_function_value (VALTYPE)
1719
1720 #define FUNCTION_VALUE_REGNO_P(N) \
1721 ix86_function_value_regno_p (N)
1722
1723 /* Define how to find the value returned by a library function
1724 assuming the value has mode MODE. */
1725
1726 #define LIBCALL_VALUE(MODE) \
1727 ix86_libcall_value (MODE)
1728
1729 /* Define the size of the result block used for communication between
1730 untyped_call and untyped_return. The block contains a DImode value
1731 followed by the block used by fnsave and frstor. */
1732
1733 #define APPLY_RESULT_SIZE (8+108)
1734
1735 /* 1 if N is a possible register number for function argument passing. */
1736 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1737
1738 /* Define a data type for recording info about an argument list
1739 during the scan of that argument list. This data type should
1740 hold all necessary information about the function itself
1741 and about the args processed so far, enough to enable macros
1742 such as FUNCTION_ARG to determine where the next arg should go. */
1743
1744 typedef struct ix86_args {
1745 int words; /* # words passed so far */
1746 int nregs; /* # registers available for passing */
1747 int regno; /* next available register number */
1748 int fastcall; /* fastcall calling convention is used */
1749 int sse_words; /* # sse words passed so far */
1750 int sse_nregs; /* # sse registers available for passing */
1751 int sse_regno; /* next available sse register number */
1752 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1753 } CUMULATIVE_ARGS;
1754
1755 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1756 for a call to a function whose data type is FNTYPE.
1757 For a library call, FNTYPE is 0. */
1758
1759 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL) \
1760 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1761
1762 /* Update the data in CUM to advance over an argument
1763 of mode MODE and data type TYPE.
1764 (TYPE is null for libcalls where that information may not be available.) */
1765
1766 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1767 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1768
1769 /* Define where to put the arguments to a function.
1770 Value is zero to push the argument on the stack,
1771 or a hard register in which to store the argument.
1772
1773 MODE is the argument's machine mode.
1774 TYPE is the data type of the argument (as a tree).
1775 This is null for libcalls where that information may
1776 not be available.
1777 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1778 the preceding args and about the function being called.
1779 NAMED is nonzero if this argument is a named parameter
1780 (otherwise it is an extra parameter matching an ellipsis). */
1781
1782 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1783 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1784
1785 /* For an arg passed partly in registers and partly in memory,
1786 this is the number of registers used.
1787 For args passed entirely in registers or entirely in memory, zero. */
1788
1789 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1790
1791 /* A C expression that indicates when an argument must be passed by
1792 reference. If nonzero for an argument, a copy of that argument is
1793 made in memory and a pointer to the argument is passed instead of
1794 the argument itself. The pointer is passed in whatever way is
1795 appropriate for passing a pointer to that type. */
1796
1797 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1798 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1799
1800 /* Perform any needed actions needed for a function that is receiving a
1801 variable number of arguments.
1802
1803 CUM is as above.
1804
1805 MODE and TYPE are the mode and type of the current parameter.
1806
1807 PRETEND_SIZE is a variable that should be set to the amount of stack
1808 that must be pushed by the prolog to pretend that our caller pushed
1809 it.
1810
1811 Normally, this macro will push all remaining incoming registers on the
1812 stack and set PRETEND_SIZE to the length of the registers pushed. */
1813
1814 #define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1815 ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1816 (NO_RTL))
1817
1818 /* Implement `va_start' for varargs and stdarg. */
1819 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1820 ix86_va_start (VALIST, NEXTARG)
1821
1822 /* Implement `va_arg'. */
1823 #define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1824 ix86_va_arg ((VALIST), (TYPE))
1825
1826 #define TARGET_ASM_FILE_END ix86_file_end
1827 #define NEED_INDICATE_EXEC_STACK 0
1828
1829 /* Output assembler code to FILE to increment profiler label # LABELNO
1830 for profiling a function entry. */
1831
1832 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1833
1834 #define MCOUNT_NAME "_mcount"
1835
1836 #define PROFILE_COUNT_REGISTER "edx"
1837
1838 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1839 the stack pointer does not matter. The value is tested only in
1840 functions that have frame pointers.
1841 No definition is equivalent to always zero. */
1842 /* Note on the 386 it might be more efficient not to define this since
1843 we have to restore it ourselves from the frame pointer, in order to
1844 use pop */
1845
1846 #define EXIT_IGNORE_STACK 1
1847
1848 /* Output assembler code for a block containing the constant parts
1849 of a trampoline, leaving space for the variable parts. */
1850
1851 /* On the 386, the trampoline contains two instructions:
1852 mov #STATIC,ecx
1853 jmp FUNCTION
1854 The trampoline is generated entirely at runtime. The operand of JMP
1855 is the address of FUNCTION relative to the instruction following the
1856 JMP (which is 5 bytes long). */
1857
1858 /* Length in units of the trampoline for entering a nested function. */
1859
1860 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1861
1862 /* Emit RTL insns to initialize the variable parts of a trampoline.
1863 FNADDR is an RTX for the address of the function's pure code.
1864 CXT is an RTX for the static chain value for the function. */
1865
1866 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1867 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1868 \f
1869 /* Definitions for register eliminations.
1870
1871 This is an array of structures. Each structure initializes one pair
1872 of eliminable registers. The "from" register number is given first,
1873 followed by "to". Eliminations of the same "from" register are listed
1874 in order of preference.
1875
1876 There are two registers that can always be eliminated on the i386.
1877 The frame pointer and the arg pointer can be replaced by either the
1878 hard frame pointer or to the stack pointer, depending upon the
1879 circumstances. The hard frame pointer is not used before reload and
1880 so it is not eligible for elimination. */
1881
1882 #define ELIMINABLE_REGS \
1883 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1884 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1885 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1886 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1887
1888 /* Given FROM and TO register numbers, say whether this elimination is
1889 allowed. Frame pointer elimination is automatically handled.
1890
1891 All other eliminations are valid. */
1892
1893 #define CAN_ELIMINATE(FROM, TO) \
1894 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1895
1896 /* Define the offset between two registers, one to be eliminated, and the other
1897 its replacement, at the start of a routine. */
1898
1899 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1900 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1901 \f
1902 /* Addressing modes, and classification of registers for them. */
1903
1904 /* Macros to check register numbers against specific register classes. */
1905
1906 /* These assume that REGNO is a hard or pseudo reg number.
1907 They give nonzero only if REGNO is a hard reg of the suitable class
1908 or a pseudo reg currently allocated to a suitable hard reg.
1909 Since they use reg_renumber, they are safe only once reg_renumber
1910 has been allocated, which happens in local-alloc.c. */
1911
1912 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1913 ((REGNO) < STACK_POINTER_REGNUM \
1914 || (REGNO >= FIRST_REX_INT_REG \
1915 && (REGNO) <= LAST_REX_INT_REG) \
1916 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1917 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1918 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1919
1920 #define REGNO_OK_FOR_BASE_P(REGNO) \
1921 ((REGNO) <= STACK_POINTER_REGNUM \
1922 || (REGNO) == ARG_POINTER_REGNUM \
1923 || (REGNO) == FRAME_POINTER_REGNUM \
1924 || (REGNO >= FIRST_REX_INT_REG \
1925 && (REGNO) <= LAST_REX_INT_REG) \
1926 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1927 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1928 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1929
1930 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1931 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1932 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1933 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1934
1935 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1936 and check its validity for a certain class.
1937 We have two alternate definitions for each of them.
1938 The usual definition accepts all pseudo regs; the other rejects
1939 them unless they have been allocated suitable hard regs.
1940 The symbol REG_OK_STRICT causes the latter definition to be used.
1941
1942 Most source files want to accept pseudo regs in the hope that
1943 they will get allocated to the class that the insn wants them to be in.
1944 Source files for reload pass need to be strict.
1945 After reload, it makes no difference, since pseudo regs have
1946 been eliminated by then. */
1947
1948
1949 /* Non strict versions, pseudos are ok */
1950 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1951 (REGNO (X) < STACK_POINTER_REGNUM \
1952 || (REGNO (X) >= FIRST_REX_INT_REG \
1953 && REGNO (X) <= LAST_REX_INT_REG) \
1954 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1955
1956 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1957 (REGNO (X) <= STACK_POINTER_REGNUM \
1958 || REGNO (X) == ARG_POINTER_REGNUM \
1959 || REGNO (X) == FRAME_POINTER_REGNUM \
1960 || (REGNO (X) >= FIRST_REX_INT_REG \
1961 && REGNO (X) <= LAST_REX_INT_REG) \
1962 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1963
1964 /* Strict versions, hard registers only */
1965 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1966 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1967
1968 #ifndef REG_OK_STRICT
1969 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1970 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1971
1972 #else
1973 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1974 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1975 #endif
1976
1977 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1978 that is a valid memory address for an instruction.
1979 The MODE argument is the machine mode for the MEM expression
1980 that wants to use this address.
1981
1982 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1983 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1984
1985 See legitimize_pic_address in i386.c for details as to what
1986 constitutes a legitimate address when -fpic is used. */
1987
1988 #define MAX_REGS_PER_ADDRESS 2
1989
1990 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1991
1992 /* Nonzero if the constant value X is a legitimate general operand.
1993 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1994
1995 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1996
1997 #ifdef REG_OK_STRICT
1998 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1999 do { \
2000 if (legitimate_address_p ((MODE), (X), 1)) \
2001 goto ADDR; \
2002 } while (0)
2003
2004 #else
2005 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2006 do { \
2007 if (legitimate_address_p ((MODE), (X), 0)) \
2008 goto ADDR; \
2009 } while (0)
2010
2011 #endif
2012
2013 /* If defined, a C expression to determine the base term of address X.
2014 This macro is used in only one place: `find_base_term' in alias.c.
2015
2016 It is always safe for this macro to not be defined. It exists so
2017 that alias analysis can understand machine-dependent addresses.
2018
2019 The typical use of this macro is to handle addresses containing
2020 a label_ref or symbol_ref within an UNSPEC. */
2021
2022 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
2023
2024 /* Try machine-dependent ways of modifying an illegitimate address
2025 to be legitimate. If we find one, return the new, valid address.
2026 This macro is used in only one place: `memory_address' in explow.c.
2027
2028 OLDX is the address as it was before break_out_memory_refs was called.
2029 In some cases it is useful to look at this to decide what needs to be done.
2030
2031 MODE and WIN are passed so that this macro can use
2032 GO_IF_LEGITIMATE_ADDRESS.
2033
2034 It is always safe for this macro to do nothing. It exists to recognize
2035 opportunities to optimize the output.
2036
2037 For the 80386, we handle X+REG by loading X into a register R and
2038 using R+REG. R will go in a general reg and indexing will be used.
2039 However, if REG is a broken-out memory address or multiplication,
2040 nothing needs to be done because REG can certainly go in a general reg.
2041
2042 When -fpic is used, special handling is needed for symbolic references.
2043 See comments by legitimize_pic_address in i386.c for details. */
2044
2045 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
2046 do { \
2047 (X) = legitimize_address ((X), (OLDX), (MODE)); \
2048 if (memory_address_p ((MODE), (X))) \
2049 goto WIN; \
2050 } while (0)
2051
2052 #define REWRITE_ADDRESS(X) rewrite_address (X)
2053
2054 /* Nonzero if the constant value X is a legitimate general operand
2055 when generating PIC code. It is given that flag_pic is on and
2056 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
2057
2058 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
2059
2060 #define SYMBOLIC_CONST(X) \
2061 (GET_CODE (X) == SYMBOL_REF \
2062 || GET_CODE (X) == LABEL_REF \
2063 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2064
2065 /* Go to LABEL if ADDR (a legitimate address expression)
2066 has an effect that depends on the machine mode it is used for.
2067 On the 80386, only postdecrement and postincrement address depend thus
2068 (the amount of decrement or increment being the length of the operand). */
2069 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2070 do { \
2071 if (GET_CODE (ADDR) == POST_INC \
2072 || GET_CODE (ADDR) == POST_DEC) \
2073 goto LABEL; \
2074 } while (0)
2075 \f
2076 /* Codes for all the SSE/MMX builtins. */
2077 enum ix86_builtins
2078 {
2079 IX86_BUILTIN_ADDPS,
2080 IX86_BUILTIN_ADDSS,
2081 IX86_BUILTIN_DIVPS,
2082 IX86_BUILTIN_DIVSS,
2083 IX86_BUILTIN_MULPS,
2084 IX86_BUILTIN_MULSS,
2085 IX86_BUILTIN_SUBPS,
2086 IX86_BUILTIN_SUBSS,
2087
2088 IX86_BUILTIN_CMPEQPS,
2089 IX86_BUILTIN_CMPLTPS,
2090 IX86_BUILTIN_CMPLEPS,
2091 IX86_BUILTIN_CMPGTPS,
2092 IX86_BUILTIN_CMPGEPS,
2093 IX86_BUILTIN_CMPNEQPS,
2094 IX86_BUILTIN_CMPNLTPS,
2095 IX86_BUILTIN_CMPNLEPS,
2096 IX86_BUILTIN_CMPNGTPS,
2097 IX86_BUILTIN_CMPNGEPS,
2098 IX86_BUILTIN_CMPORDPS,
2099 IX86_BUILTIN_CMPUNORDPS,
2100 IX86_BUILTIN_CMPNEPS,
2101 IX86_BUILTIN_CMPEQSS,
2102 IX86_BUILTIN_CMPLTSS,
2103 IX86_BUILTIN_CMPLESS,
2104 IX86_BUILTIN_CMPNEQSS,
2105 IX86_BUILTIN_CMPNLTSS,
2106 IX86_BUILTIN_CMPNLESS,
2107 IX86_BUILTIN_CMPORDSS,
2108 IX86_BUILTIN_CMPUNORDSS,
2109 IX86_BUILTIN_CMPNESS,
2110
2111 IX86_BUILTIN_COMIEQSS,
2112 IX86_BUILTIN_COMILTSS,
2113 IX86_BUILTIN_COMILESS,
2114 IX86_BUILTIN_COMIGTSS,
2115 IX86_BUILTIN_COMIGESS,
2116 IX86_BUILTIN_COMINEQSS,
2117 IX86_BUILTIN_UCOMIEQSS,
2118 IX86_BUILTIN_UCOMILTSS,
2119 IX86_BUILTIN_UCOMILESS,
2120 IX86_BUILTIN_UCOMIGTSS,
2121 IX86_BUILTIN_UCOMIGESS,
2122 IX86_BUILTIN_UCOMINEQSS,
2123
2124 IX86_BUILTIN_CVTPI2PS,
2125 IX86_BUILTIN_CVTPS2PI,
2126 IX86_BUILTIN_CVTSI2SS,
2127 IX86_BUILTIN_CVTSI642SS,
2128 IX86_BUILTIN_CVTSS2SI,
2129 IX86_BUILTIN_CVTSS2SI64,
2130 IX86_BUILTIN_CVTTPS2PI,
2131 IX86_BUILTIN_CVTTSS2SI,
2132 IX86_BUILTIN_CVTTSS2SI64,
2133
2134 IX86_BUILTIN_MAXPS,
2135 IX86_BUILTIN_MAXSS,
2136 IX86_BUILTIN_MINPS,
2137 IX86_BUILTIN_MINSS,
2138
2139 IX86_BUILTIN_LOADAPS,
2140 IX86_BUILTIN_LOADUPS,
2141 IX86_BUILTIN_STOREAPS,
2142 IX86_BUILTIN_STOREUPS,
2143 IX86_BUILTIN_LOADSS,
2144 IX86_BUILTIN_STORESS,
2145 IX86_BUILTIN_MOVSS,
2146
2147 IX86_BUILTIN_MOVHLPS,
2148 IX86_BUILTIN_MOVLHPS,
2149 IX86_BUILTIN_LOADHPS,
2150 IX86_BUILTIN_LOADLPS,
2151 IX86_BUILTIN_STOREHPS,
2152 IX86_BUILTIN_STORELPS,
2153
2154 IX86_BUILTIN_MASKMOVQ,
2155 IX86_BUILTIN_MOVMSKPS,
2156 IX86_BUILTIN_PMOVMSKB,
2157
2158 IX86_BUILTIN_MOVNTPS,
2159 IX86_BUILTIN_MOVNTQ,
2160
2161 IX86_BUILTIN_LOADDQA,
2162 IX86_BUILTIN_LOADDQU,
2163 IX86_BUILTIN_STOREDQA,
2164 IX86_BUILTIN_STOREDQU,
2165 IX86_BUILTIN_MOVQ,
2166 IX86_BUILTIN_LOADD,
2167 IX86_BUILTIN_STORED,
2168
2169 IX86_BUILTIN_CLRTI,
2170
2171 IX86_BUILTIN_PACKSSWB,
2172 IX86_BUILTIN_PACKSSDW,
2173 IX86_BUILTIN_PACKUSWB,
2174
2175 IX86_BUILTIN_PADDB,
2176 IX86_BUILTIN_PADDW,
2177 IX86_BUILTIN_PADDD,
2178 IX86_BUILTIN_PADDQ,
2179 IX86_BUILTIN_PADDSB,
2180 IX86_BUILTIN_PADDSW,
2181 IX86_BUILTIN_PADDUSB,
2182 IX86_BUILTIN_PADDUSW,
2183 IX86_BUILTIN_PSUBB,
2184 IX86_BUILTIN_PSUBW,
2185 IX86_BUILTIN_PSUBD,
2186 IX86_BUILTIN_PSUBQ,
2187 IX86_BUILTIN_PSUBSB,
2188 IX86_BUILTIN_PSUBSW,
2189 IX86_BUILTIN_PSUBUSB,
2190 IX86_BUILTIN_PSUBUSW,
2191
2192 IX86_BUILTIN_PAND,
2193 IX86_BUILTIN_PANDN,
2194 IX86_BUILTIN_POR,
2195 IX86_BUILTIN_PXOR,
2196
2197 IX86_BUILTIN_PAVGB,
2198 IX86_BUILTIN_PAVGW,
2199
2200 IX86_BUILTIN_PCMPEQB,
2201 IX86_BUILTIN_PCMPEQW,
2202 IX86_BUILTIN_PCMPEQD,
2203 IX86_BUILTIN_PCMPGTB,
2204 IX86_BUILTIN_PCMPGTW,
2205 IX86_BUILTIN_PCMPGTD,
2206
2207 IX86_BUILTIN_PEXTRW,
2208 IX86_BUILTIN_PINSRW,
2209
2210 IX86_BUILTIN_PMADDWD,
2211
2212 IX86_BUILTIN_PMAXSW,
2213 IX86_BUILTIN_PMAXUB,
2214 IX86_BUILTIN_PMINSW,
2215 IX86_BUILTIN_PMINUB,
2216
2217 IX86_BUILTIN_PMULHUW,
2218 IX86_BUILTIN_PMULHW,
2219 IX86_BUILTIN_PMULLW,
2220
2221 IX86_BUILTIN_PSADBW,
2222 IX86_BUILTIN_PSHUFW,
2223
2224 IX86_BUILTIN_PSLLW,
2225 IX86_BUILTIN_PSLLD,
2226 IX86_BUILTIN_PSLLQ,
2227 IX86_BUILTIN_PSRAW,
2228 IX86_BUILTIN_PSRAD,
2229 IX86_BUILTIN_PSRLW,
2230 IX86_BUILTIN_PSRLD,
2231 IX86_BUILTIN_PSRLQ,
2232 IX86_BUILTIN_PSLLWI,
2233 IX86_BUILTIN_PSLLDI,
2234 IX86_BUILTIN_PSLLQI,
2235 IX86_BUILTIN_PSRAWI,
2236 IX86_BUILTIN_PSRADI,
2237 IX86_BUILTIN_PSRLWI,
2238 IX86_BUILTIN_PSRLDI,
2239 IX86_BUILTIN_PSRLQI,
2240
2241 IX86_BUILTIN_PUNPCKHBW,
2242 IX86_BUILTIN_PUNPCKHWD,
2243 IX86_BUILTIN_PUNPCKHDQ,
2244 IX86_BUILTIN_PUNPCKLBW,
2245 IX86_BUILTIN_PUNPCKLWD,
2246 IX86_BUILTIN_PUNPCKLDQ,
2247
2248 IX86_BUILTIN_SHUFPS,
2249
2250 IX86_BUILTIN_RCPPS,
2251 IX86_BUILTIN_RCPSS,
2252 IX86_BUILTIN_RSQRTPS,
2253 IX86_BUILTIN_RSQRTSS,
2254 IX86_BUILTIN_SQRTPS,
2255 IX86_BUILTIN_SQRTSS,
2256
2257 IX86_BUILTIN_UNPCKHPS,
2258 IX86_BUILTIN_UNPCKLPS,
2259
2260 IX86_BUILTIN_ANDPS,
2261 IX86_BUILTIN_ANDNPS,
2262 IX86_BUILTIN_ORPS,
2263 IX86_BUILTIN_XORPS,
2264
2265 IX86_BUILTIN_EMMS,
2266 IX86_BUILTIN_LDMXCSR,
2267 IX86_BUILTIN_STMXCSR,
2268 IX86_BUILTIN_SFENCE,
2269
2270 /* 3DNow! Original */
2271 IX86_BUILTIN_FEMMS,
2272 IX86_BUILTIN_PAVGUSB,
2273 IX86_BUILTIN_PF2ID,
2274 IX86_BUILTIN_PFACC,
2275 IX86_BUILTIN_PFADD,
2276 IX86_BUILTIN_PFCMPEQ,
2277 IX86_BUILTIN_PFCMPGE,
2278 IX86_BUILTIN_PFCMPGT,
2279 IX86_BUILTIN_PFMAX,
2280 IX86_BUILTIN_PFMIN,
2281 IX86_BUILTIN_PFMUL,
2282 IX86_BUILTIN_PFRCP,
2283 IX86_BUILTIN_PFRCPIT1,
2284 IX86_BUILTIN_PFRCPIT2,
2285 IX86_BUILTIN_PFRSQIT1,
2286 IX86_BUILTIN_PFRSQRT,
2287 IX86_BUILTIN_PFSUB,
2288 IX86_BUILTIN_PFSUBR,
2289 IX86_BUILTIN_PI2FD,
2290 IX86_BUILTIN_PMULHRW,
2291
2292 /* 3DNow! Athlon Extensions */
2293 IX86_BUILTIN_PF2IW,
2294 IX86_BUILTIN_PFNACC,
2295 IX86_BUILTIN_PFPNACC,
2296 IX86_BUILTIN_PI2FW,
2297 IX86_BUILTIN_PSWAPDSI,
2298 IX86_BUILTIN_PSWAPDSF,
2299
2300 IX86_BUILTIN_SSE_ZERO,
2301 IX86_BUILTIN_MMX_ZERO,
2302
2303 /* SSE2 */
2304 IX86_BUILTIN_ADDPD,
2305 IX86_BUILTIN_ADDSD,
2306 IX86_BUILTIN_DIVPD,
2307 IX86_BUILTIN_DIVSD,
2308 IX86_BUILTIN_MULPD,
2309 IX86_BUILTIN_MULSD,
2310 IX86_BUILTIN_SUBPD,
2311 IX86_BUILTIN_SUBSD,
2312
2313 IX86_BUILTIN_CMPEQPD,
2314 IX86_BUILTIN_CMPLTPD,
2315 IX86_BUILTIN_CMPLEPD,
2316 IX86_BUILTIN_CMPGTPD,
2317 IX86_BUILTIN_CMPGEPD,
2318 IX86_BUILTIN_CMPNEQPD,
2319 IX86_BUILTIN_CMPNLTPD,
2320 IX86_BUILTIN_CMPNLEPD,
2321 IX86_BUILTIN_CMPNGTPD,
2322 IX86_BUILTIN_CMPNGEPD,
2323 IX86_BUILTIN_CMPORDPD,
2324 IX86_BUILTIN_CMPUNORDPD,
2325 IX86_BUILTIN_CMPNEPD,
2326 IX86_BUILTIN_CMPEQSD,
2327 IX86_BUILTIN_CMPLTSD,
2328 IX86_BUILTIN_CMPLESD,
2329 IX86_BUILTIN_CMPNEQSD,
2330 IX86_BUILTIN_CMPNLTSD,
2331 IX86_BUILTIN_CMPNLESD,
2332 IX86_BUILTIN_CMPORDSD,
2333 IX86_BUILTIN_CMPUNORDSD,
2334 IX86_BUILTIN_CMPNESD,
2335
2336 IX86_BUILTIN_COMIEQSD,
2337 IX86_BUILTIN_COMILTSD,
2338 IX86_BUILTIN_COMILESD,
2339 IX86_BUILTIN_COMIGTSD,
2340 IX86_BUILTIN_COMIGESD,
2341 IX86_BUILTIN_COMINEQSD,
2342 IX86_BUILTIN_UCOMIEQSD,
2343 IX86_BUILTIN_UCOMILTSD,
2344 IX86_BUILTIN_UCOMILESD,
2345 IX86_BUILTIN_UCOMIGTSD,
2346 IX86_BUILTIN_UCOMIGESD,
2347 IX86_BUILTIN_UCOMINEQSD,
2348
2349 IX86_BUILTIN_MAXPD,
2350 IX86_BUILTIN_MAXSD,
2351 IX86_BUILTIN_MINPD,
2352 IX86_BUILTIN_MINSD,
2353
2354 IX86_BUILTIN_ANDPD,
2355 IX86_BUILTIN_ANDNPD,
2356 IX86_BUILTIN_ORPD,
2357 IX86_BUILTIN_XORPD,
2358
2359 IX86_BUILTIN_SQRTPD,
2360 IX86_BUILTIN_SQRTSD,
2361
2362 IX86_BUILTIN_UNPCKHPD,
2363 IX86_BUILTIN_UNPCKLPD,
2364
2365 IX86_BUILTIN_SHUFPD,
2366
2367 IX86_BUILTIN_LOADAPD,
2368 IX86_BUILTIN_LOADUPD,
2369 IX86_BUILTIN_STOREAPD,
2370 IX86_BUILTIN_STOREUPD,
2371 IX86_BUILTIN_LOADSD,
2372 IX86_BUILTIN_STORESD,
2373 IX86_BUILTIN_MOVSD,
2374
2375 IX86_BUILTIN_LOADHPD,
2376 IX86_BUILTIN_LOADLPD,
2377 IX86_BUILTIN_STOREHPD,
2378 IX86_BUILTIN_STORELPD,
2379
2380 IX86_BUILTIN_CVTDQ2PD,
2381 IX86_BUILTIN_CVTDQ2PS,
2382
2383 IX86_BUILTIN_CVTPD2DQ,
2384 IX86_BUILTIN_CVTPD2PI,
2385 IX86_BUILTIN_CVTPD2PS,
2386 IX86_BUILTIN_CVTTPD2DQ,
2387 IX86_BUILTIN_CVTTPD2PI,
2388
2389 IX86_BUILTIN_CVTPI2PD,
2390 IX86_BUILTIN_CVTSI2SD,
2391 IX86_BUILTIN_CVTSI642SD,
2392
2393 IX86_BUILTIN_CVTSD2SI,
2394 IX86_BUILTIN_CVTSD2SI64,
2395 IX86_BUILTIN_CVTSD2SS,
2396 IX86_BUILTIN_CVTSS2SD,
2397 IX86_BUILTIN_CVTTSD2SI,
2398 IX86_BUILTIN_CVTTSD2SI64,
2399
2400 IX86_BUILTIN_CVTPS2DQ,
2401 IX86_BUILTIN_CVTPS2PD,
2402 IX86_BUILTIN_CVTTPS2DQ,
2403
2404 IX86_BUILTIN_MOVNTI,
2405 IX86_BUILTIN_MOVNTPD,
2406 IX86_BUILTIN_MOVNTDQ,
2407
2408 IX86_BUILTIN_SETPD1,
2409 IX86_BUILTIN_SETPD,
2410 IX86_BUILTIN_CLRPD,
2411 IX86_BUILTIN_SETRPD,
2412 IX86_BUILTIN_LOADPD1,
2413 IX86_BUILTIN_LOADRPD,
2414 IX86_BUILTIN_STOREPD1,
2415 IX86_BUILTIN_STORERPD,
2416
2417 /* SSE2 MMX */
2418 IX86_BUILTIN_MASKMOVDQU,
2419 IX86_BUILTIN_MOVMSKPD,
2420 IX86_BUILTIN_PMOVMSKB128,
2421 IX86_BUILTIN_MOVQ2DQ,
2422 IX86_BUILTIN_MOVDQ2Q,
2423
2424 IX86_BUILTIN_PACKSSWB128,
2425 IX86_BUILTIN_PACKSSDW128,
2426 IX86_BUILTIN_PACKUSWB128,
2427
2428 IX86_BUILTIN_PADDB128,
2429 IX86_BUILTIN_PADDW128,
2430 IX86_BUILTIN_PADDD128,
2431 IX86_BUILTIN_PADDQ128,
2432 IX86_BUILTIN_PADDSB128,
2433 IX86_BUILTIN_PADDSW128,
2434 IX86_BUILTIN_PADDUSB128,
2435 IX86_BUILTIN_PADDUSW128,
2436 IX86_BUILTIN_PSUBB128,
2437 IX86_BUILTIN_PSUBW128,
2438 IX86_BUILTIN_PSUBD128,
2439 IX86_BUILTIN_PSUBQ128,
2440 IX86_BUILTIN_PSUBSB128,
2441 IX86_BUILTIN_PSUBSW128,
2442 IX86_BUILTIN_PSUBUSB128,
2443 IX86_BUILTIN_PSUBUSW128,
2444
2445 IX86_BUILTIN_PAND128,
2446 IX86_BUILTIN_PANDN128,
2447 IX86_BUILTIN_POR128,
2448 IX86_BUILTIN_PXOR128,
2449
2450 IX86_BUILTIN_PAVGB128,
2451 IX86_BUILTIN_PAVGW128,
2452
2453 IX86_BUILTIN_PCMPEQB128,
2454 IX86_BUILTIN_PCMPEQW128,
2455 IX86_BUILTIN_PCMPEQD128,
2456 IX86_BUILTIN_PCMPGTB128,
2457 IX86_BUILTIN_PCMPGTW128,
2458 IX86_BUILTIN_PCMPGTD128,
2459
2460 IX86_BUILTIN_PEXTRW128,
2461 IX86_BUILTIN_PINSRW128,
2462
2463 IX86_BUILTIN_PMADDWD128,
2464
2465 IX86_BUILTIN_PMAXSW128,
2466 IX86_BUILTIN_PMAXUB128,
2467 IX86_BUILTIN_PMINSW128,
2468 IX86_BUILTIN_PMINUB128,
2469
2470 IX86_BUILTIN_PMULUDQ,
2471 IX86_BUILTIN_PMULUDQ128,
2472 IX86_BUILTIN_PMULHUW128,
2473 IX86_BUILTIN_PMULHW128,
2474 IX86_BUILTIN_PMULLW128,
2475
2476 IX86_BUILTIN_PSADBW128,
2477 IX86_BUILTIN_PSHUFHW,
2478 IX86_BUILTIN_PSHUFLW,
2479 IX86_BUILTIN_PSHUFD,
2480
2481 IX86_BUILTIN_PSLLW128,
2482 IX86_BUILTIN_PSLLD128,
2483 IX86_BUILTIN_PSLLQ128,
2484 IX86_BUILTIN_PSRAW128,
2485 IX86_BUILTIN_PSRAD128,
2486 IX86_BUILTIN_PSRLW128,
2487 IX86_BUILTIN_PSRLD128,
2488 IX86_BUILTIN_PSRLQ128,
2489 IX86_BUILTIN_PSLLDQI128,
2490 IX86_BUILTIN_PSLLWI128,
2491 IX86_BUILTIN_PSLLDI128,
2492 IX86_BUILTIN_PSLLQI128,
2493 IX86_BUILTIN_PSRAWI128,
2494 IX86_BUILTIN_PSRADI128,
2495 IX86_BUILTIN_PSRLDQI128,
2496 IX86_BUILTIN_PSRLWI128,
2497 IX86_BUILTIN_PSRLDI128,
2498 IX86_BUILTIN_PSRLQI128,
2499
2500 IX86_BUILTIN_PUNPCKHBW128,
2501 IX86_BUILTIN_PUNPCKHWD128,
2502 IX86_BUILTIN_PUNPCKHDQ128,
2503 IX86_BUILTIN_PUNPCKHQDQ128,
2504 IX86_BUILTIN_PUNPCKLBW128,
2505 IX86_BUILTIN_PUNPCKLWD128,
2506 IX86_BUILTIN_PUNPCKLDQ128,
2507 IX86_BUILTIN_PUNPCKLQDQ128,
2508
2509 IX86_BUILTIN_CLFLUSH,
2510 IX86_BUILTIN_MFENCE,
2511 IX86_BUILTIN_LFENCE,
2512
2513 /* Prescott New Instructions. */
2514 IX86_BUILTIN_ADDSUBPS,
2515 IX86_BUILTIN_HADDPS,
2516 IX86_BUILTIN_HSUBPS,
2517 IX86_BUILTIN_MOVSHDUP,
2518 IX86_BUILTIN_MOVSLDUP,
2519 IX86_BUILTIN_ADDSUBPD,
2520 IX86_BUILTIN_HADDPD,
2521 IX86_BUILTIN_HSUBPD,
2522 IX86_BUILTIN_LOADDDUP,
2523 IX86_BUILTIN_MOVDDUP,
2524 IX86_BUILTIN_LDDQU,
2525
2526 IX86_BUILTIN_MONITOR,
2527 IX86_BUILTIN_MWAIT,
2528
2529 IX86_BUILTIN_MAX
2530 };
2531 \f
2532 /* Max number of args passed in registers. If this is more than 3, we will
2533 have problems with ebx (register #4), since it is a caller save register and
2534 is also used as the pic register in ELF. So for now, don't allow more than
2535 3 registers to be passed in registers. */
2536
2537 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2538
2539 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
2540
2541 \f
2542 /* Specify the machine mode that this machine uses
2543 for the index in the tablejump instruction. */
2544 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2545
2546 /* Define as C expression which evaluates to nonzero if the tablejump
2547 instruction expects the table to contain offsets from the address of the
2548 table.
2549 Do not define this if the table should contain absolute addresses. */
2550 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2551
2552 /* Define this as 1 if `char' should by default be signed; else as 0. */
2553 #define DEFAULT_SIGNED_CHAR 1
2554
2555 /* Number of bytes moved into a data cache for a single prefetch operation. */
2556 #define PREFETCH_BLOCK ix86_cost->prefetch_block
2557
2558 /* Number of prefetch operations that can be done in parallel. */
2559 #define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2560
2561 /* Max number of bytes we can move from memory to memory
2562 in one reasonably fast instruction. */
2563 #define MOVE_MAX 16
2564
2565 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
2566 move efficiently, as opposed to MOVE_MAX which is the maximum
2567 number of bytes we can move with a single instruction. */
2568 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2569
2570 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2571 move-instruction pairs, we will do a movstr or libcall instead.
2572 Increasing the value will always make code faster, but eventually
2573 incurs high cost in increased code size.
2574
2575 If you don't define this, a reasonable default is used. */
2576
2577 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2578
2579 /* Define if shifts truncate the shift count
2580 which implies one can omit a sign-extension or zero-extension
2581 of a shift count. */
2582 /* On i386, shifts do truncate the count. But bit opcodes don't. */
2583
2584 /* #define SHIFT_COUNT_TRUNCATED */
2585
2586 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2587 is done just by pretending it is already truncated. */
2588 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2589
2590 /* When a prototype says `char' or `short', really pass an `int'.
2591 (The 386 can't easily push less than an int.) */
2592
2593 #define PROMOTE_PROTOTYPES 1
2594
2595 /* A macro to update M and UNSIGNEDP when an object whose type is
2596 TYPE and which has the specified mode and signedness is to be
2597 stored in a register. This macro is only called when TYPE is a
2598 scalar type.
2599
2600 On i386 it is sometimes useful to promote HImode and QImode
2601 quantities to SImode. The choice depends on target type. */
2602
2603 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2604 do { \
2605 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2606 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
2607 (MODE) = SImode; \
2608 } while (0)
2609
2610 /* Specify the machine mode that pointers have.
2611 After generation of rtl, the compiler makes no further distinction
2612 between pointers and any other objects of this machine mode. */
2613 #define Pmode (TARGET_64BIT ? DImode : SImode)
2614
2615 /* A function address in a call instruction
2616 is a byte address (for indexing purposes)
2617 so give the MEM rtx a byte's mode. */
2618 #define FUNCTION_MODE QImode
2619 \f
2620 /* A C expression for the cost of moving data from a register in class FROM to
2621 one in class TO. The classes are expressed using the enumeration values
2622 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2623 interpreted relative to that.
2624
2625 It is not required that the cost always equal 2 when FROM is the same as TO;
2626 on some machines it is expensive to move between registers if they are not
2627 general registers. */
2628
2629 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2630 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2631
2632 /* A C expression for the cost of moving data of mode M between a
2633 register and memory. A value of 2 is the default; this cost is
2634 relative to those in `REGISTER_MOVE_COST'.
2635
2636 If moving between registers and memory is more expensive than
2637 between two registers, you should define this macro to express the
2638 relative cost. */
2639
2640 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2641 ix86_memory_move_cost ((MODE), (CLASS), (IN))
2642
2643 /* A C expression for the cost of a branch instruction. A value of 1
2644 is the default; other values are interpreted relative to that. */
2645
2646 #define BRANCH_COST ix86_branch_cost
2647
2648 /* Define this macro as a C expression which is nonzero if accessing
2649 less than a word of memory (i.e. a `char' or a `short') is no
2650 faster than accessing a word of memory, i.e., if such access
2651 require more than one instruction or if there is no difference in
2652 cost between byte and (aligned) word loads.
2653
2654 When this macro is not defined, the compiler will access a field by
2655 finding the smallest containing object; when it is defined, a
2656 fullword load will be used if alignment permits. Unless bytes
2657 accesses are faster than word accesses, using word accesses is
2658 preferable since it may eliminate subsequent memory access if
2659 subsequent accesses occur to other fields in the same word of the
2660 structure, but to different bytes. */
2661
2662 #define SLOW_BYTE_ACCESS 0
2663
2664 /* Nonzero if access to memory by shorts is slow and undesirable. */
2665 #define SLOW_SHORT_ACCESS 0
2666
2667 /* Define this macro to be the value 1 if unaligned accesses have a
2668 cost many times greater than aligned accesses, for example if they
2669 are emulated in a trap handler.
2670
2671 When this macro is nonzero, the compiler will act as if
2672 `STRICT_ALIGNMENT' were nonzero when generating code for block
2673 moves. This can cause significantly more instructions to be
2674 produced. Therefore, do not set this macro nonzero if unaligned
2675 accesses only add a cycle or two to the time for a memory access.
2676
2677 If the value of this macro is always zero, it need not be defined. */
2678
2679 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2680
2681 /* Define this macro if it is as good or better to call a constant
2682 function address than to call an address kept in a register.
2683
2684 Desirable on the 386 because a CALL with a constant address is
2685 faster than one with a register address. */
2686
2687 #define NO_FUNCTION_CSE
2688
2689 /* Define this macro if it is as good or better for a function to call
2690 itself with an explicit address than to call an address kept in a
2691 register. */
2692
2693 #define NO_RECURSIVE_FUNCTION_CSE
2694 \f
2695 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2696 return the mode to be used for the comparison.
2697
2698 For floating-point equality comparisons, CCFPEQmode should be used.
2699 VOIDmode should be used in all other cases.
2700
2701 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2702 possible, to allow for more combinations. */
2703
2704 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2705
2706 /* Return nonzero if MODE implies a floating point inequality can be
2707 reversed. */
2708
2709 #define REVERSIBLE_CC_MODE(MODE) 1
2710
2711 /* A C expression whose value is reversed condition code of the CODE for
2712 comparison done in CC_MODE mode. */
2713 #define REVERSE_CONDITION(CODE, MODE) \
2714 ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2715 : reverse_condition_maybe_unordered (CODE))
2716
2717 \f
2718 /* Control the assembler format that we output, to the extent
2719 this does not vary between assemblers. */
2720
2721 /* How to refer to registers in assembler output.
2722 This sequence is indexed by compiler's hard-register-number (see above). */
2723
2724 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2725 For non floating point regs, the following are the HImode names.
2726
2727 For float regs, the stack top is sometimes referred to as "%st(0)"
2728 instead of just "%st". PRINT_REG handles this with the "y" code. */
2729
2730 #undef HI_REGISTER_NAMES
2731 #define HI_REGISTER_NAMES \
2732 {"ax","dx","cx","bx","si","di","bp","sp", \
2733 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
2734 "argp", "flags", "fpsr", "dirflag", "frame", \
2735 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2736 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2737 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2738 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2739
2740 #define REGISTER_NAMES HI_REGISTER_NAMES
2741
2742 /* Table of additional register names to use in user input. */
2743
2744 #define ADDITIONAL_REGISTER_NAMES \
2745 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2746 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2747 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2748 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2749 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2750 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2751 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
2752 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2753
2754 /* Note we are omitting these since currently I don't know how
2755 to get gcc to use these, since they want the same but different
2756 number as al, and ax.
2757 */
2758
2759 #define QI_REGISTER_NAMES \
2760 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2761
2762 /* These parallel the array above, and can be used to access bits 8:15
2763 of regs 0 through 3. */
2764
2765 #define QI_HIGH_REGISTER_NAMES \
2766 {"ah", "dh", "ch", "bh", }
2767
2768 /* How to renumber registers for dbx and gdb. */
2769
2770 #define DBX_REGISTER_NUMBER(N) \
2771 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2772
2773 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2774 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2775 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2776
2777 /* Before the prologue, RA is at 0(%esp). */
2778 #define INCOMING_RETURN_ADDR_RTX \
2779 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2780
2781 /* After the prologue, RA is at -4(AP) in the current frame. */
2782 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2783 ((COUNT) == 0 \
2784 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2785 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2786
2787 /* PC is dbx register 8; let's use that column for RA. */
2788 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2789
2790 /* Before the prologue, the top of the frame is at 4(%esp). */
2791 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2792
2793 /* Describe how we implement __builtin_eh_return. */
2794 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2795 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2796
2797
2798 /* Select a format to encode pointers in exception handling data. CODE
2799 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2800 true if the symbol may be affected by dynamic relocations.
2801
2802 ??? All x86 object file formats are capable of representing this.
2803 After all, the relocation needed is the same as for the call insn.
2804 Whether or not a particular assembler allows us to enter such, I
2805 guess we'll have to see. */
2806 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2807 (flag_pic \
2808 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2809 : DW_EH_PE_absptr)
2810
2811 /* This is how to output an insn to push a register on the stack.
2812 It need not be very fast code. */
2813
2814 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2815 do { \
2816 if (TARGET_64BIT) \
2817 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2818 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2819 else \
2820 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2821 } while (0)
2822
2823 /* This is how to output an insn to pop a register from the stack.
2824 It need not be very fast code. */
2825
2826 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2827 do { \
2828 if (TARGET_64BIT) \
2829 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2830 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2831 else \
2832 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2833 } while (0)
2834
2835 /* This is how to output an element of a case-vector that is absolute. */
2836
2837 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2838 ix86_output_addr_vec_elt ((FILE), (VALUE))
2839
2840 /* This is how to output an element of a case-vector that is relative. */
2841
2842 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2843 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2844
2845 /* Under some conditions we need jump tables in the text section, because
2846 the assembler cannot handle label differences between sections. */
2847
2848 #define JUMP_TABLES_IN_TEXT_SECTION \
2849 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2850
2851 /* A C statement that outputs an address constant appropriate to
2852 for DWARF debugging. */
2853
2854 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
2855 i386_dwarf_output_addr_const ((FILE), (X))
2856
2857 /* Emit a dtp-relative reference to a TLS variable. */
2858
2859 #ifdef HAVE_AS_TLS
2860 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
2861 i386_output_dwarf_dtprel (FILE, SIZE, X)
2862 #endif
2863
2864 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2865 and switch back. For x86 we do this only to save a few bytes that
2866 would otherwise be unused in the text section. */
2867 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2868 asm (SECTION_OP "\n\t" \
2869 "call " USER_LABEL_PREFIX #FUNC "\n" \
2870 TEXT_SECTION_ASM_OP);
2871 \f
2872 /* Print operand X (an rtx) in assembler syntax to file FILE.
2873 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2874 Effect of various CODE letters is described in i386.c near
2875 print_operand function. */
2876
2877 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2878 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2879
2880 /* Print the name of a register based on its machine mode and number.
2881 If CODE is 'w', pretend the mode is HImode.
2882 If CODE is 'b', pretend the mode is QImode.
2883 If CODE is 'k', pretend the mode is SImode.
2884 If CODE is 'q', pretend the mode is DImode.
2885 If CODE is 'h', pretend the reg is the `high' byte register.
2886 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op.
2887 If CODE is -1, it is not an error for X to be a virtual register. */
2888
2889 #define PRINT_REG(X, CODE, FILE) \
2890 print_reg ((X), (CODE), (FILE))
2891
2892 #define PRINT_OPERAND(FILE, X, CODE) \
2893 print_operand ((FILE), (X), (CODE))
2894
2895 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2896 print_operand_address ((FILE), (ADDR))
2897
2898 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2899 do { \
2900 if (! output_addr_const_extra (FILE, (X))) \
2901 goto FAIL; \
2902 } while (0);
2903
2904 /* a letter which is not needed by the normal asm syntax, which
2905 we can use for operand syntax in the extended asm */
2906
2907 #define ASM_OPERAND_LETTER '#'
2908 #define RET return ""
2909 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2910 \f
2911 /* Define the codes that are matched by predicates in i386.c. */
2912
2913 #define PREDICATE_CODES \
2914 {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
2915 SYMBOL_REF, LABEL_REF, CONST}}, \
2916 {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2917 SYMBOL_REF, LABEL_REF, CONST}}, \
2918 {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
2919 SYMBOL_REF, LABEL_REF, CONST}}, \
2920 {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2921 SYMBOL_REF, LABEL_REF, CONST}}, \
2922 {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
2923 SYMBOL_REF, LABEL_REF, CONST}}, \
2924 {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
2925 SYMBOL_REF, LABEL_REF, CONST}}, \
2926 {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
2927 SYMBOL_REF, LABEL_REF}}, \
2928 {"shiftdi_operand", {SUBREG, REG, MEM}}, \
2929 {"const_int_1_operand", {CONST_INT}}, \
2930 {"const_int_1_31_operand", {CONST_INT}}, \
2931 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2932 {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2933 LABEL_REF, SUBREG, REG, MEM}}, \
2934 {"pic_symbolic_operand", {CONST}}, \
2935 {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
2936 {"sibcall_insn_operand", {REG, SUBREG, SYMBOL_REF}}, \
2937 {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
2938 {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
2939 {"const1_operand", {CONST_INT}}, \
2940 {"const248_operand", {CONST_INT}}, \
2941 {"const_0_to_3_operand", {CONST_INT}}, \
2942 {"const_0_to_7_operand", {CONST_INT}}, \
2943 {"const_0_to_15_operand", {CONST_INT}}, \
2944 {"const_0_to_255_operand", {CONST_INT}}, \
2945 {"incdec_operand", {CONST_INT}}, \
2946 {"mmx_reg_operand", {REG}}, \
2947 {"reg_no_sp_operand", {SUBREG, REG}}, \
2948 {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
2949 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
2950 {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
2951 {"index_register_operand", {SUBREG, REG}}, \
2952 {"flags_reg_operand", {REG}}, \
2953 {"q_regs_operand", {SUBREG, REG}}, \
2954 {"non_q_regs_operand", {SUBREG, REG}}, \
2955 {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
2956 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
2957 GE, UNGE, LTGT, UNEQ}}, \
2958 {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
2959 ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
2960 }}, \
2961 {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
2962 GTU, UNORDERED, ORDERED, UNLE, UNLT, \
2963 UNGE, UNGT, LTGT, UNEQ }}, \
2964 {"ix86_carry_flag_operator", {LTU, LT, UNLT, GT, UNGT, LE, UNLE, \
2965 GE, UNGE, LTGT, UNEQ}}, \
2966 {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
2967 {"ext_register_operand", {SUBREG, REG}}, \
2968 {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
2969 {"mult_operator", {MULT}}, \
2970 {"div_operator", {DIV}}, \
2971 {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
2972 UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
2973 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
2974 LSHIFTRT, ROTATERT}}, \
2975 {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
2976 {"memory_displacement_operand", {MEM}}, \
2977 {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2978 LABEL_REF, SUBREG, REG, MEM, AND}}, \
2979 {"long_memory_operand", {MEM}}, \
2980 {"tls_symbolic_operand", {SYMBOL_REF}}, \
2981 {"global_dynamic_symbolic_operand", {SYMBOL_REF}}, \
2982 {"local_dynamic_symbolic_operand", {SYMBOL_REF}}, \
2983 {"initial_exec_symbolic_operand", {SYMBOL_REF}}, \
2984 {"local_exec_symbolic_operand", {SYMBOL_REF}}, \
2985 {"any_fp_register_operand", {REG}}, \
2986 {"register_and_not_any_fp_reg_operand", {REG}}, \
2987 {"fp_register_operand", {REG}}, \
2988 {"register_and_not_fp_reg_operand", {REG}}, \
2989 {"zero_extended_scalar_load_operand", {MEM}}, \
2990 {"vector_move_operand", {CONST_VECTOR, SUBREG, REG, MEM}}, \
2991 {"no_seg_address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2992 LABEL_REF, SUBREG, REG, MEM, PLUS, MULT}},
2993
2994 /* A list of predicates that do special things with modes, and so
2995 should not elicit warnings for VOIDmode match_operand. */
2996
2997 #define SPECIAL_MODE_PREDICATES \
2998 "ext_register_operand",
2999 \f
3000 /* Which processor to schedule for. The cpu attribute defines a list that
3001 mirrors this list, so changes to i386.md must be made at the same time. */
3002
3003 enum processor_type
3004 {
3005 PROCESSOR_I386, /* 80386 */
3006 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
3007 PROCESSOR_PENTIUM,
3008 PROCESSOR_PENTIUMPRO,
3009 PROCESSOR_K6,
3010 PROCESSOR_ATHLON,
3011 PROCESSOR_PENTIUM4,
3012 PROCESSOR_K8,
3013 PROCESSOR_max
3014 };
3015
3016 extern enum processor_type ix86_tune;
3017 extern const char *ix86_tune_string;
3018
3019 extern enum processor_type ix86_arch;
3020 extern const char *ix86_arch_string;
3021
3022 enum fpmath_unit
3023 {
3024 FPMATH_387 = 1,
3025 FPMATH_SSE = 2
3026 };
3027
3028 extern enum fpmath_unit ix86_fpmath;
3029 extern const char *ix86_fpmath_string;
3030
3031 enum tls_dialect
3032 {
3033 TLS_DIALECT_GNU,
3034 TLS_DIALECT_SUN
3035 };
3036
3037 extern enum tls_dialect ix86_tls_dialect;
3038 extern const char *ix86_tls_dialect_string;
3039
3040 enum cmodel {
3041 CM_32, /* The traditional 32-bit ABI. */
3042 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
3043 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
3044 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
3045 CM_LARGE, /* No assumptions. */
3046 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
3047 };
3048
3049 extern enum cmodel ix86_cmodel;
3050 extern const char *ix86_cmodel_string;
3051
3052 /* Size of the RED_ZONE area. */
3053 #define RED_ZONE_SIZE 128
3054 /* Reserved area of the red zone for temporaries. */
3055 #define RED_ZONE_RESERVE 8
3056
3057 enum asm_dialect {
3058 ASM_ATT,
3059 ASM_INTEL
3060 };
3061
3062 extern const char *ix86_asm_string;
3063 extern enum asm_dialect ix86_asm_dialect;
3064
3065 extern int ix86_regparm;
3066 extern const char *ix86_regparm_string;
3067
3068 extern int ix86_preferred_stack_boundary;
3069 extern const char *ix86_preferred_stack_boundary_string;
3070
3071 extern int ix86_branch_cost;
3072 extern const char *ix86_branch_cost_string;
3073
3074 extern const char *ix86_debug_arg_string;
3075 extern const char *ix86_debug_addr_string;
3076
3077 /* Obsoleted by -f options. Remove before 3.2 ships. */
3078 extern const char *ix86_align_loops_string;
3079 extern const char *ix86_align_jumps_string;
3080 extern const char *ix86_align_funcs_string;
3081
3082 /* Smallest class containing REGNO. */
3083 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3084
3085 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
3086 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
3087 \f
3088 /* To properly truncate FP values into integers, we need to set i387 control
3089 word. We can't emit proper mode switching code before reload, as spills
3090 generated by reload may truncate values incorrectly, but we still can avoid
3091 redundant computation of new control word by the mode switching pass.
3092 The fldcw instructions are still emitted redundantly, but this is probably
3093 not going to be noticeable problem, as most CPUs do have fast path for
3094 the sequence.
3095
3096 The machinery is to emit simple truncation instructions and split them
3097 before reload to instructions having USEs of two memory locations that
3098 are filled by this code to old and new control word.
3099
3100 Post-reload pass may be later used to eliminate the redundant fildcw if
3101 needed. */
3102
3103 enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3104
3105 /* Define this macro if the port needs extra instructions inserted
3106 for mode switching in an optimizing compilation. */
3107
3108 #define OPTIMIZE_MODE_SWITCHING(ENTITY) ix86_optimize_mode_switching
3109
3110 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3111 initializer for an array of integers. Each initializer element N
3112 refers to an entity that needs mode switching, and specifies the
3113 number of different modes that might need to be set for this
3114 entity. The position of the initializer in the initializer -
3115 starting counting at zero - determines the integer that is used to
3116 refer to the mode-switched entity in question. */
3117
3118 #define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3119
3120 /* ENTITY is an integer specifying a mode-switched entity. If
3121 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3122 return an integer value not larger than the corresponding element
3123 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3124 must be switched into prior to the execution of INSN. */
3125
3126 #define MODE_NEEDED(ENTITY, I) \
3127 (GET_CODE (I) == CALL_INSN \
3128 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
3129 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
3130 ? FP_CW_UNINITIALIZED \
3131 : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
3132 ? FP_CW_ANY \
3133 : FP_CW_STORED)
3134
3135 /* This macro specifies the order in which modes for ENTITY are
3136 processed. 0 is the highest priority. */
3137
3138 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3139
3140 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
3141 is the set of hard registers live at the point where the insn(s)
3142 are to be inserted. */
3143
3144 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
3145 ((MODE) == FP_CW_STORED \
3146 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
3147 assign_386_stack_local (HImode, 2)), 0\
3148 : 0)
3149 \f
3150 /* Avoid renaming of stack registers, as doing so in combination with
3151 scheduling just increases amount of live registers at time and in
3152 the turn amount of fxch instructions needed.
3153
3154 ??? Maybe Pentium chips benefits from renaming, someone can try... */
3155
3156 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3157 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3158
3159 \f
3160 #define DLL_IMPORT_EXPORT_PREFIX '#'
3161
3162 #define FASTCALL_PREFIX '@'
3163 \f
3164 struct machine_function GTY(())
3165 {
3166 struct stack_local_entry *stack_locals;
3167 const char *some_ld_name;
3168 int save_varrargs_registers;
3169 int accesses_prev_frame;
3170 int optimize_mode_switching;
3171 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
3172 determine the style used. */
3173 int use_fast_prologue_epilogue;
3174 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
3175 for. */
3176 int use_fast_prologue_epilogue_nregs;
3177 };
3178
3179 #define ix86_stack_locals (cfun->machine->stack_locals)
3180 #define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
3181 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
3182
3183 /* Control behavior of x86_file_start. */
3184 #define X86_FILE_START_VERSION_DIRECTIVE false
3185 #define X86_FILE_START_FLTUSED false
3186
3187 /*
3188 Local variables:
3189 version-control: t
3190 End:
3191 */